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Abstract. We study stable matching problems in networks where play-
ers are embedded in a social context, and may incorporate friendship
relations or altruism into their decisions. Each player is a node in a so-
cial network and strives to form a good match with a neighboring player.
We consider the existence, computation, and inefficiency of stable match-
ings from which no pair of players wants to deviate. When the benefits
from a match are the same for both players, we show that incorporating
the well-being of other players into their matching decisions significantly
decreases the price of stability, while the price of anarchy remains un-
affected. Furthermore, a good stable matching achieving the price of
stability bound always exists and can be reached in polynomial time.
We extend these results to more general matching rewards, when players
matched to each other may receive different utilities from the match.
For this more general case, we show that incorporating social context
(i.e., “caring about your friends”) can make an even larger difference,
and greatly reduce the price of anarchy. We show a variety of existence
results, and present upper and lower bounds on the prices of anarchy
and stability for various matching utility structures.

1 Introduction

Stable matching problems capture the essence of many important assignment
and allocation tasks in economics and computer science. The central approach
to analyzing such scenarios is two-sided matching, which has been studied in-
tensively since the 1970s in both the algorithms and economics literature. An
important variant of stable matching is matching with cardinal utilities, when
each match can be given numerical values expressing the quality or reward that
the match yields for each of the incident players [5]. Cardinal utilities specify
the quality of each match instead of just a preference ordering, and they allow
the comparison of different matchings using measures such as social welfare. A
particularly appealing special case of cardinal utilities is known as correlated
stable matching, where both players who are matched together obtain the same
reward. In addition to the wide-spread applications of correlated stable match-
ing in, e.g., market sharing [16], social networks [17], and distributed computer
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networks [27], this model also has favorable theoretical properties such as the ex-
istence of a potential function. It guarantees existence of a stable matching even
in the non-bipartite case, where every pair of players is allowed to match [2,27].

When matching individuals in a social environment, it is often unreasonable
to assume that each player cares only about their own match quality. Instead,
players incorporate the well-being of their friends/neighbors as well, or that of
friends-of-friends. Players may even be altruistic to some degree, and consider
the welfare of all players in the network. Caring about friends and altruistic
behavior is commonly observed in practice and has been documented in labora-
tory experiments [14,25]. In addition, in economics there exist recent approaches
towards modeling and analyzing other-regarding preferences [15]. Given that
other-regarding preferences are widely observed in practice, it is a fundamental
question to model and characterize their influence in classic game-theoretic en-
vironments. Recently, the impact of social influence on congestion and potential
games has been characterized prominently in [8, 10–12,18–20].

We consider a natural approach to incorporate social effects into partner selec-
tion and matching scenarios by studying how social context influences stability
and efficiency in matching games. Our model of social context is similar to recent
approaches in algorithmic game theory and uses dyadic influence values tied to
the hop distance in the graph. In this way, every player may consider the well-
being of every other player to some degree, with the degree of this regardfulness
possibly decaying with hop distance. The perceived utility of a player is then
composed of a weighted average of player utilities. Players who only care about
their neighbors or fully altruistic players are special cases of this model.

For matching in social environments, the standard model of correlated sta-
ble matching may be too constraining compared to general cardinal utilities,
because matched players receive exactly the same reward. Such an equal shar-
ing property is intuitive and bears a simple beauty, but other reward sharing
methods might be more natural in different contexts. For instance, in theoret-
ical computer science it is common practice to list authors alphabetically, but
in other disciplines the author sequence is carefully designed to ensure a proper
allocation of credit to the authors of a joint paper. The credit is often supposed
to be allocated in terms of input, i.e., the first author is the one that contributed
most to the project. Such input-based or proportional sharing is then sometimes
overruled with sharing based on intrinsic or acquired social status, e.g., when a
distinguished expert in a field is easily recognized and subconsciously credited
most with authorship of an article. We are interested in how such unequal re-
ward sharing rules affect stable matching scenarios. We consider a large class
of local reward sharing rules and characterize the impact of unequal sharing on
existence and inefficiency of stable matchings, both in cases when players are
embedded in a social context and when they are not.

