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Abstract. System level understanding of the repetitive cycle of cell
growth and division is crucial for disclosing many unknown principles
of biological organisms. The deterministic or stochastic approach — when
deployed separately — are not sufficient to study such cell regulation due
to the complexity of the reaction network and the existence of reactions
at different time scales. Thus, an integration of both approaches is ad-
visable to study such biochemical networks. In this paper we show how
Generalised Hybrid Petri Nets can be used to intuitively represent and
simulate the eukaryotic cell cycle. Our model captures intrinsic as well as
extrinsic noise and deploys stochastic as well as deterministic reactions.
Additionally, marking-dependent arc weights are biologically motivated
and introduced to Snoopy — a tool for animating and simulating Petri
nets in various paradigms.

Keywords: Generalised hybrid Petri nets, hybrid modelling, eukaryotic
cell cycle, Snoopy, marking-dependent arc weight.

1 Introduction

The reproduction of eukaryotic cells is controlled by a complex regulatory net-
work of reactions known as cell cycle [I9/20024]. During a cell cycle, cells grow,
replicate and divide into two daughter cells [I3J21]. This regulation cycle consists
of four phases: S phase (synthesis) and M phase (mitosis) separated by two gap
phases: G1 and G2 [24]. During the S phase, the cell replicates all of its com-
ponents, while it divides each component more or less evenly between the two
daughter cells at the end of the M phase [13]. After the S phase, there is a gap
(G2) where the cell ensures that the duplication of DNA has been completed
and prepares itself for mitosis. Newborn cells are not immediately replicated,
instead they are located at the G1 gap. The processes of synthesis and mitosis
alternate during the reproduction process; see Figure [l for a graphical illustra-
tion of the cell cycle regulation process. Please note that the phases G1, S, and

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 123-[[4T] 2013.
(© Springer-Verlag Berlin Heidelberg 2013


http://www-dssz.informatik.tu-cottbus.de/

124 M. Herajy, M. Schwarick, and M. Heiner

Fig. 1. Graphical illustration of the cell cycle [27]. The cell cycle consists of four distinct
phases: G1, synthesis (S), G2, and mitosis (M), respectively. The first three phases are
known as interphase (referred to by the outer ring). Cells that have stopped dividing
enter the Go phase.

G2 are commonly subsumed as interphase as indicated by the outer cycle in that
figure. Understanding such control cycles is crucial for revealing defects in cell
growth that underlies many human diseases (e.g., cancer) [25].

In the eukaryotic cell cycle, the alternation between the S and the M phase
as well as the balance of growth and division is governed by the activity of a
family of cyclin-dependent protein kinases (CDK) [24]. Therefore, many com-
putational models have been constructed to study the control system of CDK
(e.g., in [II3IT920i24]). Some of these models are based on the determinis-
tic approach which represents changes of species concentrations as continu-
ous variables which evolve deterministically and continuously with respect to
time (in the following called continuous simulation). However, an important
requirement of the cell cycle model is to capture the variability of the cellu-
lar volume to reproduce the ”in vivo” experiment results. Unfortunately, the
deterministic approach cannot capture such cellular volume variability [20]. Mo-
tivated by this argument, a number of stochastic models have been created and
simulated using either a stochastic simulation algorithm (e.g., [13]) or by intro-
ducing noise to the model through Langevin equation [22]. However, the stochas-
tic approach is computationally expensive, particularly when the model under
study contains reactions with high rates and/or species with large numbers of
molecules.

The eukaryotic cell cycle model does indeed exhibit high rates of some reac-
tions, while some other reactions have low rates, which are responsible for the
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intrinsic noise due to molecular fluctuations [I3]. Similarly, the model contains
some species with a large number of molecules, while some other species have a
few number of molecules. The existence of reactions at different time scales (fast
and slow) suggests a simulation using a hybrid approach.

