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Abstract. Grading dozens of Petri net models manually is a tedious and
error-prone task. In this paper, we present Grade/CPN, a tool supporting
the grading of Colored Petri nets modeled in CPN Tools. The tool is
extensible, configurable, and can check static and dynamic properties.
It automatically handles tedious tasks like checking that good modeling
practise is adhered to, and supports tasks that are difficult to automate,
such as checking model legibility. We propose and support the Britney
Temporal Logic which can be used to guide the simulator and to check
temporal properties. We provide our experiences with using the tool in
a course with 100 participants.

1 Introduction

Colored Petri nets (CPNs) [1] is a formalism useful for modeling a broad range
of real-life systems, including complex network protocols [1] and business infor-
mation systems [2]. It is thus natural to use CPNs or other Petri net formalisms
when teaching such subjects. As modeling can only really be learned by do-
ing, hands-on experience is a must. Larger classes can comprise more than one
hundred students, and manually checking models created by students is time
consuming and error-prone. This is particularly unpleasant because much of the
effort is spent on checking trivial things, including whether good modeling stan-
dards are adhered to and whether formal requirements to the model are satisfied.
In this paper, we aim at supporting the grading of many models implementing
the same specification by providing with Grade/CPN an extensible tool for auto-
matic assessment of such routine properties, allowing teachers to focus on more
complicated tasks.

The support required for grading assignments is similar to what is needed for
testing or model checking, as we need to check a model against some formal re-
quirements. The models we deal with in our case study have infinite state spaces,
so here we focus on the testing perspective, as a model may not be suitable for
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model checking due to having a large or even unbounded state space. Thus, parts
of the work described here is also applicable to general testing of CPN models, but
we present it here in the context in which it was developed. The significant differ-
ence to classical testing is that for grading a possibly large set of different models
is to be checked against the same specification in a uniform way.

CPN Tools [3] is a tool for editing, simulating and analysing CPN models. It
supports the user during the construction of the model due to incremental syntax
checking, which gives immediate feedback about errors, and allows modelers to
experiment with incomplete and even only partially correct models. This is a
useful feature for inexperienced users and makes CPN Tools suitable in teaching.
Furthermore, the Windows version of CPN Tools is downloaded more than 5,000
times a year, indicating that it is broadly used. The broad usage also means
that CPN Tools has reached a fairly stable state, which reduces unnecessary
frustrations during modeling. Finally, CPN Tools has extensive online help and
video tutorials, which means it is easy for students to get started. For these
reasons, we think that CPN Tools is a good choice of a tool for teaching.

There are as many ways of using models as there are teachers, so it is important
that the requirements for the model can be described easily. This means that the
grading tool must be configurable, allowing individual teachers to customize what
is checked and how adhering to or deviating from each requirement is awarded
or punished. In addition, it must be easily possible to extend the tool with new
requirements. Thus our tool must have a plug-in like architecture allowing new
requirements to be added with minimal effort. At the same time, we do not desire
a heavy-weight framework with a steep learning curve just to add a simple custom
requirement. Of course, such a tool should come with a set of reasonable built-in
plug-ins, so it is useful for many scenarios without requiring any programming.
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Fig. 1. Base model of a delivery service

To illustrate our motivation
for developing such a tool, as-
sume we want students to model
a (simplified) delivery service us-
ing CPN Tools. The idea is
to model that customers order
products from a shop, and the
shop uses a delivery service to
deliver ordered products to the
customers. To this end, we would
provide students with a base
model as in Fig. 1. The CPN in
Fig. 1 models the behavior of the
customer and the shop and pro-
vides the interface between customer and delivery service (Reject, Offer, Accept,
and Delivery) and the interface between shop and delivery service (Shipment,
Return, and Notification). A customer can choose a product from the catalog
and place an order via place Order. The shop prepares the ordered product for
shipment and sends the resulting packet to the delivery service via Shipment.
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The delivery service shall in all tasks try to deliver packets to the respective cus-
tomers via place Offer. If a customer is not at home, a token is placed on place
Reject; otherwise, a token is produced on place Accept and, finally, the delivery
service hands over the packet to the customer via place Delivery. Place Return is
used to send a packet back to the shop in case the packet could not be delivered.
In addition, the delivery service informs the shop via place Notification that a
packet has been successfully delivered. The pages Shop and Customer are given
but the DeliveryService is empty and intended to be modeled by the student.

When students are given such a base model, they are asked to model the
missing part(s) or to change or improve the given model. These changes must
adhere to certain constraints. In our example, we would need to be able to
check that the given environment has not been changed (as the environment
constitutes a contract with the external world) and that the model satisfies the
given requirements, which often means that behavioral properties need to be
checked. Our focus on the first version of our tool has therefore been on making
it easy to check these requirements.

We have also implemented checks that ensure good modeling practice, includ-
ing respecting data hiding (i.e., student solutions are not allowed to connect to
nodes of the environment other than the interface places) and proper termina-
tion (i.e., ensuring that tokens are not erroneously left behind), and simple static
analysis (e.g., ensuring that communication channels are used in the correct
direction, i.e., no messages are produced on an input channel).

As we cannot check all properties mechanically—for example, whether the
model is readable and understandable—we have implemented functionality sup-
porting doing this manually. This includes generating a view of the model in
which the student-designed parts are highlighted and the given parts from Fig. 1
are dimmed. This allows teachers to focus on the new parts without having to
distinguish these parts manually.

We have earlier encountered problems with students copying solutions from
one another. We would also like to detect this, so we have checks that at least
make it harder to cheat. This includes providing each student with a unique
copy of the base model from Fig. 1 with a cryptographic signature including the
student ID embedded. This makes it impossible for two students to use the same
base model as starting point (indicating that one got a copy from the other).

Finally, we want a report summarizing all findings; the report should be useful
for both teachers, who should be able to grade the model based on the report
only, without having to manually open the model in CPN Tools except in special
cases, and for students, who should be pointed to flaws in the model, using error
traces when applicable. To sum up, we need a tool that

1. Works with CPN Tools models.
2. Provides easy configuration.
3. Is easily extensible.
4. Contains a reasonable base set of capabilities, including:

(a) Detect changes to a given environment,
(b) Check dynamic properties using simulation.
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(c) Check good modeling practise, including data hiding, proper termina-
tion, and provide simple static analysis.

5. Supports the manual part of the grading process.
6. Detects attempts to defraud.
7. Provides a report that pin-points problems, aids the teacher in grading, and

allows students to understand problems.

We have chosen to implement our tool as a vanilla Java application. The language
is chosen due to its popularity and platform-independence. We have chosen not
to rely on a framework for handling plug-ins, as these frameworks often demand
significant overhead due to providing features we do not need (e.g., we do not
need dynamic configuration of plug-ins). We have used the library Access/CPN
[4] as it provides an easy way to load CPN models and programmatically interact
with the simulator.

