
123

Cerstin Mahlow
Michael Piotrowski (Eds.)

Third International Workshop, SFCM 2013
Berlin, Germany, September 2013
Proceedings

Systems and Frameworks
for Computational Morphology

Communications in Computer and Information Science 380

Communications
in Computer and Information Science 380

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

Cerstin Mahlow Michael Piotrowski (Eds.)

Systems and Frameworks
for Computational Morphology

Third International Workshop, SFCM 2013
Berlin, Germany, September 6, 2013
Proceedings

13

Volume Editors

Cerstin Mahlow
University of Konstanz
78457 Konstanz, Germany
E-mail: cerstin.mahlow@uni-konstanz.de

Michael Piotrowski
Leibniz Institute of European History
Alte Universitätsstr. 19
55116 Mainz, Germany
E-mail: piotrowski@ieg-mainz.de

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-40485-6 e-ISBN 978-3-642-40486-3
DOI 10.1007/978-3-642-40486-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013945728

CR Subject Classification (1998): I.2.7, J.5

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at SFCM 2013: The Third International
Workshop on Systems and Frameworks for Computational Morphology, held on
September 6, 2013, at the Humboldt-Universität zu Berlin.

Morphological resources are the basis for all higher-level natural language
processing applications. Morphology components should thus be capable of analyzing
single word forms as well as whole corpora. For many practical applications, not only
morphological analysis, but also generation is required, i.e., the production of surfaces
corresponding to specific categories.

Apart from uses in computational linguistics, there are numerous practical appli-
cations that either require morphological analysis and generation, or that can greatly
benefit from it, for example, in text processing, user interfaces, or information retrieval.
These applications have specific requirements for morphological components, includ-
ing requirements from software engineering, such as programming interfaces or robust-
ness.

With the workshop on Systems and Frameworks for Computational Morphology
(SFCM) we have established a place for presenting and discussing recent advances
in the field of computational morphology. In 2013 the workshop took place for the
third time. SFCM focuses on actual working systems and frameworks that are based on
linguistic principles and that provide linguistically motivated analyses and/or generation
on the basis of linguistic categories. The main theme for SFCM 2009 was systems for a
specific language, namely, German; SFCM 2011 looked at phenomena at the interface
between morphology and syntax in various languages. SFCM 2013 had three main
goals:

– To discuss the role of morphological analysis and generation to improve the rather
disappointing situation with respect to language technology for languages other
than English, as described in the recently published White Paper Series by META-
NET.

– To stimulate discussion among researchers and developers and to offer an up-to-
date overview of available morphological systems for specific purposes.

– To stimulate discussion among developers of general frameworks that can be used
to implement morphological components for several languages.

On the basis of the number of submissions and the number of participants at the work-
shop we can definitely state that the topic of the workshop was met with great interest
from the community, both from academia and industry. We received 15 submissions,
of which seven were accepted after a thorough review by the members of the Program
Committee and additional reviewers. The peer review process was double-blind, and
each paper received four reviews.

In addition to the regular papers, we had the pleasure of Georg Rehm giving an
invited talk on the role of morphology systems in the META-NET Strategic Research
Agenda.

VI Preface

The discussions after the talks and during the demo sessions, as well as the final
plenum, showed the interest in and the need and the requirements for further efforts in
the field of computational morphology. We will maintain the website for the workshop
series at http://www.sfcm.eu.

This book starts with the invited paper by Georg Rehm (“The State of Computa-
tional Morphology for Europe’s Languages and the META-NET Strategic Research
Agenda”), emphasizing that computational morphology is all but a solved problem.
Only for a few European languages appropriate resources and tools are available. He
argues that a joint effort of the members of the European research community is needed
to create “adequate, precise, robust, scalable and freely available morphology compo-
nents” for all European languages.

The following paper “A Case Study in Tagging Case in German: An Assessment of
Statistical Approaches” by Simon Clematide presents a study that assesses the perfor-
mance of purely statistical approaches using supervised machine learning for predict-
ing case in German nouns. The study evaluates different approaches—Hidden Markov
Models, Decision Trees, and Conditional Random Fields—on two treebanks. The au-
thor shows that his CRF-based approach outperforms all other approaches and results
in an improvement of 11% compared to an HMM trigram tagger.

In their paper “Jabalı́n: A Comprehensive Computational Model of Modern Stan-
dard Arabic Verbal Morphology Based on Traditional Arabic Prosody,” Alicia González
Martı́nez, Susana López Hervás, Doaa Samy, Carlos G. Arques, and Antonio Moreno
Sandoval note that—despite its richness—the Arabic morphological system is in fact
highly regular. By taking inspiration from the traditional description of Arabic prosody,
the authors’ Jabalı́n system implements a compact and simple morphological descrip-
tion for Modern Standard Arabic, which takes advantage of the regularities of Arabic
morphology.

Both SFCM 2009 and SFCM 2011 featured papers on HFST, and we are happy
to see this tradition continue: The paper “HFST—A System for Creating NLP Tools”
by Krister Lindén, Erik Axelson, Senka Drobac, Sam Hardwick, Juha Kuokkala, Jyrki
Niemi, Tommi Pirinen, and Miikka Silfverberg presents and evaluates various NLP
tools that have been created using HFST. What makes this paper particularly interesting,
however, is that the authors describe an implementation and application of pmatch

finite-state pattern matching algorithm presented by Lauri Karttunen at SFCM 2011.
The next paper, “A System for Archivable Grammar Documentation” by Michael

Maxwell, first describes a number of criteria for archivable documentation of grammars
for natural languages and then presents a system for writing and testing morphological
and phonological grammars, which aims to satisfy these criteria. The paper explains
some of the decisions that went into the design of the formalism and describes experi-
ences gained from its use with grammars for a variety of languages.

Fiammetta Namer’s paper “A Rule-Based Morphosemantic Parser for French for a
Fine-Grained Semantic Annotation of Texts” describes the DériF system. Unlike ex-
isting word segmentation tools, DériF annotates derived and compound words with
semantic information, namely a definition, lexical-semantic features, and lexical rela-
tions.

Preface VII

Next, in their paper “Implementing a Formal Model of Inflectional Morphology,”
Benoı̂t Sagot and Géraldine Walther describe the implementation of a formal model of
inflectional morphology that aims to capture typological generalizations. The authors
show that the availability of such a model—and an implementation thereof—is benefi-
cial for studies in descriptive and formal morphology, as well as for the development of
NLP tools and resources.

Finally, the paper “Verbal Morphosyntactic Disambiguation through Topological
Field Recognition in German-Language Law Texts” by Kyoko Sugisaki and Stefan
Höfler introduces an incremental system of verbal morphosyntactic disambiguation that
exploits the concept of topological fields, and demonstrates that this approach is able to
significantly reduce the error rate in POS tagging.

The contributions show that high-quality research is being conducted in the area of
computational morphology: Mature systems are further developed and new systems and
applications are emerging. Other languages than English are becoming more important.
The papers in this book come from six countries and two continents, discuss a wide
variety of languages from many different language families, and illustrate that, in fact,
a rich morphology is better described as the norm rather than the exception—proving
that for most languages, as we have stated above, morphological resources are indeed
the basis for all higher-level natural language processing applications.

The trend toward open-source developments still goes on and evaluation is consid-
ered an important issue. Making high-quality morphological resources freely available
will help to advance the state of the art and allow the development of high-quality
real-world applications. Useful applications with carefully conducted evaluation will
demonstrate to a broad audience that computational morphology is an actual science
with tangible benefits for society.

We would like to thank the authors for their contributions to the workshop and to
this book. We also thank the reviewers for their effort and for their constructive feed-
back, encouraging and helping the authors to improve their papers. The submission and
reviewing process and the compilation of the proceedings was supported by the Easy-
Chair system. We thank Aliaksandr Birukou, the editor of the series Communications
in Computer and Information Science (CCIS), and the Springer staff for publishing
the proceedings of SFCM 2013. We are grateful for the financial support given by the
German Society for Computational Linguistics and Language Technology (GSCL). We
thank Anke Lüdeling and Carolin Odebrecht and the staff from the Corpus Linguistics
and Morphology Group at the Department of German Language and Linguistics at the
Humboldt-Universität zu Berlin for the local organization.

June 2013 Cerstin Mahlow
Michael Piotrowski

Organization

The Third International Workshop on Systems and Frameworks for Computational
Morphology (SFCM 2013) was organized and chaired by Cerstin Mahlow and Michael
Piotrowski. The workshop was held at Humboldt-Universität zu Berlin.

Program Chairs

Cerstin Mahlow University of Konstanz, Germany
Michael Piotrowski Leibniz Institute of European History,

Germany

Program Committee

Bruno Cartoni University of Geneva, Switzerland
Simon Clematide University of Zurich, Switzerland
Piotr Fuglewicz TiP Sp. z o. o., Katowice, Poland
Thomas Hanneforth University of Potsdam, Germany
Kimmo Koskenniemi University of Helsinki, Finland
Winfried Lenders University of Bonn, Germany
Krister Lindén University of Helsinki, Finland
Anke Lüdeling Humboldt-Universität Berlin, Germany
Cerstin Mahlow University of Konstanz, Germany
Günter Neumann DFKI Saarbrücken, Germany
Michael Piotrowski Leibniz Institute of European History,

Germany
Benoı̂t Sagot INRIA/Université Paris 7, France
Helmut Schmid University of Stuttgart, Germany
Angelika Storrer University of Dortmund, Germany
Pius ten Hacken Swansea University, UK
Andrea Zielinski Fraunhofer IOSB, Germany

Additional Reviewers

Lenz Furrer University of Zurich, Switzerland

Local Organization

Anke Lüdeling Humboldt-Universität Berlin, Germany
Carolin Odebrecht Humboldt-Universität Berlin, Germany

X Organization

Sponsoring Institutions

German Society for Computational Linguistics and Language Technology (GSCL)
Humboldt-Universität Berlin, Germany

Table of Contents

The State of Computational Morphology for Europe’s Languages and the
META-NET Strategic Research Agenda . 1

Georg Rehm

A Case Study in Tagging Case in German: An Assessment of Statistical
Approaches . 22

Simon Clematide

Jabalı́n: A Comprehensive Computational Model of Modern Standard Arabic
Verbal Morphology Based on Traditional Arabic Prosody 35

Alicia González Martı́nez, Susana López Hervás, Doaa Samy,
Carlos G. Arques, and Antonio Moreno Sandoval

HFST—A System for Creating NLP Tools . 53
Krister Lindén, Erik Axelson, Senka Drobac, Sam Hardwick,
Juha Kuokkala, Jyrki Niemi, Tommi A. Pirinen, and
Miikka Silfverberg

A System for Archivable Grammar Documentation . 72
Michael Maxwell

A Rule-Based Morphosemantic Analyzer for French for a Fine-Grained
Semantic Annotation of Texts . 92

Fiammetta Namer

Implementing a Formal Model of Inflectional Morphology 115
Benoı̂t Sagot and Géraldine Walther

Verbal Morphosyntactic Disambiguation through Topological Field
Recognition in German-Language Law Texts . 135

Kyoko Sugisaki and Stefan Höfler

Author Index . 147

The State of Computational Morphology
for Europe’s Languages and the META-NET Strategic

Research Agenda

Georg Rehm

DFKI GmbH, Alt-Moabit 91c, 10559 Berlin, Germany
georg.rehm@dfki.de

Abstract. Recognising Europe’s exceptional demand and opportunities for mul-
tilingual language technologies, 60 leading research centres in 34 European coun-
tries joined forces in META-NET, a European Network of Excellence. Working
together with numerous additional organisations and experts from a variety of
fields, META-NET has developed the Strategic Research Agenda for Multilin-
gual Europe 2020 (SRA) [42] – the complex planning and discussion process
took more than two years to complete and involved ca. 200 experts. In this con-
tribution we motivate the SRA, briefly describe the current state of Language
Technology, especially Computational Morphology, in Europe and discuss the
findings in the overall framework of the plans and strategies as specified in the
META-NET Strategic Research Agenda.

Keywords: language technology, computational morphology, strategic research
agenda, europe, digital agenda.

1 Introduction

The multilingual setup of our European society imposes grand societal challenges on
political, economic and social integration and inclusion, especially in the creation of the
single digital market and unified information space targeted by the European
Commission’s Digital Agenda [16]. As many as 21 European languages are at risk
of digital extinction [41]. They could become victims of the digital age as they are
under-represented online and under-resourced with respect to language technologies.
Huge market opportunities remain untapped because of language barriers. If no action
is taken, many European citizens will find that speaking their mother tongue leaves
them at a social and economic disadvantage.

Language technology is the missing piece of the puzzle that will bring us closer
to a single digital market. It is the key enabler and solution to boosting future growth
in Europe and strengthening our competitiveness. The key question is: Will Europe
wholeheartedly decide to participate in this fast growing market?

Although we use computers to write, phones to chat and the web to search for
knowledge, IT does not yet have access to the meaning, purpose and sentiment behind
our trillions of written and spoken words. Technology will bridge the rift separating
IT and the human mind using sophisticated technologies for language understanding.

C. Mahlow and M. Piotrowski (Eds.): SFCM 2013, CCIS 380, pp. 1–21, 2013.
© Springer-Verlag Berlin Heidelberg 2013

2 G. Rehm

Today’s computers cannot understand texts and questions well enough to provide trans-
lations, summaries or reliable answers, but in less than ten years such services will be
offered for many languages. Technological mastery of human language will enable a
host of innovative IT products and services in commerce, administration, government,
education, health care, entertainment and other sectors.

Recognising Europe’s exceptional demand and opportunities, 60 leading
research centres in 34 European countries joined forces in META-NET
(http://www.meta-net.eu), a European Network of Excellence dedicated to the
technological foundations of a multilingual, inclusive, innovative and reflective Eu-
ropean society and partially supported through four EC-funded projects. META-NET
assembled the Multilingual Europe Technology Alliance (META) with more than 700
organisations and experts representing multiple stakeholders. Working together with
numerous additional organisations and experts from a variety of fields, META-NET has
developed a Strategic Research Agenda (SRA) [42]. Our recommendations for Multi-
lingual Europe 2020, as specified in the SRA, are based on a planning process involving
more than one thousand experts.

We predict, in line with many other forecasts, that the next generation of IT will be
able to handle human language, knowledge and emotion in competent and meaningful
ways. These new competencies will enable an endless stream of novel services that will
improve communication and understanding. Many services will help people learn about
and understand things such as world history, technology, nature and the economy. Oth-
ers will help us to better understand each other across language and knowledge bound-
aries. They will also drive many other services including programmes for commerce,
localisation, and personal assistance.

Our ultimate goal is monolingual, crosslingual and multilingual technology support
for all languages spoken by a significant population in Europe. We recommend focusing
on three priority research topics connected to innovative application scenarios that will
provide European R&D in this field with the ability to compete with other markets and
subsequently achieve benefits for European society and citizens as well as an array of
opportunities for our economy and future growth. We are confident that upcoming EU
funding programmes, specifically Horizon 2020 [21] and Connecting Europe Facility
[17], combined with national and regional funding, can provide the necessary resources
for accomplishing our joint vision.

In the following, Section 2 provides some background and context for our overall ini-
tiative. Section 3 describes the results of the META-NET study “Europe’s Languages
in the Digital Age”, taking a closer look at text analytics, especially computational
morphology. Section 4 summarises the META-NET technology vision that we foresee
for the year 2020, while Section 5 presents the core of the META-NET Strategic Re-
search Agenda, i. e., five lines of action for large-scale research and innovation. The
objective of these five themes is to turn our joint vision into reality and allow Europe
to benefit from a technological revolution that will overcome barriers of understand-
ing between people of different languages, people and technology, and people and the
digitised knowledge of mankind.

http://www.meta-net.eu

The State of Computational Morphology for Europe’s Languages 3

2 Multilingual Europe: Facts and Opportunities for LT

During the last 60 years, Europe has become a distinct political and economic structure.
Culturally and linguistically it is rich and diverse. However, everyday communication
between Europe’s citizens, enterprises and politicians is inevitably confronted with lan-
guage barriers. They are an invisible and increasingly problematic threat to economic
growth [12]. The EU’s institutions spend about one billion euros per year on translation
and interpretation to maintain their policy of multilingualism [22].

The only – unacceptable and rather un-European – alternative to a multilingual Eu-
rope would be to allow a single language to take a predominant position and replace
all other languages. Another way to overcome language barriers is to learn foreign lan-
guages. However, given the 23 official EU languages plus 60 or more other languages
spoken in Europe [20], language learning alone cannot solve the problem. Without tech-
nological support, our linguistic diversity will be an insurmountable obstacle for the
entire continent. Only about half of the 500 million people who live in the EU speak
English! There is no such thing as a lingua franca shared by the vast majority of the
population.

Less than 10% of the EU’s population are willing or able to use online services in
English which is why multilingual technologies are badly needed to support and to
move the EU online market from more than 20 language-specific sub-markets to one
unified single digital market with more than 500 million users and consumers. The
current situation with many fragmented markets is considered a critical obstacle [16].

In the late 1970s the EU realised the relevance of LT as a driver of European unity
and began funding its first research projects, such as EUROTRA. After a longer period
of sparse funding [27, 31], the EC set up a department dedicated to language technology
and machine translation a few years ago. Selective funding efforts have led to a number
of valuable results. For example, the EC’s translation services now use Moses, which
has been mainly developed in European research projects. However, these never led to
a concerted European effort through which the EU and its member states systematically
pursue the common goal of providing technology support for all European languages.

Through initiatives such as CLARIN and META-NET the research community is
well connected and engaged in a long term agenda that aims gradually to strengthen
language technology’s role. What is missing in Europe is awareness, political deter-
mination and political will that would take us to a leading position in this technology
area through a concerted funding effort. This major dedicated push needs to include
the political determination to adopt a shared, EU-wide language policy that foresees an
important role for language technologies.

Europe’s more than 80 languages are one of its most important cultural assets and a
vital part of its social model [13, 20]. While languages such as English and Spanish are
likely to thrive in the emerging digital marketplace, many European languages could
become marginal in a networked society. This would weaken Europe’s global standing,
and run counter to the goal of ensuring equal participation for every European citizen
regardless of language [49, 50, 52, 54].

Only 57% of internet users in Europe purchase goods and services in languages that
are not their native language. 55% of users read content in a foreign language while
only 35% use another language to write e-mails or post comments on the web [19].

4 G. Rehm

A few years ago, English might have been the lingua franca of the web but the situation
has drastically changed. The amount of online content in other European as well as
Asian and Middle Eastern languages has exploded [23]. Already today, more than 55%
of web-based content is not in English.

The European market for translation, interpretation and localisation was estimated to
be 5.7 billion euros in 2008. The subtitling and dubbing sector was at 633 million euros,
language teaching at 1.6 billion euros. The overall value of the European language
industry was estimated at 8.4 billion euros and expected to grow by 10% p. a., resulting
in ca. 16.5 billion euros in 2015 [15, 18]. Yet, this existing capacity is not enough to
satisfy current and future needs, e. g., with regard to translation [11]. Already today,
Google Translate translates the same volume per day that all human translators on the
planet translate in one year [38].

Despite recent improvements, the quality, usability and integration of machine trans-
lation into other online services is far from what is needed. If we rely on existing tech-
nologies, automated translation and the ability to process a variety of content in a variety
of languages will be impossible. The same applies to information services, document
services, media industries, digital archives and language teaching. The most compelling
solution for ensuring the breadth and depth of language usage in tomorrow’s Europe is
to use appropriate technology. Still, the quality and usability of current technologies
is far from what is needed. Especially the smaller European languages suffer severely
from under-representation in the digital realm.

Drawing on the insights gained so far, today’s hybrid language technology mixing
deep processing with statistical methods could be able to bridge the gap between all
European languages and beyond. In the end, high-quality language technology will be
a must for all of Europe’s languages for supporting the political and economic unity
through cultural diversity. The three priority research themes are mainly aimed at Hori-
zon 2020 [21]. The more infrastructural aspects, platform design and implementation
and concrete language technology services are aimed at CEF [17]. An integral compo-
nent of our strategic plans are the member states and associated countries: it is of utmost
importance to set up, under the umbrella of the SRA, a coordinated initiative both on the
national (member states, regions, associated countries) and international level (EC/EU).

We believe that Language Technology made in Europe for Europe will significantly
contribute to future cross-border and cross-language communication, economic growth
and social stability while establishing for Europe a worldwide, leading position in tech-
nology innovation, securing Europe’s future as a world-wide trader and exporter of
goods, services and information. There are many societal changes and challenges as
well as economic and technological trends that confirm the urgent need to include
sophisticated language technology in our European ICT infrastructure. Among these
changes and challenges are language barriers [14], an ageing population, people with
disabilities, immigration and integration, personal information services and customer
care, operation and cooperation on a global scale, preservation of cultural heritage, lin-
guistic diversity [51, 56], social media and e-participation as well as market awareness
and customer acceptance.

The State of Computational Morphology for Europe’s Languages 5

3 LT and Computational Morphology: Current State

Answering the question on the current state of a whole R&D field is both difficult and
complex, the same is true for a specific area such as computational morphology. For
language technology at large, even though partial answers exist in terms of business
figures, scientific challenges and results from educational studies, nobody has collected
these indicators and provided comparable reports for a substantial number of European
languages yet. In order to arrive at a comprehensive answer, META-NET prepared the
White Paper Series Europe’s Languages in the Digital Age [41] that describes the cur-
rent state of language technology support for 30 European languages (including all 23
official EU languages). This immense undertaking has been in preparation since mid
2010 and was finally published in late 2012. More than 200 experts participated to the
30 volumes as co-authors and contributors.

The individual volumes of this series report on the specifics for a given language. In
addition, we also prepared a comparison that goes across all languages and that takes a
closer look at four important areas of language technology: machine translation; inter-
active speech technologies; text analytics; language resources. For each of these areas
we ranked the level of support through language technology for each of the 30 lan-
guages on a five-point scale, from excellent to weak/no support. The text analytics area
comprises, among others, the quality and coverage of existing text analysis technolo-
gies (morphology, syntax, semantics), coverage of linguistic phenomena and domains,
amount and variety of available applications, quality and size of corpora, as well as
quality and coverage of existing lexical resources and grammars. Figure 1 shows the
results of the cross-language comparison for text analytics (the other three comparisons
exhibit very similar tendencies). In addition to other processing components and tech-
nologies such as syntactic parsers, the results in Figure 1 also reflect computational
morphology.

The differences in technology support between the various languages and areas are
dramatic and alarming. In all four areas, English is ahead of the other languages but
even support for English is far from being perfect. While there are good quality soft-
ware and resources available for a few larger languages and application areas, others,
usually smaller or very small languages, have substantial gaps. Many languages lack
even basic technologies for text analytics and essential resources. Others have basic
resources but the implementation of semantic methods is still far away. Currently no
language, not even English, has the technological support it deserves. Also, the number
of badly supported and under-resourced languages is unacceptable if we do not want to
give up the principles of solidarity and subsidiarity in Europe.

For all four areas the positioning and ranking of all languages was carried out
in a large meeting, held in Berlin, Germany, on October 21/22, 2011, in which rep-
resentatives of all languages, i. e., members of all authoring teams of all white papers
participated. This ranking exercise was informed by several statistics, discussions, com-
parisons, and examples. In addition to the positioning of a language, Figure 1 shows the
average score of the category grammatical analysis which is part of a set of categories
that are contained in each white paper and which provide more detailed information on
a language-specific basis. The category grammatical analysis includes, among others,
the area of computational morphology. The score shown in the Figure is an average

6 G. Rehm

Table 1. Text analytics: state of language technology support for 30 European languages

Excellent Good Moderate Fragmentary Weak/no
support support support support support

English (4.50) Dutch (3.94)

French (3.71)

German (3.36)

Italian (3.50)

Spanish (3.77)

Basque (3.36)

Bulgarian (2.80)

Catalan (3.21)

Czech (3.29)

Danish (3.00)

Finnish (3.64)

Galician (3.43)

Greek (2.71)

Hungarian (3.79)

Norwegian (4.36)

Polish (4.07)

Portuguese (3.64)

Romanian (3.87)

Slovak (2.43)

Slovene (3.57)

Swedish (4.57)

Croatian (2.43)

Estonian (3.14)

Icelandic (3.50)

Irish (3.71)

Latvian (3.14)

Lithuanian (1.79)

Maltese (0.80)

Serbian (1.64)

of the following seven dimensions: quantity, quality, availability, coverage, maturity,
sustainability, adaptability (from 0, very low, to 6, very high). Neither the individual
scores nor the average scores have been calibrated with regard to the scores assigned to
the language technology support of other languages. This is why the scores cannot be
used for a cross-language comparison alone; nevertheless, the average scores show how
the respective authoring teams perceive the state of the grammatical analysis category
for their respective language themselves (among the other categories are, for example,
speech recognition, speech synthesis, semantic analysis, text generation and machine
translation). To provide the complete picture, the individual scores assigned by the ex-
perts to the seven dimensions of the category grammatical analysis for their respective
languages are shown in Table 2. This table represents a rating of the current state of
existing tools in that category for the 30 languages examined by our study. Detailed ex-
planations and interpretations are provided in the META-NET Language White Papers.

In the highly complex – and highly abstract – technology stack used in sophisticated
language technology systems such as, for example, systems for machine translation,
morphology tools and modules can almost be thought of as a well established, working
technology, a solved problem. Instead of taking a bird’s-eye view through our cross-
language comparison that also takes into account many other technologies for text an-
alytics we will now have a closer look at the individual languages and the level of
support they have in terms of software for morphological analysis. While we delve into
the concrete results of the META-NET White Paper Series concerning computational
morphology in the order of the quality of support, we are unable to give a complete
account of all aspects and issues discussed by the authors.

The State of Computational Morphology for Europe’s Languages 7

Table 2. Rating (from 0, very low, to 6, very high) of the current state of existing tools and
technologies in the category grammatical analysis along seven different criteria; the scores were
assigned by the members of the respective authoring teams who, in many cases, consulted with
additional experts in order to arrive at scores that the whole regional/national community can
agree upon; these scores for the seven dimensions were assigned individually and not calibrated
among the 30 languages. In contrast, the information given in the column Level of support is the
result of a cross-language comparison which was prepared at a large meeting with representatives
of all authoring teams in Berlin on October 21/22, 2011.

Language Q
ua

nt
it

y

A
va

il
ab

il
it

y

Q
ua

li
ty

C
ov

er
ag

e

M
at

ur
it

y

S
us

ta
in

ab
il

it
y

A
da

pa
ti

bi
li

ty

A
ve

ra
ge

Level of support

Basque [26] 4 2.5 4 4 4 2.5 2.5 3.36 fragmentary
Bulgarian [2] 2.4 2 3.6 3.6 2.8 2.4 2.8 2.80 fragmentary
Catalan [37] 3 2.5 4 4 4 2.5 2.5 3.21 fragmentary
Croatian [47] 2 1.5 3.5 3 2 1 4 2.43 weak/no
Czech [3] 4 2 4 4 3 2 4 3.29 fragmentary
Danish [40] 3 2 4 4 3 2 3 3.00 fragmentary
Dutch [39] 3.6 5.4 4.8 3.6 4.8 3.6 1.8 3.94 moderate
English [1] 5 5 5.5 4.5 4.5 3 4 4.50 good
Estonian [32] 2.5 3.5 3.2 2.8 4 2.5 3.5 3.14 weak/no
Finnish [29] 3.5 3.5 3.5 4 4 3.5 3.5 3.64 fragmentary
French [33] 4 4 4 4 4 3 3 3.71 moderate
Galician [24] 3 5 4 4 3 2 3 3.43 fragmentary
German [6] 4 2.5 4 4 4 2.5 2.5 3.36 moderate
Greek [25] 2 1.5 3.5 3 3 3 3 2.71 fragmentary
Hungarian [45] 4.5 2 4 4.5 4 3 4.5 3.79 fragmentary
Icelandic [44] 2 5.5 4 3 3.5 3.5 3 3.50 weak/no
Irish [28] 4 4 3 3 4 4 4 3.71 weak/no
Italian [8] 3.5 3 4 5 4 3 2 3.50 moderate
Latvian [46] 2.5 2 3 3.5 4 3 4 3.14 weak/no
Lithuanian [43] 2 1.5 2.5 2 1.5 1 2 1.79 weak/no
Maltese [43] 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.80 weak/no
Norwegian [9, 10] 4 4.5 4 4 4.5 4.5 5 4.36 fragmentary
Polish [36] 4 4.5 4.5 4.5 4 4 3 4.07 fragmentary
Portuguese [5] 3 3 4 4 4.5 2.5 4.5 3.64 fragmentary
Romanian [48] 4 3.5 4 3.6 4.5 3.5 4 3.87 fragmentary
Serbian [55] 1 1 2.5 2 2 1.5 1.5 1.64 weak/no
Slovak [57] 2 2 3 2 2 3 3 2.43 fragmentary
Slovene [30] 2.5 4 4.5 3.5 3 3 4.5 3.57 fragmentary
Spanish [34] 3.5 3 5.4 4.5 3.5 3 3.5 3.77 moderate
Swedish [4] 4.5 3.5 5 4 5 5 5 4.57 fragmentary

8 G. Rehm

Good Support. The only language that is considered to have “good support” in terms
of text analytics is English. In comparison to certain other languages and language
families, the morphology of English is usually considered as being rather sim-
ple and straight-forward. Many robust and precise off-the-shelf technologies exist
which is most probably the main reason why the authors of the white paper on En-
glish [1] do not discuss morphology components at all, nor any related issues or
challenges.

Moderate Support. The experts who wrote the white papers on the languages with
“moderate support” concerning text analytics follow this trend. They mainly dis-
cuss other research and technology gaps, mentioning the existence of, for example,
“medium- to high-quality software for basic text analysis, such as tools for mor-
phological analysis and syntactic parsing” [6], mentioning morphology on a more
superficial level [8, 34] or not at all [39]. The authors of the white paper on French
[33] emphasise that large programmes were set up (1994–2000; 2003–2005) to
build a more or less complete set of basic technologies for French, from spoken
and written language resources to spoken and written language processing systems
including evaluations.

Fragmentary Support. A total of 16 languages only have “fragmentary support” in
the area of text analytics. Especially in this but also in the lowest category usually
one or at most two different morphological components are mentioned by the au-
thors [3, 26]. There is a clear tendency that these tools have limited functionality
and a long history including an unclear copyright situation [45]; they are neither
freely [40, 48] nor immediately available. However, these tools are usually em-
ployed in the large office application suites (MS Office, Open Office), localisation
frameworks or national search engines [3, 9, 57].

Most experts discuss the complexity of the rich morphological systems of their
languages, a high degree of inflection and maybe a complete lack of morphological
distinction for certain nominal cases as a key contributing factor to the fact that
only very few morphological modules exist for their languages; these linguistic
features make morphological processing, as well as all approaches based primarily
on statistics, a substantial challenge [2, 3, 25, 26, 29, 30, 36, 45, 48, 57]. Special
characters and their encoding systems are also mentioned for languages with alpha-
bets that go beyond plain ASCII; morphologically processing words when certain
diacritics are actually missing (this often happens in web texts and emails) is a
challenge as no cues for automatic processing exist. Such words are considered
malformed which is why several experts demand more robust error detection algo-
rithms, also to distinguish between genuine spelling errors and word forms which
are correct but missing from the lexicon [3]. A simple but important observation,
made for Basque [26] and for Greek [25], is related to the fact that algorithms and
approaches developed for English cannot be directly transferred to other languages.
An overarching reason for the lack of basic processing tools concerns the fact that
languages spoken in smaller countries usually do not receive as much attention and
research funding than larger languages in which typically also a larger base of re-
searchers works on building actual technologies, maybe even breaking new ground

The State of Computational Morphology for Europe’s Languages 9

[25]. For Hungarian, the authors note that a lack of synchronisation between par-
allel efforts to build morphological processors lead to substantial friction loss [45].
This is why several morphological parsers for Hungarian exist but they use conflict-
ing and incompatible formalisms. Some authors also discuss related technologies
such as, for example, e-learning tools and systems for second language learners that
employ complex morphological components [3].

Similar to the programmes set up to boost the technological support for French
(1994–2000 and 2003–2005, see above) a project was set up in Portugal in 2005 to
enable the development of a set of linguistic resources and software components to
support the computational processing of Portuguese. The outcome of this project
was a large annotated corpus and processing tools for tokenisation, morphosyntac-
tic tagging, inflection analysis, and lemmatisation, among others [5]. A comparable
project was set up in Slovakia to provide integrated computational processing of
the Slovak language for linguistic research purposes within the framework of the
national research and development programme Current Issues in Society Develop-
ment [57]. Results of this project are tools and data sets that include processors
and morphologically annotated corpora. In direct comparison, it can be seen that
French had a clear head-start over Portuguese and Slovak, in addition to a longer,
more established reasearch tradition in this area, which is why it was ranked higher.
The authors of the white paper on Slovak [57] conclude that, while certain mor-
phological tools do exist for their language, “those must be further developed and
supported.”

Weak/no Support. Eight languages were placed in this lowest category of language
technology support. In general, the authors of the respective language white papers
mention the same set of issues as the ones of the previous category. A small or
very small number of morphological tools or components exist [28] and are widely
used, even in well known applications, but they are not freely available or accessi-
ble for research purposes and also based on rather simple approaches that rely on
extensive lists of correct word forms [32, 47, 53]. Several of these tools have been
in development since the 1980ies and are under the control of companies. This is
why researchers often use the open source software ispell or aspell as a techno-
logical fallback solution. Furthermore, the complex morphology of languages is
mentioned in almost all cases along with the statement that morphology processing
must be further developed [32, 43, 44, 47, 55].

Several authors of the white papers on the languages with only weak or no sup-
port explicitly demand intensified development for basic morphological tools in
order to achieve better precision and performance for technologies supporting their
languages. An important aspect is to design and model these approaches to the spe-
cific linguistic properties of the language in question without trying to adapt an
approach developed and optimised for English to a completely different language
[32, 55]. One such step is to set up specific language technology programmes,
as has been done, among others, in France, Slovakia and Portugal. In 2000, the
Icelandic government also set up a national programme with the aim of support-
ing institutions and companies in creating basic resources for Icelandic language
technology. This initiative resulted in several projects which have had a profound

10 G. Rehm

influence on the field in Iceland. Among its main direct products are a full-form
morphological database of Modern Icelandic inflections, a balanced morphosyn-
tactically tagged corpus of 25 million words and a training model for data-driven
part-of-speech taggers and an improved spell checker [44].

4 Language Technology 2020: The META-NET Technology Vision

Before we go into the details of the Strategic Research Agenda, we want to present,
briefly, the overarching technology vision which drives the content and direction of the
priority research themes and which is, in essence, the foundation of the SRA. The wide
range of novel or improved applications in META-NET’s shared vision represent only
a fragment of the countless opportunities for LT to change our work and everyday life.
Language-proficient technology will enable or enhance applications wherever language
is present.

We believe that in the next IT revolution computers will master our languages. The
operating systems of tomorrow will know human languages. They may not reach the
linguistic performance of educated people and they will not yet know enough about
the world to understand everything, but they will be much more useful than they are
today and will further enhance our work and life.

The area of communication among people will see a dramatically increased use
of sophisticated LT. By the year 2020, with sufficient research effort on high-quality
automatic translation and robust accurate speech recognition, reliable dialogue transla-
tion for face-to-face conversation and telecommunication will be possible for at least
hundreds of languages, across multiple subject fields and text types, both spoken and
written. Authoring software will check for appropriate style according to genre and
purpose, it will flag potential errors, suggest corrections, and use authoring memories
to suggest completions of started sentences or even whole paragraphs. LT will be able
to record, transcribe, and summarise tele-meetings. Brainstorming will be facilitated by
semantic lookup and structured display of relevant data, proposals, pictures, and maps.
Even before 2020, email communication will be semantically analysed, checked for
sentiment indicators, and summarised in reports.

Human language will become the primary medium for communication between
people and technology. Today’s voice-control interfaces to smartphones and search
engines are just the modest start of overcoming the communication barrier between hu-
mankind and the non-human part of the world. Only a few years ago the idea of talking
to a car to access key functions would have seemed absurd, yet it is now commonplace.
We will soon see much more sophisticated personal digital assistants with expressive
voices, faces, and gestures. They will become an interface to any information provided
online. Such assistants can be made sensitive to the user’s preferences, habits, moods,
and goals. By the year 2020 we could have a highly personalised, socially aware and
interactive virtual assistant. Having been trained on the user’s behaviour, it will offer
advice and it will be able to speak in the language and dialect of the user but also di-
gest information in other natural and artificial languages and formats. The assistant will
translate or interpret without the user even needing to request it.

In the context of the Semantic Web, Linked Open Data and the general semantifi-
cation of the web as well as knowledge acquisition and ontology population, LT can

The State of Computational Morphology for Europe’s Languages 11

perform many tasks in the processing of knowledge and information. It can sort, cat-
egorise, catalogue, and filter content and it can deliver the data for data mining in texts.
LT can connect web documents with meaningful hyperlinks and it can produce sum-
maries of larger text collections. Opinion mining and sentiment analysis can find out
what people think about products, personalities, or problems and analyse their feelings
about such topics. In the next few years we will see considerable advances for all these
techniques. For large parts of research and application development, language process-
ing and knowledge processing will merge. Language and knowledge technologies for
social intelligence applications will involve text and speech analytics, translation, sum-
marisation, opinion mining, sentiment analysis, and several other technologies. In 2020,
LT will enable forms of knowledge evolution, transmission and exploitation that speed
up scientific, social, and cultural development.

5 Language Technology 2020: The META-NET Priority Research
Themes

In ten years or less, basic language proficiency is going to be an integral component of
any advanced IT. It will be available to any user interface, service and application. Ad-
ditional language skills for semantic search, knowledge discovery, human-technology
communication, text analytics, language checking, e-learning, translation and other ap-
plications will employ and extend the basic proficiency. The shared basic language com-
petence will ensure consistency and interoperability among services. Many adaptations
and extensions will be derived and improved through sample data and interaction with
people through machine learning.

In the envisaged big push toward realising this vision by massive research and inno-
vation, the technology community is faced with three enormous challenges:

1. Richness and diversity. A serious challenge is the sheer number of languages, some
closely related, others distantly apart. Within a language, technology has to deal
with dialects, sociolects, registers, jargons, genres and slangs.

2. Depth and meaning. Understanding language is a complex process. Human lan-
guage is not only the key to knowledge and thought, it also cannot be interpreted
without shared knowledge and active inference. Computational language profi-
ciency needs semantic technologies.

3. Multimodality and grounding. Human language is embedded in our daily activi-
ties. It is combined with other modes and media of communication. It is affected
by beliefs, desires, intentions and emotions and it affects all of these. Successful
interactive LT requires models of embodied and adaptive human interaction with
people, technology and other parts of the world.

It is fortunate for research and economy that the only way to effectively tackle
the three challenges involves submitting the evolving technology continuously to the
growing demands and practical stress tests of real world applications. Only a contin-
uous stream of technological innovation can provide the economic pull forces and the

12 G. Rehm

evolutionary environments for the realisation of the grand vision. We propose five major
action lines of research and innovation:

– Three Priority Research Themes along with application scenarios to drive re-
search and innovation. These will demonstrate novel technologies in show-case so-
lutions with high economic and societal impact. They will open up numerous new
business opportunities for European language-technology and -service providers.
1. Translingual Cloud: generic and specialised federated cloud services for in-

stantaneous reliable spoken and written translation among all European and
major non-European languages.

2. Social Intelligence and e-Participation: understanding and dialogue within
and across communities of citizens, customers, clients and consumers to en-
able e-participation and more effective processes for preparing, selecting and
evaluating collective decisions.

3. Socially Aware Interactive Assistants that learn and adapt and that provide
proactive and interactive support tailored to specific situations, locations and
goals of the user through verbal and non-verbal multimodal communication.

– Two additional themes focus upon base technologies and a service platform:
4. Core technologies and resources for Europe’s languages: a steadily evolving

system of shared, collectively maintained interoperable core technologies and
resources for the languages of Europe and selected other languages. These will
ensure that our languages will be sufficiently supported and represented in the
next generations of IT.

5. A European service platform for language technologies for supporting re-
search and innovation by testing and showcasing research results, integrating
various services, even including professional human services, will allow SME
providers to offer services, and share and utilise tools, components and data
resources.

These priority themes have been designed with the aim of turning our vision into re-
ality and to letting Europe benefit from a technological revolution that will overcome
barriers of understanding between people of different languages, between people and
technology and between people and the knowledge of mankind. The themes connect so-
cietal needs with LT applications. In the following we mainly focus upon the two addi-
tional themes as these are the most relevant ones for computational morphology. Detailed
descriptions of the three priority research themes can be found in the SRA [42].

The three priority research themes overlap in technologies and challenges. The over-
lap reflects the coherence and maturation of the field. At the same time, the resulting
division of labour and sharing of resources and results is a precondition for the realisa-
tion of this highly ambitious programme. The themes need to benefit from progress in
core technologies of language analysis and production such as morphological, syntactic
and semantic parsing and generation (see Figure 1).

5.1 Core Language Resources and Technologies

The three priority research themes share a large and heterogeneous group of core tech-
nologies for language analysis and production that provide development support

The State of Computational Morphology for Europe’s Languages 13

Fig. 1. Core language resources and technologies at the centre of the three priority research
themes

through basic modules and datasets (see Figure 1). To this group belong tools and
technologies such as, among others, tokenisers, part-of-speech taggers, morphology
components, syntactic parsers, tools for building language models, information retrieval
libraries, machine learning toolkits, speech recognition and speech synthesis engines,
and integrated architectures. Many of these tools depend on specific datasets
(i. e., language resources), for example, very large collections of linguistically annotated
documents (morphologically annotated corpora, multilingual, aligned corpora, etc.),
treebanks, grammars, lexicons, thesauri, terminologies, dictionaries, ontologies and lan-
guage models. Both tools and resources can be rather general or highly task- or domain-
specific, tools can be language-independent, datasets are, by definition,
language-specific.

A key component of this research agenda is to collect, develop and make available
core technologies and resources through a shared infrastructure so that the research and
technology development carried out in all themes can make use of them. Over time,
this approach will improve the core technologies including systems and frameworks for

14 G. Rehm

Icelandic

French

Catalan
Italian

Maltese

Greek

Bulgarian

Romanian

Serbian

Croatian

Slovene Hungarian

Slovak

Czech

German

Danish Lithuanian

Latvian

Estonian

Finnish

Swedish

Norwegian

Basque

Spanish
Portuguese

Galician

English

Irish

PolishDutch

Polish

English

Irish

Icelandic

Italian

Maltese

Greek

Bulgarian

Romanian

SerbianCroatian

Slovene
Hungarian

Slovak

Czech

German

Dutch

Danish
Lithuanian

Latvian

Estonian

Finnish

Swedish

Norwegian

Basque

Spanish

Portuguese

Galician

French

Catalan

Fig. 2. Towards appropriate and adequate coverage of language resources and technologies for
Europe

computational morphology, as the specific research will have certain requirements on
the software, extending their feature sets, performance, accuracy, etc. through dynamic
push-pull effects (see Figure 2). Conceptualising these technologies as a set of shared
core technologies will have positive effects on their sustainability and interoperability.
Also, as we have seen, many European languages other than English are heavily under-
resourced [41].

The European academic and industrial technology community is fully aware of
the need for sharing language resources and language technologies as a basis for the
successful development and implementation of the priority themes. Initiatives such
as FLaReNet [7] and CLARIN (http://www.clarin.eu) have prepared the ground
for a culture of sharing, META-NET’s open resource exchange infrastructure, META-
SHARE, is providing the technological platform as well as legal and organisational
schemes (http://www.meta-share.eu). All language resources and basic technolo-
gies including morphology tools and components will be created under this core tech-
nologies umbrella.

5.2 A European Service Platform for Language Technologies

We recommend the design and implementation of an ambitious large-scale platform as
a central motor for research and innovation in the next phase of IT evolution and as a
ubiquitous resource for the multilingual European society. The platform will be used
for testing, show casing, proof-of-concept demonstration, avant-garde adoption, exper-
imental and operational service composition, and fast and economical service delivery
to enterprises and end-users (see Figure 3). The creation of a cloud platform for a wide

http://www.clarin.eu
http://www.meta-share.eu

The State of Computational Morphology for Europe’s Languages 15

Providers of operational and research technologies and services

Research
Centres

European
Institutions

Other
companies (SMEs,

startups etc.)

National
Language
Institutions

Language
Technology
Providers

Language
Service

Providers
Universities

European
Institutions

Research
Centres

Public
Administrations

Enterprises
LT User

Industries
Universities

European
Citizens

Beneficiaries/users of the platform

Interfaces (web, speech, mobile etc.)

Priority Research Theme 1:
Translingual

Cloud

Priority Research Theme 2:
Social Intelligence
& e-Participation

Priority Research Theme 3:
Socially Aware

Interactive Assistants

European Service Platform for Language Technologies
(Cloud or Sky Computing Platform)

Multilingual
technologies

Text
analytics

Text
generation

Language
checking

Sentiment
analysis

Named entity
recognition

Summari-
sation

Knowledge access
and management

Information and
relation extraction

Language
Processing

Language
Understanding

Knowledge

Emotion/
Sentiment

Data protection
Tools
Data Sets
Resources
Components
Metadata
Standards
Interfaces
APIs
Catalogues
Quality Assurance
Data Import/Export
Input/Output
Storage
Performance
Availability
Scalability

Fe
at

ur
es

Fig. 3. European Service Platform for Language Technologies

16 G. Rehm

range of services dealing with human language, knowledge and emotion will not only
benefit the individual and corporate users of these technologies but also the providers.
Large-scale ICT infrastructures and innovation clusters such as this one are foreseen in
the Digital Agenda for Europe [16].

A top layer consists of language processing such as text filters, tokenisation, mor-
phological analysis, spell, grammar and style checking, hyphenation, lemmatising and
parsing. At a deeper level, services will be offered that realise some degree and form
of language understanding including entity and event extraction, opinion mining and
translation. Both basic language processing and understanding will be used by services
that support human communication or realise human-machine interaction (question
answering, dialogue systems, email response applications). Another component will
bring in services for processing and storing knowledge gained by and used for under-
standing and communication (ontologies, linked data collections). These in turn permit
a certain range of rational capabilities often attributed to a notion of intelligence. The
goal is not to model the entire human intelligence but rather to realise selected forms
of inference that are needed for utilising and extending knowledge, for understand-
ing and for successful communication. These forms of inference permit better decision
support, pro-active planning and autonomous adaptation. A final part of services will
be dedicated to human emotion. Since people are largely guided by their emotions
and strongly affected by the emotions of others, truly user-centred IT need facilities
for detecting and interpreting emotion and even for expressing emotional states in
communication.

5.3 Languages to Be Supported

The SRA has a much broader scope in terms of languages to be supported than our study
“Europe’s Languages in the Digital Age” [41]. The set of languages to be reflected with
technologies include not only the 23 official languages of the EU but also recognised
and unrecognised regional languages and the languages of associated countries or non-
member states. Equally important are the minority and immigrant languages that are in
active use by a significant population in Europe (for Germany, these are, among oth-
ers, Turkish and Russian; for the UK, these include Bengali, Urdu/Hindi and Punjabi).
An important set of languages outside our continent are those of important political
and trade partners such as, for example, Chinese, Japanese, Korean, Russian, and Thai.
META-NET already has good working relationships with several of the respective of-
ficial bodies, especially EFNIL (European Federation of National Institutions for Lan-
guage), NPLD (Network to Promote Linguistic Diversity), and also the Maaya World
Network for Linguistic Diversity.

6 Conclusions: Computational Morphology for Europe

In the Strategic Research Agenda, META-NET recommends setting up a large, multi-
year programme on language technologies to build the technological foundations for a
truly multilingual Europe. The research strands and associated sets of applications we
suggest to build in the next ten years are of utmost importance for Europe. Through

The State of Computational Morphology for Europe’s Languages 17

these technologies we will be able to overcome language barriers in spoken and written
communication, we will be able to carry out both regional and national and language-
border-crossing debates and we will enable new forms and means of communication.
We are confident that the impact of our technologies will be so immense that they will
be able to help establishing a sense of a European identity in the majority of European
citizens. The research plan described in the SRA will generate a countless number of
opportunities, it will significantly contribute to Europe’s future growth and will secure
its position in many global markets.

Due to the scope and duration of the suggested action, our preferred option is to
set up a shared programme between the European Commission and the Member States
as well as Associated Countries. First steps along those lines have been taken at our
META-FORUM 2012 conference in Brussels, Belgium, on June 21, 2012, when rep-
resentatives of several European funding agencies (Bulgaria, Czech Republic, France,
Hungary, The Netherlands, Slovenia) who participated in a panel discussion on this
topic, unanimously expressed the urgent need for setting up such a shared programme
[35].