1.1 Stable Matching within a Social Context

Correlated stable matching is a prominent subclass of general ordinary stable
matching. We are given a (non-bipartite) graph G = (V,E) with edge weights
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re. In a matching M , if node u is matched to node v, the reward of node u
is defined to be exactly re. This can be interpreted as both u and v getting
an identical reward from being matched together. We will also consider unequal
reward sharing, where u obtains reward rue and v obtains reward rve with rue+rve =
re. Therefore, the preference ordering of each node over its possible matches is
implied by the rewards that this node obtains from different edges. A pair of
nodes (u, v) is called a blocking pair in matching M if u and v are not matched to
each other inM , but can both strictly increase their rewards by being matched to
each other instead. A matching with no blocking pairs is called a stable matching.

While the matching model above has been well-studied, we are interested
in stable matchings that arise in the presence of social context. Denote the
reward obtained by a node v in a matching M as Rv(M). When it is clear which
matching we are referring to, we will simply denote this reward by Rv. We now
consider the case when node v not only cares about its own reward, but also
about the rewards of its friends. Specifically, the perceived or friendship utility
of node v in matching M is defined as

Uv = Rv +

diam(G)∑

d=1

αd

∑

u∈Nd(v)

Ru,

where Nd(v) is the set of nodes with shortest distance exactly d from v, and
1 ≥ α1 ≥ α2 ≥ . . . ≥ 0 (we use α to denote the vector of αi values). In other
words, for a node u that is distance d away from v, the utility of v increases
by an αd factor of the reward received by u. Thus, if αd = 0 for all d ≥ 2, this
means that nodes only care about their neighbors, while if all αd > 0, this means
that nodes are altruistic and care about the rewards of everyone in the graph.
The perceived utility is the quantity that the nodes are trying to maximize, and
thus, in the presence of friendship, a blocking pair is a pair of nodes such that
each node can increase its perceived utility by matching to each other. Given
this definition of blocking pair, a stable matching is again defined as a matching
without such a blocking pair. Note that while our definition includes αd for all
d, it is easy to see that only the values of α1 and α2 matter to the stability of
a matching, since a deviation of a blocking pair only changes the Rv values of
adjacent nodes.

Centralized Optimum and the Price of Anarchy. We study the social welfare of
equilibrium solutions and compare them to an optimal centralized solution. The
social welfare is the sum of rewards, i.e., a social optimum is a matching that
maximizes

∑
v Rv. Notice that, while this is equivalent to maximizing the sum of

player utilities when α = 0, this is no longer true with social context (i.e., when
α �= 0). Nevertheless, as in e.g. [11, 28], we believe this is a well-motivated and
important measure of solution quality, as it captures the overall performance of
the system, while ignoring the perceived “good-will” effects of friendship and
altruism. For example, when considering projects done in pairs, the reward of
an edge can represent actual productivity, while the perceived utility may not.
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To compare stable solutions with a social optimum, we will often consider the
price of anarchy and the price of stability. When considering stable matchings,
by the price of anarchy (resp. stability) we will mean the ratio of social welfare
of the social optimum and the social welfare of the worst (resp. best) stable
matching.

1.2 New Results and Related Work

Our Results. In Section 2, we consider stable matching with friendship utilities
and equal reward sharing. In this case, a stable matching exists and the price of
anarchy (ratio of the maximum-weight matching with the worst stable matching)
is at most 2, the same as in the case without friendship. The price of stability,
on the other hand, improves significantly in the presence of friendship – we
show a tight bound of 2+2α1

1+2α1+α2
. Intuitively, the bound depends only on α1, α2

because a deviation by a blocking pair (u, v) only affects rewards Rw for nodes w
neighboring u or v. Thus, the stability of a matching depends only on the graph
and α1, α2; changing αi with i ≥ 3 does not change the stability of a matching.
In addition to providing a tight bound on the price of stability, we present a
dynamic process that converges to a stable matching of at least this quality in
polynomial time, if initiated from the maximum-weight matching. Our results
imply that for socially aware players, the price of stability can greatly improve:
e.g., if α1 = α2 = 1

