
Largest Chordal and Interval Subgraphs

Faster Than 2n

Ivan Bliznets1,�, Fedor V. Fomin2,��,
Micha�l Pilipczuk2,��, and Yngve Villanger2

1 St. Petersburg Academic University of the Russian Academy of Sciences, Russia
ivanbliznets@tut.by

2 Department of Informatics, University of Bergen, Norway
{fomin,michal.pilipczuk,yngvev}@ii.uib.no

Abstract. We prove that in an n-vertex graph, induced chordal and
interval subgraphs with the maximum number of vertices can be found
in time O(2λn) for some λ < 1. These are the first algorithms breaking
the trivial 2nnO(1) bound of the brute-force search for these problems.

1 Introduction

The area of exact exponential algorithms is about solving intractable problems
faster than the trivial exhaustive search, though still in exponential time [4]. In
this paper, we give algorithms computing maximum induced chordal and interval
subgraphs in a graph faster than the trivial brute-force search. These problems
are interesting cases of a more general the Maximum Induced Subgraph with

Property Π problem, where for a given graph G and hereditary property Π
one asks for a maximum induced subgraph with property Π .

By the result of Lewis and Yannakakis [11], the problem is NP-complete for ev-
ery non-trivial property Π . Different variants of property Π like being edgeless,
planar, outerplanar, bipartite, complete bipartite, acyclic, degree-constrained,
chordal etc., were studied in the literature. From the point of view of exact
algorithms, as far as property Π can be tested in polynomial time, a trivial
brute-force search trying all possible vertex subsets of G solves Maximum In-

duced Subgraph with Property Π in time O∗(2n) on an n-vertex graph
G.1 However, many algorithms for Maximum Induced Subgraph with Prop-

erty Π which are faster than O∗(2n) can be found in the literature for explicit
properties Π . Notable examples are Π being the property of being edgeless [14]
(equivalent to Maximum Independent Set), acyclic [3] (equivalent to Maxi-

mum Induced Forest), regular [9], 2-colorable [13], planar [5], degenerate [12],
cluster graph [2], or biclique [7]. A longstanding open question in the area is if

� Supported by The Ministry of education and science of Russian Federation, project
8216 and Russian Foundation for Basic Research (12-01-31057-mol a).

�� Supported by the European Research Council (ERC) via grant Rigorous Theory of
Preprocessing, reference 267959.

1 The O∗(·) notation suppresses terms polynomial in the input size.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 193–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

194 I. Bliznets et al.

Maximum Induced Subgraph with Property Π can be solved faster than
the trivial O∗(2n) for every hereditary property Π testable in polynomial time.

Since every hereditary class of graphs with property Π can be characterized
by a (not necessarily finite) set of forbidden induced subgraphs, there is an
equivalent formulation of the Maximum Induced Subgraph with Property

Π problem. For a set of graphs F , a graph G is called F -free if it contains
no graph from F as an induced subgraph. The Maximum F-free Subgraph

problem is to find a maximum induced F -free subgraph of G. Clearly, if F
is the set of forbidden induced subgraphs for Π , then the Maximum Induced

Subgraph with Property Π problem and the Maximum F-free Subgraph

problem are equivalent. It is well known that when the set F is finite, then
Maximum F-free Subgraph can be solved in time O∗(2λn), where λ < 1.
This can be seen by applying a simple branching arguments, see Proposition 2,
or by reducing to the d-Hitting Set problem, which is solvable faster than
O∗(2n) for every fixed d [2]. Examples of F -free classes of graphs for some finite
set F are split graphs, cographs, line graphs or trivially perfect graphs; see the
book [1] for more information on these graph classes.

It is however completely unclear if anything faster than the trivial brute-
force is possible in the case when F is an infinite set, even when F consists
of very simple graphs. One of the most known and well studied classes of F -
free graphs is the class of chordal graphs, where F is the set of all cycles of
length more than three. Chordal graphs form a fundamental class of graphs
which properties are well understood. Another fundamental class of graphs is
the class of interval graphs. We refer to the book of Golumbic for an overview
of properties and applications of chordal and interval graphs [8]. In spite of
nice structural properties of these graphs, no exact algorithms for Maximum

Induced Chordal Subgraph and Maximum Induced Interval Subgraph

problems better than the trivial O∗(2n) were known prior to our work.

