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Abstract. We consider the smoothed analysis of Euclidean optimiza-
tion problems. Here, input points are sampled according to density func-
tions that are bounded by a sufficiently small smoothness parameter ¢.
For such inputs, we provide a general and systematic approach that al-
lows to design linear-time approximation algorithms whose output is
asymptotically optimal, both in expectation and with high probability.

Applications of our framework include maximum matching, maximum
TSP, and the classical problems of k-means clustering and bin packing.
Apart from generalizing corresponding average-case analyses, our results
extend and simplify a polynomial-time probable approximation scheme
on multidimensional bin packing on ¢-smooth instances, where ¢ is con-
stant (Karger and Onak, SODA 2007).

Both techniques and applications of our rounding-based approach are
orthogonal to the only other framework for smoothed analysis on Eu-
clidean problems we are aware of (Bléser et al., Algorithmica 2012).

1 Introduction

Smoothed analysis has been introduced by Spielman and Teng [26] to give a
theoretical foundation for analyzing the practical performance of algorithms.
In particular, this analysis paradigm was able to provide an explanation why
the simplex method is observed to run fast in practice despite its exponential
worst-case running time.

The key concept of smoothed analysis, i.e., letting an adversary choose worst-
case distributions of bounded “power” to determine input instances, is especially
well-motivated in a Euclidean setting. Here, input points are typically deter-
mined by physical measurements, which are subject to an inherent inaccuracy,
e.g., from locating a position on a map. For clustering problems, it is often
even implicitly assumed that the points are sampled from unknown probability
distributions which are sought to be recovered.

Making the mentioned assumptions explicit, we call a problem smoothed
tractable if it admits a linear-time algorithm with an approximation ratio that is
bounded by 1 — o(1) with high probability over the input distribution specified
by the adversary. Such an approximation performance is called asymptotically
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optimal. We provide a unified approach to show that several Euclidean optimiza-
tion problems are smoothed tractable, which sheds light onto the properties that
render a Euclidean optimization problem likely to profit from perturbed input.

We employ the one-step model, a widely-used and very general perturbation
model, which has been successfully applied to analyze a number of algorithms
[OTOTIUTS]. In this model, an adversary chooses probability densities on the
input space, according to which the input instance is drawn. To prevent the
adversary from modeling a worst-case instance too closely, we bound the density
functions from above by a parameter ¢. Roughly speaking, for large ¢, we expect
the algorithm to perform almost as bad as on worst-case instances. Likewise,
choosing ¢ as small as possible requires the adversary to choose the uniform
distribution on the input space, corresponding to an average-case analysis. Thus,
the adversarial power ¢ serves as an interpolation parameter between worst and
average case.

Formally, given a set of feasible distributions F that depends on ¢, and a per-
formance measure ¢, we define the smoothed performance of an algorithm under
the perturbation model F as maxy, .. r,er E(xy,.... X0 )~(f1nfo) [E( X1, ooy X))
In this work, we will be concerned with analyzing the smoothed approxima-
tion ratio, as well as bounds on the approximation ratio that hold with high
probability over the perturbations.

For given ¢, we require the density functions chosen by the adversary to be
bounded by ¢. For real-valued input, this includes the possibility to add uniform
noise in an interval of length /¢ or Gaussian noise with variance o € ©(1/¢).
In the Euclidean case, the adversary could, e.g., specify for each point a box of
volume at least 1/¢, in which the point is distributed uniformly.

Related Work. Recently, Blaser, Manthey and Rao [I0] established a framework
for analyzing the expectation of both running times and approximation ratios for
some partitioning algorithms on so-called smooth and near-additive functionals.
We establish a substantially different framework for smoothed analysis on a
general class of Euclidean functionals that is disjoint to the class of smooth
and near-additive functionals (see Section [7 for further discussion). We contrast
both frameworks by considering the maximization counterparts of two problems
studied in [10], namely Euclidean matching and TSP. Our algorithms have the
advantage of featuring deterministic running times and providing asymptotically
optimal approximation guarantees both in expectation and with high probability.

