
 123

Transactions on 
Petri Nets
and Other Models
of Concurrency VIIILN

CS
 8

10
0

Maciej Koutny
Editor-in-Chief

Jo
ur

na
l S

ub
lin

e Wil M.P. van der Aalst · Alex Yakovlev
Guest Editors



Lecture Notes in Computer Science 8100
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Maciej Koutny Wil M.P. van der Aalst
Alex Yakovlev (Eds.)

Transactions on
Petri Nets
and Other Models
of Concurrency VIII

13



Editor-in-Chief

Maciej Koutny
Newcastle University
School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: maciej.koutny@ncl.ac.uk

Guest Editors

Wil M.P. van der Aalst
Eindhoven University of Technology
Department of Mathematics and Computer Science
5600 MB Eindhoven, The Netherlands
E-mail: w.m.p.v.d.aalst@tue.nl

Alex Yakovlev
Newcastle University
School of Electrical, Electronic and Computer Engineering
Newcastle upon Tyne, NE1 7RU, UK
E-mail: alex.yakovlev@ncl.ac.uk

ISSN 0302-9743 (LNCS) e-ISSN 1611-3349 (LNCS)
ISSN 1867-7193 (ToPNoC) e-ISSN 1867-7746 (ToPNoC)
ISBN 978-3-642-40464-1 e-ISBN 978-3-642-40465-8
DOI 10.1007/978-3-642-40465-8
Springer Heidelberg New York Dordrecht London

CR Subject Classification (1998): D.2, F.3, F.1, D.3, J.1, I.6, I.2

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface by Editor-in-Chief

The 8th issue of the LNCS Transactions on Petri Nets and Other Models of
Concurrency (ToPNoC) contains revised and extended versions of a selection
of the best papers from the workshops and tutorials held at the 33rd Interna-
tional Conference on Application and Theory of Petri Nets and Other Models
of Concurrency, Hamburg, Germany, 25–29 June 2012.

I would like to thank the two guest editors of this special issue: Wil van der
Aalst and Alex Yakovlev. Moreover, I would like to thank all authors, reviewers,
and the organizers of the Petri net conference satellite workshops, without whom
this issue of ToPNoC would not have been possible.

June 2013 Maciej Koutny
Editor-in-Chief

LNCS Transactions on Petri Nets and Other Models of Concurrency (ToPNoC)



LNCS Transactions on Petri Nets and Other

Models of Concurrency: Aims and Scope

ToPNoC aims to publish papers from all areas of Petri nets and other models
of concurrency ranging from theoretical work to tool support and industrial
applications. The foundations of Petri nets were laid by the pioneering work of
Carl Adam Petri and his colleagues in the early 1960s. Since then, a huge volume
of material has been developed and published in journals and books as well as
presented at workshops and conferences.

The annual International Conference on Application and Theory of Petri Nets
and Other Models of Concurrency started in 1980. The International Petri Net
Bibliography maintained by the Petri Net Newsletter contains close to 10,000
different entries, and the International Petri Net Mailing List has 1,500 sub-
scribers. For more information on the International Petri Net community, see:
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

All issues of ToPNoC are LNCS volumes. Hence they appear in all main
libraries and are also accessible in LNCS Online (electronically). It is possible to
subscribe to ToPNoC without subscribing to the rest of LNCS.

ToPNoC contains:

– revised versions of a selection of the best papers from workshops and tutorials
concerned with Petri nets and concurrency;

– special issues related to particular subareas (similar to those published in
the Advances in Petri Nets series);

– other papers invited for publication in ToPNoC; and

– papers submitted directly to ToPNoC by their authors.

Like all other journals, ToPNoC has an Editorial Board, which is responsible
for the quality of the journal. The members of the board assist in the reviewing
of papers submitted or invited for publication in ToPNoC. Moreover, they may
make recommendations concerning collections of papers for special issues. The
Editorial Board consists of prominent researchers within the Petri net community
and in related fields.

Topics

System design and verification using nets; analysis and synthesis, structure and
behavior of nets; relationships between net theory and other approaches; causal-
ity/partial order theory of concurrency; net-based semantical, logical and alge-
braic calculi; symbolic net representation (graphical or textual); computer tools
for nets; experience with using nets, case studies; educational issues related to



VIII ToPNoC: Aims and Scope

nets; higher level net models; timed and stochastic nets; and standardization of
nets.

Applications of nets to: biological systems; defence systems; e-commerce and
trading; embedded systems; environmental systems; flexible manufacturing sys-
tems; hardware structures; health and medical systems; office automation; oper-
ations research; performance evaluation; programming languages; protocols and
networks; railway networks; real-time systems; supervisory control; telecommu-
nications; cyber physical systems; and workflow.

For more information about ToPNoC see: www.springer.com/lncs/topnoc

Submission of Manuscripts

Manuscripts should follow LNCS formatting guidelines, and should be submitted
as PDF or zipped PostScript files to ToPNoC@ncl.ac.uk. All queries should be
addressed to the same e-mail address.



LNCS Transactions on Petri Nets and Other

Models of Concurrency: Editorial Board

Editor-in-Chief

Maciej Koutny, UK
(http://www.ncl.ac.uk/computing/people/profile/maciej.koutny)

Associate Editors

Grzegorz Rozenberg, The Netherlands
Jonathan Billington, Australia
Susanna Donatelli, Italy
Wil van der Aalst, The Netherlands

Editorial Board

Didier Buchs, Switzerland
Gianfranco Ciardo, USA
José-Manuel Colom, Spain
Jörg Desel, Germany
Michel Diaz, France
Hartmut Ehrig, Germany
Jorge C.A. de Figueiredo, Brazil
Luis Gomes, Portugal
Serge Haddad, France
Xudong He, USA
Kees van Hee, The Netherlands
Kunihiko Hiraishi, Japan
Gabriel Juhas, Slovak Republic
Jetty Kleijn, The Netherlands
Maciej Koutny, UK

Lars M. Kristensen, Norway
Charles Lakos, Australia
Johan Lilius, Finland
Chuang Lin, China
Satoru Miyano, Japan
Madhavan Mukund, India
Wojciech Penczek, Poland
Laure Petrucci, France
Lucia Pomello, Italy
Wolfgang Reisig, Germany
Manuel Silva, Spain
P.S. Thiagarajan, Singapore
Glynn Winskel, UK
Karsten Wolf, Germany
Alex Yakovlev, UK



Preface by Guest Editors

This volume of ToPNoC contains revised and extended versions of a selection
of the best workshop papers presented at the 33rd International Conference on
Application and Theory of Petri Nets and Other Models of Concurrency (Petri
Nets 2012).

We, Wil van der Aalst and Alex Yakovlev, are indebted to the program com-
mittees of the workshops and in particular their chairs. Without their enthusi-
astic work this volume would not have been possible. Many members of the pro-
gram committees participated in reviewing the extended versions of the papers
selected for this issue. The following workshops were asked for their strongest
contributions:

– PNSE 2012: International Workshop on Petri Nets and Software Engineering
(chairs: Lawrence Cabac, Michael Duvigneau, and Daniel Moldt),

– CompoNet 2012: International Workshop on Petri Nets Compositions (chairs:
Hanna Klaudel and Franck Pommereau),

– LAM 2012: International Workshop on Logics, Agents, and Mobility (chairs:
Berndt Müller and Michael Köhler-Bußmeier),

– BioPNN 2012: International Workshop on Biological Processes and Petri
Nets (chairs: Monika Heiner and Hofestädt)

The best papers of these workshops were selected in close cooperation with
their chairs. The authors were invited to improve and extend their results where
possible, based on the comments received before and during the workshop. The
resulting revised submissions were reviewed by three to five referees. We followed
the principle of also asking for fresh reviews of the revised papers, i.e. from ref-
erees who had not been involved initially in reviewing the original workshop
contribution. All papers went through the standard two-stage journal reviewing
process and eventually ten were accepted after rigorous reviewing and revis-
ing. Presented are a variety of high-quality contributions, ranging from model
checking and system verification to synthesis, and from work on Petri-net-based
standards and frameworks to innovative applications of Petri nets and other
models of concurrency.

The paper by Paolo Baldan, Nicoletta Cocco, Federica Giummol, and Marta
Simeoni, Comparing Metabolic Pathways through Reactions and Potential Fluxes
proposes a new method for comparing metabolic pathways of different organisms
based on a similarity measure that considers both homology of reactions and
functional aspects of the pathways. The paper relies on a Petri net representation
of the pathways and compares the corresponding T-invariant bases. A prototype
tool, CoMeta, was implemented and used for experimentation.

The paper Modeling and Analyzing Wireless Sensor Networks with VeriSen-
sor: An Integrated Workflow by Yann Ben Maissa, Fabrice Kordon, Salma Mou-
line, and Yann Thierry-Mieg presents a Domain Specific Modeling Language



XII Preface by Guest Editors

(DSML) for Wireless Sensor Networks (WSNs) offering support for formal veri-
fication. Descriptions in this language are automatically translated into a formal
specification for model checking. The authors present the language and its trans-
lation, and discuss a case study illustrating how several metrics and properties
relevant to the domain can be evaluated.

The paper Local State Refinement on Elementary Net Systems: An Approach
Based on Morphisms by Luca Bernardinello, Elisabetta Mangioni, and Lucia
Pomello presents a new kind of morphism for Elementary Net Systems for per-
forming abstraction and refinement of local states in systems. These α-mor-
phisms formalize the relation between a refined net system and an abstract one,
by replacing local states of the target net system with subnets.The main re-
sults concern behavioral properties preserved and reflected by the morphisms.
In particular, the focus is on the conditions under which reachable markings are
preserved or reflected, and the conditions under which a morphism induces a
weak bisimulation between net systems.

The paper From Code to Coloured Petri Nets: Modelling Guidelines by Anna
Dedova and Laure Petrucci presents a method for designing a coloured Petri net
model of a system starting from its high-level object-oriented source code. The
entire process is divided into two parts: grounding and code analysis. For each
part detailed step-by-step guidelines are given. The approach is illustrated using
a case study based on the so-called NEO protocol.

The paper by Agata Janowska, Wojciech Penczek, Agata Pó�lrola, and An-
drzej Zbrzezny, Using Integer Time Steps for Checking Branching Time Proper-
ties of Time Petri Nets extends the result of Popova, which states that integer
time steps are sufficient to test reachability properties of time Petri nets. The
authors prove that the discrete-time semantics is also sufficient to verify proper-
ties of the existential and the universal version of CTL∗ for time Petri nets with
the dense semantics. They compare the results for SAT-based bounded model
checking of the universal version of CTL-X properties and the class of distributed
time Petri nets.

The paper When Can We Trust a Third Party? – A Soundness Perspective
by Kees M. van Hee, Natalia Sidorova, and Jan Martijn van der Werf explores
the validity of a system comprising two agents and a third-party notary, which
provides a communication interface between the agents, without any of them
getting knowledge of the actual implementation features of the other. This is
studied in a business-process setting, where the components are modelled as
communicating workflow nets. The paper shows that if the notary is an acyclic
state machine, or if it contains only single-entry-single-exit (SESE) loops, then
the notary ensures soundness if it is sound with each of the organizations indi-
vidually.

The paper Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle by
Mostafa Herajy, Martin Schwarick, and Monika Heiner describes a model based
on Generalised Hybrid Petri Nets (GHPN) with extensions, and a corresponding
tool for modelling and simulating the eukaryotic cell cycle. Specific problems
encountered in studying such cycles call for the combination of stochastic and



Preface by Guest Editors XIII

deterministic approaches to modelling the different aspects of the process, and
the “hybridization” also includes mixing continuous and discrete elements. The
new model is implemented using Snoopy, a tool for animating and simulating
Petri nets in various paradigms.

The paper Simulative Model Checking of Steady-State and Time-Unbounded
Temporal Operators by Christian Rohr starts from the observation that large
stochastic models can only be analyzed using simulation. Hence, the author
advocates simulative model checking. While finite time horizon algorithms are
well known for probabilistic linear-time temporal logic, Rohr provides an infinite
time horizon procedure as well as steady state computation, based on exact
stochastic simulation algorithms. The paper illustrates the applicability of this
idea using the model checking tool MARCIE applied to models of the RKIP-
inhibited ERK pathway and angiogenetic process.

The paper Model-Driven Middleware Support for Team-Oriented Process Man-
agement by Matthias Wester-Ebbinghaus and Michael Köhler-Bußmeier pro-
poses a model for collaborative processes that provides a way to capture the
whole context of team-oriented process management: from the underlying orga-
nizational structure over team formation up to process execution by the team.
The model is based on Mulan, a multi-agent system framework, so as to benefit
from the advantages of high-level Petri nets implementing a hierarchical organi-
zation described with place-transition nets (Sonar model) and subject to on-line
dynamic changes. A running example provides an effective illustration of the
model.

The paper Grade/CPN: A Tool and Temporal Logic for Testing Colored Petri
Net Models in Teaching by Michael Westergaard, Dirk Fahland, and Christian
Stahl proposes a semi-automatic tool for grading Petri net modelling assign-
ments. It permits the teacher to describe the expected constraints of the model
to be designed, as well as the properties that should be satisfied. The tool per-
forms basic well-formedness checks, and simulates the model with the view to
test some properties that are specified in Britney Temporal Logic developed by
the authors. The tool is extensible by means of plugins.

As guest editors, we would like to thank all authors and referees who have
contributed to this issue. Not only is the quality of this volume the result of the
high scientific value of their work, but we would also like to acknowledge the
excellent cooperation throughout the whole process that has made our work a
pleasant task. Finally, we would like to pay special tribute to the work of Ine van
der Ligt of Eindhoven University of Technology who has provided technical sup-
port for the composition of this volume, including interactions with the authors.
We are also grateful to the Springer/ToPNoC team for the final production of
this issue.

June 2013 Wil van der Aalst
Alex Yakovlev

Guest Editors, 8th Issue of ToPNoC



Organization of This Issue

Guest Editors

Wil van der Aalst, The Netherlands
Alex Yakovlev, UK

Co-chairs of the Workshops

Lawrence Cabac (Germany)
Michael Duvigneau (Germany)
Monika Heiner (Germany)
Ralf Hofestädt (Germany)
Hanna Klaudel (France)
Michael Köhler-Bußmeier (Germany)
Daniel Moldt (Germany)
Berndt Müller (UK)
Franck Pommereau (France)

Referees

Paolo Baldan
Kamel Barkaoui
Marco Beccuti
Liu Bing
Rainer Breitling
Claudine Chaouiya
Gianfranco Ciardo
Josë Manuel Colom
Raymond Devillers
David Gilbert
Luis Gomes
Stefan Haar
Vladimir Janousek
Agata Janowska
Radek Koci

Michael Köhler-Bußmeier
Victor Khomenko
Hiroshi Matsuno
Sucheendra Kumar Palaniappan
Wojciech Penczek
Laure Petrucci
Louchka Popova-Zeugmann
Hanna Klaudel
Radek Koci
Christian Rohr
Marta Simeoni
Maciej Szreter
Catherine Tessier
Walter Vogler
Fei Xia



Table of Contents

Comparing Metabolic Pathways through Reactions and Potential
Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Paolo Baldan, Nicoletta Cocco, Federica Giummolè, and
Marta Simeoni

Modeling and Analyzing Wireless Sensor Networks with VeriSensor:
An Integrated Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Yann Ben Maissa, Fabrice Kordon, Salma Mouline, and
Yann Thierry-Mieg

Local State Refinement and Composition of Elementary Net Systems:
An Approach Based on Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello

From Code to Coloured Petri Nets: Modelling Guidelines . . . . . . . . . . . . . 71
Anna Dedova and Laure Petrucci

Using Integer Time Steps for Checking Branching Time Properties of
Time Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Agata Janowska, Wojciech Penczek, Agata Pó�lrola, and
Andrzej Zbrzezny

When Can We Trust a Third Party?: A Soundness Perspective . . . . . . . . 106
Kees M. van Hee, Natalia Sidorova, and
Jan Martijn E.M. van der Werf

Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle . . . . . . . . . . . . 123
Mostafa Herajy, Martin Schwarick, and Monika Heiner

Simulative Model Checking of Steady State and Time-Unbounded
Temporal Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Christian Rohr

Model-Driven Middleware Support for Team-Oriented Process
Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Matthias Wester-Ebbinghaus and Michael Köhler-Bußmeier

Grade/CPN: A Tool and Temporal Logic for Testing Colored Petri Net
Models in Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Michael Westergaard, Dirk Fahland, and Christian Stahl

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Comparing Metabolic Pathways

through Reactions and Potential Fluxes

Paolo Baldan1, Nicoletta Cocco2, Federica Giummolè2, and Marta Simeoni2

1 Dipartimento di Matematica, Università di Padova, Italy
2 DAIS, Università Ca’ Foscari Venezia, Italy

Abstract. Comparison of metabolic pathways is useful in phylogenetic
analysis and for understanding metabolic functions when studying dis-
eases and in drugs engineering. In the literature many techniques have
been proposed to compare metabolic pathways. Most of them focus on
structural aspects, while behavioural or functional aspects are generally
not considered. In this paper we propose a new method for comparing
metabolic pathways of different organisms based on a similarity measure
which considers both homology of reactions and functional aspects of
the pathways. The latter are captured by relying on a Petri net repre-
sentation of the pathways and comparing the corresponding T-invariant
bases, which represent minimal subsets of reactions that can operate at
a steady state. A prototype tool, CoMeta, implements this approach
and allows us to test and validate our proposal. Some experiments with
CoMeta are presented.

1 Introduction

The life of an organism depends on its metabolism, the chemical system which
generates the essential components - amino acids, sugars, lipids and nucleic acids
- and the energy necessary to synthesise and use them. Subsystems of metabolism
dealing with some specific functions are called metabolic pathways. An example
is the Glycolysis pathway, a fundamental pathway common to most organisms
which converts glucose into pyruvate and releases energy. Comparing metabolic
pathways of different species yields interesting information on their evolution
and it may help in understanding metabolic functions, which is important when
studying diseases and for drugs design. Differences in metabolic functions may
be interesting for industrial processes as well, for example some Archaea and
Bacteria, because of environmental constraints, have developed alternative sugar
metabolic pathways, which use and transform different compounds with respect
to Glycolysis and as a result they may behave as methanogens or denitrifying.

In the recent literature many techniques have been proposed for comparing
metabolic pathways of different organisms. Each approach chooses a representa-
tion of metabolic pathways which models the information of interest, proposes a
similarity or a distance measure and possibly supplies a tool for performing the
comparison.

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 1–23, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 P. Baldan et al.

Representations of metabolic pathways at different degrees of abstraction have
been considered. A pathway can be simply viewed as a set of components of inter-
est, which can be reactions, enzymes or chemical compounds. In other approaches
pathways are decomposed into sets of paths, leading from an initial metabolite
to a final one. The most detailed representations model a metabolic pathway
as a graph. Clearly, more detailed models produce more accurate comparison
results, in general at the price of being more complex.

The distance measures in the literature generally focus on static, topological
information of the pathways, disregarding the fact that they represent dynamic
processes. We propose to take into account behavioural aspects: we represent the
pathways as Petri nets (PNs) and compare aspects related to their behaviour as
captured by T-invariants. PNs seem to be particularly natural for representing
and modelling metabolic pathways (see, e.g., [10] and references therein). The
graphical representations used by biologists for metabolic pathways and the ones
used in PNs are similar; the stoichiometric matrix of a metabolic pathway is
analogous to the incidence matrix of a PN; the flux modes and the conservation
relations for metabolites correspond to specific properties of PNs. In particular
minimal (semi-positive) T-invariants correspond to elementary flux modes [51] of
a metabolic pathway, i.e., minimal sets of reactions that can operate at a steady
state. The space of semi-positive T-invariants has a unique basis of minimal T-
invariants which is characteristic of the net and we use it in the comparison. The
similarity measure between pathways that we propose considers both homology
of reactions, represented either by the Sørensen or by the Tanimoto index on the
multisets of enzymes in the pathways, and similarity of behavioural aspects as
captured by the corresponding T-invariant bases.

We developed a prototype tool, CoMeta, implementing our proposal. A first
version of CoMeta, with some experiments, was presented in [12]. In this paper
we give a detailed description of the present extended version of the tool and
report on further experiments for its validation. Given a set of organisms and
a set of metabolic pathways, CoMeta automatically gets the corresponding
data from the KEGG database, which collects metabolic pathways for different
species. Then it builds the corresponding PNs, computes the T-invariants and
the similarity measures and gives the results of the comparison among organisms
as a distance matrix. Such matrix can be visualised as a phylogenetic tree.

The PNs corresponding to the metabolic pathways of an organism can be
seen as subnets of the full metabolic network. They can be analysed either in
isolation, focussing on the internal behaviour, or as open interactive subsystems
of the full network. The first approach guarantees correctness, i.e., minimal T-
invariants of the pathway are minimal T-invariants of the full network. The
second approach, instead, guarantees completeness, i.e., the set of invariants
includes all the projections of invariants of the full network over the pathway,
but possibly more because of the assumption of having an arbitrary environment.
Hence, in the open approach, we loose correctness, but, still, as shown in [41],
minimal T-invariants of the full network can be obtained compositionally from
those of the open subnetworks.



Comparing Metabolic Pathways through Reactions and Potential Fluxes 3

The tool CoMeta offers the possibility of representing a pathway either in
isolation or as an interactive subnet. Several experiments with CoMeta have
been performed and the approach viewing a pathway as an isolated subsys-
tem, despite the fact that it excludes the input-output fluxes from the analysis,
generally provides better results. This could be due to the fact that the com-
pletely automatised approach to open subnetworks, which consists in taking
as input/output all metabolites which are either only produced or only con-
sumed by the pathway and all metabolites linking the pathway to the rest of the
network, is probably too rough and needs to be refined.

A further interesting development of CoMeta would be to compare organ-
isms by considering their whole metabolic networks, thus identifying T-invariants
corresponding to functional subunits in the entire metabolism. However, the
complexity of determining the Hilbert basis and the average size of metabolic
networks makes the computational cost of this approach prohibitive. We will
further comment on this possibility along the paper and in the concluding
section.

The paper is organised as follows. In Section 2 we introduce metabolic path-
ways and we provide a classification of various proposals for the comparison of
metabolic pathways in the literature. In Section 3 we show how a PN can model
a metabolic pathway and present our comparison technique. In Section 4 we
briefly illustrate the tool CoMeta and we present some experiments. A short
conclusion follows in Section 5.

2 Comparison of Metabolic Pathways

In this section we briefly introduce metabolic pathways and classify various
proposals for the comparison of metabolic pathways in the literature.

2.1 Metabolic Pathways

Biologists usually represent a metabolic pathway as a network of chemical re-
actions, catalysed by one or more enzymes, where some molecules (reactants or
substrates) are transformed into others (products). Enzymes are not consumed
in a reaction, even if they are necessary and used while the reaction takes place.
The product of a reaction is the substrate for other ones.

To characterise a metabolic pathway, it is necessary to identify its components
(namely the reactions, enzymes, reactants and products) and their relations.
Quantitative relations can be represented through a stoichiometric matrix, where
rows represent molecular species and columns represent reactions. An element
of the matrix, a stoichiometric coefficient nij , represents the degree to which
the i-th chemical species participates in the j-th reaction. By convention, the
coefficients for reactants are negative, while those for products are positive. The
kinetics of a pathway is determined by the rate associated with each reaction.
It is represented by a rate equation, which depends on the concentrations of the
reactants and on a reaction rate coefficient (or rate constant) which includes all
the other parameters (except for concentrations) affecting the rate.



4 P. Baldan et al.

Information on metabolic pathways are collected in databases. In particular
the KEGG PATHWAY database [2] (KEGG stands for Kyoto Encyclopedia of
Genes and Genomes) contains metabolic, regulatory and genetic pathways for
different species whose data are derived by genome sequencing. It integrates
genomic, chemical and systemic functional information [29]. The pathways are
manually drawn, curated and continuously updated from published materials.
They are represented as maps which are linked to additional information on re-
actions, enzymes and genes, which may be stored in other databases. Metabolic
pathways are generally well conserved among most organisms. In KEGG a ref-
erence pathway is manually built as the union of the corresponding pathways
in the various organisms. Then, from the reference pathway, it is possible to
extract the specific pathway for each single organism. This provides a uniform
view of the same pathway in different organisms, a fact that can be useful for
comparison purposes. KEGG pathways are coded using KGML (KEGG Markup
Language) [1], a language based on XML.

2.2 Comparison Techniques for Metabolic Pathways

Many proposals exist in the literature for comparing metabolic pathways and
whole metabolic networks of different organisms. Each proposal is based on some
simplified representation of a metabolic pathway and on a related definition of
similarity score (or distance measure) between two pathways. Hence we can
group the various approaches in three classes, according to the structures they
use for representing and comparing metabolic pathways. Such structures are:

– Sets. Most of the proposals in the literature represent a metabolic pathway
(or the entire metabolic network) as the set of its main components, which
can be reactions, enzymes or chemical compounds (for some approaches in
this class see, e.g., [20,21,35,27,17,16,13,59,40]). This representation is simple
and efficient and very useful when entire metabolic networks are compared.
The comparison is based on suitable set operations.

– Sequences. A metabolic pathway is sometimes represented as a set of se-
quences of reactions (enzymes, compounds), i.e., pathways are decomposed
into a set of selected paths leading from an initial component to a final one
(see, e.g., [60,36,14,33,61]). This representation may provide more informa-
tion on the original pathways, but it can be computationally more expensive.
It requires methods both for identifying a suitable set of paths and for com-
paring them.

– Graphs. In several approaches, a metabolic pathway is represented as a graph
(see, e.g., [25,42,19,63,34,8,15,30,37,32,9,7]). This is the most informative
representation in the classification, as it considers both the chemical compo-
nents and their relations. A drawback can be the complexity of the compar-
ison techniques. In fact, exact algorithms for graph comparison involves two
complex problems: the graph and subgraph isomorphism problems, which
are GI-complete (graph isomorphism complete) and NP-complete, respec-
tively. For this reason efficient heuristics are normally used and simplifying
assumptions are introduced, which produce further approximations.



Comparing Metabolic Pathways through Reactions and Potential Fluxes 5

The similarity measure (or distance) and the comparison technique strictly de-
pend on the chosen representation. When using a set-based representation, the
comparison between two pathways roughly consists in determining the number
of common elements. A similarity measure commonly used in this case is the
Jacard index [28] defined as:

J(X,Y ) =
|X ∩ Y |
|X ∪ Y |

where X and Y are the two sets to be compared. When pathways are represented
by means of sequences, alignment techniques and sum of scores with gap penalty
may be used for measuring similarity. In the case of graph representation, more
complex algorithms for graph homeomorphism or graph isomorphism are used
and some approximations are introduced to reduce the computational costs.

In any case the definition of a similarity measure between two metabolic
pathways relies on a similarity measure between their components. Reactions
are generally identified with the enzymes which catalyse them, and the most
used similarity measures between two reactions/enzymes are based on:

– Identity. The simplest similarity measure is just a boolean value: two enzymes
can either be identical (similarity = 1) or different (similarity = 0).

– EC hierarchy. The similarity measure is based on comparing the unique EC
number (Enzyme Commission number) associated with each enzyme, which
represents its catalytic activity.

The EC number is a 4-level hierarchical scheme, d1.d2.d3.d4, developed by
the International Union of Biochemistry and Molecular Biology (IUBMB) [62].
For instance, arginase is numbered by EC:3.5.3.1, which indicates that the
enzyme is a hydrolase (EC:3.∗.∗.∗), and acts on the “carbon nitrogen bonds,
other than peptide bonds” (sub-class EC:3.5.∗.∗) in linear amidines (sub-sub-
class EC:3.5.3.∗). Enzymes with similar EC classifications are functional ho-
mologues, but do not necessarily have similar amino acid sequences.

Given two enzymes e = d1.d2.d3.d4 and e′ = d′1.d
′
2.d

′
3.d

′
4, their similarity

S(e, e′) depends on the length of the common prefix of their EC numbers:

S(e, e′) = max{i : d1.d2 . . . di = d′1.d
′
2. . . . d

′
i}/4

For instance, the similarity between arginase (e = 3.5.3.1) and creatinase
(e′ = 3.5.3.3) is 0.75.

– Information content. The similarity measure is based on the EC numbers
of enzymes together with the information content of the numbering scheme.
This is intended to correct the large deviation in the distribution in the
enzyme hierarchy. For example, the enzymes in the class 1.1.1 range from
EC:1.1.1.1 to EC:1.1.1.254, whereas there is a single enzyme in the class
5.3.4. Given an enzyme class h, its information content can be defined as
I(h) = −log2C(h), where C(h) denotes the number of enzymes in h (hence
large classes have a low information content). The similarity between two
enzymes ei and ej is then I(hij), where hij is their smallest common upper
class.



6 P. Baldan et al.

– Sequence alignment. The similarity measure is obtained by aligning the genes
or the proteins corresponding to the two enzymes and by considering the
resulting alignment score.

3 Behavioural Aspects in Metabolic Pathways
Comparison

In this section we briefly discuss how to represent a metabolic pathway as a PN.
Then we define a similarity measure between two metabolic pathways modelled
as PNs, which takes into account the behaviour of the pathways by comparing
their minimal T-invariants. Such measure is combined with a simpler one which
considers homology of reactions.

3.1 Metabolic Pathways as Petri Nets

PNs are a well known formalism originally introduced in computer science for
modelling discrete concurrent systems. PNs have a sound theory and many ap-
plications both in computer science and in real life systems (see [38] and [18]
for surveys on PNs and their properties). A large number of tools have been
developed for analysing properties of PNs. A quite comprehensive list can be
found at the Petri Nets World site [4].

In some seminal papers Reddy et al. [45,43,44] and Hofestädt [26] proposed
PNs for representing and analysing metabolic pathways. Since then, a wide
range of literature has grown on the topic [10]. The structural representation
of a metabolic pathway by means of a PN can be obtained by exploiting the
natural correspondence between PNs and biochemical networks. In fact places
are associated with molecular species, such as metabolites, proteins or enzymes;
transitions correspond to chemical reactions; input places represent the substrate
or reactants; output places represent reaction products. The incidence matrix of
the PN is identical to the stoichiometric matrix of the system of chemical re-
actions. The number of tokens in each place indicates the amount of substance
associated with that place. Quantitative data can be added to refine the rep-
resentation of the behaviour of the pathway. In particular, extended PNs may
have an associated transition rate which depends on the kinetic law of the cor-
responding reaction. Large and complex networks can be greatly simplified by
avoiding an explicit representation of enzymes and by assuming that ubiquitous
substances are in a constant amount. In this way, however, processes involving
these substances, such as the energy balance, are not modelled.

Once metabolic pathways are represented as PNs, we may consider their be-
havioural aspects as captured by the T-invariants (transition invariants) of the
nets which, roughly, represent potential cyclic behaviours in the system. More
precisely a T-invariant is a (multi)set of transitions whose execution starting
from a state will bring the system back to the same state. Alternatively, the
components of a T-invariant may be interpreted as the relative firing rates
of transitions which occur permanently and concurrently, thus characterising



Comparing Metabolic Pathways through Reactions and Potential Fluxes 7

a steady state. Therefore the presence of T-invariants in a metabolic pathway
is biologically of great interest as it can reveal the presence of steady states, in
which concentrations of substances have reached a possibly dynamic equilibrium.

Although space limitations prevent us from a formal presentation of nets and
invariants, it is useful to recall that the set of (semi-positive) T-invariants can
be characterised finitely, by resorting to its Hilbert basis [48].

Remark 1. Unique basis The set of T-invariants of a (finite) PN N admits a
unique basis which is given by the collection B(N) of minimal T-invariants.

The above means that any T-invariant can be obtained as a linear combination
(with positive in teger coefficient) of minimal T-invariants. Uniqueness of the
basis B(N) allows us to take it as a characteristic feature of the net.

In a PN model of a metabolic pathway, a minimal T-invariant corresponds to
an elementary flux mode, a term introduced in [51] to refer to a minimal set of
reactions that can operate at a steady state. It can be interpreted as a minimal
self-sufficient subsystem which is associated with a function. By assuming both
the fluxes and the pool sizes constants the stoichiometry of the network restricts
the space of all possible net fluxes to a rather small linear subspace. Such sub-
space can be analysed in order to capture possible behaviours of the pathway
and its functional subunits [46,47,49,50,51,52]. Minimal T-invariants have been
used in Systems Biology as a fundamental tool in model validation techniques
(see, e.g., [24,31]), moreover some analysis and decomposition techniques based
on T-invariants have been proposed (see, e.g., [23,22]). In this paper we propose
to use minimal T-invariants for metabolic pathways comparison.

The PNs corresponding to the metabolic pathways of an organism are subnets
of a larger net representing its full metabolic network. The minimal T-invariants
of these subnets have a clear relation with the (minimal) T-invariants of the full
network. It can be easily seen that, considering the pathway as an isolated sub-
system guarantees correctness: minimal T-invariant of the pathway are minimal
T-invariant of the full network. If, instead, a pathway is considered as an inter-
active subsystem (i.e., its input/output metabolites are taken as open places,
where the environment can freely put/remove substances) then completeness is
guaranteed: any invariant of the full network, once projected onto the pathway,
is an invariant of the open pathway. The converse does not hold, i.e., there can
be invariants of the open pathway which do not correspond to invariants of
the full network. Hence, in the open approach, we may loose correctness, but,
still, as shown in [41], minimal T-invariants of the full network can be obtained
compositionally from those of the subnetworks.

The problem of determining the Hilbert basis is EXPSPACE since the size of
such basis can be exponential in the size of the net. Still, in our experience, the
available tools like INA [57] or 4ti2 [6] work fine on PNs arising from metabolic
pathways. On the contrary, the computational cost becomes prohibitive when
dealing with full metabolic networks.



8 P. Baldan et al.

3.2 A Combined Similarity Measure between Pathways

Metabolic pathways are complex networks of biochemical reactions describing
fluxes of substances. Such fluxes arise as the composition of elementary fluxes,
i.e., cyclic fluxes which cannot be further decomposed. Most of the techniques
briefly discussed in Section 2 compare pathways on the basis of homology of their
reactions, that is they determine a point to point functional correspondence.
Some proposals consider the topology of the network, but still most techniques
are eminently static and ignore the flow of metabolites in the pathway.

Here we propose a comparison between metabolic pathways based on the com-
bination of two similarity scores derived from their PN representations. More
precisely, we consider a “static” score, R score (reaction score), taking into ac-
count the homology of reactions occurring in the pathways and a “behavioural”
score, I score (invariant score), taking into account the dynamics of the pathway
as expressed by the T-invariants.

Both R score and I score are based on a similarity index. We propose to
use either the Sørensen index [56] or the Tanimoto index [58], in both cases
extended to multisets. Let X1 and X2 be multisets and ∩ and | · | be intersection
and cardinality generalised to multisets1, then

– the Sørensen index is given by

S index(X1, X2) =
2|X1 ∩X2|
|X1|+ |X2|

– the Tanimoto index (extended Jacard index) is given by

T index(X1, X2) =
|X1 ∩X2|

|X1|+ |X2| − |X1 ∩X2|
Given two pathways represented by the PNs P1 and P2, the R score is computed
by comparing their reactions. Each reaction is actually represented by the EC
numbers of the associated enzymes. More precisely, if X1 and X2 denotes the
multisets of the EC numbers of the reactions in P1 and P2, respectively, we can
define the R score either as

R score(X1, X2) = S index(X1, X2)

if we select the Sørensen index or as

R score(X1, X2) = T index(X1, X2)

if we select the Tanimoto index. We adopt a multiset representation since an
EC number may occur more than once in a pathway. The Tanimoto index was

1 Formally, a multiset is a pair (X,mX) where X is the underlying set and mX :
X → N+ is the multiplicity function, associating to each x ∈ X a positive natural
number indicating the number of its occurrences. Then |(X,mX)| = ∑

z∈X mX(z)
and (X,mX) ∩ (Y,mY ) = (X ∩ Y,mX∩Y ) where mX∩Y (z) = min(mX(z),mY (z))
for each z ∈ X ∩ Y .



Comparing Metabolic Pathways through Reactions and Potential Fluxes 9

used, for example, in [59], it fits multisets and it is normalised. The Sørensen
index, instead, was not used previously in the literature for pathway comparison.
Intuitively it captures what two multisets have in common and it is normalised.
In the experiments none of the indexes proved to be definitively better than the
other. Hence both indexes are currently offered in CoMeta, which leaves the
choice to the user.

Presently the similarity considered between enzymes is the identity, but finer
similarity measures between enzymes, such as the one determined by the EC
hierarchy, could be easily accommodated in this setting.

The distance based on reactions, or R-distance, is then defined as follows

dR(P1, P2) = 1−R score(X1, X2).

The behavioural component of the similarity is obtained by comparing the
Hilbert bases of minimal T-invariants of the net representations, seen either as
isolated or open subnets of the full metabolic network. Each invariant is repre-
sented by a multiset of EC numbers, corresponding to the reactions occurring in
the invariant, and the similarity between two invariants is given, as before, by a
similarity index, either the S index or the T index. Note that when T-invariants
are sets of transitions (rather than proper multisets) they can be seen as subnets
of the net at hand, and the similarity between two T-invariants coincides with
the R score of the corresponding subnets.

A heuristic match between the two bases B(P1) and B(P2) is performed and
the similarity values corresponding to the indexes of the matching pairs are
accumulated into I Score(P1, P2) by the algorithm described in Fig. 1.

Again, the similarity between pathways based on minimal T-invariants induces
a distance, the I-distance:

dI(P1, P2) = 1− I score(P1, P2)

The two distances are combined by taking a weighted sum, as shown below,
where α ∈ [0, 1]:

dD(P1, P2) = α dR(P1, P2) + (1 − α) dI(P1, P2)

The parameter α allows the analyst to move the focus between homology of reac-
tions and similarity of functional components as represented by the T-invariants.

Two organisms O1 and O2 can be compared by considering n metabolic path-
ways P1, . . . , Pn. In this case the distances between the two organisms with
respect to the various metabolic pathways Pj , j ∈ [1, n], need to be combined.
The simplest solution consists in taking the average distance:

dD(O1, O2) =

∑n
j=1 dD(P 1

j , P
2
j )

n

When a pathway Pj occurs in one of the two organisms but not in the other, the
corresponding pathway distance dD(P 1

j , P
2
j ) in the formula above is assumed to

be 1.



10 P. Baldan et al.

function I Score(P1, P2);
input : two metabolic pathways P1 and P2;
output : the similarity measure between B(P1) and B(P2);

begin
I1 = B(P1); I2 = B(P2);
score = 0;
card = max{|I1|, |I2|};
while (I1 �= ∅ ∧ I2 �= ∅) do
begin

(X1, X2) = Find max Sim(I1, I2); {Returns a pair of T-invariants, (X1, X2),
in I1 × I2 such that Index(X1 ,X2 ) is maximum,
where Index(X1 ,X2 ) is the Sørensen or the Tanimoto index}

score = score + Index(X1, X2);
I1 = I1 − {X1};
I2 = I2 − {X2};

end;
score = score/card ;
return score

end I Score;

Fig. 1. Comparing bases of T-invariants

4 Experimenting with CoMeta

In this section we briefly illustrate the prototype tool CoMeta (Comparing
Metabolic pathways) which implements our proposal, and we report on some
experiments.

4.1 CoMeta

CoMeta is a user-friendly tool written in Java and running under Linux and
Mac. It uses an external tool for computing the Hilbert basis called 4ti2 [6], a
software package for algebraic, geometric and combinatorial problems on linear
spaces2.

CoMeta offers a set of integrated functionalities. We describe them with the
help of the graphical user interface, pictured in Figure 2. Looking at the main
window in Figure 2(a), we can distinguish an upper part, which allows for the
selection of the desired KEGG organisms and pathways from the complete lists
on top of the window, and a lower part where a tabbed panel indicates the
various commands which can be performed. The first tab of the tabbed panel is
shown in the main window, while the others are in Figure 2(b), 2(c), and 2(d),
respectively.

The main functionalities of the tool are the following:

2 A previous version of the tool uses INA (Integrated Tool Analyser) [57] as external
tool for computing the Hilbert basis. It runs under Windows and Linux.



Comparing Metabolic Pathways through Reactions and Potential Fluxes 11

– Select organisms and pathways: CoMeta proposes the lists of KEGG organ-
isms and pathways (see the two lists on top of the main window, Figure 2(a))
and allows the user to select the ones to be compared by double-clicking
them. In Figure 2(a) six organisms and one pathway have been selected.
Such lists can be saved and then recovered for further processing by using
the “File” menu.

– Retrieve KEGG information: by clicking on the “Download KEGG files”
button in the first tab of the tabbed panel shown in Figure 2(a), CoMeta
downloads the information for the selected organisms and pathways from
the KEGG database.

– Translate into PNs: by clicking the “Translate KEGG files into PNs” button
in the second tab of the tabbed panel shown in Figure 2(b), CoMeta trans-
lates the selected organisms and pathways into corresponding PNs. Only
pathways which are networks of biochemical reactions can be translated.
The user can choose between a translation producing isolated or open net-
works. For this purpose, CoMeta resorts to the tool MPath2PN [11] which
have been developed for transforming a metabolic pathway, expressed in one
of the various existing DB formats, into a corresponding PN, expressed in
one of the various PNs formats. In this case the translation is from KGML to
PNML [3], a standard format for PNs tools. We refer to [11] for the detailed
explanation of the translation. The resulting PNML files are available for
further processing. Besides, CoMeta produces a text file representing the
stoichiometric matrix of the net, which is the input of 4ti2.

– Compute Distances: by using the third tab of the tabbed panel shown in
Figure 2(c), the R-distance and the I-distance as defined in Section 3.2
are computed. The user can select either the Sørensen or the Tanimoto
index. CoMeta uses the tool 4ti2 to compute the bases of semi-positive
T-invariants of the PN representations of the pathways. CoMeta allows the
user to inspect the details of the comparison between any pair of organisms
(T-invariants bases, invariants matches, reactions and invariants scores, etc.)
by clicking on the “Show details” button.

– Compute the combined distance: by using the fourth tab of the tabbed panel
shown in Figure 2(d), the user can specify the parameter α for computing
the combined distance. By clicking on the “Export matrices” button, the
R-distance, I-distance and the combined distance matrices can be exported
as text files to be inspected and for further analyses. By clicking the “Show
tree(s)” button CoMeta builds and visualises a phylogenetic tree corre-
sponding to the chosen combined distance. Currently CoMeta offers the
UPGMA [55,53] and Neighbour Joining [39,53] methods3.

3 UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is a hierarchical
clustering method which constructs a rooted tree (dendrogram) from a pairwise
distance matrix. It assumes a constant rate of evolution (molecular clock hypothesis).
Neighbour joining is a bottom-up clustering method and it produces an unrooted
tree. CoMeta sets a root in the tree between the last joined two clusters. It is a
polynomial-time algorithm, practical for analyzing large data sets.



12 P. Baldan et al.

(a) CoMeta main window

(b) Second tab: Generate PNs

(c) Third tab: Compute Distances

(d) Fourth tab: Combined Distance

Fig. 2. The CoMeta graphical user interface



Comparing Metabolic Pathways through Reactions and Potential Fluxes 13

4.2 Experiments

The comparison of metabolic pathways can be useful for studying some specific
metabolic functions in a group of selected organisms. In this case the compari-
son will be conducted on a single or few metabolic pathways. Alternatively, in
the literature metabolic pathways comparison has been applied to phylogenetic
inference (see e.g. [20,21,25,27,16,13,19,32]). For this purpose it could be appro-
priate to compare all metabolic pathways (or, as mentioned in the introduction,
the whole metabolic network) of the selected organisms. However, also in this
context, it can be interesting to focus on the evolution of one or few relevant
metabolic functions.

In order to validate our proposal we conducted various experiments with
CoMeta, some of which are briefly reported below. First, with the aim of in-
vestigating the relationships between the R-distance and the I-distance and of
getting insights on the more appropriate values for the parameter α, we studied
extensively the distributions of the R-distance and I-distance on the organisms
stored in KEGG with respect to a single well documented pathway, the Glycol-
ysis. Then we used our distances for classifying the Glycolysis of heterogeneous
groups of bacteria and archaea. A further set of experiments, some of which were
presented in [12], consisted in building phylogenetic trees for groups of organ-
isms on the basis of some selected pathways. This allows for some comparison
with analogous work in the literature. The first set of experiments is conducted
considering both the isolated and the open variants of the pathways. The second
and third experiments focus on the isolated approach which, in our experience,
produces better results.

Exploring KEGG Pathways with CoMeta. In this first set of experiments
we explored the metabolic pathways of the organisms stored in KEGG with
CoMeta, in order to analyse the significance of the proposed distances dR and
dI and their relationship in both the open and isolated approaches. We consid-
ered different pathways and different classes of organisms4. For each class we
studied the distribution of the values of the proposed distances for all the pairs
of different organisms in the class. For brevity we report here only some results
regarding the Glycolysis pathway and the Sørensen index.

Each row in Figure 3 corresponds to a class of organisms and shows the his-
tograms for the I-distance (open and isolated approaches) and the R-distance.
The continuous lines represent estimates of the density of the considered dis-
tances. Graphics with the same dimensions have been used for the same row,
this makes it easier to compare histograms of the proposed distances for the
same group of organisms.

4 A class is a taxonomic group consisting of organisms that share some common at-
tributes. Organisms in KEGG are classified hierarchically: at the very first level
there are the three reigns Eukaryotes, Prokaryotes and Archaea, then three levels
of categories (eg. Animals, Vertebrates and Mammals are three nested levels inside
Eukaryotes) and the last level corresponds to species, eg. Homo sapiens.



14 P. Baldan et al.

The first row corresponds to experiments conducted on the class Archaea.
The histograms show that the I-distance in the isolated approach and the R-
distance behave in a rather similar way and that both their densities are mostly
concentrated in [0, 0.3]. Instead, in the open approach the I-distance has a quite
different distribution, ranging over the whole interval [0, 1]. This suggests that,
within the class of the Archaea, the Glycolysis pathway greatly differs on the
potential fluxes involving the boundaries.

The second row corresponds to experiments conducted on the class Eukary-
otes. The histograms show that the I-distance and the R-distance exhibit dif-
ferent distributions. In fact, the I-distance, in both variants, shows a rather flat
distribution ranging from 0 to 1 for the open approach and from 0 to 0.8 for the
isolated approach, while the R-distance takes values only in the interval [0, 0.6],
with a unimodal distribution, mostly concentrated in [0.05, 0.25]. This suggests
that, within the class of the Eukaryotes and with respect to the Glycolysis path-
way, the I-distance, in both variants, discriminates more than the R-distance,
for which most organisms are very similar.

Further experiments (rows three to five) focus on refinements of the class of
Eukaryotes which, in KEGG, is rather heterogeneous. It contains 180 organisms
organised in various subclasses. More precisely, the histograms in rows from three
to five of Figure 3, represent respectively the subclasses Animals, Vertebrates
and Mammals, each included in the previous one. Let us focus on the subclass
Animals, which in KEGG contains 59 still very heterogeneous organisms. The
R-distance has a narrower range varying from 0 to 0.3, while I-distance ranges in
the larger intervals [0, 1] for the open approach and [0, 0.75] for the isolated one.
The Vertebrates in KEGG are a rather homogeneous subclass of the Animals,
consisting of 26 organisms. The range of the distances remarkably decreases,
meaning that our distances view the Vertebrates as an homogeneous class within
the Animals, with respect to the Glycolysis pathway. The R-distance considers
most of the Vertebrates as equal (0 distance), while the I-distance, in particular
in the open approach, is still able to discriminate between some of them. The
Mammals stored in KEGG form a homogeneous subclass of 17 organisms among
the Vertebrates and this is confirmed by the distribution of the distances which
are mostly concentrated around 0.

This exploration seems to confirm that both the R-distance and the I-distance
are meaningful and that, in some cases, the I-distance (especially in the open
approach), is able to discriminate more than the R-distance.

Classifying Heterogeneous Organisms with Respect to Glycolysis. We
present a classification among organisms produced by comparing a specific path-
way. We consider the Glycolysis pathway in a set of organisms which differ greatly
with respect to sugar metabolism, i.e., a mixed group of bacteria and archaea
including nitrogen-fixing, sulfate-reducing and methanogen organisms. More pre-
cisely we consider the Glycolysis of the following organisms: Desulfovibrio vul-
garis Hildenborough (dvu), Syntrophobacter fumaroxidans (sfu), Rhodobacter
sphaeroides 2.4.1 (rsp), Clostridium difficile 630 (cdf), Desulfotomaculum



Comparing Metabolic Pathways through Reactions and Potential Fluxes 15

Fig. 3. Histograms of the I-distance (open and isolated approaches) and R-distance
for the Archaea, Eukaryotes, Animals, Vertebrates and Mammals in KEGG wrt. the
Glycolysis pathway



16 P. Baldan et al.

Fig. 4. Top: Clustering based on the R-distance. Bottom: Clustering based on the
I-distance.

reducens (drm), Anabaena sp. PCC7120 (ana), Nostoc punctiforme (npu), Ther-
modesulfovibrio yellowstonii (tye), Methanobrevibacter smithii ATCC 35061
(msi), Methanobacterium sp. AL-21 (mel), Archaeoglobus fulgidus (afu), Ther-
mogladius sp. 1633 (thg), Caldivirga maquilingensis (cma).

They may be classified as nitrogen-fixing bacteria (ana, npu, cdf and rsp),
methanogen archaea (msi and mel), sulfate-reducing bacteria (dvu, sfu, drm
and tye) and sulfate-reducing archaea (afu, cma and thg).

We apply the UPGMA method for producing the classification. The results
obtained by the R-distance and by the I-distance are reported in Figure 4. By
choosing either the Sørensen index or the Tanimoto index we get the same clas-
sifications. Both the distances classify well these organisms with respect to the
Glycolysis. In fact, in both cases the classification perfectly distinguishes sulfate-
reducing organisms from nitrogen-fixing and from methanogen ones. Note that
the R-distance distinguishes first the two reigns, namely Bacteria and Archaea,
and then, within them, the specific function. Differently, the I-distance considers
the sulfate-reducing archaea closer to the sulfate-reducing bacteria (distance less
than 0.3), i.e. it better recognises that the two groups share a common function.

Phylogenetic Reconstruction. This experiment considers a set of 16 organ-
isms, mainly bacteria, and it builds a phylogenetic tree, showing the inferred
evolutionary relationships among the various organisms, by comparing their



Comparing Metabolic Pathways through Reactions and Potential Fluxes 17

Cod. Organism Reign

afu A. fulgidus Archaea
mja M. jannaschii Archaea
cpn C. pneumoniae Bacteria
mge M. genitalum Bacteria
mpn M. pneumoniae Bacteria
hin H. influenzae Bacteria
syn Synechocystis Bacteria
dra D. radiodurans Bacteria
mtu M. tuberculosis Bacteria
tpa T. pallidum Bacteria
bsu B. subtilis Bacteria
aae A. aeolicus Bacteria
tma T. maritima Bacteria
eco E. coli Bacteria
hpy H. pylori Bacteria
sce Saccharomyces cerevisiae Eucaryotes

Fig. 5. Left: organisms for experiment 3. Right: reference NCBI taxonomy.

Glycolysis pathways. This experiment has been originally reported in [25] as
a test case and then it has been considered in [13]. The organisms and their
reference NCBI taxonomy [5] are show in Figure 5.

Focusing on an experiment already studied in the literature may help in com-
paring our technique with other proposals, although, as clarified below, a pre-
cise comparison is quite difficult for the variability of data sources and reference
classifications.

We consider the Sørensen index, the value of α ranges in [0, 1], phylogenetic
trees are built using the UPGMA method and they are compared with the
reference NCBI classification of the 16 organisms. Following [25,13], in order to
perform such a comparison we use the cousins tool [64,54] with threshold 2.
The tool compares unordered trees with labelled leaves by counting the sets of
common cousin pairs up to a certain cousin distance5. The outcome is reported
in the table in Figure 6 (left). Our best result, 0.3131313, corresponds to the
phylogenetic tree in Figure 6 (right) and to our combined distance with α ∈
[0.45, 0.63]. The same best result is obtained using the Tanimoto index, for α ∈
[0.40, 0.59].

Our results cannot be immediately compared with those in [25,13]. In fact, the
reference NCBI classification of the 16 organisms and the corresponding KEGG
data have been changing in the meantime. Nevertheless, the experiment suggests

5 A cousin pair is a triple consisting of a pair of leaves and their cousin distance: 0 if
they are siblings (same parent), 0.5 if the parent of one of them is the grandparent of
the other, 1 if they are cousins (same grandparent but not same parent), 1.5 if their
first common ancestor is the grandparent of one of them and the great-grandparent
of the other one, 2 if they are second cousins (same great-grandparent but not same
grandparent) and so on.



18 P. Baldan et al.

α Similarity
value

0.00 0.27
0.39 - 0.44 0.2828283
0.45 - 0.63 0.3131313
0.64 - 0.65 0.3092784
0.66 - 0.75 0.2673267

1.00 0.2427184

Fig. 6. Results for experiment 3. Left: similarity values of our phylogenetic trees with
respect to the reference NCBI taxonomy computed with cousins. Right: UPGMA phy-
logenetic tree inferred from the Glycolysis pathway for α ∈ [0.45, 0.63].

that our technique produces results which are at least comparable with those in
[25,13].

In [25] a pathway is represented as an enzyme graph and a distance is defined
which takes into account both the structure of the graph and the similarity
between corresponding nodes. A phylogenetic tree is built with the resulting
distance matrix by using the Neighbour Joining method. The authors consider
the 16 organisms wrt the Glycolysis pathway and cousins provides a similarity
value of 0.26 between their phylogenetic tree and the reference NCBI taxonomy
(this outperforms the results of the phylogenies obtained by NCE, 16SrRNA
and [35]). As shown in Figure 6 our results improve those in [25]. Although
space limitations prevent us to report the details here, this holds when we use
Neighbour Joining trees too.

In [13] a heuristic comparison algorithm is proposed which computes the in-
tersection and symmetric difference of the sets of compounds, enzymes, and re-
actions in the metabolic pathways of different organisms. Their similarity matrix
is supplied to a fuzzy equivalence relations-based (FER) hierarchical clustering
method to compute the classification tree. The authors say that they were not
able to recompute the same results obtained by [25] on the experiment of the 16
organisms. In the cousins comparison with respect to the reference NCBI tax-
onomy their best result has a similarity value of 0.3195876, which is very close
to our best result.

5 Conclusions

Biological questions related to evolution and to differences among organisms can
be answered by comparing their metabolic pathways. In this paper we propose
a new similarity measure for metabolic pathways which combines a similarity
based on reactions and a similarity based on behavioural aspects as captured by
minimal T-invariants of the PN representation of a pathway seen either as an
isolated or an open subsystem.

We implemented a tool, CoMeta, to experiment with our proposal. It is not
easy to compare our results with those in the literature since no benchmark is



Comparing Metabolic Pathways through Reactions and Potential Fluxes 19

available and the information in the databases are continuously updated. Nev-
ertheless experiments made with CoMeta show that:

– Our combined measure produces meaningful classifications.
– Neither the comparison based on reactions nor the one based on T-invariants

is always preferable. The refinement due to the introduction of the be-
havioural measure can be useful, but further investigations are necessary
to determine how to combine properly the two measures.

– Measures based on more sophisticated representations of a pathway (e.g.,
using graphs rather than sets, or considering compounds besides enzymes)
do not necessarily give better results than our combined measure, as our last
experiment shows.

The above considerations apply to the comparison of the pathways seen as iso-
lated subsystems of the full metabolic network and, indeed, the experiments
mainly focus on this approach. Results obtained when representing the path-
ways as open, interactive, subsystems are less satisfactory. We believe this may
be due to our completely automatised approach, which considers all metabolites
which are only consumed or only produced by a pathway and all metabolites
linking the pathway to the rest of the network as input/output places of the sub-
net. This is probably too rough and needs to be refined. In addition, it must be
remarked that KEGG indicates the connections among pathways in a very ab-
stract way and these information are not sufficiently precise and complete to be
safely used for building the open subnet. We are currently extending CoMeta
to grant to the user the possibility of choosing, among the metabolites in the
border of the pathway, those which should be considered as input/output places.
Such a choice can be guided by making explicit which metabolites are sources,
which are sinks and which are indicated by KEGG as links between pathways.

We are considering also other improvements for CoMeta. We would like to
give the possibility of a more general clustering of organisms based on the com-
bined distance. We also plan to add more refined reactions/enzymes similarity
measures based, e.g., on the hierarchical similarity of EC numbers. Moreover, al-
though the simple greedy algorithm for matching invariants bases in the I Score
computation seems to provide good results at a very low computational cost, we
plan to investigate possible refinements improving the quality of the match, while
keeping a reasonable efficiency. A further extension could be to introduce the
possibility to associate weights to the pathways when considering sets of path-
ways in the comparison. Weights could be decided by the user for putting more
emphasis on some pathways of interest, or they could be derived on the basis of
characteristics of the pathways, like their size.

Another interesting direction of development for CoMeta would be the com-
parison of different organisms by considering their whole metabolic networks.
Unfortunately, this introduces several difficulties. KEGG does not provide an
explicit detailed representation of full metabolic networks and, in general, ob-
taining a good quality complete network is a difficult task. In addition, the most
serious obstacle in this direction seems to be its computational cost. The fact
that the Hilbert basis can be exponential in the size of the network, combined



20 P. Baldan et al.

with the average size of metabolic networks (more than 1000 compounds and
1500 reactions) suggests that the computation is unfeasible in practice and this
was confirmed by our experiments.

Different solutions for guaranteeing the scalability of the approach can be
explored:

– incrementality: Instead of comparing the full metabolic network, it could
be interesting to compare smaller networks obtaining by merging, in an in-
cremental fashion, a number of metabolic pathways of interest. This would
allow to control the complexity growth. A difficulty consists in obtaining
from KEGG precise information on how different pathways should be joined
and in identifying possible overlaps.

– network simplification: Techniques for detecting portions of the network
which are not active under some specific context conditions could be devised.
This would allow to crop the network and to eliminate some potential fluxes.
Clearly this requires some knowledge of quantitative information, which is
not supplied by KEGG.

CoMeta is part of a larger project to integrate various tools for representing
and analysing metabolic pathways through PNs. CoMeta is freely available at:
http://www.dsi.unive.it/∼biolab.

Acknowledgements. We are grateful to Paolo Besenzon, Silvio Alaimo and
Alessandro Roncato for their contribution to the implementation of CoMeta.
We are indebted to the anonymous reviewers for their comments on the paper.