2 , then the price of stability is at most 6
5 , and a solution of

this quality can be obtained efficiently.
In Section 3 we instead study general reward sharing schemes. When two nodes

matched together may receive different rewards, an integral stable matching
may not exist. Thus, we focus on fractional stable matchings which we show to
always exist, even with friendship utilities. Fractional matching is well-motivated
in a social context, since the fractional amount of an edge in the matching
corresponds to the strength of the link/relationship between this pair of nodes.
The total relationships of any single node should add up to at most 1, modeling
the fact that a single person cannot be involved in an unlimited amount of
relationships. We show that for arbitrary reward sharing, prices of anarchy and
stability depend on the level of inequality among reward shares. Specifically, if
R is the maximum ratio over all edges (u, v) ∈ E of the reward shares of node

u and v, then the price of anarchy is at most (1+R)(1+α1)
1+α1R

. Thus, compared to
the equal reward sharing case, if sharing is extremely unfair (R is unbounded),
then friendship becomes even more important: changing α1 from 0 to 1

2 reduces
the price of anarchy from unbounded to at most 3. In addition, for several
particularly natural local reward sharing rules, we show that an integral stable
matching exists, give improved price of anarchy guarantees, and show tight lower
bounds.

Related Work. Stable matching problems have been studied intensively over
the last few decades. On the algorithmic side, existence, efficient algorithms,
and improvement dynamics for two-sided stable matchings have been of interest
(for references, see standard textbooks, e.g., [29]). In this paper we address the
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more general stable roommates problem, in which every player can be matched
to every other player. For general preference lists, there have been numerous
works characterizing and algorithmically deciding existence of stable match-
ings [13, 30, 31]. In contrast, fractional stable matchings are always guaranteed
to exist and exhibit various interesting polyhedral properties [1,31]. For the cor-
related stable roommates problem, existence of (integral) stable matchings is
guaranteed by a potential function argument [2, 27], and convergence time of
random improvement dynamics is polynomial [3]. In [6], price of anarchy and
stability bounds for approximate correlated stable matchings were provided. In
contrast, we study friendship, altruism, and unequal reward sharing in stable
roommates problems with cardinal utilities.

Another line of research closely connected to some of our results involves
game-theoretic models for contribution. In [7] we consider a contribution game
tied closely to matching problems. Here players have a budget of effort and
contribute parts of this effort towards specific projects and relationships. For
more related work on the contribution game, see [7]. All previous results for this
model concern equal sharing and do not address the impact of the player’s social
context. As we discuss in the full version of this paper in [4], most of our results
for friendship utilities can also be extended to such contribution games.

Analytical aspects of reward sharing have been a central theme in game theory
since its beginning, especially in cooperative games. Recently, there have been
prominent algorithmic results also for network bargaining [21, 23] and credit
allocation problems [22]. A recent line of work [32,33] treats extensions of coop-
erative games, where players invest into different coalitional projects. The main
focus of this work is global design of reward sharing schemes to guarantee coop-
erative stability criteria. Our focus here is closer to, e.g., recent work on profit
sharing games [9,26]. We are interested in existence, computational complexity,
and inefficiency of stable states under different reward sharing rules, with an aim
to examine the impact of social context on stable matchings.

Our notion of a player’s social context is based on numerical influence param-
eters that determine the impact of player rewards on the (perceived) utilities of
other players. A recently popular model of altruism is inspired by Ledyard [24]
and has generated much interest in algorithmic game theory [11, 12, 19]. In this
model, each player optimizes a perceived utility that is a weighted linear com-
bination of his own utility and the utilitarian welfare function. Similarly, for
surplus collaboration [8] perceived utility of a player consists of the sum of play-
ers utilities in his neighborhood within a social network. Our model is similar
to [10,20] and smoothly interpolates between these global and local approaches.