All other related work is problem-specific and will be described in the cor-
responding sections. As an exception, we highlight the result of Karger and
Onak [22], who studied bin packing. To the best of our knowledge, this is the
only problem that fits into our framework and has already been analyzed under
perturbation. In this paper, a linear-time algorithm for bin packing was given
that is asymptotically optimal on instances smoothed with any constant ¢. We
provide a new, conceptually simpler rounding method and analysis that replaces
a key step of their algorithm and puts the reasons for its smoothed tractability
into a more general context.
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Table 1. All (near) linear-time algorithms derived in our framework

problem running time restriction on adversary power

MaxM O(n) ¢ €o(Yn)or ¢ € o(n; di?ﬂ)
MaxTSP O(n) ¢ E€o(Yn)or¢e o(n% diz*a)
KMeans O(n) k¢ € o(né kdt1 dil)

BP; O(nlogn) ¢ € o(n'~*)

BPq4 O(n) p€o ( 4 Nlog log n/ log™® n)

Our Results. We provide very fast and simple approximation algorithms on suf-
ficiently smoothed inputs for the following problems: The maximum Euclidean
matching problem MaxM, the maximum Euclidean Traveling Salesman problem
MaxTSP, the k-means clustering problem KMeans where k& denotes the number
of desired clusters and is part of the input, and the d-dimensional bin packing
problem BP,. The approximation ratio converges to one with high probability
over the random inputs. Additionally, all of these algorithms can be adapted to
yield asymptotically optimal expected approximation ratios as well. This gener-
alizes corresponding average-case analysis results [14/23].

Almost all our algorithms allow trade-offs between running time and approx-
imation performance: By choosing a parameter p within its feasible range, we
obtain algorithms of running time O(n?), whose approximation ratio converges
to 1 as n — oo, provided that ¢ small enough, where the restriction on ¢ depends
on p. The special case of linear-time algorithms is summarized in Table [Il

2 Preliminaries

Given an n-tuple of density functions f = (f1,...,f,) and random variables
X = (X1,...,Xn), we write X ~ f for drawing X; according to f; for 1 <i < n.
We call Y = (Y1,...,Y,) a d-rounding of X if || X; —Y;|| < 4§ forall 1 <i < n.
For a given X, let Y% := {Y | || X; — Yi|| < 6} be the set of §-roundings of X.

We will analyze Euclidean functionals F : ([0,1]¢)* — R, denoting the dimen-
sion of the input space by d € N. For formalizing the perturbation model, let
¢ : N — [1,00) be an arbitrary function measuring the adversary’s power. For
better readibility, we usually write ¢ instead of ¢(n). We define F; to be the set
of feasible probability density functions f : [0,1]¢ — [0, #].

Note that if ¢ = 1, the set Fy only consists of the uniform distribution
on [0,1]¢. If however ¢ = n, the adversary may specify disjoint boxes for each
point. Intuitively, to obtain a particular worst-case instance, the adversary would
need to specify Dirac delta functions, which corresponds figuratively to setting ¢
to infinity. Observe also that already ¢ € w(1) suffices to let all possible locations
of a fixed point X; converge to a single point for n tending to infinity, hence we
believe that a superconstant ¢ is especially interesting to analyze.

For a given Euclidean functional F', we analyze the approximation ratio p of
approximation algorithms ALG. If the functional is induced by an optimization
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problem, we do not focus on constructing a feasible approximate solution, but
rather on computing an approximation of the objective value. However, we adopt
this simplification only for clarity of presentation. Each of the discussed algo-
rithms can be tuned such that it also outputs a feasible approximate solution for
the underlying optimization problem. The approximation ratio on instance X is

defined as p(X) = min { AII;%(())(), Af((;)(())() }, which allows to handle both maxi-

mization and minimization problems at once.

