
Labeling Moving Points with a Trade-Off

between Label Speed and Label Overlap

Mark de Berg and Dirk H.P. Gerrits

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, The Netherlands

Abstract. Traditional map-labeling algorithms ensure that the labels
being placed do not overlap each other, either by omitting labels or
scaling them. This is undesirable in applications where the points to be
labeled are moving. We develop and experimentally evaluate a heuristic
for labeling moving points. Our algorithm labels all the points with labels
of a fixed size, while trying to minimize the number of overlapping labels
and ensuring smoothly moving labels. It allows a trade-off between label
speed and label overlap.

1 Introduction

To do their jobs air-traffic controllers need a real-time visualization of the air-
planes in their designated air space. Similarly, companies may want to track their
fleet of taxis, trucks, or ships, and biologists may want to track wildlife tagged
with GPS devices. A natural visualization for these kinds of applications is to
represent each object as a moving point, and to place a label with each point
that gives information about the object—an identifier, velocity and/or altitude,
and so on. This leads to the dynamic point-labeling problem, which is the topic
of our paper: how can we maintain a suitable labeling of a set of moving points
in the plane?

Dynamic point labeling generalizes static point labeling, a problem in auto-
mated cartography that has attracted much attention; see the online Map La-
beling Bibliography [9]. Here a static set of points (representing cities, say) is
to be labeled (with their names). Such a static labeling should have readable
labels, and an unambiguous association between labels and points. Readability
is typically formalized by regarding the labels as axis-aligned rectangles slightly
larger than the text they contain, and requiring that they be placed so that their
interiors are disjoint. To associate labels with their points one usually requires
each label to be placed so that it contains the point on its boundary. This can
be done in several different ways, for example by requiring that the point is one
of the four corners of the label (the 4-position model), or by allowing the point
to be anywhere on the boundary (the 4-slider model). Other models, such as the
2-position model or the 1-slider model, have been studied as well.

Given a label model, one would like to label all of the points with non-
overlapping labels. Unfortunately, this is not always possible and deciding

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 373–384, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



374 M. de Berg and D.H.P. Gerrits

whether this is the case is strongly NP-complete for most label models [5]. This
led to the investigation of two optimization problems: the size-maximization
problem, which asks for the maximum scaling factor for the labels that al-
lows them to be placed without overlap, and the number-maximization prob-
lem, which asks for a maximum-cardinality subset of the points that allows a
non-overlapping labeling. Results have been obtained for many variants of these
problems.

One way to extend these results to dynamic point labeling would be to re-
compute a static labeling in real time—say 50 times per second. While several
algorithms for static labeling are fast enough for this, and while the quality of
the static solution is very good in practice, it still does not lead to satisfactory
results. Indeed, algorithms for number-maximization would lead to labels ap-
pearing and disappearing between consecutive time steps, which is distracting
for the user—note that heuristics for the dynamic number-maximization prob-
lem (see, for instance, [1,7,8] and their references) suffer from the same problem.
Algorithms for size-maximization would lead to labels changing size (possibly in
a non-continuous manner), which is disturbing as well. In an earlier paper [2],
we therefore studied the free-label maximization problem which asks to label all
points with labels of a given size, while maximizing the number of labels that are
free (that is, interior-disjoint with all other labels). This avoids the downsides
of the size- and number-maximization problems mentioned above. In our earlier
paper we studied the static variant of the free-label maximization problem. In
this paper we turn our attention to the dynamic version of the problem.

Our results. The formal problem setting is as follows. The input is a dynamic
point set P , which specifies for each point p ∈ P the time birth(p) at which
it is added to the point set, the time death(p) at which it is removed, and its
continuous trajectory between those times. For simplicity we assume that the
trajectories are polygonal, although the results can be extended to curved tra-
jectories. We refer to the time interval during which p is present in the point set
as its lifespan and denote it by life(p) = [birth(p), death(p)]. Whenever t ∈ life(p)
we say that p is alive at time t, and then denote its position by p(t). For such a
dynamic point set P we compute a dynamic labeling L, which for all t assigns a
static labeling L(t) to the point set P (t). Here P (t) = {p(t) | p ∈ P, t ∈ life(p)}
denotes the set of points that are alive at time t, at their respective locations.
The label model we use is a slider model, where we require the axis-aligned label
to be “behind” the point (with respect to its direction of movement) at all times.
More precisely, the ray from the point to the center of its label should make an
angle of at least 90◦ with the ray from the point in its direction of movement.
This way, the label placement does not obscure the movement of the points.

