
Detecting Superbubbles in Assembly Graphs

Taku Onodera1, Kunihiko Sadakane2, and Tetsuo Shibuya1

1 Human Genome Center, Institute of Medical Science, University of Tokyo 4-6-1
Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

{tk-ono,tshibuya}@hgc.jp
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo 101-8430, Japan
sada@nii.ac.jp

Abstract. We introduce a new concept of a subgraph class called a su-
perbubble for analyzing assembly graphs, and propose an efficient algo-
rithm for detecting it. Most assembly algorithms utilize assembly graphs
like the de Bruijn graph or the overlap graph constructed from reads.
From these graphs, many assembly algorithms first detect simple local
graph structures (motifs), such as tips and bubbles, mainly to find se-
quencing errors. These motifs are easy to detect, but they are sometimes
too simple to deal with more complex errors. The superbubble is an
extension of the bubble, which is also important for analyzing assem-
bly graphs. Though superbubbles are much more complex than ordinary
bubbles, we show that they can be efficiently enumerated. We propose an
average-case linear time algorithm (i.e., O(n+m) for a graph with n ver-
tices and m edges) for graphs with a reasonable model, though the worst-
case time complexity of our algorithm is quadratic (i.e., O(n(n +m))).
Moreover, the algorithm is practically very fast: Our experiments show
that our algorithm runs in reasonable time with a single CPU core even
against a very large graph of a whole human genome.

1 Introduction

The sequencing technologies have evolved dramatically in the past 25 years,
and nowadays many next-generation sequencers (NGSs) can sequence a human
genome-size genome in only a few hours with very small costs. But still there is
no sequencing technology that can sequence the entire genome at a time with-
out breaking the genome into millions or billions of short reads. Thus assembling
these reads into a whole genome has been one of the most important compu-
tational problems in molecular biology, and quite a few algorithms have been
proposed for the problem [5, 9, 14] despite the computational difficulty of the
problem [10].

Most assembly algorithms construct some graph in their first stage. They are
categorized into two types depending on the types of the graph. Many old-time
assemblers utilize a graph called the overlap graph, in which a vertex corresponds
to a read and an edge corresponds to a pair of reads that have an enough-length
overlap [1, 3, 11]. More recent algorithms often utilize a graph called the de

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 338–348, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Detecting Superbubbles in Assembly Graphs 339

�������

Fig. 1. Construction of a unipath graph

(1) A tip (2) A bubble (3) A cross link

Fig. 2. Assembly graph simple motifs

Bruijn graph, in which an edge corresponds to a k-mer that exists in reads
and a vertex corresponds to the shared (k − 1)-mer between the adjacent k-
mers [4, 6, 8, 13, 15–17]. The de Bruijn graph is said to be more suitable for
NGS short reads of large depth.

The next step of most sequencing algorithms after constructed the graph is
to simplify the obtained graph by decomposing a maximal unbranched sequence
of edges (which is called a unipath) into one single edge [4, 8, 15] (Fig. 1). The
obtained graph is called a unipath graph. After obtained the unipath graph,
many sequencing algorithms next detect simple typical motif structures caused
by errors to detect errors: The most common motifs are tips, bubbles, and cross
links [4, 6, 15, 17] (Fig. 2).

A tip (Fig. 2 (1)) is a low-frequency edge whose end (or start) vertex has
no outgoing (resp. incoming) edges, which goes out from (resp. comes into) a
high-frequency vertex1. This motif often appears in case there are some error(s)
around the end of a read. A bubble (Fig. 2 (2)) consists of multiple edges (with
the same direction) between a pair of vertices, which is often caused by error(s)
somewhere in the middle of a read. A cross link (Fig. 2 (3)) is a low-frequency
edge that lies between high-frequency vertices. This appears when a substring
of a read accidentally becomes (by error) the same substring that appears in a
different region. All of these motifs are easy to find (obviously in linear time)
due to their simplicity.