For analyzing running times, we assume the word RAM model of computation
and reveal real-valued input by reading in words of at least log n bits in unit time
per word. We call an approximation algorithm a probable g4 (n)-approzimation on
smoothed instances if p(X) > g4(n) with high probability, i.e., with probability
1 —o(1), when X is drawn from Fj. The algorithms derived in our framework
feature deterministic running times t(n) € poly(n) and asymptotically optimal
approximation ratios gs(n), i.e., go(n) — 1 for n — oo if ¢ is small enough.
For such choices of ¢, each of our algorithms induces a (non-uniform) probable
polynomial-time approximation scheme (PTAS) on smoothed instances.

3 Framework

Our framework builds on the notion of quantizable functionals. These are func-
tionals that admit fast approximation schemes on perturbed instances using
general rounding strategies. The idea is to round an instance of n points to
a quantized instance of ¢ < n points, each equipped with a multiplicity. This
quantized input has a smaller problem size, which allows to compute an approx-
imation faster than on the original input. However, the objective function needs
to be large enough to make up for the loss due to rounding.

We aim at a trade-off between running time and approximation performance.
As it will turn out, varying the number ¢(n) of quantized points on an instance
of n points makes this possible. Thus, we keep the function ¢ variable in our
definition. On instances of size n, we will write £ := ¢(n) for short.

Definition 1. Let d > 1 and F be a family of probability distributions [0,1]¢ —
R>o. Let t,R : N — R and @ € R. We say that a Euclidean functional F :
([0,1]9)* — Rsq is t-time (R, Q)-quantizable with respect to F, if there is a
quantization algorithm A and an approximation functional g : ([0,1]YxN)* — R
with the following properties. For any function ¢ satisfying £ € w(1) and £ € o(n),

1. The quantization algorithm A maps, in time O(n), a collection of points X =
(X1,...,X,) €0,1]% to a multiset A(X) = X" = ((X],n1),-.., (X}, n0)),
the quantized input, with X! € [0,1]%.

2. The approzimation functional g is computable in time t(¢) and, for any f €
F7, fulfills Prx~f[|F(X) — g(A(X))| < nR({)] € 1 —o(1).

3. For any f € F", we have Pry¢ [F(X) > nQ] € 1 —o(1).

The following theorem states that quantizable functionals induce natural approx-
imation algorithms on smoothed instances. We can thus restrict our attention
to finding criteria that make a functional quantizable.
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Theorem 2. Let F be a family of probability distributions and F be t({)-time
(R(£), Q)-quantizable with respect to F. Then for every ¢ with { € w(1) and
£ € o(n), there is an approzimation algorithm ALG with the following property.
For every f € F™, the approzimation ALG(X) on the instance X drawn from
fis (11— Rg))-close to F(X) with high probability. The approzimation can be
computed in time O(n + t(£)).

For all problems considered here, we also design algorithms whose expected ap-
proximation ratio converges to optimality in the sense that both E[p] — 1, as
already achieved by the framework algorithm, and E[p~!] — 1, the desired guar-
antee for minimization problems, which we ensure using auxiliary algorithms.
A sufficient auxiliary algorithm for F' is a linear-time algorithm approximat-
ing F' within a constant factor 0 < ¢ < 1. Outputting the better solution of our
framework algorithm and the c-approximation does not increase the order of the
running time, but achieves an approximation ratio of 1 — o(1) with probability
1 — o(1) due to the previous theorem, yielding E[p] — 1, and still provides a
constant approximation ratio on the remaining instances sampled with proba-
bility o(1). Thus, additionally E[p~!] < (1 — o(1)) 1_(1)(1) +o(1)c™! — 1 holds.

We respresent multisets of points either as X' = ((X{,n1),..., (X}, ne)) €
([0,1]¢ x N)* or expand this canonically to a tuple X’ € ([0,1])*. By T :
([0,1]% x N)* — ([0,1]%)* we denote the transformation that maps the former
representation to the latter.

4 Grid Quantization

Our first method for verifying quantizability is grid quantization. Here, the idea
is to round the input to the centers of grid cells, where the coarseness of the
grid is chosen according to the desired number of distinct points. This method
works well for functionals that allow for fast optimal computations on their
high-multiplicity version and provide a large objective value on the chosen per-
turbation model.