Our global approach is simple: we compute a static labeling at regular in-
tervals, and then interpolate between successive static labelings to obtain the
dynamic labeling. For the static labeling we use an algorithm from our previ-
ous paper [2]; the crucial and novel part lies in the interpolation. Our solution
has several attractive properties. Firstly, it is fast. The static labelings can be
computed in O(n log n) time for n points, and interpolating takes time linear in



Labeling Moving Points with a Trade-Off between Speed and Overlap 375

the combined complexity of the point trajectories. Secondly, the static labelings
contain many free labels and the interpolation is such that it minimizes both the
maximum speed of the labels as well as their average speed. Thirdly, the user can
vary Δt, the time between successive time steps, to obtain a trade-off between
label speed and label overlap. The trade-off turns out be to be very favorable in
practice: a small sacrifice in label freeness can yield greatly reduced label speeds.
Finally, the algorithm is “semi-online”, in the sense that it only needs to know
the trajectories and the times at which points are added or removed Δt time in
advance.

2 A Heuristic Algorithm

As mentioned above, we propose a dynamic labeling algorithm that computes
a series of static labelings and then moves the labels smoothly from their po-
sitions in one static labeling to their positions in the next. In computing the
static labelings we try to maximize the number of free labels, in computing the
interpolation between labelings we try to minimize the movement speed of the
labels. Thus we hope to achieve a good dynamic labeling according to all criteria
mentioned above. The algorithm can be expressed by the following pseudocode,
where Δt > 0 is the time between successive static labelings, and L(t, t′) refers
to the part of a dynamic labeling L between times t and t′.

Algorithm InterpolativeLabeling(P , tmax)
1. L ← ∅; t← 0
2. L(t)← StaticLabeling(P, t)
3. while t < tmax

4. do tnext ← min(t+Δt, tmax)
5. L(tnext)← StaticLabeling(P, tnext)
6. L(t, tnext) ← Interpolate(L(t), t, L(tnext), tnext)
7. t← tnext
8. return L
This method has three parameters. Firstly, the size of the time step Δt. Smaller
time steps may lead to a greater number of free labels over time. Larger time
steps may lead to less or slower label movement, and fewer calls to the Static-
Labeling subroutine. Secondly, the algorithm used for StaticLabeling. We
shall use a simple, greedy algorithm called FOURGREEDYSWEEPS, which was
described in an earlier paper [2]. For labels of equal dimensions that can be
placed anywhere around their point it yields a constant-factor approximation to
free-label maximization. The algorithm still works in our setting where labels
may only be placed behind their points, but the proof of its approximation ratio
unfortunately does not. Lastly, the algorithm used for Interpolate. We shall
use the simple, linear-time algorithm described below. It minimizes both the
average and the maximum movement speed of each label.

Interpolation algorithm. We are given two moments in time t1 and t2, and static
labelings L(t1) and L(t2) of the dynamic point set at those times. We then wish



376 M. de Berg and D.H.P. Gerrits

to compute a dynamic labeling L(t1, t2) which respects them, that is, whose static
labelings at times t1 and t2 equal L(t1) and L(t2). We will do this independently
for each moving point p ∈ P with life(p)∩ [t1, t2] �= ∅. For the rest of this section,
let p be such a point and let [t′1, t

′
2] = life(p) ∩ [t1, t2].

