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Preface

These proceedings contain all contributed papers presented at the 21st
Annual European Symposium on Algorithms (ESA 2013), held in Sophia An-
tipolis, France, during September 2–4, 2013. ESA 2013 was organized as part
of ALGO 2013, which also included the Workshop on Algorithms in Bioin-
formatics (WABI), the International Symposium on Parameterized and Exact
Computation (IPEC), the Workshop on Approximation and Online Algorithms
(WAOA), the International Symposium on Algorithms and Experiments for Sen-
sor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS),
the Workshop on Algorithmic Approaches for Transportation Modelling, Op-
timization, and Systems (ATMOS), and the Workshop on Massive Data Al-
gorithms (MASSIVE). The previous symposia were held in Ljubljana (2012),
Saarbrücken (2011), Liverpool (2010), Copenhagen (2009), Karlsruhe (2008),
Eilat (2007), Zürich (2006), Palma de Mallorca (2005), Bergen (2004), Budapest
(2003), Rome (2002), Aarhus (2001), Saarbrücken (2000), Prague (1999), Venice
(1998), Graz (1997), Barcelona (1996), Corfu (1995), Utrecht (1994), and Bad
Honnef (1993).

The ESA symposia are devoted to fostering and disseminating the results
of high-quality research on the design and evaluation of algorithms and data
structures. The forum seeks original algorithmic contributions for problems with
relevant theoretical and/or practical applications and aims at bringing together
researchers in the computer science and operations research communities. Papers
were solicited in all areas of algorithmic research, both theoretical and experi-
mental, and were evaluated by two Program Committees (PC). The PC of Track
A (Design and Analysis) selected contributions with a strong emphasis on the
theoretical analysis of algorithms. The PC of Track B (Engineering and Appli-
cations) evaluated papers reporting on the results of experimental evaluations
and on algorithm engineering contributions for interesting applications.

In response to a call for papers, the PCs received 303 submissions from 46
countries, 229 for Track A and 74 for Track B. All submissions were reviewed by
at least three PC members and were carefully evaluated on quality, originality,
and relevance to the conference. Overall, the PCs wrote more than 900 reviews
with the help of more than 450 external reviewers, who also participated in
an extensive electronic discussion that led the committees of the two tracks to
select 69 papers (53 out of 229 in Track A and 16 out of 74 in Track B), yielding
an acceptance rate of about 23%. In addition to the accepted contributions,
the symposium featured two invited lectures by Hannah Bast (University of
Freiburg, Germany) and by Claire Mathieu (CNRS, École Normale Supérieure,
France and Brown University, USA).

The European Association for Theoretical Computer Science (EATCS) spon-
sored a best paper award and a best student paper award. The former award was
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shared by two papers: one by Rajesh Chitnis, László Egri and Daniél Marx for
their contribution on “List H-Coloring a Graph by Removing Few Vertices” and
the other by Sander P.A. Alewijnse, Quirijn W. Bouts, Alex P. ten Brink and
Kevin Buchin for their contribution entitled “Computing the Greedy Spanner
in Linear Space.” The best student paper prize was awarded to Radu Curtica-
pean and Marvin Künnemann for their contribution entitled “A Quantization
Framework for Smoothed Analysis on Euclidean Optimization Problems.” Our
warmest congratulations to all of them for these achievements!

We wish to thank all the authors who submitted papers for consideration, the
invited speakers, the members of the PCs for their hard work, as well as the ex-
ternal reviewers who assisted the PCs in the evaluation process. We are indebted
to the Organizing Committee members, who helped with the local organization
of the conference. We hope that the readers will enjoy the papers published in
this volume, sparking their intellectual curiosity and providing inspiration for
their work.

June 2013 Hans L. Bodlaender
Giuseppe F. Italiano
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Abstract. We study a new robust path problem, the Online Replace-
ment Path problem (ORP). Consider the problem of routing a physical
package through a faulty network G = (V,E) from a source s ∈ V to a
destination t ∈ V as quickly as possible. An adversary, whose objective
is to maximize the latter routing time, can choose to remove a single
edge in the network. In one setup, the identity of the edge is revealed
to the routing mechanism (RM) while the package is in s. In this setup
the best strategy is to route the package along the shortest path in the
remaining network. The payoff maximization problem for the adversary
becomes the Most Vital Arc problem (MVA), which amounts to choosing
the edge in the network whose removal results in a maximal increase
of the s-t distance. However, the assumption that the RM is informed
about the failed edge when standing at s is unrealistic in many applica-
tions, in which failures occur online, and, in particular, after the routing
has started. We therefore consider the setup in which the adversary can
reveal the identity of the failed edge just before the RM attempts to use
this edge, thus forcing it to use a different route to t, starting from the
current node. The problem of choosing the nominal path minimizing the
worst case arrival time at t in this setup is ORP. We show that ORP
can be solved in polynomial time and study other models naturally pro-
viding middle grounds between MVA and ORP. Our results show that
ORP comprises a highly flexible and tractable framework for dealing
with robustness issues in the design of RM-s.

1 Introduction

Modeling the effects of limited reliability of networks in modern routing schemes
is important in many applications. It is often unrealistic to assume that the
nominal network known at the stage of decision making will be available in its
entirety at the stage of solution implementation. Several research directions have
emerged as a result. The main paradigm in most works is to obtain a certain
‘fault-tolerant’ or ‘redundant’ solution, which takes into account a certain set of
likely network realizations at the implementation phase.
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Shortest paths are often used in order to minimize routing time. In faulty
network, however, simply taking the shortest path might lead to very large delays
due to link failures. Two related problems that were extensively studied in the
literature are the Most Vital Arc problem (MVA) and the Replacement Path
problem (RP). MVA asks given a graph G = (V,E) and two nodes s, t ∈ V to
find the edge e ∈ E whose removal results in the maximal increase in the s-t
distance in G. The input to RP additionally includes a shortest path P , and
the goal is to find for every e ∈ P a shortest s-t path Pe avoiding e. In the
context of robust network design both MVA and RP should be interpreted as
problems in which the RM is informed about the failed edge in advance, namely
when standing at s. This assumption is unrealistic in many situations, in which
failures occur online, and in particular, after the routing has started. Examples
of such situations range from accidents and traffic jams in road network to truly
adversarial setups, in which the adversary is motivated to conceal the failure for
as long as possible.

In this paper we study the Online Replacement Path problem (ORP), which
is motivated by such situations. We delay the formal definition of the problem
to Section 3, and instead give an intuitive description. The basic assumption in
ORP is that the materialized scenario is revealed to the RM ‘in the last minute’,
namely only when the package reaches one of the endpoints of the failed edge
and attempts to cross it. From this point on the package is routed through a
detour, namely a path from the current node to the destination that avoids the
failed edge. The robust length of a path is the maximum total travel time over
all possible failure scenarios, and the goal is to find a path with minimum robust
length.

ORP models online failure scenarios that occur in many situations, some of
which we described before. In other applications it is only necessary to route
a certain object within a certain time, called a deadline. As long as the object
reaches its destination before the deadline, no penalty is incurred. On the other
hand, if the deadline is not met, a large penalty is due. An example of such an
application is organ transportation for transplants (see e.g. Moreno, Valls and
Ribes [14]), in which it is critical to deliver a certain organ before the scheduled
time for the surgery. In this application it does not matter how early the organ
arrives at the destination, as long as it arrives in time. In such applications it
is often too risky to take an unreliable shortest path, which admits only long
detours in some scenarios, whereas a slightly longer path with reasonably short
detours meets the deadline in every scenario. Thus, this domain of applications
can also benefit from ORP.

Our first result is a polynomial algorithm for ORP. Concretely, we show that
optimal u-t path can be found in time O(m + n logn) in undirected graphs and
O(nm + n2 logn) in directed graphs for all sources u ∈ V and a single destina-
tion t. We prove various properties of ORP on the way to the aforementioned
algorithms. In particular, we show the existence of a tree of optimal paths, and
that the robust length is monotonic with respect to taking subpaths of optimal
paths. These properties lead to a natural label-setting algorithm.
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In Section 4 we study Bi-objective ORP, the optimization problem of finding
a shortest path in the graph with robust length at most a given bound B. We
show that this problem admits an algorithm with running time O(m+n logn) in
undirected graphs (and O(mn+n2 logn) in directed graphs). We also show that
the Pareto front of the latter bi-objective problem has linear size in the size of the
graph, and provide a simple algorithm to compute it in time O(m2 + mn logn),
for both directed and undirected graphs. This is of course extremely nice in
practical applications, as the decision maker can efficiently plot the tradeoff
between the nominal and the robust length of Pareto-efficient solutions.

In Section 5 and Section 6 we study two models that provide a middle ground
between MVA and ORP. In Section 5 we study the k-Hop ORP problem. The
RM is now informed about the failed edge e as soon as it reaches a node that is
k hops away from e on the nominal path. While 0-Hop ORP is simply ORP, one
easily sees that (n− 1)-Hop ORP is equivalent to MVA. For k ∈ {1, · · · , n− 2}
we obtain an interesting continuum of problems between ORP and MVA. We
show that some of the nice properties that hold for ORP no longer hold for k-
Hop ORP. In particular, while a tree of optimal paths always exists, the robust
length of a subpath in this tree can be larger than the robust length of the
original path. Nevertheless, we obtain a label-setting algorithm for this problem,
whose running time is identical to that of our algorithms for ORP for both the
directed and the undirected case (and so is independent from k). That is very
interesting because, to the contrary, this is not the case with the variant where
the RM is informed about the failed edge e as soon as it reaches a node that is
k hops away from e in the graph, and not just on the nominal path. While this
variant is equivalent to ORP for k = 0, we show that, already with k = 1, it
is NP-hard to approximate within a factor of 3 − ε for undirected graphs (and
provide a simple algorithm meeting this factor), and it is strongly NP-hard to
decide if there exists a nominal path with finite robust length for directed graphs.

Finally, in Section 6 we study the ORP Game, a two players’ game related
to MVA and ORP. In this game a first player, the path builder, is interested in
arriving from s to t as quickly as possible. The second player, the interdictor,
tries to make the latter distance as long as possible by removing a single edge
from the graph. The strategies for the two players are the s-t paths, and the
edges e ∈ E, respectively. One can see ORP and MVA as variants of the ORP
Game, in which strategies are not communicated simultaneously. We show that
the instances of the game which admit a pure Nash Equilibrium (NE) are exactly
those where the values of the optimal solutions to ORP and MVA are equal, and
build upon this fact to give an O(m + n logn)-time algorithm that finds it in
undirected graphs (and in time O(mn + n2 logn)-time in directed graphs), or
reports that no pure NE exists.

Finally, we developed a poly-time algorithm for the generalization of ORP
when some fixed number of edges can fail. However, even if more involved, the
algorithm goes along the same lines of that for the single-failure case, so we just
defer the details to the journal version of the paper, due to space considerations.

In the next section we review related work.
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2 Related Work

The Replacement Path (RP) problem was proposed by Nisan and Ronen [20]
in order to study a problem in auction theory, namely that of computing Vick-
rey prices. RP is also used as a subroutine for computing the k shortest paths
in a graph. The complexity of the RP problem for undirected graphs is well
understood. The first paper to study this problem is due to Malik, Mittal and
Gupta [13], who give a simple O(m+n logn) algorithm. A mistake in this paper
was later corrected by Bar-Noy, Khuller and Schieber [4]. As a bi-product, the
latter result implies an O(m + n logn)-time algorithm for the Most Vital Arc
(MVA) problem. This running time is asymptotically the same as a single source
shortest path computation. Nardelli, Proietti and Widmayer [18] later extended
the result to account for node failures. In [15] the same authors gave an algorithm
that finds a detour-critical edge on a shortest path. The complexity for MVA was
later improved by Nardelli, Proietti and Widmayer [17] to O(mα(m,n)), where
α(·, ·) is the Inverse Ackermann function. The only general nontrivial algorithm
for RP in directed graphs is due to Gotthilf and Lewenstein [10] that gave an
O(mn + n2 log logn)-time algorithm. Faster algorithms for unweighted graphs
(Roditty and Zwick [23]) and planar graphs (Emek, Peleg and Roditty [8], Klein,
Mozes and Weimann [12] and Wulff-Nilsen [26]) were developed. The problem
of approximating replacement paths was considered by Roditty [22] and Bern-
stein [6]. Results for bounded edge lengths were given by various authors. We
refer to the paper of Vassilevska Williams [25] and references therein for details.

Some related work was carried out in the context of routing policies (Papadim-
itriou and Yannakakis [21]), the most prominent example being the Canadian
Traveler Problem (Bar-Noy and Schieber [5], Nikolova and Karger [19]). In par-
ticular, in [5] the authors consider a problem that can be seen as a policy-based
variant of the problem we study in Section 3. They first claim, without proof,
that their problem reduces indeed to the latter one, and then claim some results
that are close to those we present in Section 3. However, as we discuss later,
we believe that these results are not adequately supported in [5] by rigorous
arguments.

Another problem which bears resemblance to ORP is the Stochastic Shortest
Path with Recourse problem (SSPR), studied by Andreatta and Romeo [3]. This
problem can be seen as the stochastic analogue of ORP. Finally, we briefly re-
view some related work on robust counterparts of the shortest path problem. The
shortest path problem with cost uncertainty was studied by Yu and Yang [27],
who consider several models for the scenario set. These results were later ex-
tended by Aissi, Bazgan and Vanderpooten [2]. These works also considered a
two-stage min-max regret criterion. Dhamdhere, Goyal, Ravi and Singh [7] de-
veloped the demand-robust model and gave an approximation algorithm for the
shortest path problem. A two-stage feasibility counterpart of the shortest path
problem was addressed by Adjiashvili and Zenklusen [1].



The Online Replacement Path Problem 5

3 An Algorithm for ORP

In this section we develop an algorithm for ORP. Let us establish some notation
first. We are given an edge-weighted graph G = (V,E, �), a source s ∈ V and
destination t ∈ V , and we always assume that the edge weights � are nonneg-
ative. Unless otherwise specified, we assume that G is indifferently directed or
undirected. Let n and m be the number of nodes and edges of the input graph,
respectively. For two nodes u, v ∈ V let Pu,v be the set of simple u-v paths in
G. Let N(u) be the set of neighbors of u in G. For a set of edges A ⊂ E let
�(A) =

∑
e∈A �(e). For an edge e ∈ E and a set of edges F ⊆ E, let G − e

and G − F be the graph obtained by removing the edge e and the edges in F ,
respectively. For a set of edges A ⊂ E let V (A) be the set of nodes incident
to edges in A. Paths are always represented as sets of edges, while walks are
represented as sequences of nodes. For two walks Q1, Q2 with the property that
last node of Q1 is the first node of Q2 we let Q1 ⊕ Q2 be their concatenation.
For a path P containing nodes u and v let P [u, v] be the subpath of P from u
to v. For an edge e ∈ E and u ∈ V let Q−e

u be some fixed shortest u-t path in
G− e and let π−e

u = �(Q−e
u ). We use the convention that Q−e

u = ∅ and π−e
u = ∞

if u and t are in different connected components in G− e.
It is convenient to define the detour P−e of a path P ∈ Pv,t and an edge

e = uu′ ∈ E to be the walk P [v, u]⊕Q−uu′
u if uu′ ∈ P (where u is the node closer

to v on P ), and P , otherwise. Note that we have �(P−e) = �(P [v, u]) + π−uu′
u

and �(P−e) = �(P ) in the former and the latter case, respectively.

Definition 1. Given a node v ∈ V , the robust length of the v-t path P is

Val(P ) = max
e∈E

�(P−e).

ORP is to find for every v ∈ V an optimal nominal path, namely a path P
minimizing Val(P ) over all paths P ∈ Pv,t.

Our algorithm uses a label-setting approach, analogous to reverse Dijkstra’s
algorithm for shortest paths. In every iteration, the algorithm updates certain
tentative labels for the nodes of the graph, and fixes a final label to a single
node u. This final label represents the connection cost of u by an optimal path
to t. For v ∈ V we define the potential y(v) as the minimum of Val(P ) over all
P ∈ Pv,t. The robust length of a v-t path P is simply the maximal possible cost
incurred by following P until a certain node, and then taking the best possible
detour from that node to t which avoids the next edge on the path. To avoid
confusion, we stress that in ORP we assume the existence of at most one failed
edge in the graph. Consider next a scenario in which an edge uu′ ∈ P fails and
let u ∈ V be the node which is closer to v. Clearly, the best detour is a shortest
u-t path in the graph G − uu′. Note that both Val(P) and y(v) can attain the
value ∞ in case that the path P admits no detours in some scenario, and in
case all v-t paths are of this sort, respectively. Furthermore, nonnegativity of �
implies Val(P ) ≥ Val(P [v, t]), whenever v ∈ V (P ). We can prove the following
useful:
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Lemma 1. Let Pu ∈ Pu,t and let v ∈ N(u) be a node, not incident to Pu. Then
Val(vu⊕ Pu) = max{�(vu) + Val(Pu), π−vu

v }.

Our algorithm for ORP updates the potential on the nodes of the graph, using
the property established by the following lemma.

Lemma 2. Let U ⊂ V , with t ∈ U , be the set of nodes for which the potential
is known, and let vu be an edge such that:

vu ∈ arg min
zw∈E:w∈U,z �∈U

max{�(zw) + y(w), π−zw
z }. (1)

Then Val(vu ⊕ Pu) = y(v) for any optimal nominal u-t path Pu.

Lemma 2 provides the required equation for our label-setting algorithm, whose
statement is given as Algorithm 1. The algorithm iteratively builds up a set
U , consisting of all nodes, for which the correct potential value was already
computed. The correctness of the algorithm is a direct consequence of Lemma 2.

Algorithm 1.

1: Compute π−uv
u for each uv ∈ E.

2: U = ∅; W = V ; y′(t) = 0; y′(u) = ∞ ∀u ∈ V − t.
3: successor(u) = NIL ∀u ∈ V .
4: while U �= V do
5: Find u = argminz∈W y′(z).
6: U = U + u; W = W − u; y(u) = y′(u).
7: for all vu ∈ E with v ∈ W do
8: if y′(v) > max{�(vu) + y(u), π−vu

v } then
9: y′(v) = max{�(vu) + y(u), π−vu

v }.
10: successor(v) = u.

We are ready to state the main result of this section. The running time is
obtained by a careful implementation that is presented in the proof. Our im-
plementation relies on an algorithm of Nardelli, Proietti and Widmayer [16] for
computing swap edges in graphs with respect to a shortest path tree. We note
that Bar-Noy and Schieber [5] sketch a similar algorithm with the same time
bound for a problem that can be seen as a policy-based variant of ORP. Their
result are stated without proof, and we are not aware of a proof that does not
build on the result of Nardelli, Proietti and Widmayer [16], which appeared
afterwards.

Theorem 1. Given an instance of ORP the potential y and the corresponding
paths can be computed in time O(m+n logn) in undirected graphs, and O(mn+
n2 logn) in directed graphs.

We end this section with a simple graph-theoretical characterization of paths
with finite robust value. Let U2 ⊂ V be the set of nodes in G that are 2-edge
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connected to t, i.e., all nodes u such that there are two edge-disjoint u-t paths
in G. Note that, following Theorem 2, if s and t are in different components of
G[U2], there will be no path with finite robust value (and of course that happens
if and only if Algorithm 1 returns y(s) = ∞).

Theorem 2. A path P ∈ Ps,t has finite robust value if and only if V (P ) ⊂ U2.

4 Bi-objective ORP

We turn to a natural question linking ORP and the Shortest Path problem.
Consider an instance of s-t ORP for which the optimal nominal path is not
unique. While all optimal paths P have the same robust length, they might differ
in terms of their ordinary length �(P ). We can thus be interested in obtaining a
path attaining the potential with minimum length. In general, one can consider
the following bi-objective problem for any bound B ≥ y(s).

z(s,B) = min
P∈Ps,t, Val(P )≤B

�(P ).

The latter problem asks to find a Pareto-optimal s-t path in G with objective
functions robust length and ordinary length. We call this problem Bi-objective
ORP. Bi-objective ORP bears resemblance to the Bi-objective Shortest Path
problem [11]. In the latter problem one seeks to obtain a Pareto-optimal s-t
path in the graph with objective functions corresponding to ordinary length
with respect to two different length functions. In this section we show that the
two problems differ significantly in terms of their complexity. Concretely, we
will show that a solution to bi-objective ORP and the entire Pareto front can
be found in polynomial time. This contrasts to the Bi-objective Shortest Path
problem, which is NP-hard, and its Pareto front can be of exponential size in
the size of the graph. Our first result is:

Theorem 3. Bi-objective ORP can be solved in time O(m + n logn) in undi-
rected graphs and in time O(mn + n2 logn) in directed graphs.

Theorem 3 builds upon an algorithm that is similar to Algorithm 1. Let us
turn to the problem of computing the Pareto front. Recall that a Pareto front
F of a bi-objective optimization problem with objective functions f and g is
a set of Pareto-optimal solutions to the problem with the property that, for
every other solution X , there exists a solution Y ∈ F such that f(X) ≥ f(Y )
and g(X) ≥ g(Y ). A Pareto front F for an instance of Bi-objective ORP is a
set of paths, such that, for every Pareto-optimal path P , there exists a path
in F with not longer robust length and not longer ordinary length. In general,
having an entire Pareto front at hand is of course advantageous in practical
applications, as it gives the decision maker a complete list of efficient strategies.
The following theorem asserts that every Bi-objective ORP instance has a Pareto
front with a linear number of paths. The front can be found in polynomial time
using Algorithm 2 (note that, for undirected graphs, the algorithm is slightly
different).
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Algorithm 2.

1: H = G; F = ∅.
2: while s and t are connected in H do
3: Find a shortest s-t path P in H and add it to F.
4: Find a critical edge e ∈ E(H) (with Val(P ) = �(P−e)) and remove it from H .
5: Remove from F all dominated paths.
6: Return F.

Theorem 4. Every instance of Bi-objective ORP admits a Pareto front F with
at most 2m paths (m paths in directed graphs). The Pareto front can be found
in time O(m2 + mn logn).

Finally, observe that Algorithm 2 is also an algorithm for ORP, as for any
Pareto front F we have y(s) = minP∈F Val(P ). This algorithm can be particularly
interesting for solving ORP in sparse directed graphs, where the size of the Pareto
front might compare favorably with the number of nodes in the graph.

5 k-Hop ORP

In this section we study the k-Hop ORP problem. We assume that we are given
an integer k between 0 and n − 1 and that now the RM is informed about the
failure of edge e as soon as it reaches a node that is k (or fewer) hops away
from e on the nominal path P . In particular, if e /∈ P , the RM won’t be aware
of the failure of e. It is easy to see that 0-Hop ORP is simply ORP and that
(n − 1)-Hop ORP is equivalent to MVA. For k ∈ {1, · · · , n − 2} we obtain an
interesting continuum of problems between ORP and MVA.

Apparently this new setting changes dramatically the problem. In fact, con-
sider a (nominal) s-t path P and an edge e which belongs to P . Denote by v(P, e)
the first node of P that ’sees’ the failure of e (note that v(P, e) = s if e is at
most k-hop away from s on P ). Being aware of the failure of e already at v(P, e)
allows the RM to take a detour before getting to e, as for ORP. This justifies
the following redefenition of detours. The detour P−e associated with an edge
e ∈ E is defined as P [s, v(P, e)] ⊕Q−e

v(P,e) if e ∈ P , and P if e 	∈ P .

The k-Hop ORP problem is defined as finding for every u ∈ V − t the k-Hop
potential

yk(u) = min
P∈Pu,t

Valk(P ),

where Valk(P ) = maxe∈E �(P−e), as well as a corresponding path.
Our main result in this section is a label-setting algorithm for this problem.

Obtaining this algorithm is however a more challenging task than that of ob-
taining such an algorithm for ORP. In particular, we will see that while there
always exists a tree of optimal nominal paths, the k-hop potential needs not be
a monotonic function along the paths of this tree. This property contrasts with
the structure of optimal solutions to ORP. The key property of k-Hop ORP is
stated in the following lemma.
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Lemma 3. Let Pu ∈ Pu,t be an optimal path from u, let v ∈ V (Pu) and let
Pv ∈ Pv,t be an optimal path from v. Then the path P ′

u = Pu[u, v] ⊕ Pv satisfies

Valk(P ′
u) = Valk(Pu), namely it is also optimal from u.

Lemma 3 and the property that we state hereafter allow us to prove the
correctness of a label-setting algorithm. The property follows from the fact that
for any u ∈ V and e ∈ E one has yk(u) ≥ π−e

u .

Property 1. Let u ∈ V and P ∈ Pu,t be such that Valk(P ) = π−e
u for some edge

e seen on P by u. Then P is an optimal path from u.

Analogously to our algorithm for ORP, we proceed by incrementally comput-
ing the optimal path for every node in the graph starting from t. We maintain
a set U of nodes for which a robust path was already computed. For u ∈ U we
denote this path by P ∗

u . The update rule for U works as follows. First, we check
if for some edge vu ∈ E such that v ∈ V \ U and u ∈ U it holds that the path
Q = vu ⊕ P ∗

u satisfies the condition in Property 1. In other words, we check if
Valk(Q) = π−e

v for some edge e ∈ Q seen by v. If such an edge exists we set
P ∗
v := Q and U := U ∪ {v}, an update that is valid due to Property 1. Assume

next that no such edge exists. We call the set U in this situation clean. The
following lemma states an update rule for clean sets U .

Lemma 4. Let U be clean and let vu ∈ arg minqr∈E : r∈U,q �∈U Valk(qr ⊕ P ∗
r ).

Then yk(v) = Valk(vu ⊕ P ∗
u ).

Lemmas 3 and 4 immediately imply a polynomial algorithm for k-Hop ORP.
Observe that one can adopt the implementation of our label-setting algorithm for
ORP to obtain the same time bounds as in Theorem 1. The details are identical,
and thus omitted.

Theorem 5. Given an instance of k-Hop ORP the potential yk and the corre-
sponding paths can be computed in time O(m+n logn) in undirected graphs, and
O(mn + n2 logn) in directed graphs.

Let us make two further remarks about extensions of ORP similar to k-Hop
ORP. In k-Hop ORP we assume that the RM is informed about the failed edge
when it is k hops away on the nominal path. An alternative definition takes the
lengths of edges on this path into account. In this problem, which we call Radius
ORP, the integer k ≤ n− 1 is replaced by a value R ≤ �(E) called the radius. In
this problem the RM is informed about the failed edge e on the nominal path
P at the first node that is at distance at most R from its closer endpoint. The
definition of v(P, e) and the robust value are adapted accordingly.

We claim without proof that our algorithm for k-Hop ORP solves Radius
ORP as well. Informally, this follows from fact that Lemma 3 remains correct,
since it only relies on the following monotonicity property. The set of edges on
P that a node sees is an interval on this path, and furthermore, for every two
consecutive nodes u1, u2 ∈ V (P ), with u2 being the closer one to t, the set of
edges seen by u1 in P [u2, t] is a subset of the set of edges seen by u2. We defer
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the proof of this fact, as well as the careful treatment of Radius ORP to the
journal version of the paper, due to space considerations.

We end this section with another variant of k-Hop ORP. In this variant, whose
input is identical to that of k-Hop ORP, the information about the failed edge
travels through the edges of the entire graph, as opposed to only the edges of
the nominal path. Formally, the first node along the chosen nominal path that
is informed about the failure of some edge e ∈ E is the one closest to s that is at
most k hops away from e in G. This problem, which we denote by Strong k-Hop
ORP turns out to be NP-hard to approximate even when k = 1. Note that, for
k = 0, Strong k-Hop ORP reduces to ORP, as for every path the robust value
is the same in the two different problems.

Theorem 6. for any ε > 0 it is NP-hard to approximate Strong 1-Hop ORP
within a factor of 3 − ε in undirected graphs. In directed graphs it is strongly
NP-hard to decide if there exists a nominal path with finite robust length.

We note that in 2 s-t connected undirected graphs, every shortest path is a
3-approximation of the optimal solution to Strong 1-Hop ORP, thus the approx-
imability of this problem is settled. The proof of this simple fact if similar to the
proof of Lemma 6, and thus omitted.

6 A Two Players’ Game between MVA and ORP

Let us explore next a two players’ game that is the natural middle ground be-
tween the problems MVA and ORP. A first player, the path builder, is interested
in arriving from s to t as quickly as possible. The second player, the interdictor,
tries to make the latter distance as long as possible by removing a single edge
from the graph. The strategies for the two players are the s-t paths, and the
edges e ∈ E, respectively.

In one setup, the interdictor communicates her strategy first, i.e. which edge is
removed from G. The path builder chooses his strategy after: clearly he chooses a
shortest path s-t in the graph G− e. Therefore, the problem that the interdictor
faces in this setting is clearly the MVA problem, as she will remove the edge
e ∈ E maximizing π−e

s , the length of the shortest s-t path in the graph G − e.
In the following, we let z∗(MVA) be the value of an optimal solution to MVA.

In the other extreme, the path builder communicates his strategy first, i.e.
an s-t path P . Then the interdictor moves, and clearly removes the edge e
maximizing �(P−e). Note that we assume that, if e ∈ P , the interdictor will
delay the failure of the edge to the point at which the path builder attempts
to cross it. Hence, the problem that the path builder faces is exactly ORP, i.e.
that of choosing an s-t path with the least robust value. In the following, we let
z∗(ORP ) be the value of an optimal solution to ORP .

The next lemma, whose simple proof we skip, shows that z∗(ORP ) ≥ z∗

(MVA).

Lemma 5. Let P and e be an s-t path and an edge of E, respectively. Then
Val(P ) ≥ z∗(ORP ) ≥ z∗(MVA) ≥ π−e

s .
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In our two players’ game, that we call the ORP Game, both players commu-
nicate their strategies at the same time. In particular, for a given s-t path P
and edge e ∈ E, the payoff for the interdictor is �(P−e). Lemma 5 shows that in
general z∗(ORP ) ≥ z∗(MVA). The next theorem characterizes the instances of
the ORP Game admitting a pure NE as those for which z∗(ORP ) = z∗(MVA).

Theorem 7. Let P and e be optimal solutions to the ORP and MVA instances
on G = (V,E). Then (P, e) is a pure NE of the ORP Game if and only if
Val(P ) = π−e

s . Moreover, in this case, Val(P ) = z∗(ORP ) = z∗(MVA) = π−e
s .