References

1. Kegg Markup Language manual, http://www.genome.ad.jp/kegg/docs/xml
2. KEGG pathway database - Kyoto University Bioinformatics Centre,

http://www.genome.jp/kegg/pathway.html
3. Petri Net Markup Language, http://www.pnml.org
4. Petri net tools, http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools
5. Taxonomy - site guide - NCBI, http://www.ncbi.nlm.nih.gov/guide/taxonomy/
6. 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial

problems on linear spaces, http://www.4ti2.de
7. Ay, F., Dang, M., Kahveci, T.: Metabolic network alignment in large scale by

network compression. BMC Bioinformatics 13(suppl. 3) (2012)
8. Ay, F., Kahveci, T., de Crecy-Lagard, V.: Consistent alignment of metabolic path-

ways without abstraction. In: Int. Conf. on Computational Systems Bioinformatics
(CSB), pp. 237–248 (2008)

9. Ay, F., Kellis, M., Kahveci, T.: SubMAP: Aligning metabolic pathways with sub-
network mappings. Journal of Computational Biology 18(3), 219–235 (2011)

10. Baldan, P., Cocco, N., Marin, A.: M Simeoni. Petri nets for modelling metabolic
pathways: a survey. Natural Computing 9(4), 955–989 (2010)

11. Baldan, P., Cocco, N., De Nes, F., Llabrés Segura, M., Simeoni, M.: MPath2PN -
Translating metabolic pathways into Petri nets. In: Heiner, M., Matsuno, H. (eds.)
BioPPN2011 Int. Workshop on Biological Processes and Petri Nets. CEUR Work-
shop Proceedings, vol. 724, pp. 102–116 (2011), http://ceur-ws.org/Vol-724

http://www.dsi.unive.it/%7Ebiolab
http://www.genome.ad.jp/kegg/docs/xml
http://www.genome.jp/kegg/pathway.html
http://www.pnml.org
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools
http://www.ncbi.nlm.nih.gov/guide/taxonomy/
http://www.4ti2.de
http://ceur-ws.org/Vol-724


Comparing Metabolic Pathways through Reactions and Potential Fluxes 21

12. Baldan, P., Cocco, N., Simeoni, M.: Comparison of metabolic pathways by con-
sidering potential fluxes. In: Heiner, M., Hofestädt, R. (eds.) BioPPN2012 - 3rd
International Workshop on Biological Processes and Petri Nets, Satellite Event
of Petri Nets 2012, Hamburg, Germany, June 25. CEUR Workshop Proceedings,
vol. 852, pp. 2–17. ceur-ws.org (2012), http://ceur-ws.org/Vol-852

13. Casasnovas, J., Clemente, J.C., Miró-Julià, J., Rosselló, F., Satou, K., Valiente, G.:
Fuzzy clustering improves phylogenetic relationships reconstruction from metabolic
pathways. In: Proc. of the 11th Int. Conf. on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems (2006)

14. Chen, M., Hofestadt, R.: Web-based information retrieval system for the prediction
of metabolic pathways. IEEE Trans. on NanoBioscience 3(3), 192–199 (2004)

15. Cheng, Q., Harrison, R., Zelikovsky, A.: MetNetAligner: a web service tool for
metabolic network alignments. Bioinformatics 25(15), 1989–1990 (2009)

16. Clemente, J., Satou, K., Valiente, G.: Reconstruction of phylogenetic relationships
from metabolic pathways based on the enzyme hierarchy and the gene ontology.
Genome Informatics 16(2), 45–55 (2005)

17. Ebenhöh, O., Handorf, T., Heinrich, R.: A cross species comparison of metabolic
network functions. Genome Informatics 16(1), 203–213 (2005)

18. Esparza, J., Nielsen, M.: Decidability issues for Petri Nets - a survey. Journal
Inform. Process. Cybernet. EIK 30(3), 143–160 (1994)

19. Forst, C.V., Flamm, C., Hofacker, I.L., Stadler, P.F.: Algebraic comparison of
metabolic networks, phylogenetic inference, and metabolic innovation. BMC Bioin-
formatics 7(1), 1–11 (2006)

20. Forst, C.V., Schulten, K.: Evolution of metabolism: a new method for the compar-
ison of metabolic pathways using genomics information. Journal of Computational
Biology 6(3/4), 343–360 (1999)

21. Forst, C.V., Schulten, K.: Phylogenetic analysis of metabolic pathways. Journal of
Molecular Evolution 52(16), 471–489 (2001)

22. Grafahrend-Belau, E., Schreiber, F., Heiner, M., Sackmann, A., Junker, B.H.,
Grunwald, S., Speer, A., Winder, K., Koch, I.: Modularization of biochemical net-
works based on classification of Petri net t-invariants. BMC Bioinformatics 9(1),
1–17 (2008)

23. Hardy, S., Robillard, P.N.: Petri net-based method for the analysis of the dynamics
of signal propagation in signaling pathways. Bioinformatics 24(2), 209–217 (2008)

24. Heiner, M., Koch, I.: Petri net based model validation in systems biology. In:
Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 216–237.
Springer, Heidelberg (2004)

25. Heymans, M., Singh, A.M.: Deriving phylogenetic trees from the similarity analysis
of metabolic pathways. Bioinformatics 19(1), i138–i146 (2003)

26. Hofestädt, R.: A Petri net application of metabolic processes. Journal of System
Analysis, Modelling and Simulation 16, 113–122 (1994)

27. Hong, S.H., Kim, T.Y., Lee, S.Y.: Phylogenetic analysis based on genome-
scale metabolic pathway reaction content. Applied Microbiology and Biotechnol-
ogy 65(2), 203–210 (2004)

28. Jaccard, P.: Distribution de la flore alpine dans le bassin des Dranses et dans
quelques régions voisines. Bulletin del la Société Vaudoise des Sciences Na-
turelles 37, 241–272 (1901)

29. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama,
T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: KEGG for linking
genomes to life and the environment. Nucleic Acids Research, 480–484 (2008)

http://ceur-ws.org/Vol-852


22 P. Baldan et al.

30. Klau, G.W.: A new graph-based method for pairwise global network alignment.
BMC Bioinformatics 10(suppl. 1), 1–9 (2009)

31. Koch, I., Heiner, M.: Petri nets. In: Junker, B.H., Schreiber, F. (eds.) Analysis of
Biological Networks. Book Series in Bioinformatics, pp. 139–179. Wiley & Sons
(2008)

32. Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Przulj, N.: Topological
network alignment uncovers biological function and phylogeny. Journal of the Royal
Society Interface 7(50), 1341–1354 (2010)

33. Li, Y., de Ridder, D., de Groot, M.J.L., Reinders, M.J.T.: Metabolic pathway
alignment between species using a comprehensive and flexible similarity measure.
BMC Systems Biology 2(1), 1–15 (2008)

34. Li, Z., Zhang, S., Wang, Y., Zhang, X.S., Chen, L.: Alignment of molecular net-
works by integer quadratic programming. Bioinformatics 23(13), 1631–1639 (2007)

35. Liao, L., Kim, S., Tomb, J.F.: Genome comparisons based on profiles of metabolic
pathways. In: Proc. of the 6th Int. Conf. on Knowledge-Based Intelligent Informa-
tion and Engineering Systems (KES 2002), pp. 469–476 (2002)

36. Lo, E., Yamada, T., Tanaka, M., Hattori, M., Goto, S., Chang, C., Kanehisa, M.:
A method for customized cross-species metabolic pathway comparison. In: Proc.
of Genome Informatics 2004. GIW 2004 Poster Abstract: P068 (2004)

37. Mithani, A., Preston, G.M., Hein, J.: Rahnuma: Hypergraph based tool for
metabolic pathway prediction and network comparison. Bioinformatics 25(14),
1831–1832 (2009)

38. Murata, T.: Petri Nets: Properties, Analysis, and Applications. Proceedings of
IEEE 77(4), 541–580 (1989)

39. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

40. Oehm, S., Gilbert, D., Tauch, A., Stoye, J., Goessmann, A.: Comparative Pathway
Analyzer - a web server for comparative analysis, clustering and visualization of
metabolic networks in multiple organisms. Nucleic Acids Research 36, 433–437
(2008)

41. Pedersen, M.: Compositional definitions of minimal flows in petri nets. In: Heiner,
M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 288–307.
Springer, Heidelberg (2008)

42. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of
metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)

43. Reddy, V.N.: Modeling Biological Pathways: A Discrete Event Systems Approach.
Master’s thesis, The Universisty of Maryland, M.S. 94-4 (1994)

44. Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative Analysis of Bio-
chemical Reaction Systems. Computers in Biology and Medicine 26(1), 9–24 (1996)

45. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in
metabolic pathways. In: ISMB93: First Int. Conf. on Intelligent Systems for Molec-
ular Biology, pp. 328–336. AAAI press (1993)

46. Schilling, C.H., Letscherer, D., Palsson, B.O.: Theory for the systemic definition
of metabolic pathways and their use in interpreting metabolic function from a
pathway-oriented perspective. Journal of Theoretical Biology 203, 229–248 (2000)

47. Schilling, C.H., Schuster, S., Palsson, B.O., Heinrich, R.: Metabolic pathway anal-
ysis: basic concepts and scientific applications in the post-genomic era. Biotechnol-
ogy Progress 15(3), 296–303 (1999)

48. Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience series
in discrete mathematics and optimization. Wiley (1999)



Comparing Metabolic Pathways through Reactions and Potential Fluxes 23

49. Schuster, S., Dandekar, T., Fell, D.A.: Detection of elementary flux modes in bio-
chemical networks: a promising tool for pathway analysis and metabolic engineer-
ing. Trends Biotechnology, 53–60 (March 1999)

50. Schuster, S., Fell, D.A., Dandekar, T.: A general definition of metabolic pathway
useful for systematic organization and analysis of complex metabolic networks.
Nature Biotechnology 18, 326–332 (2000)

51. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction sys-
tems at steady state. Journal of Biological Systems 2, 165–182 (1994)

52. Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I., Dandekar, T.: Exploring the
pathway structure of metabolism: decomposition into subnetworks and application
to Mycoplasma pneumoniae. Bioinformatics 18(2), 351–361 (2002)

53. Sestoft, P.: Programs for biosequence analysis,
http://www.itu.dk/people/sestoft/bsa.html

54. Shasha, D., Wang, J.T.L., Zhang, S.: Unordered tree mining with applications to
phylogeny. In: 20th Int. Conf. on Data Engineering, pp. 708–719. IEEE Computer
Society (2004)

55. Sokal, R., Michener, C.: A statistical method for evaluating systematic relation-
ships. University of Kansas Science Bulletin 38, 1409–1438 (1958)

56. Sørensen, T.: A method of establishing groups of equal amplitude in plant sociol-
ogy based on similarity of species and its application to analyses of the vegetation
on danish commons. Biologiske Skrifter / Kongelige Danske Videnskabernes Sel-
skabg 5(4), 1–34 (1948)

57. Starke, P.H., Roch, S.: The Integrated Net Analyzer. Humbolt University Berlin
(1999), http://www.informatik.hu-berlin.de/starke/ina.html

58. Tanimoto, T.T.: Technical report, IBM Internal Report, (November 17, 1957)
59. Tohsato, Y.: A method for species comparison of metabolic networks using reaction

profile. IPSJ Digital Courier 2(0), 685–690 (2006)
60. Tohsato, Y., Matsuda, H., Hashimoto, A.: A multiple alignment algorithm for

metabolic pathway analysis using enzyme hierarchy. In: Proc. Int. Conf. Intell.
Syst. Mol. Biol., pp. 376–383 (2000)

61. Tohsato, Y., Nishimura, Y.: Metabolic pathway alignment based on similarity be-
tween chemical structures. IPSJ Digital Courier 3, 736–745 (2007)

62. Webb, E.C.: Enzyme nomenclature 1992: recommendations of the Nomenclature
Committee of the International Union of Biochemistry and Molecular Biology on
the nomenclature and classification of enzymes. Published for the International
Union of Biochemistry and Molecular Biology by Academic Press, San Diego (1992)

63. Wernicke, S., Rasche, F.: Simple and fast alignment of metabolic pathways by
exploiting local diversity. Bioinformatics 23(15), 1978–1985 (2007)

64. Zhang, K., Wang, J.T.L., Shasha, D.: On the editing distance between undirected
acyclic graphs. International Journal of Foundations of Computer Science 3(1),
43–57 (1996)

http://www.itu.dk/people/sestoft/bsa.html
http://www.informatik.hu-berlin.de/starke/ina.html


Modeling and Analyzing
Wireless Sensor Networks with VeriSensor:

An Integrated Workflow

Yann Ben Maissa1,2, Fabrice Kordon2, Salma Mouline1, and Yann Thierry-Mieg2

1 LRIT – CNRST URAC29, Université Mohammed V-Agdal
4, Avenue Ibn Battouta, B.P. 1014 RP, Rabat, Maroc

mouline@fsr.ac.ma
2 LIP6 – CNRS UMR7606, Université P. & M. Curie 4, Place Jussieu, 75005 Paris, France

{Yann.Ben-Maissa,Fabrice.Kordon,Yann.Thierry-Mieg}@lip6.fr

Abstract. A Wireless Sensor Network (WSN), made of distributed autonomous
nodes, is designed to monitor physical or environmental conditions. WSNs have
many application domains such as environment or health monitoring. Their de-
sign must consider energy constraints, concurrency issues, node heterogeneity,
while still meeting the quality requirements of life-critical applications. Formal
verification helps to obtain WSN reliability, but usually requires a high expertise,
which limits its adoption in industry.

This paper presents VeriSensor, a domain specific modeling language (DSML)
for WSNs offering support for formal verification. VeriSensor is designed to be
used by WSN experts. It can be automatically translated into a formal specifica-
tion for model checking. We present the language and its translation into a formal
model (we use Instantiable Transition Systems – ITS).

A tool has been implemented. We used it to work on a case study, illustrating
how several metrics and properties relevant to the domain can be evaluated.

Keywords: wireless sensor networks, domain specific modeling languages,
model driven engineering, formal verification.

1 Introduction

Context. Wireless sensor networks (WSNs) are composed of distributed autonomous
nodes, containing programs and sensors to monitor physical or environmental condi-
tions. Each node is a small physical device embedding sensors, a small CPU, a battery,
a wireless transceiver and an antenna for communication. WSN are useful in many
contexts, such as environment or health monitoring, thus being a hot topic [4,20].

The design of WSNs is complex and error-prone due to their numerous constraints:

– lifetime is a crucial preoccupation (even more important than quality of service [3]).
Overall lifetime of the WSN usually depends on sensor nodes lifetime because
nodes have limited battery power.

– concurrency and asynchrony lead to important issues such as interleaving of actions
and race conditions.

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 24–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Modeling and Analyzing WSNs with VeriSensor 25

– heterogeneity, because WSNs may contain various types of nodes, each having
different characteristics (embedded sensors, wireless range, battery capacity, etc.).

– limited resources, because nodes have limited CPU and memory capacities.

Problem. When WSNs are intended to handle critical functions, verification and val-
idation must be performed to reach a significant confidence in such systems [37,18].
Several proposals in that direction have emerged in recent years (details are provided in
section 2). We can classify them in the following way:

– case studies use formal verification techniques. While they show the practical and
industrial relevance of performing formal analysis on WSNs, they use ad-hoc mod-
eling of the system by experts in both WSNs and formal verification;

– domain specific modeling languages (DSMLs) providing concepts of the domain
are also used within the context of model-driven engineering (MDE). These spec-
ifications can be simulated prior to code generation of the final system. However,
simulation is not sufficient to ensure a high confidence in critical systems;

– Program model-checkers are intended to find bugs in implementations. However,
these tools detect problems late in the development life-cycle, since an implemen-
tation must already be available.

So, at this stage, there is apparently no satisfactory solution for modeling a WSN and
performing formal analysis on this model.

Contribution. This paper presents VeriSensor, a DSML for WSNs and its mapping to
a formal language for verification and analysis. VeriSensor has the features of an archi-
tectural description language (ADL [32]) adapted to a modular description of WSNs.
This is an extension of the work presented in [7].

VeriSensor offers “natural” modeling of a WSN to domain experts by providing
high-level concepts that capture the main use cases of such systems – periodic data
collection [31], event-detection [49], etc. VeriSensor can be transformed into a discrete
formal model supporting analysis: Instantiable Transition Systems (ITS) [43]. At this
stage, VeriSensor is not intended for code generation, but bridges to code generation
tools such as MEDWSA [46] or Baobab [2] could be investigated.

To illustrate its capabilities, we modeled an example using VeriSensor. This example
is translated into a formal model using our prototype tool. Then, analysis is performed
using ITS-Tools [41].

Contents. Section 2 browses the main works in modeling and verification of WSNs
we are aware of and positions our work. Section 3 gives an overview of VeriSensor.
Section 4 presents the language concepts together with the case study [38] used as a
running example (a body area network). Section 5 details the mapping of VeriSensor
into ITS and section 6 shows the analysis results we compute on the case study.

2 Related Work

We classify the approaches dedicated to modeling and/or verification of wireless sensor
networks in three categories:

– Ad-hoc modeling and verification, that usually focus on modeling one aspect of
WSN and rely on formal methods,



26 Y. Ben Maissa et al.

– Program model-checkers, that consist in analyzing an implementation of WSNs,

– DSMLs, offering high-level concepts for the modeling of WSNs.

Ad-hoc Modeling and Verification. We investigate here some case studies of the
literature, that use formal methods to improve the reliability of WSNs.

Olveczky et al. [36] model, simulate and verify the OGDC algorithm for maintaining
optimal node coverage using Real-time Maude [35]. They first perform Monte-Carlo
simulations then analyze time-bounded reachability and temporal logic properties but
do not explore the full state space, hence possibly missing some rare behaviors.

Mounier et al. [33] model a WSN detecting a pollution cloud using the IF
language [12]. They use the Kronos model-checker [11] to formally compute the worst-
case lifetime of the network considering two alternate routing protocols: controlled
flooding and directed-diffusion. The application layer is mostly abstracted away and,
even then, analysis can only scale to a small number of nodes with a limited initial
energy (40 units).

Tschirner et al. [45] specify a biomedical WSN using timed automata [5] and for-
mally verify it with UPPAAL [8]. The case study focuses on a specific transceiver
(Chipcon CC2420) and the verification of qualitative and quantitative network related
properties in the context of periodic data collection.

Watteyne et al. [48] also use UPPAAL to compute the worst case execution and
transmission times for the different phases of a real-time MAC protocol.

Coleri et al. [18] model with HyTech [23] a single node of a WSN. The model
matches the TinyOS components of the implementation and is used to study its life-
time and verify some response properties.

Ghosh et al. [19] use AADL to model a WSN. Then, using Monte-Carlo simula-
tions, they compute end-to-end average packet success rate, average latency and system
lifetime.

While using formal methods to design a WSN can strongly increase confidence,
modeling using a general purpose formal language requires an expert in both WSNs
and formal modeling. Moreover, these case studies generally have a limited scope and
must manually abstract many aspects of a WSN.

Program Model-Checkers. The works presented in this section deal with the analysis
of WSN implementations. Since most WSNs are implemented using NesC on top of
TinyOS, these tools mostly deal with these.

NesC@PAT [50] automatically generates PAT [40] models from NesC programs, and
verifies the absence of deadlock, state reachability, and liveness properties.

Tos2CProver [13] is a prototype tool-chain that translates NesC programs of a sin-
gle node into ANSI-C. The CBMC model checker [17] is then used to verify memory
access related properties (e.g., memory violations, state of registers).

T-check [30] is a tool for finding bugs in WSN implementations. It is built on top of
TOSSIM [29], an event-driven simulator for sensor networks. It performs random walks
and bounded depth model checking of safety and liveness propositional properties.

SLEDE [22] is a framework focused on automatic-verification of sensor network
security protocols. It builds an intrusion model from NesC protocol descriptions and a
set of verification goals. Analysis with SPIN [24] generates counterexamples in NesC.



Modeling and Analyzing WSNs with VeriSensor 27

Analysis of NesC programs clearly increases confidence in WSNs. However, pro-
gram verification comes late in the development life-cycle, thus increasing risks, and
may lead to costly redeployment of software.

DSMLs for WSNs. We focus here on model-driven approaches for WSNs design
using Domain Specific Modeling Languages (DSMLs). Most of the time, these lan-
guages offer simulation as an analysis method and/or code generation to produce an
implementation.

VisualSense [6] is a graphical editor and simulator built on top of Ptolemy II [28]
allowing experts to build detailed specifications of radio communication and communi-
cation protocols. VisualSense is used to evaluate and plot protocol performance metrics
(e.g., latency, message loss) as well as energy consumption metrics.

Matilda/UML [47] defines a UML profile dedicated to Biologically inspired WSN
(BisNet). A virtual machine (Matilda) then enables model execution and debugging.

Baobab [2] and MEDWSA [46] are code generators (to NesC/TinyOS) proposing
visual notations to describe WSN nodes. No analysis facilities are provided.

Cavi [10] proposes a graphical DSML for WSNs. Translations are defined to support
simulation with Castalia [9] and probabilistic model checking with PRISM [27]. It fo-
cuses on the modeling of network protocols and radio propagation. Cavi only supports
two common routing protocols in WSNs: flooding and gossiping.

Discussion. None of the approaches listed above is fully satisfactory.
Ad-hoc formal modeling enables one to verify qualitative and/or quantitative prop-

erties on a WSN (such as worst-case analysis). However, to deal with scaling issues an
expert in formal methods is needed. This expert must also interact with a WSN designer.
Manual abstraction is needed to limit the complexity of verification, but this raises the
problem of the relationship between the verified model and its implementation.

Program model-checking solves this relationship issue by building formal models
from the code. This enables formal debugging of common memory errors for instance,
but still faces scalability issues. For this reason, some tools focus on single node behav-
ior. Also, program verification takes place late in the development process, increasing
the cost of error correction.

High-level DSMLs dedicated to WSNs bridge the gap between domain experts on
the one hand, analysis tools and implementation (via code generators) on the other hand.
However, most of them (except [10]) only rely on simulation for analysis, which makes
it difficult to catch rare behaviors. Except in [39], no tool provides both simulation
and code generation. Also, none of the DSMLs supporting code generation defines
information about the deployment topology of the WSN.

VeriSensor, the language we propose, is a DSML for WSNs supporting efficient formal
verification of quantitative and qualitative properties by model checking. This DSML
is translated into a formal model to be analyzed.

It is clear that WSNs are time-constrained and thus require appropriate formalisms
to express time. We chose time Petri nets (TPN) that combine a good modeling of
concurrency with an appropriate modeling of time.



28 Y. Ben Maissa et al.

Since our translation procedure is automated, it can embed dedicated abstractions for
TPN and rely on efficient techniques that cope with combinatorial explosion. Automa-
tion reduces the expertise needed in formal methods to operate verification.

Our DSML reuses from other studies some useful notions about structuring brought
by the component notion of ADL.

This work is complementary of other approaches presented above. While simulation
provides averages or performance indices, we can offer a full worst case analysis. While
program model checking focuses on debugging an implementation during the late phases
of the development life-cycle,we propose to verify thesystem atearly stages of thedesign.

We do not focus in this paper on code generation that will be investigated in further
work. A way to do this is to define a translation procedure to existing code generation
tools such as MEDWSA [46] or Baobab [2].

3 Overview of VeriSensor

A VeriSensor specification is composed of the definition of the nodes themselves, a
description of the physical environment surrounding these nodes, the deployment of
the system, and the specification of all queries to be processed by the WSN (see Fig. 1).

Description of the Nodes. There can be several classes of nodes in a WSN (e.g., in a
heterogeneous network), each one having its own characteristics such as:

– its sensors (which physical quantities to be measured and how they are captured),
and their energy consumption,

– its application operating mode (periodic data collection, event detection, etc.) and
the way it manipulates data as well as the related energy consumption,

– its interface with the network (wireless range, routing, etc.), and the corresponding
energy consumption,

– the initial energy provided to the node (e.g., battery capacity).

Several node classes can share common submodels and a node class can be instantiated
several times when several nodes have the same characteristics.

Node classNode classNode classNode class

Query: specification of all queries to be processed by the WSN

Sensor: type + operating mode + energy model

Application: sending orders to sensors + processing + 
sending data to network + energy model

Network: communication of messages + energy modelIn
iti

al
 E

ne
rg

y 

Environment: environmental scenario

Deployment: node class instantiations + topology

Fig. 1. Structure of a VeriSensor specification



Modeling and Analyzing WSNs with VeriSensor 29

Deployment Model. It defines how instances of node classes are spread in the physical
environment and may change position over time1. Engineers use this model to define
the topology of the system (number of instances per class and their coordinates) as well
as the logical routing of messages among the nodes.

The topology is fundamental to provide an instantiation of the model elements. This
type of model is found in simulation oriented DSMLs, but not in code-generation ori-
ented DSMLs.

Environment Model. It defines physical quantities as a function of space (x,y,z) and
time (t). Thus, the designer may describe a particular scenario in which the WSN runs.
These scenarios are used to test qualitative properties of models on given problem in-
stances. A given environment represents a particular situation in which a given behavior
of the WSN is expected.

The Query Model. It describes the queries to broadcast and process in the WSN.
Queries ask to periodically sample physical quantities for a certain duration. A pe-
riodic query requires the node to regularly send sampled data to the base station. A
conditional query only signals the base station when the condition is met. This allows
to model both periodic data collection [31] with a periodic query of an infinite duration,
and event detection [49], using a conditional query that characterizes the event.

Architecture of VeriSensor. The various submodels are defined separately in Veri-
Sensor to support modularity and reusability of WSN components. The deployment
model of a system is the entry point of a VeriSensor specification. It references the
Environment model and instantiates all nodes from the definition of their classes.

Inspiration from other DSMLs. The notion of node class in VeriSensor is inspired
from the sensor nodes of Matilda. Similarly to Mounier et al. [33] we separate defini-
tions of components from the routing, and further decompose nodes according to various
aspects (energy, application...). The notions of environment and deployment models are
inspired from VisualSense [6]. Also, as in Baobab [2] and MEDWSA [46], we describe
the application layer, that is usually left unspecified in simulation oriented DSMLs.

4 Modeling with VeriSensor

This section presents VeriSensor through the specification of a case study.

4.1 The Body Area Network (BAN)

Our case study takes place in the context of home medical monitoring of patients who
need constant care but can stay out of hospitals. Home medical monitoring allows to
avoid hospitalization, which is as good for medical staff as for their patients.

The Body Area Network [38] is part of a wireless health monitoring system. It is
composed of (see Fig. 2): i) a set of sensor nodes capable of sensing, processing and

1 We do not yet support mobility in our approach but this is a natural extension that is semanti-
cally possible in VeriSensor.



30 Y. Ben Maissa et al.

x

ECGTilt 1
(ECG & Tilt sensors)

PDA 1 Activity 1 & 2
(activity sensor)

y

Fig. 2. The Body Area Network (BAN)

communicating vital signs to a personal server ; ii) a Portable Digital Assistant (PDA)
that forwards patient data to a medical center through internet (3G or WIFI).

The BAN monitors the vital signs of the patient recovering from a heart attack. It
checks whether he is exercising regularly as recommended by the doctors. WSNs, due
to their small size and wireless nature, reduce system intrusiveness in patients lives.

As shown in Fig. 2, two redundant activity nodes detect periods of physical exercise
(when the body activity level is above 8 Watts.kg−1) while a third one periodically
collects both heartbeat with an electrocardiogram (ECG) sensor and the tilt (i.e., upper
body orientation) in terms of the absolute angle relative to a vertical position.

The system designer (i.e., the end-user of VeriSensor) wants to assess some critical
aspects of his system. To do so, he needs to evaluate classes of properties such as:

p1 evaluate which node limits the system lifetime according to a given scenario,
p2 identify scenarios leading to undesirable situations that should be avoided,
p3 check that the system behaves as expected by “replaying” existing situations iden-

tified by doctors,
p4 compare alternative hardware solutions according to their characteristics (energy

consumption of sensors, processing duration, etc.),

4.2 Modeling the BAN in VeriSensor
This section illustrates the VeriSensor syntax and structure through the modeling of
the BAN. We follow a “path” going from the more general aspects of the system (its
elements) to the implementation of some nodes and the description of its environment.

The Deployment Model. Figure 3 shows the deployment parameters of the BAN sys-
tem. Each node instance is parameterized by its position (shown on Fig. 3) and next hop.
For instance, the only node of class ECGTilt is located at position 〈0.1,0.4,0〉 (when
a position parameter is unspecified, its value is 0) and routes messages to the pda1 in-
stance. Distances are expressed in meters. We only consider here a static routing scheme
based on the nextHop parameter defined in the deployment model.

The Query Model. Figure 4 shows the queries of the BAN. For example, AskHeart-
Beat collects the heart beat every 13 time units and processes it for 2 time units, during

System BAN { environment => HumanBody ;
ECGTilt => e c g t i l t 1 ( x = 0 . 1 , y = 0 . 4 , nextHop = pda1 ) ;
A c t i v i t y => a c t i v i t y 1 ( x = 0 . 1 , y =−0.3 , nextHop = pda1 ) ,

a c t i v i t y 2 ( x=−0.1 , y =−0.3 , nextHop = pda1 ) ;
PDA => pda1 ( x =−0.1 , y = 0 . 3 , nextHop = n u l l ) ; }

Fig. 3. Deployment of the BAN system



Modeling and Analyzing WSNs with VeriSensor 31

Queries m e d i c a l {
cond_query AskHear tBea t ( c o n d i t i o n = [ H e a r t B e a t < 4 0 ] , durat ion = i n f i n i t y ,
s e n s i n g _ p e r i o d = 13 , p r o c e s s i n g _ c o s t = 4 , p r o c e s s i n g _ d u r a t i o n = 2 ) ;

per iodic_query A s k T i l t ( q u a n t i t i e s = [ T i l t ] , durat ion = i n f i n i t y ,
s e n s i n g _ p e r i o d = 8 , p r o c e s s i n g _ c o s t = 0 , p r o c e s s i n g _ d u r a t i o n = 0 ) ;

cond_query A s k A c t i v i t y 1 ( c o n d i t i o n = [ A c t i v i t y > 8 ] , durat ion = i n f i n i t y ,
s e n s i n g _ p e r i o d = 6 , p r o c e s s i n g _ c o s t = 4 , p r o c e s s i n g _ d u r a t i o n = 2 ) ;

cond_query A s k A c t i v i t y 2 ( c o n d i t i o n = [ A c t i v i t y > 8 ] , durat ion = i n f i n i t y ,
s e n s i n g _ p e r i o d = 9 , p r o c e s s i n g _ c o s t = 4 , p r o c e s s i n g _ d u r a t i o n = 2 ) ; }

Fig. 4. Query model for the BAN

the whole run (duration = infinity). It reports the heart beat value to the base station
when it is below 40 (bradycardia). Processing costs 4 energy units per period.

The Node Class Model. A node class (Figure 5, left) specifies the physical character-
istics of a node. It relates the information dispatched in the following aspects: sensing,
application, network, and the initial energy.

The application defines the queries processed by a node. Here, ECGTilt is able to
process both AskHeartBeat and AskTilt (Figure 5, left). Physical quantities are de-
fined in a dedicated model (Figure 6, left).

Figure 5 (right) describes the sensors of the ECGTilt node class. In our study, it
samples the upper body orientation (Tilt) and the heartbeat (Heartbeat). Sensors are
described through their main technical characteristics: the measured physical quantity,
the startup time (i.e., the time for the sensor to be operational after being turned on), the
sensing duration (i.e., the time for the sensor to sense the value), and the energy cost
of collecting a sample. For instance, ECGSensor measures the heartbeat, starts-up in 4
time units and consumes 2 energy units.

NodeClass ECGTilt {
s e n s i n g => ECGTsensing ;
a p p l i c a t i o n => ECGTApplica t ion ;
network => s t a t i c _ r o u t i n g ;
i n i t i a l _ e n e r g y = 1000 ;}

a p p l i c a t i o n ECGTApplica t ion {
q u e r i e s = AskHeartBeat ,

A s k T i l t ; }

i n c l u d e t y p e s . d e f ;
s e n s i n g ECGTsensing {

s e ns or ECGSensor (
p h y s i c a l _ q u a n t i t y = H e a r t b e a t ,
s t a r t u p _ t i m e = 4 ,
s e n s i n g _ d u r a t i o n = 1 ,
s e n s i n g _ c o s t = 2 ) ;

s e ns or T i l t S e n s o r (
p h y s i c a l _ q u a n t i t y = T i l t ,
s t a r t u p _ t i m e = 0 ,
s e n s i n g _ d u r a t i o n = 2 ,
s e n s i n g _ c o s t = 3 ) ; }

Fig. 5. ECGTilt, node and application description (left), sensing description (right)

The Physical Quantities Model. This model describes physical quantities as discrete
ranges of values (see Fig. 6 left). The underlying semantics is the one of discrete event
systems, so, continuous values must be mapped to an integer range. This mapping is
user-defined; the designer must evaluate the trade-off between precision of quantities
units and the analysis complexity.



32 Y. Ben Maissa et al.

type H e a r t B e a t i s 0 . . 2 0 0 ;
type T i l t i s 0 . . 1 8 0 ;
type A c t i v i t y i s 0 . . 1 5 ;

i n c l u d e t y p e s . d e f ;
environment c y c l i c HumanBody { c o n t e x t {}

body {
c y c l e 6 0 ; / / c y c l i c b e h a v i o r ( i n t i m e u n i t s )
H e a r t B e a t f u n c t i o n Hear tBea tFunc ( x , y , z , t ) {

i f (0 <= t and t < 10) then re turn ( 9 5 ) ;
e l s i f (10 <= t and t < 14) then re turn ( 4 0 ) ;
e l s e re turn ( 7 5 ) ; }

T i l t f u n c t i o n T i l t F u n c ( x , y , z , t ) { . . . }
A c t i v i t y f u n c t i o n A c t i v i t y F u n c ( x , y , z , t ) { . . . } } }

Fig. 6. Physical quantities definition (left) and an example of Environment Model (right)

The Environment Model. The evolution of each physical quantity q is defined by the
environment which must provide a function returning its value for any point in time
and space. There is one such function per physical quantity of the system. For instance,
Fig. 6 (right) specifies the evolution of HeartBeatFunc that is sampled by the ECGTilt
node. In this example, values of HeartBeat depend on time only.

For some properties of interest such as worst case scenarios, instead of using one
of the user supplied environments we can use the provided unconstrained environment,
which might return any value at any time.

The clear separation between the input conditions (environment) and the system
specification is important in the analysis phase described below.

5 Formal Analysis of VeriSensor Specifications

Formal analysis by model checking of a system is a powerful technique that allows to
capture subtle defects as well as to reason about worst case scenarios and occurrence of
rare events by exhaustively analyzing all possible behaviors. However, it is limited in
the scale of the systems it can analyze due to the combinatorial state space explosion,
characteristic of concurrent asynchronous systems. To partly overcome this problem,
techniques and tools have emerged such as SAT solvers [16] or shared decision dia-
grams [14].

Since WSNs are highly time driven and complex, we need a tool supporting a large
amount of concurrency, the notion of time and able to tackle combinatorial explosion.
VeriSensor emphasizes two typical aspects of WSNs: symmetries (thanks to the notion
of node class) and locality in components (via the modular architecture of the language).

Instantiable Transition Systems (ITS): initially dedicated to distributed systems [43]
and enriched to support time [41], they handle appropriately such characteristics. It is a
model checking tool relying on a powerful decision diagrams library to cope with the
complexity of large systems.

ITS also provide a way to define a structured and hierarchical specification of a
system as well as a way to instantiate components. This is useful since VeriSensor
is inherently hierarchical. ITS were previously experimented to analyze UML activity
diagrams through a model transformation approach [44] similar to the one outlined
here. ITS also showed excellent performance for this kind of specifications during the
model checking contests @ Petri nets in 2011 [25] and 2012 [26].



Modeling and Analyzing WSNs with VeriSensor 33

Behavior of components is described using time Petri nets, a simple yet expres-
sive formalism well adapted to modeling concurrent systems, process synchronizations,
shared resources, as well as time constraints.

5.1 The Underlying Formal Model

Two formalisms are involved in the underlying formal description of VeriSensor: la-
beled time Petri nets to describe elementary behavior and ITS to structure the specifica-
tion. We only provide here an intuitive definition (see [43,41] for a formal presentation,
or the web page http://ddd.lip6.fr for more details on the supporting tools).

Instantiable Transition Systems. ITS allow hierarchical and compositional modeling,
through a notion of type and instance and an application of the composite design pattern
at a behavioral level. A type has an interface, defined as a set of action labels, and
some definition of its internal behavior. Similarly to component oriented models, an ITS
composite is a type that contains instances of ITS types. The composition mechanism
is based only on transition synchronization. This mechanism is very well suited for
compositional verification algorithms [15,21].

Figure 7 shows a simple example of a composite ITS type. States of the Client-
Server model are the cartesian product between the Client and Server states. The system
offers one interface, (begin, represented as a white square), that is synchronized with
the start interfaces of the nested components (Client and Server). To fire begin, both
client and server must fire a transition labeled by start. This system also contains a local
synchronization (ε, represented as a black square) that is not exported. Similarly, to fire
ε, the client must fire send and the server must fire get. Client and Server are elementary
components that contain an automaton where local transitions are labeled by ε too.
Client and Server can fire such local transitions without synchronizing together.

In practice, we use labeled time Petri nets to define elementary ITS types. We will
use a high level graphical notation in the paper to describe the compositions, since the
actual models which are generated are a bit complex.

Client

start

start

send

Serverstart

get start getε
ε

ε
ε

C
lie

nt
-S

er
ve

r

ε

   

send

begin

Fig. 7. Small example of composite-ITS

Labeled Time Petri Nets. Petri nets are well suited for concurrent asynchronous sys-
tems [34] such as WSNs and are well supported by tools.

In a Petri net, places (circles) contain tokens representing resources that are con-
sumed by transitions (rectangles) when they fire, producing new tokens. A state of a
Petri net assigns to each place of the net an integer representing the number of tokens
it contains. In a given state, a transition is enabled if all its input places (connected by
an arc from place to transition) contain enough tokens. Each arc may be labeled by an

http://ddd.lip6.fr


34 Y. Ben Maissa et al.

integer that indicates how many tokens are consumed or produced (the value 1 is as-
sumed if there is no annotation). When firing, a transition produces tokens in the places
connected by outgoing arcs.

Time Petri nets (TPNs) add a notion of clock to each transition, constrained by an
earliest and latest firing time noted [α,β]. As soon as a transition is enabled, the associ-
ated clock starts. This transition cannot fire before α time units have elapsed and must
occur if the transition’s clock reaches β. Hence a transition with [0,∞[ can occur at any
date if it is enabled, like Petri nets without time. This is assumed to be the default values
and it is not explicitly shown in the figures.

The time model is discrete: a special transition elapse represents the evolution of
time by one unit. All clocks progress simultaneously when elapse is fired.

Labels add a notion of interface to Petri nets, where some transitions (represented
with thick borders) are called public and allow communication with the outside world.
These transitions define the ITS interface. Private transitions can occur locally, inde-
pendently from any situation outside the net, and typically represent an autonomous
control flow.

5.2 Mapping VeriSensor to a Formal Specification

The mapping of VeriSensor into formal specifications relies on patterns, based on ITS
and time Petri nets, associated to its syntactic elements. It is also based on a set of
automatically computed abstractions that help containing the combinatorial explosion
due to large data types.

The Transformation Process. To automatically transform the specification into a
formal model we define a set of ITS patterns, modeling behaviors corresponding to
the VeriSensor execution semantics. Instances of these ITS patterns are parameter-
ized using values and types taken from the VeriSensor specification. Instances are then
synchronized according to the deployment model, node class definitions, etc.

Thus, the transformation process uses parameters from the VeriSensor specification
to customize patterns. The formal model is structured in dimensions describing orthog-
onal aspects of the WSN behavior extracted from the VeriSensor specification. The
model of each node is composed of the following dimensions: network, application,
sensors, energy, and local environment (a projection of the VeriSensor global environ-
ment over the node’s position). Then, nodes are connected through the routing dimen-
sion computed from the deployment model.

Each dimension has its own generic pattern that is hierarchically defined, thus tak-
ing benefits from the ITS mechanisms. The final model is obtained by assembling and
instantiating these patterns.

Each dimension respects a given fixed interface that does not depend on the internal
behavior. This composition model allows an easy substitution of dimensions. This is
of particular interest when studying several environmental scenarios or several energy
consumption models.



Modeling and Analyzing WSNs with VeriSensor 35

send/receive

transmit

send/receive

transmit

Activity1:

sample

ECGTilt 1::Network

:Application

:Sensors

:E
n

er
g

y

start/stop/send

send/receive

Activity2:

:Environment

Act1route:Routing

send/receive

transmit

send/receive

transmit

PDA 1:

Fig. 8. Informal overview of the structure of the BAN specification according to the deployment
given in Fig. 3. We only detail the node Activity1 and only show the routing instance of Activity1.

We define here a transformation from VeriSensor to ITS that have a formal semantics
defined in [43]. There is no separate definition of the VeriSensor semantics. Hence, our
transformation can be used to define the VeriSensor semantics.

Global Architecture of the Formal Model. Figure 8 informally illustrates the overall
structure of the final formal specification for the BAN case study, based on the Veri-
Sensor architecture. In this diagram, we distinguish instance names (followed by “:”)
from ITS pattern names (preceded by “:”).

The assembling of a node class is illustrated for Activity1. We show how the dimen-
sions interfaces are synchronized one to another. For example, the start label represents
a synchronization between the application, energy and sensor dimensions. Similarly,
sample synchronizes the sensor, energy and environment dimensions.

Routing and network transmission are handled by a dedicated ITS component (Rou-
ting). It exports one label per 〈source,destination,message〉 tuple. Its role is to transmit
the message to the appropriate destination instance. Each node has its own routing in-
stance ; its pattern will be detailed later in this section.

As each node class is instantiated according to the deployment model, Fig. 8 shows
two activity nodes, one ECGTilt and one PDA.

Structure of a Node in the Formal Description. A node encompasses five dimensions:

– local environment: it represents the physical quantities functions projected at the
physical position of the node. It is deduced from the VeriSensor environment model
or corresponds to an “unconstrained” default environment for worst case analysis.

– sensors: it describes the behavior of sensors embedded in the node. It incorporates
parameters (sensing duration, startup time, etc.) taken from the sensing model. The
sensors sample values from the environment and forwards them to the application.

– application: it describes the behavior of the node in reaction to queries. It is deduced
from the query model and the application description of a node. It controls the
sensors (start/stop) and exchanges messages with the network.

– network: it models the network layer of a node. It transmits queries and results. In
multi-hop scenarios it handles message forwarding.



36 Y. Ben Maissa et al.

S1

Sn

••
•

ε1

εn

[d1, d1]

[dn, dn]

sendV1ToSens

sendVnToSens
[dn−1, dn−1] εn−1

(a) n-ary cyclic environment

off

recvOrderFromApp

recvV1FromEnv

rdy

idle

start

sendV1ToApp

stop

sendVnToApp

S1

Sn

recvVnFromEnv
[a, a]

[d, d]

[d, d]

••
•

started

wait [0,0]

[0,0]

(b) Sensor sampling n values

Fig. 9. Two generic ITS, interface transitions are outlined in bold

– energy: it explicits the energy consumption model for the node. It synchronizes
with any energy consuming operation. It is deduced from the energy costs declared
in the input specification.

The Local Environment Pattern. Figure 9a represents the environment as seen by a
given node. To obtain this behavior, the environment function q(x,y,z, t) is projected
over the coordinates of the node, yielding a function q(t) of time only that is specific to
the considered node sensor. This function is finally discretized, and encoded as a series
of plateau values that have a certain duration di.

Each public transition is labeled by a possible value of the physical quantity. The
time bound on local transitions (ε) represents the evolution of q(t) as time progresses.
The last transition εn can be added to represent a cyclic environment. This ITS is param-
eterized by n, the number of values sent in the cycle, and by di for i∈ [1..n], the duration
for sending these values. Its ITS interface is the set of possible values sendViToSens of
the physical quantity.

The Sensor Pattern. Figure 9b represents the behavior of a sensor (as for the BAN
system in Fig. 5 right) and is parameterized by: n (number of potential values in the
physical quantity), a (startup time), and d (capture time). Its ITS interface is composed
of the control commands (start, stop) connected to the application and sampling con-
nected to the environment and application dimensions (recvViFromEnv, sendViToApp).

The transmission of a value Vk from the environment to the sensor is represented
by a synchronization between sendVkToSens and recvVkFromEnv. The transition send-
ViToApp transmits sampled values to the application dimension. Because these defini-
tions of the sensor and the environment are clearly separated we can easily associate
the specification to any arbitrary environment instead of a fixed scenario. Such an asso-
ciation is described in the deployment model.

The Application Pattern. The application handles requests coming from the network.
Since reaction to a query depends on its nature, each query defined in VeriSensor
is transformed separately, and connected to the appropriate sensors. A dispatcher is
defined for each node: as in a middleware, it filters and dispatches only the queries



Modeling and Analyzing WSNs with VeriSensor 37

:Dispatcher

:Network

control (start, stop, 
sendOrder, 
receiveVi)

sample values (sample Vi)

control (startQ1/stopQ1)

communication 
(sendResultQi/receiveResultQi

/receiveQi/broadcastQi)

Q2:AskTilt

TiltSensor:Sensor

TiltEnv:Env

Q1:AskHeartBeat

ECGSensor:Sensor

HeartBeatEnv:Env

send resultQ1

processQ1

:Application

transmit queries(transmit Qi)

:E
nergy

Fig. 10. Pattern for a node (the gray zone is the application pattern)

concerning the node. Figure 10 (gray zone) shows this pattern for ECGTilt. The two
queries that this node can process are instantiated and connected to the dispatcher.

A conditional query (see an example in Fig. 4) is modeled as a time Petri net (not
shown here). It has a cyclic behavior: when it receives start from the dispatcher, it
starts the sensor, then collects a value at every period (defined as the sensing_period).
For each sampled value, if the condition of the query is met, it sends a notification to
the base station. A periodic query, once started, will sample values, process them and
send them to the base station. In both cases, execution stops after duration time units,
as defined in the query.

The TPN representing the query is controlled by a dispatcher and is synchronized
with the sensor, network, and energy models (see Fig. 10).

The Network Pattern. The interface of the network allows to transmit queries and their
results. So it defines, for each query, a set of services: broadcast/receive (a query),
send/receive (a query result). It handles the forwarding of broadcasted queries and
eliminates duplicates using a flood control algorithm. It receives values to be sent to
the base station from the application as well as from peer nodes. Queries addressed to
the node are transmitted to the dispatcher (see Fig. 10). Transmission to the network
consumes energy, hence, the pattern is also connected to the Energy dimension.

The behavior of the network is specified using a Petri net that may consider trans-
mission errors when necessary. To model loss of packets when energy is too low for
reception, the pattern includes dummy reception transitions that discard the message
(when energy is insufficient) and let the emitter fire the synchronization. This is im-
portant to preserve the modularity of the specification as well as to consider realistic
behavior under degraded conditions (e.g., some nodes are down).

The Energy Pattern. It encodes the energy of a node as a single place holding ini-
tial_energy tokens (see the definition of a node in Fig. 5). Public transitions consume
energy ; there is one such transition for each possible energy consumption value.

Thus the lack of energy (i.e., no token in the place) blocks energy consuming op-
erations in the node (sampling, access to the network, etc.). When all nodes are out of
energy, the system cannot execute anymore. This energy consumption model is used



38 Y. Ben Maissa et al.

when computing lifetime of the WSN. If study of steady state behavior of the system
is desired, we can substitute an infinite energy model for the nodes, where no energy
is ever consumed. Because the formal specification is component-oriented, other com-
ponents and synchronizations of the model are not impacted. This allows analysis of
qualitative behaviors of the WSN, without paying in the formal model the cost (in terms
of state space explosion) due to tracking energy of nodes.

Pattern for a Node. Figure 10 informally presents the ITS composition modeling a
node. Every white box represents an instance of a time Petri net, built according to
the patterns presented above. The model is in fact hierarchical: the application (gray
background) is further decomposed into the dispatcher and the queries. As in Fig. 7,
local synchronizations are represented as black squares, while exported synchroniza-
tions allowing interaction with the other nodes of the WSN are represented as white
squares. To help readability, we only draw one synchronization to represent a set of
similar synchronizations (the relevant synchronized labels are indicated on the left).

For example, ECGSensor can sample one of Vi 1 ≤ i ≤ n values from the envi-
ronment. Each sample Vi synchronizes the corresponding sendViToSens and recvVi-
FromEnv transitions from Fig. 9.

The two queries addressed by this node are synchronized to the dispatcher, the in-
volved sensors, and the network. Finally, all energy-consuming operations are synchro-
nized to the energy pattern.

Communication services are the resulting interface of this composite ITS. All nodes
have the same interface.

Pattern for Routing. We first compute the routing table of each node, based on the de-
ployment model (position, distance, range, etc.) and the specification of the next-hops.
Each routing table is then encoded as a Petri net, with one place for each other node
in the WSN. Only one of these places is initially marked (or more if routing between
nodes can vary), reflecting the routing topology (nextHop for outgoing messages).

We then build a set of synchronizations to relate a source node, a destination node
and the routing table for the source node. Structurally, this allows for arbitrary com-
munications between nodes but only the synchronizations enabled by the routing table
are actually activated (token in the corresponding place). This transformation pattern
also allows to support updates to the routing table, without altering the nodes or the
synchronizations between them.

b

n3

n2
n1

(a) structure of the network

enable n3 enable n2

n1 n2 bn3

enable b

n1 routing table

enable n3 enable n2 enable b

ε ε ε

sendResultQk receiveResultQkreceiveResultQk receiveResultQk

(b) n1 routing mechanism

Fig. 11. Routing in the BAN, its structure shows both communication range and routing



Modeling and Analyzing WSNs with VeriSensor 39

Broadcast is implemented similarly, but all neighboring nodes (e.g., those within
range) are synchronized. A broadcast is an atomic operation, thus avoiding any inter-
leaving effect (source of combinatorial explosion in model checking). This construction
also allows a realistic energy consumption: any node receiving a broadcast decreases
energy, whether it will handle the query or not.

Figure 11a represents a network topology where ni and b represent nodes, circles
show communication range and arrows the routing graph. Figure 11b shows a Petri net
modeling the routing table for n1 (the only activated link is between n1 and n2 as the
routing shows). Each sendResultQk transition (for query Qk) is synchronized with both
an enable ni transition and a receiveResultQk transition from node ni. When n1 sends
the result , only enable n2 transition will be enabled, which makes n2 the only node to
receive the result. Indeed, n2 is n1’s next hop.

Abstractions. The resulting formal model has good modularity, allowing partial reuse
in various scenarios. However, its size grows rapidly when data with a large number of
potential values are used. Indeed, each possible value creates one or more synchroniza-
tion labels throughout the model which is a source of complexity.

A first abstraction consists in using an id (e.g., AskHeartBeat) per query of the Veri-
Sensor specification and encode the associated behavior directly in the node (see the
description of the application pattern above).

The underlying verification techniques require discrete sets of values; continuous
physical quantities must be discretized, as described when presenting the local envi-
ronment. For this purpose, it is only necessary to retain one symbolic value per range
producing the same behavior of the system (i.e., equivalence class). For instance, the be-
havior of a conditional query depends on sampled values that can be deduced from their
thresholds. In the BAN system, for the conditional query AskHeartBeat (see Fig. 4),
the domain of HeartBeat can be reduced to two values: strictly below 40, and over 40.

Thus, starting from the assumption that all domain values are symmetric, symbolic
domains can be computed through structural analysis of the VeriSensor specification.
All constraints are combined to produce a minimal set of values for each domain. Such
techniques are derived from automatic symmetry detection [42] or symbolic trajectory
evaluation [1]. The complexity of these techniques is low, since it relies on the size of
the specification instead of the size of the state space.

This technique is very efficient for verifying properties such as worst case lifetime
because the content of messages can mostly be abstracted away. When properties ob-
serve specific values of the physical quantities in the system, the symbolic domains
must be further refined to consider the thresholds located in the property.

Deriving such abstractions automatically is important because: i) they are then cor-
rect by construction ii) using abstractions does not imply any end-user knowledge of
the underlying techniques.

About the Formal Description of the BAN System. The resulting model for the BAN
case study is composed of 19 ITS types of which 11 are elementary. All together, the en-
closed Petri nets contain 84 places and 89 transitions of which 44 are time constrained.
Thus, each state is a vector of 128 variables (places marking + transition clocks).



40 Y. Ben Maissa et al.

6 Analyzing the Case Study

This section discusses the analysis we performed on our case study. On the resulting
ITS model, we evaluated the properties identified in section 4.1. All experiments were
run on a high-end Xeon 64 bits at 2.6 GHz with 128 GB of RAM, on a single processor.

Prototype Implementation of a VeriSensor Formal Analyzer. Our publicly available
prototype tool2 is implemented in Java. It offers an Xtext3-based front-end in Eclipse
(syntax highlighting, context-sensitive content assist, etc.). A transformation engine
based on the VeriSensor EMF metamodel builds the ITS representation according to
the rules defined in the previous section. Then, the produced model is analyzed using
ITS-Tools [41]. Translation rules are written in Java (8260 LOC).

Scalability Analysis. The model of the BAN case study is associated with an “un-
constrained” environment overapproximating all possible situations the BAN can face,
thus allowing the analysis of worst and best cases scenarios in the system. Figure 12
shows the evolution, as initial energy increases, of the number of states in the sys-
tem, the time to compute and the memory required to build it. As the charts show,
the state space grows fast up to about 4× 1013 states. Its representation in memory,
as well as the computation time, behaves in a much more favorable way (charts 12b

1E+13

2E+13

3E+13

4E+13

 50
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000

S
ta

te
 S

pa
ce

 S
iz

e

Initial energy (energy units)

(a) Number of states

 0

 10

 20

 30
 35

 50
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000

M
em

or
y 

(G
B

)

Initial energy (energy units)

(b) Memory used

 0

 5

 10

 15

 20

 50
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000

T
im

e 
(h

ou
rs

)

Initial energy (energy units)

(c) Computation time

 500

 1000

 1500

 2000

 50
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000

N
um

be
r 

of
 s

ta
te

/b
yt

e

Initial energy (energy units)

(d) Number of stored states per byte

Fig. 12. Evolution of the state space complexity when the initial energy allocated for each node
increases (activity sensor period is 3 and 1 time units for activity1 and activity2 respectively. ECG
sensor period is one time unit and Tilt sensor period is 2 time units. Message emission for every
node takes 5 energy units, and message reception require 4 time units. Sensing cost 2 energy units
for all sensors and processing data require 3 energy units for all nodes.

2 http://lip6.fr/Yann.Ben-Maissa (subversion repository)
3 http://www.eclipse.org/Xtext/: Xtext is a framework for development of programming

languages and domain specific languages.

http://lip6.fr/Yann.Ben-Maissa
http://www.eclipse.org/Xtext/


Modeling and Analyzing WSNs with VeriSensor 41

and 12c), thus validating the choice of ITS, based on decision diagrams, that already
proved their efficiency for such systems [43].

Charts 12b and 12c show the evolution of memory and time required for state space
construction according to the initial energy allocated to each node. We can scale this
energy up to 1000 units (34.5 GBytes and 19 hours). From an industrial point of view,
it becomes feasible to process larger values on current high-performance servers. Useful
results from the designer point of view have been reported in [33] with smaller values.
Our techniques provides more data on steady state behavior for the BAN study.

Figure 12d shows that we represent up to 1850 states per byte. As common with sym-
bolic techniques, some variation in performances are observed, which are not directly
related to the growth of the state space size.

This experiment shows a good scalability potential for the overall approach and, in
particular, the feasibility of tracking “rare events” (which is difficult with simulation
only) by means of reachability properties (e.g., p2 in section 4.1). However, if a Yes/No
answer for reachability properties is reported within a reasonable time, we measured
that computation of a counterexample needs significantly more time and memory.

Which Node Limits the System Lifetime (p1). Exhibiting the energy consumption of
the WSN in the worst case scenario allows the end-user to evaluate a lower bound of the
system lifetime. Figure 13a shows the worst case lifetime evolution of the BAN nodes.

To compute this chart, we associate the BAN model with an unconstrained environ-
ment allowing any action. This environment consists in a set of transitions representing
all the possible values of all physical quantities, where all transitions are always fireable.
Therefore, when a sensor samples the environment, it can collect any possible value.

We then build a superset of all the possible behaviors from which we can obtain a
worst case scenario before computing Send, the set of states where at least one node cannot
communicate anymore (its energy is below Min, the minimum energy to send a message).
The lifetime is obtained by counting the minimum occurrences of the elapse transition
located in the shortest transition sequence leading from the initial state to one state of
Send .

The objective is not to provide quantitative information since the initial number of
energy units allocated to nodes is not sufficient (Figure 13a shows a system duration in
hours range4, while, at least, weeks would be needed). However, a designer can get an

 50

 100

 150

 200

 50
 100

 200
 300

 400
 500

 600
 700

 800

W
or

st
 c

as
e 

lif
et

im
e

(t
im

e 
un

its
)

Initial energy (energy units)

BAN node
ECGTilt
Activity1
Activity2

(a) BAN nodes worst case lifetime

 0

 50

 100

 150

 200

 250

 0  100
 200

 300
 400

 500
 600

 700
 800

W
or

st
 c

as
e 

lif
et

im
e

(t
im

e 
un

its
)

Initial energy (energy units)

Configuration
config 1
config 2

(b) Compared lifetime of activity1

Fig. 13. Lifetime analysis on the BAN case study

4 We did not set an exact duration for time units but, considering our abstractions, it should be
minutes.



42 Y. Ben Maissa et al.

idea of the most critical component (i.e., the one that fails first) according to various
scenarios. This result is complementary of simulation that can tackle longer durations
but not in an exhaustive way. Our exhaustive analysis exhibits the worst scenario the
system can have. Computation of minimal traces is more costly than reachability, but
still possible for large values: for Activity1 with 500 energy units, it takes less than 4
hours to compute the minimal trace (447 transitions) with a memory of 6.7 GB.

Figure 13a shows that ECGTilt and Activity2 are the limiting nodes in the system (i.e.,
the ones that lack energy first). ECGTilt early death is problematic because it monitors
a critical vital sign (heart beat). The designer may increase its lifetime by providing it
a bigger battery (reducing the heart beat sensing period is not an option here because
we can miss quick heart beat abnormalities). The lower lifetime of Activity2 is less
problematic because it monitors a less critical parameter and is redundant with Activity1.

We show later how two alternative designs for Activity1 can be explored.

Detecting Undesirable Situations such as Deadlocks (p2). Before evaluating lifetime
properties on the WSN model, we used an infinite energy model and removed counters
(e.g., number of messages received by the base station) and checked that the state space
is finite (4.03 ×107 states, computed in 2.8 seconds with 17.1 MB). This model allows
to study steady state behavior (i.e., the infinite traces of the system). Tracking energy
consumption to compute lifetimes creates a more complex model, but is not suitable for
all types of properties. A typical and interesting reachability property deals with unex-
pected deadlocks in the system (expected ones being those where all nodes exhausted
their energy). This can reveal real deadlocks in the system, or allow the identification
of crucial nodes whose activity is required to keep the system working. Such a situation
can be detected using the following reachability formula, computed with no additional
cost with respect to state space generation:

dead ∧
∧

i∈Nodes

(energy(i) > Mini) (1)

Where Mini corresponds to the minimum energy required by node i to send a mes-
sage and dead is the boolean meaning that the current state of the state space has no
successor.

Formula 1 was evaluated on the BAN with an initial configuration of 300 energy
units. Our prototype tool computed in 44 minutes and 1.3 GB of memory that all dead-
locks are corresponding to a lack of energy in the system.

Checking Behavior for Existing Situations (p3). Such properties usually require
causal formulas expressed by means of temporal logic.

For the BAN system, a typical property is to ensure that the system generates neither
a false negative (i.e., a heart attack is not detected) nor a false positive (i.e., a heart
attack is detected by mistake in the system). The CTL formula 2 detects the presence of
a false negative and the CTL formula 3 the existence of a false positive.

AG(occursheart attack =⇒ AF(detectedheart attack)) (2)



Modeling and Analyzing WSNs with VeriSensor 43

Parameter value in config1 value in config2
sensing frequency 3 TU 4 TU
acquisition time 0 TU 1 TU

acquisition energy 2 EU 3 EU
processing time 0 TU 1 TU

processing energy 3 EU 4 EU
emission time 1 TU 2 TU

emission energy 5 EU 6 EU
reception time 1 TU 2 TU

reception energy 4 EU 5 EU

Fig. 14. Data for the two studied variants in time units (TU) or energy units (EU)

AG(¬occursheart attack =⇒ AF(¬detectedheart attack)) (3)

In these formula the AG and AF operators respectively mean “in all cases” and “in all
futures”. occurse is either true or false for a given environment e. In the BAN system, a
given environment corresponds to a patient behavior which is annotated by the doctors
as being sick or healthy. detectede is a state property. In our case (e = heart attack), it
involves the PDA and corresponds to the detection of low activity (gathered from the
activity sensors) and bradycardia detected by ECGTilt.

Properties 2 and 3 are verified for several environments representing different kinds
of patients. Such a computation is less complex in time and memory than the worst case
lifetime analysis, since the system is more constrained. With an initial amount of 300
initial energy units per node, formula 2 was computed in 38 minutes with 2.4 GB and
formula 3 in 84 minutes with 2.6 GB.

Comparing Alternative Solutions (p4). The choice of a given component may have
an impact on WSN lifetime or on some important characteristics of the system. Veri-
Sensor can be useful to compare two possible solutions. To do so, the designer may
either change the characteristics of the nodes to be replaced (if only those change) or
replace the node by an instance of another node class.

For the BAN case study, let us evaluate the impact of two configurations for Activity1
on the system lifetime (e.g., when at least one node cannot communicate anymore). All
previous measures where done using the config1 presented in Fig. 14. We choose an-
other hardware for Activity1, config2, which characteristics are also provided in Fig. 14.
Since these configurations are close one to another, it is difficult to predict which one
will provide a better lifetime.

Comparison of the two configurations are displayed in the chart of Fig. 13b. It shows
that the alternate solution increases the lifetime of the system.

7 Conclusion

This paper presented VeriSensor, a domain specific modeling language for wireless
sensor networks (WSNs), designed to be used by WSN experts and offering support for
modeling and formal verification. The objective is to evaluate both quantitative results



44 Y. Ben Maissa et al.

(e.g., estimation of the system’s lifetime or average consumption per time unit) as well
as qualitative results (e.g., detection of unexpected situations such as deadlocks).

VeriSensor enables the modeling of a WSN by providing high-level concepts that
support the main use cases of the domain. Thus, specifying WSNs consists in defining
the node characteristics, how nodes are deployed and the physical environment in which
the system runs. The notion of environment allows to evaluate the system in dedicated
conditions and scenarios. A generic environment is provided: the “unconstrained envi-
ronment” that allows any action in the system. It is useful to analyze the WSN in the
worst possible conditions.

Instantiable Transition Systems (ITS) and time Petri nets are the underlying formal
techniques used for verification. They show encouraging scalability capabilities, thus
enabling the analysis of industrial systems with more significant parameters than in the
state of the art.

The main advantage of the overall approach is to make formal specification and
verification more accessible to the end-users (i.e., the designers of WSNs). From a
methodological point of view, model-driven techniques ease the use of formal models
by designers. This eases the building of complex ITS models with low-level formal
notations and potentially reduces the risks of modeling errors.

Even if we focus in this paper on the verification aspects, our approach does not
exclude simulation which is a useful complementary approach. In fact, since VeriSensor
has a formal semantic, it is executable and thus, can be simulated. The definition by
the user of (several) environment and deployment models allows to specify specific
scenarios under study.

Future Work. Experimentation shows that analysis can be performed on a VeriSensor
specification. However, additional property-specific semantic preserving optimizations
of the formal model could be performed to scale to larger system descriptions. Some
ordering heuristics exploiting the structure of the generated formal models could also be
proposed, since the underlying decision diagram based verification technology is very
sensitive to this point. Finally, code generation of VeriSensor specifications could be
supported by bridging it with existing tools dedicated to this purpose such as MEDWSA
or Baobab.