The overview of the results of our study “Europe’s Languages in the Digital Age”
with regard to the area of text analytics, specifically computational morphology, clearly
shows that this sub-area cannot and must not be considered a “solved problem”. Quite
the contrary: while, overall, several good technologies exist for a small number of lan-
guages, many languages lack adequate support in this technology area. This is why the
whole European research community needs to team up in order to discuss potential syn-
ergies and to boost technology transfer so that adequate, precise, robust, scalable and
freely available morphology components will be available for all European languages
sooner rather than later. Among the many new challenges and opportunities in this area
are real-time processing, web-scale processing of and training on documents using big
data technologies such as Hadoop, interoperability and standardisation of data formats,
morphology as a service and “multilingual” processing of closely related languages.
The sophisticated applications foreseen in our language technology vision and the pri-
ority research themes are criticially dependent on reliable and precise basic processing
components including computational morphology.

Acknowledgements. The work presented in this article would not have been possible
without the dedication and commitment of our colleagues Aljoscha Burchardt, Kathrin
Eichler, Tina Klüwer, Arle Lommel, Felix Sasaki and Hans Uszkoreit (all DFKI), the
60 member organisations of the META-NET network of excellence, the ca. 70 members
of the Vision Groups, the ca. 30 members of the META Technology Council, the more
than 200 authors of and contributors to the META-NET Language White Paper Series
[41] and the ca. 200 representatives from industry and research who contributed to the
META-NET SRA [42].

META-NET is co-funded by the 7th Framework Programme of the European Com-
mission through the following grant agreements: T4ME Net (no. 249 119), CESAR
(no. 271 022), METANET4U (no. 270 893) and META-NORD (no. 270 899). More in-
formation: http://www.meta-net.eu, office@meta-net.eu.

http://www.meta-net.eu
mailto:office@meta-net.eu

18 G. Rehm

References

[1] Ananiadou, S., McNaught, J., Thompson, P.: The English Language in the Digital
Age. META-NET White Paper Series: Europe’s Languages in the Digital Age. Springer,
Heidelberg (2012), http://www.meta-net.eu/whitepapers/volumes/english

[2] Blagoeva, D., Koeva, S., Murdarov, V.: ��������	
� �	� � �	�	������� ����� –
The Bulgarian Language in the Digital Age. META-NET White Paper Series: Europe’s
Languages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/bulgarian

[3] Bojar, O., Cinková, S., Hajič, J., Hladká, B., Kuboň, V., Mírovský, J., Panevová, J., Peterek,
N., Spoustová, J., Žabokrtský, Z.: Čeština v digitálním věku – The Czech Language in
the Digital Age. META-NET White Paper Series: Europe’s Languages in the Digital Age.
Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/czech

[4] Borin, L., Brandt, M.D., Edlund, J., Lindh, J., Parkvall, M.: Svenska språket i den digitala
tidsåldern – The Swedish Language in the Digital Age. META-NET White Paper Series:
Europe’s Languages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/swedish

[5] Branco, A., Mendes, A., Pereira, S., Henriques, P., Pellegrini, T., Meinedo, H., Trancoso,
I., Quaresma, P., de Lima, V.L.S., Bacelar, F.: A língua portuguesa na era digital – The Por-
tuguese Language in the Digital Age. META-NET White Paper Series: Europe’s Languages
in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/portuguese

[6] Burchardt, A., Egg, M., Eichler, K., Krenn, B., Kreutel, J., Leßmöllmann, A., Rehm, G.,
Stede, M., Uszkoreit, H., Volk, M.: Die Deutsche Sprache im digitalen Zeitalter – German
in the Digital Age. META-NET White Paper Series: Europe’s Languages in the Digital Age.
Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/german

[7] Calzolari, N., Bel, N., Choukri, K., Mariani, J., Monachini, M., Odijk, J., Piperidis, S.,
Quochi, V., Soria, C.: Language Resources for the Future – The Future of Language Re-
sources (September 2011),
http://www.flarenet.eu/sites/default/files/FLaReNet_Book.pdf

[8] Calzolari, N., Magnini, B., Soria, C., Speranza, M.: La Lingua Italiana nell’Era Digitale –
The Italian Language in the Digital Age. META-NET White Paper Series: Europe’s Lan-
guages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/italian

[9] De Smedt, K., Lyse, G.I., Gjesdal, A.M., Losnegaard, G.S.: Norsk i den digitale tidsalderen
(bokmålsversjon) – The Norwegian Language in the Digital Age (Bokmål Version). META-
NET White Paper Series: Europe’s Languages in the Digital Age. Springer, Heidelberg
(2012), http://www.meta-net.eu/whitepapers/volumes/norwegian-bokmaal

[10] De Smedt, K., Lyse, G.I., Gjesdal, A.M., Losnegaard, G.S.: Norsk i den digitale tidsalderen
(nynorskversjon) – The Norwegian Language in the Digital Age (Nynorsk Version). META-
NET White Paper Series: Europe’s Languages in the Digital Age. Springer, Heidelberg
(2012), http://www.meta-net.eu/whitepapers/volumes/norwegian-nynorsk

[11] DePalma, D.A., Kelly, N.: The Business Case for Machine Translation. How Organizations
Justify and Adopt Automated Translation (August 2009),
http://www.commonsenseadvisory.com

http://www.meta-net.eu/whitepapers/volumes/english
http://www.meta-net.eu/whitepapers/volumes/bulgarian
http://www.meta-net.eu/whitepapers/volumes/czech
http://www.meta-net.eu/whitepapers/volumes/swedish
http://www.meta-net.eu/whitepapers/volumes/portuguese
http://www.meta-net.eu/whitepapers/volumes/german
http://www.flarenet.eu/sites/default/files/FLaReNet_Book.pdf
http://www.meta-net.eu/whitepapers/volumes/italian
http://www.meta-net.eu/whitepapers/volumes/norwegian-bokmaal
http://www.meta-net.eu/whitepapers/volumes/norwegian-nynorsk
http://www.commonsenseadvisory.com

The State of Computational Morphology for Europe’s Languages 19

[12] Economist, E.I.U.T.: Competing across borders. How Cultural and Communication Barriers
Affect Business (2012),
http://www.managementthinking.eiu.com/competing-across-borders.html

[13] European Commission: Multilingualism: an Asset for Europe and a Shared Commitment
(2008), http://ec.europa.eu/languages/pdf/comm2008_en.pdf

[14] European Commission: Report on cross-border e-commerce in the EU (2009),
http://ec.europa.eu/consumers/strategy/docs/com_staff_wp2009_en.pdf

[15] European Commission: Size of the Language Industry in the EU (2009),
http://ec.europa.eu/dgs/translation/publications/studies

[16] European Commission: A Digital Agenda for Europe (2010),
http://ec.europa.eu/information_society/digital-agenda/publications/

[17] European Commission: Connecting Europe Facility: Commission adopts plan for �50 bil-
lion boost to European networks (2011),
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/11/1200

[18] European Commission: Languages mean business (2011),
http://ec.europa.eu/languages/languages-mean-business/

[19] European Commission: User Language Preferences Online (2011),
http://ec.europa.eu/public_opinion/flash/fl_313_en.pdf

[20] European Commission: Europeans and their Languages european Commission. Special Eu-
robarometer 386/77.1 (June 2012), http://ec.europa.eu/languages/
languages-of-europe/eurobarometer-survey_en.htm

[21] European Commission: Horizon 2020: The Framework Programme for Research and Inno-
vation (2012), http://ec.europa.eu/research/horizon2020/

[22] European Commission: Languages (2012), http://ec.europa.eu/languages/
[23] Ford, D., Batson, J.: Languages of the World (Wide Web) (July 2011),

http://googleresearch.blogspot.com/
2011/07/languages-of-world-wide-web.html

[24] García-Mateo, C., Arza, M.: O idioma galego na era dixital – The Galician Language in
the Digital Age. META-NET White Paper Series: Europe’s Languages in the Digital Age.
Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/galician

[25] Gavrilidou, M., Koutsombogera, M., Patrikakos, A., Piperidis, S.: – The Greek Language in
the Digital Age. META-NET White Paper Series: Europe’s Languages in the Digital Age.
Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/greek

[26] Hernáez, I., Navas, E., Odriozola, I., Sarasola, K., de Ilarraza, A.D., Leturia, I., de Lezana,
A.D., Oihartzabal, B., Salaberria, J.: Euskara Aro Digitalean – Basque in the Digital
Age. META-NET White Paper Series: Europe’s Languages in the Digital Age. Springer,
Heidelberg (2012), http://www.meta-net.eu/whitepapers/volumes/basque

[27] Joscelyne, A., Lockwood, R.: The EUROMAP Study. Benchmarking HLT progress in Eu-
rope (2003), http://cst.dk/dandokcenter/FINAL_Euromap_rapport.pdf

[28] Judge, J., Chasaide, A.N., Dhubhda, R.N., Scannell, K.P., Dhonnchadha, E.U.: An
Ghaeilge sa Ré Dhigiteach – The Irish Language in the Digital Age. META-NET
White Paper Series: Europe’s Languages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/irish

[29] Koskenniemi, K., Lindén, K., Carlson, L., Vainio, M., Arppe, A., Lennes, M.,
Westerlund, H., Hyvärinen, M., Bartis, I., Nuolijärvi, P., Piehl, A.: Suomen kieli digi-
taalisella aikakaudella – The Finnish Language in the Digital Age. META-NET White Paper
Series: Europe’s Languages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/finnish

http://www.managementthinking.eiu.com/competing-across-borders.html
http://ec.europa.eu/languages/pdf/comm2008_en.pdf
http://ec.europa.eu/consumers/strategy/docs/com_staff_wp2009_en.pdf
http://ec.europa.eu/dgs/translation/publications/studies
http://ec.europa.eu/information_society/digital-agenda/publications/
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/11/1200
http://ec.europa.eu/languages/languages-mean-business/
http://ec.europa.eu/public_opinion/flash/fl_313_en.pdf
http://ec.europa.eu/languages/languages-of-europe/eurobarometer-survey_en.htm
http://ec.europa.eu/languages/languages-of-europe/eurobarometer-survey_en.htm
http://ec.europa.eu/research/horizon2020/
http://ec.europa.eu/languages/
http://googleresearch.blogspot.com/2011/07/languages-of-world-wide-web.html
http://googleresearch.blogspot.com/2011/07/languages-of-world-wide-web.html
http://www.meta-net.eu/whitepapers/volumes/galician
http://www.meta-net.eu/whitepapers/volumes/greek
http://www.meta-net.eu/whitepapers/volumes/basque
http://cst.dk/dandokcenter/FINAL_Euromap_rapport.pdf
http://www.meta-net.eu/whitepapers/volumes/irish
http://www.meta-net.eu/whitepapers/volumes/finnish

20 G. Rehm

[30] Krek, S.: Slovenski jezik v digitalni dobi – The Slovene Language in the Digital Age.
META-NET White Paper Series: Europe’s Languages in the Digital Age. Springer, Hei-
delberg (2012), http://www.meta-net.eu/whitepapers/volumes/slovene

[31] Lazzari, G.: Human Language Technologies for Europe (2006),
http://cordis.europa.eu/documents/documentlibrary/90834371EN6.pdf

[32] Liin, K., Muischnek, K., Müürisep, K., Vider, K.: Eesti keel digiajastul – The Estonian
Language in the Digital Age. META-NET White Paper Series: Europe’s Languages in the
Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/estonian

[33] Mariani, J., Paroubek, P., Francopoulo, G., Max, A., Yvon, F., Zweigenbaum, P.: La langue
française à I’ Ère du numérique – The French Language in the Digital Age. META-NET
White Paper Series: Europe’s Languages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/french

[34] Melero, M., Badia, T., Moreno, A.: La lengua española en la era digital – The Spanish
Language in the Digital Age. META-NET White Paper Series: Europe’s Languages in the
Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/spanish

[35] META-NET: META-FORUM 2012: A Strategy for Multilingual Europe. Panel discussion
“Plans for LT Research and Innovation in Member States and Regions” (June 2012), videos
available at http://www.meta-net.eu/events/meta-forum-2012/programme

[36] Miłkowski, M.: Język polski w erze cyfrowej – The Polish Language in the Digital
Age. META-NET White Paper Series: Europe’s Languages in the Digital Age. Springer,
Heidelberg (2012), http://www.meta-net.eu/whitepapers/volumes/polish

[37] Moreno, A., Bel, N., Revilla, E., Garcia, E., Vallverdú, S.: La llengua catalana a l’era digital
– The Catalan Language in the Digital Age. META-NET White Paper Series: Europe’s
Languages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/catalan

[38] Och, F.: Breaking down the language barrier – six years in (April 2012),
http://googleblog.blogspot.de/2012/04/
breaking-down-language-barriersix-years.html

[39] Odijk, J.: Het Nederlands in het Digitale Tijdperk – The Dutch Language in the Digital
Age. META-NET White Paper Series: Europe’s Languages in the Digital Age. Springer,
Heidelberg (2012), http://www.meta-net.eu/whitepapers/volumes/dutch

[40] Pedersen, B.S., Wedekind, J., Bøhm-Andersen, S., Henrichsen, P.J., Hoffensetz-Andresen,
S., Kirchmeier-Andersen, S., Kjærum, J.O., Larsen, L.B., Maegaard, B., Nimb, S., Ras-
mussen, J.E., Revsbech, P., Thomsen, H.E.: Det danske sprog i den digitale tidsalder – The
Danish Language in the Digital Age. META-NET White Paper Series: Europe’s Languages
in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/danish

[41] Rehm, G., Uszkoreit, H. (eds.): META-NET White Paper Series: Europe’s Languages in the
Digital Age. Springer, Heidelberg (2012), http://www.meta-net.eu/whitepapers , 31
volumes on 30 European languages

[42] Rehm, G., Uszkoreit, H. (eds.): The META-NET Strategic Research Agenda for Multilin-
gual Europe. Springer, Heidelberg (2013), http://www.meta-net.eu/sra

[43] Rosner, M., Joachimsen, J.: Il-Lingwa Maltija Fl-Era Diġitali – The Maltese Language in
the Digital Age. META-NET White Paper Series: Europe’s Languages in the Digital Age.
Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/maltese

http://www.meta-net.eu/whitepapers/volumes/slovene
http://cordis.europa.eu/documents/documentlibrary/90834371EN6.pdf
http://www.meta-net.eu/whitepapers/volumes/estonian
http://www.meta-net.eu/whitepapers/volumes/french
http://www.meta-net.eu/whitepapers/volumes/spanish
http://www.meta-net.eu/events/meta-forum-2012/programme
http://www.meta-net.eu/whitepapers/volumes/polish
http://www.meta-net.eu/whitepapers/volumes/catalan
http://googleblog.blogspot.de/2012/04/breaking-down-language-barriersix-years.html
http://googleblog.blogspot.de/2012/04/breaking-down-language-barriersix-years.html
http://www.meta-net.eu/whitepapers/volumes/dutch
http://www.meta-net.eu/whitepapers/volumes/danish
http://www.meta-net.eu/whitepapers
http://www.meta-net.eu/sra
http://www.meta-net.eu/whitepapers/volumes/maltese

The State of Computational Morphology for Europe’s Languages 21

[44] Rögnvaldsson, E., Jóhannsdóttir, K.M., Helgadóttir, S., Steingrímsson, S.: Íslensk tunga á
stafrænni öld – The Icelandic Language in the Digital Age. META-NET White Paper Series:
Europe’s Languages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/icelandic

[45] Simon, E., Lendvai, P., Németh, G., Olaszy, G., Vicsi, K.: A magyar nyelv a digitális korban
– The Hungarian Language in the Digital Age. META-NET White Paper Series: Europe’s
Languages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/hungarian

[46] Skadiņa, I., Veisbergs, A., Vasiļjevs, A., Gornostaja, T., Keiša, I., Rudzı̄te, A.: Latviešu
valoda digitālajā laikmetā – The Latvian Language in the Digital Age. META-NET White
Paper Series: Europe’s Languages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/latvian

[47] Tadić, M., Brozović-Rončević, D., Kapetanović, A.: Hrvatski Jezik u Digitalnom Dobu –
The Croatian Language in the Digital Age. META-NET White Paper Series: Europe’s Lan-
guages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/croatian

[48] Trandabăt, D., Irimia, E., Mititelu, V.B., Cristea, D., Tufis, D.: Limba română în era digitală
– The Romanian Language in the Digital Age. META-NET White Paper Series: Europe’s
Languages in the Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/romanian

[49] UNESCO: Intersectoral Mid-term Strategy on Languages and Multilingualism (2007),
http://unesdoc.unesco.org/images/0015/001503/150335e.pdf

[50] UNESCO: UNESCO Information for All Programme: International Conference Linguistic
and Cultural Diversity in Cyberspace: Final Document. Lena Resolution (July 2008)

[51] UNESCO: UNESCO Information for All Programme, AFP (2011),
http://www.unesco.org/new/en/communication-and-information/
intergovernmental-programmes/information-for-all-programme-ifap/

[52] UNESCO: UNESCO Information for All Programme: Second International Conference
Linguistic and Cultural Diversity in Cyberspace: Final Document. Yakutsk Call for Ac-
tion (July 2011),
http://www.maayajo.org/IMG/pdf/Call_for_action_Yakutsk_EN-2.pdf

[53] Vaišnien, D., Zabarskaitė, J.: Lietuvių kalba skaitmeniniame amžiuje – The Lithuanian Lan-
guage in the Digital Age. META-NET White Paper Series: Europe’s Languages in the Dig-
ital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/lithuanian

[54] Vannini, L., Crosnier, H.L. (eds.): Net.Lang – Towards the Multilingual Cyberspace. C&F
éditions, Paris (March 2012), http://net-lang.net

[55] Vitas, D., Popović, L., Krstev, C., Obradović, I., Pavlović-Lažetić, G., Stanojević, M.:
�����	 ��	� � �	�	������ ���� – The Serbian Language in the Digital Age. META-
NET White Paper Series: Europe’s Languages in the Digital Age. Springer, Heidelberg
(2012), http://www.meta-net.eu/whitepapers/volumes/serbian

[56] WSIS: World Summit on the Information Society: Declaration of Principles – Building the
Information Society: a global challenge in the new Millennium (December 2003),
http://www.itu.int/wsis/docs/geneva/official/dop.html

[57] Šimková, M., Garabík, R., Gajdošová, K., Laclavík, M., Ondrejović, S., Juhár, J., Genči, J.,
Furdík, K., Ivoríková, H., Ivanecký, J.: Slovenský jazyk v digitálnom veku – The Slovak
Language in the Digital Age. META-NET White Paper Series: Europe’s Languages in the
Digital Age. Springer, Heidelberg (2012),
http://www.meta-net.eu/whitepapers/volumes/slovak

http://www.meta-net.eu/whitepapers/volumes/icelandic
http://www.meta-net.eu/whitepapers/volumes/hungarian
http://www.meta-net.eu/whitepapers/volumes/latvian
http://www.meta-net.eu/whitepapers/volumes/croatian
http://www.meta-net.eu/whitepapers/volumes/romanian
http://unesdoc.unesco.org/images/0015/001503/150335e.pdf
http://www.unesco.org/new/en/communication-and-information/intergovernmental-programmes/information-for-all-programme-ifap/
http://www.unesco.org/new/en/communication-and-information/intergovernmental-programmes/information-for-all-programme-ifap/
http://www.maayajo.org/IMG/pdf/Call_for_action_Yakutsk_EN-2.pdf
http://www.meta-net.eu/whitepapers/volumes/lithuanian
http://net-lang.net
http://www.meta-net.eu/whitepapers/volumes/serbian
http://www.itu.int/wsis/docs/geneva/official/dop.html
http://www.meta-net.eu/whitepapers/volumes/slovak

A Case Study in Tagging Case in German:
An Assessment of Statistical Approaches

Simon Clematide

University of Zurich, Institute of Computational Linguistics
Binzmühlestrasse 14, 8050 Zürich, Switzerland

simon.clematide@uzh.ch
http://www.cl.uzh.ch/siclemat

Abstract. In this study, we assess the performance of purely statistical
approaches using supervised machine learning for predicting case in German
(nominative, accusative, dative, genitive, n/a). We experiment with two differ-
ent treebanks containing morphological annotations: TIGER and TUEBA. An
evaluation with 10-fold cross-validation serves as the basis for systematic com-
parisons of the optimal parametrizations of different approaches. We test taggers
based on Hidden Markov Models (HMM), Decision Trees, and Conditional Ran-
dom Fields (CRF). The CRF approach based on our hand-crafted feature model
achieves an accuracy of about 94%. This outperforms all other approaches and
results in an improvement of 11% compared to a baseline HMM trigram tagger
and an improvement of 2% compared to a state-of-the-art tagger for rich morpho-
logical tagsets. Moreover, we investigate the effect of additional (morphological)
categories (gender, number, person, part of speech) in the internal tagset used for
the training. Rich internal tagsets improve results for all tested approaches.

Keywords: German, Case, Tagging, Supervised Learning, Decision Trees, Con-
ditional Random Fields, Hidden Markov Models, Morphologically annotated
treebanks, Evaluation.

1 Introduction

Within linguistic analysis of the German language, determining the case of a token is
a basic and important step. Usually, the case of a token is not determined in isolation
but in connection with other morphological features. The objective of this study is to
gain insight into the difficulties of case tagging independently from other morphological
categories. The current availability of large, morphologically annotated corpora allows
for a comprehensive and systematic evaluation.

It is a general assumption about the morphological analysis of inflecting languages
like German, that good results cannot be achieved without applying richly resourced
morphological systems, such as the commercial tool GERTWOL [1] or the freely avail-
able Morphisto [2]. In the current study, we answer the question how viable an approach
can be that requires only a certain amount of morphologically annotated sentences avail-
able from current treebanks. With the help of supervised machine learning algorithms
for probabilistic tagging of token sequences, such training material can be used to build
systems which are able to predict comparable classifications given a similar raw text as

C. Mahlow and M. Piotrowski (Eds.): SFCM 2013, CCIS 380, pp. 22–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cl.uzh.ch/siclemat

A Case Study in Tagging Case in German 23

input. An advantage of the statistical sequence taggers used in this study is their robust-
ness and their ability to degrade gracefully on unseen input. On the other hand, such
tools typically derive their decisions from a restricted local context. This leads to the
disadvantage that they become easily confused when linguistic evidence from non-local
places has to be combined in order to determine case correctly.

Broad coverage systems which disambiguate morphological categories (among these
also case) have been available with MORPHY [3] and, more recently, with the state-of-
the-art RFTagger for German [4]. An HMM-based case tagger for German forms part
of the Durm Lemmatizer [5].

As a baseline system for our assessment, we use the trigram tagger tnt [6], which
is based on HMMs. Secondly, we test the statistical part of the RFTagger (henceforth
abbreviated as rft) [4], a specialized tagger for fine-grained POS tags that uses deci-
sion trees to estimate the transition probabilities of the subunits of complex tags. This
tagger has proven excellent performance on the task of tagging the full morphological
STTS1 tagset for German [7]. Thirdly, we apply the state-of-the-art technique for se-
quence tagging, i.e., sequential Conditional Random Fields (CRFs) [8]. In particular,
we developed our own feature model for case tagging based on the general purpose
CRF tool wapiti [9].

It has been known since [10] that statistical approaches for PoS tagging can profit
from enriched and fine-grained internal tagsets. In our experiment, we also try to assess
the effect of training on internal tagsets that are enriched by additional morphological
features such as PoS, gender, number, and person.

The main advantage of the tested approaches lies in the fact that only tokenized input
is needed after training. One more advantage arises if tools like wapiti are used, which
are able to calculate class probabilities for the assigned tags. Such confidence scores can
be combined with the results of morphological analyzer tools as GERTWOL, which
simply list all linguistically admissible analyses for a given token without contextual
disambiguation.

When working with supervised learning methods, it is relatively easy to set up com-
parative evaluations. Typically, a system is built from a training corpus and afterwards
evaluated on a test set, which has not been used for training. However, the obtained re-
sults are only precise for the specific training and testing corpus. A different splitting of
training and testing set can lead to substantially different results. In order to properly esti-
mate the performance of an approach, it is necessary to vary training and test sets. In this
study, we use the prevalent method of 10-fold cross validation, which provides a mean
measure of performance, its standard deviation, and a confidence interval. Furthermore,
a t-test can decide on the statistical significance of performance improvements.

The paper is organized as follows: In the next section, we describe the resources and
tools used in our experiments. In section 3, we compare the results that the different
tools achieve. Moreover, we assess in detail the effect of rich internal tagsets, varying
context sizes in HMM-based solutions, and the performance on known and unknown
words.

1 For a comprehensive overview of the different instances of the Stuttgart-Tübingen-Tagset
(STTS), see http://www.ims.uni-stuttgart.de/forschung/ressourcen/
lexika/GermanTagsets.html

http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/GermanTagsets.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/GermanTagsets.html

24 S. Clematide

2 Methods

2.1 Treebanks and Tagsets

We experiment with two different German treebanks. The TIGER corpus version 2.1
[11] contains 50474 sentences or segments.2 The TüBa-D/Z corpus version 7.0
(henceforth TUEBA) [12] contains 65524 sentences.3 Both corpora consist entirely of
newspaper articles and include syntactic and detailed morphological annotations. For
training and evaluation of the statistical tools, the treebanks were split as follows: 10%
for testing, 90% for training. Contiguous slices were selected from the corpora. We did
not randomly sample individual sentences from the treebank because the percentage
of unknown words has a significant impact on the overall performance of a system.
Sampling on individual sentences would decrease this percentage and therefore lead
to over-optimistic results. In order to train the CRF tool wapiti, a development set is
required. For this purpose, the training set for wapiti was further split into 4 parts for
training (72% in total) and 1 part (18% in total) for development.

Table 1. Empirical sizes of the rich internal tagsets

Tagset Size Example
TUEBA TIGER

case 5 5 Frage/Dat
case, number 15 15 Frage/Dat.Sg
case, gender 20 20 Frage/Dat.Fem
case, gender, number 50 56 Frage/Fem.Acc.Sg
case, PoS 113 127 Frage/NN.Acc
case, PoS, number 197 236 Frage/NN.Dat.Sg
case, PoS, gender 277 318 Frage/NN.Dat.Fem
case, PoS, number, person 296 349 ihn/PPER.Acc.Sg.3
case, PoS, gender, number 460 588 ihn/PPER.Masc.Acc.Sg
case, PoS, gender, number, person 492 638 ihn/PPER.Masc.Acc.Sg.3

Tagsets. An enriched tagset used for training is commonly referred to as an internal
tagset. Prior to any evaluation, this internal and more fine-grained tagset is mapped to
a smaller external tagset, in our case the tags “Nom” (nominative), “Acc” (accusative),
“Dat” (dative), “Gen” (genitive), and “-” (unspecified). Already very early experiments
of Brants [10] on PoS tagging with the tnt tagger have shown that fine-grained internal
tagsets yield more than 1% performance improvement when measured on the so called
external tagset. Within our experiments, we systematically refined our external tagset of
5 cases by morphological categories such as gender, number, person, and PoS. Table 1
shows the sizes of the refined tagsets for TIGER and TUEBA. Although TIGER and
TUEBA’s tagset for PoS has the same size, they are slightly different. TIGER enhances
the German standard tagset STTS by the tag NNE (combination of a proper name and a

2 http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
3 http://www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-dz.html

http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
http://www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-dz.html

A Case Study in Tagging Case in German 25

common noun) and doesn’t differentiate between indefinite pronouns with determiners
(PIDAT) or without determiners (PIAT) as done in TUEBA.

An important difference between TIGER and TUEBA consists in the fact that prepo-
sitions and postpositions in TIGER do not bear case tags as originally required by
the full morphological STTS specification. This can be seen as an unfortunate choice
since some common prepositions in German vary their required case according to their
semantic function, for instance, the most frequent preposition “in” (in) has a local mean-
ing in dative and a directional meaning in accusative case. Schmid and Laws [4] auto-
matically insert case tags for unambiguous prepositions or create lexicalized tags for
ambiguous prepositions. Given the fact that approx. 10% of all tokens are prepositions
(e.g., 75897 of total 768971 tokens in TIGER), this may have an impact on tagging ac-
curacy. According to Schmid and Laws [4], such language-specific optimizations yield
an additional improvement of almost 1% for the full morphological tagset of TIGER.
Since TIGER is a syntactically annotated treebank, we can in principle derive the case
tag of a preposition if the dependent noun phrase is explicitly marked for case. How-
ever, simple and error-prone heuristics for case guessing could easily distort the gold
standard. In German, head words can have complex prenominal modifiers which are
marked with a case different from the head’s case, e.g., prepositional phrases depend-
ing on attributive adjectives, or prenominal genitive attributes.

2.2 Statistical Tagging Tools

We deliberately refrain from a complete technical description of the statistical models
of the four tools used in our experiments and refer to the corresponding literature in-
stead. A description of our baseline system, the standard trigram tagger tnt, can be
found in Brants [6]. Our second HMM-based tagger hunpos [13] is an open-source
reimplementation of tnt. This tool allows for flexible parametrization of the order of
tag transition and tag emission. The current study assesses the performance increase we
can gain by tuning these parameters. Tnt uses a default context of 2 preceding tags for
tag transition probabilities: P(tn|tn−1, tn−2). In Section 3, we encode the varying context
sizes of hunpos as follows: c2 means a context of 2 preceding tags, c3 means a context
of 3 preceding tags. See Figure 1 for an illustration of the corresponding feature spaces.
The same convention applies for rft. The default emission order of 1 (encoded as e1
in Section 3) specifies the lexical probability as follows: P(wn|tn). An emission order
of 2, i.e., P(wn|tn−1, tn), is encoded as e2 in the evaluation.

Our third tagger rft [4] proved state-of-the-art performance on the large fine-grained
STTS tagset for German. Only the context width for tag order is varied in our exper-
iments. The rft tagger needs a simple finite-state word class guesser. For the experi-
ments we used the one provided by the rft software distribution for German.

CRFs, or more precisely, sequential Conditional Random Fields are well known for
their state-of-the-art performance in sequence tagging problems. In our experiments,
we use the freely available tool wapiti that supports parallel training on multiproces-
sor systems [9]. Unlike the HMM-based tools presented above, wapiti needs a hand-
crafted feature model. As illustrated in Figure 2, the whole sequence of input elements
can be used to specify features. These features can be automatically conditioned on bi-
grams (B) or unigrams (U) of the output tags, or both (*). Bigram features are similar

26 S. Clematide

Context

3

3

Fig. 1. Feature space of quadrigram and trigram HMM taggers

Tokens:

Tags:

wn-2 wn-1 wn+1wn wn+2

tn-2 tn-1 tn tn+1 tn+2tn

Available context for features

Unigram output

tn-1

Bigram output

%X[,0] %X[,1] %X[n,]
Mit - -3
dieser Dat -2
neuen Dat -1
Praxis Dat 0 (=w/tn)
reagiert - 1
das Nom 2
Gericht Nom 3

Fig. 2. Feature space in sequential CRFs (left part) and the matrix notation of the feature template
expressions (right part)

to emission probabilities in HMM taggers and can quickly lead to feature explosion
and slow training. Therefore, we use only one carefully selected bigram features in our
model. Below is the complete listing of the features templates for our case tagger:

U:word LL=%X[-2,0]
U:word L=%X[-1,0]
U:word 0=%X[0,0]
U:word R=%X[1,0]
U:word RR=%X[2,0]
U:suf-1 0=%m[0,0,".?$"]
U:suf-2 0=%m[0,0,".?.?$"]
U:suf-3 0=%m[0,0,".?.?.?$"]
U:pre-1 0=%m[0,0,"^.?"]
U:pre-2 0=%m[0,0,"^.?.?"]
U:pre-3 0=%m[0,0,"^.?.?.?"]
U:word R/0=%X[1,0]/%X[0,0]
U:word L/0=%X[-1,0]/%X[0,0]
U:word R/L=%X[1,0]/%X[-1,0]
*:is-upper X=%t[0,0,"^\u"]
U:suf-2 L/0/R=%m[-1,0,".?.?$"]/%m[0,0,".?.?$"]/%m[1,0,".?.?$"]
U:presuf-1 0=%m[0,0,"^."]/%m[0,0,".$"]

As other CRF tools, wapiti supports the automatic extraction of features using fea-
ture templates, for instance, string features (%X), regular expression matches (%m), and

A Case Study in Tagging Case in German 27

regular expression tests (%t). A matrix-like notation with relative addressing as shown
in the right part of Figure 2 can be used to access and combine different parts of the in-
put sequence. For instance, the unigram feature template U:word L=%X[-1,0] at the
position of the token “Praxis” results in a filled feature U:word L=neuen. The more
complex unigram feature template U:word R/0=%X[1,0]/%X[0,0] is instantiated
to U:word R/0=neuen/Praxis at the same position. In principle, feature templates
can combine an arbitrary amount of information into a single feature.

wapiti offers different optimization algorithms for adjusting the weights of the fea-
tures in the resulting model. In our experiments we used the option rprop- which
selects a less memory demanding algorithm that can deal with all tagsets used in the
experiments.

3 Results and Discussion

In this section, we present selected comparative evaluations of tested configurations for
the problem of case tagging. The evaluation tables given here, present the results in the
same consistent way, showing:

– Mean and standard deviation (SD) of tagging accuracy from the 10 runs produced
by the cross-validation. In the tables, all rows are sorted in increasing order by the
mean accuracy.

– The absolute (Δabs) and relative (Δ rel) amount of performance improvement. Ad-
ditionally, the cumulative relative amount (Δ relbs) in comparison to the baseline
performance is shown.

– The statistical significance of the improvement given as the P value of an exact
pairwise t-test computed on the difference between two adjacent rows. Statistically
not significant P values > 0.05 are shown in italics.

– The minimal improvement expected in 95% of all cases, i.e., the lower limit of the
95% confidence interval (ΔCIl) as produced by the t test statistics.

Performance Increase of Rich Feature Sets. Table 2 shows in how far the additional
morphological features have a positive or negative impact on the tnt baseline system.
It is interesting to note that for a standard trigram tagger as tnt the biggest internal
tagset is not the best solution. Especially the features person and gender do not con-
tribute to the best overall performance. This is probably due to the fact that fine-grained
tagsets increase data sparseness and therefore the model has less reliable estimates. The
most important additional feature is PoS, which, compared to the baseline, yields an
optimization of more than 6.5%. To sum up, additional morphological categories PoS
and number give also best results for hunpos and wapiti. Only rft with its structured
representation of fine-grained tags and its decision tree based transition probabilities
can achieve better results with even richer feature sets (see Table 4).

Influence of Tag Order and Emission Order. The hunpos tool allows for flexible
testing how tag order and emission order influence the tagging accuracy. Table 3 shows
that a quadrigram tagger delivers the best results. On the other hand, raising the emis-
sion order to 2 does not yield (significant) improvements on the best internal tagset.

28 S. Clematide

Table 2. Performance improvement for tnt using enriched internal tagsets

TIGER
System Mean SD Δ abs Δ rel Δ relbs P value Δ CIl

tnt:case 84.36 0.44
tnt:case,numb 85.90 0.50 +1.54 +1.83 +1.83 0.0000 +1.43
tnt:case,gend 86.02 0.51 +0.12 +0.14 +1.97 0.0144 +0.04
tnt:case,gend,numb 87.28 0.52 +1.26 +1.47 +3.47 0.0000 +1.21
tnt:case,pos 89.90 0.42 +2.62 +3.00 +6.57 0.0000 +2.46
tnt:case,numb,pers,pos 90.03 0.40 +0.13 +0.14 +6.72 0.0004 +0.08
tnt:case,gend,pos 90.04 0.40 +0.01 +0.01 +6.74 0.0004 +0.01
tnt:case,gend,numb,pers,pos 90.29 0.45 +0.24 +0.27 +7.03 0.0000 +0.20
tnt:case,gend,numb,pos 90.31 0.44 +0.02 +0.02 +7.05 0.0001 +0.02
tnt:case,numb,pos 90.47 0.41 +0.16 +0.18 +7.25 0.0000 +0.12

TUEBA
System Mean SD Δ abs Δ rel Δ relbs P value Δ CIl

tnt:case 84.68 0.36
tnt:case,gend 87.40 0.31 +2.71 +3.20 +3.20 0.0000 +2.65
tnt:case,numb 87.51 0.31 +0.11 +0.13 +3.33 0.0013 +0.06
tnt:case,gend,numb 88.53 0.27 +1.02 +1.17 +4.54 0.0000 +0.98
tnt:case,numb,pers,pos 90.38 0.28 +1.85 +2.09 +6.72 0.0000 +1.79
tnt:case,gend,pos 90.38 0.27 +0.01 +0.01 +6.73 0.0399 +0.00
tnt:case,pos 90.40 0.29 +0.02 +0.03 +6.75 0.2101 −0.03
tnt:case,gend,numb,pers,pos 90.55 0.27 +0.14 +0.16 +6.92 0.0007 +0.09
tnt:case,gend,numb,pos 90.56 0.28 +0.01 +0.01 +6.93 0.0256 +0.00
tnt:case,numb,pos 90.82 0.27 +0.26 +0.29 +7.24 0.0000 +0.21

Table 3. Influence of tag order and emission order in hunpos

TIGER
System Mean SD Δ abs Δ rel Δ relbs P value Δ CIl

hp-c2-e2:case,numb,pos 90.74 0.40
hp-c2-e1:case,numb,pos 90.87 0.39 +0.13 +0.14 +0.14 0.0003 +0.08
hp-c3-e2:case,numb,pos 90.95 0.41 +0.09 +0.10 +0.24 0.0014 +0.05
hp-c4-e2:case,numb,pos 90.97 0.44 +0.02 +0.02 +0.26 0.2145 −0.02
hp-c4-e1:case,numb,pos 90.97 0.43 +0.00 +0.00 +0.26 0.4478 −0.03
hp-c3-e1:case,numb,pos 91.01 0.39 +0.04 +0.04 +0.30 0.1080 −0.01

TUEBA
hp-c2-e2:case,numb,pos 91.04 0.26
hp-c2-e1:case,numb,pos 91.15 0.28 +0.11 +0.12 +0.12 0.0009 +0.06
hp-c3-e2:case,numb,pos 91.30 0.26 +0.15 +0.17 +0.29 0.0023 +0.08
hp-c4-e1:case,numb,pos 91.33 0.27 +0.02 +0.02 +0.31 0.2142 −0.03
hp-c4-e2:case,numb,pos 91.35 0.27 +0.02 +0.02 +0.33 0.1004 −0.01
hp-c3-e1:case,numb,pos 91.35 0.29 +0.01 +0.01 +0.34 0.3892 −0.03

A Case Study in Tagging Case in German 29

Altogether, only small improvements can be noticed when varying the tag order and
emission order. The setting hp-c2-e1 corresponds to the setting of tnt. It should be
noted that hunpos reaches slightly better values with the same settings: for TIGER
90.87% (tnt 90.47%), for TUEBA 91.15% (tnt 90.82%).

Accuracy on Unknown and Known Words. Table 4 shows the performance for the
best settings of the examined tools. Tnt deals worst with unknown words. Remarkably
better results are reached by the unknown words guesser of hunpos and by including
a context window of 3 preceding tags. For TUEBA, the best mean accuracy is reached
by rft, however, the advantage towards wapiti can not be considered statistically
significant with a P value > 0.1. wapiti performs substantially better than rft on
known words. This is probably due to the richer contextual model of the CRF approach
which also includes evidence from the righthand side of the current token.

Confusion Matrix of Errors. In order to quantify and characterize the problems of
case tagging that cannot be solved by the best system, we collected all errors from the
test data of our wapiti system. Table 6 sums these numbers up into confusion matrices
for both corpora. Given that our system has more or less the same performance on
both corpora one might have expected a slightly more similar error distribution. The
error differences therefore probably reflect genuine differences in the morphological
annotation in both corpora. The most important difference concerning missing case
tags in TIGER has already been mentioned above. In TUEBA, most prepositions bear
dative case (56,651), followed by accusative (24,120) and genitive (1,823). Of course,
there is no nominative case marked by prepositions. The differences in the confusion
matrices seem to match this distribution.

The main source of errors is the confusion of nominative and accusative case. This is
due to the fact that in German many inflected word forms are morphologically ambigu-
ous regarding these cases. Additionally, German has a relatively free word order which
renders positional information in a sentence unreliable for case disambiguation.

Qualitative Error Analysis. In order to spot the main sources of remaining errors
in our best system, we randomly sampled 50 errors from TIGER and TUEBA. These
errors were manually classified into 3 categories by the author.

Category S stands for case ambiguity where syntactic knowledge beyond NPs and
PPs is needed for proper resolution, typically, whole phrases are tagged with the wrong
case. For instance, Der/Nom Polizist/Nom greift/- ihre/Acc Arme/Acc und/- biegt/-
sie/Acc/Nom* nach/- hinten/- ,. . . (“The police man takes her arms and bends them
back, . . . ”). The erroneous tag is printed in bold and marked by a star.

Category N stands for difficult and complex constructions in nominal phrases,
including coordinated phrases and appositions, where some parts were tagged
correctly and other parts of the same phrase were not. For instance,
Besonders/- neue/Nom Unternehmensfelder/Nom wie/- die/Nom Informations-/- und/-
Kommunikationsbranche/Nom/Acc* (“Especially new business as the information and
communications industry”).

Category O collects all other cases. Some of them are due to domain-specific tex-
tual segments, e.g., introductory mentions of the place and date of a news article as

30 S. Clematide

Table 4. Accuracy of best performing systems on known and unknown words

Unknown words
TIGER

System Mean SD Δ abs Δ rel Δ relbs P value Δ CIl

tnt:case,numb,pos 76.57 1.16
hp-c3-e1:case,numb,pos 80.90 1.09 +4.33 +5.66 +5.66 0.0000 +4.11
rft-c5:case,numb,pos 82.16 0.93 +1.26 +1.56 +7.30 0.0000 +0.98
wap:case,numb,pos 83.71 1.24 +1.56 +1.90 +9.34 0.0000 +1.23

TUEBA
tnt:case,numb,pos 78.29 0.28
hp-c3-e1:case,pos 82.74 0.55 +4.45 +5.68 +5.68 0.0000 +4.15
wap:case,numb,pos 84.08 0.51 +1.33 +1.61 +7.39 0.0000 +0.98
rft-c7:case,numb,pos 84.32 0.43 +0.24 +0.29 +7.69 0.1157 −0.10

Known words
TIGER

System Mean SD Δ abs Δ rel Δ relbs P value Δ CIl

tnt:case,numb,pos 91.65 0.30
hp-c3-e1:case,numb,pos 91.87 0.29 +0.22 +0.24 +0.24 0.0000 +0.19
rft-c8:case,gend,numb,pers,pos 92.31 0.33 +0.44 +0.48 +0.72 0.0000 +0.39
wap:case,numb,pos 94.71 0.23 +2.40 +2.60 +3.34 0.0000 +2.26

TUEBA
tnt:case,numb,pos 91.87 0.25
hp-c4-e2:case,numb,pos 92.12 0.25 +0.25 +0.27 +0.27 0.0000 +0.19
rft-c4:case,gend,numb,pers,pos 92.54 0.21 +0.42 +0.46 +0.73 0.0000 +0.36
wap:case,numb,pos 94.75 0.15 +2.21 +2.39 +3.13 0.0000 +2.13

All words
TIGER

System Mean SD Δ abs Δ rel Δ relbs P value Δ CIl

tnt:case,numb,pos 90.47 0.41
hp-c3-e1:case,numb,pos 91.01 0.39 +0.54 +0.59 +0.59 0.0000 +0.51
rft-c5:case,gend,numb,pers,pos 91.50 0.40 +0.49 +0.54 +1.14 0.0000 +0.44
wap:case,numb,pos 93.77 0.29 +2.27 +2.48 +3.65 0.0000 +2.14

TUEBA
tnt:case,numb,pos 90.82 0.27
hp-c3-e1:case,numb,pos 91.35 0.29 +0.54 +0.59 +0.59 0.0000 +0.49
rft-c4:case,gend,numb,pers,pos 91.87 0.24 +0.52 +0.56 +1.16 0.0000 +0.47
wap:case,numb,pos 93.84 0.16 +1.97 +2.14 +3.33 0.0000 +1.88

Table 5. Overall improvement over the baseline system

System Mean SD Δ abs Δ rel Δ relbs P value Δ CIl

TIGER
tnt:case 84.36 0.44
wap:case,numb,pos 93.77 0.29 +9.41 +11.16 +11.16 0.0000 +9.29

TUEBA
tnt:case 84.68 0.36
wap:case,numb,pos 93.84 0.16 +9.15 +10.81 +10.81 0.0000 +9.02

A Case Study in Tagging Case in German 31

Table 6. Confusion matrix of the best system

TIGER
System Output wapiti

- Acc Dat Gen Nom Total
Gold # % # % # % # % # % # %
- 557 1.0 587 1.1 324 0.6 1051 1.9 2519 4.5
Acc 509 0.9 3183 5.7 529 1.0 13308 24.0 17529 31.7
Dat 1122 2.0 2921 5.3 2474 4.5 2748 5.0 9265 16.7
Gen 442 0.8 243 0.4 1453 2.6 680 1.2 2818 5.1
Nom 2617 4.7 15252 27.5 3860 7.0 1507 2.7 23236 42.0
Total 4690 8.5 18973 34.3 9083 16.4 4834 8.7 17787 32.1 55367 100.0

TUEBA
System Output wapiti

- Acc Dat Gen Nom Total
Gold # % # % # % # % # % # %
- 0.0 875 1.3 815 1.2 568 0.8 1360 1.9 3618 5.2
Acc 775 1.1 0.0 5111 7.3 693 1.0 15805 22.7 22384 32.1
Dat 966 1.4 4412 6.3 0.0 2999 4.3 3098 4.4 11475 16.4
Gen 286 0.4 400 0.6 1756 2.5 0.0 961 1.4 3403 4.9
Nom 2105 3.0 19657 28.2 4816 6.9 2311 3.3 0.0 28889 41.4
Total 4132 5.9 25344 36.3 12498 17.9 6571 9.4 21224 30.4 69769 100.0

Table 7. Error classification of the best system

����������	

��
��

��
��

��

�
�
��

�
�
��

��

�
�
��

��

��
��
��

��
��
��

��
��
��

	�

��
��
��

��

�	
��

��

�	
��

��
��

�
��

��
�

�
��

��
�

�
��

��
��

�

�
��

��
�	

�

��
��

��
��

��
�

� � �� � � � �� ��
� � � � � � � � � ��
� � � � 	 � � � � � � � �

����������� � � � �� �� � � � � � � � �� � � ���

in LAGOS/Nom ,/- 5./Nom/Dat* Juli/Nom/Dat* (“LAGOS, July 5 (AP)”). There are
also latent PoS tagging errors that are covered by this category. For instance, Um/-
/Acc* seine/Acc Jugendwelle/Acc ausstrahlen/- zu/- können/- . . . (“In order to be able
to broadcast the program called ‘Jugendwelle’. . . ”).

Table 7 shows the distribution of errors according to their category. Morpho-syntactic
ambiguity between nominative and accusative case is very common, which is expected.
Complex nominal phrases containing intermitting prepositional phrases and/or coordi-
nated elements follow as the second largest source of errors.

Tagging the TIGER Corpus by TUEBA, and Vice Versa. We took the best sys-
tem (i.e., wapiti with case, PoS, and number) and tagged each corpus with the model
from round 1 of the cross validation (trained on the last 72% of TIGER resp. TUEBA).

32 S. Clematide

The mentioned differences in annotating case tags for prepositions in the two corpora
were resolved by deleting case tags from prepositions where needed. For the TIGER
corpus we achieve an accuracy of 92.13% using the TUEBA model, and the TIGER
model results in 92.29% accuracy for the TUEBA corpus. For known tokens, accu-
racy is 93.40% (TIGER) and 93.68% (TUEBA), for unknown tokens 82.05% (TIGER)
and 81.28% (TUEBA). As expected, these results are slightly lower than the cross-
validation results in Table 4.

It is difficult to decide in how far the additional error is caused by normal lexical
differences between these newspaper corpora, or by the differences of the underlying
annotation guidelines.

Speed and Memory Analysis. The tools compared in this evaluation have different
requirements concerning memory consumption and processing time. In Table 8 we
present the mean values for the best system configurations for training and tagging.
All experiments were performed on a Linux machine with 2 Intel Xeon E5-2660 pro-
cessors @ 2.2 GHz providing 32 cores and 320GB of RAM. For wapiti we made
heavily use of parallel threads. The numbers in the columns labelled with “training”
report the resources used for building the models from the training part in the 10-fold
cross-validation. The columns labelled with “testing” report the average numbers for
applying the models to the test data. Memory consumption was measured as maximum
resident size of memory allocation. Processing time was measured in seconds as user
time spent by the processors. The overview in Table 8 shows clearly that performance
improvements have to be paid in terms of speed and memory. Training the CRF model
is especially expensive, but our main goal here was high accuracy and not a cost-benefit
optimization. Note that once a CRF model has been built less resources are needed and
the speed is also acceptable.

Table 8. Mean of memory consumption (maximum resident size) and user processing time in
seconds for training (90% of the corpora) and testing (10% of the corpora)

System User time in secs. Max. RAM in MB User time in secs. Max. RAM in MB
Training Testing Training Testing Training Testing Training Testing

TIGER TUEBA
tnt 1.8 1.3 43 84 2.8 1.7 52 103
hunpos 14.4 3.8 780 558 23.2 6.4 967 696
rft 288.2 26.6 1,291 167 356.1 27.2 1,630 176
wapiti 56,780.2 110.1 49,468 11,809 71,779.0 137.3 51,366 12,644

4 Conclusions

Tagging case in German newspaper corpora has a baseline accuracy of 84.5% using a
standard trigram tagger. Applying our own feature model and an enriched internal tagset
with the CRF tool wapiti improves these results by 11%. Our model also clearly out-
performs the existing state-of-the-art approach of the rft for tagging morphologically

A Case Study in Tagging Case in German 33

rich tagsets by about 2%. However, this performance increase requires a substantial
amount of additional computing power.