Theorem 7 has also the following algorithmic implication. Recall that we
can compute z∗(MVA) in time O(m + n logn) [13], the same running time
we obtained for unidrected ORP (Theorem 1). This clearly implies that in time
O(m + n logn) we can compute a pure NE of the ORP Game in undirected
graphs, if one exists, or certify that no pure NE exists. Indeed the aforemen-
tioned algorithms allow us to check the condition z∗(ORP ) = z∗(MVA) and
compute corresponding optimal solutions, P ∗ and e∗, with the latter time com-
plexity. Theorem 7 asserts that if the latter condition is satisfied, then (P ∗, e∗)
is a pure NE, otherwise no pure NE exists. Theorems 1 and 7 also imply a
O(mn + n2 logn) algorithm for the same problem is directed graphs.

We close this section by shortly addressing the case where z∗(ORP ) 	=
z∗(MVA). First, in this case, Theorem 7 shows that there are no pure NE.
However, the ORP Game will still admit a NE in mixed strategies, as for both
players the sets of pure strategies is finite (s-t paths and edges). Whether it is
possible to find this mixed NE in polynomial time is an interesting open question.

We conclude by analyzing the ratio z∗(ORP )
z∗(MV A) . The next lemma shows that,

for undirected graphs, it is at most 3.

Lemma 6. Let G be undirected with s-t edge-connectivity of at least two. Then
z∗(ORP ) ≤ 3z∗(MVA).
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Abstract. Let T be a triangulation of a simple polygon. A flip in T
is the operation of removing one diagonal of T and adding a different
one such that the resulting graph is again a triangulation. The flip dis-
tance between two triangulations is the smallest number of flips required
to transform one triangulation into the other. For the special case of
convex polygons, the problem of determining the shortest flip distance
between two triangulations is equivalent to determining the rotation dis-
tance between two binary trees, a central problem which is still open
after over 25 years of intensive study.

We show that computing the flip distance between two triangulations
of a simple polygon is NP-complete. This complements a recent result
that shows APX-hardness of determining the flip distance between two
triangulations of a planar point set.

1 Introduction

Let P be a simple polygon in the plane, that is, a closed region bounded by a
piece-wise linear, simple cycle. A triangulation T of P is a geometric (straight-
line) maximal outerplanar graph whose outer face is the complement of P and
whose vertex set consists of the vertices of P . The edges of T that are not on
the outer face are called diagonals. Let d be a diagonal whose removal creates a
convex quadrilateral f . Replacing d with the other diagonal of f yields another
triangulation of P . This operation is called a flip. The flip graph of P is the
abstract graph whose vertices are the triangulations of P and in which two
triangulations are adjacent if and only if they differ by a single flip. We study
the flip distance, i.e., the minimum number of flips required to transform a given
source triangulation into a target triangulation.

Edge flips became popular in the context of Delaunay triangulations. Law-
son [9] proved that any triangulation of a planar n-point set can be transformed
into any other by O(n2) flips. Hence, for every planar n-point set the flip graph
is connected with diameter O(n2). Later, he showed that in fact every triangula-
tion can be transformed to the Delaunay triangulation by O(n2) flips that locally
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fix the Delaunay property [10]. Hurtado, Noy, and Urrutia [7] gave an example
where the flip distance is Ω(n2), and they showed that the same bounds hold
for triangulations of simple polygons. They also proved that if the polygon has k
reflex vertices, then the flip graph has diameter O(n+k2). In particular, the flip
graph of any planar polygon has diameter O(n2). Their result also generalizes
the well-known fact that the flip distance between any two triangulations of a
convex polygon is at most 2n − 10, for n > 12, as shown by Sleator, Tarjan,
and Thurston [15] in their work on the flip distance in convex polygons. The
latter case is particularly interesting due to the correspondence between flips in
triangulations of convex polygons and rotations in binary trees: The dual graph
of such a triangulation is a binary tree, and a flip corresponds to a rotation in
that tree; also, for every binary tree, a triangulation can be constructed.

We mention two further remarkable results on flip graphs for point sets.
Hanke, Ottmann, and Schuierer [6] showed that the flip distance between two tri-
angulations is bounded by the number of crossings in their overlay. Eppstein [5]
gave a polynomial-time algorithm for calculating a lower bound on the flip dis-
tance. His bound is tight for point sets with no empty 5-gons; however, except
for small instances, such point sets are not in general position (i.e., they must
contain collinear triples) [1]. For a recent survey on flips see Bose and Hurtado [3].

Very recently, the problem of finding the flip distance between two triangu-
lations of a point set was shown to be NP-hard by Lubiw and Pathak [11] and,
independently, by Pilz [12], and the latter proof was later improved to show
APX-hardness of the problem. Here, we show that the corresponding problem
remains NP-hard even for simple polygons. This can be seen as a further step
towards settling the complexity of deciding the flip distance between triangula-
tions of convex polygons or, equivalently, the rotation distance between binary
trees. This variant of the problem was probably first addressed by Culik and
Wood [4] in 1982 (showing a flip distance of 2n− 6).

The formal problem definition is as follows: given a simple polygon P , two
triangulations T1 and T2 of P , and an integer l, decide whether T1 can be trans-
formed into T2 by at most l flips. We call this decision problem PolyFlip.
To show NP-hardness, we give a polynomial-time reduction from Rectilin-

ear Steiner Arborescence to PolyFlip. Rectilinear Steiner Arbores-

cence was shown to be NP-hard by Shi and Su [14]. In Section 2, we describe
the problem in detail. We present the well-known double chain (used by Hur-
tado, Noy, and Urrutia [7] for giving their lower bound), a major building block
in our reduction, in Section 3. Finally, in Section 4, we describe our reduction
and prove that it is correct. An extended abstract of this work was presented at
the 29th EuroCG, 2013; for omitted proofs, see [2].

2 The Rectilinear Steiner Arborescence Problem

Let S be a set of N points in the plane whose coordinates are nonnegative
integers. The points in S are called sinks. A rectilinear tree T is a connected
acyclic collection of horizontal and vertical line segments that intersect only
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at their endpoints. The length of T is the total length of all segments in T
(cf. [8, p. 205]). The tree T is a rectilinear Steiner tree for S if each sink in
S appears as an endpoint of a segment in T . We call T a rectilinear Steiner
arborescence (RSA) for S if (i) T is rooted at the origin; (ii) each leaf of T lies at
a sink in S; and (iii) for each s = (x, y) ∈ S, the length of the path in T from the
origin to s equals x+ y, i.e., all edges in T point north or east, as seen from the
origin [13]. In the RSA problem, we are given a set of sinks S and an integer k.
The question is whether there is an RSA for S of length at most k. Shi and Su
showed that the RSA problem is strongly NP-complete; in particular, it remains
NP-complete if S is contained in an n × n grid, with n polynomially bounded
in N , the number of points [14].1

We recall an important structural property of the RSA. Let A be an RSA for
a set S of sinks. Let e be a vertical segment in A that does not contain a sink.
Suppose there is a horizontal segment f incident to the upper endpoint a of e.
Since A is an arborescence, a is the left endpoint of f . Suppose further that a is
not the lower endpoint of another vertical edge. Take a copy e′ of e and translate
it to the right until e′ hits a sink or another segment endpoint (this will certainly
happen at the right endpoint of f); see Fig. 1. The segments e and e′ define a
rectangle R. The upper and left side of R are completely covered by e and (a
part of) f . Since a has only two incident segments, every sink-root path in A
that goes through e or f contains these two sides of R, entering the boundary
of R at the upper right corner d and leaving it at the lower left corner b. We
reroute every such path at d to continue clockwise along the boundary of R until
it meets A again (this certainly happens at b), and we delete e and the part of
f on R. In the resulting tree we subsequently remove all unnecessary segments
(this happens if there are no more root-sink paths through b) to obtain another
RSA A′ for S. Observe that A′ is not longer than A. This operation is called
sliding e to the right. If similar conditions apply to a horizontal edge, we can
slide it upwards. The Hanan grid for a point set P is the set of all vertical and
horizontal lines through the points in P . In essence, the following theorem can
be proved constructively by repeated segment slides in a shortest RSA.

Theorem 2.1 ([13]). Let S be a set of sinks. There is a minimum-length RSA
A for S such that all segments of A are on the Hanan grid for S ∪ {(0, 0)}. �


e e′

f da

b

R

Fig. 1. The slide operation. The dots depict sinks; the rectangle R is drawn gray. The
dotted segments are deleted, since they do no longer lead to a sink.

1 Note that a polynomial-time algorithm was claimed [16] that later has been shown
to be incorrect [13].
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We use a restricted version of the RSA problem, called YRSA. An instance
(S, k) of the YRSA problem differs from an instance for the RSA problem in that
we require that no two sinks in S have the same y-coordinate. The NP-hardness
of YRSA follows by a simple perturbation argument; see the full version for all
omitted proofs.

Theorem 2.2. YRSA is strongly NP-complete.

3 Double Chains

Our definitions (and illustrations) follow [12]. A double chain D consists of
two chains, an upper chain and a lower chain. There are n vertices on each
chain, 〈u1, . . . , un〉 on the upper chain and 〈l1, . . . , ln〉 on the lower chain, both
numbered from left to right. Any point on one chain sees every point on the
other chain, and any quadrilateral formed by three vertices of one chain and
one vertex of the other chain is non-convex. Let PD be the polygon defined by
〈l1, . . . , ln, un, . . . , u1〉; see Fig. 2 (left). We call the triangulation Tu of PD where
u1 has maximum degree the upper extreme triangulation; observe that this tri-
angulation is unique. The triangulation Tl of PD where l1 has maximum degree
is called the lower extreme triangulation. The two extreme triangulations are
used to show that the diameter of the flip graph is quadratic; see Fig. 2 (right).

Theorem 3.1 ([7]). The flip distance between Tu and Tl is (n− 1)2. �

Through a slight modification of D, we can reduce the flip distance between

the upper and the lower extreme triangulation to linear. This will enable us in
our reduction to impose a certain structure on short flip sequences. To describe
this modification, we first define the flip-kernel of a double chain.

u1 u2
un−1

un

l1 l2 ln−1 ln

Fig. 2. Left: The polygon and the hourglass (gray) of a double chain. The diamond-
shaped flip-kernel can be extended arbitrarily by flattening the chains. Right: The
upper extreme triangulation Tu and the lower extreme triangulation Tl.

Let W1 be the wedge defined by the lines through u1u2 and l1l2 whose interior
contains no point from D but intersects the segment u1l1. Define Wn analogously
by the lines through unun−1 and lnln−1. We call W := W1 ∪ Wn the hourglass
of D. The unbounded set W ∪ PD is defined by four rays and the two chains.
The flip-kernel of D is the intersection of the closed half-planes below the lines
through u1u2 and un−1un, as well as above the lines through l1l2 and ln−1ln.2

2 The flip-kernel of D might not be completely inside the polygon PD. This is in
contrast to the “visibility kernel” of a polygon.
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p

Fig. 3. The extra point p in the flip-kernel of D allows flipping one extreme triangula-
tion of P p

D to the other in 4n− 4 flips

Definition 3.2. Let D be a double chain whose flip-kernel contains a point p
to the right of the directed line lnun. The polygon P p

D is given by the sequence
〈l1, . . . , ln, p, un, . . . , u1〉. The upper and the lower extreme triangulation of P p

D

contain the edge unln and otherwise are defined in the same way as for PD.

The flip distance between the two extreme triangulations for P p
D is much

smaller than for PD [17]. Fig. 3 shows how to transform them into each other
with 4n − 4 flips. The next lemma shows that this is optimal, even for more
general polygons. The lemma is a slight generalization of a lemma by Lubiw and
Pathak [11] on double chains of constant size.

Lemma 3.3. Let P be a polygon that contains PD and has 〈l1, . . . , ln〉 and
〈un, . . . , u1〉 as part of its boundary. Further, let T1 and T2 be two triangulations
that contain the upper extreme triangulation and the lower extreme triangulation
of PD as a sub-triangulation, respectively. Then T1 and T2 have flip distance at
least 4n− 4.

The following result can be seen as a special case of [12, Proposition 1].

Lemma 3.4. Let P be a polygon that contains PD and has
〈un, . . . , u1, l1, . . . , ln〉 as part of its boundary. Let T1 and T2 be two tri-
angulations that contain the upper and the lower extreme triangulation of PD

as a sub-triangulation, respectively. Consider any flip sequence σ from T1 to T2

and suppose there is no triangulation in σ containing a triangle with one vertex
at the upper chain, the other vertex at the lower chain, and the third vertex at
a point in the interior of the hourglass of PD. Then |σ| ≥ (n− 1)2.

4 The Reduction

We reduce YRSA to PolyFlip. Let S be a set of N sinks on an n × n grid
with root at (1, 1) (recall that n is polynomial in N). We construct a polygon
P ∗
D and two triangulations T1, T2 in P ∗

D such that a shortest flip sequence from
T1 to T2 corresponds to a shortest RSA for S. To this end, we will describe how
to interpret any triangulation of P ∗

D as a chain path, a path in the integer grid
that starts at the origin and uses only edges that go north or east. It will turn
out that flips in P ∗

D essentially correspond to moving the endpoint of the chain
path along the grid. We choose P ∗

D, T1, and T2 in such a way that a shortest
flip sequence between T1 and T2 moves the endpoint of the chain path according
to an Eulerian traversal of a shortest RSA for S. To force the chain path to
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visit all sites, we use the observations from Section 3: the polygon P ∗
D contains

a double chain for each sink, so that only for certain triangulations of P ∗
D it is

possible to flip the double chain quickly. These triangulations will be exactly the
triangulations that correspond to the chain path visiting the appropriate site.

4.1 The Construction

Our construction has two integral parameters, β and d. With foresight, we set
β = 2N and d = nN . We imagine that the sinks of S lie on a βn×βn grid, with
their coordinates multiplied by β.

We take a double chain D with βn vertices on each chain such that the flip-
kernel of D extends to the right of lβnuβn. We add a point z to that part of the
flip-kernel, and we let P+

D be the polygon defined by 〈l1, . . . , lβn, z, uβn, . . . , u1〉.
Next, we add double chains to P+

D in order to encode the sinks. For each sink
s = (x, y), we remove the edge lβylβy+1, and we replace it by a (rotated) double
chain Ds with d vertices on each chain, such that lβy and lβy+1 correspond to
the last point on the lower and the upper chain of Ds, respectively. We orient Ds

in such a way that uβx is the only point inside the hourglass of Ds and so that
uβx lies in the flip-kernel of Ds; see Fig. 4. We refer to the added double chains
as sink gadgets, and we call the resulting polygon P ∗

D. For β large enough, the
sink gadgets do not overlap, and P ∗

D is a simple polygon. Since the y-coordinates
in S are pairwise distinct, there is at most one sink gadget per edge of the lower
chain of P+

D . The precise placement of the sink gadgets is flexible, so we can
make all coordinates polynomial in n; see the full version for details.

u1 u2

l1 l2

5

5

8

l5

u3 u5

l8 3

Fig. 4. The sink gadget for a site (x, y) is obtained by replacing the edge lβylβy+1 by
a double chain with d vertices on each chain. The double chain is oriented such that
uβx is the only point inside its hourglass and its flip-kernel. In our example, β = 1.

Next, we describe the source and target triangulation for P ∗
D. In the source

triangulation T1, the interior of P+
D is triangulated such that all edges are incident

to z. The sink gadgets are all triangulated with the upper extreme triangulation.
The target triangulation T2 is similar, but now the sink gadgets are triangulated
with the lower extreme triangulation.

To get from T1 to T2, we must go from one extreme triangulation to the other
for each sink gadget Ds. By Lemma 3.4, this requires (d − 1)2 flips, unless the
flip sequence creates a triangle that allows us to use the vertex in the flip-kernel
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of Ds. In this case, we say that the flip sequence visits the sink s. For d large
enough, a shortest flip sequence must visit each sink, and we will show that this
induces an RSA for S of similar length. Conversely, we will show how to derive
a flip sequence from an RSA. The precise statement is given in the following
theorem.

Theorem 4.1. Let k ≥ 1. The flip distance between T1 and T2 w.r.t. P ∗
D is at

most 2βk + (4d− 2)N if and only if S has an RSA of length at most k.

We will prove Theorem 4.1 in the following sections. But first, let us show
how to use it for our NP-completeness result.

Theorem 4.2. PolyFlip is NP-complete.

Proof. As mentioned in the introduction, the flip distance in polygons is polyno-
mially bounded, so PolyFlip is in NP. We reduce from YRSA. Let (S, k) be an
instance of YRSA such that S lies on a grid of polynomial size. We construct P ∗

D

and T1, T2 as described above. This takes polynomial time (see the full version
for details). Set l = 2βk + (4d− 2)N . By Theorem 4.1, there exists an RSA for
S of length at most k if and only if there exists a flip sequence between T1 and
T2 of length at most l. �


4.2 Chain Paths

Now we introduce the chain path, our main tool to establish a correspondence
between flip sequences and RSAs. Let T be a triangulation of P+

D (i.e., the
polygon P ∗

D without the sink gadgets, cf. Section 4.1). A chain edge is an edge
of T between the upper and the lower chain of P+

D . A chain triangle is a triangle
of T that contains two chain edges. Let e1, . . . , em be the chain edges, sorted
from left to right according to their intersection with a line that separates the
upper from the lower chain. For i = 1, . . . ,m, write ei = (uv, lw) and set ci =
(v, w). In particular, c1 = (1, 1). Since T is a triangulation, any two consecutive
edges ei, ei+1 share one endpoint, while the other endpoints are adjacent on the
corresponding chain. Thus, ci+1 dominates ci and ‖ci+1 − ci‖1 = 1. It follows
that c1c2 . . . cm is an x- and y-monotone path in the βn × βn-grid, beginning
at the root. It is called the chain path for T . Each vertex of the chain path
corresponds to a chain edge, and each edge of the chain path corresponds to a
chain triangle. Conversely, every chain path induces a triangulation T of P+

D ; see
Fig. 5. In the following, we let b denote the upper right endpoint of the chain
path.

The next lemma describes how the chain path is affected by flips; see Fig. 5.

Lemma 4.3. Any triangulation T of P+
D uniquely determines a chain path, and

vice versa. A flip in T corresponds to one of the following operations on the
chain path: (i) move the endpoint b north or east; (ii) shorten the path at b; (iii)
change an east-north bend to a north-east bend, or vice versa. �
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Fig. 5. A triangulation of P+
D and its chain path. Flipping edges to and from z moves

the endpoint b along the grid. A flip between chain triangles changes a bend.

4.3 From an RSA to a Short Flip Sequence

Using the notion of a chain path, we now prove the “if” direction of Theorem 4.1.

Lemma 4.4. Let k ≥ 1 and A an RSA for S of length k. Then the flip distance
between T1 and T2 w.r.t. P ∗

D is at most 2βk + (4d− 2)N .

Proof. The triangulations T1 and T2 both contain a triangulation of P+
D whose

chain path has its endpoint b at the root. We use Lemma 4.3 to generate flips
inside P+

D so that b traverses A in a depth-first manner. This needs 2βk flips.
Each time b reaches a sink s, we move b north. This creates a chain triangle

that allows the edges in the sink gadget Ds to be flipped to the auxiliary vertex
in the flip-kernel of Ds. The triangulation of Ds can then be changed with 4d−4
flips; see Lemma 3.3. Next, we move b back south and continue the traversal.
Moving b at s needs two additional flips, so we take 4d− 2 flips per sink, for a
total of 2βk + (4d− 2)N flips. �


4.4 From a Short Flip Sequence to an RSA

Finally, we consider the “only if” direction in Theorem 4.1. Let σ1 be a flip
sequence on P+

D . We say that σ1 visits a sink s = (x, y) if σ1 has at least one
triangulation T that contains the chain triangle uβxlβylβy+1. We call σ1 a flip
traversal for S if (i) σ1 begins and ends in the triangulation whose corresponding
chain path has its endpoint b at the root and (ii) σ1 visits every sink in S. The
following lemma shows that every short flip sequence in P ∗

D can be mapped to
a flip traversal.

Lemma 4.5. Let σ be a flip sequence from T1 to T2 w.r.t. P ∗
D with |σ| < (d−1)2.

Then there is a flip traversal σ1 for S with |σ1| ≤ |σ| − (4d− 4)N .

Proof. We show how to obtain a flip traversal σ1 for S from σ. Let T ∗ be a
triangulation of P ∗

D. A triangle of T ∗ is an inner triangle if all its sides are
diagonals. It is an ear if two of its sides are polygon edges. By construction, every
inner triangle of T ∗ must have (i) one vertex incident to z (the rightmost vertex
of P+

D ), or (ii) two vertices incident to a sink gadget (or both). In the latter case,
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there can be only one such triangle per sink gadget. The weak (graph theoretic)
dual of T ∗ is a tree in which ears correspond to leaves and inner triangles have
degree 3.

Let Ds be a sink gadget placed between the vertices ls and l′s. Let us be the
vertex in the flip-kernel of Ds. We define a triangle Δs for Ds. Consider the
bottommost edge e of Ds, and let Δ be the triangle of T ∗ that is incident to e.
By construction, Δ is either an ear of T ∗ or is the triangle defined by e and us. In
the latter case, we set Δs = Δ. In the former case, we claim that T ∗ has an inner
triangle Δ′ with two vertices on Ds: follow the path from Δ in the weak dual of
T ∗; while the path does not encounter an inner triangle, the next triangle must
have an edge of Ds as a side. There is only a limited number of such edges, so
eventually we must meet an inner triangle Δ′. We then set Δs = Δ′; see Fig. 6.
Note that Δs might be lsl

′
sus.

Δs

Δsls
l′s

us us

ls
l′s

Fig. 6. Triangulations of Ds in P ∗
D with Δs = Δ (left), and with Δ being an ear (red)

and Δs an inner triangle (right). The fat tree indicates the dual.

For each sink s, let the polygon Pus

Ds
consist of the Ds extended by the ver-

tex us (cf. Definition 3.2). Let T ∗ be a triangulation of P ∗
D. We show how to

map T ∗ to a triangulation T+ of P+
D and to triangulations Ts of Pus

Ds
, for each s.

We first describe T+. It contains every triangle of T ∗ with all three vertices
in P+

D . For each triangle Δ in T ∗ with two vertices on P+
D and one vertex on the

left chain of a sink gadget Ds, we replace the vertex on Ds by ls. Similarly, if
the third vertex of Δ is on the right chain of Ds, we replace it by l′s. For every
sink s, the triangle Δs has one vertex at a point ui of the upper chain. In T+,
we replace Δs by the triangle lsl

′
sui. No two triangles overlap, and they cover

all of P+
D . Thus, T+ is indeed a triangulation of P+

D .
Now we describe how to obtain Ts, for a sink s ∈ S. Each triangle of T ∗ with

all vertices on Pus

Ds
is also in Ts. Each triangle with two vertices on Ds and one

vertex not in Pus

Ds
is replaced in Ts by a triangle whose third vertex is moved to

us in Ts (note that this includes Δs); see Fig. 7. Again, all triangles cover Pus

Ds

and no two triangles overlap.
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Δs

us

ls
l′s

T+

Ts

us

ls
l′s

Δs

Δs

us

ls
l′s

Fig. 7. Obtaining T+ and Ts from T ∗

Eventually, we show that a flip in T ∗ corresponds to at most one flip either
in T+ or in precisely one Ts for some sink s. We do this by considering all the
possibilities for two triangles that share a common flippable edge. Note that by
construction no two triangles mapped to triangulations of different polygons Pus

Ds

and Put

Dt
can share an edge (with t 	= s being another sink).

Case 1. We flip an edge between two triangles that are either both mapped
to T+ or to Ts and are different from Δs. This flip clearly happens in at most
one triangulation.

Case 2. We flip an edge between a triangle Δ1 that is mapped to Ts and
a triangle Δ2 that is mapped to T+, such that both Δ1 and Δ2 are different
from Δs. This results in a triangle Δ′

1 that is incident to the same edge of Pus

Ds

as Δ1(for each such triangle, the point not incident to that edge is called the
apex ), and a triangle Δ′

2 having the same vertices of P+
D as Δ2. Since the apex

of Δ1 is a vertex of the upper chain or z (otherwise, it would not share an edge
with Δ2), it is mapped to us, as is the apex of Δ′

1. Also, the apex of Δ′
2 is on

the same chain of Ds as the one of Δ2. Hence, the flip affects neither T+ nor Ts.
Case 3. We flip the edge between a triangle Δ2 mapped to T+ and Δs. By

construction, this can only happen if Δs is an inner triangle. The flip affects
only T+, because the new inner triangle Δ′

s is mapped to the same triangle in
Ts as Δs, since both apexes are moved to us.

Case 4. We flip the edge between a triangle Δ of Ts and Δs. Similar to
Case 3, this affects only Ts, because the new triangle Δ′

s is mapped to the same
triangle in T+ as Δs, since the two corners are always mapped to ls and l′s.

Thus, σ induces a flip sequence σ1 in P+
D and flip sequences σs in each Pus

Ds
so

that |σ1| +
∑

s∈S |σs| ≤ |σ|. Furthermore, each flip sequence σs transforms Pus

Ds

from one extreme triangulation to the other. By the choice of d and Lemma 3.4,
the triangulations Ts have to be transformed so that Δs has a vertex at us at
some point, and |σs| ≥ 4d − 4. Thus, σ1 is a flip traversal, and |σ1| ≤ |σ| −
N(4d− 4), as claimed. �


In order to obtain a static RSA from a changing flip traversal, we use the
notion of a trace. A trace is a domain on the βn × βn grid. It consists of edges
and boxes : an edge is a line segment of length 1 whose endpoints have positive
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integer coordinates; a box is a square of side length 1 whose corners have positive
integer coordinates. Similar to arborescences, we require that a trace R (i) is
(topologically) connected; (ii) contains the root (1, 1); and (iii) from every grid
point contained in R there exists an x- and y-monotone path to the root that
lies completely in R. We say R is a covering trace for S (or, R covers S) if every
sink in S is part of R.

Let σ1 be a flip traversal as in Lemma 4.5. By Lemma 4.3, each triangulation
in σ1 corresponds to a chain path. This gives a covering trace R for S in the
following way. For every flip in σ1 that extends the chain path, we add the
corresponding edge to R. For every flip in σ1 that changes a bend, we add the
corresponding box to R. Afterwards, we remove from R all edges that coincide
with a side of a box in R. Clearly, R is (topologically) connected. Since σ1 is a
flip traversal for S, every sink is covered by R (i.e., incident to a box or edge
in R). Note that every grid point p in R is connected to the root by an x- and
y-monotone path on R, since at some point p belonged to a chain path in σ1.
Hence, R is indeed a trace, the unique trace of σ1.

Next, we define the cost of a trace R, cost(R), so that if R is the trace of a
flip traversal σ1, then cost(R) gives a lower bound on |σ1|. An edge has cost 2.
Let B be a box in R. A boundary side of B is a side that is not part of another
box. The cost of B is 1 plus the number of boundary sides of B. Then, cost(R)
is the total cost over all boxes and edges in R. For example, the cost of a tree is
twice the number of its edges, and the cost of an a× b rectangle is ab+ 2(a+ b).
An edge can be interpreted as a degenerated box, having two boundary sides
and no interior. The following proposition is proved in the full version.

Proposition 4.6. Let σ1 be a flip traversal and R the trace of σ1. Then
cost(R) ≤ |σ1|.

Now we relate the length of an RSA for S to the cost of a covering trace for S,
and thus to the length of a flip traversal. Since each sink (sx, sy) is connected in
R to the root by a path of length sx + sy, traces can be regarded as generalized
RSAs. In particular, we make the following observation.

Observation 4.7. Let R be a covering trace for S that contains no boxes, and
let Aσ1 be a shortest path tree in R from the root to all sinks in S. Then Aσ1 is
an RSA for S. �


If σ1 contains no flips that change bends, the corresponding trace R has no boxes.
Then, R contains an RSA Aσ1 with 2|Aσ1 | ≤ cost(R), by Observation 4.7. The
next lemma shows that, due to the size of β, there is always a shortest covering
trace for S that does not contain any boxes. See the full version for the proof.

Lemma 4.8. Let σ1 be a flip traversal of S. Then there exists a covering trace
R for S in the βn × βn grid such that R does not contain a box and such that
cost(R) ≤ |σ1|.

Now we can finally complete the proof of Theorem 4.1 by giving the second
direction of the correspondence.
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Lemma 4.9. Let k ≥ 1 and let σ be a flip sequence on P ∗
D from T1 to T2 with

|σ| ≤ 2βk + (4d− 2)N . Then there exists an RSA for S of length at most k.

Proof. Trivially, there always exists an RSA on S of length less than 2nN , so
we may assume that k < 2nN . Hence (recall that β = 2N and d = nN),

2βk + 4dN − 2N < 2 × 2N × 2nN + 4nN2 − 2N < 12nN2 < (d− 1)2,

for n ≥ 14 and positive N . Thus, since σ meets the requirements of Lemma 4.5,
we can obtain a flip traversal σ1 for S with |σ1| ≤ 2βk + 2N . By Lemma 4.8
and Observation 4.7, we can conclude that there is an RSA A for S that has
length at most βk + N . By Theorem 2.1, there is an RSA A′ for S that is not
longer than A and that lies on the Hanan grid for S. The length of A′ must be a
multiple of β. Thus, since β > N , we get that A′ has length at most βk, so the
corresponding arborescence for S on the n× n grid has length at most k. �
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Abstract. In this paper, we perform an empirical evaluation of the
Parallel External Memory (PEM) model in the context of geometric
problems. In particular, we implement the parallel distribution sweeping
framework of Ajwani, Sitchinava and Zeh to solve batched 1-dimensional
stabbing max problem. While modern processors consist of sophisti-
cated memory systems (multiple levels of caches, set associativity, TLB,
prefetching), we empirically show that algorithms designed in simple
models, that focus on minimizing the I/O transfers between shared mem-
ory and single level cache, can lead to efficient software on current multi-
core architectures. Our implementation exhibits significantly fewer
accesses to slow DRAM and, therefore, outperforms traditional
approaches based on plane sweep and two-way divide and conquer.

1 Introduction

Modern multicore architectures have complex memory systems involving multi-
ple levels of private and/or shared caches, set associativity, TLBs, and prefetch-
ing effects. It is considered challenging to design and even engineer algorithms to
directly optimize the running time on such architectures [15]. Furthermore, algo-
rithms optimized for one architecture may not be optimal for another. To address
these issues, various computational models [5,9,10,12,13] have been proposed in
recent years. These computational models are simple (usually assuming only two
levels of memory hierarchy, out of which one is shared) as they abstract away
the messy architectural details. Also, the performance metric of these models
involve a single objective function such as minimizing shared memory accesses.
The simplicity of these models allows the design of practical algorithms that are
expected to work well on various multicore architectures. It also allows us to
compare the relative performance of algorithms theoretically.