Generalised Hybrid Petri Nets (GHPN4i) have been introduced in [10],
[11] and [12], to represent and simulate stiff biochemical networks where fast
reactions are represented and simulated continuously, while slow reactions are
carried out stochastically. GHPN ;o provide rich modelling and simulation func-
tionalities by combining all features of Continuous Petri Nets [3] and Extended
Stochastic Petri Nets [10], including three types of deterministic transitions.
Moreover, the partitioning of reaction networks (i.e., the assignment of each
reaction to either the stochastic or the continuous paradigm) can either be
done off-line (statically, i.e., before the simulation starts) or on-line (dynami-
cally, i.e., while the simulation is in progress). The implementation of GHPN ;.
is available as part of Snoopy [7] - a tool to design and animate or simu-
late hierarchical graphs, among them qualitative, stochastic, continuous and
hybrid Petri nets. Indeed, the cell cycle model turns out to be an ideal case
study where the majority of the GHPN;, features can be demonstrated. More-
over, it makes a strong case for the introduction of marking-dependent arc
weights.

Another hybrid net class which provides functionalities related to GHPNp;, is
known as Hybrid Functional Petri nets (HFPN) [18]. However, HFPN have been
developed to focus on hybrid (discrete/continuous) model construction where
stochastic transitions are not required. Moreover, modelling features like logical
nodes, hierarchy, and modifier arcs, which are imperative when considering larger
models, are not supported [7].

In this paper we present another argument to motivate hybrid simulation of
the cell cycle control system. The cell cycle model contains some reactions which
would be better represented as continuous processes, specifically the growth of
the cellular volume needs to be treated continuously, while other reactions of
low rates have to be considered as stochastic processes. For instance, Mura and
Csikasz-Nagy constructed in [19] a stochastic version of the model in [I] us-
ing stochastic Petri nets. However, they could not intuitively represent the cell
growth process which evolves continuously and exponentially with respect to
time using stochastic Petri net primitives only. Indeed, cell growth is a typical
example where continuous transitions are an appropriate means.

This paper is organised as follows: we start off by pinpointing some related
work. After that, a brief introduction of Generalised Hybrid Petri Nets is pre-
sented. To conveniently model the cell cycle regulation behaviour, we extend the
formal definition of GHPNpi0, as they have been introduced in [10], to include
marking-dependent arc weights. Next, we discuss a hybrid Petri net model of the
eukaryotic cell cycle and discuss in detail some of its key modelling components.
In Section Bl we show the simulation results produced by Snoopy’s hybrid simu-
lation engine and compare them to the continuous and stochastic ones. Finally,
we sum up with conclusions and outlook.
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2 Related Work

Mura and Csikasz-Nagy converted the deterministic model of Chen et al. [I]
into a stochastic Petri net [19] to study the effect of noise on cell cycle pro-
gression. However, some components could not intuitively be modelled using
stochastic Petri net primitives only (e.g., cell growth). Moreover, their model
is based on phenomenological rate laws (e.g., Michaelis-Menten) which do not
work well with stochastic simulation algorithms [13]. Sabouri-Ghomi et al. [20],
and Kar et al. [I3] asserted that applying Gillespie’s stochastic simulation al-
gorithm [I5] directly to phenomenological rate laws might produce incorrect
results. Therefore, they unpacked the deterministic model of Tyson-Novak [24]
(who use non-elementary reaction kinetics, e.g., Michaelis Menten and Hill func-
tions) to express it completely in terms of elementary mass-action kinetics. The
Tyson-Novak model is based on a bistable switch between the complex CycB-
Cdk1 (denoted by variable X) and the complex Cdh1-APC (denoted by the vari-
able Y). CycB-Cdkl phosphorylates Cdhl-APC and free Cdhl-APC catalyses
the degradation of CycB-Cdkl. Figure Pl presents a continuous Petri net repre-
sentation of the Tyson-Novak model. To model a complete cell cycle, Kar et al.
[13] unpacked the effect of Cdc20 and Cdcl4 which are lumped in the variable Z
in the Tyson-Novak model. High activity of CycB-Cdkl promotes the synthesis
of Cdc20 which activates Cdcl4. Finally the dephosphorylated Cdcl4 activates
Cdh1-APC. The Kar et al. model accounts for both intrinsic and extrinsic noise.
Intrinsic noise is due to the fluctuation of species with low numbers of molecules,
while extrinsic noise is due to the unequal division of the cell between the two
daughter cells [I3].