We continue with the outline of the architecture of our tool and introduce
some simple plug-ins checking basic properties in Sect. 2. In Sect. 3, we in-
troduce a temporal logic which is powerful enough to describe most dynamic
requirements while still being easy to use. In Sect. 4, we provide details on auto-
matic attempt to improve coverage and relate our work to automatic testing. In
Sect. 5, we provide implementation details and we sum up our experiences using
our tool in semi-automatically assessing assignments from close to 100 students.
Finally, we discuss related work, conclude the paper, and provide directions for
future work.

A preliminary version of this work has been published in [5]. Compared
with [5], we have extended our syntax to handle a global quantifier and vari-
ables, and provide a simpler semantics with subtle errors fixed (see Sect. 3).
Moreover, the details on coverage and the comparison with automatic testing
(see Sect. 4) are new results. We have also implemented some of the future work
of the previous paper, including a version of the tool allowing students to get
feedback before final grading (see Sect 4), and we report how that has improved
the grades of students (see Sect. 5).

2 Architecture
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Fig. 2. Overall architecture and environ-
ment of Grade/CPN

In this section, we outline the architec-
ture of Grade/CPN. We first give the
overall architecture and explain how
this solves requirements 1, 2, 3, and 7
from the introduction. Then, we pro-
vide the details of some of the built-
in plug-ins, focusing on requirements
4(a), 4(c), and 6. Requirement 4(b) is
handled in detail in the next section,
and requirement 5 is handled partly in
this section and partly when we report
our experiences in Sect. 5.
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2.1 Overall Architecture

Figure 2 shows the overall architecture of Grade/CPN. We see that we build on
top of Java and Access/CPN [4]. Access/CPN is a Java library making it possible
to interact directly with the CPN Tools Simulator, including loading models and
translating them to an object structure we can use for static analysis, and send
to the simulator process also used by CPN Tools to perform syntax check and
simulation of models. Grade/CPN comprises two important components, one
for Configuration and one for Reporting, as well as an interface to several Plug-ins.
The Configuration component is responsible for loading a configuration file and
using it to instantiate and configure the appropriate plug-ins. Each plug-in re-
turns messages useful for the Reporting component, which use this information to
generate an on-screen status view showing the overall correctness of the checked
models and for generating an individual report for each student. The report can
be generated as either an HTML file suitable for reading in a Web-browser or a
PDF file suitable for printing or archival.

The central interface of Grade/CPN is PlugIn, shown in Listing 1 (ll. 1–5). Each
plug-in must implement this interface. The configure method is a factory method
to instantiate the plug-in, and takes how many points should be awarded if
the plug-in succeeds and a configuration string. The format of the configuration
string is defined by the plug-in, but will typically be a name identifying the
plug-in and a list of named parameters. If the plug-in can be instantiated with a
given configuration string, it returns a new configured instance and otherwise it
returns null. This allows us to create an abstract factory for instantiating plug-
ins from a string. Furthermore, a plug-in has a method grade, which is given a
student ID, a base model (base), the student solution (model), and a connection
to the simulator. The plug-in can use this information to arrive at its conclusion
and return a Message, which comprises how many points are awarded and a
descriptive message with the reason for the grade.

Fig. 3. Report overview

Reporting. The Reporting component
of Fig. 2 is responsible for emitting a re-
port based on the result of the PlugIns.
All interfaces pertaining to reporting is
shown in Listing 1 (ll. 7–17). The main
class is Report (ll. 7–10), which is instan-
tiated for each student ID and contains
a set of pairs of PlugIns and Messages
(produced by the grade method).

A Message (ll. 11–13) ties together a
number of awarded points, a descriptive
message and a list of Details providing in-depth reasoning leading to the outcome.
Each Detail (ll. 14–17) consists of a descriptive header and either a list of textual
details or a single graphical component, which is rendered as an image in the
resulting report. For each student a report overview is generated (see Fig. 3 for
an example) and supplementary details are added in separate sections.
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Listing 1. Plug-in interface and central components
� �

1 public inter face PlugIn {
2 public PlugIn c on f i gu re (double maxPoints , St r ing co n f i gu r a t i on ) ;
3 public Message grade ( StudentID id , PetriNet base , PetriNet model ,
4 HighLevelSimulator s imulator ) ;
5 }

7 public c lass Report {
8 public Report ( StudentID s id ) { . . . }
9 void addReport ( PlugIn plugin , Message r e su l t ) { . . . }

10 }
11 public c lass Message {
12 public Message (double points , S tr ing message , Deta i l . . . d e t a i l s ) { . . . }
13 }
14 public c lass Deta i l {
15 public Deta i l ( St r ing header , S t r ing . . . d e t a i l s ) { . . . }
16 public Deta i l ( St r ing header , JComponent component ) { . . . }
17 }

19 public c lass Tester {
20 public Tester ( Tes tSui te su i t e , Li s t<StudentID> ids , PetriNet base ) { . . . }
21 public Li s t<Report> t e s t ( ) { . . . }
22 }
23 public abstract c lass TestSui te {
24 public TestSui te ( PlugIn matcher ) { . . . }
25 public abstract Li s t<PlugIn> getPlugIns ( ) ;
26 }
27 public c lass Conf igurat ionTestSui t e extends TestSui te {
28 public Conf igura t ionTestSu i te ( F i l e c on f i g u r a t i o nF i l e ) { . . . }
29 }

� �

Configuration. The Configuration component of Fig. 2 is shown in Listing 1
(ll. 19–29). The main class is a Tester (ll. 19–22), which given a TestSuite, a list
of student IDs, and a base model can perform a test (l. 21) and yields a Report
for each student. A TestSuite (ll. 23–26) has a distinguished matcher, which is a
PlugIn mapping models to student IDs by yielding a high score for a model and
student ID pair if the model is created by the student with the given ID and a low
score otherwise. A TestSuite can also return a list of PlugIns for the main grading
process. One implementation of a TestSuite, the ConfigurationTestSuite (ll. 27–29),
is instantiated using a configurationFile which along with an abstract PlugIn factory
is used to instantiate the correct PlugIns according to the configuration.

An example configuration file is shown in Listing 2. The file comprises two sec-
tions, matcher (ll. 1–2) and test (ll. 4–15), setting up the matcher and the actual tests
graded, respectively. The intuition is that each line corresponds to a plug-in; a line
starting with a + (ignoring white space) is considered part of the preceding line.
Each line starts with a number indicating how many points are awarded for suc-
cessful execution. If the number is negative, successful execution yields 0 points
but a failure yields a punishment. This is followed by a colon and a configuration
option recognized by the plug-in and optionally a list of named parameters. For
example, in line 5 we see that the plug-in identified by declaration-preservation is in-
stantiated with one named parameter. If the test fails, it yields a punishment of
5 points and if it succeeds, it yields 0 points. Lines 13–14 are merged (as line 14
starts with +). In the following we go into more detail with this example.