The success of a computational model crucially depends on how well the
theoretical prediction of an algorithm in that model matches the actual running
time on real systems. Unfortunately so far, there has been little empirical work
(such as [20]) to evaluate the predictions of algorithmic performance using these
models on real multicore architectures. It is not even clear if these models can
lead to the design of algorithms that are faster on current multicore systems
(with 2 - 48 cores) than those designed in the traditional RAM model, external
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memory model and the PRAM model. In fact, many of the algorithms designed
in these models for multicores seem quite sophisticated and are likely to have high
constant factors that can pay off only for architectures with hundreds of cores.
This state of affairs is in sharp contrast with the sequential cache-efficient models,
where a considerable empirical work (e.g., [6,11]) evaluating the algorithms on
real systems exists.

At the core of the debate for the computational model is the choice of the
performance metric that an algorithm designer should optimize for the current
multicore systems. In the traditional RAM (and PRAM) model of computation,
the algorithms are designed to minimize the number of instructions (and parallel
instructions) executed by the algorithm. The external memory (EM) model [1]
when applied to cached memories (e.g., see [16]) aims at minimizing the cache
misses, ignoring the number of instructions. The parallel external memory (PEM)
model [5] aims at minimizing the number of parallel cache misses.

In this work, we demonstrate that algorithms designed in simple models, that
focus on minimizing the parallel I/O transfers between shared memory and a
single level cache, can lead to a software performing great in practice on real mul-
ticore systems. For this purpose, we consider the algorithms to solve the problem
of answering batched planar orthogonal stabbing-max queries. This problem is
a fundamental geometric primitive and together with its variants is used as
subroutines in solutions of many popular geometric problems such as point loca-
tion in an orthogonal subdivision of the plane, orthogonal ray shooting, batched
(offline) dynamic predecessor queries in 1-dimensional array and batched union-
find. Also, this problem has been well-studied in various computational models
and many different optimal solutions for it are known in these models. Thus,
it provides a test-bed for evaluating the efficacy of theoretical analysis in var-
ious models on real multicore architectures. Another reason for selecting this
non-HPC application is that the ratio of memory accesses to computation in
the solutions of this problem is similar to that of many data-intensive geomet-
ric applications. For instance, our engineered PEM solution for this problem is
based on the parallel distribution sweeping framework and this framework has
been used for designing a wide range of other geometric algorithms in the PEM
model [3,4] and a basis for PEM data structures [19].

We empirically compare the different solutions and show that a carefully en-
gineered solution based on an algorithm in the PEM model gives the best per-
formance on various multicore systems, outperforming traditional approaches
based on plane sweep, sequential distribution sweeping and two-way divide-and-
conquer. Using hardware profilers, we show that this solution exhibits signif-
icantly fewer number of accesses to slow DRAM which is correlated with the
improved running time.

Since the cache line on modern systems is typically 64 bytes, I/O-efficient so-
lutions also need to be work-efficient to compete with RAM algorithms. In other
words, the total number of instructions of a cache-efficient algorithm should
asymptotically match that of the best RAM solution. Therefore, we design an



Empirical Evaluation of the Parallel Distribution Sweeping Framework 27

algorithm that is both I/O-optimal and work-efficient. To the best of our knowl-
edge, this is the first work-efficient I/O-optimal algorithm for this problem.

2 Computational Models

External Memory Model. The widely used external memory model or the
I/O model by Aggarwal and Vitter [1] assumes a two level memory hierar-
chy. The internal memory has a limited size and can hold at most M objects
(points/line-segments) and the external memory has a conceptually unlimited
size. The computation can only use the data in the internal memory, while
the input and the output are stored in the external memory. The data trans-
fer between the two memories happens in blocks of B objects. The measure
of performance of an algorithm is the number of I/Os (cache misses) it per-
forms. The number of I/Os needed to read n contiguous items from the external
memory is scan(n) = Θ(n/B). The number of I/Os required to sort n items
is sort(n) = Θ((n/B) logM/B(n/B)). For all realistic values of n, B, and M ,
scan(n) < sort(n) < n log2 n.

Parallel External Memory (PEM) Model. The parallel external memory
(PEM) model [5] is a simple parallelization of the EM model. It consists of P
processors, each with a private cache of size M (see Figure 1). Processors commu-
nicate with each other through access to a shared memory of conceptually unlim-
ited size. Each processor can use only data in its private cache for computation.

B

B

Shared memory

Cache

CPU 2

M/B

Cache

CPU P

M/B M/B

Cache

CPU 1

Fig. 1. The PEM model

The caches and the shared memory are
divided into blocks of size B. Data
is transferred between the caches and
shared memory using parallel input-
output (I/O) operations. During each
such operation, each processor can trans-
fer one block between shared memory and
its private cache. The cost of an algo-
rithm is the number of I/Os it performs.
Concurrent reading of the same block by
multiple processors is allowed but concur-
rent block writes are disallowed (similar
to a CREW PRAM). The cost of sorting

in this model is sortP (n) = O
(

n
PB logM/B

n
B

)
parallel I/Os, provided P ≤ n/B2

and M = BO(1) [5].
The PEM model provides the simplest possible abstraction of current multi-

core chips, focusing on the fundamental I/O issues that need to be addressed
when designing algorithms for these architectures, similar to the I/O model [1]
in the sequential setting.
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3 1-D Stabbing Max Algorithms

In this section, we describe various algorithms that we implemented and used
for our experimental study. We begin with formally describing the problem.

Definition 1 (Batched 1-D Stabbing-Max Problem). Given a set of n
horizontal line segments and points on the plane, report for each point the closest
segment that lies directly below it.

RAM Algorithm. In the classical RAM model, this problem is solved using
the sweep line paradigm [17,7]. We sweep a hypothetical vertical line across the
plane in increasing x-coordinate and perform some computation at each segment
endpoint or query point. We maintain an ordered set A of active segments — all
segments which intersect the sweep line, ordered by the y-coordinates. A segment
is inserted into A when the sweep line encounters its left endpoint and removed
when it encounters the right endpoint. An answer to a query point q is the
segment in A with the largest y-coordinate that is smaller than the y-coordinate
of q, i.e., the predecessor of q in A according to the y-ordering.

For n line segments and query points, there are O(n) insertions, deletions
and predecessor searches in A. Since each of these operations can be performed
in O(logn) time by maintaining A as a balanced binary search tree, the total
complexity of this algorithm is O(n logn) instructions.

Sequential I/O-optimal Solution. The sequential I/O-efficient solution for
this problem proceeds using the distribution sweeping framework of Goodrich et
al. [14] as follows.

Let rq be a variable associated with each query point q which we will use to
store the answer. Initially rq is initialized to a virtual horizontal line y = −∞.

We partition the space into K = min{M/B, n/M} vertical slabs σ1, . . . , σK , so
that each slab contains equal number of points (endpoints of horizontal segments
or query points) and perform a sweep of the input by increasing y-coordinate.
During the sweep we maintain for each slab σi a segment sσi which is the highest
segment that spans σi encountered by the sweep. When the sweep line encounters
the query point q ∈ σi, we update rq with sσi iff y(sσi) > y(rq). During the sweep
we also generate slab lists Yσi . A copy of a query q (resp., segment s) is added
to Yσi if q (resp., at least one of the endpoints of s) lies in slab σi. The sweep
is followed by a recursive processing of each slab, using Yσi as input for the
recursive call. The recursion terminates when each slab contains O(M) points
and the problem can be solved in internal memory, for example, by using the
plane sweep algorithm.

Note, that if the initial objects are sorted by y-coordinates, we can generate
the inputs Yσi for the recursive calls sorted by y-coordinate during the sweep.
Thus, the sweep at each of O(1+logK(n/M)) recursive levels takes O(n/B) I/Os
and the total I/O complexity of distribution sweeping is O

(
n
B (1 + logK n/M)

)
=

sort(n) I/Os.

Work-optimal Solution. Note that a naive implementation of the sweep in
internal memory might potentially result in updating K different variables sσi
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whenever a segment is encountered during the sweep. This could lead to O(Kn)
instructions at each recursive level, resulting in total O(Kn logK n) instructions,
which is larger than O(n log2 n) instructions of the plane sweep algorithm. At
the same time, the plane sweep algorithm could result in up to O(n log2 n) I/Os,
which is larger than sort(n) I/Os of the above algorithm.

To achieve optimal internal computation time while maintaining the optimal
sort(n) I/O complexity we store segments sσi in a segment tree T over K inter-
vals defined by the slabs σi. Since, we are interested only in segments that fully
span the slabs, each segment is stored only in one node. Also, at each node we
store only the highest segment encountered up to that point in the sweep. Thus,
|T | = O(K), i.e. T fits in internal memory. Consider the nodes on the root to leaf
path which correspond to the intervals containing q. We update rq to the high-
est segment stored at these nodes. Thus, maintaining T and updating rq takes
O(log2 K) instructions per update/query, and over O(1 + logK N/M) recursive
levels of distribution sweeping adds up to at most O(n log2 n) instructions, which
is optimal.

Parallel External Memory Solution. The PEM solution is based on the par-
allel distribution sweeping framework introduced by Ajwani et al. [3]. It differs
from the sequential distribution sweeping by recursively dividing the plane into
K := max{2,min{

√
n/P ,M/B, P}} vertical slabs1 and performing the sweep in

parallel using all P processors. During recursion, the slabs are processed concur-
rently using sets of Θ(P/K) distinct processors per slab. The parallel recursion
proceeds for O(logK P ) rounds, until there are Θ(P ) slabs remaining, at which
point, each slab is processed concurrently using a single processor running the
sequential I/O-efficient solution.

To perform the sweep of a single recursive level in parallel using multiple
processors, each processor performs distribution sweeping on an equal fraction
of the input. Note, that such a sweep sets the values of rq correctly only if
both the query q and the spanning segment sσi below it are processed by the
same processor. To correct the values rq across the boundaries of the parallel
sweeps we perform a round of parallel reduction on segments and queries using
MAX associative operator [8]. Finally, we compact the portions of slab lists Yσi

generated by different processors into contiguous slab lists to be used as input
for recursive calls. The details of the algorithm follow directly from [3] but can
also be found in the full version [2].

The parallel I/O complexity of the above algorithm is O(sortP (n)) I/Os.

Work-optimal Solution. Similar to the sequential I/O model, we can achieve
work optimality in the PEM model algorithm by maintaining a segment tree
T on the K child slabs. In this case, all processors keep their own copy of T
and the parallel reduction (using MAX operator) is performed over not only
the K leaves, but also the K − 1 internal nodes of T . This does not affect the
asymptotic number of parallel I/Os, but makes the scheme work-optimal, i.e.
O( n

P logn) instructions per processor.

1 The explanation for this choice of K can be found in [5].
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2-way Distribution Sweeping. As a PRAM solution, we consider a recursive
2-way distribution sweeping algorithm. This framework is akin to divide-and-
conquer paradigm, that is archetype for many PRAM algorithms. The 2-way
distribution is continued recursively till the slab size is smaller than a fixed
constant and at that stage, plane sweep algorithm is used as a base case. The
distribution step is a simplified version of the corresponding step in the PEM
algorithm, as the considerations of work-optimality no longer apply.

4 Implementation Details

We implemented our algorithms in C++, using OpenMP for parallelization. The
engineered implementation uses some simple techniques to improve the running
time of the theoretical algorithm, while trying to preserve its worst-case asymp-
totic guarantee on the number of shared cache accesses.

The parallel distribution sweeping calls for setting the branching parameter
at K = max{2,min{M/B,

√
n/P , P}}. The parameter M also defines the size

of the recursive base case. We experimentally determine the best choice of M .
In particular we found that setting M to be a large fraction (e.g., 1/3 or 1/4) of
the L3 cache results in best running times.

Having determined M , we observe that for computing K, in our compute sys-
tems the number of processors (up to 12) is far below the other two terms. Thus,
the first recursive level is always a single P -way parallel distribution sweeping
round, which results in P vertical slabs each of which can be processed indepen-
dently of others in the consequent phases. Thus, after the parallel distribution,
each of P resulting vertical slabs is assigned to a separate thread which processes
it using a sequential distribution sweeping algorithm.

To perform the parallel sweep, we divide the input based on the y-coordinate
among the P threads, conceptually, assigning a horizontal slab of objects to
each thread. The thread with the smaller ID gets the lower y values. This can be
viewed as a P × P matrix where the columns correspond to the different slabs
and the rows correspond to the different threads.

We perform the prefix sum on the P × P array sequentially as the overheads
associated with the synchronization barrier of OpenMP are too high to justify
this operation in parallel.2

We combine the second scan of the data (due to reduction) with the step of
compacting child slab lists into contiguous vectors. During the compaction, each
processor pj copies all partial chunks of child slab σj into the contiguous space.
Note, the propagation of the results of the prefix sums simply needs to update
the result of each query point that had been assigned the sentinel line y = −∞
with the result of the prefix sums value. Thus, the propagation of the prefix
sums values can be performed during this copying process.

Next, we process the P child slabs in parallel using sequential distribution
sweeping. This recursively subdivides the slabs till the pre-specified threshold

2 In our experiments, performing this step sequentially takes less than a millisecond,
while the overall running time is in dozens or hundreds of seconds.
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M is reached. When generating the input lists for the child slabs, we also store
the total number of segments and query points for the child slabs. If for any
slab, either the number of segments or query points is zero, we do not process
it or its child invocations any further.

Space Efficiency. We carefully engineered our algorithms to reduce the space
requirement of our implementations considerably. This is done while ensuring
that the running time of our implementations is not affected by the space reduc-
tion. We provide more details of this in the full version [2].

Randomized vs. Deterministic Computation of Slab Boundaries. De-
terministic identification of slab boundaries such that all the child slabs at each
level of recursion contain the same number of objects, requires sorting the input
based on the x-coordinate and storing O(n/M) equally spaced entries of the
sorted input in a separate array. We avoid the extra sort by instead determining
the slab boundaries by partitioning the space into uniform vertical slabs. This
optimization works well for random input, but in the worst case can result in
the recursion depth as large as O(logK δ), where δ is the spread of the point set
– the ratio between the largest and the smallest (horizontal) distance between
a pair of points. In case of a large base case of the recursion and randomized
input, this is not an issue. But in the case of double precision coordinates, the
worse case analysis dictates that the depth of the recursion can be very large.

Constant Factors vs. EM Implementation. The I/O complexity of the se-
quential distribution sweeping framework is O(n/B(1 + logK n/M)), where K =
min{M/B, n/M}. Since in our experimental settings K = n/M , there are only
2 recursive levels: one for distribution sweeping and one for the sweep line at the
base case. Thus, the implementation performs two sequential scans of the input.

In the parallel version, we have to perform two additional scans. Specifically,
we perform one extra recursive step – the parallel distribution. During this step,
each processor scans n/P items and writes them out into its private child slabs.
After the prefix sums, which takes negligible amount of time, we must (a) propa-
gate the result of the prefix sums to the queries that contain only sentinel values
as the result and (b) construct each child slab in contiguous space. As described
earlier, we combine these two tasks into a single scan.

Thus, combined with the two scans of the parallel recursive invocation of the
sequential distribution sweeping, the parallel implementation performs a total
of four scans of the input, i.e., twice as many as the sequential version. Since
all scans are performed in parallel and in expectation each child slab contains
equal number of items, the total I/Os performed by each processor is 2/P times
the number of sequential I/Os, and (ignoring the speedup due to faster parallel
internal computation) we should expect the speed up of P/2 on P processors.

Sorting. To perform the initial sorting of the input by the y-coordinate, we
used the sorting implementation from the C++ Multicore Standard Template
Library (MCSTL) [18] that is now part of the GNU libstdc++ library. For the
base case of plane sweep algorithm, we use the C++ Standard Template Library
(STL) sorting implementation.
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5 Experiments

We performed extensive experimentation studying the performance of these al-
gorithms (i.e., plane sweep algorithm, work-optimal I/O-optimal solution, work-
optimal PEM algorithm and 2-way distribution sweeping) on various input types
and on many different multicore architectures. In addition to measuring the run-
ning time of these algorithms, we used papi library and the Linux perfctr kernel
module to read the hardware performance counters and measure cache misses,
DRAM accesses, TLB misses, branch mispredictions, number of instructions etc..
This section summarizes the key findings of our experiments.

Our query points were generated uniformly at random inside the grid of size
Grid Size × Grid Size. To elicit the asymptotic worst case cache performance
of point location algorithms, we focus on long segments, whose length is chosen
uniformly at random between Grid Size/4 and 3·Grid Size/4 and are at a random
y-coordinate. Full discussion of the effects of segment lengths on the behaviors
of various algorithms can be found in [2].

Configuration. We ran our implementation on the following multicore systems:

1. A system with a single 4-core 2.66 GHz Intel Core i7-920 processor and a
total of 12.3GB RAM. Each core can run 2 threads due to hyperthreading.
The processor has an L3 cache of size 8192 KB that is shared among all 4
cores. The L2 cache of 256 KB is only shared among pairs of cores.

2. A system with 4× 12-core 1.9 GHz AMD Opteron 6168 processors and total
of 264 GB of RAM. Each core contains a private L2 cache of 512 KB and
groups of 6 cores share an L3 cache of 5118KB. Thus, each processor contains
two L3 caches of combined size of just over 10MB.

3. A system with 2 x 16-core 2.6 GHz AMD Opteron 6282 SE processors and
total of 96 GB RAM. Each core has its private L2 cache while the L3 cache
is shared between 16 cores. The L2 cache size is 2 MB and L3 cache size is
16 MB.

All configurations run Linux kernels and the codebase was compiled using
g++-2.4 compiler and -O3 flag.

Spatio-temporal Locality in Our Setting. The cache line size for all cache
levels on all 3 systems is 64 bytes. Since our objects take 32 bytes of space,
it appears that each cache line can hold only two objects. Therefore, at a first
glance it is not clear if I/O efficient algorithm can utilize the spatial locality for
any improvement in runtime. However, we observed that given an array that
is too large to fit in cache and which contains our 32-byte objects, it takes 4-
5 times faster to access the objects sequentially rather than performing access
in random locations. This observation can be explained by the fact that the
memory system prefetches 2-3 cache lines when performing a sequential scan.
Thus, during sequential scan the prefetcher amplifies the size of the cache line
by the number of lines being prefetched.3

3 For this experiment, the array must contain the actual objects and not just pointers
to the objects, which could be allocated anywhere in memory.
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Fig. 2. Runtimes on the configuration 2 (left) and configuration 1 (right) per element.
The plots exclude the times to perform initial sorting of inputs by the y-coordinate for
distribution sweeping and x-coordinate for the plane sweep.

Another benefit of performing K-way distribution sweeping is that it allows
us to utilize temporal locality by reducing the number of recursive calls. In par-
ticular, K is chosen as K = min{n/M,M/B} and the number of recursive levels
is (1+logK(n/M)). Given limit of RAM size on our systems and the large size of
L3 cache, it appears from our experiments that K is set to n/M on configuration
1 and 2, resulting in a single recursive level dedicated to (sequential) distribution
(with the recursive base case performing plane sweep on chunks that fit in L3
cache). On configuration 3, it requires two recursive calls. The various trade-
offs involved in selecting the correct values of parameters K and M and the
effect of these parameters on the actual run-time of our PEM implementation
are described in the full version [2].

Random Access vs. I/O-efficient Algorithms. Figure 2 shows the absolute
running times for the plane sweep and (parallel) distribution sweeping algo-
rithms. One can see improvements in runtimes with the increase in the number
of processors used. Also note the difference in the slopes in the graphs of the
plane sweep algorithm compared to distribution sweeping algorithms. This is
due to larger asymptotic number of cache misses of the plane sweep algorithm.

Figure 3 demonstrates this difference better. It shows the speedup of the
sequential and parallel distribution sweeping algorithms relative to the plane
sweep algorithm for long segments. In this figure one can see the effects of cache-
efficiency on runtimes. It clearly shows that the I/O-efficient algorithms outper-
form the plane sweep algorithm as the input sizes increase. Recall our discussion
that for the parameters of our systems K = n/M and the I/O complexity of the
distribution sweeping algorithm is O((n/B)(1 + logK n/M)) = O(n/B). This
explains the non-linear asymptotic speedup over plane sweep algorithm (with
I/O complexity of O((n/B) logn/M)) as a function of the input size.

Figure 4 shows the speedup that parallel distribution sweeping algorithm
achieves relative to the sequential distribution sweeping algorithm.

PRAM vs. PEM Performance. Figure 5 (left) shows the comparative perfor-
mance of the various algorithms on configuration 3. We observe that the PRAM
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Fig. 3. Speedup of the distribution sweeping algorithms relative to the plane sweep
algorithm on the configuration 2 (left) and configuration 1 (right). The plots exclude the
times to perform initial sorting of inputs by the y-coordinate for distribution sweeping
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implementation is significantly slower than the PEM algorithm. For instance,
with 51.2 million segments and the same number of queries, PRAM implemen-
tation takes 96 seconds with 16 cores, while the PEM implementation only re-
quires 30 seconds with the same number of cores (excluding the time for loading
the input and sorting it, which is 18 seconds for both implementations). This is
largely accounted for by the fact that the PRAM implementation makes poor
use of temporal locality and thus, has larger number of recursive levels. In each
recursive level, it scans all the segments and query points, increasing the DRAM
accesses significantly.

DRAM Accesses and Cache Misses. We could not find a reliable way to
measure only L3 cache misses: the papi library does not support measurement
of shared cache events, while the hardware counters for LLC (Last Level Cache)
counters returned suspiciously similar results to L2 cache misses. Instead we
measured the total traffic to DRAM using perf tool. Figure 5 (right) shows
a clear correlation between the total DRAM traffic and running times. It is
interesting to note that although our algorithms are designed in simple 2-level
cache model, they minimize the total traffic to DRAM, in spite of complex nature
of modern memory systems.

6 Conclusions and Future Work

In this work, we explored the effects of caches on actual run-times observed
on various multicore architectures in the context of the geometric stabbing-
max query problem. This is used to understand how accurately the PEM model
predicts the running time of combinatorial algorithms on current multicore ar-
chitectures. On single-socket multicore architectures, our results show a direct
correlation between traffic on DRAM memory controller and running times of
implementations. Thus, the algorithms designed I/O-efficiently via the (parallel)
distribution sweeping framework outperform the plane sweep algorithms which
do not address the I/O-efficiency.

We chose to perfom our experiments on single-socket architectures, because
the PEM model assumes uniform access latencies to shared memory. We con-
jecture that NUMA effects of DRAM access on multi-socket architectures might
be better modeled by distributed computational models, where each processor
copies data into “local” memory — DRAM address space associated with its
socket — before processing it. Once the data is in the “local” DRAM banks, one
can use the PEM algorithms to process it cache-efficiently. The experimental
evaluation and modeling NUMA effects of multi-socket architectures is left for
future investigations.

While we chose to implement an algorithm which was designed in the PEM
model, it would be interesting to see how the implementations in other cache-
conscious parallel models (for example, [9]) will fare in practice in similar setting.
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Abstract. The greedy spanner is a high-quality spanner: its total weight,
edge count and maximal degree are asymptotically optimal and in prac-
tice significantly better than for any other spanner with reasonable con-
struction time. Unfortunately, all known algorithms that compute the
greedy spanner of n points use Ω(n2) space, which is impractical on large
instances. To the best of our knowledge, the largest instance for which
the greedy spanner was computed so far has about 13,000 vertices.

We present a O(n)-space algorithm that computes the same spanner
for points in Rd running in O(n2 log2 n) time for any fixed stretch factor
and dimension. We discuss and evaluate a number of optimizations to
its running time, which allowed us to compute the greedy spanner on
a graph with a million vertices. To our knowledge, this is also the first
algorithm for the greedy spanner with a near-quadratic running time
guarantee that has actually been implemented.

1 Introduction

A t-spanner on a set of points, usually in the Euclidean plane, is a graph on
these points that is a ‘t-approximation’ of the complete graph, in the sense that
shortest routes in the graph are at most t times longer than the direct geometric
distance. The spanners considered in literature have only O(n) edges as opposed
to the O(n2) edges in the complete graph, or other desirable properties such as
bounded diameter or bounded degree, which makes them a lot more pleasant to
work with than the complete graph.

Spanners are used in wireless network design [7]: for example, high-degree
routing points in such networks tend to have problems with interference, so
using a spanner with bounded degree as network avoids these problems while
maintaining connectivity. They are also used as a component in various other
geometric algorithms, and are used in distributed algorithms. Spanners were
introduced in network design [12] and geometry [5], and have since been subject
to a considerable amount of research [9, 11].

There exists a large number of constructions of t-spanners that can be pa-
rameterized with arbitrary t > 1. They have different strengths and weaknesses:
some are fast to construct but of low quality (Θ-graph, which has no guarantees
on its total weight), others are slow to construct but of high quality (greedy span-
ner, which has low total weight and maximum degree), some have an extremely
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Fig. 1. The left rendering shows the greedy spanner on the USA, zoomed in on Florida,
with t = 2. The dataset has 115,475 vertices, so it was infeasible to compute this graph
before. The right rendering shows the Θ-graph on the USA, zoomed in on Florida, with
k = 6 for which it was recently proven it achieves a dilation of 2.

low diameter (various dumbbell based constructions) and some are fast to con-
struct in higher dimensions (well-separated pair decomposition spanners). See
for example [11] for detailed expositions of these spanners and their properties.

The greedy spanner is one of the first spanner algorithms that was consid-
ered, and it has been subject to a considerable amount of research regarding its
properties and more recently also regarding computing it efficiently. This line
of research resulted in a O(n2 logn) algorithm [2] for metric spaces of bounded
doubling dimension (and therefore also for Euclidean spaces). There is also an
algorithm with O(n3 logn) worst-case running time that works well in prac-
tice [6]. Its running time tends to be near-quadratic in practical cases, but there
are examples on which its running time is Θ(n3 logn). Its space usage is Θ(n2).

Among the many spanner algorithms known, the greedy spanner is of spe-
cial interest because of its exceptional quality: its size, weight and degree are
asymptotically optimal, and also in practice are better than any other spanner
construction algorithms with reasonable running times. For example, it produces
spanners with about ten times as few edges, twenty times smaller total weight
and six times smaller maximum degree as its closest well-known competitor, the
Θ-graph, on uniform point sets. The contrast is clear in Fig. 1. Therefore, a
method of computing it more efficiently is of considerable interest.
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We present an algorithm whose space usage is Θ(n) whereas existing algo-
rithms use Θ(n2) space, while being only a logarithmic factor slower than the
fastest known algorithm, thus answering a question left open in [2]. Our algo-
rithm makes the greedy spanner practical to compute for much larger inputs
than before: this used to be infeasible on graphs of over 15,000 vertices. In con-
trast, we tested our algorithm on instances of up to 1,000,000 points, for which
previous algorithms would require multiple terabytes of memory. Furthermore,
with the help of several optimizations we will present, the algorithm is also fast
in practice, as our experiments show.

The method used to achieve this consists of two parts: a framework that uses
linear space and near-linear time, and a subroutine using linear space and near-
linear time, which is called a near-linear number of times by the framework.
The subroutine solves the bichromatic closest pair with dilation larger than t
problem. If there is an algorithm with a sublinear running time for this subprob-
lem (possibly tailored to our specific scenario), then our framework immediately
gives an asymptotically faster algorithm than is currently known. This situation
is reminiscent to that of the minimum spanning tree, for which it is known that
it is essentially equivalent to the bichromatic closest pair problem.

The rest of the paper is organized as follows. In Section 2 we review a number
of well-known definitions, algorithms and results. In Section 3 we give the prop-
erties of the WSPD and the greedy spanner on which our algorithm is based. In
Section 4 we present our algorithm and analyse its running time and space usage.
In Section 5 we discuss our optimizations of the algorithm. Finally, in Section 6
we present our experimental results and compare it to other algorithms.

2 Notation and Preliminaries

Let V be a set of points in Rd, and let t ∈ R be the intended dilation (1 < t). Let
G = (V,E) be a graph on V . For two points u, v ∈ V , we denote the Euclidean
distance between u and v by |uv|, and the distance in G by δG(u, v). If the graph
G is clear from the context we will simply write δ(u, v). The dilation of a pair
of points is t if δ(u, v) ≤ t · |uv|. A graph G has dilation t if t is an upper bound
for the dilations of all pairs of points. In this case we say that G is a t-spanner.
To simplify the analysis, we assume without loss of generality that t < 2.

We will often say that two points u, v ∈ V have a t-path if their dilation is t.
A pair of points is without t-path if its dilation is not t. When we say a pair of
points (u, v) is the closest or shortest pair among some set of points, we mean
that |uv| is minimal among this set. We will talk about a Dijkstra computation
from a point v by which we mean a single execution of the single-source shortest
path algorithm known as Dijkstra’s algorithm from v.

Consider the following algorithm that was introduced by Keil [10]:
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Algorithm GreedySpannerOriginal(V, t)
1. E ← ∅
2. for every pair of distinct points (u, v) in ascending order of |uv|
3. do if δ(V,E)(u, v) > t · |uv|
4. then add (u, v) to E
5. return E

Obviously, the result of this algorithm is a t-spanner for V . The resulting
graph is called the greedy spanner for V , for which we shall present a more
efficient algorithm than the above.

We will make use of the Well-Separated Pair Decomposition, or WSPD for
short, as introduced by Callahan and Kosaraju in [3,4]. A WSPD is parameter-
ized with a separation constant s ∈ R with s > 0. This decomposition is a set of
pairs of nonempty subsets of V . Let m be the number of pairs in a decomposition.
We can number the pairs, and denote every pair as {Ai, Bi} with 1 ≤ i ≤ m.
Let u and v be distinct points, then we say that (u, v) is ‘in’ a well-separated
pair {Ai, Bi} if u ∈ Ai and v ∈ Bi or v ∈ Ai and u ∈ Bi. A decomposition has
the property that for every pair of distinct points u and v, there is exactly one
i such that (u, v) is in {Ai, Bi}.

For two nonempty subsets Xk and Xl of V , we define min(Xk, Xl) to be
the shortest distance between the two circles around the bounding boxes of Xk

and Xl and max(Xk, Xl) to be the longest distance between these two circles.
Let diam(Xk) be the diameter of the circle around the bounding box of Xk. Let
�(Xk, Xl) be the distance between the centers of these two circles, also named the
length of this pair. For a given separation constant s ∈ R with s > 0 as parameter
for the WSPD, we require that all pairs in a WSPD are s-well-separated, that
is, min(Ai, Bi) ≥ s · max(diam(Ai), diam(Bi)) for all i with 1 ≤ i ≤ m.