Theorem 3. (Grid quantization) Let d > 1, @ € R and F be a family of
probability distributions [0,1] — Rsq. Let F : ([0,1]%)* — Rxq be a Euclidean
Sfunctional with the following properties.

1. On the quantized input X' = ((X{,n1),...,(X},ne)), the value F(T(X'))
can be computed in time t(£) + O(Zle n;).

2. There is a constant C' such that w.h.p., the functional differs by at most Cén
on all §-roundings of an instance X drawn from any f € F™. Formally, for
each § > 0 we require Prx.y [VY € Vi |F(X)—F(Y)| < Cén) € 1—o(1).

3. For each f € F™, it holds that Prx; [F(X) > n@Q] € 1 —o(1).

Then F is t(£)-time (O({~ ), Q)-quantizable with respect to F.

In this section, we apply the framework to two Euclidean maximization problems,
namely maximum matching and maximum TSP. Both problems have already
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been analyzed in the average-case world, see, e.g., an analysis of the Metropolis
algorithm on maximum matching in [28]. We generalize the result of Dyer et
al. [14], who proved the asymptotic optimality of two simple partitioning heuris-
tics for maximum matching and maximum TSP on the uniform distribution in
the unit square. However, in contrast to our approach, their partitioning methods
typically fail if the points are not identically distributed.

4.1 Maximum Matching and Maximum TSP

Let MaxM(X) denote the maximum weight of a matching of the points X C
[0,1]%, where the weight of a matching M is defined as > {uwyenm llu—v|. For
simplicity, we assume that |X| is even. For the more general problem of finding
maximum weighted matchings on general graphs with non-integer weights, the
fastest known algorithm due to Gabow [I9] runs in time O(mn + n?logn).

We aim to apply Theorem 3] for which we only need to check three conditions.
The rounding condition () is easily seen to be satisfied by a straight-forward
application of the triangle inequality. The lower bound condition (B]) is satisfied
by the following lemma.

Lemma 4. Let f € F. Some~y > 0 satisfies XPrf MaxM(X) < \Z/ZJ < e 2,

We call the task of computing a functional on quantized inputs quantized version
of the functional. In the case of MaxM, an algorithm for b-matchings from [I]
can be exploited, satisfying condition ().

Lemma 5. The quantized version of MaxM can be computed in time O({* +
?3logn), where n = Zle n;.

These observations immediately yield the following result.

Theorem 6. MaxM is O(¢4)-time (O(1/V/¢), 2(1//$))-quantizable w. r. t. Fy.
Hence, for 1 < p < 4, there is a O(nP)-time probable (1 — O(/¢/nr/4))-
approximation to MaxM for instances drawn according to some f € Fg- This is
asymptotically optimal on smoothed instances with ¢ € o(np/4).

Interestingly, the restriction on ¢ is independent of the dimension. Note that
only p < 3 is reasonable, since deterministic cubic-time algorithms for exactly
computing MaxM exist. Furthermore, as described in Section Bl an algorithm
with an asymptotically optimal expected approximation ratio can be designed.
E.g., we might utilize a simple greedy linear-time é—approximation for MaxM [4].

Similar ideas can be applied to the maximum TSP problem. For d > 2, define
MaxTSP(X) as the maximum weight of a Hamiltonian cycle on X C [0, 1]¢,
where the weight of a Hamiltonian cycle C'is defined as 3¢, 1o [lu —v||. The
problem is NP-hard (proven for d > 3 in [7], conjectured for d = 2,) but admits
a PTAS, cf. [87]. According to [10], these algorithms are not practical. They
stress the need for (nearly) linear-time algorithms.
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Theorem 7. Let 1 <p <4d/(d+1) and f € Fj . On instances drawn from f,

there is a O(nP)-time computable probable (1 — O( €/¢/np/4))-appr0mmati0n for
MaxTSP. This is asymptotically optimal for ¢ € o(nP/*).

Since MaxM is a é-approximation to MaxTSP, the greedy linear-time com-
putable é—approximation to MaxM is a }L—approximation to MaxTSP and thus
provides an adapted algorithm with asymptotically optimal expected approxi-
mation ratio for ¢ € o(nP/*).