2.2 Simple Plug-ins for Interface Preservation

In Listing 2, we use two plug-ins to ensure that the interface to the environment
and the environment itself are not modified. The declaration-preservation plug-
in (l. 5) makes sure that no declaration in the provided model is removed or
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Listing 2. Example configuration file
� �

1 [ matcher ]
2 −5: signature , threshold=65

4 [ tests ]
5 −5: declaration−preservation

6 −100: interface−preservation , addpages=true , initmark=true , subset=de l i v e r y s e r v i c e
7 −5: matchfilename

8 0 . 033 : btl , repeats=2,name="Accept 10 Orders " , t e s t=
9 + (10 ∗ (−−> Order ) −> (@( ! Order ) ) ) &

10 + (10 ∗ (−−> Receive ) −> (@( ! Receive ) ) ) &
11 + (@( ! Reject ) ) &
12 + [(−−> Handle_Return ) => f a l s e ]
13 0 . 033 : btl , repeats=2,name="Only two ca r s o f capac ity 1" , t e s t=
14 + [@( | Reject | + | Of f er | + | Accept | < 3) ]

� �

changed. This ensures that it is impossible to change the type of the interface
by redefining color sets. If declarations are removed or changed, this is reported
as an error and if new declarations are added, they are added to the report so it
is easy to see what was added without having to directly compare the student
model with the base model.

The interface-preservation (l. 6) plug-in makes sure that students do not change
the given net structure, but only add new structure. In our example from Fig. 1,
students are only allowed to add new net structure, but not to modify the given
environment. Here, we are given four parameters. The addpages parameter is set
to true, which means that students are allowed to add new pages. The initmark
option is set to true, which means that students are not allowed to change the
initial marking of the model. Finally, the subset parameter contains a list of
pages students are allowed to add structure to. Any page not in this list is not
allowed to be changed at all. Here, we specify that the students are allowed
to alter the DeliveryService page from Fig. 1. Any added page is listed in the
report as is any modified page. If the change is illegal, the error is listed (i.e.,
if a node of the interface is removed or altered, this is highlighted), and if the
model contains no errors, the entire environment is dimmed so only the student
solution is highlighted.

2.3 Fraud Prevention

We have two plug-ins for matching a model to a student ID. In Listing 2, we use
both to award points. We see in line 8 that we instantiate the matchfilename plug-
in. This plug-in simply checks if the student ID is a substring of the filename
(and punishes if it is not). This is fine for honest students; unfortunately, we
have in earlier years encountered students copying models from one another. To
catch that, we instead use the more elaborate signature plug-in as matcher (l. 2).

The signature matcher exploits that all elements of a CPN Tools model have
a unique identifier. This is necessary, e.g., to represent that an arc is connected
to a specific place and transition. While these identifiers must be unique in
the file and match for nodes and arcs, the actual contents of the identifiers
have no semantics. We have developed a simple signer application which, given
a base model, modifies the identifiers in a predictable way. By using a crypto-
graphic random number generator, we can generate a sequence of pseudo-random
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numbers using the student ID and a secret passphrase as seed. The idea is that
if we know the passphrase and the student ID, we can regenerate the sequence,
but using just the sequence (and optionally the student ID), it is not possible to
reverse-engineer the passphrase. Now, using the generated sequence of numbers
as identifiers of model elements in the file containing the environment, we create
a unique signature in the base file for each student.

The signature plug-in can check this signature. It queries for each student
ID and student model whether the two match. It regenerates the sequence of
random numbers for the student ID and the provided passphrase, and check
that the identifiers are present in the file. If they are, the model is considered a
match and otherwise not. The plug-in takes a parameter threshold which indicates
how many identifiers must be present in the model. As the signing is a one-way
process, students are forced to use the appropriate base model and cannot just
hand in the same model (even after making cosmetic changes). The teacher only
needs to remember the password as the signature key is generated automatically
from the password and student ID.

2.4 Model-Checking

Grade/CPN embeds the ASAP model-checker [6], allowing us to check all prop-
erties supported by that tool as long as the state-space is finite, including LTL
properties using a wide range of reduction techniques. The models we encounter
in our case study do not have finite state-spaces, so we have not been focused on
this part. The extensible nature of Grade/CPN makes it easy to add this func-
tionality externally, and as a proof-of-concept we have implemented a simple
dead-lock checker.

3 Britney Temporal Logic

An important requirement to our tool is to check dynamic properties, require-
ment 4(b) from the introduction. In the example in Fig. 1, we are for example
interested in the behavior when a customer accepts packets ten times in a row
and how many packets can be outstanding at any time. As CPN models tend
to have huge or even infinite state spaces, we cannot verify such properties in
general and especially not for models generated by students who have less expe-
rience with modeling. Therefore, we check such properties by guiding the model;
that is, we apply a testing-based approach rather than exhaustive state-space
exploration, yielding a sound but not necessarily complete checking mechanism.

Guiding the model requires to specify which transition the model should ex-
ecute. Testing whether some property holds in a state of the model requires a
specification of this property. To this end, we introduce the Britney Temporal
Logic (BTL). This logic is similar to linear-time logic (LTL) [7] but, in addition
to checking properties, also allows guiding the model and to specify constraints
that should hold in a state. We adopt a syntax more similar to common descrip-
tions of Petri net firing sequences rather than cryptic abbreviations or symbols
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to make it easier for practitioners to adopt the logic. The choice for an LTL-like
logic reflects our wish to have existential counterexamples that can be repre-
sented by a simple firing sequence. Other kinds of counterexamples are difficult
to find using simulation only and also difficult to present to the user. In the fol-
lowing, we define the syntax of BTL formulae and then their semantics based on
Kripke structures [8], and structural operational semantics (SOS) [9] to capture
invariant properties and simple rewrite rules to capture the temporal aspects.

3.1 Syntax

A BTL formula is a 〈guide〉. A guide describes how simulation should be per-
formed; that is, it guides the model to a desired state. The atomic propositions
of a guide are described using 〈simple〉, which is an expression without temporal
operators but otherwise allowing full propositional logic on transitions and place
invariants. The temporal operators are six arrows emulating the arrows typically
used to describe transition steps. Thus a->b means that first a must hold and
subsequently b must hold. For example, a and b can represent transitions, mean-
ing that for the formula to hold, the corresponding transitions are executed one
after the other. We lift this operator to a-->b meaning that a must hold and
sometime afterward b must hold. Finally, a--->[b] means that a must hold and
when the simulation stops b must hold. The brackets indicate that b is not used
for guiding the simulation anymore (it has terminated after all). We can omit a,
which is an abbreviation for true. For each arrow, we also add a double arrow
version indicating that if a holds, then b holds at the appropriate time.
〈�����〉 ����� � 〈����	�〉

� �〈�����〉
� �

� ���� 〈�����〉 �

� �〈�����〉
� �

� ����� 〈�����〉 �

� �〈�����〉
� �

� ������ ��� 〈����	�〉 ��� �

� 〈�����〉 ���� 〈�����〉 �
� 〈�����〉 ����� 〈�����〉 �
� 〈�����〉 ������ ��� 〈����	�〉 ��� �

� ����� 〈
��〉 �	�

� �
� �
� 〈���〉 ��� 〈	��〉 � ��� ��� 〈�����〉 �� �

� ������ �	�

� �
� �
� 〈	��〉 ��� 〈�����〉 � ��� ��� 〈�����〉 �� �

� 〈�����〉 ��� 〈�����〉 �
� ��� 〈����	�〉 �
� ��� 〈����	�〉 �
� ��� 〈�����〉 ��� �
� 〈�����〉 ��� 〈�����〉 �
� ��� 〈�����〉 �� �

���

We use operator new to define that the firing of a transition initializes one
or more variables, and we use operator bind to initialize one or more variables
with constant values. We also allow bounded and unbounded repetition using
a star syntax. In contrary to a regular Kleene star, we put it in front as it
improves readability for western readers. Using operator @, a guide can specify
an invariant property that should hold in all states. A guide can also include
〈check〉s, which are not used to guide the model but only to test assertions.
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They are therefore allowed to contain disjunctions and negations and general
boolean expressions. Finally, a guide can also be the conjunction of two guides.