It is easy to see that max(Xk, Xl) ≤ min(Xk, Xl) + diam(Xk) + diam(Xl) ≤
(1 + 2/s) min(Xk, Xl). As t < 2 and as we will pick s = 2t

t−1 later on, we
have s > 4, and hence max(Xk, Xl) ≤ 3/2 min(Xk, Xl). Similarly, �(Xk, Xl) ≤
min(Xk, Xl) + diam(Xk)/2 + diam(Xl)/2 ≤ (1 + 1/s) min(Xk, Xl) and hence
�(Xk, Xl) ≤ 5/4 min(Xk, Xl).

For any V and any s > 0, there exists a WSPD of size m = O(sdn) that
can be computed in O(n log n + sdn) time and can be represented in O(sdn)
space [3]. Note that the above four values (min, max, diam and �) can easily
be precomputed for all pairs with no additional asymptotic overhead during the
WSPD construction.

3 Properties of the Greedy Spanner and the WSPD

In this section we will give the idea behind the algorithm and present the proper-
ties of the greedy spanner and the WSPD that make it work. We assume we have
a set of points V of size n, an intended dilation t with 1 < t < 2 and a WSPD
with separation factor s = 2t

t−1 , for which the pairs are numbered {Ai, Bi} with

1 ≤ i ≤ m, where m = O(sdn) is the number of pairs in the WSPD.
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The idea behind the algorithm is to change the original greedy algorithm to
work on well-separated pairs rather than edges. We will end up adding the edges
in the same order as the greedy spanner. We maintain a set of ’candidate’ edges
for every well-separated pair such that the shortest of these candidates is the next
edge that needs be added. We then recompute a candidate for some of these well-
separated pairs. We use two requirements to decide on which pairs we perform a
recomputation, that together ensure that we do not do too many recomputations,
but also that we do not fail to update pairs which needed updating.

We now give the properties on which our algorithm is based. Omitted proofs
are given in [1].

Observation 1 (Bose et al. [2, Observation 1]). For every i with 1 ≤ i ≤ m,
the greedy spanner includes at most one edge (u, v) with (u, v) in {Ai, Bi}.

Our definition of well-separatedness differs slightly from that in [2] but the
observation still holds (see [1]). An immediate corollary is:

Observation 2 (Bose et al. [2, Corollary 1]). The greedy spanner contains

at most O
(

1
(t−1)dn

)
edges.

Lemma 3. Let E be some edge set for V . For every i with 1 ≤ i ≤ m, we can
compute the closest pair of points (u, v) ∈ Ai×Bi among the pairs of points with
dilation larger than t in G = (V,E) in O(min(|Ai|, |Bi|)(|V | log |V | + |E|)) time
and O(|V |) space.

Proof. Assume without loss of generality that |Ai| ≤ |Bi|. We perform a Dijkstra
computation for every point a ∈ Ai, maintaining the closest point in |Bi| such
that its dilation with respect to a is larger than t over all these computations. To
check whether a point that is considered by the Dijkstra computation is in |Bi|,
we precompute a boolean array of size |V |, in which points in |Bi| are marked
as true and the rest as false. This costs O(|V |) space, O(|V |) time and achieves
a constant lookup time. A Dijkstra computation takes O(|V | log |V | + |E|) time
and O(|V |) space, but this space can be reused between computations. �

Fact 4 (Callahan [3, Chapter 4.5]).

∑m
i=1 min(|Ai|, |Bi|) = O(sdn logn)

Observation 5. Let E be some edge set for V . Let (a, b) ∈ E. Let c ∈ V and
d ∈ V be points such that |ac|, |ad|, |bc|, |bd| > t|cd|. Then any t-path between c
and d will not use the edge (a, b).

Proof. This directly follows from the fact that c and d are so far away from a and
b that just getting to either a or b is already longer than allowed for a t-path. �

Fact 6. Let γ and � be positive real numbers, and let {Ai, Bi} be a well-separated
pair in the WSPD with length �(Ai, Bi) = �. The number of well-separated pairs
{A′

i, B
′
i} such that the length of the pair is in the interval [�/2, 2�] and at least

one of R(A′
i) and R(B′

i) is within distance γ� of either R(Ai) or R(Bi) is less
than or equal to csγ = O

(
sd(1 + γs)d

)
.

This concludes the theoretical foundations of the algorithm. We will now
present the algorithm and analyze its running time.
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4 Algorithm

We will now describe the algorithm in detail. The pseudocode can be found
in [1]. It first computes the WSPD for V with s = 2t

t−1 and sorts the resulting
pairs according to their smallest distance min(Ai, Bi). It then alternates between
calling the FillQueue procedure that attempts to add well-separated pairs to a
priority queue Q, and removing an element from Q and adding a corresponding
edge to E. If Q is empty after a call to FillQueue, the algorithm terminates and
returns E.

We assume we have a procedure ClosestPair(i) that for the ith well-separated
pair computes the closest pair of points without t-path in the graph computed so
far, as presented in Lemma 3, and returns this pair, or returns nil if no such pair
exists. For the priority queue Q, we let min(Q) denote the value of the key of the
minimum of Q. Recall that m = O(sdn) denotes the number of well-separated
pairs in the WSPD that we compute in the algorithm.

We maintain an index i into the sorted list of well-separated pairs. It points
to the smallest untreated well-separated pair – we treat the pairs in order of
min(Ai, Bi) in the FillQueue procedure. When we treat a pair {Ai, Bi}, we call
ClosestPair(i) on it, and if it returns a pair (u, v), we add it to Q with key |uv|.
We link entries in the queue, its corresponding pair {Ai, Bi} and (u, v) together
so they can quickly be requested. We stop treating pairs and return from the
procedure if we have either treated all pairs, or if min(Ai, Bi) is larger than the
key of the minimal entry in Q (if it exists).

After extracting a pair of points (u, v) from Q, we add it to E. Then, we
update the information in Q: for every pair {Aj , Bj} having an entry in Q for
which either bounding box is at most t|uv| away from {Ai, Bi}, we recompute
ClosestPair(j) and updates its entry in Q as follows. If the recomputation returns
nil, we remove its entry from Q. If it returns a pair (u′, v′), we link the entry of
j in Q with this new pair and we increase the key of its entry to |u′v′|.

For the full proofs of the following theorems and lemma, see [1].

Theorem 7. Algorithm GreedySpanner computes the greedy spanner for dila-
tion t.

We will now analyze the running time and space usage of the algorithm. We
will use the observations in Section 3 to bound the amount of work done by the
algorithm.

Lemma 8. For any well-separated pair {Ai, Bi} (1 ≤ i ≤ m), the number of
times ClosestPair(i) is called is at most 1 + cst.

Proof Sketch: ClosestPair(i) is called once for every i in the FillQueue procedure.
ClosestPair(i) may also be called after an edge is added to the graph. If a well-
separated pair {Aj , Bj} causes ClosestPair(i) to be called, then �(Aj , Bj) ∈
[�(Ai, Bi)/2, 2�(Ai, Bi)] [1]. Then, as we only perform ClosestPair(i) on pairs
that are close by, the collection of pairs that call ClosestPair(i) satisfy the re-
quirements of Fact 6 by setting γ = t, so we can conclude this happens only cst
times. The lemma then follows. �
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Theorem 9. Algorithm GreedySpanner computes the greedy spanner for dila-

tion t in O
(
n2 log2 n 1

(t−1)3d
+ n2 logn 1

(t−1)4d

)
time and O

(
1

(t−1)d
n
)

space.

Proof Sketch: We can easily precompute which well-separated pairs are near and

of similar length to a given well-separated pair in O(m2) time using O
(

1
(t−1)d

n
)

space. Other than the ClosestPair(i) calls, all operations performed by the al-
gorithm stay within the time bound of the theorem. By space reuse, the space
usage of all operations including the ClosestPair(i) calls stays within the bounds
of the theorem.

By Observation 2, Lemma 3 and Lemma 8 the time taken by all Closes-

tPair(i) calls is O
(∑m

i=1(1 + cst) min(|Ai|, |Bi|)
(
n logn + 1

(t−1)d
n
))

. By Fact

4, the bound on cst and after simplification, the time bound in the theorem
follows. Correctness was already proven in Theorem 7. �

5 Making the Algorithm Practical

Experiments suggested that implementing the above algorithm as-is does not
yield a practical algorithm. With the four optimizations described in the follow-
ing sections, the algorithm attains running times that are a small constant slower
than the algorithm introduced in [6] called FG-greedy, which is considered the
best practical algorithm known in literature.

5.1 Finding Close-by Pairs

The algorithm at some point needs to know which pairs are ‘close’ to the pair for
which we are currently adding an edge. In our proof above, we suggested that
these pairs be precomputed in O(m2) time. Unfortunately, this precomputation
step turns out to take much longer than the rest of the algorithm. If n = 100,
then (on a uniform pointset) m ≈ 2000 and m2 ≈ 4000000 while the number of
edges e in the greedy spanner is about 135. Our solution is to simply find them
using a linear search every time we need to know this information. This only
takes O(e ·m) time, which is significantly faster.

5.2 Reducing the Number of Dijkstra Computations

After decreasing the time taken by preprocessing, the next part that takes the
most time are the Dijkstra computations, whose running time dwarfs the rest of
the operations. We would therefore like to optimize this part of the algorithm.
For every well-separated pair, we save the length of the shortest path found by
any Dijkstra computation performed on it, that is, its source s, target t and
distance δ(s, t). Then, if we are about to perform a Dijkstra computation on a
vertex u, we first check if the saved path is already good enough to ‘cover’ all
nodes in Bi. Let c be the center of the circle around the bounding box of Bi and
r its radius. We check if t · |us| + δ(s, t) + t · (|tc| + r) ≤ t · (|uc| − r) and mark it
as ‘irrelevant for the rest of the algorithm’. This optimization roughly improves
its running time by a factor three.
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5.3 Sharpening the Bound of Observation 5

The bound given in Observation 5 can be improved. Let {Ai, Bi} be the well-
separated pair for which we just added an edge and let {Aj, Bj} be the well-
separated pair under consideration in our linear search. First, some notation:
let Xk, Xl be sets belonging to some well-separated pair (not necessarily the
same pair), then min(Xk, Xl) denotes the (shortest) distance between the two
circles around the bounding boxes of Xk and Xl and max(Xk, Xl) the longest
distance between these two circles. Let � = �(Ai, Bi). We can then replace the
condition of Lemma 5 by the sharper condition min(Ai, Aj) + �+ min(Bj , Bi) ≤
t · max(Aj , Bj) ∨ min(Ai, Bj) + � + min(Aj , Bi) ≤ t · max(Bj , Aj) The converse
of the condition implies that the edge just added cannot be part of a t-path
between a node in {Aj , Bj}, so the correctness of the algorithm is maintained.
This leads to quite a speed increase.

5.4 Miscellaneous Optimizations

There are two further small optimizations we have added to our implementation.
Firstly, rather than using the implicit linear space representation of the WSPD,

we use the explicit representation where every node in the split tree stores the
points associated with that node. For point sets where the ratio of the longest and
the shortest distance is bounded by some polynomial in n, this uses O(n log n)
space rather than O(n) space. This is true for all practical cases, which is why
we used it in our implementation. For arbitrary point sets, this representation
uses O(n2) space. In practice, this extra space usage is hardly noticeable and it
speeds up access to the points significantly.

Secondly, rather than performing Dijkstra’s algorithm, we use the A∗ algo-
rithm. This algorithm uses geometric estimates to the target to guide the com-
putation to its goal, thus reducing the search space of the algorithm [8].

We have tried a number of additional optimizations, but none of them resulted
in a speed increase. We describe them here.

We have tried to replace A∗ by ALT , a shortest path algorithm that uses
landmarks – see [8] for details on ALT – which gives better lower bounds than the
geometric estimates used in A∗. However, this did not speed up the computations
at all, while costing some amount of overhead.

We have also tried to further cut down on the number of Dijkstra computa-
tions. We again used that we store the lengths of the shortest paths found so
far per well-separated pair. Every time after calling ClosestPair(i) we checked if
the newly found path is ‘good enough’ for other well-separated pairs, that is, if
the path combined with t-paths from the endpoints of the well-separated pairs
would give t-paths for all pairs of points in the other well-separated pair. This
decreased the number of Dijkstra computations performed considerably, but the
overhead from doing this for all pairs was greater than its gain.

We tried to speed up finding close-by pairs using range trees. We also tried
performing the optimization of the previous paragraph only to well-separated
pairs ‘close by’ our current pair using range trees. Both optimizations sped up
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the core algorithm and in particular the optimization of the previous paragraph
retained most of its effectiveness. The overhead of creating the range trees was
greater than the gain however, in particular in terms of space usage.

6 Experimental Results

We have run our algorithm on point sets of size between 100 and 1,000,000. If the
set contained at most 10,000 points, we have also run the FG-greedy algorithm
to compare the two algorithms. We have recorded both space usage and running
time (wall clock time). We have also performed a number of tests with decreasing
values of t on datasets of size 10,000 and 50,000. Finally, as this is the first time
we can compute the greedy spanner on large graphs, we have compared it to the
Θ-graph and WSPD-based spanners on large instances.

We have used three kinds of point distributions: a uniform distribution, a
gamma distribution with shape parameter 0.75, and a distribution consisting
of

√
n uniformly distributed pointsets of

√
n uniformly distributed points. The

results from the gamma distribution were nearly identical to those of the uniform
pointset, so we did not include them. All our pointsets are two-dimensional.

6.1 Experiment Environments

The algorithms have been implemented in C++. We have implemented all data
structures not already in the std. The random generator used was the Mersenne
Twister PRNG – we have used a C++ port by J. Bedaux of the C code by the
designers of the algorithm, M. Matsumoto and T. Nishimura.

We have used two servers for the experiments. Most experiments have been
run on the first server, which uses an Intel Core i5-3470 (3.20GHz) and 4GB (1600
MHz) RAM. It runs the Debian 6.0.7 OS and we compiled for 32 bits using G++
4.7.2 with the -O3 option. For some tests we needed more memory, so we have
used a second server. This server uses an Intel Core i7-3770k (3.50GHz) and 32
GB RAM. It runs Windows 8 Enterprise and we have compiled for 64 bits using
the Microsoft C++ compiler (17.00.51106.1) with optimizations turned on.

6.2 Dependence on Instance Size

Our first set of tests compared FG-greedy and our algorithm for different values
of n. The results are plotted in Fig. 2. As FG-greedy could only be ran on
relatively small instances, its data points are difficult to see in the graph, so
we added a zoomed-in plot for the bottom-left part of the plot. We have used
standard fitting methods to our data points: the running time of all algorithms
involved fits a quadratic curve well, the memory usage of our algorithm is linear
and the memory usage of FG-greedy is quadratic. This nicely fits our theoretical
analysis. In fact, the constant factors seem to be much smaller than the bound
we gave in our proof. We do note a lack of ‘bumps’ that are often occur when
instance sizes start exceeding caches: this is probably due to the cache-unfriendly
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Fig. 2. The left plot shows the running time of our algorithm on uniform and clustered
data for variously sized instances. The right plot shows the memory usage of our
algorithm on the same data. The lines are fitted quadratic (right) and linear (left)
curves. The outlier at the right side was from an experiment performed on a different
server. Results for FG-greedy are also shown but were near-impossible to see, so a
zoomed-in view of the leftmost corner of both plots is included in the top-left of both
plots. The memory usage explosion of FG-greedy is visible in the right plot.

behavior of our algorithm and the still significant constant factor in our memory
usage that will fill up caches quite quickly.

Compared to FG-greedy it is clear that the memory usage of our algorithm is
vastly superior. The plot puts into perspective how much larger the instances are
that our new algorithm can deal with compared to old algorithms. Furthermore,
our algorithm is about twice as fast as FG-greedy on the clustered datasets, and
only about twice as slow on uniform datasets. On clustered datasets the number
of computed well-separated pairs is much smaller than on uniform datasets so
this difference is not surprising. These plots suggest that our aim – roughly equal
running times at vastly reduced space usage – is reached.

6.3 Dependence on t

We have tested our algorithms on datasets of 10,000 and 50,000 points, setting t
to 1.1, 1.2, 1.4, 1.6, 1.8 and 2.0 to test the effect of this parameter. The effects of
the parameter ended up being rather different between the uniform and clustered
datasets. See [1] for these plots.

On uniform pointsets, our algorithm is about as fast as FG-greedy when t = 2,
but its performance degrades quite rapidly as t decreases compared to FG-greedy.
A hint to this behavior is given by the memory usage of our algorithm: it starts
vastly better but as t decreases it becomes only twice as good as FG-greedy. This
suggests that the number of well-separated pairs grows rapidly as t decreases,
which explains the running time decrease.
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On clustered pointsets, the algorithms compare very differently. FG-greedy
starts out twice as slow as our algorithm when t = 2 and when t = 1.1, our algo-
rithm is only slightly faster than FG-greedy. The memory usage of our algorithm
is much less dramatic than in the uniform point case: it hardly grows with t and
therefore stays much smaller than FG-greedy. The memory usage of FG-greedy
only depends on the number of points and not on t or the distribution of the
points, so its memory usage is the same.

6.4 Comparison with Other Spanners

We have computed the greedy spanner on the instance shown in Fig. 1, which has
115,475 points. On this instance the greedy spanner for t = 2 has 171,456 edges,
a maximum degree of 5 and a weight of 11,086,417. On the same instance, the
Θ-graph with k = 6 has 465,230 edges, a maximum degree of 62 and a weight of
53,341,205. The WSPD-based spanner has 16,636,489 edges, a maximum degree
of 1,271 and a weight of 20,330,194,426.

As shown in Fig. 2, we have computed the greedy spanner on 500,000 uni-
formly distributed points. On this instance the greedy spanner for t = 2 has
720,850 edges, a maximum degree of 6 and a weight of 9,104,690. On the same
instance, the Θ-graph with k = 6 has 2,063,164 edges, a maximum degree of 22
and a weight of 39,153,380. We were unable to run the WSPD-based spanner
algorithm on this pointset due to its memory usage.

As shown in Fig. 2, we have computed the greedy spanner on 1,000,000 clus-
tered points. On this instance the greedy spanner for t = 2 has 1,409,946 edges,
a maximum degree of 6 and a weight of 4,236,016. On the same instance, the
Θ-graph with k = 6 has 4,157,016 edges, a maximum degree of 135 and a weight
of 59,643,264. We were unable to run the WSPD-based spanner algorithm on
this pointset due to its memory usage.

We have computed the greedy spanner on 50,000 uniformly distributed points
with t = 1.1. On this instance the greedy spanner has 225,705 edges, a maximum
degree of 18 and a weight of 15,862,195. On the same instance, the Θ-graph with
k = 73 (which is the smallest k for which a guarantee of t = 1.1 has been proven
to our knowledge) has 2,396,361 edges, a maximum degree of 146 and a weight
of 495,332,746. We were unable to run the WSPD-based spanner algorithm on
this pointset with t = 1.1 due to its memory usage.

These results show that the greedy spanner really is an excellent spanner,
even on large instances and for low t, as predicted by its theoretical properties.

7 Conclusion

We have presented an algorithm that computes the greedy spanner in Euclidean
space in O(n2 log2 n) time and O(n) space for any fixed stretch factor and dimen-
sion. Our algorithm avoids computing all distances by considering well-separated
pairs instead. It consists of a framework that computes the greedy spanner given
a subroutine for a bichromatic closest pair problem. We have presented several
optimizations to the algorithm. Our experimental results show that the resulting
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running time is close to that of the fastest known algorithm, while massively de-
creasing space usage. It allowed us to compute the greedy spanner on instances
of a million points, while previous algorithms were limited to at most 13,000
points. Given that our algorithm is the first algorithm with a near-quadratic
running time guarantee that has been implemented, that it has linear space us-
age and that its running time is comparable to the best known algorithms, we
think our algorithm is the method of choice to compute greedy spanners.

We leave open the problem of providing a faster subroutine for solving the
bichromatic closest pair with dilation larger than t problem in our framework,
which may allow the greedy spanner to be computed in subquadratic time. Par-
ticularly the case of the Euclidean plane seems interesting, as the closely related
‘ordinary’ bichromatic closest pair problem can be solved quickly in this setting.
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Abstract. We study stable matching problems in networks where play-
ers are embedded in a social context, and may incorporate friendship
relations or altruism into their decisions. Each player is a node in a so-
cial network and strives to form a good match with a neighboring player.
We consider the existence, computation, and inefficiency of stable match-
ings from which no pair of players wants to deviate. When the benefits
from a match are the same for both players, we show that incorporating
the well-being of other players into their matching decisions significantly
decreases the price of stability, while the price of anarchy remains un-
affected. Furthermore, a good stable matching achieving the price of
stability bound always exists and can be reached in polynomial time.
We extend these results to more general matching rewards, when players
matched to each other may receive different utilities from the match.
For this more general case, we show that incorporating social context
(i.e., “caring about your friends”) can make an even larger difference,
and greatly reduce the price of anarchy. We show a variety of existence
results, and present upper and lower bounds on the prices of anarchy
and stability for various matching utility structures.

1 Introduction

Stable matching problems capture the essence of many important assignment
and allocation tasks in economics and computer science. The central approach
to analyzing such scenarios is two-sided matching, which has been studied in-
tensively since the 1970s in both the algorithms and economics literature. An
important variant of stable matching is matching with cardinal utilities, when
each match can be given numerical values expressing the quality or reward that
the match yields for each of the incident players [5]. Cardinal utilities specify
the quality of each match instead of just a preference ordering, and they allow
the comparison of different matchings using measures such as social welfare. A
particularly appealing special case of cardinal utilities is known as correlated
stable matching, where both players who are matched together obtain the same
reward. In addition to the wide-spread applications of correlated stable match-
ing in, e.g., market sharing [16], social networks [17], and distributed computer
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networks [27], this model also has favorable theoretical properties such as the ex-
istence of a potential function. It guarantees existence of a stable matching even
in the non-bipartite case, where every pair of players is allowed to match [2,27].

When matching individuals in a social environment, it is often unreasonable
to assume that each player cares only about their own match quality. Instead,
players incorporate the well-being of their friends/neighbors as well, or that of
friends-of-friends. Players may even be altruistic to some degree, and consider
the welfare of all players in the network. Caring about friends and altruistic
behavior is commonly observed in practice and has been documented in labora-
tory experiments [14,25]. In addition, in economics there exist recent approaches
towards modeling and analyzing other-regarding preferences [15]. Given that
other-regarding preferences are widely observed in practice, it is a fundamental
question to model and characterize their influence in classic game-theoretic en-
vironments. Recently, the impact of social influence on congestion and potential
games has been characterized prominently in [8, 10–12,18–20].

We consider a natural approach to incorporate social effects into partner selec-
tion and matching scenarios by studying how social context influences stability
and efficiency in matching games. Our model of social context is similar to recent
approaches in algorithmic game theory and uses dyadic influence values tied to
the hop distance in the graph. In this way, every player may consider the well-
being of every other player to some degree, with the degree of this regardfulness
possibly decaying with hop distance. The perceived utility of a player is then
composed of a weighted average of player utilities. Players who only care about
their neighbors or fully altruistic players are special cases of this model.

For matching in social environments, the standard model of correlated sta-
ble matching may be too constraining compared to general cardinal utilities,
because matched players receive exactly the same reward. Such an equal shar-
ing property is intuitive and bears a simple beauty, but other reward sharing
methods might be more natural in different contexts. For instance, in theoret-
ical computer science it is common practice to list authors alphabetically, but
in other disciplines the author sequence is carefully designed to ensure a proper
allocation of credit to the authors of a joint paper. The credit is often supposed
to be allocated in terms of input, i.e., the first author is the one that contributed
most to the project. Such input-based or proportional sharing is then sometimes
overruled with sharing based on intrinsic or acquired social status, e.g., when a
distinguished expert in a field is easily recognized and subconsciously credited
most with authorship of an article. We are interested in how such unequal re-
ward sharing rules affect stable matching scenarios. We consider a large class
of local reward sharing rules and characterize the impact of unequal sharing on
existence and inefficiency of stable matchings, both in cases when players are
embedded in a social context and when they are not.

1.1 Stable Matching within a Social Context

Correlated stable matching is a prominent subclass of general ordinary stable
matching. We are given a (non-bipartite) graph G = (V,E) with edge weights
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re. In a matching M , if node u is matched to node v, the reward of node u
is defined to be exactly re. This can be interpreted as both u and v getting
an identical reward from being matched together. We will also consider unequal
reward sharing, where u obtains reward rue and v obtains reward rve with rue +rve =
re. Therefore, the preference ordering of each node over its possible matches is
implied by the rewards that this node obtains from different edges. A pair of
nodes (u, v) is called a blocking pair in matching M if u and v are not matched to
each other in M , but can both strictly increase their rewards by being matched to
each other instead. A matching with no blocking pairs is called a stable matching.

While the matching model above has been well-studied, we are interested
in stable matchings that arise in the presence of social context. Denote the
reward obtained by a node v in a matching M as Rv(M). When it is clear which
matching we are referring to, we will simply denote this reward by Rv. We now
consider the case when node v not only cares about its own reward, but also
about the rewards of its friends. Specifically, the perceived or friendship utility
of node v in matching M is defined as

Uv = Rv +

diam(G)∑
d=1

αd

∑
u∈Nd(v)

Ru,

where Nd(v) is the set of nodes with shortest distance exactly d from v, and
1 ≥ α1 ≥ α2 ≥ . . . ≥ 0 (we use α to denote the vector of αi values). In other
words, for a node u that is distance d away from v, the utility of v increases
by an αd factor of the reward received by u. Thus, if αd = 0 for all d ≥ 2, this
means that nodes only care about their neighbors, while if all αd > 0, this means
that nodes are altruistic and care about the rewards of everyone in the graph.
The perceived utility is the quantity that the nodes are trying to maximize, and
thus, in the presence of friendship, a blocking pair is a pair of nodes such that
each node can increase its perceived utility by matching to each other. Given
this definition of blocking pair, a stable matching is again defined as a matching
without such a blocking pair. Note that while our definition includes αd for all
d, it is easy to see that only the values of α1 and α2 matter to the stability of
a matching, since a deviation of a blocking pair only changes the Rv values of
adjacent nodes.

Centralized Optimum and the Price of Anarchy. We study the social welfare of
equilibrium solutions and compare them to an optimal centralized solution. The
social welfare is the sum of rewards, i.e., a social optimum is a matching that
maximizes

∑
v Rv. Notice that, while this is equivalent to maximizing the sum of

player utilities when α = 0, this is no longer true with social context (i.e., when
α 	= 0). Nevertheless, as in e.g. [11, 28], we believe this is a well-motivated and
important measure of solution quality, as it captures the overall performance of
the system, while ignoring the perceived “good-will” effects of friendship and
altruism. For example, when considering projects done in pairs, the reward of
an edge can represent actual productivity, while the perceived utility may not.
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To compare stable solutions with a social optimum, we will often consider the
price of anarchy and the price of stability. When considering stable matchings,
by the price of anarchy (resp. stability) we will mean the ratio of social welfare
of the social optimum and the social welfare of the worst (resp. best) stable
matching.

1.2 New Results and Related Work

Our Results. In Section 2, we consider stable matching with friendship utilities
and equal reward sharing. In this case, a stable matching exists and the price of
anarchy (ratio of the maximum-weight matching with the worst stable matching)
is at most 2, the same as in the case without friendship. The price of stability,
on the other hand, improves significantly in the presence of friendship – we
show a tight bound of 2+2α1

1+2α1+α2
. Intuitively, the bound depends only on α1, α2

because a deviation by a blocking pair (u, v) only affects rewards Rw for nodes w
neighboring u or v. Thus, the stability of a matching depends only on the graph
and α1, α2; changing αi with i ≥ 3 does not change the stability of a matching.
In addition to providing a tight bound on the price of stability, we present a
dynamic process that converges to a stable matching of at least this quality in
polynomial time, if initiated from the maximum-weight matching. Our results
imply that for socially aware players, the price of stability can greatly improve:
e.g., if α1 = α2 = 1

2 , then the price of stability is at most 6
5 , and a solution of

this quality can be obtained efficiently.
In Section 3 we instead study general reward sharing schemes. When two nodes

matched together may receive different rewards, an integral stable matching
may not exist. Thus, we focus on fractional stable matchings which we show to
always exist, even with friendship utilities. Fractional matching is well-motivated
in a social context, since the fractional amount of an edge in the matching
corresponds to the strength of the link/relationship between this pair of nodes.
The total relationships of any single node should add up to at most 1, modeling
the fact that a single person cannot be involved in an unlimited amount of
relationships. We show that for arbitrary reward sharing, prices of anarchy and
stability depend on the level of inequality among reward shares. Specifically, if
R is the maximum ratio over all edges (u, v) ∈ E of the reward shares of node

u and v, then the price of anarchy is at most (1+R)(1+α1)
1+α1R

. Thus, compared to
the equal reward sharing case, if sharing is extremely unfair (R is unbounded),
then friendship becomes even more important: changing α1 from 0 to 1

2 reduces
the price of anarchy from unbounded to at most 3. In addition, for several
particularly natural local reward sharing rules, we show that an integral stable
matching exists, give improved price of anarchy guarantees, and show tight lower
bounds.

Related Work. Stable matching problems have been studied intensively over
the last few decades. On the algorithmic side, existence, efficient algorithms,
and improvement dynamics for two-sided stable matchings have been of interest
(for references, see standard textbooks, e.g., [29]). In this paper we address the
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more general stable roommates problem, in which every player can be matched
to every other player. For general preference lists, there have been numerous
works characterizing and algorithmically deciding existence of stable match-
ings [13, 30, 31]. In contrast, fractional stable matchings are always guaranteed
to exist and exhibit various interesting polyhedral properties [1,31]. For the cor-
related stable roommates problem, existence of (integral) stable matchings is
guaranteed by a potential function argument [2, 27], and convergence time of
random improvement dynamics is polynomial [3]. In [6], price of anarchy and
stability bounds for approximate correlated stable matchings were provided. In
contrast, we study friendship, altruism, and unequal reward sharing in stable
roommates problems with cardinal utilities.

Another line of research closely connected to some of our results involves
game-theoretic models for contribution. In [7] we consider a contribution game
tied closely to matching problems. Here players have a budget of effort and
contribute parts of this effort towards specific projects and relationships. For
more related work on the contribution game, see [7]. All previous results for this
model concern equal sharing and do not address the impact of the player’s social
context. As we discuss in the full version of this paper in [4], most of our results
for friendship utilities can also be extended to such contribution games.