5 Balanced Quantization

Grid quantization proves useful for problems in which algorithms solving the
high-multiplicity version are available. To solve even more problems, this sec-
tion establishes a more careful quantization step yielding balanced instances,
i.e., instances in which each of the distinct points occurs the same number of
times. This has direct applications to k-means clustering and similar problems.
In general, this method can be applied to problems in which the objective scales
controllably when duplicating all points.

Theorem 8. Let ¢ : N — N with { € w(1) and ¢ € o(n). There is a function
¢ : N — N such that for each n € N and X = (X1,...,X,) € [0,1]%", we can

find, in linear time, a family of '(n) cells, i.e., collections of points C1, ..., Cy(n)
with the following properties.
1. 2 (n)

ny 1 (we obtain £ cells asymptotically),
2. 1Ci| = |Cy| for all 1 <i,j < l'(n) (all cells are of equal size),
3. n— Zf:(?) |Ci| € O(1/(a41y) (almost all points are covered),
4. diam(C;) € O(Zl/(}iﬂ)) (each element in a cell represents this cell well).

For some problems, an instance in which every distinct point occurs equally
often can be reduced to its distinct points only. In the following, we exploit this
property by applying the previous theorem to k-means clustering. The method
also allows for improving the results on maximum matching and maximum TSP.
We defer the details of this to a full version of this article.

5.1 K-Means Clustering

Let d > 2 and k € N. We define KMeans(X, k) to be the k-means objective on
the points X where k is the desired number of clusters, i.e.,

k

1

KMeans(X,k) =  min Z Z |z — wil|®, where p; = Z x.
CrUUG=X = z€C; |Cil z€C;

K-Means clustering is an important problem in various areas including ma-

chine learning and data mining. If either k or d is part of the input, it is NP-

hard [1324]. However, a popular heuristic, the k-means algorithm, usually runs
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fast on real-world instances despite its worst-case exponential running time. This
is substantiated by results proving a polynomial smoothed running time of the
k-means method under Gaussian perturbations [3I2]. In terms of solution quality,
however, such a heuristic can perform poorly.

Consequently, k-means clustering has also received considerable attention con-
cerning the design of fast deterministic approximation schemes. There exist
linear-time asymptotically optimal algorithms, e.g., PTASs with running time
O(nkd~+dpoly(k/e)+20%*/)) [17] and O(ndk+2(’“/5)o(l)d2n") for any o > 0 [12].
Treating the dimension as a constant as we do, [20] showed how to compute a
(1 + ¢)-approximation in time O(n 4 k*+2e=2d+Dk [ogk 1 150" ). On a side
note, a different perturbation concept has been applied to k-means clusterings
in [5]. They restrict their attention to input instances which, when perturbed,
maintain the same partitioning of the input points in the optimal clustering.

Define the center of mass of a set C as cm(C) = Iél > ccc ¢ and consider
X' = (X1,m1),..., (Xe,ne)) = ((em(Ch), |Ch])s .., (em(Cr ), |Cr|)), a quan-
tized instance using the cells Cy,...,Cp obtained by applying Theorem [ It
holds that ny = ng =+ =np = w. Let Y = T(X') = (Y1,...,Yy), where Y;
is the rounded version of X;. Note that the number n’ of points in the rounded
instance is potentially smaller than n, since points may be lost in the application
of Theorem [8

Lemma 9. There is a real A with |KMeans(X, k) — KMeans(Y, k)| < L,l/?,ﬁrl).

After establishing that rounding the input does not affect the objective value too
much, the following lemma enables us to reduce the instance size significantly.

Lemma 10. Consider X = ((Xi,w),...,(X¢s,w)) and Z = ((X1,1),...,
(Xe,1)). It holds that KMeans(T'(X), k) = wKMeans(T'(Z), k).

It is left to give a lower bound on the objective value. Note that for other
minimization functionals like minimum FEuclidean matching or TSP, already
the uniform distribution on the unit cube achieves an objective value of only
O(nl4=1/4) 27], making the framework inapplicable in this case (for a more
detailed discussion, refer to Section [7)).