〈�����〉 ����� � 〈�����〉
� ��� 〈�����〉 �
� 〈�����〉 ��� 〈�����〉 �
� 〈�����〉 ��� 〈�����〉 �
� ��� 〈�����〉 ��� �

� ��

In addition to the syntax for guiding, we also allow simple boolean expressions.
These are mostly for testing state properties, such as counting the tokens on a
place or testing values of the global clock. Attribute tid and pid in the grammar
thereby refer to a transition label and place label, respectively, and nid is the
name of a CPN variable and lid is the name of a local BTL variable. In this
definition, constants are only bound to numbers for sake of simplicity, however
the extension to arbitrary CPN literals is straight forward. In the syntax, symbol
〈R〉 is any of the comparison operators <,>,≤,≥,=. For example, Line 12 in
Listing 2 tests that Handle Return is never executed (but does not enforce it like
the guides). The formula in line 14 checks that at any point during execution,
the three places Reject, Offer, and Accept never contain three or more tokens in
total.
〈	�
���〉 ����� � 〈��〉

� 〈��〉 ���

� ��� �
� 〈���〉 ��� 〈���〉 � �	� �

� ��� 〈���〉 ��� 〈�〉 〈��
���〉 �
� �
��� 〈�〉 〈��
���〉 �
� �
��� �
� ������ �
� ��� 〈	�
���〉 �
� 〈	�
���〉 ��� 〈	�
���〉 �
� 〈	�
���〉 ��� 〈	�
���〉 �
� ��� 〈	�
���〉 ��� �

� ��

Our syntax includes a lot of conveniences. We already mentioned that avoiding
the precondition for the single arrows is a convenience for a precondition of true.
Furthermore, all single arrows can be defined from the double arrows by forcing
the precondition. The eventuality defined by a==>b can be defined in terms of
the unbounded repetition and the next operator, and bounded repetition is just
a syntactical convenience. Let G,G1, G2 be guides, C,C1, C2 be checks, and
S, S1, S2 be simple boolean expressions. In the syntax, we have grayed out all
syntactic sugar for which we do not need to explicitly define the semantics.

->G ≡ true->G

-->G ≡ true-->G

--->[C] ≡ true--->[C]

G1->G2 ≡ G1&(G1=>G2)

G1-->G2 ≡ G1&(G1==>G2)

G1--->[S] ≡ G1&(G1===>[S])

G1==>G2 ≡ G1->(∗true->G2)

(G) ≡ G false ≡!true

C1|C2 ≡!(!C1&!C2) S1|S2 ≡!(!S1&!S2)

(C) ≡ C (S) ≡ S

n ∗G ≡
{
G->(n− 1) ∗G if n ≥ 1

true otherwise.
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3.2 Semantics

The semantics of BTL is similar to a standard finite trace semantics for LTL like
the one defined in [10]. Intuitively, => corresponds to “next”, ==> corresponds
to “eventually”, @ corresponds to “globally” (in a restricted form), and a for-
mula [〈check〉]==>〈guide〉 is similar to “until” (in a restricted form). Yet, BTL
significantly differs from LTL due to the dual nature of guides (which steer the
simulation) and checks (which have to hold).

We interpret BTL formulae over a Kripke structureK = (Q, δ, q0, Σ, λ), where
Q is a set of states, q0 ∈ Q is the initial state, Σ is a set of transition labels,
δ ⊆ Q × Σ × Q is the transition relation, and function λ : Q −→ 2AP maps
each state q ∈ Q to a set of atomic propositions that hold in q. As usual, AP
denotes the set of all atomic propositions. In our syntax we have some CPN-
specific atomic propositions dealing with places and time, but it obvious that
these could be replaced to suit any formalism generating a Kripke structure.

The semantics of a BTL formula is defined over the traces of a Kripke structure
K along with an environment, E, which is a function mapping names to values.
Normally for a model M , we consider the transition relation −→M relating two
states q0, q1 and a transition. What exactly the state and transitions are depends
on the concrete formalism. In the case of CPNs, the states are markings and the
transitions are pairs consisting of a transition and all variables surrounding it, a
binding element . We denote by BE ⊆ T ×2Bindings the set of all possible binding

elements for a model, and we write q0
t{n1=v1,...,nj=vj}−−−−−−−−−−−−→M q1 to denote the model

can execute transition t with the binding of variables n1 = v1, . . . , nj = vj from
state q0, leading to state q1. We say that the binding element t{n1 = v1, . . . , nj =
vj} is enabled and denote by name(t{n1 = v1, . . . , nj = vj}) = t the transition
name of a binding element.

We first consider how to guide the simulation. This is done by defining a set of
allowed transitions for each guide. For simulation, only enabled transitions that
are in this set are considered. This in particular means that if the set of allowed
transitions is empty, the simulation is considered finished (and not with an error
unless the formula is not satisfied). In other words, when considering the truth
value of a formula according to a model (without a trace), we only consider the
truth value along all traced adhering to the guides. We define the set guide over
a set of possible binding elements inductively as follows, where S, S1, S2 are of
type 〈simple〉, C,C1, C2 are of type 〈check〉, and G,G1, G2 are of type 〈guide〉:

guide(tid, q, E) = {be ∈ BE |name(be) = tid}
guide(tid{n1 = l1, . . . , nj = lj}, q, E) = {tid{n1 = E(l1), . . . , nj = E(lj)}}

guide(|pid| R i, q, E) = guide(time R i, q, E) = BE

guide(true, q, E) = BE

guide(!S, q, E) = BE \ guide(S, q, E)

guide(S1&S2, q, E) = guide(S1, q, E) ∩ guide(S2, q, E)

guide(!C, q, E) = BE \ guide(C,E)

guide(C1&C2, q, E) = guide(C1, q, E) ∩ guide(C2, q, E)
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guide(G1=>G2, q, E) = guide(G===>[S], q, E) = BE

guide(new tid{n1 = l1, . . . , nj = lj}(G), q, E) = {tid{n1 = v1, . . . , nj = vj} ∈ BE |
tid{n1 = v1, . . . , nj = vj} ∈ guide(G, q, E[l1 
→ v1, . . . , lj 
→ vj ])}

guide(bind {l1 = v1, . . . , lj = vj}(G), q, E) = guide(G, q, E[l1 
→ v1, . . . , lj 
→ vj ])

guide(∗S, q, E) = guide([C], q, E) = BE

guide(@S, q, E) = guide(S, q, E)

guide(G1 ∧G2, q, E) = guide(G1, q, E) ∩ guide(G2, q, E)

We allow concrete steps if they are needed to satisfy a formula or forbid a step
if it would violate it, and otherwise allow anything when we do not care about
the outcome.