References

1. Adams, S., Björk, M., Melham, T.F., Seger, C.-J.H.: Automatic abstraction in symbolic tra-
jectory evaluation. In: Formal Methods in Computer-Aided Design, pp. 127–135. IEEE Com-
puter Society (2007)

2. Akbal-Delibas, B., Boonma, P., Suzuki, J.: Extensible and precise modeling for wireless
sensor networks. In: Yang, J., Ginige, A., Mayr, H.C., Kutsche, R.-D. (eds.) UNISCON.
LNBIP, vol. 20, pp. 551–562. Springer, Heidelberg (2009)

3. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine 40(8), 102–114 (2002)

4. Akyildiz, I., Vuran, M.C.: Wireless Sensor Networks. John Wiley & Sons, Inc. (2010)
5. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP

1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)



Modeling and Analyzing WSNs with VeriSensor 45

6. Baldwin, P., Kohli, S., Lee, E.A., Liu, X., Zhao, Y., Brooks, C.H., Krishnan, N.V., Neuendorf-
fer, S., Zhong, C., Zhou, R.: Visualsense: Visual modeling for wireless and sensor network
systems. Tech. rep., U.C. Berkeley (2005)

7. Ben Maïssa, Y., Kordon, F., Mouline, S., Thierry-Mieg, Y.: Modeling and Analyzing Wireless
Sensor Networks with VeriSensor. In: Petri Net and Software Engineering (PNSE 2012),
vol. 851, pp. 60–76. CEUR, Hamburg (2012)

8. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a Tool Suite for
Automatic Verification of Real–Time Systems. In: Alur, R., Sontag, E.D., Henzinger, T.A.
(eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)

9. Boulis, A.: Castalia: revealing pitfalls in designing distributed algorithms in wsn. In: 5th In-
ternational Conference on Embedded Networked Sensor Systems, pp. 407–408. ACM (2007)

10. Boulis, A., Fehnker, A., Fruth, M., McIver, A.: Cavi–simulation and model checking for
wireless sensor networks. In: Fifth International Conference on Quantitative Evaluation of
Systems, QEST 2008, pp. 37–38. IEEE (2008)

11. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A model-
checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp.
546–550. Springer, Heidelberg (1998)

12. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: Tools and Applications: the IF toolset.
In: 4th Int. School on Formal Methods for the Design of Computer, Communication and
Software Systems: Real Time, SFM-04:RT (2004)

13. Bucur, D., Kwiatkowska, M.Z.: Software verification for tinyos. In: 9th ACM/IEEE Interna-
tional Conference on Information Processing in Sensor Networks, pp. 400–401. ACM (2010)

14. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. In: 5th Annual Symposium on Logic in Computer Science,
pp. 1–33. IEEE Press (1990)

15. Ciardo, G., Lüttgen, G., Miner, A.S.: Exploiting interleaving semantics in symbolic state-
space generation. Formal Methods in System Design 31(1), 63–100 (2007)

16. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

17. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ansi-c programs. Tools and Algo-
rithms for the Construction and Analysis of Systems, 168–176 (2004)

18. Ergen, S.C., Ergen, M., Koo, T.J.: Lifetime analysis of a sensor network with hybrid automata
modelling. In: WSNA, pp. 98–104 (2002)

19. Ghosh, A., Pereira, L., Yan, T.: Modeling wireless sensor network architectures using aadl.
In: 4th European Congress on Embedded Real Time Software, ERTS (2008)

20. Gnawali, O., Welsh, M.: Sensor networks architectures and protocols. In: Emerging Wire-
less Technologies and the Future Mobile Internet, pp. 125–153. Cambridge University Press
(2011)

21. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compositional ver-
ification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 420–432.
Springer, Heidelberg (2007)

22. Hanna, Y., Rajan, H.: Slede: Framework for automatic verification of sensor network secu-
rity protocol implementations. In: 31st International Conference on Software Engineering –
Companion, pp. 427–428. IEEE (2009)

23. Henzinger, T.A., Ho, P.H., Toi, H.W.: HYTECH: A Model Checker for Hybrid Systems. Int.
Journal on Software Tools for Technology Transfer 1(1-2), 110–122 (1997)

24. Holzmann, G.: Spin model checker, the: primer and reference manual. Addison-Wesley Pro-
fessional (2003)



46 Y. Ben Maissa et al.

25. Kordon, F., Linard, A., Buchs, D., Colange, M., Evangelista, S., Lampka, K., Lohmann, N.,
Paviot-Adet, E., Thierry-Mieg, Y., Wimmel, H.: Report on the Model Checking Contest at
Petri Nets 2011. In: Jensen, K., van der Aalst, W.M., Ajmone Marsan, M., Franceschinis,
G., Kleijn, J., Kristensen, L.M. (eds.) ToPNoC VI. LNCS, vol. 7400, pp. 169–196. Springer,
Heidelberg (2012)

26. Kordon, F., Linard, A., Buchs, D., Colange, M., Evangelista, S., Fronc, L., Hillah, L.M.,
Lohmann, N., Paviot-Adet, E., Pommereau, F., Rohr, C., Thierry-Mieg, Y., Wimmel, H.,
Wolf, K.: Raw Report on the Model Checking Contest at Petri Nets, Tech. rep (2012)

27. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic symbolic model checker.
Computer Performance Evaluation: Modelling Techniques and Tools, 113–140 (2002)

28. Lee, E.A., John, I.: Overview of the ptolemy project. Electronics Research Laboratory, Col-
lege of Engineering, University of California (1999)

29. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: Accurate and scalable simulation of en-
tire tinyos applications. In: 1st International Conference on Embedded Networked Sensor
Systems, pp. 126–137. ACM (2003)

30. Li, P., Regehr, J.: T-check: bug finding for sensor networks. In: 9th ACM/IEEE Int. Conf. on
Information Processing in Sensor Networks, pp. 174–185. ACM (2010)

31. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor net-
works for habitat monitoring. In: 1st ACM Int. Workshop on Wireless Sensor Networks and
Applications (WSNA), pp. 88–97. ACM (2002)

32. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software ar-
chitecture description languages. IEEE Trans. Softw. Eng. 26, 70–93 (2000)

33. Mounier, L., Samper, L., Znaidi, W.: Worst-case lifetime computation of a wireless sensor
network by model-checking. In: 4th ACM Workshop on Performance Evaluation of Wireless
ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN), pp. 1–8. ACM (2007)

34. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4),
541–580 (1989)

35. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. Higher-Order
and Symbolic Computation 20(1-2), 161–196 (2007)

36. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling and analysis of the OGDC wireless sensor
network algorithm in real-time maude. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS
2007. LNCS, vol. 4468, pp. 122–140. Springer, Heidelberg (2007)

37. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and model
checking of wireless sensor network algorithms in real-time maude. Theor. Comput. Sci. 410,
254–280 (2009)

38. Otto, C., Milenković, A., Sanders, C., Jovanov, E.: System architecture of a wireless body
area sensor network for ubiquitous health monitoring. J. Mob. Multimed. 1, 307–326 (2005)

39. Sadilek, D.A.: Domain-specific languages for wireless sensor networks. In: Modellierung,
pp. 237–241 (2008)

40. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under fairness. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidel-
berg (2009)

41. Thierry-Mieg, Y., Bérard, B., Kordon, F., Lime, D., Roux, O.H.: Compositional Analysis of
Discrete Time Petri nets. In: 1st Workshop on Petri Nets Compositions (CompoNet 2011),
vol. 726, pp. 17–31. CEUR (2011)

42. Thierry-Mieg, Y., Dutheillet, C., Mounier, I.: Automatic symmetry detection in well-formed
nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 82–101.
Springer, Heidelberg (2003)

43. Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical Set Decision Dia-
grams and Regular Models. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 1–15. Springer, Heidelberg (2009)



Modeling and Analyzing WSNs with VeriSensor 47

44. Thierry-Mieg, Y., Hillah, L.-M.: UML behavioral consistency checking using Instantiable
Petri nets. ISSE 4(3), 293–300 (2008)

45. Tschirner, S., Xuedong, L., Yi, W.: Model-based validation of QoS properties of biomedical
sensor networks. In: 8th Int. Conf. on Embedded Software, pp. 69–78. ACM (2008)

46. Vicente-Chicote, C., Losilla, F., Álvarez, B., Iborra, A., Sánchez, P.: Applying mde to the
development of flexible and reusable wireless sensor networks. Int. J. Cooperative Inf.
Syst. 16(3/4), 393–412 (2007)

47. Wada, H., Boonma, P., Suzuki, J., Oba, K.: Modeling and executing adaptive sensor network
applications with the Matilda UML virtual machine. In: 11th IASTED Int. Conf. on Software
Engineering and Applications (SEA), pp. 216–225. ACTA Press (2007)

48. Watteyne, T., Augé-Blum, I., Ubéda, S.: Dual-mode real-time mac protocol for wireless sen-
sor networks: a validation/simulation approach. In: 1st Int. Conf. on Integrated Internet ad
hoc and Sensor Networks (InterSense), ACM (2006)

49. Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., Lees, J.: De-
ploying a wireless sensor network on an active volcano. IEEE Internet Computing 10(2),
18–25 (2006)

50. Zheng, M., Sun, J., Liu, Y., Dong, J.S., Gu, Y.: Towards a model checker for NesC and
wireless sensor networks. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991,
pp. 372–387. Springer, Heidelberg (2011)



Local State Refinement and Composition
of Elementary Net Systems:

An Approach Based on Morphisms

Luca Bernardinello1, Elisabetta Mangioni1,2, and Lucia Pomello1

1 Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli studi di Milano - Bicocca,

Viale Sarca, 336 - Edificio U14 - I-20126 Milano, Italia
2 Istituto per la Dinamica dei Processi Ambientali,
Consiglio Nazionale delle Ricerche (CNR-IDPA),

Piazza della Scienza, 1 - Edificio U1 - I-20126 Milano, Italia

Abstract. In the design of concurrent and distributed systems, modu-
larity and refinement are basic conceptual tools. We propose a notion of
refinement/abstraction of local states for a basic class of Petri Nets, asso-
ciated with a class of morphisms. The morphisms, from a refined system
to an abstract one, associate suitable subnets to abstract local states.
We define an operation of composition ruled by morphisms of that class.
The main results concern behavioural properties preserved and reflected
by the morphisms. In particular, we focus on the conditions under which
reachable markings are preserved or reflected, and the conditions under
which a morphism induces a weak bisimulation between net systems.

Keywords: Petri Nets, morphisms, local state refinement, composition.

1 Introduction

Refinement and composition of modules are among the basic conceptual tools of
a system designer. Several formal approaches are available. One of the main chal-
lenges consists in developing languages and methods allowing to derive properties
of the refined system from properties of the abstract one, as well as properties
of a composed system from properties of its components.

We propose an approach based on Petri nets, where the refinement of a model
is supported by so-called α-morphisms on the class of Elementary Net Systems,
in particular SMD-EN Systems. We focus on the refinement of local states. Given
a net N2, interpreted as an abstract description of a system, the local states of N2

are replaced by subnets, giving a new net, say N1, so that there is an α-morphism
from N1 to N2.

Moreover, following the same approach proposed in [1], [16] and in [5], on
the basis of α-morphisms, it is possible to compose two different refinements of
an abstract net system, called interface, yielding a system which comprises the
details of both operands, while respecting the same abstract view. Even if this

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 48–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Local State Refinement and Composition of Elementary Net Systems 49

operation is not a limit in the category of nets here considered, the composed
system results to be related to both the components and the interface by means
of α-morphisms, and the resulting diagram is commutative.

Our approach is motivated by the attempt to define a refinement operation
preserving behavioural properties on the basis of structural and only local be-
havioural constraints. The additional restrictions, with respect to general mor-
phisms, aim, on one hand, to capture typical features of refinements, and on the
other hand to ensure that some behavioural properties of the abstract model
still hold in the refined model.

Using morphisms to formalize the relation between a refined net and a more
abstract one is not new. Most approaches, in Petri net theory, are based on
transition refinement and, less frequently, on place refinement; for a survey, see
[6]. Another survey paper, [15], describes a set of techniques which allow to refine
transitions in Place/transition nets, so that the relation between the abstract net
and its refinement is given by a morphism. There, the emphasis is on refinement
rules that preserve specific behavioural properties, within the wider context of
general transformation rules on nets.

A very general class of morphisms, interpreted as abstraction of system re-
quirements, with less focus on strict preservation of behavioural properties, is
defined in [7]. An attempt to define abstractions based on morphisms which pre-
serve both structural and behavioural properties is described in [9] for Coloured
Petri Nets. These morphisms are consistent with an operation of composition of
nets.

The approach we present in this paper is similar in spirit to the refinement
operation proposed in [14]. In that approach, refinement is defined on transition
systems, but is strictly related to refinement of local states in nets, through the
notion of region.

α-morphisms can be seen as a special case of the morphisms introduced in
[20] and in [13], as it is formally shown in [4] and in [10]. Other morphisms
introduced in the literature on the same line of [20] are the ones given in [19]
and [2].

The use of products in a suitable category of nets as a way to model com-
position by synchronization has been studied by several authors, starting from
[20] and in [11]. A variation on this theme, more similar to ours, proposed in [8],
applies to safe nets and is built on the notion of pullback.

In the rest of this section, the main ideas of refinement and related morphisms
are explained by means of a simple example. In Section 2 we collect preliminary
definitions related to Petri nets which are used in the rest of the paper. Section 3
contains the definition of α-morphism; Section 4 contains the main results of
the paper: in particular, we show that reachable markings are preserved, we
characterize the local conditions under which reachable markings are reflected,
i.e.: under which the inverse image of reachable markings are reachable markings,
and such that morphisms induce a weak bisimulation between the related net
systems. In Section 5 we present the composition of SMD-EN Systems guided by
α-morphisms and show under which structural and local behavioural properties



50 L. Bernardinello, E. Mangioni, and L. Pomello

the composed net is weakly bisimilar to its components. Finally, in Section 6 we
discuss some critical issues in our approach and suggest possible developments.

1.1 An Example

The example presented in this section aims at explaining, informally, how α-
morphisms support refinement of local states in Elementary Net Systems. The
morphism maps nodes of a refined system, N1, on a more abstract one, N2.

The Elementary Net System shown in Fig. 1 represents an abstract view of
the interaction between a student and an University secretariat office. A student
may ask the office either to emit an English proficiency certificate or to admit
her to the final exam. Note that, at this level of abstraction, the model does not

Fig. 1. Abstract view (N2)

distinguish a positive answer from a negative one. Suppose that the local state
inspect_request corresponds to the actual inspection of the request by a Faculty
board, which delivers the decision to the secretariat.

We might want to refine formal_check, in order to distinguish two cases:
positive answer and negative answer.

The actual decision has been taken in state inspect_request, so the refine-
ment of formal_check requires splitting the event Faculty_decision, thus reflect-
ing the choice between the two answers. The result of the refinement is shown in
Fig. 2, where the subnet refining formal_check is enclosed in a shaded oval. Note
that the operation has required also splitting the outgoing transitions, in order
to reflect the alternative outcomes. As suggested by the labels, the morphism
ϕ : N1 → N2 maps the elements enclosed in the shaded oval to the condition for-
mal_check, the events Faculty_decision_ok and Faculty_decision_ko to the event
Faculty_decision, and the events deliver_decision_receipt, deliver_decision_ doc-
uments_ko and deliver_decision_career_ko to the event deliver_decision,
respectively.

2 Preliminary Definitions

In this section, we recall the basic definitions of net theory, in particular Ele-
mentary Net Systems [18], and bisimulation [12].



Local State Refinement and Composition of Elementary Net Systems 51

Fig. 2. Refined model (N1)

2.1 Petri Nets

In net theory, models of distributed systems are based on objects called nets
which specify local states, local transitions and the relations among them. A net
is a triple N = (B,E, F ), where B is a set of conditions or local states, E is a
set of events or transitions such that B ∩ E = ∅ and F ⊆ (B × E) ∪ (E ×B) is
the flow relation.

We adopt the usual graphical notation: conditions are represented by circles,
events by boxes and the flow relation by arcs. The set of elements of a net will
be denoted by X = B ∪ E; we allow nets with isolated elements.

The preset of an element x ∈ X is •x = {y ∈ X |(y, x) ∈ F}; the postset of x
is x• = {y ∈ X |(x, y) ∈ F}; the neighbourhood of x is given by •x• = •x ∪ x•.
These notations are extended to subsets of elements in the usual way.

For any net N we denote the in-elements of N by ◦N = {x ∈ X : •x = ∅}
and the out-elements of N by N◦ = {x ∈ X : x• = ∅}.

A net is simple if for all x, y ∈ X , if •x = •y and x• = y•, then x = y.
A net N ′ = (B′, E′, F ′) is a subnet of N = (B,E, F ) if B′ ⊆ B,E′ ⊆ E, and

F ′ = F ∩ ((B′×E′)∪ (E′×B′)). Given a subset of elements A ⊆ X , we say that
N(A) is the subnet of N identified by A if N(A) = (B ∩A,E ∩A,F ∩ (A×A)).
Given a subset of conditions A ⊆ B, we say that N(A) is the subnet of N
generated by A if N(A) = (A, •A•, F ∩ ({A ∪ {•A•}} × {A ∪ {•A•}})).

A State Machine is a connected net such that each event e has exactly one
input condition and exactly one output condition: ∀e ∈ E, |•e| = |e•| = 1.

Elementary Net (EN) Systems are a basic system model in net theory. An
Elementary Net System is a quadruple N = (B,E, F,m0), where (B,E, F ) is a
net such that B and E are finite sets, self-loops are not allowed, isolated elements
are not allowed, and the initial marking is m0 ⊆ B.

The elements in the initial marking are interpreted as the conditions which
are true in the initial state.



52 L. Bernardinello, E. Mangioni, and L. Pomello

A subnet of an EN System N identified by a subset of conditions A and all its
pre and post events, N(A∪ •A•), is a Sequential Component of N if N(A∪ •A•)
is a State Machine and if it has only one token in the initial marking.

An EN System is covered by Sequential Components if every condition of the
net belongs to at least a Sequential Component. In this case we say that the
system is State Machine Decomposable (SMD).

The behaviour of EN Systems is defined through the firing rule, which specifies
when an event can occur, and how event occurrences modify the holding of
conditions, i.e. the state of the system.

Let N = (B,E, F,m0) be an EN System, e ∈ E and m ⊆ B. The event e is
enabled at m, denoted m [e〉, if •e ⊆ m and e• ∩m = ∅; the occurrence of e at
m leads from m to m′, denoted m [e〉m′, iff m′ = (m \ •e) ∪ e•.

Let ε denote the empty word in E∗. The firing rule is extended to sequences
of events by setting m [ε〉m and ∀e ∈ E, ∀w ∈ E∗,m [ew〉m′ = m [e〉m′′[w〉m′′;
w is called a firing sequence.

A subset m ⊆ B is a reachable marking of N if there exists a w ∈ E∗ such
that m0 [w〉m. The set of all reachable markings of N is denoted by [m0〉.

An EN System is contact-free if ∀e ∈ E, ∀m ∈ [m0〉: •e ⊆ m implies e•∩m = ∅.
An EN System covered by Sequential Components is contact-free [18]. An event
is called dead at a marking m if it is not enabled at any marking reachable from
m. A reachable marking m is called dead if no event is enabled at m. An EN
System is deadlock-free if no reachable marking is dead.

2.2 Unfoldings

The semantics of an EN System can be given as its unfolding. The unfolding is
an acyclic net, possibly infinite, which records the occurrences of its elements in
all possible executions.

Definition 1. Let N = (B,E, F ) be a net, and let x, y ∈ X. We say that x and
y are in conflict, denoted by x #N y, if there exist two distinct events ex, ey ∈ E
such that exF ∗x, eyF ∗y, and •ex ∩ •ey �= ∅.
Definition 2. An occurrence net is a net N = (B,E, F ) satisfying:

1. if e1, e2 ∈ E, e1
• ∩ e2

• �= ∅ then e1 = e2;
2. F ∗ is a partial order,
3. for any x ∈ X, {y : yF ∗x} is finite;
4. #N is irreflexive,
5. the minimal elements with respect to F ∗ are conditions.

A branching process of N is an occurrence net whose elements can be mapped
to the elements of N .

Definition 3. Let N = (B,E, F,m0) be an EN System, and Σ = (P, T,G) be
an occurrence net. Let π : P ∪ T → B ∪ E be a map.

The pair (Σ, π) is a branching process of N if:



Local State Refinement and Composition of Elementary Net Systems 53

– π(P ) ⊆ B, π(T ) ⊆ E;
– π restricted to the minimal elements of Σ is a bijection on m0;
– for each t ∈ T , π restricted to •t is injective and π restricted to t• is injective;
– for each t ∈ T , π(•t) = •(π(t)) and π(t•) = (•π(t)).

The unfolding of an EN System N , denoted by Unf (N), is the maximal branch-
ing process of N , namely the unique, up to isomorphism, branching process such
that any other branching process of N is isomorphic to a subnet of Unf (N). The
map associated to the unfolding will be denoted u and called folding.

2.3 Bisimulation

Bisimulation relations have been introduced as equivalence notions with respect
to event observation [12]. We define the observability of events of a system by
using a labelling function which associates the same label to different events,
when viewed as equal by an observer, and the label τ to unobservable events.

Definition 4. Let N = (B,E, F,m0) be an EN System, l : E → L ∪ {τ} be
a labelling function where L is the alphabet of observable actions and τ �∈ L
the unobservable action. Let ε denote the empty word both of E∗ and L∗. The
function l is extended to a homomorphism l : E∗ → L∗ in the following way:

l(ε) = ε

∀e ∈ E, ∀w ∈ E∗, l(ew) =

{
l(e)l(w) if l(e) �= τ

l(w) if l(e) = τ

The pair (N, l) is called Labelled EN System.
Let m,m′ ∈ [m0〉 and a ∈ L ∪ {ε}; then:

– a is enabled at m, denoted m (a〉, iff ∃w ∈ E∗ : l(w) = a and m [w〉;
– if a is enabled at m, then the occurrence of a can lead from m to m′, denoted

m (a〉m′, iff ∃w ∈ E∗ : l(w) = a and m [w〉m′.

We define weak bisimulation as a relation between reachable markings of La-
belled EN Systems [17].

Definition 5. Let Ni = (Bi, Ei, Fi,m
i
0) be an EN System for i = 1, 2, with

the labelling function li : Ei → L ∪ {τ}. Then (N1, l1) and (N2, l2) are weakly
bisimilar, denoted (N1, l1) ≈ (N2, l2), iff ∃r ⊆ [

m1
0

〉× [
m2

0

〉
such that:

– (m1
0,m

2
0) ∈ r;

– ∀(m1,m2) ∈ r, ∀a ∈ L ∪ {ε} it holds

∀m′
1 : m1 (a〉m′

1 ⇒ ∃m′
2 : m2 (a〉m′

2 ∧ (m′
1,m

′
2) ∈ r

and (vice versa)

∀m′
2 : m2 (a〉m′

2 ⇒ ∃m′
1 : m1 (a〉m′

1 ∧ (m′
1,m

′
2) ∈ r

Such a relation r is called weak bisimulation.



54 L. Bernardinello, E. Mangioni, and L. Pomello

3 A Class of Morphisms

In this section we recall the formal definition of α-morphisms for State Ma-
chine Decomposable Elementary Net Systems (SMD-EN Systems), and show
that SMD-EN Systems together with α-morphisms form a category [4].

α-morphisms are defined as the restriction of a more general class of mor-
phisms for EN Systems, called ω-morphisms. We will discuss the preservation of
both structural and behavioural properties of α-morphisms in the next section.

Definition 6. Let Ni = (Bi, Ei, Fi,m
i
0) be an EN System, for i = 1, 2. An

ω-morphism from N1 to N2 is a total surjective map ϕ : X1 → X2 such that:

1. ϕ(B1) = B2;
2. ϕ(m1

0) = m2
0;

3. ∀e1 ∈ E1, if ϕ(e1) ∈ E2, then ϕ(•e1) = •ϕ(e1) and ϕ(e1
•) = ϕ(e1)•;

4. ∀e1 ∈ E1, if ϕ(e1) ∈ B2, then ϕ(•e1•) = {ϕ(e1)};
We require that the map is total and surjective because N1 refines the abstract
model N2, and any abstract element must be related to its refinement.

In particular, a subset of nodes can be mapped on a single condition b2 ∈ B2;
in this case, we will call bubble the subnet identified by this subset, and denote
it by N1(ϕ−1(b2)); if more than one element is mapped on b2, we will say that
b2 is refined by ϕ.

Definition 7. Let Ni = (Bi, Ei, Fi,m
i
0) be a SMD-EN System, for i = 1, 2. An

α-morphism from N1 to N2 is an ω-morphism satisfying

5. ∀b2 ∈ B2

(a) N1(ϕ−1(b2)) is an acyclic net;
(b) ∀b1 ∈ ◦N1(ϕ−1(b2)), ϕ(•b1) ⊆ •b2 and (•b2 �= ∅ ⇒ •b1 �= ∅);
(c) ∀b1 ∈ N1(ϕ−1(b2))◦, ϕ(b1

•) = b2
•;

(d) ∀b1 ∈ ϕ−1(b2) ∩B1,
(b1 �∈ ◦N1(ϕ−1(b2)) ⇒ ϕ(•b1) = {b2}) and (b1 �∈ N1(ϕ−1(b2))◦ ⇒
ϕ(b1

•) = {b2});
(e) ∀b1 ∈ ϕ−1(b2) ∩ B1, there is a sequential component NSC of N1 such

that b1 ∈ BSC and ϕ−1(•b2•) ⊆ ESC .

As we can see in Fig. 3a and 3b, in-conditions and out-conditions have different
constraints, 5b and 5c respectively. As required by 5c, we do not allow that
choices, which are internal to a bubble, constrain a final marking of that bubble:
i.e., each out-condition of the bubble must have the same choices of the condition
it refines. Instead, pre-events do not need this strict constraint (5b): hence it is
sufficient that pre-events of any in-condition are mapped on a subset of the pre-
events of the condition it refines. For example, in this particular case, we know
that the choice between e1 and f1 of Figure 3a is made before the bubble, and
this is implied also by the requirement 5e) on sequential components. Moreover,
the conditions that are internal to a bubble must have pre-events and post-events
which are all mapped to the refined condition b2, as required by 5d.



Local State Refinement and Composition of Elementary Net Systems 55

(a) Pre events of an in-condition (b) Post events of an out-condition

Fig. 3. Pre and post event of a bubble

By requirement 5e, events in the neighbourhood of a bubble are not con-
current, and the same holds for their images. Within a bubble, there can be
concurrent events; however, post events are in conflict, and firing one of them
will empty the bubble, as it will be shown in Lemma 1 of the next section.

As shown in the following Proposition, α-morphisms are closed by compo-
sition; moreover, the identity function on X is an α-morphism, and the com-
position is associative. Hence, the family of SMD-EN Systems together with
α-morphisms forms a category.

Proposition 1. Let Ni = (Bi, Ei, Fi,m
i
0) be a SMD-EN System for i = 1 . . . 3.

Let ϕi, with i = 1, 2, be an α-morphism from Ni to Ni+1.
The map ϕ : N1 → N3, ϕ = ϕ2 ◦ ϕ1 is an α-morphism.

Proof. The first part of the proof is a simple verification. We have to prove only
the last item of the α-morphism (Def. 7):

5: let b3 ∈ B3; by definition N1(ϕ−1(b3)) = N1(ϕ−1
1 (ϕ−1

2 (b3))).
If b1 ∈ N1(ϕ−1(b3)), then ∃b2 ∈ B2 : ϕ1(b1) = b2 ∧ ϕ2(b2) = b3.
5a: it is immediate to see that the bubble is acyclic;
5b: let b1 ∈ ◦N1(ϕ−1(b3)), hence b1 ∈ ◦N1(ϕ−1

1 (b2)).
We want to prove that b2 ∈ ◦N2(ϕ

−1
2 (b3)). By contradiction, let e2 ∈ •b2

and ϕ2(e2) = b3. From Def. 7, point 5b •b1 �= ∅, then ∃e1 ∈ E1 such
that e1 ∈ •b1. Given that b2 �∈ ◦N2(ϕ−1

2 (b3)), then from Def. 7, point 5d
ϕ2(•b2) = {b3}. From Def. 6, point 3 we know that ϕ1(e1) ∈ •b2, then
ϕ(e1) = b3 but this is a contradiction.
From Def. 7, point 5b:
– ϕ2(•b2) ⊆ •b3 and if •b3 �= ∅ then •b2 �= ∅ and
– ϕ1(•b1) ⊆ •b2 and if •b2 �= ∅ then •b1 �= ∅.

Then we have ϕ(•b1) = ϕ2(ϕ1(•b1)) ⊆ ϕ2(•b2) ⊆ •b3, and if •b3 �= ∅ then
•b2 �= ∅ then •b1 �= ∅;

5c: let b1 ∈ N1(ϕ−1(b3))◦, hence b1 ∈ N1(ϕ−1
1 (b2))◦. Given that ϕ1 is an

α-morphism, ϕ1(b1
•) = b2

•.
Now, we want to prove that b2 ∈ N2(ϕ−1

2 (b3))◦. By contradiction, let
e2 ∈ b2

• and ϕ2(e2) = b3. Given that ϕ1 is an α-morphism, ∃e1 ∈ E1,



56 L. Bernardinello, E. Mangioni, and L. Pomello

such that ϕ1(e1) = e2 and e1 ∈ b1
• but this is a contradiction since

b1 ∈ N1(ϕ−1(b3))◦. Given that ϕ2 is an α-morphism, ϕ2(b2
•) = b3

•.
Then ϕ(b1

•) = ϕ2(ϕ1(b1
•)) = ϕ2(b2

•) = b3
•;

5d: let us start with b1 ∈ N1(ϕ−1(b3)) ∩B1 and b1 �∈ ◦N1(ϕ−1(b3)); Hence
∃e1 ∈ E1 : e1 ∈ •b1 ∧ ϕ(e1) = b3. We want to show that each pre-event
of b1 is in the bubble. By contradiction, assume that ∃e′1 ∈ E1 : e′1 ∈•b1 ∧ ϕ(e′1) �= b3. This implies that ϕ1(e′1) �= b2, hence ∃e′2 ∈ E2 ∧ ∃e′3 ∈
E3 : ϕ(e′1) = ϕ2(ϕ1(e′1)) = ϕ2(e′2) = e′3 ∧ e′2 ∈ •b2 ∧ e′3 ∈ •b3. There are
two cases:
– b2 �∈ ◦N2(ϕ

−1(b3)), then from Def. 7, point 5d ϕ2(•b2) = {b3} and
this is a contradiction;

– b2 ∈ ◦N2(ϕ−1(b3)) then there are two cases:
• ϕ1(e1) ∈ B2, then from Def. 6, point 4 ϕ1(e1

•) = ϕ1(e1), hence
ϕ1(e1) = b2 and then b1 �∈ ◦N1(ϕ−1(b2)). Then from Def. 7,
point 5d ϕ1(•b1) = {b2}, hence ϕ1(e′1) = b2 and this is a contra-
diction;

• ϕ1(e1) = e2, then from Def. 6, point 3 ϕ1(e1
•) = e2

• ∧ b2 ∈
e2

• ∧ ϕ2(e2) �= b3 because b2 is an in-condition in the bubble of
b3. But then ϕ(e1) = ϕ2(ϕ1(e1)) = ϕ2(e2) �= b3 and this is a
contradiction.

For conditions of the bubble that are not out-conditions the proof is
symmetrical;

5e: we want to prove that exists a sequential component NSC of N1 such
that b1 ∈ BSC and ϕ−1(•b3•) ⊆ ESC .
We use here Prop. 3 that will be proved in Section 4 with the other
properties. That proposition says that the inverse image of a sequential
component is covered by sequential components.
Take a sequential component of N3 that contains b3. Using Prop. 3 con-
struct one sequential component of N2 containing b2. Using the same
Lemma construct one sequential component of N1 containing b1. ��

Any ω-morphism, being a total map defined on the set of elements of a net N1,
naturally induces a partition of those elements. We now show how to define an
elementary net on the set of equivalence classes generated by that partition.

Definition 8. Let Ni = (Bi, Ei, Fi,m
i
0) be an EN System, for i = 1, 2. An ω-

morphism, ϕ, from N1 to N2 defines an equivalence relation on X1, where the
equivalence class of x ∈ X1 is [x] = {y ∈ X1| ϕ(y) = ϕ(x)}. The quotient of N1

with respect to ϕ is N1/ϕ = (B1/ϕ,E1/ϕ, F1/ϕ,m
1
0/ϕ), where

– B1/ϕ = {[x] : x ∈ X1, ϕ(x) ∈ B2};
– E1/ϕ = {[x] : x ∈ X1, ϕ(x) ∈ E2};
– F1/ϕ = {([x], [y]) : x, y ∈ X1, [x] �= [y], (x, y) ∈ F1};
– m1

0/ϕ = {[x] : x ∈ m1
0}.

The quotient so defined is isomorphic to N2, as shown below.

Proposition 2. Let ϕ : N1 → N2 be an ω-morphism. Then N1/ϕ is an EN
System isomorphic to N2.



Local State Refinement and Composition of Elementary Net Systems 57

Proof. Define a map λ : B1/ϕ ∪ E1/ϕ → X2, by λ([x]) = ϕ(x). Since ω-
morphisms are surjective, λ is a bijection. We will now show that ([x], [y]) ∈
F1ϕ⇔ (λ([x]), λ([y])) ∈ F2.

Let ([x], [y]) ∈ F1/ϕ. Then, by definition, there are x1, y1 ∈ X1 such that
x1 ∈ [x], y1 ∈ [y], [x] �= [y], and (x1, y1) ∈ F1. By definition of ω-morphism, it
then follows that (ϕ(x1), ϕ(y1)) ∈ F2.

Let (x, y) ∈ F2. Suppose x ∈ B2 and y ∈ E2 (the case where x ∈ E2 and y ∈
B2 is analogous). Since ϕ is surjective, ϕ−1(x) and ϕ−1(y) are both non-empty;
moreover, the elements in ϕ−1(y) are all events. Take e such that ϕ(e) = y;
by Def. 6, point 3, we know that ϕ(•e) = •y. Then, from x ∈ •y, follows the
existence of some b ∈ •e such that ϕ(b) = x, and ([x], [y]) ∈ F1/ϕ. ��

4 Properties Preserved and Reflected by α-morphisms

Since we consider SMD-EN Systems, it is natural to ask whether α-morphisms
preserve and reflect sequential components. Let ϕ be an α-morphism from N1 to
N2. If a condition b2 belongs to a sequential component, then also its pre- and
post-events belong to the same sequential component. Hence, if b2 is refined by
a bubble N1(ϕ−1(b2)), by requirement 5e) of α-morphisms any condition of the
bubble belongs to a sequential component containing any event in ϕ−1(•b2•).
Then, the sequential components of N2 are reflected by ϕ, in the sense that the
inverse image of a sequential component is covered by sequential components.

Proposition 3. Let ϕ : N1 → N2 be an α-morphism. Let NSC2 be a sequential
component of N2. Then ϕ−1(NSC2) is covered by sequential components, each
one containing the whole inverse image of the neighbourhood of each condition
of NSC2.

Proof. Let us assume that there is a unique condition of NSC2, b2, that is refined
by the morphism. It is easy to see that ϕ−1(NSC2) is a subnet of N1, and that it is
isomorphic to NSC2 except for b2 and its neighbourhood. Take b1 ∈ ϕ−1(b2)∩B1.
For Def. 7, point 5e we know that there is a sequential component NSC1 of
N1 such that b1 ∈ BSC1 and ϕ−1(•b2•) ⊆ ESC1. Now build up a sequential
component generated by (BSC1 ∩ ϕ−1(b2)) ∪ ϕ−1(BSC2 \ {b2}). This procedure
can be easily extended to the refinement of multiple conditions by applying it
to a single condition at a time. ��
Sequential components are not preserved, as we can see in Fig. 4. The sequential
component of N1 generated by {ϕ−1(b1), b5−1, b6−1} is such that its image, the
net generated by {b1, b5, b6}, is not a sequential component of N2 since e3, which
belongs to •b5, is such that •e3 ∩ {b1, b5, b6} = ∅.

The idea driving our interpretation of bubble is that the subnet corresponding
to a condition “behaves” in the same way as the condition it refines. In a SMD-
EN System, each condition at any time can be true or false. It is not possible that
this condition is partially true or partially false; hence, also the bubble should
behave like this. The next lemma states that firing an output event of a bubble



58 L. Bernardinello, E. Mangioni, and L. Pomello

Fig. 4. Two SMD-EN Systems related by an α-morphism

empties the bubble, and that no input event of a bubble is enabled whenever a
token is inside the bubble.

Lemma 1. Let ϕ : N1 → N2 be an α-morphism. Then:

1. Let e1 ∈ E1, b2 ∈ B2: e1 ∈ ϕ−1(b2
•); m1,m

′
1 ∈

[
m1

0

〉
: m1 [e1〉m′

1, then
m′

1 ∩ ϕ−1(b2) = ∅.
2. Let e1 ∈ E1, b2 ∈ B2: e1 ∈ ϕ−1(•b2); m1,m

′
1 ∈

[
m1

0

〉
: m1 [e1〉m′

1 then
m1 ∩ ϕ−1(b2) = ∅.

Proof. Take a marking m1 in which a condition b1 ∈ ϕ−1(b2) is marked.
We know by Def. 7, point 5e) that there exists a sequential component SC of

N1 such that b1 ∈ BSC and ϕ−1(•b2•) ⊆ ESC .

1. By contradiction, take e1 ∈ ϕ−1(b2
•) such that b1 �∈ •e1 and m1 [e1〉; hence all

its preconditions are marked. Since SC contains e1, one of its preconditions
belongs to SC as well as b1, this is a contradiction because the sequential
component has only one token.

2. By contradiction, take e1 ∈ ϕ−1(•b2) such that m1 [e1〉; hence all its precon-
ditions are marked. Since SC contains e1, one of its preconditions belongs
to SC as well as b1, and this is a contradiction because the sequential com-
ponent has only one token. ��

In the next proposition, we show that α-morphisms preserve reachable markings.

Proposition 4. Let ϕ : N1 → N2 be an α-morphism, and m1 ∈
[
m1

0

〉
. Then

ϕ(m1) ∈ [
m2

0

〉
. If m1 [e〉m′

1 then:

– if ϕ(e) ∈ E2 then ϕ(m1) [ϕ(e)〉ϕ(m′
1)

– if ϕ(e) ∈ B2 then ϕ(m1) = ϕ(m′
1).



Local State Refinement and Composition of Elementary Net Systems 59

Proof. The proof is by induction on the length of a firing sequence σ from m1
0

to m1.
Suppose |σ| = 0. Then m1 = m1

0. By definition, ϕ(m1
0) = m2

0. Now, take an
event e enabled in m1

0: m1
0 [e〉m′

1, hence m′
1 = (m1

0 \ •e) ∪ e•. Either ϕ(e) ∈ E2

or ϕ(e) ∈ B2. If ϕ(e) ∈ E2, then for Def. 6 point 3 we have ϕ(•e) = •ϕ(e) and
ϕ(e•) = ϕ(e)•. Moreover, by Lemma 1 point 1 we know that when a post event
of a bubble fires, it empties the bubble, hence m2

0 [ϕ(e)〉m2
0 \ •ϕ(e) ∪ ϕ(e)•. If

ϕ(e) ∈ B2, then for Def. 6 point 4 we have ϕ(•e•) = {ϕ(e)}, hence ϕ(m1
0) =

ϕ(m′
1).

Suppose now |σ| = n + 1. Then we can write σ = σ1e, with m1
0 [σ1〉m1[e〉m′

1.
By the induction hypothesis, there is m2 ∈

[
m2

0

〉
such that ϕ(m1) = m2. Either

ϕ(e) ∈ E2 or ϕ(e) ∈ B2. If ϕ(e) ∈ E2, then for Def. 6 point 3 we have ϕ(•e) =
•ϕ(e) and ϕ(e•) = ϕ(e)•. Moreover, by Lemma 1 point 1 we know that when a
post event of a bubble fires, it empties the bubble, hence m2 [ϕ(e)〉m2 \ •ϕ(e)∪
ϕ(e)•. If ϕ(e) ∈ B2, then for Def. 6 point 4 we have ϕ(•e•) = {ϕ(e)}, hence
ϕ(m1) = ϕ(m′

1). ��
As for other morphisms in the literature, α-morphisms do not reflect reachable
markings. This can happen, in particular, when a condition is refined by a subnet
leading to a block before reaching a marking enabling out-events, or whenever
the refinements of conditions “interfere” with each other so that, even if in each
bubble a “final” local marking is reached, the global marking doesn’t enable any
event, as for example in the case of the α-morphism given in Fig. 6. The two
above cases suggest to require both that any condition is refined by a subnet such
that, when a final marking is reached, this one enables events which correspond
to the post-events of the refined condition; and also that different refinements
do not “interfere” with each other. The non interference is guaranteed when any
event of N2 has at most a unique condition in its neighbourhood that is properly
refined in N1.

In order to reflect the reachable markings we have to introduce behavioural
constraints. We now show that this can be done through local constraints, by
considering the unfolding of subnets related to the bubbles.

The following auxiliary construction is needed. Given an α-morphism ϕ :
N1 → N2, and a condition b2 ∈ B2 with its refinement N1(ϕ−1(b2)), we define
two new SMD-EN Systems. The first one, denoted S1(b2), contains (a copy of)
the subnet N1(ϕ−1(b2)), its pre and post-events in E1 and two new conditions:
bin1 , which is pre of all the pre-events, and bout1 , which is post of all the post-
events. The initial marking of S1(b2) will be {bin1 }. The second system, denoted
S2(b2) contains b2, its pre- and post-events and two new conditions: bin2 , which
is pre of all the pre-events, and bout2 , which is post of all the post-events. The
initial marking of S2(b2) will be {bin2 }.

In Fig. 5 we show the two systems S1(b2) and S2(b2) for the nets showed in
the initial example (Fig. 1 and 2), in Section 1, with b2 = formal_check.

Definition 9. Let ϕ : N1 → N2 be an α-morphism and b2 ∈ B2.



60 L. Bernardinello, E. Mangioni, and L. Pomello

(a) (b)

Fig. 5. (a): S1(formal_check) of Fig. 2 and (b): S2(formal_check) of Fig. 1

Construct the SMD-EN Systems, S1(b2) = (BS1, ES1, FS1,m
S1
0 ) and S2(b2) =

(BS2, ES2, FS2,m
S2
0 ) in this way:

BS1 =

⎧⎪⎨
⎪⎩

(ϕ−1(b2) ∩B1) ∪ {bout1 } if •b2 = ∅
(ϕ−1(b2) ∩B1) ∪ {bin1 } if b2• = ∅
(ϕ−1(b2) ∩B1) ∪ {bin1 , bout1 } otherwise

ES1 = (ϕ−1(b2) ∩ E1) ∪ ϕ−1(•b2) ∪ ϕ−1(b2
•);

FS1 = (F1 ∩ ((BS1 ∪ ES1)× (ES1 ∪BS1))) ∪ F in
S1 ∪ F out

S1 , where
F in
S1 = {(bin1 , e) : e ∈ ϕ−1(•b2)} and F out

S1 = {(e, bout1 ) : e ∈ ϕ−1(b2
•)};

mS1
0 =

{
m1

0 ∩ ϕ−1(b2) if •b2 = ∅
{bin1 } otherwise

BS2 =

⎧⎪⎨
⎪⎩
{b2, bout2 } if •b2 = ∅
{b2, bin2 } if b2• = ∅
{b2, bin2 , bout2 } otherwise

ES2 = •b2•;
FS2 = (F2 ∩ ((BS2 ∪ ES2)× (ES2 ∪BS2))) ∪ F in

S2 ∪ F out
S2 , where

F in
S2 = {(bin2 , e) : e ∈ •b2} and F out

S2 = {(e, bout2 ) : e ∈ b2
•};

mS2
0 =

{
m2

0 ∩ {b2} if •b2 = ∅
{bin2 } otherwise

Define ϕS as a map from S1(b2) to S2(b2), which restricts ϕ to the elements of
S1(b2), and extends it with ϕS(bin1 ) = bin2 and ϕS(bout1 ) = bout2 . Note that S1(b2)
and S2(b2) are SMD-EN Systems and that ϕS is an α-morphism.



Local State Refinement and Composition of Elementary Net Systems 61

Let ϕ : N1 → N2 be an α-morphism and ϕS : S1(b2) → S2(b2) as in Def. 9.
By using ϕS , consider two labelling functions l1 and l2 such that the events in
ES2 are all observable, i.e.: l2 is the identity function, and the invisible events
of S1(b2) are the ones mapped to conditions, i.e.:

∀e ∈ ES1 : l1(e) =

{
ϕS(e) if ϕS(e) ∈ ES2

τ otherwise

Let Unf (S1(b2)) be the unfolding of S1(b2) with u : Unf (S1(b2)) → S1(b2)
folding function. The following lemma shows that if ϕS ◦ u is an α-morphism,
then S1(b2) and S2(b2) are weakly bisimilar.

Lemma 2. Let ϕ : N1 → N2 be an α-morphism, and ϕS as in Def. 9. Let
Unf (S1(b2)) be the unfolding of S1(b2) with u folding function. If ϕS ◦u is an α-
morphism from Unf (S1(b2)) to S2(b2), then r = {(m1, ϕ

S(m1)) : m1 ∈
[
mS1

0

〉}
is a weak bisimulation, and (S1(b2), l1) and (S1(b2), l2) are weakly bisimilar.

Proof. Since ϕS is an α-morphism, Prop. 4 assures that S2(b2) simulates S1(b2),
by (ϕS)−1.

Then, we need only to prove that S1(b2) simulates S2(b2), by ϕS .
We prove that r is a weak bisimulation between (S1(b2), l1) and (S2(b2), l2).

The reachable markings of S2(b2) are {{bin2 }, {b2}, {bout2 }}, let us discuss the
three corresponding set of markings of S1(b2) separately:

– the initial marking of S2(b2) is mS2
0 = {bin2 } and it is related to the initial

marking of S1(b2), mS1
0 = {bin1 }.

We have two possible cases:
• {bin2 } [ε〉 {bin2 }: in S1(b2) it is not possible to fire one of the pre-events

of the bubble, that are the ones enabled in the initial marking, because
they are all labelled, so it is only possible to fire the empty word and
remain in the initial marking,

• {bin2 } [a〉 {b2}: for the surjectivity of the α-morphism, in S1(b2) there
is, at least, one event mapped on a, let us call it a1. For the Def. 6,
point 3, a1 has an environment corresponding to the one of a, hence
{bin1 } [a1〉 {m1} with ϕS(m1) = {b2}. After this firing, all the events
internal to the bubble can freely fire because each one is mapped on b2,
hence for Def. 6, point 4 the new marking is again related to {b2}. It is
not possible that a post-event of the bubble fires, because in that case
the visible action will not be a;

– let (m1, {b2}) ∈ r such that m1 ⊆ ϕ−1(b2).
We have two possible cases:
• {b2} [ε〉 {b2}: this part of the proof is equivalent to the last part of the

previous item,
• {b2} [a〉 {bout2 }: we prove m1 (a〉 {bout1 } by induction on the distance be-

tween one of the initial markings of the bubble and m1.
base ∃e1 ∈ S1(b2) : •e1 = bin1 ∧ e1

• = m1.



62 L. Bernardinello, E. Mangioni, and L. Pomello

Note that m1 is generated, in the unfolding, by an event in conflict with
all the other pre-events of the bubble, hence all its future is completely
disjoint from the rest of the unfolding of the bubble. Def. 7, point 5c
assure that in its future there will be, at least, one event for each post-
events of b2, hence it is possible to fire one event mapped on a,
induction let m1 be a marking internal to the bubble such that
m1 (a〉, let m′

1,m1 [e1〉m′
1, be such that ¬(m′

1 (a〉). Hence e1 is in conflict
with all the events with label a. Thus all the future of e1 is in conflict
with all the events with label a. This is a contradiction because the mor-
phism from the unfolding to S2(b2) assures that each run will end in bout1

and Def. 7, point 5c assures that each out-condition of the bubble should
have a post-event with label a.

– the final marking of S2(b2) is {bout2 } and it is related to the final marking of
S1(b2), {bout1 }. Both are deadlock markings. ��

When the morphism corresponds to the refinement of a marked condition, we re-
quire that all the tokens of the corresponding bubble are placed into in-conditions
which are post-conditions of a pre-event, if it exists. System N1 is then called
well marked with respect to ϕ.

Definition 10. Let ϕ : N1 → N2 be an α-morphism. System N1 is well marked
with respect to ϕ if for each b2 ∈ B2 one of the following conditions hold:

– ϕ−1(b2) ∩m1
0 = ∅ or

– if •b2 �= ∅ then there is e1 ∈ ϕ−1(•b2) such that ϕ−1(b2) ∩m1
0 = e1

• or
– if •b2 = ∅ then ϕ−1(b2) ∩m1

0 = ◦ϕ−1(b2)

The following proposition states a set of conditions under which reachable mark-
ings are reflected by α-morphisms.

Proposition 5. Let ϕ : N1 → N2 be an α-morphism such that N1 is well
marked w.r.t. ϕ, ϕS be as in Def. 9, and Unf (S1(b2)) be the unfolding of S1(b2)
with u folding function. If ϕS ◦u is an α-morphism from Unf (S1(b2)) to S2(b2),
then, for all m2 ∈

[
m2

0

〉
, there is m1 ∈

[
m1

0

〉
such that ϕ(m1) = m2.

Proof. We will actually show a slightly stronger property, namely that m1 can
be chosen so that its intersection with the set of conditions in the bubble refining
b2 only contains elements in (N1(ϕ−1(b2)))◦. The proof is by induction on the
length of a firing sequence σ from m2

0 to m2.
Suppose |σ| = 0. Then m2 = m2

0. By definition, ϕ(m1
0) = m2

0. If b2 �∈ m2
0, then

m1
0 ∩ ϕ−1(b2) = ∅. If b2 ∈ m2

0, then we use Lemma 2 to reach in N1 a marking
in the bubble of b2 that contains only out-conditions, and we are done.

Suppose now |σ| = n+1. Then we can write σ = σ1e2, with m2
0[σ1〉m2

1[e2〉m2.
By the induction hypothesis, there is m1

1 ∈ [m1
0〉 such that ϕ(m1

1) = m2
1 and

m1
1 ∩ ϕ−1(b2) ⊆ (N1(ϕ−1(b2)))◦.
Since ϕ is surjective, there is at least one event in E1 that ϕ maps on e2.

If b2 �∈ •e2, then there exists e1 ∈ ϕ−1(e2) such that m1
1 [e1〉. If b2 ∈ •e2, by

Lemma 2 there exists e1 ∈ ϕ−1(e2) such that m1
1 [e1〉. ��



Local State Refinement and Composition of Elementary Net Systems 63

Let Ni = (Bi, Ei, Fi,m
i
0) be a SMD-EN System for i = 1, 2 and let ϕ : N1 → N2

be an α-morphism. By using ϕ, we define two labelling functions such that all
events in E2 are observable, i.e.: l2 is the identity function, and the invisible
events of N1 are the ones mapped to conditions, i.e.:

∀e ∈ E1 : l1(e) =

{
ϕ(e) if ϕ(e) ∈ E2

τ otherwise

The next proposition, which states the conditions under which N1 and N2 are
weakly bisimilar, is a consequence of Prop. 4 and of the proof of Prop. 5.

Proposition 6. Let ϕ : N1 → N2 be an α-morphism such that N1 is well
marked and ϕS ◦ u is an α-morphism from Unf (S1(b2)) to S2(b2), then (N1, l1)
and (N2, l2) are weakly bisimilar: (N1, l1) ≈ (N2, l2).

Prop. 5 and Prop. 6 are stated in the case in which only one condition is re-
fined, but they can be generalized to multiple refinements, provided that in the
neighbourhood of each event of N2 there is, at most, one refined condition. The
examples in Fig. 6 show why this constraint is required. In order to refine two
conditions which are both neighbourhood of the same event, it would also be
possible to consider the composition of the two systems, each one refining one
of the two conditions. Such a composition is presented in the following section.

Fig. 6. An α-morphism

5 Composition Based on α-morphisms

In this section, we define a way of composing SMD-EN Systems, based on
α-morphisms, in a similar way as in [5] and in [16].

The two systems to be composed must be mapped onto a common interface,
which is another SMD-EN System. The two morphisms, from the components
to the interface, determine which elements are to be identified, as shown later



64 L. Bernardinello, E. Mangioni, and L. Pomello

by means of an example. The interface can be seen, intuitively, as a protocol of
interaction, with which the components must comply, or as a common abstrac-
tion; in this second view, each component can refine some parts of the common
abstraction.

We will first give some following preliminary definitions, then the formal def-
inition of the operation, and finally an example. Given an α-morphism ϕ from
N1 to N2, we say that N1 is canonical with respect to ϕ if, for any abstract
condition b2 in N2, N1 contains a condition b1 as representation of b2.

Definition 11. Let ϕ : X1 → X2 be an α-morphism from N1 to N2. N1 is
canonical with respect to ϕ if every bubble, ϕ−1(b2) with b2 ∈ B2, contains
one, and only one, condition, b1 ∈ ϕ−1(b2) ∩ B1, that satisfies the following
constraints:

– b1 ∈ m1
0 ⇔ b2 ∈ m2

0;
– •b1 = ϕ−1(•b2);
– b1

• = ϕ−1(b2
•).

We will say that condition b1 is a representation of b2, denoted rN1(b2). The sub-
net of a bubble, obtained by removing the representation, is denoted: N−rep

1 (b2) =
N1(ϕ−1(b2) \ {rN1(b2)}).
If N1 is not canonical, it is always possible to construct its unique (up to isomor-
phisms) canonical version, denoted NC

1 , by adding the missing representations,
and marking them as their images, or by deleting the multiple ones. Because
of the constraint on α-morphisms, and in particular of the ones on sequential
components, i.e.: condition 5e of Def. 7, this construction does not modify the
behaviour of the original system N1.

Moreover, by construction, it is possible to prove that, given an α-morphism
from N1 to N2, the morphism, denoted ϕC , obtained by adding to ϕ the mapping
of the new conditions on the corresponding conditions of N2, or by deleting the
correspondence between deleted conditions, is an α-morphism from NC

1 to N2,
see [10].

We give now the definition of composition based on α-morphisms, the starting
point is a set of three SMD-EN Systems; one of them, NI , plays the role of an
interface between the other two, N1 and N2. A pair of α-morphisms, one from
N1 to NI , the other from N2 to NI , determine how the two components refine
the local states of the interface, and which events in the two components have
to synchronize.

The crucial point in the definition concerns the choice of synchronizing events.
Suppose that the morphisms onto the interface map bubbles A1 and A2 to the
same local state b (where Ai is taken in Ni). Then, the representations of A1 and
A2 are local states which are identified in composing the two nets. This implies
that any event in N1 which puts a token in the representation of A1 must be
synchronized with any event doing the same in the representation of A2. This
explains the definition of the sets Esync, below.

It is assumed that N1, N2 and NI are disjoint and that N1 and N2 are canon-
ical with respect to the corresponding morphisms.



Local State Refinement and Composition of Elementary Net Systems 65

Definition 12. Let Ni = (Bi, Ei, Fi,m
i
0) be an SMD-EN System for i = 1, 2, I.

Let ϕi, with i = 1, 2, be an α-morphism from Ni to NI . Let Ni be canonical with
respect to ϕi. Define N = N1〈NI〉N2 = (B,E, F,m0) by

B =
⋃

bI∈BI

BBubble(bI ) E =

( ⋃
eI∈EI

Esync(eI)

)
∪
( ⋃

bI∈BI

EBubble(bI )

)

F =
⋃

bI∈BI

(
F (bI) ∪ FBubble(bI )

)

b ∈ m0 ⇐⇒ b ∈ mI
0 or b ∈ m1

0 or b ∈ m2
0

where: Esync(eI) = {e = 〈e1, e2〉 : e1 ∈ E1, e2 ∈ E2, ϕ1(e1) = eI = ϕ2(e2)}
For bI ∈ BI , define:

Bubble(bI) = ((BN−rep
1 (bI )

∪ {bI} ∪BN−rep
2 (bI )

),

(EN−rep
1 (bI )

∪EN−rep
2 (bI)

),

(FN−rep
1 (bI)

∪ FN−rep
2 (bI)

))

F (bI) = •F (bI) ∪ F •(bI)

Let e = 〈e1, e2〉 ∈
⋃

eI∈•bI Esync(eI),

•F (bI) = {(e, b) : b ∈ ◦Bubble(bI), (e1, b) ∈ F1} ∪
{(e, bI)} ∪ {(e, b) : b ∈ ◦Bubble(bI), (e2, b) ∈ F2}

Let e = 〈e1, e2〉 ∈
⋃

eI∈bI• Esync(eI),

F •(bI) = {(b, e) : b ∈ Bubble(bI)
◦, (b, e1) ∈ F1} ∪

{(bI , e)} ∪ {(b, e) : b ∈ Bubble(bI)
◦, (b, e2) ∈ F2}

Note that in order to simplify the notation, N1〈NI〉N2 does not refer to the
morphisms ϕi. By construction, N = N1〈NI〉N2, as defined above, is an EN
System. Moreover, it is covered by sequential components. To see this, take
b ∈ B. If b ∈ BI , then b belongs to a sequential component in NI , and all
the conditions in this component are also in N , and these, together with their
neighbourhood, identify a sequential component in N . If b ∈ Bi, then b belongs
to a sequential component in Ni, and all the conditions in this component have a
corresponding condition in N . It is easy to check that these, together with their
neighbourhood, identify a sequential component in N .

We now define a map ϕ′
i from N = N1〈NI〉N2 onto Ni, and we will show in

Prop. 7 that it is an α-morphism.



66 L. Bernardinello, E. Mangioni, and L. Pomello

Definition 13. Define ϕ′
i as follows, for each x ∈ X:

ϕ′
i(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x, if x ∈ Xi

rNi(x), if x ∈ BI

rNi(ϕ3−i(x)), if x ∈ B3−i

ei, if x = 〈e1, e2〉
rNi(ϕ3−i(x)), if x ∈ E3−i

Proposition 7. The map ϕ′
i is an α-morphism from N = N1〈NI〉N2 to Ni,

i = 1, 2.

Proof. ϕ′
i : X → Xi is a total surjective function by construction.

Let x, y ∈ X, e ∈ E,

1: ϕ′
i(B) = Bi: take b ∈ B, we have three cases:
– b ∈ Bi, hence ϕ′

i(b) = b,
– b ∈ BI , hence ϕ′

i(b) = rNi(b),
– b ∈ B3−i, hence ϕ′

i(b) = rNi(b);
2: ϕ′

i(m0) = mi
0: given by construction;

3: let ϕ′
i(e) ∈ Ei we have two cases:

– e ∈ Ei: this means that e is an event in a bubble of Ni and the construc-
tion respects its pre and post conditions and all the arcs;

– e = 〈e1, e2〉, hence ϕi(ei) = eI . Let us start with preconditions.
Take b ∈ •e, then for Def. 6, point 1 ∃bi ∈ Bi : ϕ′

i(b) = bi ∧ ∃bI ∈ BI :
ϕi(bi) = bI ; if (b, e) ∈ F there are two cases:
• bi ∈ Bubble(bI)◦ and (bi, ei) ∈ Fi,
• b ∈ BI or bi ∈ Bubble(bI)◦ and (bi, e3−i) ∈ F3−i, hence ϕ′

i(b) =
rNi(bI), hence (rNi(bI), ei).

Take bi ∈ •ei, then for Def. 6 there is a condition of N mapped on
it. For construction, we have that bi ∈ Bubble(bI)◦, and it can be a
representation or not. If it is not a representation, bi ∈ B, ϕ′

i(bi) = bi and
(bi, e) ∈ F . If it is a representation, bI ∈ B, ϕ′

i(bI) = bi and (bI , e) ∈ F .
The proof for post-conditions is analogous;

4: ϕ′
i(e) = rNi(bI) ∈ Bi, hence it was in a bubble of bI in N2: e ∈ E3−i

and ϕ3−i(e) = bI ∈ BI , hence for construction also b is in that bubble:
ϕ′
i(b) = rNi(bI);

5: take bi ∈ Bi, N(ϕ′−1
i (bi)) and bI = ϕi(bi) ∈ BI .

If bi is not a representation in Ni, by construction its bubble in N consists in
the condition itself alone: in that case all the constraints are easily verified.
If bi is a representation in Ni (bi = rNi(bI)), by construction, its bubble in N
is made by bI plus the bubble of bI in the other component. For bI is exactly
as we stated before. That bubble is clearly acyclic. The composition rebuilds
the same relations between elements in the bubble of the other component,
respecting constraint 5d. It creates the Cartesian product of events of N1

and N2 mapped on the same event of NI and, consequently, it creates an arc



Local State Refinement and Composition of Elementary Net Systems 67

between all this copies and the neighbour conditions, respecting constraints
5b and 5c.

We will prove for representation bi the constraint 5e on the conditions
in the bubble of the other component, b ∈ B3−i. Let b ∈ ϕ′−1

i (bi) ∩B, such
that b �∈ BI .

Let NSCi be a sequential component of Ni containing bi. Clearly, this
sequential component contains also its pre and post events. Given that bi is
a representation, these are exactly all the events in the inverse image of pre
and post events of bI .

Let NSC3−i be a sequential component of N3−i containing b and all the
events in the inverse image of pre and post events of bI .

Take a sequential component generated by all the conditions of NSCi

but for bi plus the conditions of NSC3−i that are in the bubble of bI . That
sequential component contains all the events in the neighbourhood of these
condition, hence also all the events in the inverse image of pre and post
events of bi. ��

By construction, it is possible to prove that the system N = N1〈NI〉N2 is canon-
ical with respect to ϕ′

1 and to ϕ′
2 and that the following diagram commutes.

NI

N1

ϕ1

������������
N2

ϕ2

������������

N1〈NI〉N2

ϕ′
1

������������

ϕ′
2

������������

These results say that the composed system refines both the components,
as well as the interface. For each abstract condition there is a corresponding
condition in the composed system. An example of composition of net systems
is given in Fig. 7. The interface, NI , is a simple sequence of two events. The
two components, N1 and N2, refine two different local state, b1 and b0, each
one by a subnet, shown on a gray background. The composed net N1〈NI〉N2

contains both refinements of b1 and b0, while the rest of the net, not refined by
the components, is taken as it is, but for the synchronizations of the events in
the neighbourhood of the refinements/bubbles. By a construction similar to the
one used in [5] (in Theorem 4.5), it is possible to prove the following Proposition.

Proposition 8. Let Ni = (Bi, Ei, Fi,m
i
0) be an SMD-EN System for i = 1, 2, I.

Let ϕi, with i = 1, 2, be an α-morphism from Ni to NI , and let N = N1〈NI〉N2

be be the composition of N1 and N2 using ϕ1 and ϕ2. If N1 is weakly bisimilar
to NI then N = N1〈NI〉N2 is weakly bisimilar to N2.

Where, the labelling functions are derived from ϕ1 and ϕ′
2, respectively, in

such a way that EI and E2 are all observable and the invisible events of E1 and
E are the ones which are mapped to conditions by ϕ1 and ϕ′

2, respectively.



68 L. Bernardinello, E. Mangioni, and L. Pomello

For an indirect proof of the previous Proposition see [3]. This result tells us, in
particular, that the composition of refinements N1 and N2, which are weakly
bisimilar to a common interface NI , yields a system N which is weakly bisimilar
to NI ; and then, since bisimulation preserves deadlock-freeness, it is possible
to deduce that N is also deadlock-free by verifying that NI is deadlock-free.
Remember that by Prop. 6 it is possible to check weak bisimilarity between two
systems related by an α-morphism by considering their behaviour only locally.

Fig. 7. An example of composition based on α-morphisms

6 Conclusions

We have presented a notion of morphism for a basic class of Petri nets with the
aim of supporting refinement/abstraction of local states. The morphism, in fact,
formalizes the relation between a refined net system and an abstract one, by
replacing local states of the target net system with subnets. The main idea is
that if one starts with an abstract model with some required behavioural prop-
erties, then, by refining local states with subnets respecting some constraints,



Local State Refinement and Composition of Elementary Net Systems 69

the refined net system will maintain the required behavioural properties. Indeed,
the main results concern behavioural properties preserved and reflected by the
morphisms. In particular, reachable markings are preserved, and we have charac-
terized some conditions under which reachable markings are reflected, and under
which the morphisms induce a bisimulation between net systems. Since bisimu-
lation preserves deadlock freeness, this implies for example that, starting from a
deadlock-free abstract system it is possible to refine it obtaining a system which
is still deadlock-free. The constraints in order to preserve/reflect behavioural
properties are structural and behavioural, where the behavioural ones are only
local. On this morphism we have defined a notion of composition based on in-
terface in the line of [5]. We have shown that bisimilarity between a component
and the interface can be lifted to bisimilarity between the other component and
the composed system.

For what concerns future work, we plan to study the constraints under which
this morphism can be defined for P/T nets and Coloured nets.