Even though the focus of this study is on case tagging, we want to emphasize the
finding that assigning case works best if one classifies case, PoS, gender, and number
jointly. Therefore, it’s straightforward to use our CRF model for assigning the tags of
the more fine-grained internal tagset.

The results of [4] show that the tagging accuracy on the fine-grained German STTS
tagset increases from 86% to 91% if broad-coverage morphological analyses are pro-
vided as an external lexicon. In a future study, we will test whether case tagging per-
formance improves similarly if we add the output of a morphological analyzer such
as GERTWOL. Tools as hunpos or rft support the addition of external lexicons as a
standard option when applying an existing model to new text. For wapiti, the lexical
information has to be provided as part of the evidence in the training phase of a model
as well as in the application phase of a model. Different approaches for making use of
external lexical resources in combination with CRFs are discussed in [14].

Acknowledgements. I wish to thank Tilia Ellendorff for her support concerning con-
tent and proof-reading.

References

1. Koskeniemmi, K., Haapalainen, M.: GERTWOL – Lingsoft Oy. In: Hausser, R. (ed.) Linguis-
tische Verifikation: Dokumentation zur Ersten Morpholympics 1994, Niemeyer, Tübingen.
Sprache und Information, vol. 34, pp. 121–140 (1996)

2. Zielinski, A., Simon, C.: Morphisto: An open-source morphological analyzer for German. In:
Seventh International Workshop on Finite-State Methods and Natural Language Processing,
pp. 177–184 (2008)

3. Lezius, W., Rapp, R., Wettler, M.: A freely available morphological analyzer, disambiguator
and context sensitive lemmatizer for German. In: Proceedings of COLING-ACL 1998: 36th
Annual Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics, Montreal, vol. 2, pp. 743–748 (1998)

4. Schmid, H., Laws, F.: Estimation of conditional probabilities with decision trees and an ap-
plication to fine-grained POS tagging. In: Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), Manchester, UK, pp. 777–784 (August 2008)

5. Perera, P., Witte, R.: A self-learning context-aware lemmatizer for German. In: Proceedings
of Human Language Technology Conference and Conference on Empirical Methods in Nat-
ural Language Processing (HLT/EMNLP 2005), October 6-8, pp. 636–643. Association for
Computational Linguistics, ACL, Vancouver (2005)

6. Brants, T.: TnT – a statistical part-of-speech tagger. In: Proceedings of the Sixth Applied
Natural Language Processing Conference ANLP 2000, pp. 224–231 (2000)

7. Schiller, A., Teufel, S., Stöckert, C.: Guidelines für das Tagging deutscher Textcorpora mit
STTS (Kleines und großes Tagset) (1999)

8. Sutton, C.A., McCallum, A.: An introduction to conditional random fields. Foundations and
Trends in Machine Learning 4(4), 267–373 (2012)

9. Lavergne, T., Cappé, O., Yvon, F.: Practical very large scale CRFs. In: Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 504–513.
Association for Computational Linguistics (July 2010)

34 S. Clematide

10. Brants, T.: Internal and external tagsets in part-of-speech tagging. In: Proceedings of
Eurospeech, pp. 2787–2790 (1997)

11. Brants, S., Dipper, S., Eisenberg, P., Hansen-Schirra, S., König, E., Lezius, W., Rohrer, C.,
Smith, G., Uszkoreit, H.: Tiger: Linguistic interpretation of a german corpus. Research on
Language and Computation 2(4), 597–620 (2004)

12. Hinrichs, E., Kübler, S., Naumann, K., Telljohann, H., Trushkina, J.: Recent developments
in linguistic annotations of the TüBa-D/Z treebank. In: Proceedings of the Third Workshop
on Treebanks and Linguistic Theories, pp. 51–62 (2004)

13. Halácsy, P., Kornai, A., Oravecz, C.: Hunpos: an open source trigram tagger. In: Proceedings
of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions,
ACL 2007, pp. 209–212. Association for Computational Linguistics, Stroudsburg (2007)

14. Constant, M., Tellier, I.: Evaluating the impact of external lexical resources into a CRF-
based multiword segmenter and part-of-speech tagger. In: Proceedings of the Eighth Inter-
national Conference on Language Resources and Evaluation (LREC 2012), Istanbul, Turkey,
pp. 646–650 (May 2012)

C. Mahlow and M. Piotrowski (Eds.): SFCM 2013, CCIS 380, pp. 35–52, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Jabalín: A Comprehensive Computational Model
of Modern Standard Arabic Verbal Morphology

Based on Traditional Arabic Prosody

Alicia González Martínez1, Susana López Hervás1, Doaa Samy2,
Carlos G. Arques3,*,**, and Antonio Moreno Sandoval1,*,**

1 LLI-UAM, Universidad Autónoma de Madrid
{a.gonzalez,antonio.msandoval}@uam.es, hervas.susana@gmail.com

2 Spanish Language Department, Cairo University
doaasamy@cu.edu.eg

3 Dept. of Development & Differentiation,
Spanish National Center for Molecular Biology (CBM-SO)

cgarcia@cbm.uam.es

Abstract. The computational handling of Modern Standard Arabic is a chal-
lenge in the field of natural language processing due to its highly rich morphol-
ogy. However, several authors have pointed out that the Arabic morphological
system is in fact extremely regular. The existing Arabic morphological analyz-
ers have exploited this regularity to variable extent, yet we believe there is still
some scope for improvement. Taking inspiration in traditional Arabic prosody,
we have designed and implemented a compact and simple morphological sys-
tem which in our opinion takes further advantage of the regularities encountered
in the Arabic morphological system. The output of the system is a large-scale
lexicon of inflected forms that has subsequently been used to create an Online
Interface for a morphological analyzer of Arabic verbs. The Jabalín Online In-
terface is available at http://elvira.lllf.uam.es/jabalin/, hosted at the LLI-UAM
lab. The generation system is also available under a GNU GPL 3 license.

Keywords: Computational morphology, Arabic, Arabic morphological system,
Modern Standard Arabic, traditional Arabic prosody.

1 Introduction

Morphological resources are essential components of more complicated systems
used in domains such as artificial intelligence, automatic translation or speech rec-
ognition systems. Thus, the quality of the resource will strongly affect the whole
system. This makes it crucial to develop robust and comprehensive morphological
applications.

* Corresponding authors.
** These authors contributed equally to this work.

36 A.G. Martínez et al.

In the field of Arabic language processing, the existing models have exploited the
regularities encountered in the language to a variable extent, yet we believe there is
still some scope for improvement. We intend to fill this gap developing a robust and
compact system that covers all Arabic verbal morphology by means of simple and
general procedures.

Modern Standard Arabic (MSA) is the formal language most widely used nowa-
days in the whole Arab world. It is spoken across more than 20 countries by over 300
million speakers [1]. MSA stands out for being the language of the media, and in
general it is used in all formal situations within society. It is also the language of
higher education, and it is used in most written texts. MSA is not a natural language,
since it does not have real native speakers [2, 3, 4]. The native languages of Arab
people are what we call the Arabic spoken varieties—they learn MSA through the
educational system, thus in a non-natural way.

As it is not a natural language, MSA morphology has been described as an extremely
regular system [5], susceptible of being represented by means of precise formal devices.
As Kaye describes it, MSA presents an “almost (too perfect) algebraic-looking grammar”
[2:665]. Broadly speaking, stems—word-forms without the affixal material [6]—are
generally built by the organized combination of two types of morphemes—what we call
the root and the pattern. The MSA lexicon contains between 4000 to 5000 different roots
[7,8], and verbal morphology exhibits 24 different patterns, of which 16 are really com-
mon. Semantically related words tend to share the same root morpheme. Thus, the root
turned out to be the basic component of Arabic lexicography, to the extent that dictiona-
ries are organized by roots [9]. At a more superficial level, the inflectional system applies
several operations to turn stems into specific verbal word forms. This stage is considera-
bly complicated by the interaction of phonological and orthographic alterations. All these
phenomena hinder the process of formalizing the system, thus making it an extremely
interesting and challenging task.

1.1 MSA Morphotactics

MSA presents two morphological strategies: concatenative and non-concatenative—
also known as templatic morphology. Concatenative morphemes are discrete seg-
ments which are simply attached to the stem regardless of the position, i.e., they have
the form of an uninterrupted string. Non-concatenative morphemes are interleaved
elements inserted within a word—they do not form a compact unit, but a disconti-
nuous string whose ‘internal blanks’ are filled out with other morphemes. In MSA,
derivational morphology is mainly marked by non-concatenative schemes, whereas
inflectional morphology tends to be concatenative.

Fig. 1. Example of concatenative and non-concatenative processes in the formation of the ver-
bal word form تَقْبَلوُا ’Aistaqbaluw ‘they received اِسـْ

A Comprehensive Computational Model of Modern Standard Arabic Verbal Morphology 37

Templatic morphology is known in the field of Arabic linguistics as root-and-
pattern morphology. It takes its name from the Arabic morphemes which have a non-
concatenative shape: the root and the pattern. This theoretical description attempts to
describe how Arabic stems are built—root-and-pattern morphology states that stems
are composed by these two elements. A root is a decomposable morpheme that pro-
vides the basic meaning of a word, and generally consists of 3 or 4 ordered conso-
nants in non-linear position within the word [10,11,12,13,1]. The pattern is a syllabic
structure which contains vowels, and sometimes consonants, in which the consonants
of the root are inserted and occupy specified places [14,15]. Thus, by the interdigita-
tion of a root and a pattern stems are created [16,17,18,10,15]. Some authors
have proposed to separate the vowels from the template and to consider it a separate
morpheme. This morpheme is commonly known as vocalism [19,20,21,22].

Fig. 2. Decomposition of the stem -staqbal- from the verbal word form تَقْبَلوُا Aistaqbaluw اِسـْ

‘they received’ into root, vocalism and pattern

1.2 MSA Verbal System

MSA exhibits 24 different verbal patterns. Some of them belong in fact to Classical
Arabic and are rarely used. Traditionally they are classified in patterns from
3-consonant roots and patterns from 4-consonant roots. The different patterns add
extensions to the basic meaning expressed by the root, i.e., they are of derivational
nature. Below, we include the list of patterns using the root فعل fçl ‘doing’. This root

is traditionally used in Arabic to refer to grammatical forms. Patterns are shown using
the lemma of the verb, which corresponds to the third person masculine singular of
the perfective active inflection [4,10,18,23,24].

Following the Arabic western linguistic tradition, we use Roman numerals to refer
to the different patterns. Patterns I include two vowels in their specification: one cor-
responds to the thematic vowel of the perfective and the other one to the thematic
vowel of the imperfective—both correspond to the second vowel position of the stem.
Some verbs share the same lemma form, but they are considered different since they
present different forms in their conjugation. 4-consonant roots are distinguished from
3-consonant roots by the addition of a ‘Q’ to the Roman numeral.

38 A.G. Martínez et al.

Table 1. List of all verbal patterns in Arabic. Information on the transliteration system used
throughout the whole paper can be found at http://elvira.lllf.uam.es/ING/transJab.html.

Pattern
Lemma from
root فعل fçl Example

Iau َفعََل façala ََكَتب kataba ‘to write’

Iai َفعََل façala رَمَى ramaY ‘to throw’

Iaa َفعََل façala َضرََب Daraba ‘to hit’

Iuu َفعَُل façula َُكَبر kabura ‘to grow’

Iia َفعَِل façila َِرَضي raDiya ‘to agree’

Iii َفعَِل façila َدَرِث wariþa ‘inherit’

II َفعََّل faç~ala َ ’çal~ama ‘to teach علمََّ

III ََفاَعل faAçala َشَاهَد XaAhada ‘to watch’

IV َأَفْعَل Áafçala َّأَحَب ÁHab~a ‘to love’

V َتفََعَّل tafaç~ala ََلم ’taçal~ama ‘to learn تعََّ

VI ََتفََاعل tafaAçala َتاَمَٓر taÃmara ‘to plot’

VII َاِنفَْعَل Ain·façala ْ قَضىَاِن Ain·qaDaY ‘to pass’

VIII اِفتْعََل Aif·taçala ََّفَق ’Ait~afaqa ‘to agree اِت

IX َّاِفْعَل Aif·çalla َْرَّاِحم AiH·mar~a ‘to turn red’

X َتَفعَل تَمَرَّاِسـْ Aistaf·çala اِسـْ Ais·tamar~a ‘to continue’

XI َّاِفْعَال Aif·çaAlla َْارّاِحم AiH·maAr~a ‘to turn red’

XII ََاِفْعَوْعل Aif·çaw·çala ْضرََضَوْاِح AiHDawDara ‘to become green’

XIII َل ذَاِجْ Aif·çaw~ala اِفْعَوَّ لوََّ Aijlaw~aða ‘to last long’

XIV ََاِفْعَنْلل Aif·çan·lala َْكَكَنْ اِسح Ais·Han·kaka ‘to be dark’

XV َاِفْعَنْلى Aif·çan·laA ْدَىلنَْ اِع Aiç·lan·daY ‘to be stout’

QI ََفعَْلل faç·lala َْجَمَتر tar·jama ‘to translate’

QII ََتفََعْلل tafaç·lala ْرَجَتدََح tadaH·raja ‘to roll’

QIII ََاِفْعَنْلل Aif·çanlala ْطَحَلنَْ اِس Ai·slan·TaHa ‘to lie on one’s face’

QIV ََّاِفْعَلل Aif·çalal~a ْشَعَرَّاِق Aiq·Xaçar~a ‘to shudder with horror’

Regardless of the pattern, each verb may present a full conjugational paradigm.

The paradigm exhibits a tense/aspect marking, opposing perfective and imperfective.
Imperfective, in turn, includes three possible moods: indicative, subjunctive and jus-
sive. There is an imperative conjugation, derived from the imperfective form. At the
same time verbs exhibit voice opposition in active and passive, which consists only in
a different vocalization. Each conjugational paradigm shows the features of person,
number and gender [4,10,18,23,24]. Obviously, verbs do not cover all the possible
inflectional alternatives. In the following table, we can see the full conjugational pa-
radigm of the active verb َفعََل façala ‘to do’.

A Comprehensive Computational Model of Modern Standard Arabic Verbal Morphology 39

Table 2. Complete conjugational paradigm of the Arabic active verb façala ‘to do’. The فعََلَ

information of the inflectional tag is as follows. First position: 1=first person; 2=second person;
3=third person. Second position: S=singular; D=dual; P=plural. Third position: M=masculine;
F=feminine; N=non-marked for gender.

Inflect
Tag Perfective

Imperfective
Imperative

Nominative Subjunctive Jussive

3SM َفعََل façala ُيفَْعُل yaf·çulu َيفَْعُل yaf·çula ْيفَْعُل yaf·çul·

3SF َْفعََلت façalat· ُتفَْعُل taf·çulu َتفَْعُل taf·çula ْتفَْعُل taf·çul·

3DM َفعََلا façalaA ِيفَْعُلاَن yaf·çulaAni yaf·çulaA يفَْعُلاَ yaf·çulaA يفَْعُلاَ

3DF َفعََلتَا façalataA ِتفَْعُلاَن taf·çulaAni taf·çulaA تفَْعُلاَ taf·çulaA تفَْعُلاَ

3PM فعََلوُا façaluwA َيفَْعُلوُن yaf·çuluwna
يفَْعُلوُا
yaf·çuluwA

يفَْعُلوُا
yaf·çuluwA

3PF َْفعََلن façal·na َْيفَْعُلن yaf·çul·na َْيفَْعُلن yaf·çul·na َْيفَْعُلن yaf·çul·na

2SM َْفعََلت façal·ta ُتفَْعُل taf·çulu َتفَْعُل taf·çula ْتفَْعُل taf·çul· ْاُفْعُل Auf·çul·

2SF ِْفعََلت façal·ti َتفَْعُلِين taf·çuliyna ِتفَْعُلي taf·çuliy ِتفَْعُلي taf·çuliy ِاُفْعُلي Auf·çuliy

2DN
 فعََلْتُمَا
façal·tumaA

taf·çulaAni تفَْعُلاَنِ Auf·çulaA اُفْعُلاَ taf·çulaA تفَْعُلاَ taf·çulaA تفَْعُلاَ

2PM ُْفعََلتم façal·tum َتفَْعُلوُن taf·çuluwna taf·çuluwA تفَْعُلوُا taf·çuluwA تفَْعُلوُا Auf·çuluwA اُفْعُلوُا

2PF َُّْفعََلتن façaltun~a َْتفَْعُلن tafçul·na َْتفَْعُلن tafçulna َْتفَْعُلن tafçulna َْاُفْعُلن fçul·na

1SN ُْفعََلت façal·tu ُأَفْعُل Áaf·çulu َأَفْعُل Áaf·çula ْأَفْعُل Áaf·çul·

1PN َفعََلْنا façal·naA ُنفَْعُل naf·çulu َنفَْعُل naf·çula ْنفَْعُل naf·çul·

At a superficial level, the whole verbal system is highly affected by allomorphism.

Allomorphism is the situation in which the same morpheme exhibits different phono-
logical shapes depending on the context [6]. This determines that a set of surface re-
presentations can be related to a single underlying representation [6]. Allomorphism
is one of the most complicated aspects of Arabic morphological analysis.

The main causes of allomorphism in MSA are phonological constraints on the se-
miconsonants w and y. Verbs with roots containing at least one semiconsonant pho-
neme typically present phonological alterations. Another cause of allomorphism is the
presence of two identical consonants in the second and third place of the root, which
is known as geminated or doubled roots [4,10,23]. In spite of the uniform nature of
these phonological alterations, which are susceptible to systematization, verbs suffer-
ing these phenomena are considered irregular in traditional Arabic grammar.

Orthographic idiosyncrasies are closely related with these phonological alterations.
Thus, we can refer to them as orthographic allomorphism. Although not having lin-
guistic nature, they are relevant computationally.

1.3 Traditional Arabic Prosody

Medieval Arab scholars developed an interesting analysis of Arabic morphological
structure. With the development of Arabic poetry, scholars noticed that Arabic

40 A.G. Martínez et al.

prosodic units were subjected to a marked rhythmic uniformity. This may be partially
due to the fact that Arabic phonotactics restricts many types of syllables. Essentially,
MSA accepts three types: CV, CVC and CVV. Exceptionally CVVC and CVCC are
permitted [24].

The most important contribution in this field was made by Al Khalil, an acclaimed
Arab scholar considered the father of Arabic lexicography. He described and systema-
tized the metrical system of Arabic poetry, based directly on orthography. One of the
interesting things of the Arabic writing system is that only consonants are considered
letters. Vowels are diacritic symbols written on or below the consonant they accom-
pany. In order to define the different metrical patterns, Al Khalil classified letters in
two types [25]:

1. sakin letter حرف ساكن ‘static letter’, i.e. an unvocalized letter. A consonant without a
vowel, or a semiconsonant. It is important to note that semiconsonants are used to
represent long vowels when preceded by a short vowel.

2. mutaharrik letter حرف متحرك ‘moving letter’, i.e. a vocalized letter. A mutaharrik let-
ter is a consonant followed by a diacritic vowel.

The fundamental principle of the analysis of al-Khalil is that a mutaharrik letter is
heavier than a sakin. To represent this, they are marked with different weight sym-
bols. A mutaharrik letter is going to be assigned the value 1, and a sakin letter the
value of 01. Thus, an orthographic word can be represented as 1-0 combinations.
These combinations are subsequently classified in wider groups of weight, which in
fact unravel the different syllabic structures. First, 1-0 combinations compute the
value 2; then 1-2 combinations compute the value 3; at last, 2-2 combinations com-
pute the value 4. Finally, we can sum the resulting numbers and get the total weight
for a word. Below, this computation of lexical weight is shown.

Word ُ ’yuçal~imu ‘he teaches يعَُلمِّ

Letters segmentation yu ça l li mu
Weights 1 1 0 1 1
Cumulative weights 1 2 1 1
 3 1 1
Total weight of lexical item 5

The fact that a small number of syllabic structures is allowed by Arabic phonotac-

tics has interesting implications: as the formation of words belonging to the same
morphological class is the product of a quasi mathematical combination of similar
morphemic material, the resulting syllabic structure will tend to follow the same
patterns. Thus, it seems possible to propose a precise formalism which predicts the
syllabic structures for Arabic lexical items.

1 In Arabic, the letter hamza ه is used to represent the sakin letter and the numeral ١ for the

mutaharrik [25].

A Comprehensive Computational Model of Modern Standard Arabic Verbal Morphology 41

1.4 Current Computational Systems of MSA Morphology

The aim of Natural Language Processing (NLP) is to find the most efficient way to
describe formally a language for a specific application. The core task in this field is to
build a morphological analyzer and generator. Morphological analyzers are composed
of two basic parts [21]:

1. Lexical units, i.e., a lexicon responsible for the coverage of the system. Ideally, the
lexicon should include all the morphemes of a given language.

2. Morphosyntactic knowledge, i.e., a set of linguistic rules responsible for the ro-
bustness of the system. There are mainly two types of rules:
(a) rewrite rules, which handle the phonological and orthographic variations of the

lexical items;
(b) morphotactic rules, which determine how morphemes are combined.

In fact both the lexicon and the rule components are closely related: linguistic rules
can be codified in the lexicon, and consequently the size of both parts is directly
related.

An early implementation of a computational model of Arabic morphology was car-
ried out by Kenneth Beesley [8,15,16]. He created the Xerox Arabic morphological
Analyzer, which uses finite-state technology to model MSA morphology. Beesley
created a separate lexicon for each morpheme type: prefixes, suffixes, roots (4,930
entries) and patterns (about 400 entries). Information on root and pattern combina-
tions is stored in the lexicon of roots, so he included full phonotactic coding in the
entries. The system extracts the information stored in the lexicons and compiled it
into a finite state transducer (FST). Phonotactics and orthographic variation rules are
also compiled into FSTs. The combination of prefixes, stems and suffixes yields over
72 million hypothetical forms—with the disadvantage that it overgenerates. The pho-
notactic treatment includes 66 finite-state variation rules.

Beesley’s system presents a fairly elegant description of MSA morphology. On the
negative side, he uses an extensive list of patterns, as it is common in the traditional
descriptions of Arabic morphology.

The most famous analyzer for the Arabic language is the Standard Arabic Morpho-
logical Analyzer (SAMA), formerly known as Buckwalter Arabic Morphological
Analyzer (BAMA)—up to version 3—which was created by Tim Buckwalter in 2002
[1,26]. It has become the standard tool in the field of Arabic NLP [27]. SAMA is
strongly lexicon-based—Buckwalter sacrifices the possibility of using a linguistic
model in favor of a very practical solution: he codifies all linguistic processes in the
lexicon and uses the stem as the basic lexical entry. He then specifies various sets of
rules based on concatenative procedures to establish the permitted combinations of
the different lexical items. The lexicon of stems includes 79,318 entries, representing
40,654 lemmas. Stems are turned into underlying forms by the addition of affixes,
compiled in a lexicon of prefixes (1,328 entries) and a lexicon of suffixes (945 en-
tries) These lexicons include both affixes and clitics.

This system presents two important disadvantages: first, it has a lot of obsolete
words, reducing considerably its efficiency [27, 28]. Attia estimates that about 25% of
the lexical items included in SAMA are outdated [27]. Second, it does not follow a
linguistic analysis of MSA morphology. The design of morphology implies that

42 A.G. Martínez et al.

phonological, morphological and orthographic alterations are simply codified in the
lexicon: the same word may have more than one entry in the lexicon according to the
number of lexemes its inflectional set of forms presents.

A very recent analyzer is the AraComLex, a large-scale finite-state morphological
analyzer toolkit for MSA developed principally by Mohammed Attia[14,27]. Its lexi-
cal database uses a corpus of contemporary MSA to reject outdated words. It also
makes use of pre-annotation tools and machine learning techniques, as well as know-
ledge-based pattern matching, to automatically acquire lexical knowledge. As a result,
AraComLex is the only Arabic morphological analyzer which includes strictly con-
temporary vocabulary and is highly enhanced with additional linguistic features. Attia
chooses the lemma as the basic lexical entry. The lexicon of lemmas has 5,925 no-
minals, 1,529 verbs; the lexicon of patterns 456 nominal patterns and 34 verbal. There
are 130 alteration rules to handle all alterations encountered in the lexicon. Attia notes
that a stem-based system, like that of the SAMA, is more costly for it has to list all the
stem variants of a form, whereas a lexeme-based system simply includes one entry for
each lexical form and a set of generalized rules for handling the variations. He also
rejects a root-based approach, as it is more complex and tends to cause overgeneration
problems.

The AraComLex is possibly the most consistent morphological analyzer for MSA,
not only for its accuracy and efficient implementation, but also for its ease of use—
and gladly it is available under a GNU GPL license. However, it did not intend to
present a comprehensive model of Arabic internal morphology.

2 Methodology

The computational system has been implemented in Python programming language
(version 3.2). In recent years it has come to be one of the best options for developing
applications in the field of NLP. Further, version 3 of Python fully supports Unicode,
so it can directly handle Arabic script. In relation to orthography, we handle fully
diacritized forms. Arabic uses diacritics to disambiguate words [29], and thus we keep
them to create a lexicon as unambiguous as possible. The rules of phonotactic and
orthotactic nature, which cause a gap between the underlying—regularized—form
and the surface form, were formalized using regular expressions.

We have manually created a lexicon of Arabic verb lemmas which consists of
15,453 entries with unambiguous information of each verbal item. The lexicon will be
used as an input for the system of verbal generation. It was taken from a list of verbs
included in the book A dictionary of Arabic verb conjugation by Antoine El-Dahdah
[30]. The lexicographical sources used by El-Dahdah to compose his lexicon are
widely known classical dictionaries. Thus, the lexicon includes many outdated voca-
bulary. Although this is a drawback for the development of a practical and accurate
resource, this is going to allow us to have a complete overview of the MSA verbal
system.

A Comprehensive Computational Model of Modern Standard Arabic Verbal Morphology 43

3 Results

Based on the ideas of Arabic traditional prosody, we have designed and built a com-
putational model that describes the MSA verbal system. The computational model is
based on generation. The output of the system is a large-scale lexicon of fully diacri-
tized inflected forms. The lexicon has been subsequently used to develop an online
interface of a morphological analyzer for verbs.

3.1 The Design of MSA Verbal Morphology

Our first aim was to clearly separate morphological phenomena from phonological
and orthographic operations. We noticed that all verbs, regardless their nature, can be
generated as regular, and then subjected to the constraints of phonology and orthogra-
phy. By doing so, we can describe a completely regular morphology, applicable to all
verbs. On a superficial level, phonological and orthographic alterations can be applied
to these regular forms so they get their real surface form. This allows us to focus on
morphological traits independently.

At a deep level, we decompose the stem into four elements: a root, derivational
processes—consisting mainly of the insertion of consonantal material—a vocalism
and a template.

The root is specific for each verb. As we have already said, it consists of three or
four consonants interdigitated throughout the verbal stem. For instance, the root of the
verb أرسل Ársala ‘to send’ is رسل rsl. There are cases, however, in which the root is
not transparent, as in the verb اسـتجاب AistajaAba ‘to respond’, whose root is جوب jwb.

The derivational processes—which correspond to parts of the traditional patterns—
tend to add semantic connotations to the basic sense of the verb’s root. The processes
consist of three types of operations:

1. Insertion of one or more consonants, as the affix ‘st’ in the verb اسـتجاب AistajaAba
‘to respond’.

2. Insertion of a vowel lengthening mark, as the element A in the verb شاهد XaAhada
‘to watch’ which, is used to lengthen the vowel a.

3. Duplication of a consonant, as in the verb ّعلم çal~ama ‘to teach’, which doubles
the l. The symbol ~ is used in the transliteration to represent the Arabic character
 ّ◌, whose function is to double the sound of a consonant.

In MSA there are only three short syllables a, i and u. The vocalism morpheme,
which consists of two vowels—a first vowel and a second vowel within the stem—
just presents different combinations of vowels in the vocalic slots of the template. For
instance, in the inflected form ُيُرسِل y-ursil-u ‘he sends’, the stem shows two vowels, u

and i. In this case, the vowels depend on the form of the stem, i.e., they have a default
content, but in other cases they must be marked lexically.

The template is the most interesting element in the formation of the stem, for it has
to deal with the combination of all the previous elements. This leads us to the chal-
lenging task of devising an algorithm that specifies how the lexical items are com-
bined and merged into a well defined template.

44 A.G. Martínez et al.

We stated that we believe that the syllabic skeleton of Arabic verbal stems can be
formalized in a reduced set of basic structural units. We base this hypothesis on al-
Khalil’s works on quantitative prosodic theory, for it computes syllabic shape by
means of a systematic and simple mathematical device based on orthography. Al-
Khalil’s counting procedure hints at the existence of an extremely regular system of
syllabic structure in Arabic. The interesting thing here is that verbs belonging to the
same morphological class, overwhelmingly show the same weight, regardless being
classified as regular or irregular.

Following this idea, we established that templates are formed by two basic units:
first, consonants and vowel lengthening elements, and second, vowels themselves.
We refer to the former as F, and to the latter as V or W (for first and second vowel
respectively). A detailed analysis led us to propose that there are only two types of
templates which cover all the traditional verbal patterns in the Arabic system. The
basic difference between these two types is the length of the penultimate syllable: on
one type this syllable is heavy, and on the other it is light. Hence, we are going to
name the first type H, for heavy, and the second L, for light. Both types distinguish a
perfective stem (p-stem), an imperfective stem (i-stem), and an imperative stem (m-
stem), as each verb presents these three stems along its conjugation2.

Table 3. Classification of verbal templates

Template type p-stem i-stem m-stem
L FFVFWF VFFFWF FFFWF
H FFVFFWF VFFFFWF FFFFWF

The algorithm for combining the lexical items and the template is quite simple.

First, the root and the derivational material are merged to form a string. This string is
inserted into the template by a simple procedure. Each character from the root plus
derivation string replaces an F of the template, starting from the end. If there are some
F slots left after the replacement process, they are removed from the resulting string.
Then, the specific vowels of the stem replace the V and W symbols. This straightfor-
ward algorithm is shown in figure 3. Strikingly, this algorithm implies that verbs of 3-
consonant and 4-consonant roots are treated the same, so we do not need to have
different conjugational categories for them, as is the general custom.

Fig. 3. Algorithm for template adjustment. Example of word form ّذَكَّر ðakkara ‘he reminded’,

root ذكر ðkr.

2 m-stem is actually the same as i-stem but without the first vowel. For the sake of simplicity,

we preferred to keep it as an autonomous template.

A Comprehensive Computational Model of Modern Standard Arabic Verbal Morphology 45

Table 4. Inflectional Chart. Symbol ‘E’ represents vowel lengthening.

TAG p-stem
i-stem

m-stem
all indicative subjunctive jussive

1SN - ُت -أ -◌ُ -◌َ - None
1PN E نَ - - ن -◌ُ -◌َ - None
2SM - َت - ت -◌ُ -◌َ - -

2SF - ِت E ◌ِ -ت نَ- - - E - ِ◌

2DN E تمَُ - E ◌َ -ت نِ- - - E - َ◌

2PM - ُتم E ◌ُ -ت نَ- ا- ا- Eا - ُ◌

2PF - َُّتن نَ - ت نَ - - - -

3SM - َ◌ -ي -◌ُ -◌َ - None
3SF -ت◌َ - ت -◌ُ -◌َ - None
3DM E - َ◌ E ◌َ -ي نِ- - - None
3DF E َ◌تَ - E ◌َ -ت نِ- - - None
3PM E - ُ◌ E ◌ُ -ي نَ- ا- ا- None
3PF - َن نَ -ي - - - None

As for the conjugational paradigm, we simply defined the inflectional morphemes

that must be added to a base stem so that it turns into an inflected word form. The
whole inflectional paradigm can be seen in Table 4.

In a superficial layer, phonological and orthographic operations modify the under-
lying form to yield the superficial form of the inflected verb. Even though these phe-
nomena are considered irregular in traditional Arabic grammar, it is essential to note
that these alterations are by no means arbitrary, but they entail systematizable subre-
gularities. These operations are formalized as rewrite rules and implemented as regu-
lar expressions. The rewrite rules are represented as follows:

a → b / _c

If you find a in the word-form, and if a is followed by c, then change a to
b; where a is the pattern we are looking for, b is the replacement for the pat-
tern, and c is the surrounding context; and the underscore indicates the posi-
tion of a in relation to c.

For instance, one of the phonological rules is defined as [uwi -> iy / _Ca]. This rule

deals with the sound wi, which is a segment discouraged by the Arabic phonological
system [31]. Hence, the rule handles the transformation of this sound into a more
harmonic sound iy. The context specified by the rule indicates that the pattern must be
followed by a consonant plus a vowel a, so that the rule is applied. We can see the
behavior of this rule in the perfective passive formation of the common verb قال qaA-
la ‘to say’, whose root is qwl. By applying this rule, the regularly generated passive
*quwila is substituted for the more melodious sound—and correct—qiyla.

46 A.G. Martínez et al.

In a nutshell, our model is essentially based on the division of stems in a root plus
derivational affixation amalgam, a vocalization and a template. These three lexical
items are merged by means of a formal device to build verbal stems. The keystone of
this procedure are the 2 types of templates and their insertion algorithm, which ab-
stract the syllabic structure of the underlying representation of verbal stems based on
predefined basic units.

3.2 The Generation Model

The generation system relies on a lexicon of verb lemmas manually compiled for the
present project. The sources of this lexicon were described in section 2. Based on our
description of verbal morphology, each verb would need two pieces of information:
the root, which must be lexically associated to each verb, and a code that codifies the
morphemes of the verb stem and its template, i.e., the code shows if the verb presents
derivational processes, the vowels it uses for its conjugation and if it adjusts to an L
template or to a H template.

The code is formed by six digits and one letter. The latter is placed in position 3 of
the code. The meaning of each position is as follows: positions 1, 2 and 4 indicate if
the verb has derivational material; position 3 indicates the template the verb follows;
and position 5, 6 and 7 indicate the conjugational vowels of the verb. For example,
the verb َّاِسـتَمَر Aistamar~a ‘to continue’ has a root مرر and a code 04H0000. The 4 in
the code indicates that a prefix ‘st’ must be added to the root, and the H specifies that
this verb adjusts to an H template. The zeros indicate that this verb does not have
other derivational processes and that the vowels of its conjugation do not have to be
lexically marked, i.e., this verbal class has default vowels in its conjugation.

The generation process is as follows. The system generates the conjugation of a
verb starting from the verb’s root. The code associated to that root is used to keep
track of the generation path the verb must follow through the formation of the stem.
The system is divided in 7 modules, which follow a hierarchical structure.

Module 1: Root and derivational material merging: in the first stage, the derivational
processes are applied to the root. There are 7 processes of consonant insertion, 3
processes of vowel lengthening insertion and 2 process of duplication of a consonant.

Module 2: Insertion into template: the root and derivation amalgam is inserted into the
template following the algorithm described in the previous section.

Module 3: Insertion of derivational affix ta- (patterns II and V). We left this single
derivational affix to be inserted after the template adjustment for it has a completely
different nature, compared to the others. This affix is the only affix constituted by a
syllable, contrary to the other affixes, which are single consonants.

Module 4: Insertion of vocalization: vowels are inserted into the template.

Module 5: Phonotactic preprocessing: prohibited syllables are resyllabized and, at this
point, deep phonological alterations are carried out—which consist of assimilation

A Comprehensive Computational Model of Modern Standard Arabic Verbal Morphology 47

processes suffered by forms belonging to the VIII pattern. At the end of this stage the
stem if completely formed.

Module 6: Generation of inflectional paradigm: the created stem is passed through the
inflectional chart to yield all conjugated forms.

Module 7: Phonotactic constraints and orthographic normalization: all inflected forms
are passed through a series of rewrite rules in the form of regular expressions. The
rules are hierarchically organized, so if the same form suffers various phonological
processes, all are applied in a cascade process. The system has 30 orthographic rules
and 33 phonological, making a total of 63 rules to handle verbal allomorphism.

Fig. 4. Example of generation of the word worm َوْن ’tataÁx~aw·na ‘they fraternized تتََأَخَّ

3.3 Evaluation of the Model

To evaluate the accuracy of the morphological model, we needed to compare the lex-
icon generated by our system with a reference lexicon. We carried out the evaluation
against the list of inflected verbs extracted from the morphological analyzer ElixirFM
[32]. We assumed that the lexicon extracted from the ElixirFM software is a validated
database of Arabic conjugation, so we consider it our gold standard. We based this
assumption on the fact that ElixirFM is an improvement on the BAMA analyzer,

48 A.G. Martínez et al.

Table 5. Data on number of lemmas and forms in ElixirFM and Jabalín

 No. Lemmas No. Forms Forms per lemma
ElixirFM 9,009 1,752,848 192
Jabalín 15,452 1,684,268 109

Common 6,878
749,702
(44%)

109

which has reportedly achieved 99.25% precision [33]. Starting from this assumption
we normalized the ElixirFM lexicon, so that it shares a common format with our lex-
icon. In the table below we find the data of both lexicons.

The ElixirFM tagset is redundant, thus the higher number of forms per lemma.
Another peculiarity of the ElixirFM tagset is that there may be more than one form
corresponding to the same tag. This explains that the total number of forms does not
equal the number of lemmas plus the number of forms per lemma.

There are 2,131 lemmas only present in ElixirFM and 8,581 only present in Ja-
balín. This means that we have a low recall rate with respect to the ElixirFM database.
Even though both gaps may seem substantial, we believe that it is an inherent problem
of working with Classical Arabic lexicon and, ultimately, both ElixirFM and Jabalín
include a high percentage of obsolete lexical entries. There are a total of 749,702
common forms. From these, 651 forms were not evaluable because some discrepan-
cies were found in grammar books. This means that the total number of evaluated
forms was reduced to 749,051, which represents 44% of our lexicon.

For the evaluation task, we compared the reference lexicon with our generated lex-
icon and searched for each of our verbal entries in the reference lexicon, obtaining a
number of successes and failures. From the evaluable forms, we achieved a precision
of 99.52% of correct analyses. We believe that this high accuracy validates our
model.

Table 6. Results from the evaluation

 No. forms % from total % from eval.

Correct 745,436 44,26% 99.52%

Incorrect 3,615 0.21% 0.48%

No data 935,217 55.53% –

Total 1,684,268 – –

3.4 The Jabalín Online Interface

The Jabalín Online Interface is a web application for analyzing and generating Arabic
verbs. It uses the lexicon of inflected verbs provided by the generation system de-
scribed in the previous section. The online interface is hosted at the LLI-UAM labora-
tory web page, under the address http://elvira.lllf.uam.es/jabalin/.

A Comprehensive Computational Model of Modern Standard Arabic Verbal Morphology 49

The interface provides five functionalities: explore database, quantitative data, in-

flect verb, derive root and analyze form. Explore database allows one to look into the
lexicon of Jabalín. It includes information about all the inflected forms from the lex-
icon and indicates if the form has been evaluated. Quantitative data shows various
types of frequency data extracted from both the lexicon of lemmas and the lexicon of
inflected forms. Inflect verb provides the conjugation paradigm of a given verb lem-
ma, including the root and the pattern of the verb. Derive root lists all the verb
lemmas generated from a given root and its corresponding patterns. Analyze form
provides all the possible analyses of a given verbal form. It accepts fully vocalized,
partially vocalized or unvocalized forms.

4 Conclusions and Future Work

Our model intends to present a compact and efficient implementation of MSA verbal
morphology. Our design of morphology is based on a linguistically motivated analy-
sis which takes full advantage of the inner regularities encountered in Arabic
morphology.

As a first goal, our descriptive model aims to clearly separate morphological, pho-
nological and orthographic phenomena, avoiding treating different types of linguistic

50 A.G. Martínez et al.

layers by means of the same operations. One of the keystones of the model is that we
present a robust and simple algorithm for dealing with the non-concatenative nature
of Arabic morphology, which gave us strikingly good results. As a consequence, we
achieved to reduce the traditional classification of Arabic patterns from 24 classes to
only 2 conjugational classes. Another remarkable conclusion drawn by the model is
that there is no need to morphologically distinguish between verbs of 3-consonant and
4-consonant roots.

We created a total of 63 rules to handle both phonological and orthographic altera-
tions. As a way of testing the robustness of the model, we automatically evaluated
44% of the output lexicon of the system against a gold standard. The results achieved
by the evaluation show 99.52% correct forms.

Perhaps, the most remarkable conclusion we take from the template categorization
and the ordering algorithm is that Arabic syllabic structure is overwhelmingly regular.
The highly restrictive phonotactic system of Arabic makes the syllabic structure of
stems predictable. In a nutshell, we have demonstrated that it is possible to develop a
precise formalism which predicts the syllabic structures for Arabic lexical items.

As for future works, we strongly believe that in the long run a morphological sys-
tem based on a precise description of the Arabic morphological system would benefit
from high efficiency and better adaptability to numerous applications. Therefore, our
forthcoming endeavors will be focused on extending the proposed model to nominal
morphology, so that we can develop a complete system to handle Arabic morphology.
The nominal system has the disadvantage of being more complex than verbal mor-
phology, yet we believe that the basic principles of our analysis would be maintained
in a nominal model.

Furthermore, the efficiency obtained from this system strongly suggests that this
description model must have linguistic implications, so one of our most interesting
future endeavors is to place this description framework inside current linguistic
theory.

Acknowledgements. The present work benefited form the input of Jiři Hana and
Theophile Ambadiang, who provided valuable comments to the research summarized
here. We would like to thank Otakar Smrž too, for his invaluable help regarding the
ElixirFM analyzer. This research was supported and funded by an FPU-UAM scho-
larship from the Universidad Autónoma de Madrid and by a grant from the Spanish
Government (R&D National Plan Program TIN2010-20644-C02-03).

References

1. Habash, N.Y.: Introduction to Arabic Natural Language Processing. Morgan & Claypool,
San Rafael (2010)

2. Kaye, A.S.: Formal vs. Informal Arabic: Diglossia, Triglossia, Tetraglossia, etc., Polyglos-
sia viewed as a continuum. In: Comrie, B. (ed.) The World’s Major Languages, pp. 664–
685. Oxford University Press, Oxford (1990)

3. Ferrando Frutos, I.: El plural fracto en semítico: nuevas perspectivas. Estudios de Dialecto-
logía Norteafricana y Andalusí 4, 7–24 (1999)

4. Holes, C.: Modern Arabic: Structures, Functions, and Varieties. Georgetown University
Press, Washington, D.C (2004)

A Comprehensive Computational Model of Modern Standard Arabic Verbal Morphology 51

5. Danks, W.: The Arabic Verb: Form and Meaning in the Vowel-Lengthening Patterns.
John Benjamins, Amsterdam (2011)

6. Lieber, R.: Introducing Morphology. Cambridge University Press, Cambridge (2009)
7. Robin, C.: L’Arabie antique de Karib’il à Mahomet: nouvelles données sur l’histoire

des Arabes grâce aux inscriptions. Édisud, Aix-en-Provence (1992)
8. Beesley, K.R.: Arabic Finite-State Morphological Analysis and Generation. In: Proceed-

ings of COLING 1996 (1996)
9. Ratcliffe, R.R.: The “Broken” Plural Problem in Arabic and Comparative Semitic:

Allomorphy and Analogy in Non-Concatenative Morphology. John Benjamins, Amster-
dam (1998)

10. Cowan, D.: An Introduction to Modern Literary Arabic. Cambridge University Press,
Cambridge (1958)

11. Versteegh, K.: The Arabic language. Edinburgh University Press, Edinburgh (2001)
12. Shimron, J.: Language Processing and Acquisition in Languages of Semitic, Root-Based,

Morphology. John Benjamins, Amsterdam (2003)
13. Pierrehumbert, J.: Dissimilarity in the Arabic Verbal Roots. In: Proceedings of the

23rd Meeting of the Northeastern Linguistic Society, pp. 367–381. Graduate Student As-
sociation, U. Mass. Amherst (1993),
http://faculty.wcas.northwestern.edu/~jbp/
publications/arabic_roots.pdf

14. Attia, M., Pecina, P., Toral, A., Tounsi, L., van Genabith, J.: An Open-Source Finite State
Morphological Transducer for Modern Standard Arabic. In: Proceedings of the Interna-
tional Workshop on Finite State Methods and Natural Language Processing (FSNLP),
pp. 125–136 (2011)

15. Beesley, K.R.: Finite-state Morphological Analysis and Generation of Arabic at Xerox
Research: Status and plans in 2001. In: ACL Workshop on Arabic Language Processing:
Status and Perspective, pp. 1–8 (2001)

16. Beesley, K.R.: Arabic Morphology Using only Finite-State Operations. In: Proceedings of
the Workshop on Computational Approaches to Semitic Languages, pp. 50–57 (1998)

17. McCarthy, J.J.: A Prosodic Theory of Nonconcatenative Morphology. Linguistic
Inquiry 12, 373–418 (1981)

18. Abu-Chacra, F.: Arabic: An Essential Grammar. Taylor & Francis, New York (2007)
19. Kiraz, G.A.: Computational Analyses of Arabic Morphology (1994)
20. Soudi, A., Eisele, A.: Generating an Arabic Full-Form Lexicon for Bidirectional Morphol-

ogy Lookup. In: Proceedings of LREC 2004 (2004)
21. Kiraz, G.A.: Computational Nonlinear Morphology: With Emphasis on Semitic Languag-

es. Cambridge University Press, Cambridge (2001)
22. Kiraz, G.A.: Computing Prosodic Morphology. In: Proceedings of the 16th Conference on

Computational Linguistics, vol. 2, pp. 664–669 (1996)
23. Wright, W., Smith, W.R., de Goeje, M.J.: A Grammar of the Arabic Language. Cambridge

University Press, Cambridge (1896)
24. Ryding, K.C.: A Reference Grammar of Modern Standard Arabic. Cambridge University

Press, Cambridge (2005)
25. Khashan, K.M.: Al-Khalil Ibn Ahmad and Numerical Prosody I. Journal of Arabic

Linguistic Tradition 1, 25–34 (2003)
26. Habash, N.: Large-Scale Lexeme-Based Arabic Morphological Generation. In: Proceed-

ings of Traitement Automatique du Langage Naturel, TALN 2004 (2004)

52 A.G. Martínez et al.

27. Attia, M., Pecina, P., Toral, A., Tounsi, L., van Genabith, J.: A Lexical Database for
Modern Standard Arabic Interoperable with a Finite State Morphological Transducer.
In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2011. CCIS, vol. 100, pp. 98–118. Springer,
Heidelberg (2011)

28. Sawalha, M., Atwell, E.S.: Comparative Evaluation of Arabic Language Morphological
Analysers and Stemmers. In: Proceedings of COLING 2008 (Poster Volume), pp. 107–110
(2008), http://eprints.whiterose.ac.uk/42635/

29. Al Shamsi, F., Guessoum, A.: A Hidden Markov Model-Based POS Tagger for Arabic. In:
Proceedings of the 8th International Conference on the Statistical Analysis of Textual Da-
ta, pp. 31–42 (2006)

30. El-Dahdah, A.: A Dictionary of Arabic Verb Conjugation. Librairie du Liban, Beirut
(1991)

31. Owens, J.: A Linguistic History of Arabic. Oxford University Press, Oxford (2006)
32. Smrž, O.: Functional Arabic Morphology. Formal System and Implementation (2007)
33. Rodrigues, P., Cavar, D.: Learning Arabic Morphology Using Statistical Constraint-

Satisfaction Models. In: Benmamoun, E. (ed.) Papers from the 19th Annual Symposium on
Arabic Linguistics, Urbana, Illinois, pp. 63–76. John Benjamins, Amsterdam (2007)

HFST — A System for Creating NLP Tools

Krister Lindén, Erik Axelson, Senka Drobac, Sam Hardwick,
Juha Kuokkala, Jyrki Niemi, Tommi A. Pirinen, and Miikka Silfverberg

University of Helsinki
Department of Modern Languages

Unioninkatu 40 A
FI-00014 University of Helsinki, Finland

{krister.linden,erik.axelson,senka.drobac,sam.hardwick,
juha.kuokkala,jyrki.niemi,tommi.pirinen,miikka.silfverberg}@helsinki.fi

Abstract. The paper presents and evaluates various NLP tools that have been
created using the open source library HFST – Helsinki Finite-State Technology
and outlines the minimal extensions that this has required to a pure finite-state
system. In particular, the paper describes an implementation and application of
Pmatch presented by Karttunen at SFCM 2011.

Keywords: finite-state technology, language identification, morphological
guessers, spell-checking, named-entity recognition, language generation, pars-
ing, HFST, XFST, Pmatch.

1 Introduction

In natural language processing, finite-state string transducer methods have been found
useful for solving a number of practical problems ranging from language identifica-
tion via morphological processing and generation to part-of-speech tagging and named-
entity recognition, as long as the problems lend themselves to a formulation based on
matching and transforming local context.