Next, we define the semantics of 〈simple〉 over traces q0
be1−−→M q1

be2−−→M

· · · bek−−→M qk of enabled binding elements as follows. Most operators are straight-
forward with (1) consuming transitions and binding elements for non-empty
traces, (2) defining state predicates, and (3) defining propositional connectives.

k ≥ 1, be1 ∈ guide(tid, q0, E)

(q0
be1−−→M · · · qk), E |= tid

k ≥ 1, be1 ∈ guide(tid{n1 = v1, . . . , nj = vj}, q0, E)

(q0
be1−−→M · · · qk), E |= tid{n1 = v1, . . . , nj = vj}

(1)

q0 |= |pid| R i

(q0
be1−−→M · · · qk), E |= |pid| R i

q0 |= time R i

(q0
be1−−→M · · · qk), E |= time R i

(2)

true

(q0
be1−−→M · · · qk), E |= true

(q0
be1−−→M · · · qk), E |= S

(q0
be1−−→M · · · qk), E |=!S

(q0
be1−−→M · · · qk), E |= S1 ∧ (q0

be1−−→M · · · qk), E |= S2

(q0
be1−−→M · · · qk), E |= S1 ∧ S2

(3)

The 〈check〉 is a simple syntactical extension of 〈guide〉 and treated with them.
The operators on 〈guide〉 are LTL-like. As for 〈simple〉, we define the syntax over
traces q0

be1−−→M q1
be2−−→M · · · bek−−→M qk of enabled binding elements. Instead of

defining the truth value, we need to define a rewrite of a formula to capture the
temporal aspects as well as the guiding aspects. We define the progress function
inductively on the structure of the union of 〈guide〉 and 〈check〉, execution trace,
and an environment E. We notice that this includes true and false . A 〈simple〉
can always be evaluated in the current state or step according to rules (1)-(3).

progress(S, q0
be1−−→M · · · qk, E) =

{
true if (q0

be1−−→M · · · qk, E) |= S

false otherwise
(4)

A 〈guide〉 or a 〈check〉 may evaluate to true or false in the current state or step,
in which case we return this value. If not, the 〈guide〉 or 〈check〉 is rewritten to
the formula that has to hold in the next step. Rule (5) shows the rewriting for
the conditional next step construct, where G2 has to hold in the next step if G1
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holds in this step, while the entire formula has to hold in the next step if nothing
can be said about G1 in this step. By (6), conditional “finally” is only evaluated
at the end of the trace.

progress(G1=>G2, q0
be1−−→M · · · qk, E) =⎧⎪⎪⎨

⎪⎪⎩
G2 if progress(G1, q0

be1−−→M q1, E) = true

true if progress(G1, q0
be1−−→M q1, E) = false

(progress(G1, q0
be1−−→M · · · qk, E)=>G2) otherwise

(5)

progress(G===>[S], q0
be1−−→M · · · qk, E) =⎧⎪⎨

⎪⎩
(q0, E) |= S if G = true, k = 0

true if G = true, k = 0

(progress(G, q0
b1−−→M · · · qk, E))===>[S] otherwise

(6)

Rule (7) replaces the dynamic binding of BTL variables by “new” with the static
binding when the concrete values are known and the transition is allowed; the
static binding recursively extends the environment for the subformulas (8).

progress(new name{n1 = l1, . . . , ni = li}(G), q0
be1−−→M · · · qk, E) ={

ψ if be1 = name{n1 = v1, . . . , ni = vi}
false otherwise

(7)

where ψ = progress(bind{l1 = v1, . . . , li = vi}(G), q0 be1−−→M · · · qk, E).

progress(bind{l1 = v1, . . . , li = vi}(G), q0
be1−−→M · · · qk, E)

=

{
true if ψ = true

bind{l1 = v1, . . . , li = vi}(ψ) otherwise
(8)

where ψ = progress(G, q0
be1−−→M · · · qk, E[l1 	→ v1, . . . , li 	→ vi]).

The “@S” defines a global invariant S that has to hold in each step of the
trace until its end (10), the “∗S” permits the simple S to hold on a prefix of the
trace 9.

progress(∗S, q0 be1−−→M · · · qk, E) =

{
∗S if k > 0, (q0

be1−−→M q1), E |= S

true otherwise
(9)

progress(@S, q0
be1−−→M · · · qk, E) =

⎧⎪⎨
⎪⎩

@S if k > 0, (q0
be1−−→M q1), E |= S

true if k = 0

false otherwise

(10)

Checks do not restrict the step: they are simply evaluated, or, if they cannot
be evaluated, are rewritten according to the current step. We preserve syntactic
categories of checks in rules (11) and (12) accordingly.

progress([C], q0
be1−−→M · · · qk, E)

=

⎧⎪⎪⎨
⎪⎪⎩

true if progress(C, q0
be1−−→M · · · qk, E) = true

false if progress(C, q0
be1−−→M · · · qk, E) = false

[progress(C, q0
be1−−→M · · · qk, E)] otherwise

(11)
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progress(!C, q0
be1−−→M · · · qk, E)

=

⎧⎪⎪⎨
⎪⎪⎩

false if progress(C, q0
be1−−→M · · · qk, E) = true

true if progress(C, q0
be1−−→M · · · qk, E) = false

[!progress(C, q0
be1−−→M · · · qk, E)] otherwise

(12)

A satisfied conjunction is rewritten to true as in rule (13); this rule equally
applies to conjunctions over 〈check〉s.

progress(G1 ∧G2, q0
be1−−→M · · · qk, E)

=

⎧⎪⎪⎨
⎪⎪⎩

progress(G1, q0
be1−−→M · · · qk, E) if progress(G2, q0

be1−−→M · · · qk, E) = true

progress(G2, q0
be1−−→M · · · qk, E) if progress(G1, q0

be1−−→M · · · qk, E) = true

progress(G1, q0
be1−−→M · · · qk, E)∧progress(G2, q0

be1−−→M · · · qk, E) otherwise

(13)

The progress function determines how to progress the computation for each
step. Sometimes the computation cannot progress, however. This can be either
because there are no more enabled transitions (the trace is empty) or the guard
does not permit progressing. In this case, we need to check that the remaining
rewritten formula can terminate, i.e., if it accepts the empty trace. We then lift
the computation over traces from individual steps to entire traces. We define
an evaluate function evaluating the truth value of a formula f over a trace
q0

be1−−→M q1
be2−−→M · · · bek−−→M qk of enabled transitions as follows. The function

returns one of three values, true meaning the formula holds for the trace, false
meaning it does not hold, and unguided meaning the trace does not follow the
guiding function.