Recall that the position of a label is restricted in that it must contain the
point it labels on its boundary. Furthermore, the labels must trail “behind” the
points. Specifically, a ray from the point in its direction of movement must make
an angle of at least 90◦ with a ray from the point through its label’s center.
Now suppose we translate the coordinate system so that point p is always at the
origin. The allowed positions for the center of p’s label then trace out part of
the surface of a box in 3-dimensional space-time. We refer to this configuration
space for point p over the interval [t′1, t

′
2] as C. Figure 1(b) shows an example of

such a configuration space for the point trajectory shown in Figure 1(a).
A label trajectory for p corresponds to a path through C, monotone with

respect to the time axis. To compute one, it will be convenient to “unfold” C
into a rectilinear polygon R as in Figure 1(c). If point trajectory p has k vertices,
then R is the union of k − 1 closed, axis-aligned rectangles. The intersection of
any two consecutive rectangles is a vertical line segment which we refer to as
a portal—see Figure 1(c). If a portal’s coordinate along the time axis is t we
refer to it as the portal at t, denoted by Ψ(t). In addition to these k − 2 portals
we define two extra portals at t′1 and t′2. These are simply the sets of label
positions that respect L(t1) and L(t2). If t′1 = t1 then Ψ(t′1) is a single point
representing the label given to p by L(t1). If t′1 �= t1 then L(t1) specifies nothing
about p’s label position at time t′1, and Ψ(t′1) is simply the leftmost edge of R.

(a)

(b)

(c)

y

x

t

y

tx

Fig. 1. (a) A piecewise linear point trajectory (in gray, with dots as vertices) with
given labels (in gray, hatched, centers marked by crosses) at the endpoints. (b) The
corresponding configuration space of allowed label positions. (c) An unfolding of (b)
and a shortest path through it. Portals are shown as dotted line segments.



Labeling Moving Points with a Trade-Off between Speed and Overlap 377

Analogously, Ψ(t′2) is either the rightmost edge of R, or a point representing
p’s label in L(t2). With these definitions, a label trajectory for p corresponds
to a time-monotone path through R from portal Ψ(t′1) to portal Ψ(t′2), passing
through all intermediate portals in sequence. We will now argue that the shortest
such path produces the most desirable label trajectory.

Lemma 1. A shortest path from Ψ(t′1) to Ψ(t′2) through R yields a label trajec-
tory minimizing both (i) the average speed and (ii) the maximum speed of p’s
label relative to p.

Proof. (i) Let π be such a shortest path, which must be a t-monotone polygonal
chain. Let T (π) be the summed length of the projections onto the t-axis of the
links of π, and let Y (π) the same quantity for the y-axis. Every t-monotone
path π′ from Ψ(t′1) to Ψ(t′2) must traverse the same distance in the t-direction,
namely T (π′) = T (π) = t′2 − t′1. Since π is the shortest such path, it minimizes
the distance traveled in y-direction, that is, Y (π) � Y (π′) for all π′. Thus π
minimizes the average speed Y (π)/T (π) of p’s label.

(ii) Let ab be a steepest link of π, that is, ab has the maximum absolute
slope among the links of π. Suppose that ab’s projection onto the t-axis is [t′, t′′]
and that ab has negative slope (the case where it has positive slope is similar).
Then π cannot make a left turn at a, as that would make ab less steep than the
link preceding it. So π must either make a right turn at a, or start at a. If π
makes a right turn at a, then a must be the bottom endpoint of portal Ψ(t′),
as we could otherwise shorten π by a downward deformation at a. Since a lies
above b, this makes ab the shortest path not only from a to b, but also from Ψ(t′)
to b. If π instead starts at a, then t′1 = t′, so the same condition holds. Reasoning
symmetrically for b yields that ab must also be the shortest path from a to Ψ(t′′).
We conclude that ab is the shortest path from Ψ(t′) to Ψ(t′′). This implies that
any t-monotone path from Ψ(t′) to Ψ(t′′) must be at least as steep as ab some-
where between t′ and t′′. Thus π minimizes the maximum speed Y (ab)/T (ab)
of p’s label. ��
Theorem 1. Suppose we are given a dynamic point set P with n points, along
with static labelings L(t1) and L(t2) of it at times t1 and t2. For each p ∈ P let kp
be the number of vertices in its polygonal trajectory between times t1 and t2. In
O(

∑
p∈P kp) time and O(max{kp | p ∈ P}) space we can then compute a dynamic

labeling L(t1, t2) respecting L(t1) and L(t2), that for each point minimizes both
its average and its maximum label speed.

