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Abstract. We study online variants of weighted bipartite matching on
graphs and hypergraphs. In our model for online matching, the vertices
on the right-hand side of a bipartite graph are given in advance and the
vertices on the left-hand side arrive online in random order. Whenever a
vertex arrives, its adjacent edges with the corresponding weights are re-
vealed and the online algorithm has to decide which of these edges should
be included in the matching. The studied matching problems have ap-
plications, e.g., in online ad auctions and combinatorial auctions where
the right-hand side vertices correspond to items and the left-hand side
vertices to bidders.

Our main contribution is an optimal algorithm for the weighted match-
ing problem on bipartite graphs. The algorithm is a natural generaliza-
tion of the classical algorithm for the secretary problem achieving a com-
petitive ratio of e ≈ 2.72 which matches the well-known upper and lower
bound for the secretary problem. This shows that the classic algorithmic
approach for the secretary problem can be extended from the simple se-
lection of a best possible singleton to a rich combinatorial optimization
problem.

On hypergraphs with (d + 1)-uniform hyperedges, corresponding to
combinatorial auctions with bundles of size d, we achieve competitive
ratio O(d) in comparison to the previously known ratios O

(
d2)

and
O(d log m), where m is the number of items. Additionally, we study
variations of the hypergraph matching problem representing combina-
torial auctions for items with bounded multiplicities or for bidders with
submodular valuation functions. In particular for the case of submodu-
lar valuation functions we improve the competitive ratio from O(log m)
to e.
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1 Introduction

Consider the following natural generalization of the classical secretary problem:
Suppose an administrator wants to hire people for a set of open positions (rather
than only one secretary for a single position). The applicants are interviewed one
at a time and in every interview the interviewer learns weights representing the
degree of qualification of the current candidate for each of the possible positions.
Now, immediately after an interview, the administrator has to either assign the
applicant to one of the open positions or the candidate will leave the room and
take a job at another company. The administrator is interested in maximizing
the sum of the assigned weights.

The described problem corresponds to the weighted online bipartite matching
problem. In general, the jobs correspond to the offline vertices on the right-
hand side which are known in advance. The vertices on the left-hand side arrive
online one by one, each with its incident edges and their respective weights. The
decision whether and how to assign the current vertex has to be made online.
Unfortunately, for general weights and when the vertices arrive in adversarial
order, every algorithm can perform arbitrarily bad. To achieve any reasonable
competitive ratio, it is necessary to make additional assumptions on the model.
In this work, we assume that the vertices arrive in random order, analogously
to the original secretary problem.

The weighted online matching problem in the secretary model was introduced
by Korula and Pál [19]. It is a generalization of the matroid secretary problem
on transversal matroids which was introduced by Babaioff et al. [3] and later
improved by Dimitrov and Plaxton [9]. This, respectively, is a generalization of
the classical secretary problem. Here, we present the first optimal algorithm for
weighted online matching which also matches the lower bound for the secretary
problem.

The online matching problem is closely related to combinatorial auctions. Let,
e.g., the right-hand side of the graph represent the items and the left-hand side
correspond to the bidders. Then the weighted online bipartite matching corre-
sponds to an online combinatorial auction where every bidder can buy at most
one item. Now, we extend the graph towards (d + 1)-uniform hyperedges so that
every edge contains exactly one bidder and d items. Thus, every hyperedge rep-
resents a bid on a bundle of items in a combinatorial auction. This setting was
first analyzed by Korula and Pál [19] on whose results we improve. Addition-
ally, we allow for multiplicities on the items, the right-hand side vertices of the
hypergraph, which has applications in ad auctions. Furthermore, we consider
submodular1 weight functions which is a reasonable assumption for these eco-
nomically motivated problems. Like Korula and Pál, we analyze our algorithms
in terms of competitive ratio, i.e. the ratio of the value of an optimal offline
solution to the expected weight achieved by the online algorithm.