Lemma 11. Let f € Fj and k € o(;,." ). There exists some constant v > 0

logn

such that Prx . [KMeans(X, k) < (k;)’;/d] — o= 02(n).

For solving the smaller instance obtained by quantization, two approaches are
reasonable. The first is to compute an optimal solution in time O(n*d*+1) [21]
and results in the following theorem.

Theorem 12. For any k € o(n/logn), the functional KMeans(X, k) is

O(L*+Y) time (O£~ Q((kp)~%/))-quantizable with respect to F,. Con-

sequently, for k € O(logn/loglogn) and 1 < p < kd+ 1, there is a O(nP)-time

computable probable (1 -0 (kd));/d ))-appromimation for KMeans(X, k)
n (d+1)(kd+1)

on smoothed instances.
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Note that this is asymptotically optimal if ¢ € o(/n) with ¢ = 2(1 4+ 1/d)(kd +
1)/p if & € O(1), or more generally, if k¢ € o(n 215 (ka1) ). Using existing
linear-time approximation schemes, also an asymptotically optimal expected ap-
proximation ratio can be obtained for the same values of ¢. Our framework
algorithm applies even for large values of k, e.g., k = logn/loglogn, in which
case known deterministic approximation schemes require superlinear time. How-
ever, for small k, incorporating such an approximation scheme into our algorithm
yields a further improvement of the previous theorem. The details for this second
approach are deferred to a full version of this article.

6 Bin Packing

For X = (X1,...,X,) € [0,1]9" define BP4(X) to be the minimum number of
bins of volume one needed to pack all elements. An item X = (x1,...,24) is
treated as a d-dimensional box, where x; is its side length in dimension i. Items
must not be rotated and must be packed such that their interior is disjoint.

In the following, we extend the result of Karger and Onak [22], who gave linear-
time asymptotically optimal approximation algorithms for smoothed instances
with ¢ € O(1) and for instances with i.i.d. points drawn from a fized distribution.
These tractability results are highly interesting due to the fact that there is not
even an asymptotic polynomial-time approximation scheme (APTAS) solving
the two-dimensional bin packing problem unless P = NP, cf. [6].

Karger and Onak’s approach appears rather problem-specific, whereas our
solution embeds nicely into our framework. The main difference of our approach
lies in a much simpler rounding routine and analysis, after which we solve the
problem exactly as in their distribution-oblivious algorithm. Note that their
algorithm is supplied with a desired approximation performance ¢ > 0 and
suceeds with probability of 1 — 2=("), Although not stated for this case, we
believe that their algorithm may also apply to superconstant choices of ¢, at a
cost of decreasing the success probability. We feel that our analysis offers more
insights on the reasons why bin packing is smoothed tractable by putting it into
the context of our general framework.

Consider first the case that d = 1. Unless P = NP, BP; does not admit a
g—approximation. However, asymptotic polynomial approximation schemes ex-
ist [18], i.e., (1 —¢)-approximations on instances with a sufficiently large objective
value. These approximation schemes have an interesting connection to smoothed
analysis due to the following property.

Lemma 13. For f € F}, thereis a~y > 0 with XPrf {BPd(X) < ’Y(;Ld] < e ),

Using this bound on the objective value, we show an example of how to transform
an APTAS into a PTAS on smoothed instances. Plotkin et al. [25] have shown
how to compute, in time O(nloge =1 +e76 log® e71), a solution with an objective
value of at most (14 &)BP1(X) + O(c!loge~!). We derive

ALG e tloge~

P= Bpy(x) = (1+5)+O< BPl(X)1> = (1+6)+O(¢611§g51>’
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where the last inequality holds w.h.p. over the perturbation of the input. Setting
¢ := logn/n’® with some § < /6 yields a running time of O(nlogn) with an
approximation ratio < 1+logn/n? 4+O(¢/n'~?%). Consequently, there is a linear-
time asymptotically optimal approximation algorithm on instances smoothed
with ¢ € o(n'~?) for any § > 0. Unfortunately, this approach is not easily
generalizable to d > 1, since already for d = 2, no APTAS exists unless P = NP,
as shown in [6]. Nevertheless, the problem is quantizable in our framework.