Our Results. We define four properties of graph classes and give an algorithm
that for every graph class Π satisfying these properties and for a given n-vertex
graph G, returns a maximum induced subgraph of G belonging to Π in time
O∗(2λn) for some λ < 1, where λ depends only on the class Π . Because classes
of chordal and interval graphs satisfy the required properties, as an immediate
corollary of our algorithm we obtain that Maximum Induced Chordal Sub-

graph and Maximum Induced Interval Subgraph can be solved in time
O∗(2λn) for some λ < 1. The main intention of our work was to break the trivial
2n barrier and we did not try to optimize the constant in the exponent. There
are several places where the running time of our algorithm can be improved
by the cost of more involved arguments and intensive case analyses. We tried to
keep the description of our algorithm as simple as possible, leaving only the ideas
crucial for breaking the barrier, and postponing more complicated improvements
till the full version of the paper. Moreover, pipelined with simple branching ar-
guments, our algorithms can be used to obtain time O∗(2λn) algorithms for some
λ < 1 for a variety of Maximum Induced Subgraph with Property Π prob-
lems, where property Π is to be chordal/interval graph containing no induced

Largest Chordal and Interval Subgraphs Faster Than 2n 195

subgraph from a finite forbidden set of graphs. Examples of such graph classes
are proper interval graphs, Ptolemaic graphs, block graphs, and proper circular-
arc graphs; see [1] for definitions and discussions of these graph classes.

2 Preliminaries

In the paper we use standard graph notation. A graph class Π is simply a
family of graphs. We sometimes use terms Π-graph or Π-subgraph to express
membership in Π . An induced subgraph of a graph is a subset of vertices, with
all the edges between those vertices that are present in the larger graph. We say
that a graph class is hereditary if Π is closed under taking induced subgraphs.
Every hereditary graph class can be described by a (possibly infinite) list of
minimum forbidden induced subgraphs FΠ : graph G is in Π if and only if it
does not contain any induced subgraph from FΠ , and for each H ∈ FΠ every
induced subgraph of H , apart from H itself, belongs to Π . The class of graphs
not containing any induced subgraph from a list F will be denoted by F-free
graphs .

Chordal graphs is the class of graphs not containing any induced cycles of
length more than three, that is, chordal graphs are F -free graphs, were the set
F consists of all cycles of length more than three. Chordal graphs are hereditary
and polynomial-time recognizable. Chordal graphs admit many more character-
izations, for example they are exactly graphs admitting a decomposition into a
clique tree. A useful corollary of this fact is the following folklore lemma.

Proposition 1 (Folklore). If H is a chordal graph, then there exists a clique S
in H and a partition of V (H)\S into two subsets X1, X2, such that (i) |X1|, |X2|
≤ 2

3 |V (H)|, and (ii) there is no edge between X1 and X2.

Such a set S is called a 2
3 -balanced clique separator in H . Interval graphs form

a subclass of chordal graphs admitting a decomposition into a clique path instead
of less restrictive clique tree. Interval graphs are also hereditary and polynomial-
time recognizable. Their characterization in terms of minimal forbidden induced
subgraphs was given by Lekkerkerker and Boland [10]. The book of Golumbic [8]
provides a thorough introduction to chordal and interval graphs.

We now describe the classical tools needed for the algorithm. The following
folklore result basically follows from the observation that branching on forbidden
structures of constant size always leads to complexity better than 2n. Due to
space constrains we omit its proof here.

Proposition 2 (Folklore). Let F be a finite set of graphs and let � be the
maximum number of vertices in a graph from F . Let Π be a hereditary graph class
that is polynomial-time recognizable. Assume that there exists an algorithm A
that for a given F-free graph G on n vertices, in O∗(2εn) time finds a maximum
induced Π-subgraph of G, for some ε < 1. Then there exists an algorithm A′ that
for a given graph G on n vertices, finds a maximum induced F-free Π-graph in
G in time O∗(2ε

′n), where ε′ < 1 is a constant depending on ε and �.

We need also the following proposition from [6].

196 I. Bliznets et al.

Proposition 3 ([6]). Let G = (V,E) be a graph. For every v ∈ V , and b, f ≥ 0,
the number of connected vertex subsets B ⊆ V such that (i) v ∈ B, (ii) |B| =
b + 1, and (iii) |N(B)| = f , is at most

(
b+f
b

)
. Moreover, all such subsets can be

enumerated in time O∗(
(
b+f
b

)
).

The last necessary ingredient is the classical idea used by Schroeppel and
Shamir [15] for solving Subset Sum by reducing it to an instance of 2-Table.
In the 2-Table problem, we are given two k ×mi matrices Ti, i = 1, 2, and a
vector s ∈ Qk. Columns of each matrix are mi vectors of Qk. The question is,
if there is a column of the first matrix and a column of the second matrix such
that the sum of these two vectors is s. A trivial solution to the 2-Table problem
would be to try all possible pairs of vectors; however, this problem can be solved
more efficiently. We can sort columns of T1 lexicographically in O(km1 logm1)
time, and for every column v of T2 check whether T1 contains a column equal
to s− v in O(k logm1) time using binary search.