But we should consider much more complex structures if input reads are er-
roneous (as in the case of the third generation sequencers), have many repeats
(as in many large-scale genomes/meta-genomes), or have many mutations (as
in cancer genomes). Fig. 3 shows an example of a subgraph of a unipath graph
obtained from actual whole human genome reads (the same set of reads used in

1 We say ’low/high’-frequency vertices/edges for vertices/edges that correspond to
few/many reads.



340 T. Onodera, K. Sadakane, and T. Shibuya

cggcacaaaaa tatgaggaaaaacaggg

aggatatg att      aaa   agtt

cagtttgtattttttgttgagtgaatgt ct ccag  t      c ata gagatgcaagtgtagatacacag ta aga

tagatgcaagtgtagatacacag ta aga

gcag t       c cta tagatgcaagtgtagatacacag ta

tagtttgtattttttgttgagtgaatgt

tggcacaaaaa

attg cggaaaaaacagggaggatatgatt ata

agttcagttt

a tgttttttgtt gagtgaatgtctccag cc ata          gagatgcaagtgtagatacacag

t c

g

ggttttttgtt

gagtgaatgtctccagt

tgttttttgtt gagtgaatgtctccag

gggaaaaaacagggaggatatgatt

ata

ctg gggaaaaaacaggg aggatatg

att

ttt         ata         agttcagttt g ggttttttgtt

tatgaggaaaaacaggg

28

18

28 2

34

3

6 3

25

23 5

28

17

11 25 28 17

28 28

10

11

25

28

4

3 3 271

1 1

Fig. 3. A superbubble: A very complicated structure caused by errors or repeats. All
the edges are labeled with sequences (vertices are not shown). The gaps in the labels
are inserted manually in the figure to show alignment between edge labels that start
at different offsets from the entrance of the superbubble.

the experiments in section 4). In this subgraph, paths from the leftmost vertex
branch to many paths but they converge into the rightmost single vertex in
the end, and there are no cycles in this subgraph, i.e., the subgraph forms a
directed acyclic graph (DAG). The vertices between the leftmost vertex and
the rightmost vertex has no outgoing/incoming edges to/from external vertices
(i.e., vertices not in this subgraph). An important point is that all the paths have
similar labels with similar lengths.2 We call this kind of a subgraph a superbubble,
as it can be considered as an extension of an ordinary simple bubble (more
detailed definition of superbubbles will be given in section 2). Superbubbles are
complicated, but it is apparent that many of them are formed as a result of
errors, inexact repeats, diploid/polyploid genomes, or frequent mutations. Thus
detection of superbubbles should be very important, and it should be useful if
we can detect them efficiently. For example, further time-consuming complicated
algorithms (e.g., optimal alignment, paired-end read analyses, etc) are applicable
against the superbubbles, even if they are too complicated to use against the
entire graph.

In the followings, we will give detailed definition of the superbubbles in sec-
tion 2, and show an efficient algorithm for finding superbubbles in section 3.
We will show that the algorithm runs in average-case linear time against graphs
with a reasonable model, though the worst-case time complexity is quadratic. In
section 4, we will show that the superbubbles can be efficiently enumerated in
reasonable time with a small machine, through large-scale experiments against
reads from a whole human genome.

2 The experiments in section 4 will show that the path label lengths of a superbubble
are only at most 5% different in more than 85% of the detected superbubbles.



Detecting Superbubbles in Assembly Graphs 341

2 Preliminaries

2.1 Superbubble

Here, we formally define superbubbles and show some properties of them which
are necessary in the rest of the paper.

Definition 1. Let G = (V,E) be a directed graph. If an ordered pair of distinct
vertices (s, t) satisfies the following:

reachability t is reachable from s;
matching the set of vertices reachable from s without passing3 through t is equal

to the set of vertices from which t is reachable without passing through s;
acyclicity the subgraph induced by U is acyclic where U is the set of vertices

in the above condition;
minimality no vertex in U other than t forms a pair with s that satisfies the

conditions above,

then we say that the subgraph in the description of the acyclicity condition is
a superbubble and s, t and U \ {s, t} are this superbubble’s entrance, exit
and interior respectively. For any pair of vertices (s, t) that satisfies the above
conditions, we denote the superbubble as 〈s, t〉.