Proof. Lemma 1 shows that L(t1, t2) can be obtained by computing a shortest
path through the unfolded configuration space for each point. It remains to
show that this can be done in O(kp) time and space for a point p ∈ P with
life(p) ∩ [t1, t2] = [t′1, t

′
2] �= ∅. As before, let R denote the simple, rectilinear

polygon with O(kp) vertices that is p’s unfolded configuration space. Through R
we seek either a shortest point-to-point path (if life(p) ⊇ [t1, t2]), a shortest edge-
to-edge path (if life(p) ⊂ [t1, t2]), or a shortest point-to-edge path (otherwise).
This can be done in linear time using an algorithm by Lee and Preparata [6],
with some additional techniques by Guibas et al. [4]. ��



378 M. de Berg and D.H.P. Gerrits

Hourglass trimming. In the previous section we described an algorithm to mini-
mize both the average and the maximum speed of all labels in a dynamic labeling
that interpolates between two given static labelings. As the experimental eval-
uation in the next section will show, however, high label speeds can still occur
when a poor choice of static labelings is made. To see why this occurs, consider
the example in Figure 2. Recall that we compute static labelings at regular in-
tervals of Δt time. In the example, point p’s trajectory makes a sharp left turn
at time t + ε for some small ε > 0. The static labeling algorithm completely
disregards this when computing the labeling for time t, and comes up with the
depicted leftmost label position for p. Now whatever labeling is picked for time
t+Δt, the label for p will have to move substantially within ε time units. The
problem here is that the chosen label position is just in the range of positions
considered to be behind the point at time t, but the same position lies quite a
bit in front of the point at time t+ ε.

To fix this, we shall restrict the range of label positions that the static labeling
algorithm is allowed to use, based on the trajectories of the points. We will
need some definitions first. Consider a fixed point p, and let R be its unfolded
configuration space. Let π(a, b) denote the shortest path in R from a to b, for any
a, b ∈ R. For a time interval [t′, t′′] in which p is alive, we define the hourglass
H(t′, t′′) as the region enclosed by π(a, c) and π(b, d), where the segments ab
and cd are the intersections of R with the vertical lines at t′ and t′′. Of the two
paths π(a, c) and π(b, d) we call the upper one the hourglass’s upper chain, and
the other its lower chain. If the two chains intersect, then their intersection is
a common subchain called the string. The hourglass is then called closed, and
removal of the string leaves two connected components called funnels. If the
hourglass is not closed, it is called open. Figure 3(a) illustrates these concepts.

Now consider a time instance t ∈ life(p). Let t− = max
(
birth(p), t −Δt

)
, let

t+ = min
(
t+Δt, death(p)

)
, and consider the hourglasses H(t−, t) and H(t, t+).

Whatever label positions are chosen at times t−, t, and t+, the slowest interpo-
lation between them (that is, the shortest path connecting them in R) must stay
within the union of these two hourglasses. If H(t−, t) or H(t, t+) has steep edges,
as in the example of Figure 3, then a fast moving label may result. We shall there-
fore narrow the ranges of valid label positions in such a way that these steep edges
are “trimmed off” the hourglasses. If H(t−, t) is closed, then let F−(t) denote

t t+Δtt−Δt

Fig. 2. An example of the static labeling algorithm making a poor choice with regards
to the dynamic labeling



Labeling Moving Points with a Trade-Off between Speed and Overlap 379

slope +v

slope −v

t+tt−

H(t−,t)=F−(t)=F+(t−)

open hourglass

H(t, t+)

closed hourglass

F+(t)

funnel string

F−(t+)
funnel

R

(a)
(b)

(c)

