
Aaron Darling
Jens Stoye (Eds.)

 123

LN
BI

 8
12

6

13th International Workshop, WABI 2013
Sophia Antipolis, France, September 2013
Proceedings

Algorithms
in Bioinformatics

Lecture Notes in Bioinformatics 8126
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand

T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff

R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Aaron Darling Jens Stoye (Eds.)

Algorithms
in Bioinformatics
13th International Workshop, WABI 2013
Sophia Antipolis, France, September 2-4, 2013
Proceedings

13

Volume Editors

Aaron Darling
University of Technology Sydney
ithree institute
Ultimo, NSW 2007, Australia
E-mail: aaron.darling@uts.edu.au

Jens Stoye
Bielefeld University
Faculty of Technology
Universitätsstraße 25
33615 Bielefeld, Germany
E-mail: jens.stoye@uni-bielefeld.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40452-8 e-ISBN 978-3-642-40453-5
DOI 10.1007/978-3-642-40453-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number:2013945447

CR Subject Classification (1998): F.2, J.3, G.2.2, F.1, I.2.6, H.2.8, G.1.2

LNCS Sublibrary: SL 8 – Bioinformatics

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is our great pleasure to present the proceedings of the 13th Workshop on
Algorithms in Bioinformatics (WABI 2013), held at Sophia Antipolis, France,
September 2–4, 2013. The WABI 2013 workshop was part of the seven ALGO
2013 conference meetings, which included ESA, IPEC, WAOA, ALGOSEN-
SORS, MASSIVE, and ATMOS. WABI 2013 was hosted by INRIA and Campus
SophiaTech, and sponsored by the European Association for Theoretical Com-
puter Science (EATCS) and the International Society for Computational Biology
(ISCB). See http://algo2013.inria.fr/wabi.shtml for more details.

The Workshop on Algorithms in Bioinformatics highlights research in algo-
rithmic work for bioinformatics, computational biology and systems biology. The
emphasis is mainly on discrete algorithms and machine-learning methods that
address important problems in molecular biology, that are founded on sound
models, that are computationally efficient, and that have been implemented and
tested in simulations and on real datasets. The goal is to present recent research
results, including significant work-in-progress, and to identify and explore direc-
tions of future research.

Original research papers (including significant work-in-progress) or state-of-
the-art surveys were solicited for WABI 2013 in all aspects of algorithms in
bioinformatics, computational biology and systems biology. In response to our
call, we received 61 submissions for papers and 27 were accepted. In addition,
WABI 2013 hosted a poster session and a distinguished lecture by Bernard Moret,
of École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Prof. Moret
founded the WABI series 13 years ago and provided leadership to expand the
meeting over the past 13 years. Last year Prof. Moret stepped down from his
position of steering the meeting and formed a Steering Committee to facilitate
the workshop’s continued success.

We would like to sincerely thank the authors of all submitted papers and
the conference participants. We also thank the Program Committee and their
sub-referees for their hard work in reviewing, discussing, and selecting papers
for this year’s workshop.

July 2013 Aaron Darling
Jens Stoye

Organization

Steering Committee

Bernard Moret EPFL, Switzerland
Vincent Moulton University of East Anglia, UK
Jens Stoye Bielefeld University, Germany
Tandy Warnow The University of Texas at Austin, USA

Program Committee

Mohamed Abouelhoda Cairo University, Egypt
Tatsuya Akutsu Kyoto University, Japan
Anne Bergeron University of Quebec at Montreal, Canada
Paola Bonizzoni Università di Milano-Bicocca, Italy
Guillaume Bourque McGill University, Canada
Marilia Braga Inmetro - Ditel, Brazil
C. Titus Brown Michigan State University, USA
Daniel Brown University of Waterloo, Canada
David Bryant University of Otago, New Zealand
Philipp Bucher Swiss Institute for Experimental Cancer

Research, Switzerland
Sebastian Böcker Friedrich Schiller University Jena, Germany
Rita Casadio UNIBO, Italy
Cedric Chauve Simon Fraser University, Canada
Benny Chor Tel Aviv University, Israel
Lachlan Coin The University of Queensland, Australia
Lenore Cowen Tufts University, USA
Keith Crandall George Washington University, USA
Aaron Darling University of Technology Sydney, Australia
Nadia El-Mabrouk University of Montreal, Canada
Eleazar Eskin University of California, Los Angeles, USA
Liliana Florea Johns Hopkins University, USA
Martin Frith CBRC, AIST, Japan
Anna Gambin Warsaw University, Poland
Olivier Gascuel LIRMM, CNRS - University of Montpellier 2,

France
Nicholas Hamilton The University of Queensland, Australia
Barbara Holland University of Tasmania, Australia
Katharina Huber University of East Anglia, UK
Carl Kingsford Carnegie Mellon University, USA
Jinyan Li University of Technology Sydney, Australia

VIII Organization

Zsuzsanna Lipták University of Verona, Italy
Stefano Lonardi UC Riverside, USA
Ion Mandoiu University of Connecticut, USA
Giovanni Manzini University of Eastern Piedmont, Italy
Paul Medvedev Pennsylvania State University, USA
Joao Meidanis University of Campinas / Scylla Bioinformatics,

Brazil
Istvan Miklos Renyi Institute, Hungary
Satoru Miyano University of Tokyo, Japan
Bernard Moret EPFL, Switzerland
Burkhard Morgenstern University of Göttingen, Germany
Vincent Moulton University of East Anglia, UK
Gene Myers MPI Cell Biology and Genetics, Germany
Veli Mäkinen University of Helsinki, Finland
Luay Nakhleh Rice University, USA
Nadia Pisanti University of Pisa, Italy and Leiden University,

The Netherlands
Teresa Przytycka NIH, USA
Sven Rahmann University of Duisburg-Essen, Germany
Ben Raphael Brown University, USA
Knut Reinert FU Berlin, Germany
Marie-France Sagot INRIA Grenoble Rhône-Alpes and Université

de Lyon 1, Villeurbanne, France
S. Cenk Sahinalp Simon Fraser University, Canada
David Sankoff University of Ottawa, Canada
Russell Schwartz Carnegie Mellon University, USA
Joao Setubal University of São Paulo, Brazil
Saurabh Sinha University of Illinois, USA
Jens Stoye Bielefeld University, Germany
Krister Swenson Université de Montréal / McGill University,

Canada
Jijun Tang University of South Carolina, USA
Eric Tannier INRIA, France
Glenn Tesler University of California, San Diego, USA
Lusheng Wang City University of Hong Kong, China
Yuzhen Ye Indiana University, USA
Louxin Zhang National University of Singapore, Singapore
Michal Ziv-Ukelson Ben-Gurion University of the Negev, Israel

Additional Reviewers

Aiche, Stephan
Badr, Ghada
Biller, Priscila
Chateau, Annie

Cicalese, Ferdinando
Conrad, Tim
D’Addario, Marianna
Dao, Phuong

Organization IX

Dittwald, Piotr
Donmez, Nilgun
Drori, Hagai
Duggal, Geet
Duma, Denisa
Goldberg, Tatyana
Gorecki, Pawel
Hazelhurst, Scott
Higashi, Susan
Hormozdiari, Farhad
Hufsky, Franziska
Kluge, Bogus�law
Kocsis, Levente
Lacroix, Vincent
Leoncini, Mauro
Marino, Andrea
McPherson, Andrew
Mirebrahim, Seyed
Oesper, Layla
Pardi, Fabio
Pardini, Giovanni
Patterson, Murray

Pinhas, Tamar
Pizzi, Cinzia
Polishko, Anton
Rizzi, Raffaella
Sadakane, Kunihiko
Scheubert, Kerstin
Scornavacca, Celine
Sheridan, Paul
Sinaimeri, Blerina
Snir, Sagi
Startek, Micha�l
Tomescu, Alexandru
Wang, Zhanyong
White, Walton Timothy James
Wohlers, Inken
Yakhini, Zohar
Yasuda, Tomohiro
Yue, Feng
Zakov, Shay
Zanetti, João Paulo Pereira
�L ↪acki, Mateusz

Table of Contents

Extending the Reach of Phylogenetic Inference . 1
Bernard M.E. Moret

Protein (Multi-)Location Prediction: Using Location Inter-dependencies
in a Probabilistic Framework . 3

Ramanuja Simha and Hagit Shatkay

Towards Reliable Automatic Protein Structure Alignment 18
Xuefeng Cui, Shuai Cheng Li, Dongbo Bu, and Ming Li

A Minimum-Labeling Approach for Reconstructing Protein Networks
across Multiple Conditions . 33

Arnon Mazza, Irit Gat-Viks, Hesso Farhan, and Roded Sharan

Faster Mass Decomposition . 45
Kai Dührkop, Marcus Ludwig, Marvin Meusel, and Sebastian Böcker

On NP-Hardness of the Paired de Bruijn Sound Cycle Problem 59
Evgeny Kapun and Fedor Tsarev

Accurate Decoding of Pooled Sequenced Data Using Compressed
Sensing . 70

Denisa Duma, Mary Wootters, Anna C. Gilbert, Hung Q. Ngo,
Atri Rudra, Matthew Alpert, Timothy J. Close,
Gianfranco Ciardo, and Stefano Lonardi

A Novel Combinatorial Method for Estimating Transcript Expression
with RNA-Seq: Bounding the Number of Paths . 85

Alexandru I. Tomescu, Anna Kuosmanen, Romeo Rizzi, and
Veli Mäkinen

A Polynomial Delay Algorithm for the Enumeration of Bubbles with
Length Constraints in Directed Graphs and Its Application to the
Detection of Alternative Splicing in RNA-seq Data 99

Gustavo Sacomoto, Vincent Lacroix, and Marie-France Sagot

Distribution of Graph-Distances in Boltzmann Ensembles of RNA
Secondary Structures . 112

Rolf Backofen, Markus Fricke, Manja Marz, Jing Qin, and
Peter F. Stadler

XII Table of Contents

Faster Algorithms for RNA-Folding Using the Four-Russians Method . . . 126
Balaji Venkatachalam, Dan Gusfield, and Yelena Frid

Algorithms for the Majority Rule (+) Consensus Tree and the
Frequency Difference Consensus Tree . 141

Jesper Jansson, Chuanqi Shen, and Wing-Kin Sung

The Generalized Robinson-Foulds Metric . 156
Sebastian Böcker, Stefan Canzar, and Gunnar W. Klau

Computing the Skewness of the Phylogenetic Mean Pairwise Distance
in Linear Time . 170

Constantinos Tsirogiannis and Brody Sandel

Characterizing Compatibility and Agreement of Unrooted Trees via
Cuts in Graphs . 185

Sudheer Vakati and David Fernández-Baca

Unifying Parsimonious Tree Reconciliation . 200
Nicolas Wieseke, Matthias Bernt, and Martin Middendorf

Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool
for Closely Related Microbial Genomes . 215

Ilya Minkin, Anand Patel, Mikhail Kolmogorov,
Nikolay Vyahhi, and Son Pham

On the Matrix Median Problem . 230
João Paulo Pereira Zanetti, Priscila Biller, and João Meidanis

A Fixed-Parameter Algorithm for Minimum Common String Partition
with Few Duplications . 244

Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz, and
Irena Rusu

MSARC: Multiple Sequence Alignment by Residue Clustering 259
Micha�l Modzelewski and Norbert Dojer

Mutual Enrichment in Ranked Lists and the Statistical Assessment of
Position Weight Matrix Motifs . 273

Limor Leibovich and Zohar Yakhini

Probabilistic Approaches to Alignment with Tandem Repeats 287
Michal Nánási, Tomáš Vinař, and Broňa Brejová

Multiscale Identification of Topological Domains in Chromatin 300
Darya Filippova, Rob Patro, Geet Duggal, and Carl Kingsford

Modeling Intratumor Gene Copy Number Heterogeneity Using
Fluorescence in Situ Hybridization Data . 313

Charalampos E. Tsourakakis

Table of Contents XIII

Phylogenetic Analysis of Cell Types Using Histone Modifications 326
Nishanth Ulhas Nair, Yu Lin, Philipp Bucher, and
Bernard M.E. Moret

Detecting Superbubbles in Assembly Graphs . 338
Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya

Cerulean: A Hybrid Assembly Using High Throughput Short and Long
Reads . 349

Viraj Deshpande, Eric D.K. Fung, Son Pham, and Vineet Bafna

Using Cascading Bloom Filters to Improve the Memory Usage for de
Brujin Graphs . 364

Kamil Salikhov, Gustavo Sacomoto, and Gregory Kucherov

Author Index . 377

Extending the Reach of Phylogenetic Inference

Bernard M.E. Moret

Laboratory for Computational Biology and Bioinformatics, EPFL, Lausanne, Switzerland
bernard.moret@epfl.ch

One of the most cited articles in biology is a 1973 piece by Theodosius Dobzhansky in
the periodical The American Biology Teacher entitled “Nothing in biology makes sense
except in the light of evolution.” It was also around that time that the development
of computational approaches for the inference of phylogenies (evolutionary histories)
started. Since then, phylogenetic inference has grown to become one of the standard re-
search tools throughout biological and biomedical research. Today, phylogenetic tools
receive over 10,000 citations every year. Concurrently, many groups are engaged in fun-
damental research in phylogenetic methods and in the design and study of computation-
ally oriented models of evolution for systems ranging from simple genetic sequences
through entire genomes to interaction networks. Yet, in spite of the fame of Dobzhan-
sky’s article and the spread of phylogenetic methods beyond the original applications
to systematics, the use of methods grounded in evolutionary biology is not as pervasive
as it could be.

In this talk, we illustrate some of the algorithmic problems raised by current re-
search and some of the potential new applications of phylogenetic approaches through
several projects carried out in our laboratory. The problems arise from combinatorial
and algorithmic questions about models of evolution and approaches to the analysis of
whole genomes. The new approaches include an extension of the time-tested and uni-
versally used comparative method, as well as applications of phylogenetic approaches
to genomic transcripts and cell types, objects not typically studied through the lens of
evolution.

Comparing the complete genomes of vertebrates is a daunting problem. Not only
does each genome have billions of nucleotides, but almost nothing is known for 90%
of even the best studied of these genomes. The standard approach today partitions the
genomes into syntenic blocks, contiguous intervals along the genome that are viewed as
homologous—as descending from the same contiguous interval in the genome of the
last common ancestor (LCA). Since mutations, rearrangements, insertions, and other
evolutionary events have transformed the LCA genome in different ways along each
evolutionary path, one cannot expect to find high levels of similarity between the se-
quences defined by these intervals. Instead, one looks for markers, nearly perfectly
conserved short sequences that are nevertheless long enough to make accidental conser-
vation highly improbable. Homologous blocks should share (most of) their markers and
have few, if any, shared markers with non-homologous blocks. Under most reasonable
formulations, this problem is NP-hard and solutions to date are mostly ad hoc.

The issue of genomic evolution “in the large,” that is, at the scale of markers, genes,
or blocks and through rearrangements, duplications, and losses, has been intensely stud-
ied for nearly 20 years now, with a number of remarkable algorithmic results. Every
new algorithmic result, however, has served mostly to raise interest in more complete

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 1–2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 B.M.E. Moret

or more sophisticated models, or to motivate new and harder problems. Combining
large-scale duplication events with rearrangements events, for instance, appears cru-
cial to the understanding of genomic evolution, but remains poorly solved to date,
even though researchers even now attempt to recreate “ancestral” genomes for fami-
lies of organisms. Some recent observations on the bench suggest that results that ap-
peared to be artifacts of mathematical models (such as small circular chromosomes
created in the process of cutting and regluing chromosomes) may in fact arise in nature,
confirming that even abstract research in models and algorithms may lead to scientific
breakthroughs in biology.

The comparative method (also known as “guilt by association”) attempts to transfer
knowledge from one well studied system to another by establishing correspondences.
Perhaps the best known example is the transfer of gene annotation from one organism
to another using gene homologies. Naturally, such an approach requires a high degree
of similarity for the transfer to be successful. We developed a new approach, phylo-
genetic transfer of knowledge, which leverages known phylogenetic relationships to
improve the inference of data about modern systems. We have successfully applied our
ProPhyC tool to the refinement of regulatory networks and are currently using it for the
refinement and prediction of protein contact networks in protein complexes.

Phylogenetic inference assumes that the systems under study are the product of evo-
lution and share a common ancestor. A phylogeny is simply a tree, with the (unknown)
common ancestor at the root and data about the modern systems at the leaves. Evo-
lution, in the form of various events that affect the data used to represent the systems
(e.g., sequence data for genomes or directed graphs for regulatory networks), is respon-
sible for the divergence from the common ancestor to the modern forms. Such a model
does not apply directly to structures that are influenced by evolution in a less direct, or
more complicated manner. Two such are transcripts in genomes exhibiting alternative
splicing and cell differentiation in a single organism (or a collection of closely related
ones). Transcript evolution takes place at two distinct levels—changes in the under-
lying gene sequence and changes in the splicing variants. We have developed a two-
level framework for inference and used our TrEvoR tool on the entire ASPIC database
of alternative transcripts, resulting in much enhanced accuracy in the classification of
transcripts.

Cell differentiation is a direct product of development, not evolution, in cells belong
to a lineage, not to a clade (group). However, cell types are consistent across individu-
als of the same species and their characteristic adaptations (e.g., a blood cell, a motor
neuron, a red muscle cell, etc.) are the product of long-term evolution, even though in
one individual all of these cells are descendants of the same undifferentiated cell in the
fertilized egg. Using epigenomic data, it is possible to reconstruct a phylogeny of cell
types, that is, a tree in which the children of a node represent various refinements of the
single type at the parent. We have carried out such an analysis on human cells of many
different types using ChIP-Seq data from the ENCODE project, with robust results that
match findings and predictions from developmental biologists.

Our contention is that these are but a few of the numerous further applications of
phylogenetic methods in the life sciences, applications that will require both modelling
and algorithmic research.

Protein (Multi-)Location Prediction:

Using Location Inter-dependencies
in a Probabilistic Framework

Ramanuja Simha1 and Hagit Shatkay1,2,3

1 Department of Computer and Information Sciences,
University of Delaware, Newark, DE, USA

2 Center for Bioinformatics and Computational Biology, DBI,
University of Delaware, Newark, DE, USA

3 School of Computing, Queen’s University, Kingston, ON, Canada

Abstract. Knowing the location of a protein within the cell is important
for understanding its function, role in biological processes, and potential
use as a drug target. Much progress has been made in developing com-
putational methods that predict single locations for proteins, assuming
that proteins localize to a single location. However, it has been shown
that proteins localize to multiple locations. While a few recent systems
have attempted to predict multiple locations of proteins, they typically
treat locations as independent or capture inter-dependencies by treating
each locations-combination present in the training set as an individual
location-class. We present a new method and a preliminary system we
have developed that directly incorporates inter-dependencies among lo-
cations into the multiple-location-prediction process, using a collection
of Bayesian network classifiers. We evaluate our system on a dataset
of single- and multi-localized proteins. Our results, obtained by incor-
porating inter-dependencies are significantly higher than those obtained
by classifiers that do not use inter-dependencies. The performance of
our system on multi-localized proteins is comparable to a top perform-
ing system (YLoc+), without restricting predictions to be based only on
location-combinations present in the training set.

1 Introduction

Knowing the location of a protein within the cell is essential for understanding
its function, its role in biological processes, as well as its potential role as a
drug target [1–3]. Experimental methods for protein localization such as those
based on mass spectrometry [4] or green fluorescence detection [5, 6], although
often used in practice, are time consuming and typically not cost-effective for
high-throughput localization. Hence, an ongoing effort is put into developing
high-throughput computational methods [7–11] to obtain proteome-wide loca-
tion predictions.

Over the last decade, there has been significant progress in the development of
computational methods that predict a single location per protein. The focus on

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 3–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

4 R. Simha and H. Shatkay

single-location prediction is driven both by the data available in public databases
such as UniProt, where proteins are typically assigned a single location, as well as
by an (over-)simplifying assumption that proteins indeed localize to a single lo-
cation. However, proteins do localize to multiple compartments in the cell [12–15],
and translocate from one location to another [16]. Identifying the mutiple locations
of a protein is important because translocation can serve some unique functions.
For instance, GLUT4, an insulin-regulated glucose transporter, which is stored in
the intracellular vesicles of adipocytes, translocates to the plasma membrane in
response to insulin [17, 18]. As proteins do not localize at random and transloca-
tions happen between designated inter-dependent locations, we hypothesize that
modeling such inter-dependencies can help in predicting protein locations. Thus,
we aim to identify associations or inter-dependencies among locations and leverage
them in the process of predicting locations for proteins.

Several methods have been recently suggested for predicting multiple locations
for proteins. ngLOC [19] uses a Näıve Bayes classifier to obtain independent pre-
dictions for each single location and combines these individual predictions to
obtain a multi-location prediction. Li et al. [20] construct multiple binary clas-
sifiers, each using an ensemble of k-nearest neighbor and SVM, where each bi-
nary classifier distinguishes between a pair of locations. The predictions from all
the classifiers are combined to obtain a multi-location prediction. iLoc-Euk [21]
uses a multi-label k-nearest neighbor classifier to predict multiple locations for
proteins. Similar methods were used for localizing subsets of eukaryotic pro-
teins [22, 23], virus proteins [24], and bacterial proteins [25, 26]. In contrast
to the machine learning-based approaches listed above, KnowPred [27] uses se-
quence similarity to associate proteins with multiple locations.

Notably, none of the above methods for predicting multiple locations uti-
lizes inter-dependencies among locations in the prediction process. All the above
models independently predict each single location and thus do not take into
account predictions for other locations. IMMML [28] attempts to make use of
correlation among pairs of locations, a simple type of dependency, when pre-
dicting multiple locations for proteins. This system does not account for more
complex inter-dependencies and was not tested on any extensive protein multi-
localization dataset. YLoc+[29], a comprehensive system for protein location
prediction, uses a näıve Bayes classifier (see e.g. [30]) and captures protein lo-
calization to multiple locations by explicitly introducing a new class for each
combination of locations supported by the training set (i.e. having proteins local-
ized to the combination). Thus, each prediction performed by the näıve Bayes
classifier can assign a protein to only those combinations of locations included
in the training data. To produce its output, YLoc+ transforms the prediction
into a multinomial distribution over the individual locations. We also note that
as the number of possible location-combinations is exponential in the number of
locations, training the näıve Bayes classifier in this manner does not provide a
practical model in the general case of multi-localized proteins, beyond the train-
ing set. The performance of YLoc+ was evaluated using an extensive dataset [29]
and is the highest among current multi-location predictors.

Protein (Multi-)Location Prediction 5

In this paper, we present a new method that directly models inter-dependencies
among locations and incorporates them into the process of predicting locations for
proteins. Our system is based on a collection of Bayesian network classifiers [31].
Each Bayesian Network (BN) related to each classifier corresponds to a single lo-
cation L. Each such network is used to assign a probability for a protein to be
found at location L, given both the protein’s features and information regarding
the protein’s other possible locations. Learning each BN involves learning the de-
pendencies among the other locations that are primarily related to proteins local-
izing to location L. For each Bayesian network classifier, its corresponding BN is
learnt with the goal to improve the classifier’s prediction quality. The formulation
of multi-location prediction as classification via Bayesian networks, as well as the
network model are presented in Section 2. Notably, our system does not assume
that all proteins it classifies are multi-localized, but rather more realistically, that
proteins may be assigned to one or more locations.

We train and test our preliminary system on a dataset containing single- and
multi-localized proteins previously used in the development and testing of the
YLoc+ system [29], which includes the most comprehensive collection of multi-
localized proteins currently available, derived from the DBMLoc dataset [13].
As done in other studies [10, 11, 29, 32], we use multiple runs of 5-fold cross-
validation. The results clearly demonstrate the advantage of using location inter-
dependencies. The F1 score of 81% and overall accuracy of 76% obtained by
incorporating inter-dependencies are significantly higher than the corresponding
values obtained by classifiers that do not use inter-dependencies. Also, while
our system retains a level of performance comparable to that of YLoc+ on the
same dataset, we note that unlike YLoc+, by training the individual classifiers
to predict individual − although inter-dependent − locations, the training of
our system is not restricted to only those combinations of locations present in
the dataset, thus our system is generalizable to multi-locations beyond those
included in the training set.

The rest of the paper proceeds as follows: Section 2 formulates the problem
of protein subcellular multi-location prediction and briefly provides background
on Bayesian networks and relevant notations. Section 3 discusses the structure,
parameters, and inter-dependencies comprising our Bayesian network collection,
and introduces the learning procedure used for finding them. Section 4 presents
details of the dataset, the performance evaluation measures, and experimental
results. Section 5 summarizes our findings and outlines future directions.

2 Problem Formulation

As is commonly done in the context of classification, and protein-location classi-
fication in particular [8, 11, 29, 33], we represent each protein, P , as a weighted
feature vector, fP=〈fP

1 , . . . , fP
d 〉, where d is the number of features. We view

each feature as a random variable Fi representing a characteristic of a protein,
such as the presence or absence of a short amino acid motif [8, 32], the relative
abundance of a certain amino acid as part of amino-acid composition [19], or

6 R. Simha and H. Shatkay

the annotation by a Gene Ontology (GO) term [34]. Each vector-entry, fP
i ,

corresponds to the value taken by feature Fi with respect to protein P . In
the experiments described here, we use the exact same representation used by
Briesemeister et al. [29] as explained in Section 4.1.

We next introduce notations relevant to the representation of a protein’s lo-
calization. Let S={s1, . . . , sq} be the set of q possible subcellular components in
the cell. For each protein P , we represent its location(s) as a vector of 0/1 values
indicating the protein’s absence/presence, respectively, in each subcellular com-
ponent. The location-indicator vector for protein P is thus a vector of the form:
lP = 〈lP1 , . . . , lPq 〉 where lPi = 1 if P localizes to si and lPi = 0 otherwise. As with

the feature values, each location value, lPi is viewed as the value taken by a ran-
dom variable, where for each location, si, the corresponding random variable is
denoted by Li. Given a dataset consisting of m proteins along with their location
vectors, we denote the dataset as: D = {(Pj , l

Pj) | 1 ≤ j ≤ m}. We thus view
the task of protein subcellular multi-location prediction as that of developing
a classifier (typically learned from a dataset D of proteins whose locations are
known) that given a protein P outputs a q-dimensional location-indicator vector
that represents P ’s localization.

As described in Section 1, most recent approaches that extend location-
prediction beyond a single location (e.g. KnowPred [27], and Euk-mPLoc 2.0
[35]), do not consider inter-dependencies among locations. YLoc+[29] indirectly
considers these inter-dependencies by creating a class for each location-
combination. Our underlying hypothesis, which is supported by the experiments
and the results presented here, is that capturing location inter-dependencies di-
rectly can form the basis for a generalizable approach for location-prediction.
The training of a classifier for protein multi-location prediction involves learning
these inter-dependencies so that the classifier can leverage them in the prediction
process. We use Bayesian networks to model such inter-dependencies.

In order to develop a protein subcellular multi-location predictor, we pro-
pose to develop a collection of classifiers, C1, . . . , Cq, where the classifier Ci is
viewed as an “expert” responsible for predicting the 0/1 value, lPi , indicating
P ’s non-localization or localization to si. In order to make use of location inter-
dependencies, each Ci uses estimates of location indicators of P , l̂Pj (for all other
locations j, where j �= i), along with the feature-values of P , in order to calculate
a prediction. We use support vector machines (SVMs) (see e.g. [30]) to compute
these estimates. The output of Ci for a protein P is given by

Ci(P) =

{
1 If Pr(lPi = 1 | P, l̂P1 , . . . , l̂Pi−1, l̂

P
i+1, . . . , l̂

P
q) > 0.5;

0 Otherwise.
(1)

Further details about the estimation procedure itself are provided in Section 3.2.
Bayesian networks have been used before in many biological applications (e.g.

[36–38]). In this paper, we use them to model inter-dependencies among sub-
cellular locations, as well as among protein-features and locations. We briefly
introduce Bayesian networks here, along with the relevant notations (see [39]
for more details). A Bayesian network consists of a directed acyclic graph G,

Protein (Multi-)Location Prediction 7

C1C1C1 CqCqCq

F1 L2 . . . F1 L1

F2 L3 F2 L2

...
...

...
...

Fd
...

Lq Fd
...

Lq−1

L1 . . . Lq

Fig. 1. An example of a collection of Bayesian network classifiers we learn. The col-
lection consists of several classifiers C1, . . . , Cq, one for each of the q subcellular loca-
tions. Directed edges represent dependencies between the connected nodes. We note
that there are edges among location variables (L1, . . . , Lq), as well as between feature
variables (F1, . . . , Fd) and location variables (L1, . . . , Lq), but not among the feature
variables. The latter indicates independencies among features, as well as conditional
independencies among features given the locations.

whose nodes are random variables, which in our case represent features, denoted
F1, . . . , Fd, and location indicators, denoted L1, . . . , Lq. We assume here that
all the feature values are discrete. To ensure that, we use the recursive minimal
entropy partitioning technique [40] to discretize the features; this technique was
also used in the development of YLoc+[29].

Directed edges in the graph indicate inter-dependencies among the random
variables. Thus, as demonstrated in Figure 1, edges are allowed to appear be-
tween feature- and location-nodes, as well as between pairs of location-nodes in
the graph. Edges between location-nodes directly capture the inter-dependencies
among locations. We note that there are no edges between feature-nodes in our
model, which reflects an assumption that features are either independent of each
other or conditionally independent given the locations. This simplifying assump-
tion helps speed up the process of learning the network structure from the data,
while the other allowed inter-dependencies still enable much of the structure of
the problem to be captured (as demonstrated in the results). Further details
about the learning procedure itself are provided in Section 3.1.

To complete the Bayesian network framework, each node
v ∈ {F1, . . ., Fd, L1, . . ., Lq} in the graph is associated with a conditional prob-
ability table, θv, containing the conditional probabilities of the values the node
takes given its parents’ values, Pr(v | Pa(v)). We denote by Θ the set of all
conditional probability tables, and the Bayesian network is the pair (G,Θ). A
consequence of using the Bayesian network structure, is that it represents cer-
tain conditional independencies among non-neighboring nodes [39], such that
the joint distribution of the set of network variables can be simply calculated as:

Pr(F1, . . . , Fd, L1, . . . , Lq) =
∏d

i=1 Pr(Fi | Pa(Fi))
∏q

j=1 Pr(Lj | Pa(Lj)). (2)

Figure 1 shows an example of a collection of Bayesian network classifiers. The
collection consists of Bayesian network classifiers C1, . . . , Cq, one for each of the

8 R. Simha and H. Shatkay

q subcellular locations s1, . . . , sq, where each classifier Ci consists of the graph Gi

and its set of parameters Θi. In each classifier Ci, the location indicator variable
Li is the variable we need to predict and is therefore viewed as unobserved, and
is shown as an unshaded node in the figure. The feature variables F1, . . . , Fd are
given for each protein and as such are viewed as known or observed, shown as
shaded nodes in the figure. Finally, the values for the location indicator variables
for all locations except for Li, {L1, . . . , Lq} − {Li}, are needed for calculating
the predicted value for Li in the classifer Ci. As such, they are viewed by the
classifier as though they are observed. Notably, the values of these variables are
not known and still need to be estimated.

Thus, the structure and parameters of the network for each classifier Ci (learnt
as described in Section 3.1), are used to predict the value of each unobserved
variable, Li. The task of each classifier Ci, is to predict the value of the variable
Li given the values of all other variables F1, . . . , Fd, and {L1, . . ., Lq}−{Li}. Since,
as noted above, the values of the location indicator variables Lj (j �= i) are
unknown at the point when Li needs to be calculated, we estimate their values,
using simple SVM classifiers as described in Section 3.1. We note that other
methods, such as expectation maximization, can be used to estimate all the
hidden parameters, which we shall do in the future.

3 Methods

As our goal is to assign locations (possibly multiple) to proteins, we use a collec-
tion of Bayesian network classifiers, where each classifier Ci, predicts the value
(0 or 1) of a single location variable Li – while using estimates of all the other
location variables Lj (j �= i), which are assumed to be known, as far as the classi-
fier Ci is concerned. The estimates of the location values Lj are calculated using
SVM classifiers as described in Section 3.1. The individual predictions from all
the classifiers are then combined to produce a multi-location prediction. For each
location si, a Bayesian network classifier Ci must be learned from training data
before it can be used. As described in Section 2, each classifier Ci consists of a
graph structure Gi and a set of conditional probability parameters, Θi, that is:
Ci =(Gi, Θi). Thus, our first task is to learn the individual classifiers, i.e. their
respective Bayesian network structures and parameters. The individual networks
can then be used to predict a protein’s localization to each location.

Given a proteinP , each classifierCi needs to accurately predict the location indi-
cator value lPi , given the feature-values of P and estimates of all the other location

indicator values l̂Pj (where j �= i). That is, each classifier Ci in the collection as-

sumes that the estimates of the location-indicator values, l̂Pj for all other locations
sj (where j �= i) are already known, and is responsible for predicting only the in-
dicator value lPi for location si, given all the other indicator values. For a Bayesian
network classifier this means calculating the conditional probability

Pr(lPi = 1 | P, l̂P1 , . . . , l̂Pi−1, l̂
P
i+1, . . . , l̂

P
q), (3)

under classifier Ci, where l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q are all estimated using simple

SVM classifiers. The classifiers C1, . . . , Cq are each learned by directly optimizing

Protein (Multi-)Location Prediction 9

an objective function that is based on such conditional probabilities, calculated
with respect to the training data as explained in Section 3.1.

The procedures used for learning the Bayesian network classifiers and to combine
the individual network predictions are described throughout the rest of the section.

3.1 Structure and Parameter Learning of Bayesian Network
Classifiers

Given a dataset D, consisting of a set of m proteins {P1, . . . , Pm} and their
respective location vectors {lP1 , . . . , lPm}, each classifier Ci is trained so as to
produce the “best” prediction possible for the value of the location indicator
lPi (for location si), for any given protein P and a set of estimates of location
indicators for all other locations (as shown in Equation 3 above). Based on this
aim and on the available training data, we use the Conditional Log Likelihood
(CLL) as the objective function to be optimized when learning each classifier
Ci. Classifiers whose structures were learnt by optimizing this objective function
were found to perform better than classifiers that used other structures [31].
This objective function is defined as:

CLL(Ci | D) =
m∑
j=1

log Pr(Li = l
Pj

i | fPj , l̂
Pj

1 , . . . , l̂
Pj

i−1, l̂
Pj

i+1, . . . , l̂
Pj
q).

Each Pj is a protein in the training set and each probability term is the condi-

tional probability of protein Pj to have the indicator value l
Pj

i (for location si),
given its feature vector fPj and the current estimates for all the other location

indicators are l̂
Pj

k (where k �= i), under the Bayesian network structure Gi for
the classifier Ci that governs the joint distribution of all the variables in the
network (see Equation 2).

To learn a Bayesian network classifier that optimizes this objective function,
we use a greedy hill climbing search (see [31, 41] for details). While Grossman
and Domingos [31] propose a heuristic method that modifies the basic search
depicted by Heckerman et al. [41], we do not employ it in this preliminary study,
but rather use the basic search, as it does not prove to be prohibitively time

consuming. To find estimates for the location indicator values l̂
Pj

k , we compute

a one-time estimate for each indicator l
Pj

i from the feature-values of the protein
fPj by using an SVM classifier (e.g. [30]). We use the SVM implementation
provided by the Scikit-learn library [42] with a Radial Basis Function kernel. We
employ q such SVMs, SVM1, . . . ,SVMq, where each SVM classifier is trained to
distinguish one location indicator from the rest, as done in the Binary Relevance
approach [43]. The rest of the network parameters are estimated as follows: For
each Bayesian network classifier Ci, we use the maximum likelihood estimates
calculated from frequency counts in the training dataset, D, to estimate the
network parameters (see [31]). To avoid overfitting of the parameters, we apply
standard smoothing by adding pseudo-counts for all the events that have zero
counts (see [44] for details).

10 R. Simha and H. Shatkay

To summarize, at the end of the learning process we have q Bayesian net-
work classifiers, C1, . . . , Cq, like the ones depicted in Figure 1, and q SVMs,
SVM1, . . . ,SVMq, used for obtaining initial estimates for each location variable
for any given protein. We next describe how these classifiers are used to predict
the multi-location of a protein P .

3.2 Multiple Location Prediction

Given a protein P , whose locations we would like to predict, we first use the
SVMs to obtain preliminary estimates for each of its location indicator values
l̂P1 , . . . , l̂

P
q . We then use each of the learned classifiers Ci, and the preliminary

values obtained from the SVMs to predict the value of the location indicator
lPi . The classifier outputs a value of either a 0 or a 1 by thresholding, as shown
in Equation 1. The conditional probability of lPi given the feature-values of the

protein P and the estimates of the location indicator values l̂Pj (where j �= i) is
first calculated as:

Pr(lPi = 1 | fP , l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q) =

Pr(lPi = 1,fP , l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q)∑

z∈{0,1} Pr(lPi = z,fP , l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q)

. (4)

The joint probabilities in the numerator and the denominator of Equation 4 above
are factorized into conditional probabilities using the Bayesian network structure,
Gi (see Equation 2). The 0/1 prediction for each lPi obtained from each Ci be-
comes the value of the i’th position in the location-indicator vector 〈lP1 , . . . , lPq 〉 for
protein P . This is the total multi-location prediction for protein P .

In the next section, we describe our experiments using the Bayesian network
framework for predicting protein multi-location and the results obtained.

4 Experiments and Results

We implemented our algorithms for learning and using a collection of Bayesian
network classifiers as described above using Python and the machine learning
library Scikit-learn [42]. We have applied it to a dataset containing single- and
multi-localized proteins, previously used for training YLoc+ [29]. Below we de-
scribe the dataset, the experiments, the evaluation methods we use, and the
multiple location prediction results obtained on the proteins from this dataset.

4.1 Data Preparation

In our experiments we use a dataset containing 5447 single localized proteins (orig-
inally published as the Höglund dataset [32]) and 3056 multi-localized proteins
(originally published as part of the DBMLoc set [13] that is no longer publicly
available). The combined dataset was previously used by Briesemeister et al. [29] in

Protein (Multi-)Location Prediction 11

their extensive comparison of multi-localization prediction systems. We report re-
sults obtained over the multi-localized proteins for comparing our system to other
published systems, since the results for these systems are only available for this
subset [29]. For all other experiments described here, we report results obtained
over the combined set of single- and multi-localized proteins. We use the exact
same representation of a 30-dimensional feature vector as used in YLoc+ [29]. The
features include sequence-based features, e.g. amino acid composition and those
based on PROSITE patterns, as well as on GO annotations. (See [29] for details on
the pre-processing, feature construction, and feature selection). The single local-
ized proteins are from the following locations (abbreviations and number of pro-
teins per location is given in parentheses): cytoplasm (cyt, 1411 proteins); endo-
plasmic reticulum (ER, 198), extra cellular space (ex, 843), golgi apparatus (gol,
150), lysosomal (lys, 103), mitochondrion (mi, 510), nucleus (nuc, 837), membrane
(mem, 1238), and peroxisomal (per, 157). The multi-localized proteins are from
the following pairs of locations: cyt nuc (1882 proteins), ex mem (334), cyt mem
(252), cyt mi (240), nuc mi (120), ER ex (115), and ex nuc (113). Note that all the
multi-location subsets used have over 100 representative proteins.

4.2 Experimental Setting and Performance Measures

To compare the performance of our system to that of other systems (YLoc+ [29],
Euk-mPLoc [45], WoLF PSORT [46], and KnowPred [27]), whose performance
on a large set of multi-localized proteins was described in a previously published
comprehensive study [29], we use the exact same dataset, employing the com-
monly used stratified 5-fold cross-validation. As the information about the exact
5-way splits used before is not available, we ran five complete runs of 5-fold-cross-
validation (i.e. 25 runs in total), where each complete run of 5-fold cross-validation
uses a different 5-way split. The use of multiple runs with different splits helps
validate the stability and the significance of the results. To ensure that the results
obtained by using our 5-way splits for cross-validation can be fairly compared with
those reported before [29], we replicated the YLoc+ runs using our 5-way splits,
and obtained results that closely match those originally reported by Briestmeister
et al [29]. (The replicated F1-label score is 0.69 with standard deviation of ±0.01,
compared to YLoc+ reported F1-label score of 0.68, and the replicated accuracy is
0.65 with standard deviation of ±0.01, compared to YLoc+ reported accuracy of
0.64). The total training time for our system is about 11 hours (wall-clock), when
running on a standard Dell Poweredge machine with 32 AMD Opteron 6276 pro-
cessors. Notably, no optimization or heuristics for improving run time were em-
ployed, as this is a one-time training. For the experiments described here, we ran
25 training experiments, through 5 times 5-fold cross validation, where the total
run time was about 75 hours (wall clock).

We use in our evaluation the adapted measures of accuracy and F1 score pro-
posed by Tsoumakas [43] for evaluating multi-label classification. Some of these
measures have also been previously used for multi-location evaluation [28, 29].

12 R. Simha and H. Shatkay

To formally define these measures, let D be a dataset containing m proteins. For a
given a protein P , let MP ={si | lPi =1, where 1 ≤ i ≤ q} be the set of locations

to which protein P localizes, and let M̂P ={si | l̂Pi =1, where 1 ≤ i ≤ q} be the

set of locations that a classifier predicts for protein P , where l̂Pi is the 0/1
prediction obtained (as described in Section 3). The multi-label accuracy and
the multi-label F1 score are defined as:

Acc=
1

m

m∑
j=1

|M j ∩ M̂ j |
|M j ∪ M̂ j |

and F1=
1

m

m∑
j=1

2|M j ∩ M̂ j |
|M j|+ |M̂ j |

.

Adapted measures of Precision and Recall, denoted Presi and Recsi are used
to evaluate how well our system classifies proteins as localized or not localized
to any single location si [29]. The Multilabel-Precision is:

Presi =
1

|{P ∈ D | si ∈ M̂P }|

∑
P∈D | si∈M̂P

|MP ∩ M̂P |
|M̂P |

,

and the Multilabel-Recall is:

Recsi =
1

|{P ∈ D | si ∈MP }|
∑

P∈D | si∈MP

|MP ∩ M̂P |
|MP | .

Note that Presi captures the ratio of the number of correctly predicted multiple
locations to the total number of multiple locations predicted, and Recsi captures
the ratio of the number of correctly predicted multiple locations to the number
of original multiple locations, for all the proteins that co-localize to location
si. Therefore, high values of these measures for proteins that co-localize to the
location si indicate that the sets of predicted locations that include location si
are predicted correctly. Additionally, the F1-label score used by Briesemeister et
al. [29] to evaluate the performance of multi-location predictors is computed as
follows:

F1-label=
1

|S|
∑
si∈S

2× Presi ×Recsi
Presi + Recsi

.

Finally, to evaluate the correctness of predictions made for each location si,
we use the standard precision and recall measures, denoted by Pre-Stdsi and
Rec-Stdsi (e.g. [10]) and defined as:

Pre-Stdsi =
TP

TP + FP
and Rec-Stdsi =

TP

TP + FN
,

where TP (true positives) denotes the number of proteins that localize to si
and are predicted to localize to si, FP (false positives) denotes the number of
proteins that do not localize to si but are predicted to localize to si, and FN
(false negatives) denotes the number of proteins that localize to si but are not
predicted to localize to si.

Protein (Multi-)Location Prediction 13

Table 1. Multi-location prediction results, averaged over 25 runs of 5-fold cross-
validation, for multi-localized proteins only, using our system, YLoc+[29], Euk-
mPLoc [45], WoLF PSORT [46], and KnowPred [27]. The F1-label score and Acc
measures shown for all the systems except for ours are taken directly from Table 3
in the paper by Briesemeister et al. [29]. Standard deviations are provided for our
system (not available for other systems).

Our system YLoc+[29] Euk-mPLoc [45] WoLF PSORT [46] KnowPred [27]

F1-label 0.66 (± 0.02) 0.68 0.44 0.53 0.66

Acc 0.63 (± 0.01) 0.64 0.41 0.43 0.63

Table 2. Multi-location prediction results, averaged over 25 runs of 5-fold cross-
validation, for the combined set of single- and multi-localized proteins, using our sys-
tem. The table shows the F1 score, the F1-label score, and the accuracy (Acc) obtained
for SVMs without using location inter-dependencies and for our system which uses
location inter-dependencies. Standard deviations are shown in parentheses.

F1 F1-label Acc

SVMs (without using dependencies) 0.77 (± 0.01) 0.67 (± 0.02) 0.72 (± 0.01)

Our system (using dependencies) 0.81 (± 0.01) 0.76 (± 0.02) 0.76 (± 0.01)

Table 3. Multi-location prediction results, per location, averaged over 25 runs of 5-fold
cross-validation, for the combined set of single- and multi-localized proteins. Results are
shown for the five locations si that have the largest number of associated proteins (the
number of proteins per location is given in parenthesis): cytoplasm (cyt), extracellular
space (ex), nucleus (nuc), membrane (mem), and mitochondrion (mi). The table shows
the measures (standard precision (Pre-Stdsi) and recall (Rec-Stdsi), and Multilabel-
Precision (Presi) and Multilabel-Recall (Recsi)), obtained for SVMs without using
location inter-dependencies and for our system by using location inter-dependencies.
The highest values between the two methods are shown in boldface. Standard deviations
are shown in parentheses.

cyt (3785) ex (1405) nuc (2952) mem (1824) mi (870)

P re-Stdsi (SVMs) 0.84 (± 0.01) 0.87 (± 0.02) 0.79 (± 0.02) 0.93 (± 0.01) 0.90 (± 0.03)

P re-Stdsi (Our system) 0.84 (± 0.01) 0.91 (± 0.02) 0.79 (± 0.03) 0.90 (± 0.01) 0.87 (± 0.03)

Rec-Stdsi (SVMs) 0.85 (± 0.01) 0.64 (± 0.02) 0.72 (± 0.02) 0.79 (± 0.02) 0.62 (± 0.03)

Rec-Stdsi (Our system) 0.86 (± 0.01) 0.65 (± 0.02) 0.74 (± 0.03) 0.80 (± 0.02) 0.66 (± 0.03)

P resi (SVMs) 0.82 (± 0.01) 0.89 (± 0.02) 0.83 (± 0.01) 0.92 (± 0.01) 0.87 (± 0.03)

P resi (Our system) 0.81 (± 0.02) 0.91 (± 0.02) 0.83 (± 0.01) 0.90 (± 0.01) 0.89 (± 0.02)

Recsi (SVMs) 0.78 (± 0.01) 0.72 (± 0.02) 0.77 (± 0.01) 0.76 (± 0.01) 0.68 (± 0.02)

Recsi (Our system) 0.80 (± 0.01) 0.74 (± 0.02) 0.78 (± 0.02) 0.78 (± 0.01) 0.73 (± 0.02)

4.3 Classification Results

Table 1 shows the F1-label score and the accuracy for our system in comparison
to those obtained by other predictors (as reported by Briesemeister et al. [29],
Table 3 there, using the same set of multi-localized proteins and evaluation mea-
sures. While the table shows that our system has a slightly lower performance
than YLoc+, the differences in the values are not statistically significant, and
the overall performance level is comparable. Thus our approach performs as

14 R. Simha and H. Shatkay

effectively as current top-systems, while having the advantage of directly cap-
turing inter-dependencies among locations in a generalizable manner (that is,
without introducing a new location-class for each new location-combination).

Table 2 shows the F1 score, the F1-label score, and the accuracy obtained
by the individual SVM classifiers (used for computing estimates of location in-
dicators) without using location inter-dependencies compared with the corre-
sponding values obtained by our system by using location inter-dependencies,
on the combined dataset of both single- and multi-localized proteins. All the
scores obtained by using inter-dependencies are significantly higher than those
obtained by using SVMs alone without utilizing inter-dependencies. These dif-
ferences are highly statistically significant (p
 0.001), as measured using the
2-sample t-test [47].

Table 3 shows the prediction results obtained by our system for the five loca-
tions that have the largest number of associated proteins: cytoplasm (cyt), ex-
tracellular space (ex), nucleus (nu), membrane (mem), and mi (mitochondrion),
on the combined dataset of both single- and multi-localized proteins. For each
location si, we show the standard precision (Pre-Stdsi) and recall (Rec-Stdsi)
as well as the Multilabel-Precision (Presi) and Multilabel-Recall (Recsi). The
table shows values for each of the measures obtained by SVMs without using lo-
cation inter-dependencies and by our system using location inter-dependencies.
When using inter-dependencies, we note that for all locations the Multilabel-
Recall (Recsi) increases (in some cases statistically significantly); while for a few
locations (such as cytoplasm and membrane) the Multilabel-Precision (Presi)
decreases, the decrease is not statistically significant. For instance, when classi-
fying using SVMs without using inter-dependencies Reccyt is 0.78 and Recmem

is 0.76, while when incorporating the inter-dependencies the recall is 0.80 and
0.78, respectively. Even for locations with fewer associated proteins, e.g. per-
oxisome, (157 proteins), the Multilabel-Recall increases from 0.37 using simple
SVMs to 0.65 using our classifier. This demonstrates the advantage of using lo-
cation inter-dependencies for predicting protein locations, not just for locations
that have a large number of associated proteins but also for locations that have
relatively few associated proteins.

5 Discussion and Future Work

We presented a new way to use a collection of Bayesian network classifiers taking
advantage of location inter-dependencies to provide a generalizable method for
predicting possible multiple locations of proteins. The results demonstrate that
the performance of our preliminary system is comparable to the best current
multi-location predictor YLoc+[29], which indirectly addresses dependencies by
creating a class for each multi-location combination. Our results also show that
utilizing inter-dependencies significantly improves the performance of the loca-
tion prediction system, with respect to SVM classifiers that do not use any
inter-dependencies.

In most biological applications that have used Bayesian networks so far (e.g.
[36–38]), the variable-space typically corresponds to genes or SNPs which is

Protein (Multi-)Location Prediction 15

a very large space and necessitates the use of strong simplifying assumptions
and many heuristics. In contrast, we note that predicting multiple locations for
proteins involves a significantly smaller number of variables (as the number of
subcellular components and the number of features for representing proteins
are relatively small), making this task ideally suitable for the use of Bayesian
networks.

The study presented here is a first investigation into the benefit of directly
modeling and using location inter-dependencies. In order to obtain initial esti-
mates for location values, we used a simple SVM classifier, and location inter-
dependencies were only learned based on these values. While the results have
already shown much improvement with respect to the baseline SVM classifiers,
we believe that a better approach would be to simultaneously learn a Bayesian
network while estimating the location values using methods such as expectation
maximization.

We note that although the dataset we use contains the most extensive avail-
able collection of multi-localized proteins, several subcellular locations are not
represented in the dataset at all due to the low number of proteins associated
with them. Similarly, there is not enough data pertaining to proteins that are
localized to more than two locations. We are in the process of constructing a set
of multi-localized proteins that will be used in future work to test the perfor-
mance of our system on novel, and more complex, combinations. We also plan to
develop improved approaches for learning models of location inter-dependencies
from the available data.

Acknowledgments. We are grateful to S. Briesemeister for so readily providing
us with information about the implementation and testing of YLoc+.

References

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular
Biology of the Cell, vol. 4. Garland Science (2002)

2. Rost, B., Liu, J., Nair, R., Wrzeszczynski, K., Ofran, Y.: Automatic prediction of
protein function. Cellular and Molecular Life Sciences 60(12), 2637–2650 (2003)

3. Bakheet, T., Doig, A.: Properties and identification of human protein drug targets.
Bioinformatics 25(4), 451–457 (2009)

4. Dreger, M.: Proteome analysis at the level of subcellular structures. Eur. J.
Biochem. 270, 2083–2092 (2003)

5. Simpson, J., Wellenreuther, R., Poustka, A., Pepperkok, R., Wiemann, S.: Sys-
tematic subcellular localization of novel proteins identified by large-scale cdna se-
quencing. EMBO Rep. 1, 287–292 (2000)

6. Hanson, M., Kohler, R.: Gfp imaging: methodology and application to investigate
cellular compartmentation in plants. J. Exp. Bot. 52, 529–539 (2001)

7. Nakai, K., Kanehisa, M.: Expert system for predicting protein localization sites in
gram-negative bacteria. Proteins 11(2), 95–110 (1991)

8. Emanuelsson, O., Nielsen, H., Brunak, S., von Heijne, G.: Predicting subcellular
localization of proteins based on their n-terminal amino acid sequence. J. Mol.
Biol. 300(4), 1005–1016 (2000)

16 R. Simha and H. Shatkay

9. Rey, S., Gardy, J., Brinkman, F.: Assessing the precision of high-throughput com-
putational and laboratory approaches for the genome-wide identification of protein
subcellular localization in bacteria. BMC Genomics 6, 162 (2005)

10. Shatkay, H., Höglund, A., Brady, S., Blum, T., Dönnes, P., Kohlbacher, O.: Sherloc:
high-accuracy prediction of protein subcellular localization by integrating text and
protein sequence data. Bioinformatics 23, 1410–1417 (2007)

11. Blum, T., Briesemeister, S., Kohlbacher, O.: Multiloc2: integrating phylogeny and
gene ontology terms improves subcellular protein localization prediction. BMC
Bioinformatics 10, 274 (2009)

12. Foster, L., de Hoog, C., Zhang, Y., Zhang, Y., Xie, X., Mootha, V., Mann, M.:
A mammalian organelle map by protein correlation profiling. Cell 125, 187–199
(2006)

13. Zhang, S., Xia, X., Shen, J., Zhou, Y., Sun, Z.: Dbmloc: a database of proteins
with multiple subcellular localizations. BMC Bioinformatics 9, 127 (2008)

14. Millar, A., Carrie, C., Pogson, B., Whelan, J.: Exploring the function-location
nexus: using multiple lines of evidence in defining the subcellular location of plant
proteins. Plant Cell 21(6), 1625–1631 (2009)

15. Murphy, R.: Communicating subcellular distributions. Cytometry A 77(7),
686–692 (2010)

16. Pohlschroder, M., Hartmann, E., Hand, N., Dilks, K., Haddad, A.: Diversity and
evolution of protein translocation. Annu. Rev. Microbiol. 59, 91–111 (2005)

17. Rea, S., James, D.: Moving glut4: The biogenesis and trafficking of glut4 storage
vesicles. Diabetes 46(11), 1667–1677 (1997)

18. Russell, R., Bergeron, R., Shulman, G., Young, H.: Translocation of myocardial
glut-4 and increased glucose uptake through activation of ampk by aicar. Am. J.
Physiol. 9, H643–H649 (1997)

19. King, B., Guda, C.: ngloc: an n-gram-based bayesian method for estimating the
subcellular proteomes of eukaryotes. Genome Biology 8, 3963–3969 (2007)

20. Li, L., Zhang, Y., Zou, L., Zhou, Y., Zheng, X.: Prediction of protein subcellular
multi-localization based on the general form of chou’s pseudo amino acid compo-
sition. Protein Pept. Lett. 19(4), 375–387 (2012)

21. Chou, K., Wu, Z., Xiao, X.: iloc-euk: A multi-label classifier for predicting the
subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS
ONE 6(3), e18258 (2011)

22. Chou, K., Wu, Z., Xiao, X.: iloc-hum: using the accumulation-label scale to predict
subcellular locations of human proteins with both single and multiple sites. Mol.
Biosyst. 8(2), 629–641 (2012)

23. Wu, Z., Xiao, X., Chou, K.: iloc-plant: a multi-label classifier for predicting the
subcellular localization of plant proteins with both single and multiple sites. Mol.
Biosyst. 7(12), 3287–3297 (2011)

24. Xiao, X., Wu, Z., Chou, K.: iloc-virus: a multi-label learning classifier for identifying
the subcellular localization of virus proteins with both single and multiple sites. J.
Th. Bio. 284, 42–51 (2011)

25. Xiao, X., Wu, Z., Chou, K.: A multi-label classifier for predicting the subcellular
localization of gram-negative bacterial proteins with both single and multiple sites.
PLoS ONE 6, e20592 (2011)

26. Wu, Z., Xiao, X., Chou, K.: iloc-gpos: a multi-layer classifier for predicting the sub-
cellular localization of singleplex and multiplex gram-positive bacterial proteins.
Protein Pept. Lett. 19, 4–14 (2012)

Protein (Multi-)Location Prediction 17

27. Lin, H., Chen, C., Sung, T., Ho, S., Hsu, W.: Protein subcellular localization pre-
diction of eukaryotes using a knowledge-based approach. BMC Bioinformatics 10,
8 (2009)

28. He, J., Gu, H., Liu, W.: Imbalanced multi-modal multi-label learning for subcellular
localization prediction of human proteins with both single and multiple sites. PLoS
ONE 7, e37155 (2012)

29. Briesemeister, S., Rahnenfuhrer, J., Kohlbacher, O.: Going from where to why
- interpretable prediction of protein subcellular localization. Bioinformatics 26,
1232–1238 (2010)

30. Mitchell, T.: Machine Learning, 1st edn. McGraw-Hill, Inc., New York (1997)
31. Grossman, D., Domingos, P.: Learning bayesian network classifiers by maximizing

conditional likelihood. In: ICML, pp. 361–368. ACM (2004)
32. Höglund, A., Dönnes, P., Blum, T., Adolph, H., Kohlbacher, O.: Multiloc: pre-

diction of protein subcellular localization using n-terminal targeting sequences,
sequence motifs, and amino acid composition. Bioinformatics 22, 1158–1165 (2006)

33. Garg, A., Raghava, G.: Eslpred2: improved method for predicting subcellular lo-
calization of eukaryotic proteins. BMC Bioinformatics 9(1), 503 (2008)

34. Huang, W., Tung, C., Ho, S., Hwang, S., Ho, S.: Proloc-go: Utilizing informative
gene ontology terms for sequence-based prediction of protein subcellular localiza-
tion. BMC Bioinformatics 9 (2008)

35. Chou, K., Shen, H.: A new method for predicting the subcellular localization of eu-
karyotic proteins with both single and multiple sites: Euk-mploc 2.0. PLoS ONE 5,
e9931 (2010)

36. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to ana-
lyze expression data. J. Comput. Biol. 7(3-4), 601–620 (2000)

37. Segal, E., Taskar, B., Gasch, A., Friedman, N., Koller, D.: Rich probabilistic models
for gene expression. Bioinformatics 17(suppl. 1), S243–S252 (2001)

38. Lee, P., Shatkay, H.: Bntagger: improved tagging snp selection using bayesian net-
works. Bioinformatics 22(14), e211–e219 (2006)

39. Jensen, F., Nielsen, T.: Bayesian Networks and Decision Graphs, 2nd edn. Springer
Publishing Company, Incorporated (2007)

40. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes
for classification learning. In: IJCAI, pp. 1022–1029 (1993)

41. Heckerman, D., Chickering, D.: Learning Bayesian networks: The combination of
knowledge and statistical data. Kluwer Academic Publishers, Boston (1995)

42. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, F., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in python. Journal of Machine Learning Research 12, 2825–2830 (2011)

43. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. IJDWM 3, 1–13
(2007)

44. Russell, S., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd edn. Pear-
son Education (2010)

45. Chou, K., Shen, H.: A fusion classifier for large-scale eukaryotic protein subcellular
location prediction by incorporating multiple sites. J. Proteome Res. 6, 1728–1734
(2007)

46. Horton, P., Park, K., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.,
Nakai, K.: WoLF PSORT: Protein localization predictor. Nucleic Acids Re-
search 35, W585–W587 (2007)

47. DeGroot, M.: Probability and Statistics, 2nd edn. Addison-Wesley (1986)

Towards Reliable Automatic Protein Structure

Alignment

Xuefeng Cui1, Shuai Cheng Li2, Dongbo Bu3,
and Ming Li1,�

1 University of Waterloo, Ontario, Canada
2 City University of Hong Kong, Hong Kong, China

3 Chinese Academy of Sciences, Beijing, China
mli@cs.uwaterloo.ca

Abstract. A variety of methods have been proposed for structure simi-
larity calculation, which are called structure alignment or superposition.
One major shortcoming in current structure alignment algorithms is in
their inherent design, which is based on local structure similarity. In this
work, we propose a method to incorporate global information in obtain-
ing optimal alignments and superpositions. Our method, when applied
to optimizing the TM-score and the GDT score, produces significantly
better results than current state-of-the-art protein structure alignment
tools. Specifically, if the highest TM-score found by TMalign is lower
than 0.6 and the highest TM-score found by one of the tested methods
is higher than 0.5, there is a probability of 42% that TMalign failed to
find TM-scores higher than 0.5, while the same probability is reduced to
2% if our method is used. This could significantly improve the accuracy
of fold detection if the cutoff TM-score of 0.5 is used.

In addition, existing structure alignment algorithms focus on structure
similarity alone and simply ignore other important similarities, such as
sequence similarity. Our approach has the capacity to incorporate multi-
ple similarities into the scoring function. Results show that sequence sim-
ilarity aids in finding high quality protein structure alignments that are
more consistent with eye-examined alignments in HOMSTRAD. Even
when structure similarity itself fails to find alignments with any con-
sistency with eye-examined alignments, our method remains capable of
finding alignments highly similar to, or even identical to, eye-examined
alignments.

1 Introduction

Proteins function in living organisms as enzymes, antibodies, sensors, and trans-
porters, among myriad other roles. The understanding of protein function has
great implications to the study of biological and medical sciences. It is widely
accepted that protein function is determined mainly by structure. Protein struc-
tures are often aligned for their common substructures, to discover functionally

� Corresponding author.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 18–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Reliable Automatic Protein Structure Alignment 19

or evolutionarily meaningful structure units. A very large amount of data is avail-
able for such studies; the number of known protein structures (the Protein Data
Bank) has exceeded 90,000 [1]. Research in structure alignments has intensified
recently to enable efficient searches of such databases.

Protein structures are usually modeled as 3-dimensional coordinates of atoms.
Thus, the alignment of two protein structures can be modeled as an optimization
problem to minimize the distance between two protein structures after a specific
rotation and translation. One problem with such comparisons is that the time
complexity is typically high. As a result, current methods for the problem are
heuristic in nature [2–12].

For example, TMalign [13] creates an initial alignment through sequence and
secondary structure alignments and extracts an initial rotation and translation
(ROTRAN) accordingly. Then, the ROTRAN is improved iteratively until con-
vergence. This approach suffers from possibly dissatisfactory initial alignments
and from a lack of optimality guarantees in the final results. TMalign was im-
proved by the fragment-based approach in fr-TM-align [14], in which local struc-
ture alignments are computed and represented by the fragment alignments. A
dynamic programming technique is then employed to optimize the score func-
tion. However, this method only guarantees the quality of the local alignment
rather than of the global alignment.

An alignment of two subsets of residues (or Cα atoms) corresponds to a RO-
TRAN. Unlike fr-TM-align, we also consider the situation in which the small
sets contain remote residues. In addition, to overcome the problem of computa-
tional inefficiency, we choose to filter the ROTRANs by clustering rather than
by using an exhaustive method.

Experimental results suggest that both local fragments and remote fragment
pairs show significant contribution to finding higher TM-scores [15] and to finding
higher GDT scores [16], as stated in Sections 3.1 and 3.2, respectively. Specifi-
cally, if the highest TM-score found by TMalign [13] is lower than 0.6 and the
highest TM-score found by one of the tested methods is higher than 0.5, there
is a probability of 42% that TMalign failed to find TM-scores higher than 0.5,
while the same probability is reduced to 2% with our method. Our method is
also capable of finding alignments with significantly (up to 0.21) higher TM-
scores. This could significantly improve the accuracy of fold detection if the
cutoff TM-score of 0.5 is used.

Another limitation of current protein structure alignment scoring functions,
the TM-score [15] and the LG-score [17], is that only protein structure similarity
is taken into consideration, while other important protein similarities, such as
sequence similarity, are ignored. It has been observed that many protein struc-
ture alignments, based only on protein structure similarity are highly sensitive
to conformational changes [18]. Recently, sequence similarity has been incorpo-
rated into the scoring function [19, 20]. In this paper we introduce a new scoring
function incorporating a variety of protein similarities.

In Section 3.3, we demonstrate that sequence similarity enables discovery
of high quality protein structure alignments that are more consistent with

20 X. Cui et al.

eye-examined alignments. Even when structure similarity itself fails to find align-
ments with any consistency with eye-examined alignments in HOMSTRAD [21],
our method is nevertheless able to find alignments highly similar to, or even
identical to, the eye-examined alignments. When the aligned protein structures
contain a high percentage of helices, TM-score [15] involving only structure sim-
ilarity sometimes cannot avoid shifting the HOMSTRAD alignment by a few
residues. In our experiment, such shifting tends to be avoided by our scoring
function, which involves both structure and sequence similarities.

2 Method

Our protein structure alignment search method can be divided into two parts:
the search algorithm and the scoring function. In Section 2.1, we describe our
search algorithm, which samples and selects near optimal alignments reliably
and efficiently. In Section 2.2, we describe our scoring function for evaluating
the quality of an alignment accurately.

2.1 Protein Structure Alignment Search Algorithm

Given a protein structure alignment scoring function, finding the optimal align-
ment involves finding the optimal ROTRAN that maximizes the alignment score.
Assume that there exists a near optimal ROTRAN that minimizes the RMSD
of two small sets of Cα atoms. We find the near optimal structure alignment
by sampling ROTRANs in four steps: (1) ROTRANs are initially sampled from
local fragment alignments and from remote fragment pair alignments; (2) noise
ROTRANs are filtered out by clustering; (3) one representative alignment for
each ROTRAN cluster is selected based on alignment scores; (4) the selected
alignments are refined by random ROTRAN sampling. Steps one through four
are discussed in this section and our scoring function is discussed in Section 2.2.

First, an initial set of ROTRANs must be sampled. Here, the primary concern
is to have several good candidates, instead of to have a high signal-to-noise
ratio, which is addressed in the next step. Finding good candidates is done by
calculating the optimal ROTRAN that minimizes RMSD between one or two
fragments from each protein structure. In case of a single fragment from each
protein structure, we call it local fragment. In case of two fragments from each
protein structure, we call them remote fragment pair. Here, we require the pair
of remote fragments to be of the same size and to be at least three residues away
from each other to avoid modeling information redundant to the local fragments.
In practice, a significantly large number of ROTRANs with the lowest RMSDs
are kept for the next step, and the actual number of ROTRANs is selected
empirically as stated in Section 3.1.

Since the initial set of ROTRANs may contain a great deal of noise, we try
to filter out most of the noise with a star-like k-median clustering algorithm in
the second step. Assuming that we know the maximum distance ε between the

Towards Reliable Automatic Protein Structure Alignment 21

median of a cluster and any member of the same cluster, an approximate cluster-
ing is applied using a neighbor graph: each vertex represents a rotation matrix,
and two vertices are connected if and only if the distance between them is at
most ε. For each iteration, the vertex with the highest degree and its neighbors
are grouped into a cluster, and are removed from the neighbor graph. The iter-
ation repeats until either there are no vertices of degree higher than one or until
the maximum number of clusters is reached. The unclustered ROTRANs are
treated as noise. Similar approximate clustering algorithms have been used [22]
and studied [23].

To complete the clustering algorithm, we need a distance function between
ROTRANs. The Riemannian distance is a widely used distance metric mea-
suring the length of the shortest geodesic curve between two rotation matri-
ces [24]. Since the transition vector can be calculated by the rotation matrix
and the weight centers of the aligned residues, we use Riemannian distances be-
tween rotation matrices to avoid using redundant information when clustering
ROTRANs.

For each cluster, we find the representative alignment defined by the RO-
TRAN that yields the highest alignment score within the cluster. The alignment
score is defined in Section 2.2, and is calculated by the Needleman-Wunsch dy-
namic programming algorithm [25]. Since dynamic programming is computa-
tionally expensive, the number of clusters in the previous step must be carefully
determined to avoid wasting computation on clusters of noise. After all align-
ment scores have been calculated, the top scored alignments are selected for the
refinement step.

Finally, we refine the selected representative alignments by random ROTRAN
sampling. Specifically, for each alignment to be refined, six aligned residue pairs
are randomly selected from the alignment, the ROTRAN that minimizes RMSD
of the aligned residue pairs is calculated, the alignment score of the alignment
defined by the sampled ROTRAN is also calculated, and the previous steps are
repeated until there are no improvements after l1l2 iterations, where l1 and l2
are the number of residues of the two aligned protein structures.

The example shown in Figure 1 demonstrates the efficiency of our protein
structure alignment search algorithm, when aligning SCOP domains d3k2aa
and d2cufa1 [26]. In the figure, each coordinate represents a ROTRAN because
the coordinate is calculated by applying the rotation matrix of the ROTRAN
on the coordinate (1, 0, 0). By looking at the initially sampled ROTRANs shown
in Figure 1(a), we can see that the ROTRANs have a non-uniform distribution,
and the ROTRANs with a small number of neighbors are potential noise can-
didates. After clustering, the four largest clusters include 19% of the initially
sampled ROTRANs, as shown in Figure 1(b). Note that the optimal ROTRAN
that maximizes the alignment score is located in the largest cluster, which in-
cludes 13% of the initially sampled ROTRANs. Therefore, our search algorithm
is highly efficient because the alignment score calculation (by the computation-
ally expensive dynamic programming algorithm) for noise ROTRANs is mainly

22 X. Cui et al.

(a) ROTRANs initially sampled (b) ROTRANs of the four largest clus-
ters

Fig. 1. ROTRANs before and after clustering when aligning SCOP domains d3k2aa
and d2cufa1: each ROTRAN is represented by a coordinate that is calculated by
applying the rotation matrix of the ROTRAN on coordinate (1, 0, 0)

eliminated. It is also possible to trade accuracy for speed by reducing the number
of sampled ROTRANs and reducing the number of clusters.

Our search algorithm is both efficient and reliable. Since similar protein struc-
tures tend to have many local fragments, or remote fragment pairs with small
RMSDs, and similar rotation matrices, these rotation matrices tend to form to
a large cluster in our method. Since the rotation matrix space is limited and
we assume that the maximum distance between two rotation matrices within
a cluster is a constant, the maximum number of clusters within the rotation
matrix space is limited. This implies that the number of ROTRANs required to
accurately identify large clusters is also limited. Therefore, it is only necessary to
sample a limited number of ROTRANs, which is sufficient to identify the large
cluster containing near optimal ROTRANs.

2.2 Protein Structure Alignment Scoring Function

TM-score [15], based on LG-score [17], is one of the most successful protein
structure alignment scoring functions. However, one limitation of TM-score and
LG-score is that they use only protein structure similarity while they ignore
other protein similarities, such as the sequence similarity. It has been observed
that many protein structure alignments, based only on protein structure sim-
ilarity, are highly sensitive to conformational changes [18]. This suggests the
incorporation of other protein similarities, such as the sequence similarity, in the
protein structure alignment scoring function. Here, we introduce a new scoring
function incorporating variety kinds of protein similarity as follows:

S =
1

Lr

∑
i≤l

1

1 + fa(D1(i), D2(i), ..., Dn(i))
,

Towards Reliable Automatic Protein Structure Alignment 23

where Lr is the reference protein size; l is the number of aligned residue pairs of
the alignment; fa is the weighted averaging function (e.g. arithmetic, geometric
or harmonic average); Dk(i) is the normalized distance of the i-th aligned residue
pair using the k-th distance function; and n is the number of distance functions
incorporated. If there is n = 1 and D1(i) = (di/d0)

2, where di is the distance
between the Cα atoms of the i-th aligned residue pair and d0 is a normalization
factor, our scoring function is identical to the LG-score [17]. If there is also
d0 = 1.24(Lr−15)1/3−1.8, our scoring function is identical to the TM-score [15].
Thus, LG-score and TM-score are two special cases of our scoring function.

As an initial study on our new scoring function, we focus on the geometric
average of the normalized Cα distance D1(i) and the normalized amino acid
distance D2(i) as follows:

S =
1

Lr

∑
i≤l

1

1 + 1+w
√
D1(i)Dw

2 (i)
,

where w is a weighting factor. As with TM-score [15], we define the normalized
Cα distance as

D1(i) = (
di
d0

)2,

where d0 = 1.24(Lr − 15)1/3 − 1.8. Based on the popular BLOSUM62 matrix
[27, 28], we define the normalized amino acid distance as

D2(i) = 2−M(Pi,Qi) = 2
−λ log

P (Pi,Qi)

P(Pi)P (Qi) = (
P (Pi)P (Qi)

P (Pi, Qi)
)λ,

where M is the BLOSUM62 matrix, (Pi, Qi) is the i-th aligned residue pair, λ is
a scaling factor, P (Pi, Qi) is the probability of amino acid Pi aligning to amino
acid Qi, and P (Pi) and P (Qi) are the probabilities of amino acid Pi and amino
acid Qi, respectively. Instead of using the default scaling factor λ, it is treated
here as a parameter to control the rate of mutation.

An appealing property shared between TM-score [29] and our scoring function
is that the in-favored protein structure alignments tend to have scores higher
than 0.5. If the Cα distance between the i-th aligned residue pair is in-favored,
there is di < d0 and thus D1(i) < 1. If the amino acid distance between the
i-th aligned residue pair is in-favored, there is P (Pi, Qi) > P (Pi)P (Qi) and thus
D2(i) < 1. Then, for the i-th aligned residue pair, there is D1(i)D2(i) < 1 and
thus 1/(1+ 1+w

√
D1(i)Dw

2 (i)) > 0.5. Therefore, if many in-favored aligned residue
pairs occur in the alignment, our protein structure alignment score tends to be
higher than 0.5.

3 Result

We included three experiments to demonstrate that the protein structure align-
ments found by using our method are not only higher scored but are also more

24 X. Cui et al.

consistent with those alignments examed visually by human-beings. In Section
3.1, we compared our search algorithm to current state-of-the-art search algo-
rithms, TMalign [13] and fr-TM-align [14], to demonstrate that our method tends
to find alignments with higher TM-scores [15]. In Section 3.2, we compared our
search algorithm to SPalign [30] to demonstrate that our method tends to find
alignments with higher GDT scores [16]. In Section 3.3, we compared our scoring
function to TM-score [15] to demonstrate that our method tends to find align-
ments more consistent with the eye-examined alignments in HOMSTRAD [21].

3.1 Search Algorithm Evaluation on TM-Score

To demonstrate reliability, we repeated the alignment experiment for the 200
non-homologous protein structures, which have sizes of between 46 and 1058,
have a sequence identity cutoff of 30%, and are used by TM-align [13]. We com-
pared our results with that of current methods, TM-align and fr-TM-align [14].
Here, we used TM-score [15] normalized by the smaller protein size as the scoring
function. Since fr-TM-align does not support normalization by the smaller pro-
tein size, TM-score normalized by the smaller protein size is calculated based on
the rotation matrix returned by fr-TM-align. Since biologists tend to be more
interested in similar protein structures within the same protein fold, and the
TM-score of 0.5 is a good approximate threshold for protein fold detection [29],
only the 350 protein structure alignments with TM-scores higher than 0.5 (found
by at least one of the tested methods) are included in this analysis.

For the experiment settings in the algorithm described in Section 2.1, we used
local fragments of size 12, and remote fragment pairs of size 3. Such experi-
ment settings are called L12R3align. To study the contributions of using local
fragments and using remote fragment pairs, we simplified our method to two
variants: L12align, that used only local fragments of size 12, and R3align, that
used only remote fragment pairs of size 3. For consistency, we selected 1, 536
local fragments of size 12 and 1, 536 remote fragment pairs of size three in the
sampling step, used ε = 10◦ in the clustering step, stopped clustering when
288 clusters were found, and selected eight clusters in the refinement step in all
experiments for this section. With L12R3align, the elapsed time required to fin-
ish this experiment was approximately 4.5 hours on a computer with dual Intel
Xeon X5660 2.8GHz CPUs and dual Nvidia GeForce GTX 670 GPUs. Thus,
each pairwise alignment took approximately 0.8 seconds on average.

First, we would like to evaluate the ROTRAN filtering step described in Sec-
tion 2.1. Figure 2(a) shows the cluster rank that contains the optimal ROTRAN
with the highest TM-score [15]. Here, we focus on the results of using local frag-
ments because the results of using remote fragment pairs draws similar conclu-
sions. Specifically, 28% of the optimal ROTRANs are from the largest cluster and
72% of the optimal ROTRANs are from the largest ten clusters. Moreover, only
1% of the optimal ROTRANs are not from the largest 100 clusters. This demon-
strates that the optimal ROTRAN tends to have many similar ROTRANs that

Towards Reliable Automatic Protein Structure Alignment 25

(a) Cluster rank containing the optimal
ROTRAN

(b) TM-score before and after refine-
ment

(c) TMalign v.s. L12align (d) TMalign v.s. R3align

(e) TMalign v.s. L12R3align (f) fr-TM-align v.s. L12R3align

Fig. 2. Comparisons of the highest TM-scores found by TMalign and by using our
method

26 X. Cui et al.

minimize the RMSD of local fragment alignments, and that these ROTRANs
tend to form a large cluster, which can be identified easily by clustering the
sampled ROTRANs.

Next, we will demonstrate that our refinement step using randomly selected
ROTRANs, as described in Section 2.1, is able to consistently find protein struc-
ture alignments with similar or higher TM-scores [15]. Figure 2(b) shows the TM-
score before and after refining the optimal alignment found by TMalign [13]. It
can be seen that the TM-scores are mostly similar, while our refinement occa-
sionally improves the TM-score by up to 0.10. Specifically, after refinement, all
TM-scores are at most 0.0029 lower, while 3% of the TM-scores are at least
0.01 higher. Recall that the random ROTRANs used in the refinement step are
generated by finding the ROTRAN that minimizes the RMSD of size randomly
selected aligned residue pairs from the alignment. Thus, this result also verifies
our assumption that there exists a near optimal ROTRAN that minimizes the
RMSD of two small sets of Cα atoms.

To support our choices of local fragment size and of remote fragment pair size,
the highest TM-scores found by L12align and R3align are compared to those
found by TMalign in Figures 2(c) and 2(d), respectively. For protein structure
pairs that have TMalign TM-scores higher than 0.6, both L12align and R3align
can reliably find high quality alignments with similar TM-scores. For the other
protein structure pairs, both L12align and R3align tend to improve TM-scores,
although there may be some reductions of TM-scores. This demonstrates that
both L12align and R3align are capable of finding high quality alignments that
are comparable to or even better than those found by TMalign. In fact, the local
fragment size of 12 has also been used by fr-TM-align [14].

The improvements of TM-scores found by L12R3align over those found by
TMalign are shown in Figure 2(e). We see that TM-scores found by L12R3align
are mainly higher than those found by TMalign for the 284 protein structure
pairs that have TMalign TM-scores lower than 0.6. Specifically, L12R3align im-
proves TM-scores by 0.03 on average and by 0.21 in the best case. Moreover,
14% of the TM-scores are improved by at least 0.1, 30% of the TM-scores are
improved by at least 0.05, and only 2% of the TM-scores are reduced by at most
0.03. Comparing to Figures 2(c) and 2(d), the number of TM-scores found by
our method that are lower than those found by TMalign is significantly reduced
using both local fragments and remote fragment pairs.

If the highest TM-score found by TMalign is lower than 0.6 and the high-
est TM-score found by one of the tested methods is higher than 0.5, there is
a probability of 42% that TMalign failed to find TM-scores higher than 0.5.
In such cases, L12R3align tends to discover better protein structure alignments
with (possibly significantly) higher TM-scores, with a probability of only 2%
that L12R3align failed to find TM-scores higher than 0.5. This could signifi-
cantly improve fold detection results. Interestingly, L12R3align tends to improve
TM-scores more for α-proteins, while never reduces TM-scores for β-proteins.

In addition to comparison with TMalign, the TM-scores found by L12R3align
are also compared with those found by fr-TM-align [14] as shown in Figure 2(f).

Towards Reliable Automatic Protein Structure Alignment 27

Note that TM-scores found by L12R3align are also mainly higher than those found
by fr-TM-align for protein structure pairs that have fr-TM-align TM-scores lower
than 0.6. Specifically, L12R3align improves TM-scores by up to 0.13, while it re-
duces TM-scores by at most 0.02. Moreover, L12R3align finds 28 more TM-scores
that are higher than 0.5.

3.2 Search Algorithm Evaluation on GDT Score

In addition to TM-score [15], GDT [16] score is also one of the most popular pro-
tein structure alignment scoring function [31]. Thus, we repeated the experiment
in Section 3.1, but compared the GDT scores found by our method to those found
by SPalign [30], which is a new protein structure alignment tool that uses a search
algorithm similar to that of TMalign. SPalign aims to find one of the highest SP-
score, the highest TM-score, or the highest GDT score. If we included SPalign
in the previous experiment in Section 3.1, it would perform slightly better than
TMalign on average. Thus, SPalign has a effective search algorithm and it should
be a candidate for finding the highest GDT score for comparison. Again, only the
339 protein structure alignments with GDT scores higher than 0.5, found by at
least one of the tested methods, are included in this analysis.

(a) SPalign v.s. L12R3align (b) L12align v.s. R3align

Fig. 3. Comparisons of the highest GDT scores found by SPalign and by using our
method

Comparing the GDT scores found by L12R3align and SPalign as shown in
Figure 3(a), we find that L12R3align consistently finds similar or higher GDT
scores than SPalign. Specifically, L12R3align improves GDT scores by 0.06 on
average and by 0.25 in the best case. It is seen that 25% of the GDT scores are
improved by at least 0.09 and that 75% of the GDT scores are improved by at
least 0.02. Moreover, SPalign finds 145 alignments with GDT scores higher than
0.5, while L12R3align finds 314 alignments with GDT scores higher than 0.5.
Thus, 169 more alignments with GDT scores higher than 0.5 are discovered, with
an average GDT score improvement of 0.09. These results again supports that

28 X. Cui et al.

our protein structure alignment search algorithm can reliably find high quality
alignments.

To further study the contributions of local fragments and remote fragment
pairs to the GDT score improvements of L12R3align over SPalign, the GDT
scores found by L12align and R3align are compared in Figure 3(b). It can be seen
that both L12align and R3align find similar GDT scores when one of the GDT
scores found by L12align and R3align is higher than 0.65. For the remaining
protein structure pairs, both L12align and R3align are capable of discovering
some better GDT scores than is the other method. Generally, 47% of the GDT
scores found by L12align are up to 0.16 higher and 30% of the GDT scores
found by R3align are up to 0.14 higher. Therefore, local fragments have a greater
contribution in finding the highest GDT scores, while remote fragment pairs still
have a significant contribution in finding the highest GDT scores.

3.3 Scoring Function Evaluation on Consistency with Eye-Examed
Alignments

In this experiment, we would like to show that our scoring function is capable of
finding protein structure alignments that are significantly more consistent with
alignments examed visually by human-beings. Thus, we used protein structure
alignments from the HOMSTRAD database [21] as a benchmark and compared
the alignment quality of our protein structure alignment with that of TMa-
lign [13]. Here, the quality of the alignment is evaluated by the F-score, the
harmonic mean of recall and precision, of aligned residue pairs.

The HOMSTRAD database has been widely used in protein research, in-
cluding sequence-sequence alignment [32], sequence-structure alignment [33],
and structure-structure alignment [34], among others. The database contains
structure alignments of 3, 454 homologous protein structures from 1, 032 protein
families [21]. Since different sequences were read from alignment files and from
PDB structure files for some proteins, only 9, 429 out of 9, 535 protein structure
alignments from HOMSTRAD were included in this experiment.

For our experiment settings, we chose λ = 0.25 and w = 1.9, empirically.
Unlike previous experiment settings, we used local fragments of size 9 and remote
fragment pairs of size 3. Such experiment settings are balanced between the
accuracy and the speed of our protein structure alignment algorithm because
only a minor improvement on accuracy is gained by increasing the sizes, while
slowing down the running time. The local fragment size of 9 was previously
shown to be the optimal balance between the complexity of the model and the
amount of data required to train the model [35, 36]. Other experiment settings
remained the same as in the previous experiment.

The F-score differences between L9R3align and TMalign are shown in Figure
4(a). Using L9R3align, 47% of the F-scores are improved, and the average F-
score is improved from 88% to 90% compared to using TMalign. Moreover, there
are 663 L9R3align F-scores that are at least 10% higher and there are 1, 342
L9R3align F-scores that are at least 5% higher than the TMalign F-scores. For
comparison, 31% of the TMalign F-scores are higher, and only 124 TMalign

Towards Reliable Automatic Protein Structure Alignment 29

(a) F-score difference between L9R3align
and TMalign

(b) TMalign F-score v.s. L9R3align F-
score

Fig. 4. Comparisons of the F-scores of the aligned residue pairs found by L9R3align
and TMalign

F-scores are at least 10% higher. In total, TMalign finds 5, 560 protein structure
alignments with F-scores higher than 90%, while L9R3align finds 6, 114 such
alignments. Therefore, the protein structure alignments found by L9R3align are
10% more likely to be highly consistent (with F-score higher than 90%) with
eye-examined alignments, and tend to have similar or higher F-scores compared
to the protein structure alignments found by TMalign.

Among the 34 pairs of protein structures that have TMalign F-scores equal
to zero as shown in Figure 4(b), the L9R3align F-scores reach 36% on average.
Specifically, two L9R3align F-scores equal to 100% and 19 L9R3align F-scores are
higher than 50%. For the two cases that L9R3align F-scores are equal to 100%,
the aligned protein structures contain a high percentage of helices, and TMalign
shifts the HOMSTRAD alignment by a few residues, which has also been previ-
ously observed [37]. Such shifting is difficult to avoid by evaluating only structure
similarities. However, the shifting is avoided by our scoring function, involving
both structure and sequence similarities, in this experiment. Therefore, sequence
similarity does aids in finding high quality protein structure alignments that are
highly consistent with eye-examined alignments, even if structure similarity itself
fails to do so.

There is also one pair of protein structures in Figure 4(b) that the L9R3align
F-score equals to zero, while the TMalign F-score equals to 74%. Here, the HOM-
STRAD alignment can be represented by protein “AB-” aligning to protein “-
CD”, where each character represents a protein fragment and “-” represents a
gap region. One possible reason for this is that the weight parameters of our
scoring function are not yet optimized to completely break the dependency be-
tween the alignment score and the protein size. We have observed that such cases
can be eliminated by using different weight parameters, and this problem will
be addressed in our future work.

30 X. Cui et al.

4 Discussion and Conclusion

Therefore, our protein structure alignment method is not only reliable in finding
the optimal alignment with the highest alignment score, but is also capable
of discovering new alignments missed by current stat-of-art alignment search
algorithms and scoring functions. Our result verifies our assumption that there
exists a near optimal ROTRAN that minimizes the RMSD of two small sets
of Cα atoms. Our result also verifies that although structure similarity may be
efficient in many cases, sequence similarity helps to find better protein structure
alignments that are (possibly significantly) more consistent with eye-examined
alignments. This is the result of incorporating both local fragments and remote
fragment pairs in the alignment search algorithm, and of incorporating both
structure similarity and sequence similarity in the scoring function.

Our protein structure alignment algorithm is still subject to improvement and
application. Our scoring function remains capable of modeling more types of pro-
tein similarities, such as the (φ, ψ) dihedral angle distance and the secondary
structure distance. Unknown protein domain length problems when aligning
multi-domain proteins should also be addressed in the future as proposed by
SPalign [30]. It should be interesting to allow flexible ROTRANs within the
same cluster to find flexible structure alignments as seen in FATCAT [38] and
to find flexible multi-structure alignments as seen in Matt [39]. Moreover, the
alignment quality can be further studied by evaluating CASP protein structure
prediction [31], by checking self-consistency [37], and by simulating the SCOP
fold detection [26]. All these aid in fully automating protein structure alignment
process as good as or even better than human experts in the short future.

Acknowledgments. This work was supported by the Startup Grant at City
University of Hong Kong [7002731], the National Basic Research Program of
China [2012CB316500], an NSERC Grant [OGP0046506], the Canada Research
Chair program, an NSERC Collaborative Grant, OCRiT, the Premier’s Discov-
ery Award, the Killam Prize and SHARCNET.

References

1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28,
235–242 (2000)

2. Akutsu, T., Tashimo, H.: Protein structure comparison using representation by
line segment sequences. In: Pac. Symp. Biocomput., pp. 25–40 (1996)

3. Alexandrov, N.N.: SARFing the PDB. Protein Eng. 9(9), 727–732 (1996)
4. Caprara, A., Lancia, G.: Structural alignment of large-size proteins via lagrangian

relaxation. In: RECOMB 2002: Proceedings of the Sixth Annual International
Conference on Computational Biology, pp. 100–108. ACM, New York (2002)

5. Comin, M., Guerra, C., Zanotti, G.: Proust: a comparison method of three-
dimensional structure of proteins using indexing techniques. Journal of Compu-
tational Biology 11, 1061–1072 (2004)

Towards Reliable Automatic Protein Structure Alignment 31

6. Gerstein, M., Levitt, M.: Using iterative dynamic programming to obtain accu-
rate pairwise and multiple alignments of protein structures. In: Proceedings of
the Fourth International Conference on Intelligent Systems for Molecular Biology,
pp. 59–67. AAAI Press (1996)

7. Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising similarities in structure compar-
ison. Current Opinion in Structural Biology 6(3), 377–385 (1996)

8. Lancia, G., Carr, R., Walenz, B., Istrail, S.: 101 optimal pdb structure align-
ments: a branch-and-cut algorithm for the maximum contact map overlap problem.
In: RECOMB 2001: Proceedings of the Fifth Annual International Conference on
Computational Biology, pp. 193–202. ACM, New York (2001)

9. Singh, A.P., Brutlag, D.L.: Hierarchical protein structure superposition using both
secondary structure and atomic representations. In: Proceedings of the 5th Inter-
national Conference on Intelligent Systems for Molecular Biology, pp. 284–293.
AAAI Press (1997)

10. Subbiah, S., Laurents, D.V., Levitt, M.: Structural similarity of DNA-binding
domains of bacteriophage repressors and the globin core. Current Biology 3(3),
141–148 (1993)

11. Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental com-
binatorial extension (CE) of the optimal path. Protein Engineering 11(9), 739–747
(1998)

12. Xie, L., Bourne, P.E.: Detecting evolutionary relationships across existing fold
space, using sequence order-independent profile–profile alignments. PNAS 8(4),
5441–5446 (2008)

13. Zhang, Y., Skolnick, J.: Tm-align: a protein structure alignment algorithm based
on the tm-score. Nucleic Acids Research 33(7), 2302–2309 (2005)

14. Pandit, S.B., Skolnick, J.: Fr-tm-align: a new protein structural alignment method
based on fragment alignments and the tm-score. BMC Bioinformatics 9(1), 531
(2008)

15. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein struc-
ture template quality. Proteins: Structure, Function, and Bioinformatics 57(4),
702–710 (2004)

16. Zemla, A., Venclovas, Č., Moult, J., Fidelis, K.: Processing and analysis of casp3
protein structure predictions. Proteins: Structure, Function, and Bioinformat-
ics 37(S3), 22–29 (1999)

17. Levitt, M., Gerstein, M.: A unified statistical framework for sequence comparison
and structure comparison. Proceedings of the National Academy of sciences 95(11),
5913–5920 (1998)

18. Pirovano, W., Feenstra, K.A., Heringa, J.: The meaning of alignment: lessons from
structural diversity. BMC Bioinformatics 9(1), 556 (2008)

19. Daniels, N.M., Nadimpalli, S., Cowen, L.J., et al.: Formatt: Correcting protein
multiple structural alignments by incorporating sequence alignment. BMC Bioin-
formatics 13(1), 1–8 (2012)

20. Wang, S., Ma, J., Peng, J., Xu, J.: Protein structure alignment beyond spatial
proximity. Scientific Reports 3 (2013)

21. Mizuguchi, K., Deane, C.M., Blundell, T.L., Overington, J.P.: Homstrad: a
database of protein structure alignments for homologous families. Protein Sci-
ence 7(11), 2469–2471 (1998)

22. Zhang, Y., Skolnick, J.: Spicker: A clustering approach to identify near-native
protein folds. Journal of Computational Chemistry 25(6), 865–871 (2004)

32 X. Cui et al.

23. Balcan, M.F., Blum, A., Gupta, A.: Approximate clustering without the approxi-
mation. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, Society for Industrial and Applied Mathematics, pp. 1068–1077
(2009)

24. Moakher, M.: Means and averaging in the group of rotations. SIAM Journal on
Matrix Analysis and Applications 24(1), 1–16 (2002)

25. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biol-
ogy 48(3), 443–453 (1970)

26. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: Scop: a structural clas-
sification of proteins database for the investigation of sequences and structures.
Journal of Molecular Biology 247(4), 536–540 (1995)

27. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences 89(22), 10915–10919 (1992)

28. Eddy, S.R., et al.: Where did the blosum62 alignment score matrix come from?
Nature Biotechnology 22(8), 1035–1036 (2004)

29. Xu, J., Zhang, Y.: How significant is a protein structure similarity with tm-score=
0.5? Bioinformatics 26(7), 889–895 (2010)

30. Yang, Y., Zhan, J., Zhao, H., Zhou, Y.: A new size-independent score for pair-
wise protein structure alignment and its application to structure classification and
nucleic-acid binding prediction. Proteins: Structure, Function, and Bioinformat-
ics 80(8), 2080–2088 (2012)

31. Kinch, L., Yong Shi, S., Cong, Q., Cheng, H., Liao, Y., Grishin, N.V.: Casp9
assessment of free modeling target predictions. Proteins: Structure, Function, and
Bioinformatics 79(S10), 59–73 (2011)

32. Do, C.B., Mahabhashyam, M.S., Brudno, M., Batzoglou, S.: Probcons: Proba-
bilistic consistency-based multiple sequence alignment. Genome Research 15(2),
330–340 (2005)

33. Shi, J., Blundell, T.L., Mizuguchi, K.: Fugue: sequence-structure homology recog-
nition using environment-specific substitution tables and structure-dependent gap
penalties. Journal of Molecular Biology 310(1), 243–257 (2001)

34. Konagurthu, A.S., Whisstock, J.C., Stuckey, P.J., Lesk, A.M.: Mustang: a multiple
structural alignment algorithm. Proteins: Structure, Function, and Bioinformat-
ics 64(3), 559–574 (2006)

35. Rohl, C.A., Strauss, C.E., Misura, K., Baker, D.: Protein structure prediction using
rosetta. Methods in Enzymology 383, 66–93 (2004)

36. Maadooliat, M., Gao, X., Huang, J.Z.: Assessing protein conformational sampling
methods based on bivariate lag-distributions of backbone angles. Brief. Bioinform.
(2012)

37. Sadowski, M., Taylor, W.: Evolutionary inaccuracy of pairwise structural align-
ments. Bioinformatics 28(9), 1209–1215 (2012)

38. Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs
allowing twists. Bioinformatics 19(suppl. 2), ii246–ii255 (2003)

39. Menke, M., Berger, B., Cowen, L.: Matt: local flexibility aids protein multiple
structure alignment. PLoS Computational Biology 4(1), e10 (2008)

A Minimum-Labeling Approach

for Reconstructing Protein Networks
across Multiple Conditions

Arnon Mazza1, Irit Gat-Viks2, Hesso Farhan3, and Roded Sharan1

1 Blavatnik School of Computer Science,
Tel Aviv University, Tel Aviv 69978, Israel

roded@post.tau.ac.il
2 Dept. of Cell Research and Immunology,
Tel Aviv University, Tel Aviv 69978, Israel

3 Biotechnology Institute Thurgau, University of Konstanz,
Unterseestrasse 47, 8280 Kreuzlingen, Switzerland

Abstract. The sheer amounts of biological data that are generated in
recent years have driven the development of network analysis tools to
facilitate the interpretation and representation of these data. A
fundamental challenge in this domain is the reconstruction of a protein-
protein subnetwork that underlies a process of interest from a genome-
wide screen of associated genes. Despite intense work in this area, current
algorithmic approaches are largely limited to analyzing a single screen
and are, thus, unable to account for information on condition-specific
genes, or reveal the dynamics (over time or condition) of the process in
question. Here we propose a novel formulation for network reconstruction
from multiple-condition data and devise an efficient integer program so-
lution for it. We apply our algorithm to analyze the response to influenza
infection in humans over time as well as to analyze a pair of ER export
related screens in humans. By comparing to an extant, single-condition
tool we demonstrate the power of our new approach in integrating data
from multiple conditions in a compact and coherent manner, capturing
the dynamics of the underlying processes.

1 Introduction

With the increasing availability of high-throughput data, network biology has
become the method of choice for filtering, interpreting and representing these
data. A fundamental problem in network biology is the reconstruction of a sub-
network that underlies a process of interest by efficiently connecting a set of im-
plicated proteins (derived by some genome-wide screen) in a network of physical
interactions. In recent years, several algorithms have been suggested for different
variants of this problem, including the Steiner tree based methods of [1,2], the
flow based approach of [3] and the anchored reconstruction method of [4].

Despite the plethora of network reconstruction methods, these have been so
far largely limited to explaining a single experiment or condition. In practice, the

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 33–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

34 A. Mazza et al.

network dynamically changes over time or conditions, calling for reconstructions
that can integrate such data to a coherent picture of the activity dynamics of
the underlying pathways.

Here we tackle this multiple-condition scenario, where the reconstructed sub-
network should explain in a coherent manner multiple experiments driven by the
same set of proteins (referred to here as anchor proteins) while producing dif-
ferent subsets of affected proteins, or terminals. As in the single-condition case,
a parsimonious assumption implies that the reconstructed subnetwork should
be of minimum size. In addition, we require that its pathways, leading from
the anchor to each of the terminals, are as homogeneous as possible in terms
of the conditions, or labels they span. We formulate the resulting minimum
labeling problem, show that it is NP complete and characterize its solutions.
We then offer an equivalent formulation that allows us to design a polynomial
integer linear programming (ILP) formulation for its solution. We implement
the ILP algorithm, MKL, and apply it to two data sets in humans concerning
the response to influenza infection and ER export regulation. We show that the
MKL networks are significantly enriched with respect to the related biological
processes and allow obtaining of novel insights on the modeled processes. We fur-
ther compare MKL with an extant method, ANAT [4], demonstrating the power
of our algorithm in integrating data from multiple conditions in a compact and
informative manner. For lack of space, some algorithmic details are omitted or
deferred to an Appendix.

2 Preliminaries

Let G = (V,E) be a directed graph, representing a protein-protein interaction
(PPI) network, with vertex set V and edge set E. For a node v ∈ V , denote by
In(v) (Out(v)) the set of incoming (outgoing) edges of v, respectively. Let L =
{1, . . . , k} be a set of labels, representing k ≥ 1 conditions. Let f : E → 2(L) be
a labeling function that assigns each edge of E a possibly empty subset of labels.
For 1 ≤ i ≤ k, we define Ei(f) := {e ∈ E : i ∈ f(e)} to be the set of edges with
label i. We further denote fin(v) =

⋃
e∈In(v) f(e) and fout(v) =

⋃
e∈Out(v) f(e).

We say that a labeling function f is valid if for every terminal t and each
condition i in which it is affected, there is a path from the anchor to the terminal
whose edges are assigned with the label i. Formally, we require a path from a to
t that is restricted to Ei(f). We evaluate the cost of the labeling according to
the number of labels L(f) used and the number of edges N(f) that are assigned
with at least one label. Formally, L(f) =

∑
e∈E |f(e)| and N(f) = |{e ∈ E :

f(e) �= ∅}|. The cost is then defined as α ·L(f) + (1−α) ·N(f), where 0 ≤ α ≤ 1
balances the two terms.

We study the following minimum k-labeling (MKL) problem on G: The
input is an anchor node a ∈ V and k ≥ 1 sets of terminals T1, . . . , Tk in V \ {a}
that implicitly assign to each terminal the subset of conditions, or labels in
which it is affected. The objective is to find a valid labeling of the edges of G of
minimum cost.

A Minimum-Labeling Approach for Reconstructing Protein Networks 35

Clearly, any valid labeling induces a subnetwork that can model each of the
experiments: this subnetwork is comprised of those edges that are assigned a
non-empty subset of labels. We note that for k = 1 we have L(f) = N(f), thus
in this case the MKL problem is equivalent to the minimum directed Steiner
tree problem. The parameter α balances between two types of solutions: (1) A
subnetwork with minimum number of labels (α = 1), which is equivalent to the
union of independent Steiner trees of each of the experiments. (2) A subnetwork
with minimum number of edges (α = 0), which is simply a Steiner tree that
spans the union of all sets of terminals. However, general instances of MKL
where α �= 0, 1 can be solved neither by combining the independent Steiner trees
of each of the experiments nor by constructing a single Steiner tree over all
terminals. This is illustrated by the toy examples in Figures S5 and S6. Next,
we provide a characterization of solutions to the MKL problem.

Theorem 1. Given a solution labeling f to an MKL instance, let Gi denote the
subgraph of G that is induced by the edges in Ei(f). Then Gi is a directed tree
rooted at a.

Proof. By definition, there is a directed path in Gi from a to each of the terminals
in Ti. Clearly, any edge directed into a can be removed without affecting the
constraints of a valid solution. Thus, it suffices to show that the underlying
undirected graph of Gi contains no cycles. By minimality of the solution, every
vertex in Gi is reachable from a or else it can be removed along with its edges.
Suppose to the contrary that v1, . . . , vn is a cycle in the underlying graph. Since a
cannot be on this cycle and by the above observation, each of the cycle’s vertices
is reachable from a. W.l.o.g., let v1 be the farthest from a in Gi among all cycle
vertices. Then one can obtain a smaller solution by removing one of the edges
(v1, v2), (vn, v1) (depending on their orientations), a contradiction.

As noted earlier, when k = 1 the MKL problem is equivalent to the minimum
directed Steiner tree problem, which is known to be NP-complete [5]. A simple
reduction from this case yields the following result:

Theorem 2. The MKL problem is NP-complete for every k ≥ 1.

3 The MKL Algorithm

As the MKL problem is NP-complete, we aim to design an integer linear program
(ILP) for it, which will allow us to solve it to optimality or near-optimality for
moderately-sized instances. In order to design an efficient ILP, we first provide
an alternative formulation of the MKL problem, expressed in terms of units of
flow per label pushed from the anchor toward the terminals. To this end, we
extend the labeling to assign multi-sets rather than sets. We denote a multi-set
by a pair M = 〈S, μ〉, where S is a set and μ : S → Z+. We say that x ∈ M if
x ∈ S. We let |M | denote the cardinality of the underlying set S.

36 A. Mazza et al.

The union � of two multi-sets 〈S1, μ1〉, 〈S2, μ2〉 is defined as the pair 〈S, μ〉,
where S = S1 ∪ S2; for every x ∈ S1 ∩ S2, μ(x) = μ1(x) + μ2(x); for x ∈ S1 \ S2,
μ(x) = μ1(x); and for x ∈ S2 \ S1, μ(x) = μ2(x). We extend the definitions of
fin(v) and fout(v) to multi-sets using this union operator. Finally, for a vertex
v �= a we let L(v) = {i ∈ L : v ∈ Ti}; note that for non-terminal nodes
L(v) = ∅.

The alternative objective formulation is as follows: Find a multi-set label
assignment g that satisfies the following constraints:
(i) gout(a) = 〈L, μ〉, where μ(i) = |Ti| for every i ∈ L.

(The total amount of flow that goes out from the anchor per label equals the
number of terminals that belong to the corresponding experiment).
(ii) For every v �= a, gin(v) = gout(v) � L(v).
(For each label i, the incoming flow of a node v equals its outgoing flow, incre-
mented by 1 if v is a terminal expressed in experiment i).
(iii) Denote L(g) =

∑
e∈E |g(e)|, N(g) = |{e ∈ E : g(e) �= ∅}|, and let 0 ≤ α ≤ 1.

Then α · L(g) + (1− α) ·N(g) is minimal.

We claim that the two formulations are equivalent. Given a multi-set labeling
g, it is easy to transform it into a labeling f by taking at each edge the underlying
set of labels. One can show that the labeling f is valid, i.e. for each i there are
paths in Ei(f) that connect a to each of the terminals in Ti. For the other
direction, given a labeling f we can transform it into a multi-set labeling g by
defining the multiplicity of a label i at the edge (u, v) ∈ Ei(f) as the number of
terminals from Ti in the subtree of Gi that is rooted at v. It is easy to see that
all constraints are satisfied by this transformation.

The above problem formulation can be made stricter by requiring that the set
of incoming labels to a terminal is exactly the set of labels associated with the
terminal. That is, for every terminal t and i ∈ L\L(t), we require that i /∈ gin(t).
Our ILP formulation includes these requirements to reflect the experimental
observations, but in practice the strict and non-strict versions produce very
similar results.

3.1 An ILP Formulation

In order to formulate the problem as an integer program, we define three sets
of variables: (i) binary variables of the form yie, indicating for every e ∈ E and
i ∈ L whether the edge e is tagged with label i; (ii) integer variables of the form
xi
e, indicating for every e ∈ E and i ∈ L the multiplicity of label i (in the range

of 0 to |Ti|); and (iii) binary variables of the form ze, indicating for every e ∈ E
whether the edge e participates in the subnetwork (carrying any label). For a
vertex v ∈ V , let biv be a binary indicator of whether i ∈ L(v) or not. Let α be
some fixed value in the range [0, 1]. The formulation is as follows (omitting the
constraints on variable ranges):

A Minimum-Labeling Approach for Reconstructing Protein Networks 37

min α ·
∑

e∈E,i∈L yie + (1− α) ·
∑

e∈E ze

s.t.:

yie ≤ xi
e ≤ |Ti| · yie ∀e ∈ E, i ∈ L

yie ≤ ze ∀e ∈ E, i ∈ L∑
e∈Out(a) x

i
e = |Ti| ∀i ∈ L∑

e∈In(v) x
i
e =

∑
e∈Out(v) x

i
e + biv ∀v ∈ V \ {a}, i ∈ L∑

e∈In(t) y
i
e = 0 ∀t ∈ T, i /∈ L(t)

3.2 Implementation Details and Performance Evaluation

We used the commercial IBM ILOG CPLEX optimizer to solve the above ILP.
Since solving an ILP is time consuming, we devised a heuristic method for fil-
tering the input network, aiming to capture those edges that the MKL optimal
solution is more likely to use. Specifically, we focused on (directed) edges that
lie on a near shortest path (up to one edge longer than a shortest path) be-
tween the anchor and any of the terminals. Further, we accepted approximate
solutions which enabled our experiments to end within at most two hours. Re-
stricted by this time frame, we attained solutions deviating by at most 5% and
7% from the optimal value for the influenza dataset and the ER export dataset
(see Experimental Results Section), respectively.

We tested the robustness of MKL to different choices of α on the two datasets
we analyzed, observing that the number of edges and labels varied by at most
8% and 4%, respectively, over a wide range of values (0.25 − 0.75). Thus, we
chose α = 0.5 for our analyses in the sequel.

We evaluated a solution subnetwork using both network-based and biologi-
cal measures. The network-based measures included the cost and a homogeneity
score. We defined the homogeneity of a node v as the frequency of the most
frequent subset of labels among the t(v) terminals under v, divided by t(v); the
homogeneity score of the subnetwork was then defined as the average over all
nodes that span at least two terminals. To quantify the biological significance of
the reconstructed subnetworks, we measured the functional enrichment of their
internal nodes (non-input nodes) with respect to validation sets that pertain to
the process in question. In addition, we provide expert analysis of the subnet-
works.

We compared the performance of our method to that of the state-of-the-art
ANAT reconstruction tool [4], which was shown to outperform many existing
tools in anchored reconstruction scenarios. For each data set, we applied ANAT
(with its default parameters, and without the heuristic filtering) to each con-
dition separately, then unified the results to get an integrated subnetwork. We
labeled the solution straightforwardly: an edge e was labeled i if e participated
in the subnetwork that was constructed for condition i.

38 A. Mazza et al.

4 Experimental Results

We tested the performance of our algorithm on two human data sets that con-
cern the cellular response to PR8 influenza virus and ER export regulation. The
two data sets were analyzed in the context of a human PPI network reported
in [4] which contains 44,738 (bidirectional) interactions over 10,169 proteins. We
compared our results to those of a previous tool, ANAT [4], applying it indepen-
dently to each of the terminal sets and taking the union of the subnetworks as
the result. We describe these applications below.

4.1 Response to Influenza Infection

We used data on the response to viral infection by the H1N1 influenza strain
A/PR/8/34 (’PR8’) in primary human bronchial epithelial cells [6]. The data
set contains a collection of 135 virus-human PPIs and gene expression profiles,
measured at different time points along the course of the infection. We focused
on four time points (the “conditions”) t = 2, 4, 6, 8 (i.e. k = 4 labels), in each
time point selecting those genes that were differentially expressed above a cutoff
of 0.67 [6]. We did not include time points earlier than t = 2 or later than t = 8,
as the former had no or very few differentially expressed genes, while the latter
induced an order of magnitude larger gene sets that are presumably associated
with secondary responses.

We augmented the human network by the influenza-host PPIs and an auxiliary
anchor node (named ’virus’) which we connected to the 10 viral proteins. After
the filtering, the network contained 1,598 proteins and 8,708 interactions. The
four terminal sets contained 8,19,19 and 49 proteins, respectively, with 77 total
in their union, out of which 57 were reachable from the anchor. The resulting
MKL subnetwork, which is shown in Figure 1, contains 127 edges over 123 nodes
(117 human, 5 viral and the anchor node) with 60 internal (non-input) nodes.
This is in contrast to the much larger ANAT solution on this data set, containing
173 nodes and 106 internal ones. The subnetworks are quite different in terms
of node composition, having 31 internal intersecting nodes. A summary of our
network-based measures for the two subnetworks can be found in Figure 2.

Next, we scored the enrichment of both subnetworks with viral infection re-
lated processes such as: viral reproduction, intracellular receptor mediated sig-
naling pathway and apoptosis. The MKL subnetwork was highly enriched with
these processes, outperforming the ANAT subnetwork (Figure 3). In the follow-
ing we present a detailed analysis of the MKL inferred subnetwork and demon-
strate its high predictive power and its ability to characterize viral proteins and
host mediators in terms of their temporal effect on their targets. Specifically,
we show that this subnetwork suggests that an imbalance in the timing of ef-
fect between viral proteins (e.g. M1 and NP) or between host mediators (such as
Smad3 and UBC) can reveal their different kinetics of influence on host proteins.
This is in large contrast to the results produced by the ANAT tool, which does
not provide any timing imbalance among downstream targets of viral proteins
or host mediators (data not shown due to space constraints).

A Minimum-Labeling Approach for Reconstructing Protein Networks 39

RNF5

TGFBR1

NS1

UBC

CCDC33

HMGB1NCL SOX30 CCDC85B FBXO34PLSCR1HSPB2 FNTARASA1LSM1 CD44

GBP1
TRIB3

MNTVCAN
SFN

TRIM22KRIT1
IFIH1 SP100

CXCL10

M1

STAU1

virus

TRAF2

PB2

SOX9CDKN1B

EXOSC8

ATG12N4BP1 RERESPSB1 BAMBISWAP70 CLK4 TSPYL4RAP1A

IFI27

TRPS1
CCND1CSTF1

RNF4BRCA1

IFIT5

TMEM66IRF7TFRC IGF2R NUPR1AKAP11

SP110

RND3

MX1

DDIT3

DAXX

NDUFV2

KAT5

IRF9

RELA
BTG1

C1orf63

RGNEF

STAT1 ESR1

ABLIM1

RPS6KA1

TOB2

RCOR1

DEFB1

GADD45B

IL32

VIM

JUND

HMG20B

IFITM1TRIP13

DDX58

PA

TRIM21PARK2

HOMER1

C1orf116 KIAA1609

ERC1

YWHAH

TUBGCP4

RBBP6

CD81

CLK3

YWHAG

OBFC1
PRMT1ISG15

NEDD4

DPM2IFIT1

DPM1

COPS6

EIF3E

CIB1

MAGED1

UBR5

IFIT2

RANBP9

PIGAIFIT3

PRTN3
SAT1

IFI6

GGA1

EDN1

EP300PRKAR2A

NP

MAGEA6

RAB3GAP1

SMAD3

Fig. 1. The MKL subnetwork for the influenza infection data. Terminal
nodes are marked by their corresponding time point: t=2 - yellow/triangle; t=4 -
green/square; t=6 - red/hexagon; t=8 - gray/octagon; more than one time point -
cyan oval nodes with thick border. The root is the artificial virus node and the first
level is composed solely of viral proteins.

Measure MKL ANAT
no. of labels 171 277
no. of edges 127 195

cost 149 236
homogeneity score 0.63 0.58

no. of labels 152 213
no. of edges 145 203

cost 148.5 208
homogeneity score 0.88 0.74

Influenza
infection

ER export

Fig. 2. Summary statistics for the MKL and ANAT subnetworks on the viral infection
and ER export data sets

Biological process MKL ANAT

intracellular receptor mediated signaling pathway (GO:0030522) 6.5E-10 2.1E-04

apoptosis (GO:0006915) 3.7E-04 1.7E-04

viral reproduction (GO:0016032) 2.5E-03 >0.05

vesicle-mediated transport (GO:0016192) 2.7E-10 2.4E-08

cellular membrane organization (GO:0016044) 5.5E-10 2.7E-09

intracellular protein transport (GO:0006886) 3.7E-07 1.7E-07

Influenza
infection

ER export

Fig. 3. Comparison of enrichments of the MKL and ANAT solutions with respect to
influenza infection and ER export related processes

40 A. Mazza et al.

We first present an example of an inferred pathway, selected to demonstrate our
MKL approach. The PA-Rnf5-UBC-DAXX-MX1 and NS1-SP100-MX1 paths are
a clear example of a predicted pathway that is well supported by extant experi-
mental findings. It is consistent with the known role of both DAXX and SP100 as
major components of the PML bodies which control together the localization of
MX1 in distinct nuclear components [7]. Further, DAXX is known to be regulated
in vivo by ubiquitination through UBC and Rnf5 [8], supporting our placement of
DAXX downstream to UBC.

The MKL network shows that the targets of some human proteins have a
common temporal behavior, whereas others have different downstream tempo-
ral responses. This is consistent with the fact that PPIs naturally represent
different mechanisms that might differ in their kinetics. For example, the targets
of Traf2 are all early responding genes whereas the targets of Ccdc33 have longer
temporal responses. The early effect of Traf2 is consistent with the findings that
Traf2 is a signaling transduction kinase protein with fast kinetics. A similar
characterization can be applied to other signal transduction proteins such as
Smad3. Conversely, the Ccdc33 protein regulates its targets in late time points
(6-8 hours) by an unknown mechanism. The results here suggest that this mech-
anism is orders of magnitude slower than phosphorylation. Similarly, the control
of Rnf5 and UBC is expected to show fast kinetics through ubiquitination. In
contrast, we find that all the Rnf5/UBC 19 targets are controlled in late time
points (6-8 hours), suggesting a novel temporal (late) control on the activity of
Rnf5-specific UBC-based ubiquitination during t he course of influenza infection.

4.2 Regulation of Endoplasmic Reticulum (ER) Export

The journey of secretory proteins, which make up roughly 30% of the human pro-
teome starts by exit from the ER. Export from the ER is executed by so called
COPII vesicles that bud from ER exit sites (ERES). A protein that is of central
importance for ERES biogenesis and maintenance is Sec16A, a large (˜250 kDa)
protein that localizes to ERES and interacts with COPII components [9]. We
have recently performed a siRNA screen to test for kinases and phosphatases
that regulate the functional organization of the early secretory pathway [10].
Among the hits identified were 64 kinases/phosphatases that when depleted re-
sult in a reduction in the number of ERES. Thus, these are 64 different potential
regulators of ER export. More recently, a full genome screen tested for genes that
regulate the arrival of a reporter protein from the ER to the cell surface [11].
There, the depletion of 45 proteins was shown to affect ERES. However, whether
the defect in arrival of the reporter to the cell surface was due to an effect on
ER export or due to alterations in other organelles along the secretory route
(e.g., Golgi apparatus) remains to be determined.

We applied MKL to these two screens, serving as two “conditions” high-
lighting different repertoires of ER export signaling-regulatory pathways. As the
two screens do not intersect (most likely due to differences in read-outs), there
were 109 terminals overall, 85 of them reachable in our human PPI network.

A Minimum-Labeling Approach for Reconstructing Protein Networks 41

Due to its central importance for ER export and ERES formation, we chose
Sec16A as the anchor for this application. After filtering, the network contained
1,907 nodes and 11,329 edges. The resulting MKL subnetwork, containing 145
nodes and 59 internal ones, is depicted in Figure 4. In comparison, the ANAT
solution contains 190 nodes and 104 internal ones (with 35 internal nodes com-
mon to the two solutions). As evident from Figure 2, the MKL solution has
substantially lower cost and is more homogeneous.

We assessed the functional enrichment of the MKL subnetwork with biological
processes that are of relevance to ER export such as cellular membrane organi-
zation, intracellular protein transport and vesicle-mediated transport. All three
categories were highly enriched and the p-values attained compare favorably to
those computed for the ANAT solution (Figure 3).

Interestingly, 4 proteins of the MKL solution are related to autophagy (two of
them internal nodes, p = 0.02). Autophagy is an endomembrane-based cellular
process that is responsible for capturing and degradation of surplus organelles
and proteins. Links between ER export and autophagy have been proposed [12]
but there is very limited mechanistic insight into this link. The vesicle-mediated
transport process includes the STX17, SNAP29 and ULK1 proteins. The latter
is a kinase that initiates the biogenesis of autophagosomes [13]. STX17 and
SNAP29 were recently proposed to be involved in autophagy by promoting the
formation of ER-mitochondria contact sites and the fusion of autophagosomes
with lysosomes [14,15]. As the MKL network was generated with terminals and
an anchor that regulate ER export, we propose that this approach could be used
to identify the molecular link between secretion and autophagy in the future.

SST

ARHGAP44

CUL2

PFKFB3

PDK4

RAC1SIRT2

RAP1GDS1

MTMR2

TUBA4ANEFL

SLC2A4

HK2DNM1 GAB1RHOU

PGK1

PIK3CG

MAPK4

MERTKSOS2EPHB2

ACP1

TOM1L1

INADL

PDGFRA

RABAC1

RAB18

NME5

KRT15

TNIK KRT6B

TRAF2

USP2

ZNF205 YWHAZGORASP2

GPTVIM

GRB2 GAPDH PPFIA1PACSIN1

GRIN2B

ULK1
MAST3DYDC1

RYR2 RHOACKMT1BPIM1 C9orf163 HGS PTPRJPTK6NME7DCD

CDC42BPB LRRK1DGKZ USHBP1EPHA3 ROCK2 DGKQTRIOSDCBP PRKACG

PRPS1 NME1 PRKACAPRKCI FOXO1 CSNK1A1 BADTLK2

PRKCZ

MAPK8IP3

MAPK1

LTKVDAC1

RAF1

KRT18 EGFRCNKSR1WEE1

NME4 SRCCSNK1G1SMG1

RELA

APBA2 SIRT1HDAC1 MYC

CLUSTX1A COPGCTGFSTX1B MMP14 IFIH1RIOK3

FBXW7

NFKB2

MAP2K4

IKBKB

SEC16A

MMS22L

BTK

MAP3K1

SMNDC1ZBED5 SNAP29RUFY3 SYT7

CAPN1 SSTR3

IFT88

CDK7HTT CDK5 TAF1PTEN

STX17

YWHAG GPS1

TRIM63

MAP3K12

SMAD4

PIK3AP1

TP53

MAPK12

RUVBL1

PIP5K1C

UNC119

LRP8BUB1BUBE2I RUVBL2 ATG5LRP1 COPB2 MCM7CLSTN3STXBP1

Fig. 4. The MKL subnetwork for the ER export data. Terminal nodes are
colored/shaped according to the screen they were discovered in: [10] - yellow/triangle,
and [11] - cyan/square.

42 A. Mazza et al.

5 Conclusions

The protein-protein interaction network represents a combination of diverse reg-
ulation and interaction mechanisms operating in different conditions and time
scales. Integrating such data in a coherent manner to describe a process of in-
terest is a fundamental challenge, which we aim to tackle in this work via a
novel ILP-based minimum labeling algorithm. We apply our algorithm to two
human data sets and show that it attains compact solutions that capture the
dynamics of the data and align well with current knowledge. We expect this type
of analysis to gain further momentum as composite data sets spanning multiple
conditions and time points continue to accumulate.

Acknowledgments. AM was supported in part by a fellowship from the Ed-
mond J. Safra Center for Bioinformatics at Tel Aviv University. RS was sup-
ported by a research grant from the Israel Science Foundation (grant no. 241/11).