In this paper, we present and evaluate various tools that have been created using
HFST – Helsinki Finite-State Technology1 and outline the minimal extensions that this
has required to a pure FST system. In particular, we describe an implementation of
Pmatch presented by Karttunen at SFCM 2011 [7] and its application to a large-scale
named-entity recognizer for Swedish.

The paper is structured as follows: Section 2 is on applications and their evalua-
tion. In Section 3, we present examples of user environments supported by HFST. In
Section 4, we present some of the solutions and extensions needed to implement the
applications. This is followed by the Sections 5 and 6 with an outline of some future
work and the discussion, respectively.

2 Applications and Tests

In this section, we describe and evaluate some applications implemented with HFST.
When processing text corpora, it is useful to first identify the language of the text

1 http://hfst.sf.net

C. Mahlow and M. Piotrowski (Eds.): SFCM 2013, CCIS 380, pp. 53–71, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://hfst.sf.net

54 K. Lindén et al.

before analyzing its words morphologically. Words unknown to the morphological lex-
icon need a guesser derived from the lexicon. The reverse operation of morphological
analysis is morphological generation. Generating inflections of words unknown to the
morphological lexicon can be used for eliciting information from native speakers before
adding the words to the lexicon. For information extraction, it is important to be able to
identify multi-word expressions such as named entities, for which purpose HFST has a
pattern matching tool. Finally, we also describe a traditional application area of finite-
state morphology, i.e., spell-checking and spelling correction, which is now served by
a uniform implementation using weighted finite-state technology.

2.1 Language Identification

Language identification is the task of recognizing the language of a text or text fragment.
It is useful in applications that need to process documents written in various languages
where the language might not be explicitly marked in the document. For example, a
translation application might need to identify the language of a document in order to
apply the correct translation model. Another example is a speller for Finnish, which
might need to identify paragraphs written in English, in order not to spell-check those
paragraphs.

In this section we outline how to use HFST tagger tools and language identifica-
tion tools for creating language identifiers. We also present an experiment on language
identification for documents written in Dutch, English, Estonian, Finnish, German or
Swedish. The experiment shows that HFST language identifiers are highly accurate
(99.5% of the input sentences were correctly classified).

There are several methods for performing language identification. Highly accurate
language identification can be accomplished by treating data as a letter sequence and
training a Markov chain from training documents whose language is known [3]. One
Markov chain is trained for each language that the system recognizes. Language iden-
tification consists of applying each Markov chain on input and choosing the language
whose model gives the highest likelihood for the text.

HFST language identifiers adopt a Markov chain framework, which can be imple-
mented with weighted finite-state technology. Using HFST tagger tools [19], we train
Markov models for all languages. A program, hfst-guess-language, reads the mod-
els and input text and labels each sentence with the language whose model gave the
highest likelihood for the sentence.

We present an experiment on applying HFST language identifiers for guessing the
language of sentences written in six languages. For all languages except Swedish, we
used training data from corpora containing newspaper text. For Swedish, we used more
general text.

For Dutch we used the Alpino treebank [1], for English we used the Penn Tree-
bank [12], for Estonian we used the Estonian National Corpus2, for Finnish we used
text from the largest Finnish newspaper Helsingin Sanomat year 19953, for German we
used the TIGER Corpus [2] and for Swedish we used Talbanken [5].

2 http://www.cl.ut.ee/korpused/segakorpus/
3 http://www.csc.fi/kielipankki/

http://www.cl.ut.ee/korpused/segakorpus/
http://www.csc.fi/kielipankki/

HFST — A System for Creating NLP Tools 55

Table 1. For each language, we used 2000 sentences for training and 200 sentences for testing.
We give the sizes of the data sets in UTF-8 characters.

Language Training data Test data
(UTF-8 chars) (UTF-8 chars)

Dutch 245,000 24,000
English 265,000 26,000
Estonian 238,000 23,000
Finnish 155,000 14,000
German 280,000 28,000
Swedish 164,000 16,000

Table 2. Accuracy of the language guesser per language and for all languages

Language Accuracy

Dutch 99.0%
English 99.5%
Estonian 99.5%
Finnish 99.5%
German 100.0%
Swedish 99.5%

ALL 99.5%

For each language, we chose 2200 sentences for training and testing. Of the sen-
tences, every eleventh sentence was used for testing and the rest for training. This totals
2000 sentences for training and 200 sentences for testing for each language. The sizes
of the data sets in UTF-8 characters are described in Table 1. The average length of a
sentence in characters was shorter for Finnish and Swedish than for the other languages.

We ran the language identifier for test sentences from all six languages (1200 sen-
tences in total) and computed the accuracy of the language identification system as
corr/all, where corr is the number of sentences whose language was correctly guessed
and all is the number of all sentences. In Table 2, we show results for each individual
language and all the languages combined.

Of all sentences, 99.5% were correctly classified, which demonstrates that the lan-
guage identification system is accurate. This is encouraging because Finnish and Esto-
nian have similar orthographies. This applies to German, Swedish and Dutch as well.

Currently identification is limited to identifying the closest language correspond-
ing to a sentence. There is no option to label a sentence as belonging to an unknown
language.

2.2 Morphologies and Guessers

Language technology applications for agglutinating languages such as Finnish and
Hungarian benefit greatly from high-coverage morphological analyzers, which supply

56 K. Lindén et al.

word forms with their morphological analyses. This makes applications dependent on
the coverage of the morphological analyzer. Building a high-coverage morphological
analyzer (with recall over 95%) is a substantial task, and even with a high-coverage an-
alyzer, domain-specific vocabulary presents a challenge. Therefore, accurate methods
for dealing with out-of-vocabulary words are needed.

With HFST tools it is possible to use an existing morphological analyzer to construct
a morphological guesser based on word suffixes. Suffix-based guessing is sufficient for
many agglutinating languages such as Finnish [10], where most inflection and deriva-
tion is marked using suffixes. Even if a word is not recognized by the morphological
analyzer, the analyzer is likely to recognize some words which inflect similarly to the
unknown word. These can be used for guessing the inflection of the unknown word.

The guessing of an unknown word like “twiitin” (the genitive form of “twiitti”, tweet
in Finnish) is based on finding recognized word forms like “sviitin” (genitive form of
“sviitti”, hotel suite in Finnish) that have long suffixes, such as “-iitin”, which match
the suffixes of the unrecognized word. The longer the common suffix, the more likely it
is that the unrecognized word has the same inflection as the known word. The guesser
will output morphological analyses for “twiitin” in order of likelihood.

Besides the length of the matching suffix, guesses can also be ordered based on the
probability that a suffix matches a given analysis. This can be estimated using a labeled
training corpus. In addition, any existing weighting scheme in the original morpholog-
ical analyzer can be utilized.

If the morphological analyzer marks declension class, the guesser can also be
used for guessing the declension class. If the declension class is marked, the guesser
can be used for the generation of word forms as well as analysis. This is described in
Section 2.3.

Constructing a morphological guesser from OMorFi4 – The open-source Finnish
morphology [15], the three top guesses for “twiitin” are (the markup is slightly simpli-
fied):

twiit [POS=NOUN] [GUESS_CATEGORY=5] [NUM=SG][CASE=GEN]
twiiti [POS=NOUN] [GUESS_CATEGORY=33] [NUM=SG][CASE=NOM]
twiit [POS=VERB] [GUESS_CATEGORY=53] [VOICE=ACT][MOOD=INDV] ...

The first field corresponds to the stem of the word, the second field to its main part
of speech and the third to its declension class. The fourth field shows the inflectional
and derivational information of the guess. In this case, the first guess is correct. It is
modeled after declension class number 5, which is a class of nouns containing among
others the noun “sviitti”.

2.3 Language Generation for Out-of-Vocabulary Words

Natural-language user interfaces, such as dialogue systems, need a language generation
component for generating messages for the user. The aim is to supply the user with
information about the internal state of some database containing information such as
airline connections or weather phenomena.

4 http://code.google.com/p/omorfi/

http://code.google.com/p/omorfi/

HFST — A System for Creating NLP Tools 57

Language generation systems for agglutinating languages will benefit from morpho-
logical analyzers, because generating syntactically correct sentences requires inflecting
words according to syntactic context. Depending on the domain and coverage of the
morphological analyzer, it might also be necessary to inflect words that are not recog-
nized by the morphological analyzer.

HFST morphological guessers presented in Section 2.2 can be used for generation
as well as morphological analysis. For example, using the OMorFi morphology for
Finnish, the best morphological guess for the unknown word “twiitin” is

twiit [POS=NOUN] [GUESS_CATEGORY=5] [NUM=SG][CASE=GEN]

Replacing the inflectional information [NUM=SG][CASE=GEN] (singular genitive
case) by [NUM=PL][CASE=PAR] (plural partitive case) gives the analysis

twiit [POS=NOUN] [GUESS_CATEGORY=5] [NUM=PL][CASE=PAR]

which can be fed back to the guesser to generate the surface forms “twiitteja” and
“twiittejä”. The latter one is correct, though the first one would also be possible in the-
ory, since the variation between “-ja” and “-jä” is governed by Finnish vowel harmony
and the stem “twiit” is neutral with respect to vowel harmony.

2.4 Extending a Lexicon with the Help of a Guesser

The morphological guesser has proven to be a useful tool when adding large bulks
of new vocabulary to a lexicon. We tested this on the Finnish Open Source lexicon
OMorFi. According to our experience with handling ca. 260.000 proper nouns, the
guesser achieved roughly 90% accuracy in assigning the correct inflection class to new
lexicon entries on the first guess, so the manual work needed was reduced to only check-
ing the guesser’s results and correcting ca. 10% of the suggested entries.

The names to be added to the lexicon were given in their base form, so we could ben-
efit from accepting only suggestions by the guesser in the nominative case [CASE=NOM].
The data was presented to native speakers with key word forms generated for each en-
try, which could be used to distinguish between different inflection classes, so that it
was not necessary to understand the linguistic encoding scheme:

Aura 9 Aura : Auraa : Aurat : Aurain, Aurojen : Auroja : Auroihin
Oura 10 Oura : Ouraa : Ourat : Ourain, Ourien : Ouria : Ouriin
Pura 10 Pura : Puraa : Purat : Purain, Purien : Puria : Puriin
Saura 9 Saura : Sauraa : Saurat : Saurain, Saurojen : Sauroja :

Sauroihin
Peura 9 Peura : Peuraa : Peurat : Peurain, Peurojen : Peuroja :

Peuroihin
Tiura 10 Tiura : Tiuraa : Tiurat : Tiurain, Tiurien : Tiuria : Tiuriin
Heikura 13 Heikura : Heikuraa : Heikurat : Heikurojen, Heikuroiden,

Heikuroitten : Heikuroja, Heikuroita : Heikuroihin

We did a preliminary test to assess the accuracy of the guesser when only some
basic proper nouns were included in OMorFi’s lexicon. A sample of 100 words from
each proper noun list to be added (place names, companies, organizations, given names,
family names) showed that the guesser’s success rate for finding the correct inflection

58 K. Lindén et al.

class within first five guesses ranged from 68% (companies) to 93% (place names). The
differences between the groups are readily explained by the facts that the place names
most often have endings corresponding to regular nouns, whereas the organization and
company names often contain foreign and acronym components not recognized by the
guesser.

When doing bulk additions of large numbers of lexical entries based on their suffixes,
it is practical to sort the entries alphabetically according to the end of the word. As the
first guess was very often correct, only one guess was provided. If the first guess is
marked as incorrect by a native speaker, several words needing the same correction are
likely to follow, so it is quick to apply the same correction.

After two lists of person names (ca. 12,000 family names and ca. 4,000 given names)
had been manually corrected, they were included in OMorFi’s lexicon in order to im-
prove the guesser’s performance when handling further proper noun data.

The guesser indeed performed well with the Finnish geographical names
(ca. 230,000): 91% of the first inflection class codes generated were correct without
any editing. A smaller collection of foreign geographical names – states, provinces and
cities (ca. 12,000) – also yielded quite good results, considering the tiny amount of
foreign lexical data previously known by OMorFi: 73% of the guesses were correct as
such, and 6% with some added information.

The last batch of our proper names consisted of ca. 6,600 organization names. These
included mostly Finnish but to some extent also international companies, societies and
other organizations. Before handling the organizations, the geographical names were
incorporated into OMorFi and the guesser was rebuilt. With this guesser, we got 86%
of the organization names correctly assigned and 3% correctly with some additions.
This was a significant improvement over the initial guesser.

2.5 Named-Entity Recognition

Named entities are among the most important elements of interest in information re-
trieval. In addition, names indicate agents and objects which are important in informa-
tion extraction. Often named entities are denoted by multi-word expressions. In HFST,
a pattern-matching tool, hfst-pmatch, has been implemented for identifying multi-
word expressions and recognizing named entities.

Background. In his keynote speech at SFCM 2011, Karttunen presented toy examples
of named-entity recognition (NER) with his FST pattern matching tool (pmatch) [7].
The HFST Pmatch tool has been modeled after Karttunen’s, but it is an independent
implementation with some differences in features. We have converted a full-scale
named-entity recognizer for Swedish to use HFST Pmatch, and we are in the process of
developing one for Finnish.

A named-entity recognizer marks names in a text, typically with information on the
type (class) of the name [14]. Major types of names include persons, locations, organi-
zations, events and works of art. NER tools often also recognize temporal and numeric
expressions. Names and their types can be recognized based on internal evidence, i.e.,
the structure of the name itself (e.g., ACME Inc. probably denotes a company), or based
on external evidence, i.e., the context of the name (e.g., she works for ACME; ACME

HFST — A System for Creating NLP Tools 59

hired a new CEO) [13]. In addition, NER tools typically use gazetteers, lists of known
names, to ensure that high-frequency names are recognized with the correct type.

Named-Entity Recognition with Pmatch. A key feature of Pmatch that makes it well-
suited for NER is the ability to efficiently add XML-style tags around substrings match-
ing a regular expression, as in [7]. Such regular expressions are specified by suffixing
the expression with EndTag(TagName). For example, the following expressions mark
company names ending in a company designator:

Define NSTag [? - [Whitespace|"<"|">"]] ;
Define CorpSuffix [UppercaseAlpha NSTag+ " "]+ ["Corp" | "Inc"]

EndTag(EnamexOrgCrp) ;
Define TOP CorpSuffix ;

The built-in set Whitespace denotes any whitespace character and UppercaseAlpha
any uppercase letter. String literals are enclosed in double quotation marks where Kart-
tunen’s FST uses curly braces [7]. For matching, Pmatch considers the regular ex-
pression with the special name TOP. Thus, to be able to tag the company names with
the expression CorpSuffix, TOP must refer to it. In general, a Pmatch expression set
(file) contains a list of named regular expression definitions of the form Define name
regex ;.

The above expressions mark the company names in the following input:

Computer Systems Corp announced a merger with Home Computers Inc .

The output is:

<EnamexOrgCrp>Computer Systems Corp</EnamexOrgCrp> announced a merger
with <EnamexOrgCrp>Home Computers Inc</EnamexOrgCrp> .

Pmatch considers leftmost longest matches of TOP in the input and adds the tags spec-
ified in TOP or the expressions to which TOP refers. If several subexpressions have the
same leftmost longest match in the input, it is unspecified (but deterministic) which one
Pmatch chooses. To disambiguate between matches, context conditions can be added
to the matching regular expressions. If a part of the input does not match TOP or only
matches a subexpression without an EndTag or any transductions, Pmatch outputs it
unaltered.

HFST Pmatch regular expressions may also contain transductions that can add extra
output or discard specified parts of the input. Even though they are not in general used
in tagging named entities, they can be used in correction expressions that modify tags
added by previous sets of expressions. (Pmatch makes a single pass over its input, so
a transduction cannot modify tags added by the same set of expressions.) If several
different expressions have the same leftmost longest match but different transductions,
Pmatch deterministically chooses one of them and issues a warning that there were
other possible matches.

Context Conditions. An expression may be accompanied with a context condition
specifying that a match should be considered only if the left or right context of the match
matches the context condition. For example, the following expressions mark the capital-
ized words following rörelseresultatet för (‘operating profit of’) with EnamexOrgCrp:

60 K. Lindén et al.

Define CapWord2 UppercaseAlpha NSTag+ ;
Define OrgCrpOpProfit CapWord2 [" " CapWord2]*

EndTag(EnamexOrgCrp) LC("Rörelseresultatet för ") ;
Define TOP OrgCrpOpProfit ;

For example:

Rörelseresultatet för <EnamexOrgCrp>Comp Systems</EnamexOrgCrp> ...

As in [7], the regular expression in LC() specifies a left context that must precede
the actual match. Similarly, RC() specifies a right context that must follow the match.
NLC() and NRC() specify negative left and right context, respectively, that may not
precede or follow the match. Context conditions may be combined with conjunction
and disjunction.

Conjunctive context conditions can also be specified at several stages in the expres-
sions. For example, a name is marked as a sports event by the following expressions
only if it is followed by a space and the word spelades (‘was played’) (right context
expression from EvnAtlIntl) and preceded by a space or sentence boundary (#) (left
context expression from TOP):

Define EvnAtlIntl [CapWord2 " "]+ "International "
EndTag(EnamexEvnAtl) RC(" spelades") ;

Define TOP EvnAtlIntl LC(Whitespace | #) ;

In this case, the left context condition in TOP is considered for all the EndTag expres-
sions contained or included in TOP. Karttunen [7] does not mention if his system can
combine multiple context conditions in a similar way.

Converting a Swedish Named-Entity Recognizer to Use Pmatch. We have converted
a Swedish named-entity recognizer [8] developed at the University of Gothenburg to
use Pmatch. The Swedish NER tool works on tokenized running text input: punctuation
marks are separated from words by spaces but the words are not annotated in any way.
In contrast, the forthcoming Finnish NER tool will work on annotated text, which makes
it easier to write more general rules, in particular for a morphologically rich language
such as Finnish.

The original implementation of the Swedish NER tool [8] contained 24 different
recognizers running in a pipeline and a correction filter run after each stage. 21 of the
recognizers and the correction filter had been written using Flex5 rules; the remaining
three were Perl scripts recognizing names in gazetteers. The Flex rules recognize regular
expression matches in the input, corresponding to names and their possible context, and
the actions of the rules mark the name parts of the matches with XML tags in the output.
The correction filter modifies, removes and adds new tags based on existing ones.

Motivations for reimplementing the Swedish recognizer in Pmatch included the slow
compilation of some of the Flex rule sets, which hindered testing changes to the rules,
and a desire to be able to use a single tool or formalism for all the components of the
recognizer.

5 http://flex.sourceforge.net/

http://flex.sourceforge.net/

HFST — A System for Creating NLP Tools 61

Since both Flex and Pmatch are based on regular expressions and recognizing the
leftmost longest match, we were able to automate a large part of the conversion from
Flex rules to Pmatch rules. The conversion script analysed the Flex actions to split the
recognized match into a name and its context. The correction filter was converted by
hand, since its rules were more varied than those in the recognizers.

However, because of differences between the semantics of Flex NER rules and
Pmatch, some Pmatch expressions generated by the automatic conversion had to be
edited by hand to work correctly. Firstly, the Flex rules were written so that the matched
regular expressions covered the contexts in addition to the name to be recognized,
whereas Pmatch excludes contexts from its leftmost longest match. Consequently, the
leftmost longest match at a certain point in text may be found by different patterns in
Flex and Pmatch.

Secondly, Flex rules are ordered whereas Pmatch expressions are not. Flex patterns
can thus be ordered from the most specific to the most general, so the most specific
pattern is chosen even if also a more general one would have the same leftmost longest
match. In contrast, Pmatch cannot guarantee any specific order, so the ordering has to
be replaced with more detailed context conditions or with regular language subtraction
or both. For example, to prevent capitalized järnväg (‘railway’) from matching a more
general expression marking street names, it is subtracted from the more general pattern:

Define LocStrSwe
[Capword2 "väg" ("en")] - "Järnväg" EndTag(EnamexLocStr) ;

With some modifications to account for the lack of ordering, the Pmatch rules were
able to recognize and classify the same names as the original Flex rules. However, many
rules would be more natural if written from scratch to utilize the features of Pmatch,
such as more powerful context conditions. A “native” Pmatch implementation could
probably have been written without a correction filter.

The Pmatch implementation of the gazetteer lookup uses the construct
@txt"filename" that treats the named file as a disjunction of strings, each line as
one disjunct. The gazetteer has been divided into files by the type of the name:

Define LocStr @txt"LocStr.txt" EndTag(EnamexLocStr) ;
Define PrsHum @txt"PrsHum.txt" EndTag(EnamexPrsHum) ;
...
Define Boundary [" " | #] ;
Define TOP [LocStr | PrsHum | ...] LC(Boundary) RC(Boundary) ;

The context conditions in TOP allow a name to be recognized only at word boundaries.
The name lists could be replaced with full-fledged morphological analyzers allowing
the recognition of inflected words or names.

The original Swedish NER system marks named entities with XML elements en-
coding the precise type in attributes. The tags used by Pmatch can be converted to this
format with Pmatch transductions or with a simple script. For example, the Pmatch-
tagged text

<EnamexOrgCrp>Computer Systems Corp</EnamexOrgCrp>

is converted to

<ENAMEX TYPE="ORG" SBT="CRP">Computer Systems Corp</ENAMEX>

62 K. Lindén et al.

Performance. Compiling the Pmatch version of the Swedish NER was about ten times
faster on the average than the Flex version, which we consider as a significant improve-
ment. On our test machine6, the average compilation time of a single recognizer was
reduced from 53 minutes to 5.5 minutes, and the slowest one from 288 minutes (almost
five hours) to 54 minutes. We will also investigate further ways to improve compila-
tion speed. In contrast, at run time the Pmatch NER recognizers were about three times
slower on the average than the Flex ones.

The total size of the current Pmatch FSTs for the Swedish NER is over three gi-
gabytes, which is about eight times as large as the executables compiled from the
Flex files. However, the FST sizes will be reduced as soon as expression caching is
implemented in Pmatch. Using a recursive transition network feature similar to Kart-
tunen’s [7] Ins() will further reduce the FSTs and their compile times.

2.6 Spell-Checking

Using weighted finite-state methods for spell-checking and correction is a relatively
recent branch of study in spell-checking research. The concept is simple: finite-state
morphological analyzers can easily be transformed into spell-checking dictionaries pro-
viding a language model for the correctly spelled words in the spell-checking system.
A baseline finite-state model for correcting spelling errors can be inferred from the lan-
guage model by creating a Levenshtein-Damerau automaton based on the alphabetic
characters present in the language. The language model can be trained to prefer more
common words when the Levenshtein-Damerau distance between two suggestions is
the same. This is done with a unigram language model that maximizes the frequency
of the suggested word. In our experience, even relatively moderate amounts of training
material will improve the quality, as the statistical training improves the discriminative
power of the model due to the observation that the likelihood of random typing errors
is greater in more frequent words.

The practical process of creating a finite-state spell-checker and corrector is simple:
given an analyzer capable of recognizing correctly spelled word-forms of a language,
make a projection to the surface forms to create a single-tape automaton. The automaton
is trained with a corpus word-form list, for which the final state weight of each word-
form is, e.g., − log c(w f)

CS , where c(w f) is the word-form count and CS is the corpus size.
Words not found in the corpus are given a maximal weight wmax >− log 1

CS to push them
to the end of the suggestion list; this weighting can be done, e.g., in finite-state algebra
by composition with a weighted Σ� language.

The error model can be improved from the baseline Levenshtein-Damerau distance
metric as well. For this purpose we need an error corpus, i.e., a set of errors with their
frequencies. This can be semi-automatically extracted from weakly annotated sources,
such as Wikipedia. From Wikipedia we get, among other things, word-to-word correc-
tions by inspecting the commit messages from Wikipedia’s logs. It is possible to use the
specific word-to-word corrections to create an extension of common confusables to the
error model. Another way is to re-align the corrections using the Damerau-Levenshtein
algorithm and train the original character distance measure with frequencies of the char-
acter corrections in the same manner as we did for word-forms above.

6 The test machine had Intel Xeon X7560 processors running at 2.27 GHz.

HFST — A System for Creating NLP Tools 63

The application of the language and error model to spell-checking is a traversal or
composition with a finite-state transducer. The checking of the correct spelling is a
composition w ◦L, where w is a single path automaton containing the word-form and
L is a single-tape automaton recognizing the correct word-forms of a language. The
spelling correction is (w◦E ◦L)1, where E is a two-tape automaton containing the error
model, and 1 is a projection to the surface language.

As an example of the simplicity of this process, we obtained an open-source German
morphological analyzer morphisto7 to generate a spell-checker, trained it with word-
forms extracted from the German Wikipedia8 and applied it to Wikipedia data to find
spelling errors and correct them. The whole script for this can be found in our version
control9, and it took us no more than one work day by one researcher to implement this
application. The resulting system does spell-checking and correction with a baseline
finite-state edit distance algorithm [17] applying up to 2 errors per word-form at a speed
of 77,500 word-forms per second. For further evaluations on other language and error
models, refer to [16].

3 Examples for User Environments

In this section, we provide some examples of how to implement applications on top of
the HFST library using Python. The HFST library and its Python bindings are readily
installable in all major operating systems.

3.1 An Interface in Python

In addition to an API library and command line tools, the HFST library can also be
used through SWIG-generated Python bindings. The bindings are offered for the Python
programming language versions 2 and 3. All HFST functionalities are available via both
versions, but the Python interpreters themselves have some differences. For example,
Python 2 allows HFST exceptions to be caught directly, but Python 3 requires the use of
a special wrapper function written as a part of the bindings. On the other hand, Python
3 has better support for unicode characters, so it is probably a better choice for most
linguistic applications.

Below is an example of iterating through the states and transitions of an HFST trans-
ducer using Python bindings:

Go through all states in fsm
for state in fsm.states():

Go through all transitions
for transition in fsm.transitions(state):

do something

7 http://code.google.com/p/morphisto/
8 http://de.wikipedia.org
9 svn://svn.code.sf.net/p/hfst/code/trunk/articles/sfcm-2013-article

http://code.google.com/p/morphisto/
http://de.wikipedia.org
svn://svn.code.sf.net/p/hfst/code/trunk/articles/sfcm-2013-article

64 K. Lindén et al.

And the same using the HFST API directly:

// Go through all states in fsm
for (HfstBasicTransducer::const_iterator it = fsm.begin();

it != fsm.end(); it++)
{
// Go through all transitions
for (HfstBasicTransducer::HfstTransitions::const_iterator tr_it

= it->begin(); tr_it != it->end(); tr_it++)
{
// do something
}

}

The Python bindings in particular make it easy to use language models developed
for HFST in rapid prototyping of advanced tools. For example, a chunker for Finnish
was developed by simply bracketing adjacent agreeing cases and a few other similar
expressions with a few lines of code on top of an existing morphological analyzer. For
example, given the Finnish sentence “miljoona kärpästä voi olla väärässä paikassa”, we
get a bracketing of all three phrases as illustrated in the following sentence with a gloss:

(1) Miljoona1

million-NUM

kärpästä1

fly-PAR

voi2
can-AUXV

olla2

be-INFV
väärässä3

wrong-INE

paikassa3

place-INE

‘A million flies can be in the wrong place’

In this case the rules governing chunking are all about pairs of words: a measurement
phrase is a numeral followed by a partitive nominal, a verbal phrase is an auxiliary
followed by a lexical verb and a noun phrase is an adjective and a noun in an agreeing
case. The three pairs of words can be identified as common chunks in Finnish and
having specific rules for these pairs will give a reasonable baseline surface syntax for
applications where a more elaborate syntactic structure is not required.

A Chatroom Morphology Tool. One example of rapid development and leverage of
language resources is an IRC bot performing morphological analysis and synthesis on
command. Originally written as a source of entertainment for linguistics students, it is
usable as a learning resource and discussion facilitator for language learners. It also
proved useful as a testing environment; requested analyses that were not found in the
transducers can be written to a log file.

The pertinent Python code for performing lookup on an appropriate transducer is as
simple as:

with libhfst
transducer = HfstTransducer(HfstInputStream("transducer.hfst"))
results = transducer.lookup(message)
for result in vectorize(results):

irc_message(result)

HFST — A System for Creating NLP Tools 65

For more than just providing analyses of words, either the underlying transducer or
the bot can be customized to allow specific queries:

<user> hfstbot: kintereellä
<hfstbot> user: kinner<N><Sg><Ade>
<user> hfstbot: gen kinner<N><Pl><Nom>
<hfstbot> user: kintereet

In this case, the user wants to see the analysis for “kintereellä”, which translates to
“on the hock”. Being informed that it is a singular noun in the adessive case, the base
or nominative form of which is “kinner”, the user asks for the plural nominative, which
is “kintereet”.

3.2 HFST on Unix, Mac and Windows

Portability has been one of the design goals of the HFST system. The current versions
are available or compilable on all POSIX-supporting systems, including Cygwin un-
der Windows, Mac OS X and Linux. Compilation is also possible on MinGW under
Windows.

Fresh versions of HFST source code can be fetched from our Subversion repository
at Sourceforge10. We also offer, approximately twice a month, new release packages
that include a source tarball (compilable on all the aforementioned platforms), Debian
binaries (for Linux), a MacPort distribution (for MacOS X) and an NSIS installer (for
Windows).

3.3 Other Usability Improvements

Four new command line tools have been added since 2011. The most important are
the native XFST parser hfst-xfst and the tagging tool hfst-tagger. Also two func-
tions that were earlier available only through the API can now be used as command-line
tools: hfst-shuffle and hfst-prune-alphabet. The former is a special operation
that freely interleaves the symbols of any two strings recognized by the respective trans-
ducers. The latter removes symbols that do not occur in the transitions of the transducer
from its alphabet. Two existing tools that perform transducer-to-text conversion also
have new features: hfst-fst2txt can write to dot/graphviz and PCKIMMO format
and hfst-fst2strings has a new parameter that controls its output to achieve better
interoperability with other command-line tools.

There is some additional control over special symbols as we have added a parameter
for binary operators controlling whether unknown and identity transitions are expanded,
the default being true. We also have a new special symbol, the default symbol match-
ing any symbol if no other transition in a given state matches.

We have kept the number of dependencies in HFST as low as possible. All back-
ends (SFST, OpenFst and foma) are now bundled with HFST. There is no longer a
need to install them separately or worry about having the right version. We have also
made modifications to the back-end libraries; for instance, some of the compile-time

10 http://hfst.sf.net

http://hfst.sf.net

66 K. Lindén et al.

warnings are now fixed or suppressed. GNU- and Bash-specific commands were also
removed from the scripts to make them more portable.

4 Under the Hood

In the following section, we describe some of the technical choices made to implement
the HFST library and the applications addressed in the previous sections, as well as
some minor design differences with regard to XFST.

4.1 An Independent XFST Module

The HFST command-line tools include an XFST parser tool that can be used in interac-
tive mode or to compile script files. The tool implements the same functionalities as the
original XFST (Xerox Finite-State Tool) which is a general-purpose utility for comput-
ing with finite-state networks. There are over 100 commands in hfst-xfst, the same
as those documented in the Xerox tool. In addition, there is an option to independently
use the regular expression parser which the hfst-xfst module was built on through
the hfst-regexp2fst tool for those who wish to parse regular expressions in Bash
scripts.

Below is an example of using hfst-xfst in interactive mode where we define two
transducer variables, use them in a regular expression and print random words recog-
nized by the expression.

$ hfst-xfst2fst
hfst[0]: define Foo foo;
hfst[0]: define Bar bar;
hfst[0]: regex [[Foo|0] baz [Bar|0]];
424 bytes. 4 states, 4 arcs, 4 paths
hfst[1]: print random-words
baz
bazbar
foobaz
foobazbar
hfst[1]:

To test hfst-xfst2fst, we have compiled 17 out of the 22 XFST exercises that
are found on the homepage of Beesley and Karttunen’s book Finite State Morphol-
ogy11. We have omitted the exercises that do not include an answer. We have compiled
the exercises using both Xerox’s XFST and HFST’s hfst-xfst and compared the re-
sults for equivalence. We have also tested the functionality of the hfst-regexp2fst
tool by rewriting the original exercises using HFST command line tools (other than
hfst-xfst).

Although we are aiming at complete backward compatibility with XFST, we have
noticed that in some borderline cases the results may differ when using replace rules
in regular expressions. One example in which XFST and hfst-xfst2fst may give
different results is the longest match.

11 http://www.fsmbook.com

http://www.fsmbook.com

HFST — A System for Creating NLP Tools 67

By definition, in left-to-right longest match:

A @-> B || L _ R

where A, B, L and R denote languages, the expression A matches input left-to-right
and replaces only the longest match at each step.

Therefore, a left-to-right longest match is supposed to give exactly one output string
for each input string. However, when compiled using XFST, both of the following left-
to-right longest match rules result in transducers which for input aabbaax give two
outputs: aaxx and xxx.

xfst[0]: regex a+ b+ | b+ a+ @-> x \\ _ x ;
3.1 Kb. 8 states, 31 arcs, Circular.
xfst[1]: down aabbaax
aaxx
xxx
xfst[1]: regex a+ b+ | b+ a+ @-> x \/ _ x ;
3.1 Kb. 8 states, 31 arcs, Circular.
xfst[2]: down aabbaax
aaxx
xxx

In the examples, the \\ sign denotes that the left context L is to be matched on the
input side of the relation and the right context R is to be matched on the output side of
the relation. The \/ sign denotes that both contexts are to be matched on the output side
of the relation.

The same regular expressions compiled with hfst-xfst2fstwill for the same input
give only one output xxx, which we consider to be the only correct result.

It is likely that, in this case, the difference is caused by different compilation ap-
proaches. In hfst-xfst2fst, replace rules are compiled using the preference opera-
tor [4], which in this case successfully finds that the output string aaxx is less preferable
in comparison with the output string xxx and is therefore excluded from the final result.

Furthermore, we have noticed that there are some differences in pruning the alphabet
after performing certain operations. These two examples will give the same transition
graphs, but different alphabet sets if compiled with XFST:

regex [a | b | c] & $[a | b] ;
resulting alphabet: a, b

regex [a | b | c] & [a | b] ;
resulting alphabet: a, b, c

HFST’s hfst-xfst2fst always prunes the alphabet after the following operations:
replace rules (contexts are also pruned before being compiled with the rule), comple-
ment, containments, intersection, minus. However, it seems that XFST prunes the
alphabet only if at least one of the operands contains the unknown symbol and if the
result does not contain the any symbol. Therefore, if the above commands were run in
the hfst-xfst2fst environment, the resulting alphabet is different from that of XFST,
being a, b in both cases.

68 K. Lindén et al.

In HFST, the alphabet pruning only removes symbols from the alphabet if the prun-
ing has no effect on the function of the transducer. Therefore, we have not managed to
find an example in which the above difference influences the correctness of the result,
but pruning the alphabet results in a slightly smaller transducer.

4.2 Pmatch with Applications for NER

At the 2011 SFCM conference, it was remarked that the Pmatch system presented in [7],
while of obvious practical interest, lacked a free implementation and certain useful fea-
tures, such as flag diacritics. The idea of implementing something similar for an exist-
ing FST library became apparent, and ultimately the HFST team became motivated to
design a rule-based named-entity recognizer (NER) by first implementing a subset of
Pmatch deemed necessary for that purpose. Beyond the tagging concept, runtime con-
texts, named subnetworks and various utilities were most crucial and were implemented
as need arose.

An overview of the relevant features is presented in Section 2.5. Building on an ex-
isting Xerox-oriented regex parser API (in libhfst) and a runtime-oriented transducer
format with support for flag diacritics (hfst-optimized-lookup, see [18] and [9]),
the remaining requisites were:

1. A mechanism for naming and retrieving transducers during compilation.
2. A scheme of control symbols to direct the runtime operation of the matching.
3. Logic for compiling new features.
4. A runtime tool that particularly needs to deal with the non-FST or state-preserving

aspects of Pmatch.

We will first overview the details of some features.

Named-Entity Tagging. A straightforward way to accomplish tagging at the beginning
and end of matches of first, last and complete names might look like this:

q0start

q1

q2

q3

q4

q5

q6 q7

q8

ε:<FName>

ε:<LName>

ε:<Name>

John

Bardin

John Bardin

ε:</FName>

ε:</LName>

ε:</Name>

In this scenario, every new name is repeated in two places in the network. With
large lists and multiple sources of this type of ambiguity, size inefficiencies can become
serious.

HFST — A System for Creating NLP Tools 69

One idea of Pmatch was to recognize the shared prefix in the first name “John” and
the entire name “John Bardin” and to defer tag-writing until the entity has become
unambiguous. In HFST, this is accomplished by detecting the tag directive during com-
pilation and prefixing the subnetwork in question with an entry marker. After matching
is complete, the entry marker is resolved in linear time with a simple position stack (in
pseudocode):

for each symbol in result:
if symbol == entry marker:

push position into stack
if symbol is end tag:

insert corresponding start tag into position at stack top
pop stack
append end tag

else:
append symbol

With just the entry and end tags, the network simplifies to:

q0start q1

q2

q3

q4

q5

ε:@ENTRY@

John

Bardin

Bardin

ε:</LName>

ε:</FName>
ε:</Name>

Contexts and States during Matching. Context markers trigger special runtime be-
havior and restrict progress during matching, very similarly to flag diacritics. There are
two special considerations:

1. Left contexts are compiled to the left side of the network, in reverse (so that the
first symbol to the left is at the end of the context).

2. Processing direction and position must be preserved during matching in a state
stack.

Additionally, a stack for preserving the input tape position and the output tape con-
tent during each RTN (recursive transition network) invocation must be kept separately
from the runtime context-checking stack. Otherwise, transition data is not duplicated,
and these stacks are the only arbitrary amounts of memory reserved for accomplishing
non-finite-state extensions.

Transduction. Each matching rule is by default compiled as an identity transduction.
In many applications, however, it is useful to operate on input with some additional

70 K. Lindén et al.

information, but give the output without such information. Matching is therefore not
performed with automata, but with arbitrary transducers.

5 Future Work

The idea of combining linguistic rules and statistical models is intriguing but nontriv-
ial. However, a pure finite-state left-to-right system is likely to be less efficient for
syntactic parsing than a chart-based system, so the solution is probably to add linguistic
constraints in the form of weighted finite-state constraints to a statistical parser before
estimating the weights.

While existing statistical models like HMMs and PCFGs can incorporate a great
deal of useful information for tasks like part-of-speech tagging and syntactic parsing,
there are phenomena like non-local congruence which are too complex to estimate for
these models. Probably because of this, there has been a growing interest in combining
rule-based and statistical methods in core NLP tasks, such as part-of-speech tagging
and syntactic parsing [11]. Such a combination presents challenges both for statistical
estimation and inference methods and for the representation of linguistic information in
a way which is compatible with a statistical system.

Finite-state transducers and automata can be used for expressing linguistically rele-
vant phenomena for tagging and parsing as regular string sets. The validity of this ap-
proach is demonstrated by the success of parsing systems like Constraint Grammar [6],
which utilizes finite-state constraints. Weighted machines offer the added benefit of ex-
pressing phenomena as fuzzy sets in a compact way. This makes them an excellent
candidate for adding linguistic knowledge to statistical models.

6 Conclusion

The paper presented various NLP tools implemented with HFST and the minimal
extensions they required to a pure finite-state system. In particular, the paper described
an implementation of a full-scale named-entity recognizer for Swedish using Pmatch
achieving a 10-fold compile-time speed-up compared with the original Flex
implementation.

Acknowledgments. The research leading to these results has received funding from
FIN-CLARIN, Langnet and the European Commission’s 7th Framework Program under
grant agreement n° 238405 (CLARA).

References

1. Bouma, G., Noord, G.V., Malouf, R.: Alpino: Wide-coverage computational analysis of
Dutch. In: CLIN 2000, vol. 8, pp. 45–59. Rodopi (2000)

2. Brants, S., Dipper, S., Hansen, S., Lezius, W., Smith, G.: The TIGER treebank. In: Proceed-
ings of the Workshop on Treebanks and Linguistic Theories. Sozopol (2002)

3. Cavnar, W.B., Trenkle, J.M.: N-gram-based text categorization. In: Proceedings of
SDAIR 1994, 3rd Annual Symposium on Document Analysis and Information Retrieval,
pp. 161–175 (1994)

HFST — A System for Creating NLP Tools 71

4. Drobac, S., Silfverberg, M., Yli-Jyrä, A.: Implementation of replace rules using prefer-
ence operator. In: Proceedings of the 10th International Workshop on Finite State Methods
and Natural Language Processing, pp. 55–59. Association for Computational Linguistics,
Donostia–San Sebastián (2012), http://www.aclweb.org/anthology/W12-6210

5. Einarsson, J.: Talbankens skriftspråkskonkordans. Lund University (1976)
6. Karlsson, F.: Constraint grammar as a framework for parsing running text. In: Karl-

gren, H. (ed.) Proceedings of the 13th Conference on Computational linguistics, COLING
1990, vol. 3, pp. 168–173. Association for Computational Linguistics, Stroudsburg (1990),
http://dx.doi.org/10.3115/991146.991176

7. Karttunen, L.: Beyond morphology: Pattern matching with FST. In: Mahlow, C., Piotrowski,
M. (eds.) SFCM 2011. CCIS, vol. 100, pp. 1–13. Springer, Heidelberg (2011)

8. Kokkinakis, D.: Swedish NER in the Nomen Nescio project. In: Holmboe, H. (ed.) Nordisk
Sprogteknologi – Nordic Language Technology 2002, pp. 379–398. Museum Tusculanums
Forlag, Copenhagen (2003)

9. Lindén, K., Axelson, E., Hardwick, S., Pirinen, T.A., Silfverberg, M.: HFST—framework for
compiling and applying morphologies. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2011.
CCIS, vol. 100, pp. 67–85. Springer, Heidelberg (2011)

10. Lindén, K., Pirinen, T.: Weighted finite-state morphological analysis of Finnish com-
pounds. In: Jokinen, K., Bick, E. (eds.) Nodalida 2009. NEALT Proceedings, vol. 4 (2009),
http://www.ling.helsinki.fi/~klinden/pubs/linden09dnodalida.pdf

11. Manning, C.D.: Part-of-speech tagging from 97% to 100%: Is it time for some linguistics?
In: Gelbukh, A.F. (ed.) CICLing 2011, Part I. LNCS, vol. 6608, pp. 171–189. Springer,
Heidelberg (2011)

12. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguistics 19(2), 313–330 (1993)

13. McDonald, D.D.: Internal and external evidence in the identification and semantic cate-
gorization of proper names. In: Boguraev, B., Pustejovsky, J. (eds.) Corpus Processing for
Lexical Acquisition, pp. 21–39. MIT Press, Cambridge (1996)

14. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae
Investigationes 30(1), 3–26 (2007)

15. Pirinen, T.: Suomen kielen äärellistilainen automaattinen morfologinen analyysi avoimen
lähdekoodin menetelmin. Master’s thesis, Helsingin yliopisto (2008),
http://www.helsinki.fi/~tapirine/gradu/

16. Pirinen, T., Silfverberg, M., Lindén, K.: Improving finite-state spell-checker suggestions with
part of speech n-grams. In: IJCLA (2012)

17. Pirinen, T.A., Lindén, K.: Finite-state spell-checking with weighted language and error
models. In: Proceedings of the Seventh SaLTMiL Workshop on Creation and Use of Ba-
sic Lexical Resources for Less-Resourced Languagages, Valletta, Malta, pp. 13–18 (2010),
http://siuc01.si.ehu.es/

18. Silfverberg, M., Lindén, K.: HFST runtime format—a compacted transducer format allowing
for fast lookup. In: Watson, B., Courie, D., Cleophas, L., Rautenbach, P. (eds.) FSMNLP
2009 (July 13, 2009),
http://www.ling.helsinki.fi/~klinden/pubs/fsmnlp2009runtime.pdf

19. Silfverberg, M., Lindén, K.: Combining statistical models for POS tagging using finite-state
calculus. In: Nodalida 2011, Riga, Latvia (2011)

http://www.aclweb.org/anthology/W12-6210
http://dx.doi.org/10.3115/991146.991176
http://www.ling.helsinki.fi/~klinden/pubs/linden09dnodalida.pdf
http://www.helsinki.fi/~tapirine/gradu/
http://siuc01.si.ehu.es/
http://www.ling.helsinki.fi/~klinden/pubs/fsmnlp2009runtime.pdf

A System for Archivable Grammar Documentation

Michael Maxwell

University of Maryland, College Park MD 20742, USA
mmaxwell@umd.edu

Abstract. This paper describes a number of criteria for archivable documenta-
tion of grammars of natural languages, extending the work of Bird and Simons’
“Seven dimensions of portability for language documentation and description.”
We then describe a system for writing and testing morphological and phonologi-
cal grammars of languages, a system which satisfies most of these criteria (where
it does not, we discuss plans to extend the system).

The core of this system is based on an XML schema which allows grammars
to be written in a stable and linguistically-based formalism, a formalism which
is independent of any particular parsing engine. This core system also includes a
converter program, analogous to a programming language compiler, which trans-
lates grammars written in this format, plus a dictionary, into the programming
language of a suitable parsing engine (currently the Stuttgart Finite State Tools).
The paper describes some of the decisions which went into the design of the for-
malism; for example, the decision to aim for observational adequacy, rather than
descriptive adequacy. We draw out the implications of this decision in several
areas, particularly in the treatment of morphological reduplication.

We have used this system to produce formal grammars of Bangla, Urdu,
Pashto, and Persian (Farsi), and we have derived parsers from those formal gram-
mars. In the future we expect to implement similar grammars of other languages,
including Dhivehi, Swahili, and Somali. In further work (briefly described in this
paper), we have embedded formal grammars produced in this core system into
traditional descriptive grammars of several of these languages. These descriptive
grammars serve to document the formal grammars, and also provide automati-
cally extractable test cases for the parser.

1 Introduction

I will take it as given that one of the goals in language documentation is to create de-
scriptions which will be usable as long as possible—preferably for hundreds, if not
thousands, of years. This paper discusses design criteria for computer-supported mor-
phological analysis in support of that goal.

The earliest morphological parsers were written in ordinary programming languages
for specific languages. Hankamer’s keçi [10], for example, was written in the C pro-
gramming language, primarily to parse Turkish.1 One implication of this sort of de-
sign is software obsolesence; the knowledge about the grammar is encoded in a format

1 Hankamer suggests that the program might be useful to parse other agglutinating languages,
but as far as I can determine, it was never used in that way.

C. Mahlow and M. Piotrowski (Eds.): SFCM 2013, CCIS 380, pp. 72–91, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A System for Archivable Grammar Documentation 73

(the C programming language) which is destined to some day be obsolete. Moreover,
the language-specific linguistic aspects of the analysis are intermingled with language-
general aspects (what a suffix is, for example), not to mention information which has
nothing to do with linguistics, such as the way for-loops are encoded in the C program-
ming language.

The use of language-independent parsing engines for morphological parsing was the
first step beyond programs designed from the ground up for a particular language. Pro-
grams like AMPLE (developed by SIL in the 1980s: [26]) and the Xerox XFST finite
state transducer [1], along with many other such tools provide language-general knowl-
edge about many aspects of morphology and phonology. AMPLE, for example, allows
one to build a database of allomorphs conditioned by phonological environments. XFST
allows in addition the statement of various kinds of phonological alternations or pro-
cesses, which can generate allomorphs from underlying forms.

Such language-independent parsing engines represent an important step towards lin-
guistically motivated computational descriptions, in that they release the writer of a
language description from the necessity of building programming tools to treat morpho-
tactics, phonotactics, phonological environments, and phonological processes. This is a
necessary step, but not a sufficient one. A further step is needed to ensure the longevity
of those linguistic descriptions, so that they may be consulted by future generations of
linguists, and used for morphological parsing long after any particular parsing engine
is obsolete and unusable. This paper describes a framework with those characteristics:
it supplies a linguistically based notation, one which will be familiar to most linguists;
and the notation, being stated in XML, is stable and (as much as such a notation can be)
self-documenting.

2 Criteria for Grammatical Descriptions

In this section I motivate criteria for archivable grammatical descriptions, and use these
criteria to argue for a way of describing grammars which is computationally imple-
mentable and at the same time indepenent of any particular parser implementation. I
begin with a seminal document in the language description literature, Seven dimensions
of portability for language documentation and description.

2.1 Seven Pillars for Language Description

Bird and Simons [2] discuss the requirements for producing archivable descriptions of
languages.2 Among these requirements are the following:3

2 Bird and Simons make a distinction between “documentation,” that is primary language data
such as recordings and transcriptions, as opposed to “description,” that is a linguistic analysis
of the primary language data. Since these terms are easily confused, I will use “description”
in the same sense as Bird and Simons, to refer to the linguistic analysis, but “data” to refer to
what Bird and Simons call documentation.

3 I omit some of Bird and Simons’ criteria which seem less relevant to the discussion here,
namely discovery, access, citation, and rights.

74 M. Maxwell

1. Content: Among content-based requirements, Bird and Simons include:
Accountability: By “accountability,” they mean the ability to verify the descrip-

tion against actual language data.
Terminology: The terminology used in a language’s description should be defined,

e.g., by pointing to standardized ontologies.
2. Format: This refers to the structure of the file in which the description is housed.