Analytical aspects of reward sharing have been a central theme in game theory
since its beginning, especially in cooperative games. Recently, there have been
prominent algorithmic results also for network bargaining [21, 23] and credit
allocation problems [22]. A recent line of work [32,33] treats extensions of coop-
erative games, where players invest into different coalitional projects. The main
focus of this work is global design of reward sharing schemes to guarantee coop-
erative stability criteria. Our focus here is closer to, e.g., recent work on profit
sharing games [9,26]. We are interested in existence, computational complexity,
and inefficiency of stable states under different reward sharing rules, with an aim
to examine the impact of social context on stable matchings.

Our notion of a player’s social context is based on numerical influence param-
eters that determine the impact of player rewards on the (perceived) utilities of
other players. A recently popular model of altruism is inspired by Ledyard [24]
and has generated much interest in algorithmic game theory [11, 12, 19]. In this
model, each player optimizes a perceived utility that is a weighted linear com-
bination of his own utility and the utilitarian welfare function. Similarly, for
surplus collaboration [8] perceived utility of a player consists of the sum of play-
ers utilities in his neighborhood within a social network. Our model is similar
to [10,20] and smoothly interpolates between these global and local approaches.

2 Matching with Equal Reward Sharing

We begin by considering correlated stable matching in the presence of friendship
utilities. In this section, the reward received by both nodes of an edge in a
matching is the same, i.e., we use equal reward sharing, where every edge e has
an inherent value re and both endpoints receive this value if edge e is in the
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Fig. 1. (Left) Biswivel deviation (Right,Middle) Swivel deviation

matching. We consider more general reward sharing schemes in Section 3. Recall
that the friendship utility of a node v increases by αdRu for every node u, where
d is the shortest distance between v and u. We abuse notation slightly, and let
αuv denote αd, so if u and v are neighbors, then αuv = α1.

Given a matching M , let us classify the following types of improving deviations
that a blocking pair can undergo.

Definition 1. We call an improving deviation a biswivel whenever two neigh-
bors u and v switch to match to each other, such that both u and v were matched
to some other nodes before the deviation in M .

See Figure 1 for explanation. For such a biswivel to exist in a matching, the
following necessary and sufficient conditions must hold.

(1 + α1)ruv > (1 + α1)ruw + (α1 + αuz) rvz (1)

(1 + α1)ruv > (1 + α1)rvz + (α1 + αvw) ruw (2)

Intuitively, the left side of Inequality (1) quantifies the utility gained by u because
of getting matched to v and the right side quantifies the utility lost by u because
of u and v breaking their present matchings with w and z respectively. Hence,
Inequality (1) implies that u gains more utility by getting matched with v than
it loses because of u and v breaking their matchings with v and z. Inequality (2)
can similarly be explained in the context of node v.

Definition 2. We call an improving deviation a swivel whenever two neighbors
get matched such that at least one node among the two neighbors was not matched
before the deviation.

See Figure 1 for explanation. For a swivel to occur, it is easy to see that the
reward ruv of the new edge added to the matching must be strictly larger than
the rewards of edges that u or v were matched to before (if any).

2.1 Existence and Social Welfare

Theorem 1. A stable matching exists in stable matching games with friendship
utilities. Moreover, the set of stable matchings without friendship (i.e., when
α = 0) is a subset of the set of stable matchings with friendship utilities on the
same graph.

Theorem 2. The price of anarchy in stable matching games with friendship
utilities is at most 2, and this bound is tight.
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2.2 Price of Stability and Convergence

The main result in this section bounds the price of stability in stable match-
ing games with friendship utilities to 2+2α1

1+2α1+α2
, and this bound is tight (see

Theorem 4 below). This bound has some interesting implications. It is decreas-
ing in each α1 and α2, hence having friendship utilities always yields a lower
price of stability than without friendship utilities. Also, note that values of
α3, α4, ..., αdiam(G) have no influence. This is not surprising: after a deviation
by a blocking pair (u, v), the rewards Rw remain the same for all w except those
neighboring u or v. Thus, caring about players more than distance 2 away does
not improve the price of stability in any way. Also, if α1 = α2 = 1, then PoS = 1,
i.e., there will exist a stable matching which will also be a social optimum. Thus
loving thy neighbor and thy neighbor’s neighbor but nobody beyond is sufficient to
guarantee that there exists at least one socially optimal stable matching. In fact,
due to the shape of the curve, even small values of friendship quickly decrease
the price of stability; e.g., setting α1 = α2 = 0.1 already decreases the price of
stability from 2 to ∼ 1.7.

We will establish the price of stability bound by defining an algorithm that
creates a good stable matching in polynomial time. One possible idea to create
a stable matching that is close to optimum is to use a Best-Blocking-Pair

algorithm: start with the best possible matching, i.e., a social optimum, which
may or may not be stable. Now choose the “best” blocking pair (u, v): the one
with maximum edge reward ruv. Allow this blocking pair to get matched to each
other instead of their current partners. Check if the resulting matching is stable.
If it is not stable then allow the best blocking pair for this matching to get
matched. Repeat the procedure until there are no more blocking pairs, thereby
obtaining a stable matching.

This algorithm gives the desired price of stability and running time bounds
for the case of “altruism” when all αi are the same, see Corollary 1 below. To
provide the desired bound with general friendship utilities, we must alter this
algorithm slightly using the concept of relaxed blocking pair.

Definition 3. Given a matching M , we call a pair of nodes (u, v) a relaxed
blocking pair if either (u, v) form an improving swivel, or u and v are matched
to w and z respectively, with the following inequalities being true:

(1 + α1)ruv > (1 + α1)ruw + (α1 + α2) rvz (3)

(1 + α1)ruv > (1 + α1)rvz + (α1 + α2) ruw (4)

In other words, a relaxed blocking pair ignores the possible edges between
nodes u and z, and has α2 in the place of αuz (similarly, α2 in the place of αvw).
It is clear from this definition that a blocking pair is also a relaxed blocking pair,
since the conditions above are less constraining than Inequalities (1) and (2).
Thus a matching with no relaxed blocking pairs is also a stable matching. We
will call a relaxed blocking pair satisfying Inequalities (3) and (4) a relaxed
biswivel, which may or may not correspond to an improving deviation, since a
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relaxed blocking pair is not necessarily a blocking pair. We define the Best-

Relaxed-Blocking-Pair Algorithm to be the same as the Best-Blocking-

Pair algorithm, except at each step it chooses the best relaxed blocking pair.

Dynamics:To establish the efficient running time ofBest-Relaxed-Blocking-

Pair and the price of stability bound of the resulting stable matching, we first
analyze the dynamics of this algorithm and prove some helpful lemmas. We can
interpret the algorithm as a sequence of swivel and relaxed biswivel deviations,
each inserting one edge into M , and removing up to two edges. Note that it is not
guaranteed that the inserted edge will stay forever in M , as a subsequent devi-
ation can remove this edge from M . Let O1, O2, O3, · · · denote this sequence of
deviations, and e(i) denote the edge which got inserted into M because of Oi. We
analyze the dynamics of the algorithm by using the following key lemma.

Lemma 1. Let Oj be a relaxed biswivel that takes place during the execution
of the best relaxed blocking pair algorithm. Suppose a deviation Ok takes place
before Oj . Then we have re(k) ≥ re(j). Furthermore, if Ok is a relaxed biswivel
then e(k) 	= e(j) (thus at most |E(G)| relaxed biswivels can take place during the
execution of the algorithm).

It is important to note that this lemma does not say that re(i) ≥ re(j) for
i < j. We are only guaranteed that re(i) ≥ re(j) for i < j if Oj is a relaxed
biswivel. Between two successive relaxed biswivels Ok and Oj , the sequence of
re(i) for consecutive swivels can and does increase as well as decrease, and the
same edge may be added to the matching multiple times. All that is guaranteed
is that re(j) for a biswivel Oj will have a lower value than all the preceding re(i)’s.
Thus, this lemma suggests a nice representation of Best-Relaxed-Blocking-

Pair in terms of phases, where we define a phase as a subsequence of deviations
that begins with a relaxed biswivel and ends with the next relaxed biswivel.
Lemma 1 guarantees that at the start of each phase, the re(j) value is smaller
than the values in all previous phases, and that there is only a polynomial number
of phases.

Theorem 3. Best-Relaxed-Blocking-Pair outputs a stable matching after
O(m2) iterations, where m is the number of edges in the graph.

Notice that in each phase, the value of the matching only increases, since
swivels only remove an edge if they add a better one. Below, we use the fact
that only relaxed biswivel operations reduce the cost of the matching to bound
the cost of the stable matching this algorithm produces. We do this by tracing
what an edge of M∗ “gets mapped to” as swivel and biswivel operations “change”
this edge into another one, and showing that the image of an edge can experience
at most one relaxed biswivel. The proof appears in the full version [4] of this
paper.

Theorem 4. The price of stability in stable matching games with friendship
utilities is at most 2+2α1

1+2α1+α2
, and this bound is tight.
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From Theorems 3 and 4, we immediately get the following corollary about
the behavior of best blocking pair dynamics. This corollary applies in particular
to the model of altruism when αi = α for all i = 1, . . . , diam(G).

Corollary 1. If α1 = α2 and we start from the social optimum matching, Best-

Blocking-Pair converges in O(m2) time to a stable matching that is at most
a factor of 2+2α1

1+3α1
worse than the optimum.

3 Matching with Friendship and General Reward Sharing

In the previous section we assumed that for (u, v) ∈ M both u and v get the
same reward ruv. Let us now treat the more general case where u and v receive
different rewards for (u, v) ∈ M . We define rxxy as the reward of x from edge
(x, y) ∈ M . We interpret our model in a reward sharing context, where x and
y share a total reward of rxy = rxxy + ryxy. The correlated matching model of
Section 2 can equivalently be formulated as equal sharing with nodes u and v
receiving a reward of ruv/2.

Without friendship utilities, our stable matching game reduces to the stable
roommates problem (i.e., non-bipartite stable matching), since reward shares
can be arbitrary and thus induce arbitrary preference lists for each node. It
is well known that a stable matching may not exist in instances of the stable
roommates problem. While we are able to prove existence of integral stable
matching for several interesting special cases (see Section 3.1 below), the addition
of friendship further complicates matters. In Section 2.1 we showed that for equal
sharing, a stable matching without friendship utilities (i.e., α = 0) is also a stable
matching when we have friendship utilities. This is no longer true for unequal
reward sharing: adding a social context can completely change the set of stable
matchings. In the full version [4] of this paper we give such examples, including
an example where adding a social context (i.e., increasing α above zero) destroys
all stable matchings that exist when α = 0.

Although stable matchings may not exist in general non-bipartite graphs,
fractional stable matchings are guaranteed to exist [1]. Fortunately, as we prove
below, this holds even in the presence of friendship utilities with general re-
ward sharing: A fractional stable matching always exists. By a “fractional stable
matching” we simply mean a fractional matching (where the total fractional
matches for a node v add up to at most 1) with no blocking pairs.

Theorem 5. A fractional stable matching always exists, even in the case of
friendship utilities and general reward sharing.

Since an integral stable matching may not exist, we instead consider fractional
matching; by price of anarchy here we mean the ratio of the total reward in a
socially optimum fractional matching with the worst fractional stable matching.
The corresponding ratio between the integral versions is trivially upper bounded

by this amount as well. We define R = max(u,v)∈E(G)
ruuv

rvuv
. Note that R ≥ 1. With

this notation, we have the following theorem:
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Theorem 6. The (fractional) price of anarchy for general reward sharing with
friendship utilities is at most 1 + Q, where Q = R+α1

1+α1R
, and this bound is tight.

Let us quickly consider the implications of the bound in Theorem 6. If R = 1,
the bound is 2. This result implies Theorem 2, since when we have R = 1, then
both u and v get the same reward from an edge (u, v) ∈ M . If α1 = 0, the bound
is 1+R. The tightness of this bound implies that as sharing becomes more unfair,
i.e., as R → ∞, we can find instances where the price of anarchy is unbounded.
Unequal sharing can make things much worse for the stable matching game.

Notice, however, that R+α1

1+α1R
is a decreasing function of α1. As α1 goes from

0 to 1, the bound goes from 1 + R to 2. Without friendship utilities (α = 0),
we have a tight upper bound of 1 + R, which is extremely bad for large R. As
α1 tends to 1, however, the price of anarchy drops to 2, independent of R. For
example, for α1 = 1/2 it is only 3. Thus, social context can drastically improve
the outcome for the society, especially in the case of unfair and unequal reward
sharing.

For price of stability of general reward sharing with friendship utilities, we
have a lower bound within an additive factor of 1 of optimum. Specifically, define

Q′ = (1+α1)(1+R)
1+α1(R+1) , then we have the following theorem for the price of stability:

Theorem 7. The price of stability of stable matching games with friendship and
general reward sharing is in [Q′, Q + 1], with Q < Q′ ≤ Q + 1.

3.1 Specific Reward Sharing Rules

In this section we consider some particularly natural reward sharing rules and
show that games with such rules have nice properties. Specifically, while for gen-
eral reward sharing an (integral) stable matching may not exist, for the reward
sharing rules below we show they always exist (although only if there is no social
context involved) and how to compute them efficiently. We also give improved
bounds on prices of anarchy for these special cases. Specifically, we consider the
following sharing rules:

– Matthew Effect sharing: In sociology, “Matthew Effect” is a term coined by
Robert Merton to describe the phenomenon which says that, when doing
similar work, the more famous person tends to get more credit than other
less-known collaborators. We model such phenomena for our network by
associating brand values λu with each node u, and defining the reward that
node u gets by getting matched with node v as ruuv = λu

λu+λv
·ruv. Thus nodes

u and v split the edge reward in the ratio of λu : λv, and a node with high
λu value gets a disproportionate amount of reward.

– Trust sharing: Often people collaborate based on not only the quality of a
project but also how much they trust each other. We model such a situation
by associating a value βu with each node u, which represents the trust value
of player u, or how pleasant they are to work with. Each edge (u, v) also
has an inherent quality huv. Then, the reward obtained by node u from
partnering with node v is ruuv = huv + βv.
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With friendship utilities, even these intuitive special cases of reward sharing
do not guarantee the existence of an integral stable matching [4]. Without friend-
ship, however, integral stable matching exists and can be efficiently computed for
Matthew Effect sharing and Trust sharing, unlike in the case of general reward
sharing.

Theorem 8. An integral stable matching always exists in stable matching games
with Matthew Effect sharing and Trust sharing if α = 0 (i.e., if there is no
friendship). Furthermore, this matching can be found in O(|V ||E|) time.

The price of anarchy of Matthew effect sharing can be as high as the guarantee
of Theorem 6, with R = max(uv)

λu

λv
. For Trust sharing, however:

Theorem 9. The price of anarchy for (fractional) stable matching games with
Trust sharing and friendship utilities is at most max{2 + 2α1, 3}.
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Abstract. In many scientific applications it is required to reconstruct
a raster dataset many times, each time using a different resolution. This
leads to the following problem; let G be a raster of

√
N ×

√
N cells.

We want to compute for every integer 2 ≤ μ ≤
√
N a raster Gμ of

	
√
N/μ
 × 	

√
N/μ
 cells where each cell of Gμ stores the average of the

values of μ× μ cells of G. Here we consider the case where G is so large
that it does not fit in the main memory of the computer.

We present a novel algorithm that solves this problem in O(scan(N))
data block transfers from/to the external memory, and in Θ(N) CPU
operations; here scan(N) is the number of block transfers that are needed
to read the entire dataset from the external memory. Unlike previous
results on this problem, our algorithm achieves this optimal performance
without making any assumptions on the size of the main memory of the
computer. Moreover, this algorithm is cache-oblivious; its performance
does not depend on the data block size and the main memory size.

We have implemented the new algorithm and we evaluate its perfor-
mance on datasets of various sizes; we show that it clearly outperforms
previous approaches on this problem. In this way, we provide solid evi-
dence that non-trivial cache-oblivious algorithms can be implemented so
that they perform efficiently in practice.

1 Introduction

Rasters are one of the most common formats for modelling spatial data. A raster
is a 2-dimensional grid of square cells where each cell is assigned a real value.
Among other applications, rasters are used to represent real-world terrains; in
this case each cell corresponds to a region of a terrain, and the value of the cell
indicates the average height of the terrain in this region. Today, it is possible to
acquire massive rasters that represent terrains with very fine resolution; the size
of each cell in such a raster can be less than one square meter. Yet, studying a
terrain in such a small scale might lead to wrong conclusions. This happens for
example when we want to identify landforms on terrains; when we study a terrain
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at a scale of a few meters, we might identify many small peaks concentrated
within a small area. Yet, when looking on a larger scale, these peaks may be a
part of another landform; for instance a rough ridge, or a valley.

To tackle this problem, we need to have a method that can analyze the same
raster in many different scales. Fisher et al. [4] use such a method in their
landform classification algorithm; their algorithm constructs multiple rasters Gμ,
where a cell c of Gμ covers the same region as μ × μ cells of the original fine-
resolution raster. The value assigned to c is equal to the average of the values of
the original μ× μ cells. Given the constructed rasters Gμ, it is then possible to
search for landforms at different scales.

Reconstructing a raster in different resolutions is an important tool for many
other scientific applications; in remote sensing, Woodcock and Strahler [9] intro-
duced an algorithm to extract the average size of tree canopies in grayscale images
of forests. Here, an image is represented by a raster of square pixels, where each
pixel is assigned a grayscale value. Their algorithm reconstructs many instances of
a given image raster, in exactly the same way as the algorithm of Fisher et al. con-
structs different instances of a terrain raster. For their application, it is critical to
construct one instance of the image for every pixel size which is an integer multiple
of the pixel size in the original image, until a single pixel covers almost the entire
image. This approach has been also used in other image processing algorithms [3].

Therefore, all of the different applications that we described above lead to
the same algorithmic problem; let G be a raster that consists of

√
N ×

√
N

cells. For every integer μ ∈ {2, 3, . . . ,
√
N} we want to compute a raster Gμ of

�
√
N/μ� × �

√
N/μ� cells where each cell of Gμ stores the average of the values

of the μ× μ cells of G that cover the same region.

External Memory Algorithms. As already mentioned, today many available
raster datasets are massive, and may consist of terabytes of data. A raster of this
size cannot fit entirely in the main memory of a normal computer; thus, it can
only be stored entirely in the hard disk. When we want to process the dataset,
we have to transfer blocks of data from the disk to the main memory. We call
such a block transfer an I/O-operation, or an I/O for short. Unfortunately, an
I/O can take the same time as a million CPU operations. Thus, when designing
an algorithm that may process such a large dataset, we want to minimise the
number of block transfers that are required to process the full dataset.

For this reason, Aggarwal and Vitter [1] introduced a computational model
that takes into account the number of block transfers between the disk and the
main memory. This model considers two important parameters: the size of the
internal memory M , and the maximum size B of a block of data that we can
transfer from/to the disk. The efficiency of an algorithm in this model is equal
to the number of I/Os that the algorithm requires during its execution. We call
this concept of efficiency the I/O-efficiency of the algorithm. The I/O-efficiency
of an algorithm is expressed as a function of the input size N , but also of the
block size B and memory size M . To scan a set of N records stored in the disk
we need O(scan(N)) I/Os, where scan(N) = N/B. To sort a set of N records
we need O(sort(N)) I/Os, where sort(N) = N/B logM/B N/B.
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Today computers contain several layers of memory; these include layers of
cache used between the main memory of the computer and the processor. In this
context, the values of parameters M and B differ for every pair of consecutive
layers of cache that we consider. Then, to minimise the number of block transfers
between all layers, the algorithm must be designed so that it achieves an optimal
I/O-performance without knowing the parameters M and B. The algorithms
that have this property are known as cache-oblivious algorithms [5].

Previous Results. For the problem of computing multiple resolution instances of
a given raster, we study the case where the raster does not fit in the main memory
of the computer. We want to design an external memory algorithm for this
problem that has optimal performance both in terms of I/Os and in terms of CPU
operations. In a previous paper, Arge et al. [2] proposed two external memory
algorithms for this problem; the first algorithm requires O(sort(N)) I/Os and
O(N logN) CPU time, and is easy to implement. Their second algorithm requires
O(scan(N)) I/Os and O(N) CPU time, which is obviously optimal. Yet, this
algorithm assumes that M is at least Θ(B1+ε) for some selected ε > 0. This
algorithm is cache-aware, which means that M and B should be known to the
algorithm to achieve this performance. Moreover, this algorithm has a strong
limitation when it comes to its implementation; it requires that Θ(B) files are
open simultaneously during its execution. Nowadays, B can be as large as a few
million units, while most operating systems can maintain only a relatively small
number of files open at the same time (usually around a thousand).

Our Results. In this paper we present a new, cache-oblivious algorithm that
achieves the optimal performance of O(scan(N)) I/Os and O(N) CPU time,
without making any assumptions on the size of the main memory; that is it
performs O(scan(N)) I/Os even when M = O(B). The new algorithm is very
easy to implement; we have developed a purely cache-oblivious implementation
of the algorithm, and we have tested its performance against an implementation
of the algorithm of Arge et al. that requires O(sort(N)) I/Os. Recall that the
O(scan(N)) algorithm of Arge et al. is not practically implementable due to
limitations of today’s operating systems. The new algorithm performs extremely
well and, as expected, clearly outperforms the older approach. We consider this to
be a solid proof that non-trivial cache-oblivious algorithms can be implemented
to perform efficiently in practice, and be used in real-world applications in the
place of standard cache-aware implementations.

2 Description of the Algorithm

Preliminaries. For a raster G we denote by G[i, j] the cell that appears in the
i-th row and j-th column of G. We use v(i, j) to denote the value that is assigned
to this cell. We use |G| to indicate the number of cells of this raster. We assume
that G is a square; it consists of

√
N rows and

√
N columns of cells. Yet, it is easy

to show that our analysis holds also for rasters that do not have an equal number
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of rows and columns. Given a cell G[i, j] of G, consider the set of cells G[k, l] for
which it holds that 1 ≤ k ≤ i and 1 ≤ l ≤ j. We denote the sum of the values of
these cells by psum(i, j), that is:

psum(i, j) =
∑

1≤k≤i
1≤l≤j

v(k, l) .

The value psum(i, j) is the so-called prefix sum of cell G[i, j].
Let G be a raster of dimensions

√
N ×

√
N , and let μ be an integer such that

1 < μ ≤
√
N . We define Gμ as the raster of dimensions �

√
N/μ�× �

√
N/μ� such

that for any cell Gμ[i, j] the value vμ[i, j] associated with this cell is equal to the
average value of all cells G[k, l] for which we have that (i− 1)μ+ 1 ≤ k ≤ iμ and
(j − 1)μ + 1 ≤ l ≤ jμ. We say that Gμ is the scale instance of G at μ, and we
call μ the scale of this instance. Considering the size of a scale instance Gμ, we
observe that as we increase μ the number of cells of Gμ decreases quadratically.
In fact, Arge et al. showed that the total size of all scale instances Gμ is Θ(N).
We retrieve the following lemma from their paper.

Lemma 1. Given a raster G of
√
N ×

√
N cells, the total number of cells for

all rasters Gμ with 2 ≤ μ ≤
√
N is less than 0.65 ·N .

Proof. The total number of cells for all rasters Gμ is:

√
N∑

μ=2

N

μ2
< N

∞∑
μ=1

1

μ2
= N · ζ(2) ,

where ζ(x) is the so-called Riemann zeta function [6]. The value of this function
is a constant for every x > 1. For x = 2 we have that ζ(2) ≤ 1.65. �


Let M be a 2D matrix whose entries are real numbers. We denote by M(i, j) the
value of the entry that appears in the i-th row and j-th column of this matrix.
We denote the number of entries of this matrix by |M |.

2.1 A Solution Based on Prefix Sums

In the rest of this section we describe our new cache-oblivious approach for
computing all scale instances of a raster G. To describe this new approach, we
first present some concepts used by Arge et al. [2]. For any scale instance Gμ of
a raster G, Arge et al. observed that we can express the value of a cell Gμ[i, j]

using the prefix sums of the cells of G as vμ[i, j] = Sum(i,j,μ)
μ2 , where:

Sum(i, j, μ) = psum(iμ, jμ) − psum(iμ, (j − 1)μ)

−psum((i− 1)μ, jμ) + psum((i− 1)μ, (j − 1)μ) .

Hence, to compute Gμ we only need to extract the prefix sums from all cells G[i′, j′]
of G such that both i′ and j′ are integer multiples of μ. It is easy to compute
all rasters Gμ if G fits in the main memory; first we compute a matrix that has
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√
N ×

√
N entries, and which stores the prefix sums for all cells in G. Then we

can compute the value of each cell of Gμ in constant time, with only four ran-
dom accesses to the entries of this matrix. Since the total number of cells of all
rasters Gμ is Θ(N), this approach leads to an internal memory algorithm that
runs in Θ(N) CPU operations. However, it is not straightforward how to com-
pute the rasters Gμ if G does not fit in the main memory. To solve this problem
we provide the following definitions.

Let M1 denote the 2-dimensional matrix of
√
N ×

√
N entries, such that for

every entry M1(i, j) of this matrix we have that M1(i, j) = psum(i, j). For any
μ ∈ {2, 3, . . . ,

√
N}, let Mμ be the matrix that has �

√
N/μ� × �

√
N/μ� entries,

where Mμ(i, j) = M1(iμ, jμ). Thus, Mμ stores all the prefix sums that are needed

for constructing Gμ; the value of each cell Gμ(i, j) is equal to vμ[i, j] =
Sumμ(i,j)

μ2 ,

where: Sumμ(i, j) = Mμ[i, j] − Mμ[i, j − 1] − Mμ[i − 1, j] + Mμ[i − 1, j − 1] .
Therefore, assume that we already had an efficient algorithm for computing all
matrices Mμ. Then, we can extract from these matrices all scale instances Gμ

I/O-efficiently, in only O(scan(N)) I/Os and Θ(N) CPU operations by simply
scanning each matrix Mμ, and maintaining four pointers to access the prefix
sums needed for computing each value vμ(i, j).

Hence, we now focus on designing an efficient algorithm for computing matri-
ces Mμ for every μ ∈ {2, 3, . . . ,

√
N}. It is easy to compute M1; we can do this by

scanning G, starting from G[1, 1] and visiting all cells in increasing order of their
row and column indices. To compute a matrix Mμ with μ > 1, we could scan
M1 and extract each entry M1(i, j) such that both i and j are multiples of μ.
However, in this manner we spend O(scan(N)) I/Os to extract each matrix Mμ,

leading to O(
√
N · scan(N)) I/Os for extracting all of these matrices.

To speed up the computation of the matrices Mμ, we can exploit the following

property; consider two distinct integers ρ and λ such that ρ, λ ∈ {2, 3, . . . ,
√
N},

and ρ = νλ, for some ν ∈ N, ν > 1. Then it holds that Mρ(i, j) = Mλ(iν, jν)
for every entry Mρ(i, j) of matrix Mρ. In other words, the entries of matrix Mρ

are a subset of the entries of Mλ if ρ is divisible by λ. Thus, we can construct
Mρ by processing a matrix that can be much smaller than M1. To construct Mρ

faster, we want to use the smallest matrix Mλ for which ρ is a multiple of λ;
we must find the largest λ < ρ which is a divisor of ρ. We call this number the
largest distinct divisor of ρ, and we denote it by ldd(ρ). Consider two matrices
Mρ and Mλ such that ρ, λ ∈ {1, 2, . . . ,

√
N}, and ρ = ldd(λ). We say that

matrix Mρ derives from matrix Mλ, and that Mρ is a derived matrix of Mλ. In
a similar manner, we say that scale instance Gρ derives from instance Gλ. For
a matrix Mμ we denote the set of matrices that derive from Mμ by Dμ, that is

Dμ = {Mρ : ρ ∈ {2, 3, . . . ,
√
N} and ρ = ldd(μ)} . To compute matrices Mμ,

we first scan G to construct matrix M1 that stores all prefix sums. Then, we
extract all matrices D1 that derive from M1; these are the matrices Mμ such

that μ is a prime ≤
√
N . To do this, we use a function ExtractDerived(Mμ);

the input of this function is a prefix sum matrix Mμ, and the output is the set
of the matrices that derive from Mμ. We describe later in more detail how this
function works. After constructing matrices Mμ ∈ D1, we apply again function
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ExtractDerived on these matrices to extract all sets of matrices Dμ. We continue
this process recursively, until we have computed all matrices Mμ for the values

μ ∈ {2, 3, . . . ,
√
N}. We call the algorithm that we just described for computing

all the scale instances of G as MultirasterSpeedUp.
It is easy to prove that MultirasterSpeedUp computes the scale instances of G

correctly, assuming that function ExtractDerived(Mμ) computes correctly the
derived matrices of any given Mμ. By Lemma 1, excluding the performance of
ExtractDerived , the rest of the algorithm requires only O(scan(N)) I/Os and
Θ(N) CPU operations. Next we show how we design function ExtractDerived .

2.2 Extracting the Derived Matrices

To compute the matrices Dμ that derive from a given matrix Mμ, we first have
to compute all scale values ρ such that Mρ is a matrix that derives from Mμ.
We call these values the derived indices of μ. We denote the set of these values
by Sμ. Given μ, we can calculate all derived scales Sμ using the following ob-
servation; let μ, ρ be two natural numbers such that μ = ldd(ρ). Then it holds
that μ = ρ/spd(ρ), where spd(ρ) is the smallest prime divisor of ρ. Since μ is
the largest distinct divisor of ρ we also have that spd(ρ) ≤ spd(μ). Based on
the above, to compute Sμ we first compute spd(μ); we go through all integers
κ ∈ {2, . . . , �√μ�} in increasing order, and we stop when we find the first κ
that divides μ. Then we compute all prime numbers in the range [2, spd(μ)] by
trivially trying all possible pairs of integers within this range, and checking if
the largest of the two is divided by the smallest. For the special case μ = 1 the
smallest prime divisor is undefined, and we consider that Sμ consists of all prime

numbers smaller than
√
N . Thus, for μ > 1 we can compute scale values Sμ in

O(μ) CPU operations. We need at most O(scan(μ)) I/Os to store these values.
For μ = 1 this process requires O(N) CPU operations and O(scan(N)) I/Os.

To extract the derived matrices Dμ, we will use Mμ to construct an inter-
mediate file Fμ that contains altogether the entries of all matrices in Dμ. We
will then process this file to extract each derived matrix I/O-efficiently. More
specifically, file Fμ is organised as follows; for every prime ρ ∈ Sμ, and for every
entry Mρ(i, j) ∈ Mρ , Fμ contains a record of the form: < iρ, jρ, ρ, vμ(iρ, jρ) > .
The two first fields of the record indicate which is the entry in Mμ that has the
same value as Mρ(i, j). The third field indicates the scale of Mρ, and the last
field carries the value Mρ(i, j). Most importantly, the records in Fμ appear in
lexicographical order of their three first fields.