References

1. Beisser, D., Klau, G., Dandekar, T., Mueller, T., Dittrich, M.: BioNet an R-package
for the functional analysis of biological networks. Bioinformatics 26, 1129–1130
(2010)

2. Huang, S., Fraenkel, E.: Integrating proteomic, transcriptional, and interactome
data reveals hidden components of signaling and regulatory networks. Sci. Sig-
nal. 2(81), ra40 (2009)

3. Lotem, E., Riva, L., Su, L., Gitler, A., Cashikar, A., King, O., Auluck, P., Geddie,
M., Valastyan, J., Karger, D., Lindquist, S., Fraenkel, E.: Bridging high-throughput
genetic and transcriptional data reveals cellular responses to alpha-synuclein toxi-
city. Nature Genetics 41, 316–323 (2009)

4. Yosef, N., Zalckvar, E., Rubinstein, A., Homilius, M., Atias, N., Vardi, L., Berman,
I., Zur, H., Kimchi, A., Ruppin, E., Sharan, R.: ANAT: A tool for constructing
and analyzing functional protein networks. Sci. Signal. 4 (2011)

5. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman & Co. (1979)

6. Shapira, S., Gat-Viks, I., Shum, B., Dricot, A., Degrace, M., Liguo, W., Gupta,
P., Hao, T., Silver, S., Root, D., Hill, D., Regev, A., Hacohen, N.: A physical and
regulatory map of host-influenza interactions reveals pathways in H1N1 infection.
Cell 139(7), 1255–1267 (2009)

7. Engelhardt, O., Sirma, H., Pandolfi, P., Haller, O.: Mx1 GTPase accumulates in
distinct nuclear domains and inhibits influenza A virus in cells that lack promye-
locytic leukaemia protein nuclear bodies. J. Gen. Virol. 85(8), 2315–2326 (2004)

8. Wagner, S., Beli, P., Weinert, B., Nielsen, M., Cox, J., Mann, M., Choudhary,
C.: A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals
widespread regulatory roles. Mol. Cell. Proteomics 10(10) (2011)

9. Watson, P., Townley, A., Koka, P., Palmer, K., Stephens, D.: Sec16 defines endo-
plasmic reticulum exit sites and is required for secretory cargo export in mam-
malian cells. Traffic 7(12), 1678–1687 (2006)

A Minimum-Labeling Approach for Reconstructing Protein Networks 43

10. Farhan, H., Wendeler, M., Mitrovic, S., Fava, E., Silberberg, Y., Sharan, R., Ze-
rial, M., Hauri, H.: MAPK signaling to the early secretory pathway revealed by
kinase/phosphatase functional screening. J. Cell. Biol. 189, 997–1011 (2010)

11. Simpson, J., Joggerst, B., Laketa, V., Verissimo, F., Cetin, C., Erfle, H., Bexiga, M.,
Singan, V., Hériché, J., Neumann, B., Mateos, A., Blake, J., Bechtel, S., Benes, V.,
Wiemann, S., Ellenberg, J., Pepperkok, R.: Genome-wide RNAi screening identifies
human proteins with a regulatory function in the early secretory pathway. Nat. Cell
Biol. 14(7), 764–774 (2012)

12. Ishihara, N., Hamasaki, M., Yokota, S., Suzuki, K., Kamada, Y., Kihara, A., Yoshi-
mori, T., Noda, T., Ohsumi, Y.: Autophagosome requires specific early Sec proteins
for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell. 12(11),
3690–3702 (2001)

13. Mizushima, N.: The role of the Atg1/ULK1 complex in autophagy regulation. Curr.
Opin. Cell Biol. 22(2), 132–139 (2010)

14. Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N.,
Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., Amano, A., Yoshimori, T.: Au-
tophagosomes form at ER-mitochondria contact sites. Nature 495(7441), 389–393
(2013)

15. Itakura, E., Mizushima, N.: Syntaxin 17: The autophagosomal SNARE. Au-
tophagy 9(6) (2013)

A Supplementary Figures

1,2

1,2

1,2

1,2

2

1,2 1

1,2

2

a

x2 x1x3

Fig. S5. The optimal MKL solution for α = 0.5 is neither the union of label-
specific Steiner trees nor a subgraph of it. In this instance k = 2, T1 = {x1, x2}
and T2 = {x2, x3}. The optimal Steiner trees for T1 and T2 are composed of the blue
(solid) and red (dashed) edges, resp. The best MKL solution that uses only edges of
the union can be achieved by pushing label 1 over the blue edges and 2 over the red
edges, resulting in 14 labels and 14 edges. In contrast, the optimal solution, whose
labels appear on top of the figure, contains the blue and green (waved) edges, spanning
15 labels and 9 edges.

44 A. Mazza et al.

a

yx zw

Fig. S6. The optimal MKL solution for α = 0.6 is not a minimum Steiner
tree over all terminals. In this instance k = 2, T1 = {x,w} and T2 = {y, z}. The
black (solid) edges form a Steiner tree with 6 edges and 8 labels, whereas the blue
(dashed) edges constitute an MKL solution with 7 edges and 7 labels.

Faster Mass Decomposition

Kai Dührkop, Marcus Ludwig, Marvin Meusel, and Sebastian Böcker

Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
sebastian.boecker@uni-jena.de

Abstract. Metabolomics complements investigation of the genome,
transcriptome, and proteome of an organism. Today, the vast majority
of metabolites remain unknown, in particular for non-model organisms.
Mass spectrometry is one of the predominant techniques for analyzing
small molecules such as metabolites. A fundamental step for identifying
a small molecule is to determine its molecular formula.

Here, we present and evaluate three algorithm engineering techniques
that speed up the molecular formula determination. For that, we mod-
ify an existing algorithm for decomposing the monoisotopic mass of
a molecule. These techniques lead to a four-fold reduction of running
times, and reduce memory consumption by up to 94%. In comparison
to the classical search tree algorithm, our algorithm reaches a 1000-fold
speedup.

1 Introduction

Metabolomics complements investigation of the genome, transcriptome, and
proteome of an organism [14]. Today, the vast majority of metabolites remain
unknown, and this is particularly the case for non-model organisms and sec-
ondary metabolites: for many organisms, there is a striking discrepancy between
the number of identified metabolites and the prediction of secondary metabolite-
related biosynthetic pathways through recent genome-sequencing results, see for
example [8]. The structural diversity of metabolites is extraordinarily large, and
much larger than for biopolymers such as proteins. In almost all cases, we can-
not deduce the structure of metabolites from genome sequences, as it is done
with proteins. Mass spectrometry (MS) is one of the two predominant experi-
mental analysis techniques for detecting and identifying metabolites and other
small molecules, the other being nuclear magnetic resonance (NMR). The most
important advantage of MS over NMR is that it is orders of magnitude more
sensitive, making it the method of choice for medium- to high-throughput screen-
ing applications [14]. Newly identified metabolites often serve as leads in drug
design [15], in particular for novel antibiotics [7].

In a mass spectrometry experiment, we measure the mass-to-charge ratios
(m/z) of a peak, corresponding to an ion of the intact molecule or its fragments.
Here, we omit the analysis of the charge state and assume that the mass m of
the ion is known: In most cases, small molecules receive only a single charge,
and other cases can be either detected by analyzing the isotope pattern on the
metabolite, or simply by iterating over the few possible charge states.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 45–58, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

46 K. Dührkop et al.

One of the most basic — but nevertheless highly important — steps when
analyzing a molecule, is to determine its molecular formula. We note in passing
that mass spectrometry does not record the mass of the uncharged molecule
but rather the mass of the corresponding ion; for the sake of clarity, we ignore
this difference in the following. Common approaches first compute all candidate
molecules with mass sufficiently close to a peak mass in the measured spectrum,
using an alphabet of potential elements. In a second step, additional information
is used to score the different candidate molecules, for example using isotope
pattern or fragmentation pattern information. The identified molecular formulas
may then serve as a basis for subsequent identification steps. The problem of
decomposing peak masses lies at the core of practically every approach for the
interpretation of small molecule MS data that does not directly depend on a
spectra library: See for example [3, 6, 13, 18, 19, 21, 23, 25].

First approaches for decomposing masses date back to at least the 1970’s [9,
22], where the naïve search tree algorithm described below is mentioned for the
first time. Running times of this algorithm are often prohibitive, particularly
for large alphabets of elements. Fürst et al. [10] proposed a faster decomposi-
tion algorithm which, unfortunately, is limited to the four elements CHNO. For
integer-valued masses, the problem is closely related to unbounded integer knap-
sacks [17]. Here, an algorithm that works for arbitrary alphabets of elements is
“folklore” in computer science, and can solve the problem in pseudo-polynomial
running time [17]. Böcker and Lipták [4,5] presented an algorithm that requires
only little memory and is swift in practice. Decomposing real-valued masses using
the integer-mass approaches was introduced in [3]. See also the review [24].

In this paper, we present three algorithm engineering techniques to speed up
the decomposition of peak masses in practice. First, we replace the recursive
decomposition algorithm by an iterative version that mimics the recursive enu-
meration, but is faster in practice. Second, we show how to minimize rounding
error accumulation when transforming real-valued masses to their integer-valued
counterparts. Finally, we modify the algorithm from [5] to decompose intervals
instead of single masses, based on ideas from [1]. Together, these improvements
result in 4.2-fold decreased running times, compared to the previously fastest
approach [3]. We evaluate this on four experimental datasets.

2 Preliminaries

In the following, let a′1, . . . , a
′
k ∈ R>0 denote the masses of our alphabet Σ, see

Table 1 for masses of elements.1 We usually assume that these masses are ordered
and, in particular, that a′1 is minimum. We want to decompose the mass of a
peak in a measured spectrum, but we have to take into account measurement
inaccuracies. To this end, we assume that we are given an interval [l′, u′] ⊆ R,
and want to find all decompositions c = (c1, . . . , ck) ∈ Nk such that

∑k
j=1 cja

′
j ∈

[l′, u′]. Analogously, we can decompose integer masses over an alphabet of integer
1 For readability, we will denote the real-valued masses by a′

j , l
′, u′ and the integer-

valued masses by aj , l, u.

Faster Mass Decomposition 47

Table 1. Elements considered in this paper. For each element we report the monoiso-
topic mass, that is, the mass of the naturally occurring isotope with smallest nucleon
number (NN). Masses taken from [2].

element symbol NN mass (Da)
hydrogen H 1 1.007825

carbon C 12 12.000000
nitrogen N 14 14.003074
oxygen O 16 15.994915

phosphor P 31 30.973762

element symbol NN mass (Da)
sulfur S 32 31.972071

chlorine Cl 35 34.968853
bromine Br 79 78.918337

iodine I 127 126.904473

masses a1, . . . , ak. Again, we assume that masses are ordered and that a1 is
minimum. We want to find all decompositions c = (c1, . . . , ck) ∈ Nk such that∑k

j=1 cjaj ∈ {l, . . . , u} where l, u are integer.
Böcker et al. [3] describe how to transform an instance of the real-valued mass

decomposition problem into an integer-valued instance, see there for details. We
briefly recapitulate the method: For a given blowup factor b ∈ R we transform
real-valued masses a′1, . . . , a′k into integer masses aj := �ba′j�. (Different from [3]
we will round down here, as this presentation appears to be somewhat easier to
follow.) We want to find all real-valued decompositions in the interval [l′, u′] ⊆ R.
Regarding the upper bound we have

∑
j cjaj ≤ b

∑
j cja

′
j ≤ bu′ and, as the left

side is integer,
∑

j cjaj ≤ �bu′�. For the lower bound, we have to take into
account rounding error accumulation: We define relative rounding errors

Δj = Δj(b) :=
ba′j − �ba′j�

a′j
= b−

�ba′j�
a′j

for j = 1, . . . , k, (1)

and note that 0 ≤ Δj < 1
a′
j
. Let Δ = Δ(b) := maxj{Δj}. Then,

∑
j a

′
jcj ≥ l′

implies
∑

j ajcj ≥ bl′−Δl′, see [3] for details. To this end, we can decompose in-
teger masses in the interval l := �bl′−Δl′� to u := �bu′�. Doing so, we guarantee
that no real-valued decomposition will be missed. The list of integer decomposi-
tions will contain false positive decompositions, but these can be easily filtered
out by checking

∑
j cja

′
j ∈ [l′, u′] for each integer decomposition.

Mass accuracy of an MS instrument depends linearly on the mass that we
measure, and is usually given in “parts per million” (ppm). Formally, for a given
mass m ∈ R and some ε > 0, we want to find all masses in the interval [l′, u′]
with l′ := (1 − ε)m and u′ := (1 + ε)m. To this end, the width u′ − l′ = 2εm of
the interval that we want to decompose, is linear in the mass m.

For integer masses, the number of decompositions γ(m) of some mass m
asymptotically equals γ(m) ∼ 1

a1···ak
mk−1 [26]. This leads to a similar estimate

for real-valued masses [3]. In general, this asymptotic estimate is accurate only
for very large masses; for molecular formulas, it is a relatively good estimate
even for small masses [3].

48 K. Dührkop et al.

1: procedure FindAllRecursive(integer i ≤ k, mass m, decomposition c)
2: if i = 0 then
3: Output c and return
4: end if
5: if decomposable(i− 1,m) = 1 then
6: FindAllRecursive(i− 1,m, c)
7: end if
8: if m ≥ ai and decomposable(i,m− ai) = 1 then
9: FindAllRecursive(i,m− ai, c+ ei)

10: end if
11: end procedure

Fig. 1. Recursive algorithm for enumerating all decompositions of a given mass m. To
decompose mass M , this algorithm is initially called as FindAllRecursive(k,M, 0).
Vector ei denotes the ith unit vector.

3 Algorithms for Decomposing Masses

The conceptually simplest algorithm for decomposing masses is a search tree
that recursively builds up the decompositions (molecular formulas), taking into
account the mass accuracy. The algorithm is very similar to FindAllRecursive

in Fig. 1, we leave out the straightforward details. This algorithm has been
suggested several times in the literature [1, 9, 22]. The major disadvantage of
this algorithm is that its running time is not output-sensitive: For a constant
alphabet of size k, the algorithm requires Θ(mk−1) time, even if there is not a
single decomposition.

To decompose an integer over an alphabet Σ = {a1, . . . , ak} of integer masses,
we can use algorithm FindAllRecursive in Fig. 1. This algorithm requires an
oracle such that decomposable(i,m) = 1 if and only if m is decomposable over the
sub-alphabet {a1, . . . , ai}. We can build this oracle using a dynamic program-
ming table D[i,m] = decomposable(i,m): We initialize D[0, 0] = 1, D[0,m] = 0
for m ≥ 1, and use the recurrence D[i,m] = max{D[i − 1,m], D[i,m− ai]} for
m ≥ ai and D[i,m] = D[i − 1,m] otherwise. This approach requires O(kM)
memory to store D and O(kM) time to compute it, where M is the largest
mass that we want to decompose. The algorithm has polynomial time and space
with regards to the mass m we want to decompose.2 Time for computing each
decomposition is O(km/a1). The decomposition algorithm has polynomial delay
and, hence, is output-dependent.

A more memory-efficient way to build the required oracle, is to use the ex-
tended residue table (ERT) from [4]: For an integer m, let m mod a1 denote
the residue of m modulo a1, where m mod a1 ∈ {0, . . . , a1 − 1} . We define the

2 Precisely speaking, running time is pseudo-polynomial in the input m, as polynomial
running time would require polynomial dependency on logm. Since the decision ver-
sion of the problem (“is there a decomposition of mass m?”) is weakly NP-hard [16],
there is little hope for an algorithm with running time polynomial in logm. We will
ignore this detail in the following.

Faster Mass Decomposition 49

extended residue table N [0 . . . k, 0 . . . a1 − 1] by

N [i, r] = min
{
m : r = m mod a1, and m is decomposable over {a1, . . . , ai}

}
where we define N [i, r] = +∞ if no such number exists, that is, if the minimum
is taken over the empty set. Now, we can define the oracle by

decomposable(i,m) :=

{
1 if m ≥ N [i,m mod a1],
0 otherwise.

(2)

Storing the ERT requires O(ka1) space, and the table can be computed in O(ka1)
time. The time for computing each decomposition using algorithm FindAllRe-

cursive is again O(km/a1) but can be reduced to O(ka1) [4,5]. The conceptual
advantage of this approach is that we do not have to decide upon some “largest
mass” during preprocessing, and that both time and space do no longer depend
on the mass m that we want to decompose.

4 Iterative Version of the Decomposition Algorithm

The naïve search tree algorithm for decomposing masses can easily be made
iterative using k nested For-loops. Replacing algorithm FindAllRecursive

by an iterative version is slightly more complicated, as we have to avoid “empty
branches” of the search tree, where no decomposition can be found. We can use
an auxiliary Boolean vector d[1 . . . k] that stores which of the two alternative
recursive calls from FindAllRecursive has been executed last. We present a
more involved version of the iterative algorithm in Fig. 2. We avoid the auxiliary
vector by deciding on the alternative calls directly from the decomposition c.

The algorithm is independent of the actual implementation of the oracle
decomposable(i,m). Asymptotically, worst-case running time is identical to that
of the recursive version; in practice, the iterative version is nevertheless consid-
erably faster than its recursive counterpart, as we avoid the stack handling.

5 Selecting Optimal Blowup Factors

Transforming the real-valued decomposition problem into its integer-valued coun-
terpart requires that we choose some blowup factor b ∈ R. Due to the rounding
error correction, we have to decompose roughly Δ(b)u “auxiliary” integers in
addition to the b(u − l + 1) “regular” integers, where (u − l + 1) ∈ Θ(u). It is
reasonable to ask for a blowup factor such that the ratio of additional integers
Δ(b)u
bu = Δ(b)

b is minimum. For “sufficiently small” b > 0 we have Δ(b) = b and,
hence, Δ(b)

b = 1.
Since Δ(b) < maxj{ 1

a′
j
} is bounded, we can make Δ(b)

b arbitrarily small by
choosing an arbitrarily large blowup factor b. But this is not realistic in applica-
tions, as memory requirements increase linearly with b. To this end, we suppose

50 K. Dührkop et al.

1: procedure FindAllIterative(mass m)
2: decomposition c = (c1, . . . , ck) ← 0
3: integer i ← k � constant alphabet size k
4: while i ≤ k do
5: if decomposable(i,m) = 0 then � is this decomposable at all?
6: while i ≤ k and decomposable(i,m) = 0 do � no, end “recursion”
7: m ← m+ ciai

8: ci ← 0
9: i ← i+ 1

10: end while � now, decomposable(i,m) = 1 holds
11: if i ≤ k then
12: m ← m− ai

13: ci ← ci + 1
14: end if
15: else � yes, decomposable
16: while i > 1 and decomposable(i− 1,m) = 1 do
17: i ← i− 1
18: end while � now, decomposable(i,m) = 1
19: if i = 1 then � output decomposition
20: c1 ← �m/a1� � (∗)
21: Output c = (c1, . . . , ck)
22: i ← 2 � correct i
23: end if
24: if i ≤ k then � move to next element
25: m ← m− ai

26: ci ← ci + 1
27: end if
28: end if
29: end while
30: end procedure

Fig. 2. Iterative algorithm for enumerating all decompositions of a given mass m

that memory considerations imply an upper bound of B ∈ R. We want to find
b ∈ (0, B) such that Δ(b)

b is minimized. We can explicitly find an optimal b as
follows: First, we consider the functions

Δj : R→ R with Δj(b) := b− 1
a′
j
�ba′j�,

for all j = 1, . . . , k. Each Δj is a piecewise linear function with discontinuities
1
a′
j
, 2
a′
j
, . . . ,

�a′
jB�
a′
j

. In every interval, this function has slope 1. Next, we set ϕ1 ≡
Δ1 and for j ≥ 2, we define ϕj as the maximum of ϕj−1 and Δj . Then, ϕj

is a piecewise linear function with O
(
(a′1 + · · · + a′j)B

)
discontinuities. Finally,

Δ ≡ ϕk is a piecewise linear function with O
(
(a′1 + · · ·+ a′k)B

)
discontinuities.

We sweep over the discontinuities from left to right, and for each discontinuity
b, we calculate all Δj(b) and Δ(b). This can be easily achieved in time O(k(a′1 +
· · ·+a′k)B) = O(k2a′kB), where a′k is the largest mass in the alphabet. For every

Faster Mass Decomposition 51

piecewise linear part I ⊆ R of Δ the minimum of Δ(b)
b must be located at one

of the terminal points, so it suffices to test the O(ka′kB) discontinuities to find
the minimum of Δ(b)

b .

Table 2. Locally optimal blowup factors in the range b ∈ [1000, 100000], for alphabet
of elements CHNOPS (left) and CHNOPSClBrI (right). For two consecutive entries
b′, b′′ from the table, b′ is locally optimal in (0, b′′), so Δ(b′)

b′ ≤ Δ(b)
b

for all b ∈ (0, b′′).
Values b rounded up, other values rounded down. ∗Entries Δ(b) that are smaller than
both the previous and the following entry.

blowup b Δ(b) Δ(b)/b

1127.1810743 0.014407 1.278199 · 10−5

1128.1808548 0.014188 1.257608 · 10−5

1181.7527469 0.012223 1.034371 · 10−5

1182.7510330 0.010729∗ 9.071515 · 10−6

1680.8473159 0.013982 8.318731 · 10−6

1681.8470521 0.013718 8.156909 · 10−6

1896.1666667 0.013377 7.054863 · 10−6

1897.1666667 0.012530 6.604628 · 10−6

2064.8444567 0.012121 5.870279 · 10−6

2309.9247647 0.008097 3.505730 · 10−6

2310.9237056 0.007038∗ 3.045939 · 10−6

2939.0036991 0.007079 2.408730 · 10−6

5248.9269781 0.010311 1.964477 · 10−6

5334.2592503 0.009867 1.849794 · 10−6

5335.2582387 0.008238 1.544184 · 10−6

5963.3376861 0.008003∗ 1.342117 · 10−6

8519.3436784 0.010925 1.282415 · 10−6

9072.0116320 0.011631 1.282179 · 10−6

9456.0064464 0.011287 1.193667 · 10−6

9457.0057796 0.010840 1.146246 · 10−6

9701.0919315 0.009977 1.028442 · 10−6

10415.5000000 0.006917∗ 6.641097 · 10−7

12725.4231558 0.007214 5.669173 · 10−7

12726.4199232 0.004531∗ 3.560891 · 10−7

18689.7544746 0.004911 2.627644 · 10−7

26080.9191881 0.005617 2.153888 · 10−7

29105.2521655 0.005901 2.027566 · 10−7

32044.2526951 0.005370∗ 1.676031 · 10−7

42459.7510861 0.006746 1.588932 · 10−7

42460.7500000 0.006678 1.572787 · 10−7

44770.6696249 0.002958∗ 6.607444 · 10−8

96687.4182692 0.005238 5.417847 · 10−8

blowup b Δ(b) Δ(b)/b

1127.1810743 0.014407 1.278199 · 10−5

1128.1808548 0.014188 1.257608 · 10−5

1182.7510330 0.012772∗ 1.079876 · 10−5

1680.8473159 0.013982 8.318731 · 10−6

1681.8470521 0.013718 8.156909 · 10−6

2064.8444567 0.012121 5.870279 · 10−6

2309.9247647 0.011976 5.184759 · 10−6

2310.9237056 0.010026∗ 4.338805 · 10−6

3268.4252033 0.013661 4.179833 · 10−6

3269.4249838 0.012594∗ 3.852308 · 10−6

3897.5019225 0.013159 3.376302 · 10−6

3898.5011421 0.012060 3.093702 · 10−6

4206.0872326 0.011084 2.635363 · 10−6

4207.0871650 0.010920∗ 2.595644 · 10−6

5248.9282869 0.011620 2.213814 · 10−6

5802.5956469 0.012587 2.169277 · 10−6

5963.3376861 0.008789∗ 1.473957 · 10−6

7146.0837847 0.010040 1.405093 · 10−6

9701.0919315 0.009977 1.028442 · 10−6

10415.5007612 0.007678∗ 7.371910 · 10−7

15664.4258530 0.009633 6.149738 · 10−7

16378.8350902 0.008707 5.316052 · 10−7

16379.8339400 0.006683∗ 4.080188 · 10−7

26710.0000000 0.010596 3.967193 · 10−7

26794.3334813 0.010397 3.880516 · 10−7

26795.3333334 0.009376 3.499167 · 10−7

28390.8415041 0.008170 2.877948 · 10−7

29105.2521655 0.007871∗ 2.704370 · 10−7

34355.1749622 0.008295 2.414630 · 10−7

38807.3390692 0.008710 2.244429 · 10−7

44769.6758508 0.009184 2.051405 · 10−7

44770.6721964 0.005529∗ 1.235112 · 10−7

63460.4230255 0.006358 1.002015 · 10−7

90170.4178028 0.008375 9.288531 · 10−8

96687.4182692 0.006542 6.767102 · 10−8

We compute optimal blowup factors for the default alphabet CHNOPS, and
for the extended alphabet CHNOPSClBrI suggested in [25]. Since we can find
arbitrarily small blowup factors by increasing b, any blowup factor b′ ∈ R can
only be locally optimal : that is, for an upper bound b′′ ∈ R and all b ∈ (0, b′′)

we then have Δ(b′)
b′ ≤ Δ(b)

b . See Table 2 for all locally optimal blowup factors in
the range b ∈ [1000, 100000]. We do not report blowup factors below 1000 as, for
the mass accuracies considered here, such blowup factors result in a dramatic
increase of false positive decompositions and, hence, are not useful in practice.

52 K. Dührkop et al.

6 Range Decompositions

Agarwal et al. [1] suggested to decompose a range of masses m, . . . ,m+μ−1 for
integers m,μ, instead of decomposing each mass individually. In theory, this does
not noticeably improve running times: Using the approaches described above, we
can iterate over all masses m′ = m, . . . ,m + μ− 1. Let γ(m,m + μ) denote the
number of decompositions in this range, then this results in a total running time
of O(γ(m,m + μ)ka1 + μ) for the approach of [4, 5]. Clearly, the additive O(μ)
term can be ignored in practice.

But from an algorithm engineering perspective, decomposing a range in-
stead of an integer may result in considerable time savings: For the algorithm
FindAllRecursive, this can significantly reduce the number of recursive func-
tion calls. To this end, given a range m, . . . ,m + μ − 1 and an alphabet Σ =
{a1, . . . , ak} we assume an oracle with decomposable(i,m) = 1 if and only if there
is at least one m′ ∈ {m, . . . ,m + μ− 1} that is decomposable over {a1, . . . , ai}.
Solely for the sake of clarity, we will assume μ to be fixed, although it obviously
depends on the mass that we want to decompose. With this new oracle, we can
reuse the algorithms from Fig. 1 and 2 without further changes.

In the following, let decomposable0(i,m) denote the original oracle for a single
mass m. Then, a straightforward oracle for the range decomposition is

decomposable(i,m) = max
m′∈{m...m+μ−1}

decomposable0(i,m′).

But this requires μ calls of the decomposable0(i,m) oracle and results in a mul-
tiplicative factor of O(μ) in the running time. Agarwal et al. [1] suggested
modifying the integer knapsack recurrence mentioned above, to capture the
mass range: To this end, we initialize Dμ[0,m] = 1 for m = 0, . . . , μ − 1 and
Dμ[0,m] = 0 for m ≥ μ. We use the same recurrence as above, namely Dμ[i,m] =
max{Dμ[i− 1,m], Dμ[i,m− ai]} for m ≥ ai and Dμ[i,m] = Dμ[i− 1,m] other-
wise. Unfortunately, for each μ that we want to consider for decomposing, this
requires preprocessing and storing a dynamic programming table. Again, this
is not desirable in application, as the mass error of the measurement increases
with mass. So, we have to compute and store a table for every μ = 1, . . . , μmax.

But with a small trick, we can reduce the multiplicative factor for
space from O(μmax) to O(log μmax): Let decomposable l be an oracle with
decomposable(i,m) = 1 if and only if there is at least one m′ ∈ {m, . . . ,m+2l−1}
that is decomposable over {a1, . . . , ai}. Then, we can “recover” the oracle
decomposable for the range {m, . . . ,m + μ− 1} as

decomposable(i,m) = max
{

decomposable l(i,m), decomposable l(i,m + μ− 2l)
}

where l := �log2 μ�.
We will now show how to use the extended residue table from [4] for

range decompositions: We define a family of extended residue tables Nl for
l = 0, . . . , �log2 μ�, where Nl[i, r] is the minimum of all m with r = m mod a1,
such that some m′ ∈ {m, . . . ,m + 2l − 1} is decomposable over {a1, . . . , ai}.

Faster Mass Decomposition 53

Again, Nl[i, r] = +∞ if no such number exists. Now, we can re-use the oracle
from (2): We have decomposable l(i,m) = 1 if and only if m ≥ Nl[i,m]. Storing
all extended residue tables requires O(ka1 logμmax) space, and the tables can
be computed in O(ka1 log μmax) time using the following simple recurrence: We
initialize N0[i, r] = N [i, r] and use

Nl+1[i, r] = min
{
Nl[i, r], Nl[i, (r + 2l) mod a1]

}
(3)

for l = 0, . . . , μmax− 1, i = 0, . . . , k, and r = 0, . . . , a1 − 1. Here, N [i, r] refers to
the extended residue table for the single integer decomposition problem.

The iterative algorithm FindAllIterative does not consider the degenerate
case where the width of the interval we want to decompose, is large compared to
the masses of the alphabet. In particular, for u−l ≥ a1 every decomposition with
mass at most u can be “completed” using element a1 to find a decomposition with
mass in {l, . . . , u}. For this case, we have to adapt the algorithm by replacing
the line marked (∗) in Fig. 2 by a loop over appropriate numbers of elements a1.
But for this degenerate case, we find a decomposition for every leaf of the naïve
search tree algorithm; so, the iterative version of this algorithm outperforms all
other, more involved algorithms.

7 Results

We implement the algorithms mentioned above in Java 1.6. SearchTree de-
notes the naïve search tree algorithm. We distinguish two algorithms based on
the recursive decomposition (Fig. 1), namely Recursive+Knapsack using the
knapsack DP, and Recursive+ERT using the extended residue table. We also
implement two versions of the iterative decomposition (Fig. 2), namely Iter-

ative+ERT and Iterative+Range which uses range decompositions from
Sec. 6. For brevity, we exclude other combinations, as these will in all likelihood
not result in better running times.

We evaluate the algorithms on four datasets: The Orbitrap dataset [20] con-
tains 97 compounds measured on a Thermo Scientific Orbitrap XL instrument.
The MassBank dataset [12] consists of 370 compounds measured on a Waters
Q-Tof Premier spectrometer. The Eawag dataset [25] contains 60 compounds
measured on a LTQ Orbitrap XL Thermo Scientific and is also accessible from
MassBank. The Hill dataset [11] consists of 102 compounds with 502 spectra
measured on a Waters Micromass QTOF II instrument. We omit experimental
details. All of these datasets are used in computations that require the decom-
position of peak masses. See Table 3 for details.

Table 3. Statistics of the datasets used in our evaluation

Orbitrap MassBank Eawag Hill
peaks 5 393 2 455 10 017 12 054
maximum mass 1153 821 444 610
median mass 205 211 149 186

54 K. Dührkop et al.

We discard peaks with mass below 100 Da because for such masses, the prob-
lem becomes easy regardless of the used algorithm. We report running times
for decomposing a single peak mass as well as all peaks in a dataset. For al-
gorithms working on integer masses, we generate integer-valued instances as
described in Sec. 2. We use a mass accuracy of 20 ppm, so ε = 0.00002. For
Recursive+Knapsack, Recursive+ERT, and Iterative+ERT, we decom-
pose intervals by decomposing all integer values separately.

Running time measurements are done on a Intel Xeon E5645 with 48 GB
RAM. For each algorithm we repeat computations five times and report mini-
mum running times. For the complete datasets, total running times can be found
in Table 4 and Figure 3 for alphabets CHNOPSClBrI and CHNOPS. We find
that the fastest ERT-based algorithm Iterative+Range was 56-fold faster
than the SearchTree algorithm for alphabet CHNOPS; this increases to 150-
fold speedup for alphabet CHNOPSClBrI.

Replacing the knapsack DP by an ERT table results in a 2.3-fold speedup. In
addition, memory requirements decrease considerably: For example, to decom-
pose the maximal mass of 1153.395 with a blowup of 100 000 and the extended

Table 4. We report running times of the algorithms for decomposing all peaks in a
dataset, for alphabets CHNOPSClBrI (top) and CHNOPS (bottom). Running times
are reported in seconds except for SearchTree and alphabet CHNOPSClBrI, where
running times are reported in minutes. For all measurements, we use mass accuracy
20 ppm.

algorithm blowup Orbitrap MassBank Eawag Hill
SearchTree − 166.0min 37.3min 2.3min 23.8min

Recursive+knapsack 100000 729.70 86.48 8.54 34.12
Recursive+ERT 308.22 39.67 2.10 19.85

Iterative+ERT

100000 216.21 30.83 2.10 14.64
44770.6721964 129.97 21.25 1.62 9.75
5963.3376861 102.97 17.92 0.94 7.32
1182.7510330 122.91 22.40 0.95 7.66

1000 2289.36 420.58 15.81 190.32

Iterative+range 5963.3376861 66.88 13.98 0.88 6.13

algorithm blowup Orbitrap MassBank Eawag Hill
SearchTree − 221.97 106.16 28.65 131.07

Recursive+knapsack 100000 54.47 19.98 5.62 13.21
Recursive+ERT 18.03 5.77 1.17 4.77

Iterative+ERT

100000 12.99 4.63 1.15 4.31
44770.6721964 10.15 3.63 0.75 3.14
5963.3376861 5.86 2.27 0.39 1.93
1182.7510330 7.39 2.76 0.40 2.17

1000 121.83 46.60 5.89 40.71

Iterative+range 5963.3376861 4.71 1.89 0.36 1.77

Faster Mass Decomposition 55
●

mass in Da

re
la

tiv
e

ru
nn

in
g

tim
e

44770.6721964
 1182.7510330
 5963.3376861

200 400 600 800 1000

0%
20

%
40

%
60

%
80

%
10

0%

mass in Da

ru
nn

in
g

tim
e

●
●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

● ●
● ●

●
●

● ●

●

● ●
● ●

● ●

●

SearchTree
Recursive + Knapsack + 100000
Recursive + ERT + 100000
Iterative + ERT + 100000
Iterative + ERT + 5963.34
Iterative + Range + 5963.34

200 400 600 800 1000 1200

10
 m

s
10

0
m

s
1

se
c

10
 s

ec
1

m
in

15
 m

in

●

mass in Da

re
la

tiv
e

ru
nn

in
g

tim
e

44770.6721964
 1182.7510330
 5963.3376861

200 400 600 800 1000

0%
20

%
40

%
60

%
80

%
10

0%

mass in Da

ru
nn

in
g

tim
e

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

● ●
●

● ●
●

●

● ●

●

SearchTree
Recursive + Knapsack + 100000
Recursive + ERT + 100000
Iterative + ERT + 100000
Iterative + ERT + 5963.34
Iterative + Range + 5963.34

200 400 600 800 1000 1200

1
m

s
10

 m
s

10
0

m
s

1
se

c
10

 s
ec

Fig. 3. Running times on the Orbitrap dataset using alphabet CHNOPSClBrI (top) or
CHNOPS (bottom), and 20 ppm mass accuracy. Average running times are reported
for bins of width 25 Da. Left: Relative running times of Iterative+ERT for different
blowup factors, normalized to blowup factor b = 100000 as 100%. Right: Running
times for different algorithms. Note the logarithmic y-axis.

alphabet, the integer knapsack DP table requires 124 megabyte, whereas the
ERT requires only 3.5 megabyte.

Replacing the recursive search by its iterative counterpart has only limited
impact: We find that the iterative algorithm Iterative+ERT is merely 1.4-fold
faster than its recursive counterpart, Recursive+ERT.

We observe that the blowup factor has a major impact on running times.
Choosing locally optimal blowup factors does in fact significantly reduce running
times: For example, blowup factor b = 1182.7510330 results in 19-fold faster
running times than b = 1000. We test all locally optimal blowup factors from
Table 2. We observe best running time for blowup b = 5963.3376861, whereas
larger and smaller blowup factors result in increased running times. We refrain
from reporting all running times, see Fig. 3 and Table 4 for some examples.
The best blowup factor b = 5963.3376861 results in a two-fold speedup when

56 K. Dührkop et al.

compared to the “default” blowup factor b = 100000 from [3]. As a pleasant side
effect, this decreases the memory requirements of the algorithm by 94 %.

The range decomposition improves running times by about 1.5-fold for the
best blowup factor. A stronger improvement is achieved when more integers
are to be decomposed using, say, a larger blowup factor. Using blowup factor
b = 5963.3376861, memory increases to 2.1 MB for storing ten ERT tables.

Finally, we repeat our experiments for an improved mass accuracy 1 ppm.
For all algorithms except SearchTree this results in roughly a 6- to 11-fold
decrease of running time, whereas SearchTree running times does not change.
For this mass accuracy and alphabet CHNOPSClBrI, the best algorithm Iter-

ative+range is 1000-fold faster than the naïve SearchTree algorithm.

8 Conclusion

We suggest three techniques to improve the running time for decomposing real
masses. We measure the improvements on four different datasets. All techniques
together result in a 4-fold improvement in running time, compared to the Re-

cursive+ERT algorithm from [4,5]. We note in passing that the implementa-
tion of the Recursive+ERT algorithm used in this evaluation, was two-fold
faster than the one provided as part of SIRIUS [3]. The competitive edge of
the new method is even larger for “hard” problem instances, e.g. high masses,
large mass deviations, and bigger alphabets. Compared to the naïve search tree
algorithm, we reach improvements between 56-fold and 1000-fold, reducing the
total running times from hours to minutes or even seconds.

Regarding the degenerate case u − l ≥ a1 mentioned in Sec. 6, we argue
that this case is of no interest, from either the practical or the theoretical side:
Modern MS instruments easily reach mass accuracies of 10 ppm and below,
whereas metabolite and even peptide masses rarely exceed 5000 Da. Even a
peptide mass of 5000 Da can be measured with an accuracy of at least 0.05 Da,
well below the mass of a single 1H atom. From the theoretical side, we would have
to deal with a humongous number of decompositions, rendering time to compute
the decompositions irrelevant in comparison to subsequent analysis steps.

Acknowledgments. We thank Tim White for proofreading earlier versions of
this work.

References

1. Agarwal, D., Cazals, F., Malod-Dognin, N.: Stoichiometry determination for mass-
spectrometry data: the interval cases. In: Research Report 8101, Inria, Research
Centre Sophia Antipolis – Méditerranée (October 2012)

2. Audi, G., Wapstra, A., Thibault, C.: The AME2003 atomic mass evaluation (ii):
Tables, graphs, and references. Nucl. Phys. A 729, 129–336 (2003)

3. Böcker, S., Letzel, M., Lipták, Z., Pervukhin, A.: SIRIUS: Decomposing isotope
patterns for metabolite identification. Bioinformatics 25(2), 218–224 (2009)

Faster Mass Decomposition 57

4. Böcker, S., Lipták, Z.: Efficient mass decomposition. In: Proc. of ACM Symposium
on Applied Computing (ACM SAC 2005), pp. 151–157. ACM press, New York
(2005)

5. Böcker, S., Lipták, Z.: A fast and simple algorithm for the Money Changing Prob-
lem. Algorithmica 48(4), 413–432 (2007)

6. Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyz-
ing tandem mass spectra. Bioinformatics 24, I49–I55 (2008); Proc. of European
Conference on Computational Biology (ECCB 2008)

7. Cooper, M.A., Shlaes, D.: Fix the antibiotics pipeline. Nature 472(7341), 32 (2011)
8. Cortina, N.S., Krug, D., Plaza, A., Revermann, O., Müller, R.: Myxoprincomide:

a natural product from Myxococcus xanthus discovered by comprehensive analysis
of the secondary metabolome. Angew. Chem. Int. Ed. Engl. 51(3), 811–816 (2012)

9. Dromey, R.G., Foyster, G.T.: Calculation of elemental compositions from high
resolution mass spectral data. Anal. Chem. 52(3), 394–398 (1980)

10. Fürst, A., Clerc, J.-T., Pretsch, E.: A computer program for the computation of
the molecular formula. Chemom. Intell. Lab. Syst. 5, 329–334 (1989)

11. Hill, D.W., Kertesz, T.M., Fontaine, D., Friedman, R., Grant, D.F.: Mass spectral
metabonomics beyond elemental formula: Chemical database querying by match-
ing experimental with computational fragmentation spectra. Anal. Chem. 80(14),
5574–5582 (2008)

12. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka,
K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda,
F., Sawada, Y., Hirai, M.Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T.,
Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T.,
Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K., Nishioka,
T.: MassBank: A public repository for sharing mass spectral data for life sciences.
J. Mass Spectrom. 45(7), 703–714 (2010)

13. Jarussophon, S., Acoca, S., Gao, J.-M., Deprez, C., Kiyota, T., Draghici, C.,
Purisima, E., Konishi, Y.: Automated molecular formula determination by tan-
dem mass spectrometry (MS/MS). Analyst. 134(4), 690–700 (2009)

14. Last, R.L., Jones, A.D., Shachar-Hill, Y.: Towards the plant metabolome and be-
yond. Nat. Rev. Mol. Cell Biol. 8, 167–174 (2007)

15. Li, J.W.-H., Vederas, J.C.: Drug discovery and natural products: End of an era or
an endless frontier? Science 325(5937), 161–165 (2009)

16. Lueker, G.S.: Two NP-complete problems in nonnegative integer programming.
Technical Report TR-178, Department of Electrical Engineering, Princeton Uni-
versity (March 1975)

17. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley & Sons, Chichester (1990)

18. Meringer, M., Reinker, S., Zhang, J., Muller, A.: MS/MS data improves automated
determination of molecular formulas by mass spectrometry. MATCH-Commun.
Math. Co. 65, 259–290 (2011)

19. Pluskal, T., Uehara, T., Yanagida, M.: Highly accurate chemical formula prediction
tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules,
and isotope pattern matching. Anal. Chem. 84(10), 4396–4403 (2012)

20. Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatoš, A., Böcker,
S.: Identifying the unknowns by aligning fragmentation trees. Anal. Chem. 84(7),
3417–3426 (2012)

21. Rasche, F., Svatoš, A., Maddula, R.K., Böttcher, C., Böcker, S.: Computing
fragmentation trees from tandem mass spectrometry data. Anal. Chem. 83(4),
1243–1251 (2011)

58 K. Dührkop et al.

22. Robertson, A.L., Hamming, M.C.: MASSFORM: a computer program for the as-
signment of elemental compositions to high resolution mass spectral data. Biomed.
Mass Spectrom. 4(4), 203–208 (1977)

23. Rojas-Chertó, M., Kasper, P.T., Willighagen, E.L., Vreeken, R.J., Hankemeier, T.,
Reijmers, T.H.: Elemental composition determination based on MSn. Bioinformat-
ics 27, 2376–2383 (2011)

24. Scheubert, K., Hufsky, F., Böcker, S.: Computational mass spectrometry for small
molecules. J. Cheminform. 5, 12 (2013)

25. Stravs, M.A., Schymanski, E.L., Singer, H.P., Hollender, J.: Automatic recalibra-
tion and processing of tandem mass spectra using formula annotation. J. Mass
Spectrom. 48(1), 89–99 (2013)

26. Wilf, H.: generatingfunctionology, 2nd edn. Academic Press (1994), Freely available
from http://www.math.upenn.edu/~wilf/DownldGF.html

http://www.math.upenn.edu/~wilf/DownldGF.html

On NP-Hardness

of the Paired de Bruijn Sound Cycle Problem

Evgeny Kapun and Fedor Tsarev

St. Petersburg National Research University of Information
Technologies, Mechanics and Optics

Genome Assembly Algorithms Laboratory
197101, Kronverksky pr., 49, St. Petersburg, Russia

tsarev@rain.ifmo.ru

http://genome.ifmo.ru/

Abstract. The paired de Bruijn graph is an extension of de Bruijn graph
incorporating mate pair information for genome assembly proposed by
Mevdedev et al. However, unlike in an ordinary de Bruijn graph, not
every path or cycle in a paired de Bruijn graph will spell a string, because
there is an additional soundness constraint on the path. In this paper we
show that the problem of checking if there is a sound cycle in a paired
de Bruijn graph is NP-hard in general case. We also explore some of its
special cases, as well as a modified version where the cycle must also pass
through every edge.

Keywords: paired de Bruijn graph, genome assembly, complexity,
NP-hard.

1 Introduction

Current genome sequencing technologies rely on the shotgun method — the
genome is split into several small fragments which are read directly. Some of
the technologies generate single reads, while others generate mate-pair reads —
genome fragments are read from both sides. The problem of reconstructing the
initial genome from these small fragments (reads) is known as the genome as-
sembly problem. It is one of the fundamental problems of bioinformatics. Several
models for genome assembly were studied by researchers.

One of the models for the single reads case is based on the maximum parsi-
mony principle — the original genome should be the shortest string containing
all reads as substrings. This leads to the Shortest Common Superstring (SCS)
problem which is NP-hard [1]. In the de Bruijn graph model proposed in [8] each
read is represented by a walk in the graph. Any walk containing all the reads as
subwalks represents a valid assembly. Consequently, the genome assembly prob-
lem is formulated as finding the shortest superwalk. This problem, known as
Shortest De Bruijn Superwalk problem (SDBS), was shown to be NP-hard [6].

In [5] an algorithm for reads’ copy counts estimation based on maximum
likelihood principle was proposed. A similar algorithm can be applied to find

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 59–69, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

tsarev@rain.ifmo.ru
http://genome.ifmo.ru/

60 E. Kapun and F. Tsarev

multiplicities of the de Bruijn graph edges, so, the De Bruijn Superwalk with
Multiplicities problem (DBSM) can be formulated. This problem have been
proven to be NP-hard as well [2].

Paired-end reads case is much less studied. To the best of our knowledge
the only model which deals with paired-end reads is the paired de Bruijn graph
proposed in [7]. However, not every path or cycle in a paired de Bruijn graph cor-
responds to a correct genome assembly, because there is an additional soundness
constraint on the walk. Computational complexity for the problem of finding a
sound cycle in the paired de Bruijn graph remained unknown [9]. In this paper
we show that this problem is NP-hard.

2 Definitions

A de Bruijn graph of order k over an alphabet Σ is a directed graph in which
every vertex has an associated label (a string over Σ) of length k and every edge
has an associated label of length k+1. All labels within a graph must be distinct.
If an edge (u, v) has an associated label l, then the label associated with u must
be a prefix of l and the label associated with v must be a suffix of l.

Every path in a de Bruijn graph spells a string. A string spelled by a path
v1, e1, v2, . . . , en−1, vn of length n is a unique string s of length n + k − 1 such
that the label associated with vi occurs in s at position i for all 1 ≤ i ≤ n, and
the label associated with ei occurs in s at position i for all 1 ≤ i ≤ n− 1. Every
cycle of length n in a de Bruijn graph spells a cyclic string of length n having
the same properties.

In a paired de Bruijn graph each vertex and each edge has an associated bilabel
instead of a label. A bilabel is an ordered pair of strings of the same length (equal
to the order of the graph), denoted as (a, b). We say that (a1, b1) is a prefix of
(a2, b2) iff a1 is a prefix of a2 and b1 is a prefix of b2. Suffix is defined analogously.
As in ordinary de Bruijn graphs, all bilabels must be distinct, however, individual
labels of which bilabels consist may coincide.

Similarly to the ordinary de Bruijn graph, every path in a paired de Bruijn
graph spells a pair of strings, and every cycle spells a pair of cyclic strings.
We say that a pair of strings (s1s2 . . . sn, t1t2 . . . tn) of length n matches with
shift d iff si+d = ti for all 1 ≤ i ≤ n − d. Analogously, a pair of cyclic strings
(s1s2 . . . sn, t1t2 . . . tn) matches with shift d iff si+d = ti for all 1 ≤ i ≤ n−d and
si = ti+n−d for all 1 ≤ i ≤ d.

We say that a path in a paired de Bruijn graph is sound with respect to shift
d, or just sound, iff the pair of strings it spells matches with shift d. We say that
a cycle in a paired de Bruijn graph is sound iff the pair of cyclic strings matches
with shift d.

We say that a path or a cycle is covering if it includes all the edges in a graph.
We say that a set of paths or cycles covers the graph iff every edge of the graph
belongs to at least one path or cycle in the set.

A promise problem is a kind of decision problem where only inputs from some
set of valid inputs are considered. Specifically, a promise problem is defined by

On NP-Hardness of the Paired de Bruijn Sound Cycle Problem 61

a pair of disjoint sets (S+, S−). A solution to the problem is a program which
outputs “yes” when run on inputs in S+ and outputs “no” when run on inputs
in S−. However, when run on inputs outside of S+ ∪ S−, its behavior may be
arbitrary: it may return any result, exceed its allowed time and memory bounds,
or even hang.

Note that a promise problem (S+, S−) is at most as hard as (S′
+, S

′
−) if

S+ ⊆ S′
+ and S− ⊆ S′

−, because the solution for the latter problem would solve
the former problem as well. Particularly, (S′

+, S
′
−) is NP-hard if (S+, S−) is NP-

hard. Also, an ordinary decision problem defined by set S is the same as the
promise problem (S, �S) (here, � means set complement).

In the following problems, it would be assumed that the input consists of Σ,
an alphabet, G, a paired de Bruijn graph of order k over Σ, as well as 1d, that
is unary coding of d.

3 Trivial Cases

If |Σ| = 1, a paired de Bruijn graph can have at most one vertex and at most
one edge, and every cycle is sound. If k = 0, a paired de Bruijn graph can have
at most one vertex and at most |Σ|2 edges, and the problem is a bit harder.
However, it can be solved in polymonial time in the following way: construct a
directed graph with one vertex for each element of Σ and edge (u, v) iff there
is an edge labeled with (u, v) in the original graph (this new graph may contain
loops). Now, there is a sound cycle in the original graph iff there is a cycle in the
new graph, and there is a covering sound cycle in the original graph iff there is
a set of at most d cycles covering the new graph. Both properties can be easily
checked in polymonial time.

4 A Case with Fixed k

Theorem 1. For any fixed k ≥ 1, the promise problem (S+, S−), where S+ is
the set of paired de Bruijn graphs which have a covering sound cycle and S− is
the set of paired de Bruijn graphs which do not have a sound cycle, is NP-hard.

Proof. The proof of this theorem consists of two parts. Firstly, NP-hardness of
a specific graph theory problem is proven by reduction from Hamiltonian Cycle
problem. Then, the intermediate problem is reduced to the problem formulated
in the theorem.

Lemma 1. The promise problem (S+, S−), where S+ is the set of undirected
graphs with a hamiltonian cycle and S− is the set of undirected graphs without
hamiltonian paths, is NP-hard.

Proof. First note that the problem is well-defined, because every graph with a
hamiltonian cycle has a hamiltonian path. We will start with an instance G of
Hamiltonian Cycle problem, which is NP-hard [3]. Without loss of generality, let
us assume that G has at least three vertices.

62 E. Kapun and F. Tsarev

Now build a new graph G′ in the following way: firstly, pick a vertex in G
and duplicate it together with all the edges incident to it. Let the copies of the
vertex be a1 and b1. Now let us duplicate the whole graph, let the first copy be
G1 and the second copy be G2, and let the copies of a1 and b1 be a3 and b3.
Add two new vertices a2 and b2 and four new edges {a1, a2}, {a2, a3}, {b1, b2},
and {b2, b3} (see Figure 1).

G1 G2

a1

a2

a3

b1

b2

b3

Fig. 1. Graph G′

The following two theorems show that the transformation described above
maps all positive instances of hamiltonian cycle problem to S+ and all negative
instances of hamiltonian cycle problem to S−.

Theorem 2. If a graph G has a hamiltonian cycle, then the graph G′ produced
as described above has a hamiltonian cycle.

Proof. After the vertex in G is duplicated, the cycle in G maps to a hamiltonian
path in G1 from a1 to b1. Analogously, G2 has a hamiltonian path from a3 to
b3. So, the cycle in G′ is constructed as follows: start at a1, traverse the path in
G1 to b1, go to b2, then to b3, then traverse the path in G2 to a3, then go to a2,
and return to a1.

Theorem 3. If a graph G does not have hamiltonian cycles, then the graph G′

does not have hamiltonian paths.

Proof. Suppose that, on the contrary, G′ contains a hamiltonian path. First
consider the case when one end of the path is in G1 and the other end is in G2.
Then, the path either traverses edges {a1, a2} and {a2, a3} but not {b1, b2} and
{b2, b3}, or {b1, b2} and {b2, b3} but not {a1, a2} and {a2, a3}. In both cases,

On NP-Hardness of the Paired de Bruijn Sound Cycle Problem 63

either a2 or b2 is not visited, so the path is not hamiltonian. So, ends of the
path are either both outside G1, or both outside G2. Let us assume they are
outside G1, the other case is proved analogously. Besides a1 and b1, G1 contains
at least one internal vertex because of the assumption that G has at least three
vertices. To reach that vertex, the path must enter G1 through a1 and leave
through b1 (or the opposite, which doesn’t matter). Because there are no other
ways to enter G1, the path enters G1 only once and traverses all vertices of G1.
So, the fragment of the path within G1, when mapped back to G, becomes a
hamiltonian cycle. So, G has a hamiltonian cycle, a contradiction.

Lemma 2. If a graph has a hamiltonian cycle, then:

– For each vertex v in the graph, there is a hamiltonian path having v as one
of its endpoints.

– For each edge {u, v} in the graph, there is a hamiltonian path passing through
{u, v}.

– For each edge {u, v} and vertex w �= u, v, there is a hamiltonian path passing
through {u, v} such that v resides between u and w on the path.

Proof. Let n be the number of vertices in the graph, and let v1, v2, . . . , vn be
the vertices numbered in the order of the cycle. Let u = vi and v = vj , i < j
(otherwise, vertices can be renumbered in the reverse order), and let w = vk.
Then, the first point of the theorem is obvious, the path for the second point is
vj+1, vj+2, . . . , vn, v1, v2, . . . , vi, vj , vj−1, . . . , vi+1, and the path for the third
point is the same if i < k < j and vj−1, vj−2, . . . , vi, vj , vj+1, . . . , vn, v1, v2,
. . . , vi−1 otherwise.

Now return to Theorem 1. First consider the case k = 1. Begin with an
instance G of the problem from Lemma 1. Let G have n vertices v1, v2, . . . , vn.
Without loss of generality, let us assume that n ≥ 3. Set d = n+ 1. Now, we are
going to construct a paired de Bruijn graph G′ = (V, A). It would have block
structure: there will be 2n + 2 blocks V1, V2, . . . , V2n+2 and 2n + 2 separator
vertices s1, s2, . . . , s2n+2, so V = V1 ∪ V2 ∪ · · · ∪ V2n+2 ∪ {s1, s2, . . . , s2n+2} (see
Figure 2). This graph will contain edges of three kinds:

– Within a block.
– From si to an element of Vi.
– From an element of Vi to si+1, or from an element of V2n+2 to s1.

The alphabet would be analogously divided into 2n + 2 blocks C1, C2, . . . ,
C2n+2 and 2n + 2 separator characters t1, t2, . . . , t2n+2, so Σ = C1 ∪C2 ∪ · · · ∪
C2n+2 ∪ {t1, t2, . . . , t2n+2}. For each vertex v ∈ Vi, the first component of the
associated bilabel will be in Ci, and the second component will be in Ci+1 (or
C1 if i = 2n + 2). Each si would be associated with a bilabel (ti, ti+1), s2n+2

will be associated with a bilabel (t2n+2, t1).
The blocks will be formed as follows: the blocks V1 and V2n+2 would be copies

of G, while blocks V2 through V2n+1 would each contain two copies of G, except
for one vertex of which only one copy would be present. The vertices from the

64 E. Kapun and F. Tsarev

s2n+2
V2n+2

s1

V1

s2
V2 s3

Fig. 2. Structure of the paired de Bruijn graph

first copy would be called vi,j , the vertices from the second copy would be called
v′′i,j , and the only copy of v�i/2� in block i would be called v′i,�i/2�. The edges
would be added such that every path through such block would pass through
this vertex.

By assigning a dedicated subset of the alphabet to each block, we prevent
vertices from different blocks from being assigned the same bilabel. In fact, it
can be seen from the following definition that each vertex is assigned a distinct
bilabel, so the assignment is valid. We also note that, with the exceptions of the
bilabels containing u, the second index of a character (j in ci,j) is the same in
both components of a bilabel. This means that in a sound path the sequence of
second indices must repeat with a period of d.

The precise definition is as follows:

– For i = 1, 2n + 2 block Vi = {vi,1, vi,2, . . . , vi,n}.
– For i = 2 . . . 2n + 1 block Vi = {vi,1, vi,2, . . . , vi,�i/2�−1, vi,�i/2�+1, vi,�i/2�+2,

. . . , vi,n, v
′
i,�i/2�, v

′′
i,1, v

′′
i,2, v

′′
i,�i/2�−1, v

′′
i,�i/2�+1, v

′′
i,�i/2�+2, . . . , v

′′
i,n}.

On NP-Hardness of the Paired de Bruijn Sound Cycle Problem 65

– Alphabet block C1 = {u}.
– For i = 1 . . . n + 1 alphabet block C2i = {c2i,1, c2i,2, . . . , c2i,n}.
– For i = 1 . . . n alphabet block C2i+1 = {c2i+1,1, c2i+1,2, . . . , c2i+1,i−1,

c2i+1,i+1, c2i+1,i+2, . . . , c2i+1,n, c′2i+1,i, c′′2i+1,1, c′′2i+1,2, . . . , c′′2i+1,i−1,
c′′2i+1,i+1, c

′′
2i+1,i+2, . . . , c

′′
2i+1,n}.

– For i = 1 . . . n the bilabel associated with v1,i is (u, c2,i).
– For i = 1 . . . n the bilabel associated with v2n+2,i is (c2n+2,i, u).
– For i = 2 . . . 2n + 1, j = 1 . . . n, j �= �i/2� the bilabel associated with vi,j is

(ci,j , ci+1,j).
– For i = 1 . . . n the bilabel associated with v′2i,i is (c2i,i, c

′
2i+1,i).

– For i = 1 . . . n the bilabel associated with v′2i+1,i is (c′2i+1,i, c2i+2,i).
– For i = 1 . . . n, j = 1 . . . n, j �= i the bilabel associated with v′′2i,j is (c2i,j ,

c′′2i+1,j).
– For i = 1 . . . n, j = 1 . . . n, j �= i the bilabel associated with v′′2i+1,j is

(c′′2i+1,j , c2i+2,j).

The edges are added:

– For i = 1 . . . n the edges (s1, v1,i), (v1,i, s2), (s2n+2, v2n+2,i), and (v2n+2,i, s1).
– For i = 2 . . . 2n + 1, j = 1 . . . n, j �= �i/2� the edges (si, vi,j) and (v′′i,j , si+1).
– For i = 2 . . . 2n + 1 the edges (si, v

′
i,�i/2�) and (v′i,�i/2�, si+1).

Also, for each edge {vi, vj} in G (1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j) the following
edges are added:

– The edges (v1,i, v1,j), (v2n+2,i, v2n+2,j), (v2j,i, v
′
2j,j), (v2j+1,i, v

′
2j+1,j), (v′2i,i,

v′′2i,j), and (v′2i+1,i, v
′′
2i+1,j).

– For r = 2 . . . 2n+ 1, i �= �r/2�, j �= �r/2� the edges (vr,i, vr,j) and (v′′r,i, v
′′
r,j).

Note that, as edges of G are undirected, each edge should be processed twice,
once as {vi, vj} and once as {vj , vi}. The bilabels associated with the edges can
be unambiguously determined from the bilabels associated with their ends.

The size of G′ and the parameter d is polymonial in terms of n by construction.
The following two theorems show that the transformation described above maps
all positive instances of the problem formulated in Lemma 1 to paired de Bruijn
graphs with covering sound cycles and all negative instances of the problem
formulated in Lemma 1 to paired de Bruijn graphs without sound cycles.

Theorem 4. If a graph G has a hamiltonian cycle, then the paired de Bruijn
graph G′ produced as described above has a covering sound cycle.

Proof. Remember that d = n + 1. Construct the cycle as follows: first, select a
hamiltonian path in G, let it be vp1 , vp2 , . . . , vpn . Start at s1, then go to v1,p1 ,
v1,p2 , . . . , v1,pn . Then, for each i from 2 to 2n + 1, visit si, then vi,p1 , vi,p2 , . . . ,
vi,pr�i/2�−1 , where r�i/2� is such that pr�i/2� = �i/2�, then v′i,pr�i/2�

= v′i,�i/2�,

then v′′i,pr�i/2�+1
, v′′i,pr�i/2�+2

, . . . , v′′i,pn
. After that, visit s2n+2, v2n+2,p1 , v2n+2,p2 ,

. . . , v2n+2,pn , and finally return to s1.

66 E. Kapun and F. Tsarev

This cycle visits each block, and the sequence of second indices within each
block is the same (it is p1, p2, . . . , pn), therefore, from the construction, the
cycle is sound. However, it is not necessarily covering. To make a covering cycle,
first use the procedure described above to construct one cycle per every property
from Lemma 2, namely:

– For every vertex vi, use the path having vi as an endpoint to construct
cycles passing through (sj , vj,i) (1 ≤ j ≤ 2n + 2, i �= �j/2�), (s2i, v

′
2i,i),

(s2i+1, v
′
2i+1,i), (v1,i, s2), (v2n+2,i, s1), (v′2i,i, s2i+1), (v′2i+1,i, s2i+2), and (v′′j,i,

sj+1) (2 ≤ j ≤ 2n + 1, i �= �j/2�).
– For every edge {vi, vj}, use the path passing through {vi, vj} to construct cy-

cles passing through (vr,i, vr,j) (r = 1, 2n+ 2), (v2j,i, v
′
2j,j), (v2j+1,i, v

′
2j+1,j),

(v′2i,i, v
′′
2i,j), and (v′2i+1,i, v

′′
2i+1,j).

– For every edge {vi, vj} and vertex vk (k �= i, j), use the path passing
through {vi, vj}, such that vj resides between vi and vk on the path, to
construct cycles passing through (v2k,i, v2k,j), (v2k+1,i, v2k+1,j), (v′′2k,j , v

′′
2k,i),

and (v′′2k+1,j , v
′′
2k+1,i).

Together, these cycles should cover all the edges of G′. To make a single covering
cycle, cut all these cycles at s1 and join them together. The resulting cycle is
sound because the second component of every bilabel from V2n+2 is u, and the
first component of every bilabel from V1 is also u, so they always match.

Theorem 5. If a graph G doesn’t have hamiltonian paths, then the paired de
Bruijn graph G′ produced as described above doesn’t have sound cycles.

Proof. Within each block, the set of characters used for the first component of
bilabels and the set of characters used for the second component of the bilabel
do not intersect. Therefore, every contiguous segment of a sound cycle within a
single block must have length at most d. Because the blocks are connected in a
circle (see Figure 2), and the cycle cannot be contained within a single block, it
must pass around the circle at least once. Therefore, it must pass through s1.
Exactly d vertices later, it must pass through s2, as it is the only vertex with
a matching bilabel. The d − 1 = n vertices between s1 and s2 must be spent
within V1, as the only other way to get to s2 is to pass around the whole circle
at least once, and the circle is longer than d, so this is impossible. Then it must
pass through s3, V3, s4, V4, . . . , s2n+2, V2n+2, then return to s1.

Let us call a segment between successive visits to s1 a pass. Within a pass,
each block is visited exactly once, and a path within each block has length n.
Moreover, every pair of consecutive blocks, except (V2n+2, V1), has their vertices
labeled such that the sequences of second indices within each block must be the
same. However, for each i, such that 1 ≤ i ≤ n, the structure of blocks V2i and
V2i+1 requires the sequence of second indices to include i, as it it impossible to
pass though these blocks otherwise. Therefore, the sequence must include every
value from 1 to n, so it is a permutation. Since every edge in G′ within a block
corresponde to an edge in G, the permutation defines a hamiltonian path in G,
a contradiction.

On NP-Hardness of the Paired de Bruijn Sound Cycle Problem 67

The case k > 1 is handled as follows: first, produce a graph G over an al-
phabet Σ for the case k = 1. Then, construct a new alphabet Σ′ as being
equal to Σ ∪ {f}, where f is a new character. After that, construct a new
graph G′ from G by replacing each vertex labeled (a, b) with k′ vertices la-
beled (fk′−1a, fk′−1b), (fk′−2af, fk′−2bf), . . . , (afk′−1, bfk′−1) and k′−1 edges
labeled (fk′−1af, fk′−1bf), (fk′−2aff, fk′−2bff), . . . , (fafk′−1, fbfk′−1), and
replacing each edge labeled with (ab, cd) with an edge labeled (afk′−1b, cfk′−1d).
Finally, set d′ equal k′d. Now, every sound cycle in can be unambiguously
mapped from G to G′ and vice versa. Therefore, the new solution is equiva-
lent to the old one.

These immediately follow from Theorem 1:

Corollary 1. The problem of checking whether a paired de Bruijn graph con-
tains a sound cycle is NP-hard, both in general case and for any fixed k ≥ 1.

Corollary 2. The problem of checking whether a paired de Bruijn graph con-
tains a covering sound cycle is NP-hard, both in general case and for any fixed
k ≥ 1.

5 A Case with Fixed |Σ|
Theorem 6. For any fixed |Σ| ≥ 2, the promise problem (S+, S−), where S+ is
the set of paired de Bruijn graphs which have a covering sound cycle and S− is
the set of paired de Bruijn graphs which don’t have a sound cycle, is NP-hard.

Proof. This is proven by reduction from the same problem with fixed k = 1.
Let the instance with k = 1 be G, and let its alphabet be Σ. We are go-
ing to build an instance G′ of the same problem with alphabet Σ′ = {0,
1}. Set l = �log2 |Σ|�. Now, every character from Σ can be unambiguously
encoded with l binary digits. Take that encoding, and replace each digit 0
with the sequence 01, and each digit 1 with the sequence 10. The resulting
encoding of length 2l has the following properties: it does not contain rep-
etitions of three or more of the same digit as a substring, and it does not
begin or end with a repeated digit. Set k′ = 4l + 5. Let enc(c) denote the
2l-character encoding of c described above. Then, for each vertex in G la-
beled (a, b), add a vertex labeled (enc(a)01110 enc(a), enc(b)01110 enc(b)). Here,
the sequence 111 unambiguously determines the center of the encoding of a
character. Each edge from G is translated to 4l + 9 new vertices and 4l + 10
new edges: if the original edge has the bilabel (ab, cd), the bilabels of the
new vertices and edges will spell (enc(a)01110 enc(a)10001 enc(b)01110 enc(b),
enc(c)01110 enc(c)10001 enc(d)01110 enc(d)). Each bilabel would include at least
one of the marker sequences 000 and 111 and at least one complete encoding of
a character, so there will be no undesired overlaps. It can be shown that each
sound cycle from G can be mapped to G′ and vice versa, so they are equivalent
for the purposes of the problem.

68 E. Kapun and F. Tsarev

These immediately follow from Theorem 6:

Corollary 3. The problem of checking whether a paired de Bruijn graph con-
tains a sound cycle is NP-hard for any fixed |Σ| ≥ 2.

Corollary 4. The problem of checking whether a paired de Bruijn graph con-
tains a covering sound cycle is NP-hard for any fixed |Σ| ≥ 2.

6 A Case with Both k and |Σ| Fixed
If both k and |Σ| are fixed, the number of possible paired de Bruijn graphs is
limited: there are at most |Σ|2k different vertex bilabels, and at most |Σ|2k+2

different edge bilabels, and each bilabel is used by at most one vertex or edge,
so the total number of different paired de Bruijn graphs is limited by a number
which only depends on k and |Σ|. Let us denote this number by N .

There are at most N different problem instances for each instance length:
otherwise, there would be two different instances having the same graph and
the same length, but such instances can only differ in d, which is represented
in unary coding, so any instances which only differ in d must have different
length. Therefore, the number of instances is polynomial in instance length, so
the language defined by the problem is sparse. Unless P=NP, a sparse language
is never NP-hard [4]. Therefore, the problem of checking whether a paired de
Bruijn graph has a sound cycle cannot be NP-hard if both k and |Σ| are fixed.

7 Conclusion

We have proved that the Paired de Bruijn Sound Cycle problem is NP-hard
in general case. Results of this work combined with previous works on genome
assembly complexity show that all known models for genome assembly both from
single and mate-pair reads are NP-hard.

However, the problem considered in this paper has a special case with both
k and |Σ| fixed which is not NP-hard unless P=NP. A reasonable direction of
future research is to determine if this case is solvable in polynomial time.

References

1. Galant, J., Maier, D., Astorer, J.: On finding minimal length superstrings. Journal
of Computer and System Sciences 20(1), 50–58 (1980)

2. Kapun, E., Tsarev, F.: De Bruijn superwalk with multiplicities problem is NP-hard.
BMC Bioinformatics 14(suppl. 5), S7 (2013)

3. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computation. The IBM Re-
search Symposia Series, pp. 85–103. Plenum Press (1972)

4. Mahaney, S.R.: Sparse complete sets for NP: Solution of a conjecture of Berman
and Hartmanis. Journal of Computer and System Sciences 25(2), 130–143 (1982)

On NP-Hardness of the Paired de Bruijn Sound Cycle Problem 69

5. Medvedev, P., Brudno, M.: Maximum likelihood genome assembly. Journal of Com-
putational Biology 16(8), 1101–1116 (2009)

6. Medvedev, P., Georgiou, K., Myers, G., Brudno, M.: Computability of models for
sequence assembly. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS
(LNBI), vol. 4645, pp. 289–301. Springer, Heidelberg (2007)

7. Medvedev, P., Pham, S., Chaisson, M., Tesler, G., Pevzner, P.: Paired de Bruijn
graphs: A novel approach for incorporating mate pair information into genome as-
semblers. Journal of Computational Biology 18(11), 1625–1634 (2011)

8. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences 98(17),
9748–9753 (2001)

9. Pham, S.: Mate-pair consistency and generating problems. In: Talk at RECOMB
Satellite Conference on Open Problems in Algorithmic Biology (2012)

Accurate Decoding of Pooled Sequenced Data

Using Compressed Sensing

Denisa Duma1, Mary Wootters2, Anna C. Gilbert2,
Hung Q. Ngo3, Atri Rudra3, Matthew Alpert1,

Timothy J. Close4, Gianfranco Ciardo1, and Stefano Lonardi1

1 Dept. of Computer Science and Eng., University of California, Riverside, CA 92521
2 Dept. of Mathematics, The University of Michigan, Ann Arbor, MI 48109

3 Dept. of Computer Science and Eng., Univ. at Buffalo, SUNY, Buffalo, NY 14260
4 Dept. of Botany & Plant Sciences, University of California, Riverside, CA 92521

Abstract. In order to overcome the limitations imposed by DNA
barcoding when multiplexing a large number of samples in the cur-
rent generation of high-throughput sequencing instruments, we have re-
cently proposed a new protocol that leverages advances in combinatorial
pooling design (group testing) [9]. We have also demonstrated how this
new protocol would enable de novo selective sequencing and assembly of
large, highly-repetitive genomes. Here we address the problem of decod-
ing pooled sequenced data obtained from such a protocol. Our algorithm
employs a synergistic combination of ideas from compressed sensing and
the decoding of error-correcting codes. Experimental results on synthetic
data for the rice genome and real data for the barley genome show
that our novel decoding algorithm enables significantly higher quality
assemblies than the previous approach.

Keywords: second/next-generation sequencing, pooled sequencing,
compressed sensing, error-correcting codes.

1 Introduction

The second generation of DNA sequencing instruments offer unprecedented
throughput and extremely low cost per base, but read lengths are much shorter
compared to Sanger sequencing. An additional limitation is the small number
of distinct samples that these instruments can accommodate (e.g., two sets of
eight lanes on the Illumina HiSeq). When the sequencing task involves a large
number of individual samples, a common solution is to employ DNA barcod-
ing to “multiplex” samples within a single lane. DNA barcoding, however, does
not scale readily to thousands of samples. As the number of samples reaches
the hundreds, exhaustive DNA barcoding becomes time consuming, error-prone,
and expensive. Additionally, the resulting distribution of reads for each barcoded
sample can be severely skewed (see, e.g., [1]).

Combinatorial pooling design or group testing allows one to achieve multi-
plexing without exhaustive barcoding. In group testing, a design or scheme is

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 70–84, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 71

a set of tests (or pools) each of which is a subset of a large collection of items
that needs to be tested for the presence of (a few) ‘defective’ items. The result
of testing a pool is a boolean value indicating whether the pool contains at least
one defective. The goal of group testing is to decode the information obtained by
testing all the pools in order to determine the precise identity of the defectives,
despite the fact that the defectives and non-defectives are mixed together. The
challenge is to achieve this goal while, at the same time, minimizing the number
of pools needed. Recently, compressed sensing (CS) has emerged as a powerful
technique for solving the decoding problem when the results of testing the pools
are more than boolean outcomes, for instance, real or complex values.

Combinatorial pooling has been used previously in the context of genome
analysis (see, e.g., [5–7, 2, 12]), but not for de novo genome sequencing. Our
proposed pooling method for genome sequencing and assembly was first de-
scribed in [9] and has generated considerable attention. It was used to produce
one of the critical datasets for the first draft sequence of the barley genome [14].
In our sequencing protocol, thousands of BAC clones are pooled according to
a combinatorial design so that, at the outset of sequencing, one can ‘decode’
each read to its source BACs. The underlying idea is to encode the identity of
a BAC within the pooling pattern rather than by its association with a specific
DNA barcode. We should stress that combinatorial pooling is not necessarily an
alternative to DNA barcoding, and both methods have advantages and disad-
vantages. They can be used together to increase the number of samples that can
be handled and benefit from the advantages of both.

In this paper we address the problem of decoding pooled sequenced data ob-
tained from a protocol such as the one in [9]. While the main objective is to
achieve the highest possible accuracy in assigning a read to the correct BAC,
given that one sequencing run can generate hundreds of millions of reads, the de-
coding procedure has also to be time- and space-efficient. Since in [9] we pooled
BAC clones according to the Shifted Transversal Design [15] which is a Reed-
Solomon based pooling design, our proposed decoding approach combines ideas
from the fields of compressive sensing and decoding of error-correcting codes.
Specifically, given the result of ‘testing’ (in this case, sequencing) pools of ge-
nomic BAC clones, we aggregate read frequency information across the pools
and cast the problem as a compressed sensing problem where the unknowns are
the BAC assignments of the reads. We solve (decode) for the unknown assign-
ments using a list recovery strategy as used in the decoding of error-correcting
codes. Reed-Solomon codes are known to be good list-recoverable codes which
can also tolerate a large fraction of errors. We also show that using readily avail-
able information about the reads like overlap and mate pair information can
improve the accuracy of the decoding. Experimental results on synthetic reads
from the rice genome as well as real sequencing reads from the barley genome
show that the decoding accuracy of our new method is almost identical to that of
HashFilter [9]. However, when the assembly quality of individual BAC clones
is the metric of choice, the decoding accuracy of the method proposed here is
significantly better than HashFilter.

72 D. Duma et al.

2 Related Work

The resemblance between our work and the closest related research efforts us-
ing combinatorial pooling and compressed sensing ideas stops at the pooling
of sequencing data. Our application domain, pooling scheme employed and al-
gorithmic approach to decoding, are completely different. To the best of our
knowledge, all compressed sensing work in the domain of genomics deals with
the problem of genotyping large population samples, whereas our work deals
with de novo genome sequencing. For instance in [5], the authors employ a pool-
ing scheme based on the Chinese Remainder Theorem (CRT) to identify carriers
of rare alleles in large cohorts of individuals. The pooling scheme allows the
detection of mutants within a pool, and by combining information across pools
one is able to determine the identity of carriers. In true group testing style, the
unknown carrier identities are encoded by a boolean vector of length equal to
the number of individuals, where a value of one indicates a carrier and zero a
normal individual. To decode their pooling scheme and find the unknown vec-
tor, the authors devise a greedy decoding method called Minimum Discrepancy
Decoder. In [6], loopy belief propagation decoding is used for the same pooling
scheme. A similar application domain is described in [12], where the authors
identify carriers of rare SNPs in a group of individuals pooled with a random
pooling scheme (Bernoulli matrix) and use the Gradient Projection for Sparse
Reconstruction (GPSR) algorithm to decode the pooling scheme and recover the
unknown carrier identities. The same problem is tackled in [11] with a pooling
design inspired from the theory of error correcting codes. However, this design is
only able to identify a single rare-allele carrier within a group. In [2], the authors
organize domain-specific (linear) constraints into a compressed sensing matrix
which they use together with GPSR decoding to determine the frequency of each
bacterial species present in a metagenomic mixture.

3 Preliminaries

As mentioned in the introduction, in [9] we pool DNA samples (BAC clones)
according to a combinatorial pooling scheme, then sequence the pools using
high-throughput sequencing instruments. In this paper we show how to efficiently
recover the sequence content of each BAC by combining ideas from the theory
of sparse signal recovery or compressed sensing (CS) as well as from the large
body of work developed for the decoding of error-correcting codes.

Formally, a combinatorial pooling design (or pooling scheme) can be repre-
sented by a binary matrix Φ with m rows (corresponding to pools) and n columns
(corresponding to items to be pooled), where entry (i, j) is 1 if item j is present
in pool i, 0 otherwise. The matrix Φ is called the design matrix, sensing matrix
or measurement matrix by various authors in the literature. In this paper we
only use the first two names to designate Φ. An important property of a com-
binatorial pooling design is its decodability d (also called disjunctness), which is
the maximum number of ‘defectives’ it guarantees to reliably identify. Let w be

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 73

a subset of the columns (pooled variables) of the design matrix Φ and p(w) be
the set of rows (pools) that contain at least one variable in w: the matrix Φ is
said to be d-decodable (d-disjunct) if for any choice of w1 and w2 with |w1| = 1,
|w2| = d and w1 �⊂ w2, we have that p(w1) �⊆ p(w2).

In this paper, we pool BACs using the combinatorial pooling scheme called
Shifted Transversal Design (STD) [15]. STD is a layered design, i.e., the rows of
the design matrix are organized into multiple redundant layers such that each
pooled variable appears only once in each layer, that is, a layer is a partition
of the set of variables. STD is defined by parameters (q, L, Γ) where L is the
number of layers, q is a prime number equal to the number of pools (rows) in
each layer and Γ is the compression level of the design. Thus, in order to pool
n variables, STD uses a total of m = q × L pools. The set of L pools defines a
unique pooling pattern for each variable which can be used to retrieve its identity.
This set of L integers is called the signature of the variable. The compression
level Γ is defined to be the smallest integer such that qΓ+1 ≥ n. STD has the
desirable property that any two variables co-occur in at most Γ pools, therefore
by choosing a small value for Γ one can make STD pooling extremely robust to
errors. The parameter Γ is also related to the decodability of the design through
the equation d = �(L− 1)/Γ�. Therefore, Γ can be seen as a trade-off parameter:
the larger it is, the more items can be tested (up to qΓ+1), but fewer defectives
can be reliably identified (up to �(L − 1)/Γ �). For more details on the pooling
scheme and its properties please refer to [15].

In order to decode measurements obtained through STD (i.e., reconstruct
the sequence content of pooled BACs) we borrow ideas from compressed sensing
(CS), an area of signal processing that describes conditions and efficient methods
for capturing sparse signals from a small number of aggregated measurements
[6]. Unlike combinatorial group testing, in compressed sensing measurements can
be more general than boolean values, allowing recovery of hidden variables which
are real or complex-valued. Specifically, in CS we look for an unknown vector
or signal x = (x1, x2, . . . , xn) which is s-sparse, i.e., has at most s non-zero
entries. We are given a vector y = (y1, y2, . . . , ym) of measurements (m
 n),
which is the product between the (known) design matrix Φ and the unknown
vector x, that is y = Φx. Under certain conditions on Φ, by using the measure-
ments y, the assumption on the sparsity of x and information encoded by Φ,
it is possible to recover the original sparse vector x. The latter equation corre-
sponds to the ideal case when the data is noise-free. In practice, if the signal
x is not as sparse as needed and if measurements are corrupted by noise, the
equation becomes y = Φx + ε. In CS theory there are two main approaches
for solving the latter equation, namely linear programming (LP) decoding and
greedy pursuit decoding. Greedy pursuit algorithms have faster decoding time
than LP-based approaches, frequently sub-linear in the length of x (although
for specially designed matrices). Their main disadvantages is that they usually
require a slightly larger number of measurements and do not offer the same uni-
formity and stability guarantees as LP decoding. Greedy pursuits are iterative
algorithms which proceed in a series of steps: (1) identify the locations of the

74 D. Duma et al.

largest coefficients of x by greedy selection, (2) estimate their values, (3) update
y by subtracting the contribution of estimated values from it, and iterate (1-3)
until some convergence criterion is met. Usually O(s) iterations, where s is the
sparsity of x, suffice [17]. Updating y amounts to solving a least squares problem
in each iteration.

The most well known greedy decoding algorithm is Orthogonal Matching Pur-
suit (OMP) [16], which has spawned many variations. In OMP, the greedy rule
selects in each iteration the largest coordinate of ΦTy, i.e., the column of Φ
which is the most correlated with y. In this paper, we are interested in a variant of
OMP called Simultaneous Orthogonal Matching Pursuit (S-OMP). S-OMP is dif-
ferent from OMP in that it approximates multiple sparse signals x1,x2, . . . ,xK

simultaneously by using multiple linear combinations, y1,y2, . . . ,yK , of the sens-
ing matrix Φ [17]. The unknown signals {xk}k∈{1,··· ,K} as well as measure-
ment vectors {yk}k∈{1,··· ,K} can be represented by matrices X ∈ Rn×K and
Y ∈ Rm×K . Intuitively, by jointly exploiting information provided by Y, S-
OMP is able to achieve better approximation error especially when the signals
to be approximated are corrupted by noise which is not statistically independent
[17].

The mapping from the CS setting into our problem follows naturally and
we give here a simplified and intuitive version of it. The detailed model will
be introduced in the next section. The variables to be pooled are BAC clones.
Each column of the design matrix corresponds to a BAC to be pooled and
each row corresponds to a pool. For each read r (to be decoded) there is an
unknown s-sparse vector x which represents at most s BACs which could have
generated r. The vector of measurements y (frequency vector) of length m gives
for each read r, the number of times r appears in each of the m pools. The use
of numerical measurements (read counts) rather than boolean values indicating
the presence or the absence of r from a pool is in accordance with CS theory
and offers additional valuable information for decoding. To carry out the latter,
we use a S-OMP style algorithm but replace the greedy selection rule by a
list recovery criterion. Briefly, we obtain a list of candidate BACs for read r
as those columns of Φ whose non-zero coordinates consistently correspond to
the heaviest-magnitude measurements in each layer of y [10]. This allows for a
finer-grained usage of the values of y on a layer-by-layer basis rather than as a
whole. Additionally, by requiring that the condition holds for at least l layers
with l ≤ L, one can make the algorithm more robust to the noise in vector y.

4 Decoding Algorithms

In this section we present our decoding algorithms that assign reads back to the
BACs from which they were derived. Recall that we have n BACs pooled into m
pools according to STD and each BAC is pooled in exactly L pools. The input
data to the decoding algorithm consists of (1) m datasets containing the reads
obtained from sequencing the m pools, and (2) the parameters of the pooling
design, including the signatures of all n BACs. We will assume that each read

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 75

r may originate from up to s BACs with s
 n; ideally, we can make the same
assumption for each k-mer (a k-mer is a substring of r of length k) of r, provided
that k is ‘large enough’. In practice, this will not be true for all k-mers (e.g.,
some k-mers are highly repetitive), and we will address this issue later in this
document.

We start by preprocessing the reads to correct sequencing errors in order to
improve the accuracy of read decoding. For this task, we employ SGA [13],
which internally employs a k-mer based error correction strategy. An additional
benefit of error correction is that it reduces the total number of distinct k-mers
present in the set of reads. After the application of SGA, there still remains a
small proportion of erroneous k-mers, which we discard because they will likely
introduce noise in the decoding process. An advantage of pooled sequencing is
that erroneous k-mers are easy to identify because they appear in fewer than
L pools. To be conservative, we only discard k-mers appearing in fewer than γ
pools where γ ≤ L is a user-defined parameter (see Section 5.1 for details on the
choice of this parameter). The closer γ is to L the more likely it is that a k-mer
that appears in γ pools is correct, but missing from the remaining L − γ pools
due to sequencing errors. Henceforth, we will call a k-mer valid if it appears in
a number of pools in the range [γ, sL] where s is the sparsity parameter. Any
k-mer occurring in more than sL pools is considered highly repetitive, and will
likely not be useful in the decoding process. The decoding algorithm we employ
can safely ignore these repetitive k-mers.

To carry out the decoding, we first compute the frequencies of all the k-mers
in all the m pools. Specifically, we decompose all SGA-corrected reads into k-
mers by sliding a window of length k (there are |r| − k + 1 such windows for
each read r). For each distinct k-mer, we count the number of times it appears
in each of the m pools, and store the sequence of the k-mer along with its vector
of m counts into a hash table. We refer to the vector of counts of a k-mer as its
frequency vector.

We are now ready to apply our CS-style decoding algorithm. We are given a
large number of reads divided into m sets (pools). For each read r, we want to
determine which of the n BACs is the source. Since we decomposed r into its
constitutive k-mers, we can represent the pool counts of all its k-mers by a fre-
quency matrix Yr. Matrix Yr is a non-negative integer matrix where the number
of columns is equal to the number Kr of k-mers in r, the number of rows is equal
to the numbers m of pools, and entry (i, j) reports the number of times the jth

k-mer of r appears in pool i. The input to the decoding algorithm for read r is
given by (1) the frequency matrix Yr, (2) the design matrix Φ ∈ {0, 1}m×n, and
(3) the maximum number s of BACs which could have generated r. To decode r
means to find a matrix Xr ∈ Zn×Kr such that Xr = argminX||ΦX−Yr||2 with
the constrain that Xr is row-sparse, i.e., it has at most s non-zero rows (one for
each source BAC).

Since finding the source BACs for a read is sufficient for our purposes, we can
reduce the problem of finding matrix X to the problem of finding its row support
S(X), which is the union of the supports of its columns. The support Supp(X:,j)

76 D. Duma et al.

of a column j of X is the set of indices i such that Xi,j �= 0. In our case, the
non-zero indices represent the set of BACs which generated the read (and by
transitivity its constitutive k-mers). Since this set has cardinality at most s, in
the ideal case, X is row-sparse with support size at most s. In practice, the same
k-mer can be shared by multiple reads and therefore the number of non-zero
indices can differ from s. By taking a conservative approach, we search for a
good s-sparse approximation of S(X), whose quality we evaluate according to
the following definition.

Definition: A non-empty set S is good for X if for any column j of X, we have
S ⊂ Supp(X:,j).

Our decoding Algorithm 1 finds S in two steps, namely Filter and Esti-

mate, which are explained next.
Filter (Algorithm 2) is a one-iteration S-OMP style algorithm in which mul-

tiple candidate BACs are selected (we tried performing multiple iterations with-
out significant improvement in the results). Whereas S-OMP selects one BAC
per iteration as the column of Φ most correlated (inner product) with all the
columns of Y, our algorithm employs a list recovery criterion to obtain an ap-
proximation X̃r of Xr. Specifically, for each column y of Yr and for each layer
l ∈ [1, . . . , L], we select a set Sl of candidate pools for that layer as follows. We
choose set Sl by considering the h highest-magnitude coordinates of y in layer
l and selecting the corresponding pools. BACs whose signature pools belong to
all L sets Sl are kept while the rest of them are removed, i.e., their X̃-entries are
set to zero. Finally, for the BACs that are not filtered out, the X̃-entry estimate
follows the min-count estimate. The value of h should be chosen to be Θ(s):
h = 3s is sufficient even for noisy data [10].

Next, the Estimate (Algorithm 3) algorithm determines Sr by computing
a score for each BAC. Based on the computed scores, we select and return the
top s BACs as the final support Sr of Xr. Read r is then assigned to all the
BACs in Sr. The scoring function we employ for each BAC b is the number of
k-mers “voting” for b, i.e., having a frequency of at least τ in each pool in the
signature of b. The value we used for τ is given in Section 5. If we consider the
rows of X̃r as vectors of length Kr, our scoring function is simply the l0 norm
of these vectors, after zeroing out all the entries smaller than τ . We also tried

Algorithm 1. FindSupport (Φ,Yr, h, s)

Input : Φ ∈ {0, 1}m×n, Yr ∈ Nm×Kr and sparsity s such that
Xr = argminX||ΦX −Yr||2 for a s-row-sparse matrix Xr ∈ Nn×Kr ;
h ≤ q the number of entries per layer considered by list recovery

Output: A non-empty set Sr with |Sr| ≤ s which is good for Xr

1 X̃r ← Filter(Φ,Yr, h)

2 Sr ← Estimate(X̃r, s)
3 return Sr

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 77

Algorithm 2. Filter(Φ,Yr, h)

Input : Φ ∈ {0, 1}m×n,Yr ∈ Nm×Kr , parameter h
Output: An approximation X̃r for Xr

1 // Recall that Φ has L layers with q pools each

2 // For a column y of Yr, denote by y[l]i the ith entry in layer l

3 X̃r ← 0
4 for k = 1, . . . ,Kr do

5 Let y = Yr:,k be the kth column of Yr

6 for l = 1, . . . , L do
7 Sl ← set of h indices i ∈ {1, . . . , q} such that the corresponding counts

y[l]i are the h heaviest-magnitude counts in layer l of column y

8 for b = 1, . . . , n do
9 layersMatched ← 0

10 Let φ = Φ:,b be the bth column of Φ
11 for l = 1, . . . , L do
12 if the unique i such that φ[l]i = 1 belongs to Sl then
13 layersMatched ← layersMatched+ 1

14 if layersMatched = L then

15 X̃b,k ← minφp=1{yp}

l1 and l2 norms without observing significant improvements in the accuracy of
read assignments.

Observe that algorithms FindSupport, Filter and Estimate process one
read at a time. Since there is no dependency between the reads, processing
multiple reads in parallel is trivial. However, better total running time, improved
decoding accuracy as well as a smaller number of non-decodable reads can be
achieved by jointly decoding multiple reads at once. The idea is to use additional
sources of information about the reads, namely (1) read overlaps and (2) mate-
pair information. For the former, if we can determine clusters of reads that are
mutually overlapping, we can then decode all the reads within a cluster as a
single unit. Not only this strategy increases the decoding speed, but it also has

Algorithm 3. Estimate(X̃r, s)

Input : X̃r, sparsity parameter s
Output: Support set Sr, with |Sr| ≤ s

1 for b = 1, . . . , n do

2 score(b) ← |{k : X̃b,k ≥ τ}|
3 Sr ← set of indices b with the highest s scores
4 return Sr

78 D. Duma et al.

the potential to improve the accuracy of read assignments because while some of
the reads in the cluster might have sequencing errors, the others might be able
to ‘compensate’. Thus, we can have more confidence in the vote of high-quality
shared k-mers. There is, however, the possibility that overlaps are misleading.
For instance, overlaps between repetitive reads might lead one to assign them to
the same cluster while in reality these reads belong to different BACs. To reduce
the impact of this issue we allow any read that belongs to multiple clusters to be
decoded multiple times and take the intersection of the multiple assignments as
the final assignment for the read. If a read does not overlap any other read (which
could be explained due to the presence of several sequencing errors) we revert
to the single read decoding strategy. In order to build the clusters we compute
all pairwise read overlaps using SGA [13], whose parameters are discussed in
Section 5.

In order to apply FindSupport on a cluster c of reads, we need to gather
the frequency matrix Yc for c. Since the total number of k-mers within a cluster
can be quite large as the clusters themselves can be quite large, and each k-
mer can be shared by a subset of the reads in the cluster, we build Yc on the
most frequently shared valid k-mers in the cluster. Our experiments indicate
that retaining a number of k-mers equal to the numbers of k-mers used in the
decoding of individual reads is sufficient. When reads within a cluster do not
share a sufficient number of valid k-mers, we break the cluster into singletons
and decode its reads individually. We denote by μ the minimum number of valid
k-mers required to attempt decoding of both clusters and individual reads. The
choice of this parameter is also discussed in Section 5.

We can also use mate pair information to improve the decoding, if reads are
sequenced as paired-ends (PE). The mate resolution strategy (MRS) we employ
is straightforward. Given a PE read r, (1) if the assignment of one of the mates
of r is empty, we assign r to the BACs of the non-empty mate; (2) if both
mates of r have BAC assignments and the intersection of these assignments is
non-empty, we assign r to the BACs in the intersection; (3) if both mates of r
have BAC assignments and their intersection is empty, we discard both mates.
In what follows, we will use RBD to refer to the read based-decoding and CBD
to refer to the cluster-based decoding versions of our algorithm. CBD with MRS
is summarized in Algorithm 4.

5 Experimental Results

While our algorithms can be used to decode any set of DNA samples pooled
according to STD, in this paper, we evaluate their performance on sets of BAC
clones selected in such a way that they cover the genome (or a portion thereof)
with minimum redundancy. In other words, the BACs we use form a minimum
tiling path (MTP) of the genome. The construction of a MTP for a given genome
requires a physical map, but both are well-known procedures and we will not
discuss them here (see, e.g., [4] and references therein). Once the set of MTP
BAC clones has been identified, we (1) pool them according to STD, (2) sequence

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 79

Algorithm 4. ClusterFindSupport(Φ, C, {Yc}c∈C, h, s)

Input : Φ ∈ {0, 1}m×n, parameter h, sparsity parameter s, set C of all
clusters, frequency matrix Yc for each cluster c ∈ C

Output: A support set Sr with |Sr| ≤ s for each read r

1 for each cluster c ∈ C do
2 Sc ←FindSupport(Φ,Yc, h, s)
3 for each read r ∈ c do
4 if Sr = ∅ then Sr ← Sc

5 else Sr ← Sr ∩ Sc // Take intersection of all assignments to r

6 // MRS

7 for each PE read (r1, r2) do
8 if Sr1 = ∅ then Sr1 ← Sr2

9 if Sr2 = ∅ then Sr2 ← Sr1

10 if Sr1 �= ∅ and Sr2 �= ∅ then
11 Sr1,r2 ← Sr1 ∩ Sr2

12 if Sr1,r2 �= ∅ then
13 Sr1 ← Sr1,r2

14 Sr2 ← Sr1,r2

the resulting pools, (3) apply our decoding algorithm to assign reads back to their
source BACs. Step (3) makes it possible to assemble reads BAC-by-BAC, thus
simplifying the genome assembly problem and increasing the accuracy of the
resulting BAC assemblies [9].

Recall that CS decoding requires the unknown assignment vector x to be s-
sparse. Since we use MTP BAC clones, if the MTP was truly a set of minimally
overlapping clones, setting s equal to 2 would be sufficient; we set it equal to
3 instead to account for imperfections in the construction of the MTP and to
obtain additional protection against errors. Figure 1 illustrates the three cases
(read belongs to one BAC, two BACs or three BACs) we will be dealing with
during decoding, and how it affects our STD parameter choice.

Next, we present experimental evaluations where we pool BAC clones us-
ing the following STD parameters. Taking into consideration the need for a
3-decodable pooling design for MTP BACs, we choose parameters q = 13, L = 7
and Γ = 2, so that m = qL = 91, n = qΓ+1 = 2197 and d = �(L − 1)/Γ� = 3.

Fig. 1. The three cases we are dealing with during read decoding

80 D. Duma et al.

In words, we pool 2197 BACs in 91 pools distributed in 7 layers of 13 pools
each. Each BAC is pooled in exactly 7 pools and each pool contains qΓ = 169
BACs. Recall that we call the set of L pools to which a BAC is assigned the
BAC signature. In the case of STD, any two-BAC signatures can share at most
Γ = 2 pools and any three-BAC signatures can share at most 3Γ = 6 pools.

5.1 Simulation Results on the Rice Genome

To simulate our combinatorial pooling protocol and subsequent decoding, we
used the genome of rice (Oryza sativa) which is about 390 Mb and fully se-
quenced. We started from an MTP of 3,827 BAC clones selected from a real
physical map library for rice of 22,474 clones. The average BAC length in the
MTP was ≈ 150kB. Overall the clones in the MTP spanned 91% of the rice
genome. We pooled a subset of 2,197 of these BACs into 91 pools according to
the pooling parameters defined above. The resulting pools were ‘sequenced’ in
silico using SimSeq, which is a high-quality short read simulator used to gener-
ate the synthetic data for Assemblathon [3]. SimSeq uses error profiles derived
from real Illumina data to inject “realistic” substitution errors. For each pool,
we generated 106 PE reads of 100 bases each with an average insert size of 300
bases. A total of 200M usable bases gave an expected ≈ 8× sequencing depth for
a BAC in a pool. As each BAC is present in 7 pools, this is an expected ≈ 56×
combined coverage before decoding. After decoding however, since a read can
be assigned to more than one BAC, the actual average BAC sequencing depth
became 91.68× for RBD, 93× for CBD and 97.91× for CBD with MRS.

To simulate our current workflow, we first performed error-correction on the
synthetic reads using SGA [13] with k-mer size parameter k = 26. Then, the
hash table for k = 26 was built on the corrected reads, but we only stored k-mers
appearing in at least γ = 3 pools. Due to the error-correction preprocessing step
and the fact that we are discarding k-mers with low pool count, the hash table
was relatively small (about 30GB).

In order to objectively evaluate and compare the performance of our decoding
algorithms, we first had to precisely define the ‘ground truth’ for simulated
reads. An easy choice would have been to consider ‘true’ only the single BAC
from which each read was generated. However, this notion of ground truth is
not satisfactory: for instance, since we can have two or three BACs overlapping
each other in the MTP, reads originating from an overlap region are expected
to be assigned to all the BACs involved. In order to find all the BACs that
contain a read, we mapped all synthetic reads (error-free version) against the
BAC primary sequences using Bowtie [8] in stringent mode (paired-end end-to-
end alignment with zero mismatches). The top three paired-end hits returned by
Bowtie constituted the ground truth against which we validated the accuracy
of the decoding.

In our experiments we observed that although the majority of the reads are
assigned to 1–3 BACs, due to the repetitive nature of the genome, a small fraction
(≈ 1%) can be correctly assigned to more than 3 BACs. To account for this,
rather than sorting BAC scores and retaining the top 3, we decided to assign

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 81

Table 1. Accuracy of the decoding algorithms on synthetic reads for the rice genome
(see text for details). All values are an average of 91 pools. Boldface values highlight
the best result in each column (excluding perfect decoding).

Mapped to source BAC Precision Recall F-score Not decoded

Perfect decoding 100.00% 98.11% 49.62% 65.90% 0.00%

Hashfilter [9] 99.48% 97.45% 99.28% 98.36% 16.25%

RBD 98.05% 97.81% 97.46% 97.64% 14.58%

CBD 97.23% 97.74% 96.35% 97.04% 12.58%

CBD + MRS 96.60% 97.89% 95.58% 96.72% 7.09%

a read to all BACs whose score was above a certain threshold. We found that
retaining all BACs whose score was at least 0.5Kr gave the best results. Recall
that the score function we are using is the l0 norm, so we are effectively asking
that at least half of the k-mers ‘vote’ for a BAC.

Table 1 summarizes and compares the decoding performance of our algo-
rithms. The first row of the table reports the performance of an ‘ideal’ method
that always assigns each read to its original source BAC. The next four rows
summarize (1) the performance of HashFilter [9] with default parameters; (2)
our read-based decoding (RBD); (3) our cluster-based decoding (CBD); (4) our
cluster-based decoding with mate resolution strategy (CBD + MRS). For all
three versions of the decoding algorithm we used parameters h = �q/2� = 6 and
τ = 1.

To build clusters, we require a minimum overlap of 75 bases between two reads
and a maximum error rate of 0.01 (SGA parameters). The resulting clusters
contained on average about 5 reads. Our methods make a decoding decision if a
read (or cluster) contains at least μ = 15 valid k-mers. The columns in Table 1
report the percentage of reads assigned to the original source BAC, precision
(defined as TP/(TP + FP) where TP is the number of true positive BACs
across all decoded reads; FP and FN are computed similarly), recall (defined
as TP/(TP + FN)), F-score (harmonic mean of precision and recall) and the
percentage of reads that were not decoded. Observe that the highest precision
is achieved by the cluster-based decoding with MRS, and the highest recall is
obtained by Hashfilter. In general, all methods are comparable from the point
of view of decoding precision and recall. In terms of decoding time, once the hash
table is built (≈ 10h on one core), RBD takes on average 14.03s per 1M reads
and CBD takes on average 33.46s per 1M clusters. By comparison, Hashfilter

[9] takes about 30s per 1M reads. These measurements were done on 10 cores of
an Intel Xeon X5660 2.8 GHz server with 12 cores and 192 GB of RAM.

As a more meaningful measure of decoding performance, we assembled the set
of reads assigned by each method to each BAC. We carried out this step using
Velvet [18] for each of the 2,197 BACs, using a range of l-mer from 25 to 79
with an increment of 6, and chose the assembly that achieved the highest N501.

1 The N50 is the contig length such that at least half of the total bases of a genome
assembly are contained within contigs of this length or longer.

82 D. Duma et al.

Table 2. Assembly results for rice BACs for different decoding algorithms (see text
for details). All values are an average of 2197 BACs. Boldface values highlight the best
result in each column (excluding perfect decoding).

Reads used # of contigs N50 Sum/size BAC coverage

Perfect decoding (ideal) 97.1% 4 136,570 107.4 87.1%

Hashfilter [9] 95.0% 24 52,938 93.8 76.2%

RBD 96.5% 20 46,477 90.0 81.1%

CBD 97.3% 22 53,097 93.8 84.7%

CBD + MRS 97.0% 11 103,049 97.0 82.9%

Table 2 reports the main statistics for the assemblies: percentage of reads used
by Velvet in the assembly, number of contigs (at least 200 bases long) of the
assembly, value of N50, ratio of the sum of all contigs sizes over BAC length, and
the coverage of the BAC primary sequence by the assembly. All reported values
are averages over 2,197 BACs. We observe that our decoding algorithms lead to
superior assemblies than Hashfilter’s. In particular, the N50 and the average
coverage of the original BACs are both very high, and compare favorably with
the statistics for the assembly of perfectly decoded reads.

The discrepancy between similar precision/recall figures but quite different
assembly statistics deserves a comment. First, we acknowledge that the way we
compute precision and recall by averaging TP , FP and FN across all decoded
reads might not be the best way of measuring the accuracy of the decoding.
Taking averages might not accurately reflect mis-assignments at the level of
individual reads. Second, our decoding algorithms makes a better use of the
k-mer frequency information than HashFilter, and, at the same time, takes
advantage of overlap and mate pair information, which is expected to result in
more reads decoded and more accurate assemblies.

5.2 Results on the Barley Genome

We have also collected experimental results on real sequencing data for the
genome of barley (Hordeum vulgare), which is about 5,300 Mb and at least
95% repetitive. We started from an MTP of about 15,000 BAC clones selected
from a subset of nearly 84,000 gene-enriched BACs for barley (see [9] for more
details). We divided the set of MTP BACs into seven sets of n = 2197 BACs and
pooled each set using the STD parameters defined above. In this manuscript,
we report on one of these seven sets, called HV3 (the average BAC length in
this set is about 116K bases). The 91 pools in HV3 were sequenced on one flow
cell of the Illumina HiSeq2000 by multiplexing 13 pools on each lane. After each
sample was demultiplexed, we quality-trimmed and cleaned the reads of spurious
sequencing adapters and vectors. We ended up with high quality reads of about
87–89 bases on average. The number of reads in a pool ranged from 4.2M to
10M, for a grand total of 826M reads. We error-corrected and overlap-clustered
the reads using SGA (same parameters as for rice). The average cluster size was

Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing 83

Table 3. Assembly results for barley BACs for different decoding algorithms. All values
are an average of 2197 BACs. Boldface values highlight the best result in each column.
Column “% coverage” refers to the coverage of known unigenes by assembled contigs.

Reads used # contigs N50 Sum/size # obs unigenes % coverage

Hashfilter [9] 83.6% 101 8,190 96.7% 1,433 92.9%

RBD 85.7% 54 14,419 101.0% 1,434 92.4%

CBD 92.9% 54 13,482 94.5% 1,436 92.6%

CBD + MRS 94.3% 50 26,842 126.8% 1,434 92.5%

about 26 reads. Computing pairwise overlaps took an average of 217.60s per 1M
reads on 10 cores. The hash table for k = 26 (after discarding k-mers appearing
in fewer than γ = 3 pools) used about 26GB of RAM. After decoding the reads
to their BAC, we obtained an average sequencing depth for one BAC of 409.2×,
382.2× and 412.8× for RBD, CBD and CBD + MRS, respectively. The average
running time was 10.25s per 1M reads for RBD and 82.12s per 1M clusters for
CBD using 10 cores.

The only objective criterion to asses the decoding performance on barley
genome is to assemble the reads BAC-by-BAC and analyze the assembly statis-
tics. We used Velvet with the same l-mer choices as used for rice. Table 3
summarizes the statistics for the highest N50 among those l-mer choices. As
before, rows corresponds to the various decoding methods. Columns show (1)
percentage of reads used by Velvet in the assembly, (2) number of contigs (at
least 200 bases long), (3) value of N50, (4) ratio of the sum of all contigs sizes
over estimated BAC length, (5) the number of barley known unigenes observed
in the assemblies, and (6) the coverage of observed unigenes. Observe that, out
of a total of 1,471 known unigenes expected to be contained in these BACs, a
large fraction are reported by all assemblies. However, cluster-based decoding
appears to generate significantly longer contigs than the other methods.

6 Conclusions

We have presented a novel modeling and decoding approach for pooled sequenced
reads obtained from protocols for de novo genome sequencing, like the one pro-
posed in [9]. Our algorithm is based on the theory of compressed sensing and
uses ideas from the decoding of error-correcting codes. It also effectively exploits
overlap and mate pair information between the sequencing reads. Experimen-
tal results on synthetic data from the rice genome as well as real data from
the genome of barley show that our method enables significantly higher quality
assemblies than the previous approach, without incurring higher decoding times.

Acknowledgments. SL and TJC were supported by NSF [DBI-1062301 and
DBI-0321756] and by USDA [2009-65300-05645 and 2006-55606-16722]. MW and
ACG were supported by NSF [CCF-1161233]. HQN and AR were supported by
NSF [CCF-1161196].

84 D. Duma et al.

References

1. Alon, S., Vigneault, F., Eminaga, S., et al.: Barcoding bias in high-throughput
multiplex sequencing of mirna. Genome Research 21(9), 1506–1511 (2011)

2. Amir, A., Zuk, O.: Bacterial community reconstruction using compressed sensing.
In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 1–15.
Springer, Heidelberg (2011)

3. Earl, D., et al.: Assemblathon 1: A competitive assessment of de novo short read
assembly methods. Genome Research 21(12), 2224–2241 (2011)

4. Engler, F.W., Hatfield, J., Nelson, W., Soderlund, C.A.: Locating sequence on FPC
maps and selecting a minimal tiling path. Genome Research 13(9), 2152–2163 (2003)

5. Erlich, Y., Chang, K., Gordon, A., et al.: DNA sudoku - harnessing high-
throughput sequencing for multiplexed specimen analysis. Genome Research 19(7),
1243–1253 (2009)

6. Erlich, Y., Gordon, A., Brand, M., et al.: Compressed genotyping. IEEE Transac-
tions on Information Theory 56(2), 706–723 (2010)

7. Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C., Birol, I.: Optimal pooling for
genome re-sequencing with ultra-high-throughput short-read technologies. Bioin-
formatics 24(13), i32–i40 (2008)

8. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology 10(3),
R25 (2009)

9. Lonardi, S., Duma, D., Alpert, M., et al.: Combinatorial pooling enables selective
sequencing of the barley gene space. PLoS Comput. Biol. 9(4), e1003010 (2013)

10. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable compressed sensing by list-
recoverable codes and recursion. In: STACS, pp. 230–241 (2012)

11. Prabhu, S., Pe’er, I.: Overlapping pools for high-throughput targeted resequencing.
Genome Research 19(7), 1254–1261 (2009)

12. Shental, N., Amir, A., Zuk, O.: Identification of rare alleles and their carriers using
compressed se(que)nsing. Nucleic Acids Research 38(19), e179–e179 (2010)

13. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Research 22(3), 549–556 (2012)

14. The International Barley Genome Sequencing Consortium. A physical, genetic and
functional sequence assembly of the barley genome. Nature (advance online publi-
cation October 2012) (in press)

15. Thierry-Mieg, N.: A new pooling strategy for high-throughput screening: the
shifted transversal design. BMC Bioinformatics 7(28) (2006)

16. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthog-
onal matching pursuit. IEEE Trans. Inform. Theory 53, 4655–4666 (2007)

17. Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse ap-
proximation: part i: Greedy pursuit. Signal Process. 86(3), 572–588 (2006)

18. Zerbino, D., Birney, E.: Velvet: Algorithms for de novo short read assembly using
de Bruijn graphs. Genome Research 8(5), 821–829 (2008)

A Novel Combinatorial Method for Estimating

Transcript Expression with RNA-Seq:
Bounding the Number of Paths

Alexandru I. Tomescu1, Anna Kuosmanen1, Romeo Rizzi2, and Veli Mäkinen1

1 Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Finland

{tomescu,aekuosma,vmakinen}@cs.helsinki.fi
2 Department of Computer Science, University of Verona, Italy

romeo.rizzi@univr.it

Abstract. RNA-Seq technology offers new high-throughput ways for
transcript identification and quantification based on short reads, and
has recently attracted great interest. The problem is usually modeled by
a weighted splicing graph whose nodes stand for exons and whose edges
stand for split alignments to the exons. The task consists of finding a
number of paths, together with their expression levels, which optimally
explain the coverages of the graph under various fitness functions, such
least sum of squares. In (Tomescu et al. RECOMB-seq 2013) we showed
that under general fitness functions, if we allow a polynomially bounded
number of paths in an optimal solution, this problem can be solved in
polynomial time by a reduction to a min-cost flow program. In this paper
we further refine this problem by asking for a bounded number k of
paths that optimally explain the splicing graph. This problem becomes
NP-hard in the strong sense, but we give a fast combinatorial algorithm
based on dynamic programming for it. In order to obtain a practical tool,
we implement three optimizations and heuristics, which achieve better
performance on real data, and similar or better performance on simulated
data, than state-of-the-art tools Cufflinks, IsoLasso and SLIDE. Our tool,
called Traph, is available at http://www.cs.helsinki.fi/gsa/traph/

1 Introduction

In this paper we tackle a biological multi-assembly problem [26] motivated by
the recent RNA-Seq technology [17,20,19]: reconstruct as accurately as possible
the RNA transcripts of a gene, given only a set of short RNA reads sequenced
from them. The transcripts are concatenations of exons, the difficulty of the
problem arising from the fact that they can have some identical exons.

This problem has attracted great interest from the community, resulting in
tools such as Cufflinks [22], IsoInfer/IsoLasso [4,11], SLIDE [12], CLIIQ [9],
Scripture [5], iReckon [16], TRIP [13], NSMAP [25], Montebello [8], FlipFlop
[2]. The methods rely on a graph model, the most common being a splicing
graph [6]. Its nodes represent contiguous stretches of DNA uninterrupted by

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 85–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.helsinki.fi/gsa/traph/

86 A.I. Tomescu et al.

a
8

b
6

e

3

c
5

f

3

d
8

5

3

3
4

5
5

3
4

(a)

a
5+3

b
5

e

3

c
5

f

3

d
5+3

5

3

3
4

5
5

3
3

(b)

a
5+3

b

5+3

e

3

c
5

f

3

d
5+3

5

3

3
3

5
5

3
3

(c)

Fig. 1. An example for k = 2, and fitness function fv(x) = x2, fuv(x) = x2, for all
nodes v, and edges (u, v). In Fig. 1(a), a splicing directed acyclic graph; its nodes and
edges are labeled with their observed average coverage. In Fig. 1(b), the optimal 2
paths for Problem 2-UTEO, with expression levels 5 and 3; their cost is 1 + 1 = 2
(from node b, and edge (f ,d), respectively). In the case of Problem 2-UTEC, we have to
add 32 + 42 to their cost (from uncovered edges (e,b), (b,f)), which is not optimal. In
Fig. 1(c), the optimal 2 paths for Problem 2-UTEC, with expression levels 5 and 3; their
cost is 22 + (1+ 1+ 32) = 15 (from node b, and edges (b,f), (f ,d), (e,f), respectively).

spliced reads (called pseudo-exons), while its edges are derived from overlaps,
or from spliced read alignments. The splicing graph is directed and acyclic (a
DAG), the orientation of the edges being according to the starting position of
the pseudo-exons inside the genome. Every node v has an associated observed
average coverage, computed as the total number of reads aligned to the pseudo-
exon v, divided by the exon length. Similarly, every edge (u, v) has an associated
coverage, which is the total number of reads split aligned to the junction between
pseudo-exons u and v.

The biological problem translates to covering the graph with intersect-
ing paths, under different cost models, such as least sum of squares (IsoIn-
fer/IsoLasso, SLIDE), least sum of absolute differences (CLIIQ). Many of the
above mentioned tools work by exhaustively enumerating all possible (combina-
tions of) paths, with some restrictions, and then estimating their fitness with
an Integer Linear Program, Quadratic Program, or a QP + LASSO regression.
Cufflinks computes a path cover with a minimum number of paths, and only in
a second step estimates their expression levels.

In [21] we introduced a novel very general framework, encompassing many
of the previous proposals; according to the survey [1], it can be classified as de
novo genome-based, since it does not use annotation information. Apparently,
parallel to our work, a similar min-cost flow approach, called FlipFlop, was pro-
posed in [2]. Our method assumes that for every node v and edge (u, v) of the
splicing graph, we are given fitness functions fv and fuv which penalize the
difference between the observed average coverage and the predicted coverage.
The problem was translated as finding (an unlimited number of) paths with
associated expression levels such that the sum of all penalties is minimum. For
example, if for every node or edge z, fz(x) = x2, then we have a least sum of
squares model as in IsoInfer/IsoLasso and SLIDE, and if fz(x) = x we have
a least sum of absolute difference model as in CLIIQ (see Fig. 1 for an exam-
ple).Various other fitting functions can be considered, such as fz(x) = x/cov(z)
[7], or fv(x) = x2 ∗ length(v)2. Therein, we proposed a min-cost flow method to

A Novel Combinatorial Method for Estimating Transcript Expression 87

solve this problem in polynomial-time, assuming the fitting functions are convex,
which was competitive with Cufflinks and IsoLasso. In that approach, the size
of the solution is polynomially bounded, but it was left open to find even more
parsimonious optimal or good solutions.

We now tackle the problem of optimally covering the splicing graph with
a bounded number k of paths (see Fig. 1 for an example). This is relevant
in practice since a small fraction of the graph can be erroneous due to various
biological events or technical errors, like template switching, self-priming, reading
errors, wrong splicing alignment [3,19,14,15].

Problem 1 (k-UTEC). Given a splicing DAG G = (V,E) with positive coverage
values cov(v) and cov(u, v), integer k � 1, and fitting functions fv(·) and fuv(·),
for all v ∈ V and (u, v) ∈ E, the k-Unannotated Transcript Expression Cover
Problem is to find a tuple P of k paths from the sources of G to the sinks of G,
with an estimated expression level e(P) for each path P ∈ P , which minimize

sum err c(G,P) :=
∑
v∈V

fv

(∣∣∣cov(v) −
∑

P∈P s.t. v∈P

e(P)
∣∣∣)+

∑
(u,v)∈E

fuv

(∣∣∣cov(u, v)−
∑

P∈P s.t. (u,v)∈P

e(P)
∣∣∣).

We also study the following outlier sensitive variant asking for k paths which
best fit to the coverage only of the nodes and edges that they contain.

Problem 2 (k-UTEO). Under the same assumptions as for Problem k-UTEC,
the k-Unannotated Transcript Expression Outlier Problem is to find a tuple P
of k � 1 paths from the sources of G to the sinks of G, with an estimated
expression level e(P) for each path P ∈ P , which minimize

sum err o(G,P) :=
∑

P∈P, v∈P

fv

(∣∣∣cov(v) −
∑

P∈P s.t. v∈P

e(P)
∣∣∣)+

∑
P∈P, (u,v)∈P

fuv

(∣∣∣cov(u, v)−
∑

P∈P s.t. (u,v)∈P

e(P)
∣∣∣).

In Sec. 2.1 we show that both problems are NP-hard in the strong sense.
1 Nevertheless, in Sec. 2.2 we give dynamic programming algorithms with a
time-complexity of O(|M |k(n2 + Δk)nk), where M is the set of all possible
expression levels, and Δ is the maximum in-degree of the graph. To obtain a
practical implementation of these algorithms, we apply, as explained in Sec. 2.3,
the following optimizations and heuristics:

1 We should note that a preliminary version of this paper was presented as a poster at
the RECOMB-seq, April 2013, conference http://bioinfo.au.tsinghua.edu.cn/

recomb2013/upload/programseq.pdf, and that our NP-hardness proof has already
inspired the NP-hardness proof [10] of the isoform reconstruction by maximum like-
lihood problem, deployed in tools such as iReckon, NSMAP, Montebello.

http://bioinfo.au.tsinghua.edu.cn/recomb2013/upload/programseq.pdf
http://bioinfo.au.tsinghua.edu.cn/recomb2013/upload/programseq.pdf

88 A.I. Tomescu et al.

1. We decompose the problem along cut nodes, i.e., we find a node whose
removal disconnects the graph into two components, and recursively solve
the problem on the two subgraphs.

2. We employ a genetic algorithm for finding the optimal expression levels: the
fitness of a given k-tuple of expression levels is the cost of the optimal paths
having these expression levels, obtained by our dynamic programming in
time O((n2 +Δk)nk); experiments show that the genetic algorithm has very
small variability in practice.

3. In order to reduce the exponential dependency on k, we choose a k′ � k
depending on the size of the graph and guaranteeing that the problem is
tractable, then compute the optimal k′ paths, remove their weight from the
graph, and recurse until obtaining k paths in total.

Experimental results, given in Sec. 3, show that our algorithm, together with
the above optimizations and heuristics, has better performance on real RNA-Seq
data, and similar or better performance on simulated data, than our min-cost
flow method, and than state-of-the-art tools Cufflinks, IsoLasso, and SLIDE.
In these experiments, we run the program for all values of k up to a bound
depending on the size of the input graph, and choose the k such that the paths
returned by the program have the minimum value of the objective function.
However, the choice of k is highly customizable by the user.

2 Methods

2.1 The NP-Hardness Proof

Theorem 1. If the cost functions fv and fuv are such that fv(0) = 0, fuv(0) =
0, and fv(x) > 0, fuv(x) > 0 for all x > 0 and all nodes v and edges (u, v) of
the input splicing graph, then Problems k-UTEC and k-UTEO are NP-hard in
the strong sense.

Proof. We follow the proof of [24], underlining the differences in what follows. We
reduce from 3-PARTITION. In this problem, we are given a set A = {a1, . . . , a3q}
with 3q elements, and for all a ∈ A, a positive integer s(a), its size, such that
B/4 < s(a) < B/2 and

∑
a∈A s(a) = qB. We are asked whether there exists a

partition of A into q disjoint sets each of size B.
Given an instance (A, s) to 3-PARTITION, we construct (see also Fig. 2(a))

the graph GA,s having:

– V (GA,s) = {s, x1, . . . , x3q, y, z1, . . . , zq, t},
– for every i ∈ {1, . . . , 3q}, we add arcs (s, xi), (xi, y) to GA,s, both with

coverage s(ai), and also set the coverage of xi to s(ai),

– for every i ∈ {1, . . . , q}, we add arcs (y, zi) and (zi, t) to GA,s, both with
coverage B, and also set the coverage of zi to B,

– the coverage of s, y and t is qB.

A Novel Combinatorial Method for Estimating Transcript Expression 89

s
qB

y

qB

x1

a1

x2

a2

x3q

a3q

a1

a2

a3q

a1

a2

a3q

...

z1

B

z2

B

zq

B

t

qB

B

B

B

B

B

B

...

(a)

v1 v2 = v4 = v∗ v3

u2 u4

S

P1 P2P3 P4

(b)

Fig. 2. In Fig. 2(a), a reduction of 3-PARTITION to Problems k-UTEC or k-UTEO.
In Fig. 2(b), computing solution(v1, v2, v3, v4). We assume that v2 = v4 is a sink of
Gv1,...,vk , and it is chosen as v∗; we then enumerate through all pairs of vertices from
N−(v∗)×N−(v∗); in this case, we find (u2, u4) and we extend the optimal paths ending
in (v1, u2, v3, u4) with the edges (u2, v

∗) and (u4, v
∗)

We prove that there exists a partition of A into q sets of size B if and only if
Problem k-UTEC admits on GA,s a solution with cost 0 made up of at most 3q
paths, and analogously for Problem k-UTEO.

For the forward implication, let A1, . . . , Aq be a partition of A into q sets
of size B. To obtain a solution to Problem k-UTEC with cost 0, for every Ai =
{ai1 , ai2 , ai3} we add to the solution the three paths (s, xi1 , y, zi, t), (s, xi2 , y, zi, t),
(s, xi3 , y, zi, t). These three paths completely cover the edges (s, xi1), (xi1 , y),
(s, xi2), (xi2 , y), and (s, xi3), (xi3 , y), respectively, and they are the only paths
to do so, since A1, . . . , Aq is a partition of A. This results in a zero cost to be
added to the objective function. Moreover, since s(ai1) + s(ai2) + s(ai3) = B,
then these three paths together completely cover the edges (y, zi) and (zi, t).
This also implies a zero cost to be added to the objective function.

For the backward implication, observe that a solution to Problem k-UTEC
with cost 0 and at most 3q paths must have exactly 3q paths. To see why this
is the case, observe that the sum of the expression levels of the paths is exactly
qB, as they pass through node y, and this is a zero-cost solution. Moreover, the
sum of the coverages of vertices x1, . . . , x3q is qB, by construction. The fact that
this is a zero-cost solution thus implies that each of the 3q vertices x1, . . . , x3q

must be covered by at least one of the 3q paths. Therefore, each xi is covered
by exactly one path.

For every i ∈ {1, . . . , q}, let Qi denote the set of paths in this optimal solution
covering node zi. As this is a zero-cost solution, the sum of their expression levels
is B, and their expression levels belong to A. Since B/4 < s(a) < B/2, for all
a ∈ A, then each Qi contains exactly three paths. This entails that for any
1 � i < j � q, Qi ∩ Qj = ∅. Therefore, by associating with each i ∈ {1, . . . , q}
the subsets of A that correspond to the first arc of the three paths of Qi we
obtain a partition of A into q sets of size B.

The proof of [24, Proposition 2] can be followed identically from this point
onwards to show that this is a pseudo-polynomial reduction. The proof for Prob-
lem k-UTEO is entirely similar. ��

90 A.I. Tomescu et al.

2.2 The Dynamic Programming Algorithms

Onwards, we propose dynamic programming algorithms for Problems k-UTEO
and k-UTEC. Since the algorithm for Problem k-UTEO is simpler than for Prob-
lem k-UTEC, we present the former here, and defer the latter to the full version
of this paper.

We will assume that the possible expression levels of the paths in an optimal
solution belong to a finite set M . Our strategy is to find the optimal k-tuple of
paths having a fixed k-tuple of expression levels. The solution is then obtained by
enumerating all k-tuples of expression levels from Mk, and taking the k-tuple of
paths having the smallest value of the objective function. Despite the dependency
on the expression levels’ values, having the two steps separated means that we
can employ, for a practical implementation, any local search heuristic for finding
the optimal expression levels. This search will be guided by the cost of the
objective function returned by the dynamic programming; the search can be
done at any chosen granularity, eventually including a priori information about
the true expression levels. We employ a genetic algorithm which behaves well in
practice (see Sec. 2.3).

Let us assume from now on one such choice (e1, . . . , ek) of expression levels
fixed. The main difficulty behind the algorithm is that the paths can share
vertices. Accordingly, we have to process all k-tuples of vertices of V ; for every
(v1, . . . , vk) ∈ V k, we define

solution(v1, . . . , vk) := min
paths P1, . . . , Pk in G,

each Pi is from a source to vi

sum err o(G,P1, . . . , Pk).

Since the input directed graph is acyclic, we let ≺ be a topological order on
V , and define the partial order ≺k on V k as follows:

(v′1, . . . , v
′
k) ≺k (v1, . . . , vk) iff ∃i ∈ {1, . . . , k} such that v′i ≺ vi.