2 Matching with Equal Reward Sharing

We begin by considering correlated stable matching in the presence of friendship
utilities. In this section, the reward received by both nodes of an edge in a
matching is the same, i.e., we use equal reward sharing, where every edge e has
an inherent value re and both endpoints receive this value if edge e is in the
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Fig. 1. (Left) Biswivel deviation (Right,Middle) Swivel deviation

matching. We consider more general reward sharing schemes in Section 3. Recall
that the friendship utility of a node v increases by αdRu for every node u, where
d is the shortest distance between v and u. We abuse notation slightly, and let
αuv denote αd, so if u and v are neighbors, then αuv = α1.

Given a matchingM , let us classify the following types of improving deviations
that a blocking pair can undergo.

Definition 1. We call an improving deviation a biswivel whenever two neigh-
bors u and v switch to match to each other, such that both u and v were matched
to some other nodes before the deviation in M .

See Figure 1 for explanation. For such a biswivel to exist in a matching, the
following necessary and sufficient conditions must hold.

(1 + α1)ruv > (1 + α1)ruw + (α1 + αuz) rvz (1)

(1 + α1)ruv > (1 + α1)rvz + (α1 + αvw) ruw (2)

Intuitively, the left side of Inequality (1) quantifies the utility gained by u because
of getting matched to v and the right side quantifies the utility lost by u because
of u and v breaking their present matchings with w and z respectively. Hence,
Inequality (1) implies that u gains more utility by getting matched with v than
it loses because of u and v breaking their matchings with v and z. Inequality (2)
can similarly be explained in the context of node v.

Definition 2. We call an improving deviation a swivel whenever two neighbors
get matched such that at least one node among the two neighbors was not matched
before the deviation.

See Figure 1 for explanation. For a swivel to occur, it is easy to see that the
reward ruv of the new edge added to the matching must be strictly larger than
the rewards of edges that u or v were matched to before (if any).

2.1 Existence and Social Welfare

Theorem 1. A stable matching exists in stable matching games with friendship
utilities. Moreover, the set of stable matchings without friendship (i.e., when
α = 0) is a subset of the set of stable matchings with friendship utilities on the
same graph.

Theorem 2. The price of anarchy in stable matching games with friendship
utilities is at most 2, and this bound is tight.
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2.2 Price of Stability and Convergence

The main result in this section bounds the price of stability in stable match-
ing games with friendship utilities to 2+2α1

1+2α1+α2
, and this bound is tight (see

Theorem 4 below). This bound has some interesting implications. It is decreas-
ing in each α1 and α2, hence having friendship utilities always yields a lower
price of stability than without friendship utilities. Also, note that values of
α3, α4, ..., αdiam(G) have no influence. This is not surprising: after a deviation
by a blocking pair (u, v), the rewards Rw remain the same for all w except those
neighboring u or v. Thus, caring about players more than distance 2 away does
not improve the price of stability in any way. Also, if α1 = α2 = 1, then PoS = 1,
i.e., there will exist a stable matching which will also be a social optimum. Thus
loving thy neighbor and thy neighbor’s neighbor but nobody beyond is sufficient to
guarantee that there exists at least one socially optimal stable matching. In fact,
due to the shape of the curve, even small values of friendship quickly decrease
the price of stability; e.g., setting α1 = α2 = 0.1 already decreases the price of
stability from 2 to ∼ 1.7.

We will establish the price of stability bound by defining an algorithm that
creates a good stable matching in polynomial time. One possible idea to create
a stable matching that is close to optimum is to use a Best-Blocking-Pair
algorithm: start with the best possible matching, i.e., a social optimum, which
may or may not be stable. Now choose the “best” blocking pair (u, v): the one
with maximum edge reward ruv. Allow this blocking pair to get matched to each
other instead of their current partners. Check if the resulting matching is stable.
If it is not stable then allow the best blocking pair for this matching to get
matched. Repeat the procedure until there are no more blocking pairs, thereby
obtaining a stable matching.