Proposition 4. The 2-Table problem can be solved in time O((m1 +m2)k log
m1).

3 Properties of the Graph Class

In this section we gather the required properties of the graph class Π for our
algorithm to be applicable. We consider only hereditary subclasses of chordal
graphs, hence our first property is the following.

Property (1). Π is a hereditary subclass of chordal graphs.

As Π is hereditary, it may be described by a list of vertex-minimal forbidden
induced subgraphs FΠ . We need the following properties of FΠ :

Property (2). All graphs in FΠ are connected, and all of them do not contain
a clique of size ℵ + 1 for some universal constant ℵ.

For chordal graphs FΠ consists of cycles of length at least 4, hence ℵ = 2.
For interval graphs, an inspection of the list of forbidden induced subgraphs
[10], shows that we may take ℵ = 4. In the following, we always treat ℵ as a
universal constant on which all the later constants may depend; moreover, ℵ may
influence the exponents of polynomial factors hidden in the O∗ notation. Let us
remark that connectedness of all the forbidden induced subgraphs is equivalent to
requiring Π to be closed under taking disjoint union. An example of a subclass
of chordal graphs not satisfying this property, is the class of strongly chordal
graphs. The reason for that is that minimal forbidden subgraphs of strongly
chordal graphs can contain a clique of any size, see [1] for more information on
this class of graphs.

Thirdly, we need our graph class to be efficiently recognizable.

Property (3). Π is polynomial-time recognizable.

Chordal graphs and interval graphs have polynomial time recognition algo-
rithms [8]. For our arguments to work we need one more algorithmic property.

Largest Chordal and Interval Subgraphs Faster Than 2n 197

The property that we need can be described intuitively as robustness with re-
spect to clique separators. More precisely, we need the following statement.

Property (4). There exists a polynomial-time algorithm A that takes as an
input a graph G together with a clique S in G. The algorithm answers YES or
NO, such that the following conditions are satisfied:

– If A answers YES on inputs (G1, S1) and (G2, S2) where |S1| = |S2|, then
graph G′, obtained by taking disjoint union of G1 and G2 and identifying
every vertex of S1 with a different vertex of S2 in any manner, belongs to Π .

– If G ∈ Π , then there exists a clique separator S in G such that V (G)\S may
be partitioned into two sets X1, X2 such that (i) |X1|, |X2| ≤ 2

3 |V (G)|, (ii)
there is no edge between X1 and X2, (iii) A answers YES on (G[X1 ∪ S], S)
and on (G[X2 ∪ S], S).

Observe that Property (1) and Proposition 1 already provides us with some
2
3 -balanced clique separator S of G. Shortly speaking, Property (4) requires that
in addition belonging to Π may be tested by looking at G[X1∪S] and G[X2∪S]
independently. For chordal graphs, Property (4) follows from Proposition 1 and
a folklore observation that if S is a clique separator in a graph G, with (X1, X2)
being a partition of V (G) \ S such that there is no edge between X1 and X2,
then G is chordal if and only if G[X1 ∪ S] and G[X2 ∪S] are chordal. Hence, we
may take chordality testing for the algorithm A.

For interval graphs, we take clique path of the graph G and examine the
clique separator S such that there is at most half of vertices before it and at
most half after it. Let X1 be the vertices before S on the clique path, and X2 be
the vertices after S. Clearly, S is then even a 1

2 -balanced clique separator, with
partition (X1, X2) of V (G) \ S. Then it follows that G[X1 ∪ S] and G[X2 ∪ S]
admit clique paths in which S is one of the end bags of the path. On the other
hand, assume that we are given any two graphs G1, G2 with equally sized cliques
S1, S2, such that G1, G2 admit clique paths with S1, S2 as the end bags. Then
we may create a clique path of the graph G′ obtained from the disjoint union
of G1 and G2 and identification of S1 and S2 in any manner, by simply taking
the clique paths for G1 and G2 and identifying the end bags containing S1 and
S2, respectively. Hence, as A we may take an algorithm which for input (G,S)
checks whether G is interval and admits a clique path with S as the end bag.
Such a test may be easily done as follows: we add P4 to G and make one end of
P4 to be adjacent to every vertex of S, thus forcing S to be the end bag, and
run intervality test. Hence, interval graphs also satisfy Property (4).

4 The Algorithm

In this section we prove the main result of the paper, which is the following.

Theorem 5. If Π satisfies Properties (1)-(4), then there exists an algorithm
which, given an n-vertex graph G, returns a maximum induced subgraph of G
belonging to Π in time O∗(2λn) for some λ < 1, where λ depends only on ℵ.