Then, the computation of solution is done by dynamic programming, by
enumerating the tuples (v1, . . . , vk) ∈ V k in the order ≺k, and computing
solution(v1, . . . , vk) from the previous values, according to ≺k, as indicated in Al-
gorithm 1, where N−(v) denotes the in-neighborhood of a node v, and Gv1,...,vk

denotes the subgraph of G induced by the vertices from which there is a directed
path to one of v1, . . . , vk (see Fig. 2(b) for a sketch).

Theorem 2. If the cost functions fv and fuv are such that fv(x) � 0, fuv(x) �
0 for all x � 0 and all nodes v and edges (u, v) of the input splicing graph,
then Problems k-UTEO and k-UTEC can be solved in time O(|M |k(n2 +Δk)nk),
where n := |V (G)|, we assume that M is the set of possible expression levels,
and the maximum in-degree of G is Δ.

Proof. We give the proof only for Problem k-UTEO. The algorithm and the proof
for Problem k-UTEC are analogous, but more involved; they will be presented
in the full version of this paper.

A Novel Combinatorial Method for Estimating Transcript Expression 91

Algorithm 1. Computing solution(v1, . . . , vk) for a fixed tuple (e1, . . . , ek)
of expression levels, for Problem k-UTEO.

/* initialization for all possible source tuples */

foreach (s1, . . . , sk) ∈ Sk do

solution(s1, . . . , sk) ←
∑

i∈{1,...,k} such that

∀i′<i, si �=si′

fsi

(∣∣∣cov(si)−
∑

j∈{i,...,k}
s.t. sj=si

ej

∣∣∣
)
;

solution(v1, . . . , vk)
min ← ∞;
let v∗ be a sink of Gv1,...,vk , which is not the source of G;
let i1, . . . , i� be all the positions in the tuple (v1, . . . , vk) where v∗ appears;
/* we enumerate through all �-tuples of in-neighbors of v∗ */

foreach (ui1 , . . . , ui�) ∈ N−(v∗)� do
/* we get the optimal cost for such a tuple */

err ← solution(v1, . . . , vi1−1, ui1 , vi1+1, vi�−1, ui� , vi�+1, . . . , vk);
/* we sum up the cost of covering v∗ with the � paths extended from

ui1 , . . . , ui�
having expression levels ei1 , . . . , ei� */

err ← err + fv∗
(∣∣∣c(v∗)−

�∑
j=1

eij

∣∣∣
)
;

/* we sum up the cost of covering the edges (ui1 , v
∗), . . . , (ui�

, v∗) with the �

paths extended from ui1 , . . . , ui�
having expression levels ei1 , . . . , ei�,

respectively */

err ← err +
∑

j∈{1,...,�} such that

∀j′<j, uij
�=uij′

fuij
v∗
(∣∣∣c(uij , v

∗)−
∑

t∈{j,...,�}
s.t. uit

=uij

eit

∣∣∣
)
;

if err < min then min ← err;

return min.

Let (P1, . . . , Pk) be a tuple of k optimal paths starting in a source and ending
in v1, . . . , vk, i.e.,

sum err o(G,P1, . . . , Pk) = min
paths Q1, . . . , Qk in G,

each Qi is from a source to vi

sum err o(G,Q1, . . . , Qk). (1)

Let v∗ be a sink of Gv1,...,vk which is not a source of G (if none such node
exists, then all v1, . . . , vk, are sources and the value of solution(v1, . . . , vk) has
already been set). Assume also that i1, . . . , i�, � � 1, are the positions in the
tuple (v1, . . . , vk) where v∗ appears (see Fig. 2(b) for a sketch).

Let ui1 , . . . , ui� be the predecessors of v∗ on Pi1 , . . . , Pi� , respectively. For every
j ∈ {1, . . . , �}, denote by P ∗

ij
the path Pij from which we remove its last node,

v∗. To simplify notation, denote by (P1, . . . , P
∗, . . . , Pk) the tuple (P1, . . . , Pk)

in which, for every j ∈ {1, . . . , �}, we replace Pij by P ∗
ij

. Similarly, we denote

by (v1, . . . , u, . . . , vk) the tuple (v1, . . . , vk) in which, for every j ∈ {1, . . . , �}, we
replace vij by uij .

92 A.I. Tomescu et al.

From the fact that v∗ is a sink of Gv1,...,vk , neither the node v∗, nor the
edges in new edges := {(ui1 , v

∗),. . . ,(ui� , v
∗)}, belong to any path in G ending

in {v1, . . . , vk} \ {v∗}. Therefore, the following relation holds:

sum err o(G,P1, . . . , Pk) = sum err o(G,P1, . . . , P
∗, . . . , Pk)+

+ fv∗
(∣∣∣c(v∗)−

�∑
j=1

eij

∣∣∣)+
∑

j∈{1,...,�} such that
∀j′<j, uij

�=ui
j′

fuij
v∗
(∣∣∣c(uij , v

∗)−
∑

t∈{j,...,�}
s.t. uit=uij

eit

∣∣∣). (2)

Let (P ′
1, . . . , P

′
k) be any tuple of k paths from a source to (v1, . . . , u, . . . , vk)

such that sum err o(G, (P ′
1, . . . , P

′
k)) = solution(v1, . . . , u, . . . , vk). From the fact

that also the paths P1, . . . , P
∗, . . . , Pk end in v1, . . . , u, . . . , vk, respectively, and

the optimality of (P ′
1, . . . , P

′
k), we have

sum err o(G,P1, . . . , P
∗, . . . , Pk) � sum err o(G,P ′

1, . . . , P
′
k). (3)

From (3) and (2) we get

sum err o(G,P1, . . . , Pk) � sum err o(G,P ′
1, . . . , P

′
k)+

+ fv∗
(∣∣∣c(v∗)−

�∑
j=1

eij

∣∣∣)+
∑

j∈{1,...,�} such that
∀j′<j, uij

�=ui
j′

fuij
v∗
(∣∣∣c(uij , v

∗)−
∑

t∈{j,...,�}
s.t. uit=uij

eit

∣∣∣). (4)

Let us denote by (P ′
1, . . . , P

′ ∪ {v}, . . . , Pk) the tuple (P ′
1, . . . , P

′
k) in which,

for every j ∈ {1, . . . , �}, we add node v∗ at the end of path Pij . Resorting again
to the fact that the node v∗ and the edges in new edges do not belong to any
path in G ending in {v1, . . . , vk} \ {v∗}, we get that the right-hand side of the
inequality (4) is equal to sum err o(G,P ′

1, . . . , P
′ ∪ {v∗}, . . . , P ′

k), thus:

sum err o(G,P1, . . . , Pk) � sum err o(G,P ′
1, . . . , P

′ ∪ {v∗}, . . . , P ′
k). (5)

To conclude, if we enumerate through all (v′i1 , . . . , v
′
i�

) ∈ N−(v∗)�, we will find
the nodes ui1 , . . . , ui� preceding v∗ on the optimal paths Pi1 , . . . , Pi� , respectively.
If we extend each optimal path ending in v1, . . . , u, . . . , vk by the node v∗, we
obtain paths P ′

1, . . . , P
′ ∪ {v∗}, . . . , P ′

k whose cost is optimal, by (1) and (5).
Once table solution is computed, the solution for Problem k-UTEO is

min(t1,...,tk)∈Tk solution(t1, . . . , tk), where T is the set of sinks of G. Finally,
note that if we store in solution(v1, . . . , vk) also the predecessors u1, . . . , uk of
v1, . . . , vk on the optimal paths from the sources, we can then trace back the k
optimal paths from sources to sinks.

The time complexity bound follows from the fact that there are nk tuples
(v1, . . . , vk) ∈ V k, computing the sinks of Gv1,...,vk takes time linear in the
number of edges of Gv1,...,vk , which are O(n2), and there are at most Δk can-
didate predecessors ui1 , . . . , ui� of v∗ on Pi1 , . . . , Pi� , respectively, in the in-
neighborhood of v∗. ��

A Novel Combinatorial Method for Estimating Transcript Expression 93

2.3 Optimizations and Heuristics for a Practical Implementation

We implemented the two algorithms in our tool Traph [21], which can be seen
as an alternative version of our min-cost flow method.

In order to speed-up the dynamic programming, we look for nodes whose
removal disconnects the input graph G. If v is such a cut node, then we consider
the subgraphs G1, induced by v and the nodes from which there is a directed
path to v, and G2, induced by v and the nodes to which there is a directed path
starting from v. It is clear that v is the only sink in G1 and the only source in
G2. We can then recursively solve Problem k-UTEC/k-UTEO for G1, and use
the optimal solution for v in G1 as initialization to the dynamic programming
table of G2, and solve the problem on G2.

Moreover, in order to avoid enumerating through all tuples of possible ex-
pression levels, at present we employ a genetic algorithm: for each individual
(e1, . . . , ek) in the current population, its fitting function φ(e1, . . . , ek) is the
cost of the optimal paths having the expression levels (e1, . . . , ek), computed
with our dynamic programming algorithms.

As by its nature genetic algorithm results vary, Traph iterates a hundred times
each run, and the algorithm is rerun five times with different initial values. The
solution with the smallest value of the objective function is then chosen. We
tested the variability of the results by running Traph a hundred times on a
sample containing alignments from one gene. All hundred runs resulted to the
same transcripts, with the standard deviation of the path weight being less than
0.001% of the mean path weight for every transcript.

In order to reduce the exponential dependency on k, we choose a number
k′ � k which depends on n and Δ such that O((n2+Δk)nk) is small for practical
purposes. We then solve the problem by looking for the best k′ paths with their
optimal expression levels, remove their weights from the graph, and then recurse
until obtaining k paths as requested.

We use a least sum of squares model, i.e., the fitness function that we use is
fz(x) = x2, for all nodes and edges z. In the present work, we also tried the
fitting function fv(x) = x2 ∗ length(v)2 (which tries to explain the total coverage
of the exons, not only their average coverage), and in [21] we tried the fitting
function fv(x) = x/cov(v), but they did not give better results.

3 Experimental Results

We compared Traph cover (Problem UTEC), and Traph outlier (Problem UTEO)
with Cufflinks [22], IsoLasso [11], SLIDE [9], and to our min-cost flow method
[21]. We tried to compare also against Scripture, iReckon, CLIIQ, but we ran into
compatibility issues in installing them, or we could not get reliable results. Even
though Traph is not yet employing paired-end read information, the experiments
(both simulated and real) were conducted with paired-end reads, and Cufflinks,
IsoLasso and SLIDE had access to the paired-end information. As Traph is a
de novo genome-based tool, we ran the other tools without annotation. Our

94 A.I. Tomescu et al.

experiment setup and validation criteria are the same as in [21].2 We run the
algorithms for all values of k up to a bound depending on the size of the input
graph, and choose the minimum k giving the minimum of the objective function.
However, the choice of k can be easily customized by the user.

Matching criteria. In order to match the predicted transcripts with the true
transcripts, we take into account sequences but also expression levels. For each
gene, we construct a bipartite graph with the true transcripts T = (T1, T2, . . .) as
nodes in one set of the bipartition, and the predicted transcripts P = (P1, P2, . . .)
as nodes in the other set of the bipartition. Empty sequences with 0 expres-
sion level were added so that both sets of the bipartition had an equal number
of nodes. The cost of an edge between a true transcript Ti with expression
level e(Ti) and a predicted transcript Pj with expression level e(Pj) is defined
as a combined measure between: (i) the edit distance between Ti and Pj , di-
vided by max(|Ti|, |Pj |), which we call sequence dissimilarity; and (ii) the ratio
|e(Pj) − e(Ti)|/e(Ti), which we call relative expression level difference (see [21]
for further details). The minimum weight perfect matching was then computed;
this gives a one-to-one mapping between true and predicted transcripts. Each
matched node pair with relative expression level difference and sequence dis-
similarity under given thresholds define a true positive event (TP). The other
kind of nodes define false positive (FP) and false negative (FN) events, de-
pending on side of the bipartite graph they reside. The prediction efficiency is
based on precision = TP/(TP+FP), recall = TP/(TP+FN) and F-measure =
2∗precision∗recall/(precision+recall).

3.1 Simulated Human Data

For creating the simulated data we used the annotated genes in human chro-
mosome 2 as reported by Ensembl database. Excluding the genes that had no
transcripts as long or longer than the fragment size, we were left with 1,462
genes. We simulated reads with the RNASeqReadSimulator3 by first choosing
an expression level for each transcript at random from lognormal distribution
with mean −4 and variance 1, and then creating paired-end reads with fragment
length mean 300 and standard deviation 20, with the starting positions of the
fragments being chosen uniformly inside the transcripts. As argued in the case
of IsoLasso [11], various error models can be incorporated in these steps, but we
chose to compare the performance of the methods in neutral conditions.

We devised two experiment setups. In the first one, which we call singles,
300,000 paired-end reads were generated independently from the transcripts of

2 In [21] we use bitscore instead of sequence dissimilarity, which is based on normalized
compression distance and is better grounded as a measure. However, it needs full
alignment to be output. Here we approximate this measure with sequence dissim-
ilarity, which is fast to compute using Myers’s bitparallel algorithm [18], and this
enables much larger data sets to be evaluated within the time constraints of article
submission.

3 http://www.cs.ucr.edu/~liw/rnaseqreadsimulator.html

http://www.cs.ucr.edu/~liw/rnaseqreadsimulator.html

A Novel Combinatorial Method for Estimating Transcript Expression 95

10% 30% 50% 70% 90%
0

0.1

0.2

0.3

sequence dissimilarity

F
-m

e
a
su

re
Cufflinks

IsoLasso

SLIDE

Min-cost flow

Traph cover

(a) s. expr. diff. � 10%

10% 30% 50% 70% 90%
0

0.1

0.2

0.3

sequence dissimilarity

(b) s. expr. diff. � 40%

10% 30% 50% 70% 90%
0

0.035

0.07

sequence dissimilarity

(c) b. expr. diff. � 10%

10% 30% 50% 70% 90%
0

0.1

0.2

0.3

sequence dissimilarity

(d) b. expr. diff. � 40%

Tool
Total Shared with annotation at

predicted sequence dissimilarity under
10% 20% 30% 40% 50%

Cufflinks 1916 648 955 1171 1307 1413
IsoLasso 1468 589 782 923 1022 1100
SLIDE 2229 635 983 1242 1391 1474
Min-cost flow 2148 722 1000 1228 1341 1456
Traph cover 2109 788 1063 1283 1407 1501

(e) The total number of transcripts reported by
the tools on real data

Fig. 3. Performance of the tools on simulated and real data. Plots 3(a) and 3(b) depict
results in the singles scenario, and plots 3(c) and 3(d) depict results in the batch

scenario; the legend for all plots is as in Fig. 3(a). Real data results are in Fig. 3(e).

each of the genes, with the already assigned expression levels. They were inde-
pendently given to TopHat [23] for alignment, and these independent alignment
results were fed to each tool. In the second, more realistic experiment, which
we call batch, we randomly chose 100 of the genes, chose expression levels for
them with the same distribution as before and simulated 100 ∗ 300,000 reads as
above. All these reads were fed to TopHat for alignment, and these combined
alignment results were fed to the tools. The fragment length mean and standard
deviation were passed to the tools, except for Cufflinks in batch, when it was
able to infer them automatically; as our simulated data did not contain any sin-
gle exon genes, SLIDE was unable to infer the fragment distribution, and it was
given the fragment length mean and the standard deviation.

96 A.I. Tomescu et al.

Cufflinks, IsoLasso and SLIDE were ran with the default parameters, because
the parameters they offer relate to RNA-seq lab protocol, which was not simu-
lated; we could not see changes to other parameters which could be relevant to
the prediction. SLIDE’s results are highly dependent on the lambda values, and
as such it encourages the user to manually adjust the lambda values if the re-
sult set seems to either be missing isoforms or contain too many short isoforms,
but for the sake of having automated tests we used the lambda values SLIDE
estimated from the data as is. We use FPKM values as expression levels. Full
simulated experiment input data is available on the webpage of Traph.

Fig. 3 shows selected validation results. For each experiment, we choose two
thresholds for the relative expression level differences, namely 10% and 40%.
Overall, Traph cover outperformed Traph outlier; at the moment we consider
Traph cover as the default implementation, and plan to apply Traph outlier
to other multi-assembly problems. In the singles scenario, Cufflinks, our min-
cost flow method and Traph cover have very similar F-measure and out-perform
IsoLasso and SLIDE. In the batch scenario, we obtain the same situation when
the relative expression level difference is allowed to be at most 10%, but the min-
cost flow method and Traph cover out-perform the other tools when the threshold
for relative expression level difference is 40%, Traph cover giving slightly better
results. Note that in the batch scenario the tools predicted transcripts which
fall outside the annotated gene areas, which we accounted as FP events in the
plots. For the 100 genes, Cufflinks predicted 512 transcripts inside gene areas,
and 215 outside gene areas, Isolasso had 384 predictions inside and a surprising
7,422 outside; SLIDE had 725 inside and 94 outside; Traph cover had 458 inside
and 98 outside; the min-cost flow method had 413 inside and 74 outside.

Running times. On the batch dataset of reads from 100 genes, Cufflinks ran
in 421 min, IsoLasso in 38 min, SLIDE in 257 min. Our script for creating the
splicing graphs is written in Python and took 180 min; the min-cost flow method
ran on these splicing graphs in 117 min, and Traph cover in 538 min.

3.2 Real Human Data

We used the same real dataset from the IsoLasso paper, Caltech RNA-Seq track
from the ENCODE project [GenBank:SRR065504], consisting of 75bp paired-
end reads. Out of these reads, we picked the 2,406,339 which mapped to human
chromosome 2. We selected the 735 genes where all tools made some prediction;
these genes have 6,325 annotated transcripts.

The transcripts predicted by each tool are matched with the annotated tran-
scripts, employing the same minimum weight perfect matching method intro-
duced before, but without taking into account expression levels. A true positive
is a match selected by the perfect matching with varying sequence dissimilarity
threshold. We present these results in Table 3(e), where we note that Traph
cover reports the most transcripts which match the annotation at all thresholds
of sequence dissimilarity.

A Novel Combinatorial Method for Estimating Transcript Expression 97

4 Conclusion

In this paper we tackled two multi-assembly problems arising from transcript
identification and quantification with RNA-Seq, which ask for the k paths which
best explain, under given fitting functions, the coverages of a splicing graph. In
our experiments we worked with least sum of squares as fitting function, but
our method supports very general fitting functions. We expect that these two
models and algorithms to be applicable to other multi-assembly problems, such
as in metagenomics or in viral quasi-species assembly.

The two problems considered, Problem k-UTEO and k-UTEC, are shown to
be NP-hard in the strong sense, proof which already inspired a similar NP-
hardness proof [10] of another problem pertaining to multi-assembly. If some of
the input parameters are bounded (k, the maximum in-degree of the graph, the
set of possible expression levels), then the problems can be solved in polynomial-
time using dynamic programming. Nonetheless, in order to obtain a practical
implementation, we considered three optimizations and heuristics which work
well in practice, and in a feasible amount of time: on real data we report more
annotated transcripts than Cufflinks, IsoLasso, SLIDE and our previous min-cost
flow method, while on simulated data we obtain similar or better performance.

Acknowledgements. We wish to thank Antti Honkela for many insightful
discussions on transcript prediction. We also thank Travis Gagie for discussions
on the NP-hardness proof. This work was partially supported by Academy of
Finland under grant 250345 (CoECGR).

References

1. Alamancos, G.P., Agirre, E., Eyras, E.: Methods to study splicing from high-
throughput RNA Sequencing data. CoRR abs/1304.5952 (2013)

2. Bernard, E., et al.: Efficient RNA Isoform Identification and Quantification from
RNA-Seq Data with Network Flows. SU2C-AACR-DT0409; SES-0835531; CCF-
0939370

3. Brett, D., et al.: Alternative splicing and genome complexity. Nature Genet-
ics 30(1), 29–30 (2001)

4. Feng, J., Li, W., Jiang, T.: Inference of isoforms from short sequence reads. In:
Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 138–157. Springer, Heidel-
berg (2010)

5. Guttman, M., et al.: Ab initio reconstruction of cell type-specific transcriptomes
in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotech-
nol. 28(5), 503–510 (2010)

6. Heber, S., et al.: Splicing graphs and EST assembly problem. Bioinformat-
ics 18(suppl. 1), S181–S188 (2002)

7. Heijden, V.D., et al.: Estimating the size of a criminal population from police
records using the truncated poisson regression model. Statistica Neerlandica 57(3),
289–304 (2003)

8. Hiller, D., et al.: Simultaneous Isoform Discovery and Quantification from RNA-
Seq., pp. 1–19 (2012)

98 A.I. Tomescu et al.

9. Li, J.J., et al.: Sparse linear modeling of next-generation mRNA sequencing (RNA-
Seq) data for isoform discovery and abundance estimation. Proc. of the National
Academy of Sciences 108(50), 19867–19872 (2011)

10. Li, T., Jiang, R., Zhang, X.: Isoform reconstruction using short RNA-Seq reads by
maximum likelihood is NP-hard. CoRR abs/1305.0916 (2013)

11. Li, W., et al.: IsoLasso: a LASSO regression approach to RNA-Seq based tran-
scriptome assembly. J. Comput. Biol. 18(11), 1693–1707 (2011)

12. Lin, Y.-Y., Dao, P., Hach, F., Bakhshi, M., Mo, F., Lapuk, A., Collins, C., Sahinalp,
S.C.: CLIIQ: Accurate Comparative Detection and Quantification of Expressed
Isoforms in a Population. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS,
vol. 7534, pp. 178–189. Springer, Heidelberg (2012)

13. Mangul, S., et al.: An integer programming approach to novel transcript recon-
struction from paired-end RNA-Seq reads. In: Ranka, S., et al. (eds.) BCB, pp.
369–376. ACM (2012)

14. Maniatis, T., Tasic, B.: Alternative pre-mRNA splicing and proteome expansion
in metazoans. Nature 418(6894), 236–243 (2002)

15. McIntyre, L., et al.: RNA-seq: technical variability and sampling. BMC Ge-
nomics 12(1), 293 (2011)

16. Mezlini, A.M., et al.: iReckon: Simultaneous isoform discovery and abundance es-
timation from RNA-seq data. Genome Research 23(3), 519–529 (2012)

17. Mortazavi, A., et al.: Mapping and quantifying mammalian transcriptomes by
RNA-Seq. Nature Methods 5, 621–628 (2008)

18. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. J. ACM 46(3), 395–415 (1999)

19. Ozsolak, F., Milos, P.M.: RNA sequencing: advances, challenges and opportunities.
Nature Reviews. Genetics 12(2), 87–98 (2011)

20. Pepke, S., Wold, B., Mortazavi, A.: Computation for ChIP-seq and RNA-seq stud-
ies. Nature Methods 6(11), s22–s32 (2009)

21. Tomescu, A.I., Kuosmanen, A., Rizzi, R., Mäkinen, V.: A Novel Min-Cost Flow
Method for Estimating Transcript Expression with RNA-Seq. BMC Bioinformat-
ics 14(suppl. 5), S15 (2013), Presented at RECOMB-Seq, Beijing, China (2013)

22. Trapnell, C., et al.: Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nature
Biotechnology 28, 511–515 (2010)

23. Trapnell, C., Pachter, L., Salzberg, S.L.: TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics 25(9), 1105–1111 (2009)

24. Vatinlen, B., et al.: Simple bounds and greedy algorithms for decomposing a flow
into a minimal set of paths. European Journal of Operational Research 185(3),
1390–1401 (2008)

25. Xia, Z., et al.: NSMAP: A method for spliced isoforms identification and quantifi-
cation from RNA-Seq. BMC Bioinformatics 12(1), 162 (2011)

26. Xing, Y., et al.: The multiassembly problem: reconstructing multiple transcript
isoforms from EST fragment mixtures. Genome Res. 14(3), 426–441 (2004)

A Polynomial Delay Algorithm for the

Enumeration of Bubbles with Length
Constraints in Directed Graphs and Its

Application to the Detection of Alternative
Splicing in RNA-seq Data

Gustavo Sacomoto1,2, Vincent Lacroix1,2, and Marie-France Sagot1,2

1 INRIA Rhône-Alpes, 38330 Montbonnot Saint-Martin, France
2 Université de Lyon, 69000 Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire

de Biométrie et Biologie Évolutive, 69622 Villeurbanne, France
{gustavo.sacomoto,Marie-France.Sagot}@inria.fr,

vincent.lacroix@univ-lyon1.fr

Abstract. We present a new algorithm for enumerating bubbles with
length constraints in directed graphs. This problem arises in transcrip-
tomics, where the question is to identify all alternative splicing events
present in a sample of mRNAs sequenced by RNA-seq. This is the first
polynomial-delay algorithm for this problem and we show that in practice,
it is faster than previous approaches. This enables us to deal with larger
instances and therefore to discover novel alternative splicing events, espe-
cially long ones, that were previously overseen using existing methods.

1 Introduction

Transcriptomes of model or non model species can now be studied by sequencing,
through the use of RNA-seq, a protocol which enables us to obtain, from a sample
of RNA transcripts, a (large) collection of (short) sequencing reads, using Next
Generation Sequencing (NGS) technologies [15,10]. Nowadays, a typical experi-
ment produces 100M reads of 100nt each. However, the original RNA molecules
are longer (typically 500-3000nt) and the general computational problem in the
area is then to be able to assemble the reads in order to reconstruct the origi-
nal set of transcripts. This problem is not trivial for mainly two reasons. First,
genomes contain repeats that may be longer than the read length. Hence, a read
does not necessarily enable to identify unambiguously the locus from which the
transcript was produced. Second, each genomic locus may generate several types
of transcripts, either because of genomic variants (i.e. there may exist several
alleles for a locus) or because of transcriptomic variants (i.e. alternative splicing
or alternative transcription start/end may generate several transcripts from a
single locus that differ by the inclusion or exclusion of subsequences). Hence, if
a read matches a subsequence shared by several alternative transcripts, it is a
priori not possible to decide which of these transcripts generated the read.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 99–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

100 G. Sacomoto, V. Lacroix, and M.-F. Sagot

General purpose transcriptome assemblers [7,12,14] aim at the general goal of
identifying all alternative transcripts, but because of the extensive use of heuris-
tics, they usually fail to identify infrequent transcripts, tend to report several
fragments for each gene, or fuse genes that share repeats. Local transcriptome
assemblers [13], on the other hand, aim at a simpler goal, as they do not recon-
struct full length transcripts. Instead, they focus on reporting all variable regions
(polymorphisms): whether genomic (SNPs, indels) or transcriptomic (alternative
splicing events). They are much less affected by the issue of repeats, since they
focus only on the variable regions. They can afford to be exact and therefore are
able to have access to infrequent transcripts. The fundamental idea is that each
polymorphism corresponds to a recognizable pattern, called a bubble in the de
Bruijn graph built from the RNA-seq reads. In practice, only bubbles with spe-
cific length constraints are of interest. However, even with this restriction, the
number of such bubbles can be exponential in the size of the graph. Therefore,
as with other enumeration problems, the best possible algorithm is one spend-
ing time polynomial in the input size between the output of two bubbles, i.e. a
polynomial delay algorithm.

In this paper, we introduce the first polynomial delay algorithm to enumerate
all bubbles with length constraints in a weighted directed graph. Its complexity in
the best theoretical case for general graphs is O(n(m+n log n)) (Section 3) where
n is the number of vertices in the graph, m the number of arcs. In the particular
case of de Bruijn graphs, the complexity is O(n(m+n logα)) (Section 4.1) where
α is a constant related to the length of the skipped part in an alternative splicing
event. In practice, an algorithmic solution in O(nm logn) (Section 4.2) appears
to work better on de Bruijn graphs built from such data. We implemented the
latter, show that it is more efficient than previous approaches and outline that
it enables us to discover novel long alternative splicing events.

2 De Bruijn Graphs and Alternative Splicing

A de Bruijn graph (DBG) is a directed graph G = (V,A) whose vertices V are
labeled by words of length k over an alphabet Σ. An arc in A links a vertex u to
a vertex v if the suffix of length k−1 of u is equal to the prefix of v. The out and
the in-degree of any vertex are therefore bounded by the size of the alphabet Σ.
In the case of NGS data, the k-mers correspond to all words of length k present
in the reads of the input dataset, and only those. In relation to the classical
de Bruijn graph for all possible words of size k, the DBG for NGS data may
then not be complete. Given two vertices s and t in G, an (s, t)-path is a path
from s to t. As defined in [3], by an (s, t)-bubble, we mean two vertex-disjoint
(s, t)-paths. This definition is, of course, not restricted to de Bruijn graphs.

As was shown in [13], polymorphisms (i.e. variable parts) in a transcriptome
(including alternative splicing (AS) events) correspond to recognizable patterns
in the DBG that are precisely the (s, t)-bubbles. Intuitively, the variable parts
correspond to alternative paths and the common parts correspond to the be-
ginning and end points of those paths. More formally, any process generating

Bubble Enumeration with Length Constraints 101

patterns awb and aw′b in the sequences, with a, b, w, w′ ∈ Σ∗, |a| ≥ k, |b| ≥ k
and w and w′ not sharing any k-mer, creates a (s, t)-bubble in the DBG. In the
special case of AS events excluding mutually exclusive exons, since w′ is empty,
one of the paths corresponds to the junction of ab, i.e. to k-mers that contain
at least one letter of each sequence. Thus the number of vertices of this path in
the DBG is predictable: it is at most1 k − 1. An example is given in Fig. 2. In
practice [13], an upper bound α to the other path and a lower bound β on both
paths is also imposed. In other words, an AS event corresponds to a (s, t)-bubble
with paths p1 and p2 such that p1 has at most α vertices, p2 at most k − 1 and
both have at least β vertices.

ACT CTG

TGG GGA GAG AGC

GCG

TGC

Fig. 1. DBG with k = 3 for the sequences: ACTGGAGCG (awb) and ACTGCG (ab).
The pattern in the sequence generates a (s, t)-bubble, from CTG to GCG. In this case,
b = GCG and w = GGA have their first letter G in common, so the path corresponding
to the junction ab has k − 1− 1 = 1 vertex.

Given a directed graph G with non-negative arc weights w : E �→ Q≥0, the
length of the path p = (v0, v1) . . . (vn−1, vn) is the sum of the weights of the
edges in p and is denoted by |p|. The distance, length of the shortest path, from
u to v is denoted by d(u, v). We extend the definition of bubble given above.

Definition 1 ((s, t, α1, α2)-bubble). A (s, t, α1, α2)-bubble in a weighted di-
rected graph is a (s, t)-bubble with paths p1, p2 satisfying |p1| ≤ α1 and |p2| ≤ α2.

In practice, when dealing with DBGs built from NGS data, in a lossless pre-
processing step, all maximal non-branching linear paths of the graph (i.e. paths
containing only vertices with in and out-degree 1) are compressed each into one
single vertex, whose label corresponds to the label of the path (i.e. it is the
concatenation of the labels of the vertices in the path without the overlapping
part(s)). The resulting graph is the compressed de Bruijn graph (cDBG). In the
cDBG, the vertices can have labels larger than k, but an arc still indicates a
suffix-prefix overlap of size k − 1. Finally, since the only property of a bubble
corresponding to an AS event is the constraint on the length of the path, we
can disregard the labels from the cDBG and only keep for each vertex its label
length2. In this way, searching for bubbles corresponding to AS events in a cDBG

1 The size is exactly k − 1 if w has no common prefix with b and no common suffix
with a.

2 Resulting in a graph with weights in the vertices. Here, however, we consider the
weights in the arcs. Since this is more standard and, in our case, both alternatives
are equivalent, we can transform one into another by splitting vertices or arcs.

102 G. Sacomoto, V. Lacroix, and M.-F. Sagot

can be seen as a particular case of looking for (s, t, α1, α2)-bubbles satisfying the
lower bound β in a non-negative weighted directed graph.

Actually, it is not hard to see that the enumeration of (s, t, α1, α2)-bubbles,
for all s and t, satisfying the lower bound β is NP-hard. Indeed, deciding the
existence of at least one (s, t, α1, α2)-bubble, for some s and t, with the lower
bound β in a weighted directed graph where all the weights are 1 is NP-complete.
It follows by a simple reduction from the Hamiltonian st-path problem [6]: given
a directed graph G = (V,E) and two vertices s and t, build the graph G′ by
adding to G the vertices s′ and t′, the arcs (s, s′) and (t, t′), and a new path
from s′ to t′ with exactly |V | nodes. There is a (x, y, |V |+ 2, |V |+ 2)-bubble, for
some x and y, satisfying the lower bound β = |V |+ 2 in G′ if and only if there
is a Hamiltonian path from s to t in G.

From now on, we consider the enumeration of all (s, t, α1, α2)-bubbles (without
the lower bound) for a given source (fixed s) in a non-negative weighted directed
graph G (not restricted to a cDBG). The number of vertices and arcs of G is
denoted by n and m, respectively.

3 An O(n(m + n logn)) Delay Algorithm

In this section, we present an O(n(m + n logn)) delay algorithm to enumerate,
for a fixed source s, all (s, t, α1, α2)-bubbles in a general directed graph G with
non-negative weights. In a polynomial delay enumeration algorithm, the time
elapsed between the output of two solutions is polynomial in the instance size.
The pseudocode is shown in Algorithm 1. It is important to stress that this
pseudocode uses high-level primitives, e.g. the tests in lines 5, 11 and 19. An
efficient implementation for the test in line 11, along with its correctness and
analysis, is implicitly given in Lemma 3. This is a central result in this section.
For its proof we need Lemma 1.

Algorithm 1 uses a recursive strategy, inspired by the binary partition method,
that successively divides the solution space at every call until the considered
subspace is a singleton. In order to have a more symmetric structure for the
subproblems, we define the notion of a pair of compatible paths, which is an
object that generalizes the definition of a (s, t, α1, α2)-bubble. Given two vertices
s1, s2 ∈ V and upper bounds α1, α2 ∈ Q≥0, the paths p1 = s1 � t1 and
p2 = s2 � t2 are a pair of compatible paths for s1 and s2 if t1 = t2, |p1| ≤ α1,
|p2| ≤ α2 and the paths are internally vertex-disjoint. Clearly, every (s, t, α1, α2)-
bubble is also a pair of compatible paths for s1 = s2 = s and some t.

Given a vertex v, the set of out-neighbors of v is denoted by δ+(v). Let now
Pα1,α2(s1, s2, G) be the set of all pairs of compatible paths for s1, s2, α1 and α2

in G. We have3 that:

Pα1,α2(s1, s2, G) = Pα1,α2(s1, s2, G
′)

⋃
v∈δ+(s2)

(s2, v)Pα1,α′
2
(s1, v, G− s2), (1)

3 The same relation is true using s1 instead of s2.

Bubble Enumeration with Length Constraints 103

where α′
2 = α2 − w(s2, v) and G′ = G − {(s2, v)|v ∈ δ+(s2)}. In other words,

the set of pairs of compatible paths for s1 and s2 can be partitioned into:
Pα1,α′

2
(s1, v, G − s2), the sets of pairs of paths containing the arc (s2, v), for

each v ∈ δ+(s2); and Pα1,α2(s1, s2, G
′), the set of pairs of paths that do not

contain any of them. Algorithm 1 implements this recursive partition strategy.
The solutions are only output in the leaves of the recursion tree (line 3), where
the partition is always a singleton. Moreover, in order to guarantee that ev-
ery leaf in the recursion tree outputs at least one solution, we have to test if
Pα1,α′

2
(s1, v, G − s2) (and Pα1,α2(s1, s2, G

′)) is not empty before making the
recursive call (lines 11 and 19).

Algorithm 1. enumerate bubbles(s1, α1, s2, α2, B,G)

1 if s1 = s2 then
2 if B �= ∅ then
3 output(B)
4 return

5 else if there is no (s, t, α1, α2)-bubble, where s = s1 = s2 then
6 return

7 end

8 end
9 choose u ∈ {s1, s2}, such that δ+(u) �= ∅

10 for v ∈ δ+(u) do
11 if there is a pair of compatible paths using (u, v) in G then
12 if u = s1 then
13 enumerate bubbles(v, α1 − w(s1, v), s2, α2, B ∪ (s1, v), G− s1)
14 else
15 enumerate bubbles(s1, α1, v, α2 −w(s2, v), B ∪ (s2, v), G− s2)
16 end

17 end

18 end
19 if there is a pair of compatible paths in G− {(u, v)|v ∈ δ+(u)} then
20 enumerate bubbles(v, α1, s2, α2, B,G− {(u, v)|v ∈ δ+(u)})
21 end

The correctness of Algorithm 1 follows directly from the relation given in Eq. 1
and the correctness of the tests performed in lines 11 and 19. In the remaining
of this section, we describe a possible implementation for the tests, prove cor-
rectness and analyze the time complexity. Finally, we prove that Algorithm 1
has an O(n(m + n logn)) delay.

Lemma 1. There exists a pair of compatible paths for s1 �= s2 in G if and only
if there exists t such that d(s1, t) ≤ α1 and d(s2, t) ≤ α2.

Proof. Clearly this is a necessary condition. Let us prove that it is also sufficient.
Consider the paths p1 = s1 � t and p2 = s2 � t, such that |p1| ≤ α1 and
|p2| ≤ α2. Let t′ be the first vertex in common between p1 and p2. The sub-paths

104 G. Sacomoto, V. Lacroix, and M.-F. Sagot

p′1 = s1 � t′ and p′2 = s2 � t′ are internally vertex-disjoint, and since the weights
are non-negative, they also satisfy |p′1| ≤ |p1| ≤ α1 and |p′2| ≤ |p2| ≤ α2.

Using this lemma, we can test for the existence of a pair of compatible paths
for s1 �= s2 in O(m + n logn) time. Indeed, let T1 be a shortest path tree of G
rooted in s1 and truncated at distance α1, the same for T2, meaning that, for any
vertex w in T1 (resp. T2), the tree path between s1 and w (resp. s2 and w) is a
shortest one. It is not difficult to prove that the intersection T1∩T2 is not empty
if and only if there is a pair of compatible paths for s1 and s2 in G. Moreover,
each shortest path tree can be computed in O(m+n logn) time, using Dijkstra’s
algorithm [6]. Thus, in order to test for the existence of a (s, t, α1, α2)-bubble
for some t in G, we can test, for each arc (s, v) outgoing from s, the existence
of a pair of compatible paths for s �= v and v in G. Since s has at most n
out-neighbors, we obtain Lemma 2.

Lemma 2. The test of line 5 can be performed in O(n(m + n logn)).

The test of line 11 could be implemented using the same idea. For each v ∈ δ+(u),
we test for the existence of a pair of compatible paths for, say, u = s2 (the same
would apply for s1) and v in G − u, that is v is in the subgraph of G obtained
by eliminating from G the vertex u and all the arcs incoming to or outgoing
from u. This would lead to a total cost of O(n(m + n logn)) for all tests of
line 11 in each call. However, this is not enough to achieve an O(n(m+n logn))
delay. In Lemma 3, we present an improved strategy to perform these tests in
O(m + n logn) total time.

Lemma 3. The test of line 11, for all v ∈ δ+(u), can be performed in O(m +
n logn) total time.

Proof. Let us assume that u = s2, the case u = s1 is symmetric. From Lemma 1,
for each v ∈ δ+(u), we have that deciding if there exists a pair of compatible
paths for s1 and s2 in G that uses (u, v) is equivalent to deciding if there exists
t satisfying (i) d(s1, t) ≤ α1 and (ii) d(v, t) ≤ α2 − w(u, v) in G− u.

First, we compute a shortest path tree rooted in s1 for G− u. Let Vα1 be the
set of vertices at a distance at most α1 from s1. We build a graph G′ by adding
a new vertex r to G−u, and for each y ∈ Vα1 , we add the arcs (y, r) with weight
w(y, r) = 0. We claim that there exists t in G − u satisfying conditions (i) and
(ii) if and only if d(v, r) ≤ α2 − w(u, v) in G′. Indeed, if t satisfies (i) we have
that the arc (t, r) is in G′, so d(t, r) = 0. From the triangle inequality and (ii),
d(v, r) ≤ d(v, t) + d(t, r) = d(v, t) ≤ α2 − w(u, v). The other direction is trivial.

Finally, we compute a shortest path tree Tr rooted in r for the reverse graph
G′R, obtained by reversing the direction of the arcs of G′. With Tr, we have
the distance from any vertex to r in G′, i.e. we can answer the query d(v, r) ≤
α2−w(u, v) in constant time. Observe that the construction of Tr depends only
on G−u, s1 and α1, i.e. Tr is the same for all out-neighbors v ∈ δ+(u). Therefore,
we can build Tr only once in O(m+n logn) time, with two iterations of Dijkstra’s
algorithm, and use it to answer each test of line 11 in constant time.

Bubble Enumeration with Length Constraints 105

Theorem 1. Algorithm 1 has O(n(m + n logn)) delay.

Proof. The height of the recursion tree is bounded by 2n since at each call the
size of the graph is reduced either by one vertex (lines 13 and 15) or all its
out-neighborhood (line 20). After at most 2n recursive calls, the graph is empty.
Since every leaf of the recursion tree outputs a solution and the distance between
two leaves is bounded by 4n, the delay is O(n) multiplied by the cost per node
(call) in the recursion tree. From Lemma 1, line 19 takes O(m + n logn) time,
and from Lemma 3, line 11 takes O(m + n logn) total time. This leads to an
O(m + n logn) time per call, excluding line 5. Lemma 2 states that the cost for
the test in line 5 is O(n(m+n logn)), but this line is executed only once, at the
root of the recursion tree. Therefore, the delay is O(n(m + n logn)).

4 Implementation and Experimental Results

We now discuss the details necessary for an efficient implementation of Algo-
rithm 1 and the results on two sets of experimental tests. For the first set, our
goal is to compare the running time of Dijkstra’s algorithm (for typical DBGs
arising from applications) using several priority queue implementations. With
the second set, our objective is to compare an implementation of Algorithm 1 to
the Kissplice algorithm [13]. For both cases, we retrieved from the Short Read
Archive (accession code ERX141791) 14M Illumina 79bp single-ended reads of
a Drosophila melanogaster RNA-seq experiment. We then built the de Bruijn
graph for this dataset with k = 31 using the Minia algorithm [5]. In order to
remove likely sequencing errors, we discarded all k-mers that are present less
than 3 times in the dataset. The resulting graph contained 22M k-mers, which
after compressing all maximal linear paths, corresponded to 600k vertices.

In order to perform a fair comparison with Kissplice, we pre-processed the
graph as described in [13]. Namely, we decomposed the underlying undirected
graph into biconnected components (BCCs) and compressed all non-branching
bubbles with equal path lengths. In the end, after discarding all BCCs with
less than 4 vertices (as they cannot contain a bubble), we obtained 7113 BCCs,
the largest one containing 24977 vertices. This pre-processing is lossless, i.e.
every bubble in the original graph is entirely contained in exactly one BCC. In
Kissplice, the enumeration is then done in each BCC independently.

4.1 Dijkstra’s Algorithm with Different Priority Queues

Dijkstra’s algorithm is an important subroutine of Algorithm 1 that may have a
big influence on its running time. Actually, the time complexity of Algorithm 1
can be written as O(nc(n,m)), where c(n,m) is the complexity of Dijkstra’s algo-
rithm. There are several variants of this algorithm [6], with different complexities
depending on the priority queue used, including binary heaps (O(m log n)) and
Fibonacci heaps (O(m+n logn)). In the particular case where all the weights are
non-negative integers bounded by C, Dijkstra’s algorithm can be implemented

106 G. Sacomoto, V. Lacroix, and M.-F. Sagot

200 400 600 800

0.
00

1
0.

00
5

0.
05

0
0.

50
0

Running time of Dijkstra's algorithms

BCC size

tim
e

(s
)

BIN-NO-DEC
BIN
RAD
FIB

Fig. 2. Running times for each version of Dijkstra’s algorithm: using Fibonacci heaps
(FIB), using radix heaps (RAD), using binary heaps (BIN) and using binary heaps
without the decrease-key operation (BIN-NO-DEC). The tests were done including all
BCCs with more than 150 vertices. Both axes are in logarithmic scale.

using radix heaps (O(m + n logC)) [2]. As stated in Section 2, the weights of
the de Bruijn graphs considered here are integer, but not necessarily bounded.
However, we can remove from the graph all arcs with weights greater than α1

since these are not part of any (s, t, α1, α2)-bubble. This results in a complexity
of O(m + n logα1) for Dijkstra’s algorithm.

We implemented four versions of Lemma 2 (for deciding whether there exists
a (s, t, α1, α2)-bubble for a given s) each using a different version of Dijkstra’s
algorithm: with Fibonacci heaps (FIB), with radix heaps (RAD), with binary
heaps (BIN) and with binary heaps without decrease-key operation (BIN-NO-
DEC). The last version is Dijkstra’s modified in order not to use the decrease-key
operation so that we can use a simpler binary heap that does not support such
operation [4]. We then ran the four versions, using α1 = 1000 and α2 = 2k−2 =
60, for each vertex in all the BCCs with more than 150 vertices. The results are
shown4 in Fig. 2. Contrary to the theoretical predictions, the versions with the
best complexities, FIB and RAD, have the worst results on this type of instances.
It is clear that the best version is BIN-NO-DEC, which is at least 2.2 times and
at most 4.3 times faster than FIB. One of the factors possibly contribuiting to a
better performance of BIN and BIN-NO-DEC is the fact that cDBGs, as stated
in Section 2, have bounded degree and are therefore sparse.

4 The results for the largest BCC were omitted from the plot to improve the visual-
ization. It took 942.15s for FIB and 419.84s for BIN-NO-DEC.

Bubble Enumeration with Length Constraints 107

4.2 Comparison with the Kissplice Algorithm

In this section, we compare Algorithm 1 to the Kissplice (version 1.8.1) enu-
meration algorithm [13]. To this purpose, we implemented Algorithm 1 using
Dijkstra’s algorithm with binary heaps without the decrease-key operation for
all shortest paths computation. In this way, the delay of Algorithm 1 becomes
O(nm logn), which is worse than the one using Fibonacci or radix heaps, but is
faster in practice. The goal of the Kissplice enumeration is to find all the po-
tential alternative splicing events in a BCC, i.e. to find all (s, t, α1, α2)-bubbles
satisfying also the lower bound constraint (Section 2). In order to compare Kiss-

plice to Algorithm 1, we (naively) modified the latter so that, whenever a
(s, t, α1, α2)-bubble is found, we check whether it also satisfies the lower bound
constraints and output it only if it does.

In Kissplice, the upper bound α1 is an open parameter, α2 = k − 1 and
the lower bound is k − 7. Moreover, there are two stop conditions: either when
more than 10000 (s, t, α1, α2)-bubbles satisfying the lower bound constraint have
been enumerated or a 900s timeout has been reached. We ran both Kissplice

(version 1.8.1) and the modified Algorithm 1, with the stop conditions, for all
7113 BCCs, using α2 = 60, a lower bound of 54 and α1 = 250, 500, 750 and 1000.
The running times for all BCCs with more than 150 vertices (there are 37) is
shown5 in Fig. 3. For the BCCs smaller than 150 vertices, both algorithms have
comparable (very small) running times. For instance, with α1 = 250, Kissplice

runs in 17.44s for all 7113 BCCs with less than 150 vertices, while Algorithm 1
runs in 15.26s.

The plots in Fig. 3 show a trend of increasing running times for larger BCCs,
but the graphs are not very smooth, i.e. there are some sudden decreases and
increases in the running times observed. This is in part due to the fact that the
time complexity of Algorithm 1 is output sensitive. The delay of the algorithm
is O(nm logn), but the total time complexity is O(|B|nm logn), where |B| is
the number of (s, t, α1, α2)-bubbles in the graph. The number of bubbles in the
graph depends on its internal structure. A large graph does not necessarily have
a large number of bubbles, while a small graph may have an exponential number
of bubbles. Therefore, the value of |B|nm logn can decrease by increasing the
size of the graph.

Concerning now the comparison between the algorithms, as we can see in
Fig. 3, Algorithm 1 is usually several times faster (keep in mind that the axes are
in logarithmic scale) than Kissplice, with larger differences when α1 increases
(10 to 1000 times faster when α1 = 1000). In some instances however, Kissplice

is faster than Algorithm 1, but (with only one exception for α1 = 250 and
α1 = 500) they correspond either to very small instances or to cases where only
10000 bubbles were enumerated and the stop condition was met. Finally, using
Algorithm 1, the computation finished within 900s for all but 3 BCCs, whereas
using Kissplice, 11 BCCs remained unfinished after 900s. The improvement in

5 The BCCs where both algorithms reach the timeout were omitted from the plots to
improve the visualization. For α1 = 250, 500, 750 and 1000 there are 1, 2, 3 and 3
BCCs omitted, respectively.

108 G. Sacomoto, V. Lacroix, and M.-F. Sagot

time therefore enables us to have access to bubbles that could not be enumerated
with the previous approach.

4.3 On the Usefulness of Larger Values of α1

In the implementation of Kissplice [1], the value of α1 was experimentally
set to 1000 due to performance issues, as indeed the algorithm quickly becomes
impractical for larger values. On the other hand, the results of Section 4.2 suggest
that Algorithm 1, that is faster than Kissplice, can deal with larger values of
α1. From a biological point of view, it is a priori possible to argue that α1 = 1000
is a reasonable choice, because 87% of annotated exons in Drosophila indeed are
shorter than 1000nt [11]. However, missing the top 13% may have a big impact on
downstream analyses of AS, not to mention the possibility that not yet annotated
AS events could be enriched in long skipped exons. In this section, we outline that
larger values of α1 indeed produces more results that are biologically relevant.
For this, we exploit another RNA-seq dataset, with deeper coverage.

To this purpose, we retrieved 32M RNA-seq reads from the human brain
and 39M from the human liver from the Short Read Archive (accession number
ERP000546). Next, we built the de Bruijn graph with k = 31 for both datasets,
then merged and decomposed the DBG into 5692 BCCs (containing more than
10 vertices). We ran Algorithm 1 for each BCC with α1 = 5000. It took 4min25s
for Algorithm 1 to run on all BCCs, whereas Kissplice, even using α1 = 1000,
took 31min45s, almost 8 times more. There were 59 BCCs containing at least one
bubble with the length of the longest path strictly larger than 1000bp potentially
corresponding to alternative splicing events. In Fig. 4.3, we show one of those
bubbles mapped to the reference genome. It corresponds to an exon skipping
in the PRRC2B human gene, the skipped exon containing 2069 bp. While the
transcript containing the exon is annotated, the variant with the exon skipped
is not annotated.

Furthermore, we ran Trinity [7] (the most widely used transcriptome as-
sembler) on the same dataset and found that it was unable to report this novel
variant. Our method therefore enables us to find new AS events, reported by
no other method. This is, of course, just an indication of the usefulness of our
approach when compared to a full-transcriptome assembler. A more systematic
comparision with Trinity, as done in [13], is out of the scope of this work.

5 A Natural Generalization

For the sake of theoretical completeness, in this section, we extend the definition
of (s, t, α1, α2)-bubble to the case where the length constraints concern d vertex-
disjoint paths, for an arbitrary but fixed d.

Definition 2 ((s, t, A)-d-bubble). Let d be a natural number and A =
{α1, . . . , αd} ⊂ Q≥0. Given a directed weighted graph G and two vertices s and
t, an (s, t, A)-d-bubble is a set of d pairwise internally vertex-disjoint paths
{p1, . . . pd}, satisfying pi = s � t and |pi| ≤ αi, for all i ∈ [1, d].

Bubble Enumeration with Length Constraints 109

200 400 600 800

1e
-0

2
1e

+0
0

1e
+0

2
1e

+0
4

Running time, α1 = 250

BCC size

tim
e

(s
)

Kissplice's algorithm
Algorithm 1

(a)

200 300 400 500 700

1e
-0

2
1e

+0
0

1e
+0

2
1e

+0
4

Running time, α1 = 500

BCC size

tim
e

(s
)

Kissplice's algorithm
Algorithm 1

(b)

200 300 400 500 700

1e
-0

2
1e

+0
0

1e
+0

2
1e

+0
4

Running time, α1 = 750

BCC size

tim
e

(s
)

Kissplice's algorithm
Algorithm 1

(c)

200 300 400 500 700

1e
-0

2
1e

+0
0

1e
+0

2
1e

+0
4

Running time, α1 = 1000

BCC size

tim
e

(s
)

Kissplice's algorithm
Algorithm 1

(d)

Fig. 3. Running times of Algorithm 1 and of the Kissplice algorithm [13] for all the
BCCs with more than 150 vertices. Each graph (a), (b), (c) and (d) shows the running
time of both algorithms for α1 = 250, 500, 750 and 1000, respectively.

Fig. 4. One of the bubbles with longest path larger than 1000 bp found by Algorithm 1
with the corresponding sequences mapped to the reference genome and visualized using
the UCSC Genome Browser. The first two lines correspond to the sequences of, respec-
tively, the shortest (exon exclusion variant) and longest paths of the bubble mapped
to the genome. The blue lines are the UCSC human transcript annotations.

110 G. Sacomoto, V. Lacroix, and M.-F. Sagot

Analogously to (s, t, α1, α2)-bubbles, we can define two variants of the enu-
meration problem: all bubbles with a given source (s fixed) and all bubbles with
a given source and target (s and t fixed). In both cases, the first step is to decide
the existence of at least one (s, t, A)-d-bubble in the graph.

Problem 1 ((s, t, A)-d-bubble decision problem). Given a non-negatively weighted
directed graph G, two vertices s, t, a set A = {α1, . . . , αd} ⊂ Q≥0 and d ∈ N,
decide if there exists a (s, t, A)-d-bubble.

This problem is a generalization of the two-disjoint-paths problem with a min-
max objective function, which is NP-complete [9]. More formally, this problem
can be stated as follows: given a directed graph G with non-negative weights,
two vertices s, t ∈ V , and a maximum length M , decide if there exists a pair of
vertex-disjoint paths such that the maximum of their lengths is less than M . The
(s, t, A)-d-bubble decision problem, with A = {M,M} and d = 2, is precisely
this problem.

Problem 2 ((s, ∗, A)-d-bubble decision problem). Given a non-negatively weighted
directed graph G, a vertex s, a set A = {α1, . . . , αd} ⊂ Q≥0 and d ∈ N, decide
if there exists a (s, t, A)-d-bubble, for some t ∈ V .

The two-disjoint-path problem with a min-max objective function is NP-
complete even for strictly positive weighted graphs. Let us reduce Problem 2
to it. Consider a graph G with strictly positive weights, two vertices s, t ∈ V ,
and a maximum length M . Construct the graph G′ by adding an arc with weights
0 from s to t and use this as input for the (s, ∗, {M,M, 0})-3-bubble decision
problem. Since G has strictly positive weights, the only path with length 0 from
s to t in G′ is the added arc. Thus, there is a (s, ∗, {M,M, 0})-3-bubble in G′ if
and only if there are two vertex-disjoint paths in G each with a length ≤M .

Therefore, the decision problem for fixed s (Problem 1) is NP-hard for d ≥ 2,
and for fixed s and t (Problem 2) is NP-hard for d ≥ 3. In other words, the
only tractable case is the enumeration of (s, t, A)-2-bubbles with fixed s, the one
considered in Section 3.

6 Conclusion

We introduced a polynomial delay algorithm which enumerates all bubbles with
length constraints in directed graphs. We show that it is faster than previous ap-
proaches and therefore enables us to enumerate more bubbles. These additional
bubbles correspond to longer AS events, overseen previously, but biologically
very relevant. As shown in [2], by combining radix and Fibonacci heaps in Di-
jkstra, we can achieve a complexity in O(n(m + n

√
logα1)) for Algorithm 1 in

cDGBs. The question whether this can be improved, either by improving Dijk-
stra’s algorithm (exploiting more properties of a cDBG) or by using a different
approach, remains open.

Bubble Enumeration with Length Constraints 111

Acknowledgements. This work was funded by the ANR-12-BS02-0008
(Colib’read); the French project ANR MIRI BLAN08-1335497; and the Euro-
pean Research Council under the European Community’s Seventh Framework
Programme (FP7 /2007-2013) / ERC grant agreement no. [247073]10.

References

1. KisSplice’s manual (2013), http://kissplice.prabi.fr/documentation
2. Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E.: Faster algorithms for the

Shortest Path Problem. J. ACM 37, 213–223 (1990)
3. Birmelé, E., Crescenzi, P., Ferreira, R.A., Grossi, R., Lacroix, V., Marino, A.,

Pisanti, N., Sacomoto, G.A.T., Sagot, M.-F.: Efficient bubble enumeration in di-
rected graphs. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani,
N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 118–129. Springer, Heidelberg (2012)

4. Chen, M., Chowdhury, R.A., Ramachandran, V., Roche, D.L., Tong, L.: Priority
Queues and Dijkstra’s Algorithm. Technical Report TR-07-54 (2007)

5. Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based
on a bloom filter. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534,
pp. 236–248. Springer, Heidelberg (2012)

6. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education (2001)

7. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., et al.: Full-
length transcriptome assembly from RNA-seq data without a reference genome.
Nat. Biotechnol. 29, 644–652 (2011)

8. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat. Genetics (2012)

9. Li, C.-L., McCormick, S.T., Simchi-Levi, D.: The complexity of finding two disjoint
paths with min-max objective function. Disc. Appl. Math. (1990)

10. Mortazavi, A., Williams, B., McCue, K., Schaeffer, L., Wold, B.: Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628
(2008)

11. Pruitt, K., Tatusova, T., Klimke, W., Maglott, D.: NCBI reference sequences: cur-
rent status, policy and new initiatives. Nucleic Acids Research 37(Database-Issue),
32–36 (2009)

12. Robertson, G., Schein, J., Chiu, R., Corbett, R., et al.: De novo assembly and
analysis of RNA-seq data. Nat. Methods 7, 909–912 (2010)

13. Sacomoto, G.A.T., Kielbassa, J., Chikhi, R., Uricaru, R., Antoniou, P., Sagot,
M.-F., Peterlongo, P., Lacroix, V.: Kissplice: de-novo calling alternative splicing
events from RNA-seq data. BMC Bioinformatics 13, S5 (2012)

14. Schulz, M.H., Zerbino, D.R., Vingron, M., Birney, E.: Oases: robust de novo RNA-
seq assembly across the dynamic range of expression levels. Bioinformatics 28,
1086–1092 (2012)

15. Wang, E., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore,
S., Schroth, G.P., Burge, C.: Alternative isoform regulation in human tissue tran-
scriptomes. Nature 456(7221), 470–476 (2008)

http://kissplice.prabi.fr/documentation

Distribution of Graph-Distances in Boltzmann

Ensembles of RNA Secondary Structures

Rolf Backofen1,2, Markus Fricke3, Manja Marz3,
Jing Qin4,�, and Peter F. Stadler4,5,6,7,8

1 Department of Computer Science, Chair for Bioinformatics, University of Freiburg,
Georges-Koehler-Allee 106, 79110 Freiburg

2 Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-Universität,
Freiburg, Germany

3 Bioinformatics/High Throughput Analysis Faculty of Mathematics und Computer
Science Friedrich-Schiller-University Jena Leutragraben 1, 07743 Jena

4 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22,
04103 Leipzig, Germany

qin@bioinf.uni-leipzig.de
5 Bioinformatics Group, Department of Computer Science, and Interdisciplinary

Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18,
04107 Leipzig, Germany

6 Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1, 04103
Leipzig, Germany

7 Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17,
1090 Vienna, Austria

8 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM87501, USA

Abstract. Large RNA molecules often carry multiple functional do-
mains whose spatial arrangement is an important determinant of their
function. Pre-mRNA splicing, furthermore, relies on the spatial proxim-
ity of the splice junctions that can be separated by very long introns.
Similar effects appear in the processing of RNA virus genomes. Albeit
a crude measure, the distribution of spatial distances in thermodynamic
equilibrium therefore provides useful information on the overall shape
of the molecule can provide insights into the interplay of its functional
domains. Spatial distance can be approximated by the graph-distance in
RNA secondary structure. We show here that the equilibrium distribu-
tion of graph-distances between arbitrary nucleotides can be computed in
polynomial time by means of dynamic programming. A naive implemen-
tation would yield recursions with a very high time complexity of O(n11).
Although we were able to reduce this to O(n6) for many practical appli-
cations a further reduction seems difficult. We conclude, therefore, that
sampling approaches, which are much easier to implement, are also theo-
retically favorable for most real-life applications, in particular since these
primarily concern long-range interactions in very large RNA molecules.

� Corresponding author.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 112–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Distribution of Graph-Distances in Boltzmann Ensembles 113

1 Introduction

The distances distribution within an RNA molecule is of interest in various
contexts. Most directly, the question arises whether panhandle-like structures
(in which 3’ and 5’ ends of long RNA molecules are placed in close proximity)
are the rule or an exception. Panhandles have been reported in particular for
many RNA virus genomes. Several studies [28,8,2,13] agree based on different
models that the two ends of single-stranded RNA molecules are typically not far
apart. On a more technical level, the problem to compute the partition function
over RNA secondary structures with given end-to-end distance d, usually mea-
sured as the number of external bases (plus possibly the number of structural
domains) arises for instance when predicting nucleic acid secondary structure in
the presence of single-stranded binding proteins [9] or in models of RNA sub-
jected to pulling forces (e.g. in atom force microscopy or export through a small
pore) [10,23,11]. It also plays a role for the effect of loop energy parameters [7].

In contrast to the end-to-end distance, the graph-distance between two arbitrar-
ily prescribed nucleotides in a larger RNA structure does not seem to have been
studied in any detail. However, this is of particular interest in the analysis of single-
molecule fluorescence resonance energy transfer (smFRET) experiments [25]. This
technique allows to monitor the distance between two dye-labeled nucleotides and
can reveal details of the kinetics of RNA folding in real time. It measures the non-
radiative energy transfer between the dye-labeled donor and acceptor positions.
The efficiency of this energy transfer, Efret, strongly depends on the spatial dis-
tance R according to Efret = (1 + (R/R0)6)−1. The Förster radius R0 sets the
length scale, e.g. R0 ≈ 54 Å for the Cy3-Cy5 dye pair. A major obstacle is that,
at present, there is no general and efficient way to link smFRET measurements to
interpretations in terms of explicit molecular structures. To solve this problem, a
natural first step to compute the distribution of spatial distances for an equilib-
rium ensemble of 3D structures. Since this is not feasible in practice despite major
progress in the field of RNA 3D structure prediction [4], we can only resort to con-
sidering the graph-distances on the ensemble of RNA secondary structures instead.
Althoughacrudeapproximationof reality, our initial results indicate that thegraph
distance can be related to the smFRET data such as those reported by [14]. From
a computer science point of view, furthermore, we show here that the distance dis-
tribution can be computed exactly using a dynamic programming approach.

2 Theory

2.1 RNA Secondary Structures

An RNA secondary structure is a vertex labeled outerplanar graph G(V, ξ, E),
where V = {1, 2, . . . , n} is a finite ordered set (of nucleotide positions) and
ξ : {1, 2, . . . , n} → {A,U,G,C}, i �→ ξi assigns to each vertex at position i (along
the RNA sequence from 5’ to 3’) the corresponding nucleotide ξi. We write
ξ = ξ1 . . . ξn for the sequence underlying secondary structure and use ξ[i . . . j] =
ξi . . . ξj to denote the subsequence from i to j. The edge set E is subdivided into

114 R. Backofen et al.

backbone edges of the form {i, i + 1} for 1 ≤ i < n and a set B of base pairs
satisfying the following conditions:

1. If {i, j} ∈ B then ξiξk ∈ {GC,CG,AU,UA,GU,UG}.
2. If {i, j} ∈ B then |j − i| > 3.
3. If {i, j}, {i, k} ∈ B then j = k
4. If {i, j}, {k, l} ∈ B and i < k < j then i < l < j.

The first condition allows base pairs only for Watson-Crick and GU base pairs.
The second condition implements the minimal steric requirement for an RNA
to bend back on itself. The third condition enforces that B forms a matching in
the secondary structure. The last condition (nesting condition) forbids crossing
base pairs, i.e. pseudoknots.

The nesting condition results in a natural partial order in the set of base pairs
B defined as {i, j} ≺ {k, l} if k < i < j < l. In particular, given an arbitrary
vertex k, the set Bk = {{i, j} ∈ B|i ≤ k ≤ j} of base pairs enclosing k is
totally ordered. Note that k is explicitly allowed to be incident to its enclosing
base pairs. A vertex k is external if Bk = ∅. A base pair {k, l} is external if
Bk = Bl = {{k, l}}.

Consider a fixed secondary structure G, for a given base pair {i, j} ∈ B, we
say a vertex k is accessible from {i, j} if i < k < j and there is no other pair
{i′, j′} ∈ B such that i < i′ < k < j′ < j. The unique subgraph Li,j induced by
i, j, and all the vertices accessible from {i, j} is known as the loop of {i, j}. The
type of a loop Li,j is unique determined depending on whether {i, j} is external
or not, and the numbers of unpaired vertices and base pairs. For details, see [26].
Each secondary structure G has a unique set of loops {Li,j |{i, j} ∈ B}, which is
called the loop decomposition of G. The free energy f(G) of a given secondary
structure, according to the standard energy model [20], is defined as the sum of
the energies of all loops in its unique loop decomposition.

The relative location of two vertices v and w in G is determined by the base
pairs Bv and Bw that enclose them. If Bv ∩Bw �= ∅, there is a unique ≺-minimal
base pair {iv,w, jv,w} that encloses both vertices and thus a uniquely defined loop
L{iv,w ,jv,w} in the loop associated with v and w. If Bv \Bw = ∅ or Bw \Bv = ∅
then v or w is unpaired and part of L{iv,w ,jv,w}. Otherwise, i.e. Bv∩Bw = ∅, there
are uniquely defined ≺-maximal base pairs {kv, lv} ∈ Bv \ Bw and {kw, lw} ∈
Bw \Bv that enclose v and w, respectively. This simple partition holds the key
to computing distance distinguished partition functions below.

It will be convenient in the following to introduce edge weights ωi,j = a if
j = i + 1, i.e., for backbone edges, and ωi,j = b for {i, j} ∈ B. Given a path p,
we define the weight of the path d(p) as the sum of the weights of edges in the
path. The (weighted) graph-distance dGv,w in G is defined as the weight of the
path p connecting v and w with d(p) being minimal. For the weights, we require
the following condition:

(W) If i and j are connected by an edge, then {i, j} ∈ E is the unique shortest
path between i and j.

This condition ensures that single edges cannot be replaced by detours of shorter
weight. Condition (W) and property (ii) of the secondary structure graphs

Distribution of Graph-Distances in Boltzmann Ensembles 115

implies b < 3a because the closing base pair must be shorter than a hairpin
loop. Furthermore, considering a stacked pair we need b < b+ 2a, i.e. a > 0. We
allow the degenerate case b = 0 that neglects the traversals of base pairs.

2.2 Boltzmann Distribution of Graph-Distances

For a fixed structure G, dGv,w is easy to compute. Here, we are interested in

the distribution Pr[dGv,w |ξ] and its expected value dv,w = E[dGv,w|ξ] over the
ensemble of all possible structures G for a given sequence ξ. Both quantities can
be calculated from the Boltzmann distribution Pr[G|ξ] = e−f(G)/RT/Q where
Q =

∑
G e−f(G)/RT denotes the partition function of the ensemble of structures.

As first shown in [21], Q and related quantities can be computed in cubic time.
A crucial quantity for our task is the restricted partition function

Zv,w[d] =
∑

G with dG
v,w=d

e−f(G)/RT

for a given pair v, w of positions in a given RNA sequence ξ. A simple but tedious
computation (Appendix A 1) verifies that the Pr[dGv,w = d|ξ] = Zv,w[d]/Q and

dv,w = E[dGv,w|ξ] =
∑

d(Zv,w[d]/Q)d. Hence it suffices to compute Zv,w[d] for
d = 1, . . . , n. In sections 2.3-2.5 we show that this can be achieved by a variant
of McCaskill’s approach [21].

For the ease of presentation we describe in the following only the recursion for
the simplified energy model for the “circular maximum matching” matching, in
which energy contributions are associated with individual base pairs rather than
loops. Our approach easily extends to the full model by using separating the parti-
tion functions into distinct cases for the loop types. We use the letter Z to denote
partition functions with distance constraints, while Q is used for quantities that
appear in McCaskill’s algorithm and are considered as pre-computed here.

Before we continue with the calculation of the partition function, let’s first
look into problem formulation in more detail. For the FRET application, it is
well-known that the rate which with FRET occurs is correlated with the dis-
tance. Therefore, only a limited range of distance changes (e.g. 20Å− 100Å for
Cy3-Cy5) can be reported by the FRET experiments. Thus the more useful for-
mulation of our problem is not to use the full expected quantity for all positions.
Instead, we are interested in the average for all distances within some threshold
θd. As the space and time complexity will depend on the number of distances
we consider, we will parametrise our complexity by the number of nucleotides n
and the number of overall distances considered D = θd + 1, as well.

2.3 Recursions of Zv,w[d]: v and w Are External

An important special case assumes that both v and w are external. This is case
e.g. when v and w are bound by proteins. In particular, the problem of computing

1 The Appendix A-D of our paper are available from http://www.rna.uni-jena.de/

supplements/RNAgraphdist/supplement.pdf

http://www.rna.uni-jena.de/supplements/RNAgraphdist/supplement.pdf
http://www.rna.uni-jena.de/supplements/RNAgraphdist/supplement.pdf

116 R. Backofen et al.

end-to-end distances, i.e., v = 1 and w = n, is of this type. Assuming (W), the
shortest path between two external vertices v, w consists of the external vertices
and their backbone connections together with the external base pairs. We call
this path the inside path of i, j since it does not involve any vertices “outside”
the subsequence ξ[i..j].

For efficiently calculating the internal distance between any two vertices v, w,
we denote by ZI

i,j [d] the partition function over all secondary structures on ξ[i..j]

with end-to-end distance exactly d. Furthermore, let QB
i,j denote the partition

function over all secondary structures on ξ[i..j] that are enclosed by the base pair
{i, j}. We will later also need the partition function Qi,j over the sub-sequence
ξ[i..j], regardless of whether {i, j} is paired or not.

Now note that any structure on ξ[i..j] starts either with an unpaired base or
with a base pair connecting i to some position k satisfying i < k ≤ j. In the first
case, we have dGi,j = dGi,i+1 + dGi+1,j where dGi,i+1 = a. In the second case, there

exists dGi,j = dGi,k + dGk,k+1 + dGk+1,j with dGi,k = b and dGk,k+1 = a. Thus, ZI
i,j[d]

can be split as follows,

This gives the recursion

ZI
i,j [d] = ZI

i+1,j [d− a] +
∑

i<k≤j

QB
i,kZ

I
k+1,j [d− b− a] (1)

with the initialization ZI
ii[0] = 1 and ZI

ii[d] = 0 for d > 0. For consecutive vertices
we have ZI

i,i+1[a] = 1 and ZI
i,i+1[d] = 0 for d �= a. These recursions have been

derived in several different contexts, e.g. force induced RNA denaturations [10],
the investigate of loop entropy dependence [7], the analysis of FRET signals in
the presence of single-stranded binding proteins [9], as well as in mathematical
studies of RNA panhandle-like structures [2,13].

In the following it will be convenient to define also a special terms for the
empty structure. Setting ZI

i,i−1[−a] = 1 and ZI
i,i−1[d] = 0 for d �= −a allows

us to formally write an individual backbone edge as two edges flanking the
empty structure and hence to avoid the explicit treatment of special cases. This
definition of ZI also includes the case that i and j are base paired in the recursion
(1). This is covered by the case k = j, where we evaluate ZI

j+1,j [d− b− a]. Since

d = b is the only admissible value here, this refers to ZI
j+1,j [−a], which has the

correct value of 1 due to our definition. Later on, we will also need ZI under
the additional condition that the path starts and end with a backbone edge. We
therefore introduce ZI′

defined as

Distribution of Graph-Distances in Boltzmann Ensembles 117

� � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�
�

�
�

�

� �

�

�
�

�
�

�

�

�

�

�

�

�

�

� � � � � � � � � �
i j w

v

Fig. 1. Inside and outside paths.
The shortest path (violet arrows)
from v (green) to w (blue) is not
an inside path: inside emphasizes
that, in contrast to the shortest
path (cyan arrows) between the
red region and w, it is not con-
tained in the interval determined
by its end points.

By our initialization of ZI , we can simply define ZI′
by

ZI′
i,j [d] = ZI

i+1,j−1[d− 2a] (2)

Note that if ZI′
i,j [d] is called with j = i+ 1, then we call ZI

i+1,i[d− 2a]. The only
admissible value again is the correct value d = a.

This recursion requires O(Dn3) time and space. It is possible to reduce the
complexity in this special case by a linear factor. The trick is to use conditional
probabilities for arcs starting at i or the conditional probability for i to be single-
stranded, which can be determined from the partition function for RNA folding
[2], see Appendix B.

2.4 Recursions of Zv,w[d]: The General Case

The minimal distance between two positions that are covered by an arc can
be realized by inside paths and outside paths. This complicates the algorithmic
approach, since both types of paths must be controlled simultaneously. Consider
Fig. 1. The shortest path between the green and blue regions includes some
vertices outside the interval between these two regions. The basic idea is to
generalize Equation (1) to computing the partition function Zv,w[d]. The main
question now becomes how to recurse over decompositions of both the inside
and the outside paths.

Fig. 1 shows that the outside paths are important for the green region, i.e., the
region that is covered by an arc. Hence, we have to consider the different cases
that the two positions v and w are covered by arcs. The set Ω of all secondary
structures on ξ can be divided into two disjoint subclasses that have to be treated
differently:

Ω0 v and w are not enclosed in a common base pair, i.e., Bv ∩Bw = ∅.
Ω1 there is a base pair enclosing both v and w, i.e., Bv ∩Bw �= ∅.

Note that this bipartition explicitly depends on v and w. In the following, we
will first introduce the recursions that are required in Ω0 structures to compute
Zv,w[d].

118 R. Backofen et al.

Contribution of Ω0 structures to Zv,w[d] One example of this case is given
in Fig. 1 with the red and blue region, where v (vertex in green region) is covered
by an arc, and w (vertex in blue region) is external. Denote the ≺-maximal base
pair enclosing v by {i, j}. Since at most one of v and w is covered by an arc, we
know that j < w. Hence, every path p from v to w, and hence also the shortest
paths (not necessarily unique) must run through the right end j of the arc {i, j}.
More precisely, there must sub-paths p1 and p2 with d(p) = d(p1) + d(p2) + a

such that v
p� w → v

p1� j − (j + 1)
p2� w, where i

p� j denotes that p is a
shortest path from i to j and − denotes a single backbone edge. For the shortest

path from v to j, it consists either of a shortest path v
p′
� i and the arc {i, j},

or it goes directly to j without using the arc {i, j}.
How does this distinction translate to the partition function approach? If we

want to calculate the contribution of this case to the partition function Zv,w[d],
we have to split both the sequence ξ[i, w] and distance d as follows

a.)

where ZI′
j,w[d2] is the partition function starting and ending with a single-stranded

base as defined in Equation (2), and ZB,v
i,j [d�, dr] is the partition function con-

sisting of all structures of ξ[i, j] containing the base pair {i, j} with the property
that the shortest path from v to i has length d� and the shortest path from v to
j has length dr. In addition, d, dr and d2 must satisfy d = dr + d2.

The remaining cases for the contribution of the class Ω0 to Zv,w[d] are given
by all other possible combinations of v and w being single-stranded or being
covered by an arc, i.e.,

To simplify, we extend the definition of ZB,v
i,j [d�, dr] by setting ZB,v

v,v [0, 0] = 1 and

ZB,v
v,v [d�, dr] = 0 for d� + dr > 0. This allows us to conveniently model all cases

where either v or w are external, i.e., a.), b.), and d.), as special cases of c.).
In case c.) we have to split the distance d into four contributions and we

require two splitting positions for the sequence for all combinations of i, j, v, w.
This would result in an O(n6D5) algorithm. A careful inspection shows, however,
that the split of the distances for the arcs into d� and dr is unnecessary. Since we
want to know only distance to the left/right end overall, we can simply introduce

two matrices ZB,v,�
i,j [d] and ZB,v,r

i,j [d] that store these values. These matrices can

be generated from ZB,v
i,j [d�, dr] as follows:

ZB,v,�
i,j [d] =

∑
dr

dr+b≥d

ZB,v
i,j [d, dr] +

∑
d�

d�>d

ZB,v
i,j [d�, d− b]

Analogously, we compute ZB,v,r
i,j [d].

Distribution of Graph-Distances in Boltzmann Ensembles 119

Overall, the contribution to Zv,w[d] for structures in Ω0 is given by

Zv,w
0 [d] =

∑
d1,d2

d1+d2≤d

∑
i,j,k,l

i≤v≤j<k≤w≤l

⎛⎜⎝Q1,i−1 · ZB,v,r
i,j [d1]

·ZI′
j,k[d− (d1 + d2)]

·ZB,w,�
k,l [d2] ·Ql+1,n

⎞⎟⎠ (3)

Note that for splitting the distance, we reuse the same indices (e.g., the j in

ZB,v,r
i,j [d1] ·ZI′

j,k[d− (d1 + d2)], where as for the remaining partition function, we

use successive indices (e.g.,the i in Q1,i−1 ·ZB,v,r
i,j [d1]). This difference comes from

the fact that splitting a sequence into subsequences is done naturally between two
successive indices, whereas splitting a distance is naturally done by splitting at
an individual position. We have only to guarantee that the substructures which
participate in the split do agree on the structural context of the split position.
This is guaranteed by requiring that ZI′

starts and ends with a backbone edge.
We note that the incorporation of the full dangling end parameters makes is
more tedious to handle the splitting positions.

This results in a complexity of O(n6D3) time and O(n3D) space. However,
we do not need to split in i, j, k, j simultaneously. Instead, we could split case
(c) at position j and introduce for all v ≤ j and k ≤ w the auxiliary variables

ZB,v,r
1,j [d1] =

∑
i≤v

Q1,i−1 · ZB,v,r
i,j [d1] ZB,w,�

k,n [d2] =
∑
w≤l

ZB,w,�
k,l [d2] ·Ql+1,n

ZIB,w,�
j,n [d′] =

∑
k>j

∑
d2≤d′

ZI′
j,k[d′ − d2] · ZB,w,�

k,n [d2].

Finally, we can replace recursion (3) by

Zv,w
0 [d] =

∑
v≤j

∑
d1≤d

ZB,v,r
1,j [d1] · ZIB,w,�

j,n [d− d1] (4)

We thus arrive at O(n4D2) time and O(n3D) space complexity for the con-
tribution of Ω0 structures to Zv,w[d], excluding the complexity of computing

ZB,v
i,j [d�, dr].

Contribution of Ω1 Structures to Zv,w[d] Ω1 contains all cases where v
and w are covered by a base pair. In the following, let {p, q} be the ≺-minimal
base pair covering v and w. In principle, this case looks similar to the overall
case for Ω0. However, we have now to deal not only with an inside distance, but
also with an outside distance over the base pair {p, q}. Thus, we need to store
the partition function for all inside and outside for each ≺-minimal arc {p, q}
that covers v and w, which we will call Y B,v,w

p,q [dO, dI]. In principle, a similar
recursion as defined for Z0 in equation (3) can be derived, with the additional
complication since we have to take care of the additional outside distance due
to the arc (p, q). Thus, we obtain the following splitting:

120 R. Backofen et al.

Again we can avoid the complexity of simultaneously splitting at {i, j} and
{k, l} by doing a major split after j. Thus, we get the equivalent recursions as
in eqns.(5–7):

Y B,v,r
p,j [d, dr] =

∑
p<i≤v

∑
d′
O≤d

ZI′
p,i[d

′
O] · ZB,v

i,j [

=̂ d�︷ ︸︸ ︷
d− d′O, dr] (5)

Y B,w,�
k,q [d′�, d] =

∑
w≤l<q

∑
d′′
O≤d

ZB,w
k,l [d′�,

=̂ d′
r︷ ︸︸ ︷

d− d′O] · ZI′
l,q[d

′′
O] (6)

Y IB,w,�
j,q [d′I , d] =

∑
j<k<q

∑
d′
�≤d′

I

ZI′
j,k[d′I − d′�] · Y

B,w,�
k,q [d′�, d] (7)

Overall, we get the following recursion:

Zv,w
p,q [dO, dI] =

∑
v≤j

∑
dr≤dI

d≤dO

Y B,v,r
p,j [d, dr] · Y IB,w,�

q,j [dI − dr, dO − d] (8)

Overall, we can now define Zv,w[d] by

Zv,w[d] = Zv,w
0 [d] +

∑
{p,q}�={v,w}

dI≥d+b

Zv,w
p,q [d, dI] +

∑
{p,q}�={v,w}

d<dO+b

Zv,w
p,q [dO, d]

This part has now a complexity of O(n4D2) space and O(n5D4) time. For practi-
cal applications, however, we do not need to consider all possible {p, q}. Instead,
there are only few base pairs that are likely to form and that cover v, w, espe-
cially for v, w where the internal distance of v, w is large enough such that an
outside path has to be considered at all. If we assume a constant number of such
long-range base-pairs, then the complexity is reduced by an n2-factor. For the
complexity in terms of distance, recall that D is typically small.

2.5 Recursions for ZB,v
i,j [d�, dr]

So far, we have used ZB,v
i,j [d�, dr] as a black box. In order to compute these terms,

we distinguish the limiting cases a.) v = i, b.) v = j, c.) is external from the
generic case d.):

Distribution of Graph-Distances in Boltzmann Ensembles 121

Starting from the limiting cases, we initialize ZB,v
v,j [0, dr] as follows:

ZB,v
v,j [0, dr] =

⎧⎪⎨⎪⎩
ZI′
v,j [dr] for a ≤ dr < b∑
d′≥b Z

I′
v,j [d

′] for dr = b

0 otherwise

and analogously for ZB,v
i,v [d�, 0]. Furthermore, ZB,v

i,j [0, 0] = 0 for i �= v �= j.
Finally, we have the following recursion for i �= v �= j, d� > 0 and dr > 0:

ZB,v
i,j [d�, dr] = Q̂b

i,j ·
∑
k �=l

i<k≤v
v≤l<j

∑
d′
�≤d�

d′
r≤dr

ZI′
i,k[d� − d′�] · Z

B,v
k,l [d′�, d

′
r] · ZI′

l,j[dr − d′r] (9)

where Q̂b
i,j is the external partition function over all structures on the union

of the intervals ξ[1..i] ∪ ξ[j..n] so that {i, j} is a base pair. This is equivalent

to Q̂b
i,j = Pr({i, j}) × Q/Qb

i,j. The base pair probability Pr({i, j}), and the

partition functions Q and Qb
i,j are computed by means of McCaskill’s algorithm.

Recursion (9) apparently has complexity O(n5D4) in time and O(n3D2) in
space. This can be reduced due to the strong dependency between d� and dr,
however. By construction we have |d�−dr| ≤ b since we can always use the bond
{i, j} to traverse from one end to the other. Furthermore, assuming integer values
for a and b, we can have only cb = 2b/ lcd(a, b) + 1 different values for (d� − dr)

This implies that the space complexity of ZB,v
i,j [d�, dr] is O(n3Dcb). Instead of

ZB,v
i,j [d�, dr], we store ZB,v

i,j [d�, d� + dadd] for the cb possible values of dadd.
The dependency between d� and dr can also be used to reduce the time com-

plexity in Equ.(9). The problematic case is (d). Instead of using the variables d�
and dr in ZB,v

i,j [d�, dr] we use the pair d�, dadd in ZB,v
i,j [d�, d� + dadd]. Similarly,

we use d′�, d
′
add instead of d′�, d

′
r for the inner base pair, which then determines

completely the splitting the distances. The details are relegated to Appendix
C. Overall, this results in an recursion for ZB,v

i,j [d�, d� + dadd] with complexity

O(n5c2b) time and O(n3Dcb) space.

3 Discussion and Applications

The theoretical analysis of the distance distribution problem shows that, while
polynomial-time algorithms exist, they probably cannot the improved to space
and time complexities that make them widely applicable to large RNA molecules.
Due to the unfavorable time complexity of the current algorithm and the associ-
ated exact implementation in C, a rather simple and efficient sampling algorithm
has been implemented. We resort to sampling Boltzmann-weighted secondary
structures with RNAsubopt -p [17], which uses the same stochastic backtracing
approach as sfold [5]. As the graph-distance for a pair of nucleotides in a given
secondary structure can be computed in O(n log n) time, even large samples can
be evaluated efficiently2.

2 The C++ program RNAgraphdist is available from http://www.rna.uni-jena.de/

supplements/RNAgraphdist/RNAgraphdist1.0.tar.gz

http://www.rna.uni-jena.de/supplements/RNAgraphdist/RNAgraphdist1.0.tar.gz
http://www.rna.uni-jena.de/supplements/RNAgraphdist/RNAgraphdist1.0.tar.gz

122 R. Backofen et al.

36 33 30 27 24 21 18 15 12 9 7 5 3 1

distance

fre
qu

en
cy

0
0
.1

0
.2

0
.3

0
.4

� �

�

�

�

�

�

�

�

�
� �

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�
� �

�

�

�

�

� � � � � � � � � � �

�

��

��

	�

�
�

�

�

� � �
������������
��������� � ������
���� ������ � ������� !"#$!
�� %& '(�� ��� � ��

� � � � �

�

�

�

�

�
� �

�

�

�

�

�

� �

�

�

�

�

�
�

�

�
�

�

�

�

�
� �

�

�

�

�

�
�
�

�
�

�

�

�

�

�

�

�

��

��

	�

�

��

�

� � �
��������� � ����)*
���� ������ � ����� !"#$!
�� %& '(�� ��� � ��

� � � � �

�

�

�

�

�

� �

�

�

�

�

�

� �

�

�

�
�

�

�

�

�
�

�

�

�

�

� �
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

��

��

	�

�

��

�

� � �
���	
�������
��������
��������� � ����)	
���� ������ � ����� !"#$!
�� %& '(�� ��� � ��

+,-+�-

�#�

���#�

�#�

��#�

��#�

*#�

��*#�

���*#�

����*#�

�#�� .

26 24 22 20 18 16 14 12 10 8 6 4 2

0
0

.0
5

0
.1

0
.1

5
0
.2

0
.2

5
0

.3

� � � � �

�

�

�

�

�
� �

�

�

�

�

�

� �

�

�

�

�

�
�

�

�
�

�

�

�

�
� �

�

�

�

�

�
�
�

�
�

�

�

�

�

�

�

�

��

��

	�

�

��

�

� � �

� � � � �

�

�

�

�

�
� �

�

�

�

�

�

� �

�

�

�
�

�

�

�

�
�

�

�

�

�

� �
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

��

��

	�

�

��

�

� � �
���	
�������
��������

� �

�

�

�

�

�

�

�

�
� �

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�
� �

�

�

�

�

� � � � � � � � � � �

�

��

��

	�

�
�

�

�

� � �
������������
����������������
����������������	��� !"#$!
�� %&�'(�� ������

Diels−Alderase T=37

+�-
���������/�/����	�
����/������/�/����
��� !"#$!
�� %&/'(�� ���/�/��

���������/�/����
	
����/������/�/����)��� !"#$!
�� %&/'(�� ���/�/��

distance

Diels−Alderase T=50

fre
qu

en
cy

Fig. 2. Relation between graph distance distribution and smFRET data. (A) The graph
distance distribution of a Diels-Alderase ribozyme at temperature 37◦C.. Structures
(a), (b) and (c) are the top three secondary structures considering their free energy. In
which, the minimum free energy structure is showed in (a), (c) is the real secondary
structure which is ranked as the 3rd best sub-optimal structure with RNAsubopt -e.
he graphic representations of these structures are produced with VARNA [3]. (B) The
corresponding smFRET efficiency (Efret) histograms are reported in [14]. From these
data, three separate states of the DAse ribozyme can be distinguished, the unfolded
(U), intermediate (I) and folded (F) states. (C) The graph distance distribution in the
ensemble which is approximated with RNAsubopt -p at temperature 50◦C.

As we pointed out in the introduction, the graph distance measure introduced
in this paper can serve as a first step towards a structural interpretation of
smFRET data. As an example, we consider the graph distance distribution of a
Diels-Alderase (DAse) ribozyme (Fig. 2 (A)). Histograms of smFRET efficiency
(Efret) for this 49 nt long catalytic RNA are reported in [14] for a large number of
surface-immobilized ribozyme molecules as a function of the Mg2+ concentration
in the buffer solution. A sketch of their histograms is displayed in Fig. 2 (B). The
dyes are attached to sequence positions 6 (Cy3) and 42 (Cy5) and hence do not
simply reflect the end-to-end distance, Fig. 2 (A)(c). In this example, we observe
the the expected correspondence small graph distances with a strong smFRET
signal. This is a particular interesting example, since the minimal free energy
(mfe) structure (Fig. 2 (A)(a)) predicted with RNAfold is not identified with
the real secondary structure (Fig. 2 (A)(c)). In fact, the ground state secondary
structure is ranked as the 3rd best sub-optimal structure derived via RNAsubopt

-e. The free energy difference between these two structures is only 0.1kcal/mol.
However, their graph distances show a relatively larger difference. The 2nd best
sub-optimal structure (Fig. 2 (A)(b)) looks rather similar with the 3rd structure,
in particular, they share the same graph distance value.

The smFRET data of [14] indicate the presence of three sub-populations,
corresponding to three different structural states: folded molecules (state F),

Distribution of Graph-Distances in Boltzmann Ensembles 123

intermediate conformation (state I) and unfolded molecules (state U). In the
absence of Mg2+, the I state dominates, and only small fractions are found in
states U and F. Unfortunately, the salt dependence of RNA folding is com-
plex [15,19] and currently is not properly modeled in the available folding pro-
grams. We can, however, make use of the qualitative correspondence of low salt
concentrations with high temperature. In Fig. 2 (C) we therefore re-compute
the graph distance distribution in the ensemble at an elevated temperature of
50◦C. Here, the real structure becomes the second best structure with free en-
ergy −10.82kcal/mol and we observe a much larger fraction of (nearly) unfolded
structures with longer distances between the two beacon positions. Qualitatively,
this matches the smFRET data showed in Fig. 2 (B).

Long-range interactions play an important role in pre-mRNA splicing and
in the regulation of alternative splicing [1,22], bringing splice donor, acceptor,
branching site into close spatial proximity. Fig. 3(A) shows for D. melanogaster
pre-mRNAs that the distribution of graph-distances between donor and accep-
tor sites shifted towards smaller values compared to randomly selected pairs of
positions with the same distance.3 Although the effect is small, it shows a clear
difference between the real RNA sequences and artificial sequences that were
randomized by di-nucleotide shuffling.

The spatial organization of the genomic and sub-genomic RNAs is important
for the processing and functioning of many RNA viruses. This goes far beyond
the well-known panhandle structures. In Coronavirus the interactions of the 5’
TRS-L cis-acting element with body TRS elements has been proposed as an
important determinant for the correct assembly of the Coronavirus genes in the
host [6]. The matrix of expected graph-distances in Fig. 3(B) shows that TRS-
L and TRS-B are indeed placed near each other. More detailed information is
provided in Appendix (D).

Our first results show that the systematic analysis of the graph-distance dis-
tribution both for individual RNAs and their aggregation over ensembles of
structures can provide useful insights into structural influences on RNA func-
tion. These may not be obvious directly from the structures due to the inherent
difficulties of predicting long-range base pairs with sufficient accuracy and the
many issues inherent in comparing RNA structures of very disparate lengths.

Due the complexity of algorithm we have refrained from attempting a direct
implementation in an imperative programming language. Instead, we are aiming
at an implementation in Haskell that allows us to make use of the framework
of algebraic dynamic programming [12]. The graph distance measure and the
associated algorithm can be extended in principle to of RNA secondary struc-
tures with additional tertiary structural elements such as pseudoknots [24] and
G-quadruples [18]. RNA-RNA interaction structures [16] also form a promising
area for future extensions. We note finally, that the Fourier transition method
introduced in [27] could be employed to achieve a further speedup.

3 Due to the insufficiency of the spacial-distance information of structural elements in
the secondary structures, we artificially choose a = b = 1 in our experiments.

124 R. Backofen et al.

�

���

���

���

���

����

����

� �� �� �� �� ���

�	

�

�
��

��
�

��������������

�������	����
�������	�����	����

�������	�����	�����
�����!	��������

�����

�

���

���

����

����

��

� ��� ��� ���� ���� ��

�

�
�

��

��

��

	�

���

���

���

���

��
�
��
��
��
��
�

�����

Fig. 3. (A): Distribution of graph-distances (a = b = 1) in Drosophila melanogaster
pre-mRNAs between the first and last intron position. To save computational re-
sources, pre-mRNAs were truncated to 100 nt flanking sequence. The black curve
shows the graph-distance distribution computed for the corresponding pairs of positions
on sequences that were randomized by di-nucleotide shuffling. (B): Graph-distances
(a = b = 1) within and between the 5’ and 3’ regions of the genomic RNA of human
Coronavirus 229E computed from a concatenation of position 1–576 and 25188–25688.
Secondary structures bring the 5’ TRS-L and 3’ TRS-B elements into close proxim-
ity. More detailed information related to this example can be found in Supplemental
Material D.

Acknowledgements. This work was supported in part by the Deutsche
Forschungsgemeinschaft proj. nos. BA 2168/2-2, STA 850/10-2, SPP 1596 and
MA5082/1-1.

References

1. Baraniak, A.P., Lasda, E.L., Wagner, E.J., Garcia-Blanco, M.A.: A stem structure
in fibroblast growth factor receptor 2 transcripts mediates cell-type-specific splicing
by approximating intronic control elements. Mol. Cell Biol. 23, 9327–9337 (2003)

2. Clote, P., Ponty, Y., Steyaert, J.M.: Expected distance between terminal nu-
cleotides of RNA secondary structures. J. Math. Biol. 65, 581–599 (2012)

3. Darty, K., Denise, A.: Ponty. Y. VARNA: Interactive drawing and editing of the
RNA secondary structure. Bioinformatics 25(15), 1974–1975 (2009)

4. Das, R., Baker, D.: Automated de novo prediction of native-like RNA tertiary
structures. Proc. Natl. Acad. Sci. USA 104, 14664–14669 (2007)

5. Ding, Y., Lawrence, C.E.: A statistical sampling algorithm for RNA secondary
structure prediction. Nucl. Acids Res. 31(24), 7280–7301 (2003)

6. Dufour, D., Mateos-Gomez, P.A., Enjuanes, L., Gallego, J., Sola, I.: Structure and
functional relevance of a transcription-regulating sequence involved in coronavirus
discontinuous RNA synthesis. J. Virol. 85(10), 4963–4973 (2011)

7. Einert, T.R., Näger, P., Orland, H., Netz, R.: Impact of loop statistics on the
thermodynamics of RNA folding. Phys. Rev. Lett. 101, 048103 (2008)

8. Fang, L.T.: The end-to-end distance of RNA as a randomly self-paired polymer. J.
Theor. Biol. 280, 101–107 (2011)

Distribution of Graph-Distances in Boltzmann Ensembles 125

9. Forties, R.A., Bundschuh, R.: Modeling the interplay of single-stranded binding
proteins and nucleic acid secondary structure. Bioinformatics 26, 61–67 (2010)

10. Gerland, U., Bundschuh, R., Hwa, T.: Force-induced denaturation of RNA. Bio-
phys. J. 81, 1324–1332 (2001)

11. Gerland, U., Bundschuh, R., Hwa, T.: Translocation of structured polynucleotides
through nanopores. Phys. Biol. 1, 19–26 (2004)

12. Giegerich, R., Meyer, C.: Algebraic dynamic programming. In: Kirchner, H.,
Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 349–364. Springer,
Heidelberg (2002)

13. Han, H.S., Reidys, C.M.: The 5’-3’ distance of RNA secondary structures. J. Com-
put. Biol. 19, 867–878 (2012)

14. Kobitski, A., Nierth, A., Helm, M., Jaschke, A., Nienhaus, U.G.: Mg2+-dependent
folding of a Diels-Alderase ribozyme probed by single-molecule FRET analysis.
Nucleic Acids Res. 35(6), 2047–2059 (2007)

15. Leipply, D., Lambert, D., Draper, D.E.: Ion-RNA interactions thermodynamic
analysis of the effects of mono- and divalent ions on RNA conformational equi-
libria. Methods Enzymol. 469, 433–463 (2009)

16. Li, A.X., Marz, M., Qin, J., Reidys, C.M.: RNA-RNA interaction prediction based
on multiple sequence alignments. Bioinformatics 27(4), 456–463 (2011)

17. Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C.,
Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Alg. Mol. Biol. 6, 26 (2011)

18. Lorenz, R., Bernhart, S.H., Qin, J., Honer zu Siederdissen, C., Tanzer, A., Am-
man, F., Hofacker, I.L.: 2d meets 4g: G-quadruplexes in rna secondary structure
prediction. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 99(PrePrints), 1 (2013)

19. Mathews, D., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence
of thermodynamic parameters improves prediction of RNA secondary structure. J.
Mol. Biol. 288, 911–940 (1999)

20. Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., Turner,
D.H.: Incorporating chemical modification constraints into a dynamic program-
ming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci.
USA 101, 7287–7292 (2004)

21. McCaskill, J.S.: The equilibrium partition function and base pair binding proba-
bilities for RNA secondary structure. Biopolymers 29(6-7), 1105–1119 (1990)

22. McManus, C.J., Graveley, B.R.: RNA structure and the mechanisms of alternative
splicing. Curr. Opin. Genet. Dev. 21, 373–379 (2011)

23. Müller, M., Krzakala, F., Mézard, M.: The secondary structure of RNA under
tension. Eur. Phys. J. E 9, 67–77 (2002)

24. Reidys, C.M., Huang, F.W.D., Andersen, J.E., Penner, R.C., Stadler, P.F., Nebel,
M.E.: Topology and prediction of RNA pseudoknots. Bioinformatics 27(8), 1076–
1085 (2011)

25. Roy, R., Hohng, S., Ha, T.: A practical guide to single-molecule FRET. Nature
Methods 5, 507–516 (2008)

26. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes
and back: a case study in RNA secondary structures. Proc. Royal Society London
B 255(1344), 279–284 (1994)

27. Senter, E., Sheikh, S., Dotu, I., Ponty, Y., Clote, P.: Using the Fast Fourier Trans-
form to Accelerate the Computational Search for RNA Conformational Switches.
PLoS ONE 7(12), e50506 (2012)

28. Yoffe, A.M., Prinsen, P., Gelbart, W.M., Ben-Shaul, A.: The ends of a large RNA
molecule are necessarily close. Nucl. Acids Res. 39, 292–299 (2011)

Faster Algorithms for RNA-Folding

Using the Four-Russians Method

Balaji Venkatachalam, Dan Gusfield, and Yelena Frid

Department of Computer Science, UC Davis
{balaji,gusfield,yafrid}@cs.ucdavis.edu

Abstract. The secondary structure that maximizes the number of non-
crossing matchings between complimentary bases of an RNA sequence of
length n can be computed in O(n3) time using Nussinov’s dynamic pro-
gramming algorithm. The Four-Russians method is a technique that will
reduce the running time for certain dynamic programming algorithms
by a multiplicative factor after a preprocessing step where solutions to
all smaller subproblems of a fixed size are exhaustively enumerated and

solved. Frid and Gusfield designed an O(n3

log n
) algorithm for RNA folding

using the Four-Russians technique. In their algorithm the preprocessing
is interleaved with the algorithm computation.

We simplify the algorithm and the analysis by doing the preprocess-
ing once prior to the algorithm computation. We call this the two-vector
method. We also show variants where instead of exhaustive preprocess-
ing, we only solve the subproblems encountered in the main algorithm
once and memoize the results. We give a simple proof of correctness and
explore the practical advantages over the earlier method.

The Nussinov algorithm admits an O(n2) time parallel algorithm. We
show a parallel algorithm using the two-vector idea that improves the

time bound to O(n2

log n
).

We have implemented the parallel algorithm on graphics processing
units using the CUDA platform. We discuss the organization of the data
structures to exploit coalesced memory access for fast running times. The
ideas to organize the data structures also help in improving the running
time of the serial algorithms. For sequences of length up to 6000 bases the
parallel algorithm takes only about 2.5 seconds and the two-vector serial
method takes about 57 seconds on a desktop and 15 seconds on a server.
Among the serial algorithms, the two-vector and memoized versions are
faster than the Frid-Gusfield algorithm by a factor of 3, and are faster
than Nussinov by up to a factor of 20.

1 Introduction

Computational approaches to find the secondary structure of RNA molecules are
used extensively in bioinformatics applications. The classic dynamic program-
ming (DP) algorithm proposed in the 1970s has been central to most structure
prediction algorithms. While the objective of the original algorithm was to max-
imize the number of non-crossing pairings between complementary bases, the

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 126–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Faster Algorithms for RNA-Folding Using the Four-Russians Method 127

dynamic programming approach has been used for other models and approaches,
including minimizing the free energy of a structure. The DP algorithm runs in
cubic time and there have been many attempts at improving its running time.
Here, we use the Four-Russians method for speeding up the computation.

The Four-Russians method, named after Aralazarov et al. [4], is a method to
speed up certain dynamic programming algorithms. In a typical Four-Russians
algorithm there is a preprocessing step that exhaustively enumerates and solves
a set of subproblems and the results are tabled. In the main DP algorithm,
instead of filling out or inspecting individual cells, the algorithm takes longer
strides in the table. The computation for multiple cells is solved in constant
time by utilizing the preprocessed solutions to the subproblems. The longer
strides to fill the table reduce the runtime by a multiplicative factor. The size
of the subproblems is chosen in a way that does not make the preprocessing too
expensive.

Frid and Gusfield [11] showed the application of the Four-Russians approach
for RNA folding. In their algorithm, the preprocessing is interleaved with the
algorithm computation. They fill out a part of the DP table and use these entries
to complete a part of the preprocessing. The preprocessed entries are used later
in the computation.

We show a simpler algorithm where all the preprocessing is completed before
the start of the main algorithm. This simplifies the correctness proof and the
runtime analysis. This approach helps in obtaining a logn factor improvement
for the parallel algorithm. In comparing various methods for RNA folding, Zakov
and Frid (personal communication) had independently observed that the algo-
rithm in [11] could be modified to do the preprocessing at once. It is essentially
the idea as described here.

In this paper we explore the implications of the one-pass preprocessing idea.
This description of the algorithm leads naturally to two other variants. We em-
pirically evaluate these variants and also the implementation of the parallel al-
gorithm.

The parallel architecture of general-purpose graphical processing units (GPUs)
have been exploited for many real-world application in addition to applications
in gaming and visualization problems. GPUs have also been used to speed up
RNA folding algorithms [6,23,24]. Here we show how the Four-Russians method
allows an organization of the data structures for fast memory accesses. We also
describe the organization of the parallel hierarchy to exploit the inherent paral-
lelism of the solution.

In the rest of the section, we describe the problem in relation to the other
problems in RNA folding. To keep the paper self-contained, we will first de-
scribe the two-vector algorithm, our application of the Four-Russians method to
the RNA folding problem. We will use that description to describe the original
Four-Russians method for RNA folding by Frid and Gusfield [11]. This discus-
sion leads to two other variants where the preprocessing is done on demand,
instead of the exhaustive preprocessing in the two-vector method and the Frid-
Gusfield algorithm. In section 4 we discuss the O(n2/ logn) parallel algorithm.

128 B. Venkatachalam, D. Gusfield, and Y. Frid

We will then describe the implementation of a parallel algorithm using CUDA.
The final sections have discussion on empirical observations and conclusions. Due
to space limitations, this manuscript focuses mostly on the theoretical aspects
and describes the experimental results briefly. Detailed discussion can be found
in [26].

Related Work. The O(n3) dynamic programming algorithm due to Nussinov
et al. [21,20] maximizes the number of non-crossing matching complimentary
bases. There have been many methods since Zuker and Stiegler [31] that infer the
folding using thermodynamic parameters [25,19] which are more realistic than
maximizing the number of base pairs. These methods have been implemented in
many packages including UNAFold [18], Mfold [30], Vienna RNA Package [15],
RNAstructure [22].

Probabilistic methods include stochastic context-free grammars [10,9], the
maximum expected accuracy (MEA) method, where secondary structures are
composed of pairs that have a maximal sum of pairing probabilities, eg.,
MaxExpect [17], Pfold [16], CONTRAfold [8] which maximize the posterior prob-
abilities of base pairs; and Sfold [7], CentroidFold [14] that maximize the centroid
estimator. There are also other methods that use a combination of thermody-
namic and statistical parameters [2] and methods that use training sets of known
folds to determine their parameters, eg., CONTRAfold [8], and Simfold[3] and
ContextFold[28].

In addition to the Four-Russians method, other methods to improve the
running time include Valiant’s max-plus matrix multiplication by Akutsu [1]
and Zakov et al. [29]; and sparsification, where the branch points are pruned to
get an improved time bound [27,5].

CUDA, the programming platform for GPGPUs, has been used to solve
many bioinformatics problems. Chang, Kimmer and Ouyang [6] and Stojanovski,
Gjorgjevikj and Madjarov [24] show an implementation of the Nussinov algo-
rithm on CUDA. Rizk et al. [23] describe the implementation for Zuker and
Stiegler method involving energy parameters. These methods are discussed in
section 5.2.

2 The Nussinov Algorithm

In this paper, we consider the basic RNA folding problem of maximizing the num-
ber of non-crossing complimentary base pair matchings. Complimentary bases
can be paired, i.e., A with U and C with G. A set of disjoint pairs is a match-
ing. The pairs in a matching must not cross, i.e., if bases in positions i and
j are paired and if bases k and l are paired, then either they are nested, i.e.,
i < k < l < j or they are non-intersecting, i.e., i < j < k < l. The objective is
to maximize the number of pairings under these constraints.

The following algorithm, due to Nussinov [21] maximizes the number of non-
crossing matchings. For an input sequence S of length n over the alphabet A,

C, G, U, the recurrence is defined as follows. Let D(i, j) denote the optimal cost

Faster Algorithms for RNA-Folding Using the Four-Russians Method 129

of folding for the subsequence from i to j. For all i, D(i, i− 1) = D(i, i) = 0 and
for all i < j:

D(i, j) = max

{
b(S(i), S(j)) + D(i + 1, j − 1)
maxi+1≤k≤j D(i, k − 1) + D(k, j)

(1)

where b(., .) = 1 for complimentary bases and 0 otherwise. The DP table is the
upper triangular part of the n × n matrix. The optimal solution is given by
D(1, n). The table can be filled column-wise from the first column till the nth.
There are other ways of filling the table too, eg., along the diagonals — the (i, i)-
diagonal first, (i, i+ 1)-diagonal next and so on, until the last diagonal with one
entry, D(1, n). To allow for traceback we need to store the bases that are paired
to get the maximum value. Let D∗(i, j) denote the corresponding indices. These
are obtained by substituting arg max in place of max in the above recurrence
and can be computed along with the max value.

The first part of the recurrence can be solved in constant time. The second
part is more expensive, incurring Θ(n) look ups and maximum computations.
There are O(n2) entries in the DP table and each cell can be computed in O(n)
time, giving an O(n3) time algorithm.

3 The Four-Russians Algorithms

In this section we discuss three variants of the Four-Russians algorithm. We will
first describe the two-vector approach. Since it is simpler than the other methods
we will use the description to discuss two other variants.

3.1 Two-Vector Algorithm

To apply the Four-Russians technique we start with the following observation:

Lemma 1. The values along a column from bottom to top and along a row from
left to right are monotonically non-decreasing. Consecutive cells differ at most
by 1.

Proof. Consider neighboring cells (i, j) and (i+1, j). D(i, j) represents the solu-
tion of a longer sequence than D(i + 1, j). Therefore the former value should be
at least as large as the latter. Suppose D(i, j) differed from D(i + 1, j) by more
than one. Then we can remove any matching for i. This has at most one fewer
base pair matching and is a valid solution for the subsequence (i + 1, j) with a
larger value than its current value, contradicting the optimality of D(i + 1, j).
An analogous argument holds along the columns.

Once the cells D(i, l), D(i, l + 1), . . . , D(i, l + q− 1) are computed, for some l ∈
{i, . . . , j− q}, they can be represented by D(i, l) +V0, D(i, l) +V1, . . . , D(i, l) +
Vq−1, where Vp = D(i, l+p)−D(i, l), for p ∈ {0, . . . , q−1}. Let us define, v0 = 0
and vp = Vp − Vp−1, for p ∈ {1, . . . , q − 1}. From lemma 1, vp ∈ {0, 1}, for all

130 B. Venkatachalam, D. Gusfield, and Y. Frid

p ∈ [0, q − 1]. Let v denote the binary vector v0, v1, . . . , vq−1 of differences and
let V denote the vector of running totals V0, V1, . . . , Vq−1.

Since the vp’s are defined from Vp’s, the inverse function is well defined: Vp =∑i
k=0 vk. Thus D(i, l) together with the vector v represents q consecutive cells

of the table.
Similarly, since the values are non-increasing down a column, D(i + l +

1, j), . . . , D(i + l + q, j) be represented by the pair D(i + l + 1, j), v̄, where
v̄ ∈ {0,−1}q. We call v the horizontal difference vector or the horizontal vector
and we call v̄ the vertical difference vector or the column vector. The correspond-
ing vector of sums is denoted V̄ .

Consider q consecutive cells from l + 1 to l + q used in computing D(i, j):

D(i, j)← max
l+1≤k≤l+q

D(i, k − 1) + D(k, j) (2)

← max
0≤k≤q−1

D(i, l) + Vk + D(i + l + 1, j) + V̄k

← D(i, l) + D(i + l + 1, j) + max
0≤k≤q−1

Vk + V̄k (3)

As before, we use arg max in place of max to obtain D∗(i, j), which facilitates
the traceback.

As noted above the second line of the recurrence (1), looping over elements,
is more expensive and we will use (3) instead of (2) to compute the D and D∗

values in the Four-Russians method. That is, we will use (3) for groups of q cells
each instead of one loop of (1). Since the V vectors are in bijection with the v
vectors, we will do the preprocessing using v. Let v and v̄ be the corresponding
vectors in (3). The following algorithm evaluates the max computation.

Input: horizontal difference vector v and vertical difference vector v̄
1: max-val← 0 and max-index← 0
2: sum1 ← 0 and sum2 ← 0
3: for k = 0 to q − 1 do
4: sum1 ← sum1 + vi
5: sum2 ← sum2 + v̄i
6: if sum1 + sum2 > max-val then
7: max-val ← sum1 + sum2

8: max-index← k
9: end if

10: end for
11: return (max-val,max-index)

Using this instead of (2) is not advantageous in itself. However, if this al-
gorithm is given as a black box, D(i, j) can be computed in constant time by
invoking the black box once. In the preprocessing stage, we will run the above
algorithm for all possible vector pairs of length q and store the results in table
R. Table R is indexed by a pair of numbers in the range [2q] to represent the two
vectors (v, v̄). Since there are two entries in the table, the lookup is a constant

Faster Algorithms for RNA-Folding Using the Four-Russians Method 131

time operation. We will show later that this exhaustive enumeration is not too
expensive.

In the Nussinov algorithm described in the previous section, the recurrence is
evaluated using (2) and it takes O(q) time. In the Four-Russians method, using
the preprocessing step, the max computation is available through a table lookup
and the recurrence for q terms can be completed in constant time. This reduction
in the computation time is the reason for the speedup by a factor of q.

. . .

.
 .

. . .

. . .

Fig. 1. A diagrammatic representation of the two-vector method. The row and column
blocks are matched as labelled. The gray boxes and the gray dashes show the initial
value and difference vectors. The group of cells in b correspond to the Four-Russians
loop in lines 15–19 of Algorithm 1; the cells in a are used in the loop in lines 9–11 and
the cells in c form the loop in lines 12–14.

The two-vector method modifies the Nussinov algorithm as follows. All the
rows and columns of the table are grouped into groups of q cells each. The
recurrence over these q cells is computed in constant time using the preprocessing
table. The recurrence involves D(i, k−1)+D(k, j), i.e., the value in the (k−1)st

column is used with the kth row. Therefore the row and column groupings differ
by one. That is, the columns are grouped (0, 1, . . . , q − 1), (q, q + 1, . . . , 2q − 1)
etc. The rows are grouped (1, 2, . . . , q), (q + 1, q + 2, . . . , 2q) etc. This ensures
that the row and column groups are well characterized. That is, to fill the cell
(i, j), the kth group along row i needs to be combined with the kth group below
(i, j) in column j.

The cells of the table are filled in the same order as before. When the last
cell of a row- or a column- group is evaluated the corresponding row and column
vectors are computed and stored. To fill cell (i, j), we retrieve the first element
and the horizontal vector of the group from row i and the first element and
the column vector from the corresponding group in column j. The recurrence is
solved using (3) by a table lookup. The final value for D(i, j) is the maximum

132 B. Venkatachalam, D. Gusfield, and Y. Frid

Algorithm 1. Procedure for the two-vector Four-Russians speedup. The DP
table is filled column-wise.

1: R ← preprocess all pairs of vectors of length q
2: for j = 1 to n do
3: D(j, j) ← 0
4: for i = j − 1 down to 1 do
5: D(i, j) ← b(S[i], S[j]) +D(i+ 1, j − 1)
6: Let (i, i) be in the Ith group in row i.
7: Let (i, j) be in the Jth group horizontally in the ith row and J ′ th group

vertically in the jth column.
8: Let iq be the right-most entry of group I and jq be the left-most entry

in group J
9: for k = i+ 1 to iq do // For all cells in the first group
10: D(i, j) ← max(D(i, j), D(i, k − 1) +D(k, j))
11: end for
12: for k = jq to j do // For all cells in the last group
13: D(i, j) ← max(D(i, j), D(i, k − 1) +D(k, j))
14: end for
15: for k = 1 to J − I do // For all groups in between
16: Let p be the left-most cell in the kth group to the right of I and q

be the top-most cell in the kth group below J ′.
17: Let vp and vq be the corresponding horizontal and vertical difference

vectors.
18: D(i, j) ← max(D(i, j), D(i, p) +D(q, j) +R(vp, vq))
19: end for
20: if i mod q = 0 then // compute the vertical difference vector
21: compute and store the v vector i/qth group for column j
22: end if
23: if j mod q = q − 1 then // compute the horizontal difference

vector
24: compute and store the v vector (j − 1)/qth group for row i
25: end if
26: end for
27: end for

value over all the groups. There might be residual elements in the row that do
not fall in these groups. There are at most 2q such elements. These are solved
separately using Nussinov’s method. Algorithm 1 has the algorithm listing and
Figure 1 describes the algorithm pictorially.

Runtime Analysis. In the precomputation phase, there are 2q q-length vectors
and 22q pairs of vectors. The precomputation takes O(q) time per vector pair.
Thus the total time for precomputation is O(q22q).

The main algorithm: There are O(n2) cells and to fill each cell it takes O(n/q+
q) time. That is, it takes O(n/q) time to look up the initial value and the
difference vector and the R table lookups for the the O(n/q) groups. It takes
O(q) time for the residual elements. Thus it takes O(n2 × (n/q + q)) time to

Faster Algorithms for RNA-Folding Using the Four-Russians Method 133

fill the table. Every cell is involved in at most two vector computations, where
the difference to its neighbor is computed once for the row and for the column
vector. This takes an amortized O(n2) time which is dominated by the rest of
the algorithm.

When q = logn, the total time for the entire algorithm is O(log n 22 logn +
n2 + n2 × (n

logn + logn)) = O(n2 logn + n3/ logn) = O(n3/logn).

3.2 Other Variants

FG Algorithm. Frid and Gusfield [11] first showed how the Four-Russians
approach could be applied to the RNA-folding problem. We will call their algo-
rithm the FG algorithm. FG and two-vector algorithms are variants of the same
idea. We will highlight the differences in preprocessing and the maximum value
computation by the Four-Russians technique. In particular, we will show the
maximum computation in step 18 of Algorithm 1.

After computing the q-contiguous cells of a group in a row, the value in the
initial cell D(i, p) and the horizontal difference vector vp are known. They run
the preprocessing algorithm in page 130 for this fixed vp vector together with all
possible vertical difference vectors. They add the value of D(i, p) to the maximum
and table the result. This preprocessing step is computed for every block of every
row. The preprocessing table R is indexed by row number, group number and a
vector (which is a potential column vector). The horizontal vectors need not be
stored.

To fill cell (i, j), they iterate over all groups and find the q-length column
vectors. The preprocessed value for this vector in the corresponding block is
retrieved from the table and the result is added to D(q, j).

The preprocessing is for horizontal vectors seen in the table. Since the hor-
izontal vectors are not known beforehand, the precomputation cannot be done
prior to the main algorithm. Instead, it is interleaved with the computation of
the table. They fill part of the DP table and use the vectors to complete some
preprocessing, which in turn is used fill another part of the table and so on.

Since the preprocessing is done for every group of every row, the same hori-
zontal vector can be seen multiple times in the table. This leads to duplicated
work and slower running time than the two-vector algorithm.

Memoization. The two-vector method computes the preprocessing over all pos-
sible vector pairs and the FG method for only the horizontal vectors that are
seen in the table. Stated this way, a hybrid approach suggests itself.

In our next variants, we memoize the results for a pair of vectors. Like the two-
vector approach, the preprocessing is done only once for a vector pair and like the
FG algorithm, it is only for the vectors seen in the table and the preprocessing
is interleaved with the main algorithm. Since the preprocessing table is indexed
by two vectors, unlike the FG algorithm, the results are computed only once for
every vector seen.

In the partially memoized version, upon completion of elements of a group, if
a new horizontal vector is seen, we pair it with all possible 2q column vectors and

134 B. Venkatachalam, D. Gusfield, and Y. Frid

the results are tabled. In the completely memoized version, the result for a pair
of vectors is computed the first time the pair is observed and the result is stored
in the table. The result for future occurrences of the same pair are obtained by
a table lookup. the rest of the algorithm is identical to the two-vector method.

All these variants take O(n3/ logn) time but the memoized versions poten-
tially store fewer vectors than the two vector method and will have a similar
worst-case runtime in practice as the two-vector method. But, as argued before,
the FG method does duplicated work and will be slower in practice.

4 Parallel Algorithm

The Nussinov DP algorithm can be parallelized with n processes to get an O(n2)
parallel algorithm. We assign one parallel process to a column. In the ith iter-
ation, each process computes the value for the ith diagonal entry. That is, the
successive diagonals are solved in iterations and in each iteration the entries of
the diagonal are solved in parallel. To compute the value for cell (i, j), the entries
in the row to its left and in the column below (i, j) are needed. Since these values
are computed in earlier iterations, each diagonal cell can be filled independent
of the other processes.

A process has to compute the value for O(n) cells and for each cell it needs
to access O(n) other cells. Thus the total computation takes O(n2) time with n
processes.

The parallel algorithm for process j for j = 1, 2, . . . , n:

1: D(j + 1, j)← 0, D(j, j)← 0
2: for i = j down to 1 do
3: D(i, j)← D(i + 1, j − 1) + b(S[i], S[j])
4: for k = i + 1 to j do
5: D(i, j)← max{D(i, j), D(i, k − 1) + D(k, j)}
6: end for
7: Synchronize with other processes
8: end for

We will describe the use the two-vector Four-Russians method to obtain an
O(n2/ logn) algorithm below. The preprocessing step that enumerates the so-
lution for 2q × 2q difference vectors is embarrassingly parallel and we do not
discuss the parallel algorithm for it.

As before, we have n processes one for each column. Each process solves the
entries of the column from bottom to top. Instead of computing the maximum
over each cell in the inner loop (lines 3 – 5 in the parallel algorithm above), we
use the Four-Russians technique to solve q cells in one step by looking up the
table computed in the preprocessing step.

Faster Algorithms for RNA-Folding Using the Four-Russians Method 135

Let dH(i, j) be the horizontal difference vector for cells D(i, j), . . . , D(i + q−
1, j) and let dV (i, j) be the vertical difference for cells D(i, j), . . . , D(i+q−1, j).
We modify the inner loop of the parallel algorithm as follows:

1: for k′ = 0 to �j/q� − 1 do
2: k = i + k′ ∗ q
3: D(i, j) = max{D(i, j), D(i, k) + D(k + 1, j) + R[dH(i, k)][dV (k + 1, j)]}
4: end for
5: for k = �j/q� × q to j do
6: D(i, j)← max{D(i, j), D(i, k) + D(k + 1, j)}
7: end for
8: Compute the horizontal and vertical differences and store them in dH(i −

q + 1, j) and dV (i, j) respectively.

For each entry, the first loop takes O(n/q) time and the second loop takes O(q)
time. Since all the processes are solving the kth diagonal in the kth iteration,
all of them execute the same number of steps before synchronization. Note that
we compute the horizontal and vertical differences for every node, unlike in
section 3.1 where they are computed every qth cell, to ensure that every process
performs the same number of steps and simplify the analysis. The difference
vectors can be computed in O(q) time. These can also be computed in constant
time by shifting the previous difference vector and appending the new difference.
But we will not assume this simplification for the time bound computation.

Thus each entry can be computed in O(n/q + q) time. There are O(n) entries
for each process, thus the total time taken for all processes to terminate is
O(n2/q + nq). With q = logn as before, this gives an O(n2/ logn) algorithm.

5 Parallel Implementation

5.1 GPU Architecture

Graphics processing units (GPUs) are specialized processors designed for compu-
tationally intensive real-time graphics rendering. Compute Unified Device Archi-
tecture (CUDA) is the computing engine designed by NVIDIA for their GPUs.

The programmer can group threads in a block, which in turn can be organized
in a grid hierarchy. Memory hierarchy includes thread-specific local memory,
block-level shared memory for all threads in the block and global memory for
the entire grid. The access times increases along the hierarchy from local to
global memory.

Since the access to global memory is slower (more clock cycles than local
memory access), it is efficient for the threads within a block to access contiguous
memory locations. Then the hardware coalesces memory accesses for all threads
in a block into one request. More specifically, in our application, if a matrix is
stored in row-major order and if the threads in a block access contiguous elements
of a row, then the accesses can be coalesced. However, accessing elements along a

136 B. Venkatachalam, D. Gusfield, and Y. Frid

column is inefficient as distant memory elements have to be fetched from different
cache lines.

Programs that observe the hardware specifications can exploit the optimiza-
tions in the system and are fast in practice. We designed the program that
exploits the parallel structure of the DP algorithm and the hardware features of
the GPU.