evaluate(f, q0
be1−−→ · · · qk) =⎧⎪⎪⎪⎨

⎪⎪⎪⎩

true if progress(f, q0, ∅) = true

false if k = 0, progress(f, q0, ∅) = true

unguided if be1 /∈ guide(q0 , f, ∅)
evaluate(progress(f, q0

be1−−→ · · · qk), q1 be2−−→ · · · qk) otherwise

(14)

Finally, we say that given a model M and a formula f , M satisfies the formula f ,
written M |= f if all traces either satisfy the formula or are unguided, formally:

Definition 1 (Satisfaction of BTL). Given a (CPN) model M and a BTL
formula f , we say that M satisfies f , written M |= f iff

∀q0 be1−−→ · · · qk ∈M : evaluate(f, q0
be1−−→ · · · qk) �= false

4 Coverage and Choices

Section 3 introduced syntax and semantics of BTL, which allows to specify in-
tended and forbidden behavior of the system. In this section, we discuss how to
test whether a system model, given as CPN model, satisfies the specification.
We first discuss requirements for testing and our approach, including how to get
high coverage and how these ideas can be used to handle choices in the form of
disjunctions.
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4.1 Testing BTL Formulas

Similar to formal verification, testing aims at finding errors in the system model
– that is, finding runs which violate the given specification. In contrast to formal
verification, testing is not exhaustive: Only a fraction of the system’s possible
behavior is investigated for whether it violates the specification.

A naive testing algorithm is to randomly walk through the state space of
the system model, until the property tested for is satisfied or violated. This is
repeated several times. If a run violating the specification is found, it is proof that
the system violates the specification. In case no violating run is found, there is
no proof that the system is error free. However, one can compute the probability
by which a specification holds based on the explored behavior in relation to the
complete behavior.

1

u

A

D

1

B

x

w

y

C

v

A

p=1

p=1

C D

D C

p=1/2 p=1/2

p=1/2 p=1/2T

T

A

p=1

p=1/3

C D

D C

p=1/6
p=1/6

p=1/6 p=1/6

T

T

p=1/3 p=1/3

B D

D

T

p=1/3
p=1/6 p=1/6

BA

p=1/3

C

F

F

Fig. 4. Example model N , guided execu-
tion tree for A-->C, and guided execution
tree for !C-->D

Figure 4 shows a technical exam-
ple. For evaluating the BTL formula
A-->C, only the guided traces of the
execution tree are relevant as un-
guided traces have no impact on the
satisfaction of a formula. We do not
assign all traces the same probabil-
ity, as simulation locally decides on
each step regardless of any previous
and future steps. In the first step, the
system is guided to do an A, so all
traces leaving the initial state with an
action different from A are unguided
and not considered. This means the
traces have probability 1 of starting
with an A. The remaining guided tree
is shown in Fig. 4(top right). Edges
correspond choices in the model and
the probabilities show the probability
of a random trace having the given prefix. We only consider completed traces,
though we can sometimes make a decision prior to exploring full traces. We
see that after executing A we have a choice between C and D, so each prefix
amounts to half of the probability. The trace ACD satisfies the formula (we can
already see it will after executing just the prefix AC). By just testing the trace
prefix AC, we know that the entire system satisfies A-->C with a probability
of 1

2 , because the probability to see traces with this prefix is 1
2 . By exploring

more alternatives, we see more traces and, in case all explored traces satisfy the
formula, increase the probability that the formula holds, i.e., when also exploring
ADC , which also has probability 1 · 1

2 · 1 = 1
2 , we get that the system satisfies

A-->C with probability 1.
A different situation occurs for the formula !C-->D which has the guided tree

of Fig. 4(bottom right). The guide !C does not prune any (enabled) behavior.
If the test explores the trace DB or DAC , it finds a counterexample for the
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formula proving it was violated. By non-exhaustive exploration in testing, we
could also end up with just exploring the traces ACD (which has probability
1
3 · 1

2 = 1
6 ) and BD (which has probability 1

3 · 1 = 1
3 ), and in this case would

have a total probability of 1
6 + 1

3 = 1
2 that the formula holds. Once exploring

a violating trace, such as DB , that probability drops to 0. Exploring the entire
execution tree yields either probability 0 or 1 that the formula holds.

In general, we talk about three different percentages: the coverage, which is
the weighted sum of all explored traces; the probability a formula holds, which
is the weighted sum of all explored traces if they all satisfy the formula or zero
otherwise; and the probability that a random trace satisfies the formula. When
we have found no counter-examples these are the same, and obviously the larger
the probability that a random trace satisfies the formula, the more difficult it is
to find a counter-example. The example shows the main challenge in testing: to
explore that fraction of traces that yield a counter-example, or if so such exists,
yields a high probability that the formula holds (which increases confidence in
the test result).

4.2 Heuristics for Higher Confidence in Test Results

In testing, confidence put into a test result is typically measured in terms of
coverage criteria [11]. Various coverage criteria have been proposed such as state
coverage (i.e., the fraction of place that has been marked at least once), transition
coverage (i.e., the fraction of transitions that occurred at least once, regardless
of binding element), or coverage of all paths (to a certain length). Coverage
criteria are in some sense interchangeable, as one can simulate coverage w.r.t.
one criterion by coverage w.r.t. another one [12].

Path Coverage. To improve the naive testing algorithm of repeatedly walking
through the system state space in a random way, we leverage two coverage
criteria to increase confidence that a CPN model satisfies a given BTL formula:
transition coverage and path coverage. Complete coverage for paths is infeasible
in the presence of loops or unbounded non-determinism, but covering paths up
to a certain length is feasible. To increase path coverage, we essentially explore
the guided execution tree of the CPN model by greedily choosing a branch that
has the largest probability of falsifying a formula. In the simplest case with no
information about the model, this is the one with the largest difference between
the probability of a random trace having the prefix represented by the branch
and the probability of the formula holding in that subtree. If we consider the
example for !C-->D in Fig. 4, assuming we have explored ACD, starting from
an empty trace we would pick either B or D as they both have probability 1

3 of
happening and known probability 0 of the formula holding, whereas the subtree
starting with A also has probability 1

3 of happening and probability 1
3 of holding.

Transition Coverage. Generating a test for complete coverage of all transitions
is an undecidable problem in a CPN model, as for each transition, one would have
to find a coloured firing sequence that enables this transition. For this reason,
we apply heuristics when exploring the tree of guided executions. We maintain
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a queue of all transitions of the CPN model. When deciding on the next step in
a run, we pick the first enabled transition from the queue and after firing move
it to the end of the queue. This way, we increase the chance of firing transitions
that were not considered yet. Binding elements are not part of the queue and
we also prefer branches giving higher coverage by using the previous heuristic.

More Advanced Criteria. We have assumed that the variables have no im-
pact on the enabled traces. This is of course a simplification, and we could also
consider trying to evaluate the guards to drive the model to different states,
e.g., using abstraction. We could also use transition invariants (of the uncolored
underlying model) to identify loops that are less likely to be interesting, or par-
tially order the transitions according to pre and post places to try and drive a
notion of progress in the model.