This algorithm gives the desired price of stability and running time bounds
for the case of “altruism” when all αi are the same, see Corollary 1 below. To
provide the desired bound with general friendship utilities, we must alter this
algorithm slightly using the concept of relaxed blocking pair.

Definition 3. Given a matching M , we call a pair of nodes (u, v) a relaxed
blocking pair if either (u, v) form an improving swivel, or u and v are matched
to w and z respectively, with the following inequalities being true:

(1 + α1)ruv > (1 + α1)ruw + (α1 + α2) rvz (3)

(1 + α1)ruv > (1 + α1)rvz + (α1 + α2) ruw (4)

In other words, a relaxed blocking pair ignores the possible edges between
nodes u and z, and has α2 in the place of αuz (similarly, α2 in the place of αvw).
It is clear from this definition that a blocking pair is also a relaxed blocking pair,
since the conditions above are less constraining than Inequalities (1) and (2).
Thus a matching with no relaxed blocking pairs is also a stable matching. We
will call a relaxed blocking pair satisfying Inequalities (3) and (4) a relaxed
biswivel, which may or may not correspond to an improving deviation, since a
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relaxed blocking pair is not necessarily a blocking pair. We define the Best-
Relaxed-Blocking-Pair Algorithm to be the same as the Best-Blocking-
Pair algorithm, except at each step it chooses the best relaxed blocking pair.

Dynamics:To establish the efficient running time ofBest-Relaxed-Blocking-
Pair and the price of stability bound of the resulting stable matching, we first
analyze the dynamics of this algorithm and prove some helpful lemmas. We can
interpret the algorithm as a sequence of swivel and relaxed biswivel deviations,
each inserting one edge intoM , and removing up to two edges. Note that it is not
guaranteed that the inserted edge will stay forever in M , as a subsequent devi-
ation can remove this edge from M . Let O1, O2, O3, · · · denote this sequence of
deviations, and e(i) denote the edge which got inserted intoM because of Oi. We
analyze the dynamics of the algorithm by using the following key lemma.

Lemma 1. Let Oj be a relaxed biswivel that takes place during the execution
of the best relaxed blocking pair algorithm. Suppose a deviation Ok takes place
before Oj . Then we have re(k) ≥ re(j). Furthermore, if Ok is a relaxed biswivel
then e(k) �= e(j) (thus at most |E(G)| relaxed biswivels can take place during the
execution of the algorithm).

It is important to note that this lemma does not say that re(i) ≥ re(j) for
i < j. We are only guaranteed that re(i) ≥ re(j) for i < j if Oj is a relaxed
biswivel. Between two successive relaxed biswivels Ok and Oj , the sequence of
re(i) for consecutive swivels can and does increase as well as decrease, and the
same edge may be added to the matching multiple times. All that is guaranteed
is that re(j) for a biswivel Oj will have a lower value than all the preceding re(i)’s.
Thus, this lemma suggests a nice representation of Best-Relaxed-Blocking-
Pair in terms of phases, where we define a phase as a subsequence of deviations
that begins with a relaxed biswivel and ends with the next relaxed biswivel.
Lemma 1 guarantees that at the start of each phase, the re(j) value is smaller
than the values in all previous phases, and that there is only a polynomial number
of phases.

Theorem 3. Best-Relaxed-Blocking-Pair outputs a stable matching after
O(m2) iterations, where m is the number of edges in the graph.

Notice that in each phase, the value of the matching only increases, since
swivels only remove an edge if they add a better one. Below, we use the fact
that only relaxed biswivel operations reduce the cost of the matching to bound
the cost of the stable matching this algorithm produces. We do this by tracing
what an edge ofM∗ “gets mapped to” as swivel and biswivel operations “change”
this edge into another one, and showing that the image of an edge can experience
at most one relaxed biswivel. The proof appears in the full version [4] of this
paper.