Openness: Linguistic descriptions should use formats which conform to open
standards.

Encoding: Unicode is preferable.
Markup: Bird and Simons call for plain text markup formats. They further argue

that the markup should be descriptive, not presentational, with XML as the
standard for such markup.

Rendering: There needs to be a method to render linguistic documents in human-
readable form.

3. Preservation: This desideratum refers to the need for linguistic descriptions to be
archivable, as well as to be archived. Bird and Simons emphasize the need for
longevity, that is, planning for the use of the resource for periods of decades (or,
one may hope, centuries).

2.2 More on Pillars for Grammatical Descriptions

Bird and Simons are not explicit about the sorts of language descriptions for which
these criteria are relevant, but they discuss textual descriptions of languages, annotated
corpora, and lexical resources. It may not be at first glance clear how the above criteria
apply to grammatical resources, and specifically to morphological descriptions. I will
therefore elucidate in this section specific ways in which grammatical resources must
be created if they are to support the general goals of content, format, and preservation
which Bird and Simons outline. I will also discuss some additional criteria which are
more specific to grammatical descriptions.

To begin, in order for a grammatical description to meet their criterion of accounta-
bility—the ability to validate a description against primary language data—it must be
possible to test such a description on actual language data. While it may seem that this
can be done by pure thinking (aided, perhaps, by pencil and paper), the last decades
of computational linguistics have shown nothing if they have not demonstrated that
grammatical descriptions are hard to debug. While this has long been clear in syntax, it
has also become clear in morphology and phonology (e.g., [3,16,27,28]). These last two
references describe problems arising in the interpretation of Newman’s [22] description
of Yokuts (= Yawelmani, or Yowlumne). As Weigel [27,28]) and Blevins [3] make clear,
the misinterpretations have resulted in something of a disaster for theoretical phonology,
in that fundamental claims in generative phonology turn out to have been supported by
misunderstandings of Newman’s work.

It is not the case that Newman’s description was unintelligible or inherently faulty;
no less a linguist than Zellig [12, p. 196] described it in glowing terms:

Newman’s long-awaited Yokuts grammar is [. . .] a model contribution to de-
scriptive linguistic method and data. It is written clearly and to the point, in

A System for Archivable Grammar Documentation 75

a matter that is aesthetically elegant as well as scientifically satisfactory. It
is sufficiently detailed [. . .] to enable the reader to become familiar with the
language and to construct correctly his own statements about the language.
Phonology and morphology are treated fully [. . .] students and workers in lin-
guistics should read [this] with close attention to the method of handling de-
scriptive and comparative data.

Nevertheless, Weigel [28] writes:

Newman’s explanations and descriptive rules of Yokuts morphology are often
not completely clear. Indeed, no less a linguist than Charles Hockett had to
admit (in Hockett 1973) that he had misapplied some of Newman’ s rules in an
earlier published piece (Hockett 1967).

One might ask why linguists mis-construe the output of grammars. Certainly com-
plexity is one aspect; for any non-trivial grammar, it is difficult to think through all
the implications of all the rules on all the lexical items and affixes. But there is an-
other reason. One may view a grammar as the description of a piece of software. In
this case, the “software” is originally implemented as “wetware,” that is in people’s
brains; the task is to describe that program (or at least generate its outputs) clearly and
unambiguously.4 The problem of grammatical description is thus an issue of software
documentation. And as is well known, verbal descriptions of software are inherently and
nearly unavoidably ambiguous. Thus, in addition to the complexity of natural language
grammars themselves, we have the ambiguity of their descriptions.

If then a model grammar such as Newman’s can be so misinterpreted, what hope is
there for the average grammar? The hope, I contend, is that we should use computers to
help us validate and understand grammars. But it is obvious that computers cannot inter-
pret descriptive grammars, written in English or any other natural language—computers
are actually worse at this task than humans are. We therefore require computationally
implementable and testable grammars. By implementing such a grammar, we can ar-
rive at a description which can unambiguously answer the questions we put to it, such
as “What is the complete paradigm of verb X?”, a question which (as Weigel notes) is
difficult to answer from Newman’s description.

We thus arrive at the first of several criteria for adequate morphological descriptions:

Criterion 1. A morphological (or more generally, grammatical) description must be
computationally implementable.

This criterion in support of Bird and Simon’s pillar of accountability immediately
raises questions. In particular, what description language should we use? Obvious can-
didates are the programming languages used by modern morphological parsing engines.
But the problem with this answer should be clear from the plural suffix on “candidates”:

4 It is possibile that mental grammars are inherently “fuzzy,” that is that there is no black-and-
white grammar to be described. The same is true, only more so, of languages as they are spoken
by communities, where questions of individual and dialectal variability arise. But I assume for
this paper that there is some definite body of knowledge to be described, even if statements of
variability must form a part of the description.

76 M. Maxwell

which one of the many parsing engines should we use as the standard? SIL’s AMPLE
has the longest history, however it is incapable of describing real phonological rules.
The Xerox finite state transducer, XFST, was developed in the late 1990s as proprietary
software, and can describe phonological rules.5 Another finite state transducer is the
Stuttgart SFST program [24].6

The problem is that while these programs are useful, and certainly capable of creating
testable grammars, none represents a real standard.

Moreover, none of these programs’ notations looks to a linguist quite like a linguis-
tic notation. Linguists are used to thinking in terms of phonological representations,
parts of speech, morphosyntactic feature systems, declension or conjugation classes,
allomorphs and phonological rules, and perhaps exception features. While all of these
constructs can be represented in most modern morphological parsing engines, the ap-
propriate representation is not always clear. For example, how should allomorphs and
their conditioning environments be represented? The answer is clear in AMPLE (in-
deed, this is the only way in AMPLE to represent allomorphy), but it is not at all clear
for the finite state transducers.

This brings us to my second criterion for morphological description:

Criterion 2. There must be obvious formalisms which make it easy to handle the phe-
nomena required for linguistic analysis.

Again, the question arises as to what kind of formalism should be provided. It is
a slight exaggeration to say that for nearly any mechanism which has been used in
languages descriptions, there are proposals from theoretical linguists to do away with
that mechanism. Phonological rules, for example, have been disposed of in Optimality
Theory approaches to phonology. So what is the appropriate linguistic theory that a
morphological parsing framework should implement?

It is safe to say that there is no consensus among linguists as to the One True The-
ory of morphology or phonology. This is in part an indication of our ignorance; we
don’t know enough yet to choose among the possibilities, and indeed the correct the-
ory may not have appeared yet. But it is also the case that the term “correct” is part
of the problem. In fact, linguists have explored several possible meanings of this term,
using the terms Observational Adequacy, Descriptive Adequacy, and Explanatory Ad-
equacy [5]. A description of a language can be considered observationally adequate if
it generates all and only the sentences of the language—or, if one’s interests are con-
fined to morphology and phonology, then it is capable of generating all and only the
possible inflected word forms of the language.7 A theory of linguistics would meet this
standard if it allowed observationally adequate descriptions of the grammars (or of the
morphology and phonology) of all languages.

5 A free implementation with most of the functionality of XFST exists as the Foma program,
see https://code.google.com/p/foma/.

6 http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html
7 As compilers and users of corpora know, it is not clear that the set of all possible word forms

of some language is a well-defined notion. Proper names, loan words in the process of being
assimilated, and other boundary cases make this a dubious concept. For our purposes, however,
I will assume that it is at least an approximation. Alternatively, one may conceive of a grammar
which generates all and only the inflected forms of some static dictionary of words.

https://code.google.com/p/foma/
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html

A System for Archivable Grammar Documentation 77

Given that for most languages, the number of inflected word forms is finite and (rela-
tively) small, it would in principle be possible to create observationally adequate gram-
mars by simply listing all the word forms. That is almost certainly not what humans
do, at least not for languages which have any degree of inflectional or derivational mor-
phology. The next step in Chomsky’s hierarchy of adequacy is descriptive adequacy.
The description of a language meets this standard if its analysis accounts for the intu-
itions that an adult native speaker has about the language; for example, that a writer
is someone who writes, whereas a grammar does not mean someone who *gramms.
Determining those intuitions can be difficult; for example, it is not easy to know which
inflected forms are memorized and which are derived by rule (or in some other way).
Analogously, a descriptively adequate theory would allow descriptively adequate gram-
mars to be written of all natural languages.

Finally, an explanatorily adequate theory would allow the selection from among can-
didate grammars of the correct descriptively adequate grammar.

As practiced by generative linguists, the science of linguistics is the search for an
explanatorily adequate theory, based on descriptively adequate grammars. Until such a
theory exists, and indeed until linguists have determined what a possible descriptively
adequate grammar is, it would be inadvisable—not to mention impossible—to create a
computational model for morphology and phonology which allowed for only descrip-
tively adequate grammars. We simply don’t know the range of possible variation, so
trying to limit the range of what can be modeled could prevent the description of phe-
nomena in some language. In other words, it is better to err on the side of excess de-
scriptive power (potentially allowing the modeling of grammars which do not represent
possible human languages) than on the side of insufficient power (thereby preventing
the modeling of some languages).

An additional motivation for not attempting to attain the level of descriptive ade-
quacy is that any such attempt would face a choice among several targets, all of which
are moving. Not only are there multiple theories from which we could choose, but to-
day’s theories of morphology and phonology are not the same as those of ten or twenty
years ago—and there is little reason to think that any theory in existence today will sur-
vive unaltered over the next ten or twenty years. Choosing one putatively descriptively
adequate theory would therefore be very unlikely to result in a model which would
stand the test of time.

In view of these facts, we have elected to create a model which gives observational
adequacy only. The implications of limiting the scope in this way will become more
apparent later, when I discuss the modeling of morphological reduplication; for now, I
will state this point as the following criterion:

Criterion 3. The model should allow for observational adequacy, not (necessarily) for
the level of descriptive adequacy, even if this enables the description of grammars which
may not correspond to any human language.

Even if we did know what constituted a descriptively adequate grammar, our knowl-
edge of the structure of a particular language at some point in time, while sufficient
to describe that language’s morphology to some satisfying level of detail, might be
insufficient to create a descriptively or even observationally adequate grammar of the
language. This is commonplace among field linguists, who wish to describe a language

78 M. Maxwell

based on limited field data; but it may also be true of comparatively well-known lan-
guages, where crucial data may be missing due to defects in previous descriptions, data
which is unavailable, insufficient corpora, etc. An example of this is the notion of de-
fective paradigms. It is known that for some languages, one form or another in the
paradigm of particular verbs may not exist for various reasons [8, 23]. But it is nearly
impossible to distinguish this situation in a corpus (particularly in a corpus of the size
most field linguists will have) from the situation where a form is accidentally missing
from the corpus.

While missing (or incorrectly assuming) paradigm gaps may be a relatively minor
problem, there are many other situations where it will not be clear which analysis
captures the facts of a native speaker’s grammar better, particularly in less documented
languages. Moreover, there may be disagreement among linguists as to the correct de-
scription; for instance, whether semi-regular forms are to be captured by special allo-
morphs of the stem or affix, or by rules governed by exception features (see section 3.2),
or even whether such forms are memorized as entire words: Halle and Mohanan [9] ar-
gue for a rule-based analysis of English past tense verbs like wept, kept, and slept,
while most linguists would be happy to treat those as being listed in the mental lexicon
as irregular forms.

The point here, however, is not that linguists may disagree, or that they may have
insufficient evidence to decide particular cases; rather, a morphological parsing system
intended for use by real linguists should not force them into an analysis that they are
not comfortable with, or which the evidence does not support. If it does, it will not be
used. This point may be summarized by the following criterion:

Criterion 4. If there is disagreement among linguists about the correct analysis of a
particular language, the model should, where possible, allow for alternative analyses.

The need for allowing the modeling of alternative analyses also may arise in the
course of grammar development. It is especially unclear at the beginning of analysis
of a previously undocumented or under-documented language what the phonological
rules are by which allomorphs are derived. Usually only after observing a number of
allomorphs conditioned by similar phonological environments does the linguist realize
that a generalization can be made, allowing the allomorphs of distinct morphemes to be
derived by a single set of rules.

This brings us to another point about modeling grammars, having to do more with the
development of grammars than with the model itself: the need for testing, visualization
and debugging methods. As with software development, grammar development is a
process. Generalizations which seemed clear initially may turn out to be incorrect, while
some correct generalizations may not become clear until much later. Finding out where
a derivation is going wrong requires the ability to test a sequence of rules individually.8

I summarize this point as follows:

8 I assume here a model in which phonological rules are applied in a linear sequence, or possibly
cyclically. But the same point—the need to visualize the application of grammar components,
and to tease out the interaction among such components—applies to other models as well, e.g.,
to Optimality Theory models.

A System for Archivable Grammar Documentation 79

Criterion 5. A grammar development environment must allow linguists to easily see
the effects of individual grammar rules or other components of the grammar.

This same point is also true for the reader of the grammar: it should be possible to
visualize the derivation of individual forms. Moreover, it will be helpful to the reader
(and also to the writer) if the components of the grammar can be displayed in some
familiar form. While XML is a suitable format for archiving and transmission of gram-
mars and other structured data (addressing Bird and Simons’ concern for preservation,
in particular that the need for longevity of the data), it does not lend itself to easy editing
or even comprehension. Anyone who has looked at an XML-tagged textual document,
and at the same document as a formatted PDF, will surely agree. This suggests two cri-
teria; the first refers to static views of the grammar, the second to the ability to edit the
grammar:

Criterion 6. A grammar must be visualizable in a format which is familiar to linguists.

Criterion 7. A grammar development environment must allow easy editing of compo-
nents of the grammar, in some format which is likely to be familiar to a linguist.

There are several final criteria which are of a more practical nature. The first of these
is connected with the fact that linguist must sometimes deal with written forms which
do not represent all the phonemic contrasts of the language, or—worse—may even omit
certain phonemes entirely. Languages written in Arabic scripts, for example, frequently
omit short vowels. In many Brahmi-based scripts, consonants are assumed to be fol-
lowed by a default vowel, unless there is an overt vowel letter following, or there is a
mark indicating that no vowel follows. In practice, however, the mark representing no
vowel is frequently omitted, which makes for ambiguity in the text representation. In
sum, orthographies are seldom ideal, but they are what corpora are written in, and a
linguist looking to create a practical morphological parser must deal with them. At the
same time, the linguist may wish to have a more principled analysis, one which corre-
sponds more closely to the phonological facts of the spoken language. While one could
simply write two formal grammars, one for the orthographic form and one for the lin-
guist’s phonemic form, the two are likely to be quite similar. Certainly morphosyntactic
features of affixes will be identical, as will many other features. A practical grammar
development system should therefore allow parts of the description to be tagged for par-
ticular writing scripts; parts of the description which are not so tagged will be assumed
to apply to all scripts. I capture this requirement as follows:

Criterion 8. A grammar formalism must allow a single grammar description to be
used with multiple scripts, with those parts of the description which apply only to a
particular script being tagged for that script.

Similarly, languages may have dialects which share most features, but differ in small
ways. Again, it would be undesirable to have to write separate grammars for each di-
alect; rather, it should be possible to tag the differences:

Criterion 9. A grammar formalism must allow a single grammar description to be
used with multiple dialects, with those parts of the description which apply only to a
particular dialect being tagged for that dialect.

80 M. Maxwell

Finally, it is important in language documentation that the grammar description not
suffer obsolescence. While the use of open-source software as a parsing engine partially
alleviates this problem, since one can presumably re-compile the source code in the
future, it is not a complete answer. First, there is no guarantee that the source code
of such a parsing engine will re-compile; programming languages change, and so do
libraries that the parsing engine may require.9 In principle, such problems could be
overcome by running old versions of all the software; in practice, this solution is too
complex for use.

A second issue with the use of open-source software for preventing obsolesence is
that even this may not suffice for the long term. What will the computing landscape be
in a hundred years, or five hundred? Imagine if we had to reconstruct programs which
were written for Babbage’s mechanical computers. It is safer to assume much less about
what facilities will be available; and text (Unicode) data in plain text markup formats
is far safer than untagged data in the programming langauge of a present-day parsing
engine (cf. Bird and Simons’ point about “Markup,” specifically their calls for the use of
plain text markup, as well as their point about “Openness,” their term for the avoidance
of proprietary formats). I represent this criterion as follows:

Criterion 10. A plain text with markup representation of the grammar is to be preferred
to a representation in the programming language of some particular software.

While one could no doubt add criteria for grammatical modeling and the develop-
ment of grammatical analyses, the above list will suffice for now. I will now describe a
methodology which we have developed and are using, and how it satisfies these criteria.

3 Satisfying the Criteria for Grammatical Descriptions

At the University of Maryland, we have developed a technology which allows the state-
ment of language-specific aspects of morphological and phonological descriptions in
a transparent, parser-independent and linguistically motivated formalism. This tech-
nology has allowed us to satisfy many of the criteria outlined in the previous section.
Planned extensions will further increase the ability to satisfy these criteria, but the ex-
isting system is robust enough to have been used for constructing descriptions from
which (along with XML-based dictionaries) parsers for five languages have been built
and tested automatically.

In broad overview, descriptions are written in an XML-based formal grammar for-
mat and validated against an XML schema. These descriptions are then read into a
converter program, along with lexicons. The converter functions in a way analogous to
a modern programming language compiler: it converts the XML-based description into
a corresponding internal representation, which is in turn output in the form required by

9 The author experienced this with a parser he wrote in the 1990s. The parser and its user inter-
face was written in three programming languages: C, Prolog, and Smalltalk. Within one year,
all three languages changed in ways which broke the parser. While changing the parts written
in C would not have been difficult (it involved a change from 16 bit integers to 32 bit integers),
the changes in Prolog (having to do with calling the C code from Prolog) were extensive, and
the Smalltalk vendor went out of business, leaving only another vendor’s incompatible version.

A System for Archivable Grammar Documentation 81

an external parsing engine (currently the Stuttgart Finite State Tools, SFST). Running
the parsing engine’s “compiler” over this output results in a form usable by the parsing
engine for morphological analysis.

For three of the five languages that we have worked on, we have additionally em-
ployed Literate Programming [17]: we embed the formal grammar as XML fragments
into an XML-based (DocBook, [25]) descriptive grammar. Each fragment appears in
the text of the overall document next to the description of the grammar construction
that the fragment instantiates, allowing the descriptive grammar to explain the formal
grammar, while at the same time allowing the formal grammar to disambiguate the de-
scriptive grammar where necessary. The fragments appear in an order which is useful
for expository purposes; e.g., fragments having to do with nominal affixes appear in the
nouns chapter, while fragments containing verbal suffixes appear in the verbs chapter.
The fragments can be extracted by an XSLT transformation and placed in the correct
order for computational processing in a file to be read by the converter program men-
tioned above.

In addition, the interlinear and in-line examples found in our descriptive grammars
are extracted and used for parser testing. (Additional testing is done by running the
parser over corpora.)

The use of Literate Programming and the extraction of examples from the descriptive
grammar is discussed elsewhere [6, 19, 21]. The remainder of this document discusses
the formal grammar and converter implementation, plus planned enhancements.

3.1 Formal Grammar Implementation

As mentioned above, the formal grammar of a language is a linguistically-based de-
scription of the morphology and phonology of that language, written in XML and val-
idated against an XML schema. After briefly describing this schema, I show how this
approach accomplishes most of the design goals outlined in the earlier sections of this
paper.

The XML schema, to be documented in [20], organizes information about the gram-
mar into five general categories:

1. Morphosyntactic Feature System
2. Grammatical Data
3. Morphological Data
4. Phonological Data
5. Lexical Data

The Morphosyntactic Feature System specification is slightly simplified from the
model given in [4, 13, 15], and defines the possible morphosyntactic features including
both simple features (e.g., binary features) and feature structures (features whose values
consist of other features).

The Grammatical Data module supplies information about parts of speech (typically
just those that accept affixes). This information includes which of the morphosyntactic
features defined in the Feature System are possible for each part of speech. It also points

82 M. Maxwell

to the affixes that each part of speech takes (these are defined in the Morphological Data
module), and specifies their morphotactics.

The Morphological Data module defines the derivational and inflectional affixes of
the language. They are defined here, rather than in the Grammatical Data module, so
that they can be shared across parts of speech. For example, in Tzeltal (an ergative lan-
guage of Mexico), transitive and intransitive verbs share absolutive agreement suffixes.
If these two verb classes are defined as different parts of speech in the grammatical
module, the shared absolutive suffixes can be defined once in the Morphological Data
module, and used for both parts of speech.10

As will be discussed in greater detail below, the model allows for “ordinary” pre-
fixes, suffixes and infixes; these may be defined either as underlying forms, with any
allomorphs derived by phonological rules, or as allomorphs which appear in particular
phonological environments. In addition, there is allowance for affixes defined as pro-
cesses, that is, as morphological rules which may attach constant phonological material
(as with ordinary affixes), but may also copy or delete parts of the base, and which can
therefore model processes such as reduplication.11 Allowing affixes to be represented
as either a set of allomorphs, or as underlying representations with allomorphs derived
by phonological rule, and allowing affixes to also be represented as processes, are two
examples of the way the model allows for multiple analyses of a language’s grammar
(criterion 4).

In addition, the Morphological Data module allows for the definition of inflectional
classes (declension and conjugation classes); since they are defined here, they can be
shared by multiple parts of speech, as in Pashto, where nouns and adjectives have more
or less similar declension classes. Finally, any “stem names” are defined in the Mor-
phological Data module. These allow the implementation of irregular stems for certain
lexemes, such as the diphthongized forms of Spanish verbs.12

The Phonological Data module defines the phonemes and/or graphemes of the lan-
guage, boundary markers (used to delimit morpheme boundaries), and phonological
rules. The latter come in three varieties: rules which change input phonemes (or graph-
emes) to other phonemes (graphemes); rules which epenthesize phonemes (or graph-
emes); and rules which delete phonemes (graphemes).

Notice that the model does not define phonological features. While the model could
be extended to allow this (as well as the definition of phonological rules using such
features), this omission is intentional. First, the nature of phonological features is still
in doubt; it is not clear whether they are hierarchically structured, for example. Second,
the use of phonological features in parsing would preclude the use of most present-day

10 The ergative agreement prefixes on Tzeltal transitive verbs are homophonous with the posses-
sive prefixes on nouns. Depending on how their morphosyntactic features are defined, it would
also be possible to define these prefixes once in the Morphological Data module, and use them
for both nouns and transitive verbs.

11 This is discussed further below; however, this has not yet been implemented in the converter
program.

12 An alternative analysis would derive some or all irregular stems by phonological rules, proba-
bly conditioned on lexeme-specific rule exception features; this can also be modeled.

A System for Archivable Grammar Documentation 83

parsing engines. 13 In generative phonology, the principle use of phonological features
is to define natural classes of phonemes, which are then used in the inputs and environ-
ments of phonological rules. Such a definition may be termed intensional. The approach
taken in our model may be described as extensional: natural classes are instead defined
by listing their member phonemes (or perhaps graphemes).

It is sometimes convenient to define natural classes, contexts (regular expressions
over phonemes, graphemes and natural classes), and environments (the combined left
and right context of some phonological process) once, and re-use these definitions for
multiple rules or allomorph environments. These elements can therefore be defined in
the Phonological Data module, and referred to where used (by their XML ID); but they
may also be simply written out in rules or allomorph environments, which is convenient
when such an element is needed only once.

As discussed above, the linguist must sometimes deal with scripts which differ in
their ability to represent the phonology (criterion 8). The phonology module is fre-
quently the locus of such differences; such differences are handled by tagging affected
elements for the script for which they are relevant. Script-specific elements are there-
fore tagged with a ‘script’ attribute; they can then be included, or not, by removing or
retaining them during a pre-processing stage, prior to their being read by the converter
program. Dialect-specific elements are handled in the same way (cf. criterion 9).

The Lexical Data specification is derived from the ISO Lexical Markup Framework
standard [14], supplying just the information about suppletive word forms and stem
allomorphs required for morphological parsing. Words which require no special treat-
ment (i.e., “regular” words) could be loaded in this module, but they are usually handled
more quickly by pre-processing a dictionary into whatever form is required by the pars-
ing engine, and them loading them into the parser directly, during the parser compilation
phase.

Affixes as Processes. As discussed earlier, the goal of this framework is to attain the
level of observational adequacy (cf. criterion 3). This is perhaps nowhere more appar-
ent than in the treatment of affixes as processes, particularly reduplication. Reduplica-
tive morphology in real languages ranges from complete reduplication, where an entire
word is pronounced twice (used for a sort of pluralization in Bahasa Indonesian), to
forms in which a single phoneme of the base is copied, perhaps augmented by some
constant phoneme or sequence of phonemes (as was found in the perfect of some An-
cient Greek verbs). Complications abound; for example, it is not unheard of for both the
reduplicant and its correspondent in the base (the input to the reduplication process) to
undergo some phonological process for which only one or the other is in the appropriate
phonological environment.

Among theoretical linguists, it has become a cottage industry to develop theories
which limit the possible forms of reduplication to all and only forms which are attested
in languages of the world. In contrast, the model described here makes no attempt at
limiting the power of reduplication; the formalism is sufficiently powerful allows almost
anything to happen, even for the phonemes of a (fixed length) word to be reversed,

13 One exception is the Hermit Crab parser, described in http://www-01.sil.org/
computing/hermitcrab/ . This parser was originally developed by the author in the 1990s,
but it has been re-implemented more recently in SIL’s FLEx tool.

http://www-01.sil.org/computing/hermitcrab/
http://www-01.sil.org/computing/hermitcrab/

84 M. Maxwell

something which has never been observed in real languages. That is, the formalism is
observationally adequate, but probably not descriptively adequate.

The formalism is based on [18]. It involves matching an input word (the base) with a
regular expression over phonemes, graphemes and natural classes. The output is formed
by concatenating copies (possibly altered) of the parts of the base which matched the
regular expression in some pre-defined order, possibly combined with other strings or
phonemes.

An example may help; for ease of exposition, I will use a notational formalism, rather
than the XML formalism.

Suppose we have a rule of reduplication which copies the first consonant (if any) of
the base, adds the vowel ‘e’, and appends this to the base. Conceptually, we may cap-
ture this with the input regular expression ‘(C) X’, where ‘C’ is assumed to have been
defined as the natural class of consonants, ‘X’ is a variable matching any sequence, and
the parentheses around the ‘C’ represent optionality. The content parts are implicitly
numbered; the ‘C’ as part 1, the ‘X’ as part 2. The output may then be specified as ‘1 e
1 2’. Note that if the base is vowel-initial, the optionality of the ‘(C)’ in the regular ex-
pression means that part 1 would be a null match, giving what is presumably the desired
result.14 Had the input regular expression been ‘C X’ (with the consonant obligatory),
the rule would not match a vowel-initial base, meaning that this affix process would not
apply to such a base.

In addition to copying part of the base to the output or adding specific strings (repre-
sented as phonemes, graphemes, and boundary markers), process affixes allow modifi-
cation of input parts which are copied over. Suppose for example the grammar defines
phonemes /p/, /ph/, /t/, /th/, /k/ and /kh/, and suppose further that the output of the above
process had been defined conceptually as

[1 (/ph/→/p/,/th/→/t/,/kh/→/k/)] e 1 2

where the square brackets are used here for grouping the phonological process of dea-
spiration with the output part to which the process applies. Applied to a base beginning
with an aspirated consonant such as /phu/, this would give the reduplicated form /pe-
phu/; applied to a base which began with an unaspirated consonant such as /grap/, the
result would be /gegrap/.15

The use of this process affix formalism is not limited to rules of reduplication; it can
also be used to describe the situation where an affix simply modifies its input, without
copying or adding additional phonemes. For example, the following rule describes an

14 The parsing of the base into the parts which correspond with the regular expression must
prioritize contentful parts of the regular expression (like the part in the example which matches
a consonant) over less contentful parts (like the variable matching any string), lest the output
be ambiguous. One can imagine regular expressions which would remain ambiguous even
under such prioritization, such as ‘(C)(C)X’ matched against a base beginning with a single
consonant followed by a vowel; presumably what would be intended in such a case would
be ‘((C)C)X’ or ‘(C(C))X’. Some error checking will therefore be required, to avoid such
ambiguous regular expressions.

15 This is known to linguists as Grassmann’s Law, and the examples given are from Ancient
Greek (ignoring vowel length for purposes of exposition).

A System for Archivable Grammar Documentation 85

affix formed by palatalizing the stem-final consonant, under the assumption that the
phoneme inventory has been defined as including /p/, /py/, /t/, /ty/, /k/ and /ky/:16

X C
1 2 →
1 [2 (/p/→/py/,/t/→/ty/,/k/→/ky/)]

We are now in a position to understand why this system achieves only the level of
observational adequacy, not (probably) descriptive adequacy. Consider the following
description of a putative process affix process (‘C’ and ‘V’ are assumed to have been
defined as the natural classes of consonants and vowels respectively):

C V C C V C
1 2 3 4 5 6 →
6 5 4 3 2 1

This rule takes a six phoneme input and reverses it. It is highly unlikely that such a
process exists in any human language, but it can be easily described in the notation used
here (or in its XML equivalent). Most generative linguists would prefer a theory which
disallowed (or at least made highly unlikely) statements of such nonexistent processes.
The problem is that we don’t have such a theory, but we still wish to be capable of
writing grammars—which is wy we have settled for the level of observational adequacy;
that is, we are content to describe all languages, but make no attempt to limit possible
descriptions to only natural languages.17

3.2 Converter Implementation

This section describes how the converter takes as input a formal grammar stated in
XML, and outputs the grammar in the form required by a parsing engine.

There are several reasons for using a formalism which requires a converter in order to
be usable by a parsing engine, rather than a formalism which is directly interpretable by
the parsing engine. First, criterion 2 in section 2.2 dictates that the formalism needed to
handle linguistic structures should be (relatively) obvious. By constructing our linguis-
tically based formalism in XML, we hope that the formal grammar mechanism will be
more easily learned by most working linguists, and grammars written in that formalism
will be more easily understood by linguists.

Another reason for using a formalism such as the one described here, rather than the
programming language of some parsing engine, is to prevent the formal grammar from
becoming obsolete when the parsing engine becomes obsolete, as it (like any software)
inevitably will. This is another of the criteria given above (10), as well as helping answer
Bird and Simons’ points about “Markup” and “Openness.”

16 This rule is based on Oaxacan Mixe, as described by Dieterman [7, p. 39].
17 It is at least possible that the explanation for the non-existence of processes reversing their

input is due to factors other than the human language capability, e.g., the fact that such systems
have no plausible diachronic source. The fact that certain reversals do occur in language games,
e.g., the reversal of two consonants across a vowel, might be taken as such evidence. Thus, the
search for a formalism which prevents such unattested processes might be misguided.

86 M. Maxwell

As discussed above, we are currently using the Stuttgart Finite State tools (SFST)
as our parsing engine. Given that a formal grammar written in XML cannot be di-
rectly interpreted by SFST, there is a need for converting the XML representation into
the representation required by SFST. In principle, this could be done using Extensi-
ble Stylesheet Language Transformations (XSLT). In practice, it has been easier to do
the transformation in Python. The converter is written as an object-oriented program,
where the classes correspond one-for-one to the elements defined in the XML schema.
The conversion takes place in two phases. In the first phase (corresponding roughly to
the “front end” of a modern programming language compiler), the XML representation
is converted into the internal representation as Python objects. References from some
objects to definitions made elsewhere (e.g., from natural classes to the phonemes they
are composed of) are converted into pointers to the corresponding definitions (analo-
gous to “object binding” in modern compilers). Most errors and warnings are issued at
this stage.

In the second phase, corresponding to the “back end” in a modern compiler, the
converter writes the parsing engine’s code to output. Some optimization is done at this
point, in the sense that the output code is optimized for “compilation” by the parsing
engine.18

Since the first phase maps between two fairly congruent representations, it makes
use of a mostly declarative format for the individual classes; most of the non-declarative
code for converting from XML to the internal format is contained in an abstract super-
class.

The second phase, however, can be more complex, since it maps between two repre-
sentations which at times diverge strongly. Where these representations are similar, the
conversion is fairly straightforward. Consider for example the following code:

def SFSTOutput(self, sFormat, ExtraArg=None):
"""
Output this context in the form expected by SFST, i.e.,
(X | Y | Z)
"""
if sFormat == 'AsRegex':

self.SFSTOutputList("PhonologicalContexts",
"(",
"|",
")",
sFormat)

else:
AbstractClasses.LangClass.SFSTOutput(sFormat, ExtraArg)

This SFSTOutput() function is defined for the class AlternativeContexts,
which encodes a set of alternative phonological contexts forming part of the

18 There is no attempt to ensure that the final transducer as compiled by the parsing engine will
be optimal, e.g., by tweaking the alignment of lexical and surface sides of lexical items. This
might have significant effects if the citation form of lexemes includes a prefix, which is re-
moved to form the stem.

A System for Archivable Grammar Documentation 87

environment of a phonological rule (or a phonologically determined allomorph); for
example, the context of a long vowel or a vowel plus consonant. The function is called
with an argument list specifying a format (and an optional extra argument). The only
format this particular function knows about is called ‘AsRegex’; any other format
is referred by the ‘else’ clause to the superclass of AlternativeContexts, here
AbstractClasses.LangClass. For this ‘AsRegex’ format, the function needs to
output the alternatives in the format which SFST expects for a regular expression,
namely a parenthesized list with list members separated by the character ‘|’. Since
outputting of lists with various delimiters is a common task in the converter, the de-
tails of outputting the list (such as the need to output the separator character after ev-
ery member of the list except the last) is here delegated to a more generic function,
SFSTOutputList(), which takes as additional arguments the character which starts
the list (here an open parenthesis), the separator character (‘|’), and the character which
marks the end of the list (a close parenthesis).

The XML elements which constitute the alternatives (represented by X, Y and Z in
the quoted comment) will be recursively output by SFSTOutput() functions defined
on whatever classes these individual contexts belong to. This is the general pattern for
how the SFSTOutput() function is written on all classes: there may be several cases,
depending on the purpose for which the element is being output (although here there is
only one case, the ‘AsRegex’ case). Within each such case, the class specifies some
of the output (here, the open and close parentheses, and the pipe symbol ‘|’), while the
output of elements which may be contained by an element of the specified class are
delegated to those classes (here, the classes of the embedded contexts).

A more complex conversion is needed for other constructs. The code for converting
Affix Allomorphs, for example, has four cases. One of these cases constrains the al-
lomorph to appear in its required environment. This requires outputting the allomorph
itself, as well as calling the environment class to output the phonological environment,
in essence creating a rule which blocks the allomorph if this environment is not satis-
fied. The mechanism for accomplishing this is that all allomorphs are initially inserted
in the transducer bracketed by marks which would block a derivation containing them
from appearing at the end of the derivation. The marks are erased for allomorphs whose
environment is satisfied; finally, any words still containing marks are removed from the
network. This is precisely the sort of non-obvious solution that is one of our motiva-
tions for the use of a linguistically informed formalism, which must be automatically
converted into the parsing engine’s formalism.

Another example of a non-obvious solution concerns rule exception features. These
are lexical features (that is, features assigned to particular roots or stems in the lexi-
con) which either trigger the application of particular rules (positive exception features)
or prevent the application of certain rules (negative exception features). Consider for
example diphthongization in Spanish verb paradigms. For a certain set of verbs (those
which had a long stem vowel in Latin), the vowel /e/ diphthongizes to /ye/ (spelled ‘ie’)
when stressed, while the vowel /o/ diphthongizes to /we/ (spelled ‘ue’) when stressed.19

There is no phonological indication of which verbs undergo this rule and which do not;

19 There are exceptions to this generalization, chiefly where an ‘n’ becomes an ‘ng’, for example:
tiene “he/she has”, tengo “I have”, both with stress on the first syllable.

88 M. Maxwell

hence this information must be stored in the lexicon, either in the form of listed allo-
morphs, or—for a rule-governed analysis—in the form of positive exception features.
Thus, contar∼ cuento “to count/ I count” (a diphthongizing verb) vs. montar∼ monto
“to mount/ I mount” (a non-diphthongizing verb).

Linguists often conceive of such exception features as being part of the phonological
material, and therefore visible to the phonological rules which may require them. The
obvious solution would then be to assign such features to the “surface” side of the trans-
ducer representing the word of the language, and to apply phonological rules on this side
so that rules which need to refer to exception features can “see” them. However, excep-
tion features must be invisible to phonological rules which do not require them, since
the features might otherwise appear to be phonemes, and such rules would therefore not
match the lexical entries containing these phoneme-like exception features.

The problem is that phonologists really conceive of words not as strings composed
of sequences of phonemes and exception features, but rather as sequences of phonologi-
cal features representing such properties as voicing, nasalization, and place and manner
of articulation, with each such feature on a different plane;20 exception features are on
yet other planes. The voice features of two adjacent phonemes are therefore adjacent
on the voice plane, regardless of any exception features, so that the problem that adja-
cency between phonological features would be blocked by exception features or other
phonological features is avoided.

But practical finite state transducers, such as XFST and SFST, have only two planes
(or levels): a lexical side and a surface side. In such a model, exception features on the
surface side would block adjacency between phonological features as seen by phono-
logical rules composed on that side (indeed, distinct phonological features would get in
each other’s way, if they were to be represented in such transducers).

There are several ways that this issue of adjacency could be treated in a transducer
with only two levels. One way would be to construct phonological rules such that ex-
ception features (and other grammatical information relevant to rule application) are
allowed to intervene between any two phonemes in the regular expressions represent-
ing the rule environments. While tools such as SFST allow rules to be constructed in
this way, in practice it tends to make compilation very inefficient. Our converter there-
fore handles exception features in a different way, which may be less obvious at first
sight. When lexical entries are imported from a machine-readable dictionary, the con-
version process constrains any exception features to appear on the lexical side of lexical
entries.21 At the beginning of the derivation, the converter collects these lexical entries
into a lexical transducer L, to which the phonological rules are applied in sequence by
composing each rule on the surface side of L. When translating a rule which is sensitive
to an exception feature, the converter first outputs SFST code which composes a filter
on the lexical (underlying) side of L, thereby selecting a subset L1. This filter is a regular
expression accepting all paths through the lexical transducer which contain the relevant
exception feature. The converter also outputs SFST code to create the complement of

20 I abstract away here from questions of the typology of features, which are generally held to
have still more structure than what is described here.

21 A given lexical entry may have several such exception features; see for instance Harris’s [11]
analysis of Spanish verbal morphology.

A System for Archivable Grammar Documentation 89

this subset—call this L2—by subtracting L1 from L.22 The sensitive rule is then applied
to L1 by composing the rule on the surface side of L1. Finally, L1 and L2 are unioned
to form a new lexical transducer L, to which the remaining phonological rules will be
applied. At the end of the derivation, when the exception features have done their work,
they are removed from the underlying side of L.

Linguists also occasionally find the need to write phonological rules which are sen-
sitive to particular parts of speech, or to certain morphosyntactic features. Allowing
this sensitivity can be done in a way analogous to that used for rule exception features:
splitting the lexicon into two halves allows for rules which do not display such sensi-
tivity (usually the vast majority of such rules) to implicitly ignore the part of speech or
morphosyntactic features.

3.3 Further Work

The description of the work we have done thus far leaves several of the criteria for a
morphological and phonological description system unsatisfied. In particular, the cri-
terion that there be a debuggging environment (5); that the formal grammar be in a
form that is easily visualized by linguists (cf. Bird and Simons’ point about render-
ing linguistic documents in human-readable form, and my criterion 6 that the grammar
be visualizable); and the criterion calling for a grammar editing environment (7), have
not been addressed, unless one considers viewing and editing XML to be something
the average linguist will enjoy, and that editing the SFST code is a suitable means of
debugging.

In addition, while the XML schema supports all the elements described above, not all
such elements are supported by the converter as yet. In particular, the support for affixes
as processes is missing, and the support of listed stem allomorphs is not complete. We
plan to address these shortcomings in future work; I outline the plans here.

First, conversion support for the remaining elements needs to be added.
Secondly, when a descriptive grammar (which we write using a slightly modified ver-

sion of the DocBook XML schema) is converted to PDF presently, the formal grammar
is output in its native XML form. Needless to say, linguists have a hard time interpret-
ing this. For instance, rather than outputting a phonological rule as some complex XML
structure, most linguists would prefer to see it in something like this format:

z → s / VoicelessC
We produce the descriptive grammars by converting the XML source into LATEX (or

more precisely, XeLaTeX), and then producing a PDF from that. The conversion from
XML to LATEX format is done by XSLT transformations, using the dblatex program.23

We therefore need to add XSLT transformations to convert our formal grammars into
LATEX format; alternatively, we could process them using another program (such as our
existing Python-based converter).

A grammar development environment which knows what elements are possible at
any point would also be an improvement over editing the XML formal grammar in a
programmer’s editor. Displaying the elements of the formal grammar in something like

22 Alternatively, by composing the converse of the filter on the underlying side of L.
23 The dblatex program is open source; see http://dblatex.sourceforge.net

http://dblatex.sourceforge.net

90 M. Maxwell

the format a linguist expects (probably an approximation of the planned PDF format)
would also help make grammar editing accessible to more linguists. We currently edit the
DocBook descriptive grammars in the XMLMind editor.24 This program uses Cascading
Style Sheets (css) to display DocBook structures in a semi-wysiwyg editable fashion,
and XML schemas (in the Relax NG, or RNG, format), to determine what elements can
be added at any place in the structure. We already have an RNG schema for our formal
grammar, so the remaining work would be to specify CSS styles for the elements.

Thirdly, we intend to build a grammar debugging environment, which will allow lin-
guists to generate and view paradigms, and help determine why expected forms are not
being produced. This will involve automatically compiling subsets of the grammar—
e.g., compiling the grammar for a single part of speech, using a single lexical item for
the sake of speed. To show the steps in a derivation, the debugging system would com-
pile the transducer multiple times, with one additional phonological rule applied each
time.

Finally, I have not said anything about Bird and Simon’s call for linguistic descrip-
tions to support the need for terminology to be defined. To some extent, this can be
done in the descriptive grammars associated with our formal XML-based grammars.
However, we also plan to add a simple enhancement to our current XML schema
for tagging appropriate elements, such as morphosyntactic features, by linking to
their definition, e.g., in the ISOcat data category registry of linguistic terminology
(http://www.isocat.org/).

4 Conclusion

I have laid out a number of design critera for a morphological and phonological sys-
tem to be used in language documentation, and shown how the system our team has
developed satisfies most of those criteria. I have also described how we plan to further
develop this system to satisfy the remaining criteria.

A few aspects of the system are still in flux; specifically, the representation and con-
version of lexically listed stem allomorphs, and the conversion of process affixation
into the form needed by a parsing engine. Satisfying the remaining design criteria—for
example, by providing a debugging system—would make the system still more usable.
As the system becomes stable and more usable, we expect to make it freely available
through an open source license (which one is yet to be determined).

References

1. Beesley, K.R., Karttunen, L.: Finite State Morphology. University of Chicago Press, Chicago
(2003)

2. Bird, S., Simons, G.: Seven dimensions of portability for language documentation and de-
scription. Language 79(3), 557–582 (2003)

3. Blevins, J.: A reconsideration of Yokuts vowels. International Journal of American Linguis-
tics 70(1), 33–51 (2004)

24 This is a commercial program; see http://www.xmlmind.com/xmleditor. A similar pro-
gram is the oXygen XML Editor, see www.oxygenxml.com.

http://www.isocat.org/
http://www.xmlmind.com/xmleditor
www.oxygenxml.com

A System for Archivable Grammar Documentation 91

4. Burnard, L., Bauman, S.: TEI P5: Guidelines for electronic text encoding and interchange
(2013)

5. Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge (1965)
6. David, A., Maxwell, M.: Joint grammar development by linguists and computer scientists.

In: IJCNLP, pp. 27–34. The Association for Computer Linguistics (2008)
7. Dieterman, J.I.: Secondary palatalization in Isthmus Mixe: a phonetic and phonological ac-

count. SIL International, Dallas (2008),
http://www.sil.org/silepubs/Pubs/50951/
50951_DietermanJ_Mixe_Palatalization.pdf

8. Halle, M.: Prolegomena to a theory of word formation. Linguistic Inquiry 4, 3–16 (1973)
9. Halle, M., Mohanan, K.P.: Segmental phonology of modern english. Linguistic Inquiry 16(1),

57–116 (1985)
10. Hankamer, J.: Finite state morphology and left to right phonology. In: Proceedings of the

Fifth West Coast Conference on Formal Linguistics. pp. 29–34 (1986)
11. Harris, J.W.: Two theories of non-automatic morphophonological alternations. Language:

Journal of the Linguistic Society of America 54, 41–60 (1978)
12. Harris, Z.: Yokuts structure and Newman’s grammar. International Journal of American Lin-

guistics 10, 196–211 (1944)
13. ISO TC37: Language resource management — Feature structures — Part 1: Feature structure

representation (2006)
14. ISO TC37: Language resource management — Lexical markup framework, LMF (2008)
15. ISO TC37: Language resource management — Feature structures — Part 2: Feature system

declaration (2011)
16. Karttunen, L.: The insufficiency of paper-and-pencil linguistics: the case of Finnish prosody.

In: Kaplan, R.M., Butt, M., Dalrymple, M., King, T.H. (eds.) Intelligent Linguistic Architec-
tures: Variations on Themes, pp. 287–300. CSLI Publications, Stanford (2006)

17. Knuth, D.E.: Literate Programming. Center for the Study of Language and Information, Stan-
ford (1992)

18. Marantz, A.: Re reduplication. Linguistic Inquiry 13, 435–482 (1982)
19. Maxwell, M.: Electronic grammars and reproducible research. In: Nordoff, S., Poggeman,

K.-L.G. (eds.) Electronic Grammaticography, pp. 207–235. University of Hawaii Press
(2012)

20. Maxwell, M.: A Grammar Formalism for Computational Morphology (forthcoming)
21. Maxwell, M., David, A.: Interoperable grammars. In: Webster, J., Ide, N., Fang, A.C. (eds.)

First International Conference on Global Interoperability for Language Resources (ICGL
2008), Hong Kong, pp. 155–162 (2008), http://hdl.handle.net/1903/11611

22. Newman, S.: The Yokuts Language of California. Viking Fund, New York (1944)
23. Rice, C., Blaho, S. (eds.): Modeling ungrammaticality in Optimality Theory. Advances in

Optimality Theory. Equinox Press, London (2009)
24. Schmid, H.: A programming language for finite state transducers. In: Yli-Jyrä, A., Karttunen,

L., Karhumäki, J. (eds.) FSMNLP 2005. LNCS (LNAI), vol. 4002, pp. 308–309. Springer,
Heidelberg (2006)

25. Walsh, N.: DocBook 5: The Definitive Guide. O’Reilly, Sebastopol, California (2011),
http://www.docbook.org/

26. Weber, D.J., Black, H.A., McConnel, S.R.: AMPLE: A Tool for Exploring Morphology.
Summer Institute of Linguistics, Dallas (1988)

27. Weigel, W.F.: The interaction of theory and description: The yokuts canon. Talk Presented
at the Annual Meeting of the Society for the Study of the Indigenous Languages of the
Americas (2002)

28. Weigel, W.F.: Yowlumne in the Twentieth Century. Ph.D. thesis, University of California,
Berkeley (2005)

http://www.sil.org/silepubs/Pubs/50951/50951_DietermanJ_Mixe_Palatalization.pdf
http://www.sil.org/silepubs/Pubs/50951/50951_DietermanJ_Mixe_Palatalization.pdf
http://hdl.handle.net/1903/11611
http://www.docbook.org/

C. Mahlow and M. Piotrowski (Eds.): SFCM 2013, CCIS 380, pp. 92–114, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Rule-Based Morphosemantic Analyzer for French
for a Fine-Grained Semantic Annotation of Texts

Fiammetta Namer

UMR 7118 ATILF - CNRS & Université de Lorraine, Nancy, France
fiammetta.namer@univ-lorraine.fr

Abstract. We describe DériF, a rule-based morphosemantic analyzer developed
for French. Unlike existing word segmentation tools, DériF provides derived
and compound words with various sorts of semantic information: (1) a defini-
tion, computed from both the base meaning and the specificities of the morpho-
logical rule; (2) lexical-semantic features, inferred from general linguistic
properties of derivation rules; (3) lexical relations (synonymy, (co-)hyponymy)
with other, morphologically unrelated, words belonging to the same analyzed
corpus.

Keywords: NLP, morphosemantic approach, rule-based, French, derivation,
neoclassical compounding, lexical-semantic feature, neologism, automatic defi-
nition, synonymy, hyponymy, co-hyponymy.

1 Introduction

In the domain of morphology, Word Formation (WF) is the branch that studies the
process or result of forming new words. When it comes to computational morpholo-
gy, the question becomes that of generating or analyzing unknown - and thus, new-
morphologically complex words. We are interested here in morphological analysis.
Usually, morphological analyzers aim to decompose complex words in order to iso-
late their stems and affixes; word decomposition may also result in their classifica-
tion, where they are grouped in families (when they share a common stem), or in
series (when they start or end with the same affix).