5.2 Related Work

As mentioned earlier, the cells of a diagonal are independent of one another
and can be computed in parallel. In Stojanovski et al. [24], elements of the
diagonal are assigned to a block of threads. This design does not handle memory
coalescence for either row or column accesses. Chang et al. [6] allocate an n× n
table and reflect the upper-triangular part of the matrix on the main diagonal.
Successive elements of a column are fetched from the row in the reflected part
of the matrix. When threads of a block are assigned to elements of a diagonal,
the successive column accesses for a thread are to consecutive memory cells.
However, this does not allow coalesced access for threads within a block. Rizk
and Lavenier [23] show an implementation for RNA folding under energy models.
They show a tiling scheme where a group of cells are assigned to a block of threads
to reuse the data values that are fetched from a column. In this paper, we show
that storing the row and column vectors in different orders for two-vector method
can further improve the efficiency.

5.3 Design of the Four-Russians CUDA Program

We briefly describe the design of the CUDA program; a longer discussion can be
found in [26].

We group cells together into tiles, where each tile is a composite of q× q cells.
The tiles along a diagonal can be computed independent of each other. Each tile
is assigned to a block of threads and computed in parallel. After all the entries
of the tile are computed, only the horizontal and vertical differences are stored.

To fill a tile, the horizontal differences of all the tiles to the left and vertical
differences from the tiles underneath are accessed. These difference vectors are
stored in different orders. The horizontal difference vectors of the rows of a tile
are stored in contiguous memory locations and the tiles are stored in row-major
order. The vertical difference vectors of the columns of a tile are stored together
and the tiles are grouped in column-major order.

To fill a tile, the horizontal difference vectors from a tile to the left are fetched.
When each thread retrieves one vector, the block of threads accesses contiguous
memory locations and the memory accesses are coalesced. Successive iterations
fetch the tiles along a row which are in contiguous memory locations. Similarly
the vertical differences of a tile below are accessed in one coalesced memory
access by the threads of the block.

Faster Algorithms for RNA-Folding Using the Four-Russians Method 137

6 Empirical Results

Prior to empirical evaluation, the FG algorithm was expected to be the slowest
due to redundant work. The memoized versions were expected to be faster than
the two-vector algorithm, as they preprocess only a subset of the 22q vectors
seen in the table.

We ran the programs on complete mouse non-coding RNA sequences. We
also tested the performance on random substrings on real RNA sequences and
random strings over A,C,G,U.

The FG algorithm, while faster than Nussinov, was the slowest among the
Four-Russians methods, as expected. The completely memoized version was
slower than the other two variants. This is because every lookup of the pre-
processing table includes a check to see if the pair of vectors has already been

processed. There are 22q unique vector pairs but there are O(n
3

q) queries to the
preprocessing table and each query involves checking if the vector pair has been

processed plus the processing time for new pairs. There are O(n
2

q2) vector pairs

in the table. For larger n (eg., n > 1000 and q = 8), all the 22q vectors are
expected to be present in the DP table. Generally, memoized subproblems are
relatively expensive compared to the lookup. Since the preprocessing here has
only q steps, the advantage of memoization is not seen.

The partially memoized version was slightly slower than the two vector algo-
rithm. Again, the advantage of potentially less preprocessing than the two-vector
method is erased by the need to check if a vector has been processed. The two-
vector method was the fastest on all sequence lengths tested.

For short sequences the two vector method took negligible time (less than 0.2
seconds up to 1000 bases) and are not reported. For longer sequences, we noticed
that using longer vector lengths reduced the running time and the improvement
saturated beyond q = 8 or 9. Beyond this, the extra work in preprocessing
overshadowed the benefit. A similar trend was seen for the memoized versions
too. However, for the FG method q = 3 gave the best speedup and longer vector
lengths had a slower running time due to the extra preprocessing at every group.

All the programs were written in C++ compiled with the highest compiler
optimizations. We only discuss the experimental results on a desktop and two
GPU cards in this paper. Detailed notes on running times can be found in [26].

Speedup factors of the serial programs on the desktop

Time Speedup

Length Nussinov Two-vector Partially Completely FG
(in secs) Memoized Memoized

2000 16.5 7.7 7.3 5.6 3.0

3000 62.5 8.8 8.3 6.4 3.4

4000 196.6 11.9 11.4 8.8 4.7

5000 630.3 21.1 18.9 14.7 7.8

6150 1027.8 18.1 17.0 13.3 7.03

138 B. Venkatachalam, D. Gusfield, and Y. Frid

Fig. 2. Running time of the CUDA program on two GPUs. The programs run twice
as fast on the Tesla card than the GeForce card.

We measured the running times of the different versions of our serial algo-
rithms on a desktop machine with a Pentium II 3GhZ processor and 1MB cache.
The running times of Nussinov and the speedups of various programs compared
to Nussinov are shown in the table below. For sequences of length 6000, the
two-vector method takes close to a minute on the desktop.

Fig. 2 shows the execution times on two GPU cards – GeForce GTX 550
Ti card with 1GB on-card memory and Tesla C2070 with 5GB memory. The
programs take about a second for sequences up to 4000 bases long, and takes
about 5 seconds and 2.5 seconds for sequences of length 6000. The running times
for various sequence lengths are shown in the table below.

Running times for the parallel program (in secs)
Length On GeForce On Tesla
2000 0.20 0.14
3000 0.62 0.38
4000 1.36 0.74
5000 2.70 1.39
6000 4.97 2.50

7 Conclusions and Future Work

We described the two-vector method for using the Four-Russians technique for
RNA folding. This method is simpler than the Frid-Gusfield method. It also

improves the bound of the parallel algorithm by a logn factor to O(n2

logn). We

Faster Algorithms for RNA-Folding Using the Four-Russians Method 139

showed two other variants that memoize the preprocessing results. These meth-
ods are faster than Nussinov by up to a factor of 20 and the Frid-Gusfield method
by a factor of 3.

In the future, it will be interesting to see the application of the Four-Russians
technique for other methods that use energy models with thermodynamic pa-
rameters. The Frid-Gusfield method has been applied to RNA co-folding [12]
and folding with pseudoknots [13] problems; the application of the two-vector
method to those problems and its implications are also of interest. It will be in-
teresting to compare our run time with the other improvements over Nussinov,
like the boolean matrix multiplication method [1].

Acknowledgements. The first-listed author thanks Prof. Norm Matloff for
the opportunity to lecture in his class; this project spawned out of that lecture.
Thanks also to Prof. John Owens for access to the server with a Tesla card.
Thanks to Jim Moersfelder and Vann Teves from Systems Support Staff for help
in setting up the CUDA systems.

References

1. Akutsu, T.: Approximation and exact algorithms for RNA secondary structure
prediction and recognition of stochastic context-free languages. J. Comb. Optim.
3(2-3), 321–336 (1999)

2. Andronescu, M., Condon, A., Hoos, H.H., Mathews, D.H., Murphy, K.P.: Effi-
cient parameter estimation for RNA secondary structure prediction. Bioinformat-
ics 23(13), i19–i28 (2007)

3. Andronescu, M., Condon, A., Hoos, H.H., Mathews, D.H., Murphy, K.P.: Compu-
tational approaches for RNA energy parameter estimation. RNA 16(12), 2304–2318
(2010)

4. Arlazarov, V., Dinic, E., Kronrod, M., Faradzev, I.: On economical construction of
the transitive closure of a directed graph (in Russian). Dokl. Akad. Nauk. 194(11)
(1970)

5. Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Sparse RNA folding: Time and
space efficient algorithms. Journal of Discrete Algorithms 9(1), 12–31 (2011)

6. Chang, D.-J., Kimmer, C., Ouyang, M.: Accelerating the nussinov RNA folding
algorithm with CUDA/GPU. In: ISSPIT, pp. 120–125. IEEE (2010)

7. Ding, Y., Lawrence, C.E.: A statistical sampling algorithm for RNA secondary
structure prediction. Nucleic Acids Research 31(24), 7280–7301 (2003)

8. Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure
prediction without physics-based models. Bioinformatics 22(14), e90–e98 (2006)

9. Dowell, R., Eddy, S.: Evaluation of several lightweight stochastic context-free gram-
mars for RNA secondary structure prediction. BMC Bioinformatics 5(1), 71 (2004)

10. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press
(1998)

11. Frid, Y., Gusfield, D.: A simple, practical and complete O(n3)-time algorithm for
RNA folding using the Four-Russians speedup. Algorithms for Molecular Biology 5,
13 (2010)

140 B. Venkatachalam, D. Gusfield, and Y. Frid

12. Frid, Y., Gusfield, D.: A worst-case and practical speedup for the RNA co-folding
problem using the four-russians idea. In: Moulton, V., Singh, M. (eds.) WABI 2010.
LNCS, vol. 6293, pp. 1–12. Springer, Heidelberg (2010)

13. Frid, Y., Gusfield, D.: Speedup of RNA pseudoknotted secondary structure recur-
rence computation with the four-russians method. In: Lin, G. (ed.) COCOA 2012.
LNCS, vol. 7402, pp. 176–187. Springer, Heidelberg (2012)

14. Hamada, M., Kiryu, H., Sato, K., Mituyama, T., Asai, K.: Prediction of RNA
secondary structure using generalized centroid estimators. Bioinformatics 25(4),
465–473 (2009)

15. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Re-
search 31(13), 3429–3431 (2003)

16. Knudsen, B., Hein, J.: Pfold: RNA secondary structure prediction using stochastic
context-free grammars. Nucleic Acids Research 31(13), 3423–3428 (2003)

17. Lu, Z.J., Gloor, J.W., Mathews, D.H.: Improved RNA secondary structure predic-
tion by maximizing expected pair accuracy. RNA 15(10), 1805–1813 (2009)

18. Markham, N.R., Zuker, M.: UNAFold. Bioinformatics 453, 3–31 (2008)
19. Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., Turner,

D.H.: Incorporating chemical modification constraints into a dynamic programming
algorithm for prediction of RNA secondary structure. PNAS 101(19), 7287–7292
(2004)

20. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure
of single-stranded RNA. PNAS 77(11), 6309–6313 (1980)

21. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop
matchings. SIAM Journal on Applied Mathematics 35(1), 68–82 (1978)

22. Reuter, J., Mathews, D.: RNAstructure: software for RNA secondary structure
prediction and analysis. BMC Bioinformatics 11(1), 129 (2010)

23. Rizk, G., Lavenier, D.: GPU accelerated RNA folding algorithm. In: Allen, G.,
Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2009, Part I. LNCS, vol. 5544, pp. 1004–1013. Springer, Heidelberg (2009)

24. Stojanovski, M.Z., Gjorgjevikj, D., Madjarov, G.: Parallelization of dynamic pro-
gramming in nussinov RNA folding algorithm on the CUDA GPU. In: Kocarev,
L. (ed.) ICT Innovations 2011. AISC, vol. 150, pp. 279–289. Springer, Heidelberg
(2012)

25. Tinoco, I., et al.: Improved Estimation Of Secondary Structure In Ribonucleic-
Acids. Nature-New Biology 246(150), 40–41 (1973)

26. Venkatachalam, B., Frid, Y., Gusfield, D.: Faster algorithms for RNA-folding using
the Four-Russians method. UC Davis Technical report (2013)

27. Wexler, Y., Zilberstein, C.B.-Z., Ziv-Ukelson, M.: A study of accessible motifs and
RNA folding complexity. Journal of Computational Biology 14(6), 856–872 (2007)

28. Zakov, S., Goldberg, Y., Elhadad, M., Ziv-Ukelson, M.: Rich parameterization
improves RNA structure prediction. In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB
2011. LNCS, vol. 6577, pp. 546–562. Springer, Heidelberg (2011)

29. Zakov, S., Tsur, D., Ziv-Ukelson, M.: Reducing the worst case running times of
a family of RNA and CFG problems, using valiant’s approach. In: Moulton, V.,
Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 65–77. Springer, Heidelberg
(2010)

30. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Research 31(13), 3406–3415 (2003)

31. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research 9(1), 133–148
(1981)

Algorithms for the Majority Rule (+) Consensus

Tree and the Frequency Difference
Consensus Tree

Jesper Jansson1,�, Chuanqi Shen2, and Wing-Kin Sung3,4

1 Laboratory of Mathematical Bioinformatics (Akutsu Laboratory),
Institute for Chemical Research,

Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
jj@kuicr.kyoto-u.ac.jp

2 Stanford University, 450 Serra Mall, Stanford, CA 94305-2004, USA
shencq@stanford.edu

3 School of Computing, National University of Singapore, 13 Computing Drive,
Singapore 117417

ksung@comp.nus.edu.sg
4 Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672

Abstract. This paper presents two new deterministic algorithms for
constructing consensus trees. Given an input of k phylogenetic trees with
identical leaf label sets and n leaves each, the first algorithm constructs
the majority rule (+) consensus tree in O(kn) time, which is optimal
since the input size is Ω(kn), and the second one constructs the frequency
difference consensus tree in min{O(kn2), O(kn(k + log2 n))} time.

1 Introduction

A consensus tree is a phylogenetic tree that summarizes a given collection of
phylogenetic trees having the same leaf labels but different branching struc-
tures. Consensus trees are used to resolve structural differences between two or
more existing phylogenetic trees arising from conflicts in the raw data, to find
strongly supported groupings, and to summarize large sets of candidate trees ob-
tained by bootstrapping when trying to infer a new phylogenetic tree accurately
[2, 10, 12, 27].

Since the first type of consensus tree was proposed by Adams III [1] in 1972,
many others have been defined and analyzed. See, e.g., [5], Chapter 30 in [12],
or Chapter 8.4 in [27] for some surveys. Which particular type of consensus
tree to use in practice depends on the context. For example, the strict consensus
tree [25] is very intuitive and easy to compute [9] and may be sufficient when there
is not so much disagreement in the data, the majority rule consensus tree [21]
is “the optimal tree to report if we view the cost of reporting an estimate of
the phylogeny to be a linear function of the number of incorrect clades in the
estimate and the number of true clades that are missing from the estimate and we

� Funded by The Hakubi Project and KAKENHI grant number 23700011.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 141–155, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

142 J. Jansson, C. Shen, and W.-K. Sung

T :1

a b

c

d

e

T :2

a b c d

e

T :3

a b

c e

d

T :4

c d

b

a

e

Majority rule:

a b

c d e

Majority rule (+):

a b

c d

e

Frequency diff.:

a b c d

e

Fig. 1. Let S = {T1, T2, T3, T4} as shown above with L = Λ(T1) = Λ(T2) = Λ(T3) =
Λ(T4) = {a, b, c, d, e}. The only non-trivial majority cluster of S is {a, b}, the non-
trivial majority (+) clusters of S are {a, b} and {a, b, c, d}, and the non-trivial frequency
difference clusters of S are {a, b}, {a, b, c, d}, and {c, d}. The majority rule, majority
rule (+), and frequency difference consensus trees of S are displayed.

view the reporting of an incorrect grouping as a more serious error than missing
a clade” [16], and the R* consensus tree [5] provides a statistically consistent
estimator of the species tree topology when combining gene trees [10]. Therefore,
scientists need efficient algorithms for constructing a broad range of different
consensus trees.

In a recent series of papers [8, 17–19], we have developed fast algorithms for
computing the majority rule consensus tree [21], the loose consensus tree [4]
(also known in the literature as the combinable component consensus tree or the
semi-strict consensus tree), a greedy consensus tree [5, 13], the R* consensus
tree [5], and consensus trees for so-called multi-labeled phylogenetic trees (MUL-
trees) [20]. In this paper, we study two relatively new types of consensus trees
called the majority rule (+) consensus tree [7, 11] and the frequency difference
consensus tree [14], and give algorithms for constructing them efficiently.

1.1 Definitions and Notation

We shall use the following basic definitions. A phylogenetic tree is a rooted,
unordered, leaf-labeled tree in which every internal node has at least two children
and all leaves have different labels. (Below, phylogenetic trees are referred to as
“trees” for short). For any tree T , the set of all nodes in T is denoted by V (T)
and the set of all leaf labels in T by Λ(T). Any nonempty subset C of Λ(T) is
called a cluster of Λ(T); if |C| = 1 or C = Λ(T) then C is trivial, and otherwise,

The Majority Rule (+) and Frequency Difference Consensus Trees 143

C is non-trivial. For any u ∈ V (T), T [u] denotes the subtree of T rooted at the
node u. Observe that if u is the root of T or if u is a leaf then Λ(T [u]) is a trivial
cluster. The set C(T) =

⋃
u∈V (T){Λ(T [u])} is called the cluster collection of T ,

and any cluster C ⊆ Λ(T) is said to occur in T if C ∈ C(T).
Two clusters C1, C2 ⊆ Λ(T) are compatible if C1 ⊆ C2, C2 ⊆ C1, or C1∩C2 =

∅. If C1 and C2 are compatible, we write C1 � C2; otherwise, C1 �� C2. A cluster
C ⊆ Λ(T) is compatible with T if C � Λ(T [u]) holds for every node u ∈ V (T).
In this case, we write C � T , and C �� T otherwise. If T1 and T2 are two trees
with Λ(T1) = Λ(T2) such that every cluster in C(T1) is compatible with T2 then
it follows that every cluster in C(T2) is compatible with T1, and we say that T1

and T2 are compatible. Any two clusters or trees that are not compatible are
called incompatible.

Next, let S = {T1, T2, . . . , Tk} be a set of trees satisfying Λ(T1) = Λ(T2) =
· · · = Λ(Tk) = L for some leaf label set L. For any cluster C of L, denote the
set of all trees in S in which C occurs by KC(S) and the set of all trees in S
that are incompatible with C by QC(S). Thus, KC(S) = {Ti : C ∈ C(Ti)} and
QC(S) = {Ti : C �� Ti}. Define three special types of clusters:

• If |KC(S)| > k
2 then C is a majority cluster of S.

• If |KC(S)| > |QC(S)| then C is a majority (+) cluster of S.

• If |KC(S)| > max{|KD(S)| : D ⊆ L and C �� D} then C is a frequency
difference cluster of S.

(Informally, a frequency difference cluster is a cluster that occurs more frequently
than each of the clusters that is incompatible with it.) Note that a majority
cluster of S is always a majority (+) cluster of S and that a majority (+) cluster
of S is always a frequency difference cluster of S, but not the other way around.

The majority rule consensus tree of S [21] is the tree T such that Λ(T) = L
and C(T) consists of all majority clusters of S. Similarly, the majority rule (+)
consensus tree of S [7, 11] is the tree T such that Λ(T) = L and C(T) consists
of all majority (+) clusters of S, and the frequency difference consensus tree
of S [14] is the tree T such that Λ(T) = L and C(T) consists of all frequency
difference clusters of S. See Fig. 1 for some examples.

From here on, S is assumed to be an input set of identically leaf-labeled trees,
and the leaf label set of S is denoted by L. To express the size of the input, we
define k = |S| and n = |L|.

1.2 Previous Work

Margush and McMorris [21] introduced the majority rule consensus tree in 1981,
and a deterministic algorithm for constructing it in optimal O(kn) worst-case
running time was presented recently in [18]. (A randomized algorithm with
O(kn) expected running time and unbounded worst-case running time was given
earlier by Amenta et al. [2].) The majority rule consensus tree has several de-
sirable mathematical properties [3, 16, 22], and algorithms for constructing it

144 J. Jansson, C. Shen, and W.-K. Sung

have been implemented in popular computational phylogenetics packages like
PHYLIP [13], TNT [15], COMPONENT [23], MrBayes [24], SumTrees in Den-
droPy [26], and PAUP* [28]. Consequently, it is one of the most widely used con-
sensus trees in practice [7, p. 450]. One drawback of the majority rule consensus
tree is that it may be too harsh and discard valuable branching information. For
example, in Fig. 1, even though the cluster {a, b, c, d} is compatible with 75% of
the input trees, it is not included in the majority rule consensus tree. For this
reason, people have become interested in alternative types of consensus trees
that include all the majority clusters and at the same time, also include other
meaningful, well-defined kinds of clusters. The majority rule (+) consensus tree
and the frequency difference consensus tree are two such consensus trees.

The majority rule (+) consensus tree was defined by Dong et al. [11] in 2010.
It was obtained as a special case of an attempted generalization by Cotton and
Wilkinson [7] of the majority rule consensus tree. According to [11], Cotton and
Wilkinson [7] suggested two types of supertrees1 called majority-rule (-) and
majority-rule (+) that were supposed to generalize the majority rule consensus
tree. Unexpectedly, only the first one did, and by restricting the second one to the
consensus tree case, [11] arrived at the majority rule (+) consensus tree. Dong
et al. [11] established some fundamental properties of this type of consensus tree
and pointed out the existence of a polynomial-time algorithm for constructing it,
but left the task of finding the best possible such algorithm as an open problem.
As far as we know, no implementation for computing the majority rule (+)
consensus tree is publicly available.

Goloboff et al. [14] initially proposed the frequency difference consensus tree
as a way to improve methods for evaluating group support in parsimony analysis.
Its relationships to other consensus trees have been studied in [11]. A method
for constructing it has been implemented in the free software package TNT [15]
but the algorithm used is not documented and its time complexity is unknown.
We note that since the number of clusters occurring in S may be Ω(kn), a naive
algorithm that compares every cluster in S to every other cluster in S directly
would require Ω(k2n2) time.

1.3 Organization of the Paper and New Results

Due to space constraints, some proofs have been omitted from the conference
version of this paper. Please see the journal version for the complete proofs.

The paper is organized as follows. Section 2 summarizes some results from the
literature that are needed later. In Section 3, we modify the techniques from [18]
to obtain an O(kn)-time algorithm for the majority rule (+) consensus tree. Its
running time is optimal because the size of the input is Ω(kn); hence, we resolve
the open problem of Dong et al. [11] mentioned above. Next, Section 4 gives a
min{O(kn2), O(kn(k + log2 n))}-time algorithm for constructing the frequency
difference consensus tree (here, the second term is smaller than the first term

1 A supertree is a generalization of a consensus tree that does not require the input
trees to have identical leaf label sets.

The Majority Rule (+) and Frequency Difference Consensus Trees 145

if k = o(n); e.g., if k = O(1) then the running time reduces to O(n log2 n)).
Our algorithms are fully deterministic and do not need to use hashing. Finally,
Section 5 discusses implementations.

2 Preliminaries

2.1 The delete and insert Operations

The delete and insert operations are two operations that modify the structure
of a tree. They are defined in the following way.

Let T be a tree and let u be any non-root, internal node in T . The delete
operation on u makes all of u’s children become children of the parent of u,
and then removes u and the edge between u and its parent. (See, e.g., Figure 2
in [17] for an illustration.) The time needed for this operation is proportional
to the number of children of u, and the effect of applying it is that the cluster
collection of T is changed to C(T) \ {Λ(T [u])}. Conversely, the insert operation
creates a new node u that becomes: (1) a child of an existing internal node v, and
(2) the parent of a proper subset X of v’s children satisfying |X | ≥ 2; the effect
is that C(T) is changed to C(T) ∪ {Λ(T [u])}, where Λ(T [u]) =

⋃
vi∈X Λ(T [vi]).

2.2 Subroutines

The new algorithms in this paper use the following algorithms from the litera-
ture as subroutines: Day’s algorithm [9], Procedure One-Way Compatible [17],
and Procedure Merge Trees [17]. Day’s algorithm [9] is used to efficiently check
whether any specified cluster that occurs in a tree T also occurs in another
tree Tref , and can be applied to find the set of all clusters that occur in both T
and Tref in linear time. Procedure One-Way Compatible takes as input two
trees TA and TB with identical leaf label sets and outputs a copy of TA in which
every cluster that is not compatible with TB has been removed. (The procedure is
asymmetric; e.g., if TA consists of n leaves attached to a root node and TB �= TA

then One-Way Compatible(TA, TB) = TA, while One-Way Compatible(TB, TA)
= TB.) Procedure Merge Trees takes as input two compatible trees with iden-
tical leaf label sets and outputs a tree that combines their cluster collections.
Their properties are summarized below; for details, see references [9] and [17].

Lemma 1. (Day [9]) Let Tref and T be two given trees with Λ(Tref) = Λ(T) = L
and let n = |L|. After O(n) time preprocessing, it is possible to determine, for
any u ∈ V (T), if Λ(T [u]) ∈ C(Tref) in O(1) time.

Lemma 2. ([17]) Let TA and TB be two given trees with Λ(TA) = Λ(TB) = L
and let n = |L|. Procedure One-Way Compatible(TA, TB) returns a tree T with
Λ(T) = L such that C(T) = {C ∈ C(TA) : C is compatible with TB} in O(n)
time.

Lemma 3. ([17]) Let TA and TB be two given trees with Λ(TA) = Λ(TB) = L
that are compatible and let n = |L|. Procedure Merge Trees(TA, TB) returns a
tree T with Λ(T) = L and C(T) = C(TA) ∪ C(TB) in O(n) time.

146 J. Jansson, C. Shen, and W.-K. Sung

3 Constructing the Majority Rule (+) Consensus Tree

This section presents an algorithm named Maj Rule Plus for computing the
majority rule (+) consensus tree of S in (optimal) O(kn) time.

The pseudocode of Maj Rule Plus is given in Fig. 2. The algorithm has two
phases. Phase 1 examines the input trees, one by one, to construct a set of
candidate clusters that includes all majority (+) clusters. Then, Phase 2 removes
all candidate clusters that are not majority (+) clusters.2

During Phase 1, the current candidate clusters are stored as nodes in a tree T .
Every node v in T represents a current candidate cluster Λ(T [v]) and has a
counter count(v) that, starting from the iteration at which Λ(T [v]) became a
candidate cluster, keeps track of the number of input trees in which it occurs
minus the number of input trees that are incompatible with it. More precisely,
while treating the tree Tj for any j ∈ {2, 3, . . . , k} in Step 3.1, count(v) for
each current candidate cluster Λ(T [v]) is updated as follows: if Λ(T [v]) occurs
in Tj then count(v) is incremented by 1, if Λ(T [v]) does not occur in Tj and is
not compatible with Tj then count(v) is decremented by 1, and otherwise (i.e.,
Λ(T [v]) does not occur in Tj but is compatible with Tj) count(v) is unchanged.
Furthermore, if any count(v) reaches 0 then the node v is deleted from T so
that Λ(T [v]) is no longer a current candidate cluster. Next, in Step 3.3, every
cluster occurring in Tj that is not a current candidate but compatible with T is
inserted into T (thus becoming a current candidate cluster) and its counter is
initialized to 1. Lemma 4 below proves that the set of majority (+) clusters of S
is contained in the set of candidate clusters at the end of Phase 1.

Lemma 4. For any C ⊆ L, if C is a majority (+) cluster of S then C ∈ C(T)
at the end of Phase 1.

Proof. Suppose that C is a majority (+) cluster of S. Let Tx be any tree in QC(S)
and consider iteration x in Step 3: If C is a current candidate at the beginning of
iteration x then its counter will be decremented, cancelling out the occurrence
of C in one tree Tj where 1 ≤ j < x; otherwise, C may be prevented from being
inserted into T in at most one later iteration j (where x < j ≤ k and C ∈ C(Tj))
because of some cluster occurring in Tx. It follows from |KC(S)| − |QC(S)| > 0
that C’s counter will be greater than 0 at the end of Phase 1, and therefore
C ∈ C(T). ��

In Phase 2, Step 5 of the algorithm computes the values of |KC(S)| and |QC(S)|
for every candidate cluster C and stores them in K (v) and Q(v), respectively,
where C = Λ(T [v]). Finally, Step 6 removes every candidate cluster C that does
not satisfy the condition |KC(S)| > |QC(S)|. By definition, the clusters that
remain in T are the majority (+) clusters.

Theorem 1. Algorithm Maj Rule Plus constructs the majority rule (+)
consensus tree of S in O(kn) time.

2 This basic strategy was previously used in the O(kn)-time algorithm in [18] for
computing the majority rule consensus tree.

The Majority Rule (+) and Frequency Difference Consensus Trees 147

Algorithm Maj Rule Plus

Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = · · · = Λ(Tk).

Output: The majority rule (+) consensus tree of S .

/* Phase 1 */

1 T := T1

2 for each v ∈ V (T) do count(v) := 1

3 for j := 2 to k do

3.1 for each v ∈ V (T) do

if Λ(T [v]) occurs in Tj then count(v) := count(v) + 1

else if Λ(T [v]) is not compatible with Tj then count(v) := count(v)−1

endfor

3.2 for each v ∈ V (T) in top-down order do

if count(v) = 0 then delete node v.

3.3 for every C ∈ C(Tj) that is compatible with T but does not occur in T do

Insert C into T .

Initialize count(v) := 1 for the new node v satisfying Λ(T [v]) = C.

endfor

endfor

/* Phase 2 */

4 for each v ∈ V (T) do K (v) := 0; Q(v) := 0

5 for j := 1 to k do

5.1 for each v ∈ V (T) do

if Λ(T [v]) occurs in Tj then K (v) := K (v) + 1

else if Λ(T [v]) is not compatible with Tj then Q(v) := Q(v) + 1

endfor

6 for each v ∈ V (T) in top-down order do

if K (v) ≤ Q(v) then perform a delete operation on v.

7 return T

End Maj Rule Plus

Fig. 2. Algorithm Maj Rule Plus for constructing the majority rule (+) consensus tree

Proof. The correctness follows from Lemma 4 and the above discussion.
The time complexity analysis is analogous to the proof of Theorem 4 in [18].

First consider Phase 1. Step 3.1 takes O(n) time by: (1) running Day’s algorithm
with Tref = Tj and then checking each node v in V (T) to see if Λ(T [v]) occurs
in Tj (according to Lemma 1, this requires O(n) time for preprocessing, and each
of the O(n) nodes in V (T) may be checked in O(1) time), and (2) computing
X := One-Way Compatible(T, Tj) and then checking for each node v in V (T)
if v does not exist in X to determine if Λ(T [v]) �� Tj (this takes O(n) time
by Lemma 2). The delete operations in Step 3.2 take O(n) time because the
nodes are handled in top-down order, which means that for every node, its
parent will change at most once in each iteration. In Step 3.3, define Y :=
One-Way Compatible(Tj , T) and Z := Merge Trees(Y, T). Then by Lemmas 2

148 J. Jansson, C. Shen, and W.-K. Sung

and 3, the cluster collection of Y consists of the clusters occurring in Tj that are
compatible with the set of current candidates, and Z is the result of inserting
these clusters into T . Thus, Step 3.3 can be implemented by computing Y and Z,
updating T ’s structure according to Z, and setting the counters of all new nodes
to 1, so Step 3.3 takes O(n) time. The main loop in Step 3 consists of O(k)
iterations, and Phase 1 therefore takes O(kn) time in total.

Next, Phase 2 also takes O(kn) time because Step 5.1 can be implemented in
O(n) time with the same techniques as in Step 3.1, and Step 6 is performed in
O(n) time by handling the nodes in top-down order so that each node’s parent
is changed at most once, as in Step 3.2. ��

4 Constructing the Frequency Difference Consensus Tree

Here, we present an algorithm for finding the frequency consensus tree of S in
min{O(kn2), O(kn(k+log2 n))} time. It is called Frequency Difference and is
described in Section 4.1 below. The algorithm uses the procedure Merge Trees

as well as a new procedure named Filter Clusters whose details are given in
Section 4.2.

For each tree Tj ∈ S and each node u ∈ V (Tj), define the weight of u as the
value |KΛ(Tj [u])(S)|, i.e., the number of trees from S in which the cluster Λ(Tj [u])
occurs, and denote it by w(u). For convenience, also define w(C) = w(u), where
C = Λ(Tj[u]). The input to Procedure Filter Clusters is two trees TA, TB with
Λ(TA) = Λ(TB) = L such that every cluster occurring in TA or TB also occurs
in at least one tree in S, and the output is a copy of TA in which every cluster
that is incompatible with some cluster in TB with a higher weight has been
removed. Formally, the output of Filter Clusters is a tree T with Λ(T) =
L such that C(T) = {Λ(TA[u]) : u ∈ V (TA) and w(u) > w(x) for every x ∈
V (TB) with Λ(TA[u]) �� Λ(TB[x])}.

4.1 Algorithm Frequency Difference

We first describe Algorithm Frequency Difference. Refer to Fig. 3 for the
pseudocode.

The algorithm starts by computing the weight w(C) of every cluster C oc-
curring in S in a preprocessing step (Step 1). Next, let C(S) for any set S
of trees denote the union

⋃
Ti∈S C(Ti), and for any j ∈ {1, 2, . . . , k}, define a

forward frequency difference consensus tree of {T1, T2, . . . , Tj} as any tree that
includes every cluster C in C({T1, T2, . . . , Tj}) satisfying w(C) > w(X) for all
X ∈ C({T1, T2, . . . , Tj}) with C �� X . Steps 2–3 use Procedure Filter Clusters

from Section 4.2 to build a tree T that, after any iteration j ∈ {1, 2, . . . , k}, is
a forward frequency difference consensus tree of {T1, T2, . . . , Tj}, as proved in
Lemma 5 below. After iteration k, C(T) contains all frequency difference clusters
of S but possibly some other clusters as well, so Step 4 applies Filter Clusters

again to remove all non-frequency difference clusters of S from T .

The Majority Rule (+) and Frequency Difference Consensus Trees 149

Algorithm Frequency Difference

Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = · · · = Λ(Tk).

Output: The frequency difference consensus tree of S .

/* Preprocessing */

1 Compute w(C) for every cluster C occurring in S .

/* Main algorithm */

2 T := T1

3 for j := 2 to k do

A := Filter Clusters(T, Tj); B := Filter Clusters(Tj , T)

T := Merge Trees(A,B)

endfor

4 for j := 1 to k do T := Filter Clusters(T, Tj)

5 return T

End Frequency Difference

Fig. 3. Algorithm Frequency Difference for constructing the frequency difference con-
sensus tree

Lemma 5. For any j ∈ {2, 3, . . . , k}, suppose that T is a forward frequency dif-
ference consensus tree of {T1, T2, . . . , Tj−1}. Let A := Filter Clusters(T, Tj)
and B := Filter Clusters(Tj, T). Then Merge Trees(A,B) is a forward
frequency difference consensus tree of {T1, T2, . . . , Tj}.

Proof. (Omitted from the conference version due to space constraints.) ��

Theorem 2. Algorithm Frequency Difference constructs the frequency dif-
ference consensus tree of S in min{O(kn2), O(k2n)} + O(k · f(n)) time, where
f(n) is the running time of Procedure Filter Clusters.

Proof. After completing iteration k of Step 3, C(T) is a superset of the set of all
frequency difference clusters of S by Lemma 5. Next, Step 4 removes all non-
frequency difference clusters of S, so the output will be the frequency difference
consensus tree of S.

To analyze the time complexity, first consider how to compute all the weights
in Step 1. One method is to first fix an arbitrary ordering of L and represent every
cluster C of L as a bit vector of length n (for every i ∈ {1, 2, . . . , n}, the ith bit is
set to 1 if and only if the ith leaf label belongs to C). Then, spend O(kn2) time to
construct a list of bit vectors for all O(kn) clusters occurring in S by a bottom-up
traversal of each tree in S, sort the resulting list of bit vectors by radix sort, and
traverse the sorted list to identify the number of occurrences of each cluster. All
this takes O(kn2) time. An alternative method, which uses O(k2n) time, is to
initialize the weight of every node in S to 1 and then, for j ∈ {1, 2, . . . , k}, apply
Day’s algorithm (see Lemma 1) with Tref = Tj and T ranging over all Ti with
1 ≤ i ≤ k, i �= j to find all clusters in T that also occur in Tj and increase the

150 J. Jansson, C. Shen, and W.-K. Sung

weights of their nodes in T by 1. Therefore, Step 1 takes min{O(kn2), O(k2n)}
time. Next, Steps 3 and 4 make O(k) calls to the procedures Merge Trees and
Filter Clusters. The running time of Merge Trees is O(n) by Lemma 3 and
the running time of Filter Clusters is f(n) = Ω(n), so Steps 3 and 4 take
O(k · f(n)) time. ��

Lemma 7 in the next subsection shows that f(n) = O(n log2 n) is possible, which
yields:

Corollary 1. Algorithm Frequency Difference constructs the frequency
difference consensus tree of S in min{O(kn2), O(kn(k + log2 n))} time.

4.2 Procedure Filter Clusters

Recall that for any node u in any input tree Tj, its weight w(u) is |KΛ(Tj [u])(S)|.
Also, w(C) = w(u), where C = Λ(Tj [u]). We assume that all w(u)-values have
been computed in a preprocessing step and are available.

Let T be a tree. For every nonempty X ⊆ V (T), lcaT (X) denotes the lowest
common ancestor of X in T . To obtain a fast solution for Filter Clusters, we
need the next lemma.

Lemma 6. Let T be a tree, let X be any cluster of Λ(T), and let rX = lcaT (X).
For any v ∈ V (T), it holds that X �� Λ(T [v]) if and only if: (1) v lies on a path
from a child of rX to some leaf belonging to X; and (2) Λ(T [v]) �⊆ X.

Proof. Given T , X , rX , and v as in the lemma statement, there are four possible
cases: (i) v is a proper ancestor of rX or equal to rX ; (ii) v lies on a path from
a child of rX to some leaf in X and all leaf descendants of v belong to X ; (iii) v
lies on a path from a child of rX to some leaf in X and not all leaf descendants
of v belong to X ; or (iv) v is a proper descendant of rX that does not lie on any
path from a leaf in X to rX . In case (i), X ⊆ Λ(T [v]). In case (ii), Λ(T [v]) ⊆ X .
In case (iii), Λ(T [v]) �⊆ X while X ∩ Λ(T [v]) �= ∅. In case (iv), X ∩ Λ(T [v]) = ∅.
By the definition of compatible clusters, X �� Λ(T [v]) if and only if case (iii)
occurs. ��

Lemma 6 leads to an O(n2)-time method for Filter Clusters, which we now
briefly describe. For each node u ∈ V (TA) in top-down order, do the following:
Let X = Λ(TA[u]) and find all v ∈ V (TB) such that X �� Λ(TB[v]) in O(n) time
by doing bottom-up traversals of TB to first mark all ancestors of leaves belonging
to X that are proper descendants of the lowest common ancestor of X in TB,
and then unmarking all marked nodes that have no leaf descendants outside
of X . By Lemma 6, X �� Λ(TB[v]) if and only if v is one of the resulting marked
nodes. If w(u) ≤ w(v) for any such v then do a delete operation on u in TA.
Clearly, the total running time is O(n2). (This simple method gives f(n) = O(n2)
in Theorem 2 in Section 4.1, and hence a total running time of O(kn2) for
Algorithm Frequency Difference.) Below, we refine this idea to get an even
faster solution for Filter Clusters.

The Majority Rule (+) and Frequency Difference Consensus Trees 151

High-Level Description. We use the centroid path decomposition technique [6]
to divide the nodes of TA into a so-called centroid path and a set of side trees. A
centroid path of TA is defined as a path in TA of the form π = 〈pα, pα−1, . . . , p1〉,
where pα is the root of TA, the node pi−1 for every i ∈ {2, . . . , α} is any child
of pi with the maximum number of leaf descendants, and p1 is a leaf. Given
a centroid path π, removing π and all its incident edges from TA produces a
set σ(π) of disjoint trees whose root nodes are children of nodes belonging to π
in TA; these trees are called the side trees of π. Importantly, |Λ(τ)| ≤ n/2 for
every side tree τ of π. Also, {Λ(τ) : τ ∈ σ(π)} forms a partition of L \ {p1}.
Furthermore, if π is a centroid path of TA then the cluster collection C(TA) can
be written recursively as C(TA) =

⋃
τ∈σ(π) C(τ) ∪

⋃
pi∈π{Λ(TA[pi])}. Intuitively,

this allows the cluster collection of TA to be broken into smaller sets that can
be checked more easily, and then put together again at the end.

The fast version of Filter Clusters is shown in Fig. 4. It first computes a
centroid path π = 〈pα, pα−1, . . . , p1〉 of TA and the set σ(π) of side trees of π
in Step 1. Then, in Steps 2–3, it applies itself recursively to each side tree of π
to get rid of any cluster in

⋃
τ∈σ(π) C(τ) that is incompatible with some cluster

in TB with a higher weight than itself, and the remaining clusters are inserted
into a temporary tree Rs. Next, Steps 4–5 check all clusters in

⋃
pi∈π{Λ(TA[pi])}

to determine which of them are not incompatible with any cluster in TB with a
higher weight, and create a temporary tree Rc whose cluster collection consists
of all those clusters that pass this test. Finally, Step 6 combines the cluster
collections of Rs and Rc by applying the procedure Merge Trees. The details of
Procedure Filter Clusters are discussed next.

Steps 2–3 (Handling the Side Trees). For every nonempty C ⊆ Λ(T),
define T |C (“the subtree of T induced by C”; see, e.g., [6]) as the tree T ′ with
leaf label set C and internal node set {lcaT ({a, b}) : a, b ∈ C} which preserves

the ancestor relations from T , i.e., which satisfies lcaT (C′) = lcaT ′
(C′) for all

nonempty C′ ⊆ C. Now, let σ(π) be the set of side trees of the centroid path π
computed in Step 1. For each τ ∈ σ(π), define a weighted tree TB||Λ(τ) as follows.
First, construct TB|Λ(τ) and let the weight of each node in this tree equal its
weight in TB. Next, for each edge (u, v) in TB|Λ(τ), let P be the path in TB

between u and v, excluding u and v; if P is not empty then create a new node z
in TB|Λ(τ), replace the edge (u, v) by the two edges (u, z) and (z, v), and set the
weight of z to the maximum weight of all nodes belonging to P . Each such z is
called a special node and has exactly one child. See Fig. 5 for an example. We
extend the concept of “compatible” to special nodes as follows: if C ⊆ L and z
is a special node in TB||Λ(τ) then C � z if and only if C and Λ((TB||Λ(τ))[z])
are disjoint or (TB||Λ(τ))[z] has no proper descendant that is a special node.
The obtained tree TB||Λ(τ) satisfies Λ(τ) = Λ(TB||Λ(τ)) and has the property
that for every cluster C in C(τ), max{w(X) : X ∈ C(TB) and C �� X} is equal
to max{w(X) : X ∈ C(TB||Λ(τ)) and C �� X}.

After constructing TB||Λ(τ), Filter Clusters is applied to (τ, TB||Λ(τ)) re-
cursively to remove all bad clusters from τ . For each τ ∈ σ(π), the resulting
tree is denoted by τ ′. All the clusters of τ ′ are inserted into the tree Rs by

152 J. Jansson, C. Shen, and W.-K. Sung

Algorithm Filter Clusters

Input: Two trees TA, TB with Λ(TA) = Λ(TB) = L such that every cluster
occurring in TA or TB also occurs in at least one tree in S .

Output: A tree T with Λ(T) = L such that C(T) = {Λ(TA[u]) : u ∈ V (TA) and
w(u) > w(x) for every x ∈ V (TB) with Λ(TA[u]) �
 Λ(TB[x])}.

1 Compute a centroid path π = 〈pα, pα−1, . . . , p1〉 of TA, where pα is the root
of TA and p1 is a leaf, and compute the set σ(π) of side trees of π.

/* Handle the side trees. */

2 Let Rs be a tree consisting only of a root node and a single leaf labeled by p1.

3 for each side tree τ ∈ σ(π) do

τ ′ := Filter Clusters(τ, TB||Λ(τ))
Attach the root of τ ′ to the root of Rs.

endfor

/* Handle the centroid path. */

4 Let Rc be a tree with Λ(Rc) = L where every leaf is directly attached to the
root. Let BT be an empty binary search tree. For every x ∈ V (TB), initialize
counter (x) := 0. Do a bottom-up traversal of TB to precompute |Λ(TB [x])| for
every x ∈ V (TB). Preprocess TB for answering lca-queries. Let β1 := 0.

5 for i := 2 to α do

5.1 Let D be the set of leaves in Λ(TA[pi]) \ Λ(TA[pi−1]).

5.2 Compute ri := lcaTB ({ri−1}∪D). /* ri now equals lcaTB (Λ(TA[pi]). */

5.3 Insert every node belonging to the path from ri to ri−1, except ri, into BT .

5.4 for each x ∈ D do

Insert x into BT .

while (parent(x) is not in BT and parent(x) �= ri) do

x := parent(x); insert x into BT .

endfor

5.5 for each x ∈ D do

counter (x) := counter (x) + 1

while (counter (x) = |Λ(TB [x])|) do
counter (parent(x)) := counter (parent(x)) + |Λ(TB [x])|
Remove x from BT ; x := parent(x)

endwhile

endfor

5.6 Let M := maximum weight of a node in BT ; if BT is empty then M := 0.

5.7 Compute βi, and if βi > M then let M := βi.

5.8 if (w(Λ(TA[pi])) > M) then put Λ(TA[pi]) in Rc by an insert operation.

endfor

/* Combine the surviving clusters. */

6 T := Merge Trees(Rs, Rc)

7 return T

End Filter Clusters

Fig. 4. The procedure Filter Clusters

The Majority Rule (+) and Frequency Difference Consensus Trees 153

g

i j

b

c d

e f h

a

8

3

9

9 9 9

9 97

6

5

4

52

9

9 9

9

9

g h

a

8

4

7

9

9

9 9

Fig. 5. Let TB be the tree (with node weights) on the left. The tree TB ||{a, g, h} is
shown on the right.

directly attaching τ ′ to the root of Rs. Since {Λ(τ ′) : τ ∈ σ(π)} forms a partition
of L\{p1}, every leaf label in L appears exactly once in Rs and we have C(Rs) =
{Λ(TA[u]) : u ∈ V (τ) for some τ ∈ σ(π) and w(u) > w(x) for every x ∈
V (TB) with Λ(TA[u]) �� Λ(TB[x])} ∪ {L} after Step 3 is finished.

Steps 4–5 (Handling the Centroid Path). The clusters
⋃

pi∈π{Λ(TA[pi])}
on the centroid path are nested because pi is the parent of pi−1, so Λ(TA[pi−1]) ⊆
Λ(TA[pi]) for every i ∈ {2, 3, . . . , α}. The main loop (Step 5) checks each of these
clusters in order of increasing cardinality.

The algorithm maintains a binary search tree BT that, right after Step 5.5
in any iteration i of the main loop is complete, contains every node x from TB

with Λ(TA[pi]) �� Λ(TB[x]). Whenever a node x is inserted into BT , its key
is set to the weight w(TB [x]). Using BT , Step 5.6 retrieves the weight M of
the heaviest cluster in TB that is incompatible with Λ(TA[pi]) (if any). Then,
Step 5.7 computes a value βi, defined as the maximum weight of all special nodes
in TB (if any) that are incompatible with the current TA[pi]; if βi > M then
M is set to βi. Step 5.8 saves Λ(TA[pi]) by inserting it into the tree Rc if its
weight is strictly greater than M . After Step 5 is done, C(Rc) = {Λ(TA[u]) : u ∈
π and w(u) > w(x) for every x ∈ V (TB) with Λ(TA[u]) �� Λ(TB[x])}.

In order to update BT correctly while moving upwards along π in Step 5, the
algorithm relies on Lemma 6. In each iteration i ∈ {2, 3, . . . , α} of Step 5, ri is
the lowest common ancestor in TB of Λ(TA[pi]). By Lemma 6, the clusters in TB

that are incompatible with Λ(TA[pi]) are of the form TB[v] where: (1) v lies on a
path in TB from a child of ri to a leaf in Λ(TA[pi]); and (2) Λ(T [v]) �⊆ Λ(TA[pi]).
Accordingly, BT is updated in Steps 5.3–5.5 as follows. Condition (1) is taken
care of by first inserting all nodes from TB between ri−1 and ri except ri into BT
in Step 5.3 and then inserting all leaf descendants of pi that are not descendants
of pi−1, along with any of their ancestors in TB that were not already in BT ,
into BT in Step 5.4. Finally, Step 5.5 enforces condition (2) by using counters to
locate and remove all nodes from BT (if any) whose clusters are proper subsets
of Λ(TA[pi]). To do this, counter(x) for every node x in TB is updated so that

154 J. Jansson, C. Shen, and W.-K. Sung

it stores the number of leaves in Λ(TB[x]) ∩ Λ(TA[pi]) for the current i, and if
counter(x) reaches the value |Λ(TB[x])| then x is removed from BT .

To compute βi in Step 5.7, take the maximum of: (i) βi−1; (ii) the weights of
all special nodes on the path between ri and ri−1 in TB; and (iii) the weights of
all special nodes that belong to a path between ri and a leaf in D.

Lemma 7. Procedure Filter Clusters runs in O(n log2 n) time.

Proof. (Omitted from the conference version due to space constraints.) ��

5 Implementations

As noted in Section 1.2, there does not seem to be any publicly available imple-
mentation for the majority rule (+) consensus tree. To fill this void, we imple-
mented Algorithm Maj Rule Plus from Section 3 in C++ and included it in the
source code of the FACT (Fast Algorithms for Consensus Trees) package [17] at:

http://compbio.ddns.comp.nus.edu.sg/~consensus.tree/

To test the implementation, we repeatedly applied it to 10 random sets of trees
for various specified values of (k, n), generated with the method described in
Section 6.2 of [17]. The following worst-case running times (in seconds) were
obtained using Ubuntu Nutty Narwhal, a 64-bit operating system with 8.00 GB
RAM, and a 2.20 GHz CPU:

(k, n) (100, 500) (100, 1000) (100, 2000) (100, 5000) (500, 100) (1000, 100) (2000, 100) (5000, 100) (1000, 2000)

Time 0.63 1.51 2.99 6.78 0.65 1.29 2.72 6.66 27.29

The situation for the frequency difference consensus tree is less critical as there
already exist implementations, e.g., in the software package TNT [15]. Neverthe-
less, it could be useful to implement our algorithm Frequency Difference from
Section 4 in the future and compare its practical performance to TNT. Before
doing that, one should try to simplify the procedure Filter Clusters.

References

1. Adams III, E.N.: Consensus techniques and the comparison of taxonomic trees.
Systematic Zoology 21(4), 390–397 (1972)

2. Amenta, N., Clarke, F., St. John, K.: A linear-time majority tree algorithm. In:
Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 216–
227. Springer, Heidelberg (2003)

3. Barthélemy, J.-P., McMorris, F.R.: The median procedure for n-trees. Journal of
Classification 3(2), 329–334 (1986)

4. Bremer, K.: Combinable component consensus. Cladistics 6(4), 369–372 (1990)
5. Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz,

M.F., Lapointe, F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.) Bioconsen-
sus. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 61, pp. 163–184. American Mathematical Society (2003)

6. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.: An
O(n log n) algorithm for the maximum agreement subtree problem for binary trees.
SIAM Journal on Computing 30(5), 1385–1404 (2000)

The Majority Rule (+) and Frequency Difference Consensus Trees 155

7. Cotton, J.A., Wilkinson, M.: Majority-rule supertrees. Systematic Biology 56(3),
445–452 (2007)

8. Cui, Y., Jansson, J., Sung, W.-K.: Polynomial-time algorithms for building a con-
sensus MUL-tree. Journal of Computational Biology 19(9), 1073–1088 (2012)

9. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. Journal
of Classification 2(1), 7–28 (1985)

10. Degnan, J.H., DeGiorgio, M., Bryant, D., Rosenberg, N.A.: Properties of consensus
methods for inferring species trees from gene trees. Systematic Biology 58(1), 35–54
(2009)

11. Dong, J., Fernández-Baca, D., McMorris, F.R., Powers, R.C.: Majority-rule (+)
consensus trees. Mathematical Biosciences 228(1), 10–15 (2010)

12. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)
13. Felsenstein, J.: PHYLIP, version 3.6. Software package, Department of Genome

Sciences. University of Washington, Seattle (2005)
14. Goloboff, P.A., Farris, J.S., Källersjö, M., Oxelman, B., Ramı́rez, M.J., Szumik,

C.A.: Improvements to resampling measures of group support. Cladistics 19(4),
324–332 (2003)

15. Goloboff, P.A., Farris, J.S., Nixon, K.C.: TNT, a free program for phylogenetic
analysis. Cladistics 24(5), 774–786 (2008)

16. Holder, M.T., Sukumaran, J., Lewis, P.O.: A justification for reporting the
majority-rule consensus tree in Bayesian phylogenetics. Systematic Biology 57(5),
814–821 (2008)

17. Jansson, J., Shen, C., Sung, W.-K.: Improved algorithms for constructing consensus
trees. In: Proceedings of SODA 2013, pp. 1800–1813. SIAM (2013)

18. Jansson, J., Shen, C., Sung, W.-K.: An optimal algorithm for building the majority
rule consensus tree. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds.) RECOMB
2013. LNCS, vol. 7821, pp. 88–99. Springer, Heidelberg (2013)

19. Jansson, J., Sung, W.-K.: Constructing the R* consensus tree of two trees in sub-
cubic time. Algorithmica 66(2), 329–345 (2013)

20. Lott, M., Spillner, A., Huber, K.T., Petri, A., Oxelman, B., Moulton, V.: Infer-
ring polyploid phylogenies from multiply-labeled gene trees. BMC Evolutionary
Biology 9, 216 (2009)

21. Margush, T., McMorris, F.R.: Consensus n-Trees. Bulletin of Mathematical Biol-
ogy 43(2), 239–244 (1981)

22. McMorris, F.R., Powers, R.C.: A characterization of majority rule for hierarchies.
Journal of Classification 25(2), 153–158 (2008)

23. Page, R.: COMPONENT, version 2.0. Software package, University of Glasgow,
U.K. (1993)

24. Ronquist, F., Huelsenbeck, J.P.: MrBayes 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics 19(12), 1572–1574 (2003)

25. Sokal, R.R., Rohlf, F.J.: Taxonomic congruence in the Leptopodomorpha re-
examined. Systematic Zoology 30(3), 309–325 (1981)

26. Sukumaran, J., Holder, M.T.: DendroPy: A Python library for phylogenetic com-
puting. Bioinformatics 26(12), 1569–1571 (2010)

27. Sung, W.-K.: Algorithms in Bioinformatics: A Practical Introduction. Chapman &
Hall/CRC (2010)

28. Swofford, D.L.: PAUP*, version 4.0. Software package. Sinauer Associates, Inc.,
Sunderland (2003)

The Generalized Robinson-Foulds Metric�

Sebastian Böcker1,��, Stefan Canzar2,��, and Gunnar W. Klau3,��

1 Chair for Bioinformatics, Friedrich Schiller University Jena, Germany
sebastian.boecker@uni-jena.de

2 Center for Computational Biology, McKusick-Nathans Institute of Genetic
Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

canzar@jhu.edu
3 Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam,

The Netherlands
gunnar.klau@cwi.nl

Abstract. The Robinson-Foulds (RF) metric is arguably the most
widely used measure of phylogenetic tree similarity, despite its well-
known shortcomings: For example, moving a single taxon in a tree can
result in a tree that has maximum distance to the original one; but the
two trees are identical if we remove the single taxon. To this end, we
propose a natural extension of the RF metric that does not simply count
identical clades but instead, also takes similar clades into consideration.
In contrast to previous approaches, our model requires the matching be-
tween clades to respect the structure of the two trees, a property that
the classical RF metric exhibits, too. We show that computing this gen-
eralized RF metric is, unfortunately, NP-hard. We then present a simple
Integer Linear Program for its computation, and evaluate it by an all-
against-all comparison of 100 trees from a benchmark data set. We find
that matchings that respect the tree structure differ significantly from
those that do not, underlining the importance of this natural condition.

1 Introduction

In 1981, Robinson and Foulds introduced an intriguingly simple yet intuitively
well-motivated metric, which is nowadays known as Robinson-Foulds (RF) met-
ric [18]. Given two phylogenetic trees, this metric counts the number of splits or
clades induced by one of the trees but not the other. The RF metric is highly
conservative, as only perfectly conserved splits or clades do not count towards
the distance. The degree of conservation between any pair of clades that is not
perfectly conserved, does not change the RF distance. See Fig. 1 for an example
of two trees that are structurally similar but have maximum RF distance.

Other measures for comparing phylogenetic trees do capture that the trees
in Fig. 1 are structurally similar: The Maximum Agreement Subtree (MAST)

� This work is supported in part by the National Institutes of Health under grant R01
HG006677.

�� Equal contribution.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 156–169, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Generalized Robinson-Foulds Metric 157

� �

Fig. 1. Two rooted phylogenetic trees. Despite their high similarity, the RF distance
of these two trees is 16, the maximum distance of two rooted trees with ten leaves.

score [11, 13] of the two trees is 9, where 10 is the highest possible score of two
trees with 10 leaves. Secondly, the triplet distance counts the number of induced
triplet trees on three taxa that are not shared by the two trees [2, 6]. Both
measures are less frequently applied than the RF metric, and one may argue
that this is due to certain “issues” of these measures: For example, if the trees
contain (soft) polytomies or arbitrarily resolved polytomies, then we may have to
exclude large parts of the trees from the MAST due to a single polytomy. Lastly,
there are distance measures based on the number of branch-swapping operations
to transform one tree into another; many of these measures are computationally
hard to compute [1]. Such tree modifications are routinely used in local search
optimization procedures, but rarely to compute distances in practice.

From an applied view, the comparison of two phylogenetic trees with identi-
cal taxa set has been frequently addressed in the literature [12, 16, 17]. This is
of interest for comparing phylogenetic trees computed using different methods,
output trees of an (MC)MCMC method, or host-parasite comparisons. Mutzner
et al. [16] introduced the “best corresponding node” concept which, unfortu-
nately, is not symmetric: Node a in the first tree may correspond to node b in
the second, whereas b corresponds to a different node c in the first tree, and so
on. Nye et al. [17] suggested to compute a matching between the inner nodes
of the two trees, thereby enforcing symmetry. Later, Bogdanowicz [3] and, inde-
pendently, Lin et al. [15] proposed to use these matchings to introduce a “gener-
alized” version of the RF distance, see also [4]. Using matchings for comparing
trees as part of MAST computations, was pioneered by Kao et al. [13].

Here, we present a straightforward generalization of the RF distance that
allows us to relax its highly conservative behavior. At the same time, we can make
this distance “arbitrarily similar” to the original RF distance. Unfortunately,
computing this new distance is NP-hard, as we will show in Section 3. Our work
generalizes and formalizes that of Nye et al. [17]: Their clade matching does not
respect the structure of the two trees, see Fig. 1 and below. As a consequence, the
matching distances from [3,15] are no proper generalization of the RF distance:
These distances treat the two input trees as collections of (unrelated) clades
but ignore the tree topologies. In contrast, the RF distance does respect tree
topologies, and so does our generalization.

In the following, we will concentrate on rooted phylogenetic trees.

158 S. Böcker, S. Canzar, and G.W. Klau

2 The Generalized Robinson-Foulds Distance

Let T = (V,E) be a rooted phylogenetic tree over the set of taxa X : That is,
the leaves of T are (labeled by) the taxa X . We assume that T is arboreal, so
all edges of T are pointing away from the root. In the following, we assume that
any tree is an arboreal, rooted phylogenetic tree, unless stated otherwise. A set
Y ⊆ X is a clade of T if there exists some vertex v ∈ V such that Y is the set
of leaves below v. We call Y trivial if |Y | = 1 or Y = X . Since the trivial clades
are identical for any two trees with taxa set X , we will restrict ourselves to the
set C(T) of non-trivial clades of T . Let P(X) be the set of subsets of X .

Let T1, T2 be two phylogenetic trees over the set of taxa X , and let Cj := C(Tj)
for j = 1, 2 be the corresponding sets of non-trivial clades. The original RF
distance counts zero whenever we can find a clade in both trees, and one if we find
it in exactly one tree. We want to relax this by computing a matching between
the clades of the two trees, and by assigning a cost function that measures the
dissimilarity between the matched clades. To this end, we define a cost function

δ :
(
P(X) ∪ {−}

)
×
(
P(X) ∪ {−}

)
→ R≥0 ∪ {∞} . (1)

Now, δ(Y1, Y2) measures the dissimilarity of two arbitrary clades Y1, Y2 ⊆ X .
The symbol ‘−’ is the gap symbol, and we define δ(Y1,−) > 0 to be the cost of
leaving some clade Y1 of the first tree without a counterpart in the second tree;
analogously, we define δ(−, Y2) > 0.

2.1 Matchings and Arboreal Matchings

Let m ⊆ C1×C2 be a matching between C1 and C2: That is, (Y1, Y2), (Y ′
1 , Y2) ∈ m

implies Y1 = Y ′
1 , and (Y1, Y2), (Y1, Y

′
2) ∈ m implies Y2 = Y ′

2 . We say that Y1 ∈ C1
(or Y2 ∈ C2) is unmatched if there is no (Y ′

1 , Y
′
2) ∈ m with Y1 = Y ′

1 (or Y2 = Y ′
2 ,

respectively). We define the cost d(m) of the matching m as:

d(m) :=
∑

(Y1,Y2)∈m

δ(Y1, Y2) +
∑

Y1∈C1
Y1 unmatched

δ(Y1,−) +
∑

Y2∈C2
Y2 unmatched

δ(−, Y2) (2)

Now, we could define a generalization of the Robinson-Foulds distance be-
tween T1, T2 (with respect to δ) to be the minimum cost of any matching between
C1 and C2. One can easily see that for δ(Y, Y) = 0, δ(Y, Y ′) = ∞ for Y �= Y ′,
and δ(Y,−) = δ(−, Y) = 1 we reach the original RF distance.

How can we compute a matching of minimum cost? This is actually straight-
forward: We define a complete bipartite graph G with vertex set C1 ∪ C2, and
for any pair C1 ∈ C1, C2 ∈ C2 we define the weight of the edge (C1, C2) as
w(C1, C2) := δ(C1,−) + δ(−, C2) − δ(C1, C2). Now, finding a matching with
minimum cost corresponds to finding a maximum matching in G. In case δ is a
metric, all edges in G have non-negative weight.

Unfortunately, finding a minimum cost matching will usually result in an
unexpected—and undesired—behavior: Consider the two trees from Fig. 1 to-
gether with the cost function

δ(Y1, Y2) = |Y1 ∪ Y2| − |Y1 ∩ Y2| = |Y1!Y2| (3)

The Generalized Robinson-Foulds Metric 159

which is the cardinality of the symmetric difference Y1!Y2 of Y1, Y2. In addition,
we define δ(Y,−) = δ(−, Y) = |Y |. We note that δ is a metric. One can easily
see that the matching with minimum cost matches clade {1, . . . , j} from T1 to
{2, . . . , j} from T2 for all j = 3, . . . , 10. But in addition, clade {1, 2} from T1 is
matched to clade {1, 10} from T2, since

δ
(
{1, 2}, {1, 10}

)
= 2 < 4 = δ

(
{1, 2},−

)
+ δ

(
−, {1, 10}

)
.

This means that the matching with minimum cost does not respect the structure
of the two trees T1, T2: Clade {1, 2} in T1 is a subclade of all {1, . . . , j} whereas
clade {1, 10} in T2 is no subclade of any {2, . . . , j}, for j = 3, . . . , 10. To this end,
clades {1, 2} and {1, 10} should not be matched in a “reasonable” matching.

We say that a matching m is arboreal if no pair of matched clades is in conflict,
that is, for any (Y1, Y2), (Y ′

1 , Y
′
2) ∈ m, one of the three cases holds:

(i) Y1 ⊆ Y ′
1 and Y2 ⊆ Y ′

2 ;
(ii) Y1 ⊇ Y ′

1 and Y2 ⊇ Y ′
2 ; or

(iii) Y1 ∩ Y ′
1 = ∅ and Y2 ∩ Y ′

2 = ∅.

This allows us to define the generalized Robinson-Foulds distance between T1, T2

(with respect to δ) to be the minimum cost of a arboreal matching between
C1 and C2. Whereas it is straightforward to compute a bipartite matching of
minimum cost, it is less clear how to obtain an minimum cost arboreal bipartite
matching. The formal problem statement is as follows:

Minimum Cost Arboreal Bipartite Matching. Given two rooted phyloge-
netic trees T1, T2 on X and a cost function δ, find a arboreal matching between
C(T1) and C(T2) of minimum cost, as defined in (2).

This problem differs from the NP-complete tree-constrained bipartite matching
problem introduced in [5] in that cases (i) and (ii) are considered infeasible in [5].
Unfortunately, the problem remains NP-complete, as we will show in Sec. 3.

For arbitrary cost functions δ we cannot draw conclusions about the resulting
generalized Robinson-Foulds distance. But in case δ is a metric, this distance is
a metric, too:

Lemma 1. Given a metric δ as defined in (1); then, the induced generalized
Robinson-Foulds distance dGRF is a metric on the set of phylogenetic rooted
trees on X.

For the proof, the central point is that the combination of two arboreal matchings
is also a arboreal matching; we defer the details to the full version of this paper.

2.2 The Jaccard-Robinson-Foulds Metric

Up to this point, we have assumed that δ can be an arbitrary metric. Now, we
suggest one particular type that, again, appears quite naturally as a generaliza-
tion of the original Robinson-Foulds metric: Namely, we will concentrate on a

160 S. Böcker, S. Canzar, and G.W. Klau

measure that is motivated by the Jaccard index J(A,B) = |A ∩B| / |A ∪B| of
two sets A,B. For two clades Y , Y ′, we define the Jaccard weights of order k as

δk(Y, Y ′) := 2− 2 ·
(
|Y ∩ Y ′|
|Y ∪ Y ′|

)k

(4)

where k ≥ 1 is an arbitrary (usually integer) constant. In addition, we define
δk(Y,−) = δk(−, Y ′) = 1 and, for completeness, δk(∅, ∅) = 0. The factor “2” in
eq. (4) is chosen to guarantee compatibility with the original Robinson-Foulds
metric. Nye et al. [17] suggested a similar metric without the exponent k. It is
straightforward to check that (4) defines a metric, see [8] and the full version
of this paper. We call the generalized Robinson-Foulds metric using δk from (4)

the Jaccard-Robinson-Foulds (JRF) metric of order k, and denote it by d
(k)
JRF.

More precisely, for two trees T1, T2, d
(k)
JRF(T1, T2) denotes the minimum cost of

any matching between C(T1) and C(T2), using δk from (4) in (2).

For any two trees and any k ≥ 1 we clearly have d
(k)
JRF(T1, T2) ≤ dRF(T1, T2),

as the matching of the RF metric is clearly arboreal. For k → ∞ we reach
δk(Y, Y) → 0 and δk(Y, Y ′) → 1 for Y �= Y ′, the inverse Kronecker delta. To

this end, the JRF metric d
(k)
JRF also converges to the original Robinson-Foulds

metric dRF. Furthermore, for any two trees T1, T2 there exists some k′ such that

for all k ≥ k′, the matchings for dRF and d
(k)
JRF are “basically identical”: All exact

clade matches will be contained in the matching of d
(k)
JRF. We defer the details

to the full version of this paper.

3 Complexity of the Problem

In this section we prove hardness of the minimum arboreal matching problem,
even if δ (and thus the induced RF distance, see Lemma 1) is a metric.

In the following we devise a polynomial-time reduction τ from (3, 4)-SAT,
the problem of deciding whether a Boolean formula in which every clause is a
disjunction of exactly 3 literals and ever variable occurs 4 times, has a satisfying
assignment. This problem was shown to be NP-hard in [10]. Given a formula
ϕ with m clauses over n variables, we construct a minimum arboreal matching
instance I under metric (3), such that ϕ is satisfiable if and only if I admits a
matching of cost d(M0) − 10n− 26m− 5 · 24 − (k + 1)2k − q, where M0 is the
empty matching.

For each variable xi we construct a gadget as shown in Figure 2. The next
lemma shows that, under certain assumptions, there are precisely two optimal
solutions to the variable gadgets. We will use these two matchings to represent
a truth assignment to variable xi.

Lemma 2. Consider the gadget of a variable xi as depicted in Figure 2. Under
the restriction that none of the ancestors of nodes v and v′ is matched, there
are two optimal matchings of trees T1i and T2 of cost d(M0) − 10. Ml contains
(v, v′) and (u, u′) and matches leaves labeled li and αi, and Ml̄ contains (v, v′′)
and (u, u′′) and matches leaves labeled l̄i and ᾱi.

The Generalized Robinson-Foulds Metric 161

T1i

li l̄iαi ᾱi

u

v

w

T2

li αi l̄iᾱi

Xi X̄i

u′ u′′
v′′v′

Fig. 2. Variable Gadget. Vertices covered by optimal matchings Ml and Ml̄ are marked
in blue and red, respectively. Vertices marked in black are covered in both optimal
matchings.

Proof. In the following was assume that none of the ancestors of v and v′ can
be matched. Let M0 = ∅ be the empty matching between T1i and T2, and let
Ma denote the matching that matches all leaves with identical labels. Then,
Ma is maximal and d(Ma) = d(M0) − 8. If we match u to either u′ or to u′′,
a feasible matching cannot match leaves labeled l̄i or leaves labeled li, respec-
tively. Similarly, matching w to v′ or to v′′ invalidates the matching of leaves
labeled ᾱi or leaves labeled αi, respectively. In both cases the overall cost re-
mains unchanged compared to Ma. If we match v to v′, only leaves labeled li
and αi can be matched to corresponding leaves in T2. A feasible matching of
node w to any node in T2i does not reduce the total cost, since none of the
labels of descendants of v′ contains αi or ᾱi. However, matching u to u′ does not
introduce any conflict and further decreases the cost. The resulting matching
(see Figure 2), Ml, has cost d(Ml) = d(M0) − 10. By a symmetric argument, a
maximum matching Ml̄ containing (v, v′′) matches u to u′′ and leaves labeled l̄i
and ᾱi, with d(Ml̄) = d(M0)− 10.

For each clause Cj we construct a clause gadget as shown in Figure 3.

Lemma 3. Consider the gadget of a clause Cj as depicted in Figure 3. Under
the restriction that no common ancestor of wi, wk, or wl is matched, there
exists an optimal matching M of Cj and T2 that matches all vertices in one of
the subtrees rooted at wi, wk, or wl and none of the remaining vertices, and has
cost d(M) = d(M0)− 26.

Proof. Let M0 = ∅ be the empty matching between Cj and T2, and let Ma

denote the matching that matches all leaves with identical labels. Then Ma is
maximal and d(Ma) = d(M0)− 24. Matching any non-leaf node below u, v, or w
in Cj to a node in T2 that is not an ancestor of wi, wk, or wl, yields a matching
of cost at least as high as d(Ma): At most one leaf in the subtree rooted at such

162 S. Böcker, S. Canzar, and G.W. Klau

Cj

¬xij xkj xlj βij βkj βlj γljγkjγij δljδkjδij

u

v

w

T2

xkj βkj γkj δkj

wk

vk

uk

¬xij βij γij δij

ui

vi

wi

xlj βlj γlj δlj

ul

vl

wl

Fig. 3. Clause gadget for clause Cj = (¬xi ∨ xk ∨ xl). Vertices covered by an optimal
matching are marked.

a node u′ can be matched to its corresponding leaf in T2, while the label overlap
of u′ with nodes in T2 that are not ancestors of wi, wk, or wl, is at most 1.

If node u is matched to a node in T2 with maximal label overlap that is not
an ancestor of wi, wk, or wl, only 2 leaves in the subtree rooted at u can be
matched to the corresponding leaves in T2. If the remaining nodes in T1 are
matched according to Ma the resulting matching has cost d(M0)− 20.

Matching node v to a node in T2 with maximal overlap that is not an ancestor
of wi, wk, or wl, allows only 3 leaves in the subtree rooted at v to be matched to
the corresponding leaves in T2. Additionally node u can be matched to a node
in T2 with label overlap of size 2. Matching the remaining nodes in Cj according
to Ma yields a matching of cost d(M0)− 22.

Finally, if node w is matched to a node in T2 with maximal label overlap that
is not an ancestor of wi, wk, or wl, in total 4 leaves in Cj can be matched to the
corresponding leaves in T2. At the same time, u and v can be matched to nodes
with maximal label overlap, yielding a matching M of cost d(M) = d(M0)− 26
(see Figure 3). Since all edges in M have maximum label overlap under the
assumption that no common ancestor of wi, wk, or wl is matched, M is optimal.

Next, we show how variable and clause gadgets together form τ(ϕ). For each
occurrence of a positive or negative literal li or l̄i in a clause j we denote the
subtrees rooted at wi, wk, and wl in T2 (Figure 3) by Lij or L̄ij , respectively. T2

in Figure 3 show trees L̄ij , Lkj , and Llj . Let j1, . . . , jh be the indices of clauses
in which positive literal li occurs. Then, module Xi in Figure 2 is constructed
as shown in Figure 4. Module X̄i is analogously composed of trees L̄.

From variables gadgets (Figure 2) and clause gadgets (Figure 3) we construct
two rooted trees T1 and T2 as depicted in Figure 5, where trees T2i and T̄2i denote
subtrees rooted at v′ and v′′, respectively, in T2 (Figure 2). T1 and T2, together
with cost function (3), form our instance τ(ϕ). Both trees connect subtrees of
variable and clause gadgets in linear chains, augmented by two separator trees
S0 and S1. S1 represents a complete binary trees of depth 4, and S0 a complete
binary tree of depth k = �log(40n2 + 141)�.

We assign leaves of separator trees arbitrary but unique taxa in a way, such
that tree Si in T1 is an identical copy of Si in T2, i ∈ {1, 2}.

The Generalized Robinson-Foulds Metric 163

Lij1

Lijh

Lij2

Fig. 4. Module Xi in the variable gadget for xi is composed of one tree Lij for each
occurrence j of positive literal xi

Lemma 4. Consider the construction τ(ϕ) in Figure 5. In an optimal matching
of trees T1 and T2, nodes in the backbone of T1, B1 := {c1, . . . , cm, t11, . . . , t1n},
and nodes in the backbone of T2, B2 := {t22, . . . , t2n, t′22, . . . , t′2n}, are un-
matched.

Proof. First, an optimal solution must match roots r1, r2, since edge (r1, r2) does
not introduce any constraint on the remaining vertices and has maximum label
overlap. Therefore, matching any node in B1 invalidates the matching of nodes
in S0. According to conditions (i)-(iii), a feasible matching cannot match nodes
from different subtrees in T2 = {T21, . . . , T2n, T

′
21, . . . , T

′
2n, S0, S1} to nodes in

B1. Replacing all edges incident to nodes in B1 by a full matching of nodes in
S0 reduces the cost by at least

2

(∑
u∈S0

|Y (u)| −
n∑

i=1

(|Y (t2i)|+ |Y (t′2i)|)− max
T∈T2\{S0}

∑
v∈T

|Y (v)|
)

≥ 2
(
(k + 1) · 2k − 16− 40n2 − 125

)
,

(5)

where k is the depth of S0. The upper bound of 125 on
∑

v∈T2j
|Y (u)| assumes

that each variable occurs in at most 4 clauses, and 125 >
∑

v∈S1
|Y (u)|. Note

that the taxa assigned to the 16 leaves of S1 are contained only in Y (r1) and that
for each i, |Y (t2i)|+ |Y (t′2i)| ≤ 20. For the above chosen k it holds (k + 1) · 2k >
40n2 + 141.

Similarly, a feasible matching cannot match nodes from different subtrees in
T1 := {C1, . . . , Cm, T11, . . . , T1n, S0, S1} to nodes in B2. Assume the optimal
solution matches nodes in a subtree Ci to nodes in B2. Since every node in B2
is ancestor of S1, the nodes of S1 are unmatched. Replacing the edges between
Ci and B2 by a full matching of nodes in S1 reduces the cost by at least

2(
∑
u∈S1

|Y (u)| −
∑
v∈Ci

|Y (u)|) = 2(80− 59) > 0,

a contradiction. An analog argument applies to matching nodes in one of the
trees T1i to nodes in B2, with

∑
u∈T1i

Y (u) = 12 <
∑

u∈S1
Y (u). As the optimal

matching of trees S0 has cost 0, matching at least one node in S0 in T1 to a node
in B2 strictly increases the overall cost.

164 S. Böcker, S. Canzar, and G.W. Klau

S1 T ′
21

r2

t21

t′21

t2n

T2n S0
T21 T ′

2n

t′2n

T11 T1nS1

c1

t1n

t11

r1

S0C1 Cm

cm

Fig. 5. Trees T1 with root r1 and T2 with root r2 in instance I , obtained from τ (ϕ).
In an optimal solution trees S0 and S1 are fully aligned to each other (black lines). If
a variable gadget is in Ml configuration (blue line), a clause in which the correspond-
ing negative literal occurs can be matched optimally (blue line). The same holds for
configuration Ml̄ and positive literal occurrences (red lines).

Now we are ready to state the main theorem.

Theorem 1. For an instance of the minimum arboreal matching problem with
cost function (3) and an integer k, it is NP-complete to decide whether there
exists an arboreal matching of cost at most k.

Proof. First, we show that if ϕ is satisfiable, then τ(ϕ) admits a matching M of
cost d(M0)− 10n− 26m− 5 · 24 − (k + 1)2k − q, where k is the depth of tree S0

and q is total number of leaves of tree T1 or, equivalently, tree T2. For this, let ν
be a satisfying assignment for ϕ. We start from M = ∅. For each variable xi we
set the corresponding variable gadget to configuration Ml if ν(xi) = false and
to configuration Ml̄ if ν(xi) = true, each having cost d(M0) − 10 (Lemma 2).

The Generalized Robinson-Foulds Metric 165

Additionally, we match each subtree representing a clause Cj to subtree T2i or
T ′
2i following the construction in Lemma 3, where literal xi or ¬xi, respectively, is

contained in Cj and evaluates to true under the assignment ν. Note that none of
the ancestors of subtree Xi or X̄i (see Figure 2), respectively, is matched in this
case (Lemma 2 and Lemma 4). Each clause therefore contributes d(M0)− 26 to
the overall cost (Lemma 3). Finally, trees S0 and S1 are covered by full matchings
of their nodes and the roots r1, r2 are matched, yielding a matching of total cost

d(M0)− 10n− 26m− 5 · 24 − (k + 1)2k − q (6)

As an optimal solution matches roots r1 and r2 but none of the nodes in
B1 or B2 (Lemma 4), any optimal matching must match subtrees in T1 :=
{C1, . . . , Cm, T11, . . . , T1n, S0, S1} and T2 = {T21, . . . , T2n, T

′
21, . . . , T

′
2n, S0, S1}

optimally. Since an optimal matching of any tree in T1 to T2 and vice versa is
given by Lemmas 2 and 3, one can always derive a satisfying assignment of ϕ
from M . Therefore, if ϕ is not satisfiable, the weight of a maximum matching in
τ(ϕ) is strictly larger than (6).

4 An Integer Linear Program

In this section we introduce a simple integer linear programming formulation for
the problem of finding a minimum cost arboreal matching between C(T1) and
C(T2), given two rooted phylogenetic trees T1 = (V1, E1), T2 = (V2, E2), and a
cost function δ. We number clades C in C(T1) from 1 to |V1| and clades C̄ in C(T1)
from 1 to |V2|. An indicator variable xi,j denotes whether (Ci, C̄j) ∈ m (xi,j = 1)
or not (xi,j = 0). Set I contains pairs of matched clades {(i, j), (k, l)} that are
incompatible according to conditions (i)-(iii). With w(C1, C2) := δ(C1,−) +
δ(−, C2) − δ(C1, C2) (see Section 2.1) a minimum cost arboreal matching is
represented by the optimal solution to:

max

|V1|∑
i=1

|V2|∑
j=1

w(Ci, C̄j)xi,j (7)

s. t.

|V2|∑
j=1

xi,j ≤ 1 ∀i = 1 . . . |V1|, (8)

|V1|∑
i=1

xi,j ≤ 1 ∀j = 1 . . . |V2|, (9)

xi,j + xk,l ≤ 1 ∀{(i, j), (k, l)} ∈ I, (10)

xi,j ∈ {0, 1} (11)

166 S. Böcker, S. Canzar, and G.W. Klau

t/s

%

0 20 40 60 80 100 120

0
10

20
30

40

% gap

%

0 2 4 6 8

0
10

20
30

Fig. 6. Running time and optimality gap statistics of the 5050 benchmark instances.
Left: histogram of running times of the 4300 instances that were solved to optimality
within 2 CPU minutes. Right: histogram of the optimality gap in percent of the re-
maining 750 instances. This value is defined as 100 · (u − l)/l, where u and l are the
upper and lower bounds of the arboreal matching, respectively.

5 Evaluation

We use a real-world dataset provided by Sul and Williams [19] as part of the
HashRF program.1 It contains 1000 phylogenetic trees from a Bayesian analysis
of 150 green algae [14]. For the purpose of this comparison we performed an
all-against-all comparison of the first hundred trees in the benchmark set as a
proof-of-concept study, resulting in 5050 problem instances. We compute the
values of the Robinson-Foulds metric as well as the minimum arboreal matching

using the Jaccard weights of order k = 1, that is, the JRF metric d
(1)
JRF. We limit

the computation to two CPU minutes per comparison and record the times for

computing each value as well as the best upper and lower bounds for d
(1)
JRF.

From the 5050 instances, 4300 (85 %) could be computed to optimality within
the time limit on an Intel Xeon CPU E5-2620 with 2.00 GHz. Most of these in-
stances could be solved within 40 CPU s. See Fig. 6 (left) for a histogram of
running times. The remaining 750 instances (15 %) were solved close to opti-
mality. Fig. 6 (right) shows a histogram of the relative optimality gap in percent.
This value is defined as 100 · (u − l)/l, where u and l are the upper and lower
bounds of the arboreal matching, respectively. Overall, the majority (3578 in-
stances, 71 %) could be solved to optimality within a minute. Note that these
results are obtained the quite simple Integer Linear Programming formulation
presented in this paper. Improvements on the formulation will likely lead to a
drastic reduction of the running time.

Figure 7 shows typical characteristics of the arboreal JRF distances over in-
creasing k for a randomly picked instance (tree 34 vs. tree 48). We observe that

1 Trees can be downloaded from https://code.google.com/p/hashrf/

https://code.google.com/p/hashrf/

The Generalized Robinson-Foulds Metric 167

●

●

●

●

●
●
●
●●●

0 20 40 60 80 100

46
48

50
52

k

di
st

an
ce

●

RF
JRFk

●

●●●

●●●●●●●

●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●

●●

0 20 40 60 80 100

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

k

nu
m

be
r

of
 m

at
ch

ed
 c

la
de

s

●

matched clades RF
matched clades JRFk

0
20

40
60

80

nu
m

be
r

of
 c

on
fli

ct
s

di
st

an
ce

0
10

20
30

40
50

0 100 200 300 400 500

k

non−arboreal JRFk

non−arboreal conflicts

Fig. 7. Typical characteristics of the distances over increasing k. In the randomly
chosen example (tree 34 vs. tree 48), RF equals 52 and d

(1)
JRF is depicted by circles

connected by lines (left plot). In the right plot we see that the number of matched
clades decreases with increasing k. The plot below shows the development of distance
and number of conflicts of the non-arboreal matching for increasing k.

RF and d
(k)
JRF distances differ considerably for k = 1 and that d

(k)
JRF converges

quickly to RF (Fig. 7, left). A similar converging behavior can be observed for the
number of matched clades (Fig. 7, right). The bottom plot in Fig. 7 illustrates
the difference to non-arboreal matchings. For k = 1, the distances differ signif-
icantly from the RF distance (25.8 versus 52), however, at the prize of a large
number of violations of the arboreal property (91). As k increases, the distance
converges quickly to the RF distance and the number of violations decreases.
Note that zero violations occur only when the non-arboreal distance is equal to
the RF distance.

168 S. Böcker, S. Canzar, and G.W. Klau

6 Conclusion

We have introduced a tree metric that naturally extends the well-known
Robinson-Foulds metric. Different from previous work, our metric is a true gener-
alization, as it respects the structure of the trees when comparing clades. Besides
the theoretical amenities of such a generalization, our methods naturally allows
for a manual comparison of two trees, using the arboreal matching that has been
computed. This allows us to compute “best corresponding nodes” that respect
the tree structures, and to inform the user when other node correspondences
disagree with the optimal matching. We believe that such a feature will be very
useful for the manual comparison of two trees, for example, in host-parasite
comparison.

An open question is the parameterized complexity of the problem, where
natural parameters are the size of the matching or, more relevant in applications,
the discrepancy between the size of the maximum arboreal matching and a
regular maximum matching. The Maximum Independent Set problem is W[1]-
hard [9] but, obviously, this does not imply that our more restricted problem
cannot be approached by a parameterized algorithm [7].

We have come up with a generalization that retains the advantages of the
widely-used Robinson-Foulds metric, but simultaneously overcomes some of its
shortcomings. Our results are a first step to make the GRF and JRF metrics
applicable to practical problems. In the future, faster algorithms are needed
for this purpose; we believe that such algorithms can and will be developed.
Furthermore, we want to generalize our results for unrooted trees, along the
lines of [17, Sec. 2.1]. Here, the main challenge lies in adapting the notion of an
arboreal matching.

In the full version of this paper, we will evaluate the JRF metric following
ideas of Lin et al. [15]: That is, we will compare distributions of distances with
arboreal and non-arboreal matchings; and, we will estimate the power of the new
distance with regards to clustering similar trees.

Acknowledgments. We thank W. T. J. White for helpful discussions.

References

1. Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on
evolutionary trees. Annals Combinatorics 5, 1–15 (2001)

2. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially
resolved trees. Theor. Comput. Sci. 412(48), 6634–6652 (2011)

3. Bogdanowicz, D.: Comparing phylogenetic trees using a minimum weight perfect
matching. In: Proc. of Information Technology (IT 2008), pp. 1–4 (2008)

4. Bogdanowicz, D., Giaro, K.: Matching split distance for unrooted binary phyloge-
netic trees. IEEE/ACM Trans. Comput. Biol. Bioinformatics 9(1), 150–160 (2012)

5. Canzar, S., Elbassioni, K., Klau, G., Mestre, J.: On tree-constrained matchings
and generalizations. Algorithmica, 1–22 (2013)

The Generalized Robinson-Foulds Metric 169

6. Critchlow, D.E., Pearl, D.K., Qian, C.: The triples distance for rooted bifurcating
phylogenetic trees. Syst. Biol. 45(3), 323–334 (1996)

7. Dabrowski, K., Lozin, V.V., Müller, H., Rautenbach, D.: Parameterized algorithms
for the independent set problem in some hereditary graph classes. In: Iliopou-
los, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 1–9. Springer,
Heidelberg (2011)

8. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer, New York (1997)
9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

10. Dubois, O.: On the r, s-SAT satisfiability problem and a conjecture of Tovey.
Discrete Applied Mathematics 26(1), 51–60 (1990)

11. Finden, C., Gordon, A.: Obtaining common pruned trees. J. Classif. 2(1), 255–276
(1985)

12. Griebel, T., Brinkmeyer, M., Böcker, S.: EPoS: A modular software framework for
phylogenetic analysis. Bioinformatics 24(20), 2399–2400 (2008)

13. Kao, M.-Y., Lam, T.W., Sung, W.-K., Ting, H.-F.: An even faster and more uni-
fying algorithm for comparing trees via unbalanced bipartite matchings. J. Algo-
rithms 40(2), 212–233 (2001)

14. Lewis, L.A., Lewis, P.O.: Unearthing the molecular phylodiversity of desert soil
green algae (Chlorophyta). Syst. Biol. 54(6), 936–947 (2005)

15. Lin, Y., Rajan, V., Moret, B.M.E.: A metric for phylogenetic trees based on match-
ing. IEEE/ACM Trans. Comput. Biol. Bioinformatics 9(4), 1014–1022 (2012)

16. Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L., Zhou, Y.: TreeJuxtaposer:
Scalable tree comparison using focus+context with guaranteed visibility. ACM
Trans. Graph. 22(3), 453–462 (2003)

17. Nye, T.M.W., Liò, P., Gilks, W.R.: A novel algorithm and web-based tool for
comparing two alternative phylogenetic trees. Bioinformatics 22(1), 117–119 (2006)

18. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci.
53(1-2), 131–147 (1981)

19. Sul, S.-J., Williams, T.L.: An experimental analysis of robinson-foulds distance ma-
trix algorithms. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193,
pp. 793–804. Springer, Heidelberg (2008)

Computing the Skewness of the Phylogenetic

Mean Pairwise Distance in Linear Time

Constantinos Tsirogiannis and Brody Sandel

MADALGO� and Department of Bioscience, Aarhus University, Denmark
{constant,brody.sandel}@cs.au.dk

Abstract. The phylogenetic Mean Pairwise Distance (MPD) is one of
the most popular measures for computing the phylogenetic distance be-
tween a given group of species. More specifically, for a phylogenetic tree
T and for a set of species R represented by a subset of the leaf nodes of
T , the MPD of R is equal to the average cost of all possible simple paths
in T that connect pairs of nodes in R.

Among other phylogenetic measures, the MPD is used as a tool for
deciding if the species of a given group R are closely related. To do this,
it is important to compute not only the value of the MPD for this group
but also the expectation, the variance, and the skewness of this metric.
Although efficient algorithms have been developed for computing the
expectation and the variance the MPD, there has been no approach so
far for computing the skewness of this measure.

In the present work we describe how to compute the skewness of the
MPD on a tree T optimally, in Θ(n) time; here n is the size of the
tree T . So far this is the first result that leads to an exact, let alone effi-
cient, computation of the skewness for any popular phylogenetic distance
measure. Moreover, we show how we can compute in Θ(n) time several
interesting quantities in T that can be possibly used as building blocks
for computing efficiently the skewness of other phylogenetic measures.

1 Introduction

Communities of co-occuring species may be described as “clustered” if species
in the community tend to be close phylogenetic relatives of one another, or
“overdispersed” if they are distant relatives [7]. To define these terms we need
a function that measures the phylogenetic relatedness of a set of species, and
also a point of reference for how this function should behave in the absence of
ecological and evolutionary processes. One such function is the mean pairwise
distance (MPD); given a phylogenetic tree T and a subset of species R that are
represented by leaf nodes of T , the MPD of the species in R is equal to average
cost of all possible simple paths that connect pairs of nodes in R.

To decide if the value of the MPD for a specific set of species R is large or
small, we need to know the average value (expectation) of the MPD for all sets

� Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 170–184, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Skewness of the Phylogenetic Mean Pairwise Distance 171

of species in T that consist of exactly r = |R| species. To judge how much larger
or smaller is this value from the average, we also need to know the standard
deviation of the MPD for all possible sets of r species in T . Putting all these
values together, we get the following index that expresses how clustered are the
species in R [7]:

NRI =
MPD(T , R)− expecMPD(T , r)

sdMPD(T , r) ,

where MPD(T , R) is the value of the MPD for R in T , and expec(T) and
sdMPD(T , r) are the expected value and the standard deviation respectively of
the MPD calculated over all subsets of r species in T .

In a previous paper we presented optimal algorithms for computing the ex-
pectation and the standard deviation of the MPD of a phylogenetic tree T in
Θ(n) time, where n is the number of the edges of T [5]. This enabled exact com-
putations of these statistical moments of the MPD on large trees, which were
previously infeasible using traditional slow and inexact resampling techniques.
However, one important problem remained unsolved; quantifying our degree of
confidence that the NRI value observed in a community reflects non-random
ecological and evolutionary processes.

This degree of confidence is a statistical P value, that is the probability that
we would observe an NRI value as extreme or more so if the community were
randomly assembled. Traditionally, estimating P is accomplished by ranking the
observed MPD against the distribution of randomized MPD values [3]. If the
MPD falls far enough into one of the tails of the distribution (generally below
the 2.5 percentile or above the 97.5 percentile, yielding P < 0.05), the community
is said to be significantly overdispersed or significantly clustered. However, this
approach relies on sampling a large number of random subsets of species in T ,
and recomputing the MPD for each random subset. Therefore, this method is
slow and imprecise.

We can approximate the P value of an observed NRI by assuming a particular
distribution of the possible MPD values and evaluating its cumulative distribu-
tion function at the observed MPD. Because the NRI measures the difference
between the observed values and expectation in units of standard deviations, this
yields a very simple rule if we assume that possible MPD values are normally
distributed: any NRI value larger than 1.96 or smaller than −1.96 is significant.
Unfortunately, the distribution of MPD values is often skewed, such that this
simple rule will lead to incorrect P value estimates [1,6]. Of particular concern,
this skewness introduces a bias towards detecting either significant clustering or
significant overdispersion [2]. Calculating this skewness analytically would enable
us to remove this bias and improve the accuracy of P value estimates obtained
analytically. However, so far there has been no result in the related literature
that shows how to compute this skewness value.

Hence, given a phylogenetic tree T and an integer r there is the need to design
an efficient and exact algorithm that can compute the skewness of the MPD for r
species in T . This would provide the last critical piece required for the adoption

172 C. Tsirogiannis and B. Sandel

of a fully analytical and efficient approach for analysing ecological communities
using the MPD and the NRI.

Our Results. In the present work we tackle the problem of computing efficiently
the skewness of the MPD. More specifically, given a tree T that consists of n
edges and a positive integer r, we prove that we can compute the skewness of
of the MPD over all subsets of r leaf nodes in T optimally, in Θ(n) time. For
the calculation of this skewness value we consider that every subset of exactly r
species in T is picked uniformly out of all possible subsets that have r species.
The main contribution of this paper is a constructive proof that leads straight-
forwardly to an algorithm that computes the skewness of the MPD in Θ(n)
time. This is clearly very efficient, especially if we consider that it outperforms
the best algorithms that are known so far for computing lower-order statistics
for other phylogenetic measures; for example the most efficient known algorithm
for computing the variance of the popular Phylogenetic Distance (PD) runs in
O(n2) time [5].

More than that, we prove how we can compute in Θ(n) time several quantities
that are related with groups of paths in the given tree; these quantities can be
possibly used as building blocks for computing efficiently the skewness (and other
statistical moments) of phylogenetic measures that are similar to the MPD. Such
an example is the measure which is the equivalent of the MPD for computing
the distance between two subsets of species in T [4].

The rest of this paper is, in its entirety, an elaborate proof for computing the
skewness of the MPD on a tree T in Θ(n) time. In the next section we define the
problem that we want to tackle, and we present a group of quantities that we
use as building blocks for computing the skewness of the MPD. We prove that
all of these quantities can be computed in linear time with respect to the size of
the input tree. In Section 3 we provide the main proof of this paper; there we
show how we can express the value of the skewness of the MPD in terms of the
quantities that we introduced earlier. The proof implies a straightforward linear
time algorithm for the computation of the skewness as well.

2 Description of the Problem and Basic Concepts

Definitions and Notation. Let T be a phylogenetic tree, and let E be the set of
its edges. We denote the number of the edges in T by n, that is n = |E|. For an
edge e ∈ E, we use we to indicate the weight of this edge. We use S to denote
the set of the leaf nodes of T . We call these nodes the tips of the tree, and we
use s to denote the number of these nodes.

Since a phylogenetic tree is a rooted tree, for any edge e ∈ E we distinguish
the two nodes adjacent to e into a parent node and a child node; among these
two, the parent node of e is the one for which the simple path from this node
to the root does not contain e. We use Ch(e) to indicate the set of edges whose
parent node is the child node of e, which of course implies that e /∈ Ch(e). We
indicate the edge whose child node is the parent node of e by parent(e). For any

Skewness of the Phylogenetic Mean Pairwise Distance 173

edge e ∈ E, tree T (e) is the subtree of T whose root is the child node of edge
e. We denote the set of tips that appear in T (e) as S(e), and we denote the
number of these tips by s(e).

Given any edge e ∈ E, we partition the edges of T into three subsets. The
first subset consists of all the edges that appear in the subtree of e. We denote
this set by Off(e). The second subset consists of all edges e′ ∈ E for which e
appears in the subtree of e′. We use Anc(e) to indicate this subset. For the rest
of this paper, we define that e ∈ Anc(e), and that e /∈ Off(e). The third subset
contains all the tree edges that do not appear neither in Off(e), nor in Anc(e);
we indicate this subset by Ind(e).

For any two tips u, v ∈ S, we use p(u, v) to indicate the simple path in T
between these nodes. Of course, the path p(u, v) is unique since T is a tree. We
use cost(u, v) to denote the cost of this path, that is the sum of the weights of
all the edges that appear on the path. Let u be a tip in S and let e be an edge
in E. We use cost(u, e) to represent the cost of the shortest simple path between
u and the child node of e. Therefore, if u ∈ S(e) this path does not include e,
otherwise it does. For any subset R ⊆ S of the tips of the tree T , we denote the
set of all pairs of elements in R, that is the set of all combinations that consist
of two distinct tips in R, by Δ(R). Given a phylogenetic tree T and a subset of
its tips R ⊆ S, we denote the Mean Pairwise Distance of R in T by MPD(T , R).
Let r = |R|. This measure is equal to:

MPD(T , R) =
2

r(r − 1)

∑
{u,v}∈Δ(R)

cost(u, v) .

2.1 Aggregating the Costs of Paths

Let T be a phylogenetic tree that consists of n edges and s tips, and let r be a
positive integer such that r ≤ s. We use sk(T , r) to denote the skewness of the
MPD on T when we pick a subset of r tips of this tree with uniform probability.
In the rest of this paper we describe in detail how we can compute sk(T , r) in
O(n) time, by scanning T only a constant number of times. Based on the formal
definition of the concept of skewness, the value of sk(T , r) is equal to:

sk(T , r) = ER∈Sub(S,r)

[(
MPD(T , R)− expec(T , r)

var(T , r)

)3
]

=
ER∈Sub(S,r)[MPD3(T , R)]− 3 · var(T , r)2 − expec(T , r)3

var(T , r)3 , (1)

where expec(T , r) and var(T , r) are the expectation and the variance of the
MPD for subsets of exactly r tips in T , and ER∈Sub(S,r)[·] denotes the function
of the expectation over all subsets of exactly r tips in S. In a previous paper,
we showed how we can compute the expectation and the variance of the MPD
on T in O(n) time [5]. Therefore, in the rest of this work we focus on analysing

174 C. Tsirogiannis and B. Sandel

the value ER∈Sub(S,r)[MPD3(T , R)] and expressing this quantity in a way that
can be computed efficiently, in linear time with respect to the size of T .

To make things more simple, we break the description of our approach into
two parts; in the first part, we define several quantities that come from adding
and multiplying the costs of specific subsets of paths between tips of the tree.
We also present how we can compute all these quantities in O(n) time in total
by scanning T a constant number of times. Then, in Section 3, we show how we
can express the skewness of the MPD on T based on these quantities, and hence
compute the skewness in O(n) time as well. Next we provide the quantities that
we want to consider in our analysis; these quantities are described in Table 1.

Table 1. The quantities that we use for expressing the skewness of the MPD

I) TC(T) =
∑

{u,v}∈Δ(S)

cost(u, v) II) CB(T) =
∑

{u,v}∈Δ(S)

cost3(u, v)

III) ∀e ∈ E, TC(e) =
∑

{u,v}∈Δ(S)
e∈p(u,v)

cost(u, v) IV) ∀e ∈ E, SQ(e) =
∑

{u,v}∈Δ(S)
e∈p(u,v)

cost2(u, v)

V) ∀e ∈ E, Mult(e) =
∑

{u,v}∈Δ(S)
e∈p(u,v)

TC(u) · TC(v) VI) ∀u ∈ S, SM(u) =
∑

v∈S\{u}
cost(u, v) · TC(v)

VII) ∀e ∈ E, TCsub(e) =
∑

u∈S(e)

cost(u, e) VIII) ∀e ∈ E, SQsub(e) =
∑

u∈S(e)

cost2(u, e)

IX) ∀e ∈ E, PC(e) =
∑
u∈S

cost(u, e) X) ∀e ∈ E, PSQ(e) =
∑
u∈S

cost2(u, e)

XI) ∀e ∈ E, QD(e) =
∑

u∈S(e)

⎛
⎝ ∑

v∈S(e)\{u}
cost(u, v)

⎞
⎠

2

For any tip u ∈ S, we define that SQ(u) = SQ(e), and TC(u) = TC(e), where
e is the edge whose child node is u. The proof of the following lemma is provided
in the full version of this paper.

Lemma 1. Given a phylogenetic tree T that consists of n edges, we can compute
all the quantities that are presented in Table 1 in O(n) time in total.

3 Computing the Skewness of the MPD

In the previous section we defined the problem of computing the skewness of the
MPD for a given phylogenetic tree T . Given a positive integer r ≤ s, we showed
that to solve this problem efficiently it remains to find an efficient algorithm for
computing ER∈Sub(S,r)[MPD3(T , R)]; this is the mean value of the cube of the
MPD among all possible subsets of tips in T that consist of exactly r elements. To
compute this efficiently, we introduced in Table 1 ten different quantities which
we want to use in order to express this mean value. In Lemma 1 we proved that
these quantities can be computed in O(n) time, where n is the size of T .

Next we prove how we can calculate the value for the mean of the cube
of the MPD based on the quantities in Table 1. In particular, in the proof of

Skewness of the Phylogenetic Mean Pairwise Distance 175

the following lemma we show how the value ER∈Sub(S,r)[MPD3(T , R)] can be
written analytically as an expression that contains the quantities in Table 1.
This expression can then be straightforwardly evaluated in O(n) time, given
that we have already computed the aforementioned quantities 1.

Lemma 2. For any given natural r ≤ s, we can compute ER∈Sub(S,r)

[MPD3(T , R)] in Θ(n) time.

Proof. The expectation of the cube of the MPD is equal to:

ER∈Sub(S,r)[MPD3(T , R)] =
8

r3(r − 1)3
·

ER∈Sub(S,r)

⎡⎣ ∑
{u,v}∈Δ(R)

∑
{x,y}∈Δ(R)

∑
{c,d}∈Δ(R)

cost(u, v) · cost(x, y) · cost(c, d)

⎤⎦ .

From the last expression we get:

ER∈Sub(S,r)

[∑
{u,v}∈Δ(R)

∑
{x,y}∈Δ(R)

∑
{c,d}∈Δ(R)

cost(u, v) · cost(x, y) · cost(c, d)

]

=
∑

{u,v}∈Δ(S)

∑
{x,y}∈Δ(S)

∑
{c,d}∈Δ(S)

cost(u,v)·cost(x,y)·cost(c, d) ·

ER∈Sub(S,r)[APR(u,v, x, y, c, d)] , (2)

where APR(u, v, x, y, c, d) is a random variable whose value is equal to one in
the case that u, v, x, y, c, d ∈ R, otherwise it is equal to zero. For any six tips
u, v, x, y, c, d ∈ S, which may not be all of them distinct, we use θ(u, v, x, y, c, d)
to denote the number of distinct elements among these tips. Let t be an integer,
and let (t)k denote the k-th falling factorial power of t, which means that (t)k =
t(t− 1) . . . (t− k + 1). For the expectation of the random variables that appear
in the last expression it holds that:

ER∈Sub(S,r) [APR(u, v, x, y, c, d)] =
(r)θ(u,v,x,y,c,d)

(s)θ(u,v,x,y,c,d)
(3)

Notice that in (3) we have 2 ≤ θ(u, v, x, y, c, d) ≤ 6. The value of the function
θ(·) cannot be smaller than two in the above case because we have that u �= v,
x �= y, and c �= d. Thus, we can rewrite (2) as:∑
{u,v}∈Δ(S)

∑
{x,y}∈Δ(S)

∑
{c,d}∈Δ(S)

(r)θ(u,v,x,y,c,d)

(s)θ(u,v,x,y,c,d)
· cost(u,v) · cost(x, y) · cost(c, d)

(4)

1 Because the full form of this expression is very long (it consists of a large number of
terms), we have chosen not to include it in the definition of the following lemma. We
chose to do so because we considered that including the entire expression would not
make this work more readable. In any case, the full expression can be easily infered
from the proof of the lemma

176 C. Tsirogiannis and B. Sandel

Hence, our goal now is to compute a sum whose elements are the product of
costs of triples of paths. Recall that for each of these paths, the end-nodes of the
path are a pair of distinct tips in the tree. Although the end-nodes of each path
are distinct, in a given triple the paths may share one or more end-nodes with
each other. Therefore, the distinct tips in any triple of paths may vary from two
up to six tips. Indeed, in (4) we get a sum where the triples of paths in the sum
are partitioned in five groups; a triple of paths is assigned to a group depending
on the number of distinct tips in this triple. In (4) the sum for each group of
triples is multiplied by the same factor (r)θ(u,v,x,y,c,d)/(s)θ(u,v,x,y,c,d), hence we
have to calculate the sum for each group of triples separately.

However, when we try to calculate the sum for each of these groups of triples
we see that this calculation is more involved; some of these groups of triples
are divided into smaller subgroups, depending on which end-nodes of the paths
in each triple are the same. To explain this better, we can represent a triple of
paths schematically as a graph; let {u, v}, {x, y}, {c, d} ∈ Δ(S) be three pairs of
tips in T . As mentioned already, the tips within each pair are distinct, but tips
between different pairs can be the same. We represent the similarity between
tips of these three pairs as a graph of six vertices. Each vertex in the graph
corresponds to a tip of these three pairs. Also, there exists an edge in this graph
between two vertices if the corresponding tips are the same. Thus, this graph is
tripartite; no vertices that correspond to tips of the same pair can be connected
to each other with an edge. Hence, we have a tripartite graph where each partite
set of vertices consists of two vertices–see Fig. 1 for an example.

α β γ δ ε ζ η

(a) (b)

Fig. 1. (a) A phylogenetic tree T and (b) an example of the tripartite graph induced
by the triplet of its tip pairs {α, γ}, {δ, γ}, {ε, δ}, , where {α, γ, δ, ε} ⊂ S. The dashed
lines in the graph distinguish the partite subsets of vertices; the vertices of each partite
subset correspond to tips of the same pair.

For any triple of pairs of tips {u, v}, {x, y}, {c, d} ∈ Δ(S) we denote the
tripartite graph that corresponds to this triple by G[u, v, x, y, c, d]. We call this
graph the similarity graph of this triple. Based on the way that similarities
may occur between tips in a triple of paths, we can partition the five groups of
triples in (4) into smaller subgroups. Each of these subgroups contains triples
whose similarity graphs are isomorphic. For a tripartite graph that consists of
three partite sets of two vertices each, there can be eight different isomorphism
classes. Therefore, the five groups of triples are partitioned into eight subgroups.
Figure 2 illustrates the eight isomorphism classes that exist for the specific kind
of tripartite graphs that we consider. Since we refer to isomorphism classes, each

Skewness of the Phylogenetic Mean Pairwise Distance 177

A:

E: F :

B: C:

G: H :

D:

Fig. 2. The eight isomorphism classes of a tripartite graph of 3 × 2 vertices that
represent schematically the eight possible cases of similarities between tips that we can
have when we consider three paths between pairs of tips in a tree T

of the graphs in Fig. 2 represents the combinatorial structure of the similarities
between three pairs of tips, and it does not correspond to a particular planar
embedding, or ordering of the tips.

Let X be any isomorphism class that is illustrated in Figure 2. We denote the
set of all triples of pairs in Δ(S) whose similarity graphs belong to this class by
BX . More formally, the set BX can be defined as follows :

BX = { {{u, v}, {x, y}, {c, d}} : {u, v}, {x, y}, {c, d} ∈ Δ(S)

and G[u, v, x, y, c, d] belongs to class X in Figure 2 } .

We introduce also the following quantity:

TRS(X) =
∑

{{u,v},{x,y},{c,d}}∈BX

cost(u, v) · cost(x, y) · cost(c, d) .

Hence, we can rewrite (4) as follows:

(r)2
(s)2

· TRS(A) + 3 · (r)3
(s)3

· TRS(B) + 6 · (r)3
(s)3

· TRS(C) + 6 · (r)4
(s)4

· TRS(D)

+ 3 · (r)4
(s)4

· TRS(E) + 6 · (r)4
(s)4

· TRS(F) + 6 · (r)5
(s)5

· TRS(G) + 6 · (r)6
(s)6

· TRS(H) (5)

Notice that some of the terms (r)i
(s)i
·TRS(X) in (5) are multiplied with an ex-

tra constant factor. This happens for the following reason; the sum in TRS(X)
counts each triple once for every different combination of three pairs of tips.
However, in the triple sum in (4) some triples appear more than once. For exam-
ple, every triple that belongs in class B appears three times in (4), hence there
is an extra factor three in front of TRS(B) in (5).

To compute efficiently ER∈Sub(S,r)[MPD3(T , R)], it remains to compute effi-
ciently each value TRS(X) for every isomorphism class X that is presented in
Figure 2. Next we show in detail how we can do that by expressing each quantity
TRS(X) as a function of the quantities that appear in Table 1.

For the triples that correspond to the isomorphism class A we have:

TRS(A) =
∑

{u,v}∈Δ(S)

cost3(u, v) = CB(T) .

178 C. Tsirogiannis and B. Sandel

For TRS(B) we get:

TRS(B) =
∑

{u,v}∈Δ(S)

cost2(u, v)

⎛⎝ ∑
x∈S\{u}

cost(u, x) +
∑

y∈S\{v}
cost(v, y)− 2 · cost(u, v)

⎞⎠
=

∑
{u,v}∈Δ(S)

cost2(u, v) (TC(u) + TC(v)− 2 · cost(u, v))

=
∑
u∈S

SQ(u) · TC(u)− 2 · CB(T) .

The quantity TRS(C) is equal to:

1

6

∑
u∈S

∑
v∈S\{u}

cost(u, v)
∑

x∈S\{u,v}
cost(u, x) · cost(x, v)

=
1

6

∑
e∈E

we

∑
u∈S(e)

∑
v∈S−S(e)

∑
x∈S\{u,v}

cost(u, x) · cost(x, v) . (6)

For any e ∈ E we have that:∑
u∈S(e)

∑
v∈S−S(e)

∑
x∈S\{u,v}

cost(u, x) · cost(x, v)

=
∑

u∈S(e)

∑
v∈S\{u}

∑
x∈S\{u,v}

cost(u, x) · cost(x, v) (7)

− 2
∑

{u,v}∈Δ(S(e))

∑
x∈S\{u,v}

cost(u, x) · cost(x, v) . (7b)

The first of the two sums in (7) can be written as:∑
u∈S(e)

∑
v∈S\{u}

∑
x∈S\{u,v}

cost(u, x) · cost(x, v)

=
∑

u∈S(e)

∑
v∈S\{u}

∑
x∈S\{u,v}

cost(u, v) · cost(v, x)

=
∑

u∈S(e)

∑
v∈S\{u}

(cost(u, v) · TC(v)− cost2(u, v))

=
∑

u∈S(e)

SM(u)− SQ(u) . (8)

According to Lemma 2, we can compute SM(u) and SQ(u) for all tips u ∈ S in
linear time with respect to the size of T . Given these values, we can compute∑

u∈S(e) SM(u)−SQ(u) for every edge e ∈ E in T with a single bottom-up scan

of the tree. For any edge e in E, the second sum in (7b) is equal to:

Skewness of the Phylogenetic Mean Pairwise Distance 179

∑
{u,v}∈Δ(S(e))

∑
x∈S\{u,v}

cost(u, x) · cost(x, v)

=
∑

{u,v}∈Δ(S(e))

∑
x∈S(e)\{u,v}

cost(u, x) · cost(x, v) (9)

+
∑

{u,v}∈Δ(S(e))

∑
x∈S\S(e)

cost(u, x) · cost(x, v) . (9b)

We can express the first sum in (9) as:∑
{u,v}∈Δ(S(e))

∑
x∈S(e)\{u,v}

cost(u, x) · cost(x, v)

=
1

2

∑
u∈S(e)

⎛⎝ ∑
v∈S(e)\{u}

cost(u, v)

⎞⎠2

− 1

2

∑
u∈S(e)

∑
v∈S(e)\{u}

cost2(u, v)

=
1

2
QD(e)− 1

2

∑
u∈S(e)

∑
v∈S(e)\{u}

cost2(u, v) . (10)

The last sum in (10) is equal to:∑
u∈S(e)

∑
v∈S(e)\{u}

cost2(u, v) =
∑

u∈S(e)

SQ(u)− SQ(e). . (11)

The value of the sum
∑

u∈S(e) SQ(u) can be computed for every edge e in Θ(n)

time in total as follows; for every tip u ∈ S we store SQ(u) together with this tip,
and then scan bottom-up the tree adding those values that are in the subtree of
each edge. For the remaining part of (9b) we get:∑

{u,v}∈Δ(S(e))

∑
x∈S\S(e)

cost(u, x) · cost(x, v)

=
∑

{u,v}∈Δ(S(e))

∑
x∈S\S(e)

(cost(u, e) + cost(x, e)) (cost(v, e) + cost(x, e))

=
∑

{u,v}∈Δ(S(e))

∑
x∈S\S(e)

cost(u, e) · cost(v, e)

+
∑

{u,v}∈Δ(S(e))

∑
x∈S\S(e)

cost(x, e) · (cost(u, e) + cost(v, e))

+
∑

{u,v}∈Δ(S(e))

∑
x∈S\S(e)

cost2(x, e) . (12)

180 C. Tsirogiannis and B. Sandel

The first sum in (12) is equal to:∑
{u,v}∈Δ(S(e))

∑
x∈S\S(e)

cost(u, e) · cost(v, e) = (s− s(e))
(
TCsub

2(e)− SQsub(e)
)
.

(13)

For the second sum in (12) we have:

∑
{u,v}∈Δ(S(e))

∑
x∈S\S(e)

cost(x, e) ·
(
cost(u, e) + cost(v, e)

)

=
(
s(e)− 1

) ∑
x∈S\S(e)

cost(x, e) · TCsub(e) =
(
s(e)− 1

)
· TCsub(e) ·

(
PC(e)− TCsub(e)

)
.

(14)

The last sum in (12) can be written as:∑
{u,v}∈Δ(S(e))

∑
x∈S\S(e)

cost2(x, e) =
s(e)(s(e)− 1)

2
(PSQ(e)− SQsub(e)) . (15)

Combining the analyses that we did from (6) up to (15) we get:

TRS(C) =
1

6

∑
e∈E

we

∑
u∈S(e)

(
SM(u)− 3

2
SQ(u)

)
+

1

2
·QD(e) +

1

2
· SQ(e)

+ (s− 2s(e) + 1) · TCsub
2(e)− 2s− 2 · s(e) + s(e)(s(e)− 1)

2
· SQsub(e)

+ (s(e)− 1) · TCsub(e) · PC(e) +
s(e)(s(e)− 1)

2
· PSQ(e) .

The value of TRS(D) can be expressed as:∑
u∈S

∑
v,x,y∈S\{u}

v,x,y are distinct

cost(u, v) · cost(u, x) · cost(u, y)

=
1

6

(∑
u∈S

TC3(u)− 2 · TRS(A)− 3 · TRS(B)

)

=
1

6
·
∑
u∈S

TC3(u) +
2

3
· CB(T)− 1

2
· SQ(u) · TC(u) .

For TRS(E) we get:

Skewness of the Phylogenetic Mean Pairwise Distance 181

∑
{u,v}∈Δ(S)

∑
{x,y}∈Δ(S\{u,v})

cost2(u, v) · cost(x, y)

=
∑

{u,v}∈Δ(S)

cost2(u, v)(TC(T)− TC(u)− TC(v) + cost(u, v))

= TC(T)
∑
e∈E

we · TC(e)−
∑
u∈S

(SQ(u) · TC(u)) + CB(T) .

We can rewrite TRS(F) as follows:

∑
{u,v}∈Δ(S)

cost(u, v)

(
TC(u) · TC(v)− cost2(u, v)−

∑
x∈S\{u,v}

cost(u, x) · cost(x, v)

)

=
∑

{u,v}∈Δ(S)

cost(u, v) · TC(u) · TC(v)− CB(T)− 3 · TRS(C)

=
∑
e∈E

we ·Mult(e)− CB(T)− 3 · TRS(C) .

For the value of TRS(G) we have:

TRS(G) =
1

2

∑
{u,v}∈Δ(S)

cost(u, v)
∑

x∈S\{u,v}

(
cost(u, x) + cost(v, x)

)(
TC(T)

− TC(u)− TC(v)− TC(x) + cost(u, v) + cost(u, x) + cost(v, x)

)
.

(16)

We now break the sum in (16) into five pieces and express each piece of this sum
in terms of the quantities in Table 1. The first piece of the sum is equal to:

1

2

∑
{u,v}∈Δ(S)

cost(u, v)
∑

x∈S\{u,v}
(cost(u, x) + cost(v, x)) · TC(T)

=
1

2
· TC(T)

∑
u∈S

TC2(u)−
∑

{u,v}∈Δ(S)

cost2(u, v)

=
1

2
· TC(T)

∑
u∈S

TC2(u)−
∑
e∈E

we · TC(e) .

The second piece that we take from the sum in (16) can be expressed as:

182 C. Tsirogiannis and B. Sandel

− 1

2

∑
{u,v}∈Δ(S)

cost(u, v)
∑

x∈S\{u,v}
(cost(u, x) + cost(v, x)) (TC(u) + TC(v))

=− 1

2

∑
{u,v}∈Δ(S)

cost(u, v) (TC(u) + TC(v) − 2 · cost(u, v)) (TC(u) + TC(v))

=− 1

2

∑
{u,v}∈Δ(S)

cost(u, v)
(

TC2(u) + TC2(u) + 2 · TC(u) · TC(v)

− 2 · cost(u, v) ·
(
TC(u) + TC(v)

))
=− 1

2

∑
u∈S

TC3(u)−
∑

{v,x}∈Δ(S)

cost(v, x) · TC(v) · TC(x)

+
∑

{y,z}∈Δ(S)

cost2(y, z)
(
TC(y) + TC(z)

)
=− 1

2

∑
u∈S

TC3(u)−
∑
e∈E

we ·Mult(e) +
∑
u∈S

SQ(u) · TC(u) . (17)

The next piece that we select from (16) is equal to:

− 1

2

∑
{u,v}∈Δ(S)

cost(u, v)
∑

x∈S\{u,v}

(
cost(u, x) + cost(v, x)

)
· TC(x)

=− 1

2

∑
u∈S

∑
v∈S\{u}

cost(u, v)
∑

x∈S\{u}
cost(u, x) · TC(x)

+
1

2

∑
u∈S

∑
v∈S\{u}

cost2(u, v) · TC(v)

=− 1

2

∑
u∈S

TC(u) · SM(u) +
1

2

∑
{u,v}∈Δ(S)

cost2(u, v) (TC(u) + TC(v))

=
1

2

∑
u∈S

TC(u)
(
SQ(u)− SM(u)

)
. (18)

For the fourth piece of the sum in (16) we get:

1

2

∑
{u,v}∈Δ(S)

cost2(u, v)
∑

x∈S\{u,v}
cost(u, x) + cost(v, x) (19)

=
1

2
· TRS(B) =

1

2

∑
u∈S

SQ(u) · TC(u)− CB(T) . (20)

Skewness of the Phylogenetic Mean Pairwise Distance 183

The last piece of the sum in (16) can be expressed as:

1

2

∑
{u,v}∈Δ(S)

cost(u, v)
∑

x∈S\{u,v}
(cost(u, x) + cost(v, x))

2

=
1

2

∑
{u,v}∈Δ(S)

cost(u, v)
∑

x∈S\{u,v}

(
cost2(u, x) + cost2(v, x)

)
+ 3 · TRS(C)

=
1

2

∑
{u,v}∈Δ(S)

cost(u, v)
(
SQ(u) + SQ(v)− 2 · cost2(u, v)

)
+ 3 · TRS(C)

=
1

2

∑
u∈S

SQ(u) · TC(u)− CB(T) + 3 · TRS(C) . (21)

Combining our analyses from (16) up to (21) we get:

TRS(G) =
1

2
· TC(T)

∑
u∈S

TC2(u)−
∑
e∈E

we (TC(e) + Mult(e))

+
1

2

∑
u∈S

TC(u)·
(
5 · SQ(u)−SM(u)−TC2(u)

)
− 2 ·CB(T) +3·TRS(C) .

We can express TRS(H) using the values of the other isomorphism classes:

TRS(H) =
1

6

∑
{u,v}∈Δ(S)

∑
{x,y}∈Δ(S)

∑
{c,d}∈Δ(S)

cost(u, v) · cost(x, y) · cost(c, d)

− TRS(A)− 3 · TRS(B)− 6 ·TRS(C)− 6 · TRS(D)

− 3 · TRS(E)− 6 · TRS(F)− 6 · TRS(G)

=
1

6
· TC3(T)− 1

6
· TRS(A) − 1

2
· TRS(B) − TRS(C)− TRS(D)

− 1

2
· TRS(E)− TRS(F)− TRS(G) .

We get the value of ER∈Sub(S,r)[MPD3(T , R)] by plugging into (5) the values
that we got for all eight isomorphism classes of triples. For any isomorphism class
X we showed that the value TRS(X) can be computed by using the quantities
in Table 1. The lemma follows from the fact that each quantity that appears in
this table is used a constant number of times for computing value TRS(X) for
any class X , and since we showed that we can precompute all these quantities
in Θ(n) time in total. ��

184 C. Tsirogiannis and B. Sandel

Theorem 1. Let T be a phylogenetic tree that contains s tips, and let r be a
natural number with r ≤ s. The skewness of the mean pairwise distance on T
among all subsets of exactly r tips of T can be computed in Θ(n) time.

Proof. According to the definition of skewness, as it is also presented in (1),
we need to prove that we can compute in Θ(n) time the expectation and the
variance of the MPD, and the value of the expression ER∈Sub(S,r)[MPD3(T , R)].
In a previous paper we showed that the expectation and the variance of the
MPD can be computed in Θ(n) time. By combining this with Lemma 2 we get
the proof of the theorem. ��

References

1. Cooper, N., Rodŕıguez, J., Purvis, A.: A Common Tendency for Phylogenetic
Overdispersion in Mammalian Assemblages. In: Proceedings of the Royal Society
B: Biological Sciences, vol. 275, pp. 2031–2037 (2008)

2. Harmon-Threatt, A.N., Ackerly, D.D.: Filtering Across Spatial Scales: Phylogeny,
Biogeography and Community Structure in Bumble Bees. PLoS ONE 8, e60446
(2013)

3. Pontarp, M., Canbäck, B., Tunlid, A., Lundberg, P.: Phylogenetic Analysis Suggests
that Habitat Filtering Is Structuring Marine Bacterial Communities Across the
Globe. Microbial Ecology 64, 8–17 (2012)

4. Swenson, N.G.: Phylogenetic Beta Diversity Metrics. Trait Evolution and Inferring
the Functional Beta Diversity of Communities. PLoS ONE 6(6), e21264 (2011)

5. Tsirogiannis, C., Sandel, B., Cheliotis, D.: Efficient Computation of Popular Phylo-
genetic Tree Measures. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534,
pp. 30–43. Springer, Heidelberg (2012)

6. Vamosi, J.C., Vamosi, S.M.: Body Size, Rarity, and Phylogenetic Community Struc-
ture: Insights from Diving Beetle Assemblages of Alberta. Diversity and Distribu-
tions 13, 1–10 (2007)

7. Webb, C.O., Ackerly, D.D., McPeek, M.A., Donoghue, M.J.: Phylogenies and Com-
munity Ecology. Annual Review of Ecology and Systematics 33, 475–505 (2002)

Characterizing Compatibility and Agreement
of Unrooted Trees via Cuts in Graphs�

Sudheer Vakati and David Fernández-Baca

Department of Computer Science, Iowa State University, Ames, IA 50011, USA
{svakati,fernande}@iastate.edu

Abstract. Deciding whether there is a single tree —a supertree— that
summarizes the evolutionary information in a collection of unrooted trees is a
fundamental problem in phylogenetics. We consider two versions of this ques-
tion: agreement and compatibility. In the first, the supertree is required to reflect
precisely the relationships among the species exhibited by the input trees. In the
second, the supertree can be more refined than the input trees.