To take full advantage of the notation 〈s, t〉, we first need to confirm that if
(s1, t1) �= (s2, t2) then 〈s1, t1〉 �= 〈s2, t2〉. The following remark ensures it.

Remark 1. There is a one-to-one correspondence between the vertex pairs
satisfying the conditions in Definition 1 and superbubbles.

Proof. Because of the acyclicity condition, the vertices of a superbubble can be
topologically sorted, i.e., they can be ordered in such a way that if v is reachable
from u then u < v. Due to the matching condition, s (resp. t) is the minimum
(resp. maximum) ordered vertex.

Now we observe a proposition which clarifies the situation and motivates linear
time enumeration of superbubbles.

Proposition 1. Any vertex can be the entrance (resp. exit) of at most one
superbubble.

Note that this proposition does not exclude the possibility that a vertex is the
entrance of a superbubble and the exit of another superbubble.

Proof. We prove the proposition by reductio ad absurdum. Suppose 〈s, t1〉 and
〈s, t2〉 are distinct superbubbles. If t2 is a vertex in 〈s, t1〉, then t2 is in the interior
of 〈s, t1〉 but this contradicts to the minimality condition for 〈s, t1〉. Similarly, t1
being a vertex in 〈s, t2〉 also results in a contradiction.
3 Passing through a vertex means that visiting and then leaving it, not just visiting

or leaving alone.



342 T. Onodera, K. Sadakane, and T. Shibuya

Suppose, on the other hand, that t2 is not a vertex in 〈s, t1〉. There is a path
from s to t2. By removing cycles from t2 to t2 if necessary, this path can be
taken in such a way that t2 appears only at the last step and at this time, all
vertices in the path are in 〈s, t2〉. On the other hand, the vertex just before the
first vertex on the path that is not in 〈s, t1〉 is t1. In particular this means that
t1 is in 〈s, t2〉 but this leads to contradiction by the first half of the argument.

Corollary 1. There are O(n) superbubbles in a graph with n vertices.

Before closing this subsection, let us point out, without proof, yet another prop-
erty of superbubbles that is not directly necessary for this work but worth men-
tioning to grasp the picture.

Claim. If two distinct superbubbles share a vertex, either one’s exit is the other’s
entrance or one is included in the other’s interior.

2.2 Construction of a Unipath Graph

Given a set R of reads, we first construct the de Bruijn graph [13]. Let T =
T [1,m] be a read of length m in R. The k-mers of T are length-k substrings of
T , that is, T [i, i+ k− 1] for i = 1, 2, . . . ,m− k+1. Let K denote the multiset of
k-mers of all reads in R, and Kd denote the set of (distinct) k-mers that appear
at least d times in K. A k-mer in Kd is called a solid k-mer.

The de Bruijn graph G = (V,E) of R is defined as follows. The vertex set V
is the set of (k − 1)-mers defined as V = {T [1, k − 1] | T [1, k] ∈ Kd} ∪ {T [2, k] |
T [1, k] ∈ Kd}. The edge set E is defined as {(u, v) | ∃T [1, k] ∈ Kd, u = T [1, k −
1], v = T [2, k]}. The edge label of (u, v) is T [k] if u = T [1, k − 1], v = T [2, k].
Typical values of k and d are k = 28, d = 3.

We use the succinct de Bruijn graph [2], which is a compressed representation
of the de Bruijn graph of R. For a set of m solid k-mers, the succinct de Bruijn
graph uses 4m + o(m) bits to encode the graph, and supports the following
operations.

– outdeg(v)/indeg(v) returns the number of outgoing/incoming edges from/to
vertex v in O(1) time, respectively.

– outgoing(v, c) returns the vertex w pointed to by the outgoing edge of vertex
v with edge label c in O(1) time. If no such vertex exists, it returns −1.

– incoming(v, c) returns the vertex w = T [1, k − 1] such that there is an edge
from w and v and T [1] = c in O(k) time. If no such vertex exists, it returns
−1.