Fig. 3. (a) An example of an open hourglass (left) and a closed hourglass (right),
the latter consisting of two funnels connected by a string. (b) The same hourglasses
after trimming, shown in white. (c) When necessary (as in this case), the trimmed
hourglasses are modified so that they connect to each other.

the rightmost funnel of H(t−, t), and let F−(t) = H(t−, t) otherwise. Similarly,
let F+(t) denote either H(t, t+) (if open) or its leftmost funnel (if closed). We
assume we are given a parameter v that denotes a speed deemed reasonable for
labels. We now translate a line with slope +v down from positive infinity along
the y-axis until it has become tangent to one of the two chains defining F−(t).
Similarly, we translate a line with slope −v up from negative infinity until it has
become tangent to one of the two chains defining F−(t). These two lines define a
narrower interval on the vertical line at t—see Figure 3(b). If we apply the same
procedure at time t− (using F+(t−)), then the new hourglass H ′(t−, t) between
the two narrowed intervals at t− and t is the trimmed hourglass we are after.
Specifically, the slowest label interpolation through H ′(t−, t) cannot exceed the
speed v, except in two cases. Firstly, this occurs when H ′(t−, t) is closed, and
its string contains an edge steeper than v, as on the right in Figure 3(b). In this
case there is nothing that can be done to avoid exceeding the speed v with p’s
label. Secondly, this occurs when H ′(t−, t) is open, and a bi-tangent of its upper
and lower chain is steeper than v, as on the left in Figure 3(b). In this case it
might be possible to trim the hourglass further, but sometimes this will simply
result in a closed hourglass, making the previous case apply. Hence, we decided
not to trim the hourglass further. Our experiments described in the next section
show that our current method works quite well in practice.

In the same way, we compute the trimmed hourglass H ′(t, t+), using F+(t)
and F−(t+). Typically, the narrowed interval at t that defines H ′(t−, t) will
differ from the narrowed interval at t that defines H ′(t, t+). If they overlap this



380 M. de Berg and D.H.P. Gerrits

poses no problem, as we may then simply take their intersection. In Figure 3(b),
however, they are disjoint. In that case, there is nothing we can do to avoid high
label speeds on both sides of t. We then take the interval in between the two,
as in Figure 3(c). Note that this can undo some of the trimming, making the
hourglass wider again.

3 Experimental Evaluation

We will now evaluate the effect of varying the time-step parameter Δt on the
quality of the produced labeling, that is, on the number of free labels and on the
speeds at which labels move. Intuitively, one would expect both the number of
free labels and the label speeds to increase as the time step approaches 0. Thus
there should be a trade-off between how many labels are free and how slow the
labels move. Our main goal is to quantify this trade-off experimentally.

Computation time. We have measured the computation time of our C++ imple-
mentation only informally, just to ensure it was fast enough for use in interactive
applications. On the modest hardware used for our experiments (an Intel Q6600
2.40GHz with 3GB RAM running Ubuntu 12.10), Interpolation takes about
0.4 milliseconds to interpolate between two 100-point labelings, and 2.2 millisec-
onds between two 1,000-point labelings. Producing such labelings with FOUR-
GREEDYSWEEPS takes about 5 milliseconds for 100 points, and 189 milliseconds
for 1,000 points. Note that this is with a simple O(n2)-time implementation, even
though a more sophisticated O(n log n)-time implementation is possible [2]. The
latter could no doubt label 1,000 points much more quickly, but such large num-
bers of labels cannot be legibly displayed on a reasonably sized screen anyway.
The extra engineering effort was therefore deemed unnecessary.