198 I. Bliznets et al.

As we already observed, chordal and interval graphs satisfy Properties (1)-(4).
Thus Theorem 5 implies immediately results claimed in the introduction. Our
approach is based on a thorough investigation of the structure of a maximum
induced subgraph. In each of the cases, we deploy a different strategy to iden-
tify possible suspects for an optimal solution. The properties we strongly rely
on are the balanced separation property of chordal graphs (Property (4)), and
conditions on minimal forbidden induced subgraphs for Π (Property (2)).

Let G = (V,E). In the description of the algorithm we use several small
positive constants: α, β, γ, δ, ε, and one large constant L. The final constant λ
depends on the choice of α, β, L, γ, δ, ε; during the description we make sure
that constants (α, β, L, γ, δ, ε) can be chosen so that λ < 1. The choice of each
constant depends on the later ones, e.g., having chosen L, γ, δ, ε, we may find a
positive upper bound on the value of β so that we may choose any positive β
smaller than this upper bound.

Firstly, we observe that by Proposition 2, we may assume that the input
graph does not contain any forbidden induced subgraph from FΠ of size at most
� for some constant �, to be determined later. Indeed, if we are able to find an
algorithm for maximum induced Π-subgraph running in O∗(2λn) time for some
λ < 1 and working in F ′

Π-free graphs, where F ′
Π consists of graphs of FΠ of size

at most �, then by Proposition 2 we obtain an algorithm for maximum induced
Π-subgraph working in general graphs and with running time O∗(2λ

′n) for some
λ′ < 1. Hence, from now on we assume that the input graph G does not contain
any forbidden induced subgraph from FΠ of size at most �.

The algorithm performs a number of steps . After each step, depending on the
result, the algorithm chooses one of the subcases.

Step 1. Using the algorithm of Robson [14], in O∗(20.276n) time find the largest
clique K in G.

We consider two cases: either K is large enough to finish the search directly,
or K is small and we have a guarantee that the maximum induced Π-graph we
are looking for contains only small cliques. The threshold for small/large is αn
for a constant α > 0, α < 1/48, to be determined later.

Case A: |K| ≥ αn.

We show that in this case, the problem can be solved in O∗(2(1−(1−κ0)α)n)
time for some κ0 < 1 depending only on ℵ. We use the following auxiliary claim.

Lemma 6. Let P be a subset of vertices of an n-vertex graph G that induces a
graph belonging to Π, and let K be a clique in G such that P ∩K = ∅. Then in
time O∗(2κ0·|K|) for some κ0 < 1 depending only on ℵ it is possible to find an
induced subgraph of G with the maximum number of vertices, where maximum is
taken over all induced subgraphs H of G such that (i) H ∈ Π, (ii) V (H)\K = P .
In other words, the maximum is taken over all induced subgraphs belonging to
Π which can be obtained by adding some vertices of K to P .

Proof. For every nonempty subset W of K of size at most ℵ, we colour W red
if G[W ∪ P] ∈ Π . Note that this construction may be performed using at most
ℵ · |K|ℵ tests of belonging to Π , hence in polynomial time for constant ℵ.

Largest Chordal and Interval Subgraphs Faster Than 2n 199

We observe that for every subset X ⊆ K, G[P ∪X] belongs to Π if and only
if all nonempty subsets of X of size at most ℵ are red. Indeed, if the latter is not
the case, there is a subset W ⊆ X such that G[P ∪W] /∈ Π , so by Property (1)
G[P ∪X] /∈ Π as well. For the opposite direction, let us assume that G[P ∪X]
contains some forbidden induced subgraph F ∈ FΠ . Then |F ∩X | > ℵ because
otherwise, by the definition of the colouring, F ∩X would not be coloured red.
But since X is a clique, we conclude that F contains a clique on ℵ + 1 vertices,
which is a contradiction with Property (2).

Hence, to obtain a maximum induced subgraph one has to find a maximum
subset of X such that all its subsets of size at most ℵ are coloured red. This
is equivalent to finding a maximum clique in a hypergraph with hyperedges
of cardinality at most ℵ, which can be done using a branching algorithm in
O∗(2κ0·|K|) time for some κ0 < 1, depending only on ℵ.

We now do the following. Let H be a maximum induced subgraph of G be-
longing to Π . We branch into at most 2|V \K| subcases, in each fixing a different
subset P of V \K as V (H) \K; we discard all the branches where the subgraph
induced by P does not belong to Π . For each branch, we use Lemma 6 to find
a maximum induced chordal subgraph, which can be obtained from the guessed
subset by adding vertices of K. This takes time O∗(2κ0·|K|) for each branch.
Thus the running time in this case is O∗(2|V \K| ·2κ0·|K|) ≤ O∗(2(1−α)n ·2κ0·αn) =
O∗(2(1−(1−κ0)α)n). Note that (1 − (1 − κ0)α) < 1 for α > 0 and κ0 < 1.