1 A set function f : 2Ω → R is submodular if for every X, Y ⊆ Ω we have that f(X ∪
Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ).
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Our Contribution: We provide algorithms for several variants of weighted
bipartite matching in the secretary model, i.e. with random arrival order. All
our algorithms are generalizations of the classical approach to the secretary
problem. First, they gather information on the instance via sampling. Then, in
every later step, they solve the known part of the instance optimally and treat
the left-hand side vertex that has just arrived according to that locally optimal
solution. The most important feature of our analysis is to interpret the random
arrival order as a sequence of stochastically independent experiments.

For online bipartite matching we obtain an e-competitive algorithm. This
improves on the 8-competitive algorithm by Korula and Pál [19] and matches
the lower bound on the classical secretary problem, see e.g. Buchbinder et al. [5].
While Korula and Pál follow a similar approach, their analysis requires them to
use a greedy approximation algorithm for the online decision making instead of
locally optimal solutions.

When we apply the algorithmic approach to online bipartite hypermatching,
we use randomized rounding on a fractional LP solution. Therefore, the obtained
competitive ratios are with respect to the fractional offline optimum. When the
online bidders are interested in sets of size at most d and every item is available at
least b times, we obtain an expected competitive ratio of O

(
d

1/b
)
. Thus, for clas-

sical combinatorial auctions this translates to a O(d)-approximation in contrast
to the previously known O

(
d2)

by Korula and Pál. For multiplicities b ≥ log(d),
a common assumption in ad auctions, the competitive ratio becomes a constant
O(1). For general valuations on sets of unbounded size, our randomized algo-
rithm is O(m1/(b+1))-competitive, where m is the number of items. Furthermore,
if valuation functions are submodular, the competitive ratio of our algorithm is
again e even for multiplicity one and thus optimal.

All these results are based on a random order of arrivals. Using this assump-
tion, we beat the lower bound of Ω

(
b · d1/b

)
for any deterministic set packing

algorithm in the online adversary model by Azar and Regev [2]. We show that
for b = 1, every randomized online algorithm in the secretary model, even with
unlimited computational power, is Ω (ln(d)/ln ln(d))-competitive.

Related Work: When analyzing online bipartite matching, it is necessary to
make additional assumptions on the model as no algorithm can handle adver-
sarial arrival with general edge weights; see Aggarwal et al. [1] for a proof. A
common choice is to assume a random order of the vertices on the left-hand side.
Another option is to admit arbitrary order but to make restrictions on the edge
weights. Some recent, loosely related papers adopt slight changes to the model
and assume budgeted allocations with stochastic arrivals, see e.g. [7,12,22].

The random order model has its origins in the famous secretary problem,
where n candidates for a job arrive online in random order and the goal is to
pick the best one with maximal probability. This is identical to edge-weighted
bipartite matching with only one vertex on the right-hand side. Although the
problem was folklore, it was not published until 1960 by Gardner and it was
solved many times. See Ferguson [11] for historical details. The optimal algorithm
for the secretary problem is e-competitive in expectation.
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A generalization of the classical secretary problem is the matroid secretary
problem, introduced by Babaioff et al. [3]. Here, the elements of a matroid ar-
rive online in random order and the objective is to select an independent set
of maximum weight. For general matroids they gave an O

(
log(ρ)

)
-competitive

algorithm, where ρ is the rank of the matroid. This result was later improved to
O

(√
log(ρ)

)
by Chakraborty and Lachish [6]. Various results are known for spe-

cial kinds of matroids, see [3,13,14,18,19]. Note that transversal matroids are a
special case of bipartite matching, where all edges incident to the same left-hand
side vertex have identical weight. Babaioff et al. [3] presented a 4d-competitive
algorithm for the case of transversal matroids with bounded left degree d. This
was improved by Dimitrov and Plaxton [9] who gave a 16-competitive algorithm
for transversal matroids. The first result on general bipartite matching in the
secretary model is by Korula and Pál [19] who presented an 8-competitive online
algorithm.