Experimental setup. To evaluate the quality of the produced dynamic labelings,
we have used a network of streets in the Dutch city of Eindhoven (see Figure 5).
Moving points were created to move along five polygonal paths through the net-
work, at constant and equal speeds of 35 px/s. The arrival times of the points
on each route were created by a Poisson process with parameter 5 s. This makes
the time between arrivals of successive points on a route an exponentially dis-
tributed random variable with a mean of 5 s. Different seeds for the random
number generator thus create different problem instances. We used 100 differ-
ent seeds to create 100 problem instances. For each problem instance we used
our algorithm to produce dynamic labelings from t = 0 to t = tmax = 60 s for
several different values of the time step Δt. To determine the quality of such
a dynamic labeling L we did not compute the exact intervals of time during
which each label was free. Instead, L was sampled at regular times at a rate of
25.6 samples per second (1537 samples total over 60 seconds). This is roughly
the same framerate as used in movies (24 frames per second), but with the time
between samples changed to have a finite binary floating point representation
(from 1/24 s = 5/120 s to 5/128 s). For each sample we recorded the number
of free and non-free labels, as well as the amount each label moved (relative to
its point) since the last sample. In addition, we recorded the free label area for



Labeling Moving Points with a Trade-Off between Speed and Overlap 381

each sample: the area covered by the union of the labels, minus the area cov-
ered by more than one label. In practice, this might be a more useful measure
to maximize than the number of completely free labels. All of the above was
done for several different time steps, the lowest being Δt = 1/25.6 s ≈ 0, so
that each sample is labeled independently without regard for label speed, and
the highest being Δt = 61 s > 60 s, so that label speeds are minimized without
regard for label freeness. The graphs below offer a summary of the resulting
data. The software used to generate the data and the graphs can be downloaded
from http://dirkgerrits.com/programming/flying-labels/.

Results at a glance. The graphs in Figure 4 provides a high-level overview of
the quality of labelings computed by our algorithm. The top graph shows how
the label speed (measured in pixels per second), averaged over all moving points
and over the whole time interval [0, tmax], decreases as we pick higher and higher
values forΔt. The middle graph shows the same for the fraction of the labels that
are completely free. The bottom graph, lastly, shows the free label area divided
by the total area that would be spanned by the labels if they did not overlap.
Each graph shows the minimum and maximum (dotted lines), 25% and 75%
quantiles (dashed lines), and mean (solid line) over the 100 problem instances.
The red lines show the results of the algorithm without hourglass trimming, the
black lines show the results when hourglass trimming is used with a parameter
of v = 10 px/s. In both cases we see a very sharp decline in label speeds until
around Δt = 2 s, with a more modest corresponding decrease in label freeness.
For higher Δt the decrease in label speeds slows down substantially while the
decrease in label freeness continues. Thus, these preliminary results suggest that
a time step of around 2 seconds should yield good labelings.

Detailed analysis of one instance. The effect of turning hourglass trimming on
is similar to that of increasing the time step: the label speeds and freenesses
both decrease. In this sense it forms an alternative to raising the time step.
Hourglass trimming does something more, however, as can be seen when we
examine a single problem instance in more details. We have selected an instance
with particularly few free labels, but the effect can also be seen in other instances.

In Figure 6, seven graphs show how the label speeds of the individual moving
points develop over time in this problem instance, for seven different values of
Δt. Each of the moving points is drawn as a polyline, showing its speeds at all
time samples. The red lines show the situation when hourglass trimming is not
used. In the case of Δt ≈ 0 almost all labels move rather violently (as was to be
expected). For the other values of Δt, and especially the higher ones, a curious
pattern appears. Label movement tends to be slow overall and decrease when
Δt increases, but there are “spikes” of very high label movement near times
that are a multiple of Δt. This effect is caused by a point changing direction
near a multiple of Δt, as was explained in Section 2. This was our motivation
for introducing hourglass trimming. The black lines show what happens when
hourglass trimming is employed with the parameter v = 10 px/s. The regularly
occurring spikes vanish, leaving label speeds with less variance. Note that the
resulting label speeds do still exceed v, and by quite a bit for smaller time steps.

http://dirkgerrits.com/programming/flying-labels/


382 M. de Berg and D.H.P. Gerrits

0

50

100

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

A
verage label speed (px/s)

A
verage free label fraction

A
verage free label area fraction

≈ 0 1 2 3 4 5 10 15 30 >60

Timestep (s)

Fig. 4. The effects of varying the time step from Δt ≈ 0 to Δt > 60 s on label
speeds, number of free labels, and free label area, both with (black) and without (red)
hourglass trimming. Shown are the minimum and maximum (dotted lines), 25% and
75% quantiles (dashed lines), and mean (solid line) over the 100 problem instances.



