
Binary Jumbled Pattern Matching
on Trees and Tree-Like Structures

Travis Gagie1, Danny Hermelin2, Gad M. Landau3,4,�, and Oren Weimann3

1 University of Helsinki
travis.gagie@cs.helsinki.fi

2 Ben-Gurion University
hermelin@bgu.ac.il
3 University of Haifa

{landau,oren}@cs.haifa.ac.il
4 NYU poly

Abstract. Binary jumbled pattern matching asks to preprocess a binary
string S in order to answer queries (i, j) which ask for a substring of
S that is of length i and has exactly j 1-bits. This problem naturally
generalizes to vertex-labeled trees and graphs by replacing “substring”
with “connected subgraph”. In this paper, we give an O(n2/ log2 n)-time
solution for trees, matching the currently best bound for (the simpler
problem of) strings. We also give an O(g2/3n4/3/(log n)4/3)-time solution
for strings that are compressed by a grammar of size g. This solution
improves the known bounds when the string is compressible under many
popular compression schemes. Finally, we prove that the problem is fixed-
parameter tractable with respect to the treewidth w of the graph, even for
a constant number of different vertex-labels, thus improving the previous
best nO(w) algorithm.

1 Introduction

Jumbled pattern matching is an important variant of classical pattern matching
with several applications in computational biology, ranging from alignment [4]
and SNP discovery [6], to the interpretation of mass spectrometry data [9] and
metabolic network analysis [21]. In the most basic case of strings, the problem
asks to determine whether a given pattern P can be rearranged so that it appears
in a given text T . That is, whether T contains a substring of length |P | where
each letter of the alphabet occurs the same number of times as in P . Using
a straightforward sliding window algorithm, such a jumbled occurrence can be
found optimally in O(n) time on a text of length n. While jumbled pattern
matching has a simple efficient solution, its indexing problem is much more
challenging. In the indexing problem, we preprocess a given text T so that on
queries P we can determine quickly whether T has a jumbled occurrence of P .
Very little is known about this problem besides the trivial naive solution.

Most of the interesting results on indexing for jumbled pattern matching re-
late to binary strings (where a query pattern (i, j) asks for a substring of T that
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is of length i and has j 1s). Given a binary string of length n, Cicalese, Fici and
Lipták [13] showed how one can build in O(n2) time anO(n)-space index that an-
swers jumbled pattern matching queries in O(1) time. Their key observation was
that if one substring of length i contains fewer than j 1s, and another substring
of length i contains more than j 1s, then there must be a substring of length i
with exactly j 1s. Using this observation, they construct an index that stores the
maximum and minimum number of 1s in any i-length substring, for each possi-
ble i. Burcsi et al. [9] (see also [10,11]) andMoosa and Rahman [22] independently
improved the construction time toO(n2/ logn), then Moosa and Rahman [23] fur-
ther improved it to O(n2/ log2 n) in the RAMmodel. Currently, faster algorithms
than O(n2/ log2 n) exist only when the string compresses well using run-length
encoding [3,19] or when we are willing to settle for approximate indexes [14].

The natural extension of jumbled pattern matching from strings to trees is
much harder. In this extension, we are asked to determine whether a vertex-
labeled input tree has a connected subgraph where each label occurs the same
number of times as specified by the input query. The difficulty here stems from
the fact that a tree can have an exponential number of connected subgraphs
as opposed to strings. Hence, a sliding window approach becomes intractable.
Indeed, the problem is NP-hard [21], even if our query contains at most one oc-
currence of each letter [17]. It is not even fixed-parameter tractable when parame-
terized by the alphabet size [17]. The fixed-parameter tractability of the problem
was further studied when extending the problem from trees to graphs [2,5,15,16].
In particular, the problem (also known as the graph motif problem) was recently
shown by Fellows et al. [17] to be polynomial-time solvable when the number of
letters in the alphabet as well as the treewidth of the graph are both fixed.

Our results. In this paper we extend the currently known state-of-the-art for
binary jumbled pattern matching. Our results focus on trees, and tree-like struc-
tures such as grammars and bounded treewidth graphs. The problem on such
trees turns out to be more challenging than on strings and requires substantially
different ideas and techniques.