From a de Bruijn graph G = (V,E), we construct a unipath graph G′ =
(V ′, E′) as follows. The vertex set V ′ is a subset of V such that any vertex in
V ′ has more than one outgoing edges or more than one incoming edges. The
edge set E′ is the multiset of all pairs (u, v) such that u, v ∈ V ′ and there is
a path u, x1, x2, . . . , x�, v in G and outdegrees and indegrees of x1, x2, . . . , x�

are all one. The edge label of (u, v) is the concatenation of edge labels of
(u, x1), (x1, x2), . . . , (x�−1, x�), (x�, v) in G. The length of the edge label is �+1.



Detecting Superbubbles in Assembly Graphs 343

R = {TACAC,
TACTC,
GACAC}

TAC

ACA

ACT

A

T

CAC

CTC

C

C $

G$TA

C

$$TA $$$T $$G

$

$GA

GAC

A

C

A

$$$
$$$

ACA
$GA
$TA

CAC
GAC
TAC
TAC
CTC
$$G
$$T

ACT

0
1
1
1
1
1
1
0
1
1
1
1
1

last

$

A

C

G

T

$
A
C
G
T

0
2
5

10
11

FNode
G
T
C
C
C
$
A
A-
T
$
A
A
C

W
0
1
1
0
0
0
0
0
1
0
0
0
0

B

TAC

ACAA
C$

TC$

GACA$$$
TAC

Fig. 4. Top right: The input set R, top left: The de Bruijn graph of R with k = 3, d = 1,
bottom left: the unipath graph, bottom right: the succinct de Bruijn graph and the
unipath graph. Non-branching nodes are removed. We store only last , B, W and F .

In addition to the data structure of the succinct de Bruijn graph, we use a
bit vector B[1,m] where m = |E| is the number of edges in G to represent the
unipath graph G′. We set B[v] = 1 if and only if the vertex v of G is also a
vertex of G′. The outdegree and the indegree of v in G′ is equal to those of v in
G. To find the vertex outgoing(v, c) in G′, we first compute w = outgoing(v, c) in
G. Then we repeatedly traverse the unique outgoing edge of w until B[w] = 1.
The resulting vertex is the answer. The unipath graph is constructed in linear
time from the succinct de Bruijn graph because each of the outdeg, indeg, and
outgoing operations takes constant time. Figure 4 shows an example.

3 Algorithm

Here, we explain how to enumerate all superbubbles in a given graph. As we
have seen in subsection 2.1, each vertex can be the entrance of at most one
superbubble. Therefore, once we have a way to check if a vertex s has another
vertex t s.t. (s, t) is the entrance/exit pair, then we can find all superbubbles
just by iterating this procedure for all s ∈ V . Below, we focus our attention on
this reduced problem.

Description. The algorithm is based on the standard topological sorting. It takes
a directed graph G = (V,E) and s ∈ V as inputs, and returns t ∈ V s.t. (s, t)
is an entrance/exit pair of a superbubble if any. It proceeds by visiting vertices
one by one maintaining the dynamic set S of vertices it can visit the next time.
Initially, S is set to be {s}. It also maintains a label for each vertex. The label
visited means that the vertex has already been visited. The label seen means
that the vertex has at least one visited parent . At each step, the algorithm picks
out an arbitrary vertex v from S labeling it as visited and label each child as



344 T. Onodera, K. Sadakane, and T. Shibuya

seen. If all the parents of a child are visited, it pushes the child into S. In visiting
vertices, the algorithm aborts anytime when it finds a vertex with no child, which
means a tip, or a parent of s, which means a cycle because any vertex visited
is a descendent of s. After visiting a vertex, the algorithm tests if it is going
to visit the exit at the next step as follows. First it checks if S consists of one
vertex, say t, and no vertex other than t is labelled as seen. If not, the test is
negative. Otherwise, the algorithm further checks if the edge (t, s) exists or not.
If it does, the algorithm aborts because it just found a path from s to s, a cycle.
Otherwise, the algorithm returns t. The algorithm aborts if S runs out.