In [2] and [17], two detailed HFPN models are constructed for the Fission yeast
and Xenopus cell cycles, respectively. However, intrinsic noise, which is necessary
for reproducing the variability of the cellular volume, is not captured because HFPN
do not support the (full) interplay between stochastic and continuous regimes.
Thus, these models are built using the hybrid (discrete/continuous) paradigm.

In [21], a hybrid model, which combines ordinary differential equations (ODEs)
and discrete boolean networks, has been constructed to integrate quantitative as
well as qualitative parts in one model. The latter approach requires less knowl-
edge of realistic kinetic rate constants. Liu et al. [15] simulate the stochastic
model of [I3] using the Haseltine and Rawlings approach [6]. However, such
models cannot be represented structurally or graphically which makes their
maintenance and extension more diffecult.

In this paper a hybrid Petri net model of the eukaryotic cell cycle is presented
as a sophisticated example for the kind of hybrid models that can be constructed
using GHPNy;o. The model is hybrid in the sense that it combines continuous,
stochastic and immediate transitions to represent deterministic, stochastic and
control behaviour. Our main goal is to show how such a class of models is intu-
itively represented and executed using hybrid Petri net primitives. Besides, Petri
nets analysis tools can be applied to the constructed models as well [8]. Using
Snoopy’s simulator, cell cycle models incorporating continuous net components
can be simulated using either the continuous or hybrid engine.
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Fig. 2. A continuous Petri net representation of the Tyson-Novak model [24]: X (CycB-
Cdk1) phosphorylates Y (Cdh1-APC) and free Y catalyses the degradation of X. Z
denotes the effects of Cdc20 and Cdc14. High activity of X promotes the synthesis of
C'dc20 which activates Cdc14. The dephosphorylated Cdc14 activates Y. This behaviour
results in a bistable switch that is responsible for the transitions between G1 and
S-G2-M states.

3 Generalised Hybrid Petri Nets

To model stiff biochemical networks, GHPN i, [10] combine both stochastic
and continuous elements in one and the same model. Indeed, continuous and
stochastic Petri nets complement each other. Fluctuation and discreteness can
conveniently be modelled and simulated in the stochastic paradigm and at the
same time, the computational expensive parts can be simulated deterministically
via ODE solvers. Modelling and efficient simulation of stiff biochemical networks
(i.e., networks that contain reactions at more than one time scale) are helpful
functionalities that GHP Ny, provide for systems biology.

Generally speaking, biochemical systems can involve reactions from more than
one type of biological networks, for instance gene regulation, metabolic pathways
or signal transduction pathways. Incorporating reactions which belong to distinct
(biological) network types, tends to result into stiff systems. This follows from
the fact that, e.g., species in gene regulation networks may contain few numbers
of molecules, while species in metabolic networks often contain large numbers of
molecules [14].

In the rest of this section, we will give a brief introduction of GHPNp;, in
terms of the graphical representation of its elements as well as the firing rule
and connectivity between the continuous and stochastic net parts. The formal
semantics is given in [10].
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3.1 Elements

The GHPNyio elements are classified into three categories: places, transitions,
and arcs.

GHPN ;o offer two types of places: discrete and continuous. A discrete place
(single line circle) holds a non-negative integer number which represents, e.g.,
the number of molecules of a given species (tokens in Petri net notions). A
continuous place (shaded line circle) holds a non-negative real number which
represents, e.g., the concentration of a given species.

Furthermore, GHPN p;, offer five transition types: stochastic, immediate, de-
terministically delayed, scheduled, and continuous transitions [8]. Stochastic
transitions, which are drawn in Snoopy as a square, fire with an exponentially
distributed random delay. The user can specify a set of firing rate functions,
which determine the random firing delay. The transitions’ pre-places can be
used to define the firing rate functions of stochastic transitions. Immediate tran-
sitions (black bar) fire with zero delay, and have always highest priority to fire.
They may carry weights which specify the relative firing frequency in the case
of conflicts between immediate transitions. Deterministically delayed transitions
(black square) fire after a specified constant time delay. Scheduled transitions
(grey square) fire at user-specified absolute time points. Continuous transitions
(shaded line square) fire continuously in the same way like in continuous Petri
nets. Their semantics is governed by ODEs which define the continuous change
in the transitions’ pre- and post-places. More details about the biochemical in-
terpretation of deterministically delayed, scheduled, and immediate transitions
can be found in [9] and [I6]. To simplify the presentation, we occasionally refer
to stochastic, immediate, deterministically delayed or scheduled transitions as
discrete transitions.