Theorem 4. The price of stability in stable matching games with friendship
utilities is at most 2+2α1

1+2α1+α2
, and this bound is tight.
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From Theorems 3 and 4, we immediately get the following corollary about
the behavior of best blocking pair dynamics. This corollary applies in particular
to the model of altruism when αi = α for all i = 1, . . . , diam(G).

Corollary 1. If α1 = α2 and we start from the social optimum matching, Best-
Blocking-Pair converges in O(m2) time to a stable matching that is at most
a factor of 2+2α1

1+3α1
worse than the optimum.

3 Matching with Friendship and General Reward Sharing

In the previous section we assumed that for (u, v) ∈ M both u and v get the
same reward ruv. Let us now treat the more general case where u and v receive
different rewards for (u, v) ∈ M . We define rxxy as the reward of x from edge
(x, y) ∈ M . We interpret our model in a reward sharing context, where x and
y share a total reward of rxy = rxxy + ryxy. The correlated matching model of
Section 2 can equivalently be formulated as equal sharing with nodes u and v
receiving a reward of ruv/2.

Without friendship utilities, our stable matching game reduces to the stable
roommates problem (i.e., non-bipartite stable matching), since reward shares
can be arbitrary and thus induce arbitrary preference lists for each node. It
is well known that a stable matching may not exist in instances of the stable
roommates problem. While we are able to prove existence of integral stable
matching for several interesting special cases (see Section 3.1 below), the addition
of friendship further complicates matters. In Section 2.1 we showed that for equal
sharing, a stable matching without friendship utilities (i.e., α = 0) is also a stable
matching when we have friendship utilities. This is no longer true for unequal
reward sharing: adding a social context can completely change the set of stable
matchings. In the full version [4] of this paper we give such examples, including
an example where adding a social context (i.e., increasing α above zero) destroys
all stable matchings that exist when α = 0.

Although stable matchings may not exist in general non-bipartite graphs,
fractional stable matchings are guaranteed to exist [1]. Fortunately, as we prove
below, this holds even in the presence of friendship utilities with general re-
ward sharing: A fractional stable matching always exists. By a “fractional stable
matching” we simply mean a fractional matching (where the total fractional
matches for a node v add up to at most 1) with no blocking pairs.

Theorem 5. A fractional stable matching always exists, even in the case of
friendship utilities and general reward sharing.

Since an integral stable matching may not exist, we instead consider fractional
matching; by price of anarchy here we mean the ratio of the total reward in a
socially optimum fractional matching with the worst fractional stable matching.
The corresponding ratio between the integral versions is trivially upper bounded

by this amount as well. We define R = max(u,v)∈E(G)
ruuv

rvuv
. Note that R ≥ 1. With

this notation, we have the following theorem:
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Theorem 6. The (fractional) price of anarchy for general reward sharing with
friendship utilities is at most 1 +Q, where Q = R+α1

1+α1R
, and this bound is tight.

Let us quickly consider the implications of the bound in Theorem 6. If R = 1,
the bound is 2. This result implies Theorem 2, since when we have R = 1, then
both u and v get the same reward from an edge (u, v) ∈ M . If α1 = 0, the bound
is 1+R. The tightness of this bound implies that as sharing becomes more unfair,
i.e., as R → ∞, we can find instances where the price of anarchy is unbounded.
Unequal sharing can make things much worse for the stable matching game.

Notice, however, that R+α1

1+α1R
is a decreasing function of α1. As α1 goes from

0 to 1, the bound goes from 1 + R to 2. Without friendship utilities (α = 0),
we have a tight upper bound of 1 + R, which is extremely bad for large R. As
α1 tends to 1, however, the price of anarchy drops to 2, independent of R. For
example, for α1 = 1/2 it is only 3. Thus, social context can drastically improve
the outcome for the society, especially in the case of unfair and unequal reward
sharing.

For price of stability of general reward sharing with friendship utilities, we
have a lower bound within an additive factor of 1 of optimum. Specifically, define

Q′ = (1+α1)(1+R)
1+α1(R+1) , then we have the following theorem for the price of stability:

Theorem 7. The price of stability of stable matching games with friendship and
general reward sharing is in [Q′, Q+ 1], with Q < Q′ ≤ Q + 1.