• Trees: For a tree T of size n, we present an index of size O(n) bits that
is constructed in O(n2/ log2 n) time and answers binary jumbled pattern
matching queries in O(1) time. This matches the performance of the best
known index for binary strings. In fact, our index for trees is obtained
by multiple applications of an efficient algorithm for strings [23] under a
more careful analysis. This is combined with both a micro-macro [1] and
centroid decomposition of the input tree. Our index can also be used as
an O(ni/ log2 n)-time algorithm for the pattern matching (as opposed to
the indexing) problem, where i denotes the size of the pattern. Finally,
by increasing the space of our index to O(n logn) bits, we can output in
O(log n) time a node of T that is part of the pattern occurrence.

• Grammars: For a binary string S of length n derived by a grammar of
size g, we show how to construct in O(g2/3n4/3/ log4/3 n) time an index
of size O(n) bits that answers jumbled pattern matching queries on S in
O(1) time. The size of the grammar g can be exponentially smaller than
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n and is always at most O(n/ logn). This means that our time bound is
O(n2/ log2 n) even when S is not compressible. If S is compressible but
with other compression schemes such as the LZ-family, then we can trans-
form it into a grammar-based compression with little or no expansion [12,24].

• Bounded Treewidth Graphs: For a graph G with treewidth bounded by
w, we show how to improve on the O(nO(w)) time algorithm of Fellows et

al. [17] to an algorithm which runs in 2O(w3)n + wO(w)nO(1) time. Thus,
we show that for a binary alphabet, jumbled pattern matching is fixed-
parameter tractable when parameterized only by the treewidth. This result
extends easily to alphabets of constant sizes.

We present our results for trees, grammars, and bounded treewidth graphs in
sections 2, 3 and 4 respectively. Proofs of all lemmas are given in the full version
of this paper.

2 Jumbled Pattern Matching on Trees

In this section we consider the natural extension of binary jumbled pattern
matching to trees. Recall that in this extension we are given a tree T with n
nodes, where each node is labeled by either 1 or 0. We will refer to the nodes
labeled 1 as black nodes, and the nodes labeled 0 as white nodes. Our goal is to
construct a data structure that on query (i, j) determines whether T contains a
connected subgraph with exactly i nodes, j of which are black. Such a subgraph
of T is referred to as a pattern and (i, j) is said to appear in T . The main result
of this section is stated below.

Theorem 1. Given a tree T with n nodes that are colored black or white, we
can construct in O(n2/ log2 n) time a data structure of size O(n) bits that given
a query (i, j) determines in O(1) time if (i, j) appears in T .

Notice that the bounds of Theorem 1 match the currently best bounds for the
case where T is a string [22,23]. This is despite the fact that a string has only
O(n2) substrings while a tree can haveΩ(2n) connected subgraphs. The following
lemma indicates an important property of string jumbled pattern matching that
carries on to trees. It gives rise to a simple index described below.

Lemma 1. If (i, j1) and (i, j2) both appear in T , then for every j1 ≤ j ≤ j2,
(i, j) appears in T .

2.1 A Simple Index

As in the case of strings, the above lemma suggests anO(n)-size data structure: For
every i = 1, . . . , n, store the minimum and maximum values imin and imax such
that (i, imin) and (i, imax) appear inT . This way, upon query (i, j), we can report in
constant time whether (i, j) appears in T by checking if imin ≤ j ≤ imax. However,
while O(n2) construction-time is trivial for strings (for every i = 0, . . . , n, slide a
window of length i through the text in O(n) time) it is harder on trees.



520 T. Gagie et al.

To obtain O(n2) construction time, we begin by converting our tree into a
rooted binary tree. We arbitrarily root the tree T . To convert it to a binary tree,
we duplicate each node with more than two children as follows: Let v be a node
with children u1, . . . , uk, k ≥ 3. We replace v with k− 1 new nodes v1, . . . , vk−1,
make u1 and u2 be the children of v1, and make v�−1 and u�+1 be the children
of v� for each � = 2, . . . , k − 1. We call the nodes v2, . . . , vk dummy nodes.
This procedure at most doubles the size of T . To avoid cumbersome notation,
we henceforth use T and n to denote the resulting binary rooted tree and its
number of nodes. For a node v, we let Tv denote the subtree of T rooted at v
(i.e. the connected subgraph induced by v and all its descendants).

Next, in a bottom-up fashion, we compute for each node v of T an array Av

of size |Tv|+ 1. The entry Av[i] will store the maximum number of black nodes
that appear in a connected subgraph of size i that includes v and another i− 1
nodes in Tv. Computing the minimum (rather than maximum) number of black
nodes is done similarly. Throughout the execution, we also maintain a global
array A such that A[i] stores the maximum Av[i] over all nodes v considered so
far. Notice that in the end of the execution, A[i] holds the desired value imax

since every connected subgraph of T of size i includes some node v and i − 1
nodes in Tv.