The connection between those two types of nodes (places and transitions)
takes place using a set of different arcs (edges). GHP Ny, offer six types of arcs:
standard, inhibitor, read, equal, reset and modifier arcs. Standard arcs connect
transitions with places or vice versa. They can be discrete, i.e., carry non-negative
integer-valued weights (stoichiometry in the biochemical context), or continuous,
i.e., carry non-negative real-valued weights. In addition to their influence on the
enabling of transitions, they also affect the place marking when a transition fires
by removing (adding) tokens from (to) the transition’s pre-places (post-places).

Extended arcs like inhibitor, read, equal, reset, and modifier arcs can only
be used to connect places with transitions, but not vice versa. A transition
connected with an inhibitor arc is enabled (with respect to this pre-place) if
the marking of the pre-place is less than the arc weight. Contrary, a transition
connected with a read arc is enabled if the marking of the pre-place is greater
than or equal to the arc weight. Similarly, a transition connected using an equal
arc is enabled if the marking of the pre-place is equal to the arc weight.

The other two remaining arcs do not affect the enabling of transitions. A reset
arc is used to reset a place marking to zero when the corresponding transition
fires. Modifier arcs permit to include any place in the transitions’ rate functions
and simultaneously preserve the net structure restriction.



Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle 129

Places O O

Discrete Continuous

Transitions

01 H N

<1> [_SimStart,1,_SimEnd]
Stochastic  Continuous Immediate Deterministic  Scheduled
Arcs
- @ O o0 —>>» - ---- »—
Standard Read Inhibitor Equal Reset Modifier

Fig. 3. Graphical representation of the GHPN;, elements. Places are classified as
discrete and continuous, transitions as stochastic, continuous, immediate, determinis-
tically delayed, and scheduled, and arcs as standard, inhibitor, read, equal, reset, and
modifier.
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Fig. 4. Marking-dependent arc weights illustrated by a simple biological example. (a)
cell division cannot be modelled, (b) cell division can intuitively be modelled. The num-
bers between angle brackets are the delays of the deterministically delayed transitions.
Later we will assume that cell division does not consume time.

The connection rules and their underlying formal semantics are discussed in
more details below. Figure Bl provides a graphical illustration of all elements. Al-
though this graphical notation is the default one, it can easily be customised
using Snoopy, the Petri nets editing tool. To support special modelling re-
quirements of some biological models (e.g., the cell cycle model), we extended
GHPNyio to permit pre-places of a transition as arc weight, similar to the idea
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of self-modifying nets which has been originally introduced in [26], or even a
function which is defined in terms of a transition’s pre-places [18].

Consider the following simple biological example. When a cell divides its mass
between two daughter cells, each daughter obtains approximately half of the
mass. This example cannot easily be modelled using discrete Petri nets. More-
over, there is no way to model it if the mass is represented by a continuous place
as shown in Figure @h. In Figure @b, using marking-dependent arc weights; the
ingoing arc of the transition ¢ has a weight equal to the marking of the place p1,
while each of the two outgoing arcs has a weight equal to half of the marking of
that place.

Motivated by the case study discussed in this paper, marking-dependent arc
weights have been introduced for the majority of arc types supported by Snoopy
(standard, read, inhibitor, and equal arc). For more details see Section

3.2 Connection Rules

An important question arises when considering the combination of discrete and
continuous elements: how are these two different parts connected with each
other? Figure [ provides a graphical illustration of how the connection between
different elements of GHPN ;. takes place.

First, we will consider the connection between continuous transitions and
the other elements of GHPNpi,. Continuous transitions can be connected with
continuous places in both directions using continuous arcs (i.e., arcs with real-
valued weight). This means that continuous places can be pre- or post-places
of continuous transitions. These connections typically represent deterministic
biological interactions.

Continuous transitions can also be connected with discrete places, but only by
one of the extended arcs (inhibitor, read, equal, and modifier). This type of connec-
tion allows a link between discrete and continuous parts of a biochemical model.