In this paper, we want to describe a morphological analyzer the main purpose of
which is not only that of decomposing (new) words according to bases and affixes,
but also and most importantly, that of providing them with a morphologically-driven
semantic description. The original purpose of this analyzer emerges form the follow-
ing observation: most of state-of-the-art computational morphology tools are assessed
according to to their ability to process existing words, as evidenced in the many com-
petition campaigns in this field (e.g. MorphoChallenge). However, these tools are not
assessed according to their robustness with respect to the issue of the linguistic mean-
ing of (new) complex words, even though it plays a key-role in the development of
semantic lexica. This is precisely what DériF, the morphological analyzer presented
here, is designed for. This tools has been developed for French, it has been partially

 A Rule-Based Morphosemantic Analyzer for French 93

extended for English, and its fundamental working principles result from the adapta-
tion of linguistic knowledge belonging to the so-called Word-Based Morphology
framework (for an outline, see e.g., [1]). Once shown the originality of DériF’ results,
with respect to other up-to-date morphological parsing systems, we will come back
briefly to its disadvantages, intrinsic to its design, and the way they can be corrected.

The paper is structured as follows. First we present the context in which DériF was
developed, with respect to past and current related works in the field of morphological
parsing (§2), then we give an outline of DériF’s fundamental mechanisms and results
(§3). Next, we present in detail two of its original aspects: an annotation system, as-
signing semantic features to general language derived words and their base (§4.1),
and a predicting module, providing medical domain language compound words with
synonymy and (co-)hyponymy relationships with other, morphologically unrelated,
compound words (§4.2). The paper ends with a summary of the main advantages and
drawbacks of DériF, as well as its most recent improvements (use of notations per-
taining to formal logic to encode semantic relationships, and creation of an hybrid
morphological analyzer by merging DériF with an analogy-based system) (§5).

2 Related Work

Morphological parsing is a crucial task in the NLP chain, and morphological
resources serve several purposes: build (multilingual) lexicographic data [2] or large-
scale lexica [3, 4], optimize question-answering [5] or expand queries in IR applica-
tions (for an overview, [6]). Morphological parsers are often distinguished according
to the implication of human knowledge: un- or supervised learning techniques are
opposed to rule-based approaches.

Unsupervised morphological parsing systems allow performing language-
independent morphological analyses. Several algorithms have been developed to
achieve this goal. As [7] points out, unsupervised morphological parsing involves two
tasks: “(1) a morpheme induction step in which morphemes are first automatically
acquired from a vocabulary consisting of words taken from a large, un-annotated
corpus, and (2) a segmentation step in which a given word is segmented based on
these induced morphemes”. A high-performance tool parser, then, must be able to
induce morphemes correctly without prior linguistic knowledge. This has been suc-
cessfully achieved for several European languages (e.g. [8, 9]).

Gradually stepping away from unsupervised systems, other language-independent
morphological parsers are based on semi-supervised methods. Like unsupervised
ones, they do not rely on linguistic knowledge, but on the other hand, a human expert
is made available to provide supervision on specific tasks. For instance, [10] and [11]
make use of semi-supervised technique to discover morphological relations within
medical corpora; and [12] developed an algorithm for automatic lexical acquisition
relying on statistical techniques applied on raw corpora, and whose results are
manually assessed.

94 F. Namer

Finally, supervised learning tools require annotated data for their training task, as
described, for instance, in [13], which is devoted to inflection phenomena of non-
concatenative languages.

In short, when based on machine learning techniques, morphology analysis tools
train on real (annotated or raw) data in order to automatically decompose words into
their constituents by learning the rules for representing permissible sequences of word
constituents and the rules that change the orthographic shape of the constituents. Ma-
chine-learning approaches to morphological parsing are optimal candidates to the
many competitions (TREC, CLEF, MorphoChallenge, SIGMORPHON) aiming to
rank tools according to their performances with respect to parsing efficiency, and to
precision and recall measures (for a recent comparison of evaluation methods in these
competitions, see e.g., [14]). These systems are primarily intended to decompose
words into prefixes, suffixes and roots. Therefore, best results are achieved on
morphologically poor languages, as well as on agglutinative ones. However, thanks to
improvements such as analogical learning [15] good results are achieved with both
inflectional and non-concatenative languages. Making use of analogy-based devices,
[16] proposes a morphological resource for French, resulting from a paradigmatic
conception of derivational morphology, while [17] develop an analogy-based
algorithm to expand queries in IR.

As opposed to the previous ones, rule-based systems necessarily involve linguistic
knowledge, and, consequently, are often (at least partly) language–dependent devices.
According to the nature and the complexity of the required knowledge, rule-based
systems go from stemmers [18] to morphosemantic analysis tools. As [5] points out,
stemmers, consisting in stripping away affixes from a word until an indecomposable
stem is obtained, are particularly suitable for IR (see e.g., [19]) especially for lan-
guages with clear morpheme boundaries. Finite state transducers [20] are network-
based techniques, which rely on a deeper level of linguistic knowledge. Therefore,
unlike stemmers, they are capable of accounting for irregular inflected or derived
forms. Extensions have been proposed for the description of non-affixal morphology:
for instance, template morphology, which is typical of Semitic languages such
as Hebrew [21] or reduplication, a morphological construction observed in almost
every languages of the world (e.g., the stemmer described in [22] deals with an Asian
language).

For some rule-based tools, their segmentation task is completed by a semantic an-
notation of word constituents; we call such devices morphosemantic approaches.
Usually, these tools have a finite-state algorithm base, with deep modifications in
order to account for (sub-)lexical semantic knowledge. Most of the time, morphose-
mantic approaches are language-dependent and designed for specialized languages
(medicine, biology), especially in the fields of information extraction and text mining
(e.g., [23, 24]), sometimes from a multilingual perspective [25, 26]. Some morphose-
mantic tools applied to biomedical corpora provide in addition a definition to morpho-
logically complex words [27, 28]. We will come back later on the results to these
applications.

To sum up, there are various morphology parser types, and all aim to segment
words into smaller parts in order to recognize and link them together when they share

 A Rule-Based Morphosemantic Analyzer for French 95

the same root. Such systems are either rule-based or machine learning based. Some
are language independent, while others are not. But none of them is primarily inter-
ested in the semantic content of morphologically complex words, with a few excep-
tions, e.g., [10, 11, 29, 30]. As far as morphosemantic approaches are concerned, they
certainly use semantic knowledge, but none of them do make use of this knowledge to
compute additional semantic information (e.g., the meaning of neologisms). However,
morphosemantic information proves to be useful. For instance [31] has measured how
significant WorldNet improvement is in text understanding after its extension with
morphosemantic relations.

The main purpose of DériF (“Dérivation en Français”), the parser presented below,
is precisely to annotate corpora with semantic knowledge. This knowledge is pre-
dicted from the linguistic content of word formation rules that are used to segment
derivatives and compounds. Thus, DériF is able to guess the meaning of unknown
words. Following similar linguistic principles, DériF predicts the semantic and syn-
tactic features of words from their morphological relationship. Finally, when applied
on a medical lexicon, it can be used to infer lexical relationships between morpholog-
ically unrelated compounds words.

3 Description of DériF

DériF’s first development dates back to 1999 [32], and some key-aspects of its evolu-
tion are given in [33]. This system1 is a rule-based, morphological parser for French
complex (i.e., derived and compound) words. This linguistically-motivated tool im-
plements a word-based framework to Word Formation, where, basically, affixes are
not lexical components, but rule markers, and where a rule application takes the form
of a relation between two words (for a detailed comparison of Word-based versus
Morpheme-based approaches to morphology, see e.g., [1]). The reason why DériF
does not implement and/or extend a stemming algorithm, and adapts linguistic con-
straints instead is based upon two facts:

• Typological Adequacy: English is largely used to experiment stemming algo-
rithms. On top of the many reasons of this (besides the supremacy of this language)
is the place of English in the morphological typology continuum. According to the
literature (see e.g., [34]) morphological typology involves two parameters. The first
one is based on the transparency of morphological boundaries between the constituents
of a word, and the second one relates to the degree of internal complexity of words. As
shown in Figure 1, borrowed from [35], p.8, languages are ranked from analytic to
polysynthetic when the dimension under consideration is that of word complexity,
whereas the way stem-affixes boundaries are realized allows to divide them ac-
cording to the isolating/agglutinating/fusional tripartition.

1 DériF is distributed free of charge for research purposes; an online version is available at the

URL: www.cnrtl.fr/outils/DeriF/

96 F. Namer

Realization of stem-affix

boundaries

fusional French Chiricahua
 Apache
 English

agglutinating Yupik
 Eskimo
isolating Class. Chinese
 Analytic Synthetic Polysynthetic
 Word internal complexity

Fig. 1. Two-Dimension Classification of Languages

Languages classification results from the integration of these two parameters. So,
English morphology, like that of European languages in general, is predominantly
synthetic, and makes use of rather agglutinating techniques in word formation. On the
other hand, French belongs to the group of both synthetic- and fusional-morphology
world’s languages, with Italian, Russian, or Spanish. Namely, stem-affix boundaries
are the scene of many kinds of formal variations (1): vowel alternation (a), epenthesis
(b), truncation (c), etc. resulting from arrays of constraints the mere application of
general phonological adjustment rules is not sufficient to account for.

(1) a: floralA [floral] derives from fleurN [flower]
b: lionceauN [young lion] derives from lionN;
c: mathématiserV [mathematize] derives from mathématiquesN
[mathematics]

• Usefulness: word segmentation into morphemes is a task of limited use, if
not accompanied by the discovery of a dependency relation between these identi-
fied morphemes. This pure segmentation task is particularly irrelevant in the un-
known-words meaning prediction. As [36] shows, followed by [37], complex word
interpretation is generally far from resulting from a simple combination of the
meanings of the identified stem and affixes (2):

(2) a scolariserV [put in school] derives from écoleN [school] (and not
scolaireA [pertaining to school])
b sous-marinA [sub-marine] derives from merN [sea] (and not marinA
[pertaining to the sea])

In short, DériF’s mechanism performs a deep analysis on complex words: beyond
simple affix stripping, its purpose consists in realizing a linguistically motivated word
analysis, in order to acquire new semantic knowledge originating in Word Formation
principles.

 A Rule-Based Morphosemantic Analyzer for French 97

3.1 Mechanisms and Results

DériF takes as an input a POS tagged lemma. If this lemma is morphologically com-
plex, DériF provides it with an output including its direct morphological family,
grouping its entire ascendancy up to a non-analyzable lexical unit. The family second
element is the base of the parsed lemma (3). DériF calculates also the definition of the
analyzed lemma, according to both the meaning of its base (4) or bases (5), and the
word-formation rule at play. Additional semantic information is produced during each
analysis step, cf. (§4). Each derivative/base or compound/bases rule forms an inde-
pendent module; a given module is activated according to the lemma formal and POS
properties, and retrieves the lemma’s base(s). The appropriate module in turn supports
the base in question, which is also a POS-tagged lemma. In other words, DériF oper-
ates in a recursive way, which enables the system to associate any analyzed lemma
with its morphological family (cf. 3). The loop stops as soon as an indecomposable
unit is acknowledged: (a) it contains neither affix nor compounding form and (b) its
part-of-speech makes it an unlikely converted word, so that no analysis module is
activated. Analysis modules can be subdivided into four interacting types, according
to the morphological structure of the lemma to be parsed: suffixation, prefixation,
conversion and compounding. Updating DériF is equivalent to adding a new module
to process a new kind of derivation or compounding. The activation of concurrent
modules, i.e., that can apply to a word both suffixed and prefixed (e.g., déverrouillage
in (3), is hierarchized according to the relative scope of each rule. For instance, for the
above example, the age-module is activated prior to the dé-module: déverrouillage <
déverrouiller < verrouiller < verrou. Here, the system accounts for the fact that dé-
prefixation rule derives verbs (from verbs, adjectives and nouns), which prevents dé-
module to be activated on the noun dévérouillage.

(3) déverrouillageN: (déverrouillageN, déverrouillerV, verrouillerV, verrouN)
[unlockingN: (unlockingN, unlockV, lockV, lockN)]

(4) déverrouillageN: ‘action de déverrouillerV’ [action of unlock]

(5) hydromassageN: ‘massageN utilisant l’eauN’ [massage with water]

The only information required by DériF as input to analyze a lemma is its POS.
DériF has no previous knowledge about words and it provides them with a definition
calculated according to the morphological relation between the analyzed word and its
base, and making use of this base meaning.

3.2 Semantic Relationship

The way in which DériF has been designed entails three implications dealing with the
analysis mechanism. First, as we said, DériF produces for each analyzed lemma a
semantic relationship between this lemma and its base(s). In other words, this system
contributes to the establishment of a semantic network between lexical units, by sup-
plying morphosemantic knowledge. In the current DériF distribution, definitions are
in natural language; in recent developments [38] they are expressed by means of a
logic formula (6).

98 F. Namer

The second implication is methodological: with a functioning based on (weighted)
rules/exception oppositions, DériF affects each examined lemma with the most suita-
ble analysis rule(s). A default rule is always available. Moreover, when two morpho-
logical analyses are equally probable, then two results are provided (7). Exception
lists are used to prevent formally complex but actually simple words to be wrongly
analyzed as derived or compound words. For instance, noun-based -age suffixed
nouns denote collections of what is referred to by the base noun (plume [feather] >
plumage [feathering]): as a member of the –age module exception list, the noun orage
[storm] will not be (wrongly) related to orN [gold]. The same principle is applied in
order to block multiple analyses of a complex word, when various decompositions are
available from a formal point of view, but only one is semantically suitable.

(6) lavableA [washable] (lavableA, laverV [wash])
"y / exists(x), (laver(e, x, y))"

(7) a importableA [unwearable] : (importableA, portableA [wearable], por-
terV [wear])
"Not wearable"
b importableA : (importableA, importerV [importV])
"Which can be imported"

Finally, DériF’s linguistic principles lead to a third consequence, developed in
what follows: the production of two types of lexical semantic annotations, as an
integral part of derived lemmas analysis rules for the former type, and of compound
ones for the latter.

4 Morphology for the Semantic Annotation of Lexica

In this section, we present two distinct results in term of acquisition of semantic fea-
tures: one is illustrated by the analysis of general language derivatives; the other one,
by the analysis of neoclassical compounds within biomedical specialized corpora.

Linguistic descriptions of Word Formation Rules (WFR) may include semantic,
syntactic and phonological constraints that are typical of the rule under study, and that
the rule exerts on both words it links to each other.

NLP draws immediate advantage from these linguistic studies. Linguistic con-
straints are adapted in order to be reused for the automatic labeling of analyzed words
with lexical information. When applied on corpora, this word tagging contributes to
the enrichment of these corpora lexical annotation. This is what is discussed in §4.1.

Section §4.2 is about another remarkable DériF’s result, dealing with the analysis
of neoclassical compounds [39]: the edification of a list of terms sharing a lexical
relation (synonymy, hyponymy...) with the analyzed compound. This constitution of
such “lexical families” is a valuable result for the annotation task of medical corpora
and the exploration of terminological bases for this specialty domain.

 A Rule-Based Morphosemantic Analyzer for French 99

4.1 Predicting Semantic Properties to Bases and Derivatives

Recall that a first way morphology is exploited to acquire lexical-semantic knowledge
is by the semantic relationship the analysis rule establishes between the word to be
analyzed and its base (§3). Other pieces of information, expressed as attribute-value
pairs, are assigned to words by the appropriate analysis rules.

Basic Predictions. The definition of these features takes advantage of the most fre-
quently observed morphological constraints on rules, according e.g., to productivity
measures [40]. A sample is given in Table 1 (for further examples, see [41, 42]). We
call these features ‘basic predictions’, because they emanate directly from linguistic
studies on WFR. As Table 1 shows, feature structures are provided by feature-
prediction rules, each of them being correlated to a derivation analysis rule (col1), a
feature structure can be assigned to the parsed word (col2) as well as to the base cal-
culated by the rule (col3). For each prediction (and analysis) rule, the last raw recalls
the semantic pattern defining derived words according to the meaning of their base.
All examples follow the same principle.

Table 1. Feature Predictions on Derivatives and Bases

Feature-prediction
rule

(WDER. < WBASE)

Feature structures on the analyzed Word Feature structures on the base

(1) é- pref:

V2 < N1

épulper [remove pulp], émiette [crumble] pulpe [pulp], miette [crumb]

[aspect=telic, subcat= <NPa-
gent,NPpatient>, NPa-
gent=[concrete=yes, count=yes], NPpa-
tient=[concrete=yes, natural=yes]]

[concrete=yes, hum=no, natu-
ral=yes]

V2 = Deprive smne/smth of N1

(2) -able suff:

A2 < V1

lavable [washable], lançable [throw-
able], périssable [perishable], tombable
[fall-able]

laver [wash], lancer [throw],
périr [perish], tomber [fall]

[adj_type = property, inherent=no, in-
it_boundary=no]

[subcat= <(NPagent), NPpa-
tient]

A2 = (<Prep> that) one can V1

(3) -eur suff:

N2 < V1

danseur [dancer], interrupteur [switch] danser [dance], interrompre
[interrupt]

 [concrete=yes, hum=yes, count=yes] or

 [concrete=yes, anim=no, natural=no,
count=yes]

[aspect=dynamic, sub-
cat=<NPagent, ...>]

N2 = (Agent who – Instrument which) V1

100 F. Namer

In (1), é- prefixed verbs are noun-based. These prefixed verbs have a telic lexical
aspectual value, and they are agentive, transitive predicate; in addition, agents are
concrete and countable, and patients denote natural entities. Base nouns are concrete,
natural, and non-human.

In (2), derived words are verb-based adjectives suffixed with –able. These adjec-
tives denote acquired properties, and base verb predicates necessarily have a patient
argument, regardless of the other arguments.

Finally, in (3), -eur suffixed nouns refer either to (male) human beings, or to con-
crete entities. Base verbs are dynamic agentive predicates.

Property Self-assessment. As a lemma may undergo several analysis steps, more
than one feature-prediction rule can apply, and at a given step, several feature-
structures can be assigned to the same word by different feature-prediction rules.
Consequently, these pieces of information can be compared with each other in a sort
of self-assessment. For instance, consider the case of évaporateurN [evaporat-er]. Its
complete analysis chain results in the morphological family (8):

(8) (évaporateurN, évaporerV, vapeurN) [evaporatorN, evaporateV, vaporN]

The first step of this analysis is performed by the -eur suffix module and leads to
the base évaporerV. This analysis task triggers the feature-prediction rule (3, Table 1),
resulting in a first feature-structure, cf. Table 2, raw 1; then, the second morphologi-
cal parsing step, realized by the é- prefix module, causes the activation of the feature-
prediction rule (1, Table 1), which provides évaporerV with a second feature-structure,
cf. Table 2, raw 2. So, evaporerV has two sets of annotations, and their unification
results in the more precise of the two, i.e., that provided by the é- rule.

Table 2. évaporerV feature-structures self-assessment

(3) évaporerV: [subcat = < NPagent, ... >]
(1) évaporerV: [aspect = telic, subcat = < NPagent, NPpatient >, NPagent = [

concrete = yes, hum = yes, count = yes], NPpatient = [concrete = yes, anim = no,
natural = yes]] ;

(1) + (3) évaporerV: [aspect = telic, subcat = < NPagent, NPpatient >, NPagent
= [concrete = yes, hum = yes, count = yes], NPpatient = [concrete = yes, anim =
no, natural = yes]] ;

Property Combination. Another consequence of multiple feature assignment is the
possibility for these pieces of information to be automatically combined to obtain a
more precise knowledge. For instance, consider the case of laverV [washV]. This se-
quence is the base of several derivatives. From DériF’s point of view, it is obtained by
means of –eur module, from laveurN [wash-erN], so that rule (3, Table1) provides
laverV with the appropriate features accordingly (cf. raw 1, Table 3). Since laverV also
originates from lavableA [wash-ableA], the corresponding feature prediction rule
(2, Table 1) produces another feature set (cf. raw 2, Table 3). Eventually, laverV has
two distinct sets of annotations, hence their unification (cf. raw 3, Table 3) results in a
more precise information, taking advantage of both sources: namely it amount to

 A Rule-Based Morphosemantic Analyzer for French 101

Table 3. laverV feature-structures combination

(3) laverV: [aspect = dynamic, subcat = <NPagent, ...>]
(2) laverV: [subcat = < (NPagent), NPpatient, ... >]
(2) + (3) laverV: [aspect=dynamic, subcat = < NPagent, NPpatient, ... >]

determine that, on the one hand, laver is an agentive dynamic predicate, on the other
hand, it subcategorizes for a patient argument.

The way DériF directly exploits WF descriptions and analyses gives very satisfac-
tory results in terms of acquisition of lexical knowledge. This knowledge is produced
during analysis process, in conjunction with this parsing task. Annotations can be
displayed according to various formats (e.g., the SIMPLE formalism, cf. [43], close to
the Generative Lexicon model [44]). A manual assessment on prediction features has
been performed on 338 –eur suffixed nominal neologisms found in the newspaper Le
Monde, which have been used to enhance the French SIMPLE lexicon [45], with
almost 70% of fully satisfying results (the remaining 30% having idiosyncratic cha-
racteristics making them fail to at least one feature value). As far as self-assessment
and feature combination devices are concerned, potential usefulness is very high,
considering the following factors:

1. The amount of feature prediction rules currently implemented in DériF is of 26.
2. Every time the morphological family of an analyzed lemma is of a size over two

elements (e.g., (4)), then any family member, excepted both the starting lemma and
the final stem, is likely to undergo self-assessment (e.g., évaporerV in (4), cf. Table
2). An experiment was carried out, consisting in analysing and automatically anno-
tating 338 unknown –eur suffixed nouns and 453 unknown -able suffixed adjec-
tives collected from Le Monde 1999 newspaper corpora. Given that –able and –eur
parsed lemmas may have different internal structures, we end up with 30 different
ways to perform self-assessment.

3. As soon as two morphological families share a common ascendant (e.g., laverV,
Table 3, belonging to both lavableA and laveurN families), feature combination can
be activated.

The annotation system, tested on -able and -eur analysis and prediction rules,
seems a very promising technique for word (especially neologisms) semantic annota-
tion, where semantic information originates from linguistic knowledge inferred by
word formation rules. In §4.2, we describe another DériF’s ability: that of deducing
lexical relationships (synonymy, hyponymy, etc) between morphologically unrelated
words, based on their morphological parsing results.

4.2 Lexical Family of Biomedical Neoclassical Compounds

We have seen (§2) that the biomedical field is very demanding in NLP tools and re-
sources: among others, detecting lexical-semantic relations between terms is a task
that proved useful in many respects: improvement of IR and IE tasks, in particular

102 F. Namer

specialized document ranking according to the intended audience [46] or terminologi-
cal extension of specialized lexica [47]. DériF’s contribution aims to a multilingual
identification of biomedical terms surfacing as nominal and adjectival neoclassical
compounds. DériF gathers compound terms occurring in a medical text, which are
morphologically unrelated but semantically close. This recognition task involves two
stages, which implies for the text content to be browsed twice. The first stage takes
place during morphological parsing. For each compound word, it consists in drawing
up a list of its potential synonyms, hyponyms and co-hyponyms, based on its morpho-
logical parsing result, i.e., on its components value. The compilation of this list is
realized by 4 rules, thanks to elementary information taken from a database of Greek-
and Latin-based stems, we call hereafter combining forms (CF). In the second stage,
compound words occurring in the corpus and having been labelled with these primary
annotations are retrieved and linked to each other according to the appropriate lexical
relationship. For instance, the neoclassical compound noun gastralgie [gastralgy]
(“pain ‘algie’ in the stomach ‘gastr’”) forms links with 14 nouns and adjectives ap-
pearing in the same corpus, and belonging to the same conceptual domain, that of
digestive system pathologies (Table 4). The corpus used here is the set of compound
terms contained in the Systematized Nomenclature of Medicine-Clinical Terms
(SNOMED-CT) dataset2. In raw 3, the label ‘semantic neighbourhood’ is meant to
gather co-hyponyms and co-meronyms essentially.

Table 4. gastralgie and its links with its lexical family members in SNOMED-CT

Synonym of gastrodynieN, [gastrodyny] stomacalgieN, [stomacalgy]
stomac(h)odynieN, [stomac(h)odyny] gastralgiqueN [gastralgic]

Hyponym of abdominalgieN [abdominalgy]
Other seman-
tic neighbour-
hood

entéralgieN, [enteralgy] entérodynieN, [enterodyny] gastriteN,
[gastritis] hépatalgieN, [hepatalgy] hépatodynieN, [hepatodyny]
pancréatalgieN, [pancreatalgy] gastroseN, [gastrosis] antiga-
stralgiqueN [antigastralgic]

In what follow, we briefly recall the main properties to neoclassical compounds,

because they are of a great importance for the rest of the procedure. Then, we outline
the tasks involved in stages 1 (description of the CF database and the 4 rules) and 2
(compound terms identification and linking).

Neoclassical Compounds. In Romance languages, neoclassical compounds are
formed from two lexical units, as are standard compounds, whereas derived words
have only one base (on compounding in general, see [48], on a discussion about the
nature of compounding units, see [49]) (9). But unlike standard compounds’ compo-
nents (9a), CFs in neoclassical compounds are very often bound stems, inherited from
Latin or Greek form, e.g., gastr or algie in (9b). Moreover, interpreting a neoclassical

2 http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html

 A Rule-Based Morphosemantic Analyzer for French 103

compound with respects to its CFs proceeds from the right to the left, following An-
cient Greek word-order constraints in WF3.

(9) a porterV [carry] + monnaieN [coin] > porte-monnaieN [purse]
“object which is used to carry coins ”
b gastr ‘estomacN’ [stomach] + algie ‘douleurN’ [pain] > gastralgieN
“pain in the stomach”

Neoclassical compounds have been massively and simultaneously created
throughout Europe from the 18th century onwards, in order to meet denomination
needs due to scientific and technical discoveries started during Enlightenment. There-
fore these compounds are nearly identical in almost every West-European languages,
the differences relying on small spelling variants: e.g., gastragie in French, gastralgy
in English, and gastralgia in Italian. Assuming with [50] that CF are suppletive stems
of contemporary nouns, adjectives or verbs, they can be assigned both a POS and a
meaning (those of the word they substitute for). As a result, parsing a neoclassical
compound includes the identification of its CFs, as well as both POS and meaning for
each CF, which are used to calculate the definition of this compound (for a brief
typology of neoclassical compounds and related analysis issue see [51]; for an illu-
stration, cf. Table 9). The list of compound words likely to be lexically related to a
neoclassical compound is drawn up from the value and properties of the CFs obtained
at the end of the analysis process of this compound. This compilation task takes ad-
vantage of a CF database content, which is based on (French versions of) international
terminology classifications (SNOMED-CT2, MeSH4, CIM-105).

CF Database. As Table 5 shows, each entry of the base is a CF representation, in-
cluding its graphic value (col. 1), POS (col. 3) and meaning (col. 2). Other features,
such as the CF’s position within a compound (e.g., assuming that compounds have a
YX structure, ectomie never occupies the Y position) are not displayed in Table 5.
The current version of the CF database contains more than 1,600 CF descriptions for
French. Moreover, each CF points to another table (cf. Table 6) containing its equiva-
lent forms in 4 other West European languages. Therefore, the CF base can be reused
for the morphological analysis of medical words in these languages, as the experiment
in [28] and outlined below shows for English. For each CF description, the most rele-
vant database field for the task described here is that illustrated in col. 5. It contains
other CFs, which have synonymy (symbol =), hyponymy (<<), meronymy (←), or
neighbourhood (~) links with the entry. As said before, with neighbourhood relation-
ship we mean either co-meronymy (both hépat and gastr refer to parts of the abdo-
men) or co-hyponymy (both ite and algie are sorts of symptoms). This information is
extracted from the SNOMED-CT hierarchical system, as well as the chapter it comes
from (col. 4).

3 In Romance languages, strandard compounds’ interpretation goes from the left to the right.
4 http://www.ncbi.nlm.nih.gov/mesh
5 http://www.med.univ-rennes1.fr/noment/cim10/

104 F. Namer

Table 5. Sample of the CF database

CF (1) Meaning (2) POS (3) SNOMED

Chapter (4)

Primary Lexical Relation (5)

gastr stomach N anatomy =stomac, ←abdomin, ~hépat, ~enter ,
~pancréat

algie pain N symptom =odynie, ~ite

ite inflamma-
tion

N symptom ~algie, ~odynie

phléb vein N anatomy =vén, << angi, <<vascul

angi blood vessel N anatomy =vascul, ~vas

ectomie ablation N surgery act ~tomie, ~stomie

Table 6. `ectomie’ variations across languages

French English German Italian Spanish

ectomie ectomy ektomie ectomia ectomía

Lexical relations at play between neoclassical compounds can be inferred from

these primary relationships between the CFs contained in these compounds, by the
implication rules system presented below.

Lexical Relationship Implication Rules. Four rules are used to group neoclassical
compounds according to synonymy, hyponymy and neighbourhood relationships.
They are based on three principles: (1) neoclassical compounds having the YX struc-
ture denote almost always a subtype of X (a gastralgy is a type of pain=algy), much
less often a set containing X and Y (the rhinopharynx is a body part pertaining to both
the nose=rhino and the pharynx); (2) discovering primary relationships between CFs
enables to infer relationships between compounds containing these CFs; (3) implica-
tion rules must be language-independent. These principles are translated into 4 lan-
guage-free rules:

1. R1: two compounds YX1 and YX2 share the same lexical link than X1 and X2;
4. R2: two compounds Y1X and Y2X share the same lexical link than Y1 and Y2, un-

less Y1 is a meronym of Y2. In this case, Y1X is hyponym of Y2X;
5. R1 (resp. R2) implication remains valid when Y components (resp. X components)

are synonyms: R3 (resp. R4).

Rules R1-R4 apply on the morphological parsing result of YX nominal com-
pounds, as well as YXsuf compound adjectives (e.g., gastralgique). The effect
of these rules is illustrated in Table 7. Examples are given here in French, but
R1-R4 rules work exactly in the same way for the other languages represented in the
database.

 A Rule-Based Morphosemantic Analyzer for French 105

Table 7. From CF relations to relations between compounds

Rule Example

Y X [YAXA] R [YBXB]

R1 bactér oïde = forme bactéroïde = bactériforme

[bacteroid = bacteriform]

oto rragie <<rrhée otorrhagie << otorrhée

[otorragy << otorrhea]

arthr algie ~ ite arthralgie ~ arthrite

[arthralgy ~ arthritis]

R2 proct colo rragie proctorrhagie << colorrhagie

[proctorragy << colorrhagia]

abdomin=lapar scopie abdominoscopie = laparoscopie

[abdominoscopy = laparoscopy]

albumin << protéin émie albuminémie << protéinémie

[albuminemia << proteinemia]

xér ~ sclér ophtalmie xérophthalmie ~ sclérophthalmie

[xerophtalmy ~ sclerophtalmia]

R3

(Ya syn.
of Yb)

orth = rect dont = dent orthodonte = rectident

[with straight teeth]

métr = hystér rragie<<rrhée métrorragie << hystérorrée

[metrorragy << hysterorrhea]

lip = adip matose ~ ome lipomatose ~adipome

[lipomatosis ~ adipoma]

R4

(Xa syn.
of Xb)

entérabdomin algie = odynie entérodynie << abdominalgie

[enterodynia << abdominalgia]

mort = thanat fère = gène mortifère = thanatogène

[mortiferous = thanatogenous]

api << entom vore = phage apivore << entomophage

[apivorous << entomophagous]

bacill ~bacter forme = oïde bacilliforme ~ bactérioïde

[bacilliform ~ bacterioid]

Rule Activation, and Actual Relationships between Compounds. When a YX
neoclassical compound is parsed, the identification of Y and X triggers the applica-
tion of rules R1 to R4. The result is a set of potential lexical relationships (Table 8).
Their assessment depends on the actual content of the medical corpus the lexical units
of which undergo morphological parsing. For instance, you can see that only a subset
of the gastralgie potentially related compounds (Table 8) is actually found in the

106 F. Namer

SNOMED-CT lexicon, as Table 4 above shows. To calculate the relationship between
two terms belonging to the same corpus, a mapping rule compares the value of the
CFs identified for one parsed compound (e.g., hépat ‘liver’ and odynie ‘pain’ CFs for
hépatodynie) with the potential relation list of the other parsed compound (e.g., for
gastragie). If these CF values are found in the list (this is what happens for hépatody-
nie, whose CFs occur in ~:hépat/odyn), then the semantic relationship between
the two compounds is that indicated by the symbol ‘~’. Hence, gastralgie and hépa-
todynie are in a neighbourhood relationship.

Table 8. Discovering the lexical relationship between gastralgie and hépatodynie

gastralgie/NOM==> " pain in the stomach "

Constituants = /gastr/algie/

Potential relations = (=:gastr/odyn, =:stomac/algie, =:stomac/odyn, =:stomach/algie,
=:stomach/odyn, <<:abdomin/algie, <<:abdomin/odyn, ~:entéro/algie, ~:entéro/odyn,
~:gastr/ite, ~:gastr/ose, ~:hépat/algie, ~:hépat/odyn, ~:pancréat/algie, ~:pancréat/odyn,
~:stomac/ite, ~:stomac/ose, ~:stomach/ite, ~:stomach/ose)

hépatodynie/NOM==> " Pain in the liver "

Constituants = /hépat/odyn/

Potential relations = (=:hépat/algie, <<:abdomin/algie, <<:abdomin/odyn,
~:gastr/odyn, ~:gastr/algie, ~:hépat/ose , ~:stomac/algie, ~:stomac/odyn,
~:stomach/algie, ~:stomach/odyn, ~:entéro/algie, ~:entéro/odyn, ~:pancréat/algie,
~:pancréat/odyn)

Results and Assessment. 29,137 terms from the UMLS Metathesaurus6 have been
used as training lexicon for the DériF parsing. In particular, this analysis task has been
performed on the French SNOMED-CT, namely 5,800 nouns and adjectives from the
chapter Disorders, 1.645 from Procedures and 766 from Anatomy. From these 29,137
terms, lexical relations have been established between 6,710 YX(suf) compound ad-
jectives and/or nouns. The gap between these two numbers is due to the fact that a
medical lexicon contains a large amount of compounds with a structure different from
YX, and of course, a large amount of derived words. While DériF provides all of
them with both a valid analysis and definition, the relationship assignment task cur-
rently works only for YX compounds. The other compound types have various struc-
tures (see some of them in Table 9, col.1) and their constituents are either free words
or CFs. For each example in Table 9, col. 2, num.1, the size of the compound’s mor-
phological family indicates how many analysis steps have been required to perform
its complete analysis. Notice that cutting a compound into components leads to a
given components linear order (col. 2, num.2) which does not presuppose the right
definition pattern (col. 2, num. 3): compare, for instance, the anti- prefix scope in
antiandrogène, where it applies on the gène (‘generate’) predicative CF, and that of
mono- in monochromophile, where the affix has scope over chrom (‘colour’). One of
DériF’s ability is to envisage various interpretative patterns, as illustrated below.

6 http://www.nlm.nih.gov/research/umls/

 A Rule-Based Morphosemantic Analyzer for French 107

Table 9. Different types of neoclassical compounds, and their analysis

Comp.

Struct.

Compounds analysis : 1. morphological family, 2. constituents’
linear order, 3. definition with respect to its base

ZYX :

acarodermatiteN

[acarodermatitis]

1. (acarodermatite/N, dermatite/N, ite/N*)

2. acarN*/dermatN*/iteN*

3. ‘Type of [dermatitis] related to [acar: mite]’

YPfxX

colpohyperplasie,N

[colpohyperplasia]

1. (colpohyperplasie/N, hyperplasie/N, plasie/N*)

2. colpN*/hyperPfx/plasieN*

3. ‘Type of [hyperplasia] related to [colp: vagina]’

YXSfx

brachiocéphalité,N

[brachiocephal-ity]

1. (brachiocéphalité/N, brachiocéphale/A, céphal/N*)

2. brachioN*/céphalN*/itéSfx

3. ‘Property of what is [brachiocephalous]’

PfxYX

antiandrogèneA

[antiandrogenous]

monochromophileA

[monochromatophil]

1. (antiandrogène/A, gène/V*)

2. antiPfx/andrN*/gèneV*

3. ‘against that what [gène: causes] [andr: masculine character]’

1. (monochromophile/A, phile/V*)

2. monoPfx/chromN*/phileV*

3. ‘which [phile: is attracted] by a unique [chrom: colour]’

PfxYXSfx

interthoracoscapulaireA

[interthoracicoscapular]

1. (interthoracoscapulaire/A, scapul/N*)

2. interPfx/thoracN*/scapulN*/aireSfx

3. ‘which is between thorax and scapula’

Neoclassical compound analysis, definition-guessing, and relationship-assignment

tasks have undergone two assessment experiments.

• The purpose of the former [27] was to validate both definitions and relationships,
and to weight their usefulness in the biomedical IR domain. Therefore a quantita-
tive evaluation of DériF’s results against a Gold Standard has been realized. Two
blind manual assessments (the first one by a linguist, the second one by a medical
expert) have been performed in order to check results validity. Assessment results
show that DériF is able to produce up to 77.3% correct definitions to unknown
terms, and reaches a prediction of almost 70% percent of correct synonymy links.
As for neighbourhood relationships however, they have raised a problem of inter-
pretation between the experts, who did not reach a common understanding of what
means to be neighbour for lexical entries; such a linguistic notion is indeed largely
dependant of the intended use of neighbourhood links, therefore, assessment of this
point has been postponed, as it requires a more concise basis.

• The second validation experiment has to do with cross-linguistic transferability of
the relationship prediction system, which has been attempted with English [28].
This adaptation of DériF methods to analyze English medical neoclassical

108 F. Namer

compounds was tested on a set of 859 YX compounds extracted from the WHO-
ART7 terminology. 675 could be successfully decomposed and defined.

4.3 Synthesis

We have described two original functionalities characterizing the DériF system. They
allow co-operation to take place between NLP, word formation and lexical semantics.
First, DériF provides parsed derived words and calculated bases with lexical features,
informing upon syntactic or semantic properties. Second, DériF allows biomedical
neoclassical compound nouns and adjectives to be grouped according to lexical-
semantic relationships, thanks to a multilingual database containing 1,600 CF (for
each represented language) enhanced and completed from the content of medical
international terminologies. A few language-free rules are used to propagate the CFs’
primary relationship encoded in the database, in order to infer lexical relationship
between the compounds containing these CFs.

5 Discussion and Conclusion

Evaluating a morphosemantic analyzer is a difficult task. In fact, beside the assess-
ment experiments described above, concerning the quality of semantic features
(§. 4.1) or that of semantic relationships (§. 4.2), global evaluation tasks have been
performed on DériF’s results in two respects.

5.1 Task-Based Assessment

First, a task-based evaluation experiment involving DériF has been carried out, and is
described in [5]. The authors aimed to measure the coverage of several French lexical
resources and tools for a Question Answering task performed on three previously anno-
tated corpora: Quareo [52], EQueR-Medical [53] and Conique [54]. Compared to the heu-
ristic-based Snowball stemmer8, DériF results show the following characteristics (for a
detailed presentation of DeriF’s assessment, see [5]):

• DériF is better than Snowball for the EQueR corpus (which is made of medical
specialized documents); in particular, it is quite efficient for the treatment of com-
pounding.

• When checked against the other two corpora, and as far as derivation is concerned,
DériF and Snowball show complementary scores, because these tools do not cover
the same morphological constructions.
─ Snowball results are better as far as conversion is concerned.
─ DériF coverage being affix-dependent, this tool is very efficient for some

processes, and fails for other ones (see §.5.2, Table 10).

7 http://www.umc-products.com/DynPage.aspx?id=4918
8 http://snowball.tartarus.org/download.php

 A Rule-Based Morphosemantic Analyzer for French 109

─ DériF proves to be better when it comes to the analysis of both verb-based
nouns and relational adjectives, which appear to be the most frequent deriva-
tional phenomena occurring in both these general-language corpora. However,
evaluation results show that DériF’s coverage is still poor and has to be im-
proved, in order to address such a frequent issue in a more effective way.

Evaluation also focused on the quality of analysis: only a few errors were found
with DériF, in the general-language corpora, and none within EQueR.

5.2 Evaluation with Respect to a Reference Lexicon

Second, general language evaluation tasks are regularly achieved, where DériF is
always applied on the same reference lexicon: the vocabulary of the “Trésor de la
Langue Française” (a French general language multivolume dictionary), that is about
99,000 nouns, adjectives and verbs. Updated parsing results are automatically com-
pared to the previous ones, in order to perform differential evaluation.

Currently, 43.2% of the 99,000 words are successfully analyzed and defined, ac-
cording to this assessment method. This apparently small percentage of satisfying
results has at least two main reasons. The first one is a matter of DériF coverage, and
is detailed below. The second one has to do with the tested vocabulary: the meaning
of many complex words recorded in dictionaries is no longer compositional. In other
words, successful rates with DériF are much higher on corpora with an important
density of new-coined words, e.g., when DériF is applied on newspaper corpora.

63% of the 29,137 analyzed medical terms of the SNOMED French version pro-
duce a correct base and definition. Several experiments, reported in §4, enabled the
assessment of three aspects of this morphological parsing system:

1. When it comes to the general language lexicon, feature structures on derived words
and on their base have been both manually and automatically (self-assessment and
cross-annotation) checked,

2. As for the biomedical corpus, a quantitative evaluation of both the neoclassical
compounds definition and the lexical relations has been performed against a Gold
Standard. Assessments confirm that the system main drawback lies in the delta that
may occur between linguistic predictions and real meanings or lexical links. For
instance, the current, lexicalized interpretation of microstomie [stenostomia] i.e.,
“congenital pathology characterized by an abnormal narrowness of the mouth”), is
no longer computable from that of stomie (“opening”), unlike e.g., périnéostomie
(“surgical opening = stomie of pelvic floor = périnée”).

3. Again, for biomedical compounds, the portability of the analysis system to another
West-European language has been successfuly checked for English: 78,5% of YX
compounds can be analyzed, defined and lexically related to each others by a simp-
ly transposition of the method used for French.

Table 10 provides a qualitative summary of DériF current coverage. Col.1 indi-
cates the analysis module applied, named after the recognized affix and the POS in-
volved, in the Derived-Word < Base order. An illustration is given in col. 2.

110 F. Namer

Table 10. Dérif’s coverage

Derivation or compounding rule

(analyzed-wordCAT < BASECAT)

Examples

(derived/comp. word < base)

-able suff (A < N, A < V), -age suff (N < V,
N < N)

abaissableA < abaisserV

[lower-ableA < lowerV]

-ais, -eux, -ien , -iste, -al, -el, -aire, -ique,
anti- suff (A < N, A < Nam), Quantifying
pref. : a-, mono-, bi-, di-, tri-,... (N < N, A <
N)

écossaisA < EcosseNPR

[scottishA < ScotlandNPR]

avant-, après-, anté- pref (N < N) avant-brasN < brasN

[forearmN < armN]

auto- pref (N < N, A < N, V < V) auto-financerV < financerV

[selffinanceV < financeV]

co- pref (V < V, N < N, A < A, A < N) coexisterV < existerV

[coexistV < existV]

contre- pref (V < V, N < N, A < N) contre-natureA < natureN

[counter-natureA (unnaturalA) < natureN]

dé-, en-, é- pref (V < V, V < N, V < A) désherberV < herbeN

[un-grassV (weedV) < grassN]

exo-, infra-, inter-, ... locative pref (A < N, N
< N, A < Nam, V < V), in- pref (A < A, N <
N, V < N)

impurA< purA

[impureA < pureA]

-if suff (A < N), -ie suff (N < N , N < A) sportifA< sportN

[sportiveA < sportN]

-ifier, -iser suff (V < N, V < A, V < Nam) momifierV < momieN

[momifyV < mummyN]

-ion, -ment suff (N < V) libérationN < libérerV

[freedomN < freeV]

-ité suff (N < Nam, N< A), non- pref (N < N,
A < A)

accessibilitéN < accessibleA

[accessibilityN < accessibleA]

re- pref (N < N, V < V, A< A, V < N, V < A) réenfoncerV < enfoncerV

[re-pressV < pressV]

Other X < X pref (alpha-, bêta-, gamma-,
dis-, iso-, kilo-, macro-, micro-, etc)

malchanceN < chanceN

[badluckN < luckN]

Conversion (N < V ; V< N ; N < A), Neoclas-
sical Compounding (see table 9)

volN < volerV

[flight/theftN < fly/stealV]

Neoclassical Compounding (see Table 9) thalassothérapieN < thérapieN

[thalassotherapyN < therapyN]

 A Rule-Based Morphosemantic Analyzer for French 111

5.3 Current Improvements and Further Research

Like morphosemantic systems in general, DériF suffers from lack of coverage, insofar
as it relies on detailed linguistic analyses that are often restricted to limited linguistic
phenomena. Of course, DériF current coverage can be easily updated with the inser-
tion of missing morphological modules, for instance the analysis rule of –ure suffixed
nouns (blessure > blesser). For two sets of morphological constructions, however,
DériF improvements are more complex to achieve.

• The analysis of standard compounds is tricky to envisage given its structural simi-
larity with neoclassical compounding. The issue is namely that of their correct de-
finition: given e.g., the standard compound noun poisson-chat [cat-fish], DériF
current analysis (based on that of neoclassical compounds) defines it as a “sort of
cat”, whereas it should be interpreted as a “sort of fish”. There is one distinctive
feature that can be used by DériF to detect standard compounds and define them
accordingly: they never contain CF components. With this clue, a morphological
parsing module for standard compounds can be developed in a near future.

• Many derived word have no base to be directly related to. For some of them, the
only existing parenthood relation is an indirect one, e.g., communisme/communiste:
such morphological relations, called cross-formations, are obtained by affix mutual
truncation. Other non standard derivational structures are the so-called back-
formations: the derivative is formally shorter than its base. Because of its concep-
tion principles, DériF is primarily designed to deal with oriented rules, which
makes not trivial its analysis of these morphological constructions. However, a
specific module is proposed in this respect in [55].

Other well-known DériF defaults are inherent to its methodological foundation and
common to rule-based linguistically motivated systems: it is language-dependant, and
its maintenance and updating tasks are time-consuming. Most recent DériF develop-
ments are meant to address these coverage and conceptual issues. They consist in
coupling DériF with Morphonette, an analogy-based system [16]. This combination
results in a lexical network, called Daemonette, which takes advantage of both sys-
tems. First, thanks to Morphonette analogy-based technology, a broad coverage is
ensured, and so are indirect lexical relationships, such as with the agent and process
nouns pair {prédateurN [predator], prédationN [predation]}, where the common verbal
ancestor (which would be otherwise °prédater) is lacking in French.

 Second, words of a same morphological family are combined into sub-networks
which instantiate types of n-tuples, where words share both the same internal struc-
ture and the same semantic annotations, the latter resulting from (combinations of)
basic predictions (see §. 4.1). For instance, each network in (10) is an instance of the
n-tuple type in (11), grouping a dynamic durative verbal predicate, an agent or in-
strument noun suffixed by –eur, a process or result noun, suffixed by –ion, and a
property adjective, suffixed by -if. As in (10c), a network slot may be empty: is this
case, the lack of member indicates a lexical gap in the family.

112 F. Namer

(10) a {produire[product], producteur[productor], produc-
tion[production], productif[productive]}
 b {diriger[direct], directeur[director], direction[direction],
directif[directive]}
 c {adapter[adapt], adaptateur[adapter], adapta-
tion[adaptation], --}

(11) {V [accomplishment/activity], N-eur [agent/instrument], N-ion
[process/result], A-if [property]}

This tool merging task is a work in progress [38], with already promising results,

which will certainly be confirmed in future developments.