We now show how to compute Av[i] for a node v and a specific value i ∈
{1, . . . , |Tv|}. If v has a single child u, then v is necessarily not a dummy node
and we set Av[i] = col(v)+Au[i−1], where col(v) = 1 if v is black and col(v) = 0
otherwise. If v has two children u and w, then any pattern of size i that appears in
Tv and includes v is composed of v, a pattern of size � in Tu that includes u, and
a pattern of size i−1−� in Tw that includes w. We therefore set Av[i] = col(v)+
max0≤�≤i−1{Au[�]+Aw[i−1−�]} and Av[i] = max1≤�≤i−1{Au[�]+Aw[i−1−�]}
when v is a dummy node. Observe that in the latter the � index starts with 1 to
indicate that the non-dummy copy of v is already included in the pattern.

Lemma 2. The above algorithm runs in O(n2) time.

Note that if at any time the algorithm only stores arrays Av which are neces-
sary for future computations, then the total space used by the algorithm is O(n).
The space can be made O(n) bits by storing the Av arrays in a succinct fashion
(this will also prove useful later for improving the running time): Observe that
A[i] is either equal to Av[i] or to Av[i] + 1. This is because any pattern of size i
with b black nodes can be turned into a pattern of size i− 1 with at least b− 1
black nodes by removing a leaf. We can therefore represent Av as a binary string
Bv of n bits, where Bv[0] = 0, and Bv[i] = Av[i]−Av[i−1] for all i = 1, . . . , n−1.

Notice that since Av[i] =
∑i

�=0 Bv[�], each entry of Av can be retrieved from Bv

in O(1) time using rank queries [20].

2.2 Pattern Matching

Before improving the above algorithm, we show that it can already be analyzed
more carefully to get a bound of O(n · i) when the pattern size is known to be at
most i. This is useful for the pattern matching problem: Without preprocessing,
decide whether a given pattern (i, j) appears in T .
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In the case of strings, this problem can trivially be solved in O(n) time by
sliding a window of length i through the string thus effectively considering every
substring of length i. This sliding-window approach however does not extend to
trees since we cannot afford to examine all connected subgraphs of T . We next
show that, in trees, searching for a pattern of size i can be done in O(n · i) time
by using our above indexing algorithm. This is useful when the pattern is small
(i.e., when i = o(n)). Obtaining O(n) time remains our main open problem.

Lemma 3. Given a tree T with n nodes that are colored black or white and a
query pattern (i, j), we can check in O(n · i) time and O(n) space if T contains
the pattern (i, j).

2.3 An Improved Index

In this subsection, we will gradually improve the construction time from O(n2)
to O(n2/ log2 n). For simplicity of the presentation, we will assume the input
tree T is a rooted binary tree. This extends to arbitrary trees using a similar
dummy-nodes trick as above.

From trees to strings. Recall that we can represent every Av by a binary
string Bv where Bv[i] = Av[i] − Av[i − 1]. We begin by showing that if v has
two children u,w then the computation of Bv can be done by solving a variant
of jumbled pattern matching on the string Sv = Xv ◦ col(v) ◦ Yv (here ◦ denotes
concatenation) of length |Sv| = |Tu|+ |Tw|+1, where Xv is obtained from Bu by
reversing it and removing its last bit, and Yv is obtained from Bw by removing
its first bit. We call the position in Sv with col(v) the split position of Sv. Recall
that Av[i] = col(v) + max0≤�≤i−1{Au[�] + Aw[i − 1 − �]}. This is equal to the
maximum number of 1s in a window of S that is of length i and includes the
split position of Sv.

We are therefore interested only in windows including the split position, and
this is the important distinction from the standard jumbled pattern matching
problem on strings. Clearly, using the fastest O(n2/ log2 n)-time algorithm [23]
for the standard string problem we can also solve our problem and compute Av

in O(|S|2/ log2 n) time. However, recall that for our total analysis (over all nodes
v) to give O(n2/ log2 n) we need the time to be O(|Xv| · |Yv|/ log2 n) and not
O((|Xv|+ |Yv|)2/ log2 n).