Require: directed graph G = (V,E), s ∈ V
Ensure: returns t s.t. (s, t) is an entrance/exit pair of a superbubble if any
1: push s into S
2: repeat
3: pick out an arbitrary v ∈ S
4: label v as visited
5: if v does not have a child then
6: abort // tip
7: for u in v’s children do
8: if u = s then
9: abort // cycle including s

10: label u as seen
11: if all of u’s parents are visited then
12: push u into S
13: if only one vertex t is left in S and no other vertex is seen then
14: if edge (t, s) does not exist then
15: return t
16: else
17: abort // cycle including s
18: until |S| = 0

Fig. 5. Pseudocode of an algorithm to find the corresponding exit of an potential
entrance

Correctness. A vertex can be pushed into S at most once because it happens
when all its parents are visited and once visited a vertex never cease to being so.
Thus, the algorithm can pick out a vertex from S at most n times and in particu-
lar it halts. Below, we prove the correctness of the returned value, which reduces
to the followings: a) if the input vertex is the entrance of some superbubble,
then the algorithm returns the corresponding exit; b) if the algorithm returns a
vertex, it is the exit of a superbubble and the input vertex is the corresponding
entrance.

First, we observe an invariant. Let Vseen be the set of vertices labelled as seen
and Vvisited be the set of vertices labelled as visited. Let Vto be the set of vertices
that are reachable from s without passing through any element of Vseen and let
Vfrom be the set of vertices from which at least one element of Vvisited ∪ S can be
reachable without passing through s.



Detecting Superbubbles in Assembly Graphs 345

Lemma 1. After the algorithm visits a vertex, i.e., after the line 12 of the pseu-
docode in Figure 5 is executed, Vto = Vvisited ∪ Vseen and Vfrom = Vvisited ∪ S. In
particular, if the algorithm returns t, then (s, t) satisfies the matching condition.

Proof. We prove the first half by mathematical induction. After the first visit,
Vvisited, Vseen and S consist of s, s’s children and s’s children with indegree 1
respectively and the lemma holds. Suppose the lemma holds up to the visit to
some vertex. During the visit to the next vertex, say v,

1. v is removed from S and its label is changed from seen to visited;
2. all children of v are labelled as seen;
3. the children of v whose parents are all visited are added to S.

Consequently, both Vto and Vvisited ∪ Vseen acquire the vertices reachable from v
without passing through any element of Vseen, i.e., the children of v. Therefore,
Vto = Vvisited∪Vseen still holds. On the other hand, Vvisited∪S acquires the vertices
newly added to S, i.e., the children of v whose parents are all labelled as visited.
Now these vertices are also in Vfrom because Vfrom ⊇ Vvisited ∪ S by definition.
Furthermore, they are the only vertices Vfrom acquires because the parents of
them were already in Vfrom after the previous visit by the induction hypothesis.
Therefore, Vfrom = Vvisited ∪ S also stays true.

Next, we prove the last half. If the algorithm returns t, after the last visit,
Vto = Vfrom because S = Vseen due to the first half. On the other hand, at
this time, Vto consists of the vertices reachable from s without passing through
t because Vseen = {t}. Therefore, it suffices to show that Vfrom consists of the
vertices from which t is reachable without passing through s. This is true because
after every visit, from any vertex in Vvisited at least one vertex in Vseen is reachable
without passing through s, a fact which can be proven easily by mathematical
induction again.

Next, we prove a). Let t be the exit corresponding to s. Because of the match-
ing condition of (s, t), the algorithm never aborts due to a tip or running out
of S at least up to the point when t is pushed into S, no matter if t is pushed
into S at all. Similarly, the algorithm never aborts due to a cycle up to the
same point because of the acyclicity condition of (s, t). On the other hand, if t is
indeed pushed into S, then t must be the only vertex seen and all other vertices
of 〈s, t〉 must be visited due to the matching condition of (s, t) and the lemma.
Therefore, the only possibilities left are that the algorithm outputs t or some
other vertex in 〈s, t〉. But the second case never happens because a vertex, say
v, other than t in 〈s, t〉 is output, then the pair (s, v) satisfies the reachability,
matching (due to the lemma) and acyclicity conditions, which contradicts to the
minimality condition of (s, t).

Last, we prove b). Suppose the algorithm returns a vertex t. Obviously, t
is reachable from s. The matching condition holds because of the lemma. The
alleged superbubble does not contain cycles including s because otherwise the
algorithm must have aborted. And it does not contain cycles not including s
because otherwise the first vertex visited in the cycle has a parent in the cycle.