Thus, Fμ stores a record for each entry of the matrices in Dμ, including multi-
ples. The number of records in Fμ is O(|Mμ|); the number of entries of Mμ is |Gμ|,
and due to Lemma 1 the total number of cells of all the scale instances of a raster
Gμ cannot exceed |Gμ|. To construct Fμ, we create an individual file Fμ,κ for
each matrix Mκ ∈ Dμ. File Fμ,κ contains only records of the form {iκ, jκ, κ,⊗},
where ⊗ is a symbolic “no-data” value. Then we merge all those files into Fμ

in a bottom-up manner; first we generate Fμ by merging the two files Fμ,κ and
Fμ,ρ that correspond to the two smallest matrices Mρ and Mκ in Dμ; that is
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ρ, κ are the two largest values in Sμ. We go on merging Fμ each time with the
smallest remaining file Fμ,λ, until all files are merged into Fμ.

Next we fill in the prefix sum values at the last field of each record in Fμ with
a single simultaneous scan of Fμ and Mμ. To extract matrices Dμ from Fμ we
scan Fμ once per matrix in Dμ. The matrices are extracted in order of decreasing
size; in the first scan of Fμ we extract the largest matrix Mρ ∈ Dμ, and so on and
so forth. To extract Mρ, we pick the records in Fμ whose third field is equal to ρ.
We then throw away these records from Fμ, creating a new smaller instance of
Fμ. When Fμ becomes empty we will have extracted all derived matrices in Dμ.
The correctness of the algorithm follows from how we handle the prefix sum
values in the records of file Fμ. Next we prove the efficiency of this algorithm.

Lemma 2. Function ExtractDerived computes the set of matrices Dμ that de-
rive from Mμ in O(scan(|Mμ| + μ)) I/Os and O(|Mμ| + μ) CPU operations.

Proof. We showed that for μ ≥ 1 computing the scales Sμ takes O(scan(μ))
I/Os and O(μ) CPU time. Recall that for the case μ = 1, we can compute
Sμ in O(scan(N)) I/Os and O(N) CPU operations. Now we prove that for any
μ > 1 we can construct all matrices Dμ in O(scan(|Mμ|)) I/Os and O(|Mμ|) CPU
operations. To construct file Fμ, we merge several smaller files Fμ,ρ, one merge
at a time. As soon as file Fμ,ρ gets merged with Fμ the records of Fμ,ρ become
a part of Fμ; from this point and on, these records are scanned once each time
we merge Fμ with another file Fμ,κ. Hence, each record that initially belonged
to file Fμ,ρ gets scanned as many times as the number of primes that are smaller
or equal to ρ; this is because Sμ contains all primes in the range [2, spd(μ)],
and because we merge files Fμ,κ in decreasing order of κ. In the mathematical
literature, the number of primes that are smaller or equal to ρ is denoted by π(ρ).
As each record of Fμ,ρ is scanned π(ρ) times, and as Fμ,ρ has |Mμρ| records, the
total number of records scanned when constructing Fμ is:∑

ρ∈Sμ

π(ρ)|Mμρ| =
N

μ2

∑
ρ∈Sμ

π(ρ)

ρ2
. (1)

The following upper bound is known for π(ρ) [7]: π(ρ) < 1.26ρ
ln ρ . Combining this

with (1) we get:

N

μ2

∑
ρ∈Sμ

π(ρ)

ρ2
< 1.26

N

μ2

∑
ρ∈Sμ

1

ρ ln ρ
=

1.26

log e

N

μ2

∑
ρ∈Sμ

1

ρ log ρ
, (2)

where e is the base of the natural logarithm. We have that:∑
ρ∈Sμ

1

ρ log ρ
≤

∞∑
i=0

∑
ρ is prime

22
i
≤ρ≤22

i+1

1

ρ log ρ
≤

∞∑
i=0

∑
ρ is prime

22
i
≤ρ≤22

i+1

1

2iρ
. (3)

From the mathematical literature we know that [7]:∑
ρ is prime

ρ≤x

1

ρ
= O(log log x) . (4)
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Applying this on (3) we get:

∞∑
i=0

∑
ρ is prime

22
i≤ρ≤22

i+1

1

2iρ
= O

( ∞∑
i=0

i + 1

2i

)
= O(1) .

Combining (2) and (4) we get that the total number of records that we need
to scan in order to construct Fμ is O(|Mμ|). This requires O(scan(|Mμ|)) I/Os.
During the merging we do one comparison for every record that we scan, which
implies that we do O(|Mμ|) operations in the CPU in total.

It remains now to show that extracting all matrices of Dμ from Fμ requires
O(scan(|Mμ|)) I/Os and O(|Mμ|) time in the CPU. Recall that we extract the
matrices Mρ in increasing order of ρ, hence, the records of Mμσ will get scanned
as many as π(σ) times each. Therefore the records scanned in this part of the
algorithm are as many as the records scanned for constructing Fμ. We showed
that this number is equal to O(|Mμ|), implying O(scan(|Mμ|)) I/Os and O(|Mμ|)
CPU operations for extracting the matrices for Fμ, and the lemma follows. �


By construction our algorithm does not require knowledge of M and B, hence it
is cache-oblivious. Also, its performance does not depend on a lower bound on
the size of M . We obtain the following theorem.

Theorem 1. Given a raster G of
√
N ×

√
N cells, we can compute all scale

instances of G cache-obliviously in O(scan(N)) I/Os and O(N) CPU operations.

Proof. Function ExtractDerived is called only once for each matrix Mμ so, ac-
cording to Lemma 2, the total number of I/Os and CPU operations required
by the entire algorithm is O(scan(

∑
μ(|Mμ| + μ))) and O(

∑
μ(|Mμ| + μ)) re-

spectively. Since Mμ has the same size as Gμ, then according to Lemma 1 and
because

∑
μ |Mμ| = Θ(N), the theorem follows. �


2.3 Ordering the Prefix Sum Matrices

So far, we have described an algorithm that computes efficiently all scale in-
stances of a given raster G. However, this algorithm does not output the scale
instances of G in the right order. More specifically, from the description of algo-
rithm MultirasterSpeedUp we can see that there can be pairs of scale instances Gμ

and Gρ with μ < ρ such that Gρ appears in the output before Gμ. Yet, for most
practical applications, it makes sense to have those instances sorted in the output
in order of increasing scale value. Fortunately, we can solve this problem while
achieving the same performance as with the algorithm MultirasterSpeedUp. The
proof of the next theorem appears in the full version of the paper.
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Theorem 2. Given a raster G of
√
N ×

√
N cells, we can compute cache-

obliviously all scale instances of G, and output these instances in order of in-
creasing scale using O(scan(N)) I/Os and O(N) CPU operations.

2.4 Improving the Practical Performance of the Algorithm

Earlier in this section, we described how we can extract the prefix sum matrices
Dμ from a matrix Mμ by building an intermediate file Fμ. This approach requires
merging several smaller files, and needs only O(scan(|Mμ|)) I/Os. Yet we can
evade this merging process, and thus improve the I/O-performance of the algo-
rithm by a constant factor; to build Fμ, we scan Mμ and stream the records that
correspond to the entries of matrices in Dμ in the form of queries to Mμ. After
extracting the prefix sum value of a queried record, we append this record in Fμ.

M2μ

M3μ

Mspd(μ)−1μ Mspd(μ)μ

Fig. 1. The structure of
the skewed heap that we
use to stream the records.
Each node is indicated by
its corresponding derived
matrix.

To do this, the records are streamed to Mμ in lexico-
graphical order of their three first fields. To produce
the stream of the ordered records we build a min-heap
structure. Each leaf node ν[ρ] of the heap corresponds
to a derived matrix Mμρ ∈ Dμ and stores the next
record of Mμρ that has to be streamed. The root of
the heap stores the next record to be queried to Mμ.
Figure 1 illustrates the structure of the heap; we can
see that the heap is as skewed as it can get in favour
of the larger derived matrices. The heap contains one
leaf node for each derived matrix of Mμ, so the size
of the heap is O(spd(μ)). Although we do not know
M , we can build the heap so that at any point the
nodes of the O(M) topmost levels appear in memory.
For the rest of the levels, a record will have to pay one I/O for every B levels
that it goes up in the heap. Although this method is oblivious of M , we show
that we can stream all records to Mμ so that the number of I/Os decreases as
M increases. The proof of the following lemma is provided in the full version of
the paper.

Lemma 3. Let Mμ be a prefix sum matrix. We can stream all the records that
correspond to the entries of the derived matrices of Dμ in lexicographical order
in O(scan(|Mμ|/ logM)) I/Os and O(|Mμ|) CPU operations.

3 Implementation and Benchmarks

We implemented MultirasterSpeedUp and evaluated its efficiency on datasets of
various sizes. In the experiments that we conducted, we tried several alternatives
for implementing the most important routines of the algorithm, and we assessed
the efficiency of the implementation for each of these alternatives. We also com-
pared the performance of our implementation with an older implementation of
the O(sort(N)) algorithm of Arge et al. . Recall that it is not currently pos-
sible to implement the O(scan(N)) algorithm of Arge et al. due to restrictions
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in standard operating systems; this algorithm requires that B files are open si-
multaneously, and while B today is in the order of millions of units, standard
operating systems allow for about a thousand files open at the same time.

To measure the performance of our algorithm we used massive raster datasets
of many sizes. The datasets that we used originate from a massive raster that
consists of roughly 26 billion cells, arranged in 146974 rows and 176121 columns.
This raster models the terrain surface over the entire region of Denmark. Each
cell of the raster represents a square region on the terrain that has dimension of
2 meters. The elevation of each cell is stored as a 4-byte floating point number,
and the entire dataset is stored in a geotif file that has 97 gigabytes size. From
this dataset, we constructed all scale instances Gμ for μ ≤ 146974, and we used
the largest of these instances as input for the algorithm; we did this to evaluate
the performance of the algorithm for a large range of different input sizes.

As already mentioned, we tried different options for implementing the key rou-
tines of the algorithm. These are the routines that involve merging or extracting
a sequence of files from/to another larger file. For those routines we evaluated
how the performance of the algorithm is affected when trying to merge/extract
several files simultaneously. The routines that we tweaked are the following:

– The part of ExtractDerived where, given a prefix sum matrix Mμ, we merge
several files to construct an intermediate file Fμ which contains the records
that correspond to all the entries of the derived matrices Dμ.

– The part of ExtractDerived where we extract the derived matrices Dμ from
the intermediate Fμ.

For the above routines we measured how the performance of the algorithm
changes if we change the number of files that are merged or extracted together.
For the first routine we use f1 to denote the number of files that we merged
simultaneously at each point for constructing Fμ. For the second routine we
use f2 to denote the number of derived matrices that we extracted together each
time that we performed a scan of Fμ. In the description of the algorithm, we
convey that the value of each of these two parameters is equal to two. We also
implemented a version of the routine that constructs the intermediate file Fμ

based on the mechanism of the skewed heap described in Section 2.4. Recall
that this method does not merge any files in order to construct Fμ. All versions
of our implementation work in a purely cache-oblivious manner.

The algorithms were implemented in C++ using the software library TPIE

(the Templated Portable I/O Environment) [8]. This library offers I/O-efficient
algorithms for scanning and sorting large files in external memory. Our exper-
iments where run on a machine with a 3.2GHz four-core Xeon CPU (W3565).
The main memory of the computer is 12GB. This workstation has 20 disks that
have a btrfs (raid 0) file system configuration. The operating system on this
computer was Linux version 2.6.38. During our experiments, 8GB of memory
was managed by our software, and the rest was left to the operating system
for disk cache. For each of the versions of our implementation, the maximum
amount of disk space used at any time during the execution was 672 GB.
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Fig. 2. The performance of the two best ver-
sions of our implementation, together with the
implementation of the O(sort(N)) algorithm of
Arge et al. , and the naive internal memory algo-
rithm. The x-axis shows the input sizes using a
logarithmic scale with base 10. The y-axis shows
running times divided by input size.

In our first experiment, we ran
our implementation of the algo-
rithm on the 97GB dataset for
all possible combinations of val-
ues of the two parameters f1, f2 ∈
{2, 3, 10, 20, 35, 50}. We also ran
the implementation of the algo-
rithm using the skewed heap ap-
proach for all values of parameter
f2 ∈ {2, 3, 10, 20, 40, 50}. From
all the possible versions that we
tried, the best running time was
achieved by the version that uses
the skewed heap approach, and
parameter value f2 = 50; the run-
ning time in this case was 2 hours
and 15 minutes. The best running
time that we got without using the skewed heap approach was for the version
with parameter values f1 = f2 = 50. In this case, the running time was 2 hours
and 28 minutes. The worst running time that we got among all versions was
from the version that has parameter values f1 = 2, and f2 = 2; the running time
for this version was 3 hours and 35 minutes. In general, the running time of each
version that behaved like a decreasing function on the values of paramaters f1
and f2. Running the implementation of the O(sort(N)) algorithm of Arge et al.
on the largest dataset yielded a running time of 13 hours and 14 minutes. This
running time is a bit less than four times larger than the worst running time
that we got for any version of our implementation.

For our next experiment, we ran the two best versions of our implementation
on the datasets that we got from extracting the 100 largest scale instances of
the 97GB raster, including the initial raster itself. We also ran on these datasets
the implementation of the O(sort(N)) algorithm of Arge et al., and the naive
internal-memory algorithm that uses prefix sums. Figure 2 illustrates the perfor-
mance of the four implementations. There, we get a good impression on how the
performance of our implementation scales with the size of the input. This is a
strong indication that the theoretical bounds that we proved for the performance
of the algorithm can be reflected in practice. The results of both experiments
show evidently the practical efficiency of our algorithm, when also compared to
the implementation of the algorithm of Arge et al.. Of course, it could be argued
here that this result is hardly surprising; in theory, an O(sort(N)) algorithm has
obviously worse asymptotical behaviour than an O(scan(N)) algorithm. How-
ever, in practice, the performance of an O(sort(N)) algorithm scales linearly in
terms of I/Os. Figure 2 provides some evidence on this argument for the algo-
rithm of Arge et al., at least for the range of input sizes that we considered. The
explanation behind this phenomenon is that the ratio M/B in most comput-
ers has a value close to one thousand, and therefore the term logM/B(N/B) in
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sort(N) is not larger than two in all practical cases. Thus, it is not unrealistic to
observe O(sort(N)) algorithms performing better in practice than O(scan(N))
algorithms. More than that, in our case, we compare a cache-aware implemen-
tation with a cache-oblivious one, and we could expect that this is an advantage
for the performance of the cache-aware implementation. Yet, as we see from our
experiments, this is clearly not the case; the cache-oblivious algorithm performs
much better in practice. This result shows that purely cache-oblivious software
can be developed to perform efficiently in real-world applications. It is interesting
to see if we can get similar results also for other external memory problems.
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Fig. 3. The CPU utilisation and I/O-throughput
of the best version of our implementation

In our last experiment, we
ran the best version of our
implementation on the largest
of our datasets, and at ev-
ery minute of the execution
we measured the rate of the
CPU utilisation and the I/O-
throughput of this implementa-
tion. Figure 3 illustrates the re-
sults of this experiment. We see
that both the I/O-throughput
and CPU utilisation were fairly
constant during the run. Also,
for the largest part of the execution of the algorithm, the CPU utilisation re-
mained above or close to 40%; hence, the running time of the algorithm was
almost equally distributed between the CPU and the I/O-operations.
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Abstract. Logit dynamics are a family of randomized best response
dynamics based on the logit choice function [21] that is used to model
players with limited rationality and knowledge. In this paper we study
the all-logit dynamics, where at each time step all players concurrently
update their strategies according to the logit choice function. In the well
studied one-logit dynamics [7] instead at each step only one randomly
chosen player is allowed to update.

We study properties of the all-logit dynamics in the context of local
interaction games, a class of games that has been used to model complex
social phenomena [7,23,26] and physical systems [19]. In a local inter-
action game, players are the vertices of a social graph whose edges are
two-player potential games. Each player picks one strategy to be played
for all the games she is involved in and the payoff of the player is the
(weighted) sum of the payoffs from each of the games.

We prove that local interaction games characterize the class of games
for which the all-logit dynamics are reversible. We then compare the
stationary behavior of one-logit and all-logit dynamics. Specifically, we
look at the expected value of a notable class of observables, that we call
decomposable observables.

1 Introduction

In the last decade, we have observed an increasing interest in understanding
phenomena occurring in complex systems consisting of a large number of simple
networked components that operate autonomously guided by their own objec-
tives and influenced by the behavior of the neighbors. Even though (online)
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social networks are a primary example of such systems, other remarkable typical
instances can be found in Economics (e.g., markets), Physics (e.g., Ising model
and spin systems) and Biology (e.g., evolution of life). A common feature of
these systems is that the behavior of each component depends only on the in-
teractions with a limited number of other components (its neighbors) and these
interactions are usually very simple.

Game Theory is the main tool used to model the behavior of agents that are
guided by their own objective in contexts where their gains depend also on the
choices made by neighbors. Game theoretic approaches have been often proposed
for modeling phenomena in a complex social network, such as the formation of
the social network itself [3,5,8,16], the formation of opinions [6,11] and the spread
of innovation [23,26] in the social network. Many of these models are based on
local interaction games, where agents are represented as vertices on a social graph
and the relationship between two agents is represented by a simple two-player
game played on the edge joining the corresponding vertices.

We are interested in the dynamics that govern such phenomena. Several dy-
namics have been studied in the literature like, for example, the best response
dynamics [13], the logit dynamics [7], fictitious play [12] and no-regret dynamics
[15]. Any such dynamics can be seen as made of two components: (i) Selection
rule: by which the set of players that update their state (strategy) is determined;
(ii) Update rule: by which the selected players update their strategy. For exam-
ple, the classical best response dynamics compose the best response update rule
with a selection rule that selects one player at the time. In the best response up-
date rule, the selected player picks the strategy that, given the current strategies
of the other players, guarantees the highest utility. The Cournot dynamics [9]
instead combine the best response update rule with the selection rule that se-
lects all players. Other dynamics in which all players concurrently update their
strategy are fictitious play [12] and the no-regret dynamics [15].

In this paper, we study a specific class of randomized update rules called the
logit choice function [7,21] which is a type of noisy best response that models
in a clean and tractable way the limited knowledge (or bounded rationality) of
the players in terms of a parameter β called inverse noise. In similar models
studied in Physics, β is the inverse of the temperature. Intuitively, a low value
of β (that is, high temperature) models a noisy scenario in which players choose
their strategies “nearly at random”; a high value of β (that is, low temperature)
models a scenario with little noise in which players pick the strategies yielding
higher payoffs with higher probability.

The logit choice function can be coupled with different selection rules so to
give different dynamics. For example, in the logit dynamics [7] at every time step
a single player is selected uniformly at random and the selected player updates
her strategy according to the logit choice function. The remaining players are
not allowed to revise their strategies in this time step.

While the logit choice function is a very natural behavioral model for approx-
imately rational agents, the specific selection rule that selects one single player
per time step avoids any form of concurrency. Therefore a natural question arises:
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What happens if concurrent updates are allowed?

For example, it is easy to construct games for which the best response converges
to a Nash equilibrium when only one player is selected at each step and does
not converge to any state when more players are chosen to concurrently update
their strategies.

In this paper we study how the logit choice function behaves in an extremal
case of concurrency. Specifically, we couple this update rule with a selection
rule by which all players update their strategies at every time step. We call such
dynamics all-logit, as opposed to the classical (one-)logit dynamics in which only
one player at a time is allowed to move. Roughly speaking, the all-logit are to
the one-logit what the Cournot dynamics are to the best response dynamics.

Our Contribution. We study the all-logit dynamics for local interaction games
[10,23]. Here players are vertices of a graph, called the social graph, and each edge
is a two-player (exact) potential game. We remark that games played on different
edges by a player may be different but, nonetheless, they have the same strategy
set for the player. Each player picks one strategy that is used for all of her edges and
the payoff is a (weighted) sum of the payoffs obtained from each game. This class
of games includes coordination games on a network [10] used to model the spread
of innovation in social networks [26], and the Ising model [20] for magnetism. In
particular, we study the all-logit dynamics for local interaction games at every pos-
sible value of the inverse noise β and we are interested in properties of the original
one-logit dynamics that are preserved by the all-logit.

We first consider reversibility, an important property of stochastic processes
that is useful also to obtain explicit formulas for the stationary distribution. We
characterize the class of games for which the all-logit dynamics (specifically, the
Markov chains resulting from the all-logit dynamics) are reversible and it turns
out that this class coincides with the class of local interaction games. This is
to be compared with the well-known result saying that the one-logit dynamics
are reversible for every potential game [7]. We find remarkable that a non-trivial
property, as reversibility is, of Markov chains modeling the one-logit for potential
games holds even for Markov chains modeling all-logit for a large and widely-used
subclass of potential games.

Then, we focus on the observables of local interaction games. An observable
is a function of the strategy profile (that is, the set of strategies adopted by the
players) and we are interested in its expected values at stationarity for both the
one-logit and the all-logit dynamics. A prominent example of observable is the
difference Diff between the number of players adopting two given strategies in a
game. In a local interaction game modeling the spread of innovation on a social
network this observable counts the difference between the number of adopters
of the new and old technology whereas in the Ising model it corresponds to the
magnetic field of a magnet.

We show that there exists a class of observables whose expectation at sta-
tionarity of the all-logit is the same as the expectation at stationarity of the
one-logit as long as the social network underlying the local interaction game
is bipartite. Note that in many of these cases the stationary distributions of
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one- and all-logit dynamics are completely different. We highlight that the class
of observables for which our result holds includes the Diff observable. It is inter-
esting to note that the Ising game has been mainly studied for bipartite graphs
(e.g., the two-dimensional and the three-dimensional lattice). This implies that,
for the Ising model, the all-logit are dynamics that are compatible with the ob-
servations and it are arguably more natural than the one-logit dynamics (that
postulate that at any given time step only one particle updates its status and
then the updated strategy is instantaneously propagated). We extend this result
by showing that for general graphs, the extent at which the expectations of these
observables differ can be upper and lower bounded by a function of β and of the
distance of the social graph from a bipartite graph.

In the full version of the paper [4] we also give preliminary bounds on the
convergence time of the all-logit dynamics to their stationary distribution.

Related Works. There is a substantial body of work on the logit dynamics (see
e.g. [24] and references therein). Specifically, the all-logit dynamics for strate-
gic games have been studied in [1], where the authors consider the logit-choice
function combined with general selection rules (including the selection rule of
the all-logit) and investigate conditions for which a state is stochastically stable.
A stochastically stable state is a state that has non-zero probability as β goes
to infinity. We focus instead on a specific selection rule that is used by several
remarkable dynamics (Cournot, fictitious play, and no-regret) and consider the
whole range of values of β.

The one-logit dynamics have been actively studied starting from the work of
Blume [7] that showed that for 2 × 2 coordination games, the risk dominant
equilibria (see [14]) are stochastically stable. The one-logit for local interaction
games have been analyzed in several papers with the aim of modeling and un-
derstanding the spread of innovations in a social network, see e.g. [10,26].

Remark. For readability sake, in Sections 3 and 4 most of the lemmas and
theorems have “proof ideas” instead of full proofs. For full proofs and more
detailed descriptions we refer the reader to the full version of the paper [4].

2 Definitions

In this section we formally define the local interaction games and the Markov
chain induced by the all-logit dynamics.

Strategic Games. Let G = ([n], S1, . . . , Sn, u1, . . . , un) be a finite normal-
form strategic game. The set [n] = {1, . . . , n} is the player set, Si is the set of
strategies for player i ∈ [n], S = S1 × S2 × · · · × Sn is the set of strategy profiles
and ui : S → R is the utility function of player i ∈ [n]. We adopt the standard
game-theoretic notation and for x = (x1, . . . , xn) ∈ S and s ∈ Si, we denote by
(x−i, s) the strategy profile (x1, . . . , xi−1, s, xi+1, . . . , xn) ∈ S.

Potential games [22] are an important class of games. We say that function
Φ : S → R is an exact potential (or simply a potential) for game G if for every
i ∈ [n] and every x ∈ S it holds that ui(x−i, s)−ui(x−i, z) = Φ(x−i, z)−Φ(x−i, s)
for all s, z ∈ Si. A game G that admits a potential is called a potential game.
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Local Interaction Games. In a local interaction game G, each player i, with
strategy set Si, is represented by a vertex of a graph G = (V,E) (called social
graph). For every edge e = (i, j) ∈ E there is a two-player game Ge with potential
function Φe in which the set of strategies of endpoints are exactly Si and Sj .
We denote with ue

i the utility function of player i in the game Ge. Given a
strategy profile x, the utility function of player i in the local interaction game G
is ui(x) =

∑
e=(i,j) u

e
i (xi, xj). It is easy to check that the function Φ =

∑
e Φe is

a potential function for the local interaction game G.

Logit Choice Function. We study the interaction of n players of a strategic
game G that update their strategy according to the logit choice function [21,7]
described as follows: from profile x ∈ S player i ∈ [n] updates her strategy to

s ∈ Si with probability σi(s | x) = eβui(x−i,s)∑
z∈Si

eβui(x−i,z)
. In other words, the logit

choice function leans towards strategies promising higher utility. The parameter
β � 0 is a measure of how much the utility influences the choice of the player.

All-Logit. In this paper we consider the all-logit dynamics, where all players
concurrently update their strategy using the logit choice function. Most of the
previous works have focused on dynamics where at each step one player is chosen
uniformly at random and she updates her strategy by following the logit choice
function. We call these dynamics one-logit, to distinguish them from the all-logit.

The all-logit dynamics induce a Markov chain over the set of strategy profiles
whose transition probability P (x,y) from profile x = (x1, . . . , xn) to profile
y = (y1, . . . , yn) is

P (x,y) =

n∏
i=1

σi(yi |x) =
eβ

∑n
i=1 ui(x−i,yi)∏n

i=1

∑
z∈Si

eβui(x−i,z)
. (1)

Sometimes it is useful to write the transition probability from x to y in terms of
the cumulative utility of x with respect to y defined as U(x,y) =

∑
i ui(x−i, yi)

[1]. Indeed, by observing that
∏n

i=1

∑
z∈Si

eβui(x−i,z) =
∑

z∈S

∏n
i=1 e

βui(x−i,zi),
we can rewrite (1) as

P (x,y) =
eβU(x,y)

D(x)
, (2)

where D(x) =
∑

z∈S eβU(x,z). For a potential game G with potential Φ, we can
define the cumulative potential of x with respect to y as Ψ(x,y) =

∑
i Φ(x−i, yi).

Simple algebraic manipulations show that, for a potential game, we can rewrite

the transition probabilities in (2) as P (x,y) = e−βΨ(x,y)

T (x) , where T (x) is a short-

hand for
∑

z∈S e−βΨ(x,z).
It is easy to see that a Markov chain with transition matrix (1) is ergodic.

Indeed, for example, ergodicity follows from the fact that all entries of the tran-
sition matrix are strictly positive.

Reversibility & Observables. In this work we focus on two features of the
all-logit dynamics, that we formally define here: A Markov chain M with tran-
sition matrix P and state set S is reversible with respect to a distribution π if,
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for every pair of states x, y ∈ S, the following detailed balance condition holds
π(x)P (x, y) = π(y)P (y, x). An observable O is a function O : S → R, i.e. it is a
function that assigns a value to each strategy profile of the game.

3 Reversibility and Stationary Distribution

It is easy to see that the one-logit dynamics for a game G are reversible if and
only if G is a potential game. This does not hold for the all-logit dynamics.
However, we will prove that the class of games for which the all-logit dynamics
are reversible is exactly the class of local interaction games.

Reversibility Criteria. As previously stated, a Markov chain M is reversible
if there exists a distribution π such that the detailed balance condition is satis-
fied. The following Kolmogorov reversibility criterion allows us to establish the
reversibility of a process directly from the transition probabilities. Before stating
the criterion, we introduce the following notation. A directed path Γ from state
x ∈ S to state y ∈ S is a sequence of states 〈x0, x1, . . . , x�〉 such that x0 = x and

x� = y. The probability P (Γ ) of path Γ is defined as P (Γ ) =
∏�

j=1 P (xj−1, xj).

The inverse of path Γ = 〈x0, x1, . . . , x�〉 is the path Γ−1 = 〈x�, x�−1, . . . , x0〉.
Finally, a cycle C is simply a path from a state x to itself. We are now ready to
state the Kolmogorov reversibility criterion (see, for example, [17]).

Theorem 1. An irreducible Markov chain M with state space S and transition
matrix P is reversible if and only if for every cycle C it holds that P (C) =
P

(
C−1

)
.

The following lemma will be useful for proving reversibility conditions for the all-
logit dynamics and for stating a closed expression for its stationary distribution.

Lemma 1. Let M be an irreducible Markov chain with transition probability P
and state space S. M is reversible if and only if for every pair of states x, y ∈ S,
there exists a constant cx,y such that for all paths Γ from x to y, it holds that
P(Γ )

P(Γ−1) = cx,y.

Proof (idea). One direction follows directly from the Kolmogorov reversibility
criterion, since each cycle can be seen as a concatenation of two paths from x to
y (actually, a path and the inverse of another path). As for the other direction,
fix z and check that the distribution π̃(x) = cz,x/Z, where Z is the normalizing
constant, satisfies the detailed balance equation. �

All-Logit Reversibility Implies Potential Games. Now we prove that if
the all-logit dynamics for a game G are reversible then G is a potential game.

The following lemma shows a condition on the cumulative utility of a game
G that is necessary and sufficient for the reversibility of the all-logit for G.

Lemma 2. The all-logit dynamics for game G are reversible if and only if the

following property holds for every x,y, z ∈ S: U(x,y) − U(y,x) =
(
U(x, z) +

U(z,y)
)
−

(
U(y, z) + U(z,x)

)
.
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Proof (idea). One direction follows from Lemma 1. As for the other direction,

the hypothesis implies that, for any fixed z, π̃(x) = P (z,x)
Z·P (x,z) satisfies the detailed

balance equation, where Z is the normalizing constant. �

We are now ready to prove that the all-logit dynamics are reversible only for
potential games.

Proposition 1. If the all-logit dynamics for game G are reversible then G is a
potential game.

Proof (idea). We show that if the all-logit dynamics are reversible then the utility
improvement over any cycle of length 4 is 0. The thesis then follows by a known
characterization of potential games (Theorem 2.8 of [22]). �

A Necessary and Sufficient Condition for All-Logit Reversibility. Pre-
viously we established that the all-logit dynamics are reversible only for potential
games and therefore, from now on, we only consider potential games G with po-
tential function Φ. Now we present in Proposition 2 a necessary and sufficient
condition for reversibility that involves the potential and the cumulative poten-
tial. The condition will then be used to prove that local interaction games are
exactly the games whose all-logit dynamics are reversible.