Tree compatibility can be characterized in terms of the existence of a specific
kind of triangulation in a structure known as the display graph. Alternatively, it
can be characterized as a chordal graph sandwich problem in a structure known
as the edge label intersection graph. Here, we show that the latter characterization
yields a natural characterization of compatibility in terms of minimal cuts in the
display graph, which is closely related to compatibility of splits. We then derive
a characterization for agreement.

1 Introduction

A phylogenetic tree T is an unrooted tree whose leaves are bijectively mapped to a label
set L(T). Labels represent species and T represents the evolutionary history of these
species. LetP be a collection of phylogenetic trees. We callP a profile, refer to the trees
in P as input trees, and denote the combined label set of the input trees,

⋃
T∈P L(T),

by L(P). A supertree of P is a phylogenetic tree whose label set is L(P). The goal of
constructing a supertree for a profile is to synthesize the information in the input trees
in a larger, more comprehensive, phylogeny [7]. Ideally, a supertree should faithfully
reflect the relationships among the species implied by the input trees. In reality, it is
rarely possible to achieve this, because of conflicts among the input trees due to errors
in constructing them or to biological processes such as lateral gene transfer and gene
duplication.

We consider two classic versions of the supertree problem, based on the closely
related notions of compatibility and agreement. Let S and T be two phylogenetic trees
where L(T) ⊆ L(S) —for our purposes, T would be an input tree and S a supertree.
Let S′ be the tree obtained by suppressing any degree two vertices in the minimal
subtree of S connecting the labels in L(T). We say that S displays T , or that T and S
are compatible, if T can be derived from S′ by contracting edges. We say that tree T is
an induced subtree of S, or that T and S agree, if S′ is isomorphic to T .

� This work was supported in part by the National Science Foundation under grants CCF-
1017189 and DEB-0829674.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 185–199, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

186 S. Vakati and D. Fernández-Baca

Let P be a profile. The tree compatibility problem asks if there exists a supertree
for P that displays all the trees in P . If such a supertree S exists, we say that P is
compatible and S is a compatible supertree for P . The agreement supertree problem
asks if there exists a supertree forP that agrees with all the trees inP . If such a supertree
S exists, we say that S is an agreement supertree (AST) for P .

Compatibility and agreement embody different philosophies about conflict. An agree-
ment supertree must reflect precisely the evolutionary relationships exhibited by the
input trees. In contrast, a compatible supertree is allowed to exhibit more fine-grained
relationships among certain labels than those exhibited by an input tree. Note that com-
patibility and agreement are equivalent when the input trees are binary.

If all the input trees share a common label (which can be viewed as a root node),
both tree compatibility and agreement are solvable in polynomial time [1,11]. In gen-
eral, however, the two problems are NP-complete, and remain so even when the trees
are quartets; i.e., binary trees with exactly four leaves [14]. Nevertheless, Bryant and
Lagergren showed that the tree compatibility problem is fixed parameter tractable when
parametrized by number of trees [4]. It in unknown whether or not the agreement su-
pertree problem has the same property.

To prove the fixed-parameter tractability of tree compatibility, Bryant and Lagergren
first showed that a necessary (but not sufficient) condition for a profile to be compat-
ible is that the tree-width of a certain graph —the display graph of the profile (see
Section 3)— be bounded by the number of trees. They then showed how to express
compatibility as a bounded-size monadic second-order formula on the display graph.
By Courcelle’s Theorem [6,2], these two facts imply that compatibility can be decided
in time linear in the size of the display graph. Unfortunately, Bryant and Lagergren’s
argument amounts essentially to only an existential proof, as it is not clear how to obtain
an explicit algorithm for unrooted compatibility from it.

A necessary step towards finding a practical algorithm for compatibility —and in-
deed for agreement— is to develop an explicit characterization of the problem. In earlier
work [15], we made some progress in this direction, characterizing tree compatibility
in terms of the existence of a legal triangulation of the display graph of the profile.
Gysel et al. [9] provided an alternative characterization, based on a structure they call
the edge label intersection graph (ELIG) (see Section 3). Their formulation is in some
ways simpler than that of [15], allowing Gysel et al. to express tree compatibility as a
chordal sandwich problem. Neither [15] nor [9] deal with agreement.

Here, we show that the connection between separators in the ELIG and cuts in the
display graph (explored in Section 3) leads to a new, and natural, characterization of
compatibility in terms of minimal cuts in the display graph (Section 4). We then show
how such cuts are closely related to the splits of the compatible supertree (Section 5).
Lastly, we give a characterization of the agreement in terms of minimal cuts of the
display graph (Section 6). To our knowledge, there was no previous characterization of
the agreement supertree problem for unrooted trees.

2 Preliminaries

Splits, Compatibility, and Agreement A split of a label set L is a bipartition of L con-
sisting of non-empty sets. We denote a split {X,Y } by X |Y . Let T be a phylogenetic

Characterizing Compatibility and Agreement of Unrooted Trees 187

tree. Consider an internal edge e of T . Deletion of e disconnects T into two subtrees T1

and T2. If L1 and L2 denote the set of all labels in T1 and T2, respectively, then L1|L2

is a split of L(T). We denote by σe(T) the split corresponding to edge e of T and by
Σ(T) the set of all splits corresponding to all internal edges of T .

We say that a tree T displays a split X |Y if there exists an internal edge e of T where
σe(T) = X |Y . A set of splits is compatible if there exists a tree that displays all the
splits in the set. It is well-known that two splits A1|A2 and B1|B2 are compatible if and
only if at least one of A1 ∩B1, A1 ∩B2, A2 ∩B1 and A2 ∩B2 is empty [13].

Theorem 1 (Splits-Equivalence Theorem [5,13]). Let Σ be a collection of non-trivial
splits of a label set X . Then,Σ = Σ(T) for some phylogenetic tree T with label set X if
and only if the splits in Σ are pairwise compatible. Tree T is unique up to isomorphism.

Let S be a phylogenetic tree and let Y be a subset of L(S). Then, S|Y denotes the tree
obtained by suppressing any degree-two vertices in the minimal subtree of S connecting
the labels in Y . Now, let T be a phylogenetic tree such that L(T) ⊆ L(S). Then, S
displays T if and only if Σ(T) ⊆ Σ(S|L(T)); T and S agree if and only if Σ(T) =
Σ(S|L(T)).

Cliques, Separators, Cuts, and Triangulations. Let G be a graph. We represent the
vertices and edges of G by V (G) and E(G) respectively. A clique of G is a complete
subgraph of G. A clique H of G is maximal if there is no other clique H ′ of G where
V (H) ⊂ V (H ′). For any U ⊆ V (G), G−U is the graph derived by removing vertices
of U and their incident edges from G. For any F ⊆ E(G), G − F is the graph with
vertex set V (G) and edge set E(G) \ F .

For any two nonadjacent vertices a and b of G, an a-b separator of G is a set U of
vertices where U ⊂ V (G) and a and b are in different connected components of G−U .
An a-b separator U is minimal if for every U ′ ⊂ U , U ′ is not an a-b separator. A set
U ⊆ V (G) is a minimal separator if U is a minimal a-b separator for some nonadjacent
vertices a and b of G. We represent the set of all minimal separators of graph G by!G.
Two minimal separators U and U ′ are parallel if G−U contains at most one component
H where V (H) ∩ U ′ �= ∅.

A connected component H of G − U is full if for every u ∈ U there exists some
vertex v ∈ H where {u, v} ∈ E(G).

Lemma 1 ([12]). For a graph G and any U ⊂ V (G), U is a minimal separator of G if
and only if G− U has at least two full components.

A chord is an edge between two nonadjacent vertices of a cycle. A graph H is chordal
if and only if every cycle of length four or greater in H has a chord. A chordal graph
H is a triangulation of graph G if V (G) = V (H) and E(G) ⊆ E(H). The edges in
E(H) \ E(G) are called fill-in edges of G. A triangulation is minimal if removing any
fill-in edge yields a non-chordal graph.

A clique tree of a chordal graph H is a pair (T,B) where (i) T is a tree, (ii) B is a
bijective function from vertices of T to maximal cliques of H , and (iii) for every vertex
v ∈ H , the set of all vertices x of T where v ∈ B(x) induces a subtree in T . Property
(iii) is called coherence.

188 S. Vakati and D. Fernández-Baca

Let F be a collection of subsets of V (G). We represent by GF the graph derived
from G by making the set of vertices of X a clique in G for every X ∈ F . The next
result summarizes basic facts about separators and triangulations (see [3,10,12]).

Theorem 2. Let F be a maximal set of pairwise parallel minimal separators of G and
H be a minimal triangulation of G. Then, the following statements hold.

(i) GF is a minimal triangulation of G.
(ii) Let (T,B) be a clique tree of GF . There exists a minimal separator F ∈ F if and

only if there exist two adjacent vertices x and y in T where B(x) ∩B(y) = F .
(iii) !H is a maximal set of pairwise parallel minimal separators of G andGH = H .

A cut in a connected graph G is a subset F of edges of G such that G−F is discon-
nected. A cut F is minimal if there does not exist F ′ ⊂ F where G−F ′ is disconnected.
Note that if F is minimal, G−F has exactly be two connected components. Two mini-
mal cuts F and F ′ are parallel if G−F has at most one connected componentH where
E(H) ∩ F ′ �= ∅.

3 Display Graphs and Edge Label Intersection Graphs

We now introduce the two main notions that we use to characterize compatibility and
agreement: the display graph and edge label intersection graph. We then present some
known results about these graphs, along with new results on the relationships between
them. Here and in the rest of the paper, [m] denotes the set {1, . . . ,m}, where m is a
non-negative integer. Since for any phylogenetic tree T there is a bijection between the
leaves of T and L(T), we refer to the leaves of T by their labels.

Let P = {T1, T2, · · · , Tk} be a profile. We assume that for any i, j ∈ [k] such that
i �= j, the sets of internal vertices of input trees Ti and Tj are disjoint. The display
graph of P , denoted by G(P), is a graph whose vertex set is

⋃
i∈[k] V (Ti) and edge set

is
⋃

j∈[k] E(Tj) (see Fig. 1). A vertex v of G(P) is a leaf if v ∈ L(P). Every other
vertex of G(P) is an internal. An edge of G(P) is internal if its endpoints are both
internal. If H is a subgraph of G(P), then L(H) represents the set of all leaves of H .

A triangulation G′ of G(P) is legal if it satisfies the following conditions.

(LT1) For every clique C of G′, if C contains an internal edge, then it cannot contain
any other edge of G(P).

(LT2) There is no fill-in edge in G′ with a leaf as an endpoint.

Theorem 3 (Vakati, Fernández-Baca [15]). A profileP of unrooted phylogenetic trees
is compatible if and only if G(P) has a legal triangulation.

In what follows, we assume that G(P) is connected. If it is not, the connected compo-
nents of G(P) induce a partition of P into sub-profiles such that for each sub-profile
P ′, G(P ′) is a connected component of G(P). It is easy to see that P is compatible if
and only if each sub-profile is compatible.

The edge label intersection graph of P , denoted LG(P), is the line graph of G(P)
[9].1 That is, the vertex set of LG(G) is E(G(P)) and two vertices of LG(P) are

1 Note that Gysel et al. refer to LG(P) as the modified edge label intersection graph [9].

Characterizing Compatibility and Agreement of Unrooted Trees 189

1 2 3
a

b

c

d

ef

(i)

4 5 6 7
a

b c

d

e

f

g

(ii)

1 2 3

4 5

6

7

a b c d ef
g

(iii)

12

1a 1c

1b

23

2f

3e

3d

4a 4b

45

5c

56

67

7g 7f

6d

6e

(iv)

Fig. 1. (i) First input tree. (ii) A second input tree, compatible with the first. (iii) Display graph of
the input trees. (iv) Edge label intersection graph of the input trees; for every vertex, uv represents
edge {u, v}.

adjacent if the corresponding edges in G(P) share an endpoint. For an unrooted tree T ,
LG(T) denotes LG({T }).

Observation 1. Let F be a set of edges of G(P) and let {v1, v2, . . . , vm} ⊆ V (G(P))
where m ≥ 2. Then, v1, v2, . . . , vm is a path in G(P) − F if and only if {v1, v2}, . . . ,
{vm−1, vm} is a path in in LG(P)− F .

Thus, if G(P) is connected, so is LG(P). Hence, in what follows, we assume that
LG(P) is connected.

A fill-in edge for LG(P) is valid if for every T ∈ P , at least one of the endpoints of
the edge is not in LG(T). A triangulation H of LG(P) is restricted if every fill-in edge
of H is valid.

Theorem 4 (Gysel, Stevens, and Gusfield [9]). A profile P of unrooted phylogenetic
trees is compatible if and only if LG(P) has a restricted triangulation.

A minimal separator F of LG(P) is legal if for every T ∈ P , all the edges of T in F
share a common endpoint; i.e., F ∩E(T) is a clique in LG(T). The following theorem
was mentioned in [9].

Theorem 5. A profile P is compatible if and only if there exists a maximal set F of
pairwise parallel minimal separators in LG(P) where every separator in F is legal.

Proof. Our approach is similar to the one used by Gusfield in [8]. Assume that P is
compatible. From Theorem 4, there exists a restricted triangulation H of LG(P). We
can assume that H is minimal (if it is not, simply delete fill-in edges repeatedly from
H until it is minimal). Let F = !H . From Theorem 2, F is a maximal set of pairwise

190 S. Vakati and D. Fernández-Baca

parallel minimal separators of LG(P) and LG(P)F = H . Suppose F contains a sepa-
rator F that is not legal. Let {e, e′} ⊆ F where {e, e′} ⊆ E(T) for some input tree T
and e∩e′ = ∅. The vertices of F form a clique in H . Thus, H contains the edge {e, e′}.
Since {e, e′} is not a valid edge, H is not a restricted triangulation, a contradiction.
Hence, every separator in F is legal.

Let F be a maximal set of pairwise parallel minimal separators of LG(P) where
every separator in F is legal. From Theorem 2, LG(P)F is a minimal triangulation of
LG(F). If {e, e′} ∈ E(LG(P)F) is a fill-in edge, then e ∩ e′ = ∅ and there exists a
minimal separator F ∈ F where {e, e′} ⊆ F . Since F is legal, if {e, e′} ⊆ E(T) for
some input tree T then e ∩ e′ �= ∅. Thus, e and e′ are not both from LG(T) for any
input tree T . Hence, every fill-in edge in LG(P)F is valid, and LG(P)F is a restricted
triangulation. ��

Let u of be a vertex of some input tree, Then, Inc(u) is the set of all edges of G(P)
incident on u. Equivalently, Inc(u) is the set of all vertices e of LG(P) such that u ∈ e.

Let F be a cut of the display graph G(P). F is legal if for every tree T ∈ P , the
edges of T in F are incident on a common vertex; i.e., if F ∩E(T) ⊆ Inc(u) for some
u ∈ V (T). F is nice if F is legal and each connected component of G(P) − F has at
least one edge.

Lemma 2. Let F be a subset of E(G(P)). Then, F is a legal minimal separator of
LG(P) if and only if F is a nice minimal cut of G(P).

To prove the Lemma 2, we need two auxiliary lemmas and a corollary.

Lemma 3. Let F be any minimal separator of LG(P) and u be any vertex of any input
tree. Then, Inc(u) �⊆ F .

Proof. Suppose F is a minimal a-b separator of LG(P) and u is a vertex of some input
tree such that Inc(u) ⊆ F . Consider any vertex e ∈ Inc(u). Then, there exists a path π
from a to b in LG(P) where e is the only vertex of F in π. If such a path π did not exist,
then F − e would still be a a-b separator, and F would not be minimal, a contradiction.
Let e1 and e2 be the neighbors of e in π and let e = {u, v}. Since Inc(u) ⊆ F , π does
not contain any other vertex e′ where u ∈ e′. Thus, e ∩ e1 = {v} and e ∩ e2 = {v}.
Let π = a, . . . , e1, e, e2, . . . , b. Then π′ = a, . . . , e1, e2, . . . , b is also a path from a
to b. But π′ does not contain any vertex of F , contradicting the assumption that F is
a separator of LG(P). Hence, neither such a minimal separator F nor such a vertex u
exist. ��

Lemma 4. If F is a minimal separator of LG(P), then LG(P) − F has exactly two
connected components.

Proof. Assume that LG(P)−F has more than two connected components. By Lemma 1,
LG(P)−F has at least two full components. Let H1 and H2 be two full components of
LG(P)− F . Let H3 be a connected component of LG(P)− F different from H1 and
H2. By assumption LG(P) is connected. Thus, there exists an edge {e, e3} in LG(P)
where e ∈ F and e3 ∈ H3. Since H1 and H2 are full components, there exist edges
{e, e1} and {e, e2} in LG(P) where e1 ∈ V (H1) and e2 ∈ V (H2).

Characterizing Compatibility and Agreement of Unrooted Trees 191

Let e = {u, v}, and assume without loss of generality that u ∈ e∩ e3. Then, there is
no vertex f ∈ V (H1) where u ∈ e ∩ f . Thus, v ∈ e ∩ e1. Similarly, there is no vertex
f ∈ V (H2) such that u ∈ f ∩ e or v ∈ f ∩ e. But then H2 does not contain a vertex
adjacent to e, so H2 is not a full component, a contradiction. ��

Corollary 1. If F is a minimal separator of LG(P), then LG(P)−F ′ is connected for
any F ′ ⊂ F .

Proof of Lemma 2. We prove that if F is a legal minimal separator of LG(P) then F is
a nice minimal cut of G(P). The proof for the other direction is similar and is omitted.

First, we show that F is a cut of G(P). Assume the contrary. Let {u, v} and {p, q}
be vertices in different components of LG(P)−F . Since G(P)−F is connected, there
exists a path between vertices u and q. Also, {u, v} /∈ F and {p, q} /∈ F . Thus, by
Observation 1 there also exists a path between vertices {u, v} and {p, q} of LG(P)−F .
This implies that {u, v}, {p, q} are in the same connected component of LG(P)−F , a
contradiction. Thus F is a cut.

Next we show that F is a nice cut of G(P). For every T ∈ P all the vertices of
LG(T) in F form a clique in LG(T). Thus, all the edges of T in F are incident on a
common vertex, so F is a legal cut. To complete the proof, assume that G(P)− F has
a connected component with no edge and let u be the vertex in one such component.
Then, Inc(u) ⊆ F . But F is a minimal separator of LG(P), and by Lemma 3, Inc(u) �⊆
F , a contradiction. Thus, F is a nice cut.

Lastly, we show that F is a minimal cut of G(P). Assume, on the contrary, that
there exists F ′ ⊂ F where G(P) − F ′ is disconnected. Since F ′ ⊂ F and every
connected component of G(P)− F has at least one edge, every connected component
of G(P)−F ′ also has at least one edge. Let {u, v} and {p, q} be the edges in different
components of G(P)−F ′. By Corollary 1, LG(P)−F ′ is connected and thus, there is
a path between {u, v} and {p, q} in LG(P)−F ′. By Observation 1 there must also be a
path between vertices u and p in G(P)− F ′. Hence, edges {u, v} and {p, q} are in the
same connected component of G− F ′, a contradiction. Thus, F is a minimal cut. ��

Lemma 5. Two legal minimal separators F and F ′ of LG(P) are parallel if and only
if the nice minimal cuts F and F ′ are parallel in G(P).

Proof. Assume that legal minimal separators F and F ′ of LG(P) are parallel, but nice
minimal cuts F and F ′ of G(P) are not. Then, there exists {{u, v}, {p, q}} ⊆ F ′ where
{u, v} and {p, q} are in different components of G(P)−F . Since F and F ′ are parallel
separators in LG(P), and F does not contain {u, v} and {p, q}, there exists a path
between vertices {u, v} and {p, q} in LG(P) − F . Then, by Observation 1 there also
exists a path between vertices u and q in G(P) − F . Thus, edges {u, v} and {p, q} are
in the same connected component of G(P)− F , a contradiction.

The other direction can be proved similarly, using Observation 1. ��

The next lemma, from [9], follows from the definition of restricted triangulation.

Lemma 6. Let H be a restricted triangulation of LG(P) and let (T,B) be a clique
tree of H . Let e = {u, v} be any vertex in LG(P). Then, there does not exist a node
x ∈ V (T) where B(x) contains vertices from both Inc(u) \ e and Inc(v) \ e.

192 S. Vakati and D. Fernández-Baca

Lemma 7. Let T be a tree in P and suppose F is a minimal cut of G(P) that contains
precisely one edge e of T . Then, the edges of the two subtrees of T − e are in different
connected components of G(P)− F .

Proof. Since F is a minimal cut of G(P), the endpoints of e are in different connected
components of G(P)−F . Let e = {u, v}. For every x ∈ e, let Tx represent the subtree
containing vertex x in T − e. Edge e is the only edge of T in F . Thus, for every x ∈ e
all the edges of Tx are in the same connected component of G(P) − F as vertex x.
Since the endpoints of e are in different connected components of G(P)−F , the edges
of Tu and Tv are also in different connected components of G(P)− F . ��

4 Characterizing Compatibility via Cuts

A set F of cuts of G(P) is complete if, for every input tree T ∈ P and every internal
edge e of T , there exists a cut F ∈ F where e is the only edge of T in F .

Lemma 8. G(P) has a complete set of pairwise parallel nice minimal cuts if and only
if it has a complete set of pairwise parallel legal minimal cuts.

Proof. The “only if part” follows from the definition of a nice cut. Let F be a complete
set of pairwise parallel legal minimal cuts. Consider any minimal subset F ′ of F that
is also complete. Let F be a legal minimal cut of F ′. Since F ′ is minimal, there exists
an edge e ∈ F of some input tree T such that e is the only edge of T in F . Also, since
e is an internal edge, both the subtrees of T − e have at least one edge each. Thus by
Lemma 7, both the connected components of G(P) − F have at least one edge each.
Hence, F is a nice minimal cut of G(P). It thus follows that F ′ is a complete set of
pairwise parallel nice minimal cuts of G(P). ��

We now characterize the compatibility of a profile in terms of minimal cuts in the dis-
play graph of the profile.

Theorem 6. A profileP of unrooted phylogenetic trees is compatible if and only if there
exists a complete set of pairwise parallel legal minimal cuts for G(P).

Example 1. For the display graph of Fig. 1, let F = {F1, F2, F3, F4}, where F1 =
{{1, 2}, {5, 6}}, F2 = {{2, 3}, {6, 7}, {5, 6}},F3 = {{4, 5}, {1, 2}, {1, c}} and F4 =
{{6, 7}, {2, f}}. Then, F is a complete set of pairwise parallel nice minimal cuts.

Theorem 6 and Lemmas 2, 5, and 8 imply an analogous result for LG(P). A set F of
legal minimal separators of LG(P) is complete, if for every internal edge e of an input
tree T , there exists a separator F ∈ F where e is the only vertex of LG(T) in F .

Theorem 7. A profileP of unrooted phylogenetic trees is compatible if and only if there
exists a complete set of pairwise parallel legal minimal separators for LG(P).

Theorem 6 follows from Theorem 5, Lemma 8, and the next result.

Lemma 9. The following two statements are equivalent.

Characterizing Compatibility and Agreement of Unrooted Trees 193

(i) There exists a maximal set F of pairwise parallel minimal separators of LG(P)
where every separator in F is legal.

(ii) There exists a complete set of pairwise parallel nice minimal cuts for G(P).

Proof. (i)⇒ (ii): We show that for every internal edge e = {u, v} of an input tree T
there exists a minimal separator in F that contains only vertex e from LG(T). Then it
follows from Lemmas 2 and 5 that F is a complete set of pairwise parallel nice minimal
cuts for display graph G(P).

As shown in the proof of Theorem 5, LG(P)F is a restricted minimal triangulation
of LG(P). Let (S,B) be a clique tree of LG(P)F . By definition, the vertices in each
of the sets Inc(u) and Inc(v) form a clique in LG(P). Consider any vertex p of S
where Inc(u) ⊆ B(p) and any vertex q of S where Inc(v) ⊆ B(q). (Since (S,B) is a
clique tree of LG(P)F , such vertices p and q must exist.) Also, by Lemma 6, p �= q,
B(p) ∩ (Inc(v) \ {e}) = ∅ and B(q) ∩ (Inc(u) \ {e}) = ∅.

Let π = p, x1, x2, . . . , xm, q be the path from p to q in S where m ≥ 0. Let x0 =
p and xm+1 = q. Let xi be the vertex nearest to p in path π where i ∈ [m + 1]
and B(xi) ∩ (Inc(u) \ {e}) = ∅. Let F = B(xi−1) ∩ B(xi). Then by Theorem 2,
F ∈ F . Since Inc(u) ∩ Inc(v) = {e}, by the coherence property, e ∈ B(xj) for
every j ∈ [m]. Thus, e ∈ F . By Lemma 6, B(xi−1) ∩ (Inc(v) \ {e}) = ∅. Since
B(xi)∩ (Inc(u) \ {e}) = ∅, F ∩ Inc(u) = {e} and F ∩ Inc(v) = {e}. Thus, for every
vertex e′ ∈ LG(T) where e �= e′ and e ∩ e′ �= ∅, e′ /∈ F . Also, since every separator in
F is legal, we have f /∈ F for every vertex f ∈ LG(T) where f ∩ e = ∅. Thus, e is the
only vertex of LG(T) in F .

(i)⇐ (ii): Consider any complete set of pairwise parallel nice minimal cutsF ′ of G(P).
By Lemmas 2 and 5, F ′ is a set of pairwise parallel legal minimal separators of LG(P).
There exists a maximal set F of pairwise parallel minimal separators where F ′ ⊆ F .

Assume thatF\F ′ contains a minimal separator F that is not legal. Then, there must
exist a tree T ∈ P where at least two nonincident edges e1 = {x, y} and e2 = {x′, y′}
of T are in F . Consider any internal edge e3 in T where e1 and e2 are in different
components of T − e3. Such an edge exists because e1 and e2 are nonincident. Since
F ′ is complete, there exists a cut F ′ ∈ F ′ where e3 is the only edge of T in F ′. Since
F and F ′ are in F , they are parallel to each other and vertices e1 and e2 are in the
same connected component of LG(P) − F ′. Thus, by Observation 1, there exists a
path between vertices x and x′ in G(P) − F ′ and edges e1 and e2 are also in the same
connected component of G(P)− F ′. But by Lemma 7 that is impossible.

Thus, every separator of F \ F ′ is legal and F is a maximal set of pairwise minimal
separators of LG(P) where every separator in F is legal. ��

5 Splits and Cuts

We first argue that for every nice minimal cut of G(P) we can derive a split of L(P).

Lemma 10. Let F be a nice minimal cut of G(P) and let G1 and G2 be the two con-
nected components of G(P)− F . Then, L(G1)|L(G2) is a split of L(P).

194 S. Vakati and D. Fernández-Baca

Proof. Consider Gi for each i ∈ {1, 2}. We show that L(Gi) is non-empty. Since F is
nice, Gi contains at least one edge e of G(P). If e is a non-internal edge, then L(Gi) is
non-empty. Assume that e = {u, v} is an internal edge of some input tree T . If F does
not contain an edge of T , then L(T) ⊆ L(Gi) and thus L(Gi) is non-empty. Assume
that F contains one or more edges of T . Let Tu, Tv be the two subtrees of T − e. Since
F is a nice minimal cut, F contains edges from either Tu or Tv but not both. Without
loss of generality assume that F does not contain edges from Tu. Then, every edge of
Tu is in the same component as e. Since Tu contains at least one leaf, L(Gi) is non-
empty. Thus, L(G1)|L(G2) is a split of L(P). ��

Let σ(F) denote the split of L(P) induced by a nice minimal cut F . IfF is a set of nice
minimal cuts of G(P), Σ(F) denotes the set of all the non-trivial splits in

⋃
F∈F σ(F).

The following result expresses the relationship between complete sets of nice minimal
cuts and the compatibility of splits.

Theorem 8. If G(P) has a complete set of pairwise parallel nice minimal cuts F , then
Σ(F) is compatible and any compatible tree for Σ(F) is also a compatible tree for P .

Example 2. For the cuts of the display graph in Fig. 1 given in Example 1, we have
σ(F1) = abc|defg, σ(F2) = abcfg|de, σ(F3) = ab|cdefg, and σ(F4) = abcde|fg.
Note that these splits are pairwise compatible.

The proof of Theorem 8 uses the following lemma.

Lemma 11. Let F1 and F2 be two parallel nice minimal cuts of G(P). Then, σ(F1)
and σ(F2) are compatible.

Proof. Let σ(F1) = U1|U2 and σ(F2) = V1|V2. Assume that σ(F1) and σ(F2) are
incompatible. Thus, Ui ∩ Vj �= ∅ for every i, j ∈ {1, 2}. Let a ∈ U1 ∩ V1, b ∈ U1 ∩ V2,
c ∈ U2 ∩ V1 and d ∈ U2 ∩ V2. Since {a, b} ⊆ U1, there exists a path π1 between leaves
a and b in G(P) − F1. But a and b are in different components of G(P) − F2. Thus,
an edge e1 of path π1 is in the cut F2. Similarly, {c, d} ⊆ U2 and there exists a path
π2 between labels c and d in G(P) − F1. Since c and d are in different components
of G(P) − F2, cut F2 contains an edge e2 of path π2. But π1 and π2 are in different
components of G(P)−F1, so edges e1 and e2 are in different components ofG(P)−F1.
Since {e1, e2} ⊆ F2, the cuts F1 and F2 are not parallel, a contradiction. ��

Proof of Theorem 8. The compatibility of Σ(F) follows from Lemma 11 and Theo-
rem 1. Let S be a compatible tree for Σ(F), let T be an input tree of P , let S′ = S|L(T),
and let e be any internal edge of T . We now show that S′ displays σ(e).

Let σ(e) = A|B. There exists a cut F ∈ F where e is the only edge of T in F . By
Lemma 7, since F is minimal, the leaves of sets A and B are in different components
of G(P) − F . Thus, if σ(F) = A′|B′ then up to renaming of sets we have A ⊆ A′

and B ⊆ B′. Because S displays σ(F), S′ also displays σ(e). Since S′ displays all the
splits of T , T can be obtained from S′ by contracting zero or more edges [13]. Thus, S
displays T . Since S displays every tree in P , S is a compatible tree for P . ��

Characterizing Compatibility and Agreement of Unrooted Trees 195

1 2 3
a

b c

d

e

(i)

4 5 6
a

b

c

df

(ii)

1 2 3

4 5 6

a b c d e
f

(iii)

12

1a 1b

23

2c

3e

3d

4a 4b

45

5f

56

6c
6d

(iv)

Fig. 2. (i) First input tree. (ii) Second input tree, which agrees with the first. (iii) Display graph
of the input trees. (iv) Edge label intersection graph of the input trees, where label uv represents
edge {u, v} of the display graph.

6 Characterizing Agreement via Cuts

The following characterization of agreement is similar to the one for tree compatibility
given by Theorem 6, except for an additional restriction on the minimal cuts.

Theorem 9. A profileP has an agreement supertree if and only if G(P) has a complete
set F of pairwise parallel legal minimal cuts where, for every cut F ∈ F and for every
T ∈ P , there is at most one edge of T in F .

Example 3. One can verify that the display graph of Fig. 1 does not meet the conditions
of Theorem 9 and, thus, the associated profile does not have an AST. On the other hand,
for the display graph of Fig. 2, let F = {F1, F2, F3}, where F1 = {{1, 2}, {4, 5}},
F2 = {{1, 2}, {5, 6}} and F3 = {{2, 3}, {6, d}}. For any given input tree T , every cut
in F has at most one edge of T . Also, F is a complete set of pairwise parallel legal
minimal cuts. Thus, by Theorem 9, the input trees of Fig. 2 have an AST.

The analogue of Theorem 9 for LG(P) stated next follows from Theorem 9 and Lem-
mas 2, 5, and 8 .

Theorem 10. A profile P has an agreement supertree if and only if LG(P) has a com-
plete set F of pairwise parallel legal minimal separators where, for every F ∈ F and
every T ∈ P , there is at most one vertex of LG(T) in F .

Theorem 9 follows from Lemma 8 and the next result.

Lemma 12. A profileP has an agreement supertree if and only if G(P) has a complete
set F of pairwise parallel nice minimal cuts where, for every cut F ∈ F and every
T ∈ P , there is at most one edge of T in F .

196 S. Vakati and D. Fernández-Baca

The rest of the section is devoted to the proof of Lemma 12.
Let S be an AST of P and let e = {u, v} be an edge of S. Let Su and Sv be the

subtrees of S − e containing u and v, respectively. Let Lu = L(Su) and Lv = L(Sv).
Thus, σe(S) = Lu|Lv. Assume that there exists an input tree T where L(T) ∩ Lx �= ∅
for each x ∈ {u, v}. Then there exists an edge f ∈ E(T) where, if σf (T) = A1|A2,
then A1 ⊆ Lu and A2 ⊆ Lv. (If there were no such edge, S|L(T) would contain a split
that is not in T and would thus not be isomorphic to T .) We call e an agreement edge
of S corresponding to edge f of T . Note that there does not exist any other edge f ′ of
T where e is also an agreement edge of S with respect to edge f ′ of T .

Given an AST S of P , we define a function Ψ from E(S) to subsets of edges of
G(P) as follows. For every e ∈ E(S), an edge f of an input tree T is in Ψ(e) if and
only if e is an agreement edge of S corresponding to edge f of T . Observe that Ψ is
uniquely defined. We call Ψ the cut function of S. Given an edge e ∈ E(S), we define
a set Vx for every x ∈ e as follows. For every T ∈ P , Vx contains all the vertices of the
minimal subtree of T connecting the labels in L(T) ∩ Lx. Note that if e = {u, v} then
{Vu, Vv} is a partition of V (G(P)).

Lemma 13. Let S be an AST of P and let Ψ be the cut function of S. Then,

(i) for every edge e ∈ E(S), Ψ(e) is a cut of G(P) and
(ii) for any edge e ∈ E(S), Ψ(e) is a minimal cut of G(P) if and only if G(P)−Ψ(e)

has exactly two connected components.

Proof. (i) Let e = {u, v}. We show that G(P)− Ψ(e) does not contain an edge whose
endpoints are in distinct sets of {Vu, Vv}. Assume the contrary. Let f = {x, y} be an
edge of G(P) − Ψ(e) where x ∈ Vu and y ∈ Vv. Since f ∈ G(P) − Ψ(e), f /∈ Ψ(e).
Suppose f is an edge of input tree T . There are two cases.

1. Ψ(e) does not contain an edge of T . Then, there exists an endpoint p of e where
L(T) ⊆ Lp. Without loss of generality, let u = p. Then, V (T) ⊆ Vu and thus
y ∈ Vu, a contradiction.

2. Ψ(e) contains an edge f ′ �= f of T . Let f ′ = {r, s} and let Lr ⊆ Lu and Ls ⊆ Lv.
Let x,r be the vertices of f and f ′ where Lx ⊂ Lr. Since T is a phylogenetic tree,
such vertices x and r exist. Since Lr ⊆ Lu, both the endpoints of f are in Vu, a
contradiction.

Thus, G(P) − Ψ(e) does not contain an edge whose endpoints are in different sets of
{Vu, Vv}. Since Vu and Vv are non-empty, it follows that Ψ(e) is a cut of G(P).

(ii) The “only if” part follows from the definition of a minimal cut. We now prove
the “if” part. Let e = {u, v}. Assume that G(P) − Ψ(e) has exactly two connected
components. From the proof of (i), Vu and Vv are the vertex sets of those two connected
components. Consider any edge f ∈ Ψ(e). The endpoints of f are in different sets of
{Vu, Vv} and thus are in different connected components of G(P)−Ψ(e). This implies
that G(P)−(Ψ(e)\{f}) is connected. Thus, if G(P)−Ψ(e) has exactly two connected
components, Ψ(e) is a minimal cut of G(P). ��

Let S be an AST of P and let e be an edge of S. Although the preceding result shows
that Ψ(e) is a cut of G(P), Ψ(e) may not be minimal. We now argue that we can always
construct an agreement supertree whose cut function gives minimal cuts.

Characterizing Compatibility and Agreement of Unrooted Trees 197

Suppose e = (u, v) is a an edge of S where Ψ(e) is not minimal. Let {L1, . . . , Lm}
be the partition of Lv where for every i ∈ [m], Li = L(C) ∩ Lv for some connected
component C in G(P) − Ψ(e). We assume without loss of generality that m > 1 (if
not, we can just exchange the roles of u and v). Let Rv be the rooted tree derived from
Sv by distinguishing vertex v as the root. Let Rv,i be the (rooted) tree obtained from the
minimal subtree of Rv connecting the labels in Li by distinguishing the vertex closest
to v as the root and suppressing every other vertex that has degree two. To split edge e
at u is to construct a new tree S′ from S in two steps: (i) delete the vertices of Rv from
S and (ii) for every i ∈ [m], add an edge from u to the root of Rv,i.

We can show the following by repeatedly splitting edges that do not correspond to
minimal cuts. For brevity, we omit the proof.

Lemma 14. If P has an AST, then it has an AST S of P whose cut function Ψ satisfies
the following: For every edge e ∈ S, Ψ(e) is a minimal cut of G(P).

Proof of Lemma 12. (⇐) Assume that P has an AST. Then, by Lemma 14, P has an
AST S whose cut function Ψ has the property that, for every edge e ∈ E(S), Ψ(e) is a
minimal cut of G(P). Let F be the set of all Ψ(e) such that e is an internal edge of S.
Then, F is a set of minimal cuts of G(P). Further, by definition of Ψ , for every F ∈ F
and for every T ∈ P , F contains at most one edge of T . Thus every cut in F is legal.
We now prove that F is a complete set of pairwise parallel nice minimal cuts of G(P).

We first prove that every cut inF is nice. Consider any F ∈ F . Let e = {u, v} be the
internal edge of S where Ψ(e) = F . Let T be an input tree that has an internal edge f
in Ψ(e). Since e is an internal edge at least one such input tree exists; otherwise Ψ(e) is
not a minimal cut. Now, by definition, f is the only edge of T in Ψ(e), so, by Lemma 7,
each of the two connected components of G(P) − Ψ(e) has at least one non-internal
edge of T . Hence, F is a nice minimal cut of G(P).

To prove that the cuts in F are pairwise parallel, we argue that for any two distinct
internal edges e1 and e2 of S, Ψ(e1) and Ψ(e2) are parallel. There exist vertices x ∈ e1
and y ∈ e2 where Lx ⊆ Ly. For every edge f ∈ Ψ(e1), we show that f ∈ Ψ(e2) or
f ⊆ Vy . It then follows that Ψ(e1) and Ψ(e2) are parallel. Let f be an edge of input tree
T . Then there exists z ∈ f where Lz ⊆ Lx. Thus, Lz ⊆ Ly and z ∈ Vy . By Lemma 13,
all the vertices of Vy are in the same connected component of G(P) − Ψ(e2). Thus,
f ∈ Ψ(e2) or f ⊆ Vy .

Lastly, we show that F is complete. Consider any internal edge f = {p, q} of some
input tree T . Since S is an AST of P , there exists an edge e = {u, v} where, up
to relabeling of sets, Lp ⊆ Lu and Lq ⊆ Lv. Thus, e is an agreement edge of S
corresponding to f , so f ∈ Ψ(e). Since f is an internal edge, e is also an internal edge
of S and thus Ψ(e) ∈ F . Hence, for every internal edge f of an input tree there is a cut
F ∈ F where f ∈ F . Thus, S is complete.

(⇒) Assume that there exists a complete set F of pairwise parallel nice minimal
cuts of G(P) where, for every F ∈ F and every T ∈ P , F contains at most one
edge of T . By Theorem 8, Σ(F) is compatible and, by Theorem 1, there exists an
unrooted tree S where Σ(F) = Σ(S). We prove that S is an AST of P by showing
that Σ(S|L(T)) = Σ(T) for every input tree T ∈ P .

198 S. Vakati and D. Fernández-Baca

Consider an input tree T of P . Let X1|X2 be the non-trivial split of T corresponding
to edge f ∈ E(T). Since F is complete, there exists a cut F ∈ F where f ∈ F . If
σ(F) = Y1|Y2, by Lemma 7, up to relabeling of sets, Xi ⊆ Yi for every i ∈ {1, 2}.
Since σ(F) is a split of S, this implies that Σ(T) ⊆ Σ(S|L(T)).

Consider any non-trivial split P1|P2 of Σ(S) where Pi ∩ L(T) �= ∅ for each i ∈
{1, 2}. Let Qi = Pi∩L(T) for each i ∈ {1, 2}. Since Σ(S) = Σ(F), there exists a cut
F ∈ F where σ(F) = P1|P2. Since P1 and P2 are in different connected components
of G(P) − F , Q1 and Q2 are also in different connected components of G(P) − F .
Thus, there exists an edge f ′ of T in F . Since F does not contain any other edge of T ,
σ(f ′) = Q1|Q2. Thus, Σ(S|L(T)) ⊆ Σ(T). ��

7 Conclusion

We have shown that the characterization of tree compatibility in terms of restricted trian-
gulations of the edge label intersection graph transforms into a characterization in terms
of minimal cuts in the display graph. These two characterizations are closely related to
the legal triangulation characterization of [15]. We also derived characterizations of the
agreement supertree problem in terms of minimal cuts and minimal separators of the
display and edge label intersection graphs respectively.

It is not known if the agreement supertree problem is fixed parameter tractable when
parametrized by the number of input trees. It remains to be seen whether any of these
characterizations can lead to explicit fixed parameter algorithms for the tree compati-
bility and agreement supertree problems when parametrized by the number of trees.

Acknowledgment. We thank Sylvain Guillemot for his valuable comments.

References

1. Aho, A., Sagiv, Y., Szymanski, T., Ullman, J.: Inferring a tree from lowest common ancestors
with an application to the optimization of relational expressions. SIAM J. Comput. 10(3),
405–421 (1981)

2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algo-
rithms 12(2), 308–340 (1991)

3. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators.
SIAM J. Comput. 31(1), 212–232 (2001)

4. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is FPT. Theor. Com-
put. Sci. 351, 296–302 (2006)

5. Buneman, P.: The recovery of trees from measures of dissimilarity. In: Mathematics in the Ar-
chaeological and Historical Sciences, pp. 387–395. Edinburgh University Press, Edinburgh
(1971)

6. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of finite
graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Gordon, A.D.: Consensus supertrees: The synthesis of rooted trees containing overlapping
sets of labelled leaves. Journal of Classification 9, 335–348 (1986)

8. Gusfield, D.: The multi-state perfect phylogeny problem with missing and removable
data: Solutions via integer-programming and chordal graph theory. J. Comput. Biol. 17(3),
383–399 (2010)

Characterizing Compatibility and Agreement of Unrooted Trees 199

9. Gysel, R., Stevens, K., Gusfield, D.: Reducing problems in unrooted tree compatibility to
restricted triangulations of intersection graphs. In: Raphael, B., Tang, J. (eds.) WABI 2012.
LNCS, vol. 7534, pp. 93–105. Springer, Heidelberg (2012)

10. Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Math. 306(3), 297 (2006)
11. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete Applied

Mathematics 69(1-2), 19–31 (1996)
12. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph em-

beddings. Discrete Appl. Math. 79(1-3), 171–188 (1997)
13. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics. Oxford Uni-

versity Press, Oxford (2003)
14. Steel, M.A.: The complexity of reconstructing trees from qualitative characters and subtrees.

J. Classif. 9, 91–116 (1992)
15. Vakati, S., Fernández-Baca, D.: Graph triangulations and the compatibility of unrooted phy-

logenetic trees. Appl. Math. Lett. 24(5), 719–723 (2011)

Unifying Parsimonious Tree Reconciliation

Nicolas Wieseke, Matthias Bernt, and Martin Middendorf

University of Leipzig, Faculty of Mathematics and Computer Science,
Augustusplatz 10, 04109 Leipzig, Germany

{wieseke,bernt,middendorf}@informatik.uni-leipzig.de

Abstract. Evolution is a process that is influenced by various environ-
mental factors, e.g. the interactions between different species, genes, and
biogeographical properties. Hence, it is interesting to study the combined
evolutionary history of multiple species, their genes, and the environment
they live in. A common approach to address this research problem is to
describe each individual evolution as a phylogenetic tree and construct
a tree reconciliation which is parsimonious with respect to a given event
model. Unfortunately, most of the previous approaches are designed only
either for host-parasite systems, for gene tree/species tree reconciliation,
or biogeography. Hence, a method is desirable, which addresses the gen-
eral problem of mapping phylogenetic trees and covering all varieties of
coevolving systems, including e.g., predator-prey and symbiotic relation-
ships. To overcome this gap, we introduce a generalized cophylogenetic
event model considering the combinatorial complete set of local coevo-
lutionary events. We give a dynamic programming based heuristic for
solving the maximum parsimony reconciliation problem in time O(n2),
for two phylogenies each with at most n leaves. Furthermore, we present
an exact branch-and-bound algorithm which uses the results from the dy-
namic programming heuristic for discarding partial reconciliations. The
approach has been implemented as a Java application which is freely
available from http://pacosy.informatik.uni-leipzig.de/coresym.

Keywords: cophylogeny, coevolution, coevolutionary event model, rec-
onciliation, host-parasite, gene tree/species tree, biogeography, symbio-
sis.

1 Introduction

Tree reconciliation analysis is a powerful tool in phylogenetics and has a wide
variety of applications. It is used in cladistic biogeography as well as for study-
ing host-parasite coevolution and gene/species tree inference [21]. A common
principle for creating tree reconciliations is to use event-based maximum par-
simony [24]. Therefore, coevolutionary events are defined together with a cost
model for the events and a reconciliation of the trees is sought that minimizes
the overall costs. Table 1 shows the common events used within the different
types of applications. Two closely related types of this problem can be distin-
guished: tree inference and tree embedding/tree mapping. In the first case an

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 200–214, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://pacosy.informatik.uni-leipzig.de/coresym

Unifying Parsimonious Tree Reconciliation 201

overarching tree is sought that embeds a given set of, possibly incongruent, trees.
In the second case two (or more) trees are given and a mapping of those trees
onto each other is sought. Although tree reconciliation refers to both types of
problems, the scope of this paper lies on the latter case.

Starting in 1979 Goodman et al. [8] introduced the problem of embedding
gene trees into species trees. They presented a method to construct most parsi-
monious reconciliations, based on the evolutionary events gene duplication and
gene loss. Since then, several algorithms for gene tree/species tree reconcilia-
tion have been developed, e.g., GeneTree [20], SDI [29], Softparsmap [1], Notung
[5,27], and Mowgli [7]. These tools either consider additional events like lateral
gene transfer or incomplete lineage sorting, or they are extended to suit unre-
solved phylogenetic trees. Recently, [26] examines lateral gene transfer to and
from species that are not represented in the phylogenetic tree, i.e. extincted
or unsampled species. The respective event was called lateral transfer from the
dead.

A similar problem arose in the field of biogeography, where species trees and
area cladograms have to be reconciled. Nelson and Platnick [15] were the first who
proposed general assumptions for inferring area cladograms from species trees
that have been implemented in the software COMPONENT 1.5 [18]. There are
several other approaches for inferring area cladograms from species trees, based
on association matrices, e.g., component compatibility analysis [28], Brooks par-
simony analysis [2], and three area statement analysis [14]. But all of them are
pattern-based approaches and do not produce reconciled trees. The dispersal-
vicariance analysis [23] implemented in the software DIVA is an event-based
method considering vicariance, duplication, dispersal, and extinction events. It
supports tree inference as well as tree embedding.

In 1988 Hafner and Nadler published a cophylogenetic analysis on pocket go-
phers and their chewing lice parasites [9]. Methods designed for biogeographical
[15] as well as gene tree/species tree problems [11] to examine cospeciation events
in host-parasite systems have been proposed in [10]. In the same year Ronquist
and Nylin [24] suggested the usage of colonisation, exclusion, and successive spe-
cialization events with given weights relative to the probability of each event.
Based on these events they developed a method for reconstructing the evolution-
ary history for two given phylogenetic trees and an association matrix describing
the associations between extant species. This type of data set can be represented
graphically by a so called tanglegram [3]. In the same paper Charleston devel-
oped a data structure, called jungles, and a method to construct all optimal solu-
tions for the reconciliation problem with events cospeciation, duplication, lineage
sorting, and host switch under a general weighting scheme. The approach was
implemented in the software TreeMap 2.0 and extended in Tarzan [12] by the use
of additional timing information. Jane [6] and CoRe-PA [13] use dynamic pro-
gramming to efficiently compute reconciliations based on the same event model.
The latter tool also considered unresolved phylogenies and presented a method
for approximating event costs automatically. Additionally a first attempt was
given to handle parasites infesting multiple hosts. The current version 4 of Jane

202 N. Wieseke, M. Bernt, and M. Middendorf

supports multi-host parasites and failure to diverge events as well. Furthermore,
it is able to automatically resolve polytomies.

In [19] Page already pointed out the similarity between the three different
types of reconciliation problems and gave a unified definition of reconciled trees.
He presented the software COMPONENT 2.0, which he applied to data sets
from all three types of problems.

Gene tree/species tree, biogeography, and host-parasite reconciliation prob-
lems have in common, that there exists an overarching tree into which the other
trees have to be embedded, i.e., the gene trees have to be embedded into a species
tree, the species tree into an area cladogram, and the parasite tree into a host
tree. Until now there is no event model and respective algorithms which consid-
ers the general problem of two trees which also can be equitable mapped onto
each other, as it is the case for, e.g., symbiotic systems or gene-gene interactions.
To fill this gap and to straighten up the event proliferation we introduce a com-
binatorial complete event model of local association patterns. However, a certain
type of application may consider a subset of all possible event types only. There-
fore, the event model can be utilized by defining a cost model with infinity costs
for neglected events. Furthermore, we present a dynamic programming heuristic
as well as an exact branch-and-bound algorithm to construct tree reconciliations
under the new event model. In [16] it was shown that even the special case
of host-parasite tree reconciliation considering the events cospeciation, sorting,
duplication, and host switching is NP-complete. Therefore, heuristic or approx-
imation algorithms might be the only chance to obtain solutions in reasonable
time for large data sets. However, for smaller data sets an computing an optimal
solution might be feasible.

2 Basic Notations and Preliminaries

For the following formal description we select the cophylogenetic reconciliation
of two dependent sets of species as reference problem. Other kinds of tree rec-
onciliation problems, e.g., of species, areas, or genes, are covered analogously.

The evolution of a set of species is usually depicted as a phylogenetic tree,
which is a tree T = (VT , ET) with node set VT , edge set ET , and leaf set
LT ⊂ VT . In the context of phylogenetic trees an internal node u ∈ VT \LT refers
to a speciation of an ancestral species u into subspecies. An edge (u′, u) ∈ ET

represents the time span of the existence of a species u from its emergence after
the speciation of u′ until its own speciation or the present day. We refer to an
edge (u′, u) as eu or simply u if it is clear from the context. If not stated otherwise
we assume a phylogenetic tree being binary and rooted, i.e., each node has an
outdegree of either two (internal node) or zero (leaf node) and there is exactly
one node, the root ρT , with indegree zero whereas all other nodes u ∈ VT \ ρT
have indegree one. For each internal node u ∈ VT \LT we denote the children of u
as ui with i ∈ {1, 2}. For technical reasons we introduce an artificial root ρ′ and
an edge (ρ′, ρ). In that way it is possible to refer to the time span of the existence
of root species ρ by eρ, or simply edge ρ. We define a partial order %T on VT

Unifying Parsimonious Tree Reconciliation 203

Table 1. Coevolutionary events with the various names used within the different types
of applications - biogeography (BG), gene/species tree (GST) and host-parasite co-
evolution (HPC). Solid lines represent the overarching tree (i.e., the area cladogram,
species tree, and host tree, respectively), dotted lines represent the embedded tree (i.e.,
species tree, parasite tree, and gene tree, respectively).

biogeography gene tree/species tree host-parasite
vicariance [25],

allopatric
speciation [23]

speciation
(null event)

cospeciation [17],
codivergence [4],

successive
specialisation [24]

duplication [25],
sympatric

speciation [23]

gene duplication [8] duplication [17],
independent speciation

[17]

partial extinction [25] - sorting [17],
partial extinction [17],
missing the boat [17]

×

- speciation and loss [7] -

×
complete extinction [25] gene loss [8] extinction [17]

(partial) dispersal [25] horizontal/lateral gene
transfer [5,26],

direct transfer [26]

host switch [17],
partial switch [17]

complete dispersal [25] - complete switch [17]

×

- transfer and loss [7] -

- lateral transfer from
the dead [26],

indirect transfer [26]

-

- - takeoff [13],
exclusion [24]

- - landing [13],
colonisation [24]

- - failure to
speciate/diverge [17,4]

204 N. Wieseke, M. Bernt, and M. Middendorf

such that u′ %T u, if and only if u′ lies on the path from ρ to u. In addition,
u′ ≺T u if and only if u′ %T u and u′ �= u. Node u′ is called an ancestor of u
and u a descendant of u′, respectively. Furthermore, we define the timing τ of a
tree as τ : VT → R such that ∀u′, u ∈ VT it holds that u′ %T u ⇒ τ(u′) ≤ τ(u)
and u′ ≺T u ⇒ τ(u′) < τ(u), respectively. In the evolutionary context τ(u)
represents the point in time at which the speciation of u took place.

Let (S, T, φ) be a pair of rooted binary trees S = (VS , ES) and T = (VT , ET)
together with a mapping φ(s, t) : VS × VT → [0, 1] representing inter-species
association strengths measured by a value between zero and one. The strength
φ(s, t) can be interpreted as an a priori probability of two species s and t being
associated. The given definition of φ is a generalization of the leaf-to-leaf associa-
tions ϕ defined in [3], extended by association strengths for extant and ancestral
species. According to the notion of tanglegrams we refer to such a tuple (S, T, φ)
as an X-tanglegram.

A cophylogenetic reconciliation for a given X-tanglegram (S, T, φ) can be de-
scribed as a set of associations R ⊆ ES × ET between edges, with R being
the reconciled interactions between extant as well as ancestral species. Depend-
ing on the type of application additional constrains on the set R are required
for a reconciliation to be phylogenetically meaningful, e.g., timing constraints.
These will be discussed later on. A sub-reconciliation R|s,t is a subset of R such
that (eu, ev) ∈ R|s,t ⇔ (eu, ev) ∈ R and s %S u and t %T v, i.e., R|s,t is a
reconciliation of the subtrees of S and T rooted at nodes s and t, respectively.

Note that in contrast to previous approaches we describe a reconciliation as
a mapping between edges. In [12] a reconciliation was assumed to be a bijective
mapping m : {VT } → {VS ∪ES} from the nodes of the parasite tree to the nodes
and edges of the host tree. However, from a given mapping m the respective
edge-to-edge mapping R can be derived as follows. Let (t, ti) ∈ ET be an edge
from T and s ∈ VS be the node for which m(t) = s or m(t) = es. Furthermore,
let s′′ ∈ VS be a node for which m(ti) = s′′ or m(ti) = es′′ . Then it holds that
(es, et), (es′′ , eti) ∈ R. If s is an ancestor of s′′ then for all nodes s′, s ≺S s′ ≺S s′′

it holds that {(es′ , eti)} ∈ R. Additionally, if m(t) = es is an edge mapping then
also (es, eti) ∈ R.

3 Methods

3.1 Generalized Coevolutionary Event Model

Previous reconciliation approaches always consider a certain set of cophyloge-
netic events. These events are designed to suit to a certain type of application
and some of them are combinations of other events, e.g., speciation and loss or
transfer and loss. In this section a generalized event model is presented that cov-
ers all possible local association patterns, i.e., all possible associations between
coincident edges of two nodes. Hence, this event model can be applied to most
of the applications. In the following the term species will be interchangeably
used for edge. This is because associations between species have a one-to-one
correspondence to pairs of associated edges in the reconciliation R.

Unifying Parsimonious Tree Reconciliation 205

In this approach a cophylogenetic event is defined as a relation between
the sets of coincident edges of two nodes s ∈ VS and t ∈ VT . Formally, an
event is described as a subset of {es, es1 , es2} × {et, et1 , et2}. For a pair of
species (s, t) we define a binary variable b(s,t) ∈ {0, 1}, such that b(s,t) = 1
if species s and t are assumed to be associated, i.e., (es, et) ∈ R, otherwise
b(s,t) = 0. Hence, an event can be described as an association tuple bs,t =
(bs,t, bs1,t, bs2,t, bs,t1 , bs,t2 , bs1,t1 , bs1,t2 , bs2,t1 , bs2,t2) of length nine.

A cost model γ : {0, 1}9 → R is defined specifying a cost value for each of
the 29 cophylogenetic events. Among the events there are some events which are
isomorphic, i.e., they are identical when changing the child order of s1 and s2,
respectively t1 and t2. For instance, the event {(es, et), (es1 , et)} is isomorphic to
the event {(es, et), (es2 , et)}. Although it is not required, these isomorphic events
should have the same cost value and events with no associations at all should be
regarded as null event and therefore get a value of zero.

Not all events which can be modeled this way are phylogenetically meaningful.
If, for example, species s is associated with a child tj of species t and t with a
child species si of s, this would immediately result in an inconsistency as the
speciation of s had to occur before the speciation of t and vice versa. Therefore,
we distinguish between three types of events: i) events with τ(s) < τ(t) (denoted
as “<” events), ii) events with τ(s) > τ(t) (“>” events) and iii) events with
τ(s) = τ(t) (“=” events). In the first case there must not be an association
between s and the descendant species ti. The second case is equivalently but
with no associations between t and sj . In the last case none of the species s,
respectively t, is associated with the descendant species tj , respectively si. The
events for case i) and case ii) are depicted in Figure 1. Case ii) is symmetric to
the first case with exchanged roles of s and t. Case iii) is shown in Figure 2.

In the algorithmic sections the restricted set of phylogenetically meaningful
events is considered only.

3.2 Dynamic Programming

For a given X-tanglegram (S, T, φ) and cost model γ a reconciliationR is sought,
such that the sum of all event and leaf-to-leaf association costs is minimal.

In the first step dynamic programming is used to determine all optimal sub-
reconciliations with respect to a given cost model. Therefore, two dynamic pro-
gramming matrices C0 and C1 are computed. C0(s, t) gives the costs for the
optimal sub-reconciliation R|s,t of the two subtrees rooted at s and t with s
and t being not associated. Accordingly, C1(s, t) computes the optimal sub-
reconciliation costs with s and t being associated. Starting from a pair of extant
species (s, t) the cost of a (non-)association Cb(s, t) is evaluated based on the
a priori association strength φ(s, t). For pairs of ancestral species (s, t) the cost
of each possible cophylogenetic event is evaluated, weighted, and accumulated
with the costs of the respective sub-reconciliations. From all those costs the min-
imum is chosen for Cb(s, t). With b = bs,t ∈ {0, 1} the dynamic programming
formulation is as follows.

206 N. Wieseke, M. Bernt, and M. Middendorf

s

t

et

es

es1 es2

�b = (00000 ∗ ∗ ∗ ∗)
���� �����

s

t

et

es

es1 es2

�b = (01000 ∗ ∗ ∗ ∗)
�	�
���

s

t

et

es

es1 es2

�b = (00100 ∗ ∗ ∗ ∗)
�	�
���

s et

t

es

es1 es2

�b = (01100 ∗ ∗ ∗ ∗)
����� �	�
���

s

et
×es

es1 es2

�b = (100000000)
���������� �

������	���� ����

s

t

et
es

es1 es2

�b = (11000 ∗ ∗ ∗ ∗)
��������� ����	�����

s

t

et
es

es1 es2

�b = (10100 ∗ ∗ ∗ ∗)
��������� ����	�����

es

s

t

et

es1es2

�b = (11100 ∗ ∗ ∗ ∗)
��
�����	����

s

t
es

et

et1 et2

�b = (00000 ∗ ∗ ∗ ∗)
���� �����

t

s

es

et

et1 et2

�b = (00010 ∗ ∗ ∗ ∗)
�	�
���

t

s

es

et

et1 et2

�b = (00001 ∗ ∗ ∗ ∗)
�	�
���

tes

s

et

et1 et2

�b = (00011 ∗ ∗ ∗ ∗)
����� �	�
���

t

es
× et

et1 et2

�b = (100000000)
���������� �

������	���� ����

t

s

es
et

et1 et2

�b = (10010 ∗ ∗ ∗ ∗)
���	���� �����������

t

s

es
et

et1 et2

�b = (10001 ∗ ∗ ∗ ∗)
���	���� �����������

s

t
es

et

et1et2

�b = (10011 ∗ ∗ ∗ ∗)
��
�����	����

Fig. 1. Coevolutionary events for case i), i.e., speciation of s occurs before the speci-
ation of t, are shown in the upper two rows. Events for case ii), i.e., speciation of s
occurs after the speciation of t, are shown in the lower two rows. A ’*’ in the association
tuples represents an arbitrary binary value.

Unifying Parsimonious Tree Reconciliation 207

s t

es et

es1es2 et1et2

�b = (000000000)
���� �����

s t

es et
es2 et2

es1et1

�b = (000001000)
�	�
�� ����	
	� �������

s t

es et
es2

es1et1et2

�b = (000001100)
������	 �
�����������	�
	� �������

s t

es et
et2

es1es2et1

�b = (000001010)
������	 �

�����������	� 	�
�������

s t

es et

es1 es2et1 et2

�b = (000001001)
�	��������	�
	� �������

es1 et2

s t

es et

es1es2et1

�b = (000001110)
������� �	��������	�

	� �������

es1 et2

s t

es et

es2et1et2

�b = (000000111)
������� �	��������	�

	� �������

es1 et2

s t

es et

es1es2et1et2

�b = (000001111)
������� �	 �	��������

	� �������

s t

es et

es1es2 et1et2

�b = (100000000)
���	�����	� �	��

s t

es et
es2 et2

es1et1

�b = (100001000)
�	�
�� ����	

s t

es et
es2

es1et1et2

�b = (100001100)
������	 �
�����������	�

s t

es et
et2

es1es2et1

�b = (100001010)
������	 �
�����������	�

s t

es et

es1 es2et1 et2

�b = (100001001)
�	��������	�

es1 et2

s t

es et

es1es2et1

�b = (100001110)
������� �	��������	�

es1 et2

s t

es et

es2et1et2

�b = (100000111)
������� �	��������	�

es1 et2

s t

es et

es1es2et1et2

�b = (100001111)
������� �	 �	��������

Fig. 2. Coevolutionary events for case iii), i.e., speciation of s and t occurring simul-
taneously

208 N. Wieseke, M. Bernt, and M. Middendorf

Cb(s, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α(1/φ(s, t)− 1) if s ∈ LS, t ∈ LT and b = 1
α(1/(1− φ(s, t))− 1) if s ∈ LS, t ∈ LT and b = 0
Cb

<(s, t) if s /∈ LS and t ∈ LT

Cb
>(s, t) if s ∈ LS and t /∈ LT

min(Cb
<(s, t), Cb

>(s, t), Cb
=(s, t)) otherwise

(1)

with the user defined parameter α ≥ 1 resulting in a cost value between 0 and∞
for the leaf-to-leaf associations (division by 0 is evaluated as ∞). Cb

�(s, t),' ∈
{<,>,=} is the cost of the minimal sub-reconciliation with an event of type '
occurring during the speciation of s and/or t. Precisely:

Cb
<(s, t) = min

bs1,t,bs2,t∈{0,1}

((∑
i∈{1,2}

Cbsi,t(si, t)
)

+ gb
(
φ(s, t)

)
· γ(bs,t)

)
Cb

>(s, t) = min
bs,t1 ,bs,t2∈{0,1}

((∑
j∈{1,2}

Cbs,tj (s, tj)
)

+ gb
(
φ(s, t)

)
· γ(bs,t)

)
Cb

=(s, t) = min
bsx,ty∈{0,1},
x,y∈{1,2}

((∑
i,j∈{1,2}

Cbsi,tj (si, tj)
)

+ gb
(
φ(s, t)

)
· γ(bs,t)

) (2)

with g0(x) =

{
∞ if x = 1
β(2x−1) otherwise and g1(x) =

{
∞ if x = 0
β−(2x−1) otherwise .

The functions gb(x), b ∈ {0, 1} give the weighting factors for the event costs
γ(bs,t). The user defined parameter β ≥ 1 results in factors ranging from 1/β to
β. Associations with a strength of x = 0, respectively non-associations with a
strength of x = 1, result in infinite costs. The term (2x− 1) is used to normalize
gb(x) to result in a factor of 1 if the association strength is 0.5.

After computing the dynamic programming matrices the cost for an optimal
reconciliation is given by min(C0

ρS ,ρT
, C1

ρS ,ρT
) with ρS and ρT being the roots of

trees S and T . The reconciliation can be retrieved by backtracking.

3.3 Time Consistency

Although the dynamic programming solutions are optimal with respect to the
given cost model γ, the reconciliations might be phylogenetically invalid due to
chronological inconsistencies [12]. With the dynamic programming formulation
it is assured that for an association of species s and t no descendant of s is
associated with an ancestor of t, and vice versa. However, additional timing con-
straints are introduced by each pairwise association in R. Assume two species
s and t being associated and therefore (es, et) ∈ R. As species s and t inter-
acted, both existed at the same time. Hence, species s has to be emerged before
the speciation of t and vice versa and it follows that ∀s′ <T s : τ(s′) < τ(t),
respectively ∀t′ <T t : τ(t′) < τ(s), see Figure 3 (a). This is not assured by
the dynamic programming formulation. Contradicting associations of species
from disjoint subtrees of both phylogenies can occur. For an example consider
the species s1, s2, t1, and t2 from disjoint subtrees of S, respectively T , with

Unifying Parsimonious Tree Reconciliation 209

s′ t′

s t

es et

���

ρS

ρT

s1′ s2′

es1′ es2′

es1 es2

t1 t2

et1 et2

et1iet2j

���

Fig. 3. (a) The association between the two edges es and et results in the two timing
constraints τ (s′) < τ (t) and τ (t′) < τ (s′) (dashed arrows). (b) The four associations
(es1, et1), (es2, et2), (es1′ , et2j) and (es2′ , et1i) result in circular timing constrains (cycle
of dashed arrows).

{(es1, et1), (es2, et2)} ⊆ R. Furthermore, let the species s1′ and s2′ be the par-
ent species of s1, respectively s2. Now assume that s1′ is associated with the
child species t2j of t2 and s2′ is associated with the child species t1i of t1, i.e.,
{(es1′ , et2j), (es2′ , et1i)} ⊆ R. This scenario creates (among others) the timing
constraints τ(s1′) < τ(t1) < τ(s2′) < τ(t2) < τ(s1′) which gives a timing
inconsistency. Figure 3 (b) shows this example. For a reconciliation to be phylo-
genetically meaningful such cases must not occur. To determine phylogenetically
valid reconciliations the following two definitions are needed.

Definition 1 (Timing Graph). For a given X-tanglegram (S, T, φ) and a rec-
onciliation R the timing graph TG is a directed graph (VTG, ETG) with node set
VTG = VS ∪ VT and edge set ETG = ES ∪ ET ∪ {(s′, t), (t′, s) : (es, et) ∈ R and
(s′, s) ∈ ES and (t′, t) ∈ ET }.

Definition 2 (Time Consistency). A reconciliation R for an X-tanglegram
(S, T, φ) is said to be time consistent if its timing graph is acyclic.

Observe that there are event models where the dynamic programming will al-
ways create time consistent reconciliations which are parsimonious with respect
to the total event costs. Chronological inconsistencies are created by contra-
dicting timing constraints. But the set of timing constraints coming from the
tree topologies of both trees without any associations are always compatible.
Therefore, for an inconsistency to occur there must be paths in the timing graph
connecting nodes of S, respectively T , which have no ancestor/descendant re-
lation, i.e., nodes from distinct subtrees of the same phylogenetic tree. Such
constraints are created by either S-duplications (only between nodes from S)
and T-duplications (only between nodes from T) or by any of the landing events
(constraints between nodes from both trees). A chronological inconsistency can
be created only if combinations of such constrains between both types of trees
exist. Therefore, any event model which forbids landing events and allows only
one type of duplication (S or T) will lead to time consistent reconciliations.

210 N. Wieseke, M. Bernt, and M. Middendorf

For instance the gene duplication/gene loss event model commonly used for
gene tree/species tree reconciliation can be solved without chronological incon-
sistencies using dynamic programming.

But even if events are considered which possibly lead to chronological incon-
sistencies, dynamic programming can be used to construct valid solutions as
well. This is done by running dynamic programming and checking the timing
graph for cycles. In each cycle there exist edges which were introduced due to
associations between species. In an iterative way one can restrict the input data
by forbidding some of the associations and redo the dynamic programming until
the timing graph is acyclic. However, the produced reconciliation may not be
parsimonious anymore, see also [22].

3.4 Branch-and-Bound Algorithm

Although the (unrestricted) dynamic programming does not necessarily result
in a time consistent reconciliation, it can be used to determine a lower bound
for the costs of a partially computed reconciliation. This lower bound is used
by a branch-and-bound algorithm to cut the computation whenever a partial
solution indicates that the cost will be higher than a certain value, e.g., the cost
of a previously found reconciliation or a maximum threshold.

The algorithm starts with an empty set of associations and a lower bound of
min(C0

ρS ,ρT
, C1

ρS ,ρT
) for the reconciliation costs. In the branching procedure of

the algorithm a decision tree is traversed by considering in each step a pair of
species, i.e., edges, as either associated or not associated. In this way a partial
reconciliation is constructed adding at most one association per branching step.
The pairs are selected in a top-down manner, starting from (ρS , ρT), such that
it is assured that when selecting a pair (s, t) all pairs of ancestral species (s′, t′),
with s′ ≺S s and t′ ≺T t, were already processed beforehand. For each selection
the timing graph is updated and checked for cycles. If the graph contains any
cycles the computation is cut at this point and the next pair of species is selected.

As a cophylogenetic event consists of multiple associations, all the respective
pairs have to be processed before an event, and therefore its cost, can be de-
termined. If this is the case then the cost of the respective event is added to
the cost of the already computed partial reconciliation. The lower bound for
the total costs is then given by the costs of the partial reconciliation plus the
minimum costs needed for the sub-reconciliations of the unprocessed pairs of
subtrees. These minimum costs are taken from the two dynamic programming
matrices C0 and C1.

To avoid unnecessary branching after choosing two species s and t as being
associated, all pairs (s′, t′′) and (s′′, t′) with s′ ≺S s ≺S s′′ and t′ ≺T t ≺T t′′

are assumed to be not associated, as this would result in timing inconsistencies.
The pseudocode is given in Algorithm 1.

Beside timing constraints, some coevolutionary systems require that addi-
tional properties have to be satisfied for a reconciliation to be valid. There may
be systems which require, e.g., that each species of one type is associated with at
least, respectively at most, one species of the other type at a time. For instance

Unifying Parsimonious Tree Reconciliation 211

in gene tree/species tree reconciliations each (ancestral) gene is associated with
exactly one species. As these constraints restrict the set of valid solutions they
can be easily integrated into the branch-and-bound algorithm. In each branch-
ing step it is checked if the current association will lead to a violation and, if
applicable, the computation can be cut.

Algorithm 1. Pseudocode for computing the minimal sum of event costs
for the cophylogenetic reconciliation of S and T

Input: pairs: the queue of unprocessed pairs - [(ρS, ρT)] at first call;
A[][]: the association matrix; costpartial: the costs of the partial reconciliation;
costbounds: the lower bound for the costs of unprocessed sub-reconciliations;
costbest: cost of current best solution or infinity/max threshold;
TG: the timing graph; the trees S and T and DP matrices C0 and C1;
if pairs is not empty then

get next unprocessed pair (s, t) from pairs;
add all pairs (s, tj), (si, t), (si, tj) with i, j ∈ {1, 2} to pairs;
foreach b in {“not-associated”, “associated”} do

if A[s][t] is undefined or equals b then
set A[s][t] to b;
if b equals “associated” then

foreach s′, s′′, t′, t′′ with s′ <T s <T s′′ and t′ <T t <T t′′ do
A[s′][t′′] ← “not-associated”; A[s′′][t′] ← “not-associated”;

update timing graph TG;
if timing is consistent then

if a new event can be determined from A[][] then
update costpartial; update costbounds;

if costpartial + costbounds ≤ costbest then
costtotal ← result of recursive call to Alg. 1;
costbest ← min(costbest, costtotal);

undo changes to TG, A[][], costpartial, and costbounds;

return costbest

4 Discussion

A certain type of application usually requires only a subset of the events mod-
eled by this approach. For each event from this subset a cost value has to be
specified. All neglected events get infinite costs and will therefore not occur in
reconciliations with finite overall costs. Obviously there is a 1-to-1 correspon-
dence between most of the cophylogenetic events depicted in Table 1 and the
events defined by local association patterns shown in Figures 1 and 2. Only
the two types of switches (partial and complete) and the lateral transfer from
the dead can not be modeled directly by this approach. Instead, a partial switch

212 N. Wieseke, M. Bernt, and M. Middendorf

is seen as a combination of the events takeoff and landing, while a complete
switch and a lateral transfer from the dead are modeled by an extinction and a
landing. When giving the takeoff and landing events, respectively extinction and
landing events, the same accumulated costs, then a certain reconciliation results
in the same overall costs in both event models. This opens up new possibilities
for solving reconciliation problems for a variety of applications. Biogeography,
gene tree/species tree, and host-parasite systems can be reconciled with the same
algorithms while only the cost model γ differs. Beside that, further cases of ap-
plication exists, e.g., general symbiotic systems or interactions of genes or gene
products, where both association partners are equitable and a reconciliation can
not be produced by simply embedding one tree into the other.

In this approach we decided a reconciliation to be a set of associations be-
tween edges. This has been done to retain a similar graphical representation for
the cophylogenetic events as it has been used in previous publications. However,
as more complex events can be modeled by this approach, e.g., the partial cospe-
ciation, visualizing a reconciliation is a complex task and the interpretation of
the results might be hard. An alternative is to redefine a reconciliation to be a
set of associations between nodes on the directed line graphs (line digraphs) of
the phylogenetic trees with artificial root ρ′. Both definitions are interchange-
able as in the line graph only the roles of nodes and edges are changed but the
tree structure is retained. Then a reconciliation can be depicted as a graph with
directed tree edges representing the tree topology of both trees and undirected
association edges.

The dynamic programming algorithm has a time complexity of O(n2), where
n is the number of leaves in the larger phylogenetic tree. For each of the O(n2)
many values from the two matrices Cb

<(s, t), b ∈ {0, 1}, the cost of a constant
number of possible association patterns is determined. For each pattern this can
be done in constant time.

5 Conclusion

in this paper we introduced a cophylogenetic event model based on local as-
sociation patterns between coincident edges. due to the large variety of possi-
ble events and the possibility to neglect events via a corresponding cost model
the approach suits to various reconciliation problems. in addition we provided the
possibility to use a priori knowledge about association strengths to improve the
reconciliations. we presented a o(n2) time heuristic based on dynamic program-
ming as well as an exact branch-and-bound algorithm to solve the reconciliation
problem for a given x-tanglegram (s, t, φ) and cost model γ.

Until now, only binary phylogenetic trees are considered. But extending the
approach to support polytomies can be done by extending the event model to
non-binary events. However, this requires a fixed maximal outdegree for the
internal nodes and therefore can not be used for multifurcations of arbitrary size.
Alternatively, the polytomies can be resolved within the reconciliation process
using heuristic approaches.

Unifying Parsimonious Tree Reconciliation 213

In recent years there is a trend towards using also phylogenetic networks.
These networks can display hybridization events, as nodes with indegree greater
than one. While extending our event model to consider cophylogenetic hybridiza-
tion is straightforward, further research is needed to adopt the reconciliation
algorithms.

Acknowledgements. This work was funded by the German Research Founda-
tion (DFG) through the project MI439/14-1.

References

1. Berglund-Sonnhammer, A.C., Steffansson, P., Betts, M., Liberles, D.: Optimal gene
trees from sequences and species trees using a soft interpretation of parsimony. J.
Mol. Evol. 63(2), 240–250 (2006)

2. Brooks, D.: Parsimony analysis in historical biogeography and coevolution:
methodological and theoretical update. Syst. Biol. 39(1), 14–30 (1990)

3. Charleston, M.: Jungles: a new solution to the host/parasite phylogeny reconcilia-
tion problem. Math. Biosci. 149(2), 191–223 (1998)

4. Charleston, M., Perkins, S.: Traversing the tangle: algorithms and applications for
cophylogenetic studies. J. Bio. Med. Inform. 39(1), 62–71 (2006)

5. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene
duplications and optimizing gene family trees. J. Comput. Biol. 7(3-4), 429–447
(2000)

6. Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R.: Jane: a new tool for the
cophylogeny reconstruction problem. Algorithms Mol. Biol. 5, 16 (2010)

7. Doyon, J.P., Scornavacca, C., Gorbunov, K.Y., Szöllosi, G., Ranwez, V., Berry,
V.: An efficient algorithm for gene/species trees parsimonious reconciliation with
losses, duplications and transfers (2010)

8. Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fit-
ting the gene lineage into its species lineage, a parsimony strategy illustrated by
cladograms constructed from globin sequences. Syst. Biol. 28(2), 132–163 (1979)

9. Hafner, M.S., Nadler, S.A.: Phylogenetic trees support the coevolution of parasites
and their hosts. Nature 332(6161), 258–259 (1988)

10. Hafner, M., Nadler, S.: Cospeciation in host-parasite assemblages: comparative
analysis of rates of evolution and timing of cospeciation events. Syst. Biol. 39(3),
192–204 (1990)

11. Hendy, M., Little, C., Penny, D.: Comparing trees with pendant vertices labelled.
Siam J. Appl. Math. 44(5), 1054–1065 (1984)

12. Merkle, D., Middendorf, M.: Reconstruction of the cophylogenetic history of re-
lated phylogenetic trees with divergence timing information. Theory Biosci. 123(4),
277–299 (2005)

13. Merkle, D., Middendorf, M., Wieseke, N.: A parameter-adaptive dynamic program-
ming approach for inferring cophylogenies. BMC Bioinformatics 11(S-1), 60 (2010)

14. Nelson, G., Ladiges, P.Y.: Three area statements: standard assumptions for bio-
geographic analysis. Syst. Zool. 40, 470–485 (1991)

15. Nelson, G., Platnick, N.: Systematics and biogeography: cladistics and vicariance.
Columbia University Press (1981)

214 N. Wieseke, M. Bernt, and M. Middendorf

16. Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The co-phylogeny recon-
struction problem is NP-complete. J. Comput. Biol. 18(1), 59–65 (2011)

17. Page, R.D.M.: Tangled Trees. Phylogeny, Cospeciation and Coevolution. The Uni-
versity of Chicago Press (2003)

18. Page, R.: Quantitative cladistic biogeography: constructing and comparing area
cladograms. Soc. Syst. Zool. (1988)

19. Page, R.: Maps between trees and cladistic analysis of historical associations among
genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994)

20. Page, R.D.M.: GeneTree: comparing gene and species phylogenies using reconciled
trees. Bioinformatics 14(9), 819–820 (1998)

21. Page, R., Charleston, M.: Trees within trees: phylogeny and historical associations.
Trends Ecol. Evol. 13(9), 356–359 (1998)

22. Patro, R., Sefer, E., Malin, J., Marçais, G., Navlakha, S., Kingsford, C.: Parsimo-
nious reconstruction of network evolution. Algorithms Mol. Biol. 7(1), 25 (2012)

23. Ronquist, F.: Dispersal-vicariance analysis: a new approach to the quantification
of historical biogeography. Syst. Biol. 46(1), 195–203 (1997)

24. Ronquist, F., Nylin, S.: Process and pattern in the evolution of species associations.
Syst. Biol. 39(4), 323–344 (1990)

25. Ronquist, F., Sanmartín, I.: Phylogenetic methods in biogeography. Annu. Rev.
Ecol. Evol. Syst. 42, 441–464 (2011)

26. Szollosi, G.J., Tannier, E., Lartillot, N., Daubin, V.: Lateral gene transfer from the
dead. Syst. Biol. 62(3), 386–397 (2013)

27. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary
species trees. J. Comput. Biol. 15(8), 981–1006 (2008)

28. Zandee, M., Roos, M.C.: Component-compatibility in historical biogeography.
Cladistics 3, 305–332 (1987)

29. Zmasek, C., Eddy, S.: A simple algorithm to infer gene duplication and speciation
events on a gene tree. Bioinformatics 17(9), 821–828 (2001)

Sibelia: A Scalable and Comprehensive Synteny

Block Generation Tool for Closely Related
Microbial Genomes

Ilya Minkin, Anand Patel, Mikhail Kolmogorov, Nikolay Vyahhi,
and Son Pham

Department of Computer Science and Engineering, UCSD, La Jolla, CA, USA
St. Petersburg Academic University, St. Petersburg, Russia

Abstract. Comparing strains within the same microbial species has
proven effective in the identification of genes and genomic regions re-
sponsible for virulence, as well as in the diagnosis and treatment of in-
fectious diseases. In this paper, we present Sibelia, a tool for finding
synteny blocks in multiple closely related microbial genomes using iter-
ative de Bruijn graphs. Unlike most other tools, Sibelia can find synteny
blocks that are repeated within genomes as well as blocks shared by
multiple genomes. It represents synteny blocks in a hierarchy structure
with multiple layers, each of which representing a different granularity
level. Sibelia has been designed to work efficiently with a large number
of microbial genomes; it finds synteny blocks in 31 S. aureus genomes
within 31 minutes and in 59 E.coli genomes within 107 minutes on a
standard desktop. Sibelia software is distributed under the GNU GPL
v2 license and is available at: https://github.com/bioinf/Sibelia. Sibelia’s
web-server is available at: http://etool.me/software/sibelia.

1 Introduction

Early in the genomic era, sequencing a single representative isolate was thought
to be sufficient to describe the genetics of a microbial species, and due to com-
putational and technological limitations, comparative genomics was restricted to
comparing closely related microbial species. However, outbreaks of virulent forms
of common microbes (e.g. Escherichia coli O157:H7) and multidrug-resistant
bacterial strains (e.g. TB, MRSA) have intensified efforts to understand genetic
diversity among microbial isolates belonging to the same species.

The task of decomposing genomes into non-overlapping highly conserved seg-
ments called synteny blocks has proven to be important in genome comparison.
It has been applied to finding structural variations between genomes [10,6] and is
also a prerequisite in most genome rearrangement software. Additionally, finding
highly conserved regions shared among many strains within the same microbial
species helps to infer the minimum genomic material (or core genome) required
for bacterial life and thus can be useful for the Minimal Genome Project [9].

Finding synteny blocks in multiple microbial genomes presents the following
four challenges. (1) Genomes of strains belonging to the same species differ by

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 215–229, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

216 I. Minkin et al.

point mutations, small/large indels, small-/large-scale rearrangements and du-
plications. (2) With the current deluge of microbial genomes, genome comparison
tools face the problem of comparing hundreds or even thousands of genomes si-
multaneously. A number of synteny block generation tools exist [2,3,8,18], but
most of them require the calculation of local alignments between all pairs of
genomes. As the number of genomes increases, the number of required pair-
wise comparisons quickly becomes a bottleneck in terms of total computational
time. (3) The task of synteny block reconstruction has been heavily dependent
on parameters, which determine the size and granularity (coarse-grained or fine-
grained) of the resulting synteny blocks [19]. Different applications favor different
scales of synteny block reconstruction. For instance, while most current ancestral
genome reconstruction software [1] favors large-scale synteny blocks, the analysis
of virulence factors in pathogen genomes considers both small- (transposons, in-
sert elements) and large-scale synteny blocks to be important [4]. Thus, general
synteny block generation software should be able to find and represent synteny
blocks in multiple resolutions. (4) Synteny block software designed for a large
number of bacterial genomes should be able to work directly with a high volume
of unannotated genome sequences (represented in the alphabet of nucleotides)
rather than with annotated genomes (represented in the alphabet of genes). This
is because the accumulation of errors in gene annotation1 can grow substantially
as the number of genomes increases.

By concatenating multiple sequences into a highly repetitive “virtual genome”,
Peng et al. [16] noticed that the problem of constructing synteny blocks from
multiple genomes is equivalent to the problem of de novo repeat classification in
the “virtual genome”, and they utilized A-Bruijn graphs [17] for synteny block
reconstruction.

Since repeats are inexact, A-Bruijn graph frameworks require an initial step of
graph simplification to determine the consensus of repeats, and later, threading
the genome through the simplified graph to determine the positions of repeats.
The threading procedure is usually problematic, and Peng et al. [16] concluded
that threading is a major bottleneck in synteny block reconstruction. Pham and
Pevzner [18] introduced the first A-Bruijn graph approach (DRIMM-Synteny)
that does not require the threading step by using a sequence modification algo-
rithm. Rather than simplifying the graph, this approach modifies the sequence
so that its corresponding graph is simplified, and thus completely bypasses the
threading procedure. As a result, the sequence modification procedure returns
a sequence that is modified so that its A-Bruijn graph reveals synteny blocks as
non-branching paths.

DRIMM-Synteny was designed to work with mammalian genomes, but it
faces the roadblock of constructing synteny blocks for large numbers of bac-
terial genomes because it takes as input a set of genomes represented in the
alphabet of genes. Adapting DRIMM-Synteny to work with raw DNA sequences
faces many computational challenges described above.

1 Errors in gene annotation can also be caused by using different software to annotate
different genomes.

Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool 217

Even when computational resources do not pose a problem, DRIMM-Synteny
and most other current synteny block generation tools do not present
synteny blocks in order to satisfy many different applications, namely, presenting
synteny blocks in multiple granularity levels (i.e., different resolutions).

Indeed, repeats in the “virtual genome”, which are obtained by the concate-
nation of dozens to hundreds of simple bacterial genomes, are both multi-scale
(i.e., multiple size) and multi-granular, since repeats in the virtual genome are
accounted for not only by repeated blocks within each bacterial genome, but
also by blocks shared among multiple bacterial genomes. Whereas the repeat
size within each bacterial genome can range from dozens to several thousands of
bp, regions conserved among different genomes can have an even wider range of
sizes; some of these regions may even reach several Mbp in size, and they usu-
ally contain sub-repeats. For that matter, repeats are not exact, and the longer
the repeat, the more likely it is disrupted by other smaller insertions/deletions.
Thus, repeats of different sizes usually have different granularities.

While the de Bruijn graph has offered the best model for representing perfect
repeats in a simple genome [17], we argue that a single de Bruijn graph is not
sufficient to capture the complicated repeat structure of virtual genomes (ob-
tained by concatenating dozens to hundreds of simple genomes), which are both
multi-scale and multi-granular. In this work, we propose an iterative de Bruijn
graphs algorithm, which uses multiple de Bruijn graphs constructed from differ-
ent values of k to capture the complicated repeat structure of virtual genomes.
Our iterative de Bruijn graphs algorithm allows us to construct synteny blocks
and represent them in a hierarchy structure. Large-scale (coarse-grained) syn-
teny blocks can be further decomposed into multiple layers, where each layer
represents a different granularity level.

Our algorithm has been developed into Sibelia software, which offers a tool
for decomposing multiple closely related microbial genomes into synteny blocks.
Sibelia has three special properties: (1) Sibelia is able to reveal synteny blocks re-
peated within genomes as well as blocks shared simultaneously by many genomes
(repeats within genomes are usually problematic for most current tools). (2)
Sibelia represents synteny blocks in a hierarchical structure. (3) Sibelia is fast: it
analyzes 31 S. aureus genomes within 31 minutes and 59 E.coli genomes within
107 minutes on a standard desktop.

2 Methods

For simplicity of exposition, we assume that the given set of genomic sequences
is concatenated (using delimiters) into a single “virtual” genome and consider
the problem of finding syntenic (repeated) blocks within this highly duplicated
genome. From now on, we will use the terms repeated block and synteny block
interchangeably.

218 I. Minkin et al.

2.1 De Bruijn Graph and Cycles

Let a genome of length n be represented as a circular string S = s1 . . . sn over
the nucleotide alphabet {A, T,C,G}. A k-mer is a string of length k. The de
Bruijn graph DB(S, k) represents every k-mer in S as a vertex and connects
two vertices by a directed edge if they correspond to a pair of consecutive k-
mers in the genome (these two k-mers overlap in a shared (k − 1)-mer). The
de Bruijn graph can be viewed as both a multigraph (i.e., adjacent vertices can
be connected by multiple edges) and a weighted graph with the multiplicity of
an edge (a, b) defined as the number of times that the k-mers a and b appear
consecutively in S.

Alternatively, the de Bruijn graph of a string S can be defined by a gluing
operation (see [18,13] for a formal definition of this operation): represent S as a
sequence of vertices 1, . . . , n with n − 1 edges i → (i + 1), 1 ≤ i ≤ n − 1; label
each vertex i by the k-mer starting at position i in S; glue two vertices together
if they have the same label (See Fig. 1 for de Bruijn graphs constructed from
DNA strings).

Given a value of k and a sequence S, perfectly repeated regions of size larger
than k in S are glued into paths in its de Bruijn graph DB(S, k). Perfectly
repeated regions that do not share any k-mer with other regions correspond
to non-branching paths, which are maximal paths in the graph satisfying the
condition that all their internal vertices have only two neighboring vertices. The
multiplicity of a path is equal to the number of times that the corresponding
region appears in S.

One issue with using de Bruijn graphs for repeat analysis is that de Bruijn
graphs constructed from real genomes have many short cycles and “hide” the
genome’s repeat structure. Cycles in de Bruijn graphs are commonly classified
into two types: bulges (Fig. 1d) and loops (Fig. 1f). Intuitively, bulges are caused
by mismatches/indels between two homologous sequences, and loops are caused
by closely located k-mer repeats. To reveal repeats in de Bruijn graphs, these
small cycles should be removed. To avoid the threading procedure, which is usu-
ally problematic, we adopt a sequence modification approach to remove bulges
in the de Bruijn graphs. As will be made obvious in the next subsection, Sibelia
does not need to explicitly remove loops, but focuses only on bulges. The reason
behind this is that merely increasing the value of k can help to eliminate small
loops in the de Bruijn graph. Fig. 2c shows a loop, which is caused by a closely
located 3-mer repeat (ATC). The de Bruijn graph with larger vertex size k = 4
does not have a loop. Below, we formulate SMP-B: the sequence modification
problem for removing bulges in de Bruijn graphs.

We say that a string P covers an edge a → b in DB(S, k) if a and b are
consecutive k-mers in P . A cycle C in DB(S, k) is classified as a bulge if all its
edges can be covered by two non-overlapping substrings P1, P2 of S, and P1, P2

do not cover any edges in DB(S, k) except for those in C.
SMP-B: Given a string S and parameters C, k. Find a string S′ with min-

imum edit distance d(S, S′) such that DB(S′, k) has no two-way cycle shorter
than C.

Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool 219

Since the complexity of this problem remains unknown, we apply the sequence
modification algorithm [18], a heuristic algorithm for removing bulges.

Sequence Modification Algorithm. Let C be a bulge with total number of
edges smaller than C, formed by substrings P1 and P2 of S. To remove the bulge,
the algorithm modifies S by substituting all occurrences of P1 in S by P2. Fig. 2a
shows the de Brujn graph for S = ATCGGTTAACT...ATCGATCAACT , with
two inexact repeats. Minor differences between these two repeat instances form
a bulge having two branches (colored red and blue in the figure). By changing
S into S′ = ATCGGTTAACT...A TCGGTTAACT (i.e., substituting the blue
branch with the red branch), the bulge is also simplified. Note that S′ now
contains an exact repeat of multiplicity 2 (Fig. 2b).

2.2 Effects of k-Mer Size and Bulge Removal Procedure in Repeat
Decomposition

In this subsection, we give a relationship between repeats (revealed by non-
branching paths) in de Bruijn graphs constructed with different values of k as
well as repeats revealed by non-branching paths before and after the bulge sim-
plification procedure.

Effects of k-mer Size
Observation 1. Let k0, k1 be two positive integers such that k0 < k1, and let
S be a cyclic genome. Furthermore, let G0 and G1 be the de Bruijn graphs
constructed from S with k = k0 and k = k1, respectively. Any repeat R revealed
by a non-branching path in G1 can be decomposed into a sequence of sub-repeats,
each corresponding to a non-branching path in G0.

See Appendix for a formal description of this observation. Intuitively, when
reducing the value of k-mer from k1 to k0, some different non-branching paths
in G1 having shared k0-mers will interfere with each other (these common k0-
mers play as new “glues” in the graph), thus, fragment large non-branching
paths into shorter ones. The above observation allows us to decompose any non-
branching path of G1 into a sequence of non-branching paths in G0. In other
words, repeats revealed by any non-branching path from one de Bruijn graph
can be decomposed into a sequence of repeats (smaller sub-blocks) revealed by
another de Bruijn graph constructed from a smaller value of k.

Effects of Bulge Simplificationx
Observation 2. Bulge simplification can be viewed as the process of “merg-
ing” consecutive non-branching paths in the graph. Fig. 2a shows a bulge,
which breaks the red segment into 3 segments, each corresponds to a non-
branching path. Fig. 2b shows the same graph after collapsing the bulge. Thus,
the red large repeat can be decomposed into 3 sub-segments; each of the subseg-
ments corresponding to a non-branching path in the graph before simplification
(ATCGGTTAACT is decomposed into (ATCG), (GTT), (AACT) according to
Fig. 2).

220 I. Minkin et al.

These two observations are important for representing synteny blocks with
different scales, which will be described in later sections.

A T C G G T T A A C T

A T C G G T T A A C T

a)
A T C G G T T A A C T

A T C G A T C A A C T

c)
.....T A T C G A T C T.....

e)

ATC TCG CGG GGT GTT TTA TAA AAC ACT
b)

ATC TCG CGG GGT GTT TTA TAA AAC ACT

CGA GAT ATC TCA CAA

d)

TAT ATC

TCG

CGA

GAT

TCT

f)

Fig. 1. De Bruijn graphs and cycles in de Bruijn graphs. a) A sequence S =
ATCGGTTAACG...ATCGGTTAACG with the segment ATCGGTTAACG repeated
twice. b) The de Bruijn graph of the sequence in a). c) Sequence with inexact repeats:
the green segment represents an inexact repeat of the red segment. Positions with
different nucleotides are underlined. d) De Bruijn graph of the sequence in c). Minor
differences between these two segments (colored red and blue) are reflected by a bulge
with two branches (the red and the blue branches of the bulge). e) A sequence with
a closely located repeated k-mer ATC. f) The de Bruijn graph of the sequence in e).
The closely located repeated k-mer (ATC) forms a loop in the graph.

Challenges in Using de Bruijn Graphs in Repeats and Synteny Analysis
Finding repeated blocks in a genome using de Bruijn graphs faces two problems.
(1) Even in the case that synteny blocks are perfectly repeated, they can have
very different lengths. Representing both small (e.g., insertional elements, trans-
posons) and large blocks in the de Bruijn graph is difficult because if k is set
equal to a large value, then repeats of size smaller than k can not be revealed,
while using a small value of k may introduce additional gluings on large repeats.
While such additional gluings may help to reveal mosaic structures (subrepeats
within a larger repeat) of repeats, they also hide repeats when gluing is excessive.
(2) Synteny blocks often contain many mismatches and gaps, which restrict the
use of large values of k when constructing the de Bruijn graph.

The first challenge motivates us to use different values of k for representing
repeats with different sizes. The second challenge can be resolved by using the
sequence modification algorithm [18] to remove bulges, since sequence modifica-
tion will eliminate mutations, gaps, and indels between homologous blocks and
thus can help to increase the value of k. We propose the iterative de Bruijn graph
algorithm as follows.

Initially, the algorithm constructs the de Bruijn graph from a relatively small
value of k = k0 and performs graph simplification with a small cycle length
threshold (C0). The algorithm operates on the de Bruijn graph G0(S0, k0) and
simplifies all bulges using the sequence modification approach described above.
As a result, we obtain a simplified de Bruijn graph G1 and the corresponding
modified genome S1. S1 is a distorted version of S such that its de Bruijn graph
DB(S1, k0) does not contain short bulges of length smaller than C0. We note that

Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool 221

graph simplification should be applied using the sequence modification algorithm;
otherwise, S1, the distorted version of S0, is not available for the construction
of the graph using a larger value of k = k1. The goal of the first iteration is
to collapse bulges caused by single point mutations or very short indels. Thus,
we can increase the value of k and construct a new de Bruijn graph G1 =
DB(S1, k1), where k1 > k0. The process continues until we reach a value of k
that is large enough to reveal large-scale synteny blocks (pseudo code of Sibelia
is described in Algorithm 1) . Generally speaking, the iterative process should
continue until the genome is presented as a single synteny block. This argument
may appear unreasonable at first sight, as our goal was to decompose genomes
into synteny blocks. However, one should notice that the two observations in the
above subsection allow us to retrace our steps to find previous synteny blocks.

2.3 Hierarchical Representation of Synteny Blocks

Sibelia works iteratively as follows: from a sequence Si−1, it constructs a de
Bruijn graph Gi = DB(Si−1, ki) and removes bulges to obtain a simplified graph
G+

i = DB(Si, ki). It then reconstructs the de Bruijn graph for larger k = ki+1:
Gi+1 = DB(Si, ki+1). Using Observation 1, each non-branching path in Gi+1 can
be decomposed into a sequence of non-branching paths in G+

i because ki+1 > ki.
Since we only perform bulge simplification at each stage, each non-branching
path in G+

i can in turn be decomposed into a sequence of non-branching paths
in Gi. Therefore, each non-branching path in the last stage can be represented as
the root of a tree, where its children are the decompositions of the previous stage.
The leaves of the tree represent non-branching paths in the de Bruijn graph con-
structed from the smallest value k0 (See Fig. 4 for the hierarchy representation
of synteny blocks in two strains of H. pylori). Under this decomposition, each
chromosome can be considered as a single synteny block, which can be further
decomposed into multiple large-scale “synteny blocks”. Each large-scale synteny
block can be further decomposed into smaller-scale synteny blocks. The process
of decomposition continues until we reach the synteny blocks revealed by the
graph DB(S, k0).

Parameter Choices. It appears that the iterative de Bruijn graph algorithm
depends on many parameters: (1) the number of iterations; (2) for each iteration
i, ki (k-mer size) and Ci (cycle length for bulge simplification). However, we no-
tice that the most important parameters determining the outcome2 of synteny
block reconstruction are the values of parameters in the first iteration: k0 and
C0. The reason for this is that in microbial genomes, a point mutation event is
the most common, and large indels occur at a much lower rate [12]. In latter
stages Ii, (i > 0), ki and Ci reflect the size of repeated blocks and the granularity
of synteny blocks in that stage. While the choices of k0 and C0 require a careful
analysis of the evolutionary distance between genomes (See Appendix, Section

2 If the total coverage of synteny blocks for any set of genomes within the same species
is smaller than 40%, then we classify the synteny block construction as unsuccessful
according to the analysis of core genomes in [7].

222 I. Minkin et al.

ATC TCG CGG GGT GTT TTA TAA AAC ACT

CGA GAT ATC TCA CAA
ATC TCG CGG GGT GTT TTA TAA AAC ACT

a) b)
TAT ATC

TCG

CGA

GAT

TCT TATC ATCG TCGA CGAT GATC ATCT

c) d)

Fig. 2. (a) De Bruijn graph of a sequence with two inexact repeats S =
ATCGGTTAACT...ATCGATCAACT . The minor differences in the inexact repeats
form a bulge with two branches: The red branch (TCG) → (CGG) → (GGT) →
(GTT) → (TTA) → (TAA) → (AAC) and the blue branch (TCG) → (CGA) →
(GAT) → (ATC) → (TCA) → (CAA) → (AAC). (b) We simplify the graph by
changing the sequence from ATCGATCAACT to ATCGGTTAACT, thus forming an
exact repeat. The modified sequence corresponds to a non-branching path on the de
Bruijn graph. (c) A closely located repeated k-mer (ATC) forms a loop in the graph.
(d) Increasing the value of k can help to resolve the loop in c).

1), latter iterations can be seen as according users the flexibility to choose gran-
ularity as well as the size of blocks in both the final and intermediate stages
(See Fig. 4 for a hierarchical representation of synteny blocks in two strains of
H. pylori).

Similar to the analysis in [5], we derive the values for (k0, C0) to be (30, 150)
for any set of microbial strains within the same species (see Appendix, Sec-
tion 1 for a more detailed analysis). Sibelia’s default mode has 4 stages (iter-
ations) with the following parameters: ((30, 150), (100, 1000), (1000, 5000), and
(5000, 15000)), where each pair of values corresponds to (ki, Ci) in the corre-
sponding stage. While the pair of parameters for the first stage was derived
using the sequence similarity of genomes within the same microbial species (see
Appendix, Section 1), the final 3 stages (k = 100, 1000, 5000) were designed to
capture small repeats of length equal to several hundred bp (k = 100), trans-
posons, insertion elements with average length about 1 Kbp [14] (k = 1000),
and large-scale blocks (usually comprising several genes) that are among multi-
ple genomes (k = 5000). Users can add more iterations between any consecutive
stages to obtain a “smoother” decomposition between stages.

Algorithm 1. Iterative de Bruijn Graph

1: procedure Iterative de Bruijn(G, ((k0, C0), ..., (kt, Ct)))
2: S0 ← Concatenate(G)
3: Assert(k0 < k1 < ... < kt)
4: Assert(C0 < C1 < ... < Ct)
5: i← 0
6: while i < t do
7: Graphi ← ConstructDeBruijnGraph(ki, Si)
8: Si ← SimplifyBulgesSmallerThanC(Graphi, Ci)
9: i← i + 1

10: return St, Grapht

11: end procedure

Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool 223

(a) Sibelia (b) Mauve

(c) Mugsy (d) Multiz
(e) Sibelia – A hierarchy represen-
tation of synteny blocks

Fig. 3. Performance of different tools on synthetic examples. The outer circles in a),
b), c), and d) indicate the gold-standard synteny blocks, where different instances of
the same synteny block have the same color and are denoted by the same number.
Inner circles indicate blocks found by different tools. All tools were run with their
default parameters. a) The last stage from Sibelia; b) Mauve ; c) Mugsy; d) Multiz.
e) Sibelia represents synteny blocks in a hierarchy structure. The inner circle indicates
large-scale synteny blocks, and the outer circle shows synteny blocks at a finer scale
(black blocks represent insertion elements). Each large-scale synteny block (on the
inner circle) corresponds to the root of a tree, e.g., block +1 in G1 (inner circle) can be
decomposed into 3 blocks: yellow, black (insertion sequence), and blue (outer circle).

3 Results

Since no gold standard exists for the evaluation of synteny blocks, we first bench-
mark Sibelia and other tools (Mugsy, Multiz, Mauve) on a simulated dataset.
The test case consists of two small hypothetical closely-related genomes, each
120 kbp long. These genomes could be represented as permutations of synteny
blocks as follows:

Genome 1: +4 + 2 + 3 + 1 + 3 − 4

Genome 2: +5 + 2 − 3 + 1 + 3 + 5

In the notation above, numbers depict synteny blocks, and signs designate
their orientations. All blocks are 20 kbp long. These blocks indicate various
types of repeats: blocks 2 and 1 correspond to common genetic cores, block 3
indicates a repeat common to both genomes, and blocks 4 and 5 are duplicated
blocks within each genome. Different instances of a synteny block also contain
point mutations, with a 3% probability for each position to change its nucleotide.

224 I. Minkin et al.

Fig. 3 shows the results of different tools on the test case. Sibelia correctly
identifies all synteny blocks. No tool except Sibelia is able to locate blocks 4 and
5, and only Mauve detects repeats with multiplicity greater than 2 shared by
both genomes. Mugsy and Multiz rely on the Nucmer pairwise aligner package,
thus limiting their ability to locate duplications within genomes.

We further demonstrate the ability of Sibelia in detecting and representing
synteny blocks on multiple scales by making an additional complication to our
simulated genomes. We generate a random DNA sequence of length 1,500 bp
(a typical size of insertion sequences, which are common in microbial genomes),
and insert this sequence into some previous synteny blocks of these two genomes.
We also add 3% mutations to each instance of the inserted sequence.

As different applications favor different synteny block scales (e.g, MGRA [1]
may favor the original decomposition, ignoring these insertion elements), other
applications may find the translocation of these insert elements biologically sig-
nificant and thus partition synteny blocks on a finer scale. Fig. 3e shows the
hierarchy presentation of Sibelia on the simulated example. In this figure, large-
scale synteny blocks are presented in the inner circle, while a finer representation
of synteny blocks (with insertion elements denoted as black blocks) is shown in
the outer circle. Each synteny block in the inner circle can be decomposed into
a sequence of smaller synteny blocks in the outer circle.

3.1 Comparing Sibelia with Existing Tools

We benchmarked Sibelia against Mugsy [2], Multiz [3], and Mauve [8] on 3
datasets: E.coli-3 — 3 E.coli genomes (15 MB), S.aureus-31 — 31 S.aureus
genomes (90 MB), and E.coli-59 — 59 E.coli genomes (344 MB). The first
dataset E.coli-3 is used to demonstrate the quality of synteny block generation,
while the other larger datasets show the memory consumption and running time
performance of these different genome decomposition tools.

On the E.coli-3 dataset, synteny blocks3 generated from different tools are
compared by genome coverage and F-score. We define the F -score of synteny
blocks generated from tools T 1 and T 2 as F = 2(PR)/(P + R), where P is the
fraction of nucleotides in the blocks reported by T 1 that overlap with blocks
reported by T 2, and R is the fraction of nucleotides in the blocks from T 2 that
overlap with blocks from T 1 (see Table 1). The genome decompositions4 of these
tools are illustrated in Fig. 5. While the genome decompositions from Sibelia,
Mauve, and Mugsy (shown by the three innermost circles in Fig. 5), are similar,
Multiz’s blocks are more fragmented. We do not criticize Multiz because different
applications favor a different size and scale of repeated blocks. Since Sibelia can
present synteny blocks on multiple scales, we show its genome decomposition
from the finest scale (first stage) in the outermost circle (Fig. 5), which turns
out to be similar to Multiz’s decomposition.

3 Mauve and Mugsy use the term “locally collinear block” instead of “repeated blocks”.
4 The ends of repeated blocks define breakpoints on the genome and thus decompose
the genome into segments of non-overlapping blocks

Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool 225

Fig. 4. The figure illustrates iterative construction of synteny blocks between two
strains of Helicobacter pylori: F32 and Gambia94/24. Each circle represents synteny
blocks obtained at a particular stage. The outermost circle represents the first stage
of computation, the next inner circle represents the second stage, and so on. Synteny
blocks are depicted by colored bands. Multiple instances of the same synteny block
within each stage (circle) have the same color. One can notice that from stage to
stage, blocks are merged together to form longer blocks. The panel on the left zooms
in on a synteny block in the final stage. This panel depicts a tree that represents the
decomposition of a synteny block into multiple layers.

Table 1. Synteny block (LCB) Comparison

Genome Coverage F-score
Sibelia 91 100
Mugsy 82 95
Mauve 90 95
Multiz 70 85

Sibelia, Mugsy, Mauve, Multiz were run with their default parameters.

As the number of compared genomes increases, Sibelia shows its advantage in
running time performance. When running on 59 E.coli and 31 S.aureus datasets,
Sibelia proves to be 7 times faster than Mugsy and Multiz on E.coli-59, (see
Table 2). The memory usage of Sibelia is similar to Mugsy and Mauve but is
worse than Multiz (Table 2). The synteny blocks that are shared among all
genomes (59 E.coli and 31 S.aureus) cover 66.95% and 54.25% of the average of
the genomes size. Using these synteny blocks, one can identify the core genome
of each bacterial species. These numbers are consistent with the size of core
genomes in S.aureus and E.coli previously reported [7].

226 I. Minkin et al.

Fig. 5. Circos diagram of synteny blocks on 3 E.coli genomes. From inside to outside:
Mauve, Mugsy, Sibelia (the last stage), Multiz, and the first stage of Sibelia (k =
30, C = 150). All tools were run with their default parameters.

Table 2. Comparison of running-time/memory usage

Sibelia Mugsy Multiz Mauve
31 Aureus (min/GB) 28/2.95 362/3.47 129/0.175 814/2.36
59 E.coli (min/GB) 107/8.75 749/9.23 815/0.6 DNF/DNF

The runtime and memory usage for all tools. All tools were run with default parameters.
Tests were run on a single CPU Intel Xeon X5675 3GHz processor with 25GB RAM.
DNF: allocation error after 12 hours running.

4 Discussion

We have introduced Sibelia, a scalable and comprehensive new synteny block
generation tool for analyzing large numbers of microbial genomes belonging to
the same species. By using the iterative de Bruijn graph, Sibelia represents syn-
teny blocks in a hierarchical structure that allows users to explore the compo-
sition of synteny blocks. We are aware that Cactus graphs [15] also decompose
genome alignments into substructures based on the topology of nested elements.
Our algorithm of decomposing synteny blocks is different from the nested struc-
ture in the Cactus graph, and we plan to further study the relation between
these approaches. With the availability of Sibelia, studying genome rearrange-
ment and genome evolution using multiple levels of synteny blocks promises to
be an interesting future research topic.

Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool 227

Acknowledgments. We would like to thank Pavel Pevzner, Hamilton Smith,
Steve O’Brien, Alla Lapidus, Matt Schultz, Dinh Diep and Shay Zakov for many
insightful discussions. We are indebted to Phillip Compeau, Nitin Udpa and Han
Do for revising the manuscript and for many helpful suggestions that significantly
improved the paper. We would like to thank Hoa Pham for deploying Sibelia to
the webserver. This work was supported by the Government of the Russian
Federation (grant 11.G34.31.0018) and the National Institutes of Health (NIH
grant 3P41RR024851-02S1).

Appendix

Microbial Species and the Choice of k

While there is no uniquely accepted concept of species in bacteria, the pragmatic
species definition is based on DNA-DNA hybridization (DDH) [20]. According to
this definition, two isolates belong to the same species if they have DDH > 70%,
which in turn corresponds to approximately 95% average nucleotide identity [11].
In other words, within a conserved segment, each position has a 5% chance of
mutating.

These mutated points partition any homologous region into a sequence of
exact match segments with different lengths. Segments that are longer than
k (the size of a vertex in the de Bruijn graph) are glued together in the de
Bruijn graph; we call these segments gluing segments. Two consecutive gluing
segments correspond to a bulge in the de Bruijn graph, and any non-gluing
segments between the two consecutive gluing segments correspond to branches
of the bulge. The distance between two consecutive gluing segments characterizes
the size of the bulge.

The probability of encountering an exact matching region of size k is P{l =
k} = (1− ρ)kρ, and the probability of encountering an exact matching region of
size at least k is P{l ≥ k} = (1−ρ)k, where l is the length of the exact matching
region. Given the value ε = 0.05, the analysis in [5] allows us to characterize the
function d(k), which represents the distance from a given position such that one
can encounter at least one gluing segment (exact match segment with length

at least k) with probability 1 − ε. According to [5], d(k) = log(ε)
log(1−(1−ρ)k)

(1
ρ −

k(1−ρ)k

1−(1−ρ)k
). The function d(k) characterizes the choice of bulge length threshold

for simplification for each given value of k.

A T C G G T T A A C T

A T C G A T C A A C T

ATC TCG CGG GGT GTT TTA TAA AAC ACT

CGA GAT ATC TCA CAA

1 2 3 4 5 6 7 8 9 10 11

21 22 23 24 25 26 27 28 29 30 31

a) b)

A T C G G T T A A GC
A T C

1,21 2,22 3,23 4,24 5,25 6 7 8 9,29 10,30 11,31

26 27 28

c)

Fig. 6. C-Graph. a) A genome sequence. b) De Bruijn graph for k = 3. c) C-Graph for
k = 3

228 I. Minkin et al.

Hierarchy Representation of Synteny Blocks

Parameter k in Repeats Reconstruction

In this subsection, we give a relationship of repeats that is revealed by non-
branching paths in the de Bruijn graph constructed with different values of
k. For the simplicity of proving the theorem, we introduce a different type of
A-Bruijn graphs, called C-Graphs (Character Graphs), with a slighly different
gluing rule from de Bruijn graphs. Given a value of k and a string S of length
n formed over the alphabet {A, T,C,G}, the C-Graph CG(S, k) is defined as
follows:

– Represent S as a graph with n vertices labeled 1, . . . n and n − 1 edges
(i)→ (i + 1).

– Glue vertex i and j if there exists t ∈ [0, k] such that S[i− t : i− t+ k− 1] =
S[j − t : j − t + k − 1]

Note that the de Bruijn graph can be obtained by changing the gluing rule
above so that we glue i and j if S[i : i + k − 1] = S[j : j + k − 1].

Each vertex v corresponds to a set of integers A(v), representing the positions
that are glued to this component. A position i belongs to a vertex if it is con-
tained in A(v). The C-Graph (See Fig. 6) differs from the de Bruijn graph at
the boundaries of repeats (branching vertices). The C-graph allows us to avoid
overlapping synteny blocks at their shared branching vertices, since each ver-
tex is labeled by a single character that corresponds to the character of S at
that particular position5. The following theorem shows the relationship between
synteny blocks revealed by non-branching paths in C-graphs constructed from
different values of k.

Theorem 1. Given two integers k0 < k1 and a cyclic genome S, let G0 and G1

be the de Bruijn graphs constructed from S with k = k0 and k = k1, respectively.
If S[i : j] corresponds to a non-branching path in G1 (i.e., vertices i, j belong
to branching vertices and there does not exist any t ∈ (i, j) such that t belongs
to a branching vertex), then in G0, S[i : j] corresponds to a (not necessarily
nonbranching) path connecting two branching vertices containing i and j.

Proof
Since S corresponds to an edge-covering tour in a character graph, it’s sufficient
to prove that i and j belong to branching vertices in G0. Since i belongs to
a branching vertex in G1, let I = {i1 . . . , ir}(i ∈ I) be a set of positions in
S that are glued to this vertex. It is evident that these positions will also be
glued together in G0 because k0 < k1. Since i belongs to a branching vertex
in G1, there must exist it1, it2 ∈ I such that either S[it1 − 1]! = S[it2 − 1]] or
S[it1 + 1] �= S[it2 + 1]. This also implies that i belongs to a branching vertex in
G0. Similarly, we can prove that j belongs to a branching vertex in G0.

5 If multiple positions are glued into the same vertex, we can also use the character
to label any of these gluing positions, as they are identical

Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool 229

References

1. Alekseyev, M.A., Pevzner, P.A.: Breakpoint graphs and ancestral genome recon-
structions. G.R. 19(5), 943–957 (2009)

2. Angiuoli, S.V., Salzberg, S.L.: Mugsy: fast multiple alignment of closely related
whole genomes. Bioinformatics 27(3), 334–342 (2011)

3. Blanchette, M., Kent, W., Riemer, C., Elnitski, L., Smit, A., Roskin, K., Baertsch,
R., Rosenbloom, K., Clawson, H., Green, E., et al.: Aligning multiple genomic
sequences with the threaded blockset aligner. G.R. 14(4), 708–715 (2004)

4. Brüssow, H., Canchaya, C., Hardt, W.-D.: Phages and the evolution of bacterial
pathogens: from genomic rearrangements to lysogenic conversion. Microbiology and
Molecular Biology Reviews 68(3), 560–602 (2004)

5. Chaisson, M., Tesler, G.: Mapping single molecule sequencing reads using basic
local alignment with successive refinement (blasr): application and theory. BMC
Bioinformatics 13, 238 (2012)

6. Chambers, H.F., et al.: Community-associated mrsa-resistance and virulence con-
verge. N. Engl. J. Med. 352(14), 1485–1487 (2005)

7. Chattopadhyay, S., Weissman, S.J., Minin, V.N., Russo, T.A., Dykhuizen, D.E.,
Sokurenko, E.V.: High frequency of hotspot mutations in core genes of escherichia
coli due to short-term positive selection. PNAS 106(30), 12412–12417 (2009)

8. Darling, A., Mau, B., Blattner, F., Perna, N.: Mauve: multiple alignment of con-
served genomic sequence with rearrangements. G.R. 14(7), 1394–1403 (2004)

9. Gibson, D.G., Benders, G.A., Andrews-Pfannkoch, C., Denisova, E.A., Baden-
Tillson, H., Zaveri, J., Stockwell, T.B., Brownley, A., Thomas, D.W., Algire, M.A.,
et al.: Complete chemical synthesis, assembly, and cloning of a mycoplasma geni-
talium genome. Science Signalling 319(5867), 1215 (2008)

10. Kaper, J.B., Nataro, J.P., Mobley, H.L.T.: Pathogenic escherichia coli. Nature Re-
views Microbiology 2(2), 123–140 (2004)

11. Konstantinidis, K., Ramette, A., Tiedje, J.: The bacterial species definition in
the genomic era. Philosophical Transactions of the Royal Society B: Biological
Sciences 361(1475), 1929–1940 (2006)

12. Lunter, G., Rocco, A., Mimouni, N., Heger, A., Caldeira, A., Hein, J.: Uncer-
tainty in homology inferences: assessing and improving genomic sequence align-
ment. G.R. 18(2), 298–309 (2008)

13. Medvedev, P., Pham, S., Chaisson, M., Tesler, G., Pevzner, P.: Paired de bruijn
graphs: a novel approach for incorporating mate pair information into genome
assemblers. JCB 18(11), 1625–1634 (2011)

14. Ohtsubo, E., Sekine, Y.: Bacterial insertion sequences. In: Transposable Elements,
pp. 1–26. Springer (1996)

15. Paten, B., Earl, D., Nguyen, N., Diekhans, M., Zerbino, D., Haussler, D.: Cactus:
Algorithms for genome multiple sequence alignment. G.R. 21(9), 1512–1528 (2011)

16. Peng, Q., Alekseyev, M., Tesler, G., Pevzner, P.: Decoding synteny blocks and
large-scale duplications in mammalian and plant genomes. Algorithms in Bioinfor-
matics, 220–232 (2009)

17. Pevzner, P.A., Tang, H., Tesler, G.: De novo repeat classification and fragment
assembly. G.R. 14(9), 1786–1796 (2004)

18. Pham, S.K., Pevzner, P.A.: Drimm-synteny: decomposing genomes into evolution-
ary conserved segments. Bioinformatics 26(20), 2509–2516 (2010)

19. Sinha, A.U., Meller, J.: Cinteny: flexible analysis and visualization of synteny and
genome rearrangements in multiple organisms. BMC Bioinformatics 8(1), 82 (2007)

20. Wayne, L., Brenner, D., et al.: Report of the ad hoc committee on reconciliation
of approaches to bacterial systematics. International Journal of Systematic Bacte-
riology 37(4), 463–464 (1987)

On the Matrix Median Problem

João Paulo Pereira Zanetti1, Priscila Biller1, and João Meidanis1,2

1 Institute of Computing, University of Campinas, SP, Brazil
2 Scylla Bioinformatics, Campinas, Brazil

Abstract. TheGenomeMedianProblem is an important problem in phy-
logenetic reconstruction under rearrangement models. It can be stated as
follows: given three genomes, find a fourth that minimizes the sum of the
pairwise rearrangement distances between it and the three input genomes.
Recently, Feijão and Meidanis extended the algebraic theory for genome
rearrangement to allow for linear chromosomes, thus yielding a new rear-
rangement model (the algebraic model), very close to the celebrated DCJ
model. In this paper, we study the genomemedian problem under the alge-
braic model, whose complexity is currently open, proposing amore general
form of the problem, the matrix median problem. It is known that, for any
metric distance, at least one of the corners is a 4

3
-approximation of the me-

dian. Our results allow us to compute up to three additional matrixmedian
candidates, all of them with approximation ratios at least as good as the
best corner, when the input matrices come from genomes. From the appli-
cation point of view, it is usuallymore interesting to locate medians farther
from the corners.We also show a fourthmedian candidate that gives better
results in cases we tried. However, we do not have proven bounds for this
fourth candidate yet.

1 Introduction

Genome rearrangements are evolutionary events where large, continuous pieces
of the genome shuffle around, changing the order of genes in the genome of
a species. Gene order data can be very useful in estimating the evolutionary
distance between genomes, and also in reconstructing the gene order of ances-
tral genomes. The simplest form of inference of evolutionary scenarios based on
gene order is the pairwise genome rearrangement problem: given two genomes,
find a parsimonious rearrangement scenario between them, that is, the smallest
sequence of rearrangement events that transforms one genome into the other.

For most rearrangement events proposed, this problem has already been solved,
usually with linear or subquadratic algorithms. However, when more than two
genomes are considered, inferring evolutionary scenarios becomes much more
difficult. This problem is known as the multiple genome rearrangement problem
(MGRP): given a set of genomes, find a tree with the given genomes as leaves
and an assignment of genomes to the internal nodes such that the sum of all
edge lengths (the pairwise distance between adjacent genomes) is minimal.

The MGRP may still be hard even when only three genomes are considered,
the so called genome median problem (GMP): given three genomes, find a fourth

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 230–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Matrix Median Problem 231

genome that minimizes the sum of its pairwise distances to the other three. The
GMP is NP-complete in most rearrangement models, with notable exceptions
being the multichromosomal breakpoint distance [10] and the Single-Cut-or-Join
(SCJ) model [3]. The GMP is a particularly interesting problem, because several
algorithms for the MGRP are based on repeatedly solving GMP instances, until
convergence is reached (for instance, the pioneering BPAnalysis [8], the more
recent GRAPPA [7], and MGR [1]).

In this paper we will focus on the algebraic rearrangement model proposed by
Meidanis and Dias [6], recently extended to allow linear chromosomes in a very
natural way by Feijão and Meidanis [4]. This extended algebraic rearrangement
model is similar to the well-known Double-Cut-and-Join (DCJ) model [11], with
a slight difference in the weight of single cut/join operations, where the weight
for this operations is 1 in the DCJ model, but 1/2 in the algebraic model. The
algebraic pairwise distance problem can be solved in linear time, but the median
problem remains open.

The main goal of this paper is to investigate the problem of computing the
algebraic median of three genomes. The median problem can be stated as follows:
given three genomes π1, π2, and π3, and a distance metric d, find a genome μ
that minimizes d(μ;π1, π2, π3), defined as the total score

d(μ;π1, π2, π3) = d(μ, π1) + d(μ, π2) + d(μ, π3).