Case B: G has no clique of size αn.

Firstly, we search for solutions that have at most n/2−βn or at least n/2+βn
vertices for some β > 0, β < 1/16 to be determined later. For this, we may apply
a simple brute-force check that tries all vertex subsets of size at most
n/2−βn�
or at least �n/2 + βn in time O∗(

(
n

�n/2−βn�
)
), which is faster than O∗(2n).

Step 2. Iterate through all subsets of vertices of size at most
n/2 − βn� or
at least �n/2 + βn, and for each of them check if it induces a graph belonging
to Π. If some subset of size at least �n/2 + βn induces a Π-graph, output the
subgraph induced by any of such subsets of maximum cardinality, and terminate
the algorithm. If no subset of size exactly
n/2− βn� induces a Π-graph, output
the subgraph induced by the maximum size subset inducing a Π-graph among
those of size at most
n/2 − βn�, and terminate the algorithm.

If execution of Step 2 did not terminate the algorithm, we know that the
cardinality of the vertex set of a maximum induced subgraph belonging to Π is
between n/2−βn and n/2+βn. We proceed to further steps with this assumption.

Let H be a maximum induced Π-subgraph of G. We do not know how H
looks like and the only information about H we have so far is that H has no
clique of size αn and that n/2 − βn ≤ |V (H)| ≤ n/2 + βn. Let us note that the
number of vertices of G not in H is also between n/2 − βn and n/2 + βn.

We now use Property (4) to find a 2
3 -balanced clique separator in G. More

precisely, there is a clique S in H such that V (H) \ S may be partitioned
into sets X1 and X2 so that (i) 1

3 |V (H)| − |S| ≤ |X1|, |X2| ≤ 2
3 |V (H)|, and

(ii) there is no edge between X1 and X2 in G. Observe that in particular

200 I. Bliznets et al.

|X1|, |X2| ≥ (16 − β
3 − α)n > 1

8n, as β < 1/16 and α < 1/48. As S is also
a clique in G, we have that |S| ≤ αn. Property (4) gives us more algorithmic
claims about the partition (X1, S,X2) of V (H); these claims will be useful later.
As α is small, we may afford the following branching step.

Step 3. Branch into at most (1 +αn)
(

n
αn

) · (n + 1)2 subproblems, in each fixing
a different subset of V of size at most αn as S, as well as cardinalities of X1,
X2. Discard all the branches where S is not a clique.

From now on we focus on one subproblem; hence, we assume that the clique
S is fixed and cardinalities of X1, X2 are known. Let G′ = G \ S; to ease the
notation, for X ⊆ V (G′) let N ′[X] = NG′ [X] and N ′(X) = NG′(X). We now
consider two cases of how the structure of the optimal solution H may look like,
depending on how many connected components H \ S has. The threshold is γn
for a small constant γ > 0 to be determined later.

Step 4. Branch into two subproblems: in the first branch assume that H \S has
at most γn connected components, and in the second branch assume that H \ S
has more than γn connected components.

In the branches of Step 4 the algorithm checks several cases, and for every case
proceeds with further branchings. To ease the description, we do not distinguish
these branchings as separate Steps, but rather explain them in the text.

Branch B.1: Graph H \ S has at most γn connected components.

We first branch into at most (n + 1)3 subproblems, in each guessing the sizes
of sets N ′(X1), N ′(X2) and N ′(X1) ∩ N ′(X2) such that |N ′(X1) ∩ N ′(X2)| ≤
|N ′(X1)|, |N ′(X2)| ≤ n− (|S|+ |X1|+ |X2|). From now on we assume that these
cardinalities are fixed. We consider a few cases depending on the sizes of N ′(X1),
N ′(X2) and N ′(X1) ∩N ′(X2); in these cases we use small constants δ, ε, to be
determined later.

Case B.1.1: ||N ′(X1)| − |X1|| ≥ δn, or ||N ′(X2)| − |X2|| ≥ δn.

We concentrate only on the subcase of ||N ′(X1)| − |X1|| ≥ δn, as the second
is symmetric. Due to the space constraints, here we give only a brief outline. As
G[X1] has only at most γn components, we can guess with O∗(

(
n
γn

)
) overhead a

set that contains one element from each connected component of G[X1]. Then,

using Proposition 3 we can guess the whole set X1 with
(|X1|+|N ′(X1)|

|X1|
)

overhead.