First Speedup. The O(log2 n)-factor speedup for jumbled pattern matching
on strings [23] is achieved by a clever combination of lookup tables. One log
factor is achieved by computing the maximum 1s in a window of length i only
when i is a multiple of s = (logn)/6. Using a lookup table over all possible
windows of length s, a sliding window of size i can be extended in O(1) time to
all windows of sizes i+1, . . . , i+s−1 that start at the same location (see [23] for
details). Their algorithm can output in O(n2/ logn) time an array of O(n/ log n)
words. For each i that is a multiple of s, the array keeps one word storing the
maximum number of 1s over all windows of length i and another word storing
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the binary increment vector for the maximum number of 1s in all windows of
length i+ 1, . . . , i+ s− 1.

By only considering windows that include the split position of Sv, this idea
easily translates to an O(|Xv | · |Yv|/ logn)-time algorithm to compute Av and
implicitly store it in O((|Xv | + |Yv|)/ logn) words. From this it is also easy
to obtain an O((|Xv| + |Yv|)/ logn)-words representation of Bv. Notice that if
v has a single child then the same procedure works with |Xv| = 0 in time
O(|Yv|/ logn) = O(n/ logn). Summing over all nodes v, we get an O(n2/ logn)-
time solution for binary jumbled indexing on trees.

Second Speedup. In strings, an additional logarithmic improvement shown
in [23] can be obtained as follows: When sliding a window of length i (i is a
multiple of s) the window is shifted s locations in O(1) time using a lookup
table over all pairs of binary substrings of length ≤ s (representing the leftmost
and rightmost bits in all these s shifts). This further improvement yields an
O(n2/ log2 n)-time algorithm for strings. In trees however this is not the case.
While we can compute Av in O((|Xv| + |Yv|)2/ log2 n) time, we can guarantee
O(|Xv|·|Yv |/ log2 n) time only if both |Xv| and |Yv| are greater than s. Otherwise,
say |Xv| < s and |Yv| ≥ s, we will get O(|Xv| · |Yv|/|Xv| logn) = O(|Yv|/ logn)
time. This is because our windows must include the col(v) index and so we
never shift a window by more than |Xv| locations. Overcoming this obstacle is
the main challenge of this subsection. It is achieved by carefully ensuring that the
O(|Yv|/ logn) = O(n/ logn) costly constructions will be done only O(n/ log n)
times.

A Micro-Macro Decomposition. A micro-macro decomposition [1] is a par-
tition of T into O(n/ log n) disjoint connected subgraphs calledmicro trees. Each
micro tree is of size at most log n, and at most two nodes in a micro tree are adja-
cent to nodes in other micro trees. These nodes are referred to as top and bottom
boundary nodes. The top boundary node is chosen as the root of the micro tree.
The macro tree is a rooted tree of size O(n/ logn) whose nodes correspond to
micro trees as follows (See Fig 1): The top boundary node t(C) of a micro tree C
is connected to a boundary node in the parent micro tree parent(C) (apart from
the root). The boundary node t(C) might also be connected to a top boundary
node of a child micro tree child(C).1 The bottom boundary node b(C) of C is
connected to top boundary nodes of at most two child micro trees �(C) and r(C)
of C.

A Bottom Up Traversal of the Macro Tree. With each micro tree C we
associate an array AC . Let TC denote the union of micro tree C and all its
descendant micro trees. The array AC stores the maximum 1s (black nodes)
in every pattern that includes the boundary node t(C) and other nodes of TC .
We also associate three auxiliary arrays: Ab, At and Atb The array Ab stores

1 The root of the macro tree is unique as it might have a top boundary node connected
to two child micro trees. We focus on the other nodes. Handling the root is done in
a very similar way.
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t(C)
b(C) C

parent(C)

child (C)

r (C)l (C)

Fig. 1. A micro tree C and its neighboring micro trees in the macro tree. Inside each
micro tree, the black nodes correspond to boundary nodes and the white nodes to
non-boundary nodes.

the maximum 1s in every pattern that includes the boundary node b(C) and
other nodes of C, T�(C), and Tr(C). The array At stores the maximum 1s in
every pattern that includes the boundary node t(C) and other nodes of C and
Tchild(C). Finally, the array Atb stores the maximum 1s in every pattern that
includes both boundary nodes t(C) and b(C) and other nodes of C, T�(C), and
Tr(C).