346 T. Onodera, K. Sadakane, and T. Shibuya

Table 1. Histogram of the size of superbubbles

size 3-9 10-19 20-29 30-39 40-49 50-59 60-
#S.B. 71663 4295 347 69 21 8 3

This means the parent has been visited earlier, which contradicts the way the
child was chosen. Thus, the acyclicity condition holds. The minimality condition
holds because otherwise, there is a vertex v s.t. (s, v) is an entrance/exit pair
and because of a) the algorithm must have returned v, instead of t.

Analysis. In the worst case, each execution of the algorithm takes Θ(n+m)-time
and in total the calculation of all superbubbles takes Θ(n(n +m))-time. Below,
we show that, under a reasonable model, the algorithm takes constant time on
average and thus all superbubbles can be found in Θ(n)-time in total.

As we will see in the next section, although there are tens of thousands of
superbubbles in practical unipath graphs, the entire graph is so large that its
size is orders of magnitude greater than the total size of superbubbles. Thus,
most of the time spent in the iterated executions of the algorithm is dedicated
for traversing regions that are far away from any superbubbles. Therefore, it is
reasonable to reduce the analysis of the algorithm to the evaluation of the time
spent until the traversal of a non-superbubble region is aborted. In such a case, if
a vertex is not pushed into S when it is labelled as seen, then it is very unlikely to
be visited afterwards. In other words, once the algorithm comes across a vertex of
indegree greater than 1, then it almost never proceeds to traverse its descendants.
With these observations in mind, we model the way the tree of visited vertices
grows in the algorithm by the following probabilistic tree generation process.
It starts from the root. Each vertex is good with probability p. A good vertex
corresponds to a vertex of indegree 1. If a vertex is good, it spawns i children
with probability pi. The theory of Galton-Watson branching processes [7] tells
that the expected number of vertices of depth i is Θ(ri) where r := p

∑
i ipi, i.e.,

the expected number of children of each vertex. Therefore, if r < 1 the expected
size of the tree is Θ( 1

1−r ), a constant. For the unipath graph we constructed
from human genome data, r was about 0.77 where p and pi were determined as
the proportion of vertices with particular in/out-degree within all vertices.

4 Experiment

Procedures. We first constructed the succinct de Bruijn graph with parameter
k = 27 and d = 3 for the read set SRX016231, which was derived by sequencing a
human individual by an Illumina sequencer. The length of each read is 100bp and
the coverage is about 40. Next, we constructed the unipath graph as described
in subsection 2.2. The resulting unipath graph consists of 107,154,751 vertices
and 210,207,840 edges. Last, we found all superbubbles in the unipath graph by
the algorithm in section 3.



Detecting Superbubbles in Assembly Graphs 347

Results. Table 1 is the histogram of the size of superbubbles where the size of
a superbubble means the number of vertices in it. The superbubbles of size 2
are omitted because they are ordinary bubbles. The superbubble of Fig. 3 is of
size 20 and this histogram tells, among other things, that there are hundreds
of equally or more complex superbubbles. On the other hand, what matters the
most for the application to genome assembly problem is whether superbubbles
really capture erroneous or repeat/mutation abundant regions, which topological
complexity alone does not necessarily suggest. One way to assess the relevance
of a superbubble in this regard is to compare the length of paths in it where
length of an edge is the length of the sequence represented by the edge. Note
that topologically close paths can have a variety of lengths because each edge
can be originated from a unipath. But among 23,078 superbubbles of size equal
to or greater than 5 we found, 19,926 (86.3%) of them have the longest/shortest
path length ratio smaller than 1.05. Therefore, superbubbles like that of Fig. 3
are indeed typical.

In terms of the computation time, it took 742.1 seconds for a Xeon 3.0GHz
CPU to enumerate all superbubbles including ordinary bubbles. The number of
vertices visited was 126,537,254.