The research on online bipartite matching with adversarial arrival was initi-
ated by Karp et al. [17] who analyzed the unweighted case. They presented a
randomized algorithm obtaining an expected competitive ratio of e/(e−1) and a
matching lower bound. The proof was later simplified by Goel and Mehta [12]
and Birnbaum and Mathieu [4]. A primal-dual analysis was given by Devanur et
al. [8]. Karande et al. [16] and independently Mahdian and Yan [21] showed that
the lower bound of e/(e−1) does not hold when the left-hand side vertices arrive
in random, instead of arbitrary, order. Aggarwal et al. [1] were the first to ana-
lyze online matching with adversarial order in a general weighted setting. They
obtained an expected competitive ratio of e/(e−1) as long as all edges incident to
the same vertex on the right-hand side have identical weight. Kalyanasundaram
and Pruhs [15] presented a deterministic 3-competitive algorithm when the edge
weights represent a metric space.

Bipartite hypermatching in the secretary model was first analyzed by Korula
and Pál [19]. They obtained an expected competitive ratio of O

(
d2)

when the
hyperedges have bounded size d + 1. Krysta and Vöcking [20] investigated on-
line combinatorial auctions with random arrival of the bidders and developed
randomized mechanisms that are incentive compatible. For valuations on sets
of bounded size d and when each of the m items is available b times, they
showed an expected competitive ratio of O

(
d1/b log(bm)

)
. In the case of general

valuations, they obtained an expected competitive ratio of O
(
m1/(b+1) log(bm)

)
.

When the valuation functions are XOS and b = 1 the achieved competitive ratio
is O

(
log(m)

)
. Feldmann et al. [10] provide constant competitive algorithms for

different variants of the secretary problem using submodular weight functions.
E.g., they consider a submodular secretary problem on partition matroids.

2 Edge-Weighted Bipartite Online Matching

In the bipartite online matching problem, we are initially given the set R of an
edge-weighted bipartite graph G = (L ∪ R, E) and the cardinality n := |L| of
the set L. At every step, a new vertex v ∈ L arrives together with the weights
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w(e) ∈ R≥0 of its incident edges. Most importantly, the vertices in L are revealed
online and in random order. The algorithm always has to either assign the current
vertex to one of its unmatched neighbors in R, or decide to leave it unassigned.

Our algorithm is a generalization of the classical approach to the secretary
problem. There, a constant fraction of the candidates is ignored. Then, when an
online candidate arrives that is better than all previous ones, it is selected. We
also start by sampling a constant fraction of the vertices on the left-hand side.
Afterwards, whenever a new vertex is presented to the algorithm, we compute
an optimum solution on the revealed part of the graph. If, in this local solution,
the current vertex on the left-hand side is assigned to an unmatched vertex, we
add this edge to our matching.

Algorithm 1. Bipartite online matching
Input : vertex set R and cardinality n = |L|
Output: matching M

Let L′ be the first �n/e	 vertices of L;
M := ∅;
for each subsequent vertex � ∈ L − L′ do // steps �n/e
 to n

L′ := L′ ∪ �;
M (�) := optimal matching on G[L′ ∪ R]; // e.g. by Hungarian method
Let e(�) := (�, r) be the edge assigned to � in M (�);
if M ∪ e(�) is a matching then

add e(�) to M ;

For convenience of notation, we will number the vertices in L from 1 to n in
the (random) order they are presented to the algorithm. Hence, we will use the
variable � synonymously as an integer, the name of an iteration and the name
of the current vertex.

Lemma 1. Let the random variable Av denote the contribution of the vertex
v ∈ L to the output, i.e. the weight of the edge (v, r) assigned to v in M . And let
OP T be the value of a maximum-weight matching in the full graph G. For the
vertices � ∈ {�n/e�, . . . , n} we have,

E [A�] ≥ �n/e�
� − 1

· OP T

n
.

Proof. First, we will show that the expected weight of e(�), i.e. of the edge
assigned to vertex � in the matching M (�), is a significant fraction of OP T .
Then, we will analyze the probability of adding this edge to the matching M .