With respect to the application to system design, we plan to define a set of
refinement operations which guarantee the existence of an α-morphism from the
refined net to the original one.

Acknowledgments. Work partially supported by MIUR PRIN 2010-2011 grant
H41J12000190001, “Automi e Linguaggi Formali: Aspetti Matematici e Applica-
tivi”. We thank the anonymous referees for their helpful comments.

References

1. Bednarczyk, M.A., Bernardinello, L., Caillaud, B., Pawłowski, W., Pomello, L.:
Modular system development with pullbacks. In: van der Aalst, W.M.P., Best, E.
(eds.) ICATPN 2003. LNCS, vol. 2679, pp. 140–160. Springer, Heidelberg (2003)

2. Bednarczyk, M.A., Borzyszkowski, A.M.: On concurrent realization of reactive sys-
tems and their morphisms. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G.
(eds.) APN 2001. LNCS, vol. 2128, pp. 346–379. Springer, Heidelberg (2001)

3. Bernardinello, L., Mangioni, E., Pomello, L.: Composition of Elementary Net Sys-
tems based on α-morphisms. In: Köhler-Bußmeier, M. (ed.) Joint Proc. of LAM
2012, WooPS 2012, and CompoNet 2012, Hamburg, Germany, June 25-26. CEUR
Workshop Proceedings, vol. 853, pp. 87–102. CEUR-WS.org (2012)

4. Bernardinello, L., Mangioni, E., Pomello, L.: Local State Refinement on Elemen-
tary Net Systems: an Approach Based on Morphisms. In: Cabac, L., Duvigneau,
M., Moldt, D. (eds.) Proceedings of he Petri Nets and Software Engineering. Inter-
national Workshop, PNSE 2012, Hamburg, Germany, June 25-26. CEUR Workshop
Proceedings, vol. 851, pp. 138–152. CEUR-WS.org (2012)

5. Bernardinello, L., Monticelli, E., Pomello, L.: On preserving structural and
behavioural properties by composing net systems on interfaces. Fundam. In-
form. 80(1-3), 31–47 (2007)

6. Brauer, W., Gold, R., Vogler, W.: A survey of behaviour and equivalence preserving
refinements of Petri nets. Advances in Petri Nets 1990, 1–46 (1991)

7. Desel, J., Merceron, A.: Vicinity respecting homomorphisms for abstracting system
requirements. Transactions on Petri Nets and Other Models of Concurrency 4, 1–20
(2010)



70 L. Bernardinello, E. Mangioni, and L. Pomello

8. Fabre, E.: On the construction of pullbacks for safe petri nets. In: Donatelli, S.,
Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 166–180. Springer,
Heidelberg (2006)

9. Lakos, C.A.: Composing abstractions of coloured petri nets. In: Nielsen, M., Simp-
son, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 323–342. Springer, Heidelberg
(2000)

10. Mangioni, E.: Modularity for system modelling and analysis. PhD thesis, Università
degli Studi di Milano-Bicocca, Dottorato di ricerca in Informatica, ciclo 24 (2013)

11. Meseguer, J., Montanari, U.: Petri nets are monoids. Information and Computa-
tion 88(2), 105–155 (1990)

12. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

13. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary transition systems.
Theor. Comput. Sci. 96(1), 3–33 (1992)

14. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary transition systems and
refinement. Acta Inf. 29(6/7), 555–578 (1992)

15. Padberg, J., Urbásek, M.: Rule-based refinement of Petri nets: A survey. In:
Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for
Communication-Based Systems. LNCS, vol. 2472, pp. 161–196. Springer, Heidel-
berg (2003)

16. Pomello, L., Bernardinello, L.: Formal tools for modular system development.
In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 77–96.
Springer, Heidelberg (2004)

17. Pomello, L., Rozenberg, G., Simone, C.: A survey of equivalence notions for net
based systems. In: Rozenberg, G. (ed.) APN 1992. LNCS, vol. 609, pp. 410–472.
Springer, Heidelberg (1992)

18. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Reisig, W., Rozenberg,
G. (eds.) APN 1998. LNCS, vol. 1491, pp. 12–121. Springer, Heidelberg (1998)

19. Vogler, W.: Executions: A new partial-order semantics of Petri nets. Theor. Com-
put. Sci. 91(2), 205–238 (1991)

20. Winskel, G.: Petri nets, algebras, morphisms, and compositionality. Inf. Com-
put. 72(3), 197–238 (1987)



From Code to Coloured Petri Nets:

Modelling Guidelines

Anna Dedova and Laure Petrucci

LIPN, CNRS UMR 7030, Université Paris XIII
99, Avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France
avd.nsu@gmail.com, Laure.Petrucci@lipn.univ-paris13.fr

Abstract. This paper presents a method for designing a coloured Petri
net model of a system starting from its high-level object oriented source
code. The entire process is divided into two parts: grounding and code
analysis. For each part detailed step-by-step guidelines are given. The
approach is illustrated with an industrial application case study, the
NEO protocol.

1 Introduction

The modelling problem has been under investigation for many years. It features a
lot of particular cases depending on 1) the nature of the description of the system
to be modelled and 2) which formalism is chosen for the final model. According
to the first criteria there are three basic groups of modelling approaches:

1. Starting from an informal description of a problem;
2. Starting from a detailed specification of a system;
3. Starting from the source code.

Some recent works tackle the first group of approaches. For example, in [6] the
authors propose a modular design method and illustrate it on a model railway
case study. One of the main points of [6] is using properties of the system at the
modelling stage. In [8] an approach aggregating different views of the system is
given. This method assumes that the system can be observed from several points
of view: pre/post, process and lifeline views expressing respectively pre- and post-
conditions of events, sequences of events, and sequences of states. Thus, steps in
a process view correspond to system events and can be modelled by transitions
in a Petri nets formalism. Similarly, steps of a lifeline view correspond to the
states of the system and can be modelled by places of a Petri net. Then, by
identifying the elements of these different representations of systems, places and
transitions are glued together in order to get a complete Petri net.

The second group of modelling approaches includes various attempts to deliver
a formal model from UML diagrams [14,12,11]. The advantage of these methods
is that most developers are familiar with the UML and an automatic transforma-
tion of their diagrams into formal models and model-check them, would greatly
simplify the software quality control. The difficulty is that UML diagrams allow

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 71–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



72 A. Dedova and L. Petrucci

for much more freedom for the designer than formal models and the automatic
translation is not trivial.

This paper addresses the third group of modelling approaches, which is not
covered by a wide range of methods in the literature [16]. Such approaches
are dedicated to systems for which the source code already exists, in order to
guarantee it satisfies some requirements. They often do not support a complete
language, but are restricted to some subset of it. Moreover, to the best of our
knowledge, no work addressed a high level object oriented language, such as
Python. Some works dedicated to ADA programs focus on the control flow and
are limited to boolean variables [9] whereas we consider complex data structures.

Hence, what are the particular difficulties encountered by reverse-engineering
from the source code? If a program is rather small (tens of lines) one can simply
suppose that the operators are the system events and correspond to transitions,
places between them model the intermediate states of the system, and some
additional places model the states of variables used. But this approach is no
more applicable when the system under consideration is as large as 3 MBytes
of object oriented code. Of course it is possible to model all operators as in the
previous case, but then the model becomes so huge that there is no means to
analyse it and it becomes useless. Thus, it is necessary to choose an appropriate
level of abstraction for the system. If it is too low and the model contains too
many details, the same problem as above arises. If the level of abstraction is too
high, there are too many hypotheses and assumptions and it may happen that
nothing is left worth checking. The model is then trivial and its behaviour is
completely correct while the system contains drawbacks that are hidden due to
the modelling assumptions.

This paper reports the process adopted when modelling the NEO protocol us-
ing a reverse-engineering approach within the Neoppod project [4,5]. The project
aimed a formally proving that some essential properties of a new distributed
database management system were satisfied, thus giving sufficient confidence in
its correct behaviour. This allowed us to gain experience on the methodology we
used, derive finer and general guidelines for modelling which constitute the core
of the paper, and check that the models obtained using these guidelines were as
expected. Moreover, this work confirmed our opinion that Petri nets and more
specifically high-level nets were an appropriate choice as modelling language for
such purposes since they make the model fit quite closely the initial source code.
These benefits of using Petri nets for software engineering purposes are exposed
in [7]. Thus, even without prior knowledge of Petri nets, the protocol program-
mers/engineers could easily come to understand the model, which additionally
gave them a synthetic overall view of their large program.

The paper is organised as follows. Section 2 gives detailed guidelines on how
to derive step-by-step a coloured Petri net from the source code. Then Section 3
shows how this method was applied in practice to the NEO protocol. Finally,
Section 4 draws some conclusions.

We assume the reader is familiar with coloured Petri nets [13].



From Code to Coloured Petri Nets: Modelling Guidelines 73

2 Modelling Guidelines

This section discusses the guidelines to follow in order to deliver a coloured Petri
net from high level object oriented source code. These guidelines are illustrated
with the NEO protocol in Section 3, and the reader is invited to read both in
parallel.

2.1 Grounding

Before the start of the modelling process some preparation work is required. It
mainly concerns the deep understanding of the project structure and expected
properties of the system. This helps a lot during the modelling by saving the time
devoted to the consideration of unnecessary elements or restructuring model hi-
erarchy. It is always possible to skip this stage and proceed directly to modelling
the most interesting piece of code, but then the risk of choosing an inadequate
abstraction level is very high. The main steps of grounding are listed below. They
are depicted in Figure 1 together with the elements that are to be considered or
are impacted.

1. Understand structure

start

2. Choose key elements

3. Find interactions

4. Secondary elements

5. Divide into modules

stop

Scenarios

Properties

Interaction
mechanisms

Classes,
objects

System
architecture

Fig. 1. Schema of the grounding process

1. Understand the Structure. First of all, we should pay attention to the
architecture of the project. The key elements (classes) should be found as
well as their roles in the whole system. It can be very useful to find the
most common scenarios of the system use (or maybe scenarios that should



74 A. Dedova and L. Petrucci

be verified later). We can look for the parts (classes or objects) of the sys-
tem that are impacted by these scenarios. We also need to understand the
class structure of the project (paying a particular attention to inheritance
and polymorphism). During this step the most important result is global
comprehension of how the system works from the inside.

2. Choose Key Elements. The second step focuses on the system properties
to be checked. Properties can be proposed by developers, clients or anyone
else. Then, they must be considered one by one in order to choose those
that are the most crucial for the system. Selecting them before starting the
modelling process is very important since this choice can influence a lot the
model structure that will not be so easy to change later on.

Once the properties are selected, we look for the scenarios they concern.
Moreover, the classes and methods used within these scenarios are selected,
according to the project structure from the previous step. Thus, the main
pieces of code that are going to be modelled are defined.

3. Find Interactions. We should keep in mind that objects of chosen classes
can be verified separately from one another. But the ultimate goal is usually
to model-check the whole system altogether. Separate parts can be subjected
to traditional testing techniques while the complexity and the size of the
system makes their application to the entire project impossible.

Hence, when modelling something larger than an isolated object, the in-
teractions between different objects must be identified. These can be of very
different natures: message passing; shared or global variables (e.g. between
different methods inside a class); sometimes a class is composed of other
auxiliary classes; a method of an external class can be called. All interac-
tions should be investigated and the corresponding elements added to our
modelling selection.

4. Secondary Elements. Here we need to look at auxiliary classes that are
used by the selected key classes. They can be classes of data structures, or
classes providing message exchange capabilities. On the one hand, operations
and/or interconnections of key elements are impossible without them. On
the other hand, if we model them in detail, the model will be too bulky for
analysis to be performed. Such elements usually describe the work of the
system on a low level of abstraction and can be verified separately. So, the
idea is to model them as simple as possible, but without loss of essence.

At the end of this step we should know which abstractions are going to
be used: some algorithms could be modelled as a single transition, some
complex data structures encoded with natural numbers, etc.

5. Divide into Modules. All the scenarios and methods that have been chosen
for modelling are used to design a modular structure for the future model.
Of course, it can be changed later during the modelling process.

It is rather natural to associate a submodule with a class or a method. It
is also important to pay attention to secondary elements and decide whether
they are worth a separate module or not.



From Code to Coloured Petri Nets: Modelling Guidelines 75

2.2 Code Analysis

During this stage, two processes are carried out in parallel: the analysis of the
source code and the construction of the model. In order to streamline these
processes we propose to divide them into five main activities, according to the
scheme on Figure 2. Each activity requires to look for some elements in the
source code as well as interpreting them in terms of the modelling formalism
(in our case coloured Petri nets). At each step, the source code is observed from
different points of view in order to extract the different components of the model.
In practice, it is usually necessary to perform the cycle several times but at the

Types ⇒ Colours

start

States ⇒ Places

Events ⇒ Transitions

next round

Transforms ⇒ Arcs

∀ transition

Conditions ⇒ Guards
stop

next transition

Fig. 2. Schema of the modelling process

start it is hard to tell how many times it should be done. It is also possible
that some activities are skipped on later rounds, since a new element cannot be
extracted from the source code. From one round to another the understanding
of the chosen abstraction level is more and more accurate and the model is more
and more complete.

Since the module hierarchy of the CPN can be different from the initial struc-
ture of classes and methods, the work within the five activities can be organised
in different ways.

– Consider the modules of the future model (found at the fifth step of ground-
ing) one by one. For each module examine scenarios, classes and methods it
concerns and analyse them via all activities.

– Consider scenarios or methods (found at the second step of grounding) one
by one. For each scenario/method perform each activity that will give re-
finement for different modules of the model.

– Consider activities one by one and look at the system as a whole, analysing
different parts of code and changing different models, but from the chosen
point of view.



76 A. Dedova and L. Petrucci

In practice, the third approach is difficult to apply unless the model is almost
ready and can be grasped at a glance. The first approach is the most effective
one, but sometimes the second one may also prove useful by focusing on a par-
ticular behaviour. In this case, the behaviour is either described by an execution
scenario, or the details of a method are tracked step-by-step.

Data Structures. It is important to start from this activity because it forms
the basis of the future model. It is natural to start with colour domains in
order to use them (and may be enhanced later with new details) during further
activities.

In general, data structures of the source code should be expressed in terms
of colour domains. However, it is often not that simple. In object oriented code,
data structures are usually integrated together with their storing, loading and
treatment methods. Colour domains syntax does not allow to do this, so, it may
be needed to model a “simple” object with a separate CPN. Such cases can be
left to further activities nevertheless providing basic types for future CPNs.

This phase provides as a result a preliminary list of colour domains and vari-
ables needed in the model.

States and Conditions on Objects. This is the first activity that assumes
the modeller thinks in terms of parts of CPN that have no strict correspondence
in the source code, namely the places. It may be difficult to deliver them in
the situation of “blank sheet”, but the model with places make other activities
become much simpler or even possible (e.g. construction of arcs).

Hence, this phase aims at creating the set of places of the CPN which usually
represent the states of the system or its parts (objects, variables, etc.). To begin
with, the system flow of operations can be represented as a finite state automa-
ton. The set of states of this automaton can be a first approximation of the set
of places of the CPN. Then conditions required to proceed from one state to an-
other are considered. These conditions often concern the states of some objects
or variables. They should also be added to the set of places. Finally, a colour
domain (defined during the previous activity) is associated with each place. If
some variable or object is directly mentioned in the properties of the system, it
can be directly represented as a place on the first round and may be transformed
into a group of places or a subnet on later founds.

Events and Actions. This activity is in general simpler than the previous one.
Each operator or method call in the source code can be considered as an action
and thus be modelled as a transition. The main hindrance here is a tendency to
model every operator with a transition. To avoid this we can apply information
obtained during grounding (2nd and 4th steps).

The purpose is to select actions, essential for the processes to be verified.
To start with, consider the changes of variables and data structures that are
implicitly mentioned in the properties. If the properties are not formalised yet,



From Code to Coloured Petri Nets: Modelling Guidelines 77

main constructions of the system can serve as a basis. As for previous phases, on
the first round only a preliminary view of transitions in the model can be given.
After going through other activities it will be completed and refined.

Transformation of Data. During this phase, the modeller considers for each
transition the three following questions, and performs the corresponding net
construction:

1. What is taken as input? (Connect corresponding places with input arcs);
2. What is produced as output? (Connect corresponding places with output

arcs);
3. How are the tokens transformed? (Provide input and output arc expressions).

If there is a special input format, it can be reflected in the input arc inscription. If
the output is somehow calculated from input variables, the corresponding output
arc must be assigned with a formula, representing these calculations in terms of
CPN. Often, the formulae from the source code cannot be applied directly and
need to be adapted w.r.t. the chosen level of abstraction.

Conditions on Events. Here, as in the previous phase, we consider the set
of transitions. The focus this time is on the special conditions under which
a transition can be fired. In practice the conditions for most transitions are
modelled by the matching of tokens in input places with arc expressions. In
this case the transition has a guard true that can be omitted in the model.
But sometimes for better readability of the model, and also to prevent having
too large sets of places and transitions, it can prove better to formulate such a
condition as a guard of the transition.

The goal of this activity is to find such cases and to figure out the guards. It
can happen that some condition is not possible to express on the selected level
of data abstraction. If so, the colour domains created in the first activity must
be revised, as well as their occurrences in parts of the CPN that have already
been built. Thus, an additional round of activities is started.

So, in this section we gave the detailed guidelines to follow in order to model
a system starting from high level object oriented source code. In the next section
these guidelines will be applied step-by-step to the industrial case.

3 Application of the Guidelines to the NEO Protocol

This section illustrates modelling guidelines with examples from modelling pro-
cess of the NEO protocol. The protocol, designed to handle a large distributed
database over a cluster of machines, was described in [4,5]. Its main charac-
teristics are shortly summarised in Section 3.1. This specification was part of
an industrial project which aimed at validating the protocol and its prototype
implementation both designed and developed by the NEXEDI company. It was
implemented in Python, but our approach is not specific to this language.



78 A. Dedova and L. Petrucci

3.1 Brief Description of the NEO Protocol

A more extensive description and analysis of the NEO protocol can be found
in [4] and [5].

Different kinds of nodes play dedicated roles in the protocol, as depicted by
the architecture in Figure 3:

storage nodes handle the database itself. Since the database is distributed,
each storage node cares for a part of the database, according to a partition
table. To avoid data loss in case of a node failure, data is duplicated, and is
thus handled by at least two storage nodes.

master nodes handle the transactions requested by the client nodes and for-
ward them to the appropriate storage nodes. A distinguished master node,
called primary master, handles the operations. Secondary masters (i.e. the
other master nodes) are ready to become primary master in case of a failure
of this node. They also inform other nodes of the identity of the primary
master.

the administration node is used for manual setup if needed.
client nodes correspond to the machines running applications concerned with

the database objects. Thus, they request either read or write operations.
They first ask the primary master which storage nodes are concerned with
their data, and can then contact them directly.

The life cycle of the NEO protocol is depicted in Figure 4.
At the system start, the primary master is elected among all master nodes.

The primary master maintains the key information for the protocol to operate.
After the election of a primary master, the system goes through various stages

with the purpose of checking that all transactions were completely processed, and
thus that the database is consistent across the different storage nodes (bootstrap
protocol).

Finally, the system enters its operational state. Clients can then access the
database through the elected primary master.

As for storage nodes, once they are connected to the primary master, they
check the consistency of the information they detain, and initialise their service
before being ready to serve requests.

3.2 Grounding

Each step described in Section 2.1 is now applied.

Understand Structure. This step is difficult to illustrate on a real example since
it implies working on extensive code. The conclusions cannot be confirmed by
a small piece of code. Nevertheless, for the NEO protocol, at this stage we can
state the following, and confirm the brief description from Section 3.1.

The main entities are nodes of the cluster, of four types: master, storage, client
and admin nodes. For each of these types there is a corresponding class in the
source code.



From Code to Coloured Petri Nets: Modelling Guidelines 79

Secondary Masters

Primary Master

Administration Node

Client Nodes Storage Nodes

Fig. 3. Protocol architecture

time
recover verification service

elected

verification initialisation service
conn to pm

The primary master

A storage node

Fig. 4. Phases of bootstrap process

The life cycle of nodes leads them through different phases implemented by an
auxiliary class (RecoveryManager, VerificationManager) or a method of the cor-
responding node class (ElectPrimary, VerifyData, Initialize, DoOperation). Also,
depending on the phase of the protocol, a node changes its message handlers.

Choose Key Elements. Based on the conclusions of the previous step and on the
verification issues, we decided to focus on master and storage nodes. This paper
does not get into the details of the numerous properties to check, a large part of
which can be found in [4] and [5]. Many properties were provided as an informal
statement by the code developers. For example, only a single node is elected as
a primary master; all shared information (partition tables, identifiers) has been
made consistent for the service phase to take place.

Most attention is payed to the election of the primary master and to the
bootstrap process (everything between election and operational state). Later on
in this paper we focus on bootstrap phase. For this phase a successful scenario
implies that the primary master (supposed to be correctly chosen during election
phase) checks that its critical information is up-to-date (recovery phase), veri-
fies the coherence of the unfinished transactions (verification phase) and allows
storage nodes to start operation (service phase).



80 A. Dedova and L. Petrucci

Therefore, we chose the following fragments of code for detailed analysis:

1. master node application

1 def i n i t ( s e l f , c o n f i g ) #i n i t i a l i s a t i o n o f a master node
2 def run ( s e l f ) #main l i f e c y c l e o f a master node
3 def p l a yPr ima ryRo l e ( s e l f ) #de s c r i b e s the b eh a v i o u r o f the p r ima ry master
4 def runManager( s e l f , mana g e r c l a s s ) #load s a s p e c i f i c manager
5 def ch a ng eC l u s t e r S t a t e ( s e l f , s t a t e )
6 #changes the s t a t e o f the whole c l u s t e r

2. recovery manager class

1 def i n i t ( s e l f , c o n f i g )#i n i t i a l i s a t i o n o f the r e co v e r y manager
2 def run ( s e l f ) #de s c r i b e s the main a c t i v i t y o f the manager
3 def bu i l dF romScra tch ( s e l f ) #c a l l e d i f the p a r t i t i o n t a b l e i s i n j u r e d

3. verification manager class

1 def i n i t ( s e l f , app ) #i n i t i a l i s a t i o n o f the v e r i f i c a t i o n manager
2 def askStorageNodesAndWai t ( s e l f , packet , n o d e l i s t )
3 #c a l l e d each t ime when the same message i s s e n t to a l l SN
4 #and the answers a r e r e q u i r e d i n o r d e r to co n t i n u e boot .
5 def run ( s e l f ) #de s c r i b e s the main a c t i v i t y o f the manager
6 def v e r i f yD a t a ( s e l f ) #v e r i f i e s c o n s i s t e n c y o f u n f i n i s h e d t r a n s a c t i o n s
7 def v e r i f yT r a n s a c t i o n ( s e l f , t i d )
8 #v e r i f i e s tha t d i f f e r e n t r e p l i c a s o f the t r a n s a c t i o n
9 #are cohe r en t

4. storage node application

1 def i n i t ( s e l f , c o n f i g ) #i n i t i a l i s a t i o n o f a s t o r a g e node
2 def run ( s e l f ) #main l i f e c y c l e o f a s t o r a g e node
3 def connectToPr imary ( s e l f ) #connect s to the p r ima ry master
4 def v e r i f yD a t a ( s e l f ) #laun ch e s v e r i f i c a t i o n phase
5 def i n i t i a l i z e ( s e l f ) #laun ch e s i n i t i a l i s a t i o n phase

Find Interactions. The nodes in the cluster need to communicate with one an-
other. For this purpose they use a class EventManager. It describes the mecha-
nism for sending and receiving messages. To treat them, each node has its own
handlers, different for the different phases of the protocol. Thus, they should be
added to our list of pieces of code.

Another means for nodes collaboration in the cluster is a partition table. It is
implemented as a class that stores the distribution of data among storage nodes.
This class is another key element and should also be added to the analysis list.

The master and storage applications also use some global variables to allow
their methods to know the state of the application (primary, operational, has pt
— partition table). This information should be kept aside to be used during
modelling.

Secondary Elements. When this stage occurs, all significant parts of the project
and their communications are identified. It is then time to make rather crude
abstractions on objects that could not be eliminated from the model, but must
be simplified because of the abstraction level.

For example, for the NEO protocol we made following abstractions:

1. The complex message structure, defined in a class package is modelled as an
integer number;



From Code to Coloured Petri Nets: Modelling Guidelines 81

2. Connection, described as a group of classes, is modelled as a pair of nodes,
that are considered to be connected;

3. Transaction and object of the database, that have a lot of fields, such as serial
number, history, data, etc., are modelled by their identification numbers.

Storage Global

Poll Verification

Handle Mes-
sage: DelT, ComT,
AskUT, AskTI,
AskOP, AskLID,
AskPT, NotPCh,
StartOp, StopOp

Poll Identifica-
tion

Handle Mes-
sage: AnsPT,
AnsLID, AnsNI,
NotNI

Master Global

Run Primary

Recover

Poll Recover

Verify Data

Demand Poll Verification

Handle Mes-
sage: AnsUT,
AnsTI, AnsOP,
TNF, ONF

Partition Table

Fig. 5. Hierarchy of models

Divide into Modules. Figure 5 presents the subnets structure of the bootstrap
model. Let us discuss how it was created step-by-step.

The methods chosen for detailed analysis in the second step can be divided into
two groups: those concerning a master and a storage node. Thus, nets “Master
Global” and “Storage Global” will be constructed starting from source code of
methods init and run of the corresponding cluster nodes. The master node net
will also include the analysis of playPrimaryRole method and the storage node
connectToPrimary method.

A storage node calls two methods corresponding to verification and initialisa-
tion phases. They can become sub-modules of “Storage Global”. During each of
these phases, a number of message types is treated. The nets, modelling the han-
dlers of these messages, will be sub-nets of the “Verification” and “Initialisation”
nets.

The primary master calls recovery and verification manager during the boot-
strap. So, it is natural to model this with sub-modules corresponding to each
manager. Thus, the “Recovery” net is the result of the code analysis of methods
runManager and changeClusterState of the primary master and methods init ,
run and buildFromScratch of the recovery manager class. It has one sub-net that
corresponds to method poll used for treating incoming messages. Similarly, “Ver-
ifyData” is built on the basis of methods runManager and changeClusterState of
the primary master and all methods from verification manager class chosen for
detailed analysis. During modelling, this sub-module has become too compli-
cated, so it was decided to replace some parts of it by sub-nets. Thus, method



82 A. Dedova and L. Petrucci

1 class C e l l ( o b j e c t ) :
2 def i n i t ( s e l f , node , s t a t e = C e l l S t a t e s . UP TO DATE ) :
3 s e l f . node = node
4 s e l f . s t a t e = s t a t e
5 . . .
6

7 class Pa r t i t i o nT ab l e ( o b j e c t ) :
8 def i n i t ( s e l f , n um pa r t i t i o n s , n um r ep l i c a s ) :
9 s e l f . i d = None

10 s e l f . np = num pa r t i t i o n s
11 s e l f . n r = num r ep l i c a s
12 s e l f . n um f i l l e d r ow s = 0
13 s e l f . p a r t i t i o n l i s t = [ [ ] for in x range ( n um pa r t i t i o n s ) ]
14 . . .

Fig. 6. Fragment of the source code declaration of partition table class

askStorageNodesAndWait that is called several times was modelled by a “De-
mand” net. Treating incoming messages corresponds to “Poll Verification” net
with sub-nets, corresponding to handlers of different message types.

As it was found at the third step that the partition table class plays major role
in interactions between nodes. Since this class is rather sophisticated, it forms a
separate net “Partition Table”.

3.3 Code Analysis

In this subsection we will give some detailed examples of application the guide-
lines from Section 2.2 to the source code of the NEO protocol.

Data Structures. In order to show how the colour domains can be constructed
from data structures, let us consider the piece of code in Figure 6. It is a fragment
of the partition table class definition where the internal fields are declared. First,
the class for a cell of the partition table is declared. It has two attributes: a
storage node and a state. Knowing that a partition cell has two possible states
(up-to-date or not), we can declare a colour domain PSTATE as a set of these
two values and a colour domain PT CELL as a product of storage node type and
cell state.

c o l s e t PSTATE = with UTD | OOD; (∗ the s e t o f s t a t e s o f p a r t i t i o n ∗)
c o l s e t SN = index sn wi th 0 . .N; (∗ the s e t o f s t o r a g e nodes ∗)
c o l s e t PT CELL = product SN∗PSTATE ; (∗ a c e l l o f p a r t i t i o n t a b l e ∗)

Now let us consider the beginning of the partition table class constructor. It
starts with assigning the values of variables for the number of replicas and the
number of partitions. Then it creates a two-dimension list. In one dimension its
size is equal to the number of partitions, in the other dimension the size is not
specified. So, we declare three auxiliary colour domains: a set of partitions, a
list of partition cells and a partition row, that is a product of a partition and a
list of cells. Finally, a partition table colour domain consists of a list of partition
rows.



From Code to Coloured Petri Nets: Modelling Guidelines 83

1 def run ( s e l f ) :
2 s e l f . app . ch a ng eC l u s t e r S t a t e ( C l u s t e r S t a t e s . VERIFYING)
3 s e l f . v e r i f yD a t a ( )
4 . . .
5

6 def v e r i f yD a t a ( s e l f ) :
7 em , nm = s e l f . app . em , s e l f . app .nm
8 neo . l i b . l o g g i n g . debug ( ’ wa i t i n g f o r the c l u s t e r to be o p e r a t i o n a l ’ )
9 while not s e l f . app . pt . o p e r a t i o n a l ( ) : em . p o l l ( 1 )

10 neo . l i b . l o g g i n g . i n f o ( ’ s t a r t to v e r i f y data ’ )
11 s e l f . a skStorageNodesAndWai t ( Packets . A s kUn f i n i s h edT r a n s a c t i o n s ( ) ,
12 [ x for x in s e l f . app .nm. g e t I d e n t i f i e d L i s t ( ) i f x . i s S t o r a g e ( ) ] )
13 . . .
14

15 def askStorageNodesAndWai t ( s e l f , packet , n o d e l i s t ) :
16 p o l l = s e l f . app . em . p o l l
17 o p e r a t i o n a l = s e l f . app . pt . o p e r a t i o n a l
18 u u i d s e t = s e l f . u u i d s e t
19 u u i d s e t . c l e a r ( )
20 for node in n o d e l i s t :
21 u u i d s e t . add ( node . getUUID ( ) )
22 node . ask ( packet )
23 while True :
24 p o l l ( 1 )
25 i f not u u i d s e t :
26 break

Fig. 7. Fragment of the source code of the verification phase

c o l s e t PART = index np wi th 0 . .NP (∗ the s e t o f p a r t i t i o n s ∗)
c o l s e t PT CELLl i s t = l i s t PT CELL with 0 . . (NR+1); (∗ a c e l l l i s t ∗)
c o l s e t PT ROW = product PART∗PT CELLl i s t ; (∗ a p a r t i t i o n t a b l e row ∗)
c o l s e t PT = l i s t PT ROW with 0 . .NP; (∗ the p a r t i t i o n t a b l e type ∗)

The following colour domain definitions will be used later on:

c o l s e t MN = index mn with 0 . .M; (∗ the s e t o f master nodes ∗)
c o l s e t NODE = union s1 : SN + m1:MN; (∗ the s e t o f a l l nodes ∗)
c o l s e t CSTATE = with VER | REC | RUN | STP ; (∗ the s e t o f c l u s t e r s t a t e s ∗)
c o l s e t MTYPE = with StopOp | StartOp | AskUT | AskPT | AskNI | AskLID |

AskTI | AskOP | AnsUT | AnsNI | AnsPT | AnsLID |
AnsTI | AnsOP | NotNI | NotPCh | DelT | ComT;
(∗ the s e t o f message t yp e s ∗)

c o l s e t MESS = product MTYPE∗NODE∗NODE∗INT ; (∗ the s e t o f messages ∗)
c o l s e t SN l i s t l i s t SN with 0 . .N; (∗ a l i s t o f s t o r a g e nodes ∗)
c o l s e t MESSl i s t = l i s t MESS 0 . . 1 0 0 0 ; (∗ a l i s t o f messages ∗)

States and Conditions on Objects. As an illustration of the next four steps, let us
consider the beginning of the verification phase from the primary master point
of view. The corresponding source code is listed in Figure 7.

The first three lines come from the run method of the verification manager
class. We can see that the primary master changes cluster state to VERIFYING
and calls the verifyData method. So, we can start by defining two places:

– start verif with colour domain MN (the state of the primary master at
the start of the verification manager);

– c state with colour domain CSTATE (the current state of the cluster).



84 A. Dedova and L. Petrucci

Then, the primary master waits until the partition table becomes operational
(line 9). We define a new place, corresponding to this state of the primary master:

– wait pt with colour domain MN.

After that, it calls a method askStorageNodesAndWait, where it sends requests
about unfinished transactions to storage nodes, and waits until the list uuid set
becomes empty. This waiting period can be modelled as a new place. In order to
send messages to other nodes we need a channel place. According to the protocol,
it must be a FIFO list. Hence, two places are added:

– network with colour domain MESSlist;

– wait ut with colour domain MN.

Finally, the primary master starts the verification of transactions one by one.
This code is out of scope of our example, but we can at least give the next state
of the primary master by adding a new place:

– verifying trans with colour domain MN.

Events and actions Now, we need to extract the important actions from the
same piece of code. The first method call changeClusterState can be considered
as one of them. So, we add the first transition:

– change c state.

When getting to the next lines, we see that line 7 contains nothing but shortcuts
and line 8 writes the current state to the log. The next important action is
em.poll(1) that is executed while the primary master waits for the partition
table to be operational. Here, it is supposed to treat different messages. For
the sake of readability of the model, we decide to organise message handlers
in separate sub-nets. A new transition is added, coloured in black to symbolise
there is a net behind.

– poll pm verif .

Line 10 is not important since it writes a log. Then the askStorageNodesAndWait
method is called with a list of all identified storage nodes as an argument. Inside
this method some shortcuts occur (lines 16–18) and the list is cleared uuid set.
Then, considering the storage nodes from the input list one by one, they are
added to uuid set and send a request for unfinished transactions (which is also
given as input parameter, defined in line 11). An additional place is needed to
store the identified storage nodes. So, we go to the previous step, add this place,
and return to add a new transition:

– s iden with colour domain SN.
– ask ut .

Then the primary master is waiting once again, executing poll (line 24). So, we
duplicate the corresponding transition. Finally, we add a transition that models
the exit of this process.

– got ut .



From Code to Coloured Petri Nets: Modelling Guidelines 85

Transformations of Data. Let us consider the transitions we have up to now
one by one in order to build arcs and provide their expressions. To do so, some
variables should first be declared. Let pm: MN; cst: CSTATE. The whole net can
be seen in Figure 8. Transition change c state moves the primary master token

start verif

MN

c state

CSTATE

partition table

PT

wait pt

MN

s iden

SNlist

network

MESS

wait ans

SNlist

wait ut

MN

verifying trans

MN

change c state

〈pm〉

〈pm〉

〈cst〉
〈VERIF〉

poll pm verif
〈pm〉
〈pm〉

ask ut

[operate(ptbl)]

〈pm〉

〈pm〉

〈sl〉
〈ptbl〉

〈sl〉

〈broadcast(AskUT, sl, ml〉

poll pm verif
〈pm〉
〈pm〉

got ut

〈pm〉

〈pm〉

〈[ ]〉

Fig. 8. Model of verification manager — part 1

from place start verif to wait pt and replaces the current cluster state token
with a VERIF one.

Transition got ut moves the primary master from place wait ut to place
verifying trans. But it can fire only when all answers are received from the stor-
age nodes. Here an additional place, similar to the variable uuid set (line 25),
is created, that will contain all storage nodes, answers from which the primary
master is waiting. Transition got ut must fire if and only if this place is empty.
However, it is not possible to check if the multiset is empty without inhibitor
arc. One of the solutions is to change the colour domain to SNlist, since a list
can be checked for emptiness.

– wait ans with colour domain SNlist.

A new variable sl: SNlist is also declared.
Transition poll pm verif is replaced by a sub-net. Here it simply takes the

primary master token and puts it back. Handlers of messages, that are hidden
behind them, can change the state of some variables, e.g. uuid set, and, respec-
tively, the content of place wait ans.



86 A. Dedova and L. Petrucci

Transition ask ut moves the primary master token from place wait pt to
wait ut . It also sends messages to all storage nodes from place s iden . Here
we see that it could be convenient to change the colour domain of s iden to
SNlist. In this case we can directly put this list into place wait ans . Also we
can write an SML function broadcast, that sends the same message to each node
from the list.

fun b roadca s t (msgType , l ) =
L i s t . f o l d r ( fn ( sNode , token s ) =>

1 ‘ (msgType , s1 ( sNode ) , pm, 0) ++ token s ) [ ] l

A new variable declaration is needed: ml: MESSlist.

Conditions on events In this example, there is only a single transition that
requires an auxiliary condition to fire. It is ask ut, since it can fire only if the
partition table is operational (see lines 9, 11, 22 of figure 7). To make this check,
first of all, we need to add an additional place:

– partition table with colour domain PT,

together with a new variable ptbl: PT. A guard must also be added. The partition
table is operational if and only if there is at least one up-to-date cell for each
partition. So, we can write the following SML function.

1 fun o p e r a t i o n a l pt = L i s t . a l l ( fn ( , row ) =>
2 L i s t . e x i s t s ( fn ( , s t ) => s t = UP) row ) pt

3.4 Analysis and Feedback

The properties the protocol should satisfy were model-checked. The outcome of
this analysis was suspicious scenarios. The design approach allowed for tracing
back the execution sequence in the source code, and thus the engineers could
check their validity. Properties for the election of a primary master node are
detailed in [4] as well as their analysis. Some 70 properties were given by the
engineers (in natural language). We first grouped these properties, and figured
out which ones were relevant for our purposes. Examples of such properties are
“At all times, there is at most one primary master node”, which concerns only
the master nodes election phase, “When the primary master is in the verification
state, a partition table is selected”, which deals with the overall system. Then
those properties of interest for the primary master election were analysed using
several tools:

– a graphical user interface, Coloane [2];
– the CPN-AMI verification platform [3];
– CPNTools for coloured nets interface and state space analysis [1];
– the HELENA high-level nets analyser [10].

Some scenarios were due to a too coarse abstraction level, but the assumptions
made during modelling did hold and guarantee the appropriate behaviour of the
code. An interesting erroneous scenario pointed out the possibility of a livelock in



From Code to Coloured Petri Nets: Modelling Guidelines 87

the primary master election process. However, this never happened in practice, as
the developers found out it was prevented by a side-effect of a Python function.
Nevertheless, they could fix it, such a side effect being undesirable, in case it
doesn’t happen in a future version of Python.

The lessons learned in the Neo protocol analysis project confirmed that the
modelling approach from source code made it relatively easy to trace back poten-
tially undesirable scenarios. Of course, the level of abstraction has some influence
on the results, in that some of the scenarios examined do not actually lead to
an error. However, it gave the engineers a better understanding of the details
of their code, of the overall process flow, and served as a basis for discussions
on the details of the protocol functioning. This was particularly useful since the
programmers that wrote the initial code were not available anymore.

4 Conclusion

In this paper we gave detailed directions on how to construct a coloured Petri
net model from a high level object oriented source code and illustrated it with a
real case example. The modelling process is divided into 2 main parts: grounding
and code analysis.

Now the following questions could be raised. Can this process be automated?
The most complicated part of the modelling process is to choose objects and
actions that are important for the goals of verification and separate them from
those that are not as useful. If a programming language could provide some kind
of priorities to data structures and methods, it may simplify the automation
process. During the industrial project in which the NEO protocol was analysed,
a code-tagging approach to facilitate both the modelling and the interpretation
of the verification results was envisioned for future work. Moreover, part of our
group works on a tool-supported Petri net model design method from a nat-
ural language description. That tool provides the user with specific guidelines
for model construction, mainly based on a refinement approach. Its integration
within a larger software platform, namely CosyVerif [15] will also provide anal-
ysis capabilities. Further work could include the integration of both approaches
so as to have a better feedback on the original source code.

Another interesting question is could these modelling guidelines be applied
elsewhere? Even if not directly, but with some refinements, they could be applied
to any reverse-engineering process providing a coloured Petri net or a similar
model of concurrency.

References

1. CPN Tools Homepage: http://cpntools.org/
2. The Coloane tool Homepage, https://coloane.lip6.fr/
3. The CPN-AMI Homepage, http://move.lip6.fr/software/CPNAMI/
4. Choppy, C., Dedova, A., Evangelista, S., Hong, S., Klai, K., Petrucci, L.: The

NEO protocol for large-scale distributed database systems: Modelling and initial
verification. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128,
pp. 145–164. Springer, Heidelberg (2010)

http://cpntools.org/
https://coloane.lip6.fr/
http://move.lip6.fr/software/CPNAMI/


88 A. Dedova and L. Petrucci

5. Choppy, C., Dedova, A., Evangelista, S., Kläı, K., Petrucci, L., Youcef, S.: Mod-
elling and formal verification of the NEO protocol. In: Jensen, K., van der Aalst,
W.M., Ajmone Marsan, M., Franceschinis, G., Kleijn, J., Kristensen, L.M. (eds.)
Transactions on Petri Nets and Other Models of Concurrency VI. LNCS, vol. 7400,
pp. 197–225. Springer, Heidelberg (2012)

6. Choppy, C., Petrucci, L., Reggio, G.: A modelling approach with coloured Petri
nets. In: Kordon, F., Vardanega, T. (eds.) Ada-Europe 2008. LNCS, vol. 5026,
pp. 73–86. Springer, Heidelberg (2008)

7. Denaro, G., Pezzé, M.: Petri nets and software engineering. In: Desel, J., Reisig, W.,
Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098,
pp. 439–466. Springer, Heidelberg (2004)

8. Desel, J., Petrucci, L.: Aggregating views for Petri net model construction. In:
Proc. Workshop on Petri Nets and Distributed Systems, PNDS 2008, Associated
with Petri Nets 2008, pp. 17–31. Xi’an, China (2008)

9. Duri, S., Buy, U., Devarapalli, R., Shatz, S.M.: Application and experimental eval-
uation of state space reduction methods for deadlock analysis in ada. ACM Trans.
Softw. Eng. Methodol. 3(4), 340–380 (1994)

10. Evangelista, S.: High Level Petri Nets Analysis with Helena. In: Ciardo, G., Daron-
deau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg
(2005)

11. Farooq, U., Lam, C.P., Li, H.: Transformation methodology for UML 2.0 activ-
ity diagram into colored Petri nets. In: Proceedings of the Third Conference on
IASTED International Conference: Advances in Computer Science and Technol-
ogy, ACST 2007, Anaheim, CA, USA, pp. 128–133. ACTA Press (2007)

12. Kerkouche, E., Chaoui, A., Bourennane, E.-B., Labbani, O.: A uml and colored
petri nets integrated modeling and analysis approach using graph transformation.
Journal of Object Technology 9(4), 25–43 (2010)

13. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Basic Concepts. Springer (1992)

14. Saldhana, J.A., Shatz, S.M.: Uml diagrams to object petri net models: An approach
for modeling and analysis. In: International Conference on Software Engineering
and Knowledge Engineering, pp. 103–110 (2000)

15. The CosyVerif group. CosyVerif Web page, http://www.cosyverif.org
16. Voron, J., Kordon, F.: Transforming Sources to Petri Nets: A Way to Analyze

Execution of Parallel Programs. In: International Workshop on Petri Nets Tools
and APplications (PNTAP), pp. 1–10. ACM (2008)

http://www.cosyverif.org


Using Integer Time Steps for Checking
Branching Time Properties of Time Petri Nets

Agata Janowska1, Wojciech Penczek2, Agata Półrola3, and Andrzej Zbrzezny4

1 Institute of Informatics, University of Warsaw, Poland
janowska@mimuw.edu.pl

2 Institute of Computer Science PAS and UPH Siedlce, Poland
penczek@ipipan.waw.pl

3 University of Łódź, FMCS, Poland
polrola@math.uni.lodz.pl

4 Jan Długosz University, IMCS, Poland
a.zbrzezny@ajd.czest.pl

Abstract. Verification of timed systems is an important subject of re-
search, and one of its crucial aspects is the efficiency of the methods de-
veloped. Extending the result of Popova which states that integer time
steps are sufficient to test reachability properties of time Petri nets [8,11],
in our work we prove that the discrete-time semantics is also sufficient
to verify properties of the existential and the universal version of CTL∗

of TPNs with the dense semantics. To show that considering this seman-
tics instead of the dense one is profitable, we compare the results for
SAT-based bounded model checking of the universal version of CTL−X

properties and the class of distributed time Petri nets.

1 Introduction

Verification of time-dependent systems is an important subject of research. The
crucial problem to deal with is the state explosion: the state spaces of these
systems are usually very large due to infinity of the dense time domain, and
are likely to grow exponentially in the number of concurrent components of the
system. This influences strongly the efficiency of the model checking methods.

The papers of Popova [8,11] show that in the case of checking reachability
for systems modelled by time Petri nets (i.e., while testing whether a marking
of a net is reachable) one can use discrete (integer) time steps instead of real-
valued ones. This reduces the state space to be searched. The aim of our work
is to investigate whether the result of Popova can be extended, i.e., whether
the discrete-time semantics can replace the dense-time one also while verifying
a wider class of properties of dense-time Petri net systems. In this paper we
present our preliminary result, i.e., prove that the discrete-time model can be
used instead of the dense-time one for verifying properties of the existential and
the universal version of CTL∗. To show that such an approach can be profitable
we perform some experiments, using an implementation for SAT-based bounded
model checking of the universal version of CTL−X and the class of distributed

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 89–105, 2013.
© Springer-Verlag Berlin Heidelberg 2013



90 A. Janowska et al.

time Petri nets with the discrete-time semantics [6], as well as its modification
for the dense-time case.

The rest of the paper is organised as follows: Sec. 2 discusses the related
work. Sec. 3 introduces time Petri nets and their dense and discrete models.
Sec. 4 presents the logics ECTL∗ and ACTL∗. Sec. 5 deals with the theoretical
considerations, while Sec. 6 presents the experimental results. Sec. 7 contains
final remarks and sketches directions of our further work.

2 Related Works

In our work we are interested in branching time properties. To our best knowl-
edge the fact that the discrete-time semantics is sufficient to verify ECTL∗ or
ACTL∗ properties of time Petri nets (TPNs) with the dense-time semantics has
never been proven before.

The topic of verification of dense-time Petri nets using integer time steps has
been studied in several publications. In the paper [8] it is shown how to construct
a reachability graph whose vertices are reachable integer states for a time Petri
net in which all the latest firing times are finite. The main theorem of [8] states
that for each run of a TPN, starting at its initial state, it is possible to find
a corresponding run which starts at the initial state as well, and visits integer
states only. Due to this theorem a discrete analysis of boundedness and liveness
of a TPN is possible. The work [9] extends the results of [8] to arbitrary TPNs.
It uses the idea of “freezing” the clock values of the transitions with infinite
Lft once their Eft is reached. This way a reduced (finite) reachability graph of
“essential” (integer) states is obtained.

In [10] and [11] the state space of a TPN is characterised parametrically.
The main theorems of [11] state that for an arbitrary feasible execution path
where the clocks have real values it is possible to replace these real values by
integer ones to obtain another feasible path. The differences between the clock
values of each enabled transition at a given marking in both paths are always
smaller than 1, and so are the differences between the total times of both the
executions. In the paper [10] an enumerative procedure for reducing the state
space is introduced. The idea is to divide a problem into a finite number of
smaller problems, which can be solved recursively with a methodology inspired
from dynamic programming. Moreover, it extends the method of [11] to the nets
with real-valued time steps (in [11] rational time steps are allowed only) and
with infinite latest firing times.

The authors of the above-mentioned papers claim that the knowledge of the
reachable integer states is sufficient to determine the entire behaviour of the net
at any point in time. However, all these papers show the trace equivalence be-
tween a continuous model and a (restricted) discrete one. It is very well known
that the trace equivalence preserves linear time properties, but it does not pre-
serve branching time properties (see Fig. 1 and [3]), so the word “behaviour”
should probably be understood in a way following from a fragment of [10]: “The
properties of a Petri net, both the classical one as well as the TPN, can be divided



Using Integer Time Steps for Checking Branching Time Properties 91

a a

b c

p1 p2

a

b c

p1 p2

Fig. 1. Two trace equivalent models which are not (bi)similar. A formula distinguishing
them is e.g. ϕ = EF(EXp1 ∧ EXp2) which holds for the model on the right only.

into two parts: There are static properties, like being pure, ordinary, free choice,
extended simple, conservative, etc., and there are dynamic properties like being
bounded, live, reachable, and having place- or transitions invariants, deadlocks,
etc. While it is easy to prove the static behavior of a net using only the static
definition, the dynamic behavior depends on both the static and dynamic defi-
nitions and is quite complicated to prove.”, so as the dynamic properties listed.
Moreover, the result of the papers [8,9] does not imply bisimulation between
both the models, as the construction given in these papers cannot be used to
prove it. We discuss this on p. 101, showing that the relation R used in our proof
and derived from the result of [8,9] cannot be used to prove bisimulation. This
follows from the fact that the integer run π′ “justifying” σ′Rσ (generated ac-
cording to the construction of [8]) and the dense run π occurring in the relation
do not need to “branch” in the same way. Similarly, the result of [10,11] does not
imply (bi)simulation as well. Although it is not stated directly, the construction
given in these papers is based on a parametric description of the classes of the
forward-reachability graph for a net considered (i.e., a structure in which the
initial state class contains the initial state of the net and all the time successors
of this state, and the further classes are built according to the following scheme:
given a state class Cx corresponding to firing a sequence of transitions x, its
successor class on a transition t contains all the concrete states which can be
obtained by firing t at a concrete state σ ∈ Cx and then passing some time not
disabling any enabled transition). It is well known that such a structure preserves
reachability and linear time properties, but it does not preserve branching time
properties. The discrete runs constructed in both the papers are retrieved from
the dense ones to preserve nothing but visiting the same state classes as the runs
they correspond to.

This paper is a modified and improved version of our work [5], which was
published in the proceedings of a local workshop and contained a completely
different proof without an explicit definition of simulation.

3 Time Petri Nets

We start with introducing some basic definitions related to time Petri nets. For
simplicity of the presentation we focus on 1-safe time Petri nets only. However,



92 A. Janowska et al.

our result applies also to unbounded nets, which is explained in more detail in
the final section.

Let IN be the set of natural numbers (including zero), and IR (IR+) be the set
of (nonnegative) reals. Time Petri nets are defined as follows:

Definition 1. A time Petri net (TPN, for short) is a six-element tuple N =
(P, T, F,Eft, Lft,m0), where P = {p1, . . . , pnP } is a finite set of places, T =
{t1, . . . , tnT } is a finite set of transitions, F ⊆ (P × T ) ∪ (T × P ) is the flow
relation, Eft : T → IN and Lft : T → IN ∪ {∞} are functions describing the
earliest and the latest firing time of the transition, where for each t ∈ T we have
Eft(t) ≤ Lft(t), and m0 ⊆ P is the initial marking of N .

For a transition t ∈ T we define its preset •t = {p ∈ P | (p, t) ∈ F} and postset
t• = {p ∈ P | (t, p) ∈ F}, and consider only the nets having the preset and the
postset nonempty for each transition. We need also the following notations and
definitions:

– a marking of N is any subset m ⊆ P ,
– a transition t ∈ T is enabled at m (m[t〉 for short) if •t ⊆ m and t•∩(m\•t) =
∅; and leads from m to m′ if it is enabled at m, and m′ = (m \ •t) ∪ t•. The
marking m′ is denoted by m[t〉 as well, if this does not lead to misunder-
standing.

– en(m) = {t ∈ T | m[t〉};
– for t ∈ en(m), newly_en(m, t) = {u ∈ T | u ∈ en(m[t〉) ∧ (t • ∩ • u �=
∅ ∨ u • ∩ • t �= ∅)}.

Concerning the behaviour of time Petri nets, it is possible to consider the dense-
time semantics, i.e., the one in which the time steps can be of an arbitrary
(nonnegative) real-valued length, and the discrete one which considers integer
time passings only. Below we define both of them.

3.1 Dense-Time Semantics

In the dense-time semantics (the dense semantics in short) a concrete state σ of a
net N is defined as a pair (m, clock), where m is a marking, and clock : T → IR+

is a function which for each transition t ∈ en(m) gives the time elapsed since
t became enabled most recently, and assigns zero to other transitions. Given
a state (m, clock) and δ ∈ IR+, denote by clock + δ the function defined by
(clock+δ)(t) = clock(t)+δ for each t ∈ en(m), and (clock+δ)(t) = 0 otherwise.
By (m, clock) + δ we denote (m, clock + δ). The dense concrete state space of N
is a structure (T ∪ IR+, Σ, σ0,→r), where Σ is the set of all the concrete states
of N , σ0 = (m0, clock0) with clock0(t) = 0 for each t ∈ T is the initial state of
N , and →r⊆ Σ × (T ∪ IR+)×Σ is a timed consecution relation defined by:

– for δ ∈ IR+, (m, clock)
δ→r (m, clock + δ) iff (clock + δ)(t) ≤ Lft(t) for all

t ∈ en(m) (time successor),
– for t ∈ T , (m, clock)

t→r (m′, clock′) iff t ∈ en(m), Eft(t) ≤ clock(t) ≤
Lft(t), m′ = m[t〉, and for all u ∈ T we have clock′(u) = 0 for u ∈
newly_en(m, t) and clock′(u) = clock(u) otherwise (action successor).



Using Integer Time Steps for Checking Branching Time Properties 93

Notice that firing of a transition takes no time.
Given a set of propositional variables PV , we introduce a valuation function

V : Σ → 2PV which assigns the same propositions to the states with the same
markings. We assume the set PV to be such that each q ∈ PV corresponds to
exactly one p ∈ P , and use the same names for the propositions and the places.
The function V is then defined by p ∈ V (σ) iff p ∈ m for each σ = (m, ·). The
structure Mr(N ) = (T ∪ IR+, Σ, σ0,→r, V ) is a dense concrete model of N .

A dense σ-run of TPN N is a maximal (i.e., non-extendable) sequence of
states: σ0

a0→r σ1
a1→r σ2

a2→r . . ., where σ0 = σ ∈ Σ and ai ∈ T ∪ IR+ for each
i ≥ 0. A state σ is reachable in Mr(N ) if there is a dense σ0-run σ0

a0→r σ1
a1→r

σ2
a2→r . . . such that σ = σi for some i ∈ IN.

3.2 Discrete-Time Semantics

Alternatively, one can consider integer time passings only. In such a discrete-
time semantics (discrete semantics in short) a (discrete) concrete state σn of
a net N is a pair (m, clockn), where m is a marking, and clockn : T → IN is
a function which for each transition t ∈ en(m) gives the time elapsed since t
became enabled most recently, and assigns zero to the other transitions. Given a
state (m, clockn) and δ ∈ IN, we define clockn+δ and (m, clockn)+δ analogously
as in the dense-time case. The discrete concrete state space of N is a structure
(T ∪ IN, Σn, σn

0,→n), where Σn is the set of all the discrete concrete states of
N , σn

0 = (m0, clockn
0) with clockn

0(t) = 0 for each t ∈ T is the initial state of
N , and →n⊆ Σn × (T ∪ IN)×Σn is a timed consecution relation defined by:

– for δ ∈ IN, (m, clockn)
δ→n (m, clockn + δ) iff (clockn + δ)(t) ≤ Lft(t) for all

t ∈ en(m) (time successor),
– for t ∈ T , (m, clockn)

t→n (m′, clockn′) iff t ∈ en(m), Eft(t) ≤ clockn(t) ≤
Lft(t), m′ = m[t〉, and for all u ∈ T we have clockn

′(u) = 0 for u ∈
newly_en(m, t) and clockn

′(u) = clockn(u) otherwise (action successor).

Again, firing of a transition takes no time.
Given a set of propositional variables PV , we introduce valuation function

Vn : Σn → 2PV which assigns the same propositions to the states with the same
markings. Similarly to the dense case, we assume the set PV to be such that
each q ∈ PV corresponds to exactly one p ∈ P , and use the same names for the
propositions and the places. The function Vn is then defined by p ∈ Vn(σn) iff
p ∈ m for each σn = (m, ·). The structure Mn(N ) = (T ∪ IN, Σn, σn

0,→n, Vn) is
a discrete concrete model of N .

A discrete σn-run of TPN N is a maximal sequence of states: σn0
a0→n σn1

a1→n

σn2
a2→n . . ., where σn0 = σn ∈ Σn and ai ∈ T ∪ IN for each i ≥ 0. A state σn

is reachable in Mn(N ) iff there is a σn
0-run of N σn0

a0→n σn1
a1→n σn2

a2→n . . .
such that σn = σni for some i ∈ IN.



94 A. Janowska et al.

4 Temporal Logics ACTL∗ and ECTL∗

In our work we deal with the verification of properties of time Petri nets expressed
in certain sublogics of the standard branching time logic CTL∗. Below, we define
the logics of our interest.

4.1 Syntax and Sublogics of CTL∗

Let PV = {℘1, ℘2 . . .} be a set of propositional variables. The language of CTL∗

is given as the set of all the state formulas ϕs (interpreted at states of a model),
defined using path formulas ϕp (interpreted along paths of a model), by the
following grammar:

ϕs := ℘ | ¬ϕs | ϕs ∧ ϕs | ϕs ∨ ϕs | Aϕp | Eϕp

ϕp := ϕs | ϕp ∧ ϕp | ϕp ∨ ϕp | Xϕp | U(ϕp , ϕp) | R(ϕp , ϕp).

In the above ℘ ∈ PV , A (’for All paths’) and E (’there Exists a path’) are path
quantifiers, whereas X (’neXt’), U (’Until’) and R (’Release’) are state operators.
Intuitively, the formula Xϕp specifies that ϕp holds in the next state of the
path, whereas U(ϕp, ψp) expresses that ψp eventually occurs and that ϕp holds
continuously until then. The operator R is dual to U: the formula R(ϕp, ψp) says
that either ψp holds always or it is released when ϕp eventually occurs. Derived

operators are defined as Gϕp
def
= R(false, ϕp) and Fϕp

def
= U(true, ϕp), where

true
def
= ℘ ∨ ¬℘, and false

def
= ℘ ∧ ¬℘ for an arbitrary ℘ ∈ PV . Intuitively,

the formula Fϕp specifies that ϕp occurs in some state of the path (’Finally’),
whereas Gϕp expresses that ϕp holds in all the states of the path (’Globally’).

Next, we define some sublogics of CTL∗:

ACTL∗ : the fragment of CTL∗ in which the state formulas are restricted such
that negation can be applied to propositions only, and the existential quan-
tifier E is not allowed,

ECTL∗ : the fragment of CTL∗ in which the state formulas are restricted such
that negation can be applied to propositions only, and the universal quanti-
fier A is not allowed,

ACTL : the fragment of ACTL∗ in which the temporal formulas are restricted
to positive boolean combinations of AU(ϕ, ψ), AR(ϕ, ψ), and AXϕ only.

ECTL : the fragment of ECTL∗ in which the temporal formulas are restricted
to positive boolean combinations of EU(ϕ, ψ), ER(ϕ, ψ) and EXϕ only.

L−X denotes the logic L without the next-step operator X.

4.2 Semantics of CTL∗

Let PV be a set of propositions. A model for CTL∗ is a tuple M =
(L, S, s0,→, V ), where L is a set of labels, S is a set of states, s0 ∈ S is the
initial state, → ⊆ S × L × S is a total successor relation1, and V : S −→ 2PV

1 Totality means that (∀s ∈ S)(∃s′ ∈ S) s→s′.



Using Integer Time Steps for Checking Branching Time Properties 95

is a valuation function. For s, s′ ∈ S the notation s→s′ means that there is
l ∈ L such that s

l→ s′. Moreover, for s0 ∈ S a path π = (s0, s1, . . .) is an
infinite sequence of states in S starting at s0, where si→si+1 for all i ≥ 0,
πi = (si, si+1, . . .) is the i-th suffix of π, and π(i) = si.

Given a model M , a state s, and a path π of M , by M, s |= ϕ (M,π |= ϕ) we
mean that ϕ holds in the state s (along the path π, respectively) of the model
M . The model is sometimes omitted if it is clear from the context. The relation
|= is defined inductively as follows:

M, s |= ℘ iff ℘ ∈ V (s), for ℘ ∈ PV,
M, s |= ¬℘ iff M, s �|= ℘, for ℘ ∈ PV,
M, x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ, for x ∈ {s, π},
M, x |= ϕ ∨ ψ iff M,x |= ϕ or M,x |= ψ, for x ∈ {s, π},
M, s |= Aϕ iff M,π |= ϕ for each path π starting at s,
M, s |= Eϕ iff M,π |= ϕ for some path π starting at s,
M, π |= ϕ iff M,π(0) |= ϕ, for a state formula ϕ,
M, π |= Xϕ iff M,π1 |= ϕ,
M, π |= ϕUψ iff (∃j ≥ 0)

(
M,πj |= ψ and (∀0 ≤ i < j) M,πi |= ϕ

)
,

M, π |= ϕRψ iff (∀j ≥ 0)
(
M,πj |= ψ or (∃0 ≤ i < j) M,πi |= ϕ

)
.

Moreover, we assume M |= ϕ iff M, s0 |= ϕ, where s0 is the initial state of M .

4.3 Equivalence Preserving ACTL∗ and ECTL∗

Let M = (L, S, s0,→, V ) and M ′ = (L′, S′, s′0,→′, V ′) be two models.

Definition 2 ([4]). A relation �sim⊆ S′ × S is a simulation from M ′ to M if
the following conditions hold:

• s′0 �sim s0,
• for each s ∈ S and s′ ∈ S′, if s′ �sim s, then V (s) = V ′(s′), and for every

s1 ∈ S such that s l→ s1 for some l ∈ L, there is s′1 ∈ S′ such that s′ l′→
′
s′1

for some l′ ∈ L′ and s′1 �sim s1.

The model M ′ simulates M (M ′ �sim M) if there is a simulation from M ′ to M .
The models M , M ′ are simulation equivalent iff M �1

sim M ′ and M ′ �2
sim M

for some simulations �1
sim⊆ S × S′ and �2

sim⊆ S′ × S. Two models M and
M ′ are called bisimulation equivalent if M ′ �sim M and M(�sim)−1M ′, where
(�sim)−1 is the inverse of �sim.

The following theorem holds:

Theorem 1 ([4]). Let M , M ′ be two simulation equivalent models, where the
range of the valuation functions V, V ′ is 2PV . Then, M, s0 |= ϕ iff M ′, s′0 |= ϕ,
for any formula ϕ over PV such that ϕ ∈ ACTL∗∪ ECTL∗.