For X2 we perform a brute-force guess on the remaining part of V (G′), i.e.,
V (G′) \ N ′[X1], and at the end for each candidate set X1 ∪ X2 ∪ S we test in
polynomial time whether it induces a subgraph belonging to Π . As ||N ′(X1)| −
|X1|| ≥ δn, we have that

(|X1|+|N ′(X1)|
|X1|

)
= O∗(2κ2|N [X1]|) for some κ2 < 1

depending only on δ. Since |N ′[X1]| ≥ 1
8n, given δ we can choose α, γ small

enough so that the overhead O∗(
(

n
αn

) · (n
γn

)
) is insignificant compared to the

gain obtained when guessing X1. Hence, we produce O∗(2κ3n) candidates in
total, for some κ3 < 1.

Case B.1.2: Case B.1.1 does not apply, but |N ′(X1) ∩N ′(X2)| ≥ εn.

Again, due to the space constraints, we provide only a short description of this
case. We perform a similar strategy as in Case B.1.1, but we guess both X1 and

Largest Chordal and Interval Subgraphs Faster Than 2n 201

X2 using Proposition 3. Observe that having guessed X1, we can exclude N ′[X1]
from consideration when guessing X2, thus removing at least εn neighbours of
X2. After the removal, the number of neighbours of X2 differs much from |X2|
(recall that δ is significantly smaller than ε), and we obtain a gain when guessing
X2. This gain depends on ε only, so we can choose α and γ small enough so that

overhead O∗(
(

n
αn

) · (n
γn

)2
) is insignificant compared to it.

Case B.1.3: None of the cases B.1.1 or B.1.2 applies.

Summarizing, sets X1 and X2 have the following properties:

– 1
6n− β

3n− αn ≤ |X1|, |X2| ≤ 1
3n + 2β

3 n,
– 1

2n− (α + β)n ≤ |X1| + |X2| ≤ 1
2n + βn,

– ||N ′(Xi)| − |Xi|| ≤ δn for i = 1, 2, and |N ′[X1] ∩N ′[X2]| ≤ εn.

Let Uboth = N ′[X1]∩N ′[X2] = N ′(X1)∩N ′(X2), Unone = V (G′) \ (N ′[X1]∪
N ′[X2]), and U = Uboth ∪ Unone. We already know that |Uboth| ≤ εn. We now
claim that |Unone| ≤ ζn, where ζ = 2α + 2β + 2δ + ε. Indeed, we have that

|Unone| = |V (G′)| − |X1| − |X2| − |N ′(X1)| − |N ′(X2)| + |N ′(X1) ∩N ′(X2)|
≤ n− 2(|X1| + |X2|) + 2δn + εn ≤ (2α + 2β + 2δ + ε)n

Given that sets Uboth and Unone are small, we may fix them with O∗(
(
n
εn

)·(n
ζn

)
)

overhead in the running time: we branch into O∗(
(
n
εn

) · (n
ζn

)
) subproblems, in

each fixing disjoint subsets of V \ S of sizes at most εn and ζn as Uboth, Unone,
respectively. Note that then V (G′)\U is the symmetric difference of N ′[X1] and
N ′[X2]; let I = V (G′) \ U . We are left with determining which part of I is in
X1 ∪X2, and which is outside.

Observe that every vertex of I is in exactly one of the two sets: N [X1] or
N [X2]. Hence, by Property (4) of Π , we may look for subsets X1, X2 of I, such
that (i) algorithm A run on G[X1∪S] and G[X2∪S] with clique S distinguished
provides a positive answer in both of the cases, (ii) I is a disjoint union of N [X1]
and N [X2]. We model this situation as an instance of the 2-Table problem as
follows. For i = 1, 2, enumerate all the subsets of I of size |Xi| as candidates for
Xi, and discard all the candidates for which the algorithm A does not provide
a positive answer when run on the subgraph induced by the candidate plus the
clique S. For each remaining candidate subset create a binary vector of length
|I| indicating which vertices of I belong to its closed neighbourhood. Create
matrices T1, T2 by putting the vectors of candidates for X1, X2 as columns of
T1, T2, respectively. Now, we need to check whether one can find a column of T1

and a column of T2 that sum up to a vector consisting only of ones.
As |Xi| ≤ 1

3n + 2β
3 n for i = 1, 2, we have that tables T1, T2 have at most(

n
1
3n+

2β
3 n

)
columns, which is O∗(2κ6n) for some universal constant κ6 < 1 (recall

that β < 1/16, so 1
3n + 2β

3 n < 3
8n). Hence, by Proposition 4 we may solve the

obtained instance of 2-Table in O∗(2κ6n) time. The total running time used by
Case B.1.3, including the overheads for guessing clique S, set U and cardinalities,
is O∗(

(
n
αn

) · (n
εn

) · (n
ζn

) · 2κ6n); note that we may choose α, β, δ, ε small enough so

that this running time is O∗(2κ7n) for some κ7 < 1.