Discrete places are not allowed to be connected with continuous transitions
using standard arcs, because the firing of continuous transitions is governed by
ODEs which require real values in the pre- and post-places. Hence, this cannot
take place in the discrete world.

Second, discrete transitions can be connected with discrete or continuous
places in both directions using standard arcs. However, the arc weight needs to
be considered. The connection between discrete transitions and discrete places
takes place using arcs with non-negative integer numbers, while the connection
between continuous places and discrete transitions is weighted by non-negative
real numbers. The general rule to determine the weight type of arcs is to follow
the type of the connected place.

3.3 Formal Definition

In this section, the syntax of GHPN p;, is formally defined to include the making-
dependent arc weight. The formal semantics including the enabling and firing
rules as well as the conflict resolution are given in [10].
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Fig. 5. Possible connections between GHPN ;. elements. The restrictions are: discrete
places cannot be connected with continuous transitions using standard arcs, continuous
places cannot be tested with equal arcs, and continuous transitions cannot use reset

arcs.

Definition 1 (Generalised Hybrid Petri Nets). A Generalised Hybrid Petri
Net is a 6-tuple GHP N vio= [P, T, A, F,V, mg|, where P, T are finite, non-empty

and disjoint sets. P is the set of places, and T is the set of transitions with:

— P = Pyisc U Peont whereby Pyise is the set of discrete places to which non-

negative integer values are assigned, and P.on: 18 the set of continuous places

to which non-negative real values are assigned.
- T=TpU Tcont;
Tp = Tstoch U Timn U Tiimed U Tscheduled with:

1.

Tstoch 5 the set of stochastic transitions, which fire randomly after ex-
ponentially distributed waiting time.

Tim 1s the set of immediate transitions, which fire with waiting time zero;
they have higher priority compared with other transitions.

Tiimed 1S the set of deterministically delayed transitions, which fire after

a deterministic time delay.

. Tscheduled 1S the set of scheduled transitions, which fire at predefined time

points.
Teont 1S the set of continuous transitions, which fire continuously over

time.

- A= Adisc U Acont U Ainhibit U Aread U Aequal U A'r‘eset U Amodifier is the set

of directed arcs, with:

1.

Agise € ((P x T)U (T x P)) defines the set of discrete arcs.
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Acont € ((Peont X T) U (T X Peont)) defines the set of continuous arcs.
Aread C (P x T') defines the set of read arcs.

. Ainnivit C (P x T) defines the set of inhibits arcs.
. Acqual € (Paise X T') defines the set of equal arcs.
. Areset C (P x Tp) defines the set of reset arcs,

7.

Apodifier € (P x T) defines the set of modifier arcs.

— the function F

Acont — Dy,
Adise = D,
Aread = Dy,

F:Q Ainnivit — Dy,
Acqual = Dn,
Apeset — {1},
Apodifier = {1}

assigns a marking-dependent function to each arc, where Dy, and Dy are sets

of functions defined as follows:

Dy, = {dn|d, : NS 5 N t; € T,

D, = {d|dy : RVY! 5 @t ¢; e T,

— V is a set of functions V = {g,d,w, f} where :

1.

g : Tstoen — Hs is a function which assigns a stochastic hazard function
hs, to each transition t; € Tsiocn, whereby Hy = {hg, |hs, : Rl;tjl —
Ry, t; € Tstocn } is the set of all stochastic hazard functions, and g(t;) =
hs,,Vt; € Tstoch -

w : Tym — Hy is a function which assigns a weight function hy, to each
immediate transition t; € Ty, such that Hy = {hw,|hw, : Rl;tj‘ —
Ry, t; € Tym} is the set of all weight functions, and w(t;) = hy,,Vt; €
Tin.

d: Trimed U Tscheduled — Rar, is a function which assigns a constant time
to each deterministically delayed and scheduled transition representing

the (relative or absolute) waiting time.