The proof relies on the fact that in any step k of the algorithm the choice of
the random permutation up to this point can be modeled as a sequence of the
following independent random experiments: First choose a set of size k from L.
Then determine the order of these k vertices by iteratively selecting a vertex at
random and removing it. We need this interpretation to exploit the randomness
in each of these experiments separately.
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Now in step � we have |L′| = � and the algorithm calculates an optimal
matching M (�) on G[L′ ∪ R]. As explained, the current vertex � can be seen as
being selected uniformly at random from the set L′. Hence, the expected weight
of the edge e(�) in M (�) is w(M(�))/�. Also, since L′ can be seen as being uniformly
selected from L with size � we know E

[
w

(
M (�))] ≥ �/n · OP T . Together we

have,

E
[
w(e(�))

]
≥ OP T

n
. (1)

Note that the above expectation is only over the random choice of the set L′

and the choice of the element to be last in their order. The rest of the proof will
exploit the randomness in the order of the remaining � − 1 vertices in L′.

The edge e(�) = (�, r) can only be added to the matching M if r has not
already been matched in an earlier step. Consider the vertex r. In any of the
preceding steps k ∈ {�n/e�, . . . , � − 1} the vertex r was only matched if it was in
e(k), i.e. if in M (k) the vertex r was assigned to the left-hand side vertex k. Again,
the last vertex in the order can be seen as being chosen uniformly at random
from the k participating vertices on the left-hand side. Hence, the probability of
r being matched in step k was at most 1/k. As before, the order of the vertices
1, . . . , k − 1 is irrelevant for this event. Therefore, also the respective events if
some vertex k′ < k was matched to r can be regarded as independent. Following
this argument inductively from k = � − 1 down to �n/e�, we get,

Pr [r unmatched in step �] = Pr

⎡

⎣
�−1∧

k=�n/e�
r /∈ e(k)

⎤

⎦ ≥
�−1∏

k=�n/e�

k − 1
k

=
� n

e � − 1
� − 1

.

Thus we have Pr
[
M ∪ e(�) is a matching

] ≥ �n/e�
�−1 . Together with inequal-

ity (1) we obtain the lemma. 	


Theorem 2. The online matching algorithm is e-competitive in expectation.

Proof. The weight of the matching M is obtained by summing the variables A�.
Using Lemma 1 we get,

E [w(M)] = E

[
n∑

�=1
A�

]

≥
n∑

�=�n/e�

�n/e�
� − 1

· OP T

n
= �n/e�

n
·

n−1∑

�=�n/e�

1
�

· OP T .

We have �n/e�
n ≥ 1

e − 1
n and

∑n−1
�=�n/e�

1
� ≥ ln

(
n

�n/e�
) ≥ 1 which gives,

E [w(M)] ≥ �n/e�
n

·
n−1∑

�=�n/e�

1
�

· OP T ≥
(

1
e

− 1
n

)
· OP T .
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3 Packing Sets of Size at Most d with Capacity b

A common generalization of bipartite online matching is the bipartite online
b-hypermatching problem. Here, the underlying structure is an edge-weighted
hypergraph H = (L ∪ R, E). We assume that the hyperedges in E are of the
form e = (v, S), with v ∈ L, S ⊆ R and |S| ≤ d. Again, we are initially given the
vertex set R together with the size n of the vertex set L and the capacity b. The
vertices in L are presented to the algorithm online and in a random order. At each
step, when a vertex v ∈ L is revealed, the algorithm also observes all its incident
hyperedges δ(v) := {e ∈ E | v ∈ e} together with their respective weights2

w(e) ∈ R≥0. As before, the algorithm decides online whether to assign one of
the edges in δ(v), or to leave v unmatched. The objective is a b-hypermatching
in H of maximum weight, i.e. every vertex r ∈ R may be contained in up to b
edges of the matching but every vertex in L may be matched only once.