4.3 Disjunctions

We have avoided adding disjunction to our guides. This is primarily done be-
cause adding disjunctions can be very expensive. For example, an expression
like (A-->B)|(B-->D) must make a choice when used for guiding if both A
and B can be executed. If, in the example in Fig. 4, A is chosen, a D and a
C are encountered, and the execution terminated, we cannot conclude that the
formula does not hold, as the second part of the disjunction was ignored. We
therefore have to back-track and try again to ensure there really is an error,
making handling disjunctions as difficult as model-checking.

Furthermore, the semantics of disjunction is not completely obvious as we
make truth of formulae relative to the guide. In the formula ((A-->C)|(B-->D))
-->D, must the system be able to respond to both A-->C and B-->D with a
D or is it enough that the system responds with a D for one of the environ-
ment interpretations? As the truth is relative to the guide, either interpretation
becomes unclear; normally we would make the guide of a disjunction the union
of the guides for the two elements, but this makes the guide a larger set, which
may yield strange results. For example, a system may respond to being guided
by A-->C with a D like in Fig. 4 (thus intuitively satisfying the system), but
not respond to B-->D with a D. If the system allows this behavior, this would
mean that the disjunction is not true, even though one of its sides is; the disjunc-
tion inherits similarities to a conjunction (both sides must be satisfiable for the
disjunction to be true). This interpretation is counter-intuitive (and contradicts
the behavior of disjunction of simple formulae, e.g., A|B). The only way to get
around that is to change the guide to instead return sets of sets of transitions,
one for each branch of a disjunction.

If we split the guide to handle disjunctions, we need to check each set of
guides. Each set would partition according to the left side, right side, and inter-
section of each disjunction all the way through the structure of the guide, caus-
ing the number of sets needed to explore to grow exponentially in the number of
disjunctions.

Instead of dealing with this, which theoretically is manageable and nice, we
have decided that disjunction in guides unnecessarily complicates the semantics
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and complexity of checking. We can handle multiple environment behaviors by
instead checking a formula for each individual environment behavior, and we can
already test disjunctions in the simple boolean checks.

5 Practical Experience

In this section, we briefly present our implementation of BTL and Grade/CPN,
and practical experiences of using both in a course.

5.1 Implementation

Our implementation of BTL uses simple formula rewriting according to the se-
mantics. Our implementation implements the guide set for filtering enabled tran-
sitions, pick and execute one that is in the guide set and in the set of enabled
transitions. We then rewrite the formula according to the previous rules. For
efficiency, we have expanded some of the syntactical equivalences, most impor-
tantly the future temporal operator (a==>b). When no more transitions are in
the intersection, we check if the rewritten formula is satisfied for the empty trace.

We evaluate formulae using a four-valued logic similar to [13]. The idea is that
we have two versions of both true and false: The value is definite and can never
change and the value is true/false but may change with further execution. For
example, if we have a formula a->b and execute c we know for sure that we can
never satisfy the formula (we say it is permanently false), whereas for -->b if we
execute a c, the formula is only temporarily false (we still have proof obligations
but may be able to satisfy them in the future). This allows us to terminate early
once a formula is permanently true or false. This has the added advantage of
allowing us to provide a rewritten formula after executing a sequence of steps,
which often contains hints of shortcomings of the model.

Fig. 5. Screenshot of BTL tester

The engine for testing BTL is used
in 3 different tools. The grader dis-
cussed in Sect. 2 is used by teachers
to finally grade assignments. Addition-
ally, we provide two tools for testing
BTL formulas (without grading). One
is used to help a teacher create BTL
specifications by providing immediate
feedback on whether a CPN model
(created by the teacher as a sample
solution or given to the teacher) sat-
isfies a BTL formula. Figure 5 shows
a screenshot of testing the formula
A-->C for the example in Fig. 4. The
tool allows to manually create and step through a run of the CPN model, thereby
observing how the BTL formula tested for is evaluated step by step. The panel
Enabled Bindings shows the list of currently enabled transitions and bindings from
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which the user can pick one. Disallowed Transitions shows transitions not allowed
by the guard function. The panel Current Marking shows the current marking in
the run. The panel Current Formula contains the remaining formula that has to
be evaluated, whenever a step in the CPN model makes a subformula true or
false, the formula in that panel is rewritten according to the BTL semantics of
Sect. 3. The panel Execution Trace shows the steps of the run executed so far, in-
cluding timing information which is valuable for assessing whether time-related
guards in the model match time-related conditions in the BTL formula. The tool
also reports estimates of the coverage, probability the formula holds, and the
probability of a random trace satisfying the formula in the Decision Tree panel.

A simplified version of this tool allows students to check that their models
conform to the formulas. Here, the tool is pre-packaged with a set of BTL for-
mulas that the model must satisfy. The students loads their models and the tool
automatically tests validity of each formula on the model. In case one formula
is not satisfied by the model, the student can manually single-step through the
model and watch the formula progress in an interface similar to Fig. 5, aiding in
finding and fixing obvious errors before handing in.

5.2 Case Study: Business Information Systems

In this section, we present first experiences we made with Grade/CPN in sup-
porting the evaluation of a CPN assignment in the course Business Information
Systems at Eindhoven University of Technology. In this assignment, students
were given the base model in Fig. 1 and they had to model the delivery system
according to a textual specification. Each of the 94 students had to work on five
tasks; for each task, they had to submit one model. We received in total 258
models from 66 students. Table 1 summarizes some statistics. We continue by
describing the assessment in more detail and then report on the experiences had.
Assessment. For each of the five tasks, the assessment consisted of two steps.
In the first step, we applied Grade/CPN by calling it with a student model, the
base model, and a configuration file (see Listing 2). Here, we were interested
whether the interface and declaration of the base model have been preserved,
whether there is a suspicion of fraud, and whether, depending on the task, six
up to fourteen scenarios can be replayed on the model (only two are shown
in the Listing). The scenarios were part of the specification of the assignment,

Table 1. Results of supporting the evaluation of 258 CPN models

Task hand-ins incorrect grader full points full points
models incorrect by grader

1 66 8 0 58 58
2 64 8 0 56 56
3 56 49 7 2 6
4 41 32 4 6 6
5 31 20 2 0 0
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and we specified them using BTL. As BTL refers to the interface, it is cru-
cial that students have not changed it. The runtime of the tool was about ten
minutes for all students in the case of Task 1 and 2 and about ten minutes
for each student model in the case of Tasks 3–5. The reason for the different
runtime of Grade/CPN is that Tasks 1 and 2 are simple CPNs with few tests,
whereas the remaining tasks performed more thorough tests on more advanced
models, including performance analysis, thereby causing a higher analysis effort.
Grade/CPN detected two fraud attempts, though they turned out to be caused
by students handing in a subsequent assignment using the same base model. In
a subsequent run of the course, we caught two students cheating, even though
they had tried to conceal that by changing the layout. This attempt would be
unlikely to get caught manually, but after singling out the models, we manually
inspected them and saw they were clearly the same despite the obfuscation.