. f  Teont — H¢ is a function which assigns a rate function h. to each

continuous transition t; € Teont, such that H. = {he,|he, : R(‘).tjl —
Ry, t; € Teont} is the set of all rates functions and f(t;) = he,,Vt; €
Tcont-
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— Mo = MyiscUMeont 1S the initial marking for both the continuous and discrete

cont ‘

| P [Paisel
places, whereby meont € Ry 0 .

s Mdisc € N

Here, N denotes the set of natural numbers excluding 0, Ny denotes the set of non-
negative integer numbers, Ry denotes the set of non-negative real numbers, QT de-
notes the set of positive rational numbers, and *t; denotes the set of pre-places of a

transition t;.

O

A distinguishing feature of GHPN4;, compared with other hybrid Petri net
classes is its support of the full interplay between stochastic and continuous
transitions. Such interplay is implemented by updating and monitoring the rates
of stochastic transitions while numerically solving the set of ODEs induced by
the continuous transitions (For more details see [10]). By this way, accurate
results are obtained during simulation.

4 The Model

Figure [0l shows the hybrid Petri net model which has been developed based on
the previous one introduced by Kar et al. in [I3]. Proteins, genes, and mRNAs
are represented by places, reactions by transitions. We use the same kinetic
parameters and initial values as in [I3]. For the sake of space we do not repeat
the kinetic parameters, but the initial marking is shown on the places. Moreover,
we use Snoopy’s logical node feature to simplify the connections between nodes.
For example, place X and Y are involved in many reactions which decreases
the network’s readability. We repeat those nodes multiple times with the same
names to keep the model understandable (logical places). Likewise, the transition
divide is a logical transition. Furthermore, the increase of the cellular volume is
intuitively represented using a continuous transition with a rate p- V', where p is
the growth factor and V is the cellular volume, modelled as a continuous place.

The model contains three different transition types: continuous, stochastic,
and immediate. Continuous transitions simulate the corresponding reactions de-
terministically, while stochastic transitions carry them out stochastically. The
latter transitions are responsible for molecular fluctuations. Immediate transi-
tions monitor the model evolution and perform the division when the free number
of molecules of Cdhl APC reaches a certain threshold (Y =Y +Y X + X Y).

In the sequel we discuss in more detail some of the model’s key components
and the corresponding GHPN p;, representations.

4.1 Decision to Perform Division

In this section we consider the process of division in more detail. When the
number of molecules of Y becomes greater than a certain threshold (in our case



134 M. Herajy, M. Schwarick, and M. Heiner
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divide divide

criical

Cdc20 and Cdc14

ready_for_check

divide

divide  MANAZ

<

divide

Fig.6. A GHPN i, representation of the eukaryotic cell cycle. The model employs
different types of transitions: continuous, stochastic and immediate. All reactions af-
fecting mRNAs are represented and simulated stochastically. Repetitive nodes (places
and transitions) with same names are logical nodes. When the immediate transition
divide fires, it divides the current place marking more or less equally. Equal divi-
sion means that the cellular volume of the daughter cell is always half of its parent.
This model could be easily extended to permit unequal division, where a random
variation in the cellular volume is possible, by having arc weights with random func-
tions. The unequal division type will reproduce extrinsic noise. The type of division
(equal, or unequal) depends on the outgoing arc weight and its effect is implemented by

marking-dependent arc weights.
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1200), the cell divides the cellular volume and other components (e.g., mRNAs)
between the two daughter cells. In Figure [fh, this process is represented by the
immediate transition check with a weight defined by the Boolean expression
Y > threshold (the weight is 0 if the Boolean expression yields false, and 1
for the result true). Recall that weights of immediate transitions determine the
firing frequencies of immediate transitions in the case of conflicts. A weight of
zero means that a transition cannot fire at all. However, when the transition
check has a weight of one, it adds a token to the place ready to divide which
triggers the transition divide to carry out the division. To give the transition
divide a chance to fire before re-checking the value of Y, an inhibitor arc is used
as constraint. Please note that the transitions critical and check need the current
marking of the places X Y, Y, and Y X only to calculate the term Y in the
transitions’ weight. Therefore, modifier arcs are used to fulfil this requirement.

An interesting characteristics of the model is the division process. Although
the division can take place when the value of Y is greater than a certain thresh-
old, it does not do that all the times. For example, at the beginning of the
simulation, the initial value of Y satisfies the division criteria. However; the
cell should not divide because it is still at G1 phase which means that it has
to replicate itself before it can divide. We model these cases by adding a new
immediate transition which detects the critical value of Y, before checking for
division. Therefore the transition critical monitors the value of Y. When the
value of Y goes below a certain threshold, it enables the division process.