We do not know yet the status of the median problem for the algebraic dis-
tance, but suspect it may be NP-hard as well. However, in this paper we show
that viewing genomes (or even general permutations) as matrices, the median
can be approximated quickly, although the matrix solution may not be always
translated back into permutations or genomes. Nevertheless, this positive result
can help shed more light into the problem, by leading to approximation solutions,
or to special cases that can be solved polynomially in the genome setting.

It is known that, for any distance satisfying the axioms of a metric, at least
one of the corners is a 4

3 -approximation of the median [9]. Our results allow us
to compute up to three additional matrix median candidates, all of them with
approximation ratios at least as good as the best corner, when the input matrices
come from genomes. Also, application-wise, it is usually more interesting to
locate medians farther from the corners [5].

The rest of this paper is organized as follows. In Section 2, we have basic defini-
tions regarding the algebraic adjacency theory needed in this work. In Section 3,
we show how genomes can also be seen as matrices, define the matrix median
problem, show our results, and propose an algorithm. Finally, in Section 4, we
present our conclusions.

2 Algebraic Rearrangement Theory

We will start this section showing some basic definitions of the algebraic theory
of Feijão and Meidanis [4].

232 J.P. Pereira Zanetti, P. Biller, and J. Meidanis

2.1 Permutations

Given a set E, a permutation α : E → E is a bijective map from E onto itself.
Permutations are represented as parenthesized lists, with each element followed
by its image. For instance, on E = {a, b, c}, α = (a b c) is the permutation that
maps a to b, b to c, and maps c back to a. This representation is not unique;
(b c a) and (c a b) are equivalent. Permutations are composed of one or more
cycles. For instance, the permutation α = (a b c)(d e)(f) has three cycles. A
cycle with k elements is called a k-cycle. An 1-cycle represents a fixed element
in the permutation and is usually omitted.

The product or composition of two permutations α, β is denoted by αβ. The
product αβ is defined as αβ(x) = α(β(x)) for x ∈ E. For instance, with E =
{a, b, c, d, e, f}, α = (b d e) and β = (c a e b f d), we have αβ = (c a b f e d).

The identity permutation, which maps every element into itself, will be de-
noted by 1. Every permutation α has an inverse α−1 such that αα−1 = α−1α =
1. For a cycle, the inverse is obtained by reverting the order of its elements:
(c b a) is the inverse of (a b c).

A 2-cycle decomposition of a permutation α is a representation of α as a
product of 2-cycles, not necessarily disjoint. All permutations have a 2-cycle
decomposition. The norm of a permutation α, denoted by ‖α‖, is the minimum
number of cycles in a 2-cycle decomposition of α. For example, the permutation
α = (a b c d) can be decomposed as (a b)(b c)(c d), and ‖α‖ = 3.

2.2 Modeling Genomes as Permutations

To model genomes with the Algebraic Theory, the formulation is similar to
the set representation of a genome, used in several related works [10,3]. In this
representation, each gene a has two extremities, called tail and head, respectively
denoted by at and ah, or alternatively using signs, where −a = ah and +a = at.
An adjacency is an unordered pair of extremities indicating a linkage between
two consecutive genes in a chromosome. An extremity not adjacent to any other
extremity in a genome is called a telomere. A genome is represented as a set of
adjacencies and telomeres (the telomeres may be omitted, when the gene set is
given) where each extremity appears at most once.

According to algebraic rearrangement theory [4], a genome can be seen as a
permutation π : E �→ E, where E is the set of gene extremities, with the added
property that π2 = 1, the identity permutation. In this paper, the distance
between two genomes or two permutations π and σ will be defined as d(π, σ) =
‖σπ−1‖. It is important to note that, in the original paper, the algebraic distance

is defined as ‖σπ−1‖
2 . However, to avoid dealing with fractional numbers and to

simplify the calculations, we will multiply the distances by 2 in this paper.
In the algebraic theory, genomes are represented by permutations, with a

genome being a product of 2-cycles, where each 2-cycle corresponds to an ad-
jacency. Figure 1 shows an example of a genome and its representation as a
permutation.

On the Matrix Median Problem 233

+1 −1

1

−2 +2

−2

−3 +3

−3

+4 −4

4

+5 −5

5

Fig. 1. A genome with one linear chromosome, represented by the permutation π =
(−1 −2)(+2 −3)(+3 +4)(−4 +5)

With these definitions, a distance between two genomes σ and π can be defined
as d(π, σ) = ‖σπ−1‖, as mentioned in the introduction. The resulting distance
agrees with DCJ in circular genomes, and in general these two distances are very
close.

3 Results

Permutations can be seen as matrices, and, in this section, we define a matrix
distance that corresponds to the algebraic distance and prove that it is indeed a
valid metric in general, that is, it applies to all square matrices, not only those
associated to permutations. Such a metric can be useful in the computation of
genome medians, and we show here how to compute an approximate solution to
the matrix median problem, by solving a system of linear equations.

3.1 Matrix Distance

Given two n× n matrices A and B, we define the distance between them as:

d(A,B) = r(B −A),

where r(X) denotes the rank of matrix X . It is well-known that

r(X) = dim im(X), (1)

where dim denotes the dimension of a vector space and im(X) is the image of
X , namely, the space of all vectors that can be written as Xv for some v ∈ Rn.
Here we treat vectors as column matrices, that is, n× 1 matrices. Therefore, the
distance satisfies

d(A,B) = dim im(B −A).

for every pair of matrices A and B. It is also well-known that

r(X) = n− dim ker(X), (2)

for every x×n matrix X , where ker(X) is the kernel of X , defined as the space
of all vectors v ∈ Rn such that Xv = 0, so the distance satisfies yet another
formula:

d(A,B) = n− dim ker(B −A).

234 J.P. Pereira Zanetti, P. Biller, and J. Meidanis

This distance can be shown to satisfy the conditions of a metric, that is,
it is symmetric, obeys the triangle inequality, and d(A,B) = 0 if and only if
A = B [2].

Given this metric, the first interesting observation is that permutations (in-
cluding genomes) can be mapped to matrices in a distance-preserving way. Given
a permutation α : E �→ E, with |E| = n, we first identify each element v of E
with a unit vector of Rn, and then define A, the matrix counterpart of α, so that

Av = αv. (3)

In Equation 3, we use v both as a unit vector of Rn in the left side, and as an
element of E in the right side.

An example will help. Let α be the permutation (a b)(c d). Identify a =[
1 0 0 0

]t
, b =

[
0 1 0 0

]t
, c =

[
0 0 1 0

]t
, and d =

[
0 0 0 1

]t
, where vt is the

transpose of vector v. We then have

A =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ .

It is well known that this mapping produces matrices A that are invertible,
and that satisfy A−1 = At, where At denotes the transpose of matrix A. Also,
the identity permutation corresponds to the identity matrix I, and the product
αβ corresponds to matrix AB, where A is the matrix corresponding to α, and
B is the matrix corresponding to β. If α happens to be a genome, that is, if
α2 = 1, then A is a symmetric matrix and vice-versa.

We now show that this mapping is distance-preserving.

Lemma 1. For any permutation σ and π, and their respective associated ma-
trices S and P , we have:

d(σ, π) = d(S, P).

Proof. First, notice that it suffices to show that

‖α‖ = r(A − I), (4)

for any permutation α and associated matrix A. Indeed, if P is invertible then

r(S − P) = r(SP−1 − I),

and then Equation (4) will relate d(σ, π) to the distances of the corresponding
matrices S and P .

Then proceed to show that, for a k-cycle, Equation (4) is true since both sides
are equal to k − 1. Finally, for a general permutation, decompose it in disjoint
cycles, and use the fact that, for disjoint permutations α and β, with associated
matrices A and B, respectively, we have

ker(A− I) ∩ ker(B − I) = ker(AB − I),

On the Matrix Median Problem 235

and
ker(A− I) + ker(B − I) = Rn,

which guarantee that

n− dim ker(AB − I) = n− dim ker(A− I) + n− dim ker(B − I).

or
r(AB − I) = r(A − I) + r(B − I),

because of Equation 2.
Therefore, if Equation (4) is valid for α and β, and if α and β are disjoint,

then Equation (4) is valid for the product αβ. Since any permutation can be
written as a product of disjoint cycles, Equation (4) is valid in general. ��

3.2 Matrix Median

Because the correspondence between permutations and matrices preserves dis-
tances, it makes sense to study the matrix median problem as a way of shed-
ding light into the permutation median problem, which in turn is related to the
genome median problem.

Let A, B, and C be three n× n matrices. Suppose we want to find a matrix
M such that

d(M ;A,B,C) = d(M,A) + d(M,B) + d(M,C)

is minimized. In order to have small d(M,A), M must be equal to A in a large
subspace, so that ker(A−M) is large. Similarly with B and C.

This suggests the following strategy. Decompose Rn as a direct sum of five
subspaces, where the following relations are true: (1) A = B = C, (2) A = B �=
C, (3) A �= B = C, (4) A = C �= B, and (5) A �= B �= C �= A.

In the first subspace, since A, B, and C all have the same behaviour, M
should also do the same thing. In the second subspace, since A = B but C is
different, it is better for M to go with A and B. Likewise, in the third subspace
M should concur with B and C, and with A and C in the fourth. Finally, in
the final subspace it seems hard to gain points in two different distances, so the
best course for M would be to mimic one of A, B, or C.

Therefore, making M equal to A, except in the third subspace, where it should
be equal to B (and C) should yield a good approximation of a median, if not a
median. The rest of this section will be devoted to showing the details on this
construction.

3.3 Partitioning Rn

We begin by introducing notation aimed at formalizing subspaces such as A =
B �= C. Given n × n matrices A, B, and C, we will use a dotted notation to
indicate a partition, e.g., .AB.C. means a partition where A and B are in one

236 J.P. Pereira Zanetti, P. Biller, and J. Meidanis

class, and C is in another class by itself. To each such partition, we associate a
vector subspace of Rn formed by those vectors having the same image in each
class:

V (.AB.C.) = {v ∈ Rn|Av = Bv}.

Notice that singleton classes do not impose additional restrictions. With this
notation, the subspace we used to call A = B = C can be written as V (.ABC.).
Notice also that V (.A.B.C.) = Rn.

We need also a notation for strict subspaces, such as A = B �= C, where
distinct classes actually disagree, that is, subspaces where vectors have differ-
ent images under each class. There can be more than one subspace satisfying
this property, but we can use orthogonality to define a unique subspace. For a
partition p, we define V∗(p) as the orthogonal complement of the sum of the
partitions strictly refined by p with respect to V (p):

V∗(p) = V (p) ∩ (
∑
p<q

V (q))⊥

where p < q means that partition p strictly refines partition q. In other words,
we want to capture the part of the subspace V (p) that is orthogonal to the sum
of the subspaces corresponding to coarser partitions. Notice that p < q implies
V (q) ⊆ V (p).

It is easy to see that the V∗ subspaces are pairwise disjoint, but this is not
enough to prove that their direct sum is Rn. So, the proof will start from the
basic sum V∗(.ABC.) ⊕ V∗(.AB.C.), where we already know that V∗(.ABC.) ∩
V∗(.AB.C.) = {0}, and it will add one subspace in the sum at a time, ensuring
that the intersection between the new subspace and the sum of the subspaces
previously included contains the zero vector only.

Lemma 2. If A, B, and C are permutation matrices, then

(V∗(.ABC.) + V∗(.AB.C.)) ∩ V∗(.BC.A.) = {0}.

Proof. Let v be a vector such that

v ∈ (V∗(.ABC.) + V∗(.AB.C.)) ∩ V∗(.BC.A.).

We have that Av = Bv and also Av = Cv. Therefore Av = Bv = Cv and,
consequently, v = 0, since v ∈ V∗(.ABC.). ��

Before we add more subspaces to the sum, we will need the result of the following
lemma.

Lemma 3. If A, B, and C are permutation matrices, and if

2Bv = Av + Cv

for a given vector v, then Av = Cv.

On the Matrix Median Problem 237

Proof. Denote by |x| the norm of a vector x. Note that A, B, and C preserve
norms, thus

|Av + Cv| = |2Bv| = 2|v| = |v|+ |v| = |Av|+ |Cv|.

But, if the norm of the sum is equal to the sum of the norms, then the two vectors
are parallel, and have the same orientation. In other words, there is a positive
scalar c such that cAv = Cv. But we already have that |Av| = |v| = |Cv|.
Therefore, c = 1. ��

Lemma 4. If A, B, and C are permutation matrices, then

(V∗(.ABC.) + V∗(.AB.C.) + V∗(.BC.A.)) ∩ V∗(.AC.B.) = {0}.

Proof. Suppose that u + v + w ∈ V∗(.AC.B.), where u ∈ V∗(.ABC.), v ∈
V∗(.AB.C.), and w ∈ V∗(.BC.A.). We have that A(u + v + w) = C(u + v + w),
which implies A(v + w) = C(v + w), since Au = Cu. Thus, we have

Av + Aw = Cv + Cw

Bv + Aw = Cv + Bw

B(v − w) = Cv −Aw.

Now we will apply A and C to v − w, and sum the results, obtaining:

A(v − w) = Bv −Aw

C(v − w) = Cv −Bw

A(v − w) + C(v − w) = B(v − w) + Cv −Aw = 2B(v − w)

By Lemma 3, we conclude that A(v − w) = C(v − w). But we also have that
A(v + w) = C(v + w), which implies Av = Cv and Aw = Cw. In other words,
u + v + w ∈ V∗(.ABC.). But u + v + w also belongs to V∗(.AC.B.). It follows
that u + v + w = 0. ��

Lemma 5. If A, B, and C are permutation matrices, then

(V∗(.ABC.) + V∗(.AB.C.) + V∗(.BC.A.) + V∗(.AC.B.)) ∩ V∗(.A.B.C.) = {0}.

Proof. By definition, the two subspaces whose intersection is indicated in the left-
hand side are orthogonal to one another. Therefore, they have a zero intersection.

��

With Lemmas 2 through 5 we get to the following theorem:

Theorem 1. If A, B, and C are permutation matrices, then

Rn = V∗(.ABC.) ⊕ V∗(.AB.C.) ⊕ V∗(.BC.A.) ⊕ V∗(.AC.B.) ⊕ V∗(.A.B.C.).

238 J.P. Pereira Zanetti, P. Biller, and J. Meidanis

It is important to observe that Theorem 1 does not apply to general matrices,
for instance:

A =

[
0 0
0 0

]
, B =

[
0 1
0 1

]
, C =

[
1 0
1 0

]
With these three matrices, we have

V∗(.ABC.) = {0},

V∗(.AB.C.) =
〈
[1 0]t

〉
,

V∗(.BC.A.) =
〈
[1 0]t, [0 1]t

〉
,

V∗(.AC.B.) =
〈
[0 1]t

〉
,

where 〈X〉 denotes the space spanned by the set X .
We can see that, in this case,

(V∗(.ABC.) + V∗(.AB.C.) + V∗(.BC.A.)) ∩ V∗(.AC.B.) �= {0}.

3.4 Computing Median Candidates

We now get into further detail in the procedure to compute these matrices. We
saw that, when A, B, and C are permutation matrices, Rn can be decomposed
into a direct sum of V∗ subspaces. We will now implement the procedure outlined
in Section 3.2, summarized in Table 1, to obtain a median candidate MA.

Table 1. Distance contribution — Given three permutation matrices A, B and C, this
table shows the distance contribution of each of the five subspaces partitioning Rn to
the distances d(MA, A), d(MA, B), and d(MA, C), for a candidate median matrix MA.

Contributes to . . .

Subspace MA = . . . d(M,A) d(M,B) d(M,C)

V∗(.A.B.C.) A no yes yes
V∗(.AB.C.) A no no yes
V∗(.BC.A.) B yes no no
V∗(.AC.B.) A no yes no
V∗(.ABC.) A no no no

One way to implement this strategy is to compute orthogonal projection ma-
trices P1, P2, P3, P4, and P5 for each of the subspaces and then compute MA as
follows:

MA = AP1 + AP2 + BP3 + AP4 + AP5

= A + (B −A)P3 ,

On the Matrix Median Problem 239

since P1 + P2 + P3 + P4 + P5 = I. To obtain each matrix Pi all we need is a
n×ki matrix Bi whose columns form an orthonormal basis of the corresponding
subspace, because Pi can then be written as BiB

t
i .

To build the Bis, one possibility is to use Function Add below, a basic routine
to expand an orthonormal basis so that it can generate a given extra vector v.
It projects the new vector in the orthogonal complement of the subspace gener-
ated by the original basis and then adds the normalized projection to form the
new basis. Function Add’s complexity is O(kn) arithmetic operations (additions,
subtractions, multiplications, and divisions).

Function Add(B, v) Augments an orthonormal basis B so that it can
generate the vector v.

Data: An orthonormal basis B = {v1, . . . , vk} and a vector v.
Result: An augmented basis.

1 w ← v −
∑k

i=1 viv
tvi

2 if w = 0 then
3 Return B
4 else
5 Normalize w
6 Return B ∪ {w}

Algorithm 1 uses Function Add and a linear system solving method Solve,
that returns a linearly independent set of vectors spanning the solution space, to
determine orthonormal bases for each of the five V∗ subspaces. Assuming that
we can solve a system of n linear equations in time O(n3), the total complexity
for Algorithm 1 is O(n3) as well.

Once we have determined orthonormal bases for the V∗ subspaces, it is easy
to find projection matrices for them. For each Bi, its projection matrix is Pi =
BiB

t
i , as previously said.

Knowing the projection matrices, we can then finally compute the median
candidates, in Algorithm 2. Previously, we saw how to compute MA. It is also
possible to define MB and MC in an analogous way. The matrix MB follows B
in V∗(.A.B.C.) instead of A, and MC follows C. The entire computation takes
O(n3) arithmetic operations.

We can also define a median candidate MI , that follows the identity in the
subspace V∗(.A.B.C.). That is,

MI = A(P1 + P2 + P4) + BP3 + P5 = A + (B −A)P3 + (I −A)P5 .

We still have no proven results on its total median score, but we conjecture that,
for genomic matrices, MI is better than MA, MB and MC , or it might even be
a median. This is due to the symmetric nature of the genomic matrices.

240 J.P. Pereira Zanetti, P. Biller, and J. Meidanis

Algorithm 1. Computation of orthonormal bases for each of the V∗ sub-
spaces

Data: Three n× n permutation matrices A, B and C.
Result: The bases for the V∗ subspaces.

1 B ← ∅
2 L ← Solve {(A−B)v = 0, (A−C)v = 0}
3 foreach v ∈ L do
4 B ← Add(B,v)

5 B1 ← B // Basis for V∗(.ABC.)
6 L ← Solve {(A−B)v = 0}
7 foreach v ∈ L do
8 B ← Add(B,v)

9 B2 ← B −B1 // Basis for V∗(.AB.C.)
10 L ← Solve {(B − C)v = 0}
11 foreach v ∈ L do
12 B ← Add(B,v)

13 B3 ← B −B1 −B2 // Basis for V∗(.BC.A.)
14 L ← Solve {(A− C)v = 0}
15 foreach v ∈ L do
16 B ← Add(B,v)

17 B4 ← B −B1 −B2 −B3 // Basis for V∗(.AC.B.)
18 L ← canonical basis for Rn

19 foreach v ∈ L do
20 B ← Add(B,v)

21 B5 ← B −B1 −B2 −B3 −B4 // Basis for V∗(.A.B.C.)

Algorithm 2. Computation of median candidates

Data: Three n× n permutation matrices A, B and C.
Result: Three median candidates MA, MB , and MC .

1 Compute the bases B1, B2, B3, B4, and B5 with Algorithm 1
2 foreach i ∈ {1, 2, 3, 4, 5} do
3 Pi ← BiB

t
i

4 MA ← A+ (B − A)P3

5 MB ← B + (A−B)P4

6 MC ← C + (B − C)P2

On the Matrix Median Problem 241

3.5 Approximation Factor

We already know that the direct sum of the V∗ subspaces is Rn, when A, B,
and C are permutation matrices. Now we can use this property to express the
distance in terms of these subspaces dimensions. The matrix MA will have a
total distance to A, B, and C equal to:

d(MA;A,B,C) = d(M,A) + d(M,B) + d(M,C)

= dimV∗(.BC.A.) +

dimV∗(.A.B.C.) + dim V∗(.AC.B.) +

dimV∗(.A.B.C.) + dim V∗(.AB.C.)

= 2 dimV∗(.A.B.C.) +

dimV∗(.AB.C.) + dim V∗(.AC.B.) + dim V∗(.BC.A.). (5)

There are cases where MA is not a median, even if the input matrices are
genomic. Take, for example:

A =

⎡⎣0 1 0
1 0 0
0 0 1

⎤⎦ , B =

⎡⎣1 0 0
0 0 1
0 1 0

⎤⎦ , and C =

⎡⎣0 0 1
0 1 0
1 0 0

⎤⎦ .

By Equation (5), the matrix MA has the following total score:

d(MA;A,B,C) = 2× 2 + 0 + 0 + 0 = 4.

However, the identity matrix I has a better total score than MA, and is
actually a median in this case:

d(I;A,B,C) = 1 + 1 + 1 = 3.

Thus, given that the procedure described in the Section 3.4 does not guaran-
tee a matrix median, it is interesting to know whether it is an approximation
algorithm, namely, whether there is a constant ρ such that the candidate’s total
score is at most ρ times the score of a median.

In general, consider permutation matrices A, B, and C and a matrix M such
that d(M ;A,B,C) is minimum, that is, M is a median. There is a trivial lower
bound for the median score of a matrix, easily obtained with the help of the
triangle inequality, namely

d(M ;A,B,C) ≥ 1

2
(d(A,B) + d(B,C) + d(C,A)).

According to Equation (5), the median score of the approximate solution MA

constructed in Section 3.4 is given by:

d(MA;A,B,C) = 2 dimV∗(.A.B.C.) +

dimV∗(.AB.C.) + dim V∗(.AC.B.) + dim V∗(.A.BC.),

242 J.P. Pereira Zanetti, P. Biller, and J. Meidanis

For comparison, we can write the trivial lower bound in terms of subspace
dimensions. It suffices to write each distance as a dimension sum of the subspaces
where they differ. The result is:

1

2
(d(A,B) + d(B,C) + d(C,A)) =

3

2
dimV∗(.A.B.C.) + dim V∗(.AB.C.) +

dimV∗(.AC.B.) + dimV∗(.A.BC.).

Then, to prove that the matrix MA is indeed an approximate solution, it
suffices to show that there is a constant ρ such that

d(MA;A,B,C) ≤ ρd(M ;A,B,C),

for any given matrices A, B, and C.
It is possible to demonstrate that 4

3 is an approximate factor for our solution,
as follows:

d(MA;A,B,C) = 2 dimV∗(.A.B.C.) + dimV∗(.AB.C.) + dimV∗(.AC.B.) +

+ dimV∗(.A.BC.)

≤ 4

3
[
3

2
dim V∗(.A.B.C.) + dimV∗(.AB.C.) + dimV∗(.AC.B.) +

+ dimV∗(.A.BC.)]

≤ 4

3
[
1

2
(d(A,B) + d(B,C) + d(C,A))]

≤ 4

3
d(M ;A,B,C).

Thus, we proved that d(MA;A,B,C) is at most 4
3 times d(M ;A,B,C). The

same result holds for MB and MC .

4 Conclusions

We showed in this paper that it is possible to define a distance on matrices in
a way that yields exactly the algebraic distance when restricted to permutation
matrices. For the case where the input matrices represent genomes, we have
shown how to compute matrices that approximate the median with factors at
least as good as the best corner, that is, they are approximations to the median
within a factor of 4

3 . In addition, we showed a construction, in the form of matrix
MI , that in several examples we worked out is even better than the other median
candidates. We conjecture that this matrix might be a median if A, B, and C
come from genomes. The implications to computing algebraic genome medians
can be significant.

Acknowledgements. We thank Luiz Antonio Barrera San Martin, who sug-
gested linear representations in a discussion on permutations, the Research Fund-
ing Agency of the State of Sao Paulo (FAPESP), for grants 2012/13865-7 and
2012/14104-0, and the anonymous referees for helpful comments that improved
the paper significantly.

On the Matrix Median Problem 243

References

1. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in
the ancestral species. Genome Research 12(1), 26–36 (2002)

2. Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory.
Journal of Combinatorial Theory, Series A 25(3), 226–241 (1978)

3. Feijao, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several re-
arrangement problems. IEEE IEEE/ACM Transactions on Computational Biology
and Bioinformatics 8, 1318–1329 (2011)

4. Feijao, P., Meidanis, J.: Extending the Algebraic Formalism for Genome Rear-
rangements to Include Linear Chromosomes. In: de Souto, M.C.P., Kann, M.G.
(eds.) BSB 2012. LNCS (LNBI), vol. 7409, pp. 13–24. Springer, Heidelberg (2012)

5. Haghighi, M., Sankoff, D.: Medians seek the corners, and other conjectures. BMC
Bioinformatics 13(suppl. 19), S5 (2012)

6. Meidanis, J., Dias, Z.: An alternative algebraic formalism for genome rearrange-
ments. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics: Empirical and
Analyitical Approaches to Gene Order Dynamics, Map Alignment and Evolution
of Gene Families, pp. 213–223. Kluwer Academic Publishers (2000)

7. Moret, B.M., Wang, L.S., Warnow, T., Wyman, S.K.: New approaches for recon-
structing phylogenies from gene order data. Bioinformatics 17(suppl. 1), S165–S173
(2001)

8. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phy-
logeny. Journal of Computational Biology 5(3), 555–570 (1998)

9. Sankoff, D., Sundaram, G., Kececioglu, J.: Steiner points in the space of genome
rearrangements. International Journal of Foundations of Computer Science 7(01),
1–9 (1996)

10. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving prob-
lems under different genomic distances. BMC Bioinformatics 10, 120 (2009)

11. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permuta-
tions by translocation, inversion and block interchange.. Bioinformatics 21(16),
3340–3346 (2005)

A Fixed-Parameter Algorithm for Minimum

Common String Partition with Few Duplications

Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz	,
and Irena Rusu

Université de Nantes, LINA - UMR CNRS 6241, France.
{Laurent.Bulteau,Guillaume.Fertin,Christian.Komusiewicz,

Irena.Rusu}@univ-nantes.fr

Abstract. Motivated by the study of genome rearrangements, the NP-
hard Minimum Common String Partition problems asks, given two
strings, to split both strings into an identical set of blocks. We consider
an extension of this problem to unbalanced strings, so that some elements
may not be covered by any block. We present an efficient fixed-parameter
algorithm for the parameters number k of blocks and maximum occur-
rence d of a letter in either string. We then evaluate this algorithm on
bacteria genomes and synthetic data.

1 Introduction

Comparative genomics has various applications, one of which is understanding
the evolution of genomes under the assumption that gene content and gene order
conservation are closely related to gene function [11]. To this end, a fundamental
task is to define and compute the true evolutionary distance between two given
genomes [15]. This is done by the correct identification of orthologs and par-
alogs and by the correct identification of the evolutionary events resulting into
changes in gene content and gene order. The first of these objectives is handled
by several homology-based approaches [12, 16]; more evolved programs handle
both objectives [1, 4, 13]. The second objective gave birth to a large number of
important distances between genomes represented either as strings or as permu-
tations. Such distances either exploit the similarity between genomes in terms
of gene content and order, or count specific genome rearrangements needed to
transform one genome into another (see [3] for an extensive survey).

In this work, both objectives above are followed via a distance between genomes
represented as strings, which was defined independently by Chen et al. [1] (for or-
tholog/paralog identification) and Swenson et al. [15] (for evolutionary events defin-
ing an evolutionary distance). Informally, given two strings S1 and S2 representing
two genomes, the operation to realize is cutting S1 into non-overlapping substrings
and reordering a subset of these substrings such that the concatenation of the re-
ordered substrings is as close as possible to S2. The ortholog/paralog identification

� Post-doc funded by a Région Pays de la Loire grant.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 244–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Fixed-Parameter Algorithm for Minimum Common String Partition 245

ababcd dbadcbbaa babab ababa

ababcddbadcbbaabababababa

cd db

aa a

Fig. 1. A common string partition of size 4. Copies of a, b, c and d that could not be
matched are deleted.

between S1 and S2 is then directly given by the substrings of S1 used to approxi-
mately recompose S2, whereas the evolutionary distance is given by the minimum
number of substrings needed to obtain such a reconstruction.

The above transformation between the two genomes is formalized by the no-
tion of common string partition (CSP). Let S1 and S2 be two strings on an
alphabet Σ. A partition P of S1 and S2 into blocks x1x2 · · ·xp and y1y2 · · · yq
is a common string partition if there is a bijective function M from D(M) ⊆
{xi | 1 ≤ i ≤ p} to I(M) ⊆ {yj | 1 ≤ j ≤ q} such that (1) for each xi ∈ D(M), xi

is the same string as M(xi), and (2) there is no letter a ∈ Σ that is simultane-
ously present in some block xj �∈ D(M) and in some block yl �∈ I(M) (see Fig. 1
for an example). The size of the common string partition P is the cardinality k
of D(M). We study the problem of finding a minimum-size CSP:

Minimum Common String Partition (MCSP)

Input: Two strings S1 and S2 on an alphabet Σ, and an integer k.
Question: Is there a common string partition (CSP) of S1 and S2 of
size at most k?

The definition of a CSP given above is actually a generalization to arbitrary
(or unbalanced) strings of the definition given in [1] for balanced strings, that is,
when each letter appears the same number of times in S1 and S2. Note also that
in this paper, the strings we consider are unsigned. Although this model is less
realistic from a genomic viewpoint, our study is a first step towards improved
algorithms for the MCSP problem in the most general case, that is, for signed
and unbalanced strings.

Related Work. MCSP was introduced by Chen et al. [1], but close variants also
exist with different names, such as block edit distance [10] or sequence cover [15].
Most of the literature on MCSP actually considers the restricted case where the
input strings S1 and S2 are balanced. In that case, necessarily D(M) (resp. I(M))
contains every block from S1 (resp. S2). Let Bal-MCSP denote this restricted
class of problems. Bal-MCSP has been shown to be NP-hard and APX-hard
even if d = 2, where d is the maximum number of occurrences of any letter
in either input string [5]. Several approximation algorithms exist with ratios
1.1037 when d = 2 [5], 4 when d = 3 [5], and 4d in general [9]. Concerning fixed-
parameter tractability issues, Damaschke [2] initiated the study of Bal-MCSP in
the context of parameterized algorithmics by showing that it is fixed-parameter
tractable with respect to the combined parameter “partition size k and repetition

246 L. Bulteau et al.

number r”. More recently, Jiang et al. [6] showed that Bal-MCSP can be solved
in O((d!)k · poly(n)) time.

Our Results. Our main result in this paper is an improvement on the latter
result, showing that MCSP (and thus, Bal-MCSP) can be solved in O(d2k · kn)
time, thus considerably improving the running time from Jiang et al. [6]. Our
result is also more general since it is one of the rare known fixed-parameter algo-
rithms that deals with unbalanced strings. Moreover, a(n approximate) solution
to MCSP is computed within the pipeline of MSOAR, MSOAR2.0 and MultiM-
SOAR software [4, 13, 14] (all used to determine orthology relations between
genes), hence these programs could benefit from any algorithmic improvement
concerning MCSP [7], such as the one presented here. Indeed, our algorithm
actually runs in d2k

′ · kn, where k′ is the number of blocks of D(M) that con-
tain no letter appearing only once in S1 and S2. Moreover, we present reduction
rules that yield further speed-up, and finally test our algorithm on genomic and
synthetic data.

Basic Notation. A marker is an occurrence of a letter at a specific position in a
string. Formally, the marker at position i in a string S corresponds to the pair
(S, i), which we denote by S[i]. Given a marker u we denote by S(u) the string
that contains u. For all i, 1 ≤ i < n, the markers S[i] and S[i + 1] are called
consecutive. Let r(S[i]) := S[i + 1], 1 ≤ i < n, denote the right neighbor of
marker S[i], and let l(S[i]) := S[i − 1], 1 < i ≤ n denote the left neighbor of
marker S[i]. An adjacency is a pair of consecutive markers. For two markers u
and v we write u ≡ v if their letters are the same and u = v if the markers are
identical, that is, they are at the same position in the same string. An interval is
a set of consecutive markers, that is, an interval is a set {S[i], S[i+ 1], . . . , S[j]}
for some i ≤ j. We write [u, v] to denote the interval whose first marker is u and
whose last marker is v. For two intervals s and t, we write s ≡ t if they represent
the same string of letters (if they have the same contents) and s = t if they are
the same interval, that is, they start and end at the same position in the same
string. Given two strings S1, S2, a letter is abundant in a string Si if it appears
with strictly more occurrences in Si than in the other string. Otherwise, it is
rare in Si. A marker u is abundant if it corresponds to an abundant letter in
S(u), and rare otherwise.

Fundamental CSP-Related Definitions. We assume that S1 �= S2, otherwise
MCSP is trivially solved by reporting a CSP of size one. A candidate match
is an unordered pair of markers {u, v} such that u ≡ v and S(u) �= S(v), that
is, the markers have the same letters and are from different input strings. Two
candidate matches {x, y} and {x′, y′} where S(x) = S(x′) and x is to the left
of x′ are called parallel if [x, x′] ≡ [y, y′]. Note that this implies that for the i-th
marker u in [x, x′] and the i-th marker v in [y, y′] the pair {u, v} is also a candi-
date match and it is parallel to {x, y} and to {x′, y′}. Informally, being parallel
means that two candidate matches could potentially be in the same block of a
CSP.

A Fixed-Parameter Algorithm for Minimum Common String Partition 247

A CSP P is a set of pairwise disjoint candidate matches containing all rare
markers. If a marker does not appear in any candidate match of P then it is
necessarily abundant, and it is called deleted in P , otherwise we use fP (u) to
denote the unique marker v such that {u, v} ∈ P . The block relation ∼P of a
CSP is defined as the (uniquely determined) equivalence relation such that each
equivalence class is a substring of S1 or S2 and u ∼P r(u) if and only if u and r(u)
are not deleted, and {u, fP (u)} and {r(u), fP (r(u))} are parallel. Note that this
implies that, for any two markers x and x′ with x ∼P x′ it holds that {x, fP (x)}
and {x′, fP (x′)} are parallel. The blocks are precisely the equivalence classes of
∼P of non-deleted markers, that is, two markers u and v are in the same block
iff u ∼P v.

Due to lack of space, some proofs are deferred to a full version of this work.

2 An Improved Fixed-Parameter Algorithm

We now describe our fixed-parameter algorithm. It is a branching algorithm that
adds, one by one, candidate matches to a temporary solution. The main idea is
that these candidate matches belong to different blocks of the CSP.

2.1 CSPs, Samples and Witnesses

As stated above, the algorithm gradually extends a temporary solution called
sample. Formally, a sample T is a set of disjoint candidate matches. We use
M(T) to denote the set of all markers belonging to a candidate match in T (thus,
|M(T)| = 2|T |). The algorithm tries to construct an optimal CSP by extending
a sample T that describes this CSP and is furthermore non-redundant. That is,
the sample contains only candidate matches that are in the CSP and at most one
candidate match for each pair of matched blocks. We call such samples witnesses.

Definition 1. A sample T = {{x1, y1}, {x2, y2}, . . . , {xm, ym}} is a witness of
a CSP P if (1) T ⊆ P , that is, yi = fP (xi) for each i, and (2) for all x, y ∈M(T)
with x �= y we have x �∼P y.

Given a witness T of some CSP P , a marker u is seen by T if ∃x ∈ M(T) such
that u ∼P x. We use See(P, T) to denote the set of markers seen by T in P . Let
u ∈ See(P, T) be a marker seen by T in P , then we say that u is colored black
by P and T if u = x; u is colored green by P and T if it is to the right of x; or u
is colored red by P and T if it is to the left of x. Note that the coloring is unique
since for each marker u there is at most one x ∈M(T) such that u ∼P x.

The algorithm finds a witness describing an optimal CSP. More precisely, the
aim is to see all rare markers eventually. A witness T is complete if it contains
a marker from every block of P . Equivalently, T is complete if it sees every rare
marker. We first show that if a rare marker is unseen by a witness T for some
CSP P , then another witness for P can be obtained by extending T .

Lemma 1. Let u be a rare marker such that u /∈ See(P, T). Then there exists a
candidate match {u, v} such that T ∪ {{u, v}} is a witness of P .

248 L. Bulteau et al.

Proof. Let v = fP (u) (u is rare, hence it is not deleted), then {u, v} is clearly a
candidate match. Furthermore, T ∪ {{u, v}} is a subset of P . It thus remains to
show that T is non-redundant. Since u /∈ See(P, T), u �∼P x for all x ∈ M(T).
Furthermore, this also implies v �∼P y for all y ∈ {fP (x) | x ∈ M(T)} =M(T).
Thus T ∪ {{u, v}} is a witness of P . ��
The following lemma shows that when an optimal CSP contains parallel candi-
date matches, then the markers that are in the same string are also in the same
blocks of the CSP. We will use this lemma to argue that the algorithm only
considers samples without parallel edges.

Lemma 2. If a CSP P contains two parallel candidate matches {x, y} and
{x′, y′} such that S(x) = S(x′) and x �∼P x′, then it is not optimal.

Proof. Aiming at a contradiction, assume that P is optimal. Moreover, assume
without loss of generality that S(x) = S(x′) = S1, and that {x, y} and {x′, y′}
have been chosen so as to minimize the distance between x and x′, while sat-
isfying the conditions of the lemma. Since the candidate matches {x, y} and
{x′, y′} are parallel, we have [x, x′] ≡ [y, y′]. Let � denote the number of mark-
ers in [x, x′], let xi denote the i-th marker in [x, x′] and let yi denote the i-th
marker in [y, y′]. Then, each {xi, yi} is a candidate match, {xi, yi} and {xj , yj}
are parallel for all 1 ≤ i, j ≤ �, and, by the minimality of the distance between x
and x′, {xi, yi} /∈ P for 1 < i < �. Moreover, for all 1 < i < �, x �∼P xi �∼P x′

and y �∼P yi �∼P y′. Create a CSP Q, starting with Q := P .
If one of x2, y2 is deleted (say x2, note that they cannot both be deleted since

they cannot both be abundant), then let u2 := fP (y2). The pair {u2, y2} is the
left-most candidate match of its block in P . Remove {u2, y2} from Q and add
{x2, y2}, extending the block containing {x, y}. Then Q is also an optimal CSP.

If none of x2, y2 are deleted, then they are the left-most markers of blocks
ending in xp and yq respectively (assume without loss of generality that p ≤ q).
Note that p, q < �, since these blocks are strictly contained between x and x′ (y
and y′). Write ui = fP (yi) for all 2 ≤ i ≤ q, and vi = fP (xi) for all 2 ≤ i ≤ p. For
each 2 ≤ i ≤ p, remove {{xi, vi}, {yi, ui}} from Q and add {{xi, yi}, {ui, vi}}.
Then Q has no more blocks than P and is an optimal CSP. Indeed, [x2, xp] is
now merged to the block containing x, and [u2, uq] is now split in two blocks
[u2, up] and [up+1, uq].

In both cases, Q is an optimal CSP where {x2, y2} has been added to the block
containing {x, y}. If x2 ∼Q x′, then the block containing {x, y} and {x2, y2} is
merged with {x′, y′}, and Q has one block less than P . Otherwise, x2 �∼Q x′,
and Q satisfies the conditions of the lemma for {x2, y2} and {x′, y′} with a
smaller distance between x2 and x′ than between x and x′. Both cases lead to a
contradiction. ��

2.2 The Sample Graph

We now describe a multigraph that is associated with the current sample T . We
will use the structure in this graph to identify cases to which the branching
applies. First, we describe the construction of this graph.

A Fixed-Parameter Algorithm for Minimum Common String Partition 249

� �

� �

Fig. 2. Sample graph computed for two sequences, given a sample of two candidate
matches (black edges), with green (dark gray) and red (light gray) edges. Note that a
and c are rare in the top sequence, and b, c and d are rare in the bottom sequence.
Vertices satisfying the conditions of Branching Rules 1 and 2 are marked with white
dots (four are isolated rare vertices, two appear in a rare odd path).

Let T be a sample for an input instance (S1, S2, k), and let C denote the set
of all candidate matches between S1 and S2. The sample graph GT := {VT , ET }
of T is the following edge-colored multigraph. The vertex set VT is the set of
markers of S1 and S2. The edge multiset ET ⊆ C consists of the black edges Eb

T ,
the green edges Eg

T , and the red edges Er
T . The edge sets are defined as follows.

The black edges are the pairs of the sample, that is, Eb
T := T . For the green

and red edges, we use the following notation. For a marker u /∈M(T), let lT (u)
denote the rightmost vertex from M(T) that is in the same string as u and to
the left of u. Similarly, let rT (u) denote the leftmost vertex from M(T) that is
to the right of u. Now, the green edge set is

Eg
T := {{x, y} ∈ C | x, y /∈M(T) ∧ {lT (x), lT (y)} ∈ T

∧ {lT (x), lT (y)} is parallel to {x, y}}.

The red edge set is

Er
T := {{x, y} ∈ C | x, y /∈ M(T) ∧ {rT (x), rT (y)} ∈ T

∧ {rT (x), rT (y)} is parallel to {x, y}}.

See Fig. 2 for an example. Clearly, GT is bipartite. From now on, we use
the terms “marker” and “vertex” equivalently since there is a one-to-one corre-
spondence between them. Further, any definition applying to candidate matches
applies in a similar manner to edges. The black-, green-, and red-degree of a ver-
tex are the number of black, green, and red edges incident with it. The degree of
a vertex is simply defined as the sum of the three colored degrees. The sample
graph has the following properties.

Property 1. Let {u, v} be a green (red) edge of GT , then {l(u), l(v)} ({r(u), r(v)})
is either a black or green (red) edge of GT .

Proof. Consider the case that edge {u, v} is green. The property clearly holds
if {l(u), l(v)} is black. Otherwise, {l(u), l(v)} also fulfills the conditions in the
construction of Eg

T : First, l(u) �= lT (u) and l(v) �= lT (v), thus they cannot

250 L. Bulteau et al.

belong to T . Second, {l(u), l(v)} is to the left of {u, v} and thus it is also parallel
to {lT (u), lT (v)}). ��

Property 2. Each vertex incident with a black edge has degree one. For each
other vertex, green-degree and red-degree are at most one.

Proof. First, let {x, y} ∈ T be a black edge. By the definitions of Eg
T and Er

T ,
neither x nor y is incident with a red or green edge. Since the sample T has only
pairwise disjoint candidate matchings, there is no other black edge in T incident
with either x or y.

Now, let e1, e2 be two green edges incident with some vertex v. Clearly, e1
and e2 fulfill the conditions in the definition of Eg

T . Note that, by Property 2, lT (v)
has degree one. Hence, e1 and e2 are parallel to the same edge. This implies
e1 = e2. The proof for red edges is symmetrical. ��

Property 2 implies that every vertex has degree at most two. Thus, each con-
nected component is either a singleton, a path or a cycle.

Property 3. Let u and u′ := l(u) be two consecutive markers such that GT

contains the edges {u, v} and {u′, v′}. If both edges are green (both edges are
red), then {u, v} and {u′, v′} are parallel, that is, v′ = l(v).

Proof. Assume that {u, v} and {u′, v′} are green. By Property 2, vertices incident
with black edges have degree one. Hence, lT (u) �= u′ and thus lT (u) = lT (u′).
Consequently, {u, v} and {u′, v′} are parallel to the same edge {lT (u), lT (v)}.
Hence, they are also parallel to each other. The proof for red edges works anal-
ogously. ��

2.3 Branching on Odd Connected Components

We now show some further properties that the sample graph GT has with respect
to any CSP witnessed by the sample T . We then exploit these properties to
devise branching rules that branch into O(d2) cases. Hence, consider an arbitrary
CSP P witnessed by T . The following is a simple corollary of Lemma 2, the
construction of the sample graph, and the definition of witness.

Lemma 3. If GT contains two parallel black edges, then P is not optimal.

The following lemma relates the colors that markers receive by the CSP P to
the edge colors in the sample graph.

Lemma 4. Let u ∈ See(P, T) be a marker seen by T . Then, there is at least one
edge incident with u in GT . In particular, if vertex u is colored black/green/red,
then {u, fP (u)} is a black/green/red edge in GT .

Corollary 1. If some vertex u has degree 0 in GT , then u /∈ See(P, T).

Combined with Lemma 1 this leads to the first branching rule.

A Fixed-Parameter Algorithm for Minimum Common String Partition 251

Branching Rule 1. If the sample graph GT contains a rare degree-0 vertex u,
then for each vertex v /∈M(T) such that S(u) �= S(v) and u ≡ v branch into the
case to add {u, v} to T .

The branching rule above deals with connected components that are singletons.
Next, we develop a branching rule for connected components that are a certain
type of path in the sample graph.

To this end, we distinguish the following types of paths. A black path is a path
containing exactly one black edge. An odd path is a path with an odd number of
vertices. An even path is a path with an even number of vertices. Note that by
Property 2, all black edges are contained exclusively in black paths. Furthermore,
also by Property 2, the colors of each other path alternate between green and
red. We thus call an even path green if it starts and ends with a green edge
and red, otherwise. An odd path is abundant if its first marker is abundant, rare
otherwise (this definition is not ambiguous since the markers at the ends of an
even path correspond to the same letter in the same string, they are thus both
abundant or both rare).

Lemma 5. Let T be a sample witnessing a CSP P . If a connected component
of the sample graph GT is a rare odd path (u1, v1, . . . , v
−1, u
), then there is
some ui, 1 ≤ i ≤ �, such that ui /∈ See(P, T) and ui is not deleted in P .

Branching Rule 2. If the sample graph GT contains a connected component
which is a rare odd path (u1, v1, u2, v2, . . . , v
−1, u
), then do the following for
each vertex ui, 1 ≤ i ≤ �: for each vertex x /∈ M(T) such that S(ui) �= S(x)
and ui ≡ x branch into the case to add {ui, x} to T .

2.4 Solving Instances without Rare Odd Paths or Singletons

We now show how to find an optimal CSP in the remaining cases. As we will
show, the edge set defined as follows gives such an optimal CSP. See Fig. 3 for
an example.

Definition 2. Let GT be a sample graph. The set PT is the edge set containing

– all black edges from GT ,
– each green edge that is in a green path, in an odd path or in a cycle, and
– each red edge that is in a red path.

Lemma 6. Let T be a sample such that GT does not contain isolated vertices,
parallel black edges, or rare odd paths. Then, PT is a CSP for which T is a
complete witness.

Theorem 1. MCSP can be solved in O(d2k · kn) time.

Proof. We use the algorithm MCSP outlined in Algorithm 1. We first show the
correctness of MCSP, then we bound the running time. Consider a yes-instance,
and let P be an optimal CSP of size k. We show that MCSP(S1, S2, k, ∅) outputs at

252 L. Bulteau et al.

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

Fig. 3. Left: Sample graph GT with no isolated vertices, parallel black edges or rare
odd paths. Right: CSP PT obtained from GT (Definition 2 and Lemma 6). Note that
markers (with letter) u form a green path, markers v form a cycle, markers w form a
red path, and markers x form an abundant odd path.

Algorithm 1. The fixed-parameter algorithm for parameter (d, k).

MCSP(S1, S2, k, T)
1 if |T | > k abort branch
2 Compute the sample graph GT

3 if GT contains parallel black edges : abort branch
4 else if GT contains an isolated vertex :
5 apply Branching Rule 1; in each case call MCSP(S1, S2, k, T ∪ {{u, v}})
6 else if GT contains a rare odd path :
7 apply Branching Rule 2; in each case call MCSP(S1, S2, k, T ∪ {{ui, x}})
8 else compute PT , output PT

least one CSP of size k in this case. Since T = ∅ T in the first call, T is initially
a witness of P . Combining Lemma 1 with Lemmas 4 and 5 shows that the
algorithm creates in each application at least one branch such that the set T is a
witness of P in this branch. Now, note that if a branch is aborted because |T | > k,
then the current set T either is redundant (and thus not a sample) or any CSP
that it witnesses has size at least k, thus it does not witness P in this case.
Similarly, if the graph GT contains parallel black edges, then the set T is either
redundant, or any CSP that it witness is not optimal; thus it does not witness P .
Hence, the algorithm eventually reaches a situation in which T is a witness of P
and GT contains no isolated vertices and no odd paths. Then it constructs and
outputs a set PT . By Lemma 6, PT is a CSP. Furthermore, it has size |T | and
thus it is at most as large as P which also has size at least |T | since T is a witness
for P .

Now, assume that the instance is a no-instance, then the algorithm has empty
output since all CSPs that are output have size at most k due to the condition
in Line 1 of the algorithm.

It remains to bound the running time. We first bound the size of the search
tree. After the application of each branching rule, the set T has contains one
additional candidate match, so the depth of the search tree is at most k because
of the check in Line 1 of the algorithm. We now bound the number of new cases
for each branching rule. First, Branching Rule 1 branches into at most d cases.
Second, Branching Rule 2 branches into at most d2 cases: All vertices of a path

A Fixed-Parameter Algorithm for Minimum Common String Partition 253

have the same letter since edges are candidate matches. Hence, there are at
most d ui’s. For each of them the algorithm creates at most d branches. Hence,
the overall search tree size is O((d2)k) = O(d2k). The time spent in each search
tree node can be seen as follows. The sample graph can be constructed in O(kn)
time by adding for each of the O(k) black edges the red and green edges in
linear time. This is done by moving to the left and the right until either the next
parallel marker pair is not a candidate match or contains a black vertex (this
can also be used to find parallel black edges). The sample graph has size O(n),
hence isolated vertices and odd paths can also be found in O(n) time. ��

3 Parameter Improvement

In this section, we show that the parameter k denoting the number of blocks
in an optimal solution can be replaced by a potentially much smaller param-
eter k′ :=“number of blocks without unique letters”. Herein, a letter is called
unique if it appears at most once in S1 and at most once in S2. To deal with
the blocks that contain unique letters we devise a simple rule for simplifying the
instance. The algorithm makes use of a data reduction rule. A data reduction
rule is correct if the new instance is a yes-instance if and only if the old one is.
An instance is reduced with respect to a data reduction rule, if an application of
the rule does not change the instance.

Rule 1. If the input contains a pair of unique letters x and x′, where x′ is to
the right of x, such that the candidate matches {x, y} for x and {x′, y′} for x′

are parallel, then replace [x, x′] by x and [y, y′] by y.

Lemma 7. Rule 1 is correct.

After this simplification, the resulting instance has the property that candidate
matches between two different unique matches are in different blocks. This im-
plies that a set T containing all different unique matches is a sample witnessing
any optimal CSP. This leads to the following.

Theorem 2. MCSP can be solved in O(d2k
′ · kn) time where k′ denotes the

number of blocks in S1 that contain no unique letter.

4 Data Reduction Rules

In addition to the improvements described in previous sections which lead to
an improved worst-case running time bound, we also devise the following data
reduction rules. These rules proved crucial for solving larger instances of MCSP
and may be of independent interest. The first of these reduction rules identifies
unique letters that are in S1 and S2 surrounded by other unique letters.

Rule 2. If the instance contains a unique candidate match {u, v} and the letters
to the right and left of u and v are also unique, then let L(u), R(u), L(v),
and R(v) denote the uniquely defined candidate matches containing the left and
right neighbor of u or v. Remove u and v from S1 and S2 and do the following.

254 L. Bulteau et al.

– If L(u) = L(v) or R(u) = R(v) leave k unchanged.
– Else, check whether removing u and v from S1 and S2 made either L(u)

and R(u) parallel or L(v) and R(v) parallel. If it makes none of the two par-
allel, then decrease k by one, if it makes exactly one pair parallel, decrease k
by two, otherwise decrease k by three.

Proof (of correctness). In the first case, {u, v} is parallel to either L(u) or R(u)
and thus the rule is simply a special case of the parallel rule. In the other
cases, {u, v} is parallel to none of L(u), R(u), L(v), R(v). Hence, u and v will
be in a block of size one in any CSP. In case the removal of {u, v} makes no
other edges parallel, the minimum size of a CSP in the reduced instance thus is
one less. Hence, the parameter decrement is correct in this case. If the removal
of u and v makes only L(u) and R(u) parallel, then the minimum size of a CSP
after removing u is decreased by exactly two: Consider any CSP of the original
instance, “merging” the blocks containing the left and the right neighbor of u
and removing the blocks containing u and v gives a CSP for the reduced instance
with size decreased by two. Similarly, re-adding {u, v} to any CSP of the reduced
instance increases the size by exactly two. By symmetry, the same holds for the
case that the removal of u and v makes only L(v) and R(v) parallel.

Finally, if the removal makes L(u) and R(u) parallel and L(v) and R(v) paral-
lel, then the size of the minimum CSP decreases by exactly three which follows
from the above arguments with the additional observation that the two block
merges are indeed “different”. ��

The next two rules “split” letters into two “subletters”. The first rule looks for
letters that appear once in one sequence and twice in the other.

Rule 3. If there is a marker v such that there is exactly one candidate
match {u, v} containing v, the marker u has at least one further candidate
match {u,w}, and any CSP which contains {u, v} has u and v in blocks of
size one, then change the letter of v to some previously unused letter z.

Proof (of correctness). Any CSP P of size k containing the candidate
match {u, v} can be transformed into a CSP of size at most k containing the
candidate match {u,w}: Since u and v are in P in blocks of size one, replacing
{u, v} by {u,w} does not decrease the number of adjacencies in the blocks of the
CSP. Furthermore, this exchange is possible, since {u,w} is the only candidate
match containing w. Hence, there is an optimal CSP in which v is not contained
in any candidate match. It is thus safe to assign v some new unused letter. ��

The next rule follows the same idea, only with letters that appear twice.

Rule 4. If there is a set of four markers u, v, w, and z such that {u,w}, {u, z},
{v, w}, {v, z} are the only four candidate matches containing at least one of these
markers, and any CSP which contains {u,w} and {v, z} has u, v, w, and z in
blocks of size one, then change the letter of u and z to some previously unused
letter x.

A Fixed-Parameter Algorithm for Minimum Common String Partition 255

Proof (of correctness). The proof is similar to the proof of Rule 3. Since the
blocks containing u, v, w, and z have size one, changing the candidate matches
does not decrease the number of adjacencies in the blocks. Hence, replacing {u,w}
and {v, z} by {u, z} and {v, w} gives a CSP of the same size. ��

Note that checking whether there is any CSP including some match {u, v} that
has u and v in blocks of size at least two can be done by simply checking
whether {u, v} is parallel to a candidate match of its right or left neighbor.

5 Implementation and Experiments

We implemented the described algorithm to assess its performance on genomic
and on synthetic instances. We furthermore added three additional data reduc-
tion rules and demonstrate their effect on the genomic instances. Although
our algorithm and experiments concern unsigned strings, they can be seen as
a first step; the results being more than encouraging, we will adapt, in the
near future, our algorithm to the signed (and unbalanced) case. We ran all
our experiments on an Intel(R) Core(TM) i5 M 450 CPU 2.40GHz machine
with 2GB memory under the Ubuntu 12.04 operating system. The program is
implemented in Java and runs under Java 1.6. The source code is available
from http://fpt.akt.tu-berlin.de/mcsp/. The search tree is implemented as de-
scribed in Sections 2 and 3. In addition to the data reduction rules described
in Section 4, we apply Rule 1. All data reduction rules are applied in the begin-
ning and also in each search tree node.

Genomic Data. We performed experiments with genomic data from several bac-
teria. The data was obtained as follows. The raw data consists of a file con-
taining transcripts and proteins of the species and positional information of
the corresponding genes. This data was downloaded from the EnsemblBacteria
database [8] and then filtered as described by Shi et al. [13] to obtain input data
for MSOAR 2.0. Then, the MSOAR 2.0 pipeline was invoked, and the MCSP in-
stances are output right before they are solved approximately by the vertex cover
2-approximation algorithm. These instances contain signed genes. Since the pre-
sented correctness proof only solves the unsigned MCSP problem, we removed all
genes from the negative strand. Afterwards, we removed all non matched genes.
Finally, we perform the following modification: the data from MSOAR actually
can allow arbitrary candidate matches between markers in S1 and S2. How-
ever in MCSP the candidate matches are “transitive”, that is, if {u, v}, {v, w},
and {w, x} are candidate matches of an MCSP instance, then {u, x} is also a
candidate match. We achieve this property for the input data by adding the can-
didate match {u, x}, that is, every connected component of the “marker-match”
graph is assigned one letter not used elsewhere.

The species under consideration are Borrelia burgdorferi, Treponema pallidum,
Escherichia coli, Bacillus subtilis, and Bacillus thuringiensis. Our results are
shown in Table 1; the main findings are as follows. We can solve instances with
hundreds of genes if the average number d∗ of occurrences for each letter and the

http://fpt.akt.tu-berlin.de/mcsp/

256 L. Bulteau et al.

Table 1. Running time, instance properties and effect of data reduction on genomic
data. Herein, n1 is the number of markers in the first genome, n2 the number of
markers in the second genome, k is the CSP size, k′ the number of blocks without fixed
markers, d∗ the average number of candidate matches for each marker, n′

1 and n′
2 denote

the respective number of markers after data reduction, δ is the number of removed
candidate matches during data reduction, and t is the running time in seconds.

Species 1 Species 2 n1 n2 k k′ d d∗ n′
1 n′

2 δ t

B. burg. T. pall. 91 93 68 0 3 1.02 13 15 4 0.06
B. burg. E. coli 66 72 59 0 6 1.09 22 28 12 0.22
B. burg. B. sub. 83 91 63 3 6 1.16 31 39 11 0.15
B. burg. B. thur. 61 71 51 3 5 1.19 32 42 11 0.09
T. pall. E coli 89 93 78 2 5 1.09 22 26 7 0.35
T. pall. B. sub. 136 144 82 0 7 1.12 23 31 11 0.18
T. pall. B. thur. 116 128 76 0 6 1.16 30 42 16 0.15
E. coli B. sub. 264 287 234 14 7 1.23 128 151 54 41.06
E. coli B. thur. 249 282 221 12 10 1.24 129 162 59 18.64
B. sub. B. thur. 673 693 340 14 8 1.17 173 193 51 249.71

Table 2. Average running time in seconds for synthetic instances with d = 6 and d =
8, n = 1000 and varying k; for each parameter triple, 50 instances were generated

d = 6 d = 8
k running time k running time

50 0.06 50 0.07
60 0.06 60 0.06
70 0.07 70 0.08
80 0.09 80 0.09
90 0.10 90 0.12
100 0.12 100 0.16
110 0.13 110 0.26
120 0.18 120 1.62
130 0.21 130 30.42

number k′ of blocks without unique letters is small. Moreover, the parameter k′ is
in these instances much smaller than the parameter k. Finally, the data reduction
rules are very effective in decreasing the instance size and also decrease the overall
number of candidate matches somewhat.

Synthetic Data. We also experimented with synthetic data to test how growth
of k influences the running time. Each instance is generated randomly given five
parameters: the string length n, the upper bound k on the number of blocks, the
upper bound d on the number of occurrences, the upper bound f on the number
of gene families (size of the alphabet), and finally the number δ of deleted markers
(considered as noise between the blocks). We randomly generate k blocks using
available markers (that is, each block is a random string of markers so that
the number of occurrences is never more than d). The two input sequences are

A Fixed-Parameter Algorithm for Minimum Common String Partition 257

generated by concatenating the blocks in different (random) orders, interleaving
with noisy parts of the required total size.

We study the effect of varying parameters n, k and d. To this effect, we fix
the number of deleted markers to δ = 0.1n (we observed that the behavior of the
algorithm is uniform for 0 ≤ δ ≤ 0.2n). Values of δ > 0.2n are harder, however,
we assume that deleting too many markers is of less relevance in genomic appli-
cations. The number f of gene families is fixed to 3n/d. This way we obtain an
average number of occurrences which is experimentally close to d/2. The average
occurrence of each letter thus is roughly twice that of the genomic data; this was
done to obtain more difficult input.

In the experiments, we set n = 1000, and varied k from 50 to 130. One run
was performed for d = 6 and one for d = 8. Our results are shown in Table 2. For
each set of parameter values, we generated 50 instances. We make the following
main observations. First, increasing d makes the instances much harder. Second,
for d = 6, the combinatorial explosion sets in at k ≈ 120, for d = 8 this happens
already at k ≈ 100. Finally, the algorithm efficiently solves instances with n =
1000 and k ≈ 120 when the average occurrence of each letter is roughly 3.5 (this
is the average occurrence number in the experiments for d = 8).

6 Conclusion

We have presented an efficient fixed-parameter algorithm for the Minimum Com-

mon String Partition problem with parameters k and d. Our algorithm even
allows for unbalanced strings, since it can delete superfluous markers between
consecutive blocks of the string partition. Looking towards practical applications,
it would be interesting to consider signed instances, that is, blocks can be read
either from left to right or from right to left with opposite signs. We conjec-
ture that our algorithm can be extended to solve the signed variant of MCSP.
Another generalization of MCSP is as follows. Pairs of markers which form candi-
date matches are given in input, rather than being defined from classes of letters.
From a graph theory point of view, the bipartite graph of candidate matches may
contain arbitrary connected components, not only complete ones. It would be of
interest to provide efficient algorithms for this extension of MCSP.

References

[1] Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment
of orthologous genes via genome rearrangement. IEEE/ACM T. Comput. Bi. 2(4),
302–315 (2005)

[2] Damaschke, P.: Minimum common string partition parameterized. In: Crandall,
K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 87–98.
Springer, Heidelberg (2008)

[3] Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of
Genome Rearrangements. Computational Molecular Biology (2009)

258 L. Bulteau et al.

[4] Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., Jiang, T.: MSOAR: A high-
throughput ortholog assignment system based on genome rearrangement. J. Com-
put. Biol. 14(9), 1160–1175 (2007)

[5] Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem:
Hardness and approximations. Electron. J. Comb. 12 (2005)

[6] Jiang, H., Zhu, B., Zhu, D., Zhu, H.: Minimum common string partition revisited.
J. Comb. Optim. 23, 519–527 (2012)

[7] Jiang, T.: Some algorithmic challenges in genome-wide ortholog assignment. J.
Comput. Sci. Technol. 25(1), 42–52 (2010)

[8] Kersey, P.J., Staines, D.M., Lawson, D., Kulesha, E., Derwent, P., Humphrey,
J.C., Hughes, D.S.T., Keenan, S., Kerhornou, A., Koscielny, G., Langridge, N., Mc-
Dowall, M.D., Megy, K., Maheswari, U., Nuhn, M., Paulini, M., Pedro, H., Toneva,
I., Wilson, D., Yates, A., Birney, E.: Ensembl genomes: an integrative resource for
genome-scale data from non-vertebrate species. Nucleic Acids Res. 40(Database-
Issue), 91–97 (2012)

[9] Kolman, P., Walen, T.: Reversal distance for strings with duplicates: Linear time
approximation using hitting set. Electr. J. Comb. 14(1) (2007)

[10] Lopresti, D.P., Tomkins, A.: Block edit models for approximate string matching.
Theor. Comput. Sci. 181(1), 159–179 (1997)

[11] Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of
gene clusters to infer functional coupling. PNAS 96(6), 2896–2901 (1999)

[12] Remm, M., Storm, C.E., Sonnhammer, E.L., et al.: Automatic clustering of or-
thologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314(5),
1041–1052 (2001)

[13] Shi, G., Zhang, L., Jiang, T.: MSOAR 2.0: Incorporating tandem duplications into
ortholog assignment based on genome rearrangement. BMC Bioinformatics 11, 10
(2010)

[14] Shi, G., Peng, M.-C., Jiang, T.: Multimsoar 2.0: An accurate tool to identify
ortholog groups among multiple genomes. PloS One 6(6), e20892 (2011)

[15] Swenson, K.M., Marron, M., Earnest-DeYoung, J.V., Moret, B.M.E.: Approximat-
ing the true evolutionary distance between two genomes. ACM J. Exp. Alg. 12
(2008)

[16] Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T.,
Rao, B.S., Kiryutin, B., Galperin, M.Y., Fedorova, N.D., Koonin, E.V.: The COG
database: new developments in phylogenetic classification of proteins from com-
plete genomes. Nucleic Acids Res. 29(1), 22–28 (2001)

MSARC: Multiple Sequence Alignment
by Residue Clustering

Michał Modzelewski and Norbert Dojer

Insitute of Informatics, University of Warsaw, Poland
dojer@mimuw.edu.pl

Abstract. Progressive methods offer efficient and reasonably good so-
lutions to the multiple sequence alignment problem. However, resulting
alignments are biased by guide-trees, especially for relatively distant se-
quences.

We propose MSARC, a new graph-clustering based algorithm that
aligns sequence sets without guide-trees. Experiments on the BAliBASE
dataset show that MSARC achieves alignment quality similar to best
progressive methods and substantially higher than the quality of other
non-progressive algorithms. Furthermore, MSARC outperforms all other
methods on sequence sets whose evolutionary distances are hardly rep-
resentable by a phylogenetic tree. These datasets are most exposed to
the guide-tree bias of alignments.

MSARC is available at http://bioputer.mimuw.edu.pl/msarc

Keywords: multiple sequence alignment, stochastic alignment, graph
partitioning.

1 Introduction

Determining the alignment of a group of biological sequences is among the most
common problems in computational biology. The dynamic programming method
of pairwise sequence alignment can be readily extended to multiple sequences
but requires the computation of an n-dimensional matrix to align n sequences.
Consequently, this method has an exponential time and space complexity.

Progressive alignment [21] offers a substantial complexity reduction at the
cost of possible loss of the optimal solution. Within this approach, subset align-
ments are sequentially pairwise aligned to build the final multiple alignment.
The order of pairwise alignments is determined by a guide-tree representing the
phylogenetic relationships between sequences.

There are two drawbacks of the progressive alignment approach. First, the
accuracy of the guide-tree affects the quality of the final alignment. This prob-
lem is particularly important in the field of phylogeny reconstruction, because
multiple alignment acts as a preprocessing step in most prominent methods of
inferring a phylogenetic tree of sequences. It has been shown that, within this
approach, the inferred phylogeny is biased towards the initial guide-tree [23,11].

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 259–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://bioputer.mimuw.edu.pl/msarc

260 M. Modzelewski and N. Dojer

Second, only sequences belonging to currently aligned subsets contribute to
their pairwise alignment. Even if a guide-tree reflects correct phylogenetic rela-
tionships, these alignments may be inconsistent with remaining sequences and
the inconsistencies are propagated to further steps. To address this problem,
in recent programs [15,2,8,1,17] progressive alignment is usually preceded by
consistency transformation (incorporating information from all pairwise align-
ments into the objective function) and/or followed by iterative refinement of the
multiple alignment of all sequences.

In the present paper we propose MSARC, a new multiple sequence alignment
algorithm that avoids guide-trees altogether. MSARC constructs a graph with all
residues from all sequences as nodes and edges weighted with alignment affinities
of its adjacent nodes. Columns of best multiple alignments tend to form clusters
in this graph, so in the next step residues are clustered (see Figure 1a). Finally,
MSARC refines the multiple alignment corresponding to the clustering.

Experiments on the BAliBASE dataset [22] show that our approach is com-
petitive with the best progressive methods and significantly outperforms current
non-progressive algorithms [20,19]. Moreover, MSARC is the best aligner for se-
quence sets with very low levels of conservation. This feature makes MSARC a
promising preprocessing tool for phylogeny reconstruction pipelines.

2 Methods

MSARC aligns sequence sets in several steps. In a preprocessing step, following
Probalign [17], stochastic alignments are calculated for all pairs of sequences
and consistency transformation is applied to resulting posterior probabilities
of residue correspondences. Transformed probabilities, called residue alignment
affinities, represent weights of an alignment graph1. MSARC clusters this graph
with a top-down hierarchical method (Figure 1c). Division steps are based on
the Fiduccia-Mattheyses graph partitioning algorithm [3], adapted to satisfy con-
straints imposed by the sequence order of residues. Finally, multiple alignment
corresponding to resulting clustering is refined with the iterative improvement
strategy proposed in Probcons [1], adapted to remove clustering artefacts.

2.1 Pairwise Stochastic Alignment

The concept of stochastic (or probability) alignment was proposed in [13]. Given
a pair of sequences, this framework defines statistical weights of their possi-
ble alignments. Based on these weights, for each pair of residues from both
sequences, the posterior probability of being aligned may be computed. A con-
sensus of highly weighted suboptimal alignments was shown to contain pairs
with significant probabilities that agree with structural alignments despite the
optimal alignment deviating significantly. Mückstein et al. [14] suggest the use

1 Our notion of alignment graph slightly differs from the one of Kececioglu [9]: remov-
ing edges between clusters transforms the former into the latter.

MSARC: Multiple Sequence Alignment by Residue Clustering 261

(a)

(b)

A

C

C

G

C

G

G

G

G

A

A

T

G

T

G G

G G

G

G

C

A

C

C

G

G

C

C

T

T

T

G

A

A

C

G T

G

G

G

G

A

A

A

A

A

C

G

T

G

C

G

G

G

C

C

C

T

C

G

C

C

A

Ambiguity Conflict Valid (c)

A C G T G

T T C G

T C G G G

G G G T G

T T

G T T T

G G G T G

G G G T

T G G G

T G G G C

C T T

G A A T G

T A T C

T A A G

T C A G A

G G

G

A

T

G A

G C

A C

G C

T C

C A

A C G T G

T T C G

T C G G G

G G G T G

T T

G T T T

G G G T G

G G G T

T G G G

T G G G C

C T T

G A A T G

T A T C

T A A G

T C A G A

G G

G

A

T

G A

G C

A C

G C

T C

C A

G T T

G G G

G G G

T G G

T G G

C

G A

T A

T A

T C

G G

G

A

T

G A

G C

A C

G C

T C

C A

A C G T G

T T C G

T C G G G

G G G T G

T T

T

T G

T

G

G C

T T

A T G

T C

A G

A G A

Fig. 1. Overview of our residue clustering approach. (a) Alignment graph and its de-
sired clustering. Clusters form columns of a corresponding multiple sequence alignment.
(b) Clusterings inconsistent (left and middle) and consistent (right) with the alignment
structure. (c) An example of hierarchical divisive clustering of residues. The graph is
recursively partitioned by finding a balanced minimal cut while maintaining the or-
dering of residues until all parts have at most one residue from each sequence. Final
alignment is constructed by concatenating these parts (alignment columns) from left
to right.

of the method as a starting point for improved multiple sequence alignment
procedures.

The statistical weightW (A) of an alignmentA is the product of the individual
weights of (mis-)matches and gaps [24]. It may be obtained from the standard
similarity scoring function S(A) with the following formula:

W (A) = eβS(A) (1)

where β corresponds to the inverse of Boltzmann’s constant and should be ad-
justed to the match/mismatch scoring function s(x, y) (in fact, β simply rescales
the scoring function).

The probability distribution over all alignments A∗ is achieved by normalizing
this value. The normalization factor Z is called the partition function of the
alignment problem [13], and is defined as

Z =
∑

A∈A∗
W (A) =

∑
A∈A∗

eβS(A) (2)

The probability P (A) of an alignment can be calculated by

P (A) =
W (A)

Z
=

eβS(A)

Z
(3)

Let P (ai ∼ bj) denote the posterior probability that residues ai and bj are
aligned. We can calculate it as the sum of probabilities of all alignments with ai
and bj in a common column (denoted by A∗

ai∼bj
):

262 M. Modzelewski and N. Dojer

P (ai ∼ bj) =
∑
A∈A∗

ai∼bj

P(A) =

∑
A∈A∗

ai∼bj

eβS(A)

Z
=

=

(∑
Ai−1,j−1

eβS(Ai−1,j−1)

)
eβs(ai,bj)

(∑
̂Ai+1,j+1

eβS(̂Ai+1,j+1)

)
Z

=

=
Zi−1,j−1 e

βs(ai,bj) Ẑi+1,j+1

Z
(4)

Here we use the notation Ai,j for an alignment of the sequence prefixes a1 · · ·ai
and b1 · · · bj , and Âi,j for an alignment of the sequence suffixes ai · · · am and
bj · · · bn. Analogously, Zi,j is the partition function over the prefix alignments
and Ẑi,j is the (reverse) partition function over the suffix alignments.

An efficient algorithm for calculating the partition function can be derived
from the Gotoh maximum score algorithm [5] by replacing the maximum opera-
tions with additions. From a few possible approaches [13,24,14] we chose a variant
proposed by Miyazawa [13] and applied in Probalign [17], where insertions and
deletions must be separated by at least one match/mismatch position:

ZM
i,j =

(
ZM
i−1,j−1 + ZE

i−1,j−1 + ZF
i−1,j−1

)
eβs(ai,bj) (5)

ZE
i,j = ZM

i,j−1e
βgo + ZE

i,j−1e
βgext (6)

ZF
i,j = ZM

i−1,je
βgo + ZF

i−1,je
βgext (7)

Zi,j = ZM
i,j + ZE

i,j + ZF
i,j (8)

The reverse partition function can be calculated using the same recursion in
reverse, starting from the ends of the aligned sequences.

2.2 Alignment Graphs

Probabilities P (ai ∼ bj) may be viewed as a representation of a bipartite graph
with nodes corresponding to residues ai and bj and edges weighted with residue
alignment affinity.

Given a set S of k sequences to be aligned, we would like to analogously rep-
resent their residue alignment affinity by a k-partite weighted graph. It may be
obtained by joining pairwise alignment graphs for all pairs of S-sequences. How-
ever, separate computation of edge weights for each pair of sequences does not
exploit information included in the remaining alignments. In order to incorporate
correspondence with residues from other sequences, we perform a consistency
transformation [15,1]. It re-estimates the residue alignment affinity according to
the following formula:

MSARC: Multiple Sequence Alignment by Residue Clustering 263

P′ (xi ∼ yj)←

∑
z∈S

|z|∑
l=0

P (xi ∼ zl)P (zl ∼ yj)

|S| (9)

If Pxy is a matrix of current residue alignment affinities for sequences x and y,
the matrix form equivalent transformation is

P ′
xy ←

∑
z∈S

PxzPzy

|S| (10)

The consistency transformation may be iterated any number of times, but
excessive iterations blur the structure of residue affinity. Following Probalign
[17] and ProbCons [1] MSARC performs it twice by default.

2.3 Residue Clustering

Columns of any multiple alignment form a partition of the set of sequence
residues. The main idea of MSARC is to reconstruct the alignment by clus-
tering an alignment graph into columns. The clustering method must satisfy
constraints imposed by alignment structure. First, each cluster may contain at
most one residue from a single sequence. Second, the set of all clusters must
be orderable consistently with sequence orders of their residues. Violation of
the first constraint will be called ambiguity, while violation of the second one –
conflict (see Figure 1b).

Towards this objective, MSARC applies top-down hierarchical clustering (see
Figure 1c). Within this approach, the alignment graph is recursively split into
two parts until no ambiguous cluster is left. Each partition step results from a
single cut through all sequences, so clusterings are conflict-free at each step of
the procedure. Consequently, the final clustering represents a proper multiple
alignment.

Optimal clustering is expected to maximize residue alignment affinity within
clusters and minimize it between them. Therefore, the partition selection in
recursive steps of the clustering procedure should minimize the sum of weights
of edges cut by the partition. This is in fact the objective of the well-known
problem of graph partitioning, i.e. dividing graph nodes into roughly equal parts
such that the sum of weights of edges connecting nodes in different parts is
minimized.

The Fiduccia-Mattheyses algorithm [3] is an efficient heuristic for the graph
partitioning problem. After selecting an initial, possibly random partition, it cal-
culates for each node the change in cost caused by moving it between parts, called
gain. Subsequently, single nodes are greedily moved between partitions based on
the maximum gain and gains of remaining nodes are updated. The process is
repeated in passes, where each node can be moved only once per pass. The best
partition found in a pass is chosen as the initial partition for the next pass. The

264 M. Modzelewski and N. Dojer

algorithm terminates when a pass fails to improve the partition. Grouping single
moves into passes helps the algorithm to escape local optima, since intermediate
partitions in a pass may have negative gains. An additional balance condition
is enforced, disallowing movement from a partition that contains less than a
minimum desired number of nodes.

Fiduccia-Mattheyses algorithm needs to be modified in order to deal with
alignment graphs. Mainly, residues are not moved independently; since the graph
topology has to be maintained, moving a residue involves moving all the residues
positioned between it and a current cut point on its sequence. This modification
implies further changes in the design of data structures for gain processing.
Next, the sizes of parts in considered partitions cannot differ by more than the
maximum cluster size in a final clustering, i.e., the number of aligned sequences.
This choice implies minimal search space containing partitions consistent with
all possible multiple alignment. In the initial partition sequences are cut in their
midpoints.

The Fiduccia-Mattheyses heuristic may be optionally extended with a multi-
level scheme [7]. In this approach increasingly coarse approximations of the graph
are created by an iterative process called coarsening. At each iteration step se-
lected pairs of nodes are merged into single nodes. Adjacent edges are merged
accordingly and weighted with sums of original weights. The final coarsest graph
is partitioned using Fiduccia-Mattheyses algorithm. Then the partition is pro-
jected back to the original graph through the series of uncoarsening operations,
each of which is followed by a Fiduccia-Mattheyses based refinement. Because
the last refinement is applied to the original graph, the multilevel scheme in fact
reduces the problem of selecting an initial partition to the problem of selecting
pairs of nodes to be merged. In alignment graphs only neighboring nodes can be
merged, so MSARC just merges consecutive pairs of neighboring nodes.

2.4 Refinement

An example of alignment columns produced by residue clustering can be seen in
Figure 2(ab). Unfortunately, right parts of alignments contain many superfluous
spaces that could easily be removed manually.

Therefore we decided to add a refinement step, following the method used in
ProbCons [1]. Sequences are split into two groups and the groups are pairwise
re-aligned. Re-alignment is performed using the Needleman-Wunsch algorithm
with the score for each pair of positions defined as the sum of posterior probabil-
ities for all non-gap pairs and zero gap-penalty. Since gap-penalties are not used,
every such refinement iteration creates a new alignment of equal or greater ex-
pected accuracy. First each sequence is re-aligned with the remaining sequences,
since such division is very efficient in removing superfluous spaces. Next, several
randomly selected sequence subsets are re-aligned against the rest.

Figures 2(cd) show the results of refining the alignments from Figures 2(ab).
Refinement removed superfluous spaces from the clustering process and optimized
the alignment. Note that the final post-refinement alignments turned out to be the
same for both Fiduccia-Mattheyses and multilevel method of graph partitioning.

MSARC: Multiple Sequence Alignment by Residue Clustering 265

(a) Fiduccia-Mattheyses partitioning

(b) Multilevel partitioning

(c) Refined Fiduccia-Mattheyses partitioning

(d) Refined multilevel partitioning

Fig. 2. Example visualization of the alignment produced by the graph partitioning
methods alone (ab) and graph partitioning followed by refinement (cd). Residue colors
reflect how well the column is aligned based on residue match probabilities (darker is
better). Partition cuts are colored to show the order of partitioning with darker cuts
being performed earlier.

3 Results

3.1 Benchmark Data and Methodology

MSARC was tested against the BAliBASE 3.0 benchmark database [21]. It con-
tains manually refined reference alignments based on 3D structural superposi-
tions. Each alignment contains core-regions that correspond to the most reliably
alignable sections of the alignment. Alignments are divided into five sets designed
to evaluate performance on varying types of problems:

rv1x Equidistant sequences with two different levels of conservation
rv11 very divergent sequences (<20% identity)
rv12 medium to divergent sequences (20-40% identity)

rv20 Families aligned with a highly divergent “orphan” sequence
rv30 Subgroups with <25% residue identity between groups
rv40 Sequences with N/C-terminal extensions
rv50 Internal insertions

BAliBASE 3.0 also provides a program comparing given alignments with a
reference one. Alignments are scored according to two metrics. A sum-of-pairs
score (SP) showing the ratio of residue pairs that are correctly aligned, and a
total column (TC) score showing the ratio of correctly aligned columns. Both
scores can be applied to full sequences or just the core-regions.

Two variants of MSARC: with multilevel Fiduccia-Mattheyses algorithm
(MSARC-ML) and with basic Fiduccia-Mattheyses algorithm (MSARC-FM)

266 M. Modzelewski and N. Dojer

were tested on the full length sequences and scored based on the correct align-
ment of core-regions. The results were compared to CLUSTAL Ω [21,18] ver.
1.1.0, DIALIGN-T [20] ver. 0.2.2, DIALIGN-TX [19] ver. 1.0.2, MAFFT [8] ver.
6.903, MUSCLE [2] ver. 3.8.31, MSAProbs [10] ver. 0.9.7, Probalign [17] ver. 1.4,
ProbCons [1] ver. 1.12 and T-Coffee [15] ver. 9.02.

All the programs were executed with their default parameters. In the case
of MSARC, default parameters of stochastic alignment, consistency transforma-
tion and iterative refinement steps follow the defaults of corresponding steps
of Probalign and ProbCons. Namely, MSARC was run with Gonnet 160 simi-
larity matrix [4], gap penalties of −22, −1 and 0 for gap open, extension and
terminal gaps respectively, β = 0.2, a cut-off value for posterior probabilities
of 0.01 (values smaller than the cutoff are set to 0 and operations designed for
sparse matrices are used in order to speed up computations), two iterations of
the consistency transformation and 100 iterations of iterative refinement.

3.2 Aligner Comparison

Table 1 shows the SP and TC scores obtained by the alignment algorithms on
the BAliBASE 3.0 benchmark. MSARC-ML has slightly better accuracy than
MSARC-FM. Both variants of MSARC substantially outperform DIALIGN-T
(the only non-progressive method in the test) and DIALIGN-TX (a progressive
extension of DIALIGN-T). Moreover, MSARC achieves accuracy similar to the
leading alignment methods: MSAProbs, Probalign and ProbCons.

The differences are not significant in most cases (see Table 2) and correspond
with the structure of benchmark series – MSARC shows the best results for test
series rv11 and rv40, and the worst performance on rv20 and rv30. Distances
in rv20 and rv30 families are particularly well represented by phylogenetic trees
(low similarity between highly conserved subgroups). On the other hand, series
rv11 contains highly divergent sequences for which guide-tree is poorly infor-
mative, even if it represents the correct phylogeny, and rv40 contains sequences
with N/C-terminal extensions which may affect the accuracy of the estimated
phylogeny.

We illustrate this observation with an example of test case bb40037. As is
shown in column 9 of Table 1, MSARC outperforms other methods by a large
margin. The TC scores of zero means that each alignment method has shifted
at least one sequence from its correct position relative to the other sequences.
Figure 3 presents the structure of the reference alignment, as well as alignments
generated by MSARC, Probalign and MSAprobs. The large family of red, orange
and yellow colored sequences near the bottom has been misaligned by the pro-
gressive methods. The reason for this is more visible in Figure 4, where sequences
in alignments are reordered according to related guide-trees.

Probalign aligns separately the first half of the sequences (blue and green)
and the second half of the sequences (from yellow to red). Next, the prefixes of
the second group are aligned with the suffixes of the first group, propagating an
error within a yellow sub-alignment.

MSARC: Multiple Sequence Alignment by Residue Clustering 267

Table 1. Performance on BAliBASE 3.0

SP/TC scores Computation
Aligner all rv11 rv12 rv20 rv30 rv40 rv50 bb40037 Time

MSARC-ML
87.6

57.3

70.1

46.1

94.5

85.6

92.5

40.7

83.4

45.7

93.1

63.3

88.7

51.6

97.1

70.0
33 : 49 : 37

MSARC-FM
87.5

57.1

70.0

46.0

94.5

85.6

92.5

40.9

82.8

45.0

93.0

62.9

88.6

51.7

97.1

70.0
22 : 14 : 19

CLUSTAL Ω
84.0

55.4

59.0

35.8

90.6

78.9

90.2

45.0

86.2

57.5

90.2

57.9

86.2

53.3

61.2

0.0
12 : 15

DIALIGN-T
77.3

42.8

49.3

25.3

88.8

72.5

86.3

29.2

74.7

34.9

82.0

45.2

80.1

44.2

52.6

0.0
1 : 13 : 21

DIALIGN-TX
78.8

44.3

51.5

26.5

89.2

75.2

87.9

30.5

76.2

38.5

83.6

44.8

82.3

46.6

52.8

0.0
1 : 36 : 05

MAFFT
86.7

58.4

65.3

42.8

93.6

83.8

92.5

44.6

85.9

58.1

91.5

59.0

90.1

59.4

56.4

0.0
54 : 04

MUSCLE
81.9

47.5

57.2

31.8

91.5

80.4

88.9

35.0

81.4

40.9

86.5

45.0

83.5

45.9

48.4

0.0
23 : 32

MSAProbs
87.8

60.7

68.2

44.1

94.6

86.5

92.8

46.4

86.5

60.7

92.5

62.2

90.8

60.8

59.5

0.0
6 : 43 : 51

Probalign
87.6

58.9

69.5

45.3

94.6

86.2

92.6

43.9

85.3

56.6

92.2

60.3

88.7

54.9

54.2

0.0
4 : 31 : 41

ProbCons
86.4

55.8

67.0

41.7

94.1

85.5

91.7

40.6

84.5

54.4

90.3

53.2

89.4

57.3

59.3

0.0
6 : 56 : 32

T-Coffee
85.7

55.1

65.5

40.9

93.9

84.8

91.4

40.1

83.7

49.0

89.2

54.5

89.4

58.5

50.9

0.0
13 : 53 : 02

Columns 2-9 show the mean SP and TC scores for each alignment algorithm on the
whole BAliBASE dataset, each of its series and case bb40037. The last column presents
total CPU computation time (hh:mm:ss). All scores are multiplied by 100. Best results
in each column are shown in bold.

MSAprobs aligns separately the dark blue, light blue and red sequences. Next
the blue sub-alignments are aligned together. Resulting alignment has erro-
neously inserted gaps near the right ends of dark blue sequences. This error
is propagated in next step, where the suffix of the blue alignment is aligned with

268 M. Modzelewski and N. Dojer

Table 2. Significance of differences in BAliBASE 3.0 SP/TC scores

SP scores rv11 rv12 rv20 rv30 rv40 rv50 Total
Clustal Ω +3.8e-7 +1.1e-5 +0.0031 -0.047 +4.2e-6 +0.012 +8.7e-15
DIALIGN-T +8.6e-8 +7.7e-9 +1.3e-7 +2.7e-6 +2.1e-9 +0.00098 +5.3e-36
DIALIGN-TX +1.0e-7 +6.2e-8 +2.3e-7 +8.7e-6 +2.8e-9 +0.0017 +3.1e-34
MAFFT +0.0031 +0.00085 -(0.64) -0.0009 +0.0005 -(0.072) +0.028
MUSCLE +4.5e-6 +1.3e-6 +0.0002 +(0.24) +2.5e-8 +0.006 +6.8e-22
MSAProbs +0.015 -(0.56) -0.016 -1.9e-5 +(0.39) -0.0041 -0.0025
Probalign +(0.16) -(0.77) -0.048 -0.0099 +(0.66) -(0.85) -(0.067)
ProbCons +0.0070 +0.037 +0.032 -(0.11) +0.0014 -(0.17) +0.0018
T-Coffee +0.001 +0.005 +0.021 -(0.40) +0.0001 -(0.077) +7.1e-6
TC scores rv11 rv12 rv20 rv30 rv40 rv50 Total
Clustal Ω +2.8e-5 +0.0004 -0.025 -0.0018 +(0.11) -(0.84) +(0.096)
DIALIGN-T +1.5e-6 +2.2e-8 +9.6e-5 +0.0024 +4.9e-8 +0.027 +3.6e-26
DIALIGN-TX +1.3e-6 +4.0e-7 +0.00040 +0.038 +1.3e-7 +(0.066) +9.5e-23
MAFFT +(0.11) +0.005 -(0.052) -0.0007 +(0.07) -(0.062) -(0.55)
MUSCLE +9.9e-5 +0.0002 +(0.06) +(0.76) +2.2e-6 +0.009 +5.8e-13
MSAProbs +(0.13) -(0.22) -0.0016 -8.5e-5 +(0.076) -0.0014 -5.4e-7
Probalign +(0.54) -(0.11) -0.00062 -0.0006 +(0.087) -(0.36) -1.9e-6
ProbCons +0.043 -(0.69) -(0.31) -0.011 +0.017 -(0.062) +(0.84)
T-Coffee +0.003 +(0.10) +(0.75) -(0.11) +(0.12) -0.0072 +(0.61)

Entries show p-values indicating the significance of the mean difference of SP/TC scores
between MSARC-ML and other aligners as measured using the Wilcoxon matched-
pair signed-rank test. A + means that MSARC had a higher mean score while a −
means MSARC had a lower mean score. Nonsignificant p-values (>0.05) are shown in
parentheses.

the prefix of the red alignment. Finally the single violet sequence is added to the
alignment, splitting it in two.

For both programs, alignment errors introduced in the earlier steps are prop-
agated to the final alignment. On the other hand, the non-progressive strategy
used in MSARC yields a reasonable approximation of the reference alignment
(see Figure 3(ab)).

4 Discussion

The progressive principle dominates multiple alignment algorithms for nearly
20 years. Throughout this time, many groups have dedicated their effort to
refine its accuracy to the current state. Other approaches were omitted due
to high computational complexity and/or unsatisfactory quality. To our best
knowledge, MSARC is the only non-progressive aligner of quality comparable
to best progressive programs. Moreover, due to a guide-tree bias of alignments
computed with progressive methods, MSARC is a quality leader for sequence
sets with evolutionary distances hardly representable by a phylogenetic tree.

MSARC: Multiple Sequence Alignment by Residue Clustering 269

BAliBASE

(a)

MSARC

(b)

Probalign

(c)

MSAProbs

(d)

Fig. 3. Visualization of reference (a) and reconstructed (bcd) alignments for test case
bb40037. In all alignments sequences are ordered accordingly. Each sequence is colored
based on the evolutionary distance to its neighbors in a phylogenetic tree, such that
families of related sequences have similar colors. Trees for (a) and (b) are computed
with the PhyML 3.0 program [6], using the maximum parsimony method. Trees for (c)
and (d) are the guide-trees used by those aligners.

Despite of the algorithmic novelty, the non-progressive approach to multi-
ple alignment makes MSARC an interesting tool for phylogeny reconstruction
pipelines. The objective of these procedures is to infer the structure of a phy-
logenetic tree from a given sequence set. Multiple alignment is usually the first
pipeline step. When alignment is guided by a tree, the reconstructed phylogeny
is biased towards this tree. In order to minimize this effect, some phylogenetic
pipelines alternately optimize a tree and an alignment [16,12,10]. Unbiased align-
ment process of MSARC may simplify this procedure and improve the recon-
struction accuracy, especially in most problematic cases.

270 M. Modzelewski and N. Dojer

0 2 4 6 8 10
branch length

10

20

30

40

ta
x
a

1i7h_A
FER_HAEIN

FER_BUCAI
FER_PSEAE
FER_BUCBP

FER_BUCAP
ADXH_DROME

FER6_RHOCA
THCC_RHOER
PUTX_PSEPU
TERP_PSESP

ETP1_SCHPO
FER2_CAUCR

FDX2_RICCN
ADRX_YEAST

ADX_CHICK
ADX1_BOVIN

MMOC_METTR
1jq4_A

XYLZ_PSEPU
CBDC_BURCE

RFBI_SALTY
ASCD_YERPE

DMPP_PSESP
DMPP_ACICA

NDOR_PSEPU
NQRF_PSEAE
NQRF_HAEIN

NQRF_CHLCV
TMOF_PSEME
XYLA_PSEPU

FER_HALMA
PAAE_ECOLI
HCR_ECOLI

YCBX_ECOLI
FERN_PSEPU
FER2_SYNP6

2pia_
PHT2_PSEPU
VANB_PSESP
VANB_PSES9

CBAB_COMTE
YEAX_ECOLI

POBB_PSEPS
VANB_ACICA
VANB_PSEPU

(a) Probalign (b)

0.0 0.5 1.0 1.5 2.0
branch length

10

20

30

40

ta
x
a

YCBX_ECOLI
1i7h_A
FER_HAEIN
FER_PSEAE
FER_BUCBP
FER_BUCAI
FER_BUCAP

FER2_CAUCR
FER6_RHOCA
THCC_RHOER
PUTX_PSEPU
TERP_PSESP
FDX2_RICCN
ADRX_YEAST

ADXH_DROME
ETP1_SCHPO

ADX_CHICK
ADX1_BOVIN

MMOC_METTR
NQRF_PSEAE
NQRF_HAEIN
NQRF_CHLCV

RFBI_SALTY
ASCD_YERPE

DMPP_PSESP
DMPP_ACICA
NDOR_PSEPU

TMOF_PSEME
1jq4_A
XYLZ_PSEPU
CBDC_BURCE
FERN_PSEPU

XYLA_PSEPU
FER2_SYNP6

FER_HALMA
POBB_PSEPS
CBAB_COMTE

YEAX_ECOLI
2pia_
PHT2_PSEPU
VANB_ACICA
VANB_PSESP
VANB_PSES9
VANB_PSEPU
PAAE_ECOLI
HCR_ECOLI

(c) MSAProbs (d)

Fig. 4. Guide trees (ac) and alignment visualizations (bd) for test case bb40037 and
programs Probalign (ab) and MSAProbs (cd). Tree branches and aligned sequences are
colored based on the evolutionary distances to their neighbors, as computed from the
guide-trees used during alignment. Sequences in alignments are ordered following their
order in trees, so related sequences have similar color and are positioned together.

The main disadvantage of MSARC is its computational complexity, especially
in the case of the multilevel scheme variant (MSARC-FM is ∼ 3× slower than
MSAProbs and ∼ 5× slower than Probalign, MSARC-ML is 1.5× slower than
MSARC-FM). However, the running time can be greatly improved by using mul-
tiple cores to parallel computations, because every step of its algorithm can be
parallelized. Since multiple cores are becoming more and more common, this
should allow for the computation time comparable with other alignment algo-
rithms.

MSARC has also the potential for quality improvements. Alternative methods
of computing residue alignment affinities could be used to improve the accuracy
of both MSARC and Probalign based methods. Other approaches to alignment
graph partitioning may also lead to improvements in the accuracy of MSARC,
for example a better method of pairing residues for multilevel coarsening than
currently used naive consecutive neighbors merging.

Acknowledgements. This work was supported by the Polish Ministry of Sci-
ence and Higher Education [N N519 652740].

References

1. Do, C.B., Mahabhashyam, M.S.P., Brudno, M., Batzoglou, S.: Probcons: Proba-
bilistic consistency-based multiple sequence alignment. Genome. Res. 15(2), 330–340
(2005), http://dx.doi.org/10.1101/gr.2821705

http://dx.doi.org/10.1101/gr.2821705

MSARC: Multiple Sequence Alignment by Residue Clustering 271

2. Edgar, R.C.: Muscle: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004),
http://dx.doi.org/10.1093/nar/gkh340

3. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network
partitions. In: Proceedings of the 19th Design Automation Conference, DAC 1982,
pp. 175–181. IEEE Press, Piscataway (1982),
http://dl.acm.org/citation.cfm?id=800263.809204

4. Gonnet, G.H., Cohen, M.A., Benner, S.A.: Exhaustive matching of the entire pro-
tein sequence database. Science 256(5062), 1443–1445 (1992)

5. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol.
Biol. 162(3), 705–708 (1982)

6. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gas-
cuel, O.: New algorithms and methods to estimate maximum-likelihood phylo-
genies: assessing the performance of phyml 3.0. Syst. Biol. 59(3), 307–321 (2010),
http://dx.doi.org/10.1093/sysbio/syq010

7. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In:
Proceedings of the 1995 ACM/IEEE Conference on Supercomputing (CDROM).
Supercomputing 1995. ACM, New York (1995),
http://doi.acm.org/10.1145/224170.224228

8. Katoh, K., Kuma, K.-I., Toh, H., Miyata, T.: Mafft version 5: improvement in
accuracy of multiple sequence alignment. Nucleic Acids Res. 33(2), 511–518 (2005),
http://dx.doi.org/10.1093/nar/gki198

9. Kececioglu, J.: The maximum weight trace problem in multiple sequence alignment.
In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS,
vol. 684, pp. 106–119. Springer, Heidelberg (1993)

10. Liu, K., Raghavan, S., Nelesen, S., Linder, C.R., Warnow, T.: Rapid and accu-
rate large-scale coestimation of sequence alignments and phylogenetic trees. Sci-
ence 324(5934), 1561–1564 (2009),
http://dx.doi.org/10.1126/science.1171243

11. Löytynoja, A., Goldman, N.: Phylogeny-aware gap placement prevents errors in se-
quence alignment and evolutionary analysis. Science 320(5883), 1632–1635 (2008),
http://dx.doi.org/10.1126/science.1158395

12. Lunter, G., Miklós, I., Drummond, A., Jensen, J.L., Hein, J.: Bayesian coesti-
mation of phylogeny and sequence alignment. BMC Bioinformatics 6, 83 (2005),
http://dx.doi.org/10.1186/1471-2105-6-83

13. Miyazawa, S.: A reliable sequence alignment method based on probabilities of
residue correspondences. Protein Eng. 8(10), 999–1009 (1995)

14. Mückstein, U., Hofacker, I.L., Stadler, P.F.: Stochastic pairwise alignments. Bioin-
formatics 18(suppl. 2), S153–S160 (2002)

15. Notredame, C., Higgins, D.G., Heringa, J.: T-coffee: A novel method for fast
and accurate multiple sequence alignment. J. Mol. Biol. 302(1), 205–217 (2000),
http://dx.doi.org/10.1006/jmbi.2000.4042

16. Redelings, B.D., Suchard, M.A.: Joint bayesian estimation of alignment and phy-
logeny. Syst. Biol. 54(3), 401–418 (2005),
http://dx.doi.org/10.1080/10635150590947041

17. Roshan, U., Livesay, D.R.: Probalign: multiple sequence alignment using par-
tition function posterior probabilities. Bioinformatics 22(22), 2715–2721 (2006),
http://dx.doi.org/10.1093/bioinformatics/btl472

http://dx.doi.org/10.1093/nar/gkh340
http://dl.acm.org/citation.cfm?id=800263.809204
http://dx.doi.org/10.1093/sysbio/syq010
http://doi.acm.org/10.1145/224170.224228
http://dx.doi.org/10.1093/nar/gki198
http://dx.doi.org/10.1126/science.1171243
http://dx.doi.org/10.1126/science.1158395
http://dx.doi.org/10.1186/1471-2105-6-83
http://dx.doi.org/10.1006/jmbi.2000.4042
http://dx.doi.org/10.1080/10635150590947041
http://dx.doi.org/10.1093/bioinformatics/btl472

272 M. Modzelewski and N. Dojer

18. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R.,
McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., Higgins, D.G.: Fast,
scalable generation of high-quality protein multiple sequence alignments using
clustal omega. Mol. Syst. Biol. 7, 539 (2011),
http://dx.doi.org/10.1038/msb.2011.75

19. Subramanian, A.R., Kaufmann, M., Morgenstern, B.: Dialign-tx: greedy and pro-
gressive approaches for segment-based multiple sequence alignment. Algorithms
Mol. Biol. 3, 6 (2008), http://dx.doi.org/10.1186/1748-7188-3-6

20. Subramanian, A.R., Weyer-Menkhoff, J., Kaufmann, M., Morgenstern, B.: Dialign-
t: an improved algorithm for segment-based multiple sequence alignment. BMC
Bioinformatics 6, 66 (2005), http://dx.doi.org/10.1186/1471-2105-6-66

21. Thompson, J.D., Higgins, D.G., Gibson, T.J.: Clustal w: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–
4680 (1994)

22. Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: Balibase 3.0: latest developments
of the multiple sequence alignment benchmark. Proteins 61(1), 127–136 (2005),
http://dx.doi.org/10.1002/prot.20527

23. Wong, K.M., Suchard, M.A., Huelsenbeck, J.P.: Alignment uncertainty and ge-
nomic analysis. Science 319(5862), 473–476 (2008),
http://dx.doi.org/10.1126/science.1151532

24. Yu, Y.K., Hwa, T.: Statistical significance of probabilistic sequence alignment
and related local hidden markov models. J. Comput. Biol. 8(3), 249–282 (2001),
http://dx.doi.org/10.1089/10665270152530845

http://dx.doi.org/10.1038/msb.2011.75
http://dx.doi.org/10.1186/1748-7188-3-6
http://dx.doi.org/10.1186/1471-2105-6-66
http://dx.doi.org/10.1002/prot.20527
http://dx.doi.org/10.1126/science.1151532
http://dx.doi.org/10.1089/10665270152530845

Mutual Enrichment in Ranked Lists

and the Statistical Assessment
of Position Weight Matrix Motifs

Limor Leibovich1 and Zohar Yakhini1,2

1 Department of Computer Science, Technion – Israel Institute of Technology,
Technion City, Haifa 32000, Israel

llimor@cs.technion.ac.il
2 Agilent Laboratories Israel, 94 Em Hamoshavot Road, 49527 Petach-Tikva, Israel

zohar yakhini@agilent.com

Abstract. Statistics in ranked lists is important in analyzing molecular
biology measurement data, such as ChIP-seq, which yields ranked lists of
genomic sequences. State of the art methods study fixed motifs in ranked
lists. More flexible models such as position weight matrix (PWM) motifs
are not addressed in this context. To assess the enrichment of a PWM
motif in a ranked list we use a PWM induced second ranking on the
same set of elements. Possible orders of one ranked list relative to the
other are modeled by permutations. Due to sample space complexity, it
is difficult to characterize tail distributions in the group of permutations.
In this paper we develop tight upper bounds on tail distributions of the
size of the intersection of the top of two uniformly and independently
drawn permutations and demonstrate advantages of this approach using
our software implementation, mmHG-Finder, to study PWMs in several
datasets.

1 Introduction

Modern data analysis often faces the task of extracting characteristic features
from sets of elements singled out according to some measurement. In molecular
biology, for example, an experiment may lead to measurement results pertaining
to genes and then questions are asked about the properties of genes for which
these were high or low. This is an example, of course, and the set of elements does
not have to be genes. They can be genomic regions, proteins, structures, etc. A
central technique for addressing the analysis of characteristic properties of sets
of elements is statistical enrichment. More specifically – the experiment results
are often representable as ranked lists of elements and we then seek enrichment
of other properties of these elements at the top or bottom of the ranked list.
GSEA [29], for example, is a tool that addresses characteristic features of genes
that are found to be differentially expressed in a comparative transcriptomics
study. GOrilla [6] addresses GO terms enriched in ranked lists of genes where
the ranking can be, for example, the result of processing differential expression

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 273–286, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

274 L. Leibovich and Z. Yakhini

data or of correlations computed between genomic DNA copy number and ex-
pression [19],[2],[5]. FATIGO [21] is also a tool that is useful in the context of
analyzing GO terms in ranked lists of genes. DRIMust [15], [16] searches for se-
quence motifs that are enriched, in a statistically significant manner, in the top
of a ranked list of sequences, such as one produced by techniques like ChIP-seq.

All the aforementioned tools utilize a statistical approach that is based on
assessing enrichment of an input set in an input ranked list by assessing the
enrichment obtained at various cutoffs applied to the ranked list. It is often the
case, however, that two quantitative properties need to be compared to each
other. For example, when the elements are genes, we may have measured differ-
ential expression values, as well as measured ChIP-seq signals. We are therefore
interested in assessing mutual enrichment in two ranked lists. Another exam-
ple consists of one ranking according to differential expression and one accord-
ing to prediction scores for miRNA targets. miTEA [25] addresses this latter
case by statistically assessing the enrichment of miRNA targets in a ranked
list of genes (also see [8]). To address mutual enrichment in two ranked lists
over the same set of N elements, miTEA [25] performs analysis on permu-
tations. Mutual enrichment in the top of two ranked lists can be simplified,
from a mathematical point of view, by arbitrarily setting the indices of one
list to the identity permutation (1, 2, ...,N) and treating the other list as a
permutation π over these numbers. For the purpose of assessing the intersec-
tion of the top of the two ranked lists in a data driven manner, miTEA asks
which prefix [1, . . . ,n1] is enriched in the first n2 elements of that permutation,
π = π(1), ..., π(N). The statistics introduced by miTEA is called mmHG (min-
min-Hyper-Geometric). A variant of mmHG is explained in detail in Section 2
of the current manuscript.

Statistics in the group of permutations SN is often difficult because the num-
ber of entities to be considered by any null model is N !. Direct exhaustive cal-
culation of tail distributions over SN is therefore impractical for all but very
small values of N. This difficulty is addressed by several heuristic techniques.
Mapping into continuous spaces, such as in [18], has proven useful in certain
cases but not for studying large deviations. In the case of enrichment statistics
that focuses on the top of the permutation and seeks to assess extreme events,
such as mmHG, we prefer to use bounds on tail probabilities. Tail probabilities
are useful constructs when applied to analyzing molecular biology measurement
data as they enable statistical assessment of observed results.

In this work we derive a tight bound on the tail probabilities of the mutual
enrichment at the top of two random permutations uniformly drawn over SN

and demonstrate the utility of this approach in the context of flexible motif
discovery. Our bounds are computable in polynomial time and potentially add
to the accuracy of reported position weight matrix (PWM) motifs for nucleic
acid sequences.

Statistics in Ranked Lists and Position Weight Matrices 275

2 Background and Definitions

2.1 Mutual Enrichment in Ranked Lists – The mmHG Statistics

The mmHG statistics [25] is a generalization of the mHG statistics [6],[7],[26],
[28]. While the mHG statistics quantifies the enrichment level of a set of elements
at the top of a ranked list of elements of the same type, the mmHG statistics
quantifies the level of mutual enrichment in two ranked lists over the same set
of elements. While any parametric or non-parametric correlation statistics (e.g.
Spearman’s correlation coefficient), that takes the same input, calculates the
overall agreement between the two ranked lists, the mmHG statistic focuses only
on agreement at the top of the two ranked lists. mmHG counts elements common
to the top of both lists, without predefining what top is. Its intended output is
the probability for observing an intersection at least as large in two randomly
ranked lists (the enrichment mmHG P-value). In this section we describe the
mmHG statistics and in later sections we suggest a tight bound for the p-value.
Our definition of the mmHG statistic varies slightly from that of Steinfeld et
al. [25].

Mutual enrichment in the top of two ranked lists can be simplified, from a
mathematical point of view, by arbitrarily setting the indices of one list to the
identity permutation (1, 2, ...,N) and treating the other list as a permutation.
Details of this transform are given in Section 2.3. We now define mmHG for the
simple case of one permutation. Consider a permutation π = π(1), ..., π(N) ∈ SN

- the group of all permutations over the numbers 1, ...,N. mmHG is a function
that takes π and calculates two numbers 1 ≤ n1, n2 ≤ N such that the ob-
served intersection between the numbers 1, ..., n1 and the first n2 elements of
π − π(1), ..., π(n2) – is the most surprising in terms of the hypergeometric p-
value. Additionally, mmHG further calculates this aforementioned p-value.

Formally, given π ∈ SN and for every 1 ≤ n1, n2 ≤ N, let bπ(n1, n2) be the
size of the intersection of 1, ..., n1 with π(1), ..., π(n2). Set

mmHG score(π) = min
1≤n1≤N

min
1≤n2≤N

hgt (N,n1, n2, bπ(n1, n2))

where hgt is the tail distribution of an hypergeometric random variable:

hgt(N,n1, n2, b) =

min(n1,n2)∑
i=b

(
n1

i

)(
N−n1

n2−i

)(
N
n2

)
The mmHG score cannot be considered as a significance measure, due to

the multiple testing involved in finding n1 and n2. A simple way to correct an
mmHG score s for multiple testing and report a p-value bound would be to
use the Bonferroni correction. That is done by multiplying s by the number of
multiple tests conducted which is N2. Therefore:

mmHG p− value(s,N) ≤ s ·N2

In Section 3 we present significantly tighter bounds.

276 L. Leibovich and Z. Yakhini

2.2 PWM Motifs

Data produced by techniques such as ChIP-seq [14], ChIP-exo [20], CLIP [13],
PAR-CLIP [9] and others are readily representable as ranked lists of sequences,
where the ranking is according to measured binding affinity. Computational tools
and approaches to motif discovery form part of the data analysis workflow that
is used to extract knowledge and understanding from this type of studies. We are
often interested in sequence motifs that are observed to be enriched in sequences
where strong binding affinity is measured. A position weight matrix (PWM) is
a commonly used representation of motifs in biological sequences [24],[27],[11].
This representation is more faithful to biology than representation by exact
words. A PWM is a matrix of score values that gives a weighted match to any
given substring of fixed length. It has one row for each symbol of the alphabet,
and one column for each position in the pattern. The score assigned by a PWM
to a substring S = S1...SK is defined as

∑K
j=1 msj ,j , where j represents position

in the substring, Sj is the symbol at position j in the substring, and mα,j is the
score in row α, column j of the matrix. In other words, a PWM score is the sum
of position-specific scores for each symbol in the substring. This definition can be
generalized to yield a score for a sequence S = S1...SM longer than the PWM by
calculating max1≤i≤M−K+1

∑K
j=1 msi+j−1,j. Alternatively, an enhanced model

that takes into account multiple occurrences of the PWM in the sequence can
be applied by summing over sufficiently strong occurrences of the PWM or by
other more sophisticated approaches [22].

2.3 mmHG Statistics for PWM Motifs

Given a set of sequences that were tested in a high throughput experiment
such as ChIP-seq [14], CLIP [13] and others, they can be ranked according to
the measured binding affinities, yielding a ranked list L1. Since usually we are
interested in finding motifs amongst sequences having strong binding affinities,
we actually search for motifs that are more prevalent at the top of this list. It is
clear that any algorithm for de-novo flexible motif search would need to evaluate
candidate PWMs. Given a PWM which we want to assess, the sequences can
also be ranked according to their PWM scores, yielding another ranked list
L2, different from L1. A significant PWM motif would yield significant scores
for sequences having strong binding affinities. Therefore, the question of PWM
motif discovery from ranked experimental data can be formulated as quantifying
the mutual enrichment level for the two ranked lists L1 and L2. Given two ranked
lists L1 and L2 over the universe of N sequences, they can be transformed into
two respective permutations, π1 = (π1(1), ..., π1(N)) and π2 = (π2(1), ..., π2(N)).
The relative permutation π, of π2 w.r.t. π1, is defined by π(π1(j)) = π2(j), for
every j = 1, ...,N or simply, using the operations in the group SN : π = π2 · π−1

1 .
Using the relative permutation π, we can represent the mutual enrichment of
the top parts of L1 and L2 as mmHG score(π), defined above.

Statistics in Ranked Lists and Position Weight Matrices 277

3 Algorithms and Results

3.1 Estimation of the mmHG p-Value – Introducing First Upper
Bound

Given an mmHG score s, observed in analyzing real measurement data, we would
like to assess the statistical significance of this observation. Assuming endless
computational power, we would enumerate all permutations and calculate the
mmHG score for each, in order to characterize the distribution of mmHG as a
random variable over SN . The p-value for s is then simply:

mmHG p− value(s,N) =
The number of permutations having mmHG score ≤ s

N !

Since the number of permutations is huge, the process described above is very
far from feasible. Therefore, we seek a computationally tractable upper bound,
preferably tight.

A trivial upper bound is the Bonferroni corrected mmHG score defined by
s ·N2. A more subtle upper bound was suggested by Steinfeld et al. [25] and is
briefly described in Section 3.3. In this work we introduce a tighter bound that
is polynomially computable.

We will next describe an intuitive upper bound and later refine it to produce
a tighter bound. Our input comprises an mmHG score s, and the total number
of elements N. The output will be an upper bound for the p-value. The efficiency
of our approach relies on enumerating all possible hgt scores rather than enu-
merating all permutations in SN . This approach is computationally efficient as
hgt is a function of four input parameters: N, n1, n2, and b. Given N, there
are O(N3) possible combinations of n1, n2 and b. Next, all is left to do is to
determine how many permutations stand behind each hgt score. To this end,
we will define the function Λ(N, n1, n2, b) to be the number of permutations for
which it holds that out of the first n2 entries, b of them are taken from the range
[1, . . . , n1]. This formulation is equivalent to counting permutations for which we
attain, at some point, the value hgt(N, n1, n2, b), had we taken the exhaustive
approach. Λ(N, n1, n2, b) can be represented as:

Λ(N, n1, n2, b) =

(
n1

b

)(
n2

b

)
b!

(
N − n1

n2 − b

)
(n2 − b)!(N − n2)!

as we first choose b elements from the range [1, . . . , n1] to appear at the first
n2 entries of the permutation (there are

(
n1

b

)
possibilities). Then, we choose

where to position these b elements at the first n2 entries of the permutation and
consider all internal arrangements (for each choice of b elements there are

(
n2

b

)
b!

possibilities). We next choose n2 − b elements from the range [n1 + 1, . . . ,N] to
appear at the rest of the first n2 entries of the permutation (there are

(
N−n1

n2−b

)
possibilities for that) and consider all possible (n2 − b)! arrangements. Finally,
we take into account all possible (N−n2)! arrangements of the rest N -n2 entries
of the permutation.

278 L. Leibovich and Z. Yakhini

A straightforward upper bound for the number of permutations in SN having
mmHG score better than s follows:

|{π′ ∈ SN : mmHG(π′) ≤ s}| ≤
∑

n1,n2,b:
hgt(N,n1,n2,b)≤s

Λ(N,n1, n2, b)

From which an upper bound is easily derived:

mmHG p− value(s,N) ≤

∑
n1,n2,b:

hgt(N,n1,n2,b)≤s

Λ(N,n1, n2, b)

N !

By algebraic manipulations we get:

mmHG p− value(s,N) ≤
∑

n1,n2,b:
hgt(N,n1,n2,b)≤s

(
n1

b

)(
N−n1

n2−b

)(
N
n2

)
This upper bound is simple and requires O(N3) hgt calculations. An hgt cal-
culation takes O(N) time, assuming binomial coefficients can be calculated in
O(1) time, for example by using Stirling’s approximation [1]:√

2πn(ne)n 1
e12n+1 ≤ n! ≤

√
2πn(ne)n 1

e12n , which is tight for large factorials.

3.2 A Refined Upper Bound for the p-Value

The upper bound introduced in the previous section counts the number of
permutations for which the value hgt(N, n1, n2, b) is calculated when taking
the non-practical exhaustive approach that enumerates over all N ! permuta-
tions. Ideally, we wish to count the number of permutations for which the value
hgt(N, n1, n2, b) is also their mmHG score, as a permutation may have several
hgt values that are better than s, so it can be counted more than once. This
explains why the formula introduced earlier is an upper bound and not an exact
p-value. A second observation that follows is that the smaller the mmHG score
s is, the tighter the bound, because a permutation will have fewer combinations
(N, n1, n2, b) having hgt score better than s.

Therefore, if we can reduce the extent of multiple counting of the same per-
mutation, we will get a tighter bound. We do this by looking one step backwards.
If, for example, hgt(N, n1, n2, b) ≤ s, we can exclude from the counting permu-
tations that contain b elements from the range [1, . . . ,n1 − 1] at their first n2

entries because they are already taken into account in Λ(N, n1−1, n2, b) (because
necessarily hgt(N, n1 − 1, n2, b) ≤ s, as we will later explain).

Let Ψ(N, n1, n2, b) be the set of permutations for which it holds that out
of the first n2 entries, b of them are taken from the range [1, . . . ,n1] (note
that Λ(N, n1, n2, b) introduced earlier is, therefore, the size of Ψ(N, n1, n2, b)).
Assuming hgt(N, n1, n2, b) ≤ s, we can partition the set Ψ(N, n1, n2, b) into five
disjoint subsets ψ1, ..., ψ5 such that ψ = ψ1 ∪ ψ2 ∪ ψ3 ∪ ψ4 ∪ ψ5, as follows:

Statistics in Ranked Lists and Position Weight Matrices 279

ψ1 = Ψ(N, n1, n2, b) ∩ Ψ(N, n1 − 1, n2 − 1, b− 1) ∩ Ψ(N, n1 − 1, n2, b)

ψ2 = Ψ(N, n1, n2, b) ∩ Ψ(N, n1 − 1, n2 − 1, b− 1) ∩ Ψ(N, n1, n2 − 1, b)

ψ3 = Ψ(N, n1, n2, b) ∩ Ψ(N, n1 − 1, n2 − 1, b− 1) ∩ Ψ(N, n1 − 1, n2, b− 1)

∩ Ψ(N, n1, n2 − 1, b− 1)

ψ4 = Ψ(N, n1, n2, b) ∩ Ψ(N, n1 − 1, n2 − 1, b)

ψ5 = Ψ(N, n1, n2, b) ∩ Ψ(N, n1 − 1, n2 − 1, b− 2) ∩ Ψ(N, n1 − 1, n2, b− 1)

∩ Ψ(N, n1, n2 − 1, b− 1)

The properties of the hypergeometric distribution imply that ψ1, ψ2, ψ4 can be
disregarded, in the current counting stage. To explain why, we will demonstrate
the argument on ψ1. The permutations in ψ1 contain b elements from the range
[1, . . . ,n1 − 1] at the first n2 entries. We also assume that hgt(N, n1, n2, b)≤ s.
Therefore hgt(N, n1−1, n2, b) ≤ s also holds, as the same intersection is observed
for even a smaller set. Thus, the permutations in ψ1 should have been counted
when handling the triplet n1 − 1, n2 and b and disregarded for the combination
n1, n2 and b. Similar arguments hold for ψ2 and ψ4.

ψ3 should be counted if it holds that hgt(N, n1 − 1, n2 − 1, b − 1) > s and
hgt(N, n1 − 1, n2, b − 1) > s and hgt(N, n1, n2 − 1, b − 1) > s, otherwise ψ3

would have been counted by former triplets. Similarly, ψ5 should be counted
if hgt(N, n1 − 1, n2 − 1, b − 2) > s and hgt(N, n1 − 1, n2, b − 1) > s and
hgt(N, n1, n2 − 1, b − 1) > s. Finally, we calculate the sizes of ψ3 and ψ5, in
the relevant cases. The permutations in ψ3 contain b-1 elements taken from the
range [1, . . . ,n1 − 1] located at the first n2 − 1 entries, where the number n1 is
positioned at entry n2. Therefore:

|ψ3| =
(
n1 − 1

b− 1

)(
n2 − 1

b − 1

)
(b− 1)!

(
N − n1

n2 − b

)
(n2 − b)!(N − n2)!

The permutations in ψ5 contain b-2 elements taken from [1, . . . ,n1 − 1] located
at the first n2 − 1, where n1 is positioned at one of the first n2 − 1 entries, and
also entry n2 contains an element from [1, . . . ,n1 − 1]. Therefore:

|ψ5| =
(
n1 − 1

b− 2

)(
n2 − 1

b− 2

)
(b−2)!(n2−b+1)

(
N − n1

n2 − b

)
(n2−b)!(n1−b+1)(N−n2)!

From the above we next conclude an upper bound. Denote

I(hgt(N, n1, n2, b) > s) =

{
1, if hgt(N, n1, n2, b) > s
0, otherwise

.

280 L. Leibovich and Z. Yakhini

Λ∗(N, n1, n2, b) =

|ψ3| × I(hgt(N, n1 − 1, n2 − 1, b− 1) > s)

× I(hgt(N, n1 − 1, n2, b− 1) > s)

× I(hgt(N, n1, n2 − 1, b− 1) > s)

+

|ψ5| × I(hgt(N, n1 − 1, n2 − 1, b− 2) > s)

× I(hgt(N, n1 − 1, n2, b− 1) > s)

× I(hgt(N, n1, n2 − 1, b− 1) > s)

Yielding the following upper bound for the p-value:

mmHG p− value(s,N) ≤

∑
n1,n2,b:

hgt(N,n1,n2,b)≤s

Λ∗(N,n1, n2, b)

N !

Note that when n1 or n2 ≤ 1, Λ∗(N, n1, n2, b) is defined as Λ(N, n1, n2, b). Also,
given N, n1 and n2, b can be any integer in [max(0, n2 −N + n1),min(n1, n2)].

This upper bound uses more delicate counting than the bound introduced
in the previous section. In the following sections we assess the tightness of this
bound. In later sections we demonstrate an application for PWM motif search.

3.3 Comparison to a Different Variant

We note that the bound described in Steinfeld et al. [25] addresses a slightly
different variant of mmHG as a random variable over SN . The definition with
which we work here is more amenable to deriving tight bounds as described
above. Given a single permutation π ∈ SN and for every i = 1, . . . ,N, a binary
vector λi is defined in which exactly i entries are 1 and N -i entries are 0, as
follows: λi(j) = 1 if π(j) ≤ i. The mmHG score of a permutation π is then
defined by Steinfeld et al. [25] as:

mmHG(π) = min
1≤i≤N

P − value(mHG(λi)),

where mHG(λ) = min1≤i≤N hgt(N, B, n, bn), N = |λ|, bn =
∑n

i=1 λi and B =
bN . A possible upper bound is then given by:

(∗) P − value(mmHG(π)) ≤ min
1≤i≤N

mHG(λi) · i ·N

Computing the latter quantity requires O(N2) hgt calculations and is therefore
more computationally efficient than the two bounds described in Sections 3.1
and 3.2 of this current work, that require O(N3) hgt calculations. We observed
that our bound was tighter than the bound in (*), as later shown in Figure 1D.
For example, for a permutation having mmHG score = 7.8 ·10−25(N = 100), our

Statistics in Ranked Lists and Position Weight Matrices 281

bound was 3.5 · 10−23 while (*) yielded 4.2 · 10−21. For one permutation with
mmHG score = 5.1 · 10−5(N = 100), our bound was 0.026 while (*) yielded 0.2.
The latter example demonstrates that a tighter bound is important for classifying
an observation as statistically significant (assuming a significance threshold of
0.05).

3.4 Assessment of Tightness

In order to assess the quality of our bound, we compared it to the exact p-value,
which can be calculated for small values of N (that is, in cases where N ! is not
too large). Figure 1A compares the mmHG score (which also serves as a lower
bound for the p-value), the exact p-value (calculated by exhaustive enumeration
of all 10! permutations), our upper bound and the Bonferroni corrected p-value
for N =10. Figure 1B shows the same for N =20, except that exact p-values can-
not be calculated exhaustively, and therefore an empirical p-value is produced by
randomly sampling 107 permutations. In both cases our upper bound is signifi-
cantly tighter than the Bonferroni bound. We also observed that the smaller the
mmHG scores are – the tighter is our bound, consistent with lesser over-counting
for smaller scores, as explained in previous sections. Comparison between the first
bound described in Section 3.1 and the bound described in Section 3.2 is shown
in Figure 1C (for N =20). We observed that enumerating all hgt scores rather
than enumerating all permutations in SN significantly improves the p-value es-
timation. Moreover, the refinement of this approach produced by reducing the
extent of multiple counting of permutation further improves the upper bound. In
Figure 1D the bounds, including the bound introduced in Section 3.3 (Steinfeld
bound), are shown for N =100. An empirical p-value was not calculated here
as even if we sample 107 permutations, a p-value smaller than 10−7 cannot be
obtained. The bound suggested in this paper was almost always observed to be
tighter than the bound introduced in Section 3.3.