In every step � we will solve the LP-relaxation of max-weight b-hypermatching
on the revealed part of the graph computing a fractional solution x(�). Note
that for a particular subset L′ ⊆ L of the left-hand side vertices the restricted
hypergraph H [L′ ∪ R] has exactly the edge set E′ := {(v, S) ∈ E | v ∈ L′}.

In a matching, a vertex on the left-hand side is assigned to at most one hy-
peredge. Hence, for every vertex v ∈ L′ a feasible solution to the LP-relaxation
satisfies the constraint

∑
e=(v,S)∈E′ xe ≤ 1. Therefore we can interpret the re-

stricted vector x
∣
∣
δ(v) as a probability distribution over all hyperedges incident to

v. The second LP-constraint is
∑

e=(v,S)∈E′, r∈S xe ≤ b for every vertex r ∈ R.

Algorithm 2. Bipartite online b-hypermatching
Input : vertex set R, cardinality n = |L| and parameter p < 1
Output: b-hypermatching M

Let L′ be the first p · n vertices of L;
M := ∅;
for each subsequent vertex � ∈ L − L′ do // steps pn + 1 to n

L′ := L′ ∪ �;
x(�) := optimal fractional solution of LP-relaxation on H [L′ ∪ R];
Choose e(�) randomly according to the distribution x(�)

∣∣
δ(�);

if M ∪ e(�) is a b-hypermatching then
add e(�) to M ;

The parameter p < 1 will be set later. In line with the analysis of bipartite
matching, we will number the vertices in L from 1 to n in their online order.

Note that the linear program and the randomized rounding in the above
algorithm are only required to maintain polynomial runtime. Furthermore, all
following competitive ratios are with respect to the optimal fractional solution.

2 The weight functions are generally represented implicitly, e.g. by demand oracles,
which allows to solve the LP-relaxation in polynomial time, see [23].
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Lemma 3. Let the random variable Av denote the contribution of the vertex
v ∈ L to the output, i.e. the weight of the edge (v, S) assigned to v in M . And
let OP TLP be the value of a fractional offline optimum, i.e. of the LP-relaxation
on the full hypergraph H. For the vertices � ∈ {pn + 1, . . . , n} we have,

E [A�] ≥
(

1 − d ·
(

e(1 − p)
p

)b
)

OP TLP

n
.

Proof. In analogy to the proof of Lemma 1, we interpret the random permutation
up to any step k as multiple independent experiments: Choose k vertices out
of L, then pick one of these to be the last in the ordering and remove it. To
determine the ordering of the other k − 1 elements, iteratively select and remove
the remaining vertices. Here we have to consider one additional independent
random experiment due to the randomized rounding.

In step �, the algorithm calculates an optimal fractional solution x(�) to the
LP-relaxation on H [L′∪R] with value OP TLP (�) . Since e(�) is chosen according to
the restricted vector x(�)∣∣

δ(�), we have E
[
w

(
e(�))]

=
∑

e∈δ(�) w(e) · x
(�)
e . Exactly

as in the proof of Lemma 1 one can show

E
[
w

(
e(�)

)]
≥ OP TLP

n
. (2)

The expectation is taken over the choice of the set L′, the choice of the vertex
to be last in their order and the randomized rounding.

The rounded hyperedge e(�) = (�, S) is only added to M if every vertex in S
is covered by at most b − 1 other edges in M .

We will first bound the probability of covering a vertex r ∈ R in any preceding
step k ∈ {pn + 1, . . . , � − 1}. Assume for the moment that, within step k, all
participating left-hand side vertices did randomized rounding according to their
respective restriction of x(k). Let us denote these tentative hyperedges by h1 to
hk and remember that e(k) corresponds to the last one. For r ∈ R the probability
of being covered in step k is at most

Pr
[
r ∈ e(k)

]
= Pr

⎡

⎣
∨

v∈{1,...,k}
((v is last in the order) ∧ (r ∈ hv))

⎤

⎦

≤
∑

v∈{1,...,k}
Pr [(v is last in the order) ∧ (r ∈ hv)] .