We initialize for every micro tree C its O(|C|) = O(log n) sized arrays. Arrays
AC and At are initialized to hold the maximum 1s in every pattern that includes
t(C) and nodes of C. This can be done in O(|C|2) time for each C by rooting C
at t(C) and running the algorithm from the previous subsection. Similarly, we
initialize the array Ab to hold the maximum 1s in every pattern that includes
b(C) and nodes of C. The array Atb is initialized as follows: First we check how
many nodes are 1s and how many are 0s on the unique path between t(C) and
b(C). If there are i 1s and j 0s we set Atb[k] = 0 for every k < i + j and we
set Atb[i + j] = i. We compute Atb[k] for all k > i + j in total O(|C|2) time by
contracting the b(C)-to-t(C) path into a single node and running the previous
algorithm rooting C in this contracted node. The total running time of the
initialization step is therefore O(n · |C|2/ logn) = O(n logn) which is negligible.
Notice that during this computation we have computed the maximum 1s in all
patterns that are completely inside a micro tree. We are now done with the leaf
nodes of the macro tree.

We next describe how to compute the arrays of an internal node C of the macro
tree given the arrays of �(C), r(C) and child(C). We first compute the maximum
1s in all patterns that include b(C) and vertices of T�(C) and Tr(C). This can

be done using the aforementioned string speedups in O(|T�(C)| · |Tr(C)|/ log2 n)
time when both |T�(C)| > logn and |Tr(C)| > log n and in O(n/ log n) time oth-
erwise. Using this and the initialized arrayAb of C (that is of size |C| ≤ logn) we
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can compute the final array Ab of C in time O((|T�(C)| + |Tr(C)|)/ logn) =
O(n/ logn). Similarly, using the initialized Atb of C, we can compute the final
array Atb of C in O(n/ logn) time. Next, we compute the array At using the
initialized arrayAt of C and the arrayAt of child(C) in time O(n/ logn). Finally,
we compute AC of C using Atb of C and At of child(C) in O((|T�(C)|+ |Tr(C)|+
|C|)·|Tchild(C)|/ log2 n) time if both |T�(C)|+|Tr(C)|+|C| > logn and |Tchild(C)| >
logn and in O(n/ logn) otherwise. To finalize AC we must then take the entry-
wise maximum between the computed AC and At. This is because a patten in
TC may or may not include b(C).

To bound the total time complexity over all clusters C, notice that some
computations required O(α(v) ·β(v)/ log2 n) when α(v) > logn and β(v) > logn
are the subtree sizes of two children of some node v ∈ T . We have already seen
that the sum of all these terms over all nodes of T is O(n2/ log2 n). The other type
of computations each require O(n/ logn) time but there are at most O(n/ log n)
such computations (O(1) for each micro tree) for a total of O(n2/ log2 n). This
completes the proof of Theorem 1.

2.4 Finding the Query Pattern

In this subsection we extend the index so that on top of identifying in O(1) time
if a pattern (i, j) appears in T , it can also locate in O(log n) time a node v ∈ T
that is part of such a pattern appearance. We call this node an anchor of the
appearance. This extension increases the space of the index from O(n) bits to
O(n log n) bits (i.e., O(n) words).

Recall that given a tree T we build in O(n2/ log2 n) time an array A of size
n = |T | where A[i] stores the minimum and maximum values imin and imax

such that (i, imin) and (i, imax) appear in T . Now consider a centroid decom-
position of T : A centroid node c in T is a node whose removal leaves no con-
nected component with more than n/2 nodes. We first construct the array A
of T in O(n2/ log2 n) time and store it in node c. We then recurse on each re-
maining connected component. This way, every node v ∈ T will compute the
array corresponding to the connected component whose centroid was v. No-
tice that this array is not the array Av since we do not insist the pattern uses
v. Observe that since each array A is implicitly stored in an n-sized bit ar-
ray B, and since the recursion tree is balanced the total space complexity is
O(n log n) bits. Furthermore, the time to construct all the arrays is bounded by
T (n) = 2T (n/2) +O(n2/ log2 n) = O(n2/ log2 n).