96 A. Janowska et al.

5 Discrete- vs. Dense-Time Verification for ACTL∗ and
ECTL∗

It is easy to see that the models Mr(N ) and Mn(N ) can be used in ACTL∗ and
ECTL∗ verification for a net N with the semantics the model corresponds to (as
both the models meet the definition of a model for CTL∗). However, it is also
not difficult to see that the second model is smaller and less prone to the state
explosion problem. The aim of our work is then to show that both the models
are equivalent w.r.t. checking ACTL∗ and ECTL∗ properties of time Petri nets.
In our proof we make use of the approach of Popova presented in the paper [8].

Consider the dense concrete model Mr(N ) = (T ∪ IR+, Σ, σ0,→r, V ) of a
TPN N . A state σ = (m, clock) ∈ Σ is called an integer-state if clock(t) ∈ IN for
all t ∈ T . An integer σ-run of N is a sequence of states σ0

a0→r σ1
a1→r σ2

a2→r . . .,
where σ0 = σ ∈ Σ and ai ∈ T ∪ IN for each i ≥ 0. Note that all the states of
an integer-run starting at an integer-state are integer-states as well. Thus, it is
easy to see that the following holds:

Lemma 1. For a given time Petri net N the model Mr(N ) reduced to the
integer-states and the transition relation between them is equal to Mn(N ).

Due to the above fact, the transition relation in integer runs will be denoted
either by →r or by →n, depending on the context.

Given a real number x ∈ IR+, let �x� denote the floor of x, i.e., the greatest
a ∈ IN such that a ≤ x, and let �x� denote the ceiling of x, i.e., the smallest
a ∈ IN such that x ≤ a. Moreover, let fire(σ) denote a set of the transitions
that are ready to fire in the state σ ∈ Σ, i.e., fire(σ) = {t ∈ en(m) | clock(t) ∈
[Eft(t), Lft(t)]}. We define the integer-states to be neighbour states of real-
valued ones as follows:

Definition 3 (Neighbour States). Let σ = (m, clock) be a state of a TPN
N . An integer-state σ′ = (m′, clock′) is a neighbour state of σ (denoted σ′ ∼n σ)
iff

– m′ = m,
– for each t ∈ en(m), �clock(t)� ≤ clock′(t) ≤ �clock(t)�.

Intuitively, a neighbour state of σ is an integer-state of the same marking, and
such that the values of its clocks, for all the enabled transitions, are “in a neigh-
bourhood” of these of σ. However, it is easy to see that these values can be such
that they make more transitions ready to fire than the corresponding values in σ
do: each transition t which can be fired at a given value of clock(t) can be fired
both at �clock(t)� and at �clock(t)� since all these three values are either equal
if clock(t) is a natural number, or belong to the same (integer-bounded) interval
[Eft(t), Lft(t)] if clock(t) �∈ IN; on the other hand, a transition t′ which is not
ready to fire at clock(t′) can be firable at �clock(t′)� if �clock(t′)� = Eft(t′).
This implies fire(σ) ⊆ fire(σ′).



Using Integer Time Steps for Checking Branching Time Properties 97

Let π := σ0
a0→r σ1

a1→r . . . be a σ0-run in Mr(N ). By π[k], for k ∈ IN, we
denote the prefix σ0

a0→r σ1
a1→r . . .

ak−1→ r σk of π, and by π(k) - the k-th state
of π, i.e., σk. Moreover, we assign a time δi to each step σi

ai→r σi+1 in the run,
i.e., define δi = ai if ai ∈ IR, and δi = 0 otherwise. By ΔG(σi, π), for i ∈ IN, we
denote the value Σi−1

j=0δj (i.e., the time passed along π before reaching its i-th

state). Moreover, given k ∈ IN and a π(k)-run ρ := σk
b0→r β1

b1→r β2
b2→r . . ., by

π[k] · ρ we denote the run σ0
a0→r σ1

a1→r . . .
ak−1→ r σk

b0→r β1
b1→r β2

b2→r . . . (i.e,
the run obtained by “joining” π[k] and ρ). The above definitions apply to discrete
runs in the analogous way. Next, we introduce the following definition (see also
Fig. 2):

’a k−1

a
k+1

’a k+1’a k

k
a

π :

σ σ 

σ 

σ ’ ’σ ’σ ’ ’
:π ’

’’ ’

σ 

σ ’ ’σ 

σ 2σ 

σ ’

σ σ 1 k−2 k−1 k k+1 σ k+2

k+2k+1kk−1k−2210

0 a a

a a

a a

a

σ 
0 1 k−2 k−1

k−210

Fig. 2. Neighbour prefix of π[k] (denoted π′
[k]). If ai ∈ T , then a′

i = ai; the states of
π[k] and π′

[k] linked by dashed lines are related by ∼n.

Definition 4 (Neighbour Prefix). Let π := σ0
a0→r σ1

a1→r . . . be a run in

Mr(N ), and let π′ := σ′
0

a′
0→r σ′

1

a′
1→r . . . be an integer run. For k ∈ IN, the prefix

π′
[k] is a neighbour prefix of π[k] (denoted π′

[k] ∼n π[k]) iff for each i = 0, . . . , k
we have:

– σ′
i ∼n σi, and

– ai ∈ T iff a′i ∈ T , and if ai, a′i ∈ T then a′i = ai.

Intuitively, a neighbour prefix “visits” neighbour states of these in π[k], and the
corresponding steps of these prefixes are either both firings of the same transition,
or both passages of time (possibly of different lengths).

In order to show that Mn(N ) can replace Mr(N ) in ACTL∗/ECTL∗ verifica-
tion we shall prove the following lemma:

Lemma 2. The models Mr(N ) and Mn(N ) are simulation equivalent.

Proof. It is obvious from Lemma 1 that Mr(N ) simulates Mn(N ), where a
simulation relation R1 ⊆ Σ ×Σn is defined as R1 = {(σ, σ′) | σ = σ′}.

Let Rr(N ) and Rn(N ) denote respectively the sets of all the dense σ0-runs
(discrete σ0

n-runs) of the net N . In order to prove that Mn(N ) �sim Mr(N ) we
shall show that the relation R ⊆ Σn ×Σ given by

R = {(σ′, σ) | ∃π ∈ Rr(N ) ∃π′ ∈ Rn(N ) ∃k ∈ IN s.t.

σ = π(k) ∧ σ′ = π′(k) ∧ π′
[k] ∼n π[k] ∧ ∀j≤k ΔG(σ′

j , π
′) = �ΔG(σj , π)�}



98 A. Janowska et al.

is a simulation from Mn(N ) to Mr(N ). Intuitively, the states σ, σ′ are related
by R if they both are reachable from the initial state of N in k steps for some
natural k, on runs π, π′ such that π′

[k] is a neighbour prefix of π[k] and for each
j ≤ k the total time passed along π′

[j] is the floor of that passed along π[j].
It is obvious that (σ0

n, σ
0) ∈ R due to equality of these states. Next, consider

σ, σ′ such that (σ′, σ) ∈ R. Assume that the runs “justifying” this relation (for

some k) are of the form π := σ0
a0→r σ1

a1→r . . . and π′ := σ0
n = σ′

0

a′
0→n σ′

1

a′
1→n . . .

respectively, and that σi = (mi, clocki), σ′
i = (m′

i, clock
′
i) for each i ∈ IN (which

implies also the notation σ = (mk, clockk) and σ′ = (m′
k, clock

′
k) used below).

– if σ
t→r γ for a transition t ∈ T and a state γ = (mγ , clockγ), then from

σ′ ∼n σ (and therefore fire(σ) ⊆ fire(σ′)) the transition t can be fired
at σ′ as well, leading to a state ξ = (mξ, clock

′
ξ). Let ρ be a σ-run of the

form σ
t→r γ →r . . . (i.e., a σ-run whose first step is σ

t→r γ), and let ρ′

be a σ′-run of the form σ′ t→n ξ →n . . . (i.e., a σ′-run whose first step is
σ′ t→n ξ; see Fig. 3). We shall show that (π′

[k] · ρ′)[k+1] ∼n (π[k] · ρ)[k+1] and
that ΔG(ξ, π′

[k] · ρ′) = �ΔG(γ, π[k] · ρ)�.

ρ’

σ σ ’’ ’  σ 

π’:
’

π

π :

ρ

δ 

=  σ  =α 

’= =α

’

ξ

γ 

σ σ 

σ ’

π’

σ h σ 

σ kh

k10

0 1

  k[

[ k]

]

δ 

Fig. 3. Relation between π, π′, ρ and ρ′ in the proof of Lemma 2

• In order to prove (π′
[k] · ρ′)[k+1] ∼n (π[k] · ρ)[k+1] it is sufficient to show

that ξ ∼n γ. It is obvious that the markings mγ and mξ are equal, and
that newly_en(mk, t) = newly_en(m′

k, t). Next, consider t′ ∈ en(mγ).
If t′ �∈ newly_en(mk, t) then the value of its clock in γ is the same as in σ
(since firing of t does not influence the value of the clock of t′). In turn, if
t′ ∈ newly_en(mk, t) then the values of its clock in γ and in ξ are equal
to 0. Thus, from the fact that for σ, σ′ we have �clockk(t)� ≤ clock′k(t) ≤
�clockk(t)� we have also �clockγ(t)� ≤ clock′ξ(t) ≤ �clockγ(t)�, which
implies ξ ∼n γ.

• the condition ΔG(ξ, π′
[k] · ρ′) = �ΔG(γ, π[k] · ρ)� holds in an obvious way

(ΔG(ξ, π′
[k] ·ρ′) = ΔG(σ′, π′) = �ΔG(σ, π)� = �ΔG(γ, π[k] ·ρ)� as the step

consisting in firing a transition is assigned the time 0).



Using Integer Time Steps for Checking Branching Time Properties 99

– if σ δ→r γ for a time δ ∈ IR+ and a state γ = (mγ , clockγ), then let ρ be a
σ-run σ

δ→r γ
·→r . . . (i.e., a σ-run with the first step σ

δ→r γ; see Fig. 3),
and let π[k] · ρ denote the run σ0

a0→r σ1
a1→r . . .

ak−1→ r σk
δ→r γ →r . . . (i.e,

the run obtained by “joining” π[k] and ρ). Next, let

δ′ = �ΔG(γ, π[k] · ρ)� −ΔG(σ′, π′)

(which is an integer value due to ΔG(σ′, π′) ∈ IN). We shall show first that
the time δ′ can pass at σ′, leading to a state ξ = (mξ, clock

′
ξ).

• To show that δ′ can pass at σ′ notice that

δ = ΔG(γ, π[k] · ρ)−ΔG(σ, π[k] · ρ),

and that

ΔG(σi, π) = ΔG(σi, π[k] · ρ) for each i = 0, . . . , k.

Moreover, we have that clockγ(t) = clockk(t) + δ ≤ Lft(t) for each
t ∈ en(mk).

Consider a transition t ∈ en(m′
k) (where en(m′

k) = en(mk) = en(mγ)).
Let h be an index along π[k] pointing to a state (denoted α) at which t
became enabled most recently, and let h′ be an index along π′

[k] point-
ing to a state (denoted α′) at which t became enabled most recently.
From the fact that π′

[k] ∼n π[k] we have h = h′ (for each j ≤ k − 1 the
corresponding j-th steps of π[k] and π′

[k] are either both firings of the
same transition or both time passings, which implies that for each i ≤ k
a transition t becomes enabled in π(i) iff it becomes enabled in π′(i)).
From the definitions of clock and clock′, it is easy to see that

clockk(t) = ΔG(σ, π) −ΔG(α, π),

clockγ(t) = ΔG(γ, π[k] · ρ)−ΔG(α, π)

and
clock′k(t) = ΔG(σ′, π′)−ΔG(α′, π′)

Moreover, we have
clock′k(t) + δ′ = ΔG(σ′, π′)−ΔG(α′, π′) + δ′ =
ΔG(σ′, π′)−ΔG(α′, π′) + �ΔG(γ, π[k] · ρ)� −ΔG(σ′, π′) =

�ΔG(γ, π[k] · ρ)� −ΔG(α′, π′)
def. of R and h=h′

=
�ΔG(γ, π[k] · ρ)� − �ΔG(α, π)�.

From clockγ(t) ≤ Lft(t) we have �clockγ(t)� ≤ Lft(t), and from the
property �a� − �b� ≤ �a− b� we get
clock′k(t) + δ′ = �ΔG(γ, π[k] · ρ)� − �ΔG(α, π)� ≤

�ΔG(γ, π[k] · ρ)−ΔG(α, π)� = �clockγ(t)� ≤ Lft(t).
Thus, we have that clock′k(t) + δ′ ≤ Lft(t) for each t ∈ en(m′

k), and
therefore the time δ′ can pass at σ′.



100 A. Janowska et al.

Next, let ρ′ be a σ′-run of the form σ′ δ′→n ξ →n . . .. We shall show that
(π′

[k] · ρ′)[k+1] ∼n (π[k] · ρ)[k+1] and that ΔG(ξ, π′
[k] · ρ′) = �ΔG(γ, π[k] · ρ)�.

• In order to prove (π′
[k] · ρ′)[k+1] ∼n (π[k] · ρ)[k+1] it is sufficient to show

that ξ ∼n γ. It is obvious that the markings of these states are equal.
Consider t ∈ en(m). We show that �clockγ(t)� ≤ clock′ξ(t) ≤ �clockγ(t)�.
Let α, α′, h, h′ be defined as in the previous part of the proof (see the
8th line of the previous item). Similarly as before, from the definitions
of clock, clock′ we have that

clockγ(t) = ΔG(γ, π[k] · ρ)−ΔG(α, π),

and that
clock′ξ(t) = ΔG(σ′, π′) + δ′ −ΔG(α′, π′).

∗ From the property �a− b� ≤ �a�− �b� (for a, b ∈ IR+ with a ≥ b) we
have
�clockγ(t)� = �ΔG(γ, π[k] · ρ)−ΔG(α, π)� ≤

�ΔG(γ, π[k] · ρ)� − �ΔG(α, π)� h=h′and def. of R
=

�ΔG(γ, π[k]·ρ)−ΔG(σ′, π′)+ΔG(σ′, π′)�−ΔG(α′, π′) =

�ΔG(γ, π[k]·ρ)�−ΔG(σ′, π′)+ΔG(σ′, π′)−ΔG(α′, π′) =

δ′ + ΔG(σ′, π′)−ΔG(α′, π′) = clock′ξ(t).
∗ From the property �a� − �b� ≤ �a− b� we have
clock′k(t) + δ′ = �ΔG(γ, π[k] · ρ)� − �ΔG(α, π)� ≤

�ΔG(γ, π[k] · ρ)−ΔG(α, π)� = �clockγ(t)�
• Next, we have
ΔG(ξ, π′

[k] · ρ′) = ΔG(σ′, π′) + δ′ =

ΔG(σ′, π′)+�ΔG(γ, π[k] ·ρ)�−ΔG(σ′, π′) = �ΔG(γ, π[k] ·ρ)�,
which ends the proof.

Therefore, we can formulate the following theorem:

Theorem 2. Let Mr(N ) and Mn(N ) be respectively a dense and a discrete
model for a time Petri net N , and let ϕ be an ACTL∗ (ECTL∗) formula. The
following condition holds:

Mr(N ) |= ϕ iff Mn(N ) |= ϕ.

Proof. Follows from Theorem 1 and Lemma 2 in a straightforward way.

It should also be explained that in the case of timed systems (and therefore also
TPNs) with the dense-time semantics, logics without the next-step operator are
usually used, due to problems with interpreting the “next” step in the case of
continuous time. However, Theorem 2 considers more general logics, in case one
would interpret the next-step operator over an arbitrary passage of time (i.e., to
consider each time successor of a state as a “next” one).



Using Integer Time Steps for Checking Branching Time Properties 101

t1 [0,1] t2 [1,2]

p1 p2

Fig. 4. A net

It should be noticed that the relation R used in our proof cannot be used to
prove bisimulation between the models, i.e., their equivalence w.r.t. the CTL∗

properties, since the integer run π′ “justifying” σ′Rσ and the dense run π oc-
curring in the relation do not need to “branch” in the same way. Thus, although
one can prove that each transition t which can be fired at σ can be fired at σ′

as well, the reverse does not hold. To see an example of the above consider the
net shown in Fig. 4 and its runs:

– the dense one:
π := (p1, (0, 0))

0.5→r (p1, (0.5, 0))
t1→r (p2, (0, 0))

0.6→r (p2, (0, 0.6))→r . . .
– and the discrete one (denoted π′), built in the way shown in [8] and used in

our proof in the definition of R (i.e., satisfying π′
[3] ∼n π[3] and ΔG(σ′

j , π
′) =

�ΔG(σj , π)� for each j ≤ 3):
π′ := (p1, (0, 0))

0→n (p1, (0, 0))
t1→n (p2, (0, 0))

1→n (p2, (0, 1))→n . . ..

It is easy to see that in π(3) we have clock(t2) = 0.6, which means that t2 cannot
be fired at this state, while in π′(3) we have clock(t2) = 1, which means that
the transition t2 is firable.

6 Experimental Results

In order to show that using discrete-time models instead of the dense ones can
be profitable, we have performed some tests, using the implementation of SAT-
based bounded model checking (BMC) for distributed TPNs with the discrete-
time semantics [6] and the logic ACTL−X as well as its modification for the
dense-time case prepared for this paper. BMC is a technique applied mainly to
searching for counterexamples for universal properties, using a model truncated
up to some specific depth k. The formulas used by the method are then negations
of these expressing properties to be tested. So, in our case they are formulas of
ECTL−X.

The first system we consider is the Generic Pipeline Paradigm [7] Petri net
model (GTPP) shown in Fig. 5. It consists of three parts: Producer producing
data (ProdReady) or being inactive, Consumer receiving data (ConsReady) or
being inactive, and a chain of n intermediate Nodes which can be ready for
receiving data (NodeiReady), processing data (NodeiProc), or sending data
(NodeiSend). The example can be scaled by adding more intermediate nodes.
The parameters a, b, c, d, e, f are used to adjust the time properties of Pro-
ducer, Consumer, and of the intermediate Nodes. The formulas considered are
EGEFConsReceived, EG(ProdReady ∨ ConsReady) and EFNode1Send.



102 A. Janowska et al.

[a, b][a, b]
[c, d] [c, d] [c, d] [c, d] [c, d]

[e, f ][e, f ]

Node1Ready Node2Ready

[e, f ]

NodenReady

Node1Proc Node2Proc NodenProc

ConsReadyProdReady

Node1Send NodenSendNode2Send

Fig. 5. A net for Generic Timed Pipeline Paradigm

The next system tested is the standard Fischer’s mutual exclusion protocol
(Mutex) [1]. The system consists of n time Petri nets, each one modelling a
process, plus one additional net used to coordinate the access of the processes
to the critical sections. A TPN modelling the system for n = 2 is presented in
Fig. 6. In this case we have tested the formula EGEF(crit1 ∨ . . . ∨ critn).

waiting2

waiting1

setx0_1

enter1
trying1

critical1

idle2

start2

trying2 critical2

setx0_2

place 0

place 1

place 2

idle1 start1 setx1−copy1

setx1

setx1−copy2

setx2−copy2

setx2

enter2
setx2−copy1

[0,∞)

[0,∞)

[0,∞)

[0,∞)

[0, Δ]

[0, Δ]

[0, Δ]

[0, Δ]

[δ,∞)

[0, Δ]

[0, Δ]
[δ,∞)

Fig. 6. A net for Fischer’s mutual exclusion protocol for n = 2

The results are presented in Fig. 7–9 for GTPP, and in Fig. 10 for Mutex. It
can be seen that in all the cases we are able to verify systems containing more
components (indicated in the column n) when discrete models are used (the
“−” signs in the tables mean that the limit on the runtime was exceeded), and
the total time (bmcT + satT ) and the memory required (max(bmcM, satM))
are usually smaller for the discrete-time case (the columns with “IN :”). In some
cases the differences are quite substantial, but there are also examples in which



Using Integer Time Steps for Checking Branching Time Properties 103

n k LL IR: IN:
bmcT+satT max(bmcM,satM) bmcT+satT max(bmcM,satM)

1 5 7 1.41 12.00 0.20 8.00
2 7 9 9.94 25.00 1.15 12.00
3 9 11 49.45 60.00 3.55 21.00
4 11 13 154.70 146.00 9.94 38.00
5 13 15 310.18 243.00 20.90 61.00
6 15 17 708.66 313.00 41.43 94.00
7 17 19 1934.63 818.00 76.81 145.00
8 19 21 4121.60 1071.00 131.98 215.00
9 21 23 6819.25 1640.00 237.21 314.00
10 23 25 20519.20 3455.00 361.03 377.00
11 25 27 - - 562.15 552.00

Fig. 7. Comparison of the results for GTPP and the formula EGEFConsReceived

n k LL IR: IN:
bmcT+satT max(bmcM,satM) bmcT+satT max(bmcM,satM)

1 5 1 0.41 7.00 0.17 7.00
2 7 1 4.14 12.00 0.76 8.00
3 9 1 32.27 29.00 2.20 9.00
4 11 1 63.28 52.00 8.57 12.00
5 13 1 200.14 151.00 21.14 17.00
6 15 1 488.59 165.00 43.18 24.00
7 17 1 870.21 342.00 105.18 38.00
8 19 1 1870.65 415.00 234.00 54.00
9 21 1 3745.33 658.00 763.84 139.00
10 23 1 7097.01 1364.00 1696.58 283.00
11 25 1 - - 3013.98 306.00

Fig. 8. Comparison of the results: GTPP, the formula EG(ProdReady ∨ConsReady)

n k LL IR: IN:
bmcT+satT max(bmcM,satM) bmcT+satT max(bmcM,satM)

100 2 1 2.02 23.00 1.60 19.00
200 2 1 7.04 76.00 5.74 51.00
300 2 1 15.03 153.00 12.15 102.00
400 2 1 26.30 270.00 18.59 179.00
500 2 1 40.50 412.00 28.47 273.00
600 2 1 58.71 563.00 40.45 397.00
700 2 1 79.71 738.00 54.69 537.00
800 2 1 104.84 992.00 72.06 654.00
900 2 1 133.78 1173.00 90.48 854.00
1000 2 1 169.19 1528.00 114.86 1005.00
1100 2 1 211.16 1772.00 140.22 1168.00
1200 2 1 - - 168.86 1506.00
1300 2 1 - - 203.24 1604.00

Fig. 9. Comparison of the results: GTPP, the formula EFNode1Send



104 A. Janowska et al.

the time and the memory used are similar for both the semantics. However, one
can see that the noticeable differences occur in the cases in which the length of
the witness for the formula (k) or the number of paths required to check this
formula (LL) grow together with the size of the system, making the verification
more expensive.

n k LL IR: IN:
bmcT+satT max(bmcM,satM) bmcT+satT max(bmcM,satM)

2 4 5 1.04 11.00 0.74 10.00
3 4 5 1.77 13.00 1.10 12.00
4 4 5 1.83 15.00 1.63 14.00
5 4 5 3.18 17.00 2.41 16.00
10 4 5 9.15 40.00 7.20 31.00
20 4 5 26.14 90.00 18.76 86.00
30 4 5 74.70 177.00 58.56 161.00
40 4 5 258.34 330.00 108.34 320.00
50 4 5 265.06 419.00 170.93 358.00
60 4 5 710.11 732.00 442.42 713.00
70 4 5 701.81 1092.00 728.20 1073.00
80 4 5 919.34 1001.00 2288.34 1349.00
90 4 5 780.89 1161.00 934.72 1140.00
100 4 5 4566.16 3181.00 4230.64 4549.00
110 4 5 4260.76 3414.00 4956.38 3237.00
120 4 5 - - 4217.44 3238.00
130 4 5 - - 2155.04 2571.00
140 4 5 - - 5087.76 3603.00

Fig. 10. Comparison of the results: mutex, the formula EGEF(crit1 ∨ . . .∨ critn) The
abnormalities in the increase of some values follow from the non-deterministic be-
haviour of the SAT-solver (in some cases searching for an appropriate valuation can
take more or less resources than one would expect).

7 Conclusions and Further Work

We have shown that the result of Popova, stating that integer time steps are
sufficient to test reachability of markings in time Petri nets, can be extended to
testing the ECTL∗ and ACTL∗ properties. We have focused on 1-safe TPNs for
simplicity of the presentation, but it is easy to see that the result applies also to
“general” time Petri nets: neither the definitions of a marking and of enabledness
of a transition, nor the way multiple enabledness of transitions is handled (see
[2]) do influence the proof.

Our experimental results show that considering the discrete semantics while
verifying properties of dense-time nets can be profitable. Due to this, in our
further work we are going to check whether discrete-time semantics can be used
when testing other classes of properties of the dense-time Petri net systems (e.g.,
CTL∗).



Using Integer Time Steps for Checking Branching Time Properties 105

References

1. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. In: Huizing, C., de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600,
pp. 1–27. Springer, Heidelberg (1992)

2. Boyer, M., Diaz, M.: Multiple enabledness in Petri nets with time. In: Proc. of
the 9th Int. Workshop on Petri Nets and Performance Models (PNPM 2001),
pp. 219–228 (2001)

3. Goltz, U., Kuiper, R., Penczek, W.: Propositional temporal logics and equivalences.
In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 222–236. Springer,
Heidelberg (1992)

4. Grumberg, O., Long, D.E.: Model checking and modular verification. In: Groote,
J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 250–265. Springer,
Heidelberg (1991)

5. Janowska, A., Penczek, W., Półrola, A., Zbrzezny, A.: Towards discrete-time verifi-
cation of time Petri nets with dense-time semantics. In: Proc. of the Int. Workshop
on Concurrency, Specification and Programming (CS&P 2011), pp. 215–228. Bia-
lystok University of Technology (2011)

6. Mȩski, A., Penczek, W., Półrola, A., Woźna-Szcześniak, B., Zbrzezny, A.: Bounded
model checking approaches for verificaton of distributed time Petri nets. In: Proc.
of the Int. Workshop on Petri Nets and Software Engineering (PNSE 2011), pp.
72–91. University of Hamburg (2011)

7. Peled, D.: All from one, one for all: On model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993)

8. Popova, L.: On time Petri nets. Elektronische Informationsverarbeitung und Ky-
bernetik 27(4), 227–244 (1991)

9. Popova-Zeugmann, L.: Essential states in time Petri nets. Informatik-Bericht 96,
Humboldt University (1998)

10. Popova-Zeugmann, L.: Time Petri nets state space reduction using dynamic pro-
gramming. Journal of Control and Cybernetics 35(3), 721–748 (2006)

11. Popova-Zeugmann, L., Schlatter, D.: Analyzing paths in time Petri nets. Funda-
menta Informaticae 37(3), 311–327 (1999)



When Can We Trust a Third Party?

A Soundness Perspective

Kees M. van Hee, Natalia Sidorova, and Jan Martijn E.M. van der Werf�

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee,n.sidorova,j.m.e.m.v.d.werf}@tue.nl

Abstract. Organizations often do not want to reveal the way a product
is created or a service is delivered. As a consequence, if two organizations
want to cooperate, they contact a trusted third party. Each specifies how
it wants to communicate with the other party. The trusted third party
then needs to assure that the two organizations cooperate correctly. In
this paper, we study requirements on trusted third parties to ensure
correct cooperation between the different organizations.

1 Introduction

Organizations need to anticipate on the increasing dynamicity and complexity
of business markets. Therefore, organizations focus more and more on their core
activities. As a result, organizations need to cooperate in large networks. The
organizations in the network have as common goal the delivery of their services.
Such a network is called a virtual enterprise [14].

Communication between the organizations is asynchronous by nature: an or-
ganization sends some data, like an inquiry, to some other organization, and
eventually the latter organization sends a response. Therefore, we use Petri nets
to model organizations using components. Components can be composed into
networks of components. Such a network is again a component. A component
has an initial state and a desired final state. We say that a component, or a
network of components communicates correctly if (1) it is weakly terminating,
i.e., if in all its reachable states the component is always able to eventually reach
the desired final state, and (2) it is properly completing, i.e., there are no pend-
ing messages if the component is in the final state. If a component is working
correctly, we call it sound.

Trust is an important property in a network of cooperating organizations:
organizations share business knowledge and intellectual property with other or-
ganizations within the network in order to organize the component network
properly and achieve desired goals. At the same time, organizations often want

� Supported by the PoSecCo project (project no. 257129), partially co-funded by the
European Union under the Information and Communication Technologies (ICT)
theme of the 7th Framework Programme for R&D (FP7).

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 106–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



When Can We Trust a Third Party? 107

A N N B

A N B

Fig. 1. If the notary N communicates correctly with A and B individually, we want
to conclude correctness of the network of A, B and N

to keep some intellectual property within their organization and avoid sharing
it for clear reasons. A common approach used in real life is the use of trusted
third parties. It becomes nowadays also quite common in the virtual world. In
this paper, we consider the use of a third party, also called a notary, that is
trusted by all the organizations in the network. By using a notary, each of the
organizations explains to the notary the way it wants to conduct business, and
the notary will assure that the organizations can do business together. This
requires the notary to ensure that it communicates correctly with each of the
organizations, i.e., that the notary with each of the individual organizations can
reach the common goals, and secondly, that the complete network with all the
organizations together can reach its common goals. If this is the case, we call
the notary trusted.

In this paper we limit ourselves to the cooperation between two organizations
using a notary. Rather than to use verification to check whether the commu-
nication between the notary and the two organizations is correct, we search
for conditions such that if the communication between the notary and each of
the individual organizations is correct, we can automatically conclude that the
communication between the three parties is correct, as depicted in Fig. 1.

This paper is structured as follows. Sec. 2 presents an illustrative example of
a trusted third party. Sec. 3 introduces the basic notions needed throughout the
paper. Next, Sec. 4 explains the concept of components and their composition.
In Sec. 5 we study the conditions under which the notary is guaranteed to ensure
soundness of the composition of the three parties. Sec. 6 concludes the paper.



108 K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf

debtor

request

reject

accept

initiate

payment 
debtor

(a) Example debtor

transaction

request

reject

accept

request

acceptinitiate

payment 
debtor

payment 
creditor

reject

(b) Payment service

request

accept

payment 
creditor

reject

(c) Example Creditor

Fig. 2. Payment service with example creditor and debtor

2 Illustrative Example

Trusted third parties are often used in sercive oriented architectures. For exam-
ple, if multiple parties each delivers the same service, the trusted third party
can serve as a gateway [9].

An example of such a trusted third party is the payment service, for exam-
ple the protocol agreed upon in iDEAL and the European SEPA standard. On
the one hand, the payment service serves as a single interface for the different
payment methods for web sites. In this way, a web site only needs to imple-
ment a single interface to offer a plethora of payment methods. On the other
hand, the payment service ensures the communication with the different pay-
ment providers, like banks and credit card organizations.

The payment service is shown in Fig. 2(b). It initiates a transaction on request,
e.g. for some web shop. The payment service then sends a request to the bank
of the debtor.

In case the debtor rejects the payment via its bank, the transaction is can-
celled. Otherwise, the payment service contacts the bank of the creditor. The
creditor’s bank then checks whether the account fulfills the criteria for this type
of transactions. If this is not the case, the transaction will be rejected. Other-
wise, the payment service initiates the payment at the debtor’s bank, and the
payment is passed to the webshop’s bank.



When Can We Trust a Third Party? 109

In the mean time, the payment service logs the payment, so that it can send
regularly reports to its customers, such as statistics about accepted and rejected
transactions, and lists of accepted transactions.

In order to cooperate, banks or other payment organizations, like credit card
companies, need to implement the debtor and creditor interfaces to cooperate
with this payment service. However, banks have similar, but not equivalent im-
plementations of the debtor and creditor interfaces. Fig. 2 depicts two sample
implementations of a debtor (Fig. 2(a)) and a creditor (Fig. 2(c)).

In this example is easy to check that (1) the debtor implementation shown
in Fig. 2(a) works correctly with the payment service, (2) that the payment
service works correctly with the creditor implementation (Fig. 2(c)), and (3)
that these three services together work correctly. However, the payment service
needs to ensure that if it works correctly with some debtor implementation, it
works correctly also when it is connected to a different creditor, and vice versa.

When implementing the payment service, it needs to administer for each trans-
action which specific creditor and debtor from a set of possible organizations are
selected. To model this explicitly, Petri nets with identifiers [10,12,17,18] can be
used. However, as each transaction is independent, i.e. communication is only
within a single transaction and not between different transactions, identities can
be abstracted from. Therefore, we choose to model the components implementing
these services with classical, uncolored, Petri nets.

In the remainder of this paper, we show that by the structure of the trusted
third party, in this example the payment service, is sound in any composition
with an implemented debtor and creditor, provided that each implementation
individually is sound in a composition with the payment service.

3 Preliminaries

Let S be a set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}. We use
|S| for the number of elements in S. Two sets S and T are disjoint if S ∩T = ∅.

A bag m over S is a function m : S → N, where N = {0, 1, . . .} denotes the
set of natural numbers. We denote e.g. the bag m with an element a occurring
once, b occurring three times and c occurring twice by m = [a, b3, c2]. The set
of all bags over S is denoted by NS . Sets can be seen as a special kind of bag
where all elements occur only once; we interpret sets in this way whenever we
use them in operations on bags. We use + and − for the sum and difference of
two bags, and =, <, >, ≤, ≥ for the comparison of two bags, which are defined
in a standard way. The projection of a bag m ∈ NS on some set U is a bag
defined by m|U (s) = m(s) if s ∈ U and m|U (s) = 0 otherwise.

A sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S. If
n > 0 and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉. The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by ε. The set of all finite sequences over S is denoted
by S∗. We write a ∈ σ if σ(i) = a for some 1 ≤ i ≤ |σ|. Concatenation of
two sequences ν, γ ∈ S∗, denoted by σ = ν; γ, is a sequence defined by σ :



110 K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf

{1, . . . , |ν|+ |γ|} → S, such that σ(i) = ν(i) for 1 ≤ i ≤ |ν|, and σ(i) = γ(i−|ν|)
for |ν| + 1 ≤ i ≤ |ν| + |γ|. We inductively define the projection of σ ∈ S∗ on
some set U by a;σ′|U = 〈a〉;σ′|U if a ∈ U and a;σ′|U = σ′|U otherwise.

Definition 1 (Petri Net [16]). A Petri net N is a tuple (P, T, F ) where (1)
P and T are two disjoint sets of places and transitions respectively, we call an
element of the set (P ∪ T ) a node of N ; and (2) F ⊆ (P × T ) ∪ (T × P ) is the
flow relation. An element of F is called an arc.

Two Petri nets (P, T, F ) and (P ′, T ′, F ′) are called disjoint if both P and P ′,
and T and T ′ are disjoint. Let N = (P, T, F ) be a Petri net. Given a node
n ∈ (P ∪ T ), we define its preset by •

N n = {x | (x, n) ∈ F}, and its postset by
n•
N = {x | (n, x) ∈ F}. We omit the subscript if the context is clear.
A subnet N ′ = (P ′, T ′, F ′) is a subnet of a Petri net N = (P, T, F ) if P ′ ⊆

P, T ′ ⊆ T and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)).
Let N = (P, T, F ) be a Petri net. A path from a node n ∈ P ∪ T to a node

m ∈ P ∪ T is a sequence π ∈ (P ∪ T )∗ such that (π(i − 1), π(i)) ∈ F for
all 1 < i < |π|. The set of all paths from n to m is denoted by Π(n,m). A
path is called cyclic if there exists a non-empty path π, i.e., |π| > 0, such that
π(1) = π(|π|). If N has a cyclic path, the net is called cyclic. If no such cycle
exists, it is called acyclic.

To describe the semantics of a Petri net, we use markings. A marking of N
is a bag m ∈ NP , where m(p) denotes the number of tokens in place p ∈ P . If
m(p) > 0, place p is called marked in marking m. A Petri net N with a marking
m is written as (N,m) and is called a marked Petri net.

Given a marked Petri net (N,m) with N = (P, T, F ), a transition t ∈ T is

enabled, denoted by (N : m
t−→), if •t ≤ m. If a transition is enabled in (N,m),

it can fire. A transition firing, denoted by (N : m
t−→ m′), results in a new

marking m′ = m − •t + t•. We lift the firing to sequences of transitions in the
standard way. A sequence σ ∈ T ∗ of length n is a firing sequence from m0 to

mn, if there exist markings mi,mi+1 ∈ NP such that (N : mi
σ(i)−→ mi+1) for all

0 ≤ i < n. The set of reachable markings from a given marking m is denoted
as R(N,m) = {m′ | ∃σ ∈ T ∗ : (N : m

σ−→ m′)}. We lift the set of reachable
markings from a single marking to a set of markings in a standard way, i.e.,
given a set M ⊆ NP , R(N,M) =

⋃
m∈M R(N,m).

Given a marked Petri net (N,m0) with N = (P, T, F ), a place p ∈ P is called
k-bounded for some k ∈ N if m(p) ≤ k for all markings m ∈ R(N,m0). If all
places are k-bounded, we call (N,m0) k-bounded. A transition t ∈ T is called
live if for all markings m ∈ R(N,m0) there exist a firing sequence σ ∈ T ∗ and

a marking m′ ∈ R(N,m) such that (N : m
σ−→ m′ t−→). If all transitions of

(N,m0) are live, (N,m0) is called live. A transition t ∈ T is called quasi-live if

there exists a marking m ∈ R(N,m0) such that (N : m
t−→). If all transitions

of (N,m0) are quasi-live, the marked Petri net is called quasi-live. A marking
m ∈ R(N,m0) is called a home marking if m ∈ R(N,m′) for all m′ ∈ R(N,m0).
A reachable marking m ∈ R(N,m0) is called a deadlock of (N,m0) if there is



When Can We Trust a Third Party? 111

no transition t ∈ T with (N : m
t−→). Given a desired marking f ∈ R(N,m0),

a non-empty subset of markings L ⊆ R(N,m0) is called a live-lock w.r.t f if (1)
f �∈ R(N,L), (2) no marking in L is a deadlock, and (3) L = R(N,L), i.e., from
L the desired marking is not reachable, and no other marking than a marking
in L can be reached from L.

For Petri nets, we define two classes based on their structure: S-Nets, also
called state machines, and workflow nets. A Petri net N = (P, T, F ) is a S-net
if |•t| = 1 and |t•| = 1 for all transitions t ∈ T .

Definition 2 (Workflow Net, Closure). Let N = (P, T, F ) be a Petri net. It
is a workflow net (WFN) if there exist two places i ∈ P and f ∈ P , called the
initial place and final place respectively, such that •i = f• = ∅, and all nodes
of N are on a path from i to f . Its closure is the net N∗ = (P, T ∪ {t∗}, F ∪
{(t∗, i), (f, t∗)}, where t∗ �∈ T .

A workflow net is called sound if (1) it is weakly terminating, i.e., it always has
the option to reach the final marking in which only the final place is marked,
(2) it is properly completing, i.e., if in a marking the final place is marked, it
is the only place marked, and (3) all transitions have a function, i.e., for every
transition a reachable marking exists that enables the transition. Note that we
use the classical soundness definition [1, 2].

Definition 3 (Soundness). A workflow net N = (P, T, F ) with initial place i
and final place f is called sound if (1) [f ] is a home marking of (N, [i]), (2) for
any reachable marking m ∈ R(N, [i]), if m ≥ [f ] then m = [f ], and (3) (N, [i])
is quasi live.

A WFN N = (P, T, F ) with initial place i is sound if and only if the marked
Petri net (N∗, [i]) is live and bounded [1].

If we give a tuple a name, we subscript the elements with the name of the
tuple, e.g. for N = (A,B,C) we refer to its elements by AN , BN , and CN . If the
context is clear, we omit the subscript.

4 Components and Their Composition

In this paper, we use asynchronously communicating components [5,7]. We there-
fore model our components using Petri nets with interface places, called open
Petri nets (OPNs). An OPN [3, 13] has two types of places: internal places for
the inner control of the component, and interface places to communicate with
its environment. An interface place is either an output place, i.e., it sends a mes-
sage to the environment, or an input place, i.e., it requires a message from the
environment. Further, a component has an initial and a final marking, defining
the desired begin and end markings of the component.

Definition 4 (Component, Open Petri net, Skeleton, Open Workflow
Net [3]). An open Petri net (OPN), also called a component, is a 6-tuple
(P, I,O, T, F, i, f) where



112 K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf

– ((P ∪ I ∪O, T, F ), i) is a marked Petri net;
– P is a set of internal places;
– I is a set of input places, and •I = ∅;
– O is a set of output places, and O• = ∅;
– P , I and O are pairwise disjoint;
– ∀t ∈ T : |(•t ∪ t•) ∩ (I ∪O)| ≤ 1; and
– i ∈ NP is the initial marking; and
– f ∈ NP is the final marking.

We call the set I ∪ O the interface places of the OPN. We lift the notion of
subnets to OPNs in the standard way. Two OPNs N and M are called disjoint
if (PN ∪ IN ∪ ON ∪ TN ) ∩ (PM ∪ IM ∪ OM ∪ TM ) = ∅. An OPN N is called
closed if IN = ON = ∅. We write R(N,m) for R((PN ∪ IN ∪ ON , TN , FN ),m)
for m ∈ NPN∪IN∪ON .

The skeleton of N is defined as the Petri net S(N) = (PN , TN , F ) with F =
FN ∩ ((PN ×TN)∪ (TN ×PN )). For nodes n ∈ (PN ∪ TN ), we write ◦

N n and t◦N
as a shorthand for •

S(N)t and t•S(N), respectively.

If S(N) is a workflow net with initial place s and final place o, i = [s] and
f = [o], N is called an open workflow net.

OPNs are composed with each other to build networks of communicating com-
ponents. As a network of components can be used as a component again, the
result of the composition is a component too. We say two OPNs are composable
if the only elements shared between the two OPNs are their interface places,
such that input places of the one are output places of the other and vice versa.
Composition is then defined as the union of the two OPNs.

Definition 5 (Composition of OPNs [3]). Two OPNs A and B are compos-
able, denoted by A⊕B, if and only if (PA∪IA∪OA∪TA)∩(PB∪IB∪OB∪TB) =
(OA ∩ IB) ∪ (IA ∩OB).

If A and B are composable, their composition results in an OPN A ⊕ B =
(PA ∪PB ∪H, (IA ∪ IB) \H, (OA ∪OB) \H,TA ∪TB, FA ∪FB, iA + iB, fA + fB)
with H = (OA ∩ IB) ∪ (IA ∩OB).

Note that two disjoint OPNs are composable by definition. Two important prop-
erties of composition are commutativity and projection, as shown in [18].

Corollary 6 (Commutativity, Projection Property [18]). Let A and B

be two composable OPNs. Then N = A ⊕ B = B ⊕ A, and (S(A) : m|PA

σ|TA−→
m′|PA

) for any firing sequence σ ∈ T ∗
N and markings m,m′ ∈ NPN such that

(S(N) : m
σ−→ m′).

The composition operator allows to create arbitrary networks of communicating
components. As long as the interface places match, it is allowed to compose the
components. However, it does not guarantee that the components communicate
correctly. Composition is thus a syntactic check whether components are able to
communicate.



When Can We Trust a Third Party? 113

Components communicate correctly if all components in the network are able
to reach their desired final marking, and no messages are pending in one of the
interface places. Further, we do not want to have transitions that are unreachable
in the composition. To express this property, we use the notion of soundness for
components: a component is sound if, ignoring the communication with other
components in the network, (1) all components can reach their final marking,
and (2) if all components reach their final marking, no tokens are left in the
network.

Definition 7 (Soundness). An OPN N is sound if:

1. ∀m ∈ R(S(N), iN ) : fN ∈ R(S(N),m) (weak termination); and
2. ∀m ∈ R(S(N), iN ) : m ≥ fN =⇒ m = fN (proper completion).

Note that this soundness definition is stronger than the soundness notion used
in [3,18], where soundness has been defined as weak termination of the skeleton.

A direct consequence of the projection property and soundness is that if in a
composition between A, B and C, such that A and C are disjoint, and A and
B are composable, as well as B and C, and B is in its final marking, then the
other two components can reach their final marking as well.

Lemma 8. Let A, B and C be three pairwise composable OPNs such that A
and C are disjoint, and A⊕ B and B ⊕ C are sound. Define M = A⊕ B ⊕ C.
Then fM ∈ R(S(M),m) for all markings m ∈ R(S(M), iM ) such that fB ≤ m.

Proof. Define K = A ⊕ B and H = (IA ∩ OB) ∪ (IB ∩ OA). Let σ ∈ T ∗
M such

that (S(M) : iM
σ−→ m). By the projection property, (S(K) : iK

σ|TK−→ m|PK
).

Since fB ≤ m, and by the weak termination property of K, there exists a firing

sequence μ ∈ T ∗
A such that (S(K) : m|PK

μ−→ fK), and, by the proper completion

of K, fK |H = ∅. By the firing rule of Petri nets, also (S(M) : m
μ−→ m′) for

some m′ ∈ NPM with m′|PK
= fK and m′|H = ∅.

Now, apply the same argument to m′ and L = B ⊕ C, which results in a

firing sequence ν ∈ T ∗
B and a marking m′′ ∈ NPM such that (S(M) : m

μ−→
m′ ν−→ m′′), m′′|PL

= fL and m′′|PK
= fK . Hence m′′ = fM , which proves the

statement. ��

5 Soundness Using Trusted Third Parties

Organizations have to cooperate more and more in order to do their business.
However, they often do not want to share the way they operate, for example
to hide internal business knowledge or intellectual property. An often proposed
solution is a third party that is trusted by all organizations within the network.
This third party, the notary, needs to ensure that it knows how the organizations
within the network want to operate. On the one hand the notary needs to ensure
that it works correctly with each individual organization, and on the other hand,
that the network of all organizations, including the notary, is correct.



114 K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf

t u

Component A Component B

Notary

p

(a) Incorrect control

Component A Component B

Notary

t

u

p

(b) Correct control

Fig. 3. Conflicts in a notary

As the main purpose of a notary is to ensure correct behavior of the commu-
nication between the two organizations that want to cooperate, we model the
notary by an OWN. The main actions of the notary are the sending and receiv-
ing of messages of the different components. Therefore, each transition that is
communicating is labeled with the sending or receiving of a message, or as silent
if the transition represents an internal step of the notary. We restrict the notary
to state machines, i.e., each notary is sound by its structure [11].

Definition 9 (Notary). Let A and B be two disjoint OPNs. A notary, between
A and B is an OWN N such that (1) both A and N , as well as B and N are
composable, (2) S(N) is an S-net, (3) each transition is connected to at most
one interface place, i.e., |(•t ∪ t•) ∩ (I ∪ O)| ≤ 1 for all t ∈ T , and, (4) each
interface place is connected to exactly one transition, i.e., |•x ∪ x•| = 1 for all
x ∈ I ∪O.

As each transition is connected to at most one component, we introduce the
communication function CN : T → {A,B, τ} by CN (t) = X iff •t ∩OX �= ∅ for
X ∈ {A,B} and CN (t) = τ otherwise.

The composition of a notary between two parties A and B, is not directly sound
if the compositions of the notary with A and of the notary with B are sound.
One source of possible erroneous behavior lies in the control of conflicts: if in a
notary two transitions share a place in their presets, then the transitions should
either be both controlled by the same component, or by the notary.

Consider the examples of Fig. 3. Taking the composition A⊕ N of Fig. 3(a),
then transition u is always enabled if transition t is enabled, whereas in Fig. 3(b),
component A controls the conflict in the composition of A and N .

To prevent this type of miscommunication, we introduce the control conflict
pattern. A subnet within some OPN follows the control conflict pattern if all
transitions of that subnet that are quasi-live in the OPN are controlled by the
same component.

Definition 10 (Conflict Control Pattern). Let N be an OPN. A subnet
M of N follows the conflict control pattern if ◦t ≤ m and ◦t ∩ ◦u �= ∅, then
CN (t) = CN (u) for all markings m ∈ R(S(N), iN ) and transitions t, u ∈ TM .



When Can We Trust a Third Party? 115

A

N

B

Fig. 4. Although N fulfills the control of conflict pattern, A⊕ N ⊕ B is not sound

In the remainder of this section, we will focus on two subclasses of notaries
that ensure soundness: acyclic and simple-cyclic notaries.

5.1 Acyclic Notaries

The structural requirement imposed by the control of conflict pattern is not
sufficient to conclude soundness. Consider for example the composition depicted
in Fig. 4. Although all choices fulfill the conflict control pattern, the composition
of A⊕N⊕B is not sound. This problem is resolved by the additional requirement
that both A ⊕ N and N ⊕ B have to be sound: as in the example the latter is
not sound, the premisses are not satisfied.

For acyclic notaries, a stronger statement can be made: if for an acyclic notary
N between components A and B both A ⊕ N and N ⊕ B are sound, then the
notary follows the control conflict pattern.

Lemma 11 (Conflict Control). Let A and B be two OPNs, and let N be an
acyclic notary between A and B, such that A⊕ N and N ⊕ B are sound. Then
N follows the control conflict pattern in both A⊕ N and N ⊕ B.

Proof. Define K = X ⊕ N with X ∈ {A,B}.
Let m ∈ R(S(K), iK) be a reachable marking that enables some transition

t ∈ TN with •t ∩ IN �= ∅, and let u ∈ TN such that ◦
N t = ◦

N u.
Define q ∈ •t ∩ IN . Then m(q) > 0. Suppose N does not follow the control

conflict pattern, i.e., CN (t) �= CN (u). Then ◦
K u ⊂ ◦

K t (see Fig. 5).



116 K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf

ut

X

p

q

N

Fig. 5. Place p in the OPN K

Consequently, (S(K) : m|PK

u−→). Thus, firing
transition u results in a marking m′ ∈ NPK with
(S(K) : m

u−→ m′). By the firing rule, we have
m̄′(q) = m(q) > 0, since q �∈ ◦

K u.
As N is acyclic and t is the only transition con-

suming from q, the token from q will never be
consumed by any sequence firing from m′. Hence,
fK /∈ R(S(K),m′).

As a result, K cannot be sound, which contradicts the premisses, and hence,
we have CN (t) = CN (u), which proves the lemma. ��

The lemma shows that conflicts in an acyclic notary are always controlled by
a single component being either the notary or one of the components A or B.
The conflict control pattern turns out to be sufficient to prove soundness of the
composition of the three, if the composition of the components of A and B with
N individually is sound, as proven in the next theorem.

Theorem 12. Let A and B be two OPNs such that A and B are disjoint. Let
N be an acyclic notary between A and B. If A⊕ N and N ⊕ B are sound, then
A⊕ N ⊕ B is sound.

Proof. Suppose M = A ⊕ N ⊕ B is not sound. As notary N is acyclic, there
exists a reachable marking m ∈ R(S(M), iM ) with firing sequence σ ∈ T ∗

L such

that (i) (S(M) : iM
σ−→ m), (ii) fM /∈ R(S(M),m), and (iii) all firing sequences

from (S(M),m) contain no transitions of TN , i.e., for all firing sequences γ ∈ T ∗
M

with (S(M) : m
γ−→), we have γ|TN

= ∅. Now there are two possible cases: either

1. Notary N is in its final place in this marking m, i.e. m ≥ fN , but A or B
are not in their final markings; or

2. Notary N is not in its final marking, i.e., m(fN) = 0.

The first case contradicts Lm. 8.
Consider the second case. As m(fN ) = 0 and S(N) is an S-net, there is a

place p ∈ PN of the notary such that m(p) > 0. No transition of N will ever
be enabled in any marking reachable from (S(M),m), and N is not in its final
marking. By (iii), p• cannot contain any transition t with CN (t) = τ . Due to
Lm. 11, an X ∈ {A,B} exists such that CN (u) = X for all transitions u ∈ t•.

Since the OPN K = X ⊕ N is sound, it is weakly terminating, Thus, there
exists a firing sequence σ ∈ T ∗

X , a marking m̄′ ∈ R(S(K),m|PK
) and a transition

t ∈ p• such that (S(K) : m|PK

σ−→ m̄′ t−→). Let q be the interface place
connected to transition t, i.e., q ∈ •

N t ∩ IN . Then, m̄′(q) > 0.

As σ ∈ T ∗
X , it is also a firing sequence of (S(M),m). Thus, (S(M) : m

σ−→ m′)
for some m′ ∈ R(S(M),m) and m′|PK

= m̄′. Hence, m′(q) = m̄′(q) > 0. But
then, transition t ∈ TN is enabled in (S(M),m′), which contradicts the statement
that no transition from TN can fire starting from m in (S(M),m).

Therefore, A⊕ N ⊕ B is sound. ��



When Can We Trust a Third Party? 117

m

n

o

b

c

g

d

a

e

f

u

v

w

t

h jx

k l

start loop N

loop in

loop out

loop in

start loop A

loop in

start loop B

loop out

loop in

start loop N

loop out

loop out loop out B

loop out A

loop out N

start loop N
loop out N

loop out N

iN

iA

p
iB

fN

q

fA

Fig. 6. Although the cyclic notary N satisfies the control of conflict pattern, A⊕N⊕B
is not sound

Returning to the payment service introduced in Sec. 2, this theorem shows that if
the payment service works correctly with some debtor implementation, and if the
service works correctly with some creditor implementation, i.e., the composition
of the payment service with the debtor implementation and the composition
of the payment service with the debtor implementation are sound, then the
composition of the debtor implementation, the creditor implementation and the
payment service is sound.

5.2 Simple Cyclic Notaries

Acyclic notaries ensure the correctness of the composition of two components if
these components communicate correctly with the notary. Often, cyclic behavior
between components is needed. For example, in order to agree on some quote,
several cycles may be involved.

While in the acyclic case deadlock was the only kind of unsound behaviour,
the cyclic case introduces a danger of obtaining livelocks in the compositions of
components. Fig. 6 shows three components whose composition A ⊕ N ⊕ B is
not sound, while their pairwise compositions A⊕ N and N ⊕ B are sound, and
moreover, every conflict is resolved by one of the components, thus satisfying
the conflict control pattern. If B chooses to start a loop resulting in a livelock by



118 K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf

firing the start loop N transition, N transfers this command to A by firing start
loop A transition, after which A commands to N to stay in the loop by firing
start loop N transition. N sends the command to stay in the loop back to B by
firing start loop B, and B has then no choice but to command to N to stay in the
loop, firing start loop N transition and thus starting with the second iteration
of the loop that can never be left. In the pairwise compositions of components,
when dealing with the skeletons of A ⊕ N and N ⊕ B, no livelock is possible,
since N can make the choice to leave the loop, otherwise controlled by the third
component, freely, and it commands then the other component to leave the loop
too.

This example shows that soundness is not compositional in the cyclic case
even when the components satisfy to the conflict control pattern. Therefore, in
this section, we focus on special cases of the cyclic case, in which structural
properties can guarantee that soundness of the compositions of the notary with
every of the two partners guarantees the soundness of the overall composition.
We restrict the cyclic case by (possibly nested) loops where no other choices
are possible except for the choice between staying in the loop or leaving it, and
show that soundness of pairwise compositions of the notary with the two other
components implies soundness of the overall composition for this simple cyclic
case.

We consider single-entry-single-exit loops (SESE loops). A SESE loop consists
of an entry place and an exit place, not being the same, and all nodes inside the
loop are on a path from entry to exit or vice versa, on a path from exit to entry.
Furthermore, we require each place in the loop to have exactly one transition in
its preset and one in its postset, except for the entry and exit place. An example
of a SESE loop is depicted in Fig. 7(b).

In simple cyclic nets, each loop can be replaced by a place, which results in
an acyclic S-net (see Fig. 7).

p

(a)

DC

e

o

(b)

DC

e

o

(c)

Fig. 7. An acyclic S-net (a), a single-entry-single-exit loop (b), and the refinement of
place p in (a) with loop (b)



When Can We Trust a Third Party? 119

Definition 13 (SESE Loop). A single-entry-single-exit loop (SESE loop) is
a triple (L, e, o) where L is a strongly-connected S-net with |PL| > 1 and |•p| =
|p•| = 1 for all places p ∈ PL; e, o ∈ PL, with e �= o, are the entry point and
exit point, respectively, of the SESE loop.

Definition 14 (Simple-cyclic S-net). We define the class of simple cyclic
nets (SCS nets) N inductively as follows:

– if N is an acyclic S-net, then N ∈ N ;
– Given an SCS-net N ∈ N , a place p ∈ PN not being the entry or exit

point of some loop, a SESE loop (L, e, o) such that L and N are disjoint.
Then (P, T, F ) ∈ N , with P = PL ∪ PN \ {p}, T = TN ∪ TL, and F =
(FN \ ((•p× {p}) ∪ ({p} × p•))) ∪ FL ∪ ( •

N p× {e}) ∪ ({o} × p•N ).

By the definition of the SESE loop, if a node contains multiple elements in its
preset or postset, it is either the entry or the exit of some (nested) loop. As a
consequence, all SESE loops are simple: there is a unique acyclic path from the
entry to the exit and a unique acyclic path from the exit to the entry. The basis
of an SCS-net is an acyclic S-net.

Taking into account the lesson learnt from the acyclic case, we introduce a
requirement with respect to the conflict control at the exits of loop:

Definition 15 (Loop Control Pattern). Let N be a simple cyclic net. It
satisfies the loop control pattern, if for every exit e of a SESE loop of N , for
every t, u ∈ e• : CN (t) = CN (u).

The net from Fig. 8 does not satisfy this pattern since CN (t) = A, CN (u) = B
and CN (v) = τ .

Similarly to the acyclic case, if the skeleton of a notary is a simple-cyclic S-net,
soundness of the three parties is assured if the notary composed with each of the
organizations individually is sound. As a consequence of the cyclic behaviour,
we need not only to show that no deadlocks are possible but also that livelocks,
like the one shown in Fig. 6 are not possible for simple-cyclic S-nets.

Theorem 16. Let A and B be two disjoint OPNs and let N be a simple-cyclic
S-net notary satisfying the loop control pattern. Then A ⊕ N ⊕ B is sound if
A⊕ N and of N ⊕ B are sound.

Proof. Define K = A ⊕ N , L = N ⊕ B and M = A ⊕ N ⊕ B. Suppose M
is not sound. Then there exists a marking m ∈ R(S(M), iM ) such that fM �∈
R(S(M),m). Lm. 8 implies that the final place fN of notary N is not marked
in m, i.e. m(fN ) = 0. By the definition of soundness, all the firing sequences
from m lead either to a deadlock different from the desired final marking, or to
a livelock.

First we prove that M has no deadlock. Suppose, some deadlock marking m′

is reachable. By the projection property, m′|PK
∈ R(S(K), iK) and m′|PL

∈
R(S(L), iL). As K is sound, there exists a transition u ∈ TK such that (S(K) :

m′|PK

u−→). If u ∈ TA or u ∈ TN with CN (u) = τ , then transition u would also



120 K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf

v

t u

p

Component A Component B

Notary N

Fig. 8. Conflicts like the one between t, u and v are forbidden in a simple-cyclic notary
satisfying the loop control pattern

be enabled in (S(M),m′), hence, u ∈ TN with CN (u) = B. Similarly, as L is
sound, a transition t ∈ TN with CN (t) = A has to exist. This contradicts to the
fact that N satisfies the loop control pattern. Thus, M has no deadlock.

Now, we prove that M has no livelock. Suppose that there is a livelock in M ,
meaning that there exists a non-empty subset of markings X ⊆ R(M, iM ) such
that (1) f �∈ R(M,X), (2) no marking in X is a deadlock, and (3) X = R(N,X),
i.e., from X the desired marking is not reachable, and no other marking then a
marking in X can be reached from X .

By the definition of simple-cyclic S-nets, we can conclude that the projection
of X on PN will give us singleton markings with tokens on the places of one or
several SESE-loops. X contains thus a marking m with a token on the exit of
some loop, let it be place x ∈ PN . Since N satisfies the loop control pattern,
we know that for the SESE-loop transition t ∈ x• and any transition u leaving
the SESE-loop from x, CN (t) = CN (u). These transitions cannot be controlled
by N , since otherwise u would be enabled whenever t is enabled. Thus they are
controlled either by A or by B.

Since both K and L are sound and X is a livelock, we conclude that if these
transitions are controlled by A, then B allows for any number of iterations on t,
and another way around: if these transitions are controlled by B, then A allows
for any number of iterations on t.

Finally, note that by the definition of SESE-loops no branching is possible
within SESE-loops except for branching when choosing to re-iterate or to exit
the loop. Then by combining the choices of A in A ⊕ N and of B in N ⊕ B



When Can We Trust a Third Party? 121

on the number of iterations towards enabling u, we obtain the firing sequence
in A ⊕ N ⊕ B resulting in enabling transition u and thus leaving X , which
contradicts the assumption that X is a livelock, which completes the proof. ��

6 Conclusions

We studied in this paper the problem of ensuring correctness of networks of co-
operating organizations. By introducing a trusted third party, called a notary,
organizations do not need to share their knowledge with the other organizations
within the network. The notary needs to ensure that firstly it works correctly
with each of the organizations individually, and secondly that all organizations
in the network, including the notary itself, work correctly together. In this paper,
we showed for two organizations and a notary that if the notary is an acyclic
state machine, or if it contains only single-entry-single-exit (SESE) loops, then
the notary ensures soundness if it is sound with each of the organizations indi-
vidually.

Different approaches exist in literature. For example, in the approach of [4],
the authors use contracts, implemented as public views. Organizations then need
to implement their public views as a private view. If each of the private views
agrees on the public view, the network is guaranteed to be correct. In [8], an
interactive Petri net is designed, modeling the communication between different
organizations.

The disadvantage of these approaches is that each of the organizations need
to implement a private view, whereas often organizations already have existing
components. In these approaches, the organizations have to re-engineer the ex-
isting components, and prove that these re-engineered components adhere to the
views defined in the contract using e.g. accordance [15] or contract theory [6]. In
the approach described in this paper, organizations can reuse existing compo-
nents, as the approach requires an organization to cooperate correctly with the
notary.

The setting in this paper is comparable with the more general setting of
decentralized controllability [19], which is shown to be undecidable [20]. We
limited ourselves to two organizations with a notary which is either acyclic or
only contains SESE loops. Although these requirements are quite strong, they
are needed to ensure soundness. Future work will be to search for more liberal
notaries and to extend the results to service trees [3]. As shown in [18], soundness
is not compositional, and additional requirements are needed.