202 I. Bliznets et al.

Branch B.2: Graph H \ S has more than γn connected components.

Consider connected components of H \ S and fix a large constant L > 2
depending on γ, to be determined later. We say that a component containing
at most C = L/γ vertices is small, and otherwise it is large. Let r� and rs be
the numbers of large and small components of H \ S, respectively. The number
of vertices contained in large components is hence at least L·r�

γ . Thus, L·r�
γ ≤ n,

r� ≤ γn
L and, consequently, rs ≥ γn − r� ≥ γn(1 − 1

L) ≥ γn
2 . Since small

components are nonempty, they contain at least γn
2 vertices in total.

Let us wrap up the situation. The vertices of V can be partitioned into disjoint
sets S, X , NX , Y , and Z, where (i) S is the clique guessed in Step 3; (ii) X
are the vertices contained in large components of H \ S; (iii) NX = N ′(X); (iv)
Y are the vertices contained in small components of H \ S; (v) Z consists of
vertices not contained in H and not adjacent to X . Note that V (H) = S ∪X ∪
Y . Unfortunately, even given X and S, the algorithm still cannot deduce the
solution: we still need to split the remaining part V \ (N ′[X] ∪ S) into Y that
will go into the solution, and Z that will be left out. However, as we know that
G[X] has a small number of components, we can proceed with a branching step
that guesses X using Proposition 3. Let P be a set of vertices that contains one
vertex from each component of G[X]; we have that |P | = r� ≤ γn

L .

Step 5. Branch into at most (n + 1)4 subbranches fixing r�, |X |, |Y |, |N ′[X]|.
Then branch into

(
n
r�

) ≤ (
n
γn
L

)
cases, in each fixing a different set of size r� as

a candidate for P . Add an artificial vertex v1 adjacent to P , and using Proposi-

tion 3 in O∗(
(|N ′[X]|

|X|
)
) ≤ O∗(2|N

′[X]|) time enumerate at most
(|N ′[X]|

|X|
) ≤ 2|N

′[X]|

vertex sets that (i) are connected, (ii) contain P ∪ {v1}, (iii) are of size |X |+ 1
and have neighbourhood of size |N ′(X)|. Note that we can do it by filtering out
sets that do not contain P from the list given by Proposition 3. As X ∪ {v}
is among enumerated candidates, branch into at most 2|N

′[X]| subcases, in each
fixing a different candidate for X.

Let R = G[V \(N ′[X]∪S)]. Note that we need to have |V (R)| ≥ |Y | ≥ rs ≥ γn
2 ,

so if |V (R)| < γn
2 then we may safely terminate the branch. We will now use the

fact that the input graph does not contain any forbidden induced subgraphs of
size bounded by some bound �; recall that this assumption was justified by an
application of Proposition 2. We set � = 3C2 + 1; hence, whenever we examine
an induced subgraph of G of size at most �, we know that it belongs to Π . The
later steps of the algorithm are encapsulated in the following lemma.

Lemma 7. Assuming α < γ
104C3 and � = 3C2 + 1, there exists a universal

constant ρ < 1 and an algorithm working in O∗(2ρ|V (R)|) time that enumer-
ates at most O(2ρ|V (R)|) candidate subsets of V (R), such that Y is among the
enumerated candidates.

The full proof of Lemma 7 is omitted; here, we only sketch the intuition
behind the proof. However, before we proceed to this sketch, let us observe
that application of Lemma 7 finishes the whole algorithm. Indeed, so far in
the branching procedure we have an overhead of O∗(

(
n
αn

) · (n
γn
L

) · 2|N
′[X]|) for

Largest Chordal and Interval Subgraphs Faster Than 2n 203

guessing S and X . If we now enumerate and examine — by testing whether
G[X ∪ S ∪ Y] ∈ Π — all the candidates for Y given by Lemma 7, we arrive at
running time O∗(

(
n
αn

) · (n
γn
L

) · 2|N
′[X]| · 2ρ|V (R)|).

As |N ′[X]| + |V (R)| ≤ n, ρ < 1 is a universal constant and |V (R)| ≥ γn
2 ,

given γ > 0 we may choose L to be large enough and α > 0 to be small enough
(and smaller than γ

104C3) so that this running time is O∗(2κ8n) for some κ8 < 1.
Here we exploit the fact that ρ does not depend on α, γ or L. What is really
happening is that the threshold C for large components depends on γ and L,
and thus the threshold � for forbidden induced subgraphs on which we branch
a priori using Proposition 2 depends on γ and L. Yet this branching is done
outside the current reasoning and we avoid a loop in the definition of thresholds.