Let c denote the centroid of T whose removal leaves at most three connected
components T1, T2, and T3 (recall we assume degree at most 3). Upon query (i, j)
we first check the array of c if pattern (i, j) appears in T (i.e., if imin ≤ j ≤ imax).
If it does then we check the centroids of T1, T2 and T3. If (i, j) appears in any of
them then we continue the search there. This way, after at most O(log n) steps
we reach the first node v whose connected component includes (i, j) but none of
its child components do. We return v as the anchor node since such a pattern
must include v. Finally, we note that the above can be extended so that for every
occurrences of (i, j) one node that is part of this occurrence is reported.
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3 Jumbled Pattern Matching on Grammars

In grammar compression, a binary string S of length n is compressed using a
context-free grammar G(S) in Chomsky normal form that generates S and only
S. Such a grammar has a unique parse tree that generates S. Identical subtrees
of this parse tree indicate substring repeats in S. The size of the grammar g =
|G(S)| is defined as the total number of variables and production rules in the
grammar. Note that g can be exponentially smaller than n = |S|, and is always at
most O(n/ logn). We show how to solve the jumbled pattern matching problem
on S by solving it on the parse tree of G(S), taking advantage of subtree repeats.
We obtain the following bounds. The proof is given in the appendix.

Theorem 2. Given a binary string S of length n compressed by a grammar
G(S) of size g, we can construct in O(g2/3n4/3/(logn)4/3) time a data structure
of size O(n) bits that on query (i, j) determines in O(1) time if S has a substring
of length i with exactly j 1s.

We also note that similarly to the case of trees (subsection 2.4), if we are willing to
increase our index space to O(n log n) bits, then it is not difficult to turn indexes
for detecting jumbled pattern matches in grammars into indexes for locating
them. To obtain this, we build an index for S and recurse (build indexes) on
S1 = B1 ◦ · · · ◦Bk and S2 = Bk+1 ◦ · · · ◦Bd where |S1| and |S2| are roughly n/2.
This way, like in the centroid decomposition for trees, we can get in O(log n) time
an anchor index of S. That is, an index of S that is part of a pattern appearance.
Furthermore, as opposed to trees, we can then find the actual appearance (not
just the anchor) in additionalO(i) time by sliding a window of size i that includes
the anchor.

4 Jumbled Pattern Matching on Bounded Treewidth
Graphs

In this section we consider the extension of binary jumbled pattern matching to
the domain of graphs: Given a graph G whose vertices are colored either black
and white, and a query (i, j), determine whether G has a connected subgraph
G′ with i white vertices and j black vertices2. This problem is also known as
the (binary) graph motif problem in the literature. Fellows et al. [17] provided
an nO(w) algorithm for this problem, where w is the treewidth of the input
graph. Here we will substantially improve on this result by proving the following
theorem, asserting that the problem is fixed-parameter tractable in the treewidth
of the graph.

Theorem 3. Binary jumbled pattern matching can be solved in f(w)·nO(1) time
on graphs of treewidth w.

2 The difference between the meaning of the query here and elsewhere in the paper is
for ease of the presentation.
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The function f(w) in the theorem above can be replaced with wO(w) in case
a tree decomposition of width w (see below) is provided with the input graph,

and otherwise it can be replaced by 2O(w3). Also, the algorithm in the theorem
actually computes all queries (i, j) that appear in G, and can thus be easily
converted to an index for the input graph.

We begin by first introducing some necessary notation and terminology. Let
G = (V (G), E(G)) be a graph. A tree decomposition of G is a tree T whose
nodes are subsets of V (G), called bags, with the following two properties: (i) the
union of all subgraphs induced by the bags of T is G, and (ii) for any vertex
v, the set of all bags including v induces a connected subgraph in T . We use
X to denote the set of bags in a given tree decomposition. The width of the
decomposition is defined as maxX∈X |X | − 1. The treewidth of G is the smallest
possible width of any tree decomposition of G. Given a bag X of a given tree
decomposition T , we let GX denote the subgraph induced by the union of all
bags in TX . Bodlaender [7] gave an algorithm for computing a width-w tree

decomposition of a given graph with treewidth w in 2O(w3)n time.
We next describe the information we store for each bag in the tree decom-