In the second step of the assessment, we manually checked each of the gen-
erated reports. On average, this took less than five minutes for each report in
the case of Task 1 and 2 and about ten minutes in the case of Tasks 3–5. Based
on the feedback provided by Grade/CPN, it was easy to check whether a model
was actually correct or not, in particular for the untimed CPN models. Basically,
the violation of a certain scenario simplified the detection of the cause for this
violation drastically. In most cases, we did not even have to look at the coun-
terexample provided by our tool. For Tasks 1 and 2, we had to simulate only
five out of 130 student models manually to determine the cause of an error. A
similar number of models had to be simulated manually for each of the Tasks
3–5. In those cases, the effort spent on finding the cause of an error was often
higher because of the complexity of the models.

The tool automatically detected several subtle errors, such as wrong guards
and minor changes to the environment, without having the need to manually
open the respective model; it is highly unlikely we would have caught all of
these completely manually. We even found subtle errors in our own solutions,
yielding better results.

Experiences and Evaluation. Based on experience from previous years, the
use of Grade/CPN reduced the amount of time for grading the assignment by a
factor of at least two to three. This is factoring in that we used Grade/CPN for
the first time and had to both define and understand the defined logic BTL, and
also did not place complete confidence in the reported results which probably
increased the manual labor as well. Table 1 confirms this observation: For each
task, it shows the number of student models received (Col. 2), the number of
incorrect models (Col. 3), how many times Grade/CPN gave incorrect results
(Col. 4), the number of student models that were graded to be correct according
to the tool (Col. 5), and the number student models that were graded to be
correct after manually checking them (Col. 6). In fact, whenever the grader
assigned full points to a model, then the model was correct. As a result, checking
those models manually took almost no time. Given the high number of models for
Tasks 1 and 2, we saved a lot of time here. Column 4 shows that only few models
were graded incorrectly. In most cases, the cause was a misinterpretation of the
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specification on the part of the students where we decided that the students
should not be punished. Note that we do not show incorrect results of the tool
caused by problems specifying a scenario in BTL.

The second column shows that the number of students participating at the as-
signment decreased from 66 for Task 1 to 31 for Task 5. Moreover, the averagenum-
ber of incorrect student solutions increased from 8/66=12% for Task 1 to 20/31
=65% for Task 5. The tasks became more difficult; whereas the first two tasks dealt
with untimed CPN models and simple functionality, the remaining three tasks
were much more involved. However, for the last two tasks we provided students
with a student version of Grade/CPN. The idea was to provide them with a BTL
specification that covers the basic functionality of their model. The final BTL spec-
ification used by us to grade their assignment contained additional scenarios. We
experienced that providing students with Grade/CPN helped them to come up
with better models. Whereas only 32/56 = 57% of the students got at least half of
the points for the third assignment (56 − 49 = 7 correct solutions), this number
increased to 28/41 = 68% (11 correct) for Task 4 and 20/31 = 64% (11 correct)
for Task 5 even though these were much more involved than the previous tasks.
Moreover, we observed that the overall quality of the models increased drastically.

Grading models is a rather monotonous work. Therefore, it is easily possible
that one oversees an error or forgets to check some scenario. Using Grade/CPN,
this is now impossible and, therefore, we think that we can provide students
with a fairer (in the sense of more equal) grading on the one hand and better
feedback on the other hand.

Coverage Criteria and Confidence. We also compared the quality of the
test result under the 3 different testing strategies (random exploration, increasing
coverage of the guided tree, increasing transition coverage) discussed in Sect. 4.
We observed that random yields the least confidence in the validity of the for-
mula. Increasing tree coverage raises coverage by factor 4 (compared to random)
and increasing transition coverage raises coverage by factor 200 (compared to
random). Likewise, increasing the number of runs tested for also raises covarage.

6 Conclusion and Future Work

We have presented Grade/CPN, a tool to semi-automatically grade CPN models.
Using Access/CPN, we can support any model created using CPN Tools. The plug-
in architecture makes the tool easily extendible: to do so, one must just implement
the interface in Listing 1 (ll. 1–5). The pluggable configuration with a very simple
base format makes configuration simple. Configuration comprises selecting which
plug-ins to use, which weight to assign them, and which parameters to instantiate
them. Each plug-in only needs to consider its own options as the overall configura-
tion format is handled byGrade/CPN. Reporting is handled by making all plug-ins
return simple messages optionally annotated with more detailed reasoning (List-
ing 1 ll. 13–15). The information is automatically gathered by Grade/CPN and
presented both as an overview in the user interface and as a detailed report. We
have presented both simple plug-ins and a very powerful one implementing guided
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checking of Britney Temporal Logic (BTL). BTL allows us to guide the simulation
toward desired scenarios and to check that the environment contracts are adhered
to. All plug-ins provide categorized information explaining the score and highlight-
ing any changes made to the model, so teachers processing the reports only have
to focus on things that cannot be automatically checked. We have designed and
implemented an infrastructure for detecting fraud. We have reported on our ex-
perience with the Business Information Systems course where Grade/CPN was
used to grade 258 assignments from 94 students. Using Grade/CPN instead of a
completely manual approach reduced the manual labor by a factor of two to three.
Grade/CPN is being employed again in the same course and results show that the
quality of student models has significantly increased after giving them access to
the student tester.

The idea of (semi-)automatically grading assignments is not new and closely
related to testing. A known testing framework is JUnit [14], which also runs a set
of tests and reports the result. The advantage of our tool over JUnit is that JUnit
requires programming to get started, whereas we use simple configuration files.
From the testing world we also find the tool Jenkins (previously Hudson) [15],
which runs tests on a central server and provides near-instantaneous feedback.
The main disadvantage of Jenkins in our view is also complexity; while it does
not (necessarily) require programming, setup does require complex XML config-
uration, and extension either requires huge effort or makes it difficult to get con-
solidated reports. There are many tools for automatically grading programming
assignments [16], for example, the tool peach3 [17], which more focuses on manag-
ing hand-ins, but can also run automatic tests. In contrast, we focus on the tests
and CPN models directly and assume that models already exist. Our testing ap-
proach is similar to runtime LTL [10,13], but our logic also supports guiding. This
is similar to hot/cold events in Live-Sequence Charts [18], but our sections are
more urgent in that a guide is not only preferred, it is an immediate failure if it is
not possible to follow it, making BTL computationally easier to check.

It is very interesting to increase the efficiency of the coverage heuristics for BTL,
including expression abstraction, e.g., using a Counter-Example Guided Abstrac-
tion Refinement (CEGAR) [19] or similar approach. It is also interesting to employ
more static analysis to get even better coverage. Experience says, though, that
students often fail to account for particular cases, making it very easy to detect
errors in those cases. It would also be interesting to investigate simpler languages.
For example, it may be interesting for a teacher simply to see if a given transi-
tion is enabled. This is easily expressible in BTL but difficult to check, and em-
ploying techniques from directed model-checking [20] may prove beneficial to try
more intelligent guiding towards errors. We would also like to extend Grade/CPN
with ability to provide simple simulation-based checks of standard safety and live-
ness properties. We also want to add support for loading models in the PNML
standard [21] format to be able to also check models created using other tools.
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