3.5 Application in PWM Motif Search

In this section we discuss mmHG as a framework for assessing the significance
of PWM motifs in ranked lists. Given a ranked list of sequences and a PWM
motif, by using the mmHG statistics and the bounds introduced earlier, we can
assign a p-value to represent the significance of that PWM being enriched at the
top of the list. To apply this approach for de-novo motif search, one needs to
theoretically consider all possible PWMs. This is not feasible and as a heuristic
approach we wrote mmHG-Finder which takes as input a ranked list of DNA or
RNA sequences and returns significant motifs in PWM format. In cases where
sequence ranking is not relevant or not available, it allows the use of positive
and negative sets of sequences, searching for enriched motifs in the positive set
using the negative set as the background.

282 L. Leibovich and Z. Yakhini

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

-log(mmHG score)

-lo
g(

bo
un

d)

mmHG lower bound
exact p-value
our upper bound
Bonferroni upper bound

(a)

0 2 4 6
0

1

2

3

4

5

6

-log(mmHG score)

-lo
g(

bo
un

d)

mmHG lower bound
exact p-value
our upper bound
Bonferroni upper bound

(b)

0 2 4 6
0

1

2

3

4

5

6

-log(mmHG score)

-lo
g(

bo
un

d)

mmHG lower bound
empirical p-value
our upper bound (Sec. 3.2)
first upper bound (Sec. 3.1)
Bonferroni upper bound

(c)

0 10 20 30
0

5

10

15

20

25

30

-log(mmHG score)

-lo
g(

bo
un

d)

mmHG lower bound
our upper bound
Steinfeld bound (Sec. 3.3)
Bonferroni upper bound

(d)

Fig. 1. (A) Four lines are shown for N=10: the mmHG score, which also serves as
a lower bound for the p-value; the exact p-value calculated by enumerating all 10!
permutations; our upper bound, in its refined version; and the Bonferroni corrected p-
value. (B) Here again the four lines are shown – for N=20. However, instead of an exact
p-value, which cannot be calculated exhaustively, an empirical p-value is produced by
randomly sampling 107 permutations. (C) In addition to the four lines shown in B,
the first upper bound – introduced in Section 3.1 - is shown (N=20). (D) Four lines
are shown for N=100: the mmHG score, our upper bound, the bound introduced in
Section 3.3 (Steinfeld bound) and the Bonferroni corrected p-value. The exact p-value
line is positioned between the green and the blue lines.

We will now describe the methodology implemented in mmHG-Finder:
Input:

• a ranked list of sequences (or, alternatively, two sets of sequences representing
target and background)
• motif width, given as a range between k1 and k2

Statistics in Ranked Lists and Position Weight Matrices 283

Algorithm:

1. Build a generalized suffix tree for the sequences
2. Traverse the tree to find all k-mers for k=k1, . . . , k2
3. Sort the k -mers according to their enrichment at the top of the list (this is done

using the mHG statistics), as explained in Leibovich et al. [15]
4. Take the most significant fifty k -mers, to be used as starting points for the next

step. This set of candidates is chosen such that the members are quite different.
Note that this is a heuristic approach and the number 50 is somewhat arbitrary,
chosen to succeed in catching the best performing PWMs without heavily paying
in complexity.

5. For each starting point, we iteratively replace one position in the k -mers by con-
sidering all possible IUPAC replacements and taking the one that improves the
enrichment the most. We repeat this process for all positions several times. Even-
tually we get a motif in the IUPAC alphabet which is then converted to a PWM.

6. The PWMs found in the previous step are assessed using the mmHG statistics and
the best is returned as output, together with the p-value. The score assigned by
a PWM to a string S = S1, . . . , SM is defined as max1≤i≤M−K+1

∑K
j=1 mSi+j−1,j

(assuming M ≥ K, otherwise it is −∞), where mα,c is the score in row α, column
c of the position weight matrix. In other words, the PWM score calculated for S
is the maximal score obtained for a substring of S.

To evaluate the performance of mmHG-Finder in comparison to other state-of-
the-art methods we ran it on 18 example cases – 3 synthetically generated cases
and 15 generated from high throughput binding experiments (6 transcription fac-
tors and 9 RNA-binding proteins). We compared the results to those obtained
by using three other methods: the standard MEME program [3], DREME [4],
and XXmotif [17]. Some of the results of this comparison are summarized in
Table 1. The synthetic examples were generated by randomizing 500 sequences
of length 100. An IUPAC motif was generated and planted in all top 64 se-
quences. mmHG-Finder outperformed all the other three tools on the synthetic
examples, which contained degenerate motifs. MEME and DREME did not find
the motifs in any case, while XXmotif found a similar result in 1 out of the 3
tests. The other 15 examples were taken from DNA and RNA high-throughput
experiments [23],[10],[12]. In 12 out of these 15 datasets, mmHG-Finder found
the motifs which were compatible with the known literature motifs as the most
significant result. In comparison, DREME found the known consensus in 11
cases; XXmotif detected the literature motif in 9 cases while MEME detected
the known motif in only 7 cases. In several datasets, such as for GCN4 and Pin4,
mmHG-Finder identified the consensus motif while other tools returned repet-
itive sequences as their top results. The mmHG statistics avoids such spurious
results as they typically do not correlate with the measurement driven ranking.

Computing p-value bounds for the synthetic examples (N =500) took 7-17
seconds on a simple single-core laptop. The running time depends on both the
number of elements N as well as the mmHG score. The computation is optimized
such that it is quicker for smaller mmHG scores. It took 33 minutes for N =5000
where the mmHG score was 3.3 ·10−69, and 39 minutes for N =4000 and mmHG
score = 5.9 · 10−31.

284 L. Leibovich and Z. Yakhini

Table 1. We evaluated the performance of mmHG-Finder in comparison to other
state-of-the-art methods: MEME, DREME and XXmotif. Almost all input examples
comprised ranked lists, except for p53 (comprising target and background sets). Since
MEME, DREME, and XXmotif expect a target set as input, we converted the ranked
lists into target sets by taking the top 100 sequences for MEME (restricted by MEME’s
limitation of 60,000 characters) and the top 20 % sequences for the other tools. In the
synthetic examples the entire ranked lists were taken as they are sufficiently small.
Data and consensus motifs for p53 were taken from [23]; for REB1, CBF1, UME6,
TYE7, GCN4 from [10]; and for the RNA binding proteins from [12]. Selected results
are shown below.

The protein and
its consensus
binding motif

mmHG-Finder MEME DREME XXmotif

Synthetic
TNWMNG
W=[A/T],
M=[A/C]

P≤2.76e-14 7.0e+003 Nothing found 2.98e+00

Synthetic
CTNNNAT

P≤1.32e-28 7.1e+001 Nothing found 1.84e+01

Synthetic
MMMMMMMM
M=[A/C]

P≤1.07e-39 1.8e+002 Nothing found 1.58e+01

P53 (DNA) P≤1.09e-174 1.8e-100 4.9e-133 1e-490

GCN4 (DNA)
TGAsTCa

P≤2.05e-44 1.3e-85 2.0e-32 4.00e-17

Puf5 (RNA) P≤7.93e-79 3.6e-9

3.1e-004

6.8e-42

3.1e-012

9.76e-21

1.61e-20

Pin4 (RNA) P≤8.18e-8 1.3e+0 3.1e-51 1.65e-28

4 Concluding Remarks

Due to the size of the measure space, statistics over SN is difficult to implement.
We derive polynomially computable bounds for the tail distribution of the mu-
tual enrichment at the top of two permutations uniformly and independently
drawn over SN . We assess tightness using simulated data. We also demonstrate
utility of the mmHG statistics in identifying motifs in experimental binding affin-

Statistics in Ranked Lists and Position Weight Matrices 285

ity data. For several representative datasets, including synthetically generated
data, we note that our bound improves the p-value estimates by a factor of 50.
The full characterization of the distribution of mmHG as a random variable over
SN remains an open question.

Acknowledgments. We thank Israel Steinfeld for critical and inspiring discus-
sions. We also thank the anonymous reviewers for their useful comments. LL was
partially supported by Israel Ministry of Science and Technology and by ISEF
Fellowship.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables (1964)

2. Akavia, U.D., Litvin, O., Kim, J., Sanchez-Garcia, F., Kotliar, D., Causton, H.C.,
Pochanard, P., Mozes, E., Garraway, L.A., Pe’er, D.: An Integrated Approach to
Uncover Drivers of Cancer. Cell 143(6), 1005–1017 (2010)

3. Bailey, T.L., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers
using expectation maximization. Machine Learning 21(1-2), 51–80 (1995)

4. Bailey, T.L.: DREME: motif discovery in transcription factor ChIP-seq data. Bioin-
formatics 27(12), 1653–1659 (2011)

5. Dehan, E., Ben-Dor, A., Liao, W., Lipson, D., Frimer, H., Rienstein, S., Simansky,
D., Krupsky, M., Yaron, P., Friedman, E., et al.: Chromosomal aberrations and gene
expression profiles in non-small cell lung cancer. Lung Cancer 56(2), 175–184 (2007)

6. Eden, E., Navon, R., Steinfeld, I., Lipson, D., Yakhini, Z.: GOrilla: a tool for
discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioin-
formatics 10(1), 48 (2009)

7. Eden, E., Lipson, D., Yogev, S., Yakhini, Z.: Discovering Motifs in Ranked Lists
of DNA Sequences. PLoS Comput. Biol. 3(3), e39 (2007)

8. Enerly, E., Steinfeld, I., Kleivi, K., Leivonen, S.-K., Ragle-Aure, M., Russnes, H.G.,
Rønneberg, J.A., Johnsen, H., Navon, R., Rødland, E., et al.: miRNA-mRNA In-
tegrated Analysis Reveals Roles for miRNAs in Primary Breast Tumors. PLoS
ONE 6(2), e16915 (2011)

9. Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger,
P., Rothballer, A., Ascano Jr., M., Jungkamp, A.-C., Munschauer, M., et al.:
Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Tar-
get Sites by PAR-CLIP. Cell 141(1), 129–141 (2010)

10. Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford,
T.W., Hannett, N.M., Tagne, J.-B., Reynolds, D.B., Yoo, J., et al.: Transcriptional
regulatory code of a eukaryotic genome. Nature 431(7004), 99–104 (2004)

11. Hertz, G.Z., Stormo, G.D.: Identifying DNA and protein patterns with statistically
significant alignments of multiple sequences. Bioinformatics 15(7-8), 563–577 (1999)

12. Hogan, D.J., Riordan, D.P., Gerber, A.P., Herschlag, D., Brown, P.O.: Diverse
RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggest-
ing an Extensive Regulatory System. PLoS Biol. 6(10), e255 (2008)

13. Lebedeva, S., Jens, M., Theil, K., Schwanhäusser, B., Selbach, M., Landthaler,
M., Rajewsky, N.: Transcriptome-wide Analysis of Regulatory Interactions of the
RNA-Binding Protein HuR. Molecular Cell 43(3), 340–352 (2011)

286 L. Leibovich and Z. Yakhini

14. Lee, B.-K., Bhinge, A.A., Iyer, V.R.: Wide-ranging functions of E2F4 in transcrip-
tional activation and repression revealed by genome-wide analysis. Nucleic Acids
Research 39(9), 3558–3573 (2011)

15. Leibovich, L., Yakhini, Z.: Efficient motif search in ranked lists and applications
to variable gap motifs. Nucleic Acids Research 40(13), 5832–5847 (2012)

16. Leibovich, L., Paz, I., Yakhini, Z., Mandel-Gutfreund, Y.: DRIMust: a web server
for discovering rank imbalanced motifs using suffix trees. Nucleic Acids Research
41(W1), W174–W179 (2013)

17. Luehr, S., Hartmann, H., Söding, J.: The XXmotif web server for eXhaustive,
weight matriX-based motif discovery in nucleotide sequences. Nucleic Acids Re-
search 40(W1), W104–W109 (2012)

18. Plis, S.M., Weisend, M.P., Damaraju, E., Eichele, T., Mayer, A., Clark, V.P., Lane,
T., Calhoun, V.D.: Effective connectivity analysis of fMRI and MEG data collected
under identical paradigms. Computers in Biology and Medicine 41(12), 1156–1165
(2011)

19. Ragle-Aure, M., Steinfeld, I., Baumbusch, L.O., Liestøl, K., Lipson, D., Nyberg, S.,
Naume, B., Sahlberg, K.K., Kristensen, V.N., Børresen-Dale, A.-L., et al.: Identi-
fying In-Trans Process Associated Genes in Breast Cancer by Integrated Analysis
of Copy Number and Expression Data. PLoS ONE 8(1), e53014 (2013)

20. Rhee, H.S., Pugh, B.F.: Comprehensive Genome-wide Protein-DNA Interactions
Detected at Single-Nucleotide Resolution. Cell 147(6), 1408–1419 (2011)

21. Al-Shahrour, F., Dı́az-Uriarte, R., Dopazo, J.: FatiGO: a web tool for finding sig-
nificant associations of Gene Ontology terms with groups of genes. Bioinformat-
ics 20(4), 578–580 (2004)

22. Sinha, S.: On counting position weight matrix matches in a sequence, with appli-
cation to discriminative motif finding. Bioinformatics 22(14), e454-e463 (2006)

23. Smeenk, L., van Heeringen, S.J., Koeppel, M., van Driel, M.A., Bartels, S.J.J.,
Akkers, R.C., Denissov, S., Stunnenberg, H.G., Lohrum, M.: Characteriza-
tion of genome-wide p53-binding sites upon stress response. Nucleic Acids Re-
search 36(11), 3639–3654 (2008)

24. Staden, R.: Computer methods to locate signals in nucleic acid sequences. Nucleic
Acids Research 12(1 Part 2), 505–519 (1984)

25. Steinfeld, I., Navon, R., Ach, R., Yakhini, Z.: miRNA target enrichment analysis
reveals directly active miRNAs in health and disease. Nucleic Acids Research 41(3),
e45–e45 (2013)

26. Steinfeld, I., Navon, R., Ardigò, D., Zavaroni, I., Yakhini, Z.: Clinically driven semi-
supervised class discovery in gene expression data. Bioinformatics 24(16), i90–i97
(2008)

27. Stormo, G.D., Schneider, T.D., Gold, L.: Quantitative analysis of the relation-
ship between nucleotide sequence and functional activity. Nucleic Acids Re-
search 14(16), 6661–6679 (1986)

28. Straussman, R., Nejman, D., Roberts, D., Steinfeld, I., Blum, B., Benvenisty, N., Si-
mon, I., Yakhini, Z., Cedar, H.: Developmental programming of CpG island methy-
lation profiles in the human genome. Nat. Struct. Mol. Biol. 16(5), 564–571 (2009)

29. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette,
M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al.: Gene set
enrichment analysis: A knowledge-based approach for interpreting genome-wide
expression profiles. Proceedings of the National Academy of Sciences of the United
States of America 102(43), 15545–15550 (2005)

Probabilistic Approaches to Alignment

with Tandem Repeats

Michal Nánási, Tomáš Vinař, and Broňa Brejová

Faculty of Mathematics, Physics, and Informatics, Comenius University,
Mlynská dolina, 842 48 Bratislava, Slovakia

Abstract. We propose a simple tractable pair hidden Markov model
for pairwise sequence alignment that accounts for the presence of short
tandem repeats. Using the framework of gain functions, we design several
optimization criteria for decoding this model and describe the resulting
decoding algorithms, ranging from the traditional Viterbi and posterior
decoding to block-based decoding algorithms specialized for our model.
We compare the accuracy of individual decoding algorithms on simulated
data and find our approach superior to the classical three-state pair
HMM in simulations.

1 Introduction

In this paper, we explore the use of pair hidden Markov models (pair HMMs,
PHMMs) in improving the quality of pairwise sequence alignment in the presence
of tandem repeats. We propose a simple tractable model that explicitly accounts
for short tandem repeats, and we use the framework of maximum expected gain
to explore a variety of decoding optimization criteria for our model.

Pair HMMs have for a long time played a major role in sequence alignment [4].
The traditional Needleman-Wunsch algorithm [19] and its variants can be easily
formulated as a special case of alignment with PHMMs (we call this approach
Viterbi decoding). The main advantage of PHMMs is that they allow to express
the scoring scheme in a principled way in the context of a probabilistic model.

Sequence alignments are a mainstay of comparative genomics. By comparing
sequences that evolved from a common ancestor, we can infer their phylogenetic
relationships, discover sites under functional constraint, or even shed light on
the function of individual sequence elements. However, comparative genomic
methods are very sensitive to the quality of underlying alignments, and even
slight inaccuracies may lead to artifacts in the results of comparative methods.

It is very difficult to evaluate alignment accuracy, yet even simple statistics can
reveal artifacts of present-day algorithms. Lunter et al. [16] demonstrated sys-
tematic biases caused by the optimization criteria set by the Needleman-Wunsch
approach. They show that by using variants of the posterior decoding instead
of the traditional Viterbi algorithm, one can significantly increase the quality
of alignments. While the Viterbi decoding seeks one highest scoring alignment,
the posterior decoding summarizes information from all alignments of the two
sequences. This approach was also found superior by other authors [13, 18, 23].

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 287–299, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

288 M. Nánási, T. Vinař, and B. Brejová

An algorithm by Hudek [14] is an intermediate between the Viterbi and pos-
terior decoding, summarizing probabilities of alignments within short blocks.
The goal is to segment the alignment into blocks, where each block has gaps in
only one of the two sequences. The decoding algorithm considers each block as a
unit, summing probabilities of all alignments that had the same block structure.
Finally, Satija et al. [22] have demonstrated that fixing a particular alignment
is not necessary in some comparative genomics applications, instead one can
consider all possible alignments weighted by their probability in the PHMM.

In this paper, we concentrate on modeling sequence alignments in the pres-
ence of tandem repeats. Short tandem repeats cover more than 2% of the human
genome, and occur in many genes and regulatory regions [9]; in fact, majority of
recent short insertions in human are due to tandem duplication [17]. Evolution
of tandem repeats is dominated by tandem segmental duplications resulting in
regions composed of a highly variable number of almost exact copies of a short
segment. Such sequences are difficult to align with standard scoring schemes,
because it is not clear which copies from the two organisms are orthologous.
Misalignments due to the presence of short tandem repeats are usually not lim-
ited to the repetitive sequence itself, but may spread into neighbouring areas
and impact the overall alignment quality.

Sequence alignment with tandem duplication was first studied by Benson [1].
They propose an extension of the traditional Needleman-Wunsch algorithm that
can accommodate tandem repeats in O(n4) time. They also propose several faster
heuristic algorithms. Additional work in this area concentrated on computing
variants of edit distance either on whole sequences with tandem arrays or on
two tandem arrays using different sets of evolutionary operations [3, 7, 21].

The first probabilistic approach to alignment of tandem duplications was in-
troduced by Hickey and Blanchette [12], who developed a new probabilistic
model by combining PHMMs with Tree Adjoining Grammars (TAGs). Their
model favors tandem duplications to other insertions, but the approach does not
explicitly model whole arrays of tandemly repeated motifs. Moreover, algorithms
to train and decode such models are relatively complex.

Protein sequences with repetitive motifs (such as zinc finger proteins) are a
special class of proteins and their alignment has many features in common with
DNA sequence alignment with tandem repeats. [15] combined profile HMMs
(capturing the properties of the repeating motif) and PHMMs (modeling align-
ments) into a single scoring scheme that can be decoded by a newly proposed
algorithm. However, their scoring scheme is no longer a probabilistic model and
the method is focused on correctly aligning individual occurrences of a single
motif rather than alignment of long sequences interspersed with multiple motifs.

Here, we propose a simple tractable PHMM for sequence alignment with tan-
dem repeats, and we explore various decoding methods for use of this model
in sequence alignment. In addition to the classical Viterbi decoding, we define
several variants based on the posterior decoding and block-based methods tai-
lored to the specifics of our model. To demonstrate the differences, we have
implemented several of these methods and compared their performance.

Probabilistic Approaches to Alignment with Tandem Repeats 289

2 Pair HMM for Alignment with Tandem Repeats

Tandem repeats may arise by a complicated sequence of evolutionary events,
including multiple rounds of tandem duplication, deletion, point mutation, gene
conversion and other phenomena. Tandem repeat arrays at homologous locations
in two related species may have arisen in the common ancestor and thus share
part of their evolutionary history, but they could be further modified by inde-
pendent events occurring after speciation. Models attempting to capture such
diverse evolutionary mechanisms usually lead to complex problems in inference
and parameter estimation. We propose a tractable model, based on classical
PHMMs, which still captures the essence of a tandem repeat array: periodically
repeating motif, which may be shared between the two species, or be specific for
one species only.

A PHMM defines a probability distribution over alignments of two sequences
X and Y . The standard PHMM has three states: match state M generating
ungapped columns of the alignment, and two insert states IX and IY , where IX
generates alignment columns with a symbol from X aligned to a gap, and IY
generates columns with a symbol from Y aligned with a gap [4]. In our work, we
will use a more complex PHMM, but standard algorithms for inference in these
models are still applicable.

We call our model SFF and its details are shown in Fig.1. The model contains
a standard three-state PHMM and two “sunflower” submodels Ri,X and Ri,Y for
each possible repeating motif i. Submodel Ri,X generates several (possibly zero)
copies of the motif in sequence X and submodel Ri,Y generates motif copies in
sequence Y . Each copy of the motif is generated independently and the number
of copies in X and Y are independent and geometrically distributed.

Each sunflower submodel is a circularized profile HMM emitting copies of
the motif in one of the two sequences. For a motif of length p, the submodel
contains p match states M0, . . . ,Mp−1, each match state emitting one symbol
of the motif. Insertion state Ij allows to insert additional characters between
symbols emitted by Mj and M(j+1) mod p. Deletion states Dj and D′

j allow to
bypass match state Mj, and thus correspond to deletions with respect to the
reference motif sequence. Since the submodel can emit multiple tandem copies
of the motif, the states in column p − 1 are connected to the states in column
0. To avoid cycles consisting solely of silent states, we use two separate chains
of deletion states. Chain D′

0, . . . , D
′
p−2 can be entered only in state D′

0, and
model can stay in this chain for at most p − 1 steps. Chain D1, . . . , Dp−1 can
be entered only after visiting at least one match or insert state in the current
copy of the motif. As a result, the model can never pass around the whole circle
using delete states. Note that the model prefers integer number of repeats, even
though partial repeat occurrences are common in the real data. If desired, this
can be addressed by simple changes in the model topology or parameters.

The overall model can have sunflower submodels for an arbitrary number
of motifs; we can even define an infinite model, in which every possible finite
string serves as the consensus for one pair of sunflowers. In our work, we use
k = 310, 091 motifs chosen as consensus strings of all tandem repeats found by

290 M. Nánási, T. Vinař, and B. Brejová

M0

I0

D
′

0

M1

I1
D1

D
′

1

M2

I2

D2
D

′

2

M3

I3

D3

D
′

3

M4

I4

D4

D
′

4

M5 I5

D5

D
′

5

M6

I6

D6

D
′

6

M7

I7

D7
D

′

7

M8

I8

D8

s e

M

IY

IXIX

R1,X

R2,X

Rk,X

R1,Y

R2,Y

Rk,Y

.

Fig. 1. SFF (sunflower field) model: a pair hidden Markov model for alignment with
tandem repeats. Each submodel Ri,α (left) is a circular profile hidden Markov model
emitting tandem copies of the motif in one sequence. State Mj is the match state
generating jth symbol of the motif, state Ij allows insertions between symbols j and
j+1 of the motif, and states Dj and D′

j allow to skip state Mj . States s and e designate
the entry and exit points from the submodel. The full SFF model (right) contains a
standard three-state PHMM with states M , IX and IY , and two submodels Ri,X , Ri,Y

for each motif i. States and submodels with subscript X and Y generate symbols in
the respective sequence X or Y only.

the TRF program [2] run on the human chromosome 15 and its homologous
sequences in the dog genome. The probability of choosing a particular motif
out of all k possibilities can be uniform or dependent on the motif length or
composition. We assign this probability based on the observed frequency of the
corresponding consensus pattern in the TRF output. Alternatively, we could use
a much smaller model by Frith [8]; however, this model does not easily handle
insertions and deletions within repeats.

Likewise, we could use a multiple alignment of real motif occurrences to set
individual parameters of the profile HMM. Instead, we use the same set of pa-
rameters for all states of all motif submodels. In particular, we set the insert
and delete rates to 0.005; the match states allow mutations away from consensus
according to the Jukes-Cantor model with parameter t = 0.05. Parameters of
the three-state PHMM were estimated from the UCSC alignment of the human
chromosome 15 and its homologous regions in the dog genome.

Our model also assumes that individual copies of a fixed motif are independent.
If they share part of their evolutionary history, this assumption is not valid, but it
greatly simplifies the model. We could add some limited dependence by introducing
repeat submodels emitting copies in the two sequences simultaneously; we have
used such a model in a different setting in our previous work [15].

Probabilistic Approaches to Alignment with Tandem Repeats 291

X: A C - - - - T
Y : - C G A A A T

ai: 1 2 −2 −2 −2 −2 3
bi: −0 1 2 3 4 5 6
si: IX M IY r r r R
ri: 0 0 0 1 1 1 0

Fig. 2. Example of an alignment represented in our notation, together with its state
and repeat annotation. Assuming that submodel R1,Y in the SFF model represents
consensus sequence A, state r in the state sequence is a shorthand for the state M1

within R1,Y .

3 Inference Criteria and Algorithms

Given the SFF model introduced in the previous section, and two sequences
X = x1 . . . xn and Y = y1 . . . ym, we wish to find the alignment of these two
sequences best agreeing with the model. We can also annotate this alignment by
labeling individual alignment columns with additional information. We start by
defining an alignment and its annotation more formally (see Fig.2). An alignment
of X and Y is a sequence of pairs (a1, b1), . . . (at, bt), each pair representing
one alignment column. Symbol ai represents either a position in X , or a gap
annotated with the position of the nearest non-gap symbol on the left; formally
ai ∈ {1, . . . , n} ∪ {−0,−1, . . . ,−n}. To specify a valid alignment, a1 must be 1
or −0, at must be n or −n, and if ai ∈ {j,−j}, ai+1 must be j + 1 or −j . The
conditions on symbols bi representing positions in sequence Y are analogous.
The state annotation of an alignment is a sequence of states s1 . . . st such that
state si generated alignment column (ai, bi). The repeat annotation is a binary
sequence r1 . . . rt, where ri = 1 if the state si generating the i-th column is one
of the states in the repeat submodels. While the state annotation can be used
with any PHMM generating the alignment, the repeat annotation is appropriate
only for the SFF model or other PHMMs explicitly modeling repeats.

We will explore several inference criteria for choosing the best alignment. To
describe them, we will use the terminology of gain functions [10]; analogous no-
tion of a loss functions is frequently used for example in statistics and machine
learning. A gain function G(A,AT) evaluates similarity between a predicted
alignment A and the correct alignment AT ; higher gain meaning that the pre-
diction is of higher quality. Since the true alignment AT is not known, we will
consider the expected gain EAT [G(A,AT)|X,Y] of alignment A, assuming that
sequences X and Y were generated by our model

EAT [G(A|AT)|X,Y] =
∑
AT

G(A,AT) Pr(AT |X,Y).

In each optimization criterion, we choose a particular gain function and look for
alignmentA∗ maximizing the expected gainA∗ = arg maxA EAT [G(A,AT)|X,Y].
Note that the gain function is only a way of defining the optimal solution; the cor-
responding decoding algorithm needs to be designed on a case-by-case basis.

292 M. Nánási, T. Vinař, and B. Brejová

3.1 Decoding Criteria for the Three-State PHMM

For simplicity, we start with criteria for the three-state PHMM, where the state
annotation is uniquely determined by the alignment itself.

Viterbi decoding. Perhaps the simplest gain function assigns gain +1 if the pre-
dicted alignment A is identical to the true alignment AT , and 0 otherwise. To
optimize this gain function, we need to find the alignment with the highest over-
all probability in the model. In the simple three-state PHMM, this alignment
can be found by the classical Viterbi algorithm in time O(nmE), where E is the
number of non-zero transitions in the model.

Posterior decoding. While the Viterbi decoding assigns gain only if the whole
alignment is correctly predicted, posterior decoding assigns gain +1 for each
correctly identified alignment column. Recall that the column is a pair (ai, bi),
and it is considered correct, if the same column also occurs somewhere in the
true alignment. The optimal alignment under this gain function can be found by
computing the posterior probability of each alignment column using the forward
and backward algorithms for PHMMs, and then finding the alignment as a col-
lection of compatible columns with the highest sum of posterior probabilities. A
similar algorithm is considered for example by Lunter et al. [16], except that the
column posteriors are multiplied rather than added. The running time of this
algorithm is again O(nmE).

Marginalized posterior decoding. Lunter et al. [16] also consider a variant of
posterior decoding, where a column (i,−j) is considered correct and receives
a gain +1, if the true alignment contains a column (i,−
) for any value of
�. In other words, when symbol xi is aligned to a gap, we do not distinguish
where is the location of this gap with respect to sequence Y . Columns (−j , i)
are treated symmetrically. To optimize this gain function, we again start by
computing posteriors of all columns. Then we marginalize the probabilities of
gap columns, effectively replacing posterior of column (i,−j) with the sum
of posteriors of columns (i,−
) for all �. As before, we then find the align-
ment maximizing the sum of posteriors of its columns. The algorithm runs in
O(nmE) time.

3.2 Decoding Criteria for the SFF Model

In more complex models, including ours, one alignment can be generated by
several different state paths. Various gain functions can thus take into account
also the state or repeat annotation of the alignment.

Viterbi decoding. In more complex models, the classical Viterbi algorithm opti-
mizes a gain function in which the alignment is annotated with the state path
generating it, and gain is awarded only when both the alignment and the state
path are completely correct.

Probabilistic Approaches to Alignment with Tandem Repeats 293

Posterior and marginalized posterior decoding. We will consider a variant of the
posterior decoding, in which alignment columns are annotated by the repeat
annotation, and an alignment column gets a gain +1, if the true alignment con-
tains the same column with the same label. The only change in the algorithm is
that the forward-backward algorithm produces posterior probabilities of columns
annotated with the state, which are then marginalized over all states with the
same repeat label. The running time is still O(nmE). Similar modification can
be done for marginalized posterior decoding, where we marginalize gap columns
based on both state and gap position.

Block decoding. We will consider also a stricter gain function, which requires that
repeat regions have correctly identified boundaries. We will split the alignment
annotated with repeats into blocks, so that each maximal region of consecutive
columns labeled as a repeat forms a block. Each column annotated as a non-
repeat also forms a separate block. The gain function awards gain +1 for each
non-gap symbol in every correctly predicted and labeled block. Correctness of
non-repeat columns is defined as in posterior decoding. A repeat block is consid-
ered correct, if exactly the same region in X and the same region in Y are also
forming a repeat block in the true alignment. Note that the gain for each block
is proportional to the number of non-gap symbols in the block to avoid biasing
the algorithm towards predicting many short blocks.

To optimize this gain function, we first compute posterior probabilities for all
blocks. Note that a block is given by a pair of intervals, one in X and one in
Y . Therefore the number of blocks is O(n2m2). The expected gain of a block is
its posterior probability multiplied by the number of its non-gap symbols. After
computing expected gains of individual blocks, we can find the highest scoring
combination of blocks by dynamic programming in O(n2m2) time.

To compute block posterior probabilities, we transform the SFF model to
a generalized PHMM [20], in which all repeat states are replaced by a single
generalized state R. In generalized HMMs, emission of a state in one step can
be an arbitrary string, rather than a single character. In our case, the new state
R generates a pair of sequences from the same distribution as defined by one
pass through the repeat portion of the original SFF model. Pair of sequences
generated by R represents one block of the resulting alignment. We call this new
model the block model. Using the forward-backward algorithm for generalized
HMMs, we can compute posterior probabilities of all blocks in O(n2m2f) time
where f is the time necessary to compute emission probability for one particular
block.

If we naively compute each emission separately, we get f = O(nmE). However,
we can reduce this time as follows. If the SFF contains only one motif, the
emission probability of sequences x and y in the R model is simply

Pr (x, y | R) = Pr (x | R1,X) Pr (y | R1,Y) ,

because the model first generates x in the sunflower submodel R1,X and then
generates y in the model R1,Y . Note that these two models are connected by

294 M. Nánási, T. Vinař, and B. Brejová

a transition with probability 1. In the general case, we sum the probabilities
for all k motifs, each multiplied by the transition probability of entering that
motif. To compute block emission probabilities fast, we precompute Pr (x | Ri,X)
and Pr (y | Ri,Y) for all substrings x and y of sequences X and Y respectively.
This can be done by the forward algorithm in O((n2 + m2)E) time. After this
preprocessing, the computation of emission probability is O(k), and the overall
running time of this algorithm is O(kn2m2 + (n2 + m2)E).

Block Viterbi decoding. The final gain function we consider is a variant of the
Viterbi decoding. The Viterbi decoding assigns gain +1 for a completely correct
alignment labeled with a correct state annotation. One alternative is to assign
gain +1 if the alignment and its repeat annotation are completely correct. This
gain function considers as equivalent all state paths that have the same posi-
tion of repeat boundaries but use different motifs or different alignments of the
sequence to the motif profile HMM.

In the SFF model, location of a repeat block uniquely specifies alignment
within the block, because all symbols from sequence X must come first (aligned
to gaps), followed by symbols from sequence Y . However, some models may emit
repeat bases from the two sequences aligned to each other. We wish to abstract
from exact details of repeat alignment, and consider different alignments within
a repeat as equivalent. Therefore, we will reformulate the gain function in terms
of blocks. The alignment labeled with repeat annotation gets a gain 1, if all
its blocks are correct, where block correctness is determined as in the block
decoding. This formulation is similar to the one solved by Hudek [14].

To optimize this gain function, we use the Viterbi algorithm for generalized
HMMs applied to the block model, which leads to running time O(kn2m2+(n2+
m2)E), by similar reasoning as above.

3.3 Practical Considerations

Even the fastest algorithms described above require O(nmE) time, where se-
quence lengths n and m can be quite high when aligning whole syntenic genomic
regions and the size of the model E depends on the sum of the lengths of all re-
peat motifs, which can be potentially even infinite. However, we can use several
heuristic approaches to make the running times reasonable.

First of all, we can use the standard technique of banding, where we re-
strict the alignment to some window around a guide alignment obtained by a
faster algorithm. A simpler form of banding is to split the guide alignment to
non-overlapping windows and realign each window separately. These techniques
reduce the O(nm) factor.

To restrict the size of the model, we first find tandem repeats in X and Y
independently by running the TRF program [2]. Then we include in our model
only those motifs which appear at least once in the TRF output. If we process
only relatively short windows of the banded alignment, the size of the model will
be quite small. Note however, that we keep the transition probabilities entering
these models the same as they are in the full SFF model. If TRF finds a consensus

Probabilistic Approaches to Alignment with Tandem Repeats 295

not included in the original SFF model, we add its two submodels with a small
probability comparable to the rarest included motifs.

These two heuristics sufficiently speed up algorithms running in O(nmE)
time. The block decoding and the block Viterbi decoding need to consider all
possible blocks, which is prohibitive even within short alignment windows. There-
fore, we limit possible repeat blocks only to intervals discovered as repeats by
the TRF program. We allow the generalized repeat state R to generate the block
of substrings x and y if each of these substrings is either empty or one of the in-
tervals found by TRF has both its endpoints within 10 bases from the respective
endpoints of x or y. Therefore, if TRF finds tX intervals in X and tY intervals
in Y , we try at most (20tX + n)(20tY + m) blocks.

The final consideration is that the SFF model does not align tandem repeats
at orthologous locations, even if they share a common evolutionary history. This
might be impractical for further use. Therefore we postprocess the alignments by
realigning all blocks annotated as repeats using the standard three-state PHMM.
In this realignment, we also include gaps adjacent to these repeats.

4 Experiments

We have compared decoding methods described in the previous section and sev-
eral baseline algorithms on simulated data (see Table 1). The data set contained
200 alignments of length at least 200 each generated from the SFF model (the
same model parameters were used in the sampling and for the alignments). In
generating the dataset, we required that each tandem repeat had at least three
copies in both species; otherwise, we would obtain many regions that would be
labeled as tandem repeats, but would in fact only have a single copy. The er-
ror rate (the first column of the table) measures the fraction of true alignment
columns that were not found by a particular algorithm. It was measured only
on the alignment columns that were generated from non-repeat states in the
simulation, as the SFF model does not give any alignment in repeat regions.

The first observation is that the methods based on the SFF model (the first
block of the table) outperform the baseline method (the Viterbi algorithm on the
three-state model), reducing the error rate by 10–30%. In general, the methods
that score individual alignment columns are more accurate than the block-based
or the Viterbi-based methods, which is not surprising, because error rate as a
measure of accuracy is closer to the gain function they optimize. We have also
compared our approach to the related method of context-sensitive indels [12].
The Context program was trained on a separate set of 200 alignments sampled
from our model. However, its error rate is quite high, perhaps due to insufficient
training data or some software issues. Finally, we have also run the Muscle aligner
with default parameters [5]; we have used the result as a guide alignment for the
slower block-based decoding methods (the new alignment was restricted to be
within 30 base window from the guide alignment).

The SFF-based algorithms use the tandem repeat motifs predicted by the
TRF, as well as approximate repeat intervals (block-based methods). The TRF

296 M. Nánási, T. Vinař, and B. Brejová

Table 1. Accuracy of several decoding methods on simulated data. ∗: method uses the
real consensus motifs. ∗∗: method uses the real consensus motifs and intervals from the
real repeat blocks.

Alignment Repeat Block
Algorithm error sn. sp. sn. sp.

SFF marginalized 3.37% 95.97% 97.78% 43.07% 44.87%
SFF posterior 3.53% 95.86% 97.87% 42.70% 47.37%
SFF block 3.87% 91.20% 98.04% 36.13% 47.14%
SFF block Viterbi 4.32% 91.28% 97.96% 35.40% 45.97%
SFF Viterbi 4.04% 95.29% 97.85% 42.70% 48.95%

SFF marginalized∗ 3.02% 98.93% 99.64% 77.01% 76.17%
SFF posterior∗ 3.42% 98.84% 99.51% 75.91% 80.93%
SFF block∗∗ 3.21% 97.70% 99.87% 80.66% 94.44%
SFF block Viterbi∗∗ 3.71% 98.12% 99.85% 81.75% 92.18%
SFF Viterbi∗ 3.94% 98.54% 99.45% 75.55% 83.47%

Context 5.98%
Muscle 5.62%
3-state posterior 4.41%
3-state Viterbi 4.78%

predictions are not exact and may contribute to the overall error rate. We at-
tempted to quantify this effect by using the real tandem repeat motifs and real
boundary positions instead of the TRF predictions (the second block of Table 1).
We can see that the use of TRF predictions indeed leaves space for improvement,
with the best performing algorithm reducing the error rate by almost 40% com-
pared to the baseline. Block-based methods work significantly better with true
intervals than with the TRF intervals, suggesting that further improvements in
repeat interval detection are needed.

The decoding methods that use the SFF model produce an alignment and a
repeat annotation. Comparing annotation of each base in both sequences with
the true repeat annotation sampled from the model (table columns repeat sen-
sitivity and specificity), we note that the marginalized posterior decoding is the
most sensitive, and the block decoding the most specific method. Specificity was
quite high for all methods, low sensitivity for block-based methods was proba-
bly caused by wrong repeat intervals predicted by the TRF, since it improves
markedly by using correct intervals.

We also compared the accuracy of predicting repeat block boundaries (ta-
ble columns block sensitivity and specificity). The number of blocks with cor-
rectly predicted boundaries is quite low, most likely because there are usually
many high-probability alternatives with slightly shifted boundaries. However,
even though more than half of the repeat blocks have some error in the bound-
ary placement, the SFF-based methods improve the alignment accuracy most
markedly close to repeat boundaries, as shown in Fig.3. This is expected, be-
cause far from repeats the model works similarly to the three-state PHMM.

Probabilistic Approaches to Alignment with Tandem Repeats 297

Fig. 3. Alignment error rate of three decoding methods as a function of the distance
from the nearest repeat

To illustrate the feasibility of running our methods on real genomic data, we
have realigned the 1.8Mb CFTR region on the human chromosome 7 to ortholo-
gous portions of the dog genome. We have started with the lastz alignment [11]
downloaded from the Ensemble website [6]. We have then run the TRF program
on both species and selected alignment windows of length 50–350 that contained at
least one repeat. Regions without repeats or with very long repeats were left with
the original alignment. Using the block decoding with the SFF model, we have thus
realigned windows covering roughly 70% of the original alignment. About 8% of
all alignment columns were annotated as repeats.

5 Conclusion

We have designed a new pair hidden Markov model for aligning sequences with
tandem repeats and explored a variety of decoding optimization criteria for its
use. The new model coupled with appropriate decoding algorithm reduces the er-
ror rate on simulated data, especially around boundaries of tandem repeats. With
suitable heuristics, our approach can be used to realign long genomic regions.

Our experiments are the first study comparing a variety of different decoding
criteria for PHMMs. Our criteria for the SFF model optimize both the alignment
and the repeat annotation. Depending on the application, one or the other may
be of greater interest, and thus one may want to marginalize over all alignments
and optimize the annotation, as in [22], or marginalize over labels and optimize
the alignment.

Our model does not take into the account the dependencies between the repeat
occurrences in the two species. A tractable model allowing such dependencies
would be of great interest. Previously, we have explored the problem of aligning
two sequences simultaneously to a profile HMM, but we were not able to design
a simple generative model for this purpose [15].

298 M. Nánási, T. Vinař, and B. Brejová

Acknowledgements. This research was funded by VEGA grant 1/1085/12.

References

1. Benson, G.: Sequence alignment with tandem duplication. Journal of Computa-
tional Biology 4(3), 351–357 (1997)

2. Benson, G.: Tandem repeats finder: a program to analyze DNA sequences. Nucleic
Acids Research 27(2), 573–580 (1999)

3. Bérard, S., Nicolas, F., Buard, J., Gascuel, O., Rivals, E.: A fast and specific
alignment method for minisatellite maps. Evolutionary Bioinformatics Online 2,
303 (2006)

4. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis: Prob-
abilistic models of proteins and nucleic acids. Cambridge University Press (1998)

5. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research 32(5), 1792–1797 (2004)

6. Flicek, P., et al.: Ensembl 2013. Nucleic Acids Research 41(D1), D48–D55 (2013)
7. Freschi, V., Bogliolo, A.: A lossy compression technique enabling duplication-aware

sequence alignment. Evolutionary Bioinformatics Online 8, 171 (2012)
8. Frith, M.C.: A new repeat-masking method enables specific detection of homolo-

gous sequences. Nucleic Acids Res. 39(4), e23 (2011)
9. Gemayel, R., Vinces, M.D., Legendre, M., Verstrepen, K.J.: Variable tandem re-

peats accelerate evolution of coding and regulatory sequences. Annual Review of
Genetics 44, 445–477 (2010)

10. Hamada, M., Kiryu, H., Sato, K., Mituyama, T., Asai, K.: Prediction of RNA
secondary structure using generalized centroid estimators. Bioinformatics 25(4),
465–473 (2009)

11. Harris, R.: Improved pairwise alignment of genomic DNA. PhD thesis, Pennsylva-
nia State University (2007)

12. Hickey, G., Blanchette, M.: A probabilistic model for sequence alignment with
context-sensitive indels. Journal of Computational Biology 18(11), 1449–1464
(2011)

13. Holmes, I., Durbin, R.: Dynamic programming alignment accuracy. Journal of
Computational Biology 5(3), 493–504 (1998)

14. Hudek, A.K.: Improvements in the Accuracy of Pairwise Genomic Alignment. PhD
thesis, University of Waterloo, Canada (2010)

15. Kováč, P., Brejová, B., Vinař, T.: Aligning sequences with repetitive motifs. In:
Information Technologies - Applications and Theory (ITAT), pp. 41–48 (2012)

16. Lunter, G., Rocco, A., Mimouni, N., Heger, A., Caldeira, A., Hein, J.: Uncer-
tainty in homology inferences: assessing and improving genomic sequence align-
ment. Genome Research 18(2), 298–309 (2008)

17. Messer, P.W., Arndt, P.F.: The majority of recent short DNA insertions in the
human genome are tandem duplications. Mol. Biol. Evol. 24(5), 1190–1197 (2007)

18. Miyazawa, S.: A reliable sequence alignment method based on probabilities of
residue correspondences. Protein Engineering 8(10), 999–1009 (1995)

19. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biol-
ogy 48(3), 443–443 (1970)

Probabilistic Approaches to Alignment with Tandem Repeats 299

20. Pachter, L., Alexandersson, M., Cawley, S.: Applications of generalized pair hidden
Markov models to alignment and gene finding problems. Journal of Computational
Biology 9(2), 389–399 (2002)

21. Sammeth, M., Stoye, J.: Comparing tandem repeats with duplications and exci-
sions of variable degree. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 3(4), 395–407 (2006)

22. Satija, R., Hein, J., Lunter, G.A.: Genome-wide functional element detection us-
ing pairwise statistical alignment outperforms multiple genome footprinting tech-
niques. Bioinformatics 26(17), 2116–2120 (2010)

23. Schwartz, A.S., Pachter, L.: Multiple alignment by sequence annealing. Bioinfor-
matics, 23(2), e24–e29 (2007)

Multiscale Identification of Topological Domains

in Chromatin

Darya Filippova1,2,	, Rob Patro2,	, Geet Duggal1,2,	, and Carl Kingsford2

1 Joint Carnegie Mellon University, University of Pittsburgh Ph.D. Program in
Computational Biology, Pittsburgh, PA

2 Lane Center for Computational Biology, Carnegie Mellon University,
Pittsburgh, PA

Abstract. Recent chromosome conformation capture experiments have
led to the discovery of dense, contiguous, megabase-sized topological do-
mains that are similar across cell types, are conserved across species.
These domains are strongly correlated with a number of chromatin mark-
ers and have since been included in a number of analyses. However,
functionally relevant domains may exist at multiple length scales. We
introduce a new and efficient algorithm that is able to capture persistent
domains across various resolutions by adjusting a single scale parameter.
The identified novel domains are substantially different from domains
reported previously and are highly enriched for insulating factor CTCF
binding and histone modifications at the boundaries.

Keywords: chromosome conformation capture, topological domains,
weighted interval scheduling.

1 Introduction

Chromatin interactions obtained from a variety of recent experimental tech-
niques in chromosome conformation capture (3C) [3] have resulted in significant
advances in our understanding of the geometry of chromatin structure [7], its
relation to the regulation of gene expression, nuclear organization, cancer translo-
cations [2], and copy number alterations in cancer [6]. Of these advances, the
recent discovery of dense, contiguous regions of chromatin termed topological
domains [4] has resulted in the incorporation of domains into many subsequent
analyses [9,12,14] due to the fact that they are persistent across cell types, con-
served across species, and serve as a skeleton for the placement of many func-
tional elements of the genome [1,18].

3C experiments result in matrices of counts that represent the frequency of
cross-linking between restriction fragments of DNA that are spatially near one
another. The original identification of domains in Dixon et al. [4] employed a
Hidden Markov Model (HMM) on these interaction matrices to identify regions
initiated by significant downstream chromatin interactions and terminated by

� Contributed equally to this work.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 300–312, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multiscale Identification of Topological Domains in Chromatin 301

a sequence of significant upstream interactions. A defining characteristic of the
domains resulting from their analysis is that higher frequency 3C interactions
tend to occur within domains as opposed to across domains. This aspect of do-
mains is also reflected in the block-diagonal structure of 3C interaction matrices
as shown in Fig. 1. In this sense, domains can be interpreted as contiguous ge-
nomic regions that self-interact frequently and are more spatially compact than
their surrounding regions.

However, the single collection of megabase-sized domains may not be the only
topologically and functionally relevant collection of domains. On closer inspec-
tion of the block-diagonal matrix structure in Fig. 1, it becomes clear that there
are alternative contiguous regions of the chromosome that self-interact frequently
and are likely more spatially compact than their surrounding regions (dotted
lines). Some of these regions appear to be completely nested within others, sug-
gesting a hierarchy of compact regions along the chromosome, while others ap-
pear to overlap each other. These observations suggest that functionally-relevant
chromosomal domains may exist at multiple scales.

We introduce a new algorithm to efficiently identify topological domains in
3C interaction matrices for a given domain-length scaling factor γ. Our results
suggest that there exist a handful of characteristic resolutions across which do-
mains are similar. Based on this finding, we identify a consensus set of domains
that persist across various resolutions. We find that domains discovered by our
algorithm are dense and cover interactions of higher frequency than inter-domain
interactions. Additionally, we show that inter-domain regions within the consen-
sus domain set are highly enriched with insulator factor CTCF and histone mod-
ification marks. We argue that our straightforward approach retains the essence
of the more complex multi-parameter HMM introduced in [4] while allowing for
the flexibility to identify biologically relevant domains at various scales.

2 Problem Definitions

Given the resolution of the 3C experiment (say, 40kbp), the chromosome is bro-
ken into n evenly sized fragments. 3C contact maps record interactions between
different sections of the chromosome in the form of a weighted adjacency matrix
A where two fragments i and j interact with frequency Aij .

Problem 1 (Resolution-specific domains). Given a n × n weighted adjacency
matrix A and a resolution parameter γ ≥ 0, we wish to identify a set of domains
Dγ where each domain is represented as an interval di = [ai, bi], 1 ≤ ai < bi ≤ n
such that no two di and dj overlap for any i �= j. Additionally, each domain
should have a larger interaction frequency within domain than to its surrounding
regions.

Here, the parameter γ is inversely related to the average domain size in Dγ :
lower γ results in sets of larger domains and higher γ corresponds to sets of
smaller domains. We define γ and discuss it in more detail later in the text.

302 D. Filippova et al.

178120000

180560000

183000000
178120000 180560000 183000000

Alternative Domains

Dixon et al. Domains

IMR90 Fibroblast, Chromosome 1

Fig. 1. Interaction matrix for a portion of human chromosome 1 from a recent Hi-C
experiment by Dixon et al. [4]. Each axis represents a location on the chromosome
(40kbp bins). Densely interacting domains identified by the method of Dixon et al.
are shown as red boxes. Alternative domains are shown as dotted black lines on the
upper triangular portion of the matrix. Visual inspection of the lower triangular portion
suggests domains could be completely nested within another and highly overlapping
when compared to Dixon et al.’s domains. This motivates the problem of identifying
alternative domains across length scales.

Specifically, we seek to identify a set of non-overlapping domains Dγ that
optimize the following objective:

max
∑

[ai,bi]∈Dγ

q(ai, bi, γ), (1)

where q is a function that quantifies the quality of a domain [ai, bi] at reso-
lution γ. Since domains are required to contain consecutive fragments of the
chromosome, this problem differs from the problem of clustering the graph of
3C interactions induced by A, since such a clustering may place non-contiguous
fragments of the chromosome into a single cluster. In fact, this additional re-
quirement allows for an efficient optimal algorithm.

Problem 2 (Consensus domains across resolutions). Given A and a set of
resolutions Γ = {γ1, γ2, . . .}, identify a set of non-overlapping domains Dc that
are most persistent across resolutions in Γ :

max
∑

[ai,bi]∈Dc

p(ai, bi, Γ), (2)

Multiscale Identification of Topological Domains in Chromatin 303

where p(ai, bi, Γ) is the persistence of domain [ai, bi] corresponding to how often
it appears across resolutions.

3 Algorithms

3.1 Domain Identification at a Particular Resolution

Since each row and corresponding column in a 3C interaction matrix encodes a
genomic position on the chromosome, we can write the solution to objective (1)
as a dynamic program:

OPT1(l) = max
k<l
{OPT1(k − 1) + max{q(k, l, γ), 0}}, (3)

where OPT1(l) is the optimal solution for objective (1) for the sub-matrix defined
by the first l positions on the chromosome (OPT1(0) = 0). The choice of k
encodes the size of the domain immediately preceding location l. We define
negative-scoring domains as non-domains and, as such, only domains with q > 0
in the max term in (3) are retained.

Our quality function q is:

q(k, l, γ) = s(k, l, γ)− μs(l − k), where (4)

s(k, l, γ) =

∑l
g=k

∑l
h=g+1 Agh

(l − k)γ
(5)

is a scaled density of the subgraph induced by the interactions Agh between
genomic loci k and l. Equation (4) is the zero-centered sum of (5), which is the
upper-triangular portion of the submatrix defined by the domain in the interval
[k, l] divided by the scaled length (l − k)γ of the domain. When γ = 1, the
scaled density is the weighted subgraph density [8] for the subgraph induced
by the fragments between k and l. When γ = 2, the scaled density is half the
internal density of a graph cluster [16]. For larger values of γ, the length of a
domain in the denominator is amplified, hence, smaller domains would produce
larger objective values than bigger domains with similar interaction frequencies.
μs(l− k) is the mean value of (5) over all sub-matrices of length l− k along the
diagonal of A, and can it be pre-computed for a given A. We disallow domains
where there are fewer than 100 sub-matrices available to compute the mean. By
doing this, we are only excluding domains of size larger than n− 100 fragments,
which in practice means that we are disallowing domains that are hundreds of
megabases long. Values for the numerator in (5) are also pre-computed using
an efficient algorithm [5], resulting in an overall run-time of O(n2) to compute
OPT1(n).

3.2 Obtaining a Consensus Set of Persistent Domains across
Resolutions

For objective (2), we use the procedure in section 3.1 to construct a set D =⋃
γ∈Γ Dγ . D is a set of overlapping intervals or domains, each with a quality score

304 D. Filippova et al.

defined by its persistence p across resolutions. To extract a set of highly persis-
tent, non-overlapping domains from D, we reduce problem 2 to the weighted
interval scheduling problem [11], where competing requests to reserve a resource
in time are resolved by finding the highest-priority set of non-conflicting requests.
To find a consensus set of domains, we map a request associated with an inter-
val of time to a domain and its corresponding interval on the chromosome. The
priority of a request maps to a domain’s persistence p across length scales.

The algorithm to solve problem 2 is then:

OPT2(j) = max{OPT2(j − 1),OPT2(c(j)) + p(aj , bj , Γ)} (6)

where OPT2(j) is the optimal non-overlapping set of domains for the jth domain
in a list of domains sorted by their endpoints (OPT2(0) = 0), and c(j) is the
closest domain before j that does not overlap with j. The first and second terms
in (6) correspond to either choosing or not choosing domain j respectively. We
pre-compute a domain’s persistence p as:

p(ai, bi, Γ) =
∑
γ∈Γ

δi where δi =

{
1 if [ai, bi] ∈ Dγ

0 otherwise.
(7)

Equation (7) is therefore a count of how often domain i appears across all res-
olutions in Γ for domain sets identified by the method in section 3.1. It may
be desirable to treat multiple highly overlapping, non-equivalent domains as a
single domain, however, we conservatively identify exact repetitions of a domain
across resolutions since this setting serves as a lower bound on the persistence
of the domain. If m = |D|, then pre-computing persistence takes O(m|Γ |) time,
and c(j) is precomputed after sorting the intervals by their endpoints. The limit-
ing factor when computing OPT2(m) is time to compute c(j), which is m logm.
Thus, the overall algorithm runs in O(m logm + (n2 + m)|Γ |) time taking into
account an additional O(n2|Γ |) for computing D.

4 Results

We used chromatin conformation capture data from Dixon et al. [4] for human
fibroblast and mouse embryonic cells. The 3C contact matrices were already
aggregated at fragment size 40kbp and were corrected for experimental bias ac-
cording to [19]. We compared our multiscale domains and consensus sets against
the domains generated by Dixon et al. for the corresponding cell type and species.
For human fibroblast cells, we used CTCF binding sites from [10]. For mouse
embryonic cell CTCF binding sites and chromatin modification marks, we used
data by Shen et al. [17].

4.1 Ability to Identify Densely Interacting Domains across Scales

Multiresolution domains successfully capture high frequency interactions and
leave interactions of lower mean frequency outside of the domains. We compute

Multiscale Identification of Topological Domains in Chromatin 305

(a) Domain size vs. frequency (b) Mean frequency distribution

Fig. 2. (a) Our algorithm discovers domains with mean frequency value for inter-
and intra-domain interactions (solid lines) at or better than that of Dixon et al. do-
mains (dotted lines). Each solid line represents domains at different resolution γ in
human fibroblast cells. (b) Multiscale domains identified in human fibroblast cells by
our dynamic program tend to have higher mean frequency than those of Dixon et al.
(distributions are plotted after outliers > μ+ 4σ were removed).

the mean interaction frequency for all intra- and inter-domain interactions at var-
ious genomic lengths and plot the distribution of means for multiple resolutions
(Fig. 2(a)). The mean intra-domain interaction frequency (blue) is consistently
higher (up to two times) than the mean frequency for interactions that cross
domains (red). Compared to the domains reported by Dixon et al., our domains
tend to aggregate interactions of higher mean frequency, especially at larger γ.
The distribution of mean intra-domain frequencies for Dixon et al. is skewed
more to the left than that of the multiscale domains (Fig. 2(b)). This difference
can be partially explained by the fact that multiscale domains on average are
smaller in size (μ = 0.2Mb, σ = 1.2Mb) than domains reported by Dixon et al.
(μ = 1.2Mb, σ = 0.9Mb).

4.2 Domain Persistence across Scales

Domain sets across resolutions share significant similarities, even as the distribu-
tion of domains and their sizes begin to change (Fig. 3). The patterns of similarity
are particularly obvious if we plot the domains at various resolutions (Fig. 4(a)):
many domains identified by our algorithm persist at several resolutions and are
aggregated into larger domains at smaller γ, suggesting a hierarchical domain
structure. The stability of these domains across resolutions indicates that the
underlying chromosomal structure is dense within these domains and that these
domains interact with the rest of the chromosome at a much lower frequency.

A pairwise comparison of domain configurations displays regions of stabil-
ity across multiple resolutions (Fig. 4(b)). We use the variation of information
(VI) [15], a metric for comparing two sets of clusters, to compute the distance

306 D. Filippova et al.

(a) domain size & count vs. γ

0.0 0.2 0.4 0.6 0.8 1.0
γ, resolution parameter

0

20

40

60

80

100

overlap

jaccard

VI, 100X

(b) similarity to Dixon et al. domains

Fig. 3. (a) The domain sizes increase and the domain count decreases as the resolu-
tion parameter drops. Above: plotted are maximum (red), average (blue), and minimum
(green) domain sizes averaged over all chromosomes for the domains on human fibrob-
lasts. The magenta line shows the average domain size for domains reported by Dixon
et al. Below: the number of domains increases for higher values of resolution parameter.
The magenta line displays domain count for Dixon et al. (b) According to the Jaccard
metric, the similarity between multiresolution domains and domains reported by Dixon
et al. increases as the resolution parameter goes to zero.

between two sets of domains. To capture the similarities between two domain sets
D and D′ and the inter-domain regions induced by the domains, we construct
new derivate sets C and C′ where C contains all domains d ∈ D as well as all
inter-domain regions (C′ is computed similarly). To compute entropy H(C) =∑

ci∈C pi log pi, we define the probability of seeing each interval in C as pi =
(bi − ai)/L where L is the number of nucleotides from the start of the leftmost
domain to the end of the rightmost domain in the set D ∪D′. When computing
the mutual information I(C,C′) =

∑
ci∈C

∑
c′j∈C′ pij log[pij/(pipj)] between two

sets of intervals C and C′, we define the joint probability pij to be |[ai, bi] ∩
[aj , bj]|/L. We then compute variation of information on these two new sets:
V I(C,C′) = H(C) + H(C′) − 2I(C,C′) where H(·) is entropy and I(·, ·) is
mutual information. Chromosome 1, for example, has three visually pronounced
groups of resolutions within which domain sets tend to be more similar than
across (γ =[0.00-0.20], [0.25-0.70], and [0.75-1.00] — see Fig. 4(b)).

4.3 Comparison with the Previously Identified Set of Domains in
Dixon et al.

At higher resolutions, domains identified by our algorithm are smaller than those
reported by Dixon et al. (Fig. 3(a)). As the resolution parameter decreases to 0.0,
the average size of the domains increases (see Fig. 3 for results for chromosome
1 on the IMR90 human fibroblast cells). As domains expand to cover more and
more of the chromosome, the similarity to the domains identified by Dixon et
al. [4] also increases (Fig. 3(b)). We calculate the Jaccard similarity between

Multiscale Identification of Topological Domains in Chromatin 307

1Mb 1.5Mb 2Mb 2.5Mb 3Mb 3.5Mb 4Mb
genomic position

0.2

0.4

0.6

0.8

1.0

γ
,
re

s
o
lu

ti
o
n
 p

a
ra

m
e
te

r

(a) domains across resolutions

0.1 0.3 0.5 0.7 0.9
γ, resolution parameter

0.1

0.3

0.5

0.7

0.9

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

(b) VI across resolutions

Fig. 4. (a) Domains identified by our algorithm (black) are smaller at higher resolu-
tions and merge to form larger domains at γ close to 0. Visual inspection shows qualita-
tive differences between consensus domains (red) and domains reported by Dixon et al.
(green). Data shown for the first 4Mbp of chromosome 1 in human fibroblasts. (b) Vari-
ation of information for domains identified by our algorithm across different resolutions
for chromosome 1 in human fibroblast cells.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Chromosome

0.5

1.0

1.5

2.0

2.5

3.0

V
a
r
ia

t
io

n
 o

f
In

fo
r
m

a
t
io

n

Multiscale vs. Dixon et al.

Multiscale vs. Random

Fig. 5. Comparison of Dixon et al.’s domain set with the multiscale consensus set
for chromosomes 1–22 (x-axis). We used the variation of information (VI) (y-axis) to
compute distances between domain sets for the multiscale consensus set vs. Dixon et al
(blue dots) and the multiscale consensus vs. randomly shuffled domains (red diamonds).

two sets of domains D and D′ as J(D,D′) = N11/(N11 + N01 + N10) where
the quantities N11, N01, and N10 are the number of 3C fragments that are in a
domain in both sets D and D′, the number of fragments that are in a domain

308 D. Filippova et al.

in D′, but not in D, and the number of fragments that are in a domain in
D, but not D′, respectively (light blue in Fig. 3(b)). The composition of the
domains, however, is different as is captured by the variation of information
(red in Fig. 3(b)). Overall, we identify domains that cover similar regions of the
chromosome (Fig. 2), yet differ in their size distribution and genomic positions.

We use the algorithm described in section 3.2 to obtain a consensus set of
domains Dc persistent across resolutions. We construct the set Γ by defining
the range of our scale parameter to be [0, γmax] and incrementing γ in steps of
0.05. In order to more directly compare with previous results, we set γmax = 0.5
for human and 0.25 for mouse since these are the scales at which the maximum
domain sizes in Dixon et al.’s sets match the maximum domain sizes in our sets.

Our consensus domain set agrees with the Dixon et al. domains better than
with a randomized set of domains adhering to the same domain and non-domain
length distributions (Fig. 5). Our primary motivation in comparing to random-
ized sets of domains is to provide a baseline that we can use to contrast our set
of domains with Dixon et al. Comparing to a set of random domains also helps
to verify that our observations are due to the observed sequence of domains and
not the distribution of domain lengths. To shuffle Dixon’s domains, we record the
length of every domain and non-domain region, and then shuffle these lengths to
obtain a randomized order of domains and non-domains across the chromosome.
The fact that variation of information is lower between consensus domains and
domains reported by Dixon et al. demonstrates that, though the approaches find
substantially different sets of topological domains, they still agree significantly
more than one would expect by chance.

4.4 Enrichment of CTCF and Histone Modifications Near
Boundaries

We assess the enrichment of transcription factor CTCF and histone modifica-
tions H3K4me3 and H3K27AC within the inter-domain regions induced by the
consensus domains. These enrichments provide evidence that the boundary re-
gions between topological domains correlate with genomic regions that act as
insulators and barriers, suggesting that the topological domains may play a role
in controlling transcription in mammalian genomes [4].

Figure 6 illustrates the enrichment of insulator or barrier-like elements in
domain boundaries in both the human fibroblast (IMR90) and mouse embryonic
stem cell (mESC) lines. Specifically, we observe that the boundaries between
consensus domains are significantly enriched for all of the transcription factors
and histone marks we consider. In certain cases — specifically in the case of
CTCF — we notice that the CTCF binding signals peak more sharply in the
boundaries between the domains we discover than in the boundaries between
the domains of Dixon et al.

We also observe that, when compared with the domain boundaries predicted
by Dixon et al., our boundaries more often contain insulator or barrier-like el-
ements (see Table 1). Specifically, we normalize for the fact that we identify
approximately twice as many domains as Dixon et al., and generally observe a

Multiscale Identification of Topological Domains in Chromatin 309

(a
)

IM
R

90
: C

T
C

F
(b

)
m

E
S

C
: C

T
C

F
(c

)
m

E
S

C
: H

3K
4m

e3
(d

)
m

E
S

C
: H

3K
27

A
C

Fig. 6. Enrichment of binding CTCF binding (a) in IMR90 and (b) in mESC and
histone modifications (c), (d) in mESC around domain boundaries for our consensus
set of persistent domains (left, blue), and for those identified by Dixon et al. (right,
blue). Green lines represent the presence of CTCF at the midpoint of the topological
domains.

310 D. Filippova et al.

two-fold enrichment in the fraction of boundaries containing peaks for CTCF
markers. This suggests that structural boundaries identifed by our method are
more closely tied to functional sites which serve as barriers to long-range reg-
ulation. We also observe a depletion of insulator CTCF elements within our
domains when compared to the domains of Dixon et al. This observation is con-
sistent with the assumption that transcriptional regulation is more active within
spatially proximate domains since there are fewer elements blocking regulation
within these domains. Table 1 also shows similar patterns for histone modifi-
cations which suggests that our domain boundaries are enriched for functional
markers of gene regulation.

5 Discussion and Conclusions

In this paper, we introduce an algorithm to identify topological domains in
chromatin using interaction matrices from recent high-throughput chromosome
conformation capture experiments. Our algorithm produces domains that display
much higher interaction frequencies within the domains than in-between domains
(Fig. 2) and for which the boundaries between these domains exhibit substantial
enrichment for several known insulator and barrier-like elements (Fig. 6). To
identify these domains, we use a multiscale approach which finds domains at
various size scales. We define a consensus set to be a set of domains that persist
across multiple resolutions and give an efficient algorithm that finds such a set
optimally.

The method for discovering topological domains that we have introduced is
practical for existing datasets. our implementation is able to compute the do-
mains for the human fibroblast cell line and extract the consensus set in under 40
minutes when run on a personal computer with 2.3GHz Intel Core i5 processor
and 8Gb of RAM.

Our method is particularly appealing in that it requires only a single user-
specified parameter γmax. It uses a score function that encodes the quality of
putative domains in an intuitive manner based on their local density of interac-
tions. Variations of the scoring function in (4), for example, by median centering

Table 1. Each table entry is of the form e
t
≈ r where e is the number of elements

containing ≥ 1 of CTCF and histone modifications, t is the total number of elements
and r is the approximate ratio e/t. Our method produces more domains, and hence
more boundaries, than that of Dixon et al. [4]. However, relative to Dixon et al.,
our domains are depleted for peaks of interest, while our boundaries are significantly
enriched for such peaks.

Signal Domains ([4]) Domains (Ours) Boundaries ([4]) Boundaries (Ours)

CTCF (IMR90) 2050
2234

≈ 0.92 3092
5365

≈ 0.58 423
2136

≈ 0.20 2126
4861

≈ 0.44

CTCF (mESC) 2057
2066

≈ 1.00 2500
3578

≈ 0.70 654
2006

≈ 0.33 2258
3122

≈ 0.72

H3K4me3 (mESC) 2019
2066

≈ 0.98 2362
3578

≈ 0.66 600
2006

≈ 0.30 1738
3122

≈ 0.60

H3K27AC (mESC) 1922
2066

≈ 0.93 2254
3578

≈ 0.63 458
2006

≈ 0.23 1342
3122

≈ 0.43

Multiscale Identification of Topological Domains in Chromatin 311

rather than mean centering, can be explored to test the robustness of the enrich-
ments described here. For our experiments, the parameter γmax was set based
on the maximum domain sizes observed in Dixon et. al’s experiments so that
we could easily compare our domains to theirs. This parameter can also be set
intrinsically from properties of the Hi-C interaction matrices. For example, we
observe similar enrichments in both human and mouse when we set γmax to be
the smallest γ ∈ Γ such that the median domain size is >80kbp (two consecutive
Hi-C fragments at a resolution of 40kbp). This is a reasonable assumption since
domains consisting of just one or two fragments do not capture higher-order
spatial relationships (e.g. triad closure) and interaction frequencies between ad-
jacent fragments are likely large by chance [13]. We also compared the fraction
of the genome covered by domains identified by Dixon et al. vs. the domains
obtained from our method at various resolutions. Dixon et al.’s domains cover
85% of the genome while our sets tend to cover less of the genome (≈ 65% for a
resolution which results in the same number of domains as those of Dixon et al.).
The fact that our domain boundaries are more enriched for CTCF sites indicates
that our smaller, denser domains may be more desirable from the perspective of
genome function.

The dense, functionally-enriched domains discovered by our algorithm pro-
vide strong evidence that alternative chromatin domains exist and that a single
length scale is insufficient to capture the hierarchical and overlapping domain
structure visible in heat maps of 3C interaction matrices. Our method explicitly
incorporates the desirable properties of domain density and persistence across
scales into objectives that maximize each and uncovers a new view of domain
organization in mammalian genomes that warrants further investigation.

Acknowledgments. This work has been partially funded by National Science
Foundation (CCF-1256087, CCF-1053918, and EF-0849899) and National Insti-
tutes of Health (1R21AI085376). C.K. received support as an Alfred P. Sloan
Research Fellow. D.F. is a predoctoral trainee supported by NIH T32 training
grant T32 EB009403 as part of the HHMI-NIBIB Interfaces Initiative.

References

1. Bickmore, W.A., van Steensel, B.: Genome Architecture: domain organization of
interphase chromosomes. Cell 152(6), 1270–1284 (2013)

2. Cavalli, G., Misteli, T.: Functional implications of genome topology. Nature Struc-
tural & Molecular Biology 20(3), 290–299 (2013)

3. de Wit, E., de Laat, W.: A decade of 3C technologies: insights into nuclear orga-
nization.. Genes & Development 26(1), 11–24 (2012)

4. Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., Ren,
B.: Topological domains in mammalian genomes identified by analysis of chromatin
interactions. Nature 485(7398), 376–380 (2012)

5. Filippova, D., Gadani, A., Kingsford, C.: Coral: an integrated suite of visualizations
for comparing clusterings. BMC Bioinformatics 13(1), 276 (2012)

312 D. Filippova et al.

6. Fudenberg, G., Getz, G., Meyerson, M., Mirny, L.A.: High order chromatin archi-
tecture shapes the landscape of chromosomal alterations in cancer. Nature Biotech-
nology 29(12), 1109–1113 (2011)

7. Gibcus, J.H., Dekker, J.: The hierarchy of the 3D genome. Molecular Cell 49(5),
773–782 (2013)

8. Goldberg, A.V.: Finding a maximum density subgraph. Computer Science Division.
University of California, Berkeley (1984)

9. Hou, C., Li, L., Qin, Z.S., Corces, V.G.: Gene density, transcription, and insula-
tors contribute to the partition of the Drosophila genome into physical domains.
Molecular cell 48(3), 471–484 (2012)

10. Kim, T.H., Abdullaev, Z.K., Smith, A.D., Ching, K.A., Loukinov, D.I., Green,
R.D., Zhang, M.Q., Lobanenkov, V.V., Ren, B.: Analysis of the vertebrate insulator
protein CTCF-binding sites in the human genome. Cell 128(6), 1231–1245 (2007)

11. Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2005)
12. Kölbl, A.C., Weigl, D., Mulaw, M., Thormeyer, T., Bohlander, S.K., Cremer, T.,

Dietzel, S.: The radial nuclear positioning of genes correlates with features of
megabase-sized chromatin domains.. Chromosome Research 20(6), 735–752 (2012)

13. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T.,
Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al.: Compre-
hensive mapping of long-range interactions reveals folding principles of the human
genome. Science 326(5950), 289–293 (2009)

14. Lin, Y.C., Benner, C., Mansson, R., Heinz, S., Miyazaki, K., Miyazaki, M.,
Chandra, V., Bossen, C., Glass, C.K., Murre, C.: Global changes in the nuclear po-
sitioning of genes and intra- and interdomain genomic interactions that orchestrate
B cell fate. Nature Immunology 13(12), 1196–1204 (2012)

15. Meilă, M.: Comparing clusterings by the variation of information. Learning Theory
and Kernel Machines 2777, 173–187 (2003)

16. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
17. Shen, Y., Yue, F., McCleary, D.F., Ye, Z., Edsall, L., Kuan, S., Wagner, U., Dixon,

J., Lee, L., Lobanenkov, V.V., Ren, B.: A map of the cis-regulatory sequences in
the mouse genome. Nature 488, 116–120 (2012)

18. Tanay, A., Cavalli, G.: Chromosomal domains: epigenetic contexts and functional
implications of genomic compartmentalization. Current Opinion in Genetics & De-
velopment 23(2), 197–203 (2013)

19. Yaffe, E., Tanay, A.: Probabilistic modeling of Hi-C contact maps eliminates sys-
tematic biases to characterize global chromosomal architecture. Nature Genet-
ics 43(11), 1059–1065 (2011)

Modeling Intratumor Gene Copy Number

Heterogeneity Using Fluorescence
in Situ Hybridization Data�

Charalampos E. Tsourakakis

Carnegie Mellon University, USA
ctsourak@math.cmu.edu

Abstract. Tumorigenesis is an evolutionary process which involves a
significant number of genomic rearrangements typically coupled with
changes in the gene copy number profiles of numerous cells. Fluores-
cence in situ hybridization (FISH) is a cytogenetic technique which al-
lows counting copy numbers of genes in single cells. The study of can-
cer progression using FISH data has received considerably less attention
compared to other types of cancer datasets.

In this work we focus on inferring likely tumor progression pathways
using publicly available FISH data. We model the evolutionary process
as a Markov chain in the positive integer cone Z

g
+ where g is the number

of genes examined with FISH. Compared to existing work which oversim-
plifies reality by assuming independence of copy number changes [24,25],
our model is able to capture dependencies. We model the probability
distribution of a dataset with hierarchical log-linear models, a popu-
lar probabilistic model of count data. Our choice provides an attractive
trade-off between parsimony and good data fit. We prove a theorem of
independent interest which provides necessary and sufficient conditions
for reconstructing oncogenetic trees [8]. Using this theorem we are able to
capitalize on the wealth of inter-tumor phylogenetic methods. We show
how to produce tumor phylogenetic trees which capture the dynamics of
cancer progression. We validate our proposed method on a breast tumor
dataset.

Keywords: intra-tumor heterogeneity, evolutionary dynamics, cancer
phylogenetics, Markov chains, simulation, FISH.

1 Introduction

Tumors are heterogeneous masses which exhibit cellular and genomic differences
[13,20,21,22]. Cell-by-cell assay measurements allow us to study the phenomenon
of tumor heterogeneity. Fluoresence in situ hybridization (FISH) is a cytogenetic
technique which allows us to study gene copy number heterogeneity within a sin-
gle tumor. It is used to count the copy number of DNA probes for specific genes
or chromosomal regions. Understanding how tumor heterogeneity progresses is

� Topic: Cancer Genomics.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 313–325, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

314 C.E. Tsourakakis

Fig. 1. Copy number genetic diversity within a tumor cell population after three hypo-
thetical stages of tumorigenesis. The four observed states of cells are shown and coded
with colors in the positive integer cone Z2

+.

a major problem with significant potential impact on therapeutics. An exam-
ple which illustrates the importance of heterogeneity in therapeutic resistance is
found in chronic myelogenous leukemia (CML). The presence of a subpopulation
of leukemic cells of a given type significantly influences the response to therapies
based on imatinib mesylate, causing the eventual relapse of the disease [20].

In this work we study the phenomenon of gene copy number heterogeneity
within a single tumor. An illustration of the phenomenon of gene copy number
heterogeneity is shown in Figure 1 which shows a hypothetical cell population
of eleven somatic human cells at three stages of tumorigenesis, whose succession
is indicated by arrows. We shall describe the state of a cell as a two dimensional
point (g1, g2) in the positive integer cone Z2

+, with the obvious meaning that
the cell has g1, g2 copies of gene 1 and gene 2 respectively. Initially, all cells are
in the healthy diploid state with respect to their gene copy numbers. At the
second stage, nine cells are in state (2,2) and two cells in state (3,2). At the last
stage, only 2 cells are in the healthy state (2,2). Five, three and one cell are in
states (3,2), (2,1) and (1,1) respectively. The four observed states are shown and
coded with colors in Z2

+. Figure 1 illustrates what we observe in many tumors:
existence of multiple progression states within a single tumor.

Despite the large amount of research work on modeling tumor progression
using different types of tumor datasets, e.g., [12], the study of FISH datasets
has received considerably less attention. Specifically, two early studies of FISH
datasets were limited to either two [24,25] or three probes [19]. Pennington et al.
[24,25] develop novel computational methods for analyzing FISH data. Specif-
ically, they consider a random walk on the positive integer cone Z2

+ where at
each step a coordinate i ∈ {1, 2} is picked uniformly at random and is modified
by Δx ∈ {0, 1,−1} with probabilities 1 − pi,1 − pi,−1, pi,1, pi,−1, i = 1, 2 re-
spectively. Given this model they optimize a likelihood-based objective over all
possible trees and parameters {pi,1, pi,−1}. Recently, Chowdhury et al. [5] pro-
posed a general procedure which can treat any number of probes. They reduce
the study of the progression of FISH probe cell count patterns to the rectilinear
minimum spanning tree problem.

Modeling Intratumor Gene Copy Number Heterogeneity Using FISH Data 315

Paper contributions and roadmap. In this paper we achieve the following
contributions:

– We introduce a novel approach to analyzing FISH datasets. The main fea-
tures of our approach are its probabilistic nature which provides an attrac-
tive trade-off between parsimony and expressiveness of biological complexity
and the reduction of the problem to the well-studied inter-tumor phylogeny
inference problem. The former allows us to capture complex dependencies
between factors while the latter opens the door to a wealth of available and
established theoretical methods which exist for the inter-tumor phylogeny
inference problem.

– We prove Theorem 1 which provides necessary and sufficient conditions for
the unique reconstruction of an oncogenetic tree [8]. Based on the theorem’s
conditions, we are able to capitalize on the wealth of inter-tumor phyloge-
netic methods. However, the result is of independent interest and introduces
a set of interesting combinatorial questions.

– We validate our proposed method on a publicly available breast cancer dataset.

The outline of this paper is as follows: Section 2 presents our proposed meth-
ods. Section 3 performs an experimental evaluation of our methods on a breast
cancer FISH dataset and an extensive biological analysis of the findings. Finally,
Section 4 concludes the paper by a discussion and a brief summary.

2 Proposed Method

In Section 2.1 we model the probability distribution of FISH data with hierar-
chical log-linear models and show how to learn the parameters of the model for
a given FISH dataset. In Section 2.2 we prove Theorem 1 which provides neces-
sary and sufficient conditions to uniquely reconstruct an oncogenetic tree [8]. We
capitalize on the theorem to harness the wealth of available methods for inter-
tumor phylogenetic inference methods [1,2,3,8,9,12,11,14]. Finally in Section 2.3
we present our proposed method.

We will make the same simplifying assumptions with existing work [24,5],
namely that only single gene duplication and loss events take place and that the
cell population is fixed. In what follows, let D = {x1, . . . , xn}, xi ∈ Z

g
+ be the

input FISH dataset which measures the copy numbers of g genes in n cells taken
from the same tumor.

2.1 Model and Fitting

Probabilistic Model: Let Xj be an integer-valued random variable which ex-
presses the copies of the j-th gene with domain Ij , j = 1, . . . , g. We model the
joint probability distribution of the random vector (X1, . . . , Xg) as

Pr [x] =
1

Z

∏
A⊆[g]

eφA(x) (1)

316 C.E. Tsourakakis

where x = (x1, . . . , xg) ∈ I = I1 × I2 × ... × Ig is a point of the integer positive
cone Z

g
+ and Z is a normalizing constant, also known as the partition function,

which ensures that the distribution is a proper probability distribution, i.e., Z =∑
x∈I

∏
A⊆[g] e

φA(x). Each potential function φA depends only on the variables
in the subset A and is parameterized by a set of weights wA. To illustrate this,
assume g = 2 and I = {0, 1} × {0, 1}. Then,

logPr [x] = w0 + w(1)0�{x1 = 0}+ w(1)1�{x1 = 1}+ w(2)0�{x2 = 0}
+ w(2)1�{x2=1}+ w(12)00�{x1=0, x2=0}+ w(12)01�{x1 =0, x2=1}
+ w(12)10�{x1 = 1, x2 = 0}+ w(12)11�{x1 = 1, x2 = 1} − logZ,

where wAx A ⊆ {1, 2}, x ∈ {0, 1}|A| are the parameters of the model. This prob-
ability distribution captures the effects of different factors through parameters
wAx, A ∈ {{1}, {2}}, x ∈ {0, 1} and pairwise interactions through parameters
w(12)x, x ∈ {00, 01, 10, 11}. In general, two variables Xi, Xj are defined to be
directly associated if there exists at least one non-zero (or bounded away signif-
icantly from zero) parameter including the two variables. We define Xi, Xj to
be indirectly associated if there exists a chain of overlapping direct associations
that relate Xi, Xj .

We impose the following restriction on the probabilistic model shown in equa-
tion (1): If A ⊆ B and wA = 0 then wB = 0. This restriction reduces significantly
the size of the parameter space, but allows to express complex dependencies not
captured by existing work [24,25]. Since a typical FISH dataset contains detailed
measurements for a handful of genes from few hundred cells the combination of
these two features is crucial to avoid overfitting and obtain biological insights at
the same time. Furthermore, it is worth emphasizing that in terms of biological
interpretation the assumption is natural: if a set A of genes does not interact,
then any superset of A maintains that property. This class of models are known
as hierararchical log-linear models [4].

Learning the Parameters: Learning the parameters w of a hierarchical log-
linear model is a well-studied problem, e.g., [4]. An extensive survey of learn-
ing methods can be found in [26]. Schmidt et al. [27] propose to maximize a
penalized log-likelihood of the dataset D where the penalty is an overlapping
group l1-regularization term. Specifically, a spectral projected gradient method is
proposed as a sub-routine for solving the following regularization problem:

min
w
−

n∑
i=1

logPr [xi|w] +
∑
A⊆S

λA||wA||1. (2)

2.2 Unique Reconstruction of Oncogenetic Trees

Our main theoretical result in this section is motivated by the following natural
sequence of questions:

Modeling Intratumor Gene Copy Number Heterogeneity Using FISH Data 317

Can we use any of the existing inter-tumor progression methods [12] on the
intra-tumor progression problem? How will the resulting tree capture the evo-
lutionary dynamics of cancer progression, i.e., how do we enforce that state
(. . . , i, . . .) is reached either through (. . . , i + 1, . . .) or (. . . , i − 1, . . .) given our
single gene duplication and loss event assumption?

An answer to this question is given in Section 2.3. Motivated by our intention
to capitalize on inter-tumor phylogenetic methods such as [8,9], we consider a
fundamental problem concerning oncogenetic trees [8]. What are the necessary
and sufficient conditions to reconstruct them? Theorem 1 is likely to be of inde-
pendent interest and contributes to the understanding of oncogenetic trees [8].
We briefly review the necessary definitions to state our result. Let T = (V,E, r)
be an oncogenetic tree, i.e., a rooted branching1, on V and let r ∈ V be the root
of T . Given a finite family F = {A1, ...Aq} of sets of vertices, i.e., Ai ⊆ V (T)
for i = 1, . . . , q, where each Ai is the vertex set of a rooted sub-branching of
T , what are the necessary and sufficient conditions, if any, which allow us to
uniquely reconstruct T ?

Theorem 1. The necessary and sufficient conditions to uniquely reconstruct the
branching T from the family F are the following:

1. For any two distinct vertices x, y ∈ V (T) such that (x, y) ∈ E(T), there
exists a set Ai ∈ F such that x ∈ Ai and y /∈ Ai.

2. For any two distinct vertices x, y ∈ V (T) such that y ⊀ x and x ⊀ y2 there
exist sets Ai, Aj ∈ F such that x ∈ Ai, y /∈ Ai and x /∈ Aj and y ∈ Aj.

Proof. First we prove the necessity of conditions 1,2 and then their sufficiency
to reconstruct T . In the following we shall call a branching T consistent with
the family set F if all sets Ai ∈ F are vertices of rooted sub-branchings of T .

Necessity: For the sake of contradiction, assume that Condition 1 does not
hold. Then, the two branchings shown in Figure 2(a) are both consistent with
F and therefore we cannot reconstruct T . Similarly, assume that Condition 2
does not hold. Specifically assume that for all j such that x ∈ Aj , then y ∈ Aj

too (for the symmetric case the same argument holds). Then, both branchings
in Figure 2(b) are consistent with F and therefore T is not reconstructable.

Sufficiency: Let x ∈ V (T) and Px be the path from the root to x, i.e., Px =
{r, . . . , x}. Also, define Fx to be the intersection of all sets in the family F that
contain vertex x, i.e., Fx =

⋂
Ai

x ∈ Ai ∈ F
. We prove that Fx = Px. Since by

definition, Px ⊆ Fx we need to show that Fx ⊆ Px. Assume that the latter does
not hold. Then, there exists a vertex v ∈ V (T) such that v /∈ Px, v ∈ Fx. We
consider the following three cases.
• Case 1 (x ≺ v): Since every Ai ∈ F is the vertex set of a rooted sub-branching,
v ∈ Px by definition.
• Case 2 (v ≺ x): By condition 1 and an easy inductive argument, there exists
Ai such that x ∈ Ai, v /∈ Ai. Therefore, v /∈ Fx.

1 Each vertex has in-degree at most one and there are no cycles.
2 We use the notation u ≺ v (u ⊀ v) to denote that u is (not) a descendant of v in T .

318 C.E. Tsourakakis

(a) (b)

Fig. 2. Illustration of necessity conditions of Theorem 1, (a) condition 1 (b) condition 2

• Case 3 (x ⊀ v, v ⊀ x): By condition 2, there exists Ai such that x ∈ Ai and
v /∈ Ai. Therefore, in combination with the definition of Fx we obtain v /∈ Fx.

In all three cases, we obtain a contradiction and therefore v ∈ Fx ⇒ v ∈ Px,
showing that Fx = Px. Given this fact, it is easy to reconstruct the branching T .
We sketch the algorithm: compute for each x the set Fx and from Fx reconstruct
the ordered version of the path Px, i.e., (r → v1 → ..→ x) using sets in F whose
existence is guaranteed by condition 1. ��

A natural question is whether one can extend Theorem 1 to more complex
classes of oncogenetic models, such as directed acyclic graphs (DAGs) [12]. The
answer is negative. For instance, the oncogenetic tree with edges 1 → 2, 1 → 3
and the DAG with edges 1 → 2, 1 → 3, 2 → 3 are indistinguishable. Another
example is shown in Figure 3.

Oncogenetic tree reconstruction algorithms [8] and more generally established
inter-tumor cancer progression methods [12] receive as input a family of sets,
where each set represents the set of mutations observed in a single tumor. Recall,
that in the case of intra-tumor cancer progression the typical input is a multiset of
points in the positive integer cone where each point is the copy-gene number state
of a given cell. For instance, for the tumor shown in the final step of tumorigenesis
in Figure 1, the input would be D = {(2, 2)× 2, (3, 2)× 5, (2, 1)× 3, (1, 1)× 1}.

Based on the insights from the proof of Theorem 1, we convert a FISH dataset
to a dataset suitable for inter-tumor cancer progression inference. Specifically,
we assume we are given a FISH dataset and an algorithm f which infers an
evolutionary model of cancer progression from several tumors. Notice that f
could be any inter-tumor phylogenetic method, see [12].

For each cell in state x = (x1, . . . , xg) we generate a family of sets of “muta-
tions” as follows: for every gene i ∈ [g] whose number of copies xi is greater than
2 we generate xi − 1 sets in order to enforce that the gene has c + 1 copies if at
a previous stage had c copies, c = 2, .., xi− 1. For instance if gene i has 4 copies,
we generate the sets {gene− i−mut− 2}, {gene− i−mut− 2, gene− i−mut−
3}, {gene−i−mut−2, gene−i−mut−3, gene−i−mut−4}which show how the
gene obtained 2 extra copies The case xi < 2 is treated in a similar way. Finally,

Modeling Intratumor Gene Copy Number Heterogeneity Using FISH Data 319

1

2 3 4

1

23

4

(a) (b)

Fig. 3. Extending Theorem 1 to oncogenetic directed acyclic graphs (DAGs) [12] is
not possible. For instance, the oncogenetic tree and the DAG are indistinguishable in
terms of the generated families of sets.

we generate a set sf for each cell which contains all mutations that led to state
x. For instance, for the state (0, 3) sf = {gene− 1−mut− 2, gene− 1−mut−
1, gene− 1−mut− 0, gene− 2−mut− 2, gene− 2−mut− 3}. Upon creating
the dataset F we use it as input to f(), an existing intra-tumor phylogenetic
method, see [12].

Using the conversion above, based on condition 1 of Theorem 1 the output
of an inter-tumor phylogenetic method will capture the dynamic nature of the
process, which will be consistent with our assumptions of single gene duplication
and loss events and Ockham’s razor, e.g.,, the evolutionary sequence 2→ 3→ 4
rather than 2→ 3→ 4→ 5→ 4.

2.3 Progression Inference

Define B = [mini∈[n] xi1,maxi∈[n] xi1]× ..× [mini∈[n] xig,maxi∈[n] xig] to be the
minimum enclosing box of D, where xij is the number of copies of gene j in the
i-th cell, i ∈ [n], j ∈ [g]. Given the observed data we can calculate the empirical

probability π̃(s) of any state s ∈ B as the fraction |{q:q∈D,q=s|}|
n . The number

of states in B grows exponentially fast for any typical FISH dataset. We sum-
marize parsimoniously this distribution as described in Section 2.1. Specifically,
we learn the parameters w of the hierararchical log-linear model by maximizing
the overlapping l1 penalized log-likelihood of equation (2) as described in [26].
We allow only second-order interactions between factors. It is worth mention-
ing that k-way interactions, k ≥ 3 can be embedded in the model as well, see
Chapter 6 [26], but we prefer not to avoid overfitting. Alternatively we can allow
higher order interactions but then a penalty term for the model complexity (e.g.,
AIC, BIC) should be taken into account. Let π be the distribution specified by
the learned parameters. We define a Metropolis-Hastings chain with stationary
distribution π [17] . Initially, all n cells will be in the diploid state (2, . . . , 2).
Notice that all we need to compute during the execution of the chain are ratios
of the form π(x)/π(y), which saves us from the computational cost of computing
the normalization constant Z. We simulate the chain k times in order to draw

320 C.E. Tsourakakis

m ≥ 1 samples from the probability distribution. Finally we use the conversion
described in Section 2.2 to infer a tumor phylogeny.

There exists a subtle issue that arises in practice: there exist states of B
which are not observed in the dataset D. We surpass this problem by adding
one fictitious sample to each state b ∈ B. From a Bayesian point of view this is
equivalent to smoothing the data with an appropriately chosen Dirichlet prior.

To summarize, our proposed method consists of the following steps: (1) Given
a FISH dataset D we learn the parameters of a hierararchical log-linear model
with pairwise potentials. (2) Given the learned parameters we can compute the
probability distribution on Zg. Let π be the resulting distribution. We define
a Metropolis-Hastings chain with stationary distribution π. Initially cells are in
the healthy diploid state (2, . . . , 2). (3) Draw m ≥ 1 samples from the probabil-
ity distribution by running the Metropolis-Hastings chain simulation m times.
(4) Convert the resulting FISH samples to inter-tumor phylogenetic datasets
by following the procedure of Section 2.2. (5) Use an inter-tumor phylogenetic
method [12] to infer a tumor phylogenetic tree.

Finally, an interesting perspective on our modeling which makes a conceptual
connection to [5] is the following: upon learning the parameters of the hier-
ararchical log-linear model, the probability distribution over B assigns implicitly
weights on the edges of the positive integer di-grid Zg (each undirected edge
of the grid is substituted by two directed edges) according to the Metropolis-
Hastings chain. Therefore, both our method and [5] assign weights to the edges of
the positive integer grid. This perspective opens two natural research directions
which we leave open for future research. First, instead of simulating the Markov
chain, one proceed could find an appropriate subgraph of the weighted di-grid,
e.g., a maximum weighted branching rooted at the diploid state. Secondly, it is
natural to ask whether there exists a natural probabilistic interpretation of the
method in [5].

3 Experimental Results

Experimental Setup: In this paper, we show the results of validating our method
on a breast cancer dataset from a collection of publicly available FISH datasets
which can be found at ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees/data/.

We used the following third-party publicly available code in our implementa-
tions: hierarchical log-linear fitting code3 [26], distance based oncogenetic trees
[9], FISH progression trees [5] and graphviz for visualization purposes. Our rou-
tines are implemented in MATLAB. The number of simulations was set to
m = 10. We experimented both with smaller values for parameter m (m ≥ 2)
and the choice of log-linear fitting method, see [6], and we found that our results
are robust.

Table 2 provides a short description of the six genes that are analyzed in our
trees. The breast tumor dataset consists of 187 points in Z6

+.

3 Schmidt’s code does not scale well to more than 6-7 variables.

ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees/data/

Modeling Intratumor Gene Copy Number Heterogeneity Using FISH Data 321

Table 1. Genes are shown in the first column and their cytogenetic positions in the sec-
ond. The third column describes whether a gene is an oncogene or a tumor suppressor
gene.

Gene Cytogenetic Band Description

cox-2 1q25.2-q25.3 oncogene

myc 8q24 oncogene

ccnd1 11q13 oncogene

cdh1 16q22.1 tumor suppressor gene

p53 17p13.1 tumor suppressor gene

znf217 20q13.2 oncogene

Fig. 4. (best viewed on screen) Cancer phylogenetic tree for a breast cancer tumor
obtained by our method. Leaves of the tree are colored in the following way: the root-
event leaf is in yellow; the first change in the copy number profile is in red color; euploid
states are in green; states with copy number gain/loss are shown in blue/orange. The
first changes are losses of one gene copy of genes p53 and cdh1.

Results and Analysis: Figures 4 and 5 show the cancer phylogenetic trees of a
ductal carcinoma in situ (DCIS) obtained by our method and [5] respectively.
Our tree is a distance based phylogenetic tree produced by using our reduction
of intra-tumor phylogenetic inference to inter-tumor phylogenetic inference as
described in Section 2.3. We observe that the tree of [5] does not explain the 27
different states that appear in the dataset. For instance the state (4, 8, 4, 4, 2, 2, 4)
accounts for 0.0053% of the appearing states and is discarded by [5] but is taken
into account by our method. Since there is no ground truth available to us it is
hard to reach any indisputable conclusion. However, we found that our findings
are strongly supported by oncogenetic literature.

The mutational events captured in our phylogenetic tree highlight putative
sequential events during progression from ductal carcinoma in situ (DCIS) to
invasive breast carcinoma. The first mutational events are highlighted in red.

322 C.E. Tsourakakis

Fig. 5. Cancer phylogenetic tree for a breast cancer tumor obtained by [5]. Nodes
with dotted borders represent Steiner nodes, i.e., states that do not appear in the
dataset. Green and red edges model gene gain and loss respectively. The weight value
on each edge does not have the semantics of probability, but it is the rectilinear distance
between the two connected states. See [5] for further details. The weight on each node
describes the fraction of cells in the FISH dataset with the particular copy number
profile.

Modeling Intratumor Gene Copy Number Heterogeneity Using FISH Data 323

Fig. 6. Direct associations among genes inferred from fitting a hierarchical log-linear
model to a ductal carcinoma in situ FISH dataset

Initially one allele of p53 and cdh1 are lost. Concurrent loss of cdh1 function and
p53 inactivation act synergistically in the formation, progression and metastasis
of breast cancer [7]. Moreover, following the first mutational events, the next
changes occur in ccnd1, myc and znf217 which are oncogenes participating in
cell cycle regulation, proliferation and cancer progression. Specifically, as shown
by single invasive ductal carcinoma (IDC) cell analysis copy number loss of cdh1
is common in DCIS. Furthermore, copy number gains of myc are a common
feature in the transition from DCIS to IDC [13]. This is consistent with our
results. The synergy between p53 and cdh1 appears also in the tree of Figure 5
but at the last stages of the progression. Finally, Figure 6 shows the inferred
direct associations among genes.

4 Conclusion

In this work we develop a novel approach to studying FISH datasets, a type
of dataset which has received considerably less attention to other types of can-
cer datasets. Compared to prior work we take a probabilistic approach which
provides good data fit, avoids overfitting and captures complex dependencies
among factors. Motivated by our intention to capitalize on inter-tumor phylo-
genetic methods we prove a theorem which provides necessary and sufficient
conditions for reconstructing oncogenetic trees [8]. Using these conditions, we
show one way to perform intra-tumor phylogenetic inference by opening the
door to the wealth of established inter-tumor phylogenetic techniques [12]. We
model the evolutionary dynamics as a Markov chain in the positive integer cone
Z
g
+ where g is the number of genes examined with FISH. Finally, we validate

our approach to a breast cancer FISH dataset.
Our work leaves numerous problems open for future research. Improved mod-

els need to be developed that remove the simplifying assumption of a fixed cell
population and take the clonal evolution model into account [23], namely cancer
is initiated once multiple mutations occur in a random single cell which gives

324 C.E. Tsourakakis

birth to the uncontrolled proliferation of cancerous cells. Secondly, clustering
patients and finding consensus FISH progression trees per cluster is another in-
teresting problem. Furthermore, we plan to experiment with (a) other choices of
inter-tumor phylogenetic methods and (b) fitting approaches that allow higher
order interactions but will also account for the increased complexity of the re-
sulting model. Finally, using features from our inferred trees as features for
classification is an interesting question, see [5].

Acknowledgments. The author would like to thank Prof. Russell Schwartz
and Maria Tsiarli for helpful discussions on intratumor heterogeneity and the
anonymous reviewers for their constructive feedback.

References

1. Beerenwinkel, N., Eriksson, N., Strumfels, B.: Conjunctive bayesian networks.
Bernoulli 13, 893–909 (2007)

2. Beerenwinkel, N., Rahnenführer, J., Däumer, M., Hoffmann, D., Kaiser, R., Selbig,
J., Lengauer, T.: Learning multiple evolutionary pathways from cross-sectional
data. Journal of Computational Biology 12, 584–598 (2005)

3. Beerenwinkel, N., Sullivant, S.: Markov models for accumulating mutations.
Biometrika 96, 663–676 (2009)

4. Bishop, Fienberg, S., Holland, P.: Discrete Multivariate Analysis. MIT Press (1975)
5. Chowdhury, S.A., et al.: FISHtrees: Modeling tumor progression from fluorescence

in situ hybridization (FISH) data from many single cells of solid tumors and their
metastases. In: ISMB 2013 (2013)

6. Dellaportas, P., Forster, J.: Markov Chain Monte Carlo Model Determination for
Hierarchical and Graphical Log-linear Models. Biometrica (1996)

7. Derksen, P., Liu, X., Saridin, F., et al.: Somatic inactivation of E-cadherin and
p53 in mice leads to metastatic lobular mammary carcinoma through induction of
anoikis resistance and angiogenesis. Cancer Cell 10(5), 437–449 (2006)

8. Desper, R., et al.: Inferring tree models for oncogenesis from comparative genome
hybridization data. Journal of Computational Biology 6(1), 37–51 (1999)

9. Desper, R., et al.: Distance-based reconstruction of tree models for oncogenesis. J.
Comput. Biol. 7(6), 789–803 (2000)

10. Gasco, M., Shami, S., Crook, T.: The p53 pathway in breast cancer. Breast Cancer
Res. 54(2), 70–76 (2002)

11. Gerstung, M., Baudis, M., Moch, H., Beerenwinkel, N.: Quantifying cancer pro-
gression with conjunctive bayesian networks. Bioinformatics 25, 2809–2815 (2009)

12. Hainke, K., Rahnenführer, J., Fried, R.: Disease progression models: A review and
comparison. Dortmund University. Technical Report,
http://tinyurl.com/ceyr9wx

13. Heselmeyer-Haddad, K., et al.: Single-cell genetic analysis of ductal carcinoma in
situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved
genomic imbalances and gain of MYC during progression. Journal of American
Patholology 181(5), 1807–1822 (2012)

14. Heydebreck, A., Gunawan, B., Füzesi, L.: Maximum likelihood estimation of onco-
genetic tree models. Biostatistics 5(4), 545–556 (2004)

http://tinyurl.com/ceyr9wx

Modeling Intratumor Gene Copy Number Heterogeneity Using FISH Data 325

15. Krig, S.R., Miller, J.K., Frietze, S., et al.: ZNF217, a candidate breast cancer
oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine
kinase in breast cancer cells. Oncogene 29(40), 5500–5510 (2010)

16. Letouzé, E., Allory, E., Bollet, M., et al.: Analysis of the copy number profiles
of several tumor samples from the same patient reveals the successive steps in
tumorigenesis. Genome Biology 11, R76 (2010)

17. Levin, D., Peres, Y., Wilmer, E.: Markov Chains and Mixing Times. American
Mathematical Society (2008)

18. Lin, S., Xia, W., Wang, J., et al.: β-catenin, a novel prognostic marker for breast
cancer: its roles in cyclin D1 expression and cancer progression. Proc. Natl. Acad.
Sci. 97(8), 4262–4266 (2000)

19. Martins, F., et al.: Evolutionary pathways in BRCA1-associated breast tumors.
Cancer Discovery 2(6), 503–511 (2012)

20. Marusyk, A., Polyak, K.: Tumor heterogeneity: causes and consequences. Biochim-
ica et Biophysica Acta (BBA)-Reviews on Cancer 1805(1), 105–117 (2010)

21. Navin, N., Krasnitz, A., Rodgers, L., et al.: Inferring tumor progression from ge-
nomic heterogeneity. Genome Res. 20, 68–80 (2010)

22. Navin, N., et al.: Tumour evolution inferred by single-cell sequencing. Nature 472,
90–94 (2011)

23. Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194, 23–28
(1976)

24. Pennington, G., Smith, C., Shackney, S., Schwartz, R.: Reconstructing tumor phy-
logenies from heterogeneous single-cell data. Journal of Bioinformatics and Com-
putational Biology 5(02A), 407–427 (2007)

25. Pennington, G., Shackney, S., Schwartz, R.: Cancer Phylogenetics from Single-Cell
Assays. Technical Report CMU-CS-06-103, http://tinyurl.com/bvjlgch

26. Schmidt, M.: Graphical Model Structure Learning with l1-Regularization. Ph.D.
Thesis, University of British Columbia (2010)

27. Schmidt, M., Murphy, K.: Convex Structure Learning in Log-Linear Models: Be-
yond Pairwise Potentials. AISTATS (2010)

http://tinyurl.com/bvjlgch

Phylogenetic Analysis of Cell Types Using Histone
Modifications

Nishanth Ulhas Nair1,�, Yu Lin1, Philipp Bucher2,��, and Bernard M.E. Moret1,��

1 School of Computer and Communication Sciences
2 School of Life Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
{philipp.bucher,bernard.moret}@epfl.ch

Abstract. In cell differentiation, a cell of a less specialized type becomes one of
a more specialized type, even though all cells have the same genome. Transcrip-
tion factors and epigenetic marks like histone modifications can play a significant
role in the differentiation process. In this paper, we present a simple analysis of
cell types and differentiation paths using phylogenetic inference based on ChIP-
Seq histone modification data. We propose new data representation techniques
and new distance measures for ChIP-Seq data and use these together with stan-
dard phylogenetic inference methods to build biologically meaningful trees that
indicate how diverse types of cells are related. We demonstrate our approach on
H3K4me3 and H3K27me3 data for 37 and 13 types of cells respectively, using
the dataset to explore various issues surrounding replicate data, variability be-
tween cells of the same type, and robustness. The promising results we obtain
point the way to a new approach to the study of cell differentiation.

Keywords: cell differentiation, cell type, epigenomics, histone modifications,
phylogenetics.

1 Introduction and Background

In developmental biology, the process by which a less specialized cell becomes a more
specialized cell type is called cell differentiation. Since all cells in one individual or-
ganism have the same genome, epigenetic factors and transcriptional factors play an
important role in cell differentiation [8–10]. Thus a study of epigenetic changes among
different cell types is necessary to understand cell development.

Histone modifications form one important class of epigenetic marks; such modifica-
tions have been found to vary across various cell types and to play a role in gene regula-
tion [3]. Histones are proteins that package DNA into structural units called nucleosomes
[14]. These histones are subject to various types of modifications (methylation, acetyla-
tion, phosphorylation, and ubiquitination), modifications that alter their interaction with
DNA and nuclear proteins. In turn, changes in these interactions influence gene tran-
scription and genomic function. In the last several years a high-throughput, low-cost,
sequencing technology called ChIP-Seq has been used in capturing these histone marks

� NUN’s project was funded by Swiss National Science Foundation.
�� Corresponding authors.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 326–337, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Phylogenetic Analysis of Cell Types Using Histone Modifications 327

on a genome-wide scale [2, 11]. A study of how histone marks change across various
cell types could play an important role in our understanding of developmental biology
and how cell differentiation occurs, particularly as the epigenetic state of chromatin is
inheritable across cell generations [12].

Since cell differentiation transforms less specialized cell types into more specialized
ones and since most specialized cells of one organ cannot be converted into specialized
cells of some other organ, the paths of differentiation together form a tree, in many ways
similar to the phylogenetic trees used to represent evolutionary histories. In evolution,
present-day species have evolved from some ancestral species, while in cell develop-
ment the more specialized cells have evolved from less specialized cells. Moreover,
observed changes in the epigenetic state are inheritable, again much as mutations in the
genome are (although, of course, through very different mechanisms and at very differ-
ent scales); and in further similarity, epigenetic traits are subject to stochastic changes,
much as in genetic mutations. (It should be noted that we are interested here in popu-
lations of cells of a certain type, not all coming from the same individual, rather than
in developmental lineages of cells within one individual.) Finally, one may object that
derived and more basic cell types coexist within the body, while phylogenetic analysis
places all modern data at the leaves of the tree and typically qualifies internal nodes as
“ancestral”. However, species in a phylogenetic tree correspond to paths, not to nodes.
In particular, a species that has survived millions of years until today and yet has given
rise to daughter species, much like a basic cell type that is observed within the organ-
ism, but from which derived cell types have also been produced and observed, is simply
a path to a leaf in the tree, a path along which changes are slight enough not to cause
a change in identification. (The time scale makes such occurrences unlikely in the case
of species phylogenies, but the framework is general enough to include them.)

Therefore it may be possible to use or adapt some of the techniques used in building
phylogenetic trees for building cell-type trees. There are of course significant differ-
ences between a phylogenetic tree and a cell-type tree. Two major differences stand
out. The more significant difference is the lack of well established models for changes
to histone marks during cell differentiation, as compared to the DNA and amino-acid
mutation models in common usage in research in molecular evolution. The other dif-
ference is that functional changes in cell differentiation are primarily driven by pro-
grammed mutational events rather than by selection—and this of course makes it all the
harder to design a good model. In spite of these differences, we felt that phylogenetic
approaches could be adapted to the analysis of cell differentiation.

In this paper, we provide evidence that such a scenario is possible. We do this by
proposing new data representation techniques and distance measures, then by applying
standard phylogenetic methods to produce biologically meaningful results. We used
data on two histone modifications (but mostly on H3K4me3) for 37 cell types, includ-
ing replicate data, to construct cell-type trees—to our knowledge, these are the first
such trees produced by computational methods. We show that preprocessing the data
is very important: not only are ChIP-Seq data fairly noisy, but the ENCODE data are
based on several individuals and thus adds an independent source of noise. We also
outline some of the computational challenges in the analysis of cell differentiation,

328 N.U. Nair et al.

opening new perspectives that may prove of interest to computer scientists, biologists,
and bioinformaticians.

2 Methods

2.1 Model of Differentiation for Histone Marks

We assume that histone marks can be independently gained or lost in regions of the
genome as cells differentiate from a less specialized type to a more specialized one.
Histones marks are known to disappear from less specialized cell types or to appear in
more specialized ones and are often correlated with gene expression, so our assumption
is reasonable. The independence assumption simply reflects our lack of knowledge, but
it also enormously simplifies computations.

2.2 Data Representation Techniques

The analysis of ChIP-Seq data typically starts with a peak-finding step that defines a
set of chromosomal regions enriched in the target molecule. We therefore use peak lists
as the raw data for our study. We can decide on the presence or absence of peaks at
any given position and treat this as a binary character, matching our model of gain or
loss of histone marks. Since all of the cell types have the same genome (subject only
to individual SNPs or varying copy numbers), we can compare specific regions across
cell types. Therefore we code the data into a matrix in which each row is associated
with a different ChIP-Seq library (a different cell type or replicate), while each column
is associated with a specific genomic region.

We use two different data representations for the peak data for each cell type. Our
first method is a simple windowing (or binning) method. We divide the genome into
bins of certain sizes; if the bin contains at least one peak, we code it 1, otherwise we
code it 0. The coding of each library is thus independent of that of any other library.

Our second method uses overlap and takes into account all libraries at once. We first
find interesting regions in the genome, based on peaks. Denote the ith peak in library
n as Pn

i = [Pn
iL,P

n
iR], where Pn

iL and Pn
iR are the left and right endpoints (as basepair

indices). Consider each peak as an interval on the genome (or on the real line) and build
the interval graph defined by all peaks in all libraries. An interval graph has one vertex
for each interval and an edge between two vertices whenever the two corresponding
intervals overlap [6]. We simply want the connected components of the interval graph.

Definition 1. An interval in the genome is an interesting region iff it corresponds to a
connected component of the interval graph.

Finding these interesting regions is straightforward. Choose a chromosome, let PS be
its set of peaks, set AS = {∅} and z = 0, and enter the following loop:

1. P∗i∗ = argminPn
i ∈PS Pn

iL. Set a = P∗i∗L and AS = AS∪{P∗i∗}
2. Set S = {P | P∩P∗i∗ �= ∅ and P ∈ PS} and AS = AS∪S.
3. If S is not empty, then find P∗i∗ = argmaxPn

i ∈PS Pn
iR and go to step 2.

Phylogenetic Analysis of Cell Types Using Histone Modifications 329

4. Let b = P∗i∗R and set PS = PS−AS.
5. The interesting region lies between a and b, IR[a,b]. Let Dn

IR[z] be the data repre-
sentation for IR[a,b] in library n. Set z = z + 1. Set Dn

IR[z] = 1 if there is a peak in
library n that lies in IR[a,b]; otherwise set Dn

IR[z] = 0 (1≤ n≤ N).

Repeat this procedure for all chromosomes in the genome. The algorithm takes time
linear in the size of the genome to identify the interesting regions.

For a given collection of libraries, these interesting regions have a unique represen-
tation. We assume that it is in these interesting regions that histone marks are lost or
gained and we consider that the size of the histone mark (which depends at least in
part on the experimental procedures and is typically noisy) does not matter. Our major
reason for this choice of representation is noise elimination: since the positioning of
peaks and the signal strength both vary from cell to cell as well as from test to test, we
gain significant robustness (at the expense of detail) by merging all overlapping peaks
into one signal, which we use to decide on the value of a single bit. The loss of infor-
mation may be illusory (because of the noise), but in any case we do not need a lot of
information to build a phylogeny on a few dozen cell types.

2.3 Phylogenetic Analysis

Phylogenetic analysis attempts to infer the evolutionary relationships of modern species
or taxa—they could also be proteins, binding sites, regulatory networks, etc. The best
tools for phylogenetic inference, based on maximum parsimony (MP) or maximum
likelihood (ML), use established models of sequence evolution, something for which
we have no equivalent in the context of cell differentiation. However, one class of phy-
logenetic inference methods uses variations on clustering, by computing measures of
distance (or similarity) to construct a hierarchical clustering that is assimilated to a
phylogenetic tree. This type of method is applicable to our problem, provided we can
define a reasonable measure of distance, or similarity, between cell types in terms of
our data representations. (We are not implying that models of differentiation do not ex-
ist nor that they could not be derived, but simply stating that none exist at present that
could plausibly be used for maximum-likelihood phylogenetic inference.) Finally more
that, with 0/1 data, we can also use an MP method, in spite of the absence of a valid
model of character evolution.

In a cell-type tree, most cell types coexist in the present; thus at least some of them
can be found both at leaves and at internal nodes. (We are unlikely to have data for
all internal nodes, as we cannot claim to have observed all cell types.) Fortunately,
phylogenetic inference still works in such cases: as mentioned earlier, when the same
taxon should be associated with both a leaf and an internal node, we should simply
observe that each edge on the path from that internal node to that leaf is extremely
short, since that distance between the two nodes should be zero (within noise limits).
The tree inferred will have the correct shape; however, should we desire to reconstruct
the basic cell types, then we would have to lift some of the leaf data by copying them
to some internal nodes.

From among the distance-based methods, we chose to use the most commonly used
one, Neighbor-Joining (NJ) [15]. While faster and possibly better distance-based meth-
ods exist, such as FastME [4], it was not clear that their advantages would still obtain

330 N.U. Nair et al.

in this new domain; and, while very simple, the NJ method has the advantage of not
assuming a constant rate of evolution across lineages. In each of the two data represen-
tation approaches, we compute pairwise distance between two libraries as the Hamming
distance of their representations. (The Hamming distance between two strings of equal
length is the number of positions at which corresponding symbols differ.) We thus ob-
tain a distance matrix between all pairs of histone modification libraries; running NJ on
this matrix yields an unrooted tree. For MP, we used the TNT software [7].

2.4 On the Inference of Ancestral Nodes

We mentioned that lifting some of the leaf data into internal nodes is the natural next
step after tree inference. However, in general, not all internal nodes can be labelled in
this way, due mostly to sampling issues: we may be missing the type that should be
associated with a particular internal node, or we may be missing enough fully differen-
tiated types that some internal tree nodes do not correspond to any real cell type. Thus
we are faced with a problem of ancestral reconstruction and, more specifically, with
three distinct questions:

– For a given internal node, is there a natural lifting from a leaf?
– If there is no suitable lifting, is the node nevertheless a natural ancestor—i.e., does

it correspond to a valid cell type?
– If the node has no suitable lifting and does correspond to a valid cell type, can we

infer its data representation?

These are hard questions, in terms of both modelling and computational complexity;
they are further complicated by the noisy nature of the data. Such questions remain
poorly solved in standard phylogenetic analysis; in the case of cell-type trees, we judged
it best not to address these problems until the tree inference part is better understood
and more data are analyzed.

3 Experimental Design

The histone modification ChIP-Seq data were taken from the ENCODE project database
(UW ENCODE group) for human (hg19) data [5]. We carried out experiments on both
H3K4me3 and H3K27me3 histone mark data. H3K4me3 is a well studied histone mark
usually associated with gene activation, while the less well studied H3K27me3 is usu-
ally associated with gene repression [13]. We used data for cell types classified as “nor-
mal” and for embryonic stem cells—we did not retain cancerous or EBV cells as their
differentiation processes might be completely distinct from those of normal cells. The
ENCODE project provides peaks of ChIP-Seq data for each replicate of each cell type.
We therefore used their peaks as the raw input data for our work. For the windowing
representation, we used bins of 200 bp: this is a good size for histone marks, because
147 bp of DNA wrap around the histone and linker DNA of about 80 bp connect two
histones, so that each bin represents approximately the absence or presence of just one
histone modification. We programmed our procedures in R and used the NJ implemen-
tation from the ape library in R.

Phylogenetic Analysis of Cell Types Using Histone Modifications 331

Table 1. Cell names, short description, and general group for H3K4me3 data. For details see the
ENCODE website [1].

Cell Name Short Description Group

AG04449 fetal buttock/thigh fibroblast Fibroblast
AG04450 fetal lung fibroblast Fibroblast
AG09319 gum tissue fibroblasts Fibroblast
AoAF aortic adventitial fibroblast cells Fibroblast
BJ skin fibroblast Fibroblast
CD14 Monocytes-CD14+ from human leukapheresis production Blood
CD20(1) B cells replicate, African American Blood
CD20(2) and CD20(3) B cells replicates, Caucasian Blood
hESC undifferentiated embryonic stem cells hESC
HAc astrocytes-cerebellar Astrocytes
HAsp astrocytes spinal cord Astrocytes
HBMEC brain microvascular endothelial cells Endothelial
HCFaa cardiac fibroblasts- adult atrial Fibroblast
HCF cardiac fibroblasts Fibroblast
HCM cardiac myocytes Myocytes
HCPEpiC choroid plexus epithelial cells Epithelial
HEEpiC esophageal epithelial cells Epithelial
HFF foreskin fibroblast Fibroblast
HFF MyC foreskin fibroblast cells expressing canine cMyc Fibroblast
HMEC mammary epithelial cells Epithelial
HPAF pulmonary artery fibroblasts Fibroblast
HPF pulmonary fibroblasts isolated from lung tissue Fibroblast
HRE renal epithelial cells Epithelial
HRPEpiC retinal pigment epithelial cells Epithelial
HUVEC umbilical vein endothelial cells Endothelial
HVMF villous mesenchymal fibroblast cells Fibroblast
NHDF Neo neonatal dermal fibroblasts Fibroblast
NHEK epidermal keratinocytes Epithelial
NHLF lung fibroblasts Fibroblast
RPTEC renal proximal tubule epithelial cells Epithelial
SAEC small airway epithelial cells Epithelial
SKMC skeletal muscle cells Skeletal Muscle
WI 38 embryonic lung fibroblast cells Fibroblast

Table 1 show the list of the 37 cell types used for H3K4me3 data, giving for each
an abbreviation and a short description. In addition, the cells are classified into various
groups whose names are based on their cell type. Keratinocytes (NHEK) is included
in the Epithelial group. We have two replicates for most cell types, but only one repli-
cate for types HCFaa, HFF, and CD14, and three replicates for CD20. (CD20(1) is a
B-cell from an African-American individual while CD20(2) and CD20(3) are from a
Caucasian individual). The replicates are biological replicates, i.e., the data come from
two independent samples. For human Embryonic Stem Cells (hESC) we have data for
different days of the cell culture, so we shall use hESC D2 to mean data for hESC cells
on day 2. For each cell type, we shall mention the replicate number in brackets, unless
the cell type has only one replicate.

332 N.U. Nair et al.

4 Results/Discussion

4.1 H3K4me3 Data on Individual Replicates

We report on our analyses using peak data from the ENCODE database for H3K4me3
histone modifications. We carried out the same analyses using H3K27me3 data, but re-
sults were very similar and so are not detailed here—we simply give one tree for com-
parison purposes. The similarity of results between the two datasets reinforces our con-
tention that phylogenetic analyses yield biologically meaningful results on such data.
We color-code trees to reflect the major groupings listed in Table 1.

Fig. 1 shows the trees constructed using only one replicate for each cell type using
both windowing and overlap representations. The color-coding shows that embryonic
stem cells and blood cells are in well separated clades of their own, while fibroblasts
and epithelial cells fall in just two clades each. Even within the hESC group we see that
day 0 is far off from day 14 compared to its distance from day 2. Thus epigenetic data
such as histone marks do contain a lot of information about cell differentiation history.

In order to quantify the quality of the groupings, we compute the total number of
cells in a subtree that belong to one group. Since our groups are based on cell type only,
there could be many subdivisions possible within each group. Therefore we choose the
two largest such subtrees available for each group such that each subtree contains only
the leaf nodes of that group. The results are shown in Table 2: most of the cell types
in each group do cluster together in the tree. Fig. 1 shows long edges between (most)
leaf nodes and their parents—a disquieting feature, as it casts doubt as to the robustness
of the tree, parts of which could be assimilated to stars. To quantify this observation,
we measured the SR ratio, defined as SR = ∑e∈I l(e)

∑e∈E l(e) , where I is the set of all edges

connecting leaf nodes to their parents, E is the set of all edges in the tree, and l(e) is
the length of edge e. If this ratio SR is close to 1, then the tree looks star-shaped with
long branches to the leaves. This ratio was 0.93 using the windowing representation;

AG
00449

AG04450

A
G

09319
AoAF

BJ

CD14

CD20

hE
S

C
 T

14

hE
S

C
 T

2

hESC
 T5

hE
S

C
 T9

H
Ac

H
A

spH
B

M
E

C

H
C

Fa
a

H
C

F

H
C

M
H

C
P

E
pi

C

HEEpiC

hE
S

C
 T

0

HFF

HFF MyC

HMEC

H
PA

F

HPF

HRE

HRPEpiC

HUVEC

H
V

M
F

NHDF Neo

NHEK NHLF

RPTEC

SAEC

SKM
C

WI 38
W

I 3
8 TA

M

AG00449

AG
04450

AG09319

A
oA

F

B
J

CD14CD20

hESC T14hESC
 T2

hE
S

C
 T

5

hESC T9

H
A

c H
A

sp HB
M

E
C

HCFaa

H
C

F

HCM

HCPEpiC
HEEpiC

hE
S

C
 T0

HFF

H
F

F
 M

yC

HMEC

HPA
F

HPF

HRE

HRPEpiCH
U

VE
C

H
VM

F

NHDF Neo

NHEK

NHLF

RPTEC

SAEC

S
K

M
C

W
I 3

8

W
I 38 TA

M

hESC
Epithelial
Fibroblast
Blood
Astrocytes
Myocytes
Endothelial
Skeletal Muscle

(a) (b)

Fig. 1. Cell-type tree on H3K4me3 data using only one replicate: (a) windowing representation,
(b) overlap representation.