References

1. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

2. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects of Computing, 1–31 (2010)



122 K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf

3. van der Aalst, W.M.P., van Hee, K.M., Massuthe, P., Sidorova, N., van der Werf,
J.M.E.M.: Compositional Service Trees. In: Franceschinis, G., Wolf, K. (eds.)
PETRI NETS 2009. LNCS, vol. 5606, pp. 283–302. Springer, Heidelberg (2009)

4. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multi-
party Contracts: Agreeing and Implementing Interorganizational Processes. The
Computer Journal 53(1), 90–106 (2010)

5. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services – Concepts, Archi-
tectures and Applications. Springer, Heidelberg (2004)

6. Bauer, S.S., David, A., Hennicker, R., Guldstrand Larsen, K., Legay, A., Nyman,
U., W ¸asowski, A.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software
Engineering. LNCS, vol. 7212, pp. 43–58. Springer, Heidelberg (2012)

7. Beisiegel, M., Khand, K., Karmarkar, A., Patil, S., Rowley, M.: Service Component
Architecture Assembly Model Specification Version 1.1 (2010)

8. Decker, G., Weske, M.: Local Enforceability in Interaction Petri Nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

10. van Hee, K.M., Keiren, J., Post, R., Sidorova, N., van der Werf, J.M.E.M.: De-
signing case handling systems. In: Jensen, K., van der Aalst, W.M.P., Billington,
J. (eds.) Transactions on Petri Nets and Other Models of Concurrency I. LNCS,
vol. 5100, pp. 119–133. Springer, Heidelberg (2008)

11. van Hee, K.M., Sidorova, N., Voorhoeve, M.: Soundness and Separability of Work-
flow Nets in the Stepwise Refinement Approach. In: van der Aalst, W.M.P., Best,
E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 337–356. Springer, Heidelberg (2003)

12. van Hee, K.M., Sidorova, N., Voorhoeve, M., van der Werf, J.M.E.M.: Generation of
database transactions with petri nets. Fundamenta Informaticae 93(1-3), 171–184
(2009)

13. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

14. Mehandjiev, N., Grefen, P.W.P.J. (eds.): Dynamic Business Process Formation for
Instant Virtual Enterprises. Springer, Berlin (2010)

15. Mooij, A.j., Stahl, C., Voorhoeve, M.: Relating fair testing and accordance for
service replaceability. J. Log. Algebr. Program. 79(3-5), 233–244 (2010)

16. Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer
Science: An EATCS Series, vol. 4. Springer, Berlin (1985)

17. Rosa-Velardo, F., de Frutos-Escrig, D., Marroqúın-Alonso, O.: On the expres-
siveness of Mobile Synchronizing Petri nets. In: Proceedings of the International
Workshop on Security and Concurrency (SecCo 2005). ENTCS, vol. 1, pp. 77–94.
Elsevier (2007)

18. van der Werf, J.M.E.M.: Compositional design and verification of component-based
information systems. PhD thesis, Technische Universiteit Eindhoven (2011)

19. Wolf, K.: Does My Service Have Partners? In: Jensen, K., van der Aalst, W.M.P.
(eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS,
vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

20. Wolf, K.: Decidability Issues for Decentralized Controllability of Open Nets. In:
17th German Workshop on Algorithms and Tools for Petri Nets, vol. 643, pp.
124–129. CEUR-WS (2010)



Hybrid Petri Nets

for Modelling the Eukaryotic Cell Cycle

Mostafa Herajy1, Martin Schwarick2, and Monika Heiner2

1 Port Said University, Faculty of Science,
Department of Mathematics and Computer Science,

42521 - Port Said, Egypt
2 Brandenburg University of Technology at Cottbus,

Computer Science Institute,
Data Structures and Software Dependability,
Postbox 10 13 44, 03044 Cottbus, Germany

http://www-dssz.informatik.tu-cottbus.de/

Abstract. System level understanding of the repetitive cycle of cell
growth and division is crucial for disclosing many unknown principles
of biological organisms. The deterministic or stochastic approach – when
deployed separately – are not sufficient to study such cell regulation due
to the complexity of the reaction network and the existence of reactions
at different time scales. Thus, an integration of both approaches is ad-
visable to study such biochemical networks. In this paper we show how
Generalised Hybrid Petri Nets can be used to intuitively represent and
simulate the eukaryotic cell cycle. Our model captures intrinsic as well as
extrinsic noise and deploys stochastic as well as deterministic reactions.
Additionally, marking-dependent arc weights are biologically motivated
and introduced to Snoopy – a tool for animating and simulating Petri
nets in various paradigms.

Keywords: Generalised hybrid Petri nets, hybrid modelling, eukaryotic
cell cycle, Snoopy, marking-dependent arc weight.

1 Introduction

The reproduction of eukaryotic cells is controlled by a complex regulatory net-
work of reactions known as cell cycle [19,20,24]. During a cell cycle, cells grow,
replicate and divide into two daughter cells [13,21]. This regulation cycle consists
of four phases: S phase (synthesis) and M phase (mitosis) separated by two gap
phases: G1 and G2 [24]. During the S phase, the cell replicates all of its com-
ponents, while it divides each component more or less evenly between the two
daughter cells at the end of the M phase [13]. After the S phase, there is a gap
(G2) where the cell ensures that the duplication of DNA has been completed
and prepares itself for mitosis. Newborn cells are not immediately replicated,
instead they are located at the G1 gap. The processes of synthesis and mitosis
alternate during the reproduction process; see Figure 1 for a graphical illustra-
tion of the cell cycle regulation process. Please note that the phases G1, S, and

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 123–141, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www-dssz.informatik.tu-cottbus.de/


124 M. Herajy, M. Schwarick, and M. Heiner

Fig. 1.Graphical illustration of the cell cycle [27]. The cell cycle consists of four distinct
phases: G1, synthesis (S), G2, and mitosis (M), respectively. The first three phases are
known as interphase (referred to by the outer ring). Cells that have stopped dividing
enter the G0 phase.

G2 are commonly subsumed as interphase as indicated by the outer cycle in that
figure. Understanding such control cycles is crucial for revealing defects in cell
growth that underlies many human diseases (e.g., cancer) [25].

In the eukaryotic cell cycle, the alternation between the S and the M phase
as well as the balance of growth and division is governed by the activity of a
family of cyclin-dependent protein kinases (CDK) [24]. Therefore, many com-
putational models have been constructed to study the control system of CDK
(e.g., in [1,13,19,20,24]). Some of these models are based on the determinis-
tic approach which represents changes of species concentrations as continu-
ous variables which evolve deterministically and continuously with respect to
time (in the following called continuous simulation). However, an important
requirement of the cell cycle model is to capture the variability of the cellu-
lar volume to reproduce the ”in vivo” experiment results. Unfortunately, the
deterministic approach cannot capture such cellular volume variability [20]. Mo-
tivated by this argument, a number of stochastic models have been created and
simulated using either a stochastic simulation algorithm (e.g., [13]) or by intro-
ducing noise to the model through Langevin equation [22]. However, the stochas-
tic approach is computationally expensive, particularly when the model under
study contains reactions with high rates and/or species with large numbers of
molecules.

The eukaryotic cell cycle model does indeed exhibit high rates of some reac-
tions, while some other reactions have low rates, which are responsible for the



Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle 125

intrinsic noise due to molecular fluctuations [13]. Similarly, the model contains
some species with a large number of molecules, while some other species have a
few number of molecules. The existence of reactions at different time scales (fast
and slow) suggests a simulation using a hybrid approach.

Generalised Hybrid Petri Nets (GHPN bio) have been introduced in [10],
[11] and [12], to represent and simulate stiff biochemical networks where fast
reactions are represented and simulated continuously, while slow reactions are
carried out stochastically. GHPN bio provide rich modelling and simulation func-
tionalities by combining all features of Continuous Petri Nets [3] and Extended
Stochastic Petri Nets [16], including three types of deterministic transitions.
Moreover, the partitioning of reaction networks (i.e., the assignment of each
reaction to either the stochastic or the continuous paradigm) can either be
done off-line (statically, i.e., before the simulation starts) or on-line (dynami-
cally, i.e., while the simulation is in progress). The implementation of GHPN bio

is available as part of Snoopy [7] - a tool to design and animate or simu-
late hierarchical graphs, among them qualitative, stochastic, continuous and
hybrid Petri nets. Indeed, the cell cycle model turns out to be an ideal case
study where the majority of the GHPN bio features can be demonstrated. More-
over, it makes a strong case for the introduction of marking-dependent arc
weights.

Another hybrid net class which provides functionalities related to GHPN bio is
known as Hybrid Functional Petri nets (HFPN) [18]. However, HFPN have been
developed to focus on hybrid (discrete/continuous) model construction where
stochastic transitions are not required. Moreover, modelling features like logical
nodes, hierarchy, and modifier arcs, which are imperative when considering larger
models, are not supported [7].

In this paper we present another argument to motivate hybrid simulation of
the cell cycle control system. The cell cycle model contains some reactions which
would be better represented as continuous processes, specifically the growth of
the cellular volume needs to be treated continuously, while other reactions of
low rates have to be considered as stochastic processes. For instance, Mura and
Csikasz-Nagy constructed in [19] a stochastic version of the model in [1] us-
ing stochastic Petri nets. However, they could not intuitively represent the cell
growth process which evolves continuously and exponentially with respect to
time using stochastic Petri net primitives only. Indeed, cell growth is a typical
example where continuous transitions are an appropriate means.

This paper is organised as follows: we start off by pinpointing some related
work. After that, a brief introduction of Generalised Hybrid Petri Nets is pre-
sented. To conveniently model the cell cycle regulation behaviour, we extend the
formal definition of GHPN bio, as they have been introduced in [10], to include
marking-dependent arc weights. Next, we discuss a hybrid Petri net model of the
eukaryotic cell cycle and discuss in detail some of its key modelling components.
In Section 5 we show the simulation results produced by Snoopy’s hybrid simu-
lation engine and compare them to the continuous and stochastic ones. Finally,
we sum up with conclusions and outlook.



126 M. Herajy, M. Schwarick, and M. Heiner

2 Related Work

Mura and Csikasz-Nagy converted the deterministic model of Chen et al. [1]
into a stochastic Petri net [19] to study the effect of noise on cell cycle pro-
gression. However, some components could not intuitively be modelled using
stochastic Petri net primitives only (e.g., cell growth). Moreover, their model
is based on phenomenological rate laws (e.g., Michaelis-Menten) which do not
work well with stochastic simulation algorithms [13]. Sabouri-Ghomi et al. [20],
and Kar et al. [13] asserted that applying Gillespie’s stochastic simulation al-
gorithm [4,5] directly to phenomenological rate laws might produce incorrect
results. Therefore, they unpacked the deterministic model of Tyson-Novak [24]
(who use non-elementary reaction kinetics, e.g., Michaelis Menten and Hill func-
tions) to express it completely in terms of elementary mass-action kinetics. The
Tyson-Novak model is based on a bistable switch between the complex CycB-
Cdk1 (denoted by variable X) and the complex Cdh1-APC (denoted by the vari-
able Y). CycB-Cdk1 phosphorylates Cdh1-APC and free Cdh1-APC catalyses
the degradation of CycB-Cdk1. Figure 2 presents a continuous Petri net repre-
sentation of the Tyson-Novak model. To model a complete cell cycle, Kar et al.
[13] unpacked the effect of Cdc20 and Cdc14 which are lumped in the variable Z
in the Tyson-Novak model. High activity of CycB-Cdk1 promotes the synthesis
of Cdc20 which activates Cdc14. Finally the dephosphorylated Cdc14 activates
Cdh1-APC. The Kar et al. model accounts for both intrinsic and extrinsic noise.
Intrinsic noise is due to the fluctuation of species with low numbers of molecules,
while extrinsic noise is due to the unequal division of the cell between the two
daughter cells [13].

In [2] and [17], two detailed HFPN models are constructed for the Fission yeast
and Xenopus cell cycles, respectively. However, intrinsic noise, which is necessary
for reproducing the variability of the cellular volume, is not captured because HFPN
do not support the (full) interplay between stochastic and continuous regimes.
Thus, these models are built using the hybrid (discrete/continuous) paradigm.

In [21], a hybrid model, which combines ordinary differential equations (ODEs)
and discrete boolean networks, has been constructed to integrate quantitative as
well as qualitative parts in one model. The latter approach requires less knowl-
edge of realistic kinetic rate constants. Liu et al. [15] simulate the stochastic
model of [13] using the Haseltine and Rawlings approach [6]. However, such
models cannot be represented structurally or graphically which makes their
maintenance and extension more diffecult.

In this paper a hybrid Petri net model of the eukaryotic cell cycle is presented
as a sophisticated example for the kind of hybrid models that can be constructed
using GHPN bio. The model is hybrid in the sense that it combines continuous,
stochastic and immediate transitions to represent deterministic, stochastic and
control behaviour. Our main goal is to show how such a class of models is intu-
itively represented and executed using hybrid Petri net primitives. Besides, Petri
nets analysis tools can be applied to the constructed models as well [8]. Using
Snoopy’s simulator, cell cycle models incorporating continuous net components
can be simulated using either the continuous or hybrid engine.



Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle 127

V

10

X

6

Y
2189

Yp

Z

Fig. 2. A continuous Petri net representation of the Tyson-Novak model [24]: X (CycB-
Cdk1) phosphorylates Y (Cdh1-APC) and free Y catalyses the degradation of X. Z
denotes the effects of Cdc20 and Cdc14. High activity of X promotes the synthesis of
Cdc20 which activates Cdc14. The dephosphorylated Cdc14 activates Y. This behaviour
results in a bistable switch that is responsible for the transitions between G1 and
S-G2-M states.

3 Generalised Hybrid Petri Nets

To model stiff biochemical networks, GHPN bio [10] combine both stochastic
and continuous elements in one and the same model. Indeed, continuous and
stochastic Petri nets complement each other. Fluctuation and discreteness can
conveniently be modelled and simulated in the stochastic paradigm and at the
same time, the computational expensive parts can be simulated deterministically
via ODE solvers. Modelling and efficient simulation of stiff biochemical networks
(i.e., networks that contain reactions at more than one time scale) are helpful
functionalities that GHPN bio provide for systems biology.

Generally speaking, biochemical systems can involve reactions from more than
one type of biological networks, for instance gene regulation, metabolic pathways
or signal transduction pathways. Incorporating reactions which belong to distinct
(biological) network types, tends to result into stiff systems. This follows from
the fact that, e.g., species in gene regulation networks may contain few numbers
of molecules, while species in metabolic networks often contain large numbers of
molecules [14].

In the rest of this section, we will give a brief introduction of GHPN bio in
terms of the graphical representation of its elements as well as the firing rule
and connectivity between the continuous and stochastic net parts. The formal
semantics is given in [10].



128 M. Herajy, M. Schwarick, and M. Heiner

3.1 Elements

The GHPN bio elements are classified into three categories: places, transitions,
and arcs.
GHPN bio offer two types of places: discrete and continuous. A discrete place

(single line circle) holds a non-negative integer number which represents, e.g.,
the number of molecules of a given species (tokens in Petri net notions). A
continuous place (shaded line circle) holds a non-negative real number which
represents, e.g., the concentration of a given species.

Furthermore, GHPN bio offer five transition types: stochastic, immediate, de-
terministically delayed, scheduled, and continuous transitions [8]. Stochastic
transitions, which are drawn in Snoopy as a square, fire with an exponentially
distributed random delay. The user can specify a set of firing rate functions,
which determine the random firing delay. The transitions’ pre-places can be
used to define the firing rate functions of stochastic transitions. Immediate tran-
sitions (black bar) fire with zero delay, and have always highest priority to fire.
They may carry weights which specify the relative firing frequency in the case
of conflicts between immediate transitions. Deterministically delayed transitions
(black square) fire after a specified constant time delay. Scheduled transitions
(grey square) fire at user-specified absolute time points. Continuous transitions
(shaded line square) fire continuously in the same way like in continuous Petri
nets. Their semantics is governed by ODEs which define the continuous change
in the transitions’ pre- and post-places. More details about the biochemical in-
terpretation of deterministically delayed, scheduled, and immediate transitions
can be found in [9] and [16]. To simplify the presentation, we occasionally refer
to stochastic, immediate, deterministically delayed or scheduled transitions as
discrete transitions.

The connection between those two types of nodes (places and transitions)
takes place using a set of different arcs (edges). GHPN bio offer six types of arcs:
standard, inhibitor, read, equal, reset and modifier arcs. Standard arcs connect
transitions with places or vice versa. They can be discrete, i.e., carry non-negative
integer-valued weights (stoichiometry in the biochemical context), or continuous,
i.e., carry non-negative real-valued weights. In addition to their influence on the
enabling of transitions, they also affect the place marking when a transition fires
by removing (adding) tokens from (to) the transition’s pre-places (post-places).

Extended arcs like inhibitor, read, equal, reset, and modifier arcs can only
be used to connect places with transitions, but not vice versa. A transition
connected with an inhibitor arc is enabled (with respect to this pre-place) if
the marking of the pre-place is less than the arc weight. Contrary, a transition
connected with a read arc is enabled if the marking of the pre-place is greater
than or equal to the arc weight. Similarly, a transition connected using an equal
arc is enabled if the marking of the pre-place is equal to the arc weight.

The other two remaining arcs do not affect the enabling of transitions. A reset
arc is used to reset a place marking to zero when the corresponding transition
fires. Modifier arcs permit to include any place in the transitions’ rate functions
and simultaneously preserve the net structure restriction.



Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle 129

Discrete

Standard

Continuous

Stochastic

Inhibitor Equal ResetRead

Continuous Immediate Deterministic

<1>

Scheduled

[_SimStart,1,_SimEnd]

Modifier

Places

Transitions

Arcs

Fig. 3. Graphical representation of the GHPN bio elements. Places are classified as
discrete and continuous, transitions as stochastic, continuous, immediate, determinis-
tically delayed, and scheduled, and arcs as standard, inhibitor, read, equal, reset, and
modifier.

p1

p2

p3<1>

(a)

p1

p2

p3<1>

p1

p1/2

p1/2

(b)

Fig. 4. Marking-dependent arc weights illustrated by a simple biological example. (a)
cell division cannot be modelled, (b) cell division can intuitively be modelled. The num-
bers between angle brackets are the delays of the deterministically delayed transitions.
Later we will assume that cell division does not consume time.

The connection rules and their underlying formal semantics are discussed in
more details below. Figure 3 provides a graphical illustration of all elements. Al-
though this graphical notation is the default one, it can easily be customised
using Snoopy, the Petri nets editing tool. To support special modelling re-
quirements of some biological models (e.g., the cell cycle model), we extended
GHPN bio to permit pre-places of a transition as arc weight, similar to the idea



130 M. Herajy, M. Schwarick, and M. Heiner

of self-modifying nets which has been originally introduced in [26], or even a
function which is defined in terms of a transition’s pre-places [18].

Consider the following simple biological example. When a cell divides its mass
between two daughter cells, each daughter obtains approximately half of the
mass. This example cannot easily be modelled using discrete Petri nets. More-
over, there is no way to model it if the mass is represented by a continuous place
as shown in Figure 4a. In Figure 4b, using marking-dependent arc weights; the
ingoing arc of the transition t has a weight equal to the marking of the place p1,
while each of the two outgoing arcs has a weight equal to half of the marking of
that place.

Motivated by the case study discussed in this paper, marking-dependent arc
weights have been introduced for the majority of arc types supported by Snoopy
(standard, read, inhibitor, and equal arc). For more details see Section 4.2.

3.2 Connection Rules

An important question arises when considering the combination of discrete and
continuous elements: how are these two different parts connected with each
other? Figure 5 provides a graphical illustration of how the connection between
different elements of GHPN bio takes place.

First, we will consider the connection between continuous transitions and
the other elements of GHPN bio. Continuous transitions can be connected with
continuous places in both directions using continuous arcs (i.e., arcs with real-
valued weight). This means that continuous places can be pre- or post-places
of continuous transitions. These connections typically represent deterministic
biological interactions.

Continuous transitions can also be connected with discrete places, but only by
one of the extended arcs (inhibitor, read, equal, and modifier). This type of connec-
tion allows a link between discrete and continuous parts of a biochemical model.

Discrete places are not allowed to be connected with continuous transitions
using standard arcs, because the firing of continuous transitions is governed by
ODEs which require real values in the pre- and post-places. Hence, this cannot
take place in the discrete world.

Second, discrete transitions can be connected with discrete or continuous
places in both directions using standard arcs. However, the arc weight needs to
be considered. The connection between discrete transitions and discrete places
takes place using arcs with non-negative integer numbers, while the connection
between continuous places and discrete transitions is weighted by non-negative
real numbers. The general rule to determine the weight type of arcs is to follow
the type of the connected place.

3.3 Formal Definition

In this section, the syntax of GHPN bio is formally defined to include the making-
dependent arc weight. The formal semantics including the enabling and firing
rules as well as the conflict resolution are given in [10].



Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle 131

or

or

or

or

or

or

or

or

Continuous TransitionDiscrete  Transition

Fig. 5. Possible connections between GHPN bio elements. The restrictions are: discrete
places cannot be connected with continuous transitions using standard arcs, continuous
places cannot be tested with equal arcs, and continuous transitions cannot use reset
arcs.

Definition 1 (Generalised Hybrid Petri Nets). A Generalised Hybrid Petri

Net is a 6-tuple GHPN bio= [P, T,A, F, V,m0], where P , T are finite, non-empty

and disjoint sets. P is the set of places, and T is the set of transitions with:

– P = Pdisc ∪ Pcont whereby Pdisc is the set of discrete places to which non-

negative integer values are assigned, and Pcont is the set of continuous places

to which non-negative real values are assigned.

– T = TD ∪ Tcont,

TD = Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled with:

1. Tstoch is the set of stochastic transitions, which fire randomly after ex-

ponentially distributed waiting time.

2. Tim is the set of immediate transitions, which fire with waiting time zero;

they have higher priority compared with other transitions.

3. Ttimed is the set of deterministically delayed transitions, which fire after

a deterministic time delay.

4. Tscheduled is the set of scheduled transitions, which fire at predefined time

points.

5. Tcont is the set of continuous transitions, which fire continuously over

time.

– A = Adisc ∪ Acont ∪ Ainhibit ∪ Aread ∪ Aequal ∪ Areset ∪ Amodifier is the set

of directed arcs, with:

1. Adisc ⊆ ((P × T ) ∪ (T × P )) defines the set of discrete arcs.



132 M. Herajy, M. Schwarick, and M. Heiner

2. Acont ⊆ ((Pcont × T ) ∪ (T × Pcont)) defines the set of continuous arcs.

3. Aread ⊆ (P × T ) defines the set of read arcs.

4. Ainhibit ⊆ (P × T ) defines the set of inhibits arcs.

5. Aequal ⊆ (Pdisc × T ) defines the set of equal arcs.

6. Areset ⊆ (P × TD) defines the set of reset arcs,

7. Amodifier ⊆ (P × T ) defines the set of modifier arcs.

– the function F

F :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Acont → Dq,

Adisc → Dn,

Aread → Dq,

Ainhibit → Dq,

Aequal → Dn,

Areset → {1},
Amodifier → {1}.

assigns a marking-dependent function to each arc, where Dn and Dq are sets

of functions defined as follows:

Dn = {dn|dn : N
|•tj |
0 → N, tj ∈ T },

Dq = {dq|dq : R
|•tj |
0 → Q+, tj ∈ T }.

– V is a set of functions V = {g, d, w, f} where :

1. g : Tstoch → Hs is a function which assigns a stochastic hazard function

hst to each transition tj ∈ Tstoch, whereby Hs = {hst |hst : R
|•tj |
0 →

R+
0 , tj ∈ Tstoch} is the set of all stochastic hazard functions, and g(tj) =

hst , ∀tj ∈ Tstoch.

2. w : Tim → Hw is a function which assigns a weight function hw to each

immediate transition tj ∈ Tim, such that Hw = {hwt |hwt : R
|•tj |
0 →

R+
0 , tj ∈ Tim} is the set of all weight functions, and w(tj) = hwt , ∀tj ∈

Tim.

3. d : Ttimed∪Tscheduled → R+
0 , is a function which assigns a constant time

to each deterministically delayed and scheduled transition representing

the (relative or absolute) waiting time.

4. f : Tcont → Hc is a function which assigns a rate function hc to each

continuous transition tj ∈ Tcont, such that Hc = {hct|hct : R
|•tj |
0 →

R+
0 , tj ∈ Tcont} is the set of all rates functions and f(tj) = hct , ∀tj ∈

Tcont.



Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle 133

– m0 = mdisc∪mcont is the initial marking for both the continuous and discrete

places, whereby mcont ∈ R
|Pcont|
0 , mdisc ∈ N

|Pdisc|
0 .

Here, N denotes the set of natural numbers excluding 0, N0 denotes the set of non-

negative integer numbers, R0 denotes the set of non-negative real numbers, Q+ de-

notes the set of positive rational numbers, and •tj denotes the set of pre-places of a

transition tj.

�

A distinguishing feature of GHPN bio compared with other hybrid Petri net
classes is its support of the full interplay between stochastic and continuous
transitions. Such interplay is implemented by updating and monitoring the rates
of stochastic transitions while numerically solving the set of ODEs induced by
the continuous transitions (For more details see [10]). By this way, accurate
results are obtained during simulation.

4 The Model

Figure 6 shows the hybrid Petri net model which has been developed based on
the previous one introduced by Kar et al. in [13]. Proteins, genes, and mRNAs
are represented by places, reactions by transitions. We use the same kinetic
parameters and initial values as in [13]. For the sake of space we do not repeat
the kinetic parameters, but the initial marking is shown on the places. Moreover,
we use Snoopy’s logical node feature to simplify the connections between nodes.
For example, place X and Y are involved in many reactions which decreases
the network’s readability. We repeat those nodes multiple times with the same
names to keep the model understandable (logical places). Likewise, the transition
divide is a logical transition. Furthermore, the increase of the cellular volume is
intuitively represented using a continuous transition with a rate μ ·V , where μ is
the growth factor and V is the cellular volume, modelled as a continuous place.

The model contains three different transition types: continuous, stochastic,
and immediate. Continuous transitions simulate the corresponding reactions de-
terministically, while stochastic transitions carry them out stochastically. The
latter transitions are responsible for molecular fluctuations. Immediate transi-
tions monitor the model evolution and perform the division when the free number
of molecules of Cdh1 APC reaches a certain threshold (Ŷ = Y + Y X + X Y ).

In the sequel we discuss in more detail some of the model’s key components
and the corresponding GHPN bio representations.

4.1 Decision to Perform Division

In this section we consider the process of division in more detail. When the
number of molecules of Ŷ becomes greater than a certain threshold (in our case



134 M. Herajy, M. Schwarick, and M. Heiner

������

������

	

	

�����


�������

��

��

���

��

����������������



�����������
���

�

��

�

��

���

�

��

� ��

�

��

� ��

�

��

�

���!

�

���!

�

���!

�

���!�"

�#�

�"

�#�

�"

�#�

$

!

$!

�"��

�##

���

#%

���

#%

���

#%

�

%

�

%

�
%

�

���&

��

�'!!

���

�#

���

�#

$��"
��'

���"�

���"�

���"
�

�����(

��)

��)

��%

�#!

�*�

�*#

�**

�*)

�*%

�*'

�#�

�����

+##��#

�!

�#*

��*

�#' ���

��#

�'

�#�
��'

��'

�%

���

��!

�)

�#)

��

�#%

���*

�#�#�

���

��&

��!

��&

���

�
���

������

������

������

������

������

������
������

������

������

������

������

������

������

������

������

�������-

�

�

$

$6�

������

������6�

������6�

������

���

���6�

�

�6�

�"

�"6�

�����(6� �����(

�"��

�"��6�

��

��6�

���"�

���"�6�

���"6�

���"

�

�6�

�����


�����
6�

�

�6�

���
���6�

$��"

$��"6�

�������

�������6�

�6�

�78	��9 	���
�78	�
� �:	
$78	���&8�;�8	���*

�

Fig. 6. A GHPN bio representation of the eukaryotic cell cycle. The model employs
different types of transitions: continuous, stochastic and immediate. All reactions af-
fecting mRNAs are represented and simulated stochastically. Repetitive nodes (places
and transitions) with same names are logical nodes. When the immediate transition
divide fires, it divides the current place marking more or less equally. Equal divi-
sion means that the cellular volume of the daughter cell is always half of its parent.
This model could be easily extended to permit unequal division, where a random
variation in the cellular volume is possible, by having arc weights with random func-
tions. The unequal division type will reproduce extrinsic noise. The type of division
(equal, or unequal) depends on the outgoing arc weight and its effect is implemented by
marking-dependent arc weights.



Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle 135

1200), the cell divides the cellular volume and other components (e.g., mRNAs)
between the two daughter cells. In Figure 7a, this process is represented by the
immediate transition check with a weight defined by the Boolean expression
Ŷ > threshold (the weight is 0 if the Boolean expression yields false, and 1
for the result true). Recall that weights of immediate transitions determine the
firing frequencies of immediate transitions in the case of conflicts. A weight of
zero means that a transition cannot fire at all. However, when the transition
check has a weight of one, it adds a token to the place ready to divide which
triggers the transition divide to carry out the division. To give the transition
divide a chance to fire before re-checking the value of Ŷ , an inhibitor arc is used
as constraint. Please note that the transitions critical and check need the current
marking of the places X Y , Y , and Y X only to calculate the term Ŷ in the
transitions’ weight. Therefore, modifier arcs are used to fulfil this requirement.

An interesting characteristics of the model is the division process. Although
the division can take place when the value of Ŷ is greater than a certain thresh-
old, it does not do that all the times. For example, at the beginning of the
simulation, the initial value of Ŷ satisfies the division criteria. However; the
cell should not divide because it is still at G1 phase which means that it has
to replicate itself before it can divide. We model these cases by adding a new
immediate transition which detects the critical value of Ŷ , before checking for
division. Therefore the transition critical monitors the value of Ŷ . When the
value of Ŷ goes below a certain threshold, it enables the division process.

4.2 Cell Division and Marking-Dependent Arc Weights

When a cell divides, it splits all of its components more or less evenly between
the two daughter cells. This is most naturally expressed with marking-dependent
arc weights [26]. In Figure 7a, when the transition divide fires, it removes all of the
current marking of the place V and adds V/2 to it. To permit uneven division of the
cell volume and other components, arc weights can be a function which operates on
the current place marking [18]. However, we restrict the places used in arc weights
to a transition’s pre-places to keep the locality principle Petri nets are famous for.

Figure 7b illustrates the process of cell division graphically by showing a
simulation trace.

Moreover, all proteins and mRNAs have to undergo such division. This means
the transition divide has to be connected with each place in the net that repre-
sents a protein or mRNA. The ingoing arc weight of such a connection is equal
to the pre-place’s current marking, while the outgoing arc weight is equal to half
of the pre-place’s current marking. Furthermore, the markings of discrete places
are rounded after the division process to preserve the discrete representation of
the molecular species.

4.3 Transition Partitioning

The model in Figure 6 contains transitions which fire at different rates. For
instance, transition R3 fires more frequently than R1 as illustrated in Figure



136 M. Herajy, M. Schwarick, and M. Heiner

ready_for_check

ready_for_divideY_X

83

X_Y

36

Y

2189

V
21

critical

divide

check

V/2 V

Y: Cdh1−APC
V: Cellular Volume

(a) (b)

Fig. 7. Cell Division (a) A sub-net for modelling the decision of the division process
(see also upper right corner of Figure 6). The transition critical monitors the value
of Ŷ and adds a token to ready for check when Ŷ < 300. Later, when the value of
Ŷ increases and becomes greater than a certain threshold (1200), the transition check
fires and adds a token to ready for divide which signals the transition divide to perform
the division. Inhibitor arcs are used as checkpoints for the sequence of events: critical
→ check → divide. (b) Hybrid simulation trace of cell division.

8a. Slow transitions should be simulated stochastically to account for molecular
fluctuations, while fast transitions need to be simulated continuously for the
sake of numerical efficiency. Indeed, transitions of the latter type consume the
majority of computational resources.

In this model, transitions are statically partitioned before the simulation
starts. The transition type is determined by executing a single run and analysing
the results as shown in Figure 8. Increasing (decreasing) the accuracy of the sim-
ulation results involves converting more continuous (stochastic) transitions into
stochastic (continuous) ones.

Another approach for partitioning is to perform it dynamically during the sim-
ulation. Using this technique, a transition changes its type from stochastic to con-
tinuous or vice versa according to the current firing rate. GHPN bio provide the
user with a trade-off between efficiency and accuracy by permitting the user to
specify two thresholds: a0min and a0max , the minimum and maximum cumulative
propensity (i.e., the total rates of stochastic transitions), respectively. Moreover,
two other thresholds are required to perform dynamic partitioning: the place mark-
ing threshold and the transition rate threshold. The former is used to ensure that
species concentrations are large enough to be simulated continuously, while the
latter is used to partition transitions into fast and slow based on their rates. A
transition is simulated continuously, if its rate exceeds the rate threshold and the
marking of all its pre-place is greater than the marking threshold.

Nevertheless, cell growth has to be represented and simulated continuously
in both partitioning approaches. Using off-line partitioning, this can be easily
communicated to the simulator by drawing a continuous transition. However, in
the case of dynamic partitioning, the transition rate threshold had to be set less
than the smallest expected rate of cell growth which makes the latter approach
unsuitable for the cell cycle model.



Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle 137

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  100  200  300  400  500  600  700  800  900  1000

R
at

es

time

R1
R3

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  100  200  300  400  500  600  700  800  900  1000

R
at

es

time

R26
R18

(b)

Fig. 8. Example of different transition firing rates. (a) transition R3 fires more fre-
quently than the transition R1, and (b) transition R18 fires much more often than R26.

5 Simulation Results

In this section we show some simulation results of the model in Figure 6 using
Snoopy’s hybrid simulator. Figures 9 - 12 present time course simulation results
of some model species of continuous and hybrid trajectories.

In the hybrid setting, species of low numbers of molecules are simulated us-
ing the stochastic regime, e.g., mRNAx and mRNAz; thus, their numbers of
molecules show variability. Such variability is due to the intrinsic noise which is
captured by the stochastic simulation algorithm.

Figure 12 compares continuous and hybrid simulation results of the cellular
volume (V ). Using continuous simulation, parent cells divide all the time equally,
and the model does not produce variability in its volume size. Contrary, hybrid
simulation does show variability in the cellular volume because species of low
numbers of molecules (e.g., mRNAs) are simulated stochastically.

The variability behaviour in the cellular volume, which is produced by the
hybrid simulation, is close to the biological model behaviour. For example, the
Fission yeast cells have at division a Coefficient of Variation (CV) of the cellular
volume of about 6% [13]. The CV is a normalised measure of dispersion of a
probability distribution. It is used to judge the variability of a result and it is
defined as the ratio of the standard deviation σ to the mean μ, i.e, CV = σ

μ .
Table 1 compares the CV and mean values of the deterministic, stochastic,

and hybrid simulation results as well as the experimental data of the Fission
yeast (wild-type). The continuous and hybrid results are computed by exporting
the Snoopy simulation output to a comma-separated values format (CSV). Then
a tiny script extracts the different statistics, i.e., μ and CV.

As expected, the CVs of continuous simulation results are zero. This means
that continuous simulation does not exhibit any variability in the cellular volume.
Moreover, the stochastic and hybrid statistics are similar, but not the same. The
variability of cellular volumes of cells simulated via the hybrid version is slightly
less than the corresponding stochastic simulation. However, this is an expected
behaviour since some of the transitions are continuously simulated.



138 M. Herajy, M. Schwarick, and M. Heiner

 0

 500

 1000

 1500

 2000

 0  100  200  300  400  500  600  700  800  900  1000

co
nc

en
tr

at
io

n

time

Y continuous

(a)

 0

 500

 1000

 1500

 2000

 0  100  200  300  400  500  600  700  800  900  1000

co
nc

en
tr

at
io

n

time

Y hybrid

(b)

Fig. 9. Time course result of Y; (a) continuous, and (b) hybrid

 0

 2

 4

 6

 8

 10

 12

 0  100  200  300  400  500  600  700  800  900  1000

co
nc

en
tr

at
io

n

time

mRNAx continuous

(a)

 0

 2

 4

 6

 8

 10

 12

 0  100  200  300  400  500  600  700  800  900  1000

co
nc

en
tr

at
io

n

time

mRNAx hybrid

(b)

Fig. 10. Time course result of mRNAx; (a) continuous, and (b) hybrid

 0

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500  600  700  800  900  1000

co
nc

en
tr

at
io

n

time

mRNAz continuous

(a)

 0

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500  600  700  800  900  1000

co
nc

en
tr

at
io

n

time

mRNAz hybrid

(b)

Fig. 11. Time course result of mRNAz; (a) continuos, and (b) hybrid



Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle 139

 0

 5

 10

 15

 20

 25

 30

 35

 500  600  700  800  900  1000

si
ze

time

V

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 500  600  700  800  900  1000

si
ze

time

V

(b)

Fig. 12. Time course results of the cellular volume (V); (a) continuous, and (b) hybrid
simulation

Table 1. Comparison of the continuous, stochastic, and hybrid simulation results of
the model in Figure 6. The volume size is given in fl (femtolitre).

No. simulator
cell age, min size at division, fl size at birth, fl

reference
mean CV% mean CV % mean CV%

1 Fission yeast 148 10.8 14.4 5.9 8.2 6.3 [23]

2 deterministic 115.9 0 30.9 0 15.9 0 -

3 stochastic 115.5 13 29.1 8.2 14.5 8.2 [13]

4 hybrid 115.5 12 29.9 7.4 15 7.4 -

6 Conclusions and Outlook

In this paper we have shown a class of biological models that can appropriately be
modelled using hybrid Petri nets. As an example we have presented and discussed
a hybrid Petri net model of the eukaryotic cell cycle. This specific model can be
executed using either continuous or hybrid simulators. It employs continuous,
stochastic and immediate transitions to intuitively represent the entire model
logic. Generally, depending on the type of model, a GHPN bio model can be
simulated continuously, stochastically or in a hybrid way.

The model is implemented using Snoopy. The model itself and the tool are
available at http://www-dssz.informatik.tu-cottbus.de/. Marking-depen-
dent arc weights are a new feature recently added to Snoopy which is currently
not available in the official Snoopy release. However, the under-development
version is freely available on request.

Comparing the simulation results we notice that hybrid simulation produces
results close to the stochastic ones (in terms of the resulting CVs), while sim-
ulation efficiency could be preserved. Indeed, the reactions of this model can
easily be split into slow and fast reactions, which makes it an ideal case study
for hybrid simulation algorithms.

http://www-dssz.informatik.tu-cottbus.de/


140 M. Herajy, M. Schwarick, and M. Heiner

Marking-dependent arc weights are of paramount importance to model such
biological scenarios since they provide a direct tool to program certain biological
phenomenon (e.g., cell division). Therefore, we intend to add even more func-
tionalities into this direction to permit more user-defined operators depending
on the transition’s pre-places, e.g., random function.

So far the partitioning of the reactions into stochastic and deterministic ones
is carried out using a heuristic approach (see Section 4.3). However, (as suggested
by one of the reviewers) a more sophisticated partitioning could be performed. For
instance, the fast processes could be described by a quasi (or pseudo) steady state
approach, assuming that they reach equilibrium rapidly. In other words, they could
be better described by setting the corresponding ODEs to zero and solving them.
In contrast, continuous dynamics could be seen as more appropriate for abun-
dant molecules whose concentration display a small coefficient of variation, and
stochastic dynamics for those molecules evolving at low copy numbers.

Finally, the model presented in this paper could be viewed as a sub-net in a
bigger network of reactions (e.g., modelling budding yeast cell cycle or Fission
yeast cells). Snoopy’s hierarchical nodes might simplify such task as they provide
an easy tool to insert a sub-net into a bigger one.

Acknowledgements. This work was done during the stay of Mostafa Herajy
at the Brandenburg University of Technology at Cottbus, Germany, supported
by the GERLS (German Egyptian Research Long Term Scholarships) program,
which is administered by the DAAD in close cooperation with the MHESR and
German universities.

References

1. Chen, K., Calzone, L., Csikasz-Nagy, A., Cross, F., Novak, B., Tyson, J.: Integrative
analysis of cell cycle control in budding yeast. Mol. Biol. Cel. 5(8), 3841–3862 (2004)

2. Fujita, S., Matsui, M., Matsuno, H., Miyano, S.: Modeling and simulation of fission
yeast cell cycle on hybrid functional Petri net. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences E87-A(11), 2919–2927
(2004)

3. Gilbert, D., Heiner, M.: From Petri nets to differential equations - an integrative
approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S.
(eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006)

4. Gillespie, D.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

5. Gillespie, D.: Stochastic simulation of chemical kinetics. Annual Review of Physical
Chemistry 58(1), 35–55 (2007)

6. Haseltine, E., Rawlings, J.: Approximate simulation of coupled fast and slow reac-
tions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969 (2002)

7. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying Petri
net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347,
pp. 398–407. Springer, Heidelberg (2012)

8. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology.
In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016,
pp. 215–264. Springer, Heidelberg (2008)



Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle 141

9. Heiner, M., Lehrack, S., Gilbert, D., Marwan, W.: Extended stochastic Petri nets
for model-based design of wetlab experiments. In: Priami, C., Back, R.-J., Petre,
I. (eds.) Transactions on Computational Systems Biology XI. LNCS, vol. 5750,
pp. 138–163. Springer, Heidelberg (2009)

10. Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical
networks. Nonlinear Analysis: Hybrid Systems 6(4), 942–959 (2012)

11. Herajy, M.: Computational Steering of Multi-Scale Biochemical Reaction Net-
works. Ph.D. thesis, Brandenburg University of Technology Cottbus - Computer
Science Institute (2013)

12. Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical
networks through generalised hybrid Petri nets. Tech. Rep. 02/2011, Brandenburg
University of Technology Cottbus, Dept. of CS (2011)

13. Kar, S., Baumann, W.T., Paul, M.R., Tyson, J.J.: Exploring the roles of noise in
the eukaryotic cell cycle. Proceedings of the National Academy of Sciences of the
United States of America 106(16), 6471–6476 (2009)

14. Kiehl, T., Mattheyses, R., Simmons, M.: Hybrid simulation of cellular behavior.
Bioinformatics 20, 316–322 (2004)

15. Liu, Z., Pu, Y., Li, F., Shaffer, C., Hoops, S., Tyson, J., Cao, Y.: Hybrid modeling
and simulation of stochastic effects on progression through the eukaryotic cell cycle.
J. Chem. Phys. 136(34105) (2012)

16. Marwan, W., Rohr, C., Heiner, M.: Petri nets in Snoopy: A unifying framework
for the graphical display, computational modelling, and simulation of bacterial
regulatory networks. Methods in Molecular Biology, ch. 21, vol. 804, pp. 409–437.
Humana Press (2012)

17. Matsui, M., Fujita, S., Suzuki, S., Matsuno, H., Miyano, S.: Simulated cell division
processes of the xenopus cell cycle pathway by genomic object net. Journal of
Integrative Bioinformatics, 0001 (2004)

18. Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopath-
ways representation and simulation on hybrid functional Petri net. Silico Biol-
ogy 3(3) (2003)

19. Mura, I., Csikász-Nagy, A.: Stochastic Petri net extension of a yeast cell cycle
model. Journal of Theoretical Biology 254(4), 850–860 (2008)

20. Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., Tyson, J.J.: Antagonism and
bistability in protein interaction networks. Journal of Theoretical Biology 250(1),
209–218 (2008)

21. Singhania, R., Sramkoski, R.M., Jacobberger, J.W., Tyson, J.J.: A hybrid model
of mammalian cell cycle regulation. PLoS Comput. Biol. 7(2), e1001077 (2011)

22. Steuer, R.: Effects of stochasticity in models of the cell cycle: from quantized cycle
times to noise-induced oscillations. Journal of Theoretical Biology 228(3), 293–301
(2004)

23. Sveiczer, Á., Novák, B., Mitchison, J.: The size control of fission yeast revisited. J.
Cell Sci. 109, 2947–2957 (1996)

24. Tyson, J., Novak, B.: Regulation of the eukaryotic cell cycle: Molecular antagonism,
hysteresis, and irreversible transitions. Journal of Theoretical Biology 210(2), 249–
263 (2001)

25. Tyson, J., Novak, B.: A Systems Biology View of the Cell Cycle Control Mecha-
nisms. Elsevier, San Diego (2011)

26. Valk, R.: Self-modifying nets, a natural extension of Petri nets. In: Ausiello, G.,
Böhm, C. (eds.) Proceedings of the Fifth Colloquium on Automata, Languages
and Programming, vol. 62, pp. 464–476. Springer, Heidelburg (1978)

27. Wikipedia: Wikipedia website (2012), http://www.wikipedia.org/ (accessed:
September 20, 2012)

http://www.wikipedia.org/


Simulative Model Checking of Steady State
and Time-Unbounded Temporal Operators

Christian Rohr

Brandenburg University of Technology Cottbus,
Chair of Data Structures and Software Dependability,

Postbox 10 13 44, D-03013 Cottbus, Germany
rohrch@tu-cottbus.de

http://www-dssz.informatik.tu-cottbus.de

Abstract. When working with large stochastic models simulation re-
mains the only possible analysis technique. Therefore, simulative model
checking is the way to go. While finite time horizon algorithms are well
known for probabilistic linear-time temporal logic, we provide an infi-
nite time horizon procedure as well as steady state computation, based
on exact stochastic simulation algorithms. All presented algorithms are
implemented in our advanced model checking tool MARCIE. We demon-
strate the approach on models of the RKIP inhibited ERK pathway and
angiogenetic process.

Keywords: simulative model checking, stochastic Petri net, steady state,
unbounded temporal operator, probabilistic linear-time temporal logic.

1 Introduction

Stochastic modelling of biochemical reaction networks is getting more and more
popular. This also increases the demand for efficient analysis of such models.
While small and medium-sized models can be analysed numerically, we focus on
large or unbounded models. Therefore we use stochastic simulation to overcome
the problem of state space explosion.

We use stochastic Petri nets (SPN ) [1] as modelling paradigm, which gives us
a complete formalised and standardised framework, as well as an intuitive way
of modelling concurrent behaviour. A number of biochemical species N involved
in the biological model are represented as places p1 . . . pN , and the reactions
between them refer to the transitions t1 . . . tM . The kinetics of a reaction is
defined as possibly state-dependent rate function ht assigned to the transition.
Places and transitions are connected via directed arcs. Each arc contains the
stoichiometric value of the associated species. The initial marking m0 of a SPN
specifies the amount of tokens on each place. The semantics of such a SPN is
defined as continuous-time Markov chain (CTMC) with an initial state s0 = m0.

The dynamic behaviour of stochastic models can be analysed in different ways.
We showed in [2] that numerical analysis is currently efficient up to 1×109 states.
Beyond this limit, stochastic simulation remains the only possible technique.

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 142–158, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www-dssz.informatik.tu-cottbus.de


Simulative Model Checking of Steady State 143

Stochastic simulation may be performed with approximate or exact methods.
An approximate method is τ -leaping [3], which generates an approximate reali-
sation of the stochastic process. Its advantage is the ability to jump over several
transitions and thus be more efficient in trace generation than exact methods.
But for simulative model checking, we need to know the exact occurrences of
each transition, that means the simulation has to compute real (exact) paths
through the state space of the net. Therefore, only exact simulation algorithms
are suitable for the purpose of simulative model checking, like Gillespie’s direct
method [4] or the next reaction method [5] by Gibson & Bruck.

Simulative model checking of time-bounded temporal formulas is well known
and produces reasonable results and performs well in comparison to numerical
methods [2]. The main problem in verifying time-unbounded formulas is: “When
to stop the simulation trace?” Naive solutions like a fixed, large number of sim-
ulation steps or a fixed, long end time for the simulation trace, are not suitable.

In this paper, we extend the finite time horizon model checking algorithm of
probabilistic linear-time temporal logic to an infinite time horizon and provide
an algorithm to compute simulatively steady state formulas.

2 Stochastic Simulation

In biochemical reaction networks (with n molecular species and k reactions),
the molecular reactions between the species are random processes, because it is
impossible to predict the time at which the next reaction will occur. Stochastic
modelling has therefore become an important tool to fully understand the system
behaviour of such reaction networks.

The stochasticity can be described in a time-dependent manner by the Chem-
ical Master Equation. In probability theory, this identifies the evolution as a
continuous-time Markov chain (CTMC), with the integrated master equation
obeying a Chapman-Kolmogorov equation. When working with biological sys-
tems, it may be infeasible to set up the CTMC as the state space X ⊆ Nn can
be very large or even infinite. The largeness of CTMCs makes simulation an
important analysis technique: instead of computing the CTMC directly, simula-
tion aims at imitating the CTMC by generating different paths of the CTMC,
i.e., a sequence of discrete random variable Xl(t). The discrete random variable
Xl(t) describes the number of molecules of species Sl, l ∈ {1, . . . , n} present
at time t. The system state at time t is thus a discrete n-dimensional random
vector X(t) = (X1(t), . . . , Xn(t)) ∈ X . Given the system is in state X(t), the
probability that a transition/reaction of type j ∈ {1, . . . , k} will occur in the
infinitesimal time interval [t + τ, t + τ + dτ) is given by:

P (t + τ, j|X(t))dτ = aj(X(t)) exp (−a0(X(t))τ) dτ

For each reaction j, the rate is given by the propensity function aj , where aj(x)dτ
is the conditional probability that a reaction of type j occurs in the infinitesimal
time interval [t, t + dτ), given state X(t) at time t. The sum of the propensities
of all possible transitions in the current state X(t) is given by a0(X). Thus, the



144 C. Rohr

different (enabled) transitions in the net compete in a race condition and the
fastest one determines next state and the time elapsed. In the new state, the
race condition is started anew.

To analyse or understand the behaviour of a biochemical reaction network,
many trajectories need to be simulated for a good approximation of the under-
lying CTMC. Although in principle known a long time before, Gillespie was the
first who developed a supporting theory for a stochastic simulation of chemical
kinetics [4]. He presented the Stochastic Simulation Algorithm (SSA; often also
called Gillespie’s algorithm), which is a Monte Carlo procedure for numerically
generating CTMC. Since Gillespie’s seminal work, several variants and different
implementations and optimisations of the SSA have been proposed. Basically,
each variant performs the following steps:

1. Initialise time t = t0 and the system’s state X at time t0.
2. Repeat:

(a) determine time increment τ ∈ R

(b) select next reaction type j depending on the current state X(t)
(c) perform state transition imposed by reaction of type j and update state

vector X
(d) update time t = t + τ .
until simulation time is reached.

The SSA simulates every state transition event, one at a time, and updates the
system after each state transition. To determine the time increment τ and to
select the next reaction requires to generate random numbers. Different realisa-
tions of the CTMC are obtained by different initialisations of the random num-
ber generator. Since reliable statements about the system behaviour (variance)
can only be made based on many simulations, the usefulness of the simulation
approach depends on the simulation time for each individual trajectory. Accel-
erating simulations is therefore desirable without changing the basic ideas of the
algorithm.

Many variants of the SSA aim at reducing the computational cost of selecting
the next reaction that will occur. Cao et al. [6] keep the reactions with larger
propensities at the beginning of the list. The position of each reaction in the list
is thereby determined after some pre-simulations. McCollum et al. [7] maintain
a loosely sorted order of the reactions as the simulation proceeds. Instead of
arranging the reactions in a linear list, Gibson & Bruck [5] propose to use ad-
vanced data structures (trees) to speed up the search for the next reaction that
will occur. However, the time to manage the advanced data structures partially
compensates the speed-up due to faster search [8].

Further performance increases of the SSA are obtained if only those propensi-
ties are recalculated that actually have changed after a state transition, whereas
all others are reused (e.g. [8,5]).

An additional speed-up to the SSA is provided by the approximate method
τ -leaping [3], in which time t is advanced by a preselected amount τ and the
numbers of firings of the individual transitions during the time interval [t, t + τ)
are approximated by Poisson random numbers. Thus, instead of (sequentially)



Simulative Model Checking of Steady State 145

tracing every single state transition, several reactions are executed in parallel.
With τ -leaping, it is assumed that all propensity functions are approximately
constant in [t, t + τ), which is referred to as the leap condition. To ensure this,
it is important to select τ sufficiently small, but also large enough to accelerate
simulation.

3 Model Checking

Model checking is an advanced analysis technique to check whether a model
of a system satisfies some properties or specifications. Therefor temporal logics
are used to specify the properties of interest, e.g. the Computational Tree Logic
(CTL) [9], the Linear-time Temporal Logic (LTL) [10] or their probabilistic
extensions Probabilistic CTL (PCTL) [11], Continuous Stochastic Logic (CSL)
[12] and Probabilistic LTL (PLTL) [13].

For the specification of temporal formulas we use PLTL, because it reasons
over paths through the state space of the model and stochastic simulation pro-
duces traces through the state space of the model. We define the probabilistic ex-
tension of the Linear-time Temporal Logic with numerical constraints [14], which
is called Probabilistic Linear-time Temporal Logic with numerical constraints
(PLTLc) [15]. The grammar of all PLTLc formulas is given in Definition 1.

Definition 1. Probabilistic Linear-time Temporal Logic with Constraints

ψ := P�� x [φ] | P=? [φ]
�� ∈ {<, ≤, ≥, >} , x ∈ [0, 1]

φ := XI φ | FI φ | GI φ | φ UI φ | ¬φ | φ ∧ φ | φ ∨ φ | σ

I := [x1, x2] =
{

x ∈ R+| x1 ≤ x ≤ x2
}

, omit I = [0, ∞)
σ := ¬σ | σ ∧ σ | σ ∨ σ | value � value | true | false

� ∈ {<, ≤, ≥, >, =, 	=}
value := value ∼ value | P lace | $V ariable | Int | Real | function

∼ ∈ {+, −, ∗, /}

The probability operator P has two different modes. If it is used with the ques-
tion mark as P=? [φ] then it will return the probability P r(φ) that φ is true. In the
second case, P�� x [φ] returns true, if P r(φ) �� x is fulfilled, false otherwise. In sim-
ulative model checking we compute a confidence interval (c.i.); in consequence of
that, we have to introduce an additional return value in the second case. For sim-
plicity, we assume the c.i. to have a lower and an upper bound Bl, Bu ∈ R≥0, such
that the probability P r(φ), which is not known in our case, is Bl ≤ P r(φ) ≤ Bu.

P�� x[φ] =

⎧
⎪⎨

⎪⎩

true if x �� [Bl, Bu] ∧ x 	∈ [Bl, Bu]
false if x 	�� [Bl, Bu] ∧ x 	∈ [Bl, Bu]
unknown if x ∈ [Bl, Bu]



146 C. Rohr

The operators ¬, ∧, ∨ are the standard boolean operators not, and, or. Whereas
X, F, G, U denote the temporal operators NEXT, FINALLY, GLOBALLY and
UNTIL. The NEXT operator (XI φ) refers to true in the next state and within
the time interval I. The UNTIL operator (φ1 UI φ2) indicates that a state where
φ2 holds is eventually reached within the time interval I, while φ1 continu-
ously holds. The FINALLY operator (FI φ) means that at some point within
the time interval I a state where φ holds is eventually reached. Whereas the
GLOBALLY operator (GI φ) refers to the condition φ continuously holding true
within the time interval I. The latter two are syntactic sugar, as they rely on the
equivalences F φ ≡ true U φ and G φ ≡ ¬ F ¬φ.

A trace T fulfils a linear-time temporal logic formula φ if the following |=
relations hold:

T |= X φ ⇐⇒ T (1) |= φ

T |= F φ ⇐⇒ ∃i ∈ N : T (i) |= φ

T |= G φ ⇐⇒ ∀i ∈ N : T (i) |= φ

T |= φ1 U φ2 ⇐⇒ ∃i ∈ N : T (i) |= φ2 and ∀j ∈ N ∧ j < i : T (j) |= φ1

T |= ¬φ ⇐⇒ T 	|= φ

T |= φ1 ∧ φ2 ⇐⇒ T |= φ1 ∧ T |= φ2

T |= φ1 ∨ φ2 ⇐⇒ T |= φ1 ∨ T |= φ2

T |= v1 � v2 ⇐⇒ evalState(v1, T (0)) � evalState(v2, T (0))

The function evalState(v, T (i)) assigns a numerical value to the expression v by
looking up the tokens that each place x ∈ P (v) has in state T (i) of trace T .

In the next sections we present an algorithm to compute time-unbounded tem-
poral operators in a simulative manner, and afterwards an algorithm to compute
steady state formulas. Time-bounded algorithms for simulative model checking
are well known, e.g., [14].

3.1 Verification of Time-Unbounded Until

Verifying time-unbounded until formulas P=? [φ1 U φ2] is done by creating a trace
T and checking if T |= φ1 U φ2. Therefore we extend T until a state is reached
where T (i) 	|= φ1, so that trace T does not fulfil our formula, or T (i) |= φ2, that
means trace T satisfies our formula. This approach works fine for time-bounded
until formulas, because it is guaranteed to terminate with a probability of 1. It
either terminates on a positive or negative observation of our formula or at the
end of the time interval associated with the until operator. But there is no finite
time bound in the case of time-unbounded until formulas, so the algorithm does
not eventually terminate.

The stochastic Petri net in Fig. 1 demonstrates the problem of not terminating
while verifying time-unbounded until formulas.

Consider, for example, the formula

P=? [true U p3 = 1] .



Simulative Model Checking of Steady State 147

p5p4

p2

p1

p3

t61

t5

1
t1

1

t2

2
10

t4

7
10

t3

1
10

Fig. 1. Example of a stochastic Petri Net

The corresponding CTMC of the SPN in Fig. 1 has only one state that satisfies
the formula. But any trace T starting in s0 (Fig. 1), that does not fulfil the
formula is of infinite length. For this net, the probability of reaching the satisfying
state starting from state s0 and time 0 can be computed as follows:

P r (true U p3 = 1) = 1
10

·
∞∑

n=0

(
2
10

)n

= 1
8

.

Using the algorithm for time-bounded until formulas does not work, because it
will not terminate with a probability of 7

8 . We need another stopping criteria to
solve this problem.

In Algorithm 1 we present the algorithm for checking time-unbounded until
formulas. It is nearly the same as for time-bounded formulas except that one has
to stop the simulation trace at some time point. The decision of doing that is
the crucial part of the algorithm. We assume that reaching the steady state is a
reasonable stopping criteria (line 38). A system in a steady state has numerous
properties that are unchanging in time. This implies that for any property p of
the system, the partial derivative with respect to time is zero:

∂p

∂t
= 0

If a system is in steady state, then the recently observed behaviour of the system
will continue into the future. In stochastic systems, the probabilities that various
states will be repeated will remain constant. But, if the system does not have
a steady state, e.g. it oscillates, the algorithm will run forever or until the user
stops the program.

3.2 Steady State Computation

In steady state simulation, the measures of interest are defined as limits, as the
length of the simulation goes to infinity. There is no natural event to terminate
the simulation, so the length of the simulation is made large enough to get “good”
estimates of the quantities of interest. Steady-state simulation generally poses
two problems:



148 C. Rohr

Algorithm 1. Unbounded Until for one simulation run
Require: trace ← (m0, t0)
1: procedure evalFormula(φ, pos, trace)
2: steadyStateReached ← false, res ← false
3: repeat
4: switch φ
5: case σ :
6: (spos, tpos) ← trace(pos)

7: res ← evalState(σ, spos)
8: return (pos, res)
9: case ¬φ1 :

10: (pos1, res1) ← evalFormula(φ1, pos, trace)
11: return (pos1, ¬res1)
12: case φ1 ∧ φ2 :
13: (pos1, res1) ← evalFormula(φ1, pos, trace)
14: (pos2, res2) ← evalFormula(φ2, pos, trace)
15: return (min(pos1, pos2), res1 ∧ res2)
16: case φ1 ∨ φ2 :
17: (pos1, res1) ← evalFormula(φ1, pos, trace)
18: (pos2, res2) ← evalFormula(φ2, pos, trace)
19: return (max(pos1, pos2), res1 ∨ res2)
20: case Xφ1 :
21: if pos = |trace| then
22: trace ← trace + nextState(trace(pos))
23: end if
24: pos ← pos + 1
25: (pos1, res1) ← evalFormula(φ1, pos, trace)
26: return (pos1, res1)
27: case φ1Uφ2 :
28: (pos2, res2) ← evalFormula(φ2, pos, trace)
29: if res2 = true then
30: return (pos2, res2)
31: end if
32: (pos1, res1) ← evalFormula(φ1, pos, trace)
33: if res1 = false then
34: return (pos1, res1)
35: end if
36: pos ← pos1

37: end switch
38: steadyStateReached ← checkSteadyState(trace)
39: if pos = |trace| then
40: trace ← trace + nextState(trace(pos))
41: end if
42: pos ← pos + 1
43: until steadyStateReached = true
44: return (pos, res)
45: end procedure



Simulative Model Checking of Steady State 149

1. The existence of a transient phase may cause the estimate to be biased,
because the initial conditions primarily affect data at the beginning of a run.

2. The simulation runs are long, and usually one cannot afford to carry out many
independent simulations.

There are several methods that allow to cope with these problems to some extent.
Among them are: the batch means method [16], the method of independent
replicas [17], and the regeneration method [18]. Each of these methods has its
advantages and disadvantages. In our implementation we use a sample batch
means algorithm to compute the steady state.

We choose Skart [19], which is an automated sequential procedure for on-the-
fly steady state simulation output analysis, because it is specifically designed to
handle observation-based statistics and usually requires a smaller initial sample
size compared with other well-known simulation analysis procedures [19]. This
algorithm partitions a long simulation run into batches, computes an average
statistics for each batch and constructs an interval estimate using the batch
means. Based on this interval estimate Skart decides whether a steady state is
reached or more samples were needed. A detailed description of the algorithm is
given in [19].

We extend PLTLc with the steady state operator S. Definition 2 states the
syntax of it. The return values are quite the same as for the probability operator
P . But inside of S only state formulas are allowed, i.e., no temporal operators.

Definition 2. Extension of PLTLc with steady state operator S.

ψ := P�� x [φ] | P=? [φ] | S�� x [σ] | S=? [σ]
�� ∈ {<, ≤, ≥, >} , x ∈ [0, 1]

Steady-state formulas are computed with Algorithm 2. At first the simulation
trace is created until the steady state is reached (line 4 – 8). To get an unbiased
result, we cut off the first n states, which bias the steady state (line 9). The
remaining states are now checked whether the steady state property holds or
not and the occupation time To of the fulfilling states and the simulation time
Ts are summed up (line 11 – 19). The steady state probability is now the ratio
To

Ts
(line 19). But this gives correct results only for those Petri nets, where the

reachability graph consists of only one strongly connected component (SCC).
The complexity of this decision is the same as for constructing the reachability
graph. In symbolic model checking the strongly connected components and the
probabilities of reaching them are computed first. After that the probabilities
within each SCC are computed and these are weighted with the probability of
reaching the SCC. In that way the correct steady state probability is calculated.
To solve this problem in simulative model checking, one has to make several
simulation runs (steady state computations) and average the results. In that
way the individual steady state estimates are weighted according to the strongly
connected components.