The randomized rounding is stochastically independent of the order and we know
that the last vertex in the order is chosen uniformly out of k vertices. Hence,

Pr
[
r ∈ e(k)

]
≤ 1

k
·

∑

v∈{1,...,k}
Pr [r ∈ hv] .

The hyperedge hv was drawn according to the distribution x(k)∣∣
δ(v). This gives

Pr [r ∈ hv] =
∑

e∈δ(v), r∈e x
(k)
e . Since x(k) is a feasible LP solution and thus

satisfies
∑

e∈δ(v), r∈e x
(k)
e ≤ b for all r ∈ R, we have,
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Pr
[
r ∈ e(k)

]
≤ 1

k
·

∑

v∈{1,...,k}

∑

e∈δ(v),
r∈e

x(k)
e ≤ b

k
, (3)

which bounds the probability of r ∈ R being covered in step k.
Finally, we can bound the probability of adding e(�) = (�, S) to M . The

attempt fails if any of the vertices in S was already covered b times in previous
steps. For any vertex r ∈ S, we have by inequality (3),

Pr [r is covered at least b times] ≤
∑

C⊆{pn+1,...,�−1},
|C|=b

(
∏

k∈C

b

k

)

(4)

≤
(

(1 − p)n
b

)
·
(

b

pn

)b

≤
(

e(1 − p)
p

)b

.

Using a union bound over all vertices r ∈ S, and as |S| ≤ d, we get,

Pr
[
M ∪ e(�) is a b-hypermatching

]
≥ 1 − d ·

(
e(1 − p)

p

)b

.

Together with inequality (2) we obtain the result. 	

Theorem 4. Set the parameter p to e(2d)1/b

1+e(2d)1/b
. Then the expected competitive

ratio of the b-hypermatching algorithm for edges of size at most d + 1 is O
(
d

1/b
)
.

Proof. The weight w(M) of the b-hypermatching is equal to
∑n

�=1 A�. Using
Lemma 3 we get,

E [w(M)] ≥
n∑

�=pn+1

(

1 − d ·
(

e(1 − p)
p

)b
)

OP TLP

n
.

The sum yields a factor of (1 − p) · n, substituting p = e(2d)1/b

1+e(2d)1/b
, we obtain,

E [w(M)] ≥ OP TLP

1 + e(2d)1/b
·
(

1 − d ·
(

e
e(2d)1/b

)b
)

≥ OP TLP

2 + 4ed1/b
.

	

A tighter analysis for the case of b = 1 gives a competitive ratio of ed.

The above result for hyperedges of bounded size can be generalized to hyper-
edges of unbounded size using a technique by Krysta and Vöcking [20]. Flip a
fair coin to choose one out of two algorithms. In case one, apply the algorithm
for hyperedges of bounded size where the instance is restricted to those edges
covering at most d = �|R|b/(b+1)� vertices on the right-hand side. In the other
case, restrict the hyperedges of every vertex on the left-hand side to the single
incident hyperedge of maximum weight. Now, apply Algorithm 2 as for sets of
size d = 1 and with only one vertex on the right-hand side which is available b
times. For a proof see full version.
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Corollary 5. For online b-hypermatching with general weight functions the de-
scribed randomized algorithm has an expected competitive ratio of O(|R|1/(b+1)).

4 Lower Bound

In Section 3, we presented an O(d)-competitive algorithm for online hypermatch-
ing with edges of size at most d + 1. Here, we will complement this result with a
lower bound of Ω (ln(d)/ln ln(d)). Note that this bound is due to the online nature
of the problem and holds even when we admit unbounded computational power.
The result is inspired by a lower bound from Babaioff et al. [3].

We will construct a set system with the following more easily imaginable
conflict graph, i.e. where we have a vertex for every set and an edge between
intersecting sets. The conflict graph is d-partite and all partitions are completely
connected to each other. Therefore, choosing a single set (resp. vertex in the
conflict graph) precludes the selection of any other set whose corresponding
vertex in the conflict graph is in a different partition.