Labeling Moving Points with a Trade-Off between Speed and Overlap 383

5

5

4 4

1

1

2

2

3

3

Fig. 5. The road network used for our experiments, and some labeled points moving
across it along five routes. Blue labels are free, red labels are not.

10100
400
900

1600
2500

100
400
900

1600
2500

100
400
900

1600
2500

10100
400
900

1600
2500

10100
400
900

1600
2500

10100
400
900

1600
2500

10100
400
900

1600
2500

≈
0

1/4
1

5
15

30
>60

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

La
be

l s
pe

ed
 (p

x/
s)

Fig. 6. The progression of label speeds over one particular problem instance, for several
different time steps, both with (black) and without (red) hourglass trimming. Note that
the y-axis uses a square root scale. With a linear scale the higher time steps would
have indistinguishably low speeds, while with a logarithmic scale the lower time steps
would have indistinguishably high speeds.



384 M. de Berg and D.H.P. Gerrits

4 Conclusion

We developed a heuristic algorithm for free-label maximization on dynamic point
sets, and evaluated it experimentally. The algorithm has been presented with the
assumption that all points move on polygonal trajectories, but could be imple-
mented just as well for curved trajectories. Instead of operating on polygons our
algorithms will then work with curved splinegons. This change can be effected
using techniques due to Garćıa-López and Ramos [3]. Our algorithm works by
computing static labelings with many free labels at regular intervals, and then
interpolating between these static labelings in a way that minimizes both the
average and the maximum label speed. By varying the time between static la-
belings one obtains a trade-off between the number of free labels over time, and
the speeds of the labels. The trade-off seemed favorable in experiments: a small
increase in label speeds can yield a great increase in the number of free labels.

With these preliminary results we have only scratched the surface. From a
theoretical point of view, algorithms with proven approximation ratios are still
sorely lacking for dynamic labeling. From a practical point of view, there is
room for improvement in other directions. While hourglass trimming was a step
in the right direction, our method for choosing static labelings can undoubtedly
be improved further. Testing on real-world data is also needed to get a more
realistic picture of our method’s performance.

References

1. Bell, B., Feiner, S., Höllerer, T.: View management for virtual and augmented reality.
In: Proc. 14th ACM Sympos. User Interface Software and Technology (UIST 2001),
pp. 101–110. ACM (2001)

2. de Berg, M., Gerrits, D.H.P.: Approximation algorithms for free-label maximization.
Comput. Geom. Theory Appl. 45(4), 153–168 (2012)

3. Garćıa-López, J., Ramos, P.A.: A unified approach to conic visibility. Algorith-
mica 28(3), 307–322 (2000)

4. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algo-
rithms for visibility and shortest path problems inside triangulated simple polygons.
Algorithmica 2(1), 209–233 (1987)

5. van Kreveld, M., Strijk, T., Wolff, A.: Point labeling with sliding labels. Comput.
Geom. Theory Appl. 13, 21–47 (1999)

6. Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear
barriers. Networks 14(3), 393–410 (1984)

7. Rosten, E., Reitmayr, G., Drummond, T.: Real-time video annotations for aug-
mented reality. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005.
LNCS, vol. 3804, pp. 294–302. Springer, Heidelberg (2005)

8. Vaaraniemi, M., Treib, M., Westermann, R.: Temporally coherent real-time labeling
of dynamic scenes. In: Proc. 3rd Internat. Conf. Computing for Geospatial Research
and Applications, COM.Geo 2012, article no. 17 (2012)

9. Wolff, A., Strijk, T.: The Map Labeling Bibliography (2009),
http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html

http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html

	Labeling Moving Points with a Trade-Off between Label Speed and Label Overlap
	1 Introduction

	2 A Heuristic Algorithm

	3 Experimental Evaluation

	4 Conclusion
	References