Proposition 2. The all-logit dynamics for a game G with potential Φ and cu-
mulative potential Ψ are reversible if and only if, for all strategy profiles x,y ∈ S,

Ψ(x,y) − Ψ(y,x) = (n− 2) (Φ(x) − Φ(y)) . (3)

Proof (idea). We rewrite Lemma 2 in terms of cumulative potential as Ψ(x,y)−
Ψ(y,x) =

(
Ψ(x, z) + Ψ(z,y)

)
−

(
Ψ(y, z) + Ψ(z,x)

)
. Simple algebraic manipu-

lations shows that (3) implies the above equation. As for the other direction, we
proceed by induction on the Hamming distance between x and y. �

Reversibility and Local Interaction Games. Here we prove that the games
for which all-logit dynamics are reversible are exactly the local interaction games.

A potential Φ : S1 × · · · × Sn → R is a two-player potential if there exist
u, v ∈ [n] such that, for any x,y ∈ S with xu = yu and xv = yv we have
Φ(x) = Φ(y). In other words, Φ is a function of only its u-th and v-th argument.
It is easy to see that any two-player potential satisfies (3).

We say that a potential Φ is the sum of two-player potentials if there exist
N two-player potentials Φ1, . . . , ΦN such that Φ = Φ1 + · · · + ΦN . It is easy
to see that generality is not lost by further requiring that 1 � l 	= l′ � N
implies (ul, vl) 	= (ul′ , vl′), where ul and vl are the two players defining potential
Φl. At every game G whose potential is the sum of two-player potentials, i.e.,
Φ = Φ1 + · · · + ΦN , we can associate a social graph G that has a vertex for each
player of G and has edge (u, v) iff there exists l such that potential Φl depends
on players u and v. In other words, each game whose potential is the sum of
two-player potentials is a local interaction game.

Observe that if two potentials satisfy (3), then such is also their sum. Hence
we have the following proposition.
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Proposition 3. The all-logit dynamics for local interaction games are reversible.

Next we prove that also the reverse implication holds.

Proposition 4. If an n-player potential Φ satisfies (3) then it can be written
as the sum of at most N =

(
n
2

)
two-player potentials, Φ1, . . . , ΦN and thus it

represents a local interaction game.

Proof (idea). Let z
i denote the first strategy in each player’s strategy set and
let z
 be the strategy profile (z
1 , . . . , z



n). Moreover, we fix an arbitrary ordering

(u1, v1), . . . , (uN , vN ) of the N unordered pairs of players. For a potential Φ
we define the sequence ϑ0, . . . , ϑN of potentials as follows: ϑ0 = Φ and, for
i = 1, . . . , N , set ϑi = ϑi−1 − Φi where, for x ∈ S, Φi(x) is defined as Φi(x) =
ϑi−1(xui , xvi , z



−uivi). Observe that, for i = 1, . . . , N , Φi is a two-player potential

and its players are ui and vi. Moreover,
∑N

i=1 ϑi =
∑N−1

i=0 ϑi −
∑N

i=1 Φi. Thus

Φ− ϑN =
∑N

i=1 Φi. We show that, if Φ satisfies (3), then ϑN is identically zero.
This implies that Φ is the sum of at most N non-zero two-player potentials and
thus a local interaction game. �

We can thus conclude that if the all-logit dynamics for a potential game G are
reversible then G is a local interaction game. By combining this result with
Proposition 1 and Proposition 3, we obtain

Theorem 2. The all-logit dynamics for game G are reversible if and only if G
is a local interaction game.

Stationary Distribution of the All-Logit for Local Interaction Games.

Theorem 3 (Stationary Distribution). Let G be a local interaction game
with potential function Φ. Then the stationary distribution of the all-logit for G
is π(x) ∝ e(n−2)βΦ(x) · T (x), where T (x) =

∑
z∈S e−βΨ(x,z).

Proof (idea). Fix any profile y. The detailed balance equation and Proposition 2

give π(x) = e(n−2)βΦ(x) · T (x)
(

π(y)
e(n−2)βΦ(y) ·T (y)

)
, for every x ∈ S. Since the term

in parenthesis does not depend on x the theorem follows. �

For a local interaction game G with potential function Φ we write π1(x),

the stationary distribution of the one-logit for G, as π1(x) = γ1(x)/Z1 where
γ1(x) = e−βΦ(x) (also termed Boltzmann factor) and Z1 =

∑
x γ1(x) is the

partition function. From Theorem 3, we derive that πA(x), the stationary distri-

bution of the all-logit for G, can be written in similar way, i.e., πA(x) = γA(x)
ZA

,

where γA(x) =
∑

y∈S e−β[Ψ(x,y)−(n−2)Φ(x)] and ZA =
∑

x∈S γA(x) is the par-
tition function of the all-logit. Simple algebraic manipulations show that, by
setting K(x,y) = 2 ·Φ(x)+

∑
i∈[n] dx,y(i) · (Φ(x−i, yi) − Φ(x)) where dx,y is the

characteristic vector of positions i in which x and y differ (i.e., dx,y(i) = 1 if
xi 	= yi and 0 otherwise), we can write γA(x) and ZA as

γA(x) =
∑
y∈S

e−βK(x,y) and ZA =
∑
x,y

e−βK(x,y). (4)
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4 Observables of Local Information Games

In this section we study observables of local interaction games and we focus
on the relation between the expected value 〈O, π1〉 of an observable O at the
stationarity of the one-logit and its expected value 〈O, πA〉 at the stationarity
of the all-logit dynamics. In Theorem 5, we give a sufficient condition for an
observable to be invariant, that is for having the two expected values to coincide.
The sufficient condition is related to the existence of a decomposition of the
set S × S that decomposes the quantity K appearing in the expression for the
stationary distribution of the all-logit for the local interaction game G (see Eq. 4)
into a sum of two potentials. In Theorem 5 we show that if G admits such a
decomposition μ and in addition observable O is also decomposed by μ (see
Definition 2) then O has the same expected value at the stationarity of the one-
logit and of the all-logit dynamics. We then show that all local interaction games
on bipartite social graphs admit a decomposition permutation (see Theorem 4)
and give an example of invariant observable.

The above finding follows from a relation between the partition functions of
the one-logit and of the all-logit dynamics that might be of independent interest.
More precisely, in Theorem 4 we show that if the game G admits a decomposition
then the partition function of the all-logit is the square of the partition function
of the one-logit dynamics. The partition function of the one-logit is easily seen
to be equal to the partition function of the canonical ensemble used in Statistical
Mechanics (see for example [18]). It is well known that a partition function of
a canonical ensemble that is the union of two independent canonical ensembles
is the product of the two partition functions. Thus Theorem 4 can be seen as
a further evidence that the all-logit can be decomposed into two independent
one-logit dynamics.

Throughout this section we assume, for the sake of ease of presentation, that
each player has just two strategies available. Extending our results to any number
of strategies is straightforward.

We start by introducing the concept of a decomposition and then we define
the concept of a decomposable observable.

Definition 1. A permutation μ : (x,y) �→ (μ1(x,y), μ2(x,y)) of S × S is a de-
composition for a local interaction game G with potential Φ if, for all (x,y),
we have that K(x,y) = Φ(μ1(x,y)) + Φ(μ2(x,y)), μ1(x,y) = μ2(y,x) and
μ2(x,y) = μ1(y,x).

Theorem 4. If a decomposition μ for a local interaction game G exists, then
ZA = Z2

1 .

Proof. From (4) we have ZA =
∑

x,y e
−βK(x,y) =

∑
x,y e

−β[Φ(μ1(x,y))+Φ(μ2(x,y))].

Since μ is a permutation of S × S, we have ZA =
∑

x,y e
−β[Φ(x)+Φ(y)] = Z2

1 . �


Definition 2. An observable O is decomposable if there exists a decomposition
μ such that, for all (x,y), it holds that O(x)+O(y) = O(μ1(x,y))+O(μ2(x,y)).
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We next prove that a decomposable observable has the same expectation at
stationarity of the one-logit and the all-logit dynamics.

Theorem 5. If observable O is decomposable then 〈O, π1〉 = 〈O, πA〉.

Proof (idea). Suppose that O is decomposed by μ. Then we have that, for all
x ∈ S, γA(x) =

∑
y γ1(μ1(x,y)) · γ1(μ2(x,y)) and thus

〈O, πA〉 =
1

2

1

ZA

∑
x,y

[O(x) + O(y)] γ1(μ1(x,y))γ1(μ2(x,y)),

where we used the property that μ1(x,y) = μ2(y,x) and μ2(x,y) = μ1(y,x).
The theorem follows since O is decomposable. �


We next prove that for all local interaction games on a bipartite social graph
there exists a decomposition. We start with the following sufficient condition for
a permutation to be a decomposition.

Lemma 3. Let G be a social interaction game on social graph G with potential
Φ and let μ be a permutation of S × S such that, for all x,y ∈ S, we have
μ1(x,y) = μ2(y,x), μ2(x,y) = μ1(y,x) and for all edges e = (u, v) of G and
for all x,y ∈ S either (x̃u, x̃v, ỹu, ỹv) = (xu, yv, yu, xv) or (x̃u, x̃v, ỹu, ỹv) =
(yu, xv, xu, yv), where x̃ = μ1(x,y) and ỹ = μ2(x,y). Then μ is a decomposition
of G.

Proof (idea). We prove by simple case analysis that the contribution of each edge
e = (u, v) to K(x,y) is Φe(x̃u, x̃v) + Φe(ỹu, ỹv). The lemma is then obtained by
summing over all edges e. �


Theorem 6. Let G be a social interaction game on a bipartite graph G. Then
G admits a decomposition.

Proof (idea). Let (L,R) be the set of vertices in which G is bipartite. For each
(x,y) ∈ S × S we define x̃ = μ1(x,y) and ỹ = μ2(x,y) as follows: for every
vertex u of G, (i) if u ∈ L then we set x̃u = xu and ỹu = yu; (ii) if u ∈ R then
we set x̃u = yu and ỹu = xu.

First of all, observe that the mapping is an involution and thus it is also a
permutation and that μ1(x,y) = μ2(y,x) and μ2(x,y) = μ1(y,x). From the
bipartiteness of G it follows that for each edge one of the conditions of Lemma 3
is satisfied. Then we can conclude that the mapping is a decomposition. �


We now give an example of decomposable observable. Consider the observable
Diff that returns the (signed) difference between the number of vertices adopting
strategy 0 and the number of vertices adopting strategy 1. That is, Diff(x) =
n−2

∑
u xu. In local interaction games used to model the diffusion of innovations

in social networks and the spread of new technology (see, for example, [26]), this
observable is a measure of how wide is the adoption of the innovation. The Diff
observable is also meaningful in the Ising model for ferromagnetism (see, for
example, [20]) as it is the measured magnetism.
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To prove that Diff is decomposable we consider the mapping used in the proof
of Theorem 6 and observe that, for every vertex u and for every (x,y) ∈ S × S,
we have xu+yu = x̃u+ỹu. Whence we conclude that O(x)+O(y) = O(x̃)+O(ỹ).

Decomposable Observables for General Graphs. We can show that for
local interaction games G on general social graphs G the expected values of a
decomposable observable O with respect to the stationary distributions of the
one-logit and of the all-logit dynamics differ by a quantity that depends on β
and on how far away the social graph G is from being bipartite (which in turn
is related to the smallest eigenvalue of G [25]). Due to lack of space we omit the
details of that result and refer the interested reader to the full version of this
paper [4].

5 Future Directions

In this paper we considered the selection rule where all players play concurrently.
A natural extension of this selection rule assigns a different probability to each
subset of players. What is the impact of such a probabilistic selection rule on
reversibility and on observables? Some interesting results along that direction
have been obtained in [1,2]. Notice that if we consider the selection rule that
selects player i with probability pi > 0 (the one-logit dynamics set pi = 1/n for
all i) then the stationary distribution is the same as the stationary distribution
of the one-logit. Therefore, all observables have the same expected value and all
potential games are reversible.

It is a classical result that the Gibbs distribution, that is the stationary dis-
tribution of the one-logit dynamics (the micro-canonical ensemble, in Statistical
Mechanics parlance), is the distribution that maximizes the entropy among all
the distributions with a fixed average potential. Can we say something similar
for the stationary distribution of the all-logit? A promising direction along this
line of research is suggested by the results in Section 4: at least in some cases the
stationary distribution of the all-logit dynamics can be seen as a composition of
simpler distributions.
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Abstract. We introduce and investigate a new notion of resilience in
graph spanners. Let S be a spanner of a graph G. Roughly speaking,
we say that a spanner S is resilient if all its point-to-point distances are
resilient to edge failures. Namely, whenever any edge in G fails, then as a
consequence of this failure all distances do not degrade in S substantially
more than in G (i.e., the relative distance increases in S are very close
to those in the underlying graph G). In this paper we show that sparse
resilient spanners exist, and that they can be computed efficiently.

1 Introduction

Spanners are fundamental graph structures that have been extensively studied
in the last three decades. Given a graph G, a spanner is a (sparse) subgraph of G
that preserves the approximate distance between each pair of vertices. More pre-
cisely, for α ≥ 1 and β ≥ 0, an (α, β)-spanner of a graph G = (V,E) is a subgraph
S = (V,ES), ES ⊆ E, that distorts distances in G up to a multiplicative factor
α and an additive term β: i.e., for all vertices x, y, dS(x, y) ≤ α · dG(x, y) + β,
where dG denotes the distance in graph G. We refer to (α, β) as the distorsion
of the spanner. As a special case, (α, 0)-spanners are known as multiplicative
spanners (also denoted as t-spanners, for t = α: dS(x, y) ≤ t · dG(x, y)), and
(1, β)-spanners are known as additive spanners (dS(x, y) ≤ dG(x, y) + β). Note
that an (α, β)-spanner is trivially a multiplicative (α + β)-spanner. It is known

how to compute in O(m+n) time a multiplicative (2k−1)-spanner, with O(n1+ 1
k )

edges [2,17] (which is conjectured to be optimal for any k), in O(n2.5) time addi-

tive 2-spanners with O(n
3
2 ) edges [16] and in O(mn2/3) time additive 6-spanners

with O(n
4
3 ) edges [7], where m and n are respectively the number of edges and

vertices in the original graph G. Multiplicative t-spanners are only considered
for t ≥ 3, as multiplicative 2-spanners can have as many as Θ(n2) edges: this
implies that (α, β)-spanners are considered for α + β ≥ 3.

Spanners have been investigated also in the fully dynamic setting, where edges
may be added to or deleted from the original graph. In [4], a (2,1)-spanner and
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a (3,2)-spanner of an unweighted graph are maintained under an intermixed
sequence of Ω(n) edge insertions and deletions in O(Δ) amortized time per op-
eration, where Δ is the maximum vertex degree of the original graph. The (2,1)-
spanner has O(n3/2) edges, while the (3,2)-spanner has O(n4/3) edges. A faster
randomized dynamic algorithm for general multiplicative spanners has been later
proposed by Baswana [6]: given an unweighted graph, a (2k − 1, 0)-spanner of
expected size O(k ·n1+1/k) can be maintained in O( m

n1+1/k ·polylogn) amortized
expected time for each edge insertion/deletion, where m is the current number of
edges in the graph. For k = 2, 3 (multiplicative 3- and 5-spanners), the amortized
expected time of the randomized algorithm becomes constant. The algorithm by
Elkin [15] maintains a (2k − 1, 0)-spanner with expected O(kn1+1/k) edges in
expected constant time per edge insertion and expected O( m

n1/k ) time per edge
deletion. More recently, Baswana et al. [8] proposed two faster fully dynamic ran-
domized algorithms for maintaining (2k − 1, 0)-spanners of unweighted graphs:
the expected amortized time per insertion/deletion is O(7k/2) for the first algo-
rithm and O(k2 log2 n) for the second algorithm, and in both cases the spanner
expected size is optimal up to a polylogaritmic factor.

As observed in [11], this traditional fully dynamic model may be too pes-
simistic in several application scenarios, where the possible changes to the un-
derlying graph are rather limited. Indeed, there are cases where there can be only
temporary network failures: namely, graph edges may occasionally fail, but only
for a short period of time, and it is possible to recover quickly from such failures.
In those scenarios, rather than maintaining a fully dynamic spanner, which has
to be updated after each change, one may be more interested in working with a
static spanner capable of retaining much of its properties during edge deletions,
i.e., capable of being resilient to transient failures.

Being inherently sparse, a spanner is not necessarily resilient to edge deletions
and it may indeed lose some of its important properties during a transient failure.
Indeed, let S be an (α, β)-spanner of G: if an edge e fails in G, then the distortion
of the spanner may substantially degrade, i.e., S \ e may no longer be an (α, β)-
spanner or even a valid spanner of G\ e, where G\ e denotes the graph obtained
after removing edge e from G. In their pioneering work, Chechik et al. [11]
addressed this problem by introducing the notion of fault-tolerant spanners, i.e.,
spanners that are resilient to edge (or vertex) failures. Given an integer f ≥ 1, a
spanner is said to be f -edge (resp. vertex) fault-tolerant if it preserves its original
distortion under the failure of any set of at most f edges (resp. vertices). More
formally, an f -edge (resp. vertex) fault-tolerant (α, β)-spanner of G = (V,E) is a
subgraph S = (V,ES), ES ⊆ E, such that for any subset F ⊆ E (resp. F ⊆ V ),
with |F | ≤ f , and for any pair of vertices x, y ∈ V (resp. x, y ∈ V \ F ) we
have dS\F (x, y) ≤ α · dG\F (x, y) + β, where G \ F denotes the subgraph of G
obtained after deleting the edges (resp. vertices) in F . Algorithms for computing
efficiently fault-tolerant spanners can be found in [5,10,11,14].

The distortion is not the only property of a spanner that may degrade because
of edge failures. Indeed, even when the removal of an edge cannot change the
overall distortion of a spanner (such as in the case of a fault-tolerant spanner),
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it may still cause a sharp increase in some of its distances. Note that while the
distortion is a global property, distance increases are local properties, as they are
defined for pairs of vertices. To address this problem, one would like to work with
spanners that are not only globally resilient (such as fault-tolerant spanners) but
also locally resilient. In other terms, we would like to make the distances between
any pair of vertices in a spanner resilient to edge failures, i.e., whenever an edge
fails, then the increases in distances in the spanner must be very close to the
increases in distances in the underlying graph. More formally, given a graph G
and an edge e in G, we define the fragility of edge e as the maximum relative
increase in distance between any two vertices when e is removed from G:

fragG(e) = max
x,y∈V

{
dG\e(x, y)

dG(x, y)

}
Our definition of fragility of an edge is somewhat reminiscent of the notion of
shortcut value, as contained in [20], where the distance increase is alternatively
measured by the difference, instead of the ratio, between distances in G \ e and
in G. Note that for unweighted graphs, fragG(e) ≥ 2 for any edge e. The fragility
of edge e can be seen as a measure of how much e is crucial for the distances in
G, as it provides an upper bound to the increase in distance in G between any
pair of vertices when edge e fails: the higher the fragility of e, the higher is the
relative increase in some distance when e is deleted.

Our Contribution. To obtain spanners whose distances are resilient to tran-
sient edge failures, the fragility of each edge in the spanner must be as close as
possible to its fragility in the original graph. In this perspective, we say that
a spanner S of G is σ-resilient if fragS(e) ≤ max{σ, fragG(e)} for each edge
e ∈ S, where σ is a positive integer. Note that in case of unweighted graphs, for
σ = 2 this is equivalent to fragS(e) = fragG(e). We remark that finding sparse
2-resilient spanners may be an overly ambitious goal, as we prove that there
exists a family of dense graphs for which the only 2-resilient spanner coincides
with the graph itself. It can be easily seen that in general (α, β)-spanners are
not σ-resilient. Furthermore, it can be shown that even edge fault-tolerant mul-
tiplicative t-spanners are not σ-resilient, since they can only guarantee that the
fragility of a spanner edge is at most t times its fragility in the graph. In fact, we
exhibit 1-edge fault tolerant t-spanners, for any t ≥ 3, with edges whose fragility
in the spanner is at least t/2 times their fragility in G.

It seems quite natural to ask whether sparse σ-resilient spanners exist, and
how efficiently they can be computed. We show that it is possible to compute σ-
resilient (1,2)-spanners, (2,1)-spanners and (3,0)-spanners of optimal asymptotic
size (i.e., containing O(n3/2) edges). The total time required to compute our
spanners is O(mn) in the worst case. To compute our σ-resilient spanners, we
start from a non-resilient spanner, and then add to it O(n3/2) edges from a
carefully chosen set of short cycles in the original graph. The algorithm is simple
and thus amenable to practical implementation, while the upper bound on the
number of added edges is derived from non-trivial combinatorial arguments.
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The same approach can be used for turning a given (α, β)-spanner into a
σ-resilient (α, β)-spanner, for any σ ≥ α + β > 3, by adding O(n3/2) edges.
Note that this result is quite general, as (α, β)-spanners contain as special cases
all (k, k − 1)-spanners, all multiplicative (2k − 1)-spanners, for k ≥ 2, and all
additive spanners, including additive 2-spanners and 6-spanners.

All our bounds hold for undirected unweighted graphs and can be extended
to the case of graphs with positive edge weights. Our results for σ = α + β = 3
seem to be the most significant ones, both from the theoretical and the practical
point of view. From a theoretical perspective, our σ-resilient (α, β)-spanners,
with α+β = 3, have the same asymptotic size as their non-resilient counterparts.
From a practical perspective, there is empirical evidence [3] that small stretch
spanners provide the best performance in terms of stretch/size trade-offs, and
that spanners of larger stretch are not likely to be of practical value.

Table 1 summarizes previous considerations and compares our results with
the fragility and size of previously known spanners.

Table 1. Fragility and size of spanners

Spanner S dS(x, y) fragS(e) Size Ref.

multiplicative
(2k − 1)-spanner, k ≥ 2

≤ (2k − 1) · dG(x, y) unbounded O
(
n1+ 1

k

)
[2]

additive 2-spanner ≤ dG(x, y) + 2 unbounded O
(
n

3
2

)
[1]

additive 6-spanner ≤ dG(x, y) + 6 unbounded O
(
n

4
3

)
[7]

1-edge fault-tolerant
(2k − 1)-spanner, k ≥ 2

≤ (2k − 1) · dG(x, y) ≤ (2k − 1) · fragG(e) O
(
n1+ 1

k

)
[11]

σ-resilient (α, β)-spanner,
σ ≥ α+ β ≥ 3

≤ α · dG(x, y) + β ≤ max{σ, fragG(e)} O
(
n

3
2

) this
paper

Due to space limitations, some proofs are omitted. They will be given in the
full paper.

2 Preliminaries

Let G = (V,E) be an undirected unweighted graph, with m edges and n vertices.
The girth of G, denoted by girth(G), is the length of a shortest cycle in G.
A bridge is an edge e ∈ E whose deletion increases the number of connected
components of G. Note that an edge is a bridge if and only if it is not contained in
any cycle of G. Graph G is 2-edge-connected if it does not have any bridges. The
2-edge-connected components of G are its maximal 2-edge-connected subgraphs.
Let e ∈ E, and denote by Ce the set of all the cycles containing edge e: if G is
2-edge-connected, then Ce is non-empty for each e ∈ E. A shortest cycle among
all cycles in Ce is referred to as a short cycle for edge e. If G is 2-edge-connected
short cycles always exist for any edge. Short cycles are not necessarily unique:
for each e ∈ E, we denote by Γe the set of short cycles for e. Similarly, we
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denote by Pe(x, y) the set of all paths between x and y containing edge e, and
by Pe(x, y) the set of all paths between x and y avoiding edge e. We further
denote by Πe(x, y) (respectively Πe(x, y)) the set of shortest paths in Pe(x, y)
(respectively Pe(x, y)).

Recall that we defined the fragility of an edge e = (u, v) in graph G as

fragG(e) = maxx,y∈V

{
dG\e(x,y)
dG(x,y)

}
. The following lemma shows that in this def-

inition the maximum is obtained for {x, y} = {u, v}, i.e., exactly at the two
endpoints of edge (u, v).

Lemma 1. Let G = (V,E) be a connected graph with positive edge weights, and

let e = (u, v) be any edge in G. Then fragG(e) =
dG\e(u,v)
dG(u,v) .

Note that for unweighted graphs, Lemma 1 can be stated as fragG(e) = dG\e(u, v).

The fragility of all edges in a graph G = (V,E) with positive edge weights
can be trivially computed in a total of O(m2n + mn2 log n) worst-case time
by simply computing all-pairs shortest paths in all graphs G \ e, for each edge
e ∈ E. A faster bound of O(mn + n2 logn) can be achieved by using either a
careful modification of algorithm fast-exclude in [13] or by applying n times
a modified version of Dijkstra’s algorithm, as described in [18]. For unweighted
graphs, the above bound reduces to O(mn).

3 Computing σ-Resilient Subgraphs

We first show that finding sparse 2-resilient spanners may be an ambitious goal,
as there are dense graphs for which the only 2-resilient spanner is the graph
itself.

Theorem 1. There is an infinite family F of graphs such that for each graph
G ∈ F the following properties hold:

(1) G has Θ(nδ) edges, with δ > 1.72598, where n is the number of vertices
of G.

(2) No proper subgraph of G is a 2-resilient spanner of G.
(3) There exists a 2-spanner S of G such that Θ(nδ) edges of G \ S, with

δ > 1.72598, need to be added back to S in order to make it 2-resilient.

Edge fault-tolerant spanners provide a simple way to bound distance increases
under edge faults. Unfortunately, they are not σ-resilient, as the next lemma
shows.

Lemma 2. Let G = (V,E) be a graph.

(a) Let Sf be any 1-edge fault tolerant t-spanner of G. Then fragSf
(e) ≤

t · fragG(e) for each e ∈ Sf .
(b) There exist 1-edge fault-tolerant t-spanners that are not σ-resilient, for

any σ < t/2.
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To compute a σ-resilient spanner R of graph G, without any guarantees on the
number of edges in R, we may start from any (α, β)-spanner of G, with α+β ≤ σ,
and add a suitable set of backup paths for edges with high fragility:

1. Let S be any (α, β)-spanner of G, with α + β ≤ σ: initialize R to S.
2. For each edge e = (u, v) ∈ S such that fragS(e) > σ, select a shortest path

between u and v in G \ e and add it to R.

The correctness of our approach hinges on the following theorem.

Theorem 2. Let S be an (α, β)-spanner of a graph G, and let R be computed
by adding to S a backup path for each edge e with fragS(e) > σ. Then R is a
σ-resilient (α, β)-spanner of G.

Proof. R is trivially an (α, β)-spanner, since it contains an (α, β)-spanner S.
It remains to show that R is σ-resilient. Let e = (u, v) be any edge in R. We
distinguish two cases, depending on whether e was in the initial (α, β)-spanner
S or not:

– e ∈ S: if fragS(e) ≤ σ then also fragR(e) ≤ σ. If fragS(e) > σ, a shortest path
in G \ e joining u and v has been added to S, yielding fragR(e) = fragG(e);

– e ∈ R \ S: since S is an (α, β)-spanner of G, it must also contain a path
between u and v of length at most α + β. This implies that fragR(e) ≤
fragS(e) ≤ α + β ≤ σ. �


Note that any σ-resilient spanner R, computed by adding backup paths for
high fragility edges, inherits the properties of the underlying (α, β)-spanner S,
i.e., if S is fault-tolerant then R is fault-tolerant too. Let T (m,n) and S(n) be
respectively the time required to compute an (α, β)-spanner S and the number
of edges in S. A trivial implementation of the above algorithm requires a total of
O(T (m,n)+S(n) · (m+n)) time for unweighted graphs and produces σ-resilient
spanners with O(n ·S(n)) edges. In the next section we will show how to improve
the time complexity and how to limit the number of added edges.

3.1 Main Results: Improving Size and Running Time

Theorem 2 does not depend on how backup paths are selected. In order to
bound the number of added edges, we first show that in an unweighted graph
the number of edges with high fragility is small (Theorem 3), and then we show
how to carefully select shortest paths to be added as backup paths, so that the
total number of additional edges required is small (Theorem 4). By combining

the two bounds above, we obtain σ-resilient (α, β)-spanners with O(n
3
2 ) edges in

the worst case (Theorem 5). We start by bounding the number of high fragility
edges in any graph. For lack of space, the following theorem is proved only for
unweighted graphs. However, it holds for graphs with positive edge weights as
well.

Theorem 3. Let G = (V,E) be a graph, an let σ be any positive integer. Then,
the number of edges of G having fragility greater than σ is O(n1+1/
(σ+1)/2�).
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Proof. Let L be the subgraph of G containing only edges whose fragility is greater
than σ. If L contains no cycle, then L has at most (n−1) edges and the theorem
trivially follows. Otherwise, let C be a cycle in L, let � be the number of edges in
C, and let e be any edge in C. Note that fragL(e) ≤ �−1. Since L is a subgraph of
G, we have fragG(e) ≤ fragL(e). Thus, � ≥ fragG(e) + 1. This holds for any cycle
in L, and hence girth(L) = mine∈L{fragL(e)}+1 ≥ mine∈L{fragG(e)}+1 > σ+1.
As proved by Bondy and Simonovits [9], a graph with girth greater than σ + 1
contains O(n1+1/
(σ+1)/2�) edges. �


We now tackle the problem of selecting the shortest paths to be added as
backup paths, so that the total number of additional edges is small. Without
loss of generality, we assume that G is 2-edge-connected: if it is not, all bridges
in G will necessarily be included in any spanner and our algorithm can be sep-
arately applied to each 2-edge-connected component of G. Let e = (u, v) be an
edge of high fragility in the initial (α, β)-spanner. Note that, in order to iden-
tify a backup path for edge e, we can either refer to a shortest path between u
and v in G \ e or, equivalently, to a short cycle for e in G (i.e., the short cycle
defined by the shortest path in G \ e and the edge e itself). In the following,
we will use short cycles in G rather than shortest paths in G \ e. Recall from
Section 2 that we denote by Γe the set of short cycles for e, and by Πe(x, y) (re-
spectively Πe(x, y)) the set of shortest paths in Pe(x, y) (respectively Pe(x, y)).
The following property is immediate:

Property 1. Let e be any edge of G, let C ∈ Γe be a short cycle for e, and let
x, y be any two vertices in C. Then x and y split C into two paths Ce and Ce,
with Ce ∈ Πe(x, y) and Ce ∈ Πe(x, y).