150 C. Rohr

Algorithm 2. Steady state computation for one simulation run
Require: trace ← (m0, t0)
1: procedure evalSteadyState(σ)
2: steadyStateReached ← false
3: pos ← 0
4: repeat
5: trace ← trace + nextState(trace(pos))
6: pos ← pos + 1
7: steadyStateReached ← checkSteadyState(trace)
8: until steadyStateReached = true
9: cutOff ← getSteadyStateCutOff

10: To ← 0, Ts ← 0
11: for i ← cutOff, |trace| do
12: (si, ti) ← trace(i) � state si, sojourn time ti in si

13: Ts ← Ts + ti

14: res ← evalState(σ, si)
15: if res = true then
16: To ← To + ti

17: end if
18: end for
19: return To/Ts

20: end procedure

4 MARCIE: An Implementation

MARCIE [20] is a tool for analysing generalised stochastic Petri nets (GSPN ),
supporting qualitative and quantitative analyses including model checking capa-
bilities. Particular features are symbolic state space analysis including efficient
saturation-based state space generation, evaluation of standard Petri net prop-
erties as well as Computational Tree Logic model checking. Further it offers
symbolic Continuous Stochastic Logic model checking and permits to compute
expectations for rewards which can be added to the core GSPN . Most of MAR-
CIE’s features are realised on top of an Interval Decision Diagram (IDD) im-
plementation [21]. IDDs are used to efficiently encode interval logic functions
representing marking sets of bounded Petri nets. Thus, MARCIE falls into the
category of symbolic analysis tools.

However, it additionally comprises approximative and simulative engines,
which work explicitly, to support also stochastic analysis of very large and un-
bounded nets. It includes two exact simulation algorithms, firstly Gillespie’s
direct method [4], and secondly the next reaction method by Gibson & Bruck
[5]. The user can set the number of simulation runs directly when calling MAR-
CIE or he can set the desired accuracy of the results and MARCIE computes
the required number of simulation runs.

Parallelising the simulation is a good way to speed-up the computation. This
is done via distribution of the simulation runs to the worker processes. Therefore
the run-time decreases with the number of workers. We use the Message Passing



Simulative Model Checking of Steady State 151

Interface (MPI) to develop a portable and scalable simulation tool for large-
scale models. Moreover, MARCIE provides simulative PLTLc model checking as
presented in this paper.

MARCIE is completely written in C++, and makes use of the libraries GMP,
pthreads, flex/bison and boost. It comprises about 45,000 lines of source code.
MARCIE is available for non-commercial use; we provide statically linked binaries
for Linux and Mac OS X. The tool, the manual and a benchmark suite can be found
on our website http://www-dssz.informatik.tu-cottbus.de/marcie.html.
MARCIE itself comes with a textual user interface. Options and input files can also
be specified by a generic Graphical User Interface (GUI), written in Java, which
can be easily configured by means of a XML description. The GUI is part of our
Petri net analyser Charlie [22].

5 Case Studies

In this section we demonstrate our approach on the models of the RKIP in-
hibited ERK pathway and angiogenetic process. All Petri nets were modelled
with Snoopy [23] and analysed with MARCIE [20]. The experiments were car-
ried out on a machine with 4x AMD OpteronTM 6276 with 2.3 GHz and 256GB
RAM running CentOS 6. All experiments were done with a maximum number
of 6, 634, 234 simulation runs.

5.1 RKIP Inhibited ERK Pathway

This model shows the influence of the Raf Kinase Inhibitor Protein (RKIP) on
the Extracellular signal Regulated Kinase (ERK) signalling pathway. A model
of non-linear ordinary differential equations was originally published in [24].
Later on, it was discussed as qualitative and continuous Petri nets in [25], and
as stochastic Petri net in [26]. The stochastic Petri net SPN ERK comprises
11 places and 11 transitions connected by 34 arcs and is shown in Fig. 2. All
transition rate functions use mass action kinetics with the original parameter
values from [24]. The model is scalable by the initial amount of tokens in the
places RKIP, MEKpp, ERK and RP. The more initial tokens on each of these
places, the bigger the state space of the Petri net. Table 1 shows the number of
reachable states for different initial markings.

Table 1. The size of the state space for different initial markings of SPN ERK com-
puted with MARCIE’s symbolic state space generation. All places which carry one
token in Fig. 2 have now initially N tokens.

N |states| N |states| N |states| N |states|
5 1,974 20 1,696,618 40 79,414,335 100 1.591×1010

10 47,047 25 5,723,991 50 2.834×108 250 3.582×1012

15 368,220 30 15,721,464 60 8.114×108 500 2.231×1014

http://www-dssz.informatik.tu-cottbus.de/marcie.html


152 C. Rohr

Raf1Star RKIP

Raf1Star_RKIP

ERKpp

MEKpp_ERK Raf1Star_RKIP_ERKpp RKIPp_RP

MEKpp ERK RKIPp RP

r1 r2

r3 r4

r6 r7 r9 r10r5

r8
r11

Raf1Star + RKIP r1,r2↔ Raf1Star_RKIP
Raf1Star_RKIP + ERKpp

r3,r4↔ Raf1Star_RKIP_ERKpp
Raf1Star_RKIP_ERKpp r5→ Raf1Star + ERK + RKIPp

ERK + MEKpp
r6,r7↔ MEKpp_ERK r8→ ERKpp + MEKpp

RKIPp + RP
r9,r10↔ RKIPp_RP r11→ RKIP + RP

Fig. 2. Stochastic Petri net of the RKIP inhibited ERK pathway, including textual
representation of the chemical reactions

In order to verify the correctness of our approach, we check the same properties
as in [2]. We first check the reachability of a state at some time in the future,
such that the number of tokens on place MEKpp is between 60% and 80% of N:

P=? [F [MEKpp ≥ N · 0.6 ∧ MEKpp ≤ N · 0.8]] .

In any case such a state was reached, therefore the probability of the formula is
1, see Table 2.

Since we know now that such a state is eventually reached, we want to compute
the steady state probability of being in such a state, where the number of tokens
on place MEKpp is between 60% and 80% of N:

S=? [MEKpp ≥ N · 0.6 ∧ MEKpp ≤ N · 0.8] .

The results in Table 3 show first that the resulting confidence interval covers the
probability computed by the Jacobi method in [2]. Second the algorithm scales
nearly linear with the number of worker processes. A very interesting behaviour
regards the relationship between the state space size and the total run-time of
the computation. One could expect an increase of the run-time, but it stays
the same. This is a result of the level semantics described in [27], i.e., the rate



Simulative Model Checking of Steady State 153

Table 2. Reachability analysis for different initial markings N of SPN ERK . The total
time is given for different numbers of workers. The results are shown for the simulative
engine and for the numerical engine using the Jacobi solver.

N 1 2 4 8 16 32 64 simulative numerical

20 0m56s 0m28s 0m14s 0m7s 0m3s 0m2s 0m0s [1,1] 1
30 1m17s 0m38s 0m19s 0m10s 0m4s 0m3s 0m1s [1,1] 1
40 1m38s 0m48s 0m24s 0m12s 0m6s 0m3s 0m1s [1,1] 1
50 1m57s 0m59s 0m30s 0m15s 0m7s 0m4s 0m2s [1,1] 1
60 2m23s 1m9s 0m35s 0m17s 0m8s 0m5s 0m3s [1,1] 1

functions are scaled by the initial number of tokens N . Therefore, the sojourn
time of the transition remains the same, while the initial amount of tokens is
increasing. In contrast to symbolic model checking, the stochastic rate functions
are decisive for the run time of the algorithm and not the size of the state
space.

Table 3. Steady state analysis for different initial markings N of SPN ERK . The total
time is given for different numbers of workers. The results are shown for the simulative
engine and for the numerical engine using the Jacobi solver.

N 1 2 4 8 16 32 64 simulative numerical

20 7m31s 3m46s 1m53s 0m57s 0m27s 0m17s 0m10s [0.77482, 0.77534] 0.77508
30 7m34s 3m43s 1m51s 0m57s 0m28s 0m17s 0m11s [0.83277, 0.83325] 0.83297
40 7m40s 3m43s 1m56s 0m57s 0m28s 0m18s 0m11s [0.87416, 0.87470] 0.87452
50 7m43s 3m57s 1m57s 1m0s 0m30s 0m17s 0m11s [0.90437, 0.90486] 0.90465
60 7m53s 3m59s 1m56s 1m1s 0m28s 0m17s 0m12s [0.92641, 0.92696] 0.92682

5.2 Angiogenesis

Angiogenesis is a complex phenomenon that goes from a molecular level to
macroscopic events. This Petri net models a part of the signal transduction
pathway involved in the angiogenetic process and was originally published in
[28]. The stochastic Petri net SPN ANG comprises 39 places and 64 transitions
connected by 185 arcs.

The model is scalable by the initial amount of tokens in the places Akt, DAG,
Gab1, KdStar, Pip2, P3k, Pg and Pten. The more initial tokens on each of these
places, the bigger the state space of the Petri net. The number of reachable
states for different initial markings are shown in Table 4. As in the previous case
study we check for reachability first. Now we want to know the probability of
eventually reaching a state where no tokens reside on place Akt:

P=? [F [Akt = 0]] .



154 C. Rohr

Table 4. The size of the state space for different initial markings of SPN ANG com-
puted with MARCIE’s symbolic state space generation. The places Akt, DAG, Gab1,
KdStar, P ip2, P 3k, P g and P ten carry initially N tokens.

N |states| N |states| N |states| N |states|
1 96 4 2,413,480 7 2.181×109 10 4.537×1011

2 5,384 5 29,224,050 8 1.464×1010 15 5.207×1014

3 144,188 6 277,789,578 9 8.623×1010 20 1.428×1017

Table 5. Reachability analysis for different initial markings N of SPN ANG. The total
time is given for different numbers of workers. The results are shown for the simulative
engine and for the numerical engine using the Jacobi solver.

N 1 2 4 8 16 32 64 simulative numerical

1 12m10s 6m13s 3m3s 1m29s 0m49s 0m25s 0m13s [0.44642, 0.44742] 0.44670
2 60m19s 30m18s 14m47s 7m14s 3m36s 1m52s 1m17s [0.81292, 0.81370] 0.81302
3 65m37s 35m41s 18m31s 8m20s 4m2s 2m1s 1m55s [0.94249, 0.94365] 0.94272
4 74m43s 37m14s 19m52s 9m45s 4m58s 2m18s 3m0s [0.98179, 0.98216] 0.98182
5 79m45s 38m37s 18m54s 9m20s 4m37s 2m22s 3m35s [0.99360, 0.99396] 0.99379
6 79m37s 39m57s 19m50s 9m14s 4m34s 2m11s 3m3s [0.99760, 0.99780] 0.99772

In contrast to SPN ERK , Table 5 shows that the probability ranges from
about 0.44 (N = 1) to 0.9 (N = 6). That means a state where no tokens lay on
place Akt is not always reached, because the CTMC consists of several strongly
connected components and in some of them such a state does not exist. Secondly
we compute the steady state probability of being in a state that has no tokens
on place Akt:

S=? [Akt = 0] .

The results in Table 6 show that the steady state probability is nearly the same
as in the reachability case as the overall steady state probability consists of
two parts, first the probability of reaching a strongly connected component and
second the steady state probability inside these component. The result means the
steady state probability inside a strongly connected component, where a state
exists with Akt = 0, is almost 1. That’s why the overall steady state probability
almost coincides with the reachability probability.

6 Related Work

To compute the transient probability of the formula P=?[φ1 U φ2] in state s
means to compute the probability distribution starting in s and making states
absorbing, which satisfy ¬φ1 ∨ φ2. The resulting linear system of equations can
be solved numerically by iterative methods like Gauss-Seidel or Jacobi. There
are several tools available that support such solvers, among them MARCIE [20].



Simulative Model Checking of Steady State 155

Table 6. Steady state analysis for different initial markings N of SPN ANG. The total
time is given for different numbers of workers. The results are shown for the simulative
engine and for the numerical engine using the Jacobi solver. († = no result within 12h)

N 1 2 4 8 16 32 64 simulative numerical

1 7m1s 3m17s 1m42s 0m47s 0m26s 0m13s 0m9s [0.43773, 0.44771] 0.44141
2 28m25s 14m10s 6m54s 3m33s 1m34s 0m51s 0m36s [0.80446, 0.81237] 0.80836
3 58m42s 30m19s 17m54s 7m32s 3m46s 2m30s 1m20s [0.92772, 0.93284] 0.92899
4 94m27s 49m59s 24m39s 11m53s 6m11s 3m25s 2m11s [0.97859, 0.98140] 0.97950
5 133m56s 66m44s 33m24s 17m22s 8mm44s 4m49s 3m12s [0.98923, 0.99121] †
6 170m57s 85m25s 42m54s 22m12s 11m13s 6m57s 3m30s [0.99649, 0.99758] †

The drawback of numerical solvers is their restriction to bounded CTMCs and
their complexity is typically O (n) and in worst case O

(
n2)

with n = |states|.
On the other hand they compute an “exact” result. The same methods were used
to compute the steady state distribution of bounded CTMCs for computing the
steady state probability of formulas like S=?[φ].

Statistical model checking [29,30,31] is a quite similar approach to simulative
model checking, but differs in some details. Hypothesis testing, i.e., sequential
probability ratio test (SPRT), has good performance compared to the compu-
tation of point estimates, but it can only check formulas like P�� x. In the end,
the user gets a result of true or false and has no idea of the scale of the esti-
mated probability. COSMOS [32] is a statistical model checker for the Hybrid
Automata Stochastic Logic and employs Linear Hybrid Automata. It analyses
Discrete Event Stochastic Processes, a class of stochastic models which includes,
but are not limited to, Markov chains. This approach looks promising but time-
unbounded formulas are still an open problem.

Rabih et al. [33] developed a different simulation-based approach to verify
time-unbounded Until formulas. Their algorithm is based on perfect simulation.
The approach works well if the CTMC is monotone. In the other case the algo-
rithm is practically useless. The authors don’t show, how to determine, whether
a CTMC is monotone or not. Therefore it’s not clear whether this approach is
generally applicable or not.

The on-the-fly probabilistic model checker MIRACH, developed by Koh et al.
[34], implements simulation-based PLTL model checking of quantitative pathway
models, defined in SBML [35]. The model checking capabilities are limited to an
upper time bound, due to the requirement of specifying a time limit for the trace
generation.

The Monte Carlo Model Checker MC2 [15] computes a point estimate of a
Probabilistic LTL logic (with numerical constraints) formula to hold for a model.
MC2 does not include any simulation engine but works offline by taking a set of
sampled trajectories generated by any simulation or ODE solver software.

Last not least, a combination of simulation and reachability analysis were
used to compute time-unbounded formulas in [29,36]. But this approach suffers
from the same restrictions of bounded state spaces as the numerical methods.



156 C. Rohr

7 Conclusions

In this paper we presented an infinite time horizon model checking algorithm plus
steady state operator for probabilistic linear-time temporal logic. We verified the
results of the simulative approach against the numerical solutions of the Jacobi
and Gauss-Seidel methods. We proved the efficiency of our algorithm and the
scalability by using several worker processes through MPI.

As our algorithm is based on stochastic simulation, its run-time does not
directly depend on the size of the state space, as for the numerical methods, but
on the rate functions of the transitions and the structural size of the Petri net.
That is the greater the sum of the transitions rates, the smaller the time steps
are, and the more simulation steps need to be done to reach a certain time point.

But the main drawback of simulation-based methods remains. The achieved
accuracy depends on the number of simulation runs, i.e. the required number of
simulation runs exponentially grows with the expected accuracy. Therefore nu-
merical analysis methods should be used for bounded and medium-sized models,
whereas simulation should be used for large-sized and unbounded models.

In the future, further steady state detection algorithms are examined for their
suitability. Furthermore the potential of multi-core processors and GPGPUs be
examined in order to speed up the computation.

References

1. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing, 2nd
edn. John Wiley and Sons (1995)

2. Heiner, M., Rohr, C., Schwarick, M., Streif, S.: A comparative study of stochastic
analysis techniques. In: Proc. CMSB 2010, pp. 96–106. ACM (2010)

3. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically react-
ing systems. J. Chem. Phys. 115(4), 1716–1733 (2001)

4. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

5. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A 104, 1876–1889 (2000)

6. Cao, Y., Gillespie, D.T., Petzold, L.R.: Adaptive explicit-implicit tau-leaping
method with automatic tau selection. J. Chem. Phys. 126(22), 224101 (2007)

7. McCollum, J.M., Peterson, G.D., Cox, C.D., Simpson, M.L., Samatova, N.F.: The
sorting direct method for stochastic simulation of biochemical systems with varying
reaction execution behavior. Comput. Biol. Chem. 30(1), 39–49 (2006)

8. Cao, Y., Li, H., Petzold, L.: Efficient formulation of the stochastic simulation al-
gorithm for chemically reacting systems. J. Chem. Phys. 121(9), 4059–4067 (2004)

9. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Proceedings of the Workshop on Logics
of Programs. LNCS, vol. 131, pp. 52–71. Springer (1981)

10. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symposium on
the Foundations of Computer Science, pp. 46–57. IEEE Computer Society Press
(1977)



Simulative Model Checking of Steady State 157

11. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing 6(5), 512–535 (1994)

12. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous-time
Markov chains. ACM Trans. on Computational Logic 1(1), 162–170 (2000)

13. Baier, C.: On algorithmic verification methods for probabilistic systems. Habilita-
tion thesis, University of Mannheim (1998)

14. Fages, F., Rizk, A.: On the analysis of numerical data time series in temporal logic.
In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 48–63.
Springer, Heidelberg (2007)

15. Donaldson, R., Gilbert, D.: A Monte Carlo model checker for probabilistic LTL
with numerical constraints. Technical report, University of Glasgow, Dep. of CS
(2008)

16. Schmeiser, B.W.: Batch size effects in the analysis of simulation output. Operations
Research 30, 556–568 (1982)

17. Welch, P.D.: The statistical analysis of simulation results. In: The Computer Per-
formance Modeling Handbook, pp. 268–328. Academic Press, New York (1983)

18. Crane, M.A., Iglehart, D.L.: Simulating stable stochastic systems III: Regenerative
processes and discrete-event simulations. Operations Research 23, 33–45 (1975)

19. Tafazzoli, A., Wilson, J.R., Lada, E.K., Steiger, N.M.: Skart: A skewness- and
autoregression-adjusted batch-means procedure for simulation analysis. In: Winter
Simulation Conference, pp. 387–395 (2008)

20. Schwarick, M., Rohr, C., Heiner, M.: MARCIE - Model checking and Reachability
analysis done effiCIEntly. In: Proc. 8th International Conference on Quantitative
Evaluation of SysTems (QEST 2011), pp. 91–100. IEEE CS Press (September 2011)

21. Tovchigrechko, A.: Model Checking Using Interval Decision Diagrams. PhD thesis,
BTU Cottbus, Dep. of CS (2008)

22. Franzke, A.: A concept for redesigning Charlie. Technical report, BTU Cottbus,
Dep. of CS (2008)

23. Rohr, C., Marwan, W., Heiner, M.: Snoopy–a unifying Petri net framework to
investigate biomolecular networks. Bioinformatics 26(7), 974–975 (2010)

24. Cho, K.-H., Shin, S.-Y., Kim, H.-W., Wolkenhauer, O., McFerran, B., Kolch, W.:
Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In:
Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg
(2003)

25. Gilbert, D., Heiner, M.: From Petri nets to differential equations - an integrative
approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S.
(eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006)

26. Heiner, M., Donaldson, R., Gilbert, D.: In: Iyengar, M.S. (ed.) Petri Nets for Sys-
tems Biology. Symbolic Systems Biology: Theory and Methods. Jones and Bartlett
Publishers, Inc. (2010)

27. Calder, M., Duguid, A., Gilmore, S., Hillston, J.: Stronger computational mod-
elling of signalling pathways using both continuous and discrete-state methods.
In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 63–77. Springer,
Heidelberg (2006)

28. Cordero, F., Horvath, A., Manini, D., Napione, L., De Pierro, M., Pavan, S., Picco,
A., Veglio, A., Sereno, M., Bussolino, F., Balbo, G.: Simplification of a complex
signal transduction model by the application of invariants and flow equivalent
server. Theoretical Computer Science 412, 6036–6057 (2011)

29. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic
properties with unbounded until. In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527,
pp. 144–160. Springer, Heidelberg (2011)



158 C. Rohr

30. Basu, S., Ghosh, A.P., He, R.: Approximate model checking of PCTL involving
unbounded path properties. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009.
LNCS, vol. 5885, pp. 326–346. Springer, Heidelberg (2009)

31. Ballarini, P., Forlin, M., Mazza, T., Prandi, D.: Efficient parallel statistical model
checking of biochemical networks. In: Proc. PDMC, pp. 47–61 (2009)

32. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a sta-
tistical model checker for the hybrid automata stochastic logic. In: Proceedings of
the 8th International Conference on Quantitative Evaluation of Systems (QEST
2011), Aachen, Germany, pp. 143–144. IEEE Computer Society Press (September
2011)

33. El Rabih, D., Pekergin, N.: Statistical model checking using perfect simulation. In:
Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 120–134. Springer,
Heidelberg (2009)

34. Koh, C.H., Nagasaki, M., Saito, A., Li, C., Wong, L., Miyano, S.: MIRACH: Ef-
ficient Model Checker for Quantitative Biological Pathway Models. Bioinformat-
ics 27 (2011)

35. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., et al.: The
Systems Biology Markup Language (SBML): A Medium for Representation and
Exchange of Biochemical Network Models. J. Bioinformatics 19, 524–531 (2003)

36. Zapreev, I.S.: Model checking Markov chains: techniques and tools. PhD thesis,
University of Twente, Enschede (March 2008)



Model-Driven Middleware Support
for Team-Oriented Process Management

Matthias Wester-Ebbinghaus and Michael Köhler-Bußmeier

University of Hamburg, Department of Informatics
Theoretical Foundations of Informatics

{wester,koehler}@informatik.uni-hamburg.de
http://www.informatik.uni-hamburg.de/TGI

Abstract. Management of collaborative processes involving multiple
parties is one of the dominant topics in contemporary information sys-
tem research. While the process perspective is quite well understood and
supported by a wide range of modeling approaches, it is necessary to
go beyond the process perspective alone. We specifically address the fol-
lowing question: If we consider the involved parties of a collaborative
process as a team, then (1) which are the general formation rules for
such a team together with the collaborative process it carries out and
(2) to which concrete underlying organizational structure do these rules
apply? To address this question, we present the organizational modeling
approach Sonar. The accompanying models are rather high-level and il-
lustrative but at the same time they are rich enough in order to generate
executable models and other kinds of code that together form the core
of a middleware implementation for team-oriented process management.

1 Introduction

Management of collaborative processes involving multiple parties is one of the
most dominant topics in contemporary information system research, especially
in the field of business process management (BPM) but also on a smaller scale in
the field of computer-supported cooperative work (CSCW) or community sup-
port. The process perspective itself is quite well understood and there exists
a wide range of more or less similar process modeling approaches (differing in
specific aspects), including workflow nets and their descendants [1,2], the Busi-
ness Process Modeling Notation (BPMN) [19], the Web Service Business Process
Execution Language (BPEL) [5], Event-driven Process Chains (EPCs) [14] and
the Yet Another Workflow Language (YAWL) [3]. However, there remains the
question of organizational structures behind a given set of processes, which is not
addressed in a thorough and systematic way by these approaches. We want to
formulate this question a bit more vividly in the following way. Given that a col-
laborative process targets at achieving some high-level organizational/business
task and if we consider the involved parties of a collaborative process as a
team, then:

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 159–179, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



160 M. Wester-Ebbinghaus and M. Köhler-Bußmeier

1. Which are the general formation rules for such a team together with the
collaborative process it carries out?

2. To which concrete underlying organizational structure do these rules apply?
By an organizational structure we mean a set of organizational positions and
relationships between them.

To answer these questions, a more comprehensive modeling approach is nec-
essary, encompassing both a system’s processes and structure in an integrated
manner. Related work exists in a wide range of disciplines like enterprise ar-
chitecture management, multi-agent systems and service-oriented computing. In
the related work section we elaborate on the positioning of our work in this con-
text. Our main criticism remains, namely that a tight integration of structural
and process-oriented aspects is often neglected.

In this context of process and overall organizational modeling, we present the
Petri net-based organizational modeling approach Sonar (Self-Organizing Net
ARchitecture). It explicitly addresses the problem statement made so far and
especially its manifestation in terms of the concrete questions from above con-
cerning structure and process perspectives in teamwork modeling. We provide a
way to capture the whole context of team-oriented process management: from
the underlying organizational structure and a given task over team formation
up to process execution by the team. From a high-level point of view, one can
regard the approach we present as a purely service-oriented one: The team for-
mation mechanism we present is mainly a fine-grained view of a service lookup
for accomplishing a high-level business task. Organizations are a quite natural
setting for looking at questions of service orchestration and choreography.

We have laid specific emphasis on achieving the following combination: (1)
Sonar models are simple enough to be easily understood and analyzed (by
means of standard Petri net tools). (2) Sonar models are rich enough to cap-
ture the interplay of various organizational concepts in such detail that we can
automatically generate executable models and other kinds of code from them. In
this context, Figure 1 gives an overview of the results we present in this paper
and the sections in the remainder of the paper are linked to the different parts
of the figure.

In Section 2, we introduce the Sonar modeling approach, according to which
an organizational model basically consists of interwoven structure and process
parts. Sonar models initially are high-level models that are devoid of execution-
specific details. However, they are Petri net models that inherently come with an
operational semantics and thus lead the way to execution. Consequently, in Sec-
tion 3 we present the Sonar cycle that provides the semantics underlying each
Sonar model. This section describes how organizations based on Sonar mod-
els operate. The description is still platform-independent and could potentially
provide the basis for multiple implementation platforms. In Sections 4 and 5 we
present our current implementation approach. In Section 4 we describe how a
high-level Sonar model is transformed into software artifacts. Based on this,
we present our agent-based middleware platform Mulan4Sonar in Section 5.
Feeding the middleware with software artifacts generated from a Sonar model



Team-Oriented Process Management 161

Fig. 1. Model-driven support for teamwork based on Sonar

leads to a multi-agent system that implements the Sonar semantics in terms
of the Sonar cycle. We conclude our work in Section 7 and give an outlook to
advanced and future topics of our research.

Note that both the Sonar modeling approach and the middleware imple-
mentation rest on our previous work (cf. especially [17,18]). Several extensions,
simplifications and improvements have been introduced over the years and in
this paper, we present the consolidated current state with original contributions
concerning both the modeling approach and the middleware support.

2 Organizational Models Based on Sonar

For organized activities two fundamental (and opposing) requirements have to
be taken into account, the division of labour into various tasks and the coor-
dination of carrying out these tasks. For Sonar, this can be rephrased more
concretely and with reference to the terminology used in the introduction of
the paper. Coordinated carrying out of tasks corresponds to a team executing a
distributed (multi-party) workflow (DWF). Division of labor corresponds to the
formation of such a team together with a DWF definition. Formation takes place
according to general formation rules and a specific organizational structure to
which these rules are applied. Consequently, Sonar models center around the
duality of DWF (process) and organizational structure models. Both sides have
to be coherently related with one another.

Sonar is based on Petri nets which offer both a graphical representation and
formal semantics. In [17] we present Sonar in a formal way with theorems and
proofs. However, in this paper we present a new version of Sonar, where the
differences concern mainly a more readable and better structured organizational
structure model. We will avoid formal specifications and instead give a rather
illustrative introduction of the Sonar modeling approach. We just assume a
general understanding of Petri nets (cf. [11]).

We will consider a running example throughout the paper. As Sonar models
are based around the duality of distributed workflow (DWF) and organizational
structure models, we could start with either of them. Here we begin with the work-
flow perspective. Figure 2 shows a DWF for collaboratively submitting a paper.



162 M. Wester-Ebbinghaus and M. Köhler-Bußmeier

Fig. 2. Workflow with multiple roles for submitting paper

The DWF is distributed in the sense that it encompasses multiple roles, here
providePaperFrame and providePaperBody. Each action of the DWF is mapped
onto exactly one role. Actions are modeled as transitions. They are connected by
places. Places connecting actions belonging to the same role form the DWF life
line of that role and we arrange such a life line vertically in our models.1 Places
connecting actions of different roles can best be considered as message transfers
between roles and we draw them as horizontal connections. One can consider the
places between the transitions of different roles as the interface between these
roles.2 Places and transitions of a DWF model are named. Names of message
places are prefixed with a key for the role sending that message (for example ppf:
for the role providePaperFrame). Such message place names have to be unique
across the whole set of DWF models of an overall Sonar model (see below for
the reason). If a DWF model is decomposed into role parts and there exists an
interface between two roles, each role part gets its own copy of the corresponding
interface places.

1 Of course, we do not rely on graphical arrangements in order to determine the
different role parts of a DWF. We are currently working on an action inscription
language for DWF transitions. So far, such an inscription does at least contain
the name of the role that the transition belongs to. This is even more important
when DWF life lines are not just sequences as in the rather simple examples in this
paper. They may include forks, joins and concurrency. However, we have omitted the
transition inscriptions in the DWF figures of this paper as the different role parts
should be easily identified.

2 Our notions of DWFs and role fragments of DWFs is closely related to the notions
of contracts and public views of parties’ shares in contracts from [4].



Team-Oriented Process Management 163

Fig. 3. Refined workflow part for the providePaperFrame role from Figure 2

Figure 3 shows another DWF. More exactly, it shows a DWF fragment.
This fragment consists of two roles supervisePaperSubmission and writeIntroAnd-

Conclusion. These two roles can be used to refine the role providePaperFrame from
Figure 2. Note that on the right side of Figure 3, the two roles supervisePaperSub-
mission and writeIntroAndConclusion in combination share the same interface as
the role providePaperFrame in Figure 2 in terms of message places (whose names
have been carried over and uniquely identify them). In fact, it is possible to sub-
stitute the two combined roles supervisePaperSubmission and writeIntroAndConclu-
sion for the role providePaperFrame and obtain the same input/output behavior to
the outside, i.e. from the viewpoint of the partner role providePaperBody.

Likewise, Figure 4 shows a DWF fragment, where the two roles writeRelat-
edWorkSec and writeMainPart can be used to refine/substitute the role provide-
PaperBody from Figure 2 while obtaining the same input/output behavior from
the viewpoint of the partner role providePaperFrame.

Following this line of thought, it is of course also possible to substitute both
roles providePaperFrame and providePaperBody with the combined roles from Fig-
ures 3 and 4 respectively as both refinements respect the original input/output
behavior of the substituted roles and the overall composition thus fits together.
To conclude, we arrive at basically four possible DWFs for jointly submitting
a paper. Further models of role refinements would lead to more possibilities of
DWF composition. It remains to supplement such a set of DWFs and DWF
fragments with a model that determines not only when to compose which DWF
parts but also who takes on which roles in a finally composed DWF. This is
where Sonar organizational structure models come into play.



164 M. Wester-Ebbinghaus and M. Köhler-Bußmeier

Fig. 4. Refined workflow part for the providePaperBody role from Figure 2

Organizational structures in Sonar are basically modeled as delegation struc-
tures, consisting of various organizational positions and task-based relationships
between them. Figure 5 shows such a delegation net for the running example of
joint paper submission.3 ASonardelegationnet comprisesmultiple positions that
are abstractions of actors (that occupy these positions when a Sonar organization
is deployed). Positions are modeled as grey boxes that partition an underlying task
structure. In Figure 5, we have as positions a supervisor, a phd student and two stu-
dents that distribute tasks among themselves in order to jointly submit a paper.
The underlying task structure is modeled as a Petri net. A place models a task and
a transition models the implementation of a task. For this purpose, each transition
has exactly one place in its preset. Task implementation can take on multiple forms
and transitions are named accordingly:

1. Execute: The task is directly executed.
2. Delegate: The task is delegated.
3. Refine: Sub-tasks for a task are determined.
4. Split: A task is split into (already determined) sub-tasks.

The latter two cases are typically combined. All the implementation cases appear
in Figure 5. Delegations are the kind of task implementation that relates two
positions while refines, splits and executions are internal to positions.

The intertwining of a Sonar delegation net with DWF (fragment) models
lays in the nature of the tasks. Each task in a delegation net corresponds to one

3 Delegation nets have been over-hauled compared to previous publications, cf. [17,18].
The explicit inscription of transitions with the implementation type that they
represent leads to slightly larger but much more readable models.



Team-Oriented Process Management 165

Fig. 5. Delegation model for jointly submitting a paper

or more roles in a DWF. Consequently, the places in Figure 5 are named accord-
ing to the pattern DWF a[role1, ..., rolen], meaning that the task corresponds
to implementing the roles role1, ..., rolen from DWF DWFa. Combining a del-
egation model with a set of DWF models leads to a straightforward notion of
well-formedness of an overall Sonar model: (1) Delegation has to start with an
initial task that corresponds to all roles of a complete DWF model (not a DWF
fragment) and (2) task refinements must map onto associated role refinements in
the set of DWF (fragment) models. Consequently, Figure 5 shows one possible
delegation model for the DWF models from Figures 2 – 4 (likewise, other sets
of DWF models may fit to the delegation model).

This way, the process perspective represented by DWF modeling is supple-
mented with an organizational structure perspective that guides both the forma-
tion of teams (where positions represent the team members) and the associated
team DWFs. For example, the delegation model from Figure 5 allows multiple
teams to be formed. An interesting fact is that team formation actually cor-
responds to the possible firings of the delegation net, its Petri net processes,
cf. [12]. Each (maximal) Petri net process of a delegation net model corresponds
to a possible team (cf. [17]).

Using Petri nets as the basis for Sonar modeling allows us to to take advan-
tage of well-known analysis techniques. As we rely on simple place/transition



166 M. Wester-Ebbinghaus and M. Köhler-Bußmeier

(P/T) nets, there exist standard techniques and tools for checking the soundness
of workflow net models or the free-choice nature of delegation models (cf. [1,8]
and www.promtools.org for the ProM framework). The interleaving of delega-
tion and DWF models and especially the notion of role refinement of course
goes beyond P/T net analysis. But especially the tool set from www.service-
technology.org promotes a service-oriented perspective on Petri net models where
Petri nets with interface places (open nets) are characterized in terms of their
possible partners, cf. [26]. For our purpose, this allows to analyze whether a role
and its refinement in terms of multiple roles really have the same input/output
behavior and can be substituted with one another in DWF models.

3 Sonar Cycle: The Semantics behind Sonar Models

In this section we describe how Sonar models as presented in the previous
section are intended to guide organizational behaviour. In this sense, we describe
the semantics underlying the models, although some of this is inherent to the
models themselves and has already been covered.

Basically, Sonar models and their usage are intended to cover a whole cycle of
organizational behaviour as shown in Figure 6. For the explanation of the figure
it is assumed that a Sonar multi-agent system has been set up. In a nutshell
this means that each position of the underlying Sonar model is occupied by an
agent that takes over the associated responsibilities. Details on Sonar multi-
agent systems are covered in the following two sections.

The four parts of the cycle form a complete feedback loop, i.e. the organiza-
tion learns as it adapts to the agent interactions it has stimulated previously.
The cycle starts with team formation as soon as an organizational task (initial
task from the underlying Sonar model) becomes active. This has already been
covered in the previous section. A team is formed by successive task implemen-
tation steps. As soon as a team is formed, so is the associated team DWF for
this particular team.

However, this team DWF possibly encompasses multiple ways to execute it
(multiple Petri net processes of the team DWF). Consequently, the team mem-
bers have to negotiate in order to arrive at a mutually acceptable compromise.
This compromise of how to execute a team DWF we call a team plan. We will
not cover team planning thoroughly in this paper. We have laid the theoretical
groundwork for team planning according to our demands in [16], where Petri
net unfoldings are used as a data structure for a distributed team planning
algorithm.

As soon as a team plan has been negotiated, the plan may be executed by the
team. A team plan might be an “ordinary” team plan, where the plan targets
at fulfilling a day-to-day business task. In other cases, a team plan might be a
transformation plan. In this case, the whole team was formed due to an initial
task that targets at transforming the organization itself. In this case, steps of
the team plan consist for example of adding positions, removing delegation links
etc. Consequently, re-organization takes place and this means that the Sonar



Team-Oriented Process Management 167

Fig. 6. The Sonar cycle

model underlying the first step of the cycle is altered. Thus, the cycle is closed.
For the same reasons as for team planning, we will not focus on organizational
transformations in this paper. The theoretical groundwork has been laid in [15]
but the incorporation into our middleware implementation is not yet finished.
However, as described in the following section, we have prepared the generation
of software artifacts in a way to allow for rather light-weight organizational
transformations at run-time.

4 Model Deployment

The models presented so far have been on a relatively high level. They are
basically P/T nets, where some naming conventions have to be followed. There
are no execution details, except for the fact that Petri nets inherently have an
operational semantics. It is not even necessary to model all possible DWFs that
can occur during the operation of a Sonar organization. Instead, it is sufficient
to model some initial DWF models and then just add models for selective role
refinements.

In order to utilize the models in the context of a Sonar-based middleware
layer for teamwork, some deployment steps are necessary. The semantics behind
Sonar models has been described in the previous section in terms of the Sonar
cycle that starts with the occurrence of an initial organizational task (however,
a complete cycle is only established in the case, where this initial task is a
transformation task). Our current middleware implementation for Sonar does
not yet fully support the negotiate and reorganize steps from Figure 6. We will
describe how the requirements for these two steps have already been taken into
account for our model deployment approach. Nevertheless, we concentrate on



168 M. Wester-Ebbinghaus and M. Köhler-Bußmeier

Fig. 7. Model-driven support for teamwork based on Sonar

the form team and execute steps in this section. These are the fundamental
ones when bringing a Sonar model to life while negotiation and reorganization
occur in advanced cases. Figure 7 gives an overview of our two-step deployment
approach for Sonar models.

After checking well-formedness of all aspects of an overall Sonar model (see
Section 2), the first phase of model deployment is pre-processing. One immediate
question is whether to use the Petri net models themselves (enriched/extended
for deployment)4 or whether to transfer them into other artifacts. Here, the as-
pect of re-organization had a strong impact on answering this question. Changing
the Petri net models and re-deploying them at run-time can get quite cumber-
some and costly. Currently, we have decided to use the DWF models directly
in their Petri net form and to transfer the delegation model into a Java data
structure.

We treat DWF models and thus how things are basically done as rather per-
sistent and we consequently see the DWF role parts as basic behavioral building
blocks. Fundamentally changing the DWF models is often better done by start-
ing from scratch. However, instead of changing DWF models, they can always
be extended by further role refinements.

The delegation model on the other hand and thus the context leading to
the actual behavior is in our opinion prone to more frequent and light-weight
re-organization efforts: adding/removing positions, adding/removing delegation
relationships, adding/removing executions etc. Consequently, we prefer a data
structure that handles changes easier. In addition, such a data structure is
helpful to share (communicate about) and process knowledge in the context
of team formation: determining the eligibility of task implementations, possible
delegation partners or whole sub-teams etc.

To conclude, the pre-processing phase of model deployment comprises two
parts.

1. All DWF models are decomposed into their singular role parts, which makes
it easy to dynamically compose team DWFs later on. It might of course be
possible to keep role compositions that always have to appear together in a
team DWF, like supervisePaperSubmission and writeIntroAndConclusion from
the running example. But as we intend to have dynamic re-organizations of

4 This is what we did for our previous versions of a Sonar middleware layer, cf. [18].



Team-Oriented Process Management 169

Fig. 8. Concept (or class) diagram for Sonar delegation models

Sonar models, further role refinements might be introduced at run-time.
Thus, it is simpler to keep track of each singular role part in the first place.

2. From the delegation model, a Java data structure is generated. Figure 8
shows the according class diagram in UML style. More specifically, it is a
concept diagram [7] and is supported by the tool suite that we use in the
context of our multi-agent framework Mulan that we briefly address in
the following section.5 The class hierarchy resulting from a concept diagram
comes with the handy feature that all objects of these classes have FIPA6-
conform String representations, which allows to directly include them as
message contents in agent communication. According to the class hierarchy
from Figure 8, each Sonar delegation model is transferred into an organi-
zation object that contains all other information.

In the second phase of model deployment, the pre-processed models are used
by the Mulan4Sonar middleware layer to enable and frame teamwork among
members of a Sonar organization. Members are (social or artificial) actors that
access the middleware layer and occupy positions of a Sonar delegation model.
We will elaborate on the Mulan4Sonar middleware layer and on how to access
it in the next section.

Basically, the Java data structure of the delegation model is used to manage
task delegation and thus the form team step of the Sonar cycle. As soon as
a team is formed, there is a unique team DWF associated with it: It is the
composed DWF that consists of the role parts that are implemented by execute
(instead of refine, split or delegate) transitions during the delegation process.
5 See also http://www.paose.net
6 http://www.fipa.org

http://www.paose.net
http://www.fipa.org


170 M. Wester-Ebbinghaus and M. Köhler-Bußmeier

Fig. 9. A multi-role workflow for submitting a paper composed from role fragments

The well-formedness of an overall Sonar model ensures that these role parts
fit together. For example, the composed DWF from Figure 9 is the team DWF
for a team, where the delegation process has lead to the maximum level of task
(and thus role) refinement for the running example of joint paper submission.

Consequently, team formation leads to an on-thy-fly generation of the corre-
sponding team DWF. However, for such a team DWF to be ready for the execute
step of the Sonar cycle, a further refinement and enrichment has to be carried
out. This is also done by automatic generation. Basically, each action transition
of a team DWF has to be enriched with execution inscriptions and has to be
divided into a call and return part. Figure 10 exemplifies the substitution rule
applied to a DWF transition for the addConclusion action of the team DWF from
Figure 9.

The transition is split into two transitions for call and return. The names of
places lead to the generation of variable names that are bound to work-item and
result objects of the action. The action call is parametrized with the role name,
action name and a set of incoming work-items. The surrounding engine for the
execution of team DWFs has to take care of forwarding the call to the position
holder that implements this role for this team. In addition, the engine generates
a unique action ID that can be used to associate action call and return. The
action return is parametrized with a result object. We omit details on handling
erroneous or aborted execution of DWF actions here.

Figure 11 shows the class diagram for content objects used in the context of
executable team DWFs.

More specifically, it shows the generic part. Concrete Sonar models are in-
tended to extend the concept dwf-action-content with customized concepts. In
fact, we are working on a high-level action inscription language for Sonar DWF
models. Such a language can for example be used to attach pre-conditions, post-
conditions and effects for/of DWF actions based on the content objects and
their attributes that are involved in the action. For this purpose it is necessary
to explicitly define the according custom concepts.



Team-Oriented Process Management 171

Fig. 10. Substitution rule (by example) for generating executable workflow models

Fig. 11. Concept (or class) diagram for executable team DWF contents

To conclude this section, the illustrative and rather high-level Petri net mod-
els that a modeler has to create for a Sonar organization are rich enough
to allow the generation of different kinds of executable artifacts for computer-
supported teamwork. In the next section, we give an overview of a middleware
implementation that utilizes these artifacts.

5 Mulan4Sonar: Agent-Based Teamwork Engine

We present a middleware implementation for teamwork support that is based
on Sonar models and their deployment as described in the previous sections.



172 M. Wester-Ebbinghaus and M. Köhler-Bußmeier

Fig. 12. Basic concept for Sonar-based multi-agent systems

There exist of course multiple possibilities and here we present our current ap-
proach, called Mulan4Sonar. This name stems from the fact that it is based on
the multi-agent system (MAS) framework Mulan (cf. [7] and www.paose.net).
This framework provides the possibility to combine Java programming with
Petri net modeling and simulation for realizing MAS and is consequently per-
fectly suited for our purpose. More concretely, Mulan relies on the high-level
Petri net formalism of Java reference nets that is supported by the Renew tool
(www.renew.de).7

Figure 12 shows our general proposal for multi-agent system deployment of
Sonar models. We have an organization agent that represents the Sonar or-
ganization as a whole. It is responsible for initialization and for keeping a global
perspective. With each position of a Sonar model we associate one dedicated
agent, called an organizational position agent (OPA). From a conceptual point
of view, the resulting OPA network (together with the organization agent) em-
bodies a formal organization as each OPA represents an organizational artifact
and not a member/employee of the organization. From a technical point of view,
the OPA network is an agent-based middleware layer for supporting teamwork
according to Sonar models. Consequently, each OPA represents a connection
point for an organizational member agent (OMA). Each OMA interacts with its
associated OPA to carry out organizational tasks and to make decisions, where
required. An OPA both enables and constrains organizational behavior of its
OMA. The OMA can effect the organization only in a way that is in confor-
mance with the OPA’s specification. In return, the OPA relieves its OMA of
a considerable amount of organizational overhead by automating coordination
and administration. Conceptually speaking, OMAs implement/occupy the for-
mal positions of the organization. Note that an OMA can be an artificial as
well as a human agent. OMAs might of course only be partially involved in an

7 An example for using Java inscriptions in the context of a Petri net model was already
shown in Figure 10. The other way round is equally possible, namely having Java
objects monitoring, triggering or even controlling parts of the execution (simulation)
of a Petri net model.



Team-Oriented Process Management 173

organization and have relationships to multiple other agents than their OPA or
even to agents completely external to the organization. From the perspective
of the organization, all other ties than the OPA-OPA and OPA-OMA links are
considered as informal connections.

Our current implementation of Mulan4Sonar follows this general proposal.
However, it does not (yet) feature OPAs as distinct agents. Instead, our cur-
rent implementation features one central organization agent that manages the
teamwork processes of a Sonar organization but also utilizes separate OPA
components for each position. Consequently, we have already prepared the im-
plementation in way to be able to single out the components as OPAs and thus
to obtain a more distributed implementation. Figure 13 shows the three-level
architecture of the organization agent in its current form. This architecture is ac-
tually realized based on the high-level Petri net concept of nets-within-nets [24],
where Petri nets can have other Petri nets as tokens and cross-net communica-
tion is possible. Nets-within-nets modeling and simulation is supported by the
Renew tool and is one of the fundamental features of MAS development with
Mulan. The figure only shows a high-level overview of the organization agent’s
architecture but it represents the actual implementation quite precisely. In the
remainder, we describe where the various deployment artifacts from the previous
section come into play in order to support the different steps of the Sonar cycle.

On the top level of the organization agent, the organization is initialized and
the pre-processing of the original Sonar model is carried out, meaning the
generation of a Java organization object and the decomposition of DWF models
into singular role parts. Afterwards, the teamwork engine is initialized with the
pre-processed models as input and represents the second level.

The teamwork engine sets up OPA components for all positions and makes
the delegation model in the form of the Java organization object available to
them. The generated DWF role parts are stored in a repository. We will not go
into detail concerning the manifold responsibilities of the OPA components with
respect to their connected OMAs. We just assume that basically, they take care
of binding users as members (OMAs) into the organization and manage the in-
clusion of the OMAs’ actions and decisions in conformance to the organizational
specifications.

A new teamwork activity is started as soon as an OPA (triggered by its OMA)
activates an initial task that lies within its position responsibilities. Ongoing
teamwork activities and OPA components stay connected via the teamwork en-
gine level (ask OPA transition) as the teamwork activity level constantly requires
input by the OPAs to keep the Sonar cycle steps running. The parts of the ar-
chitecture, where the OPAs are required to make decisions or execute actions
are marked by black transitions.

A teamwork activity in its basic form comprises the form team and execute
steps of the Sonar cycle. The negotiate and reorganize steps are not yet fully
integrated into our middleware, but we have already added the channels for
organizational transformations as shown in the figure.



174 M. Wester-Ebbinghaus and M. Köhler-Bußmeier

Fig. 13. Three-level architecture of the Sonar teamwork engine agent

Team formation basically comprises the task-for-task delegation process. The
result of this is a team together with role parts that need to be implemented. The
team activity layer then accesses the DWF role part repository via the teamwork
engine layer in order to compose the team DWF from the role parts. From the team
DWF, an executable version is generated and the execute phase starts. During this
phase, the actions of the team DWF are executed. In the case of a reorganization
team and team DWF, such actions come with transformation effects on the under-
lying Sonar model of the organization and thus have feedback on the Java dele-
gation model and/or the DWF role part repository of the teamwork engine layer.



Team-Oriented Process Management 175

6 Related Work

In the introduction, the central aim of our work was stated as presenting an
organizational modeling approach that respects structural and process-related
features likewise. It shall be possible to treat both dimensions as distinct but
at the same time be able to tightly interweave them. In addition, we aim at a
model that immediately leans itself to computer-aided implementation/support.
There exists a wide range of related work and in this section we will position
our work in relation to it.

While rather comprehensive and multi-dimensional organizational models are
to some extent addressed in the field of enterprise architecture management
(EAM), EAM is a rather high-level discipline and is at least not necessarily
concerned with models whose primary purpose is to be directly transferred into
software artifacts (although this may be true for some parts, especially for pro-
cess models). Contrary to that, the field of organization-oriented multi-agent
systems is primarily concerned with quite comprehensive organizational mod-
els that exhibit a close gap to software-technical deployment [6,9]. Most of the
models that we find here are backed up by a middleware implementation just
like we presented for our Sonar approach in this paper. In the MAS field, we
find models that encompass multiple integrated organizational perspectives (e.g.
structure, function, interactions, norms). But despite this multi-perspective ap-
proach, we typically still find approaches where either a structural or a process
perspective dominates.

For example, by means of the popularS-MOISE+ [13] approach, it is possible to
build sophisticated structuralmodels. Building upon the two base concepts of roles
and groups, complex structural compositions are possible based onvarious rules for
group/role hierarchies and intra- aswell as inter-group relationships between roles.
However, the process-related dimension plays a much lesser role. While it is possi-
ble to define organizational plans in terms of goal and sub-goal relationships and
relate groups and roles to them via deontic specifications (obligation, permission),
concrete process definitions can only be inferred. Goal relationships like AND, OR,
PARALLEL, SEQUENCE allow for some conclusions on processes that lead to
the achievement of a top-level goal. But specific and more complex interactions
for fulfilling a goal in a cooperative manner that goes beyond the rather limited
goal relationships is not possible. The same criticism holds for most of the exist-
ing MAS teamwork frameworks, exemplified by the TEAMCORE/KARMA [22]
approach. Based on a logical framework of joint commitment and intentions, or-
ganization hierarchies and plans in terms of goal hierarchies can be specified. The
actual processes for achieving goals have to be inferred from goal relationships and
from the peculiarities of the underlying logical framework.

Opposed to such approaches the modeling approach ISLANDER [10] for MAS
institutions allows to model complex process arrangements. ISLANDER features
the automata-based modeling of interaction scenes between participating roles.
In addition, multiple scenes are connected via a surrounding so-called perfor-
mative structure that specifies, under which circumstances role-occupants may
move from scene to scene (and possibly change roles in doing so). In this case,



176 M. Wester-Ebbinghaus and M. Köhler-Bußmeier

an explicit structural modeling dimension is missing and structural relation-
ships between roles can only be inferred from the role responsibilities in the
various scenes and the movement of roles between scenes moves according to the
performative structure.

Contrary to the mentioned MAS approaches, the Sonar model we presented
in this paper aims at a tight integration of structural and process-related features
of an organization. One might argue that due to our Petri net-based approach,
our structural (position delegation) model is actually process-oriented. While
this is certainly true, it still captures the functional and authority-like relation-
ships between positions and thus what traditionally is considered as structure in
organization theory. Of course, real-world organizational scenarios are very com-
plex, comprise a multitude of perspectives and underly many different forces. Our
model intentionally features a restricted set of core organizational features. In
this sense, we believe it is very well suited and applicable for any organizational
setting where the focus lies on the execution of clearly defined and complex
tasks in a shared manner between different parties. It is probably not well suited
for modeling organizational scenarios where clear-cut tasks do not play a domi-
nant role (for example anything from the “natural systems” school of thought in
organizational theory, cf. [23]).

As already mentioned in the introduction, we see the Sonar modeling ap-
proach and its underlying semantics to a large part as a detailed view of service
lookups in organizational settings where each role part of a DWF represents its
own service in the context of a larger service cooperation (the whole DWF).
More concretely, our approach lies in the intersection of service orchestration
and service choreography as described [21]. Service orchestration refers to ser-
vice cooperation that is largely controlled by a central coordinator. To some
extent, this is true for our approach as there always exists the global perspective
of the whole organization (cf. the organization agent in our middleware imple-
mentation). However, our approach is more on the service choreography side,
which means service cooperation between autonomous parties where conversa-
tions and mutual agreement between the parties are key instead of a central
control. There exists a global choreography model/contract that the different
parties have to adher to (cf. [20]). The various parties’ share of this contract are
described as behavioral interfaces and the implementation of these interfaces is
up to the autonomous partners. This maps perfectly onto our notion of DWFs
and DWF fragments that are taken over by position holders. The main feature
that distinguishes our approach from others in this area (as already mentioned
in Section 2, our notions are for example very closely related to the ones in [4])
is the delegation-based mechanism for selecting the various parts for forming
the overall choreography. It is based on a structural model of the organiza-
tion and consequently poses a natural view on service lookups in organizational
scenarios.



Team-Oriented Process Management 177

7 Conclusion and Outlook

Starting from the question for an integrated treatment of structure and process
perspectives in modeling collaborative systems, we have presented our Sonar
approach. It provides a way to capture the whole context of team-oriented pro-
cess management: from the underlying organizational structure over team forma-
tion up to process execution by the team. Put differently, it provides a natural
way for task-based organizational scenarios to implement a sophisticated ser-
vice lookup. The accompanying models are rather high-level and illustrative but
at the same time they are rich enough in order to generate executable mod-
els and other kinds of code that together form the core of the Mulan4Sonar
middleware implementation for team-oriented process management.

Regarding our future research efforts, there is a range of topics that we and
other people from our research group are working on.

– Collaborative Agent Platform (deployment): Our group has the long-term
goal of developing an agent-based platform for computer-supported collabo-
ration. We envision Sonar-based organizational models to be used for spe-
cific teamwork applications on top of the platform as well as for supporting
the infrastructure of the platform itself, managing the various platform tasks
and processes.

– Self-organization and team planning: As explained in Section 3, we have laid
the theoretical groundwork to incorporate re-organization and team plan-
ning into our approach in [15] and [16] respectively. They are not yet fully
incorporated into our middleware implementation.

– Hierarchy/holism: While the idea of self-organization introduces multiple
management levels in the context of one Sonar organization, we also address
the concept of having multiple levels of nested Sonar organizations. The ba-
sic idea is to have positions being occupied by organizational units that are
Sonar organizations themselves. This allows to model inter-organizational
scenarios and so-called multi-organization systems. The refinement concept
for roles and tasks inherent to Sonar directly supports such an extension.
For a thorough report of our research on modeling organizational units
and multi-organization systems (not limited to Sonar), we refer to [25]
(in German).

– Simulation: We are interested in organizational simulation. We intend to en-
rich the models with quantitative information and apply routines to evaluate
simulation runs with respect to certain criteria. Especially in combination
with hierarchic models we are interested in studying the fit of different (types
of) organizational units to one another (in terms of nesting relationships as
well as in terms of cooperation effectiveness on the same level).

As a test-bed for multi-agent systems our group has implementated a MAS ver-
sion of the board game “The Settlers of Catan” on top of the Mulan framework.
In future work we will re-design this system using the Sonar approach. The in-
tended improvement is an increase of the percentage of model-generated code of
the whole system, which can easily be compared to the existing implementation.



178 M. Wester-Ebbinghaus and M. Köhler-Bußmeier

References

1. van der Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

2. van der Aalst, W.: Interorganizational workflows. Systems Analysis - Modelling -
Simulation 34(3), 335–367 (1999)

3. van der Aalst, W., ter Hofstede, A.: YAWL: Yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005)

4. van der Aalst, W., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty con-
tracts: Agreeing and implementing interorganizational processes. Computer Jour-
nal 53(1), 90–106 (2010)

5. Alves, A., et al.: OASIS web services business process execution language (WS-
BPEL) v2.0. OASIS Standard, 11 (April 2007)

6. Boissier, O., Hübner, J.F., Sichman, J.S.: Organization oriented programming:
From closed to open organizations. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 86–105. Springer,
Heidelberg (2007)

7. Cabac, L.: Modeling Petri Net-Based Multi-Agent Applications. Agent Technology:
Theory and Application, Logos, vol. 5 (2010)

8. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracks in Theoretical
Computer Science, vol. 40. Cambridge University Press (1995)

9. Dignum, V.: The role of organization in agent systems. In: Dignum, V. (ed.) Hand-
book of Research on Multi-Agent Systems: Semantics and Dynamics of Organiza-
tional Models. Information Science Reference, pp. 1–16 (2009)

10. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: An electronic institutions editor.
In: Proceedings of the First International Joint Conference on Autonomous Agents
& Multiagent Systems, AAMAS 2002, pp. 1045–1052. ACM (2002)

11. Girault, C., Valk, R. (eds.): Petri Nets for Systems Engineering: A Guide to Mod-
elling, Verification and Applications. Springer (2003)

12. Goltz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Information and
Control 57(2–3), 125–147 (1983)

13. Hübner, J.F., Sichman, J.S., Boissier, O.: Using the Moise+ for a cooperative
framework of MAS reorganisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004.
LNCS (LNAI), vol. 3171, pp. 506–515. Springer, Heidelberg (2004)

14. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. In: Scheer, A.W. (ed.)
Veröffentlichungen des Instituts für Wirtschaftsinformatik (IWi). Universität des
Saarlandes, Heft 89 (1992)

15. Köhler-Bußmeier, M.: Analysing SONAR model transformations. In: Accorsi, R.,
Murata, T., Ranise, S. (eds.) Proceedings of the International Workshop on Petri
Net-Based Security (WooPS 2012), pp. 55–70 (2012)

16. Köhler-Bußmeier, M.: Negotiating inter-organisational processes: An approach
baaed on unfoldings and workflow nets. In: Proceedings of the International Work-
shop on Concurrency, Specification and Programming, CS&P 2012 (2012)

17. Köhler-Bußmeier, M., Wester-Ebbinghaus, M., Moldt, D.: A formal model for or-
ganisational structures behind process-aware information systems. In: Jensen, K.,
van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of
Concurrency II. LNCS, vol. 5460, pp. 98–114. Springer, Heidelberg (2009)

18. Köhler-Bußmeier, M., Wester-Ebbinghaus, M., Moldt, D.: Generating executable
multi-agent system prototypes from SONAR specifications. In: De Vos, M.,
Fornara, N., Pitt, J.V., Vouros, G. (eds.) COIN 2010. LNCS, vol. 6541, pp. 21–38.
Springer, Heidelberg (2011)



Team-Oriented Process Management 179

19. OMG: Business process modeling notation (BPMN) version 1.0. OMG Final
Adopted Specification, Object Management Group (2006)

20. Papazoglou, M.: Web Services: Principles and Technology. Pearson Education Lim-
ited (2008)

21. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10),
46–52 (2003)

22. Pynadath, D., Tambe, M.: An automated teamwork infrastructure for heteroge-
neous software agents and humans. Autonomous Agents and Multi-Agent Sys-
tems 7(1-2), 71–100 (2003)

23. Scott, W.R.: Organizations: Rational, Natural and Open Systems, 5th edn. Pren-
tice Hall (2003)

24. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS,
vol. 3098, pp. 819–848. Springer, Heidelberg (2004)

25. Wester-Ebbinghaus, M.: Von Multiagentensystemen zu Multiorganisationssyste-
men – Modellierung auf Basis von Petrinetzen. Dissertation, Universität Hamburg,
Fachbereich Informatik. Elektronische Veröffentlichung im Bibliothekssystem der
Universität Hamburg (2010),
http://www.sub.uni-hamburg.de/opus/volltexte/2011/4974/

26. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P.
(eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS,
vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

http://www.sub.uni-hamburg.de/opus/volltexte/2011/4974/


Grade/CPN: A Tool and Temporal Logic
for Testing Colored Petri Net Models in Teaching

Michael Westergaard1,2,�, Dirk Fahland1, and Christian Stahl1

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

{m.westergaard,d.fahland,c.stahl}@tue.nl
2 National Research University Higher School of Economics,

Moscow, 101000, Russia

Abstract. Grading dozens of Petri net models manually is a tedious and
error-prone task. In this paper, we present Grade/CPN, a tool supporting
the grading of Colored Petri nets modeled in CPN Tools. The tool is
extensible, configurable, and can check static and dynamic properties.
It automatically handles tedious tasks like checking that good modeling
practise is adhered to, and supports tasks that are difficult to automate,
such as checking model legibility. We propose and support the Britney
Temporal Logic which can be used to guide the simulator and to check
temporal properties. We provide our experiences with using the tool in
a course with 100 participants.

1 Introduction

Colored Petri nets (CPNs) [1] is a formalism useful for modeling a broad range
of real-life systems, including complex network protocols [1] and business infor-
mation systems [2]. It is thus natural to use CPNs or other Petri net formalisms
when teaching such subjects. As modeling can only really be learned by do-
ing, hands-on experience is a must. Larger classes can comprise more than one
hundred students, and manually checking models created by students is time
consuming and error-prone. This is particularly unpleasant because much of the
effort is spent on checking trivial things, including whether good modeling stan-
dards are adhered to and whether formal requirements to the model are satisfied.
In this paper, we aim at supporting the grading of many models implementing
the same specification by providing with Grade/CPN an extensible tool for auto-
matic assessment of such routine properties, allowing teachers to focus on more
complicated tasks.

The support required for grading assignments is similar to what is needed for
testing or model checking, as we need to check a model against some formal re-
quirements. The models we deal with in our case study have infinite state spaces,
so here we focus on the testing perspective, as a model may not be suitable for
� The study was implemented in the framework of the Basic Research Program at the

National Research University Higher School of Economics (HSE) in 2013.

M. Koutny et al. (Eds.): ToPNoC VIII, LNCS 8100, pp. 180–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 181

model checking due to having a large or even unbounded state space. Thus, parts
of the work described here is also applicable to general testing of CPN models, but
we present it here in the context in which it was developed. The significant differ-
ence to classical testing is that for grading a possibly large set of different models
is to be checked against the same specification in a uniform way.

CPN Tools [3] is a tool for editing, simulating and analysing CPN models. It
supports the user during the construction of the model due to incremental syntax
checking, which gives immediate feedback about errors, and allows modelers to
experiment with incomplete and even only partially correct models. This is a
useful feature for inexperienced users and makes CPN Tools suitable in teaching.
Furthermore, the Windows version of CPN Tools is downloaded more than 5,000
times a year, indicating that it is broadly used. The broad usage also means
that CPN Tools has reached a fairly stable state, which reduces unnecessary
frustrations during modeling. Finally, CPN Tools has extensive online help and
video tutorials, which means it is easy for students to get started. For these
reasons, we think that CPN Tools is a good choice of a tool for teaching.