References

1. Plag, I.: Word-formation in English. Cambridge University Press, Cambridge (2003)
2. Cartoni, B., Lefer, M.-A.: Improving the representation of word-formation in multilingual

lexicographic tools: the MuLeXFoR database. In: XIV EURALEX, pp. 581–591. Fryske
Academy, Leeuwarden (2010)

3. Creutz, M., Lagus, K.: Inducing the Morphological Lexicon of a Natural Language from
Unannotated Text. In: AKRR 2005, pp. 106–113. Pattern Recognition Society of Finland,
Helsinki (2005)

4. Sagot, B.: The Lefff, a freely available and large-coverage morphological and syntactic
lexicon for French. In: LREC 2010, pp. 2744–2751. ELRA, La Valetta (2010)

5. Bernhard, D., Cartoni, B., Tribout, D.: A Task-Based Evaluation of French Morphological
Resources and Tools. Linguistic Issues in Language Technology 5, 2 (2011)

6. Bilotti, M.W., Katz, B., Lin, J.: What Works Better for Question Answering: Stemming or
Morphological Query Expansion? In: Proceedings of the Information Retrieval for Ques-
tion Answering (IR4QA) (Workshop at SIGIR 2004), Sheffield (2004)

7. Dasgupta, S., Ng, V.: Unsupervised morphological parsing of Bengali. Language Re-
sources and Evaluation 40(3-4), 311–330 (2006)

8. Goldsmith, J.: An algorithm for the unsupervised learning of morphology. Computational
Linguistics 27(2), 153–198 (2001)

9. Cavar, D., Rodriguez, P., Schrementi, G.: Unsupervised morphology induction for part-of-
speech-tagging. In: Proceedings of the 29th Annual Penn Linguistics Colloquium,
vol. 12(1), pp. 29–41. University of Pennsylvania, Philadelphia (2006)

10. Claveau, V.: Unsupervised and semi-supervised morphological analysis for Information
Retrieval in the biomedical domain. In: COLING, Mumbai, India, pp. 629–646 (2012)

11. Bernhard, D.: Automatic Acquisition of Semantic Relationships from Morphological Rela-
tedness. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006.
LNCS (LNAI), vol. 4139, pp. 121–132. Springer, Heidelberg (2006)

12. Clément, L., Sagot, B., Lang, B.: Morphology based automatic acquisition of large-
coverage lexica. In: LREC, pp. 1841–1844. ELRA, Lisbon (2004)

13. Wicentowski, R.: Multilingual Noise-Robust Supervised Morphological Analysis using the
WordFrame Model. In: Proceedings of 7th Meeting of the ACL Special Interest Group on
Computational Phonology (SIGPHON), pp. 70–77. ACL, Barcelona (2004)

14. Virpioja, S., Turunen, V.T., Spiegler, S., Kohonen, O., Kurimo, M.: Empirical Comparison
of Evaluation Methods for Unsupervised Learning of Morphology. TAL 42(2), 45–90
(2011)

 A Rule-Based Morphosemantic Analyzer for French 113

15. Stroppa, N., Yvon, F.: An Analogical Learner for Morphological Analysis. In: CoNLL,
pp. 120–127. ACL, Ann Arbor (2005)

16. Hathout, N.: Morphonette: a paradigm-based morphological network. Lingue e Linguag-
gio 2, 245–264 (2011)

17. Moreau, F., Claveau, V., Sébillot, P.: Automatic morphological query expansion
using analogy-based machine learning. In: Amati, G., Carpineto, C., Romano, G. (eds.)
ECiR 2007. LNCS, vol. 4425, pp. 222–233. Springer, Heidelberg (2007)

18. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
19. Hull, A.D.: Stemming Algorithms - A case study for detailed evaluation. Journal of the

American Society of Information Science 47(1), 70–84 (1996)
20. Juravsky, D., Martin, J.: Speech and Language Processing. Prentice Hall, New Jersey

(2000)
21. Cohen-Sygal, Y., Wintner, S.: Finite-State Registered Automata for Non-Concatenative

Morphology. Computational Linguistics 32(1), 49–82 (2006)
22. Walther, M.: Temiar reduplication in one-level prosodic morphology. In: Proceedings of

SIGPHON, Workshop on Finite-State Phonology, Luxembourg, pp. 13–21 (2000)
23. Pacak, M.G., Norton, L.M., Dunham, G.S.: Morphosemantic Analysis of -ITIS Forms in

Medical Language. In: Methods of Information in Medecine, pp. 99–105 (1980)
24. Schulz, S., Hahn, U.: Morpheme-based, cross-lingual indexing for medical document

retrieval. International Journal of Medical Informatics 58-59, 87–99 (2000)
25. Markó, K., Schulz, S., Hahn, U.: MorphoSaurus – design and evaluation of an interlingua-

based, cross-language docuyment retrieval engine for the medical domain. Methods of In-
formation in Medecine 44(4), 537–545 (2005)

26. Cartoni, B.: Lexical Morphology in Machine Translation: A Feasibility Study. In: Proceed-
ings of the 12th EACL, pp. 130–138. ACL, Athens (2009)

27. Namer, F., Baud, R.: Defining and relating biomedical terms: towards a cross-language
morphosemantics-based system. International Journal of Medical Informatics 76(2-3),
226–233 (2007)

28. Deléger, L., Namer, F., Zweigenbaum, P.: Morphosemantic parsing of medical compound
words: Transferring a French analyzer to English. International Journal of Medical Infor-
matics 78(suppl.1), 48–55 (2009)

29. Bernhard, D.: Apprentissage de connaissances morphologiques pour l’acquisition automa-
tique de ressources lexicales. Université Joseph Fourier, Grenoble (2006)

30. Wilbur, W.J.: BioNLP: Biological, Translational and clinical language processing,
pp. 201–208. ACL, Prague (2007)

31. Clark, P., Fellbaum, C., Hobbs, J.R., Harrison, P., Murray, B., Thompson, J.: Augmenting
WordNet for deep understanding of text. In: Proceedings of Semantics in Text Processing,
pp. 45–57. ACL, Venezia (2008)

32. Dal, G., Hathout, N., Namer, F.: Construire un lexique dérivationnel: théorie et réalisa-
tions. In: TALN 1999, pp. 115–124. Université Paris 7, Cargèse (1999)

33. Namer, F.: Morphologie, Lexique et TAL: l’analyseur DériF. Hermes Sciences Publishing,
London (2009)

34. Sapir, E.: Language. Harcourt, Brace and Company, New York (1921)
35. Aikhenvald, A.Y.: Typological distinctions in word-formation. In: Shopen, T. (ed.)

Language Typology and Syntactic Description. Grammatical Categories and the Lexicon,
vol. III, pp. 1–65. Cambridge University Press, Cambridge (2007)

36. Corbett, G.: Canonical Derivational Morphology. Word Structure 3(2), 141–155 (2010)
37. Hathout, N., Namer, F.: Discrepancy between form and meaning in Word Formation: the

case of over- and under-marking in French. In: Rainer, F., Dressler, W.U., Gardani, F.,
Luschützky, H.C. (eds.) Morphology and Meaning (Selected Papers from the 15th Interna-
tional Morphology Meeting), Vienna. John Benjamins, Amsterdam (2010)

114 F. Namer

38. Hathout, N., Namer, F.: Règles et paradigmes en morphologie informatique lexématique.
In: TALN 2011, pp. 215–220. LIRMM/ATALA, Montpellier (2011)

39. Lüdeling, A.: Neoclassical word-formation, 2nd edn. Encyclopedia of Language and
Linguistics, pp. 580–582. Elsevier (2006)

40. Baayen, R.H.: Quantitative aspects of morphological productivity. Yearbook of Morphol-
ogy 1991, 109–149 (1992)

41. Namer, F., Bouillon, P., Jacquey, E.: Un lexique Génératif de référence pour le Français.
In: TALN 2007, pp. 233–242. ERSS, Toulouse (2007)

42. Namer, F., Jacquey, E.: Word Formation Rules and the Generative Lexicon: Representing
noun-to-verb versus verb-to-noun Conversion. In: Pustejovsky, J., Bouillon, P.,
Isahara, H., Kanzaki, K., Chungmin, L. (eds.) Advances in Generative Lexicon Theory,
pp. 385–414. Springer, Heidelberg (2012)

43. Ruimy, N., Monachini, M., Distnte, R., Guazzini, E., Molino, S., Uliveri, M., Calzolari,
N., Zampolli, A.: CLIPS, A Multi-level Italian Computational Lexicon. In: LREC,
pp. 792–799. ELRA, Las Palmas de Gran Canaria (2002)

44. Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)
45. Namer, F., Bouillon, P., Jacquey, E., Ruimy, N.: Morphology-based enhancement of a

French SIMPLE Lexicon. In: 5th International Conference on Generative Approaches to
the Lexicon, pp. 153–161. ILC-CNR, Pisa (2009)

46. Chmielik, J., Grabar, N.: Détection de la spécialisation scientifique et technique des docu-
ments biomédicaux grâce aux informations morphologiques. TAL 52(2), 151–179 (2011)

47. Cartoni, B., Zweigenbaum, P.: Extension of a specialised lexicon using specific termino-
logical data: the Unified Medical Lexicon for French (UMLF). In: Proceedings of 14th
EURALEX, pp. 892–905. De Skriuwers, Leeuwarden (2010)

48. Lieber, R., Štekauer, P.: Introduction: status and definition of compounding. In: Lieber, R.,
Štekauer, P. (eds.) The Oxford Handbook of Compounding, pp. 3–18. Oxford University
Press, Oxford (2009)

49. Montermini, F.: Units in compounding. In: Scalise, S., Vogel, I. (eds.) Cross-Disciplinary
Issues in Compounding, pp. 79–82. Benjamins, Amsterdam (2010)

50. Dal, G., Amiot, D.: La composition néoclassique en français et ordre des constituants.
In: Amiot, D. (ed.) La composition dans une perspective typologique, pp. 89–113. Artois
Presse Université, Arras (2008)

51. Namer, F.: Guessing the meaning of neoclassical compound within LG: the case of pathol-
ogy nouns. In: 3d Workshop on Generative Approaches to the Lexicon, pp. 175–184.
Université de Genève, Geneva (2005)

52. Quintard, L., Galibert, O., Adda, G., Grau, B., Laurent, D., Moriceau, V.R., Rosset, S.,
Tannier, X., Vilnat, A.: Question Answering on Web Data: The QA Evaluation in Quæro.
In: LREC 2010, pp. 2368–2374. ELRA, La Valletta (2010)

53. Ayache, C., Grau, B., Vilnat, A.: EQueR: the French Evaluation campaign of Question-
Answering Systems. In: LREC 2006, pp. 1157–1160. ELRA, Genova (2006)

54. Grappy, A., Grau, B., Ferret, O., Grouin, C., Moriceau, V.R., Robba, I., Tannier, X.,
Vilnat, A., Barbier, V.: A Corpus for Studying Full Answer Justification. In: LREC 2010,
pp. 2361–2367. ELRA, La Valletta (2010)

55. Namer, F.: Analyse automatique des noms déverbaux composés: pourquoi et comment
faire intéragir analogie et système de règles. In: TALN 2009, pp. 1–10. ATALA, Senlis
(2009)

Implementing a Formal Model
of Inflectional Morphology

Benoît Sagot1 and Géraldine Walther2,3

1 Alpage, INRIA & Univ. Paris-Diderot, 75013 Paris
2 Laboratoire de Linguistique Formelle, CNRS & Univ. Paris-Diderot, 75013 Paris

3 UFR de Langue Française, Univ. Panthéon-Sorbonne, 75005 Paris
benoit.sagot@inria.fr, geraldine.walther@linguist.jussieu.fr

Abstract. Inflectional morphology as a research topic lies on the crossroads of
many a linguistic subfield, such as linguistic description, linguistic typology, for-
mal linguistics and computational linguistics. However, the subject itself is tack-
led with diverse objectives and approaches each time. In this paper, we describe
the implementation of a formal model of inflectional morphology capturing ty-
pological generalisations that aims at combining efforts made in each subfield
giving access to every one of them to valuable methods and/or data that would
have been out of range otherwise. We show that both language description and
studies in formal morphology and linguistic typology on the one hand, as well as
NLP tool and resource development on the other benefit from the availability of
such a model and an implementation thereof.

1 Introduction, Motivation and Related Work

Contrarily to syntax and derivational morphology, inflectional morphology has the ad-
vantage of dealing, for a given language, with a finite range of data. Given a set of
lexical units, it is possible to list all their inflected forms. From a theoretical point of
view, one can therefore expect any formal approach to inflectional morphology to ac-
count not only for the data, i.e., inflectional paradigms in a given language, but also for
the regularities and irregularities found within them.

Because of its finiteness, inflectional morphology also readily lends itself to typo-
logical approaches, where regularities and irregularities can be studied in a contrastive
way. Among those approaches, the corpus of work carried out in the framework of
canonical typology [12] aims at modeling and explaining inflectional phenomena ac-
cross languages, including non-canonical phenomena such as syncretism, suppletion,
heteroclisis or defectivity.

The confined set of data underlying inflectional morphology makes for the perfect
place to combine approaches as different as computational linguistics, formal linguis-
tics, linguistic typology, and descriptive linguistics, i.e., approaches that seldom get to
combine in a global enterprise of precise language description, analysis and effective
processing. The work described in this paper aims at furthering the combination of
those complementary approaches. We describe the development of a lexical framework
redesigned for implementing a theoretical and formal approach to inflectional morphol-
ogy as well as improving the quality and speed of lexical resource and tool development.

C. Mahlow and M. Piotrowski (Eds.): SFCM 2013, CCIS 380, pp. 115–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 B. Sagot and G. Walther

As a framework designed for all of the subfields cited above, it entails specific bene-
fits for each one of them, but its main advantage lies in the combination of its possible
different outcomes.

More specifically, this paper describes Alexinaparsli, a formalism for encoding in-
flectional descriptions (lexicon and grammar) that aims at filling the gap between mor-
phologically and typologically motivated approaches on the one hand and implemented
approaches on the other hand, as will be discussed in the remainder of this section.
Indeed, Alexinaparsli is both:

– an implementation formalism for parsli, a formal model of inflectional mor-
phology [30,31] that accounts for concepts underlying the canonical approach of
morphological typology.1 We briefly describe the last version of parsli, on which
Alexinaparsli relies, in Section 2. In particular, we point out the major innovations
with respect to earlier versions of parsli [30,24];

– an extension of the Alexina lexical framework [22] used in the field of Natu-
ral Language Processing (NLP) for modeling lexical information and developing
lexical resources. The morphological layer of the (original) Alexina formalism is
sketched in Section 3.

In Section 4, we show how we extended the morphological components of Alexina
for turning it into an implementation formalism for parsli, namely Alexinaparsli.
Finally, in Section 5, we show why the Alexinaparsli formalism and tools have been
greatly beneficial to works both in descriptive and formal morphology, in particular in
studies about Latin passivisation and Maltese verbal inflection and in studies comparing
the compacity of morphological descriptions, as well as in NLP, for the efficient devel-
opment of a large-scale and linguistically sound morphological lexicon for German.

1.1 A Tool for Enhancing Studies in Theoretical Linguistics

From the point of view of theoretical linguistics in general and linguistic typology in
particular, the main goal in the study of inflectional morphology lies in the description
and comparison of inflectional systems belonging to different languages. As mentioned
above, joint efforts therefore entail the following advantages. In order to simply gener-
ate paradigms from a morphological description of a given language, to describe and
measure regularities and irregularities in these paradigms, or even to perform cross-
linguistic comparisons, only formal and computational approaches can lead to reliable
results: Formalisation allows for guaranteeing the consistency of an analysis, in particu-
lar within a full morphological system; Implementation allows for concretely verifying
the validity of the analysis; In addition, large-scale implementation allows for a veri-
fication of the quasi-exhaustivity of the proposed analysis. In particular, it is a way to
assess the overall relevance of a complete morphological description and the relative
importance of a given phenomena within the full morphological system.

1 We use here the term ‘implementation’ for expressing the fact that Alexinaparsli provides
a way to create and manipulate electronic resources (lexicon, grammar) that follow mor-
phological analyses developed within the parsli formal model of inflectional morphology.
Alexinaparsli is both a language and a set of tools that can process a morphological descrip-
tion written in this language, e.g., for generating an automatic inflection tool.

Implementing a Formal Model of Inflectional Morphology 117

Yet, this formalisation and implementation approach is still rarely used in theoretical
morphology. In many cases, formalisations are somewhat approximative, and some-
times only concern the modeling of one particular phenomenon, often independently of
the overall morphological system it has been extracted from [31]. Few models exist for
which real implementations are available, that make it possible to validate theoretical
assumptions. Among these few models are PFM [27] and Network Morphology [8], to-
gether with Finkel’s Cat’s Claw for the former2 and the DATR formalism for the latter
[13] and its extensions such as KATR [14]. Still, large-scale implementations in these
frameworks remain rare. For example, analyses available on the Cat’s Claw web site
rarely involve more than fifty lexical entries. One exception is Brown and Hippisley’s
analysis of Russian nouns [8], which involves 1,500 lexical entries.3

On the other hand, computational approaches, most of them based on finite-state au-
tomata [5], have no difficulty for efficiently generating correct paradigms. As a matter
of fact, it has been shown by Karttunen [16] that if one reduces morphological theories,
including PFM and Network Morphology, solely to their ability to generate paradigms,
they come down to realisational systems equivalent to finite-state automata [5]. How-
ever, even if computational approaches perfectly achieve this goal, they are often crit-
icised, in the eyes of theoricists, for lacking what is the most interesting aspect from
the theoretical point of view, namely explictely modeling regularities and irregulari-
ties within paradigms. We introduce a means to easily implement formal analyses in a
typologically sound framework that benefits from the data processing power available
through computational approaches alone. 4 On an experiment carried out on modelling
Maltese verbal inflection, we show the benefit for formal approaches to rely on compu-
tational approaches.

1.2 Improving the Quality and Efficiency in NLP Resource Development

On the other side of the scope, the issue for computational linguistics, and in particular
NLP tool and resource development, lies in rapidly building high quality resources. We
show on experiments on German, that Alexinaparsli also allows for quickliy setting up
new NLP ressources that are theoretically sound.

2 The parsli Model of Inflectional Morphology

As indicated by its acronymic name, parsli [30,31], ‘paradigm shape and lexicon
interface’, is a formal model of inflectional morphology in general and of the interface

2 Cat’s Claw: http://www.cs.uky.edu/~raphael/linguistics/claw.html
3 This analysis is avaiable at http://networkmorphology.as.uky.edu
4 As a result, our contribution does not rely in the computational aspects per se, and are comple-

mentary to standard finite-state morphology tools. Drawing a parallel with syntax, one could
compare Alexinaparsli with the LKB plateform [11], parsli corresponding to the HPSG
theoretical model of syntax [19]. On the other hand, finite-state tools such as XFST [5] or
FOMA [15] would correspond to optimised and generic parser generators for context-free
grammars such as the Lex/Yacc pair (http://dinosaur.compilertools.net).

http://www.cs.uky.edu/~raphael/linguistics/claw.html
http://networkmorphology.as.uky.edu
http://dinosaur.compilertools.net

118 B. Sagot and G. Walther

between the shape of a lexeme’s paradigm and the structure of its lexical entry in partic-
ular. This inferential-realisational model in the sense of Stump [27] has been built as
a formalisation of the notions developed within the typological framework of canoni-
cal typology [12]. It explicitely models regularities and irregularities within a paradigm
and/or an inflectional system, so called non-canonical phenomena as defined within
canonical typology. Among those are suppletion [7], heteroclisis [26], deponency (or
morphosyntactic mismatches) [2], defectiveness [4], overabundance [29], etc. It relies
on the explicit representation of each non-canonical phenomenon as pieces of infor-
mation directly encoded within the structure of a specific lexical entry. Moreover, the
extent of the non-canonical phenomenon can be quantified with specific non-canonicity
measures developed within the framework [31].

A preliminary version of the framework had been introduced in [30] and used in
experiments described in [24]. The version described here is the one presented in [31].
Compared to the version in [30], it contains many innovations, among which the for-
mal representation of the lexical entry itself, including the specification of an entry’s
morphosyntactic feature structure set, the formalisation of an inflectional category, the
layered representation of inflection and the encoding of the full range of non-canonical
phenomena defined within canonical typology.

2.1 Representation of a Lexical Entry

parsli explicitly formalises the notion of inflectional lexical entry. As shown in Fig-
ure 2, each entry (or lemma) is defined through a phonological base input I-PHON for
the realisation rule sequences, its inflectional category I-CAT (such as verb, transitive
verb, noun, etc.), a set of expressable morphosyntactic feature sets, a set of suppletive
stems S-STEM or forms S-FORM and an inflectional pattern I-PAT consisting of a set of
subpatterns.

2.2 Morphosyntactic Feature Sets and Inflectional Categories

Each lexical entry is defined through its membership within a specific inflectional cat-
egory. Each one of those categories canonically expresses a certain set of morphosyn-
tactic feature sets. Latin nouns, for example, will express two number values (SG and
PL) as well as five differents case values (NOM, ACC, GEN, DAT and ABL). If a lexeme
belongs to a specific category, it will canonically express the same set of features and
be marked as standard in its lexical entry (see the feature set under MSF for French
BALAYER ‘swipe’ at Figure 2). Sometimes, lexemes will express more or less features
than expected. These deviations will be noted under MSF in their lexical entry. They are
then considered to display the non-canonical phenomena of overabundance [29], resp.
deficiency [31].

2.3 Realisation Zones

One of parsli’s major innovations with respect to comparable models [27,28,8] is the
generalisation of the notion of paradigm partition in the sense of Pirelli and Battista’s

Implementing a Formal Model of Inflectional Morphology 119

‘partition spaces’ [18] or Bonami and Boyé’s thematic spaces [6] to the exponence [17]
level by stipulating so called realisation zones, illustrated by the different colours in
Figure 1. Instead of associating lexical entries with a complete inflection class, parsli
associates every entry with realisation zones that contain the realisation rules allowing
for the construction of specific partitions of this lexeme’s paradigm. These realisation
rules can thus be combined in different ways to account for the realisation of different
types of paradigms. In particular, heteroclite paradigms as illustrated by the Slovak data
in Table 1, can be accounted for by the combination of zones usually used by lexemes
belonging to two different inflection classes. The Slovak data shows how some animal
nouns use the singular inflection zone of animate nouns to build their singular forms,
and the plural zone of inanimate nouns to build their plural forms. parsli defines
realisation classes, such as inflection class Zexp

anim for masculine animate nouns in Table 1,
as default combinations of realisation zones: classes are thus a derived notion built from
the clustering of realisation zones that are observed in the construction of a significant
number of paradigms. The significance itself is derived from a notion of decriptive
economy: classes are only stipulated if this allows for a more compact representation
of the whole system.

The set of morphosyntactic feature sets expressed by the realisation rules of a given
realisation zone is called this zone’s partition space.

Table 1. Heteroclite Slovak animal nouns

Zexp
anim: MASC. ANIMATE Zexp

inan: MASC. INANIMATE MASC. HETEROCLITE

CHLAP ‘guy’ DUB ‘oak tree’ OROL ‘eagle’

zexp
anim,sg: SG zexp

anim,pl: PL zexp
inan,sg: SG zexp

inan,pl: PL zexp
anim,sg: SG zexp

inan,pl: PL

NOM chlap chlap-i dub dub-y orol orl-y
GEN chlap-a chlap-ov dub-a dub-ov orl-a orl-ov
DAT chlap-ovi chlap-om dub-u dub-om orl-ovi orl-om
ACC chlap-a chlap-ov dub dub-y orl-a orl-y
LOC chlap-ovi chlap-och dub-e dub-och orl-ovi orl-och
INS chlap-om chlap-mi dub-om dub-mi orl-om orl-ami

2.4 A Layered Representation of Inflection

parsli relies on a highly structured representation of form realisation by specifying
various inflectional layers as illustrated in Figure 1. Every realisation zone belongs to a
specific layer. Among these layers is at least one stem layer dealing with potential stem
alternations (allomorphy). But other, optional theme (green) or exponence (blue) layers
can also be stipulated. Figure 1 illustrates a realisational architecture containing three
layers – one of each type. The theme and exponence layers could also further be split
into several layers if needed.

The realisation of a given form thus consistst in the application of one realisation
rule per layer. For example, inflecting the French verb BALAYER ‘swipe’ consists in ap-
plying realisation rules of two different layers, one stem layer and one exponence layer.

120 B. Sagot and G. Walther

Stems

Themes

Exponents

Fig. 1. Inflectional layers

BALAYER

I-PHON balayer

I-CAT verb

MSF
{

standard
}

S-STEM
∣
∣ (empty)

S-FORM
∣
∣ (empty)

I-PAT

∣
∣
∣
∣
∣
∣
∣
∣

(zs
ay, id), (zexp

v1,1, id)

(zs
ay, id), (zexp

v1,2, id)

(zs
ai, id), (zexp

v1,2, id)

Fig. 2. French BALAYER ‘swipe’

One specificity of French verbs in -ayer like BALAYER is that they are overabundant
[29] for half of their paradigm, i.e., half of their paradigm’s cells display two differ-
ent forms for expressing the same morphosyntactic feature set: balayent and balaient
are both valid for expressing the features 3.PL.PRS.IND, whereas only balayons holds
for 1.PL.PRS.IND. More precisely, each of the overabundant cells can be filled using
one of two different stems (balay- and balai-) but the same exponents. As a result, we
use two different stem zones, corresponding to two different realisation rules, and split
the set of realisation rules into two exponence zones: zone zexp

v1,1 corresponding to over-

abundant cells and zexp
v1,2 for non-overabundant cells.5 For example, building the form

balayent for 3.PL.PRS.IND involves the application of the stem realisation rule in stem
zone zs

ay, which builds the stem balay-, followed by a form realisation rule from zone
zexp

v1,1 that adds the suffix -ent. Generating the alternate form balaient involves the other
stem realisation rule from stem zone zs

ai, which builds the stem balai-, followed by the
same inflection zone zexp

v1,1 at the exponence layer. On the other hand, balayons obtains
its 1.PL.PRS.IND suffix -ons from a rule in zexp

v1,2, applied on the stem balay- generated
by the stem realisation rule in zs

ai. The combination of zs
ai with zexp

v1,2 is not allowed,
therefore *balaions is not generated.

The licit associations of realisation zones across layers are stated in a lexeme’s in-
flectional subpatterns grouped together in the inflectional pattern I-PAT, as indicated in
the lexical entry for BALAYER illustrated by Figure 2.

2.5 Suppletive Stems and Forms

Lexical entries can also specify suppletive stems or forms. In the canonical case, the list
of suppletive stems S-STEM or forms S-FORM will be marked as empty (see the example
of BALAYER). But in the case of a verb like French ALLER ‘to go’, suppletive stems can
be specified along with a stem index corresponding to the stem zone’s partition space
in which the suppletive stem is used. The three suppletive stems v-, aill- et ir- of ALLER

5 In the name zexp
v1,1, ‘v1’ stands for ‘First group verb’, whereas the final ‘1’ is the index of the

exponence zone.

Implementing a Formal Model of Inflectional Morphology 121

ALLER

I-PHON aller

I-CAT verb

MSF
{

standard
}

S-STEM

∣
∣
∣
∣
∣
∣

zs
2: v-

zs
7: aill-

zs
10: i-

S-FORM
∣
∣ (empty)

I-PAT
∣
∣
∣ (Zs

de f , id), (Zexp
aller , id)

Fig. 3. French ALLER ‘to go’

BRAT

I-PHON brat

I-CAT noun

MSF
{

standard
}

S-STEM
∣
∣ (empty)

S-FORM
∣
∣ (empty)

I-PAT

∣
∣
∣
∣
∣
∣

(Zs
reg, id), (zexp

M-A,SG, id)

(Zs
reg, id), (zexp

F-A,SG, tNB)

Fig. 4. Serbo-croatian BRAT ‘brother’ (data from [3])

are listed under S-STEM in Figure 3. Suppletive forms are listed under S-FORM along
with the feature set they express.

2.6 Realisational Couples and Transfer Rules

For each lexical entry, the inflectional pattern I-PAT specifies a certain number of sub-
patterns consisting of realisational couples, such as the couple (Zs

reg, id) in the entry of
Serbo-croatian BRAT ‘brother’. These couples themselves consist in a realisation zone
or class such as Zs

reg and a transfer function. Transfer functions are identity functions
in the canonical case. However, there are cases where a feature expressed by a lexeme’s
form differs from the feature canonically expressed by a given realisation rule. Such a
case arises for example in nouns like BRAT who build their plural form by using real-
isation rules usually used for building singular forms. Such nouns specify a particular
transfer function such as tNB that allows for specifying the morphosyntactic mismatch
between the features expressed (PL) and the features realised (SG).

This summary presentation of the parsli model will be extended while showing
how we implemented the formal notions within Alexinaparsli (section 4).

3 The Original Alexina Formalism

We have based our implementation of the parsli model on the Alexina lexical for-
malism [20,23,21,22]. Alexina covers both the morphological and the syntactic level,
only the former being relevant here.6 Alexina’s original morphological layer, although
significantly different, shares some fundamental properties with parsli. These include
in particular an explicit interface between the inflectional lexicon and the inflectional
grammar.

Alexina already has a good track record as a lexical formalism, as there exist a num-
ber of medium- and large-scale lexicons for diverse languages (see Table 2), among
which the first, largest and richest is the French lexicon Lefff [23,22]. Indeed, the de-
velopment of Alexina lexicons is facilitated by the availability of associated develop-
ment, maintenance, validation and extension tools and interfaces. Moreover, all Alexina

6 Alexina also entails a means to represent derivational morphology, but this also lies beyond
the scope of this paper.

122 B. Sagot and G. Walther

Table 2. Alexina lexicons. Darker lines correspond to Alexinaparsli lexicons. References for
each of these resources can ben found in [22,31].

LEXICON LANGUAGE #LEMMAS #LEXEMES #FORMS #DISTINCT FORMS

Lefff 7 français 120,000 125,000 550,000 460,000
Leffe espagnol 180,000 180,000 1,500,000 700,000
Leffga galicien 70,000 70,000 750,000 500,000
Leffla latin 2,200 2,200 115,000 96,000
EnLex anglais 350,000 350,000 580,000 510,000
DeLex allemand 63,000 63,000 2,100,000 405,000
PolLex polonais 240,000 240,000 1,400,000 360,000
SkLex slovaque 50,000 50,000 470,000 250,000
PerLex persan 30,000 30,000 550,000 460,000
KurLex kurde kurmanji 22,000 22,000 410,000 240,000
SoraLex kurde sorani 520 520 30,000 25,000
MaltLex maltais 560 560 9,000 7,200

lexicons are freely available (including Alexinaparsli lexicons). This guarantees that
morphological analyses and lexical data can be checked and used by anyone, be it for
typological, morphological or NLP studies.

The way Alexina encodes morphology explicitely relies on a paradigmatic approach.
Each lexical entry is associated with an inflection class, as illustrated in the upper part of
Figure 5 with five verbal lexical entries from the Lefff .8 Each intensional entry consists
of a citation form (respectively accoutumer ‘accustom’, appeler ‘call’, enrichir ‘enrich’,
dormir ‘sleep’, admettre ‘admit’) and an inflection class. In the morphological grammar,
each inflection class is explicitely defined through the realisation rules that describe how
it will build paradigms. In Figure 5, the inflection classes involved are v-er for the
regular and productive class of first group verbs, v-ir2 for the regular and virtually non-
productive class of second group verbs, v-ir3 for third-group verbs in -ir and v55 for
one of the irregular third-group inflection classes. For some lexical entries, the inflection
class is associated with inflection class variants, which allow for selecting specific rules
for generating some of the forms in the paradigm. For example, in Figure 5, variants dbl
and std respectively apply to first-group verbs which double their stem-final consonant
in some cells (cf. appeler / appelle) and to first-group verbs which do not (cf. peler
‘peel’ / pèle). The lower part of Figure 5 shows a few inflected entries, or extensional
entries, generated by the lexical entries of the upper part. The lexemes’ morphological
categories are displayed next to the inflected form, along with their citation forms and
a morphological tag encoding the feature sets expressed by the inflected form.

An Alexina morphological grammar contains two main sections: (1) a set of mor-
phonological rules — or rather, as all Alexina lexicons to date are orthographic, mor-
phographemic rules that simulate morphonological rules; and (2) the morphological
part proper, i.e., the description of each inflection class.

7 The Alexinaparsli version of the Lefff ’s morphological description is called NEW in [24]. Its
original (“official”) version relies on the original Alexina formalism [22].

8 For the sake of simplicity, syntactic information is not displayed.

Implementing a Formal Model of Inflectional Morphology 123

accoutumer v-er:std
appeler v-er:dbl
enrichir v-ir2
dormir v-ir3
admettre v55

accoutuma v accoutumer J3s
accoutume v accoutumer PS13s
accoutumant v accoutumer G
appela v appeler J3s
appelle v appeler PS13s
appelant v appeler G
enrichit v enrichir J3s
enrichit v enrichir P3s
enrichissant v enrichir G
dormit v dormir J3s
dort v dormir P3s
dormant v dormir G
admit v admettre J3
admet v admettre P3
admettant v admettre G

Fig. 5. Lexical entries from the Lefff : intensional entries in the upper part, a few corresponding
extensional entries in the lower part

The morphonological part usually starts by the definition of graphemes (including
digraphs or trigraphs) and grapheme classes (e.g., the set of back vowels). These classes
can then be used when defining morphonological rules.

In the original Alexina formalism, the strictly morphological part of the grammar
defines inflection classes by specifying realisation rules for inflected forms associated
with the corresponding feature tag. These rules can only involve suffixation and/or pre-
fixation. Any other morphological operation must therefore be simulated in two steps,
namely first an affixation rule that inserts the necessary information for the subsequent
application of dedicated “morphonological” rules that produce the correct output.9 A
realisation rule can also simply stipulate the form for a given morphological tag to be
realised in the same way that the form for another tag (this corresponds to Stump’s [27]
“rules of referral”). This constitutes a simple (and directional) modeling of the notion
of syncretism. An inflection class can also inherit all or some rules from another in-
flection class. Thus, in the Lefff , the inflection class adj-4 for adjectives that inflect
both in gender (-e for the feminine) and in number (-s in the plural) inherits all rules
from the inflection class nc-4 for masculine nouns inflecting in both gender and num-
ber using the same suffixes (e.g., doctorant/doctorante ‘PhD student’). All types of

9 Cf., producing appelle from appeler and jette from jeter in a unified way entails using a non-
strictly concatenative operation: the duplication of the stem-final consonant. There, one can
use an affix such as -2e followed by a “morphonological” rule that rewrites t_2 as tt_ and l_2
as ll_ (“_” indicates a morph boundary).

124 B. Sagot and G. Walther

realisation rules (explicit or inheritance) can be restricted based on their input, using
positive (rads=) or negative (rads_except=) regular-expression-like constraints.10

At the technical level, an Alexina morphological grammar is an XML document. A
dedicated tool can then compile into an inflection script (which can inflect the associated
intensional lexicon), a “disinflection” (ambiguous lexicon-free lemmatisation) tool and
a derivation tool (that produces all possible derived lexemes based on regular derivation
patterns, sketched above but not described here). This technical architecture is preserved
in Alexinaparsli.

4 Adapting Alexina to parsli: Alexinaparsli

Our development of an implementation formalism for parsli is based on the orignal
Alexina formalism, which we adapted for it to take into account parsli-specific con-
cepts. The notions of inflection class variant, classes of letters, morphonological rules
and constraints on realisational rules have been retained from Alexina, and sometimes
generalised.

As already mentioned, a partial Alexina implementation of a preliminary version of
parsli was used in [24]. However, the work presented in this section goes far beyond,
for at least two reasons.

First, the parsli formalism itself has been heavily enriched since [24]. The first
version of parsli was for example restricted to one stem level and one exponence
level, and was not able to deal with the full range of non-canonical phenomena. Be-
cause this was sufficient for encoding French verbal inflection, it allowed for carrying
the compacity experiments described in [24]. The latest version of parsli, whose im-
plementation within Alexina is described here, has proven adapted to a large variety of
typologically diverse languages since, such as Sorani Kurdish (Indo-European, western
Iranian), German (Indo-European, Germanic, see Section 5.2) Latin (Indo-European,
Italic), Maltese (western Semitic), Khaling (Sino-Tibetan, Kiranti), and others.

Second, the implementation of the preliminary version of parsli used in [24] only
covered those parsli notions that were required for implementing the four morpholog-
ical descriptions of French verbal inflection used in the compacity study. Notions such
as transfer rules were already in parsli but not implemented. Moreover, Alexinaparsli
offers many ways to simplify morphological grammars, that are also new to the work
presented here. This includes for example (1) various factorisation mechanisms; (2) a
mechanism for specifying, for each category the inventory of morphological attributes,
their values, and their incompatibilities, thus specifying the inventory of cells in the
paradigms; (3) a novel and generic way to model morphological (realisational) opera-
tions; (4) the possibility to encode realisation rules using rule blocks, in a way similar
to Stump’s [27] Paradigm Function Morphology.

10 For example, it is possible to posit two rules for the same tag, and specify that one applies only
to stems ending with a consonant or a glide, the other only to stems ending with a vowel or a
glide. As a result, the corresponding cell will be overabundant for lexical entries whose stem
ends in a glide, yet for those lexical entries only.

Implementing a Formal Model of Inflectional Morphology 125

4.1 Morphological Operations

As mentioned above, the only available operations for expressing realisation rules in
the original Alexina formalism were prefixation and suffixation operations, and more
complex operations had to be simulated via morphonological rules. Alexinaparsli now
allows for modeling non-concatenative operations. More specifically, it is now possible
to define in the morphological grammars all morphological operations required by real-
isation rules, including non-concatenative ones. Indeed, such morphological operations
are considered as specifically belonging to the morphological system of the language at
hand. Suffixation (written as append=) and prefixation (left_append=) are retained
from Alexina as basic morphological operations. In addition, insert operations allow
for inserting segments, while replace allows for replacing one segment by another.
These basic operations can be used for defining more complex operations, as illustrated
in Figure 7, which we explain below. The definition of morphological operations, just
as morphonological rules in the original Alexina, often makes use of the notion of let-
ter class, sketched above and retained within Alexinaparsli. Two letter class definitions
from MaltLex are snown in Figure 6.

<letterclass name="C" letters="b␣ċ␣d␣f␣ġ␣g␣gh̄␣h̄␣h␣j␣k␣l␣m␣n␣p␣q␣r␣s␣t␣v
␣w␣x␣ż␣z␣’␣"/>

<letterclass name="V" letters="a␣e␣i␣o␣u␣ie"/>

Fig. 6. Two letter classes from MaltLex

Based on letter classes and on the primitive operations (append, left_append,
insert and replace), operations such as shown in Figure 7 can be defined. In this
Figure, the operation deleteV1 defined for Maltese stems stipulates for example that
for a given stem construction rule input (source=) with a CVCVC structure, applying
deleteV1 produces a new stem (target=) with a CCVC structure. A replace oper-
ation keeps the occurrences of a letter class c unchanged if it is written [:c:] on both
sides of the rule, as is the case for all consonants [:C:] in the definition of deleteV1,
and deletes it if it is written [0:c:], as is the case for the first vowel [0:V:]. Within
an operation definition, the first applicable rule is applied, and the following rules are
ignored (except if the applied rules specifies explicitely the opposite, with stop="0").
If none of the rules can be applied on a particular input, the operation fails.

Erasing segments is not the only option when using replace. Not preserving a seg-
ment can also be used as the first part of a real replacement operation. Thus, any occur-
rence of the symbol “_” in the output of a rule will be replaced by an argument given to
the operation in addition to its input, as is the case in the second operation definition in
Figure 7. For example, one can invoke the deleteV1changeV2 operation in a realisa-
tion rule by writing deleteV1changeV2(i), in order to replace the second vowel by
an i. Note that each occurrence of “_” in the output of a rule corresponds to a different
argument to be given to the operation at invocation time.

126 B. Sagot and G. Walther

<!-- Maltese (MaltLex) -->
<operation_definition name="deleteV1">
<replace source="[:C:][0:V:][:C:][:V:][:C:]"

target="[:C:][:C:][:V:][:C:]" />
<replace source="[:C:][0:V:][:C:][:V:]" target="[:C:][:C:][:V:]" />

</operation_definition>
<operation_definition name="deleteV1changeV2">
<replace source="[:C:][0:V:][:C:][0:V:][:C:]"

target="[:C:][:C:]_[:C:]" />
<replace source="[:C:][0:V:][:C:][0:V:]" target="[:C:][:C:]_" />

</operation_definition>

<!-- Latin (Leffla) -->
<operation_definition name="redup-initial">
<replace source="#[1:C:][0:V:]" target="#[1:C:]_[1:C:]_"/>

</operation_definition>

Fig. 7. Morphological operations in Alexinaparsli (data from MaltLex and Leffla)

Finally, it is also possible to duplicate segments, as necessary for encoding redupli-
cation. The last operation definition in Figure 7 is an example of a reduplication oper-
ation, used for producing several Latin verbal stems. The initial consonant is indexed
by a numeric identifier, here 1 in [1:C:], which allows for invoking it more than once
anywhere in the rule. In this operations, it is reduplicated in the output. In addition, the
initial vowel is dropped. This operation is also an illustration of a two-argument oper-
ation: the first, respectively second occurrence of “_” in the output of the rule will be
replaced by the first, respectively second argument provided to redup-initial upon
invokation. For example, calling redup-initial(e,e)on the stem fall- from the verb
FALLO ‘deceive’ outputs the stem fefell-.

4.2 Stem Allomorphy, Stem Suppletion and Form Suppletion

In the original Alexina formalism, each lexical entry is meant to have one unique stem.
Accounting for stem allomorphy requires to circumvent this limitation by using avail-
able mechanisms in ways that are both very ad hoc and not linguistically sound.11 In
Alexinaparsli, stem allomorphy is directly handled by two distinct mechanisms, one
for regular stem allomorphy (as in Iranian languages, for example) and one for irregu-
lar stem allomorphy (as for the verb aller ‘go’ in French, illustrated in Figure 3.12

Regular allomorphy is modeled using realisation rules at the stem level within the
grammar. Figure 8 provides two such rules for modeling Maltese regular stem allomor-
phy, which is illustrated the two paradigms in Table 3. Within Maltese paradigms, stem

11 For example, one can define “morphonological” rules that play the role of stem generators.
In that case, the realisational rule can suffix the stem with a special marker that will later be
interpreted by these “morphonological” rules. This temporary solution was used, for example,
for simulating stem allomorphy Persian.

12 We refer the reader to [31] for a discussion on why and how regular and irregular stem allo-
morphy should be distinguished from one another.

Implementing a Formal Model of Inflectional Morphology 127

Table 3. Paradigms for the Maltese verbs RASS and MESS

RASS MESS RASS MESS

‘press’ ‘touch’ ‘press’ ‘touch’

RAD2

PFV 1.SG rasséjt messéjt

RAD5

IPFV 1.SG nróss nmíss
PFV 2.SG rasséjt messéjt IPFV 2.SG tróss tmíss
PFV 1.PL rasséj.na messéj.na IPFV 3.M.S jróss jmíss
PFV 2.PL rasséj.tu messéj.tu IPFV 3.F.S tróss tmíss

RAD1 PFV 3.M.S ráss méss
RAD6

IPFV 1.PL nrós.su nmís.su
RAD3 PFV 3.F.S rás.set més.set IPFV 2.PL trós.su tmís.su
RAD4 PFV 3.PL ras.sé:w mes.sé:w IPFV 3.PL jrós.su jmís.su

perfective sub-paradigms imperfective sub-paradigms

<table name="CVCC" rads="[:C:][:V:][:C:][:C:]">
<item name="S1"/>
<item name="S2" source="S1" append="ej"/>
<item name="S3" source="S1" operation="" />
<item name="S4" source="S1" append="e"/>
<item name="S5" source="S1" operation="changeV1(o)" rads="[:C:]a[:C

:][:C:]"/>
<item name="S5" source="S1" operation="changeV1(i)" rads="[:C:]e[:C

:][:C:]"/>
<item name="S5" source="S1" operation="changeV1(i)" rads="[:C:]i[:C

:][:C:]"/>
<item name="S6" source="S5" operation="" />

</table>

Fig. 8. Regular stem allomorphy (MaltLex data, after Camilleri and Walther [10])

allomorphy involves up to six distinct stems (RAD1 to RAD6). The examples in Table 3
involve four stems, indicated by four distinct cell background colors (two of the stems
are syncretic with others: RAD1 and RAD2 on the one hand, and RAD5 and RAD6 on
the other hand).

The other way to account for multiple stems in Alexinaparsli is to provide them ex-
plicitely in the lexical entry. It is the natural way to deal with irregular stem allomorphy,
i.e., cases where stem creation is not dealt with by the grammar but constitutes a lexical
irregularity of the lexical entry at hand. If one considers that French verbs have twelve
stems (often syncretic), following Bonami and Boyé [6] and retaining the same stem
identifiers from stem 1 to stem 12, each of these stems corresponds to a slot after the /
symbol in the lexical entry, sorted and separated by a comma. For example, in the case
of ALLER, as shown in Figure 9, suppletive stems specified in the lexicon are stem 2
va-, stem 7 aill- and stem 10 i-. Other stems are deduced from these stems or from
the citation form’s stem all- by regular stem allomorphy rules. For instance, stem 3 is
deduced by syncretism with stem 2, and so on.

128 B. Sagot and G. Walther

aller v:23r/,va,,,,,aill,,,i
dire v:3re/dis,,di,,,,,,,,,dit/2.pl.prs.ind=dites

Fig. 9. Irregular stem allomorphy and form allomorphy (data from a modified Lefff)

The original Alexina formalism had no way to encode form suppletion. Again,
this non-canonical phenomena had to be modeled in a non-satisfying way.13 In
Alexinaparsli, it is possible to list suppletive forms in a lexical entry. They override
any form the morphological grammar might want to generate. Figure 9 illustrates this
on the example of the verb dire ‘say’, which has the irregular 2.PL.PRS.IND dites in-
stead of the regular disez.

In the case of overabundant suppletive forms, the mechanism already available in
Alexina is preserved: they can simply be listed explicitely as such. For example, MAR-
RON ‘brown’ is listed in the Lefff as inflecting for number (marrons). In addition, the
Lefff lists an additional plural form (marron).

4.3 Inflectional Layers, Zones and Patterns

Another new feature of Alexinaparsli is that it implements inflectional layers. The orig-
inal Alexina formalism could deal with one exponence layer only. The implementation
of the preliminary version of parsli used in [24] was dealt with one stem layer and
one exponence layer only. In Alexinaparsli, a description can involve an unbounded
amount of layers (level): Zero or one stem layer (type="stem"), zero to many theme
layers (type="theme") and zero to many exponence layers (type="exponent").

parsli defines partition spaces as subsets of feature structure sets. They constitute
one of the ways to refer to realisation zones as defined in parsli. In Alexinaparsli,
these partition spaces can be defined on a per-layer basis. We illustrate this mechanism
in Figure 10 on Maltese for the stem layer and on Latin for the exponence layer.

One of the main innovation in parsli, and therefore in Alexinaparsli, is the in-
troduction of realisation zones. In Alexinaparsli, they can be defined in two different
ways. Either directly using XML tags within a given level, or by invoking them as the
intersection of a realisation class and a partition space. For space reasons we do not
illustrate this here, but the morphological grammars in MaltLex and Leffla, which are
freely available, contain many examples thereof.

In Alexina, intensional entries are associated with inflection classes. Alexinaparsli
implements parsli’s view, according to which a lexical entry is associated with re-
alisation zones through a pattern. Inflection classes are only a secondary notion: they
emerge as observable generalisations that capture sets of zones often used together by
lexical entries. Inflection classes are indicated by table tags in Alexinaparsli, zones by
zone. As a result, lexical entries in the intensional lexicon are associated with patterns,
which are defined in the grammar. A pattern contains at least one subpattern, which is

13 Either by assigning to the entry an inflection class that would not generate forms for all cells,
if any, and specifying the missing forms explicitely; or by considering (almost) the whole form
as an exponent (suffix) over an (almost) empty stem.

Implementing a Formal Model of Inflectional Morphology 129

<!-- Maltese (MaltLex) -->
<level type="stem" level="1">

<partitionspace name="S1" features="3.m.sg.pfv"/>
<partitionspace name="S2" features="1.pfv|2.pfv"/>
<partitionspace name="S3" features="3.f.sg.pfv"/>
<partitionspace name="S4" features="3.pl.pfv"/>
<partitionspace name="S5" features="sg.ipfv"/>
<partitionspace name="S6" features="pl.ipfv"/>

<!-- Latin (Leffla) -->
<level type="exponent" level="3">

<partitionspace name="I1" features="ipfv.ind|ipfv.sbjv|prs.inf"/>
<partitionspace name="I2" features="pfv.ind|pfv.sbjv|pst.inf"/>
<partitionspace name="I3"

features="prs.ptcp|fut.ptcp|fut.inf|sup|pst.ptcp|grv|grd"/>

Fig. 10. Definition of partition spaces (data from MaltLex and Leffla)

defined in turn as a set of realisation zones (realzone),14 one per realisational layer
(see Figure 11).15 Each subpattern can only produce either zero or one form for a given
feature set (i.e., for a given cell). Regular overabundance therefore requires patterns that
contain several subpatterns. In addition, each pattern is provided with a morphological
category. This allows for computing the inventory of cells that has to be filled by the
pattern. How and from which information this inventory is computed is explained in
the next section. Figure 11 illustrates how patterns are defined in the grammar based on
Latin verbal data from Leffla.

4.4 Morphosyntactic Features and Definition of Paradigms’ Cells

In the original Alexina formalism, morphosyntactic features appeared only as tags
associated with (exponence) realisation rules. In parsli, a realisational model, each
form is considered as the realisation of a morphological feature structure. Alexinaparsli
therefore explicitely models feature structures. The inventory of cells specific to a given
morphological category is computed based on a unification mechanism. For a given mor-
phological category (category), the cells to be realised are obtained as the combina-
tion of all attribute-value pairs that are mutually compatible. Therefore, an Alexinaparsli

14 As mentioned above, a realisation zone is either invoked as such, or by proving a realisation
table and a partition space. In the latter case, if the partition space is omitted, the whole table
is considered as a zone. In addition, a transfer function, in the sense sketched above, can be
specified.

15 In fact, constraints can be associated with a realzone, such as a partition space for which the
rule is valid, one or more variants that must be assigned for the lexical entry in order for the
rule to apply, or constraints on the input of the rule (rads= and rads_except=). Therefore,
several realzones can be used in the same subpattern for the same level. This is one of the
factorisation devices mentioned above.