We now sketch the proof of Lemma 7. Firstly, as G[Y] have connected com-
ponents of size at most C, the degrees in G[Y] are bounded by C − 1. Hence,
whenever we see a vertex v that has high degree in R, say at least 3C, then we
can infer that if it is in Y , then at most a third of its neighbours can be also in
Y . This allows us to design a branching procedure with running time 2O(σ|V (R)|)

for some universal σ < 1 that gets rid of high-degree vertices in R. For simplicity,
assume from now on that the degrees in R are bounded by 3C.

The crucial observation now is that Y must in fact constitute almost the whole
V (R), hence we can guess Y in a much more efficient manner than via a 2|V (R)|

brute-force. For the sake of contradiction, assume that V (R) \ Y constitutes a
constant fraction of V (R). The strategy is to show that the assumed maximum
solution H is in fact not maximum, using the fact that α is very small compared
to |V (R)|. Let us construct an alternative solution H ′ as follows: we remove S
from H , thus losing at most αn vertices, and add vertices of V (R)\Y in a greedy
manner so that no component larger than 3C2 +1 is created in V (R). As G does
not contain any forbidden induced subgraph for Π of size at most 3C2 + 1, all
these components belong to Π . As Π is closed under taking disjoint union, H ′

constructed in this manner also belongs to Π . The bound on the degrees in R

ensures that the greedy procedure adds at least |V (R)\Y |
O(C3) vertices; hence if we

choose α < γ
O(C3) , then H ′ is larger than H , contradicting the maximality of H .

5 Conclusion

Theorem 5 shows that for any class of graphs Π satisfying Properties (1)–(4), a
maximum induced subgraph from Π of an n-vertex graph can be found in time
O∗(2λn) for some λ < 1. Pipelining Proposition 2 with Theorem 5 shows that we
moreover may add any finite family of forbidden subgraphs on top of belonging
to Π . More precisely, we have the following theorem.

Theorem 8. Let F be a finite set of graphs and Π be a class of graphs satisfying
Properties (1)–(4). There exists an algorithm which for a given n-vertex graph
G, finds a maximum induced F-free Π-graph in G in time O∗(2λn) for some
λ < 1, where λ depends only on ℵ and F .

204 I. Bliznets et al.

As mentioned in introduction, Theorem 8 covers such graph classes as proper in-
terval graphs, i.e. claw-free interval graphs, Ptolemaic graphs, which are chordal
and gem-free, block graphs, which are chordal and diamond-free; proper circular-
arc graphs which are chordal, claw-free, and S̄3-free. We refer to [1] for the
definitions and discussions on these graphs.

We conclude with the following open questions. An interesting subclass of
chordal graphs that cannot be handled by our approach is the class of strongly
chordal graphs. The reason is that Property (2) does not hold here and we are
not aware of any algorithm for finding a maximum induced strongly chordal
subgraph faster than the trivial brute-force. Secondly, our approach fails when
we require the induced subgraph to be additionally connected , since connectivity
requirements are not hereditary, and thus is Property (1) is not satisfied. Say,
can a maximum induced connected chordal subgraph be found faster than 2n?

References

1. Brandstädt, A., Le, V., Spinrad, J.P.: Graph Classes. A Survey, SIAM Mon. on
Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

2. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative compres-
sion and exact algorithms. Theor. Comput. Sci. 411, 1045–1053 (2010)

3. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52, 293–307
(2008)

4. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)
5. Fomin, F.V., Todinca, I., Villanger, Y.: Exact algorithm for the maximum induced

planar subgraph problem. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 287–298. Springer, Heidelberg (2011)

6. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics.
Combinatorica 32, 289–308 (2012)

7. Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs.
Algorithmica 62, 637–658 (2012)

8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

9. Gupta, S., Raman, V., Saurabh, S.: Maximum r-regular induced subgraph problem:
Fast exponential algorithms and combinatorial bounds. SIAM J. Discrete Math. 26,
1758–1780 (2012)

10. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of
intervals on the real line. Fund. Math. 51, 45–64 (1962)

11. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20, 219–230 (1980)

12. Pilipczuk, M., Pilipczuk, M.: Finding a maximum induced degenerate subgraph
faster than 2n. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS,
vol. 7535, pp. 3–12. Springer, Heidelberg (2012)

13. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating
maximal independent sets and other techniques. Theory Comput. Syst. 41, 563–587
(2007)

14. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–440
(1986)

15. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10, 456–464 (1981)

	Largest Chordal and Interval Subgraphs Faster Than 2n
	1 Introduction
	2 Preliminaries
	3 Properties of the Graph Class
	4 The Algorithm
	5 Conclusion
	References