There are as many ways of using models as there are teachers, so it is important
that the requirements for the model can be described easily. This means that the
grading tool must be configurable, allowing individual teachers to customize what
is checked and how adhering to or deviating from each requirement is awarded
or punished. In addition, it must be easily possible to extend the tool with new
requirements. Thus our tool must have a plug-in like architecture allowing new
requirements to be added with minimal effort. At the same time, we do not desire
a heavy-weight framework with a steep learning curve just to add a simple custom
requirement. Of course, such a tool should come with a set of reasonable built-in
plug-ins, so it is useful for many scenarios without requiring any programming.

Return

IDxP

Notification

OrderID

Shipment

Shipment

Packet

CxZxO

Accept

CxZxO

CxZxO

Order

Product

Reject

Offer

Delivery

Delivery
Service

DeliveryServiceDeliveryService

Inventory

Order

1`"Book"++1`"Bike"++1`"Laptop"

Shop

ShopShop

Customer

CustomerCustomer

Fig. 1. Base model of a delivery service

To illustrate our motivation
for developing such a tool, as-
sume we want students to model
a (simplified) delivery service us-
ing CPN Tools. The idea is
to model that customers order
products from a shop, and the
shop uses a delivery service to
deliver ordered products to the
customers. To this end, we would
provide students with a base
model as in Fig. 1. The CPN in
Fig. 1 models the behavior of the
customer and the shop and pro-
vides the interface between customer and delivery service (Reject, Offer, Accept,
and Delivery) and the interface between shop and delivery service (Shipment,
Return, and Notification). A customer can choose a product from the catalog
and place an order via place Order. The shop prepares the ordered product for
shipment and sends the resulting packet to the delivery service via Shipment.



182 M. Westergaard, D. Fahland, and C. Stahl

The delivery service shall in all tasks try to deliver packets to the respective cus-
tomers via place Offer. If a customer is not at home, a token is placed on place
Reject; otherwise, a token is produced on place Accept and, finally, the delivery
service hands over the packet to the customer via place Delivery. Place Return is
used to send a packet back to the shop in case the packet could not be delivered.
In addition, the delivery service informs the shop via place Notification that a
packet has been successfully delivered. The pages Shop and Customer are given
but the DeliveryService is empty and intended to be modeled by the student.

When students are given such a base model, they are asked to model the
missing part(s) or to change or improve the given model. These changes must
adhere to certain constraints. In our example, we would need to be able to
check that the given environment has not been changed (as the environment
constitutes a contract with the external world) and that the model satisfies the
given requirements, which often means that behavioral properties need to be
checked. Our focus on the first version of our tool has therefore been on making
it easy to check these requirements.

We have also implemented checks that ensure good modeling practice, includ-
ing respecting data hiding (i.e., student solutions are not allowed to connect to
nodes of the environment other than the interface places) and proper termina-
tion (i.e., ensuring that tokens are not erroneously left behind), and simple static
analysis (e.g., ensuring that communication channels are used in the correct
direction, i.e., no messages are produced on an input channel).

As we cannot check all properties mechanically—for example, whether the
model is readable and understandable—we have implemented functionality sup-
porting doing this manually. This includes generating a view of the model in
which the student-designed parts are highlighted and the given parts from Fig. 1
are dimmed. This allows teachers to focus on the new parts without having to
distinguish these parts manually.

We have earlier encountered problems with students copying solutions from
one another. We would also like to detect this, so we have checks that at least
make it harder to cheat. This includes providing each student with a unique
copy of the base model from Fig. 1 with a cryptographic signature including the
student ID embedded. This makes it impossible for two students to use the same
base model as starting point (indicating that one got a copy from the other).

Finally, we want a report summarizing all findings; the report should be useful
for both teachers, who should be able to grade the model based on the report
only, without having to manually open the model in CPN Tools except in special
cases, and for students, who should be pointed to flaws in the model, using error
traces when applicable. To sum up, we need a tool that

1. Works with CPN Tools models.
2. Provides easy configuration.
3. Is easily extensible.
4. Contains a reasonable base set of capabilities, including:

(a) Detect changes to a given environment,
(b) Check dynamic properties using simulation.



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 183

(c) Check good modeling practise, including data hiding, proper termina-
tion, and provide simple static analysis.

5. Supports the manual part of the grading process.
6. Detects attempts to defraud.
7. Provides a report that pin-points problems, aids the teacher in grading, and

allows students to understand problems.

We have chosen to implement our tool as a vanilla Java application. The language
is chosen due to its popularity and platform-independence. We have chosen not
to rely on a framework for handling plug-ins, as these frameworks often demand
significant overhead due to providing features we do not need (e.g., we do not
need dynamic configuration of plug-ins). We have used the library Access/CPN
[4] as it provides an easy way to load CPN models and programmatically interact
with the simulator.

We continue with the outline of the architecture of our tool and introduce
some simple plug-ins checking basic properties in Sect. 2. In Sect. 3, we in-
troduce a temporal logic which is powerful enough to describe most dynamic
requirements while still being easy to use. In Sect. 4, we provide details on auto-
matic attempt to improve coverage and relate our work to automatic testing. In
Sect. 5, we provide implementation details and we sum up our experiences using
our tool in semi-automatically assessing assignments from close to 100 students.
Finally, we discuss related work, conclude the paper, and provide directions for
future work.

A preliminary version of this work has been published in [5]. Compared
with [5], we have extended our syntax to handle a global quantifier and vari-
ables, and provide a simpler semantics with subtle errors fixed (see Sect. 3).
Moreover, the details on coverage and the comparison with automatic testing
(see Sect. 4) are new results. We have also implemented some of the future work
of the previous paper, including a version of the tool allowing students to get
feedback before final grading (see Sect 4), and we report how that has improved
the grades of students (see Sect. 5).

2 Architecture

Java

Access/CPN

Grade/CPN

Configuration
File

Configuration

Reporting

P
lug-in 1

P
lug-in 2

P
lug-in 3

P
lug-in n

…

CPN Tools
Simulator

PDF/HTML
Report

PDF/HTML
Report

PDF/HTML
Reports

(CPN) Model
File

(CPN) Model
Files

(CPN) Model
Files

Fig. 2. Overall architecture and environ-
ment of Grade/CPN

In this section, we outline the architec-
ture of Grade/CPN. We first give the
overall architecture and explain how
this solves requirements 1, 2, 3, and 7
from the introduction. Then, we pro-
vide the details of some of the built-
in plug-ins, focusing on requirements
4(a), 4(c), and 6. Requirement 4(b) is
handled in detail in the next section,
and requirement 5 is handled partly in
this section and partly when we report
our experiences in Sect. 5.



184 M. Westergaard, D. Fahland, and C. Stahl

2.1 Overall Architecture

Figure 2 shows the overall architecture of Grade/CPN. We see that we build on
top of Java and Access/CPN [4]. Access/CPN is a Java library making it possible
to interact directly with the CPN Tools Simulator, including loading models and
translating them to an object structure we can use for static analysis, and send
to the simulator process also used by CPN Tools to perform syntax check and
simulation of models. Grade/CPN comprises two important components, one
for Configuration and one for Reporting, as well as an interface to several Plug-ins.
The Configuration component is responsible for loading a configuration file and
using it to instantiate and configure the appropriate plug-ins. Each plug-in re-
turns messages useful for the Reporting component, which use this information to
generate an on-screen status view showing the overall correctness of the checked
models and for generating an individual report for each student. The report can
be generated as either an HTML file suitable for reading in a Web-browser or a
PDF file suitable for printing or archival.

The central interface of Grade/CPN is PlugIn, shown in Listing 1 (ll. 1–5). Each
plug-in must implement this interface. The configure method is a factory method
to instantiate the plug-in, and takes how many points should be awarded if
the plug-in succeeds and a configuration string. The format of the configuration
string is defined by the plug-in, but will typically be a name identifying the
plug-in and a list of named parameters. If the plug-in can be instantiated with a
given configuration string, it returns a new configured instance and otherwise it
returns null. This allows us to create an abstract factory for instantiating plug-
ins from a string. Furthermore, a plug-in has a method grade, which is given a
student ID, a base model (base), the student solution (model), and a connection
to the simulator. The plug-in can use this information to arrive at its conclusion
and return a Message, which comprises how many points are awarded and a
descriptive message with the reason for the grade.

Fig. 3. Report overview

Reporting. The Reporting component
of Fig. 2 is responsible for emitting a re-
port based on the result of the PlugIns.
All interfaces pertaining to reporting is
shown in Listing 1 (ll. 7–17). The main
class is Report (ll. 7–10), which is instan-
tiated for each student ID and contains
a set of pairs of PlugIns and Messages
(produced by the grade method).

A Message (ll. 11–13) ties together a
number of awarded points, a descriptive
message and a list of Details providing in-depth reasoning leading to the outcome.
Each Detail (ll. 14–17) consists of a descriptive header and either a list of textual
details or a single graphical component, which is rendered as an image in the
resulting report. For each student a report overview is generated (see Fig. 3 for
an example) and supplementary details are added in separate sections.



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 185

Listing 1. Plug-in interface and central components
� �

1 public inter face PlugIn {
2 public PlugIn c on f i gu re (double maxPoints , St r ing co n f i gu r a t i on ) ;
3 public Message grade ( StudentID id , PetriNet base , PetriNet model ,
4 HighLevelSimulator s imulator ) ;
5 }

7 public c lass Report {
8 public Report ( StudentID s id ) { . . . }
9 void addReport ( PlugIn plugin , Message r e su l t ) { . . . }

10 }
11 public c lass Message {
12 public Message (double points , S tr ing message , Deta i l . . . d e t a i l s ) { . . . }
13 }
14 public c lass Deta i l {
15 public Deta i l ( St r ing header , S t r ing . . . d e t a i l s ) { . . . }
16 public Deta i l ( St r ing header , JComponent component ) { . . . }
17 }

19 public c lass Tester {
20 public Tester ( Tes tSui te su i t e , Li s t<StudentID> ids , PetriNet base ) { . . . }
21 public Li s t<Report> t e s t ( ) { . . . }
22 }
23 public abstract c lass TestSui te {
24 public TestSui te ( PlugIn matcher ) { . . . }
25 public abstract Li s t<PlugIn> getPlugIns ( ) ;
26 }
27 public c lass Conf igurat ionTestSui t e extends TestSui te {
28 public Conf igura t ionTestSu i te ( F i l e c on f i g u r a t i o nF i l e ) { . . . }
29 }

� �

Configuration. The Configuration component of Fig. 2 is shown in Listing 1
(ll. 19–29). The main class is a Tester (ll. 19–22), which given a TestSuite, a list
of student IDs, and a base model can perform a test (l. 21) and yields a Report
for each student. A TestSuite (ll. 23–26) has a distinguished matcher, which is a
PlugIn mapping models to student IDs by yielding a high score for a model and
student ID pair if the model is created by the student with the given ID and a low
score otherwise. A TestSuite can also return a list of PlugIns for the main grading
process. One implementation of a TestSuite, the ConfigurationTestSuite (ll. 27–29),
is instantiated using a configurationFile which along with an abstract PlugIn factory
is used to instantiate the correct PlugIns according to the configuration.

An example configuration file is shown in Listing 2. The file comprises two sec-
tions, matcher (ll. 1–2) and test (ll. 4–15), setting up the matcher and the actual tests
graded, respectively. The intuition is that each line corresponds to a plug-in; a line
starting with a + (ignoring white space) is considered part of the preceding line.
Each line starts with a number indicating how many points are awarded for suc-
cessful execution. If the number is negative, successful execution yields 0 points
but a failure yields a punishment. This is followed by a colon and a configuration
option recognized by the plug-in and optionally a list of named parameters. For
example, in line 5 we see that the plug-in identified by declaration-preservation is in-
stantiated with one named parameter. If the test fails, it yields a punishment of
5 points and if it succeeds, it yields 0 points. Lines 13–14 are merged (as line 14
starts with +). In the following we go into more detail with this example.

2.2 Simple Plug-ins for Interface Preservation

In Listing 2, we use two plug-ins to ensure that the interface to the environment
and the environment itself are not modified. The declaration-preservation plug-
in (l. 5) makes sure that no declaration in the provided model is removed or



186 M. Westergaard, D. Fahland, and C. Stahl

Listing 2. Example configuration file
� �

1 [ matcher ]
2 −5: signature , threshold=65

4 [ tests ]
5 −5: declaration−preservation

6 −100: interface−preservation , addpages=true , initmark=true , subset=de l i v e r y s e r v i c e
7 −5: matchfilename

8 0 . 033 : btl , repeats=2,name="Accept 10 Orders " , t e s t=
9 + (10 ∗ (−−> Order ) −> (@( ! Order ) ) ) &

10 + (10 ∗ (−−> Receive ) −> (@( ! Receive ) ) ) &
11 + (@( ! Reject ) ) &
12 + [(−−> Handle_Return ) => f a l s e ]
13 0 . 033 : btl , repeats=2,name="Only two ca r s o f capac ity 1" , t e s t=
14 + [@( | Reject | + | Of f er | + | Accept | < 3) ]

� �

changed. This ensures that it is impossible to change the type of the interface
by redefining color sets. If declarations are removed or changed, this is reported
as an error and if new declarations are added, they are added to the report so it
is easy to see what was added without having to directly compare the student
model with the base model.

The interface-preservation (l. 6) plug-in makes sure that students do not change
the given net structure, but only add new structure. In our example from Fig. 1,
students are only allowed to add new net structure, but not to modify the given
environment. Here, we are given four parameters. The addpages parameter is set
to true, which means that students are allowed to add new pages. The initmark
option is set to true, which means that students are not allowed to change the
initial marking of the model. Finally, the subset parameter contains a list of
pages students are allowed to add structure to. Any page not in this list is not
allowed to be changed at all. Here, we specify that the students are allowed
to alter the DeliveryService page from Fig. 1. Any added page is listed in the
report as is any modified page. If the change is illegal, the error is listed (i.e.,
if a node of the interface is removed or altered, this is highlighted), and if the
model contains no errors, the entire environment is dimmed so only the student
solution is highlighted.

2.3 Fraud Prevention

We have two plug-ins for matching a model to a student ID. In Listing 2, we use
both to award points. We see in line 8 that we instantiate the matchfilename plug-
in. This plug-in simply checks if the student ID is a substring of the filename
(and punishes if it is not). This is fine for honest students; unfortunately, we
have in earlier years encountered students copying models from one another. To
catch that, we instead use the more elaborate signature plug-in as matcher (l. 2).

The signature matcher exploits that all elements of a CPN Tools model have
a unique identifier. This is necessary, e.g., to represent that an arc is connected
to a specific place and transition. While these identifiers must be unique in
the file and match for nodes and arcs, the actual contents of the identifiers
have no semantics. We have developed a simple signer application which, given
a base model, modifies the identifiers in a predictable way. By using a crypto-
graphic random number generator, we can generate a sequence of pseudo-random



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 187

numbers using the student ID and a secret passphrase as seed. The idea is that
if we know the passphrase and the student ID, we can regenerate the sequence,
but using just the sequence (and optionally the student ID), it is not possible to
reverse-engineer the passphrase. Now, using the generated sequence of numbers
as identifiers of model elements in the file containing the environment, we create
a unique signature in the base file for each student.

The signature plug-in can check this signature. It queries for each student
ID and student model whether the two match. It regenerates the sequence of
random numbers for the student ID and the provided passphrase, and check
that the identifiers are present in the file. If they are, the model is considered a
match and otherwise not. The plug-in takes a parameter threshold which indicates
how many identifiers must be present in the model. As the signing is a one-way
process, students are forced to use the appropriate base model and cannot just
hand in the same model (even after making cosmetic changes). The teacher only
needs to remember the password as the signature key is generated automatically
from the password and student ID.

2.4 Model-Checking

Grade/CPN embeds the ASAP model-checker [6], allowing us to check all prop-
erties supported by that tool as long as the state-space is finite, including LTL
properties using a wide range of reduction techniques. The models we encounter
in our case study do not have finite state-spaces, so we have not been focused on
this part. The extensible nature of Grade/CPN makes it easy to add this func-
tionality externally, and as a proof-of-concept we have implemented a simple
dead-lock checker.

3 Britney Temporal Logic

An important requirement to our tool is to check dynamic properties, require-
ment 4(b) from the introduction. In the example in Fig. 1, we are for example
interested in the behavior when a customer accepts packets ten times in a row
and how many packets can be outstanding at any time. As CPN models tend
to have huge or even infinite state spaces, we cannot verify such properties in
general and especially not for models generated by students who have less expe-
rience with modeling. Therefore, we check such properties by guiding the model;
that is, we apply a testing-based approach rather than exhaustive state-space
exploration, yielding a sound but not necessarily complete checking mechanism.

Guiding the model requires to specify which transition the model should ex-
ecute. Testing whether some property holds in a state of the model requires a
specification of this property. To this end, we introduce the Britney Temporal
Logic (BTL). This logic is similar to linear-time logic (LTL) [7] but, in addition
to checking properties, also allows guiding the model and to specify constraints
that should hold in a state. We adopt a syntax more similar to common descrip-
tions of Petri net firing sequences rather than cryptic abbreviations or symbols



188 M. Westergaard, D. Fahland, and C. Stahl

to make it easier for practitioners to adopt the logic. The choice for an LTL-like
logic reflects our wish to have existential counterexamples that can be repre-
sented by a simple firing sequence. Other kinds of counterexamples are difficult
to find using simulation only and also difficult to present to the user. In the fol-
lowing, we define the syntax of BTL formulae and then their semantics based on
Kripke structures [8], and structural operational semantics (SOS) [9] to capture
invariant properties and simple rewrite rules to capture the temporal aspects.

3.1 Syntax

A BTL formula is a 〈guide〉. A guide describes how simulation should be per-
formed; that is, it guides the model to a desired state. The atomic propositions
of a guide are described using 〈simple〉, which is an expression without temporal
operators but otherwise allowing full propositional logic on transitions and place
invariants. The temporal operators are six arrows emulating the arrows typically
used to describe transition steps. Thus a->b means that first a must hold and
subsequently b must hold. For example, a and b can represent transitions, mean-
ing that for the formula to hold, the corresponding transitions are executed one
after the other. We lift this operator to a-->b meaning that a must hold and
sometime afterward b must hold. Finally, a--->[b] means that a must hold and
when the simulation stops b must hold. The brackets indicate that b is not used
for guiding the simulation anymore (it has terminated after all). We can omit a,
which is an abbreviation for true. For each arrow, we also add a double arrow
version indicating that if a holds, then b holds at the appropriate time.
〈�����〉 ����� � 〈����	�〉

� �〈�����〉
� �

� ���� 〈�����〉 �

� �〈�����〉
� �

� ����� 〈�����〉 �

� �〈�����〉
� �

� ������ ��� 〈����	�〉 ��� �

� 〈�����〉 ���� 〈�����〉 �
� 〈�����〉 ����� 〈�����〉 �
� 〈�����〉 ������ ��� 〈����	�〉 ��� �

� ����� 〈
��〉 �	�

� �
� �
� 〈���〉 ��� 〈	��〉 � ��� ��� 〈�����〉 �� �

� ������ �	�

� �
� �
� 〈	��〉 ��� 〈�����〉 � ��� ��� 〈�����〉 �� �

� 〈�����〉 ��� 〈�����〉 �
� ��� 〈����	�〉 �
� ��� 〈����	�〉 �
� ��� 〈�����〉 ��� �
� 〈�����〉 ��� 〈�����〉 �
� ��� 〈�����〉 �� �

���

We use operator new to define that the firing of a transition initializes one
or more variables, and we use operator bind to initialize one or more variables
with constant values. We also allow bounded and unbounded repetition using
a star syntax. In contrary to a regular Kleene star, we put it in front as it
improves readability for western readers. Using operator @, a guide can specify
an invariant property that should hold in all states. A guide can also include
〈check〉s, which are not used to guide the model but only to test assertions.



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 189

They are therefore allowed to contain disjunctions and negations and general
boolean expressions. Finally, a guide can also be the conjunction of two guides.

〈�����〉 ����� � 〈�����〉
� ��� 〈�����〉 �
� 〈�����〉 ��� 〈�����〉 �
� 〈�����〉 ��� 〈�����〉 �
� ��� 〈�����〉 ��� �

� ��

In addition to the syntax for guiding, we also allow simple boolean expressions.
These are mostly for testing state properties, such as counting the tokens on a
place or testing values of the global clock. Attribute tid and pid in the grammar
thereby refer to a transition label and place label, respectively, and nid is the
name of a CPN variable and lid is the name of a local BTL variable. In this
definition, constants are only bound to numbers for sake of simplicity, however
the extension to arbitrary CPN literals is straight forward. In the syntax, symbol
〈R〉 is any of the comparison operators <,>,≤,≥,=. For example, Line 12 in
Listing 2 tests that Handle Return is never executed (but does not enforce it like
the guides). The formula in line 14 checks that at any point during execution,
the three places Reject, Offer, and Accept never contain three or more tokens in
total.
〈	�
���〉 ����� � 〈��〉

� 〈��〉 ���

� ��� �
� 〈���〉 ��� 〈���〉 � �	� �

� ��� 〈���〉 ��� 〈�〉 〈��
���〉 �
� �
��� 〈�〉 〈��
���〉 �
� �
��� �
� ������ �
� ��� 〈	�
���〉 �
� 〈	�
���〉 ��� 〈	�
���〉 �
� 〈	�
���〉 ��� 〈	�
���〉 �
� ��� 〈	�
���〉 ��� �

� ��

Our syntax includes a lot of conveniences. We already mentioned that avoiding
the precondition for the single arrows is a convenience for a precondition of true.
Furthermore, all single arrows can be defined from the double arrows by forcing
the precondition. The eventuality defined by a==>b can be defined in terms of
the unbounded repetition and the next operator, and bounded repetition is just
a syntactical convenience. Let G,G1, G2 be guides, C,C1, C2 be checks, and
S, S1, S2 be simple boolean expressions. In the syntax, we have grayed out all
syntactic sugar for which we do not need to explicitly define the semantics.

->G ≡ true->G

-->G ≡ true-->G

--->[C] ≡ true--->[C]

G1->G2 ≡ G1&(G1=>G2)

G1-->G2 ≡ G1&(G1==>G2)

G1--->[S] ≡ G1&(G1===>[S])

G1==>G2 ≡ G1->(∗true->G2)

(G) ≡ G false ≡!true

C1|C2 ≡!(!C1&!C2) S1|S2 ≡!(!S1&!S2)

(C) ≡ C (S) ≡ S

n ∗ G ≡
{
G->(n − 1) ∗ G if n ≥ 1

true otherwise.



190 M. Westergaard, D. Fahland, and C. Stahl

3.2 Semantics

The semantics of BTL is similar to a standard finite trace semantics for LTL like
the one defined in [10]. Intuitively, => corresponds to “next”, ==> corresponds
to “eventually”, @ corresponds to “globally” (in a restricted form), and a for-
mula [〈check〉]==>〈guide〉 is similar to “until” (in a restricted form). Yet, BTL
significantly differs from LTL due to the dual nature of guides (which steer the
simulation) and checks (which have to hold).

We interpret BTL formulae over a Kripke structure K = (Q, δ, q0, Σ, λ), where
Q is a set of states, q0 ∈ Q is the initial state, Σ is a set of transition labels,
δ ⊆ Q × Σ × Q is the transition relation, and function λ : Q −→ 2AP maps
each state q ∈ Q to a set of atomic propositions that hold in q. As usual, AP
denotes the set of all atomic propositions. In our syntax we have some CPN-
specific atomic propositions dealing with places and time, but it obvious that
these could be replaced to suit any formalism generating a Kripke structure.

The semantics of a BTL formula is defined over the traces of a Kripke structure
K along with an environment, E, which is a function mapping names to values.
Normally for a model M , we consider the transition relation −→M relating two
states q0, q1 and a transition. What exactly the state and transitions are depends
on the concrete formalism. In the case of CPNs, the states are markings and the
transitions are pairs consisting of a transition and all variables surrounding it, a
binding element . We denote by BE ⊆ T ×2Bindings the set of all possible binding

elements for a model, and we write q0
t{n1=v1,...,nj=vj}−−−−−−−−−−−−→M q1 to denote the model

can execute transition t with the binding of variables n1 = v1, . . . , nj = vj from
state q0, leading to state q1. We say that the binding element t{n1 = v1, . . . , nj =
vj} is enabled and denote by name(t{n1 = v1, . . . , nj = vj}) = t the transition
name of a binding element.

We first consider how to guide the simulation. This is done by defining a set of
allowed transitions for each guide. For simulation, only enabled transitions that
are in this set are considered. This in particular means that if the set of allowed
transitions is empty, the simulation is considered finished (and not with an error
unless the formula is not satisfied). In other words, when considering the truth
value of a formula according to a model (without a trace), we only consider the
truth value along all traced adhering to the guides. We define the set guide over
a set of possible binding elements inductively as follows, where S, S1, S2 are of
type 〈simple〉, C,C1, C2 are of type 〈check〉, and G,G1, G2 are of type 〈guide〉:

guide(tid, q, E) = {be ∈ BE |name(be) = tid}
guide(tid{n1 = l1, . . . , nj = lj}, q, E) = {tid{n1 = E(l1), . . . , nj = E(lj)}}

guide(|pid| R i, q, E) = guide(time R i, q, E) = BE

guide(true, q, E) = BE

guide(!S, q, E) = BE \ guide(S, q, E)

guide(S1&S2, q, E) = guide(S1, q, E) ∩ guide(S2, q, E)

guide(!C, q, E) = BE \ guide(C,E)

guide(C1&C2, q, E) = guide(C1, q, E) ∩ guide(C2, q, E)



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 191

guide(G1=>G2, q, E) = guide(G===>[S], q, E) = BE

guide(new tid{n1 = l1, . . . , nj = lj}(G), q, E) = {tid{n1 = v1, . . . , nj = vj} ∈ BE |
tid{n1 = v1, . . . , nj = vj} ∈ guide(G, q, E[l1 �→ v1, . . . , lj �→ vj ])}

guide(bind {l1 = v1, . . . , lj = vj}(G), q, E) = guide(G, q, E[l1 �→ v1, . . . , lj �→ vj ])

guide(∗S, q, E) = guide([C], q, E) = BE

guide(@S, q, E) = guide(S, q, E)

guide(G1 ∧ G2, q, E) = guide(G1, q, E) ∩ guide(G2, q, E)

We allow concrete steps if they are needed to satisfy a formula or forbid a step
if it would violate it, and otherwise allow anything when we do not care about
the outcome.

Next, we define the semantics of 〈simple〉 over traces q0
be1−−→M q1

be2−−→M

· · · bek−−→M qk of enabled binding elements as follows. Most operators are straight-
forward with (1) consuming transitions and binding elements for non-empty
traces, (2) defining state predicates, and (3) defining propositional connectives.

k ≥ 1, be1 ∈ guide(tid, q0, E)

(q0
be1−−→M · · · qk), E |= tid

k ≥ 1, be1 ∈ guide(tid{n1 = v1, . . . , nj = vj}, q0, E)

(q0
be1−−→M · · · qk), E |= tid{n1 = v1, . . . , nj = vj}

(1)

q0 |= |pid| R i

(q0
be1−−→M · · · qk), E |= |pid| R i

q0 |= time R i

(q0
be1−−→M · · · qk), E |= time R i

(2)

true

(q0
be1−−→M · · · qk), E |= true

(q0
be1−−→M · · · qk), E �|= S

(q0
be1−−→M · · · qk), E |=!S

(q0
be1−−→M · · · qk), E |= S1 ∧ (q0

be1−−→M · · · qk), E |= S2

(q0
be1−−→M · · · qk), E |= S1 ∧ S2

(3)

The 〈check〉 is a simple syntactical extension of 〈guide〉 and treated with them.
The operators on 〈guide〉 are LTL-like. As for 〈simple〉, we define the syntax over
traces q0

be1−−→M q1
be2−−→M · · · bek−−→M qk of enabled binding elements. Instead of

defining the truth value, we need to define a rewrite of a formula to capture the
temporal aspects as well as the guiding aspects. We define the progress function
inductively on the structure of the union of 〈guide〉 and 〈check〉, execution trace,
and an environment E. We notice that this includes true and false . A 〈simple〉
can always be evaluated in the current state or step according to rules (1)-(3).

progress(S, q0
be1−−→M · · · qk, E) =

{
true if (q0

be1−−→M · · · qk, E) |= S

false otherwise
(4)

A 〈guide〉 or a 〈check〉 may evaluate to true or false in the current state or step,
in which case we return this value. If not, the 〈guide〉 or 〈check〉 is rewritten to
the formula that has to hold in the next step. Rule (5) shows the rewriting for
the conditional next step construct, where G2 has to hold in the next step if G1



192 M. Westergaard, D. Fahland, and C. Stahl

holds in this step, while the entire formula has to hold in the next step if nothing
can be said about G1 in this step. By (6), conditional “finally” is only evaluated
at the end of the trace.

progress(G1=>G2, q0
be1−−→M · · · qk, E) =⎧⎪⎪⎨

⎪⎪⎩
G2 if progress(G1, q0

be1−−→M q1, E) = true

true if progress(G1, q0
be1−−→M q1, E) = false

(progress(G1, q0
be1−−→M · · · qk, E)=>G2) otherwise

(5)

progress(G===>[S], q0
be1−−→M · · · qk, E) =⎧⎪⎨

⎪⎩
(q0, E) |= S if G = true, k = 0

true if G �= true, k = 0

(progress(G, q0
b1−−→M · · · qk, E))===>[S] otherwise

(6)

Rule (7) replaces the dynamic binding of BTL variables by “new” with the static
binding when the concrete values are known and the transition is allowed; the
static binding recursively extends the environment for the subformulas (8).

progress(new name{n1 = l1, . . . , ni = li}(G), q0
be1−−→M · · · qk, E) ={

ψ if be1 = name{n1 = v1, . . . , ni = vi}
false otherwise

(7)

where ψ = progress(bind{l1 = v1, . . . , li = vi}(G), q0
be1−−→M · · · qk, E).

progress(bind{l1 = v1, . . . , li = vi}(G), q0
be1−−→M · · · qk, E)

=

{
true if ψ = true

bind{l1 = v1, . . . , li = vi}(ψ) otherwise
(8)

where ψ = progress(G, q0
be1−−→M · · · qk, E[l1 "→ v1, . . . , li "→ vi]).

The “@S” defines a global invariant S that has to hold in each step of the
trace until its end (10), the “∗S” permits the simple S to hold on a prefix of the
trace 9.

progress(∗S, q0 be1−−→M · · · qk, E) =

{
∗S if k > 0, (q0

be1−−→M q1), E |= S

true otherwise
(9)

progress(@S, q0
be1−−→M · · · qk, E) =

⎧⎪⎨
⎪⎩

@S if k > 0, (q0
be1−−→M q1), E |= S

true if k = 0

false otherwise

(10)

Checks do not restrict the step: they are simply evaluated, or, if they cannot
be evaluated, are rewritten according to the current step. We preserve syntactic
categories of checks in rules (11) and (12) accordingly.

progress([C], q0
be1−−→M · · · qk, E)

=

⎧⎪⎪⎨
⎪⎪⎩

true if progress(C, q0
be1−−→M · · · qk, E) = true

false if progress(C, q0
be1−−→M · · · qk, E) = false

[progress(C, q0
be1−−→M · · · qk, E)] otherwise

(11)



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 193

progress(!C, q0
be1−−→M · · · qk, E)

=

⎧⎪⎪⎨
⎪⎪⎩

false if progress(C, q0
be1−−→M · · · qk, E) = true

true if progress(C, q0
be1−−→M · · · qk, E) = false

[!progress(C, q0
be1−−→M · · · qk, E)] otherwise

(12)

A satisfied conjunction is rewritten to true as in rule (13); this rule equally
applies to conjunctions over 〈check〉s.

progress(G1 ∧ G2, q0
be1−−→M · · · qk, E)

=

⎧⎪⎪⎨
⎪⎪⎩

progress(G1, q0
be1−−→M · · · qk, E) if progress(G2, q0

be1−−→M · · · qk, E) = true

progress(G2, q0
be1−−→M · · · qk, E) if progress(G1, q0

be1−−→M · · · qk, E) = true

progress(G1, q0
be1−−→M · · · qk, E)∧progress(G2, q0

be1−−→M · · · qk, E) otherwise

(13)

The progress function determines how to progress the computation for each
step. Sometimes the computation cannot progress, however. This can be either
because there are no more enabled transitions (the trace is empty) or the guard
does not permit progressing. In this case, we need to check that the remaining
rewritten formula can terminate, i.e., if it accepts the empty trace. We then lift
the computation over traces from individual steps to entire traces. We define
an evaluate function evaluating the truth value of a formula f over a trace
q0

be1−−→M q1
be2−−→M · · · bek−−→M qk of enabled transitions as follows. The function

returns one of three values, true meaning the formula holds for the trace, false
meaning it does not hold, and unguided meaning the trace does not follow the
guiding function.

evaluate(f, q0
be1−−→ · · · qk) =⎧⎪⎪⎪⎨

⎪⎪⎪⎩

true if progress(f, q0, ∅) = true

false if k = 0, progress(f, q0, ∅) �= true

unguided if be1 /∈ guide(q0 , f, ∅)
evaluate(progress(f, q0

be1−−→ · · · qk), q1 be2−−→ · · · qk) otherwise

(14)

Finally, we say that given a model M and a formula f , M satisfies the formula f ,
written M |= f if all traces either satisfy the formula or are unguided, formally:

Definition 1 (Satisfaction of BTL). Given a (CPN) model M and a BTL
formula f , we say that M satisfies f , written M |= f iff

∀q0 be1−−→ · · · qk ∈M : evaluate(f, q0
be1−−→ · · · qk) �= false

4 Coverage and Choices

Section 3 introduced syntax and semantics of BTL, which allows to specify in-
tended and forbidden behavior of the system. In this section, we discuss how to
test whether a system model, given as CPN model, satisfies the specification.
We first discuss requirements for testing and our approach, including how to get
high coverage and how these ideas can be used to handle choices in the form of
disjunctions.



194 M. Westergaard, D. Fahland, and C. Stahl

4.1 Testing BTL Formulas

Similar to formal verification, testing aims at finding errors in the system model
– that is, finding runs which violate the given specification. In contrast to formal
verification, testing is not exhaustive: Only a fraction of the system’s possible
behavior is investigated for whether it violates the specification.

A naive testing algorithm is to randomly walk through the state space of
the system model, until the property tested for is satisfied or violated. This is
repeated several times. If a run violating the specification is found, it is proof that
the system violates the specification. In case no violating run is found, there is
no proof that the system is error free. However, one can compute the probability
by which a specification holds based on the explored behavior in relation to the
complete behavior.

1

u

A

D

1

B

x

w

y

C

v

A

p=1

p=1

C D

D C

p=1/2 p=1/2

p=1/2 p=1/2T

T

A

p=1

p=1/3

C D

D C

p=1/6
p=1/6

p=1/6 p=1/6

T

T

p=1/3 p=1/3

B D

D

T

p=1/3
p=1/6 p=1/6

BA

p=1/3

C

F

F

Fig. 4. Example model N , guided execu-
tion tree for A-->C, and guided execution
tree for !C-->D

Figure 4 shows a technical exam-
ple. For evaluating the BTL formula
A-->C, only the guided traces of the
execution tree are relevant as un-
guided traces have no impact on the
satisfaction of a formula. We do not
assign all traces the same probabil-
ity, as simulation locally decides on
each step regardless of any previous
and future steps. In the first step, the
system is guided to do an A, so all
traces leaving the initial state with an
action different from A are unguided
and not considered. This means the
traces have probability 1 of starting
with an A. The remaining guided tree
is shown in Fig. 4(top right). Edges
correspond choices in the model and
the probabilities show the probability
of a random trace having the given prefix. We only consider completed traces,
though we can sometimes make a decision prior to exploring full traces. We
see that after executing A we have a choice between C and D, so each prefix
amounts to half of the probability. The trace ACD satisfies the formula (we can
already see it will after executing just the prefix AC). By just testing the trace
prefix AC, we know that the entire system satisfies A-->C with a probability
of 1

2 , because the probability to see traces with this prefix is 1
2 . By exploring

more alternatives, we see more traces and, in case all explored traces satisfy the
formula, increase the probability that the formula holds, i.e., when also exploring
ADC , which also has probability 1 · 1

2 · 1 = 1
2 , we get that the system satisfies

A-->C with probability 1.
A different situation occurs for the formula !C-->D which has the guided tree

of Fig. 4(bottom right). The guide !C does not prune any (enabled) behavior.
If the test explores the trace DB or DAC , it finds a counterexample for the



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 195

formula proving it was violated. By non-exhaustive exploration in testing, we
could also end up with just exploring the traces ACD (which has probability
1
3 · 1

2 = 1
6 ) and BD (which has probability 1

3 · 1 = 1
3 ), and in this case would

have a total probability of 1
6 + 1

3 = 1
2 that the formula holds. Once exploring

a violating trace, such as DB , that probability drops to 0. Exploring the entire
execution tree yields either probability 0 or 1 that the formula holds.

In general, we talk about three different percentages: the coverage, which is
the weighted sum of all explored traces; the probability a formula holds, which
is the weighted sum of all explored traces if they all satisfy the formula or zero
otherwise; and the probability that a random trace satisfies the formula. When
we have found no counter-examples these are the same, and obviously the larger
the probability that a random trace satisfies the formula, the more difficult it is
to find a counter-example. The example shows the main challenge in testing: to
explore that fraction of traces that yield a counter-example, or if so such exists,
yields a high probability that the formula holds (which increases confidence in
the test result).

4.2 Heuristics for Higher Confidence in Test Results

In testing, confidence put into a test result is typically measured in terms of
coverage criteria [11]. Various coverage criteria have been proposed such as state
coverage (i.e., the fraction of place that has been marked at least once), transition
coverage (i.e., the fraction of transitions that occurred at least once, regardless
of binding element), or coverage of all paths (to a certain length). Coverage
criteria are in some sense interchangeable, as one can simulate coverage w.r.t.
one criterion by coverage w.r.t. another one [12].

Path Coverage. To improve the naive testing algorithm of repeatedly walking
through the system state space in a random way, we leverage two coverage
criteria to increase confidence that a CPN model satisfies a given BTL formula:
transition coverage and path coverage. Complete coverage for paths is infeasible
in the presence of loops or unbounded non-determinism, but covering paths up
to a certain length is feasible. To increase path coverage, we essentially explore
the guided execution tree of the CPN model by greedily choosing a branch that
has the largest probability of falsifying a formula. In the simplest case with no
information about the model, this is the one with the largest difference between
the probability of a random trace having the prefix represented by the branch
and the probability of the formula holding in that subtree. If we consider the
example for !C-->D in Fig. 4, assuming we have explored ACD, starting from
an empty trace we would pick either B or D as they both have probability 1

3 of
happening and known probability 0 of the formula holding, whereas the subtree
starting with A also has probability 1

3 of happening and probability 1
3 of holding.

Transition Coverage. Generating a test for complete coverage of all transitions
is an undecidable problem in a CPN model, as for each transition, one would have
to find a coloured firing sequence that enables this transition. For this reason,
we apply heuristics when exploring the tree of guided executions. We maintain



196 M. Westergaard, D. Fahland, and C. Stahl

a queue of all transitions of the CPN model. When deciding on the next step in
a run, we pick the first enabled transition from the queue and after firing move
it to the end of the queue. This way, we increase the chance of firing transitions
that were not considered yet. Binding elements are not part of the queue and
we also prefer branches giving higher coverage by using the previous heuristic.

More Advanced Criteria. We have assumed that the variables have no im-
pact on the enabled traces. This is of course a simplification, and we could also
consider trying to evaluate the guards to drive the model to different states,
e.g., using abstraction. We could also use transition invariants (of the uncolored
underlying model) to identify loops that are less likely to be interesting, or par-
tially order the transitions according to pre and post places to try and drive a
notion of progress in the model.

4.3 Disjunctions

We have avoided adding disjunction to our guides. This is primarily done be-
cause adding disjunctions can be very expensive. For example, an expression
like (A-->B)|(B-->D) must make a choice when used for guiding if both A
and B can be executed. If, in the example in Fig. 4, A is chosen, a D and a
C are encountered, and the execution terminated, we cannot conclude that the
formula does not hold, as the second part of the disjunction was ignored. We
therefore have to back-track and try again to ensure there really is an error,
making handling disjunctions as difficult as model-checking.

Furthermore, the semantics of disjunction is not completely obvious as we
make truth of formulae relative to the guide. In the formula ((A-->C)|(B-->D))
-->D, must the system be able to respond to both A-->C and B-->D with a
D or is it enough that the system responds with a D for one of the environ-
ment interpretations? As the truth is relative to the guide, either interpretation
becomes unclear; normally we would make the guide of a disjunction the union
of the guides for the two elements, but this makes the guide a larger set, which
may yield strange results. For example, a system may respond to being guided
by A-->C with a D like in Fig. 4 (thus intuitively satisfying the system), but
not respond to B-->D with a D. If the system allows this behavior, this would
mean that the disjunction is not true, even though one of its sides is; the disjunc-
tion inherits similarities to a conjunction (both sides must be satisfiable for the
disjunction to be true). This interpretation is counter-intuitive (and contradicts
the behavior of disjunction of simple formulae, e.g., A|B). The only way to get
around that is to change the guide to instead return sets of sets of transitions,
one for each branch of a disjunction.

If we split the guide to handle disjunctions, we need to check each set of
guides. Each set would partition according to the left side, right side, and inter-
section of each disjunction all the way through the structure of the guide, caus-
ing the number of sets needed to explore to grow exponentially in the number of
disjunctions.

Instead of dealing with this, which theoretically is manageable and nice, we
have decided that disjunction in guides unnecessarily complicates the semantics



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 197

and complexity of checking. We can handle multiple environment behaviors by
instead checking a formula for each individual environment behavior, and we can
already test disjunctions in the simple boolean checks.

5 Practical Experience

In this section, we briefly present our implementation of BTL and Grade/CPN,
and practical experiences of using both in a course.

5.1 Implementation

Our implementation of BTL uses simple formula rewriting according to the se-
mantics. Our implementation implements the guide set for filtering enabled tran-
sitions, pick and execute one that is in the guide set and in the set of enabled
transitions. We then rewrite the formula according to the previous rules. For
efficiency, we have expanded some of the syntactical equivalences, most impor-
tantly the future temporal operator (a==>b). When no more transitions are in
the intersection, we check if the rewritten formula is satisfied for the empty trace.

We evaluate formulae using a four-valued logic similar to [13]. The idea is that
we have two versions of both true and false: The value is definite and can never
change and the value is true/false but may change with further execution. For
example, if we have a formula a->b and execute c we know for sure that we can
never satisfy the formula (we say it is permanently false), whereas for -->b if we
execute a c, the formula is only temporarily false (we still have proof obligations
but may be able to satisfy them in the future). This allows us to terminate early
once a formula is permanently true or false. This has the added advantage of
allowing us to provide a rewritten formula after executing a sequence of steps,
which often contains hints of shortcomings of the model.

Fig. 5. Screenshot of BTL tester

The engine for testing BTL is used
in 3 different tools. The grader dis-
cussed in Sect. 2 is used by teachers
to finally grade assignments. Addition-
ally, we provide two tools for testing
BTL formulas (without grading). One
is used to help a teacher create BTL
specifications by providing immediate
feedback on whether a CPN model
(created by the teacher as a sample
solution or given to the teacher) sat-
isfies a BTL formula. Figure 5 shows
a screenshot of testing the formula
A-->C for the example in Fig. 4. The
tool allows to manually create and step through a run of the CPN model, thereby
observing how the BTL formula tested for is evaluated step by step. The panel
Enabled Bindings shows the list of currently enabled transitions and bindings from



198 M. Westergaard, D. Fahland, and C. Stahl

which the user can pick one. Disallowed Transitions shows transitions not allowed
by the guard function. The panel Current Marking shows the current marking in
the run. The panel Current Formula contains the remaining formula that has to
be evaluated, whenever a step in the CPN model makes a subformula true or
false, the formula in that panel is rewritten according to the BTL semantics of
Sect. 3. The panel Execution Trace shows the steps of the run executed so far, in-
cluding timing information which is valuable for assessing whether time-related
guards in the model match time-related conditions in the BTL formula. The tool
also reports estimates of the coverage, probability the formula holds, and the
probability of a random trace satisfying the formula in the Decision Tree panel.

A simplified version of this tool allows students to check that their models
conform to the formulas. Here, the tool is pre-packaged with a set of BTL for-
mulas that the model must satisfy. The students loads their models and the tool
automatically tests validity of each formula on the model. In case one formula
is not satisfied by the model, the student can manually single-step through the
model and watch the formula progress in an interface similar to Fig. 5, aiding in
finding and fixing obvious errors before handing in.

5.2 Case Study: Business Information Systems

In this section, we present first experiences we made with Grade/CPN in sup-
porting the evaluation of a CPN assignment in the course Business Information
Systems at Eindhoven University of Technology. In this assignment, students
were given the base model in Fig. 1 and they had to model the delivery system
according to a textual specification. Each of the 94 students had to work on five
tasks; for each task, they had to submit one model. We received in total 258
models from 66 students. Table 1 summarizes some statistics. We continue by
describing the assessment in more detail and then report on the experiences had.
Assessment. For each of the five tasks, the assessment consisted of two steps.
In the first step, we applied Grade/CPN by calling it with a student model, the
base model, and a configuration file (see Listing 2). Here, we were interested
whether the interface and declaration of the base model have been preserved,
whether there is a suspicion of fraud, and whether, depending on the task, six
up to fourteen scenarios can be replayed on the model (only two are shown
in the Listing). The scenarios were part of the specification of the assignment,

Table 1. Results of supporting the evaluation of 258 CPN models

Task hand-ins incorrect grader full points full points
models incorrect by grader

1 66 8 0 58 58
2 64 8 0 56 56
3 56 49 7 2 6
4 41 32 4 6 6
5 31 20 2 0 0



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 199

and we specified them using BTL. As BTL refers to the interface, it is cru-
cial that students have not changed it. The runtime of the tool was about ten
minutes for all students in the case of Task 1 and 2 and about ten minutes
for each student model in the case of Tasks 3–5. The reason for the different
runtime of Grade/CPN is that Tasks 1 and 2 are simple CPNs with few tests,
whereas the remaining tasks performed more thorough tests on more advanced
models, including performance analysis, thereby causing a higher analysis effort.
Grade/CPN detected two fraud attempts, though they turned out to be caused
by students handing in a subsequent assignment using the same base model. In
a subsequent run of the course, we caught two students cheating, even though
they had tried to conceal that by changing the layout. This attempt would be
unlikely to get caught manually, but after singling out the models, we manually
inspected them and saw they were clearly the same despite the obfuscation.

In the second step of the assessment, we manually checked each of the gen-
erated reports. On average, this took less than five minutes for each report in
the case of Task 1 and 2 and about ten minutes in the case of Tasks 3–5. Based
on the feedback provided by Grade/CPN, it was easy to check whether a model
was actually correct or not, in particular for the untimed CPN models. Basically,
the violation of a certain scenario simplified the detection of the cause for this
violation drastically. In most cases, we did not even have to look at the coun-
terexample provided by our tool. For Tasks 1 and 2, we had to simulate only
five out of 130 student models manually to determine the cause of an error. A
similar number of models had to be simulated manually for each of the Tasks
3–5. In those cases, the effort spent on finding the cause of an error was often
higher because of the complexity of the models.

The tool automatically detected several subtle errors, such as wrong guards
and minor changes to the environment, without having the need to manually
open the respective model; it is highly unlikely we would have caught all of
these completely manually. We even found subtle errors in our own solutions,
yielding better results.

Experiences and Evaluation. Based on experience from previous years, the
use of Grade/CPN reduced the amount of time for grading the assignment by a
factor of at least two to three. This is factoring in that we used Grade/CPN for
the first time and had to both define and understand the defined logic BTL, and
also did not place complete confidence in the reported results which probably
increased the manual labor as well. Table 1 confirms this observation: For each
task, it shows the number of student models received (Col. 2), the number of
incorrect models (Col. 3), how many times Grade/CPN gave incorrect results
(Col. 4), the number of student models that were graded to be correct according
to the tool (Col. 5), and the number student models that were graded to be
correct after manually checking them (Col. 6). In fact, whenever the grader
assigned full points to a model, then the model was correct. As a result, checking
those models manually took almost no time. Given the high number of models for
Tasks 1 and 2, we saved a lot of time here. Column 4 shows that only few models
were graded incorrectly. In most cases, the cause was a misinterpretation of the



200 M. Westergaard, D. Fahland, and C. Stahl

specification on the part of the students where we decided that the students
should not be punished. Note that we do not show incorrect results of the tool
caused by problems specifying a scenario in BTL.

The second column shows that the number of students participating at the as-
signment decreased from 66 for Task 1 to 31 for Task 5. Moreover, the averagenum-
ber of incorrect student solutions increased from 8/66=12% for Task 1 to 20/31
=65% for Task 5. The tasks became more difficult; whereas the first two tasks dealt
with untimed CPN models and simple functionality, the remaining three tasks
were much more involved. However, for the last two tasks we provided students
with a student version of Grade/CPN. The idea was to provide them with a BTL
specification that covers the basic functionality of their model. The final BTL spec-
ification used by us to grade their assignment contained additional scenarios. We
experienced that providing students with Grade/CPN helped them to come up
with better models. Whereas only 32/56 = 57% of the students got at least half of
the points for the third assignment (56 − 49 = 7 correct solutions), this number
increased to 28/41 = 68% (11 correct) for Task 4 and 20/31 = 64% (11 correct)
for Task 5 even though these were much more involved than the previous tasks.
Moreover, we observed that the overall quality of the models increased drastically.

Grading models is a rather monotonous work. Therefore, it is easily possible
that one oversees an error or forgets to check some scenario. Using Grade/CPN,
this is now impossible and, therefore, we think that we can provide students
with a fairer (in the sense of more equal) grading on the one hand and better
feedback on the other hand.

Coverage Criteria and Confidence. We also compared the quality of the
test result under the 3 different testing strategies (random exploration, increasing
coverage of the guided tree, increasing transition coverage) discussed in Sect. 4.
We observed that random yields the least confidence in the validity of the for-
mula. Increasing tree coverage raises coverage by factor 4 (compared to random)
and increasing transition coverage raises coverage by factor 200 (compared to
random). Likewise, increasing the number of runs tested for also raises covarage.

6 Conclusion and Future Work

We have presented Grade/CPN, a tool to semi-automatically grade CPN models.
Using Access/CPN, we can support any model created using CPN Tools. The plug-
in architecture makes the tool easily extendible: to do so, one must just implement
the interface in Listing 1 (ll. 1–5). The pluggable configuration with a very simple
base format makes configuration simple. Configuration comprises selecting which
plug-ins to use, which weight to assign them, and which parameters to instantiate
them. Each plug-in only needs to consider its own options as the overall configura-
tion format is handled byGrade/CPN. Reporting is handled by making all plug-ins
return simple messages optionally annotated with more detailed reasoning (List-
ing 1 ll. 13–15). The information is automatically gathered by Grade/CPN and
presented both as an overview in the user interface and as a detailed report. We
have presented both simple plug-ins and a very powerful one implementing guided



Grade/CPN: A Tool and Temporal Logic for Testing CPN Models 201

checking of Britney Temporal Logic (BTL). BTL allows us to guide the simulation
toward desired scenarios and to check that the environment contracts are adhered
to. All plug-ins provide categorized information explaining the score and highlight-
ing any changes made to the model, so teachers processing the reports only have
to focus on things that cannot be automatically checked. We have designed and
implemented an infrastructure for detecting fraud. We have reported on our ex-
perience with the Business Information Systems course where Grade/CPN was
used to grade 258 assignments from 94 students. Using Grade/CPN instead of a
completely manual approach reduced the manual labor by a factor of two to three.
Grade/CPN is being employed again in the same course and results show that the
quality of student models has significantly increased after giving them access to
the student tester.

The idea of (semi-)automatically grading assignments is not new and closely
related to testing. A known testing framework is JUnit [14], which also runs a set
of tests and reports the result. The advantage of our tool over JUnit is that JUnit
requires programming to get started, whereas we use simple configuration files.
From the testing world we also find the tool Jenkins (previously Hudson) [15],
which runs tests on a central server and provides near-instantaneous feedback.
The main disadvantage of Jenkins in our view is also complexity; while it does
not (necessarily) require programming, setup does require complex XML config-
uration, and extension either requires huge effort or makes it difficult to get con-
solidated reports. There are many tools for automatically grading programming
assignments [16], for example, the tool peach3 [17], which more focuses on manag-
ing hand-ins, but can also run automatic tests. In contrast, we focus on the tests
and CPN models directly and assume that models already exist. Our testing ap-
proach is similar to runtime LTL [10,13], but our logic also supports guiding. This
is similar to hot/cold events in Live-Sequence Charts [18], but our sections are
more urgent in that a guide is not only preferred, it is an immediate failure if it is
not possible to follow it, making BTL computationally easier to check.

It is very interesting to increase the efficiency of the coverage heuristics for BTL,
including expression abstraction, e.g., using a Counter-Example Guided Abstrac-
tion Refinement (CEGAR) [19] or similar approach. It is also interesting to employ
more static analysis to get even better coverage. Experience says, though, that
students often fail to account for particular cases, making it very easy to detect
errors in those cases. It would also be interesting to investigate simpler languages.
For example, it may be interesting for a teacher simply to see if a given transi-
tion is enabled. This is easily expressible in BTL but difficult to check, and em-
ploying techniques from directed model-checking [20] may prove beneficial to try
more intelligent guiding towards errors. We would also like to extend Grade/CPN
with ability to provide simple simulation-based checks of standard safety and live-
ness properties. We also want to add support for loading models in the PNML
standard [21] format to be able to also check models created using other tools.

Acknowledgements. The authors thank Boudewijn van Dongen for fruitful
discussions about the requirements for an automatic grader.



202 M. Westergaard, D. Fahland, and C. Stahl

References

1. Jensen, K., Kristensen, L.M.: Coloured Petri Nets – Modelling and Validation of
Concurrent Systems. Springer (2009)

2. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes – A Petri Net-
Oriented Approach. MIT Press (2011)

3. Online: CPN Tools webpage, http://cpntools.org
4. Westergaard, M., Kristensen, L.M.: The Access/CPN Framework: A Tool for Inter-

acting with the CPN Tools Simulator. In: Franceschinis, G., Wolf, K. (eds.) PETRI
NETS 2009. LNCS, vol. 5606, pp. 313–322. Springer, Heidelberg (2009)

5. Westergaard, M., Fahland, D., Stahl, C.: Grade/CPN: Semi-automatic Support for
Teaching Petri Nets by Checking Many Petri Nets Against One Specification. In:
Proc. of PNSE. CEUR Workshop Proceedings, vol. 851, pp. 32–46. CEUR-WS.org
(2012)

6. Westergaard, M., Evangelista, S., Kristensen, L.M.: ASAP: An Extensible Platform
for State Space Analysis. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009.
LNCS, vol. 5606, pp. 303–312. Springer, Heidelberg (2009)

7. Pnueli, A.: The Temporal Logic of Programs. In: Proc. of SFCS 1977, pp. 46–57.
IEEE Comp. Soc. (1977)

8. Kripke, S.A.: A semantical analysis of modal logic: I. Normal modal propositional
calculi. Zeitschrift fŭr Mathematische Logic und Grundlagen der Mathematik 9,
67–96 (1963)

9. Plotkin, G.: A Structural Approach to Operational Semantics. DAIMI-FN 19, De-
partment of Computer Science, University of Aarhus (1981)

10. Giannakopoulou, D., Havelund, K.: Automata-Based Verification of Temporal
Properties on Running Programs. In: Proc. ASE, pp. 412–416. IEEE Computer
Society (2001)

11. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers (2006)

12. Weißleder, S.: Simulated satisfaction of coverage criteria on uml state machines.
In: ICST 2012, pp. 117–126 (2010)

13. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime
Verification. Logic and Computation 20(3), 651–674 (2010)

14. Online: JUnit webpage, http://junit.org
15. Online: Jenkins Continuous Integration webpage, http://jenkins-ci.org
16. Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O.: Review of Recent Systems

for Automatic Assessment of Programming Assignments. In: Proc. International
Conference on Computing Education Research, pp. 86–93. ACM (2010)

17. Verhoeff, T.: Programming Task Packages: Peach Exchange Format. Olympiads in
Informnatics 2, 192–207 (2008)

18. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Form.
Methods Syst. Des. 19(1), 45–80 (2001)

19. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement for Symbolic Model Checking. J. ACM 50, 752–794 (2003)

20. Edelkamp, S., Lluch Lafuente, A., Leue, S.: Directed Explicit Model Checking with
HFS-SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer,
Heidelberg (2001)

21. ISO/IEC: Software and system engineering – High-level Petri nets – Part 2: Trans-
fer format. ISO/IEC 15909-2:2011

http://cpntools.org
http://junit.org
http://jenkins-ci.org


Author Index

Baldan, Paolo 1
Ben Maissa, Yann 24
Bernardinello, Luca 48

Cocco, Nicoletta 1

Dedova, Anna 71

Fahland, Dirk 180

Giummolè, Federica 1

Heiner, Monika 123
Herajy, Mostafa 123

Janowska, Agata 89

Köhler-Bußmeier, Michael 159
Kordon, Fabrice 24

Mangioni, Elisabetta 48
Mouline, Salma 24

Penczek, Wojciech 89
Petrucci, Laure 71
Pó�lrola, Agata 89
Pomello, Lucia 48

Rohr, Christian 142

Schwarick, Martin 123
Sidorova, Natalia 106
Simeoni, Marta 1
Stahl, Christian 180

Thierry-Mieg, Yann 24

van der Werf, Jan Martijn E.M. 106
van Hee, Kees M. 106

Wester-Ebbinghaus, Matthias 159
Westergaard, Michael 180

Zbrzezny, Andrzej 89


	Preface
	Organization
	Table of Contents
	Comparing Metabolic Pathways through Reactions and Potential Fluxes
	1 Introduction
	2 Comparison of Metabolic Pathways
	2.1 Metabolic Pathways
	2.2 Comparison Techniques for Metabolic Pathways

	3 Behavioural Aspects in Metabolic Pathways Comparison
	3.1 Metabolic Pathways as Petri Nets
	3.2 A Combined Similarity Measure between Pathways

	4 Experimenting with CoMeta
	4.1 CoMeta
	4.2 Experiments

	5 Conclusions
	References

	Modeling and Analyzing Wireless Sensor Networks with VeriSensor: An Integrated Workflow
	1 Introduction
	2 Related Work
	3 Overview of VeriSensor
	4 Modeling with VeriSensor
	4.1 The Body Area Network (BAN)
	4.2 Modeling the BAN in VeriSensor

	5 Formal Analysis of VeriSensor Specifications
	5.1 The Underlying Formal Model
	5.2 Mapping VeriSensor to a Formal Specification

	6 Analyzing the Case Study
	7 Conclusion
	References

	Local State Refinement and Composition  of Elementary Net Systems: An Approach Based on Morphisms
	1 Introduction
	1.1 An Example

	2 Preliminary Definitions
	2.1 Petri Nets
	2.2 Unfoldings
	2.3 Bisimulation

	3 A Class of Morphisms
	4 Properties Preserved and Reflected by -morphisms
	5 Composition Based on -morphisms
	6 Conclusions
	References

	From Code to Coloured Petri Nets: Modelling Guidelines
	1 Introduction
	2 Modelling Guidelines
	2.1 Grounding
	2.2 Code Analysis

	3 Application of the Guidelines to the NEO Protocol
	3.1 Brief Description of the NEO Protocol
	3.2 Grounding
	3.3 Code Analysis
	3.4 Analysis and Feedback

	4 Conclusion
	References

	Using Integer Time Steps for Checking  Branching Time Properties of Time Petri Nets
	1 Introduction
	2 Related Works
	3 Time Petri Nets
	3.1 Dense-Time Semantics
	3.2 Discrete-Time Semantics

	4 Temporal Logics ACTL and ECTL
	4.1 Syntax and Sublogics of CTL
	4.2 Semantics of CTL
	4.3 Equivalence Preserving ACTL and ECTL

	5 Discrete- vs. Dense-Time Verification for ACTL and ECTL
	6 Experimental Results
	7 Conclusions and Further Work
	References

	When Can We Trust a Third Party? A Soundness Perspective
	1 Introduction
	2 Illustrative Example
	3 Preliminaries
	4 Components and Their Composition
	5 Soundness Using Trusted Third Parties
	5.1 Acyclic Notaries
	5.2 Simple Cyclic Notaries

	6 Conclusions
	References

	Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle
	1 Introduction
	2 Related Work
	3 Generalised Hybrid Petri Nets
	3.1 Elements
	3.2 Connection Rules
	3.3 Formal Definition

	4 The Model
	4.1 Decision to Perform Division
	4.2 Cell Division and Marking-Dependent Arc Weights
	4.3 Transition Partitioning

	5 Simulation Results
	6 Conclusions and Outlook
	References

	Simulative Model Checking of Steady State and Time-Unbounded Temporal Operators
	1 Introduction
	2 Stochastic Simulation
	3 Model Checking
	3.1 Verification of Time-Unbounded Until
	3.2 Steady State Computation

	4 MARCIE: An Implementation
	5 Case Studies
	5.1 RKIP Inhibited ERK Pathway
	5.2 Angiogenesis

	6 Related Work
	7 Conclusions
	References

	Model-Driven Middleware Support for Team-Oriented Process Management
	1 Introduction
	2 Organizational Models Based on Sonar
	3 Sonar Cycle: The Semantics behind Sonar Models
	4 Model Deployment
	5 Mulan4Sonar: Agent-Based Teamwork Engine
	6 Related Work
	7 Conclusion and Outlook
	References

	Grade/CPN: A Tool and Temporal Logic for Testing Colored Petri Net Models in Teaching
	1 Introduction
	2 Architecture
	2.1 Overall Architecture
	2.2 Simple Plug-ins for Interface Preservation
	2.3 Fraud Prevention
	2.4 Model-Checking

	3 Britney Temporal Logic
	3.1 Syntax
	3.2 Semantics

	4 Coverage and Choices
	4.1 Testing BTL Formulas
	4.2 Heuristics for Higher Confidence in Test Results
	4.3 Disjunctions

	5 Practical Experience
	5.1 Implementation
	5.2 Case Study: Business Information Systems

	6 Conclusion and Future Work
	References

	Author Index