130 B. Sagot and G. Walther

<pattern name="v-aA" cat="v" >
<subpattern>
<realzone level="1" table="s-reg"/>
<realzone level="2" table="a"/>
<realzone level="3" table="v-A"/>

</subpattern>
</pattern>
<pattern name="v-aAB" cat="v" >
<subpattern>
<realzone level="1" table="s-reg"/>
<realzone level="2" table="a"/>
<realzone level="3" table="v-B"/>
<realzone level="3" partitionspace="I3" table="v-A"/>

</subpattern>
</pattern>

Fig. 11. Examples of pattern definitions (data from Leffla)

morphological grammar specifies for each category the inventory of attributes, each pos-
sible value for each of these attribute, as well as exclusion rules (e.g., this value for this
attribute is incompatible with that value for that attribute, or with the attribute itself; or
this particular feature structure is invalid).

Finally, morphological feature structure sets can be defined, and then associated with
lexical entries for encoding deficiency. For example, in French, impersonal verbs are
associated with the set impers, which only contains cells from the verbal paradigm
whose morphological feature structure unify with 3.SG.

4.5 Realisation Rules

Above, we have described how morphological operations are defined, and can be in-
voked (including by realisation rules). Contrarily to the orignal Alexina, Alexinaparsli
associates realisation rules with morphological feature structures. At a given layer, a
realisation rule will be applied if its feature set successfully unifies with the feature set
of the form being generated.

In Alexinaparsli, it is possible, as in PFM, to defined rule blocks within a zone or
a table. In each block, one and only one rule applies given an input feature set. In the
Maltese example in Figure 12, that illustrates the unique exponence table in MaltLex,
we make use of two rule blocks block="1" and block="2". The first one realises as-
pect and person, the second one realises number (suffix -u for plural forms). As in PFM,
Alexinaparsli allows for writing portemanteau rules that span over more than one ad-
jacent blocks, and have precedence over standard rules. In our example, block="1-2"
allows for one rule to short-cut both blocks. Last, if more than one rule can apply for
generating the same form, the first one is used (contrarily to PFM, which would use the
most specific one).

Implementing a Formal Model of Inflectional Morphology 131

<level type="exponent" level="3">
<table name="exponence" rads="">
<item block="1-2" suffix="na" features="1.pl.pfv"/>
<item block="1-2" suffix="et" features="3.f.sg.pfv"/>
<item block="1" suffix="t" features="1.sg.pfv|2.pfv"/>
<item block="1" prefix="n" features="1.ipfv"/>
<item block="1" prefix="t" features="2.ipfv"/>
<item block="1" prefix="t" features="3.f.sg.ipfv"/>
<item block="1" prefix="j" features="3.ipfv"/>
<item block="2" suffix="u" features="pl"/>

</table>
</level>

Fig. 12. Realisation rules (MaltLex data)

5 Use Cases

5.1 Alexinaparsli for Language Description

Throughout the previous section, we have used examples from MaltLex, a lexicon that
covers the semitic-based part of the Maltese verbal system. The first version of this
description was based on Camilleri’s analysis [9], which had been formalised and im-
plemented in Alexinaparsli. The lexicon associated with this implementation was a
quasi-exhaustive inventory of 600 semitic-based verbal entries, extracted from the list
of 850 first-binyan verbs from Spagnol’s Maltese Language Resource Server [25] by
manually filtering out incorrect entries. This implementation, including the lexicon, has
shown that Camilleri’s analysis correctly accounts for most data on first-binyan stems.
However, it has also unveiled that several phenomena were not handled, including in-
stances of overabundance. Moreover, as it is only a model of stem alternation, it does
not account for the behavior of the extension vowel, which appears in the imperfective
forms of some verbs. The extension of the model for taking into account this exten-
sion vowel was greatly eased by its implementation, which allowed for generating all
inflected forms and validate them. In other words, the parsli formalisation and the
Alexinaparsli implementation, together with a large-scale lexicon (for the class of verbs
at hand) were of a crucial help for correcting and extending an analysis previously as-
sumed as complete, thus contributing to improve the understanding of Maltese verbal
morphology [10].

5.2 Alexinaparsli for Developing Lexical Resources

The development of lexical resources for NLP can also benefit from a morphologically
sound model of inflection. An example thereof is the recent development of DeLex, a
new Alexina morphological lexicon for German. Apart DeLex, and to our best knowl-
edge, there is surprisingly no freely available morphological lexicon for German, as
pointed out by Adolphs [1].

132 B. Sagot and G. Walther

German morphology is not stricly concatenative, in particular because nominal and
verbal inflection involves vowel alternations (ablaut and umlaut) at the stem level, lead-
ing to stem allomorphy. In addition, overabundance is massive, in particular within
nominal and adjectival paradigms, both at the stem and at the exponence levels.16 As a
result, the manual development of a morphological grammar for German was simplified
and speeded up thanks to notions defined in parsli and implemented in Alexinaparsli.
For example, our morphological grammar involves two realisational levels for adjec-
tives and nouns, namely one stem level and one exponence level. This allows for defin-
ing only one adjectival exponence table, as all variation within adjectival inflection lies
at the stem level, i.e., in the way the comparative and superlative stems are built17 or
resort to morphonology. Verbs involve an additional exponence level, which uses the
unique adjectival exponence zone for inflecting the past participle.

The efficient development of this morphological grammar has been realised together
with the extraction of lexical data and continuous validation of both the grammar and
the lexicon via the paradigms they generate. Indeed, we extracted large-scale lexical
information from the German Wiktionary18, which provided us with unstructured, noisy
and incomplete raw data. The morphological grammar proved very useful for detecting
and correcting the this raw data.

The current version of DeLex now contains as many as 63,000 intensional (citation
form + inflection pattern) entries generating over 2 million extensional forms (inflected
form + citation form + morphological feature structure), which cover 405,000 distinct
inflected forms.

5.3 Alexinaparsli for Quantitative Formal Morphology

Beyond language description and analysis, a large-scale implementation (large-coverage
grammar and medium- or large-scale lexicon) is a prerequisite for carrying out quanti-
tative linguistic studies. A preliminary version of parsli had already proven sufficient
to implement four different description of French verbal inflection [24]. The associated
implementation allowed for objectively comparing these descriptions on the basis of a
dedicated information-theoretic measure [24].

New complexity assessment tools have been developed, which are now compatible
with Alexinaparsli as presented in this paper. They have been used for quantitatively
assessing various descriptions of Latin and Maltese verbal inflections, including the
descriptions of Leffla and MaltLex [31] used as examples troughout this paper. These
comparisions have shed new light on formal morphological issues such as the balance
between heteroclisis and deponency in Latin, or the boundary between morphonology
and (autonomous) morphology in Maltese.

16 For example, at the exponence level, many masculine and neuter nouns can bear the suffix -s
or -es for the GEN.SG, and/or the null suffix or the suffix -e for the DAT.SG. The stem level also
shows overabundance for these nouns, specifically for the plural stem.

17 For example, stem suppletion (gut ‘good’, besser ‘better’ best- ‘best’), stem-related deficiency
(alkoholfrei ‘alcool-free’ has no comparative or superlative) or stem overabundance (frei ‘free’,
freier ‘freer’, freist- or freiest- ‘freest’).

18 http://de.wiktionary.org

http://de.wiktionary.org

Implementing a Formal Model of Inflectional Morphology 133

6 Conclusion

In this paper we have introduced the latest version of Alexinaparsli, an implementa-
tion of the parsli model for inflectional morphology that extends the Alexina lexical
framework. We have shown on examples from various languages the relevance of the
model and its implementation. Our aim is now, thanks to Alexinaparsli, to strengthen
our efforts towards joint work between various specialists of morphology, be they de-
scriptive linguists, typologists, formal linguists or computational linguists.

References

1. Adolphs, P.: Acquiring a poor man’s inflectional lexicon for German. In: Proceedings of
LREC 2008, Marrakech, Maroc (2008)

2. Baerman, M.: Morphological reversals. Journal of Linguistics 43, 33–61 (2007)
3. Baerman, M.: Deponency in Serbo-Croatian, Typological Database on Deponency, Surrey

Morphology Group, CMC, University of Surrey,
http://www.smg.surrey.ac.uk/deponency/Examples/Serbo-Croatian.htm

4. Baerman, M., Corbett, G.G., Brown, D. (eds.): Defective Paradigms: Missing Forms and
What They Tell Us. Oxford University Press (2010)

5. Beesley, K.R., Karttunen, L.: Finite State Morphology. Studies in Computational Linguistics,
CSLI Publications (2003)

6. Bonami, O., Boyé, G.: Suppletion et classes flexionnelles dans la conjugaison du franc̨ais.
Langages 152, 102–126 (2003)

7. Boyé, G.: Suppletion. In: Brown, K. (ed.) Encyclopedia of Language and Linguistics, 2nd
edn., vol. 12, pp. 297–299. Elsevier, Oxford (2006)

8. Brown, D., Hippisley, A.: Network Morphology: A Defaults-based Theory of Word Struc-
ture. Cambridge University Press (2012)

9. Camilleri, M.: Island morphology: Morphology’s interactions in the study of stem patterns.
Linguistica 51, 65–84 (2011)

10. Camilleri, M., Walther, G.: What small vowels and a large lexicon tell us about Maltese
verbal inflection. Presentation at the 8th Décembrettes, Bordeaux, France (2012)

11. Copestake, A.: Implementing Typed Feature Structure Grammars. CSLI Publications, Stan-
ford (2002)

12. Corbett, G.G.: Agreement: the range of the phenomenon and the principles of the Surrey
database of agreement. Trans. of the Philological Society 101, 155–202 (2003)

13. Evans, R.P., Gazdar, G.: Inference in DATR. In: Proceedings of EACL 1989, pp. 66–71
(1989)

14. Finkel, R., Stump, G.T.: Generating Hebrew verb morphology by default inheritance hierar-
chies. In: Proceedings of the ACL 2002 Workshop on Computational Approaches to Semitic
Languages, Philadelphia, PA, United States (July 2002)

15. Hulden, M.: Foma: a finite-state compiler and library. In: Proceedings of EACL 2009 (de-
mos), pp. 29–32 (2009)

16. Karttunen, L.: Computing with realizational morphology. In: Gelbukh, A. (ed.) CICLing
2003. LNCS, vol. 2588, pp. 205–216. Springer, Heidelberg (2003)

17. Matthews, P.H.: Morphology. Cambridge University Press, United Kingdom (1974)
18. Pirrelli, V., Battista, M.: The Paradigmatic Dimension of Stem Allomorphy in Italian Verb

Inflection. Italian Journal of Linguistics, 307–380 (2000)
19. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. CSLI Publications, Stanford

(1994)

http://www.smg.surrey.ac.uk/deponency/Examples/Serbo-Croatian.htm

134 B. Sagot and G. Walther

20. Sagot, B.: Automatic acquisition of a slovak lexicon from a raw corpus. In: Matoušek, V.,
Mautner, P., Pavelka, T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 156–163. Springer,
Heidelberg (2005)

21. Sagot, B.: Building a morphosyntactic lexicon and a pre-syntactic processing chain for Pol-
ish. In: Proceedings of LTC 2005, Poznań, Poland, pp. 423–427 (2007)

22. Sagot, B.: The Lefff, a freely available, accurate and large-coverage lexicon for French. In:
Proceedings of LREC 2010, Valletta, Malta (2010)

23. Sagot, B., Clément, L., Villemonte de la Clergerie, E., Boullier, P.: The Lefff 2 syntactic
lexicon for French: architecture, acquisition, use. In: Proceedings of LREC 2006, Lisbons,
Portugal (2006)

24. Sagot, B., Walther, G.: Non-canonical inflection: Data, formalisation and complexity mea-
sures. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2011. CCIS, vol. 100, pp. 23–45.
Springer, Heidelberg (2011)

25. Spagnol, M.: A Tale of Two Morphologies. Verb structure and argument alternations in Mal-
tese. Ph.D. thesis, University of Konstanz, Constance, Germany (2011)

26. Stump, G.T.: Paradigm function morphology. In: Brown, K. (ed.) Encyclopedia of Language
and Linguistics, pp. 171–173. Elsevier, Oxford

27. Stump, G.T.: Inflectional Morphology. Theory of Paradigm Structure. Cambridge University
Press, United Kingdom (2001)

28. Stump, G.T.: Heteroclisis and paradigm linkage. Language 82, 279–322 (2006)
29. Thornton, A.: Overabundance (multiple forms realizing the same cell): A non-canonical phe-

nomenon in Italian verb morphology. In: Maiden, M., John Charles Smith, M.G., Hinzelin,
M.O. (eds.) Morphological Autonomy: Perspectives From Romance Inflectional Morphol-
ogy. Oxford University Press (2011)

30. Walther, G.: Measuring morphological canonicity. In: Perko, G. (ed.) Les frontières Internes
et Externes de la Morphologie, Linguistica. Faculty of Arts, vol. 51, pp. 157–180. University
of Ljubljana, Ljubljana (2011)

31. Walther, G.: Sur la canonicité en morphologie – Perspective empirique, formelle et compu-
tationnelle. Ph.D. thesis, Université Paris-Diderot (2013)

Verbal Morphosyntactic Disambiguation
through Topological Field Recognition

in German-Language Law Texts

Kyoko Sugisaki and Stefan Höfler�

University of Zurich, Institute of Computational Linguistics,
Binzmühlestrasse 14, 8050 Zürich, Switzerland

{sugisaki,hoefler}@cl.uzh.ch
http://www.cl.uzh.ch

Abstract. The morphosyntactic disambiguation of verbs is a crucial
pre-processing step for the syntactic analysis of morphologically rich languages
like German and domains with complex clause structures like law texts. This pa-
per explores how much linguistically motivated rules can contribute to the task.
It introduces an incremental system of verbal morphosyntactic disambiguation
that exploits the concept of topological fields. The system presented is capable
of reducing the rate of POS-tagging mistakes from 10.2% to 1.6%. The evalua-
tion shows that this reduction is mostly gained through checking the compatibil-
ity of morphosyntactic features within the long-distance syntactic relationships
of discontinuous verbal elements. Furthermore, the present study shows that in
law texts, the average distance between the left and right bracket of clauses is
relatively large (9.5 tokens), and that in this domain, a wide context window is
therefore necessary for the morphosyntactic disambiguation of verbs.

Keywords: Morphosyntactic disambiguation, topological field model,
Constraint Grammar, law texts, German verbs, POS-tagging.

1 Introduction

This paper reports on the development of a rule-based system for the morphosyntactic
disambiguation of verbs as a preprocessing component of a supertagger for law texts.
The morphosyntactic disambiguation of verbs is a crucial step for recognising clause
structures in a morphologically rich language like German. German verbal complexes
are often realised as discontinuous constituents. Moreover, German verbal morphol-
ogy exhibits some degree of syncretism: verbal inflectional forms and morphosyntactic
features are not always in one-to-one relationships. Especially for the legislative do-
main, the morphosyntactic disambiguation of verbs is a challenging task since clausal
structures in law texts are particularly complex. Due to the frequency of verb phrase
coordinations and embedded clauses (cf. [8,17]), the distances between the heads of
clauses (e.g., finite verbs and complementisers) and their verbal complements are often
relatively long and intricate.

� This project was funded under Swiss National Science Foundation grant 134701.

C. Mahlow and M. Piotrowski (Eds.): SFCM 2013, CCIS 380, pp. 135–146, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cl.uzh.ch

136 K. Sugisaki and S. Höfler

In this paper, we present a rule-based system for morphosyntactic disambiguation of
verbs that exploits the concept of topological fields, and we explore to what degree our
linguistically motivated rule-based system can resolve verbal morphosyntactic ambigu-
ities in law texts.

The paper is organised as follows. In the next section, we describe the general ar-
chitecture of our supertagger. In section 3, we present the two major components of
verbal morphosyntactic disambiguation. In section 4, we evaluate the performance of
our system and discuss the rate of the reduction in part-of-speech tagging errors.

2 Overview: Supertagger

We have been developing a supertagger for the syntactic analysis of Swiss law texts
written in German. Suppertagging is an “almost parsing” approach in the sense that the
supertags represent rich syntactic information such as valence, voice and grammatical
functions [5,9,15] and a parser needs then “only combine the individual supertaggs” [1].
Our supertagger is part of a project aimed at detecting style guide violations in legisla-
tive drafts [12]. To detect stylistically undesirable syntactic constructions, our supertag-
ger aims at tagging core syntactic structures such as topological fields and grammatical
functions. It consists of a pipeline with the following components:

1. Sentence segmentation and tokenisation
2. Morphological analysis
3. Morphosyntactic disambiguation of verbs
4. Morphosyntactic disambiguation of nouns
5. Grammatical function recognition

Sentence segmentation and tokenisation (component 1) are carried out as described in
[12].

For the morphological analysis (component 2), our system employs Gertwol [7].
Gertwol is a classical two-level rule-based morphological analyser and provides fine-
grained morphosyntactic features. However, Gertwol does not provide any analysis if
it cannot not find the root of a word in its lexicon. In these cases, the system uses the
analysis of the statistical decision-tree-based POS-tagger TreeTagger [19] to complete
the output of Gertwol: the system identifies the set of possible morphosyntactic features
on the basis of the inflectional endings of the tokens unknown to Gertwol and the POS-
tags that TreeTagger returns for them. If a token has, for example, the ending -en and
is analysed as an infinite verb by TreeTagger, two possible morphosyntactic feature
sets, that for verbs in 3rd person plural indicative and that for infinitives, are generated.
TreeTagger has proven to be robust and its performance with regard to unknown words
is relatively high [21].

The three main components of the system, dedicated to the morphosyntactic disam-
biguation of verbs (component 3), the morphosyntactic disambiguation of nouns (com-
ponent 4) and the recognition of grammatical functions (component 5), respectively,
have been implemented in the framework of Constraint Grammar. Constraint Gram-
mar [13] is a grammar formalism that has been successfully employed for tasks such

Verbal Morphosyntactic Disambiguation through Topological Field Recognition 137

Table 1. Exemplification of the topological field model: occupation of the left and right brackets
in the templates of the three clause types as found in sentence (1)

Vorfeld Left Bracket (LB) Mittelfeld Right Bracket (RB) Nachfeld

Verb-first clause (V1): LB = finite verb, RB = verb complements
Stellt die Zollverwaltung

Unregelmässigkeiten fest,

Verb-second clause (V2): LB = finite verb, RB = verb complements
so verweigert sie den Abschluss des

Transitverfahrens
[und] hält die Sicherheit zurück

Verb-final clause (VL): LB = subord. conj. / compl., RB = verb complex
bis die mit bedingter Zah-

lungspflicht veranlag-
ten Einfuhrzollabgaben bezahlt sind.

as English POS-tagging [22] or NP chunking [23]. We employ VISLCG21 to compile
hand-crafted Constraint Grammar rules.

In the remainder of this paper, we will focus on component 3 and its strategies for
the morphosyntactic disambiguation of verbs.

3 Verbal Morphosyntactic Disambiguation through Topological
Field Recognition

The morphosyntactic disambiguation of German verbal elements is a challenging task:
German verb forms are morphosyntactically highly ambiguous as syncretism is very
common in German verb paradigms. The inflectional ending -en, for example, is used to
mark 1st person plural (e.g., wir trink-en ‘we drink’), 3rd person plural (e.g., sie trink-en
‘they drink’) and infinitive (e.g., trink-en ‘to drink’). On top of that, in tenses other than
present and preterite, verbal morphosyntactic properties such as mood and diathesis are
realised via periphrasis (i.e., multiword expressions). Depending on the clause type in
which they occur, these periphrases appear as continuous or discontinuous constituents.

3.1 The Topological Field Model

Traditionally, German clause structure has been described in terms of topological fields
[4,14]. The topological fields of a clause are the different positions in which non-verbal
constituents can appear: the vorfeld, the mittelfeld and the nachfeld. They are defined
relative to the positions in which the heads of the clause (e.g., finite verbs and com-
plementisers) and their verbal complements (e.g., infinitives, participles and separable
verb prefixes) can be placed: the left and right bracket of the clause, respectively (cf.
Table 1).

1 http://beta.visl.sdu.dk/ (last visited on 15/05/2013)

http://beta.visl.sdu.dk/

138 K. Sugisaki and S. Höfler

Depending on the position of the verbal elements in a clause, the topological field
model distinguishes three types (or templates) of German clauses with a different tem-
plate each: verb-first clauses (V1), verb-second clauses (V2) and verb-final clauses (VF)
[3, pp. 864ff]. Table 1 illustrates how the following example sentence is analysed ac-
cording to this distinction:

(1) Stellt die Zollverwaltung Unregelmässigkeiten fest, so verweigert sie den Ab-
schluss des Transitverfahrens und hält die Sicherheit zurück, bis die mit bed-
ingter Zahlungspflicht veranlagten Einfuhrzollabgaben bezahlt sind.2

‘If the customs administration recognises irregularities, it refuses the comple-
tion of the transit procedure and retains the security until the import customs
fees rated with conditioned duty of payment have been paid.’

Depending on the clause type, different elements can occupy the left and right bracket
of a German clause. The left bracket of verb-first clauses (imperative sentences, inter-
rogative sentences, certain conditional clauses) and verb-second clauses is occupied by
the finite verb. The right bracket is filled by verbal complements such as separable verb
prefixes and, where the finite verb is an auxiliary or a modal, infinitives and participles.
In contrast, the left bracket of verb-final clauses (most types of subordinate clauses)
is occupied by a subordinating conjunction or a complementiser, whereas the whole
verbal complex of these clauses appears in the right bracket.3 The verbal complex is
thus a continuous element in verb-final clauses but can be realised as a discontinuous
periphrasis in verb-first and verb-second clauses.

3.2 Approach

Taking into account the language-specific morphosyntactic configurations mentioned
above, we propose a verbal disambiguation system for German that is based on the
topological field model. The topological field model was first employed for the identi-
fication of clause boundaries by Neumann et al. [16]; since, it has also been applied in
the pre-processing routines of deep syntactic parsers [2,6,10]. In our system, it is used
for defining rules for verbal morphosyntactic disambiguation. Table 2 shows a selection
of the heuristics used by our system and the syntactic rules on which they are based.

Our system proceeds in two steps: in a first step, it disambiguates verbal elements
in left-bracket position and determines the clause type, and in a second step, it dis-
ambiguates verbal elements in right-bracket position. The second step depends on the
completion of the first step as heuristics for right-bracket elements frequently build on
knowledge about left-bracket elements (cf. Table 2, rules R1ff.): the morphosyntactic
features of verbal elements in right-bracket position are disambiguated by checking the
compatibility of their features with those of the corresponding left-bracket elements.

2 Art. 155 para. 2 Customs Ordinance (SR 631.01).
3 In the present study, relative pronouns have also been considered to occupy the left bracket,

although, from a theoretical perspective, they actually appear in vorfeld position. For practi-
cal reasons, this simplification seemed justifiable as, in standard German, the left bracket of
relative clauses always remains empty.

Verbal Morphosyntactic Disambiguation through Topological Field Recognition 139

Table 2. A selection of the heuristics used by the system and the hard topological-field rules on
which they are based. (For exhibitory purposes, some of the heuristics are rendered in a slightly
simplified form.)

Nr. Rule: Heuristic

General
G1 A past participle requires an auxiliary verb:

If a potential past particle is not preceded or immediately followed by an auxiliary verb
within the same sentence, then discard the features PART PERF.

... ...
Left Bracket
L1 The left bracket of V1 clauses is a single finite verb:

If a verb appears in sentence-initial position, select the feature FINITE from its set of possible
features, mark it as left bracket and identify the clause type as V1.

L2 The left bracket of V2 clauses is a single finite verb:
If a verb in sentence-internal position is not preceded by an auxiliary or modal in the left
bracket of a V1-clause, select the feature FINITE from its set of possible features, mark it as
left bracket and identify the clause type as V2.

L3 The left bracket of V1 and V2 clauses is a single finite verb:
If a modal verb is not adjacent to other verbal elements, select the feature FINITE from its
set of possible features, mark it as left bracket.

L4 The left bracket of VF clauses is a conjunction or a complementiser:
If a potential conjunction is indirectly followed by a finite verb and a punctuation mark or a
coordinating conjunction, then mark it as left bracket and identify the clause of VF.

... ...
Right Bracket
R1 A modal verb requires an infinitive:

If a potential infinitive is preceded by a modal verb at the left-bracket position of a V1 or
V2 clause, then select its feature INFINITIVE and mark it as right bracket.

R2 The auxiliary werden requires an infinitive for future tense:
If a potential infinitive is preceded by werden at the left-bracket position of a V1 or V2
clause, then select its feature INFINITIVE and mark it as right bracket.

R3 The auxiliary haben requires an infinitive for perfect tense:
If a potential infinitive is preceded by haben at the left-bracket position of a V1 or V2 clause,
then select its feature INFINITIVE and mark it as right bracket.

R4 The auxiliaries werden/sein require a past particple for passive voice:
If a potential past participle is preceded by werden or sein at the left-bracket position of a
V1 or V2 clause, then select its feature PAST PARTICIPLE and mark it as right bracket.

R5 The right bracket of VF clauses contains a finite verb:
If a verb is directly followed by a punctuation mark or a coordinating conjunction and
preceded by the left bracket of a VF-clause, then select its feature FINITE and mark it as
right bracket.

R6 Lexical verbs can have a separable verb prefix:
If a potential verb prefix is directly followed by a punctuation mark or a coordinating con-
junction and preceded by a lexical verb at left-bracket position, then select its feature VERB

PREFIX and mark it as right bracket.
... ...

140 K. Sugisaki and S. Höfler

Table 3. Incremental morphosyntactic disambiguation of elements at brackets in sentence (1)

Stellt fest verweigert hält zurück bis bezahlt sind

Input:
Gertwol

PL2
PL2
SG3
PP

ADJ
PREF

SG3
PP
PL2
PL2
PL2

SG3 PREF
ADV

CONJ
PREP
ADV

SG3
PL2
PL2
PP

PL1
PL3

Step 1a:
Morphosynt.
disambiguation

SG3 SG3 SG3 CONJ

Step 1b:
Topological
field recogn.

LB-V1 LB-V2 LB-V2 LB-VF

Step 2a:
Right brackets
disambiguation

PREF PREF PP PL3

Step 2b:
Right brackets
labeling

RB-V1 RB-V2 RB-VF RB-VF

The details of what is being checked fall from the morphosyntactic properties of the
predicate as a whole (e.g., mode, tense, diatheses) and the type of the clause.

In each step, the heuristics exemplified in Table 2 are applied in a specific order. The
order is relevant as some heuristics build on the output of other heuristics. An exam-
ple is Rule L2, which is concerned with detecting left brackets of verb-second clauses
and disambiguating the morphosyntactic features of the corresponding verb form: it
exploits information that has previously been added by Rule L1, namely information
on the presence of the left bracket of a verb-first clause in the respective context. Mor-
phosyntactic disambiguation thus happens incrementally not just between the two steps
but also within.

3.3 Step-by-Step Example

In what follows, we illustrate the two-step procedure of our system by tracking how it
processes the aforementioned sentence (1), which we repeat in (2):

(2) Stellt die Zollverwaltung Unregelmässigkeiten fest, so verweigert sie den Ab-
schluss des Transitverfahrens und hält die Sicherheit zurück, bis die mit bed-
ingter Zahlungspflicht veranlagten Einfuhrzollabgaben bezahlt sind.4

‘If the customs administration recognises irregularities, it refuses the comple-
tion of the transit procedure and retains the security until the import customs
fees rated with conditioned duty of payment have been paid.’

4 Art. 155 para. 2 Customs Ordinance (SR 631.01).

Verbal Morphosyntactic Disambiguation through Topological Field Recognition 141

Table 3 gives an overview of the morphosyntactic analyses Gertwol returns for each
bracket candidate contained in the sentence, i.e., for each token that is a potential left or
right bracket (Input), and it illustrates how these analyses are gradualy disambiguated
in the processing steps performed by our system (Steps 1a–2b).

Step 1: Left bracket detection and disambiguation

Step 1 is concerned with detecting word forms that serve as left brackets and with
determinating the clause type. At the same time, the morphosyntactic analyses of word
forms identified as left-bracket elements are disambiguated.

The first left-bracket candidate encountered by the system is the verb form stellt.
Gertwol yields the following possible morphosyntactic analyses for this token:5

(3) “stellt”
stell~en V IND PRÄS PL2
stell~en V IMP PRÄS PL2
stell~en V IND PRÄS SG3
stell~en V PART PERF

The system applies a domain-specific heuristic and discards these two analysis because,
in general, there are no second-person statements in legislative texts.

The third analysis identifies the word form as a third-person singular verb (V SG3);
the fourth analysis interprets it as a past participle (PART PERF). The fourth analysis
is discarded because past participles in sentence-initial position are always followed by
an auxiliary verb (e.g., Gekauft habe ich aber dann doch das billigere Auto), which is
not the case in the present sentence. The only remaining analysis is thus the one that
interprets the word form in question as a third-person singular verb in present tense
indicative.

Given the constraints described by the topological field model (cf. Table 1), the fact
that a finite verb occurs in sentence-initial position means that the respective token is
the left-bracket of a verb-first clause (cf. Rule L1 in Table 2). The system thus labels
the token stellen accordingly (LB-V1).

The next left-bracket candidate to be considered by the system is verweigert. Gertwol
returns the following five morphosyntactic analyses for this token:6

(4) “verweigert”
ver|weig~er~n V IND PRÄS SG3
ver|weig~er~n V PART PERF
ver|weig~er~n V IND PRÄS PL2
ver|weig~er~n V KONJ PRÄS PL2
ver|weig~er~n V IMP PRÄS PL2

5 To keep the morphosyntactic features of verbs unique per token, redundant features generated
by Gertwol are deleted. Tags: V = verb, IND = indicative, PRÄS = present, PL2 = 2nd person
plural, IMP = imperative, SG3 = 3rd person singular, PART = participle, PERF = perfect.

6 KONJ = conjunctive

142 K. Sugisaki and S. Höfler

Once more, the system discards all analyses that identify the token as a second-person
verb (i.e., the last three analyses listed) as legislative texts generally do not contain
second-person statements.

The second analysis listed, containing the feature combination PART PERF, is also
discarded by the system: if verweigert was a past participle, it would have to be either
preceded or immediately followed by an auxiliary verb (Rule G1).

The token verweigert has thus been morphosyntactically disambiguated as a third-
person singular verb in present indicative. The fact that it is a finite verb and that it
is preceded (a) by a verb-first clause and (b) by a comma followed by the adverb so,
furthermore indicates that verweigert is the left bracket of a verb-second clause; The
system labels it accordingly.

In a similar fashion, the following two left-bracket candidates, hält and bis, are iden-
tified as the left bracket of a verb-second clause and a verb-final clause, respectively,
while the final two candidates, bezahlt and sind, are identified as not being left brackets
(cf. Table 3).

Step 2: Right bracket disambiguation and labeling

Step 2 is concerned with detecting right brackets; at the same time, the morphosyntac-
tic analyses of the respective word forms are disambiguated. Specifically, the system
detects and disambiguates tokens that serve as right brackets by checking the compati-
bility of their morphosyntactic features with those of the left brackets preceding them.

The first right-bracket candidate encountered by the system is the token fest. Mor-
phosyntactically, fest can either be a predicative adjective or a separable verb prefix.
However, only the latter analysis is compatible with the lexical verb in preceding left
bracket (stellt); The system thus discards the former analysis and tags the token as
the right bracket of the respective verb-first clause (Rule R6 in Table 2). By applying
the same rule, the next candidate, zurück, is disambiguated and identified as the right
bracket belonging to the verb-second clause with the finite verb hält. The remaining
two candidates, bezahlt and sind, are disambiguated and identified as right brackets by
applying Rules G1 and R5, respectively.

4 Evaluation

The strategies for verbal morphosyntactic disambiguation and topological field recog-
nition presented in the previous section have been evaluated over 100 sentences (2,370
tokens) that were randomly selected from the the Swiss Legislation Corpus [11].

4.1 Verbal Morphosyntactic Disambiguation

To evaluate the performance of our verbal morphosyntactic disambiguation system
against a gold standard, we manually annotated all potential left- and right-bracket el-
ements (bracket candidates, i.e., potential verbal elements, subordinating conjunctions,
complementisers, relative pronouns) in the test sentences. We then processed the same

Verbal Morphosyntactic Disambiguation through Topological Field Recognition 143

Table 4. Performance of the system at detecting and disambiguating bracket candidates: Recall

correct wrong total
TreeTagger 281 tokens (89.8%) 32 tokens (10.2%) 313 tokens (100.0%)
Our system 308 tokens (98.4%) 5 tokens (1.6%) 313 tokens (100.0%)

test sentences with our system and compared its automatic annotations with those pro-
vided by TreeTagger. To be able to compare the output of the two systems, we converted
our Gertwol-based output into the Stuttgart-Tübingen Tagset (STTS) [18] used by Tree-
Tagger.

As shown in Table 4, 308 of the 313 tokens that were tagged in the gold standard were
analysed correctly by our system; Our system had a recall of 98.4%. In comparison,
TreeTagger only achieved a recall of 89.8%. The results of our system thus constitute
an improvement of 8.6% from those obtained by TreeTagger.

30 of the 32 tokens wrongly analysed by TreeTagger (i.e., 93.8%) were correctly
analysed by our system. Our system mainly proved superior to TreeTagger at tagging
right-bracket candidates. Right-bracket candidates are always verbal elements, and ver-
bal elements generally exhibit a relatively high degree of morphosyntactic ambiguity:
on average, Gertwol returned 3.3 analyses per token for the verbal elements in our test
data. Consequently, all tokens wrongly analysed by TreeTagger were morphologically
ambiguous verb forms, e.g., verb forms with the inflectional endings -en or -t.

The most frequent type that TreeTagger failed to analyse correctly were finite verbs
ending in -en that appeared in the right bracket of a verb-final clause (9 of 32 tokens).
TreeTagger wrongly interpreted these verb forms as infinitives.

To correctly disambiguate right-bracket candidates, information about the corre-
sponding left-bracket elements is required. Our system performed better at the task
precisely because it has access to such information. In contrast, the context window
used by TreeTagger and other n-gram-based taggers does not seem to be wide enough
for domains with relatively complex clause structures such as law texts. Indeed, we
found that in the sentences we used for the evaluation, the distance between the left and
right bracket amounted to a comparatively high average of 9.54 tokens.

An additional but related explanation of why our system performed better than Tree-
Tagger arises from the fact that some of the tokens for which TreeTagger returned
wrong analyses occurred in syntactic structures that are frequent in law texts but not
in the newspaper texts TreeTagger was trained on (e.g., verb-first clauses and adverbial
participle phrases with participle inversion).

There were also three tokens that were wrongly analysed by our system but correctly
analysed by TreeTagger. These errors in the output of our system were caused (a) by
the correct analysis not being included in the output provided by Gertwol (aufrecht
not analysed as prefix), (b) by our system wrongly interpreting a definite article as a
relative pronoun, and (c) by a specific syntactic structure not yet taken into account in
the disambiguation rules (extraposition of a prepositional phrase within a relative clause
in the vorfeld of a verb-second clause).

Our system achieved a precision of 99.7%. As shown in Table 5, 308 of the 309
tokens tagged by our system were analysed correctly. TreeTagger achieved a slightly
lower precision of 98.3%.

144 K. Sugisaki and S. Höfler

Table 5. Performance of the system at detecting and disambiguating bracket candidates:
Precision

correct wrong total
TreeTagger 281 tokens (98.3%) 5 tokens (1.7%) 286 tokens (100.0%)
Our system 308 tokens (99.7%) 1 tokens (0.3%) 309 tokens (100.0%)

Table 6. Performance of the topological field labeling system

Recall Precision F1-score
95.3%
(286/300 tokens)

99.7%
(286/287 tokens)

97.4%

The one incorrect analysis returned by our system was a relative pronoun erroneously
tagged as the definite article of a participle phrase. In comparison, TreeTagger misin-
terpreted three relative pronouns as definite articles; another two mistakes were caused
by the phrases wie folgt (‘as follows’) and von sich aus (‘on its own’).

In summary, TreeTagger achieved an F1 score of 93.8% while our system achieved
an F1 score of 99.0%. These results indicate that rule-based morphosyntactic disam-
biguation can indeed substantially improve the performance of a part-of-seech tagger.

4.2 Topological Field Labeling

We have also used the test data described above to evaluate the performance of our
system with regard to recognising topological fields by determining the left and right
brackets of clauses. To this aim, we manually annotated the left and right brackets (300
tokens in total) contained in the sentences selected from the corpus. As shown in Ta-
ble 6, our system correctly detected 95.3% (286 tokens) of all brackets (recall), and
99.7% (286 tokens) of the tokens that our system marked as brackets (287 tokens) had
been identified correctly (precision). In sum, our system thus achieved an F1-score of
97.4% at the task of recognising left and right brackets.

Of the 15 errors (14 false negatives and 1 false positive) that occurred, 12 were the
direct or indirect result of a wrong morphosyntactic disambiguation: failure to detect a
left bracket (e.g., because a subordinating conjunction had been wrongly analysed as an
adverb) frequently also lead to a failure to detect the corresponding right bracket (e.g.,
because the next finite verb would then be correctly identified as a right-bracket element).

5 Conclusion

The morphosyntactic disambiguation of verbs is a crucial pre-processing step for the
syntactic analysis of morphologically rich languages like German and domains with
complex clause structures like law texts. In this paper, we explored how much linguisti-
cally motivated rules can contribute to the task. We presented an incremental system of
verbal morphosyntactic disambiguation that exploits the concept of topological fields.
In the evaluated sentences extracted from a corpus of German-language law texts, our
system achieved a F1 score of 99.0%

Verbal Morphosyntactic Disambiguation through Topological Field Recognition 145

The system proved to be capable of reducing the rate of POS-tagging mistakes from
10.2% in a state-of-the-art statistical tagger to 1.6%. Our evaluation showed that this
reduction was mostly gained through checking the compatibility of morphosyntactic
features within the long-distance syntactic relationships of discontinuous verbal ele-
ments in the left and right brackets of clauses. The present study also showed that in
law texts, the average distance between the left and right bracket of clauses is relatively
large (9.5 tokens), and that in this domain, a wide context window is therefore necessary
for the morphosyntactic disambiguation of verbs.

The present study suggests that such a rule-based system, if employed as a post-
processing component, may be able to make a significant contribution to improving the
quality of POS-tagging, especially in long-distance discontinuous verbal periphrases in
German.

In the future, we plan to use information on the left and right brackets of clauses as
additional input for determining grammatical functions.

References

1. Bangalore, S., Joshi, A.K.: Supertagging: an approach to almost parsing. Computational Lin-
guistics 25(2) (1999)

2. Becker, M.: Frank. A.: A Stochastic Topological Parser for German. In: Proceedings of COL-
ING 2002, pp. 71–77. Association of Computational Linguistics, New York (2002)

3. Dudenredaktion (ed.): Duden - die Grammatik: unentbehrlich für richtiges Deutsch, Duden,
vol. 4. Dudenverlag, Mannheim (2009)

4. Dürscheid, C.: Syntax: Grundlagen und Theorien. Vandenhoeck & Ruprecht, Göttingen
(2012)

5. Foth, K., By, T., Menzel, W.: Guiding a constraint dependency parser with supertags. In: Ban-
galore, S., Joshi, A.K. (eds.) Supertagging: Using Complex Lexical Descriptions in Natural
Language Processing. MIT Press, Cambridge (2010)

6. Frank, A., Becker, M., Crysmann, B., Kiefer, B., Schäfer, U.: Integrated Shallow and Deep
Parsing: TopP Meets HPSG. In: Proceedings of ACL 2003, pp. 104–111. Association for
Computational Linguistics, New York (2003)

7. Haapalainen, M., Majorin, A.: GERTWOL: ein System zur automatischen Wortformerken-
nung deutscher Wörter. Technical report, Lingsoft (1994)

8. Hansen-Schirra, S., Neumann, S.: Linguistische Verständlichmachung in der juristischen Re-
alität. In: Lerch, K.D. (ed.) Recht verstehen: Verständlichkeit, Missverständlichkeit und Un-
verständlichkeit von Recht, Die Sprache des Rechts, vol. 1. Walter de Gruyter, Berlin (2004)

9. Harper, M.P., Wang, W.: Constraint dependency grammars: Superarvs, language modeling,
and parsing. In: Bangalore, S., Joshi, A.K. (eds.) Supertagging: Using Complex Lexical De-
scriptions in Natural Language Processing. MIT Press, Cambridge (2010)

10. Hinrichs, E.W., Kübler, S., Müller, F.H., Ule, T.: A hybrid architecture for robust parsing of
German. In: Proceedings of the 3rd International Confererence on Language Resources and
Evaluation (LREC 2002), Las Palmas, Gran Canaria (2002)

11. Höfler, S., Piotrowski, M.: Building Corpora for the Philological Study of Swiss Legal
Texts. Journal for Language Technology and Computational Linguistics (JLCL) 26(2), 77–89
(2011)

12. Höfler, S., Sugisaki, K.: From Drafting to Error Detection: Automating Style Checking for
Legislative Texts. In: EACL 2012 Workshop on Computational Linguistics and Writing,
pp. 9–18. Association for Computational Linguistics, New York (2012)

146 K. Sugisaki and S. Höfler

13. Karlsson, F., Voutilainen, A., Heikkilä, J., Anttila, A. (eds.): Constraint Grammar:
A Language- Independent System for Parsing Unrestricted Text. Mouton de Gruyter,
Berlin/New York (1995)

14. Kathol, A.: Linear syntax. Oxford University Press, Oxford (2000)
15. Nasr, A., Rambow, O.: Supertagging and full parsing. In: Proceedings of the 7th Interna-

tional Workshop on Tree Adjoining Grammar and Related Formalisms (TAG+7), Vancouver,
British Columbia, Canada, pp. 56–63 (2004)

16. Neumann, G., Braun, C., Piskorski, J.: A divide-and-conquer strategy for shallow parsing of
German free texts. In: Proceedings of the Sixth Conference on Applied Natural Language
Processing (ANLC 2000), Seatle, WA, pp. 239–246 (2000)

17. Nussbaumer, M.: Rhetorisch-stilistische Eigenschaften der Sprache des Rechtswesens. In:
Fix, U., Gardt, A., Knape, J. (eds.) Rhetorik und Stilistik / Rhetoric and Stylistics, Handbooks
of Linguistics and Communication Science, vol. 31(2), pp. 2132–2150. Mouton de Gruyter,
Boston/New York (2009)

18. Schiller, A., Teufel, C., Stöckert, C., Thielen, C.: Guidelines für das Tagging deutscher
Textcorpora mit STTS (kleines und grosses Tagset). Technical report, Universität
Stuttgart/Universität Tübingen (1999)

19. Schmid, H.: Improvements in Part-of-Speech Tagging with an Application to German. In:
Proceedings of the ACL SIGDAT-Workshop, Dublin (1995)

20. Schneider, G., Volk, M.: Adding Manual Constraints and Lexical Look-Up to a Brill-Tagger
for German. In: Proceedings of the ESSLLI 1998 Workshop on Recent Advances in Corpus
Annotation, Saarbrücken (1998)

21. Volk, M., Schneider, G.: Comparing a Statistical and a Rule-Based Tagger for German. In:
Lang, P., Frankfurt, A.M. (ed.) Proceeding of the 4th Conference on Natural Language Pro-
cessing (KONVENS 1998), Berlin, Bern, New York, Paris, Wien, pp. 125–137 (1998)

22. Voutilainen, A.: NPtool, A Detector of English Noun Phrases. In: Proceeding of Workshop on
Very Large Corpora: Academic and Industrial Perspectives, pp. 48–57. Ohio State University,
Columbus (1993)

23. Voutilainen, A.: A Syntax-Based Part-of-Speech Analyser. In: Proceedings of the Seventh
Conference on European Chapter of the Association for Computational Linguistics, EACL
1995, pp. 157–164. Morgan Kaufmann, San Francisco (1995)

Author Index

Arques, Carlos G. 36
Axelson, Erik 54

Clematide, Simon 23

Drobac, Senka 54

González Martı́nez, Alicia 36

Hardwick, Sam 54
Höfler, Stefan 136

Kuokkala, Juha 54

Lindén, Krister 54
López Hervás, Susana 36

Maxwell, Michael 73
Moreno Sandoval, Antonio 36

Namer, Fiammetta 93
Niemi, Jyrki 54

Pirinen, Tommi A. 54

Rehm, Georg 1

Sagot, Benoı̂t 116
Samy, Doaa 36
Silfverberg, Miikka 54
Sugisaki, Kyoko 136

Walther, Géraldine 116

	Preface
	Organization
	Table of Contents
	The State of Computational Morphologyfor Europe’s Languages and the META-NET StrategicResearch Agenda
	1 Introduction
	2 Multilingual Europe: Facts and Opportunities for LT
	3 LT and Computational Morphology: Current State
	4 Language Technology 2020: The META-NET Technology Vision
	5 Language Technology 2020: The META-NET Priority Research Themes
	5.1 Core Language Resources and Technologies
	5.2 A European Service Platform for Language Technologies
	5.3 Languages to Be Supported

	6 Conclusions: Computational Morphology for Europe
	References

	A Case Study in Tagging Case in German:An Assessment of Statistical Approaches
	1 Introduction
	2 Methods
	2.1 Treebanks and Tagsets
	2.2 Statistical Tagging Tools

	3 Results and Discussion
	4 Conclusions
	References

	Jabalín: A Comprehensive Computational Modelof Modern Standard Arabic Verbal MorphologyBased on Traditional Arabic Prosody
	1 Introduction
	1.1 MSA Morphotactics
	1.2 MSA Verbal System
	1.3 Traditional Arabic Prosody
	1.4 Current Computational Systems of MSA Morphology

	2 Methodology
	3 Results
	3.1 The Design of MSA Verbal Morphology
	3.2 The Generation Model
	3.3 Evaluation of the Model
	3.4 The Jabalín Online Interface

	4 Conclusions and Future Work
	References

	HFST —A System for Creating NLP Tools
	1 Introduction
	2 Applications and Tests
	2.1 Language Identification
	2.2 Morphologies and Guessers
	2.3 Language Generation for Out-of-VocabularyWords
	2.4 Extending a Lexicon with the Help of a Guesser
	2.5 Named-Entity Recognition
	2.6 Spell-Checking

	3 Examples for User Environments
	3.1 An Interface in Python
	3.2 HFST on Unix, Mac and Windows
	3.3 Other Usability Improvements

	4 Under the Hood
	4.1 An Independent XFST Module
	4.2 Pmatch with Applications for NER

	5 Future Work
	6 Conclusion
	References

	A System for Archivable Grammar Documentation
	1 Introduction
	2 Criteria for Grammatical Descriptions
	2.1 Seven Pillars for Language Description
	2.2 More on Pillars for Grammatical Descriptions

	3 Satisfying the Criteria for Grammatical Descriptions
	3.1 Formal Grammar Implementation
	3.2 Converter Implementation
	3.3 FurtherWork

	4 Conclusion
	References

	A Rule-Based Morphosemantic Analyzer for Frenchfor a Fine-Grained Semantic Annotation of Texts
	1 Introduction
	2 Related Work
	3 Description of DériF
	3.1 Mechanisms and Results
	3.2 Semantic Relationship

	4 Morphology for the Semantic Annotation of Lexica
	4.1 Predicting Semantic Properties to Bases and Derivatives
	4.2 Lexical Family of Biomedical Neoclassical Compounds
	4.3 Synthesis

	5 Discussion and Conclusion
	5.1 Task-Based Assessment
	5.2 Evaluation with Respect to a Reference Lexicon
	5.3 Current Improvements and Further Research

	References

	Implementing a Formal Modelof Inflectional Morphology
	1 Introduction, Motivation and RelatedWork
	1.1 A Tool for Enhancing Studies in Theoretical Linguistics
	1.2 Improving the Quality and Efficiency in NLP Resource Development

	2 Theparsli Model of Inflectional Morphology
	2.1 Representation of a Lexical Entry
	2.2 Morphosyntactic Feature Sets and Inflectional Categories
	2.3 Realisation Zones
	2.4 A Layered Representation of Inflection
	2.5 Suppletive Stems and Forms
	2.6 Realisational Couples and Transfer Rules

	3 The Original Alexina Formalism
	4 Adapting Alexina to
	Alexinaparsli
	4.1 Morphological Operations
	4.2 Stem Allomorphy, Stem Suppletion and Form Suppletion
	4.3 Inflectional Layers, Zones and Patterns
	4.4 Morphosyntactic Features and Definition of Paradigms’ Cells
	4.5 Realisation Rules

	5 Use Cases
	5.1 Alexinaparsli for Language Description
	5.2 Alexinaparsli for Developing Lexical Resources
	5.3 Alexinaparsli for Quantitative Formal Morphology

	6 Conclusion
	References

	Verbal Morphosyntactic Disambiguationthrough Topological Field Recognitionin German-Language Law Texts
	1 Introduction
	2 Overview: Supertagger
	3 Verbal Morphosyntactic Disambiguation through Topological Field Recognition
	3.1 The Topological Field Model
	3.2 Approach
	3.3 Step-by-Step Example

	4 Evaluation
	4.1 Verbal Morphosyntactic Disambiguation
	4.2 Topological Field Labeling

	5 Conclusion
	References

	Author Index