position of G. Let X be an arbitrary bag. A partition ΠX = {X0, X1, . . . , Xx}
of X is positive for a given query (i, j) in GX if there are x disjoint connected
subgraphs G1, . . . , Gx of GX such that (1) the total number of black and white
vertices in G′ = G1∪· · ·∪Gx is i and j respectively, and (2) V (G′)∩X0 = ∅ and
V (G�) ∩X = X� for each � = 1, . . . , x. Here we slightly abuse our terminology
and allow X0 to be the empty set. The information we compute for each bag
X is an array AX which has an entry for each possible query (i, j), where the
entry AX [i, j] contains the set of all positive partitions of X for (i, j) in GX .
Note that the query (i, j) appears in GX iff there exists some partition into two
sets {X0, X1} that is positive for (i, j). Since (i, j) appears in G iff (i, j) appears
in GX for some bag X ∈ X , computing the arrays AX for all bags allows us to
determine whether (i, j) appears in G. Our algorithm computes all arrays AX in
a bottom-top fashion from the leaves to the root of T . It is easy to verify that
the size of each array AX is bounded by wO(w)n2. To get a similar term in our
running time, we will show that computing the array AX from the arrays of the
children of X can be done in polynomial-time with respect to the child array
sizes.

We will work with a specific kind of tree decompositions, namely nice tree
decompositions [8]. A nice tree decomposition is a binary rooted tree decomposi-
tion T with four types of bags: Leaf, forget, introduce, and join. Leaf bags are the
leaves of T and include a single vertex of G, and so computing AX for leaf bags
is trivial. A forget bag X has a single child Y with X = Y \ {v} for some vertex
v of G. Computing AX from AY in this case amounts to converting each positive
partition ΠY of Y to a corresponding positive partition ΠX of X by removing
v from the class it belongs to in ΠY . An introduce bag X also has a single child
Y , but this time we have X = Y ∪ {v} for some vertex v /∈ Y of G. By the
properties of a tree decomposition, we know that v is only adjacent to vertices
of Y in GX . Computing AX from AY in this case requires the consideration of
all partitions of X which are formed from positive partitions ΠY of Y by adding



Binary Jumbled Pattern Matching on Trees and Tree-Like Structures 527

v to a class in ΠY with one of its neighbors (or adding {v} as a new singleton
class). We leave the precise details to the full version of this paper, but it should
be easy to see that computing AX in this case, as well as in all cases above, can
be done in wO(w)nO(1).

The more challenging case is when X is a join bag. A join bag X has two chil-
dren Y and Z in T , withX = Y = Z. Consider two partitionsΠY = {Y0, . . . , Yy}
and ΠZ = {Z0, . . . , Zz} for Y and Z. We define the partition ΠY ⊕ΠZ as fol-
lows: First we set X0 to be Y0 ∩Z0. The remaining classes are constructed such
that any pair of vertices in X belong to the same class in ΠX \ {X0} iff they
belong to the same class in ΠY \ {Y0} or to the same class in ΠZ \ {Z0}.

Let i0 and j0 respectively denote the number of white and black vertices in X .
We claim that if (i1, j1) and (i2, j2) are two queries for which ΠY and ΠZ are
respectively positive in GY andGZ , thenΠX = ΠY ⊕ΠZ is positive for (i1+ i2−
i0, j1 + j2 − j0). This can be verified by considering the connected components
in GY

1 ∪ · · · ∪ GY
y ∪ GZ

1 · · · ∪ GZ
z , where G

Y
1 , . . . , G

Y
y and GZ

1 , . . . , G
Z
z are sets of

graphs witnessing that ΠY and ΠZ are positive for (i1, j1) in GY and (i2, j2) in
GZ . It is easy to see that the total number of white and black vertices in these
components is i1 + i2 − i0 and j1 + j2 − j0, where i0 white vertices and j0 black
vertices are subtracted due to double counting the vertex colors in X . Moreover,
it can be verified that these components intersect X as required by ΠX .

On the other hand, it can also be seen on the same lines that if (i, j) is a query
for which ΠX is positive in GX , then (i, j) = (i1 + i2 − i0, j1 + j2 − j0) for some
pair of queries (i1, j1) and (i2, j2) for which ΠY and ΠZ are positive in GY and
GZ . We can therefore compute AX [i, j] by examining all such pairs (i1, j1) and
(i2, j2), and computing the partition ΠY ⊕ΠZ for each pair of positive partitions
ΠY ∈ AY [i1, j1] and ΠZ ∈ AZ . This requires w

O(w)nO(1) time.
To summarize we compute each array AX in wO(w)nO(1) time. As the total

number of bags is O(wn), we obtain an algorithm whose total running time is
wO(w)nO(1), excluding the time required to compute the nice tree decomposition
T . We note that the running time of our algorithm can be improved slightly
by using an extension of Lemma 1 to graphs. Also, our result straightforwardly
extends to an wO(w)nO(c) time algorithm for the case where the vertices of G
are colored with c colors.
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