Proposition 6. For every prime number q, there is a hypergraph H = (V, E)
with |E| = |V | = q2 and |e| = q (∀e ∈ E), satisfying the following properties:

1. the edges E can be partitioned into q disjoint sets Ci each containing q edges,
2. the q hyperedges in each set Ci are pairwise disjoint,
3. every edge in Ci intersects all q · (q − 1) edges that belong to any Cj , j �= i.

For a proof see full version. To turn the graph in Proposition 6 into a lower
bound instance for d = q, we set R := V and let every vertex in L be incident to
exactly one of the hyperedges. So, the edges of the graph arrive online in random
order. Every hyperedge is independently assigned the weight 1 with probability
1/d, and 0 otherwise.

Theorem 7. Any online algorithm obtains a matching of expected weight less
than 2. With high probability there is a matching of weight Ω

(
ln(d)

ln ln(d)

)
.

Proof. When an algorithm assigns the first hyperedge e, say e ∈ Ci, all the edges
that do not belong to Ci are blocked by Property 3. The only edges disjoint to
e are those in Ci. There are at most d − 1 such edges, each having an expected
weight of 1/d. So their accumulated expected weight is less than 1.

By Property 2 the d edges of a set Ci form a hypermatching. For any i we
have Pr [at least λ edges in Ci have weight 1] =

(
d
λ

)
( 1

d)λ ≥ ( d
λ)λ( 1

d )λ = λ−λ.
Choosing λ := ln(d)/2 ln ln(d), the last term is at least 1/

√
d. The probability that

every set Ci has less than λ heavy edges is at most (1 − 1/
√

d)d ≤ e−d/
√

d = e−√
d.

Hence, w.h.p. there is a matching of weight Ω (ln(d)/ln ln(d)). 	


5 Submodular Weight Functions

Let us assume that the hypergraph is complete, i.e. H = (L ∪ R, E) with
E = L × 2R. Then we can define a weight function wv : 2R → R≥0 for every
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vertex v ∈ L by setting wv(S) := w
(
(v, S)

)
, ∀S ⊆ R. Now, if all these weight

functions are normalized monotone submodular, then we can modify Algorithm 2
to obtain a constant competitive ratio. Note that this setting corresponds to on-
line combinatorial auctions with submodular valuations, where the bidders arrive
in random order.

Let us first analyze the case when the vertices in R have multiplicity one. In
every online step � ∈ {�n/e�, . . . , n} we solve the LP-relaxation of the revealed
part of the instance and randomly round the vector to obtain e(�). Hence we have
E

[
w

(
e(�))] ≥ OP TLP

n . Remember that in Algorithm 2 we had to completely re-
ject a hyperedge e(�) = (�, S) if any of the vertices in S was already covered. Here,
we can still add the hyperedge e(�)′ := (�, S′), where S′ ⊆ S are those vertices
in S that are not yet covered by the matching. For every r ∈ R the probability
of still being unmatched at the beginning of step � can be analyzed exactly as
in Lemma 1. Thus, we again have Pr [r was still unmatched in step �] ≥ �n/e�

�−1 .
A known property of submodular functions is the following, see e.g. [10].

Proposition 8. Given a normalized monotone submodular function f : 2R →
R≥0, a set S ⊆ R and a random set S′ ⊆ S, where every element of S is
contained in S′ with probability at least p (not necessarily independently). Then
E [f(S′)] ≥ p · f(S).

Combining the above observations with Proposition 8 we get,

E
[
w

(
e(�)′

)]
≥ �n/e�

� − 1
· OP TLP

n
.

This inequality is identical to the one in Lemma 1. By the same calculations
as in Theorem 2 we obtain our result.

Theorem 9. For online combinatorial auctions with submodular weight func-
tions the algorithm is e-competitive.

Note that for b-hypermatching, i.e. when the vertices in R are available with
multiplicity b, we can obtain the same competitive ratio. Simply replace every
vertex in R by b copies, each with multiplicity one, and expand the valuation
function in the obvious way. This equivalent instance can then be handled with
the above algorithm.
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