3.1 Specific Reward Sharing Rules

In this section we consider some particularly natural reward sharing rules and
show that games with such rules have nice properties. Specifically, while for gen-
eral reward sharing an (integral) stable matching may not exist, for the reward
sharing rules below we show they always exist (although only if there is no social
context involved) and how to compute them efficiently. We also give improved
bounds on prices of anarchy for these special cases. Specifically, we consider the
following sharing rules:

– Matthew Effect sharing: In sociology, “Matthew Effect” is a term coined by
Robert Merton to describe the phenomenon which says that, when doing
similar work, the more famous person tends to get more credit than other
less-known collaborators. We model such phenomena for our network by
associating brand values λu with each node u, and defining the reward that
node u gets by getting matched with node v as ruuv = λu

λu+λv
·ruv. Thus nodes

u and v split the edge reward in the ratio of λu : λv, and a node with high
λu value gets a disproportionate amount of reward.

– Trust sharing: Often people collaborate based on not only the quality of a
project but also how much they trust each other. We model such a situation
by associating a value βu with each node u, which represents the trust value
of player u, or how pleasant they are to work with. Each edge (u, v) also
has an inherent quality huv. Then, the reward obtained by node u from
partnering with node v is ruuv = huv + βv.
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With friendship utilities, even these intuitive special cases of reward sharing
do not guarantee the existence of an integral stable matching [4]. Without friend-
ship, however, integral stable matching exists and can be efficiently computed for
Matthew Effect sharing and Trust sharing, unlike in the case of general reward
sharing.

Theorem 8. An integral stable matching always exists in stable matching games
with Matthew Effect sharing and Trust sharing if α = 0 (i.e., if there is no
friendship). Furthermore, this matching can be found in O(|V ||E|) time.

The price of anarchy of Matthew effect sharing can be as high as the guarantee
of Theorem 6, with R = max(uv)

λu

λv
. For Trust sharing, however:

Theorem 9. The price of anarchy for (fractional) stable matching games with
Trust sharing and friendship utilities is at most max{2 + 2α1, 3}.
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two-sided matching markets. SIAM J. Comput. 40(1), 92–106 (2011)

4. Anshelevich, E., Bhardwaj, O., Hoefer, M.: Friendship, altruism, and reward shar-
ing in stable matching and contribution games. CoRR abs/1204.5780 (2012)

5. Anshelevich, E., Das, S.: Matching, cardinal utility, and social welfare. SIGecom
Exchanges 9(1), 4 (2010)

6. Anshelevich, E., Das, S., Naamad, Y.: Anarchy, stability, and utopia: Creating
better matchings. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009.
LNCS, vol. 5814, pp. 159–170. Springer, Heidelberg (2009)

7. Anshelevich, E., Hoefer, M.: Contribution games in networks. Algorithmica
63(1-2), 51–90 (2012)

8. Ashlagi, I., Krysta, P., Tennenholtz, M.: Social context games. In: Papadimitriou,
C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 675–683. Springer, Heidel-
berg (2008)

9. Augustine, J., Chen, N., Elkind, E., Fanelli, A., Gravin, N., Shiryaev, D.: Dynamics
of profit-sharing games. In: Proc. 22nd Intl. Joint Conf. Artif. Intell. (IJCAI),
pp. 37–42 (2011)

10. Buehler, R., Goldman, Z., Liben-Nowell, D., Pei, Y., Quadri, J., Sharp, A., Taggart,
S., Wexler, T., Woods, K.: The price of civil society. In: Chen, N., Elkind, E.,
Koutsoupias, E. (eds.) WINE. LNCS, vol. 7090, pp. 375–382. Springer, Heidelberg
(2011)

11. Chen, P.-A., de Keijzer, B., Kempe, D., Schäfer, G.: The robust price of anarchy
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