4.2 Cell Division and Marking-Dependent Arc Weights

When a cell divides, it splits all of its components more or less evenly between
the two daughter cells. This is most naturally expressed with marking-dependent
arc weights [26]. In Figure[Th, when the transition divide fires, it removes all of the
current marking of the place Vand adds V/2to it. To permit uneven division of the
cell volume and other components, arc weights can be a function which operates on
the current place marking [18]. However, we restrict the places used in arc weights
to a transition’s pre-places to keep the locality principle Petri nets are famous for.

Figure [b illustrates the process of cell division graphically by showing a
simulation trace.

Moreover, all proteins and mRNAs have to undergo such division. This means
the transition divide has to be connected with each place in the net that repre-
sents a protein or mRNA. The ingoing arc weight of such a connection is equal
to the pre-place’s current marking, while the outgoing arc weight is equal to half
of the pre-place’s current marking. Furthermore, the markings of discrete places
are rounded after the division process to preserve the discrete representation of
the molecular species.

4.3 Transition Partitioning

The model in Figure [0l contains transitions which fire at different rates. For
instance, transition Rz fires more frequently than R; as illustrated in Figure
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ready_for_check

Y: Cdh1-APC
V: Cellular Volume

1500

concentration

1000

g ----- divide

critical - check ready_for_divide

) vi2

300 400 0

(a)

Fig. 7. Cell Division (a) A sub-net for modelling the decision of the division process
(see also upper right corner of Figure [6]). The transition critical monitors the value
of Y and adds a token to ready for check when Y < 300. Later, when the value of
Y increases and becomes greater than a certain threshold (1200), the transition check
fires and adds a token to ready for divide which signals the transition divide to perform
the division. Inhibitor arcs are used as checkpoints for the sequence of events: critical
— check — divide. (b) Hybrid simulation trace of cell division.

Bh. Slow transitions should be simulated stochastically to account for molecular
fluctuations, while fast transitions need to be simulated continuously for the
sake of numerical efficiency. Indeed, transitions of the latter type consume the
majority of computational resources.

In this model, transitions are statically partitioned before the simulation
starts. The transition type is determined by executing a single run and analysing
the results as shown in Figure 8 Increasing (decreasing) the accuracy of the sim-
ulation results involves converting more continuous (stochastic) transitions into
stochastic (continuous) ones.

Another approach for partitioning is to perform it dynamically during the sim-
ulation. Using this technique, a transition changes its type from stochastic to con-
tinuous or vice versa according to the current firing rate. GHPNp;, provide the
user with a trade-off between efficiency and accuracy by permitting the user to
specify two thresholds: ay,,,,, and ag the minimum and maximum cumulative
propeunsity (i.e., the total rates of stochastic transitions), respectively. Moreover,
two other thresholds are required to perform dynamic partitioning: the place mark-
ing threshold and the transition rate threshold. The former is used to ensure that
species concentrations are large enough to be simulated continuously, while the
latter is used to partition transitions into fast and slow based on their rates. A
transition is simulated continuously, if its rate exceeds the rate threshold and the
marking of all its pre-place is greater than the marking threshold.

Nevertheless, cell growth has to be represented and simulated continuously
in both partitioning approaches. Using off-line partitioning, this can be easily
communicated to the simulator by drawing a continuous transition. However, in
the case of dynamic partitioning, the transition rate threshold had to be set less
than the smallest expected rate of cell growth which makes the latter approach
unsuitable for the cell cycle model.

max )
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Fig. 8. Example of different transition firing rates. (a) transition Rz fires more fre-
quently than the transition Ri1, and (b) transition Ris fires much more often than Rag.

5 Simulation Results

In this section we show some simulation results of the model in Figure [(] using
Snoopy’s hybrid simulator. Figures [0l - [2] present time course simulation results
of some model species of continuous and hybrid trajectories.

In the hybrid setting, species of low numbers of molecules are simulated us-
ing the stochastic regime, e.g., mRNA, and mRNA,; thus, their numbers of
molecules show variability. Such variability is due to the intrinsic noise which is
captured by the stochastic simulation algorithm.