We say that a single item X = (x1,...,24) fits in a box B = (by,...,bq) if
x; < b; for all 1 < i < d. In this case, we write X C B, adopting the notation of
[22]. Regarding an item as a box as well, this relation is transitive and any feasible
packing containing Y induces a feasible packing by replacing Y with X. Thus,
bin packing admits the monotonicity property that for each X = (X3,...,X,,)
and Y = (Y1,...,Y,) with X; C Y}, it holds that BP4(X) < BP4(Y).

To apply the quantization framework, we require a suitable bound on the
rounding errors. Unlike for MaxM and MaxTSP, no deterministic bound of nd is
possible for a d-rounding: Let the instance X () consist of n copies of (é, cee ;)
Packing 2¢ of the items per bin results in zero waste, hence BP4(X ™) =
n/2%. However, for any 6 > 0, the é-rounding Y, consisting of n copies of
(3 + jd, T \‘/Sd) has an objective value of BP4(Y (™) = n = 2¢BP4(X ™).
Thus, a smoothed analysis of the rounding error is necessary.

Lemma 14. For f € Fj andt >0,

Pr, [VY € Yk £ [BPa(X) — BPa(Y)| > 2ntdg] < 2 exp(—2n(dt)?).

Note that this probability tends to zero if ¢ € w( ¢\1/n)
rounds the points to ¢ distincts points by moving each item by at most ¢ =
Vd¢=, the requirement ¢ € o(n) even implies that ¢ € w(\/ln) for d > 2.

Solving the high-multiplicity version of the one-dimensional case has been a
key ingredient in approximation schemes for this problem since the first APTAS
by [18]. The following lemma from [22] solves the multi-dimensional case.

. Since grid quantization

Lemma 15. Let X' = ((X1,n1),...,(Xe,me)) be a quantized input with X; €
[6,1]¢. Then BP4(T(X")) can be computed in time O(f(¢,5)polylog(n)) where

n = Zle ng, f(£,9) is independent of n and f(€,1/¢e) € 207

Observe that each coordinate of the quantized points obtained by grid quantiza-
tion is at least 1/(2+/¢), since these points are the centroids of cubic cells of side
length 1/+/¢. Hence, applying a slightly stronger form of the grid quantization
theorem yields the following result using Lemmas [I3] 4] and

Theorem 16. For d > 2, BPy is O(QZO(Z))-time (O( ;E),Q((;d))-quantizable
w.r.t. Fg.

Consequently, there is a linear-time probable (1 —O(gp*!/ C/log logn/ log™® n))-
approximation. Hence, BP; can be computed asymptotically exactly in time
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O(n) if ¢ € of d(d“\)/log logn/ log™® n). Here, allowing superlinear time has no
effect on the admissible adversarial power. Furthermore, since BP,4 can be triv-
ially approximated by a factor of n and the success probability of our algorithm
is of order 1 — exp(—£2(n'~¢)), asymptotically optimal expected approximation
ratios can be obtained for the same values of ¢.

7 Concluding Remarks

Generalizing previous rounding-based approaches, we demonstrate that the gen-
eral solution technique of quantization performs well on Euclidean optimization
problems in the setting of smoothed analysis. We are optimistic that our frame-
work can also be applied to disk covering and scheduling problems.

Note that our approach is orthogonal to the framework for smooth and near-
additive Euclidean functionals due to Bléser et al. [I0]: A smooth Euclidean
functional F' on n points can be bounded by O(n'~1/4) by definition of smooth-
ness. Hence, it can never compensate for the rounding error of at least Q(Zil/ 4)
per point that our quantization methods induce, as quantization is only reason-
able for ¢ < n and consequently, the total rounding error amounts to £2(n'~1/4).
Conversely, if a functional is large enough to compensate for rounding errors in-
duced by quantization, it cannot be smooth. Thus, for any Euclidean functional,
at most one of both frameworks is applicable.
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