Phylogenetic Analysis of Cell Types Using Histone Modifications 333

Table 2. Statistics for cell-type trees on H3K4me3 data. 2nd to 9th columns show the number
of cells (of the same type) belonging to the largest and second-largest clades; the total number of
cells of that type is in the top row. Rows correspond to various methods (WM: windowing; OP:
overlap; TP: top peaks). The last column contains the percent deviation (PD) of the distances
between the leaves found using the NJ tree from the Hamming distance between the leaves.

hESC Epithelial Fibroblast Blood Astrocytes Myocytes Endothelial Skeletal Muscle SR PD
(5) (8) (16) (2) (2) (1) (2) (1) (%)

WM (one replicate) 5,0 6,1 8,4 2,0 1,1 1,0 1,1 1,0 0.93 3.20
OM (one replicate) 5,0 4,1 6,3 2,0 2,0 1,0 1,1 1,0 0.92 3.94
WM (all replicates) 5,0 6,1 11,2 2,0 1,1 1,0 1,1 1,0 0.84 3.30
OM (all replicates) 5,0 4,2 9,4 2,0 2,0 1,0 1,1 1,0 0.78 3.88

WM (all replicates)-TP 5,0 6,1 7,4 2,0 1,1 1,0 1,1 1,0 0.81 3.73
OM (all replicates)-TP 5,0 4,3 8,5 2,0 2,0 1,0 1,1 1,0 0.74 3.98

using the overlap representation reduced it very slightly to 0.92. These long branches
are due in part to the very high level of noise in the data, explaining why the overlap
representation provided a slight improvement.

As a final entry in the table, we added added another measure on the tree and the
data. The NJ algorithm is known to return the “correct” tree when the distance matrix is
ultrametric; the technical definition does not matter so much here as the consequence:
if the matrix is ultrametric, then the sum of the length of the edges on the path between
two leaves always equals the pairwise distance between those two leaves in the matrix.
Thus one way to estimate how far the distance matrix deviates from this ideal is to
compare its distances to the length of the leaf-to-leaf paths in the tree:

PD =
∑i, j |NJ(i, j)−M(i, j)|

∑i, j NJ(i, j)

where i and j are leaf nodes, NJ(i, j) is the tree distance between i and j, and M(i, j)
is the matrix distance between i and j. A high value of PD indicates that the data rep-
resentations and measures do not fit well to any tree. We get very low values (of less
than 4% for both windowing and overlap representations), suggesting that the distances
we compute are in fact representative of a tree and thus offering confirmation of the
validity of the inference.

4.2 H3K4me3 Data with All Replicates

By bringing replicates into the analysis, we can expect to see a stronger phylogenetic
signal as each replicate adds to the characterization of its cell type. In particular, wher-
ever we have two or more replicates, they should form a tight subtree of their own. We
thus used our replicate data (two replicates for 33 of the 37 cell types, and three for one
type, for a total of 72 libraries) in the same analysis pipeline. Fig. 2 shows the differen-
tiation trees obtained using windowing and overlap representations. For completeness,
we include the same study (in overlap representation only) on H3K27me3 data in Fig. 3.
(Finally, the trees obtained using TNT are very similar and not shown.) As expected,
almost all replicates are grouped; since we usually have two replicates, we get a col-
lection of “cherries” (pairs of leaves) where we had a single leaf before. In most cases,

334 N.U. Nair et al.

AG00449(1)
AG00449(2)

AG04450(1)

AG04450(2)

AG09319(1)

AG09319(2)
AoAF(1) AoAF(2)

BJ(1)BJ(2)

C
D

14
C

D
20(1)

C
D

20(2)

C
D

20(3)

hESC D14(1)

hESC D14(2)

hESC D2(1)hESC D2(2)

hESC D5(1)

hESC D5(2)

hESC D9(1)hESC D9(2)

HAc(1)
HAc(2)

HAsp(1)

HAsp(2)

HBMEC(1)

HBMEC(2)

HCFa
a

HCF(1)HCF(2)

H
C

M
(1

)
H

C
M

(2
)

H
C

P
E

pi
C

(1
)

H
C

P
E

pi
C

(2
)

H
E

E
pi

C
(1

)

H
E

E
pi

C
(2

)

hESC D0(1)

hESC D0(2)

H
F

F

H
F

F
 M

yC
(1

) HF
F

 M
yC

(2)

H
M

E
C

(1
)

H
M

E
C

(2
)

HPA
F(1

)

HPA
F(

2)

H
P

F(1)
H

P
F(2)

HRE(1)
HRE(2)

H
R

PEpiC
(1)

HRPEpiC(2)

H
U

V
E

C
(1)

H
U

V
E

C
(2)

H
V

M
F

(1
)

H
V

M
F

(2
)

N
H

D
F

 N
eo(1)

N
H

D
F

 N
eo(2)

N
H

E
K

(1
)

N
H

E
K

(2
)

N
H

LF(1)

NHLF(2)

RPTEC(1
)

RPTE
C(2

)

SA
EC

(1
)

SA
EC

(2
)

SKMC(1)
SKMC(2)

W
I 38(1)

W
I 38(2)

WI 38 TAM(1)

WI 38 TAM(2)

hESC
Epithelial
Fibroblast
Blood
Astrocytes
Myocytes
Endothelial
Skeletal Muscle

A
G

00449(1)
A

G
00449(2)

AG04450(1)

AG04450(2)

A
G

09
31

9(
1)

A
G

09
31

9(
2)

AoAF(1) AoAF(2)

B
J(

1)
B

J(
2)

CD14

CD20(1)
C

D
20(2)

CD20(3)

hE
SC

 D
14

(1
)

hE
SC D

14
(2

)

hESC D2(1)

hESC D2(2)

hESC D
5(1)

hESC D5(2)

hE
SC D

9(
1)

hE
SC

 D
9(

2)

H
A

c(1)
H

A
c(2)

H
A

sp
(1

)
H

A
sp

(2
)

HBMEC(1)
HBMEC(2)

HCFaa
H

C
F

(1)
H

C
F

(2)

HCM(1)
HCM(2)

HCPEpiC(1)
HCPEpiC(2)

HEEpiC(1)

HEEpiC(2)

hESC D0(1)
hESC D0(2)

H
F

F

H
FF

 M
yC

(1
)

H
FF

 M
yC

(2
)

HMEC(1)HMEC(2)

HPAF(1)HPAF(2)

HPF(1)

HPF(2)

HRE(1)
HRE(2)

H
R

P
E

pi
C

(1
)

H
R

P
E

pi
C

(2
)

H
U

V
E

C
(1)

H
U

V
E

C
(2)

HVMF(1)

HVMF(2)

N
H

D
F

 N
eo(1)

N
H

D
F

 N
eo(2)

NHEK(1)NHEK(2)

N
H

LF(1)

N
H

LF(2)

R
P

T
E

C
(1

)
R

P
T

E
C

(2
)

SAEC(1)SAEC(2)

SKMC(1)

SKMC(2)

W
I 3

8(
1)

W
I 3

8(
2)

W
I 3

8 T
AM(1

)

W
I 3

8
TA

M
(2

)

(a) (b)

Fig. 2. Cell-type tree on H3K4me3 data (using all replicates): (a) windowing representation, (b)
overlap representation.

AG04450

BJ(1)

BJ(2
)

C
D

14

hESC T14(1)

hESC T14(2)

hE
SC T

2(
1)

hE
S

C
 T

2(
2)

hESC T5(1)

hESC T5(2)

hESC T9(1)

hESC T9(2)

hE
S

C
 T

0(1)

hE
S

C
 T

0(
2)

H
M

E
C

HRE(1)

H
R

E(2)

HUVEC(1)
HUVEC(2)

N
H

E
K

(1)

N
H

E
K

(2)

SA
EC

(1
) S

A
E

C
(2

)

hESC
Epithelial
Fibroblast
Blood
Endothelial

Fig. 3. Cell-type tree on H3K27me3 data, using all replicates and overlap representation.

it is now the distance from each leaf in a cherry to their common parent that is large,
indicating that the distance between the two replicates is quite large—as we can also
verify from the distance matrix. This suggests much noise in the data. This noise could
be at the level of raw ChIP-Seq data, but also due to the bias of peak-finding methods
used—one expects a general-purpose peak finder to be biased against false negatives
and more tolerant of false positives, but for our application we would be better served
by the inverse bias. Another reason for the large distance is the nature of the data: these
are biological replicates, grown in separate cultures, so that many random losses or
gains of histone marks could happen once the cell is differentiated. Thus it may be that
only a few of the mutations in the data are correlated with cell differentiation. Identify-
ing these few mutations would be of high interest, but with just two replicates we are
unlikely to pinpoint them with any accuracy.

Phylogenetic Analysis of Cell Types Using Histone Modifications 335

Looking again at Table 2, we see that, using the windowing representation, the value
of SR for the full set of replicates is 0.84 and that here the overlap representation, which
is more effective at noise filtering, yields an SR value of 0.78. This is a significant re-
duction and indicates that the long edges are indeed due to noise. The PD percentage
values remain very low for both representations, so the trees we obtained do represent
the data well. Note that the groupings appear (in the color-coding in the figure) some-
what better than when we used only one replicate, and the values in columns 2 through
9 of Table 2 confirm this impression.

4.3 Using Top Peaks and Masking Regions

In order to study the nature of the noise, we removed some of the less robust peaks.
The ENCODE dataset gives a p-value for each peak listed; we kept only peaks with
(negative) log p-values larger than 10. We kept all replicates and ran the analysis again,
with the results depicted in Fig. 4 The PD percentage values are again very low, so the
trees once again fit the data well. The improvement looks superficially minor, but we
obtained some more biologically meaningful clusters with this approach. For example,
in the fibroblast group, the top two subtrees in Table 2 changed from (9,4) to (8,5) when
we used only top peaks in the overlap method. This change occurred because cell HFF
moved from the larger group to the smaller group forming a subtree with HFF-Myc
(which makes more sense as both are foreskin fibroblast cells). Such a change could be
due to particularly noisy data for the HFF cells having obscured the relationship before
we removed noisy peaks. Overall, removing noisy peaks further reduced the SR ratio
from 0.78 to 0.74 for the overlap representation and from 0.84 to 0.81 for the windowing
representation.

Another typical noise-reduction procedure, much used in sequence analysis, is to
remove regions that appear to carry little information or to produce confounding

A
G

00
44

9(
1)

A
G

00449(2) A
G

04
45

0(
1)

A
G

04
45

0(
2)

A
G

09
31

9(
1)

A
G

09
31

9(
2)

Ao
AF

(1
)

A
oA

F(
2)

BJ(1)
BJ(2)

CD14CD20(1)CD20(2)

CD20(3)

hE
S

C
 D

14(1)

hE
S

C
 D

14(2)

hE
S

C
 D

2(
1)

hE
S

C
 D

2(
2)

hESC D5(1)

hE
S

C
 D

5(2)

hE
S

C
 D

9(1)
hESC

 D
9(2)

H
A

c(1)

H
A

c(2)

HAsp(1)
HAsp(2)

HBMEC(1)HBMEC(2)

HCFa
a

HCF(1)

HCF(2)

HCM(1)
HCM(2)
HCPEpiC

(1
)

HCPEpiC
(2

)

H
E

E
pi

C
(1

)

H
E

E
pi

C
(2

)

hE
S

C
 D

0(1)

hE
S

C
 D

0(2)

HFF

H
FF M

yC
(1)

H
FF M

yC
(2)

HM
EC

(1
)

H
M

EC
(2

)

HPAF(1)HPAF(2)

HPF(1)HPF(2)

HRE(1)
HRE(2)

H
R

P
E

pi
C

(1
)

H
R

P
E

pi
C

(2
)

HUVEC(1)

HUVEC(2)

HVMF(1)HVMF(2)

NHDF Neo(1)

NHDF Neo(2)

NHEK(1
)

NHEK(2
)

NHLF(1)NHLF(2)

RPTEC(1)

RPTEC(2)

SAEC(1)

SAEC(2)

S
K

M
C

(1)

S
K

M
C

(2)

WI 38(1)WI 38(2)WI 38 TAM(1)WI 38 TAM(2)

hESC
Epithelial
Fibroblast
Blood
Astrocytes
Myocytes
Endothelial
Skeletal Muscle

AG00449(1)AG00449(2)

AG04450(1)
AG04450(2)

AG
09319(1)

AG
09319(2)

AoAF(1) AoAF(2)

B
J(1)
B

J(2)

CD14

CD20(1)

CD20(2)CD20(3)

hE
S

C
 D

14
(1

)

hE
S

C
 D

14
(2

)

hE
S

C
 D

2(1)
hE

S
C

 D
2(2)

hE
S

C
 D

5(1)

hE
S

C
 D

5(2)

hE
S

C
 D

9(
1)

hE
S

C
 D

9(
2)

HAc(1)

HAc(2)

H
Asp(1)

HAsp(2)

H
BM

EC
(1

)

H
B

M
E

C
(2

)

HCFaa
HCF(1)
HCF(2)

HCM(1)
HCM(2

)

HCPEpiC
(1

)

HCPE
pi

C(2
)

HEEpiC(1)

HEEpiC(2)

hE
S

C
 D

0(1)

hE
S

C
 D

0(2)

H
F

F

H
F

F
 M

yC
(1

)

H
F

F
 M

yC
(2

)

HMEC(1)
HMEC(2)

HPAF(1)
HPAF(2)

HPF(1)

HPF(2)

HRE(1
)

HRE(2
)

H
R

P
E

pi
C

(1
)

H
R

P
E

pi
C

(2
)

HUVEC(1)

HUVEC(2) HVMF(1)HVMF(2)

NHDF Neo(1)

NHDF Neo(2)

NHEK(1)

NHEK(2)

NHLF(1)

NHLF(2)

RPT
EC

(1
)

R
PT

EC
(2

)

SAEC(1)

SAEC(2)

S
K

M
C

(1
)

S
K

M
C

(2
)

W
I 38(1)
W

I 38(2)

W
I 38 TA

M
(1)

W
I 38 TA

M
(2)

(a) (b)

Fig. 4. Cell-type tree on H3K4me3 data (using all replicates) on peaks with negative log p-value
≥ 10: (a) windowing representation, (b) overlap representation.

336 N.U. Nair et al.

indications—a procedure known as masking. We devised a very simplified version of
masking for our problem, for use only with replicate data, by removing any region
within which at most one library gave a different result (1 instead of 0 or vice versa)
from the others. In such regions, the presence of absence of peaks is perfectly conserved
across all but one replicate, indicating the one differing replicate has probably been
called wrong. After removing such regions, we have somewhat shorter representations,
but follow the same procedure. The trees returned have exactly the same topology and
so are not shown; the length of edges changed very slightly, as the SR value decreased
from 0.74 down to 0.70 using top peaks in the overlap representation.

4.4 A Better Looking Tree

Barring the addition of many replicates, the SR ratio of 0.70 appears difficult to reduce
and yet remains high. However, the cherries of replicate pairs by themselves give an
indication of the amount of “noise” (variation among individual cells as well as real
noise) present in the data. We can take that noise out directly by replacing each cherry
with its parent, which is a better representative of the population of this particular cell
type than either of the two leaves. We carried out this removal on the tree of Fig. 2(b)
and obtained the tree shown in Fig. 5. Since hESC cells do not form clear pairs, we
replaced the entire clade of hESC cells by their last common ancestor. The leaves with
remaining long edges are those for which we did not have a replicate (CD14, HCFaa,
and HFF).

HMEC

HEEpiC
SAEC

NHEK

HRE

R
PT

EC
H

R
P

E
pi

C
hE

S
C A

G
09319

N
H

D
F

 N
eo

A
oA

F
N

H
LF HPF

AG04450

AG00449

HVMF

HPAF
HCFaa

HCMHCPEpiC

HBMEC

SK
M

C
H

FF
 M

yCH
F

F

W
I 3

8

W
I 38 TA

M
B

J

H
Asp

HAcHCF
HUVEC

CD20CD14

hESC
Epithelial
Fibroblast
Blood
Astrocytes
Myocytes
Endothelial
Skeletal Muscle

Fig. 5. H3K4me3 data, overlap representation on peaks with negative log p-value ≥ 10. Replicate
leaves are removed and replaced by their parent.

5 Conclusions

We addressed the novel problem of inferring cell-type trees from histone modification
data. We defined methods for representing the peaks as 0/1 vectors and used these vec-
tors to infer trees. We obtained very good trees, conforming closely to expectations

Phylogenetic Analysis of Cell Types Using Histone Modifications 337

and biologically plausible, in spite of the high level of noise in the data and the very
limited number of samples per cell type. Our results confirm that histone modification
data contain much information about the history of cell differentiation. We carried out a
number of experiments to understand the source of the noise, using replicate data where
available, but also devising various noise filters. Our results show that larger replicate
populations are needed to infer ancestral nodes, an important step in understanding
the process of differentiation. Refining models will enable the use of likelihood-based
methods and thus lead to better trees. Since many histone marks appear independent
of cell differentiation, identifying which marks are connected with the differentiation
process is of significant interest. Finally, once such marks have been identified, recon-
structing their state in ancestral nodes will enable us to identify which regions of the
genome play an active role in which steps of cell differentiation.

References

1. http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeUwHistone
2. Barski, A., et al.: High-resolution profiling of histone methylations in the human genome.

Cell 129(4), 823–837 (2007)
3. Berger, S.L.: Histone modifications in transcriptional regulation. Current Opinion in Genet-

ics & Development 12(2), 142–148 (2002)
4. Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on

the minimum-evolution principle. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS,
vol. 2452, pp. 357–374. Springer, Heidelberg (2002)

5. Project Consortium ENCODE: A user’s guide to the encyclopedia of DNA elements (EN-
CODE). PLoS Biol. 9(4), e1001046 (2011)

6. Fishburn, P.C.: Interval orders and interval graphs: A study of partially ordered sets. Wiley
New York (1985)

7. Goloboff, P.A.: Analyzing large data sets in reasonable times: solutions for composite op-
tima. Cladistics 15(4), 415–428 (1999)

8. Lee, J.-H., Hart, S.R., Skalnik, D.G.: Histone deacetylase activity is required for embryonic
stem cell differentiation. Genesis 38(1), 32–38 (2004)

9. Lister, R., et al.: Hotspots of aberrant epigenomic reprogramming in human induced pluripo-
tent stem cells. Nature 471(7336), 68–73 (2011)

10. Lobe, C.G.: Transcription factors and mammalian development. Current Topics in Develop-
mental Biology 27, 351–351 (1992)

11. Mardis, E.R., et al.: ChIP-seq: welcome to the new frontier. Nature Methods 4(8), 613–613
(2007)

12. Martin, C., Zhang, Y.: Mechanisms of epigenetic inheritance. Current Opinions Cell Biol-
ogy 3(19), 266–272 (2007)

13. Mikkelsen, T.S., et al.: Genome-wide maps of chromatin state in pluripotent and lineage-
committed cells. Nature 448(7153), 553–560 (2007)

14. Nelson, D.L., Cox, M.M.: Lehninger principles of biochemistry. W.H. Freeman (2010)
15. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylo-

genetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeUwHistone

Detecting Superbubbles in Assembly Graphs

Taku Onodera1, Kunihiko Sadakane2, and Tetsuo Shibuya1

1 Human Genome Center, Institute of Medical Science, University of Tokyo 4-6-1
Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

{tk-ono,tshibuya}@hgc.jp
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo 101-8430, Japan
sada@nii.ac.jp

Abstract. We introduce a new concept of a subgraph class called a su-
perbubble for analyzing assembly graphs, and propose an efficient algo-
rithm for detecting it. Most assembly algorithms utilize assembly graphs
like the de Bruijn graph or the overlap graph constructed from reads.
From these graphs, many assembly algorithms first detect simple local
graph structures (motifs), such as tips and bubbles, mainly to find se-
quencing errors. These motifs are easy to detect, but they are sometimes
too simple to deal with more complex errors. The superbubble is an
extension of the bubble, which is also important for analyzing assem-
bly graphs. Though superbubbles are much more complex than ordinary
bubbles, we show that they can be efficiently enumerated. We propose an
average-case linear time algorithm (i.e., O(n+m) for a graph with n ver-
tices and m edges) for graphs with a reasonable model, though the worst-
case time complexity of our algorithm is quadratic (i.e., O(n(n +m))).
Moreover, the algorithm is practically very fast: Our experiments show
that our algorithm runs in reasonable time with a single CPU core even
against a very large graph of a whole human genome.

1 Introduction

The sequencing technologies have evolved dramatically in the past 25 years,
and nowadays many next-generation sequencers (NGSs) can sequence a human
genome-size genome in only a few hours with very small costs. But still there is
no sequencing technology that can sequence the entire genome at a time with-
out breaking the genome into millions or billions of short reads. Thus assembling
these reads into a whole genome has been one of the most important compu-
tational problems in molecular biology, and quite a few algorithms have been
proposed for the problem [5, 9, 14] despite the computational difficulty of the
problem [10].

Most assembly algorithms construct some graph in their first stage. They are
categorized into two types depending on the types of the graph. Many old-time
assemblers utilize a graph called the overlap graph, in which a vertex corresponds
to a read and an edge corresponds to a pair of reads that have an enough-length
overlap [1, 3, 11]. More recent algorithms often utilize a graph called the de

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 338–348, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Detecting Superbubbles in Assembly Graphs 339

�������

Fig. 1. Construction of a unipath graph

(1) A tip (2) A bubble (3) A cross link

Fig. 2. Assembly graph simple motifs

Bruijn graph, in which an edge corresponds to a k-mer that exists in reads
and a vertex corresponds to the shared (k − 1)-mer between the adjacent k-
mers [4, 6, 8, 13, 15–17]. The de Bruijn graph is said to be more suitable for
NGS short reads of large depth.

The next step of most sequencing algorithms after constructed the graph is
to simplify the obtained graph by decomposing a maximal unbranched sequence
of edges (which is called a unipath) into one single edge [4, 8, 15] (Fig. 1). The
obtained graph is called a unipath graph. After obtained the unipath graph,
many sequencing algorithms next detect simple typical motif structures caused
by errors to detect errors: The most common motifs are tips, bubbles, and cross
links [4, 6, 15, 17] (Fig. 2).

A tip (Fig. 2 (1)) is a low-frequency edge whose end (or start) vertex has
no outgoing (resp. incoming) edges, which goes out from (resp. comes into) a
high-frequency vertex1. This motif often appears in case there are some error(s)
around the end of a read. A bubble (Fig. 2 (2)) consists of multiple edges (with
the same direction) between a pair of vertices, which is often caused by error(s)
somewhere in the middle of a read. A cross link (Fig. 2 (3)) is a low-frequency
edge that lies between high-frequency vertices. This appears when a substring
of a read accidentally becomes (by error) the same substring that appears in a
different region. All of these motifs are easy to find (obviously in linear time)
due to their simplicity.

But we should consider much more complex structures if input reads are er-
roneous (as in the case of the third generation sequencers), have many repeats
(as in many large-scale genomes/meta-genomes), or have many mutations (as
in cancer genomes). Fig. 3 shows an example of a subgraph of a unipath graph
obtained from actual whole human genome reads (the same set of reads used in

1 We say ’low/high’-frequency vertices/edges for vertices/edges that correspond to
few/many reads.

340 T. Onodera, K. Sadakane, and T. Shibuya

cggcacaaaaa tatgaggaaaaacaggg

aggatatg att aaa agtt

cagtttgtattttttgttgagtgaatgt ct ccag t c ata gagatgcaagtgtagatacacag ta aga

tagatgcaagtgtagatacacag ta aga

gcag t c cta tagatgcaagtgtagatacacag ta

tagtttgtattttttgttgagtgaatgt

tggcacaaaaa

attg cggaaaaaacagggaggatatgatt ata

agttcagttt

a tgttttttgtt gagtgaatgtctccag cc ata gagatgcaagtgtagatacacag

t c

g

ggttttttgtt

gagtgaatgtctccagt

tgttttttgtt gagtgaatgtctccag

gggaaaaaacagggaggatatgatt

ata

ctg gggaaaaaacaggg aggatatg

att

ttt ata agttcagttt g ggttttttgtt

tatgaggaaaaacaggg

28

18

28 2

34

3

6 3

25

23 5

28

17

11 25 28 17

28 28

10

11

25

28

4

3 3 271

1 1

Fig. 3. A superbubble: A very complicated structure caused by errors or repeats. All
the edges are labeled with sequences (vertices are not shown). The gaps in the labels
are inserted manually in the figure to show alignment between edge labels that start
at different offsets from the entrance of the superbubble.

the experiments in section 4). In this subgraph, paths from the leftmost vertex
branch to many paths but they converge into the rightmost single vertex in
the end, and there are no cycles in this subgraph, i.e., the subgraph forms a
directed acyclic graph (DAG). The vertices between the leftmost vertex and
the rightmost vertex has no outgoing/incoming edges to/from external vertices
(i.e., vertices not in this subgraph). An important point is that all the paths have
similar labels with similar lengths.2 We call this kind of a subgraph a superbubble,
as it can be considered as an extension of an ordinary simple bubble (more
detailed definition of superbubbles will be given in section 2). Superbubbles are
complicated, but it is apparent that many of them are formed as a result of
errors, inexact repeats, diploid/polyploid genomes, or frequent mutations. Thus
detection of superbubbles should be very important, and it should be useful if
we can detect them efficiently. For example, further time-consuming complicated
algorithms (e.g., optimal alignment, paired-end read analyses, etc) are applicable
against the superbubbles, even if they are too complicated to use against the
entire graph.

In the followings, we will give detailed definition of the superbubbles in sec-
tion 2, and show an efficient algorithm for finding superbubbles in section 3.
We will show that the algorithm runs in average-case linear time against graphs
with a reasonable model, though the worst-case time complexity is quadratic. In
section 4, we will show that the superbubbles can be efficiently enumerated in
reasonable time with a small machine, through large-scale experiments against
reads from a whole human genome.

2 The experiments in section 4 will show that the path label lengths of a superbubble
are only at most 5% different in more than 85% of the detected superbubbles.

Detecting Superbubbles in Assembly Graphs 341

2 Preliminaries

2.1 Superbubble

Here, we formally define superbubbles and show some properties of them which
are necessary in the rest of the paper.

Definition 1. Let G = (V,E) be a directed graph. If an ordered pair of distinct
vertices (s, t) satisfies the following:

reachability t is reachable from s;
matching the set of vertices reachable from s without passing3 through t is equal

to the set of vertices from which t is reachable without passing through s;
acyclicity the subgraph induced by U is acyclic where U is the set of vertices

in the above condition;
minimality no vertex in U other than t forms a pair with s that satisfies the

conditions above,

then we say that the subgraph in the description of the acyclicity condition is
a superbubble and s, t and U \ {s, t} are this superbubble’s entrance, exit
and interior respectively. For any pair of vertices (s, t) that satisfies the above
conditions, we denote the superbubble as 〈s, t〉.

To take full advantage of the notation 〈s, t〉, we first need to confirm that if
(s1, t1) �= (s2, t2) then 〈s1, t1〉 �= 〈s2, t2〉. The following remark ensures it.

Remark 1. There is a one-to-one correspondence between the vertex pairs
satisfying the conditions in Definition 1 and superbubbles.

Proof. Because of the acyclicity condition, the vertices of a superbubble can be
topologically sorted, i.e., they can be ordered in such a way that if v is reachable
from u then u < v. Due to the matching condition, s (resp. t) is the minimum
(resp. maximum) ordered vertex.

Now we observe a proposition which clarifies the situation and motivates linear
time enumeration of superbubbles.

Proposition 1. Any vertex can be the entrance (resp. exit) of at most one
superbubble.

Note that this proposition does not exclude the possibility that a vertex is the
entrance of a superbubble and the exit of another superbubble.

Proof. We prove the proposition by reductio ad absurdum. Suppose 〈s, t1〉 and
〈s, t2〉 are distinct superbubbles. If t2 is a vertex in 〈s, t1〉, then t2 is in the interior
of 〈s, t1〉 but this contradicts to the minimality condition for 〈s, t1〉. Similarly, t1
being a vertex in 〈s, t2〉 also results in a contradiction.
3 Passing through a vertex means that visiting and then leaving it, not just visiting

or leaving alone.

342 T. Onodera, K. Sadakane, and T. Shibuya

Suppose, on the other hand, that t2 is not a vertex in 〈s, t1〉. There is a path
from s to t2. By removing cycles from t2 to t2 if necessary, this path can be
taken in such a way that t2 appears only at the last step and at this time, all
vertices in the path are in 〈s, t2〉. On the other hand, the vertex just before the
first vertex on the path that is not in 〈s, t1〉 is t1. In particular this means that
t1 is in 〈s, t2〉 but this leads to contradiction by the first half of the argument.

Corollary 1. There are O(n) superbubbles in a graph with n vertices.

Before closing this subsection, let us point out, without proof, yet another prop-
erty of superbubbles that is not directly necessary for this work but worth men-
tioning to grasp the picture.

Claim. If two distinct superbubbles share a vertex, either one’s exit is the other’s
entrance or one is included in the other’s interior.

2.2 Construction of a Unipath Graph

Given a set R of reads, we first construct the de Bruijn graph [13]. Let T =
T [1,m] be a read of length m in R. The k-mers of T are length-k substrings of
T , that is, T [i, i+ k− 1] for i = 1, 2, . . . ,m− k+ 1. Let K denote the multiset of
k-mers of all reads in R, and Kd denote the set of (distinct) k-mers that appear
at least d times in K. A k-mer in Kd is called a solid k-mer.

The de Bruijn graph G = (V,E) of R is defined as follows. The vertex set V
is the set of (k − 1)-mers defined as V = {T [1, k − 1] | T [1, k] ∈ Kd} ∪ {T [2, k] |
T [1, k] ∈ Kd}. The edge set E is defined as {(u, v) | ∃T [1, k] ∈ Kd, u = T [1, k −
1], v = T [2, k]}. The edge label of (u, v) is T [k] if u = T [1, k − 1], v = T [2, k].
Typical values of k and d are k = 28, d = 3.

We use the succinct de Bruijn graph [2], which is a compressed representation
of the de Bruijn graph of R. For a set of m solid k-mers, the succinct de Bruijn
graph uses 4m + o(m) bits to encode the graph, and supports the following
operations.

– outdeg(v)/indeg(v) returns the number of outgoing/incoming edges from/to
vertex v in O(1) time, respectively.

– outgoing(v, c) returns the vertex w pointed to by the outgoing edge of vertex
v with edge label c in O(1) time. If no such vertex exists, it returns −1.

– incoming(v, c) returns the vertex w = T [1, k − 1] such that there is an edge
from w and v and T [1] = c in O(k) time. If no such vertex exists, it returns
−1.

From a de Bruijn graph G = (V,E), we construct a unipath graph G′ =
(V ′, E′) as follows. The vertex set V ′ is a subset of V such that any vertex in
V ′ has more than one outgoing edges or more than one incoming edges. The
edge set E′ is the multiset of all pairs (u, v) such that u, v ∈ V ′ and there is
a path u, x1, x2, . . . , x
, v in G and outdegrees and indegrees of x1, x2, . . . , x

are all one. The edge label of (u, v) is the concatenation of edge labels of
(u, x1), (x1, x2), . . . , (x
−1, x
), (x
, v) in G. The length of the edge label is �+ 1.

Detecting Superbubbles in Assembly Graphs 343

R = {TACAC,
TACTC,
GACAC}

TAC

ACA

ACT

A

T

CAC

CTC

C

C $

G$TA

C

$$TA $$$T $$G

$

$GA

GAC

A

C

A

$$$
$$$

ACA
$GA
$TA

CAC
GAC
TAC
TAC
CTC
$$G
$$T

ACT

0
1
1
1
1
1
1
0
1
1
1
1
1

last

$

A

C

G

T

$
A
C
G
T

0
2
5

10
11

FNode
G
T
C
C
C
$
A
A-
T
$
A
A
C

W
0
1
1
0
0
0
0
0
1
0
0
0
0

B

TAC

ACAA
C$

TC$

GACA$$$
TAC

Fig. 4. Top right: The input set R, top left: The de Bruijn graph of R with k = 3, d = 1,
bottom left: the unipath graph, bottom right: the succinct de Bruijn graph and the
unipath graph. Non-branching nodes are removed. We store only last , B, W and F .

In addition to the data structure of the succinct de Bruijn graph, we use a
bit vector B[1,m] where m = |E| is the number of edges in G to represent the
unipath graph G′. We set B[v] = 1 if and only if the vertex v of G is also a
vertex of G′. The outdegree and the indegree of v in G′ is equal to those of v in
G. To find the vertex outgoing(v, c) in G′, we first compute w = outgoing(v, c) in
G. Then we repeatedly traverse the unique outgoing edge of w until B[w] = 1.
The resulting vertex is the answer. The unipath graph is constructed in linear
time from the succinct de Bruijn graph because each of the outdeg, indeg, and
outgoing operations takes constant time. Figure 4 shows an example.

3 Algorithm

Here, we explain how to enumerate all superbubbles in a given graph. As we
have seen in subsection 2.1, each vertex can be the entrance of at most one
superbubble. Therefore, once we have a way to check if a vertex s has another
vertex t s.t. (s, t) is the entrance/exit pair, then we can find all superbubbles
just by iterating this procedure for all s ∈ V . Below, we focus our attention on
this reduced problem.

Description. The algorithm is based on the standard topological sorting. It takes
a directed graph G = (V,E) and s ∈ V as inputs, and returns t ∈ V s.t. (s, t)
is an entrance/exit pair of a superbubble if any. It proceeds by visiting vertices
one by one maintaining the dynamic set S of vertices it can visit the next time.
Initially, S is set to be {s}. It also maintains a label for each vertex. The label
visited means that the vertex has already been visited. The label seen means
that the vertex has at least one visited parent . At each step, the algorithm picks
out an arbitrary vertex v from S labeling it as visited and label each child as

344 T. Onodera, K. Sadakane, and T. Shibuya

seen. If all the parents of a child are visited, it pushes the child into S. In visiting
vertices, the algorithm aborts anytime when it finds a vertex with no child, which
means a tip, or a parent of s, which means a cycle because any vertex visited
is a descendent of s. After visiting a vertex, the algorithm tests if it is going
to visit the exit at the next step as follows. First it checks if S consists of one
vertex, say t, and no vertex other than t is labelled as seen. If not, the test is
negative. Otherwise, the algorithm further checks if the edge (t, s) exists or not.
If it does, the algorithm aborts because it just found a path from s to s, a cycle.
Otherwise, the algorithm returns t. The algorithm aborts if S runs out.

Require: directed graph G = (V,E), s ∈ V
Ensure: returns t s.t. (s, t) is an entrance/exit pair of a superbubble if any
1: push s into S
2: repeat
3: pick out an arbitrary v ∈ S
4: label v as visited
5: if v does not have a child then
6: abort // tip
7: for u in v’s children do
8: if u = s then
9: abort // cycle including s

10: label u as seen
11: if all of u’s parents are visited then
12: push u into S
13: if only one vertex t is left in S and no other vertex is seen then
14: if edge (t, s) does not exist then
15: return t
16: else
17: abort // cycle including s
18: until |S| = 0

Fig. 5. Pseudocode of an algorithm to find the corresponding exit of an potential
entrance

Correctness. A vertex can be pushed into S at most once because it happens
when all its parents are visited and once visited a vertex never cease to being so.
Thus, the algorithm can pick out a vertex from S at most n times and in particu-
lar it halts. Below, we prove the correctness of the returned value, which reduces
to the followings: a) if the input vertex is the entrance of some superbubble,
then the algorithm returns the corresponding exit; b) if the algorithm returns a
vertex, it is the exit of a superbubble and the input vertex is the corresponding
entrance.

First, we observe an invariant. Let Vseen be the set of vertices labelled as seen
and Vvisited be the set of vertices labelled as visited. Let Vto be the set of vertices
that are reachable from s without passing through any element of Vseen and let
Vfrom be the set of vertices from which at least one element of Vvisited ∪ S can be
reachable without passing through s.

Detecting Superbubbles in Assembly Graphs 345

Lemma 1. After the algorithm visits a vertex, i.e., after the line 12 of the pseu-
docode in Figure 5 is executed, Vto = Vvisited ∪ Vseen and Vfrom = Vvisited ∪ S. In
particular, if the algorithm returns t, then (s, t) satisfies the matching condition.

Proof. We prove the first half by mathematical induction. After the first visit,
Vvisited, Vseen and S consist of s, s’s children and s’s children with indegree 1
respectively and the lemma holds. Suppose the lemma holds up to the visit to
some vertex. During the visit to the next vertex, say v,

1. v is removed from S and its label is changed from seen to visited;
2. all children of v are labelled as seen;
3. the children of v whose parents are all visited are added to S.

Consequently, both Vto and Vvisited ∪ Vseen acquire the vertices reachable from v
without passing through any element of Vseen, i.e., the children of v. Therefore,
Vto = Vvisited∪Vseen still holds. On the other hand, Vvisited∪S acquires the vertices
newly added to S, i.e., the children of v whose parents are all labelled as visited.
Now these vertices are also in Vfrom because Vfrom ⊇ Vvisited ∪ S by definition.
Furthermore, they are the only vertices Vfrom acquires because the parents of
them were already in Vfrom after the previous visit by the induction hypothesis.
Therefore, Vfrom = Vvisited ∪ S also stays true.

Next, we prove the last half. If the algorithm returns t, after the last visit,
Vto = Vfrom because S = Vseen due to the first half. On the other hand, at
this time, Vto consists of the vertices reachable from s without passing through
t because Vseen = {t}. Therefore, it suffices to show that Vfrom consists of the
vertices from which t is reachable without passing through s. This is true because
after every visit, from any vertex in Vvisited at least one vertex in Vseen is reachable
without passing through s, a fact which can be proven easily by mathematical
induction again.

Next, we prove a). Let t be the exit corresponding to s. Because of the match-
ing condition of (s, t), the algorithm never aborts due to a tip or running out
of S at least up to the point when t is pushed into S, no matter if t is pushed
into S at all. Similarly, the algorithm never aborts due to a cycle up to the
same point because of the acyclicity condition of (s, t). On the other hand, if t is
indeed pushed into S, then t must be the only vertex seen and all other vertices
of 〈s, t〉 must be visited due to the matching condition of (s, t) and the lemma.
Therefore, the only possibilities left are that the algorithm outputs t or some
other vertex in 〈s, t〉. But the second case never happens because a vertex, say
v, other than t in 〈s, t〉 is output, then the pair (s, v) satisfies the reachability,
matching (due to the lemma) and acyclicity conditions, which contradicts to the
minimality condition of (s, t).

Last, we prove b). Suppose the algorithm returns a vertex t. Obviously, t
is reachable from s. The matching condition holds because of the lemma. The
alleged superbubble does not contain cycles including s because otherwise the
algorithm must have aborted. And it does not contain cycles not including s
because otherwise the first vertex visited in the cycle has a parent in the cycle.

346 T. Onodera, K. Sadakane, and T. Shibuya

Table 1. Histogram of the size of superbubbles

size 3-9 10-19 20-29 30-39 40-49 50-59 60-
#S.B. 71663 4295 347 69 21 8 3

This means the parent has been visited earlier, which contradicts the way the
child was chosen. Thus, the acyclicity condition holds. The minimality condition
holds because otherwise, there is a vertex v s.t. (s, v) is an entrance/exit pair
and because of a) the algorithm must have returned v, instead of t.

Analysis. In the worst case, each execution of the algorithm takes Θ(n + m)-time
and in total the calculation of all superbubbles takes Θ(n(n + m))-time. Below,
we show that, under a reasonable model, the algorithm takes constant time on
average and thus all superbubbles can be found in Θ(n)-time in total.

As we will see in the next section, although there are tens of thousands of
superbubbles in practical unipath graphs, the entire graph is so large that its
size is orders of magnitude greater than the total size of superbubbles. Thus,
most of the time spent in the iterated executions of the algorithm is dedicated
for traversing regions that are far away from any superbubbles. Therefore, it is
reasonable to reduce the analysis of the algorithm to the evaluation of the time
spent until the traversal of a non-superbubble region is aborted. In such a case, if
a vertex is not pushed into S when it is labelled as seen, then it is very unlikely to
be visited afterwards. In other words, once the algorithm comes across a vertex of
indegree greater than 1, then it almost never proceeds to traverse its descendants.
With these observations in mind, we model the way the tree of visited vertices
grows in the algorithm by the following probabilistic tree generation process.
It starts from the root. Each vertex is good with probability p. A good vertex
corresponds to a vertex of indegree 1. If a vertex is good, it spawns i children
with probability pi. The theory of Galton-Watson branching processes [7] tells
that the expected number of vertices of depth i is Θ(ri) where r := p

∑
i ipi, i.e.,

the expected number of children of each vertex. Therefore, if r < 1 the expected
size of the tree is Θ(1

1−r), a constant. For the unipath graph we constructed
from human genome data, r was about 0.77 where p and pi were determined as
the proportion of vertices with particular in/out-degree within all vertices.

4 Experiment

Procedures. We first constructed the succinct de Bruijn graph with parameter
k = 27 and d = 3 for the read set SRX016231, which was derived by sequencing a
human individual by an Illumina sequencer. The length of each read is 100bp and
the coverage is about 40. Next, we constructed the unipath graph as described
in subsection 2.2. The resulting unipath graph consists of 107,154,751 vertices
and 210,207,840 edges. Last, we found all superbubbles in the unipath graph by
the algorithm in section 3.

Detecting Superbubbles in Assembly Graphs 347

Results. Table 1 is the histogram of the size of superbubbles where the size of
a superbubble means the number of vertices in it. The superbubbles of size 2
are omitted because they are ordinary bubbles. The superbubble of Fig. 3 is of
size 20 and this histogram tells, among other things, that there are hundreds
of equally or more complex superbubbles. On the other hand, what matters the
most for the application to genome assembly problem is whether superbubbles
really capture erroneous or repeat/mutation abundant regions, which topological
complexity alone does not necessarily suggest. One way to assess the relevance
of a superbubble in this regard is to compare the length of paths in it where
length of an edge is the length of the sequence represented by the edge. Note
that topologically close paths can have a variety of lengths because each edge
can be originated from a unipath. But among 23,078 superbubbles of size equal
to or greater than 5 we found, 19,926 (86.3%) of them have the longest/shortest
path length ratio smaller than 1.05. Therefore, superbubbles like that of Fig. 3
are indeed typical.

In terms of the computation time, it took 742.1 seconds for a Xeon 3.0GHz
CPU to enumerate all superbubbles including ordinary bubbles. The number of
vertices visited was 126,537,254.

5 Concluding Remarks

We introduced the concept of superbubbles in assembly graphs, and proposed an
efficient algorithm for detecting them. But many tasks remain as future work.
It is an open problem whether it is possible to detect superbubbles in worst-
case linear time. Developing methods for categorizing the detected superbubbles
(e.g., errors, repeats, mutations, and polyploids), and methods for fixing errors
in superbubbles are important future tasks. It is also interesting to extend our
algorithm for other bubble-like structures (e.g. the bulge structure [12]).

Acknowledgments. KS and TS are supported in part by KAKENHI 23240002.
This research was supported by JST, ERATO, Kawarabayashi Large Graph
Project. The super-computing resource was provided in part by Human Genome
Center, the Institute of Medical Science, the University of Tokyo.

References

1. Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger,
B., Mesirov, J.P., Lander, E.S.: Arachne: a whole-genome shotgun assembler.
Genome Research 12, 177–189 (2002)

2. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012)

3. Huang, X., Yang, S.P.: Generating a genome assembly with pcap. Current Proto-
cols in Bioinformatics, Unit 11.3 (2005)

348 T. Onodera, K. Sadakane, and T. Shibuya

4. Jackson, B., Regennitter, M., Yang, X., Schnable, P.S., Aluru, S.: Parallel de novo
assembly of large genomes from high-throughput short reads. In: Proc. 24th In-
ternational Parallel and Distributed Processing Symposium (IPDPS), pp. 1–10
(2010)

5. Kasahara, M., Morishita, S.: Large-Scale Genome Sequence Processing. Imperial
College Press (2006)

6. Li, R., Zhu, H., Ruan, J., Qjan, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G.,
Kristiansen, K., Yang, H., Wang, J.: De novo assembly of human genomes with
massively parallel short read sequencing. Genome Research 20, 265–272 (2010)

7. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University
Press (2012) (in preparation), Current version available at
http://mypage.iu.edu/string~rdlyons/

8. MacCallum, I., Przybylski, D., Gnerre, S., Burton, J., Shlyakhter, I., Gnirke, A.,
Malek, J., McKernan, K., Ranade, S., Shea, T.P., Williams, L., Young, S., Nus-
baum, C., Jaffe, D.B.: Allpaths 2: small genomes assembled accurately and with
high continuity from short paired reads. Genome Biology 10(R103) (2009)

9. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation se-
quencing data. Genomics 95, 315–327 (2010)

10. Myers, E.W.: Toward simplifying and accurately formulating fragment assembly.
Journal of Comutational Biology 2, 275–290 (1995)

11. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J.,
Kravitz, S.A., Mobarry, C.M., Reinert, K.H.J., Remington, K.A., Anson, E.L.,
Bolanos, R.A., Chou, H., Jordan, C.M., Halpern, A.L., Lonardi, S., Beasley, E.M.,
Brandon, R.C., Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nusskern, D.R., Zhan, M.,
Zhang, Q., Zheng, X., Rubin, G.M., Adams, M.D., Venter, J.C.: A whole-genome
assembly of drosophila. Science 287, 2196–2204 (2000)

12. Nurk, S., et al.: Assembling genomes and mini-metagenomes from highly chimeric
reads. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds.) RECOMB 2013. LNCS,
vol. 7821, pp. 158–170. Springer, Heidelberg (2013)

13. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to dna frag-
ment assembly. Proceedings of the National Academy of Sciences 98, 9748–9753
(2001)

14. Pop, M.: Genome assembly reborn: recent computational challenges. Briefings in
Bioinformatics 10(4), 354–366 (2009)

15. Sahli, M., Shibuya, T.: Arapan-s: a fast and highly accurate whole-genome assem-
bly software for viruses and small genomes. BMC Research Notes 5(243) (2012)

16. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.: Abyss: a parallel
assembler for short read sequence data. Genome Research 19, 1117–1123 (2009)

17. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de bruijn graphs. Genome Research 18, 821–829 (2008)

http://mypage.iu.edu/string~rdlyons/

Cerulean: A Hybrid Assembly Using High

Throughput Short and Long Reads

Viraj Deshpande1, Eric D.K. Fung2, Son Pham1, and Vineet Bafna1

1 Department of Computer Science & Engineering, University of California,
San Diego, CA, USA
vbafna@eng.ucsd.edu

2 Bioinformatics Undergraduate Program, Department of Bioengineering,
University of California, San Diego, CA, USA

Abstract. Genome assembly using high throughput data with short
reads, arguably, remains an unresolvable task in repetitive genomes, since
when the length of a repeat exceeds the read length, it becomes difficult
to unambiguously connect the flanking regions. The emergence of third
generation sequencing (Pacific Biosciences) with long reads enables the
opportunity to resolve complicated repeats that could not be resolved by
the short read data. However, these long reads have high error rate and
it is an uphill task to assemble the genome without using additional high
quality short reads. Recently, Koren et al. 2012 [1] proposed an approach
to use high quality short reads data to correct these long reads and, thus,
make the assembly from long reads possible. However, due to the large
size of both dataset (short and long reads), error-correction of these long
reads requires excessively high computational resources, even on small
bacterial genomes. In this work, instead of error correction of long reads,
we first assemble the short reads and later map these long reads on the
assembly graph to resolve repeats.

Contribution: We present a hybrid assembly approach that is both
computationally effective and produces high quality assemblies. Our al-
gorithm first operates with a simplified version of the assembly graph
consisting only of long contigs and gradually improves the assembly by
adding smaller contigs in each iteration. In contrast to the state-of-the-
art long reads error correction technique, which requires high compu-
tational resources and long running time on a supercomputer even for
bacterial genome datasets, our software can produce comparable assem-
bly using only a standard desktop in a short running time.

1 Introduction

The advent of high throughput sequencing technologies has generated a lot of
interest from the computational perspective of de novo assembly of genomic
sequences. A major breakthrough in the massively parallel high-throughput se-
quencing technologies includes the second generation sequencing platforms in-
cluding those from Illumina and Life Technologies. These platforms generate

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 349–363, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

350 V. Deshpande et al.

Fig. 1. Two possible genomic architectures, Genome A and Genome B each with a
large repeat b. Both putative genomes can generate the same set of paired-end reads.
With the information from paired-end reads, the assembler can only identify shorter
contigs a, b, c, d and e but not the entire true genome.

paired-end reads with length of the order of 100 or 250 base pairs. The mean end-
to-end distance between the paired-end reads, called the insert size, is around
300 to 500 base-pairs. The paired-end reads can be sequenced with high accu-
racy and high depth of coverage. Two approaches are broadly used by assembly
tools to assemble the paired-end reads into complete genomes of genomic con-
tigs: (i) Overlap-layout-consensus assembly was introduced by Staden [2], which
was later improvised by the introduction of string graph by Myers [3] (Cel-
era Assembler [4], SGA [5]); (ii) de Bruijn graph-based assembly was originally
proposed by Idury and Waterman [6] and extended by Pevzner et al [7] (Euler-
SR [8], ABySS [9], Velvet [10]). These de novo assembly approaches can generate
high quality assemblies using the high quality paired-end reads. However, these
paired-end reads are unable to span large repeats and as a result the assembled
contigs are often short. Figure 1 shows an example where the assembler is unable
to identify the true genome architecture using only short read.

Newer high throughput sequencing platforms [11] target the length limitation
of second generation short reads by generating libraries with a large span. The
prominent technologies include: (i) jumping libraries which generate small mate-
pair reads of around 150 base pairs and variable span of 5 kbp or more; (ii) long
reads from Pacific Biosciences with variable length ranging from 1 kbp to 20 kbp
and (iii) genomic fragments amplified by Moleculo technology (size: 1.5 kbp to
15 kbp [12]) and then sequenced using short read sequencing technologies. In
this work we focus on PacBio long reads generated by directly sequencing entire
genomic fragments. In the rest of this article we will use the term short reads
to describe the paired-end reads from Illumina and long reads to describe reads
generated using the Pacific Biosciences RS platform.

Long reads generated from PacBio RS can easily span most repeats and have
the potential to produce very large assembled contigs. Unfortunately, these reads
can have a very high error rate with mean error rate as high as 16%. Hence
they are difficult to assemble by themselves and require very high coverage;
the assembly quality falls rapidly with smaller coverage [13]. However, combin-
ing the high quality of second generation short reads and the large length of the

Cerulean: A Hybrid Assembly Using High Throughput Short 351

long reads, these datasets can be processed simultaneously to produce very long
genomic contigs that otherwise required costly low-throughput techniques.

Recent efforts (PacbioToCA [1], LSC [14]) have focused on mapping short reads
to the erroneous long reads to correct the long reads using aligners like NovoAlign
[15] and GMAP [16] which can allow large edit distance for the mapping. These
corrected long reads are then used to generate an assembly with significantly longer
contigs. However, such mapping from all short reads to all long reads with large
edit-distance is computationally expensive and requires a large running time even
for small bacterial datasets. Furthermore, if there are two or more similar regions
in the genome, the short reads from one region can still map to long reads from
the other region given the high edit-distance. Reads corrected in such fashion may
create spurious adjacencies leading to misassemblies.

An alternative approach is to first assemble the high coverage short read
dataset to produce high quality contigs and use long reads for scaffolding. Pre-
vious tools that use this approach include AHA scaffolder [17] and ALLPATHS-
LG [18]. However, these approaches are specialized to perform hybrid assembly
in the presence additional libraries including Roche 454 reads for AHA scaffolder
and jumping libraries of mate-pair reads for ALLPATHS-LG. Following this ap-
proach, a hybrid assembler will essentially take as input: the assembler should
find the correct traversal of genome on the graph using the support information
from the mapping of long reads.

While the alignments of long reads on the complete genome can be easily
identified using BLASR [19], alignments to shorter contigs can be spurious.
This is because we have to allow very short alignments and cannot conclusively
say if these are true alignments or accidental alignments due to short repeats
and similar-looking regions. Such alignments generate ambiguous adjacencies be-
tween contigs and stop us from making high confidence calls while scaffolding.
Furthermore, as we see in Figure 2, the longer assembled contigs tend to be
unique in the genome whereas the shorter contigs tend to repeat. If such short
contigs occur adjacent to each other in the genome, then using long reads to de-
termine the exact layout of all the contigs in the presence of spurious alignments
becomes a difficult problem.

Contribution: In this work, we present Cerulean, a completely automated hy-
brid assembly approach to produce a high quality scaffolds using Illumina paired-
end reads and PacBio long reads. Cerulean does not use the short reads directly;
instead it works with an assembly graph structure generated from short read
data using existing assemblers. Assembly graphs are graphs where nodes cor-
respond to contigs of assembled short reads and edges represent putative adja-
cencies of the contigs, but not confined to overlapping contigs. Such assembly
graph are commonly built using overlap-layout-consensus and more recently with
the de Bruijn graph paradigm. The input to Cerulean includes: (i) the assembly
graph generated by ABySS paired-end read assembler [9] constructed from short
reads (and it can be applied to graphs generated by overlap graph or de Bruijn
graph based assemblers as long as the graph has the desired format) and (ii) the
mapping of long reads to the assembled contigs. The output of Cerulean is an

352 V. Deshpande et al.

simplified representation of the unentangled assembly graph. The non-branching
paths in this simplified graph correspond to the scaffolds in the genome.

We recognize that multiple spurious alignments of long reads to short con-
tigs makes it a difficult problem to unentangle the assembly graph, especially
when the short contigs form densely connected substructures. The Cerulean al-
gorithm addresses this problem through an iterative framework to identify and
extend high confidence genomic paths. Cerulean initially operates with a sim-
plified representation of the assembly graph, which we call the skeleton graph
(Figure 3(a)), consisting only of long contigs. We then gradually improve the
assembly by adding smaller contigs to the skeleton graph in each iteration.

Our software produced higher quality assembly than the state-of-the-art soft-
ware for hybrid assembly (PacbioToCA, AHA) in much shorter running time and
lower memory usage. While assembly of Cerulean was significantly better than
AHA scaffolder; PacbioToCA required 8 hours to run on a supercomputer with
24 threads for a bacterial genome dataset with a total memory usage of 55GB
and temporary files of 300GB. In contrast, Cerulean finished within few minutes
on a single thread on a regular desktop with memory usage of 100MB and pre-
processing (ABySS, BLASR) taking less than an hour on a desktop computer.
Starting with N75 of 60 kbp of contigs generated by ABySS, scaffolds generates
scaffolds with N75 of 503 kbp as compared to 247 kbp for PacbioToCA and 106
kbp for AHA scaffolder.

2 Methods

Inputs: The inputs to Cerulean include (i) the assembly graph and contig se-
quences from short read assembly (using ABySS or other assemblers) and (ii)
alignments of long reads to contigs from the assembly graph (using BLASR).
The assembly graph consists of one vertex for each contig and a conjugate ver-
tex for its reverse complement. The length of a vertex corresponds to the length
of the contig. A directed edge between two vertices indicates a putative adja-
cency between the two vertices. For every directed edge, the conjugate edge is a
directed edge from the conjugate of its sink to the conjugate of its source. For
each edge, we define the length to be the offset between the end of source contig
and start of the sink contig. Thus, if the two contigs overlap, then the length is a
negative number; in case of a gap this length is a positive number. The size of the
overlap or the gap may depend on the short read assembler, e.g., if the assembler
just produces the de Bruijn graph, then the overlap is directly determined by
k-mer size, but many short read assemblers also implement preliminary analysis
of the graph structure and so the assembled contigs may even overlap by a few
thousand base pairs even though the paired-end insert size is only few hundred
based pairs. Henceforth, contigs contigs refer to DNA sequences assembled by
the short read assembler and scaffolds refer chain of contigs glued together using
alignments of long reads to contigs.

Pipeline: The contigs generated by the short paired-end read assembly have a
large distribution of lengths and some of these contigs repeat multiple times in

Cerulean: A Hybrid Assembly Using High Throughput Short 353

Fig. 2. Distribution of repeat count of contigs assembled from short reads

the reference. Most repeats tend to be short and there are very few long contigs
which occur multiple times in the reference as shown in Figure 2 for E. Coli
dataset. Resolution of the assembly graph in the presence of these short and
repetitive contigs is difficult since they create noise in mapping (spurious align-
ments) and may form dense structures in the graph which is a major obstacle
for the repeat resolution procedure.

Our algorithm relies on the construction of a skeleton graph (Figure 3(a))
which is a simplified representation of the assembly graph containing only long
contigs. The edges in the skeleton graph represent the putative genomic connec-
tions of these contigs. As we shall see below, we include an edge in the skeleton
graph only if there is sufficient number of long reads that indicate the correspond-
ing adjacency. Since the skeleton graph has a simple structure consisting only of
long contigs, mapping long reads to the skeleton graph has less noise and repeat
resolution is simpler. Our approach gradually improves the assembly by adding
smaller contigs in every iteration.

In each iteration, the algorithm goes through three components (Figure 3(b)): I)
Skeleton graph construction/extension; II) Repeat Resolution ; III) Gap bridging.

Skeleton Graph Construction: Given the assembly graph G(V,E), genome
S, a length threshold L, the skeleton graph SG(G,S, L) = G(V ′, E′) has vertex
set V ′ containing only vertices corresponding to contigs longer than L in V . An
edge (v′i, v

′
j) ∈ E′ depicts a putative adjacent layout between the corresponding

contigs in the genome. The skeleton graph represents a simplification of the
original assembly graph by ignoring all intermediate short contigs in the assembly
graph. The short contigs that occur between consecutive long contigs in the
genome are implicitly included by annotating the relevant edges.

354 V. Deshpande et al.

(a) (i) Assembly graph (ii) Skeleton graph retains only big vertices (long contigs)

(b) Iterative Pipeline for Cerulean: (i) Skeleton graph reconstruction (Circle size pro-
portional to contig length) (ii) Repeat resolution (iii) Gap filling.

Fig. 3. Skeleton graph representation and iterative construction of approximate skele-
ton graph

Cerulean: A Hybrid Assembly Using High Throughput Short 355

Since the skeleton graph is a simpler graph with long vertices, unambiguously
mapping the long reads to long contigs and resolving repeats in the skeleton
graph is more favorable than in the assembly graph. However, since the genome is
unknown, the skeleton graph can not always be constructed in its entirity. Below,
we construct an approximate version of skeleton graph using the information
from all long read alignments.

The first iteration of the skeleton graph is constructed by using only long
contigs from the assembly graph as vertices. Alignments of pairs of long contigs
to a long read imply a certain distance (overlap or gap) between the contigs if
these were true alignments. A directed edge is added between 2 vertices if there
exists a path (or edge) in the assembly graph that certifies the implied distance
within certain tolerance. The length of the edge is defined as the distance inferred
by following the path (in the assembly graph) rather than the distance inferred
from erroneous long reads. In case the adjacent contigs overlap in the assembly
graph, then the long reads need to span the entire overlap to include a putative
edge between the two contigs in the skeleton graph.

We further refine this approximate graph by the following steps:

Read Count Threshold: We should only keep those edges which have a significant
long read support. The length of the long reads is variable. So if we want to
resolve a long repeat or fill a large gap, then we will expect a small number of
long reads to span the entire repeat or gap. Thus, the expected number of long
reads that connect two contigs will depend on the coverage as well as the distance
between the two contigs and the read length distribution of the long reads. We
thus evaluate the significance of the number of long reads supporting an edge
in comparison to support for other competing edges. Our criteria for adding
new edges consists of three parts: (i) if the number of long reads supporting an
edge is greater than a high confidence threshold that edge is certainly retained;
(ii) if the number of supporting long reads is less than a certain low confidence
threshold, then such an edge is discarded; (iii) if long read count is between these
thresholds, an edge is included either if it is the only outgoing/incoming edge
for the source/sink, or if the read count for the edge is significantly higher than
other edges incident on source or sink.

Length-sensitive Transitive Edge Reduction: We can identify the high confidence
scaffolds by looking at non-branching paths in the skeleton graph. However, some
chains of contigs which ideally should form non-branching paths in the graph
may get connected to vertices beyond their immediate neighbours. Such cases
can happen when some long reads do not align to the intermediate vertex due to
errors. For identification of non-branching paths, we remove the transitive edges
which create the false impression of a branch (Figure 4). An edge is defined to be
transitive if there is an alternative path from source to sink implying the same
distance offset.

Repeat Resolution: The repeat resolution procedure is illustrated in Figure 3(b)
(ii). When we remove the transitive edges to identify simple paths, we may lose
valuable information from long reads that span repeats appearing as branching

356 V. Deshpande et al.

c

a b

a b

Fig. 4. Length-sensitive transitive edge reduction along a non-branching path

nodes in the graph. A branching node will have multiple incoming edges on one side
on multiple outgoing edges on the other. The corresponding incoming and outgo-
ing vertices form a bipartite structure as seen in Figure 3(b)(ii). We resolve such
repeats by matching pairs of vertices (not necessarily all pairs) in this bipartite
structure by looking at reads spanning the repeat. Matched pairs which can be
joined unambiguously are then connected by a direct edge (with annotation) and
the edges to the intermediate vertex are removed. We do repeat resolution in its
simplest form of spanning only one contig at a time. This works if the repeating
contig is a maximal repeat. It is the common case for most contigs in our proce-
dure to be maximal repeats since we deal with only long contigs initially. But as
we scale to larger genomes with more complex repeat structures of shorter contigs,
we need to implement more powerful strategies for spanning repeats.

Gap Bridging: The gap bridging procedure is illustrated in Figure 3(b)(iii).
After using all information from connections in the graph to identify the scaffolds,
we observe that certain paths terminate as there are no further edges to extend
these paths. At this point, we relax the constraint that edges in the skeleton
graph should correspond to existing paths of the assembly graph. We can identify
possible ways to extend a scaffold by looking at long reads that align from the
end of that scaffold to the end of another scaffold. If this is the only possible
way to extend either of these scaffolds, then we use these long read alignments
to unambiguously bridge the gap between these paths (scaffolds) by adding a
new edge between their terminal vertices.

Iteration on Vertex Length: After we have inferred all possible scaffolds
from the long contig skeleton, we have the list of all simple paths from this
skeleton. Now we can decrease the vertex length threshold according to a vertex
length schedule. We add the new short contig vertices (longer than the new
lower threshold) either if they are connected to the end vertices of the simple
paths from the previous vertex length iteration, or if they are connected to other
short vertices. Thus non-terminal non-branching long contigs in scaffolds from
one iteration are untouched in the next iteration. Then we iteratively go through
the above steps of transitive edge reduction, repeat resolution and gap bridging.

Cerulean: A Hybrid Assembly Using High Throughput Short 357

Final Assembly: After the completion of all iterations through the vertex
length schedule we have our final approximation of the skeleton graph. The
simple paths represent our final scaffolds. The edges of these simple paths can
either be directed edges in the original assembly graph, or they can be annotated
with either path traversals in the assembly graph by the set of long reads bridging
a gap. Thus, the final scaffolds can be inferred from these annotated paths on
the corresponding sequence of reads that are used for gap filling. Those vertices
which are not included in the scaffolds can be inferred as independent contigs.

3 Results

We tested our software for the Escherichia Coli bacterial genome (strain: K12,
isolate: MG1665). The short [20] and long [21] read datasets were obtained from
the samples provided by Illumina and Pacific Biosciences respectively as de-
scribed in Table 1.

Short read assembly: We assembled the short read contigs using the ABySS
paired-end assembler with k-mer size of 64 base pairs. The computational re-
sources and assembly results are mentioned in Table 2 and Table 3 respectively.

Mapping long reads to contigs: We mapped the long reads to the ABySS
assembled contigs using BLASR with minimum percentage identity of 70%.

Filtering spurious alignments: There are many short alignments from long
reads to contigs due to short repeats contained within contigs as shown in Figure
5. Reads mapping to multiple contigs do not necessarily imply adjacency and
need to be filtered. We classify an alignment as long alignment if the unaligned
overhang (i.e. length of unaligned portion of the read which ideally should have
mapped in case of a true alignment of unerroneous read) is less than 30% of
the ideal alignment length (i.e. sum of unaligned overhang and aligned portion).
Henceforth, when we refer to alignment of a long read it means it satisfies the
criteria for long alignment.

Cerulean scaffolding: We used the ABySS assembly graph and filtered BLASR
alignments to generate the scaffolds. The vertex length schedule we used is 2048
bp, 1024 bp, 512 bp, 256 bp and 0 bp.

PacbioToCA: We compare our results to the assembly generated by the al-
ternative approach of assembling error-corrected long reads using PacbioToCA.

AHA scaffolder: We also tested the results of the AHA scaffolder using the
ABySS assembled contigs and PacBio long reads as inputs.

ALLPATHS-LG: We did not test ALLPATHS-LG since it requires jumping
libraries.

Table 1. Details of sequencing data used for assembly

Platform Illumina Hiseq PacBio RS

Coverage 400X 30x

Read Length 151bpX2 (insert size 300bp) N50: 5900, Largest:19416

Number of reads 11 million 75152

358 V. Deshpande et al.

Ref

C1 C2

Read

RepeatRepeat
Fig. 5. Spurious alignments of long reads due to short repeats are filtered.

The length distribution comparison of the assembled contigs is displayed in
Figures 3 and 6(b). We can see that the N50 values for the PacbioToCA as-
sembly is determined solely by the first 2 contigs, but the contig length drops
drastically after that giving a very low N75 value of 273 Kbp as compared to
N50 of 957 Kbp. The length of the scaffolds generated by Cerulean falls much
slower giving a significantly better N75 of 503 Kbp comparable to the N50 length
694 Kbp. Figure 3 also shows that the total assembled length for PacbioToCA
is significantly larger than the genome length.

Table 2. Computational resources for hybrid assembly

Software ABySS BLASR Cerulean PacbioToCA AHA

Number of threads 1 8 1 24 4

Peak memory usage <4 GB 300 MB 100 MB 55 GB 300 MB

Runtime <30 mins <30 mins 2 mins 12 hours 2 hours

Temporary files 75 MB 8 MB 5 MB 300 GB 500 MB

Analysis of the final set of contigs indicated that all the 11 long contigs were
essentially separated by just 2 non-exact repeats in the reference of lengths (2500
bp and 4300 bp). If we are more aggressive in resolving these repeats, then this
approach has the potential to retrieve the entire genome as a single contig. Our
conservative adjacency calls did not resolve these repeats in order to retain the
accuracy of the assembly. We chose not to make more aggressive decisions in
repeat resolution in the dataset because in the case of just 2 repeats, it is easy
to implement a scheme that will overfit the data and not scale to other genomes
when running in a fully automated setting.

Cerulean: A Hybrid Assembly Using High Throughput Short 359

(a) Cumulative length distribution of all contigs/scaffolds arranged in decreasing order
of length

(b) Nx length of all contigs/scaffolds of scaffolds arranged in decreasing order of length

Fig. 6. Comparison of lengths of contigs/scaffolds generated by various approaches

360 V. Deshpande et al.

Table 3. Assembly statistics for hybrid assembly analyzed using QuAsT [22]. We have
separately validated the sequential order and offsets of all long contigs forming the
scaffold by mapping them to the reference. We also confirmed that all 4 reported mis-
assemblies for ABySS + Cerulean were actually local misassemblies of a small length
(< 1Kbp) and 1 fake misassembly due to circular genome. However, a significant num-
ber of misassemblies in PacbioToCA and AHA involved relocations/inversions of sig-
nificant number of contigs longer than 1Kbp and as large as 30 Kbp and 19 Kbp
respectively.

Software Reference ABySS Cerulean PacbioToCA AHA

contigs 1 199 21 55 54

contigs > 1000bp 1 83 11 55 48

N50 4639675 110Kbp 694KBp 950Kbp 213 Kbp

N75 4639675 64KBp 507KBp 247 KBp 107 Kbp

Largest contig length 4639675 268969 1991897 1533073 477080

Total length 4639675 4849724 4625935 4641287 4663300

#misassemblies - 3 4 22 11

4 Discussions

Cerulean has a very low resource usage and high accuracy of assembled scaffolds.
This makes a very strong case for scaling this approach to larger genomes. The
algorithm in its current state focuses on making decisions based on very simple
building blocks one at a time. This makes it possible for us to make low risk de-
cisions towards a high accuracy assembly for simple bacterial genomes. However,
when analyzing datasets from larger complex genome, we have no prior knowl-
edge of the structure of the repeats and the layout of the contigs generated by
short read assemblers. So there are cases where the scaffolding algorithm may
not be able to distinguish between a true adjacency signal and a false adjacency
signal. In most cases, this will simply stop the algorithm from extending a scaf-
fold due to branching. However, we cannot conclusively rule out the possibility
of producing other side effects for every decision made by the algorithm. We also
need to acknowledge the fact that we are currently dealing with small bacterial
genomes for which we can easily obtain high and more or less uniform coverage
for short reads. So far we rely completely on the short read assembler to generate
the initial contigs. However, for larger genomes, variable coverage caused due to
sequencing bias combined with decisions made by the short read assembler can
cause misassembled contigs to start with. In this case, the scaffolder will benefit
from not assuming the assembled contigs as ground truth, but actually testing
for misassemblies by the short read assembler.

However, the framework of gradual inclusion of complexity does provide us
with the opportunity to tackle even more complex genomes in a systematic fash-
ion. Here we discuss a few of these cases where this framework is useful. When
extending the scaffolds consisting of large contigs, we aim to extend them un-
ambiguously with the inherent assumption that the larger contigs are usually

Cerulean: A Hybrid Assembly Using High Throughput Short 361

Fig. 7. Example for resolving multiple consecutive repeats. Contigs A and E are not
connected directly by long reads. The intermediate vertices B, C and D all have
branches however, the triplet B → C → D only occurs at a unique location. Thus
reads which span all 3 vertices B, C and D simultaneously can be treated as aligning
to one large combined contig (3-gram) and used to extend the scaffold from A to E.

unique in the reference. We can increase the confidence in this assumption by
considering the coverage information of contigs to estimate the repeat counts of
contigs and make our decision for extension based on this assumption. Further-
more, if in one iteration of the vertex length schedule, we find an unambiguous
way of extending a scaffold, it does not necessarily imply that it is the only way
to extend and there can possibly be other ways to extend which require looking
at shorter vertices for bridging. One way to address problem is by using the
vertex length threshold as a soft cutoff rather than a hard cutoff to allow shorter
contigs to compete with the larger contigs if they have very good support from
the reads and graph structure.

In Cerulean, we bypass the problems of complex repetitive structures in graph,
by only looking at uniquely occurring long vertices. We resolve only one branch-
ing vertex at a time under the inherent assumption that most long repeats
are maximal repeats isolated from other repeats of comparable length. Larger
genomes certainly violate this assumption to a large extent. Thus we may have
to connect scaffolds that are separated by multiple branching vertices of compa-
rable lengths. There is also the opportunity to exploit the structure of the graph
in extending the scaffolds as shown in Figure 7. A path tracing approach can
help us extend scaffolds across such multiple branching vertices. Path tracing is
a non-trivial problem in big graphs, but we can use path tracing in the context
of our incremental framework to solve specific small problems.

Finally there are techniques we can use to improve our ability to extend
scaffolds or add more edges to the skeleton graph. An edge in the skeleton graph
can correspond to a walk in the assembly graph. The input mapping from long
reads to contigs may miss some alignments from the long reads to intermediate
contigs due to high error rate. In such a case, we can perform a more informed
search for such a walk by looking at local alignments of reads along neighoring
contigs. If we can identify true chains of small contigs, then we can rerun the

362 V. Deshpande et al.

mapping the reads to the concatenated sequences of these chains and use these
mappings while extending existing scaffolds. PBJelly [23] has displayed that
gaps in scaffolds can be filled with high accuracy using the mapping reads.
Thus while retrieving the the intermediate sequences of scaffolds, we can use
a combination of long reads and assembled contigs to bridge the long contigs.
After we have finished making the most conservative calls using the assembled
short read contigs and filled in all gaps using the pairwise alignments of the long
reads, we can be more ambitious and bridge the gaps between the scaffolds with
targeted assembly of long reads.

In conclusion, we present a hybrid assembly approach that is both compu-
tationally effective and produces high quality assemblies. Our algorithm first
operates with a simplified version of the assembly graph consisting only of long
contigs and gradually improve the assembly by adding smaller contigs in each
iteration. In contrast to the state-of-the-art long reads error correction tech-
nique, which requires high computational resources and long running time on
a supercomputer even for bacterial genome datasets, our software can produce
comparable assembly using only a standard desktop in a short running time.

Acknowledgments. The authors will like to sincerely thank Pavel Pevzner and
Glenn Tesler for their insightful comments. V.D. and V.B. were supported in part
by NIH grants 5RO1-HG004962 and U54 HL108460, and by the NSF grant NSF-
CCF-1115206. S.P. was supported in part by NIH grant 3P41RR024851-02S1.

Disclosure Statement

No competing financial interests exist.

References

1. Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T., Ganapathy, G.,
Wang, Z., Rasko, D.A., McCombie, W.R., Jarvis, E.D., et al.: Hybrid error correc-
tion and de novo assembly of single-molecule sequencing reads. Nature Biotechnol-
ogy 30(7), 693–700 (2012)

2. Staden, R.: A strategy of dna sequencing employing computer programs. Nucleic
Acids Research 6(7), 2601–2610 (1979)

3. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(suppl. 2),
ii79–ii85 (2005)

4. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J.,
Kravitz, S.A., Mobarry, C.M., Reinert, K.H., Remington, K.A., et al.: A whole-
genome assembly of drosophila. Science 287(5461), 2196–2204 (2000)

5. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Research 22(3), 549–556 (2012)

6. Idury, R.M., Waterman, M.S.: A new algorithm for dna sequence assembly. Journal
of Computational Biology 2(2), 291–306 (1995)

Cerulean: A Hybrid Assembly Using High Throughput Short 363

7. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to dna frag-
ment assembly. Proceedings of the National Academy of Sciences 98(17), 9748–9753
(2001)

8. Chaisson, M.J., Pevzner, P.A.: Short read fragment assembly of bacterial genomes.
Genome Research 18(2), 324–330 (2008)

9. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J., Birol, İ.: Abyss:
a parallel assembler for short read sequence data. Genome Research 19(6), 1117–
1123 (2009)

10. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de bruijn graphs. Genome Research 18(5), 821–829 (2008)

11. Eisenstein, M.: Companies’ going long’generate sequencing buzz at marco island.
Nature Biotechnology 31(4), 265–266 (2013)

12. Waldbieser, G.: Production of long (1.5 kb–15.0 kb), accurate, dna sequencing
reads using an illumina hiseq2000 to support de novo assembly of the blue catfish
genome. In: Plant and Animal Genome XXI Conference, Plant and Animal Genome
(2013)

13. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C.,
Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al.: Nonhybrid, finished
microbial genome assemblies from long-read smrt sequencing data. Nature Methods
(2013)

14. Au, K.F., Underwood, J.G., Lee, L., Wong, W.H.: Improving pacbio long read
accuracy by short read alignment. PLoS One 7(10), e46679 (2012)

15. Hercus, C.: Novocraft short read alignment package (2009),
http://www.novocraft.com

16. Wu, T.D., Watanabe, C.K.: Gmap: a genomic mapping and alignment program for
mrna and est sequences. Bioinformatics 21(9), 1859–1875 (2005)

17. Bashir, A., Klammer, A.A., Robins, W.P., Chin, C.S., Webster, D., Paxinos, E.,
Hsu, D., Ashby, M., Wang, S., Peluso, P., et al.: A hybrid approach for the auto-
mated finishing of bacterial genomes. Nature Biotechnology (2012)

18. Ribeiro, F.J., Przybylski, D., Yin, S., Sharpe, T., Gnerre, S., Abouelleil, A., Berlin,
A.M., Montmayeur, A., Shea, T.P., Walker, B.J., et al.: Finished bacterial genomes
from shotgun sequence data. Genome Research 22(11), 2270–2277 (2012)

19. Chaisson, M.J., Tesler, G.: Mapping single molecule sequencing reads using basic
local alignment with successive refinement (blasr): application and theory. BMC
Bioinformatics 13(1), 238 (2012)

20. E.Coli MG1655 Illumina HiSeq2000 sequencing dataset,
ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/

MiSeq Ecoli MG1655 110721 PF.bam (2013) (online; accessed June 24, 2013)
21. E.Coli K12 MG1655 Pacbio RS sequencing dataset (2013),

http://files.pacb.com/datasets/primary-analysis/e-coli-k12/1.3.0/

e-coli-k12-mg1655-raw-reads-1.3.0.tgz (online; accessed June 24, 2013)
22. Schmutz, J., Wheeler, J., Grimwood, J., Dickson, M., Yang, J., Caoile, C., Bajorek,

E., Black, S., Chan, Y.M., Denys, M., et al.: Quality assessment of the human
genome sequence. Nature 429(6990), 365–368 (2004)

23. English, A.C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., Qin, X., Muzny,
D.M., Reid, J.G., Worley, K.C., et al.: Mind the gap: Upgrading genomes with pa-
cific biosciences rs long-read sequencing technology. PloS One 7(11), e47768 (2012)

http://www.novocraft.com
ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF.bam
ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF.bam
http://files.pacb.com/datasets/primary-analysis/e-coli-k12/1.3.0/e-coli-k12-mg1655-raw-reads-1.3.0.tgz
http://files.pacb.com/datasets/primary-analysis/e-coli-k12/1.3.0/e-coli-k12-mg1655-raw-reads-1.3.0.tgz

Using Cascading Bloom Filters to Improve

the Memory Usage for de Brujin Graphs

Kamil Salikhov1, Gustavo Sacomoto2,3, and Gregory Kucherov4,5

1 Lomonosov Moscow State University, Moscow, Russia
salikhov.kamil@gmail.com

2 INRIA Grenoble Rhône-Alpes, France
gustavo.sacomoto@inria.fr

3 Laboratoire Biométrie et Biologie Evolutive, Université Lyon 1, Lyon, France
4 Department of Computer Science, Ben-Gurion University of the Negev,

Be’er Sheva, Israel
5 Laboratoire d’Informatique Gaspard Monge, Université Paris-Est & CNRS,

Marne-la-Vallée, Paris, France
Gregory.Kucherov@univ-mlv.fr

Abstract. De Brujin graphs are widely used in bioinformatics for pro-
cessing next-generation sequencing (NGS) data. Due to the very large size
of NGS datasets, it is essential to represent de Bruijn graphs compactly,
and several approaches to this problem have been proposed recently. In
this work, we show how to reduce the memory required by the algorithm
of Chikhi and Rizk (WABI, 2012) that represents de Brujin graphs using
Bloom filters. Our method requires 30% to 40% less memory with re-
spect to their method, with insignificant impact to construction time. At
the same time, our experiments showed a better query time compared to
their method. This is, to our knowledge, the best practical representation
for de Bruijn graphs.

1 Introduction

Modern next-generation sequencing (NGS) technologies generate huge volumes
of short nucleotide sequences (reads) drawn from the DNA sample under study.
The length of a read varies from 35 to about 400 base pairs (letters) and the
number of reads may be hundreds of millions, thus the total volume of data may
reach tens or even hundreds of Gb.

Many computational tools dealing with NGS data, especially those devoted
to genome assembly, are based on the concept of a de Bruijn graph, see e.g. [8].
The nodes of the de Bruijn graph1 are all distinct k-mers occurring in the reads,
and two k-mers are linked by an arc if there is a suffix-prefix overlap of size
k − 1. The value of k is an open parameter, that in practice is chosen between
20 and 64. The idea of using de Bruijn graph for genome assembly goes back to

1 Note that this actually a subgraph of the de Bruijn graph under its classical combi-
natorial definition. However, we still call it de Bruijn graph to follow the terminology
common to the bioinformatics literature.

A. Darling and J. Stoye (Eds.): WABI 2013, LNBI 8126, pp. 364–376, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Using Cascading Bloom Filters to Improve the Memory Usage 365

the “pre-NGS era” [11]. Note, however, that de novo genome assembly is not the
only application of those graphs when dealing with NGS data. There are several
others, including: de novo transcriptome assembly [5] and de novo alternative
splicing calling [14] from transcriptomic NGS data (RNA-seq); metagenome as-
sembly [10] from metagenomic NGS data; and genomic variant detection [6] from
genomic NGS data using a reference genome.

Due to the very large size of NGS datasets, it is essential to represent de Bruijn
graphs as compactly as possible. This has been a very active line of research.
Recently, several papers have been published that propose different approaches
to compressing de Bruijn graphs [4,15,3,2,9].

Conway and Bromage [4] proposed a method based on classical succinct data
structures, i.e. bitmaps with efficient rank/select operations. On the same di-
rection, Bowe et al. [2] proposed a very interesting succinct representation that,
assuming only one string (read) is present, uses only 4m bits, where m is the
number of arcs in the graph. The more realistic case, where there are M reads,
can be easily reduced to the one string case by concatenating all M reads using
a special separator character. However, in this case the size of the structure is
4m+O(M logm) bits ([2], Theorem 1). Since the multiplicative constant of the
second term is hidden by the asymptotic notation, it is hard to know precisely
what would be the size of this structure in practice.

Ye at al. [15] proposed a different method based on a sparse representation
of de Bruijn graphs, where only a subset of k-mers present in the dataset are
stored. Pell et al. [9] proposed a method to represent it approximately, the so
called probabilistic de Bruijn graph. In their representation a node have a small
probability to be a false positive, i.e. the k-mer is not present in the dataset.
Finally, Chikhi and Rizk [3] improved Pell’s scheme in order to obtain an exact
representation of the de Bruijn graph. This was, to our knowledge, the best
practical representation of an exact de Bruijn graph.

In this work, we focus on the method proposed in [3] which is based on Bloom
filters. They were first used in [9] to provide a very space-efficient representation of
a subset of a given set (in our case, a subset of k-mers), at the price of allowing one-
sided errors, namely false positives. The method of [3] is based on the following idea:
if all queried nodes (k-mers) are only those which are reachable from some node
known to belong to the graph, then only a fraction of all false positives can actually
occur. Storing these false positives explicitly leads to an exact (false positive free)
and space-efficient representation of the de Bruijn graph.

Our contribution is an improvement of this scheme by changing the repre-
sentation of the set of false positives. We achieve this by iteratively applying a
Bloom filter to represent the set of false positives, then the set of “false false
positives” etc. We show analytically that this cascade of Bloom filters allows for
a considerable further economy of memory, improving the method of [3]. De-
pending on the value of k, our method requires 30% to 40% less memory with
respect to the method of [3]. Moreover, with our method, the memory grows
very little as k grows. Finally, we implemented our method and tested it against

366 K. Salikhov, G. Sacomoto, and G. Kucherov

[3] on real datasets. The tests confirm the theoretical predictions for the size of
structure and show a 20% to 30% improvement in query times.

2 Preliminaries

A Bloom filter is a space-efficient data structure for representing a given subset
of elements T ⊆ U , with support for efficient membership queries with one-sided
error. That is, if a query for an element x ∈ U returns no then x /∈ T , but if
it returns yes then x may or not belong to T , i.e. with small probability x /∈ T
(false positive). It consists of a bitmap (array of bits) B with size m and a set of
p distinct hash functions {h1, . . . , hp}, where hi : U �→ {0, . . . ,m− 1}. Initially,
all bits of B are set to 0. An insertion of an element x ∈ T is done by setting
the elements of B with indices h1(x), . . . , hp(x) to 1, i.e. B[hi(x)] = 1 for all
i ∈ [1, p]. The membership queries are done symmetrically, returning yes if all
B[hi(x)] are equal 1 and no otherwise. As shown in [7], when considering hash
functions that yield equally likely positions in the bit array, and for large enough
array size m and number of inserted elements n, the false positive rate F is

F ≈ (1− e−pn/m)p = (1− e−p/r)p (1)

where r = m/n is the number of bits (of the bitmap B) per element (of T
represented). It is not hard to see that this expression is minimized when p =
r ln 2, giving a false positive rate of

F ≈ (1− e−p/r)p = (1/2)p ≈ 0.6185r. (2)

A de Bruijn graph, for a given parameter k, of a set of reads (strings) R ⊆
Σ∗ = {A,C, T,G}∗ is entirely defined by the set T ⊆ U = Σk of k-mers present
in R. The nodes of the graph are precisely the k-mers of T and for any two
vertices u, v ∈ T , there is an arc from u to v if the suffix of u of size k − 1 is
equal to the prefix of v of the same size. Thus, given a set T ⊆ U of k-mers
we can represent its de Bruijn graph using a Bloom filter B. This approach has
the disadvantage of having false positive nodes, as direct consequence of the
false positive queries in the Bloom filter, which can create false connections in
the graph (see [9] for the influence of false positive nodes on the topology of the
graph). The naive way to remove those false positives nodes, by explicitly storing
(e.g. using a hash table) the set of all false positives of B, is clearly inefficient,
as the expected number of elements to be explicitly stored is |U |F = 4kF .

The key idea of [3] is to explicitly store only a subset of all false positives of B,
the so-called critical false positives. This is possible because in order to perform
an exact (without false positive nodes) graph traversal, only potential neighbors
of nodes in T are queried. In other words, the set of critical false positives consists
of the potential neighbors of T that are false positives of B, i.e. the k-mers from
U that overlap the k-mers from T by k − 1 letters and are false positives of B.
Thus, the size of the set of critical false positives is bounded by 8|T |, since each
node of T has at most 2|Σ| = 8 neighbors (for each node, there are |Σ| k-mers
overlapping the k− 1 suffix and |Σ| overlapping the k− 1 prefix). Therefore, the
expected number of critical false positives can be upper-estimated by 8|T |F .

Using Cascading Bloom Filters to Improve the Memory Usage 367

3 Cascading Bloom Filter

Let R be a set of reads and T0 be the set of occurring k-mers (nodes of the
de Brujin graph) that we want to store. As stated in Section 2, the method of
[3] stores T0 via a bitmap B1 using a Bloom filter, together with the set T1 of
critical false positives. T1 consists of those k-mers which have a k − 1 overlap
with k-mers from T0 but which are stored in B1 “by mistake”, i.e. belong2 to B1

but not to T0. B1 and T1 are sufficient to represent the graph provided that the
only queried k-mers are those which are potential neighbors of k-mers of T0.

The idea we introduce in this work is to use this structure recursively and
represent the set T1 by a new bitmap B2 and a new set T2, then represent T2

by B3 and T3, and so on. More formally, starting from B1 and T1 defined as
above, we define a series of bitmaps B1, B2, . . . and a series of sets T1, T2, . . . as
follows. B2 stores the set of false positives T1 using another Bloom filter, and
the set T2 contains the critical false positives of B2, i.e. “true nodes” from T0

that are stored in B2 “by mistake” (we call them false2 positives). B3 and T3,
and, generally, Bi and Ti are defined similarly: Bi stores k-mers of Ti−1 using a
Bloom filter, and Ti contains k-mers stored in Bi “by mistake”, i.e. those k-mers
that do not belong to Ti−1 but belong to Ti−2 (we call them falsei positives).
Observe that T0 ∩ T1 = ∅, T0 ⊇ T2 ⊇ T4 . . . and T1 ⊇ T3 ⊇ T5

The following lemma shows that the construction is correct, that is it allows
one to verify whether or not a given k-mer belongs to the set T0.

Lemma 1. Given a k-mer (node) K, consider the smallest i such that K �∈ Bi+1

(if K �∈ B1, we define i = 0). Then, if i is odd, then K ∈ T0, and if i is even
(including 0), then K �∈ T0.

Proof. Observe that K �∈ Bi+1 implies K �∈ Ti by the basic property of Bloom
filters that membership queries have one-sided error, i.e. there are no false neg-
atives. We first check the Lemma for i = 0, 1.

For i = 0, we have K �∈ B1, and then K �∈ T0.
For i = 1, we have K ∈ B1 but K �∈ B2. The latter implies that K �∈ T1, and

then K must be a false2 positive, that is K ∈ T0. Note that here we use the fact
that the only queried k-mers K are either nodes of T0 or their neighbors in the
graph (see [3]), and therefore if K ∈ B1 and K �∈ T0 then K ∈ T1.

For the general case i ≥ 2, we show by induction that K ∈ Ti−1. Indeed,
K ∈ B1∩. . .∩Bi implies K ∈ Ti−1∪Ti (which, again, is easily seen by induction),
and K �∈ Bi+1 implies K �∈ Ti.

Since Ti−1 ⊆ T0 for odd i, and Ti−1 ⊆ T1 for even i (for T0 ∩ T1 = ∅), the
lemma follows.

Naturally, the lemma provides an algorithm to check if a given k-mer K belongs
to the graph: it suffices to check successively if it belongs to B1, B2, . . . until we
encounter the first Bi+1 which does not contain K. Then, the answer will simply
depend on whether i is even or odd: K belongs to the graph if and only if i is odd.

2 By a slight abuse of language, we say that“an element belongs to Bj” if it is accepted
by the corresponding Bloom filter.

368 K. Salikhov, G. Sacomoto, and G. Kucherov

In our reasoning so far, we assumed an infinite number of bitmaps Bi. Of
course, in practice we cannot store infinitely many (and even simply many)
bitmaps. Therefore, we “truncate” the construction at some step t and store a
finite set of bitmaps B1, B2, . . . , Bt together with an explicit representation of
Tt. The procedure of Lemma 1 is extended in the obvious way: if for all 1 ≤ i ≤ t,
K ∈ Bi, then the answer is determined by directly checking K ∈ Tt.

4 Memory and Time Usage

First, we estimate the memory needed by our data structure, under the assump-
tion of an infinite number of bitmaps. Let N be the number of “true positives”,
i.e. nodes of T0. As stated in Section 2, if T0 has to be stored via a bitmap B1 of
size rN , the false positive rate can be estimated as cr, where c = 0.6185. And,
the expected number of critical false positive nodes (set T1) has been estimated
in [3] to be 8Ncr, as every node has eight extensions, i.e. potential neighbors in
the graph. We slightly refine this estimation to 6Ncr by noticing that for most of
the graph nodes, two out of these eight extensions belong to T0 (are real nodes)
and thus only six are potential false positives. Furthermore, to store these 6Ncr

critical false positive nodes, we use a bitmap B2 of size 6rNcr. Bitmap B3 is used
for storing nodes of T0 which are stored in B2 “by mistake” (set T2). We estimate
the number of these nodes as the fraction cr (false positive rate of filter B2) of
N (size of T0), that is Ncr. Similarly, the number of nodes we need to put to B4

is 6Ncr multiplied by cr, i.e. 6Nc2r. Keeping counting in this way, the memory
needed for the whole structure is rN + 6rNcr + rNcr + 6rNc2r + rNc2r + ...
bits. The number of bits per k-mer is then

r+ 6rcr + rcr + 6rc2r + ... = (r+ 6rcr)(1 + cr + c2r + ...) = (1 + 6cr)
r

1 − cr
. (3)

A simple calculation shows that the minimum of this expression is achieved when
r = 5.464, and then the minimum memory used per k-mer is 8.45 bits.

As mentioned earlier, in practice we store only a finite number of bitmaps
B1, . . . , Bt together with an explicit representation (such as array or hash table) of
Tt. In this case, the memory taken by the bitmaps is a truncated sum rN +6rNcr +
rNcr + .., and a data structure storing Tt takes either 2k ·Nc�

t
2 �r or 2k · 6Nc�

t
2 �r

bits, depending on whether t is even or odd. The latter follows from the observations
that we need to storeNc�

t
2 �r (or 6rNc�

t
2 �r) k-mers, each taking 2k bits of memory.

Consequently, we have to adjust the optimal value of r minimizing the total space,
and re-estimate the resulting space spent on one k-mer.

Table 1 shows estimations for optimal values of r and the corresponding space
per k-mer for t = 4 and t = 6, and several values of k. The data demonstrates
that even such small values of t lead to considerable memory savings. It ap-
pears that the space per k-mer is very close to the “optimal” space (8.45 bits)
obtained for the infinite number of filters. Table 1 reveals another advantage of
our improvement: the number of bits per stored k-mer remains almost constant
for different values of k.

Using Cascading Bloom Filters to Improve the Memory Usage 369

Table 1. 1st column: k-mer size; 2nd and 4th columns: optimal value of r for Bloom
filters (bitmap size per number of stored elements) for t = 4 and t = 6 respectively;
3rd and 5th columns: the resulting space per k-mer (for t = 4 and t = 6); 6th column:
space per k-mer for the method of [3] (t = 1)

k optimal r bits per k-mer optimal r bits per k-mer bits per k-mer

for t = 4 for t = 4 for t = 6 for t = 6 for t = 1 ([3])

16 5.777 8.556 5.506 8.459 12.078

32 6.049 8.664 5.556 8.47 13.518

64 6.399 8.824 5.641 8.49 14.958

128 6.819 9.045 5.772 8.524 16.398

The last column of Table 1 shows the memory usage of the original method of
[3], obtained using the estimation (1.44 log2(16k

2.08) + 2.08) the authors provided.
Note that according to that estimation, doubling the value of k results in a
memory increment by 1.44 bits, whereas in our method the increment is of 0.11
to 0.22 bits.

Let us now estimate preprocessing and query times for our scheme. If the
value of t is small (such as t = 4, as in Table 1), the preprocessing time grows
insignificantly in comparison to the original method of [3]. To construct each Bi,
we need to store Ti−2 (possibly on disk, if we want to save on the internal memory
used by the algorithm) in order to compute those k-mers which are stored in
Bi−1 “by mistake”. The preprocessing time increases little in comparison to the
original method of [3], as the size of Bi decreases exponentially and then the
time spent to construct the whole structure is linear on the size of T0.

The query time can be split in two parts: the time spent on querying t Bloom
filters and the time spent on querying Tt. Clearly, using t Bloom filters instead
of a single one introduces a multiplicative factor of t to the first part of the query
time. On the other hand, the set Tt is generally much smaller than T1, due to
the above-mentioned exponential decrease. Depending on the data structure for
storing Tt, the time saving in querying Tt vs. T1 may even dominate the time loss
in querying multiple Bloom filters. Our experimental results (Section 5.1 below)
confirm that this situation does indeed occur in practice. Note that even in the
case when querying Tt weakly depends on its size (e.g. when Tt is implemented
by a hash table), the query time will not increase much, due to our choice of a
small value for t, as discussed earlier.

4.1 Using Different Values of r for Different Filters

In the previous section, we assumed that each of our Bloom filters uses the same
value of r, the ratio of bitmap size to the number of stored k-mers. However,
formula (3) for the number of bits per k-mer shows a difference for odd and
even filter indices. This suggests that using different parameters r for different

370 K. Salikhov, G. Sacomoto, and G. Kucherov

filters, rather than the same for all filters, may reduce the space even further. If
ri denotes the corresponding ratio for filter Bi, then (3) should be rewritten to

r1 + 6r2c
r1 + r3c

r2 + 6r4c
r1+r3 + ..., (4)

and the minimum value of this expression becomes 7.93 (this value is achieved
with r1 = 4.41; ri = 1.44, i > 1).

In the same way, we can use different values of ri in the truncated case. This
leads to a small 2% to 4% improvement in comparison with case of unique value
of r. Table 2 shows results for the case t = 4 for different values of k.

Table 2. Estimated memory occupation for the case of different values of r vs. single
value of r, for 4 Bloom filters (t = 4). Numbers in the second column represent values
of ri on which the minimum is achieved. For the case of single r, its value is shown in
Table 1.

k r1, r2, r3, r4 bits per k-mer bits per k-mer

different values of r single value of r

16 5.254, 3.541, 4.981, 8.653 8.336 8.556

32 5.383, 3.899, 5.318, 9.108 8.404 8.664

64 5.572, 4.452, 5.681, 9.108 8.512 8.824

128 5.786, 5.108, 6.109, 9.109 8.669 9.045

5 Experimental Results

5.1 Implementation and Experimental Setup

We implemented our method using the Minia software [3] and ran comparative
tests for 2 and 4 Bloom filters (t = 2, 4). Note that since the only modified part of
Minia was the construction step and the k-mer membership queries, this allows
us to precisely evaluate our method against the one of [3].

The first step of the implementation is to retrieve the list of k-mers that appear
more than d times using DSK [13] – a constant memory streaming algorithm to
count k-mers. Each k-mer appearing more than d times (set T0) is inserted into
B1. Next, all possible extensions of each k-mer in T0 are queried against B1, and
those which return true are written to the disk. Then, this set is traversed and
only the k-mers absent from T0 are kept. This results in the set T1 of critical false
positives, which is also kept on disk. Up to this point, the procedure is identical
to that of [3].

Next, we insert all k-mers from T1 into B2 and to obtain T2, we check for each
k-mer in T0 if a query to B2 returns true. This results in the set T2. Thus, at
this point we have B1, B2 and T2, a complete representation for t = 2. In order

Using Cascading Bloom Filters to Improve the Memory Usage 371

to build the data structure for t = 4, we continue this process, by inserting T2 in
B3 and retrieving T3 from T1 (stored on disk). It should be noted that to obtain
Ti we need Ti−2, and by always storing it on disk we guarantee not to use more
memory than the size of the final structure. The set Tt (that is, T1, T2 or T4 in
our experiments) is stored as a sorted array and is searched by a binary search.
We found this implementation more efficient than a hash table.

Assessing the query time is done through the procedure of graph traversal, as it
is implemented in [3]. Since the procedure is identical and independent on the data
structure, the time spent on graph traversal is a faithful estimator of the query time.

We compare three versions: t = 1 (i.e. the version of [3]), t = 2 and t = 4.
For convenience, we define 1 Bloom, 2 Bloom and 4 Bloom as the versions with
t = 1, 2 and 4, respectively.

5.2 E.coli Dataset, Varying k

In this set of tests, our main goal was to evaluate the influence of the k-mer size
on principal parameters: size of the whole data structure, size of the set Tt, graph
traversal time, and time of construction of the data structure. We retrieved 10M
E. coli reads of 100bp from the Short Read Archive (ERX008638) without read
pairing information and extracted all k-mers occurring at least two times. The
total number of k-mers considered varied, depending on the value of k, from
6,967,781 (k = 15) to 5,923,501 (k = 63). We ran each version, 1 Bloom ([3]),
2 Bloom and 4 Bloom, for values of k ranging from 16 to 64. The results are
shown in Fig. 1.

The total size of the structures in bits per stored k-mer, i.e. the size ofB1 and T1

(respectively, B1, B2,T2 or B1, B2, B3, B4,T4) is shown in Fig. 1(a). As expected,
the space for 4 Bloom filters is the smallest for all values of k considered, showing a
considerable improvement, ranging from 32% to 39%, over the version of [3]. Even
the version with just 2 Bloom filters shows an improvement of at least 20% over
[3], for all values of k. Regarding the influence of the k-mer size on the structure
size, we observe that for 4 Bloom filters the structure size is almost constant, the
minimum value is 8.60 and the largest is 8.89, an increase of only 3%. For 1 and 2
Bloom the same pattern is seen: a plateau from k = 16 to 32, a jump for k = 33
and another plateau from k = 33 to 64. The jump at k = 32 is due to switching
from 64-bit to 128-bit representation of k-mers in the table Tt.

The traversal times for each version is shown in Fig. 1(c). The fastest version is
4 Bloom, showing an improvement over [3] of 18% to 30%, followed by 2 Bloom.
This result is surprising and may seem counter-intuitive, as we have four filters
to apply to the queried k-mer rather than a single filter as in [3]. However, the
size of T4 (or even T2) is much smaller than T1, as the size of Ti’s decreases
exponentially. As Tt is stored in an array, the time economy in searching T4 (or
T2) compared to T1 dominates the time lost on querying additional Bloom filters,
which explains the overall gain in query time.

As far as the construction time is concerned (Fig. 1(d)), our versions yielded
also a faster construction, with the 4 Bloom version being 5% to 22% faster
than that of [3]. The gain is explained by the time required for sorting the array

372 K. Salikhov, G. Sacomoto, and G. Kucherov

storing Tt, which is much higher for T0 than for T2 or T4. However, the gain is
less significant here, and, on the other hand, was not observed for bigger datasets
(see Section 5.4).

5.3 E. coli Dataset, Varying Coverage

From the complete E. coli dataset (≈44M reads) from the previous section,
we selected several samples ranging from 5M to 40M reads in order to assess
the impact of the coverage on the size of the data structures. This strain E.
coli (K-12 MG1655) is estimated to have a genome of 4.6M bp [1], implying
that a sample of 5M reads (of 100bp) corresponds to ≈100X coverage. We set
d = 3 and k = 27. The results are shown in Fig. 2. As expected, the memory
consumption per k-mer remains almost constant for increasing coverage, with
a slight decrease for 2 and 4 Bloom. The best results are obtained with the 4
Bloom version, an improvement of 33% over the 1 Bloom version of [3]. On the
other hand, the number of distinct k-mers increases markedly (around 10% for
each 5M reads) with increasing coverage, see Fig. 2(b). This is due to sequencing
errors: an increase in coverage implies more errors with higher coverage, which
are not removed by our cutoff d = 3. This suggests that the value of d should
be chosen according to the coverage of the sample. Moreover, in the case where
read qualities are available, a quality control pre-processing step may help to
reduce the number of sequencing errors.

5.4 Human Dataset

We also compared 2 and 4 Bloom versions with the 1 Bloom version of [3]
on a large dataset. For that, we retrieved 564M Human reads of 100bp (SRA:
SRX016231) without pairing information and discarded the reads occurring less
than 3 times. The dataset corresponds to ≈17X coverage. A total of 2,455,753,508
k-mers were indexed. We ran each version, 1 Bloom ([3]), 2 Bloom and 4 Bloom
with k = 23. The results are shown in Table 3.

The results are in general consistent with the previous tests on E.coli datasets.
There is an improvement of 34% (21%) for the 4 Bloom (2 Bloom) in the size
of the structure. The graph traversal is also 26% faster in the 4 Bloom version.
However, in contrast to the previous results, the graph construction time in-
creased by 10% and 7% for 4 and 2 Bloom versions respectively, when compared
to the 1 Bloom version. This is due to the fact that disk writing/reading oper-
ations now dominate the time for the graph construction, and 2 and 4 Bloom
versions generate more disk accesses than 1 Bloom. As stated in Section 5.1,
when constructing the 1 Bloom structure, the only part written on the disk is
T1 and it is read only once to fill an array in memory. For 4 Bloom, T1 and T2

are written to the disk, and T0 and T1 are read at least one time each to build
B2 and B3. Moreover, since the size coefficient of B1 reduces, from r = 11.10 in
1 Bloom to r = 5.97 in 4 Bloom, the number of false positives in T1 increases.

Using Cascading Bloom Filters to Improve the Memory Usage 373

20 30 40 50 60

8
10

12
14

16
18

Structure size

k-mer size

bi
ts

 /
k-

m
er

1 bloom
2 bloom
4 bloom

(a)

20 30 40 50 60

0
50

00
0

15
00

00
25

00
00

35
00

00

Size of false positives table

k-mer size

fa
ls

e
po

si
tiv

es
 ta

bl
e

si
ze

1 bloom
2 bloom
4 bloom

(b)

20 30 40 50 60

20
30

40
50

60

dBG traversal time

k-mer size

tra
ve

rs
al

 ti
m

e
(s

)

1 bloom
2 bloom
4 bloom

(c)

20 30 40 50 60

10
15

20
25

30

dBG construction time

k-mer size

co
ns

tru
ct

io
n

tim
e

(s
)

1 bloom
2 bloom
4 bloom

(d)

Fig. 1. Results for 10M E.coli reads of 100bp using several values of k. The 1 Bloom
version corresponds to the one presented in [3]. (a) Size of the structure in bits used per
k-mer stored. (b) Number of false positives stored in T1, T2 or T4 for 1, 2 or 4 Bloom
filters, respectively. (c) De Bruijn graph construction time, excluding k-mer counting
step. (d) De Bruijn graph traversal time, including branching k-mer indexing.

374 K. Salikhov, G. Sacomoto, and G. Kucherov

5 10 15 20 25 30 35 40

8
10

12
14

16
18

Structure size

number of reads (M)

bi
ts

 /
k-

m
er

1 bloom
2 bloom
4 bloom

(a)

5 10 15 20 25 30 35 40

5e
+0

6
6e

+0
6

7e
+0

6
8e

+0
6

9e
+0

6

Number of distict k-mers

number of reads (M)

nu
m

be
r o

f k
-m

er
s

(b)

Fig. 2. Results for E.coli reads of 100bp using k = 27. The 1 Bloom version corresponds
to the one presented in [3]. (a) Size of the structure in bits used per k-mer stored. (b)
Number of distinct k-mers.

Table 3. Results of 1, 2 and 4 Bloom filters version for 564M Human reads of 100bp
using k = 23. The 1 Bloom version corresponds to the one presented in [3].

Method 1 Bloom 2 Bloom 4 Bloom

Construction time (s) 40160.7 43362.8 44300.7

Traversal time (s) 46596.5 35909.3 34177.2

r coefficient 11.10 7.80 5.97

Bloom filters size (MB)

B1 = 3250.95 B1 = 2283.64 B1 = 1749.04

B2 = 323.08 B2 = 591.57

B3 = 100.56

B4 = 34.01

False positive table size (MB) T1 = 545.94 T2 = 425.74 T4 = 36.62

Total size (MB) 3796.89 3032.46 2511.8

Size (bits/k-mer) 12.96 10.35 8.58

6 Discussion and Conclusions

Using cascading Bloom filters for storing de Bruijn graphs brings a clear advan-
tage over the single-filter method of [3]. In terms of memory consumption, which
is the main parameter here, we obtained an improvement of around 30%-40%

Using Cascading Bloom Filters to Improve the Memory Usage 375

in all our experiments. Our data structure takes 8.5 to 9 bits per stored k-mer,
compared to 13 to 15 bits by the method of [3]. This confirms our analytical
estimations. The above results were obtained using only four filters and are very
close to the estimated optimum (around 8.4 bits/k-mer) produced by the infi-
nite number of filters. An interesting characteristic of our method is that the
memory grows insignificantly with the growth of k, even slower than with the
method of [3]. Somewhat surprisingly, we also obtained a significant decrease,
of order 20%-30%, of query time. The construction time of the data structure
varied from being 10% slower (for the human dataset) to 22% faster (for the
bacterial dataset).

As stated previously, another compact encoding of de Bruijn graphs has been
proposed in [2], however no implementation of the method was made available.
For this reason, we could not experimentally compare our method with the one
of [2]. We remark, however, that the space bound of [2] heavily depends on the
number of reads (i.e. coverage), while in our case, the data structure size is
almost invariant with respect to the coverage (Section 5.3).

An interesting prospect for further possible improvements of our method is of-
fered by work [12], where an efficient replacement to Bloom filter was introduced.
The results of [12] suggest that we could hope to reduce the memory to about
5 bits per k-mer. However, there exist obstacles on this way: an implementation
of such a structure would probably result in a significant construction and query
time increase.

Acknowledgements. Part of this work has been done during the visit of KS to
LIGM in France, supported by the CNRS French-Russian exchange program in
Computer Science. GK has been partly supported by the ABS2NGS grant of the
French gouvernement (program Investissement d’Avenir) as well as by a Marie-
Curie Intra-European Fellowship for Carrier Development. GS was supported
by the European Research Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement no. [247073]10

References

1. Blattner, F.R., Plunkett, G., Bloch, C.A., et al.: The complete genome sequence
of Escherichia coli k-12. Science 277(5331), 1453–1462 (1997)

2. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012)

3. Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based
on a bloom filter. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534,
pp. 236–248. Springer, Heidelberg (2012)

4. Conway, T.C., Bromage, A.J.: Succinct data structures for assembling large
genomes. Bioinformatics 27(4), 479–486 (2011)

5. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., et al.: Full-length tran-
scriptome assembly from RNA-Seq data without a reference genome. Nat.
Biotech. 29(7), 644–652 (2011)

376 K. Salikhov, G. Sacomoto, and G. Kucherov

6. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44(2), 226–232
(2012)

7. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: Building a better
bloom filter. Random Struct. Algorithms 33(2), 187–218 (2008)

8. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation se-
quencing data. Genomics 95(6), 315–327 (2010)

9. Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J.M., Brown, C.T.: Scal-
ing metagenome sequence assembly with probabilistic de Bruijn graphs. Proc. Natl.
Acad. Sci. U.S.A. 109(33), 13272–13277 (2012)

10. Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: Meta-IDBA: a de novo assembler
for metagenomic data. Bioinformatics 27(13), i94–i101 (2011)

11. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. Natl. Acad. Sci. U.S.A. 98(17), 9748–9753 (2001)

12. Porat, E.: An optimal Bloom filter replacement based on matrix solving. In:
Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS,
vol. 5675, pp. 263–273. Springer, Heidelberg (2009)

13. Rizk, G., Lavenier, D., Chikhi, R.: DSK: k-mer counting with very low memory
usage. Bioinformatics (2013)

14. Sacomoto, G., Kielbassa, J., Chikhi, R., Uricaru, R., et al.: KISSPLICE: de-
novo calling alternative splicing events from RNA-seq data. BMC Bioinformat-
ics 13(suppl. 6), S5 (2012)

15. Ye, C., Ma, Z., Cannon, C., Pop, M., Yu, D.: Exploiting sparseness in de novo
genome assembly. BMC Bioinformatics 13(suppl. 6), S1 (2012)

Author Index

Alpert, Matthew 70

Backofen, Rolf 112
Bafna, Vineet 349
Bernt, Matthias 200
Biller, Priscila 230
Böcker, Sebastian 45, 156
Brejová, Broňa 287
Bu, Dongbo 18
Bucher, Philipp 326
Bulteau, Laurent 244

Canzar, Stefan 156
Ciardo, Gianfranco 70
Close, Timothy J. 70
Cui, Xuefeng 18

Deshpande, Viraj 349
Dojer, Norbert 259
Duggal, Geet 300
Dührkop, Kai 45
Duma, Denisa 70

Farhan, Hesso 33
Fernández-Baca, David 185
Fertin, Guillaume 244
Filippova, Darya 300
Fricke, Markus 112
Frid, Yelena 126
Fung, Eric D.K. 349

Gat-Viks, Irit 33
Gilbert, Anna C. 70
Gusfield, Dan 126

Jansson, Jesper 141

Kapun, Evgeny 59
Kingsford, Carl 300
Klau, Gunnar W. 156
Kolmogorov, Mikhail 215
Komusiewicz, Christian 244
Kucherov, Gregory 364
Kuosmanen, Anna 85

Lacroix, Vincent 99
Leibovich, Limor 273
Li, Ming 18
Li, Shuai Cheng 18
Lin, Yu 326
Lonardi, Stefano 70
Ludwig, Marcus 45

Mäkinen, Veli 85
Marz, Manja 112
Mazza, Arnon 33
Meidanis, João 230
Meusel, Marvin 45
Middendorf, Martin 200
Minkin, Ilya 215
Modzelewski, Micha�l 259
Moret, Bernard M.E. 1, 326

Nair, Nishanth Ulhas 326
Nánási, Michal 287
Ngo, Hung Q. 70

Onodera, Taku 338

Patel, Anand 215
Patro, Rob 300
Pham, Son 215, 349

Qin, Jing 112

Rizzi, Romeo 85
Rudra, Atri 70
Rusu, Irena 244

Sacomoto, Gustavo 99, 364
Sadakane, Kunihiko 338
Sagot, Marie-France 99
Salikhov, Kamil 364
Sandel, Brody 170
Sharan, Roded 33
Shatkay, Hagit 3
Shen, Chuanqi 141
Shibuya, Tetsuo 338
Simha, Ramanuja 3

378 Author Index

Stadler, Peter F. 112
Sung, Wing-Kin 141

Tomescu, Alexandru I. 85
Tsarev, Fedor 59
Tsirogiannis, Constantinos 170
Tsourakakis, Charalampos E. 313

Vakati, Sudheer 185
Venkatachalam, Balaji 126

Vinař, Tomáš 287
Vyahhi, Nikolay 215

Wieseke, Nicolas 200
Wootters, Mary 70

Yakhini, Zohar 273

Zanetti, João Paulo Pereira 230

	Preface
	Organization
	Table of Contents
	Extending the Reach of Phylogenetic Inference
	Protein (Multi-)Location Prediction: Using Location Inter-dependencies in a Probabilistic Framework
	1 Introduction
	2 Problem Formulation
	3 Methods
	3.1 Structure and Parameter Learning of Bayesian Network classifiers
	3.2 Multiple Location Prediction

	4 Experiments and Results
	4.1 Data Preparation
	4.2 Experimental Setting and Performance Measures
	4.3 Classification Results

	5 Discussion and Future Work
	References

	Towards Reliable Automatic Protein Structure Alignment
	1 Introduction
	2 Method
	2.1 Protein Structure Alignment Search Algorithm
	2.2 Protein Structure Alignment Scoring Function

	3 Result
	3.1 Search Algorithm Evaluation on TM-Score
	3.2 Search Algorithm Evaluation on GDT Score
	3.3 Scoring Function Evaluation on Consistency with Eye-Examed Alignments

	4 Discussion and Conclusion
	References

	A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions
	1 Introduction
	2 Preliminaries
	3 The MKL Algorithm
	3.1 An ILP Formulation
	3.2 Implementation Details and Performance Evaluation

	4 Experimental Results
	4.1 Response to Influenza Infection
	4.2 Regulation of Endoplasmic Reticulum (ER) Export

	5 Conclusions
	References

	Faster Mass Decomposition
	1 Introduction
	2 Preliminaries
	3 Algorithms for Decomposing Masses
	4 Iterative Version of the Decomposition Algorithm
	5 Selecting Optimal Blowup Factors
	6 Range Decompositions
	7 Results
	8 Conclusion
	References

	On NP-Hardness of the Paired de Bruijn Sound Cycle Problem
	1 Introduction
	2 Definitions
	3 Trivial Cases
	4 A Case with Fixed
	5 A Case with Fixed
	6 A Case with Both
	7 Conclusion
	References

	Accurate Decoding of Pooled Sequenced Data Using Compressed Sensing
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Decoding Algorithms
	5 Experimental Results
	5.1 Simulation Results on the Rice Genome
	5.2 Results on the Barley Genome

	6 Conclusions
	References

	Novel Combinatorial Method for Estimating Transcript Expression with RNA-Seq: Bounding the Number of Paths
	1 Introduction
	2 Methods
	2.1 The NP-Hardness Proof
	2.2 The Dynamic Programming Algorithms
	2.3 Optimizations and Heuristics for a Practical Implementation

	3 Experimental Results
	3.1 Simulated Human Data
	3.2 Real Human Data

	4 Conclusion
	References

	A Polynomial Delay Algorithm for the Enumeration of Bubbles with Length Constraints in Directed Graphs and Its Application to the Detection of Alternative Splicing in RNA-seq Data
	1 Introduction
	2 De Bruijn Graphs and Alternative Splicing
	3 AnO(n(m+ n log n)) Delay Algorithm
	4 Implementation and Experimental Results
	4.1 Dijkstra’s Algorithm with Different Priority Queues
	4.2 Comparison with the Kissplice Algorithm
	4.3 On the Usefulness of Larger Values of α1

	5 A Natural Generalization
	6 Conclusion
	References

	Distribution of Graph-Distances in Boltzmann Ensembles of RNA Secondary Structures
	1 Introduction
	2 Theory
	2.1 RNA Secondary Structures
	2.2 Boltzmann Distribution of Graph-Distances
	2.3 Recursions of Zv,w[d]: v and w Are External
	2.4 Recursions of Zv,w[d]: The General Case
	2.5 Recursions for
	2.5 Recursions for Z^{B,v}_{i,j} [d_{\ell}, d_r]

	3 Discussion and Applications
	References

	Faster Algorithms for RNA-Folding Using the Four-Russians Method
	1 Introduction
	2 The Nussinov Algorithm
	3 The Four-Russians Algorithms
	3.1 Two-Vector Algorithm
	3.2 Other Variants

	4 Parallel Algorithm
	5 Parallel Implementation
	5.1 GPU Architecture
	5.2 Related Work
	5.3 Design of the Four-Russians CUDA Program

	6 Empirical Results
	7 Conclusions and Future Work
	References

	Algorithms for the Majority Rule (+) Consensus Tree and the Frequency Difference Consensus Tree
	1 Introduction
	1.1 Definitions and Notation
	1.2 Previous Work
	1.3 Organization of the Paper and New Results

	2 Preliminaries
	2.1 The delete and insert Operations
	2.2 Subroutines

	3 Constructing the Majority Rule (+) Consensus Tree
	4 Constructing the Frequency Difference Consensus Tree
	4.1 Algorithm Frequency Difference
	4.2 Procedure Filter Clusters

	5 Implementations
	References

	The Generalized Robinson-Foulds Metric
	1 Introduction
	2 The Generalized Robinson-Foulds Distance
	2.1 Matchings and Arboreal Matchings
	2.2 The Jaccard-Robinson-Foulds Metric

	3 Complexity of the Problem
	4 An Integer Linear Program
	5 Evaluation
	6 Conclusion
	References

	Computing the Skewness of the Phylogenetic Mean Pairwise Distance in Linear Time
	1 Introduction
	2 Description of the Problem and Basic Concepts
	2.1 Aggregating the Costs of Paths

	3 Computing the Skewness of the MPD
	References

	Characterizing Compatibility and Agreement of Unrooted Trees via Cuts in Graphs
	1 Introduction
	2 Preliminaries
	3 Display Graphs and Edge Label Intersection Graphs
	4 Characterizing Compatibility via Cuts
	5 Splits and Cuts
	6 Characterizing Agreement via Cuts
	7 Conclusion
	References

	Unifying Parsimonious Tree Reconciliation
	1 Introduction
	2 Basic Notations and Preliminaries
	3 Methods
	3.1 Generalized Coevolutionary Event Model
	3.2 Dynamic Programming
	3.3 Time Consistency
	3.4 Branch-and-Bound Algorithm

	4 Discussion
	5 Conclusion
	References

	Sibelia: A Scalable and Comprehensive SyntenyBlock Generation Tool for Closely Related Microbial Genomes
	1 Introduction
	2 Methods
	2.1 De Bruijn Graph and Cycles
	2.2 Effects of k-Mer Size and Bulge Removal Procedure in Repeat Decomposition
	2.3 Hierarchical Representation of Synteny Blocks

	3 Results
	3.1 Comparing Sibelia with Existing Tools

	4 Discussion
	Appendix
	References

	On the Matrix Median Problem
	1 Introduction
	2 Algebraic Rearrangement Theory
	2.1 Permutations
	2.2 Modeling Genomes as Permutations

	3 Results
	3.1 Matrix Distance
	3.2 Matrix Median
	3.3 Partitioning R^n
	3.4 Computing Median Candidates
	3.5 Approximation Factor

	4 Conclusions
	References

	A Fixed-Parameter Algorithm for Minimum Common String Partition with Few Duplications
	1 Introduction
	2 An Improved Fixed-Parameter Algorithm
	2.1 CSPs, Samples and Witnesses
	2.2 The Sample Graph
	2.3 Branching on Odd Connected Components
	2.4 Solving Instances without Rare Odd Paths or Singletons

	3 Parameter Improvement
	4 Data Reduction Rules
	5 Implementation and Experiments
	6 Conclusion
	References

	MSARC: Multiple Sequence Alignment by Residue Clustering
	1 Introduction
	2 Methods
	2.1 Pairwise Stochastic Alignment
	2.2 Alignment Graphs
	2.3 Residue Clustering
	2.4 Refinement

	3 Results
	3.1 Benchmark Data and Methodology
	3.2 Aligner Comparison

	4 Discussion
	References

	Mutual Enrichment in Ranked Listsand the Statistical Assessment of Position Weight Matrix Motifs
	1 Introduction
	2 Background and Definitions
	2.1 Mutual Enrichment in Ranked Lists – The mmHG Statistics
	2.2 PWM Motifs
	2.3 mmHG Statistics for PWM Motifs

	3 Algorithms and Results
	3.1 Estimation of the mmHG p-Value – Introducing First Upper Bound
	3.2 A Refined Upper Bound for the p-Value
	3.3 Comparison to a Different Variant
	3.4 Assessment of Tightness
	3.5 Application in PWM Motif Search

	4 Concluding Remarks
	References

	Probabilistic Approaches to Alignment with Tandem Repeats
	1 Introduction
	2 Pair HMM for Alignment with Tandem Repeats
	3 Inference Criteria and Algorithms
	3.1 Decoding Criteria for the Three-State PHMM
	3.2 Decoding Criteria for the SFF Model
	3.3 Practical Considerations

	4 Experiments
	5 Conclusion
	References

	Multiscale Identification of Topological Domainsin Chromatin
	1 Introduction
	2 Problem Definitions
	3 Algorithms
	3.1 Domain Identification at a Particular Resolution
	3.2 Obtaining a Consensus Set of Persistent Domains across Resolutions

	4 Results
	4.1 Ability to Identify Densely Interacting Domains across Scales
	4.2 Domain Persistence across Scales
	4.3 Comparison with the Previously Identified Set of Domains in Dixon et al.
	4.4 Enrichment of CTCF and Histone Modifications Near Boundaries

	5 Discussion and Conclusions
	References

	Modeling Intratumor Gene Copy Number Heterogeneity Using Fluorescencein Situ Hybridization Data
	1 Introduction
	2 ProposedMethod
	2.1 Model and Fitting
	2.2 Unique Reconstruction of Oncogenetic Trees
	2.3 Progression Inference

	3 Experimental Results
	4 Conclusion
	References

	Phylogenetic Analysis of Cell Types Using Histone Modifications
	1 Introduction and Background
	2 Methods
	2.1 Model of Differentiation for Histone Marks
	2.2 Data Representation Techniques
	2.3 Phylogenetic Analysis
	2.4 On the Inference of Ancestral Nodes

	3 Experimental Design
	4 Results/Discussion
	4.1 H3K4me3 Data on Individual Replicates
	4.2 H3K4me3 Data with All Replicates
	4.3 Using Top Peaks and Masking Regions
	4.4 A Better Looking Tree

	5 Conclusions
	References

	Detecting Superbubbles in Assembly Graphs
	1 Introduction
	2 Preliminaries
	2.1 Superbubble
	2.2 Construction of a Unipath Graph

	3 Algorithm
	4 Experiment
	5 Concluding Remarks
	References

	Cerulean: A Hybrid Assembly Using High Throughput Short and Long Reads
	1 Introduction
	2 Methods
	3 Results
	4 Discussions
	References

	Using Cascading Bloom Filters to Improve the Memory Usage for de Brujin Graphs
	1 Introduction
	2 Preliminaries
	3 Cascading Bloom Filter
	4 MemoryandTimeUsage
	4.1 Using Different Values of r for Different Filters

	5 Experimental Results
	5.1 Implementation and Experimental Setup
	5.2 E.coli Dataset, Varying k
	5.3 E. coli Dataset, Varying Coverage
	5.4 Human Dataset

	6 Discussion and Conclusions
	References

	Author Index