Figure [[2] compares continuous and hybrid simulation results of the cellular
volume (V). Using continuous simulation, parent cells divide all the time equally,
and the model does not produce variability in its volume size. Contrary, hybrid
simulation does show variability in the cellular volume because species of low
numbers of molecules (e.g., mRNAs) are simulated stochastically.

The variability behaviour in the cellular volume, which is produced by the
hybrid simulation, is close to the biological model behaviour. For example, the
Fission yeast cells have at division a Coeflicient of Variation (CV) of the cellular
volume of about 6% [I3]. The CV is a normalised measure of dispersion of a
probability distribution. It is used to judge the variability of a result and it is
defined as the ratio of the standard deviation o to the mean p, i.e, CV = ?.

Table [l compares the CV and mean values of the deterministic, stochastic,
and hybrid simulation results as well as the experimental data of the Fission
yeast (wild-type). The continuous and hybrid results are computed by exporting
the Snoopy simulation output to a comma-separated values format (CSV). Then
a tiny script extracts the different statistics, i.e., p and CV.

As expected, the CVs of continuous simulation results are zero. This means
that continuous simulation does not exhibit any variability in the cellular volume.
Moreover, the stochastic and hybrid statistics are similar, but not the same. The
variability of cellular volumes of cells simulated via the hybrid version is slightly
less than the corresponding stochastic simulation. However, this is an expected
behaviour since some of the transitions are continuously simulated.
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Table 1. Comparison of the continuous, stochastic, and hybrid simulation results of
the model in Figure [l The volume size is given in fl (femtolitre).

cell age, min size at division, fl size at birth, fl

No. simulator reference
mean CV% mean CV % mean CV%

1 Fission yeast 148 10.8 144 5.9 8.2 6.3 23]

2 deterministic 115.9 0 30.9 0 15.9 0 -

3 stochastic 1155 13 291 8.2 145 82  [I3

4 hybrid 115.5 12 29.9 7.4 15 7.4 -

6 Conclusions and Outlook

In this paper we have shown a class of biological models that can appropriately be
modelled using hybrid Petri nets. As an example we have presented and discussed
a hybrid Petri net model of the eukaryotic cell cycle. This specific model can be
executed using either continuous or hybrid simulators. It employs continuous,
stochastic and immediate transitions to intuitively represent the entire model
logic. Generally, depending on the type of model, a GHPN G, model can be
simulated continuously, stochastically or in a hybrid way.

The model is implemented using Snoopy. The model itself and the tool are
available at http://www-dssz.informatik.tu-cottbus.de/. Marking-depen-
dent arc weights are a new feature recently added to Snoopy which is currently
not available in the official Snoopy release. However, the under-development
version is freely available on request.

Comparing the simulation results we notice that hybrid simulation produces
results close to the stochastic ones (in terms of the resulting CVs), while sim-
ulation efficiency could be preserved. Indeed, the reactions of this model can
easily be split into slow and fast reactions, which makes it an ideal case study
for hybrid simulation algorithms.
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Marking-dependent arc weights are of paramount importance to model such
biological scenarios since they provide a direct tool to program certain biological
phenomenon (e.g., cell division). Therefore, we intend to add even more func-
tionalities into this direction to permit more user-defined operators depending
on the transition’s pre-places, e.g., random function.

So far the partitioning of the reactions into stochastic and deterministic ones
is carried out using a heuristic approach (see Section[L3). However, (as suggested
by one of the reviewers) a more sophisticated partitioning could be performed. For
instance, the fast processes could be described by a quasi (or pseudo) steady state
approach, assuming that they reach equilibrium rapidly. In other words, they could
be better described by setting the corresponding ODEs to zero and solving them.
In contrast, continuous dynamics could be seen as more appropriate for abun-
dant molecules whose concentration display a small coefficient of variation, and
stochastic dynamics for those molecules evolving at low copy numbers.

Finally, the model presented in this paper could be viewed as a sub-net in a
bigger network of reactions (e.g., modelling budding yeast cell cycle or Fission
yeast cells). Snoopy’s hierarchical nodes might simplify such task as they provide
an easy tool to insert a sub-net into a bigger one.
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