5 Concluding Remarks

We introduced the concept of superbubbles in assembly graphs, and proposed an
efficient algorithm for detecting them. But many tasks remain as future work.
It is an open problem whether it is possible to detect superbubbles in worst-
case linear time. Developing methods for categorizing the detected superbubbles
(e.g., errors, repeats, mutations, and polyploids), and methods for fixing errors
in superbubbles are important future tasks. It is also interesting to extend our
algorithm for other bubble-like structures (e.g. the bulge structure [12]).

Acknowledgments. KS and TS are supported in part by KAKENHI 23240002.
This research was supported by JST, ERATO, Kawarabayashi Large Graph
Project. The super-computing resource was provided in part by Human Genome
Center, the Institute of Medical Science, the University of Tokyo.

References

1. Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger,
B., Mesirov, J.P., Lander, E.S.: Arachne: a whole-genome shotgun assembler.
Genome Research 12, 177–189 (2002)

2. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012)

3. Huang, X., Yang, S.P.: Generating a genome assembly with pcap. Current Proto-
cols in Bioinformatics, Unit 11.3 (2005)



348 T. Onodera, K. Sadakane, and T. Shibuya

4. Jackson, B., Regennitter, M., Yang, X., Schnable, P.S., Aluru, S.: Parallel de novo
assembly of large genomes from high-throughput short reads. In: Proc. 24th In-
ternational Parallel and Distributed Processing Symposium (IPDPS), pp. 1–10
(2010)

5. Kasahara, M., Morishita, S.: Large-Scale Genome Sequence Processing. Imperial
College Press (2006)

6. Li, R., Zhu, H., Ruan, J., Qjan, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G.,
Kristiansen, K., Yang, H., Wang, J.: De novo assembly of human genomes with
massively parallel short read sequencing. Genome Research 20, 265–272 (2010)

7. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University
Press (2012) (in preparation), Current version available at
http://mypage.iu.edu/string~rdlyons/

8. MacCallum, I., Przybylski, D., Gnerre, S., Burton, J., Shlyakhter, I., Gnirke, A.,
Malek, J., McKernan, K., Ranade, S., Shea, T.P., Williams, L., Young, S., Nus-
baum, C., Jaffe, D.B.: Allpaths 2: small genomes assembled accurately and with
high continuity from short paired reads. Genome Biology 10(R103) (2009)

9. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation se-
quencing data. Genomics 95, 315–327 (2010)

10. Myers, E.W.: Toward simplifying and accurately formulating fragment assembly.
Journal of Comutational Biology 2, 275–290 (1995)

11. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J.,
Kravitz, S.A., Mobarry, C.M., Reinert, K.H.J., Remington, K.A., Anson, E.L.,
Bolanos, R.A., Chou, H., Jordan, C.M., Halpern, A.L., Lonardi, S., Beasley, E.M.,
Brandon, R.C., Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nusskern, D.R., Zhan, M.,
Zhang, Q., Zheng, X., Rubin, G.M., Adams, M.D., Venter, J.C.: A whole-genome
assembly of drosophila. Science 287, 2196–2204 (2000)

12. Nurk, S., et al.: Assembling genomes and mini-metagenomes from highly chimeric
reads. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds.) RECOMB 2013. LNCS,
vol. 7821, pp. 158–170. Springer, Heidelberg (2013)

13. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to dna frag-
ment assembly. Proceedings of the National Academy of Sciences 98, 9748–9753
(2001)

14. Pop, M.: Genome assembly reborn: recent computational challenges. Briefings in
Bioinformatics 10(4), 354–366 (2009)

15. Sahli, M., Shibuya, T.: Arapan-s: a fast and highly accurate whole-genome assem-
bly software for viruses and small genomes. BMC Research Notes 5(243) (2012)

16. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.: Abyss: a parallel
assembler for short read sequence data. Genome Research 19, 1117–1123 (2009)

17. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de bruijn graphs. Genome Research 18, 821–829 (2008)

http://mypage.iu.edu/string~rdlyons/

	Detecting Superbubbles in Assembly Graphs
	1 Introduction
	2 Preliminaries
	2.1 Superbubble
	2.2 Construction of a Unipath Graph

	3 Algorithm
	4 Experiment
	5 Concluding Remarks
	References