Property 1 allows us to prove the following lemma:

Lemma 3. Let e and f be any two edges in G. If two short cycles A ∈ Γe and
B ∈ Γf share two common vertices, say x and y, then either Bf ∪Ae or Bf ∪Ae

is a short cycle for edge f , where {Ae, Ae} and {Bf , Bf} are the decompositions
of A and B with respect to x and y defined in Property 1.

Proof. Since A is a short cycle in Γe, edge f cannot belong to both Ae and Ae.
We distinguish two cases:

– f 	∈ Ae: in this case, Ae ∈ Πf (x, y) and replacing Bf by Ae yields a short
cycle in Γf .

– f ∈ Ae, which implies that f 	∈ Ae. In this case, Ae ∈ Πf (x, y) and replacing
Bf by Ae yields a short cycle in Γf . �


Lemma 3 can be intuitively read as follows. Given two edges e and f , let Ce

be a short cycle for e and let Cf be a short cycle for f . If Ce and Cf cross
in two vertices, then we can compute an alternative short cycle for f , say C′

f ,
which has a larger intersection with Ce (i.e., such that Ce ∪ C′

f has fewer edges
than Ce ∪ Cf ). This property allows us to select backup paths in such a way
that the total number of additional edges required is relatively small. To do
that efficiently, we apply a modified version of algorithm fast-exclude in [13].
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For lack of space, we only sketch here the main modifications needed and refer to
the full paper for the low-level details of the method. Algorithm fast-exclude

is based on Dijkstra’s algorithm and computes shortest paths avoiding a set
of independent paths, from a source vertex u to any other vertex. In order to
find short cycles for the set Fu of high fragility edges incident to vertex u, we
would like to apply algorithm fast-exclude so that it avoids all edges in Fu.
Unfortunately, Fu is not a proper set of independent paths (as defined in [13]),
and so algorithm fast-exclude cannot be applied directly. We circumvent this
problem by splitting each edge (u, v) ∈ Fu into two edges (u, v′), (v′, v) with
the help of an extra vertex v′, and by letting algorithm fast-exclude avoid
all edges of the form (v′, v), since they form a set of independent paths. A
second modification of algorithm fast-exclude consists of giving higher priority,
during the Dijkstra-like visits, to the edges that have been already used, so that
whenever a short cycle for an edge e has to be output, the algorithm selects
a short cycle containing fewer new edges (i.e., edges not already contained in
previously output short cycles), as suggested by Lemma 3. This allows us to
prove the following theorem.

Theorem 4. Given q > 0 edges e1, e2, . . . , eq in a 2-edge-connected graph G,
there always exist short cycles C1, C2, . . . , Cq in G, with Ci ∈ Γei for 1 ≤ i ≤ q,
such that the graph ∪q

i=1Ci has O(min{q√n + n, n
√
q + q}) edges.

Proof. Let C1, C2, . . . , Cq be the cycles in the order in which they are found by
the modified version of algorithm fast-exclude, and let Vi and Ei be respec-
tively the vertex set and the edge set of Ci, for 1 ≤ i ≤ q. We partition each Ei

into the following three disjoint sets:

– Eold
i : edges in Ei ∩

(⋃i−1
j=1 Ej

)
, i.e., edges already in some Ej , j < i.

– Enew
i : edges with at least one endpoint not contained in

⋃i−1
j=1 Vj .

– Ecross
i : edges not contained in Eold

i and with both endpoints in
⋃i−1

j=1 Vj .
To prove the theorem, we have to bound the number of edges in

⋃q
i=1 Ei. We

only need to count the total number of edges in
⋃q

i=1 E
new
i and

⋃q
i=1 E

cross
i ,

since each edge in Eold
i , for any 1 ≤ i ≤ q, has been already accounted for

in some Enew
j or Ecross

j , with j < i. Since each edge in Enew
i can be amortized

against a new vertex, and at most two new edges are incident to each new vertex,
|
⋃q

i=1 E
new
i | ≤ 2 · n.

To bound the size of sets Ecross
i , we proceed as follows. For each cycle Ci

we choose an arbitrary orientation
−→
Ci, in one of the two possible directions and

direct its edges accordingly. For directed edge e = (x, y) we denote vertex x as
tail(e). We build a bipartite graph B in which one vertex class represents the n
vertices v1, v2, . . . , vn in G, and the other vertex class represents the q directed

short cycles
−→
C1,

−→
C2, ...,

−→
Cq. There is an edge in B joining cycle Ci and vertex v if

and only if v is the tail of an edge in Ecross
i . It is possible to see that the degree

of Ci in B is the size of Ecross
i , since each edge in B corresponds to an edge in⋃q

i=1 E
cross
i and vice versa.

We claim that two vertices x and y cannot be tails of two pairs of directed
edges in Ecross

i and Ecross
j (see Figure 1). We prove this claim by contradiction.
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x

y

Ci Cj
f

g

π2τ2 1π
1τ

Fig. 1. On the proof of Theorem 4. If cycle Ci is detected after cycle Cj, then either
edge f or g is not in Ecross

i . In fact, one among π1 or π2 should have been included in
Ci in place of τ1.

Assume without loss of generality i > j (i.e., short cycle Cj has been output
before short cycle Ci). Since whenever a short cycle has to be output, our algo-
rithm selects a short cycle containing fewer new edges (i.e., edges not contained
already in previously output short cycles), either the path τ1 or τ2 of Ci should
have been replaced by portion π1 or portion π2 of Cj (as in Lemma 3). Let f
and g be the two directed edges in Ecross

i with tail(f) = x and tail(g) = y: by
the above argument, one among f and g should be in Eold

i instead of Ecross
i ,

yielding a contradiction.
The previous claim implies that the bipartite graph B does not contain K2,2

as a (not necessarily induced) subgraph. Determining the maximum number of
edges in B is a special case of Zarankiewicz’s problem [23]. This problem has
been solved by Kővári, Sós, Turán [19] (see also [21], p. 65), who proved that
any bipartite graph G with vertex classes of size m and n containing no subgraph
Kr,s, with the r vertices in the class of size m and the s vertices in the class
of size n, has O

(
min

{
mn1−1/r + n,m1−1/sn + m

})
edges, where the constant

of proportionality depends on r and s. Since in our case the bipartite graph B
has vertex classes of size n and q, and r = s = 2, it follows that B contains
O(min{q

√
n + n, n

√
q + q}) edges.

In summary, the total number of edges in the graph
⋃q

i=1 Ci is bounded by∣∣∣∣∣
q⋃

i=1

(
Eold

i ∪ Enew
i ∪ Ecross

i

)∣∣∣∣∣ ≤ 2n + O
(
min

{
q
√
n + n, n

√
q + q

})
and thus the theorem holds. �


We observe that Theorem 4 is closely related to a result of Coppersmith
and Elkin [12] on distance preservers. Given a graph G and p pairs of vertices
{(v1, w1), . . . (vp, wp)}, a pairwise distance preserver is a subgraph S of G such
that dS(vi, wi) = dS(vi, wi), for 1 ≤ i ≤ p. In particular, Coppersmith and
Elkin [12] showed that it is always possible to compute a pairwise distance pre-
server containing O(min{p

√
n+n, n

√
p+p}) edges. Theorem 4 can be extended

to weighted and directed graphs and provides an alternative (and simpler) proof
of the result in [12].
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We are now ready to bound the size and the time required to compute a
σ-resilient (α, β)-spanner.

Theorem 5. Let G be a graph with m edges and n vertices. Let S be any (α, β)-
spanner of G, and denote by T (m,n) and S(n) respectively the time required to
compute S and the number of edges in S. Then a σ-resilient (α, β)-spanner R
of G, with σ ≥ α + β, can be computed in O(T (m,n) + mn) time. Furthermore,
R ⊇ S and R has O

(
S(n) + n3/2

)
edges.

Proof. As explained above, a σ-resilient (α, β)-spanner R can be computed by
adding a set C of short cycles to S, one for each edge e ∈ S with fragG(e) > σ.
Let Ce be the cycle in Γe computed by our algorithm.

We partition egdes e ∈ S with fragG(e) > σ into three subsets E�, Em and
Eh, according to their fragility in G. For each subset we separately bound the
number of edges in the union of cycles in C.

low fragility edges: E� = {e ∈ S | σ ≤ fragG(e) ≤ 5}. Obviously, we have
|E�| ≤ S(n), and since each cycle Ce, e ∈ E�, contains at most 5 edges, we
have

∣∣⋃
e∈E�

Ce

∣∣ = O (S(n)).

medium fragility edges: Em = {e ∈ S | max{σ, 6} ≤ fragG(e) < logn}. By
Theorem 3, since the fragility of each edge in Em is greater than 5, |Em| =
O(n4/3). Since each cycle Ce, e ∈ Em, contains at most logn edges, we have∣∣⋃

e∈Em
Ce

∣∣ = O
(
n

4
3 · log n

)
.

high fragility edges: Eh = {e ∈ S | fragG(e) ≥ logn}. By Theorem 3, |Eh| =

O
(
n1+ 2

log n

)
= O(n), and by Theorem 4 we have∣∣⋃

e∈Eh
Ce

∣∣ = O
(
n ·

√
|Eh|

)
= O

(
n

3
2

)
.

Hence the total number of edges in R is∣∣∣∣∣ ⋃
e∈E�∪Em∪Eh

Ce

∣∣∣∣∣ = O
(
S(n) + n

3
2

)
To bound the running time, we observe that we find the fragility of each edge

in S and then we compute a set of short cycles as suggested by Lemma 3. The
fragility of each edge and the set of short cycles can be computed by a proper
modification of algorithm fast-exclude in [13] in a total of O(mn) worst-case
time. �


Theorem 5 allows us to compute σ-resilient versions of several categories of
spanners, including multiplicative (2k − 1)-spanners and (k, k − 1)-spanners for
k ≥ 2, (1, 2)-spanners and (1, 6)-spanners. Since the time required to compute all
those underlying spanners is O(mn), in all those cases the time required to build
a σ-resilient spanner is O(mn). Theorem 5 can also be applied to build σ-resilient
f -spanners, where f is a general distortion function as defined in [22], provided
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that σ ≥ f(1). Furthermore, if we wish to compute a σ-resilient (α, β)-spanner
with σ < α+β, the same algorithm can still be applied starting from a σ-spanner
instead of an (α, β)-spanner, yielding the same bounds given in Theorem 5.

Our results can be extended to weighted graphs, since Theorems 3 and 4 also
hold for graphs with positive edge weights. Let wmax and wmin be respectively
the weights of the heaviest and lightest edge in the graph, and let W = wmax

wmin
. For

either σ > logn or σ ≥ 5 and W = O
((

n
1
2−

1
�(σ+1)/2�

)
/ logn

)
, we can compute

a σ-resilient t-spanner with O(n
3
2 ) edges in O(mn) time. In the remaining cases

(either σ ≥ 5 and larger W or σ = 3, 4), the total number of edges becomes

O(W · n 3
2 ). For lack of space, the details are deferred to the full paper.

4 Conclusions and Further Work

In this paper, we have investigated a new notion of resilience in graph spanners by
introducing the concept of σ-resilient spanners. In particular, we have shown that
it is possible to compute small stretch σ-resilient spanners of optimal size. The
techniques introduced for small stretch σ-resilient spanners can be used to turn
any generic (α, β)-spanner into a σ-resilient (α, β)-spanner, for σ ≥ α + β > 3,
by adding a suitably chosen set of at most O(n3/2) edges. The same approach is
also valid for graphs with positive edge weights.

We expect that in practice our σ-resilient spanners, for σ ≥ α+β > 3, will be
substantially sparser than what it is implied by the bounds given in Theorem 5,
and thus of higher value in applicative scenarios. Towards this aim, we plan to
perform a thorough experimental study. Another intriguing question is whether
our theoretical analysis on the number of edges that need to be added to an
(α, β)-spanner in order to make it σ-resilient provides tight bounds, or whether
it can be further improved.
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Abstract. Sensor networks are ubiquitously used for detection and
tracking and as a result covering is one of the main tasks of such networks.
We study the problem of maximizing the coverage lifetime of a barrier by
mobile sensors with limited battery powers, where the coverage lifetime
is the time until there is a breakdown in coverage due to the death of a
sensor. Sensors are first deployed and then coverage commences. Energy
is consumed in proportion to the distance traveled for mobility, while
for coverage, energy is consumed in direct proportion to the radius of
the sensor raised to a constant exponent. We study two variants which
are distinguished by whether the sensing radii are given as part of the
input or can be optimized, the fixed radii problem and the variable radii
problem. We design parametric search algorithms for both problems for
the case where the final order of the sensors is predetermined and for the
case where sensors are initially located at barrier endpoints. In contrast,
we show that the variable radii problem is strongly NP-hard and provide
hardness of approximation results for fixed radii for the case where all
the sensors are initially co-located at an internal point of the barrier.

1 Introduction

One important application of Wireless Sensor Networks is monitoring a barrier
for some phenomenon. By covering the barrier, the sensors protect the interior of
the region from exogenous elements more efficiently than if they were to cover the
interior area. In this paper we focus on a model in which sensors are battery-
powered and both moving and sensing drain energy. A sensor can maintain
coverage until its battery is completely depleted. The network of sensors cover
the barrier until the death of the first sensor, whereby a gap in coverage is created
and the life of the network expires.

More formally, there are n sensors denoted by {1, . . . , n}. Each sensor i has
a battery of size bi and initial position xi. The coverage task is accomplished in
two phases. In the deployment phase, sensors move from their initial positions
to new positions, and in the covering phase the sensors set their sensing radii to
fully cover the barrier. A sensor which moves a distance d drains a · d amount
of battery on movement for some constant a ≥ 0. In the coverage phase, sensing

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 97–108, 2013.
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with a radius of r drains energy per time unit in direct proportion to rα, for some
constant α ≥ 1 (see e.g., [1,11]). The lifetime of a sensor i traveling a distance
di and sensing with a radius ri is given by Li = bi−adi

rαi
. The coverage lifetime of

the barrier is the minimum lifetime of any sensor, mini Li. We seek to determine
a destination yi and a radius ri, for each sensor i, that maximizes the barrier
coverage lifetime of the network.

Many parameters govern the length of coverage lifetime, and optimizing them
is hard even for simple variants. Thus, most of the past research adopted natural
strategies that try to optimize the lifetime indirectly. For example, the duty cycle
strategy partitions the sensors into disjoint groups that take turns in covering
the barrier. The idea is that a good partition would result in a longer lifetime.
Another example is the objective of minimizing the maximum distance traveled
by any of the sensors. This strategy would maximize the coverage lifetime for
sensors with homogeneous batteries and radii, but would fail to do so if sensors
have non-uniform batteries or radii. See a discussion in the related work section.

In this paper we address the lifetime maximization problem directly. We focus
on the set-up and sense model in which the sensors are given one chance to set
their positions and sensing radii before the coverage starts. We leave the more
general model in which sensors may adjust their positions and sensing radii
during the coverage to future research.

Related Work. There has been previous research on barrier coverage focused
on minimizing a parameter which is proportional to the energy sensors expend on
movement, but not directly modeling sensor lifetimes with batteries. Czyzowicz
et al. [8] assume that sensors are located at initial positions on a line barrier
and that the sensors have fixed and identical sensing radii. The goal is to find a
deployment that covers the barrier and that minimizes the maximum distance
traveled by any sensor. Czyzowicz et al. provide a polynomial time algorithm
for this problem. Chen et al. [7] extended the result to the more general case in
which the sensing radii are non-uniform (but still fixed).

Czyzowicz et al.[9] considered covering a line barrier with sensors with the
goal of minimizing the sum of the distances traveled by all sensors. Mehrandish
et al. [12] considered the same model with the objective of minimizing the num-
ber of sensors which must move to cover the barrier. Tan and Wu [14] presented
improved algorithms for minimizing the max distance traveled and minimizing
the sum of distances traveled when sensors must be positioned on a circle in
regular n-gon position. The problems were initially considered by Bhattacharya
et al. [5]. Several works have considered the problem of covering a straight-line
boundary by stationary sensors. Li et al. [11] look to choose radii for sensors for
coverage which minimize the sum of the power spent. Agnetis et al. [1] seek to
choose radii for coverage to minimize the sum of a quadratic cost function. Max-
imizing the network lifetime of battery-powered sensors that cover a barrier was
previously considered for static sensors from a scheduling point of view. Buchs-
baum et al. [6] and Gibson and Varadarajan [10] considered the Restricted

Strip Covering in which sensors are static and radii are fixed, but sensors
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may start covering at any time. Bar Noy et al. [2,3,4] considered the variant of
this problem in which the radii are adjustable.

The only previous result we are aware of that considered a battery model with
movement and transmission on a line is by Phelan et al. [13] who considered the
problem of maximizing the transmission lifetime of a sender to a receiver on a
line using mobile relays.

Our Contribution. We introduce two problems in the model in which sensors
are battery-powered and both moving and sensing drain energy. In the Barrier

Coverage with Variable Radii problem (abbreviated BCVR) we are given
initial locations and battery powers, and the goal is to find a deployment and
radii that maximizes the lifetime. In the Barrier Coverage with Fixed

Radii problem (BCFR) we are also given a radii vector ρ, and the goal is to
find a deployment and a radii assignment r, such that ri ∈ {0, ρi}, for every i,
that maximizes the lifetime.

In the full version we show that the static (a = ∞) and fully dynamic (a =
0) cases are solvable in polynomial time for both BCFR and BCVR. On the
negative side, we show in Section 5 that it is NP-hard to approximate BCFR

(i) within any multiplicative approximation factor, or (ii) within an additive
factor ε, for some ε > 0, in polynomial time unless P=NP, for any a ∈ (0,∞)
and α ≥ 1, even if x = pn, where p ∈ (0, 1). We also show that BCVR is strongly
NP-hard for any a ∈ (0,∞) and α ≥ 1.

In Section 3 we consider constrained versions of BCFR and BCVR in which
the input contains a total order on the sensors that the solution is required
to satisfy. We design a polynomial-time algorithm for the decision problem of
BCFR in which the goal is to determine whether a given lifetime t is achievable
and to compute a solution with lifetime t, if t is achievable. We design a similar
algorithm for BCVR that, given t and ε > 0, determines whether t− ε is achiev-
able. Using these decision algorithms we present parametric search algorithms
for constrained BCFR and BCVR. We consider the case where the sensors are
initially located on the edges of the barrier (i.e., x ∈ {0, 1}n) in Section 4. For
both BCFR and BCVR, we show that, for every candidate lifetime t, we may
assume a final ordering of the sensors. (The ordering depends only on the bat-
tery powers in the BCVR case, and it can be computed in polynomial time in
the BCFR case.) Using our decision algorithms, we obtain parametric search
algorithms for this special case.

Finally, we note that several proofs were omitted for lack of space.

2 Preliminaries

Model. We consider a setting in which n mobile sensors with finite batteries
are located on a barrier represented by the interval [0, 1]. The initial position
and battery power of sensor i is denoted by xi and bi, respectively. We denote
x = (x1, . . . , xn) and b = (b1, . . . , bn). The sensors are used to cover the barrier,
and they can achieve this goal by moving and sensing. In our model the sensors
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first move, and afterwards each sensor covers an interval that is determined by
its sensing radius. In motion, energy is consumed in proportion to the distance
traveled, namely a sensor consumes a ·d units of energy by traveling a distance d,
where a is a constant. A sensor i consumes rαi energy per time unit for sensing,
where ri is the sensor’s radius and α ≥ 1 is a constant.

0 1xi

riri

yi

Fig. 1. Sensor i moves from xi to yi and cov-
ers the interval [yi − ri, yi + ri]

More formally, the system works
in two phases. In the deployment
phase sensors move from the ini-
tial positions x to new positions y.
This phase is said to occur at time
0. In this phase, sensor i consumes
a|yi − xi| energy. Notice that sensor i may be moved to yi only if a|yi − xi| ≤ bi.
In the covering phase sensor i is assigned a sensing radius ri and covers the
interval [yi − ri, yi + ri]. (An example is given in Figure 1.) A pair (y, r), where
y is a deployment vector and r is a sensing radii vector, is called feasible if
(i) a|yi −xi| ≤ bi, for every sensor i, and (ii) [0, 1] ⊆

∑
i[yi − ri, yi + ri]. Namely,

(y, r) is feasible, if the sensors have enough power to reach y and each point in
[0, 1] is covered by some sensor.

Given a feasible pair (y, r), the lifetime of a sensor i, denoted Li(y, r), is the

time that transpires until its battery is depleted. If ri > 0, Li(y, r) = bi−a|yi−xi|
rαi

,

and if ri = 0, we define Li(y, r) = ∞. Given initial locations x and battery powers
b, the barrier coverage lifetime of a feasible pair (y, r), where y is a deployment
vector and r is a sensing radii vector is defined as L(y, r) = mini Li(y, r). We
say that a t is achievable if there exists a feasible pair such that Li(y, r) = t.

Problems. We consider two problems which are distinguished by whether the
radii are given as part of the input. In the Barrier Coverage with Variable

Radii problem (BCVR) we are given initial locations x and battery powers b,
and the goal is to find a feasible pair (y, r) of locations and radii that maximizes
L(y, r). In the Barrier Coverage with Fixed Radii problem (BCFR) we
are also given a radii vector ρ, and the goal is to find a feasible pair (y, r), such
that ri ∈ {0, ρi} for every i, that maximizes L(y, r). Notice that a necessary
condition for achieving non-zero lifetime is

∑
i 2ρi ≥ 1.

Given a total order ≺ on the sensors, we consider the constrained variants of
BCVR and BCFR, in which the deployment y must satisfy the following: i ≺ j
if and only if yi ≤ yj . That is, we are asked to maximize barrier coverage lifetime
subject to the condition that the sensors are ordered by ≺ (this includes sensors
that do not participate in the cover). Without loss of generality, we assume that
the sensors are numbered according to the total order.

3 Constrained Problems and Parametric Search

In this section we present polynomial time algorithm that, given t > 0, decides
whether t is achievable for constrained BCFR. In addition, we give a similar
algorithm that, given t > 0 and any accuracy parameter ε > 0, decides whether



Maximizing Barrier Coverage Lifetime with Mobile Sensors 101

t− ε is achievable for constrained BCVR. If the answer is in the affirmative, a
corresponding solution is computed by both algorithms. We use these algorithms
to design parametric search algorithms for both problems.

We use the following definitions for both BCFR and BCVR. Given an order
requirement ≺, we define:

l(i)
def
= max {maxj≤i {xj − bj/a} , 0} u(i)

def
= min {minj≥i {xj + bj/a} , 1}

l(i) and u(i) are the leftmost and rightmost points reachable by i.

Observation 1. Let (y, r) be a feasible solution that satisfies an order require-
ment ≺. Then l(i) ≤ u(i) and yi ∈ [l(i), u(i)], for every i.

Proof. If there exists i such that u(i) < l(i), then there are two sensors j and k,
such that where k < j and xj + bj/a < xk − bk/a. Hence, no deployment that
satisfies the total order exists. �


3.1 Fixed Radii

We start with an algorithm that solves the constrained BCFR decision problem.
Given a BCFR instance and a lifetime t, we define

s(i)
def
= max {xi − (bi − tραi )/a, l(i)} e(i)

def
= min {xi + (bi − tραi )/a, u(i)}

If tραi ≤ bi, then s(i) ≤ e(i). Moreover s(i) and e(i) are the leftmost and right-
most points that are reachable by i, if i participates in the cover for t time. (l(i)
and u(i) can be replaced by l(i− 1) and u(i− 1) in the above definitions.)

Observation 2. Let (y, r) be a feasible pair with lifetime t that satisfies an
order ≺. For every i, if ri = ρi, it must be that tραi ≤ bi and yi ∈ [s(i), e(i)].

Algorithm Fixed is our decision algorithm for constrained BCFR. It first
computes l, u, s, and e. If there is a sensor i such that l(i) > u(i), it outputs
NO. Otherwise it deploys the sensors one by one according to ≺. Iteration i
starts with checking whether i can extend the current covered interval [0, z]. If it
cannot, i is moved to the left as much as possible (power is used only for moving),
and it is powered down (ri is set to 0). If i can extend the current covered interval,
it is assigned radius ρi, and it is moved to the rightmost possible position, while
maximizing the right endpoint of the currently covered interval (i.e., [0, z]). If i
is located to the left of a sensor j, where j < i, then j is moved to yi.

As for the running time, l, u, s and e can be computed in O(n) time. There are
n iterations, each takes O(n) time. Hence, the running time of Algorithm Fixed
is O(n2). It remains to prove the correctness of the algorithm.

Theorem 1. Given a constrained BCFR instance and t, Algorithm Fixed de-
cides whether t is achievable.
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Algorithm 1. Fixed (x, b, ρ, t)

1: Compute l, u, s, and e
2: if there exists i such that u(i) < l(i) then return NO
3: z ← 0
4: for i = 1 → n do
5: if tραi > bi or z �∈ [s(i)− ρi, e(i) + ρi) then
6: yi ← max {l(i), yi−1} and ri ← 0 � y0 = 0
7: else
8: yi ← min {z + ρi, e(i)} and ri ← ρi
9: S ← {k : k < i, yi < yk}
10: yk ← yi and rk ← 0, for every k ∈ S
11: z ← yi + ri
12: end if
13: end for
14: if z < 1 then return NO
15: else return YES

Proof. If u(i) < l(i) for some i, then no deployment that satisfies the order ≺
exists by Observation 1. Hence, the algorithm responds correctly.

We show that if the algorithm outputs YES, then the computed solution is
feasible. First, notice that yi−1 ≤ yi, for every i, by construction. We prove by
induction on i, that yj ∈ [l(j), u(j)] and that yj ∈ [s(j), e(j)], if rj = ρj , for every
j ≤ i. Consider the ith iteration. If tραi > bi or z 	∈ [s(i) − ρi, e(i) + ρi), then
yi ∈ [l(i), u(i)], since max {l(i), yi−1} ≤ max {u(i), u(i− 1)} ≤ u(i). Otherwise,
yi = min {z + ρi, e(i)} ≥ s(i), since z ≥ s(i)− ρi. Hence, if ri = ρi, we have that
yi ∈ [s(i), e(i)]. Furthermore, if j < i is moved to the left to i, then yj = yi ≥
s(i) ≥ l(i) ≥ l(j). Finally, let zi denote the value of z after the ith iteration.
(Initially, z0 = 0.) We proof by induction on i that [0, zi] is covered. Consider
iteration i. If ri = 0, then we are done. Otherwise, zi−1 ∈ [yi − ρi, yi + ρi] and
zi = yi + ρi. Furthermore, the sensors in S can be powered down and moved,
since [yj − rj , yj + rj ] ⊆ [yi − ρi, yi + ρi], for every j ∈ S.

Finally, we show that if the algorithm outputs NO, there is no feasible solution.
We prove by induction that [0, zi] is the longest interval that can be covered by
sensors 1, . . . , i. In the base case, observe that z0 = 0 is optimal. For the induction
step, let y′ be a deployment of 1, . . . , i that covers the interval [0, z′i]. Let [0, z′i−1]
be the interval that y′ covers by 1, . . . , i−1. By the inductive hypothesis, z′i−1 ≤
zi−1. If tραi > bi or zi−1 < s(i) − ρi, it follows that z′i = z′i−1 ≤ zi−1 = zi.
Otherwise, observe that y′i ≤ yi and therefore z′i ≤ zi. �


3.2 Variable Radii

We present an algorithm that solves the constrained BCVR decision problem.
Before presenting our algorithm, we need a few definitions. Given a BCVR

instance (x, b) and t > 0, if sensor i moves from xi to p ∈ [l(i), u(i)], then we may
assume without loss of generality that its radius is as large as possible, namely
that ri(p, t) = α

√
(bi − a|p− xi|)/t.
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Similarly to Algorithm Fixed, our algorithm tries to cover [0, 1] by de-
ploying sensors one by one, such that the length of the covered prefix [0, z]
is maximized. This motivates the following definitions. Let d ∈ [− bi

a ,
bi
a ] de-

note the distance traveled by sensor i, where d > 0 means traveling right,
and d < 0 means traveling left. If a sensor travels a distance d, then its
lifetime t sustaining radius is given by α

√
(bi − a|d|)/t. Given t, we define:

gti(d)
def
= d + α

√
(bi − a|d|)/t. gti(d) is the right reach of sensor i at distance

d from xi, i.e., the rightmost point that i covers when it has traveled a dis-

tance of d and the required lifetime is t. Similarly define ht
i(d)

def
= gti(−d) is

the left reach of sensor i at distance d from xi. See depiction in Figure 2. We
explore these functions in the next lemma whose proof is given in the full version.

d

bi
a

dti− bi
a

−dti

gti(d
t
i)

α
√

bi/t

ht
i(−dti)

− α
√

bi/t

Fig. 2. Depiction of the functions
gti(d) and ht

i(d) for a = 2, α = 2,
bi = 1, and t = 4. The top curve corre-
sponds to gti(d), and the bottom curve
corresponds to ht

i(d). The dashed line
corresponds to the location of sensor
i, while the vertical interval between
the curves is the interval that is cov-
ered by i at distance d from xi.

Lemma 3. Let t > 0. For any i, the dis-
tance dti maximizes gti(d), where

dti =

⎧⎪⎨⎪⎩
bi
a − 1

α
α−1
√

a
αt α > 1

bi
a α = 1, a < t

0 α = 1, a ≥ t

gti(d
t
i) =

{
bi
a +

(
1 − 1

α

)
α−1
√

a
αt α > 1

bi
min{a,t} α = 1

If α > 1 or a 	= t, gti is increasing for d <
dti, and decreasing for d > dti. If α = 1 and
a = t, gti is constant, for d ≥ 0, and it is
increasing for d < 0.

Given a point z ∈ [0, 1], the attaching
position of sensor i to z, denoted by pi(z, t),
is the position p for which p − ri(p, t) = z
such that p+ri(p, t) is maximized, if such a
position exist. If such a point does not ex-
ist we define pi(z, t) = ∞. Observe that by
Lemma 3 there may be at most two points
that satisfy the equation p − ri(p, t) = z. Such a position can either be found
explicitly or numerically as it involves solving an equation of degree α. We ig-
nore calculation inaccuracies for ease of presentation. These inaccuracies are
subsumed by the additive factor. We omit the details.

Algorithm Variable is our decision algorithm for BCVR. It first computes
u and l. If there is a sensor i, such that l(i) > u(i), it outputs NO. Then, it
deploys the sensors one by one according to ≺ with the goal of extending the
coverage interval [0, z]. If i cannot increase the covering interval it is placed at
max{l(i), yi−1} so as not to block sensor i + 1. If i can increase coverage, it is
placed in [l(u), u(i)] such that z is covered and coverage to the right is maximized.
It may be the case that the best place for i is to the left of previously positioned
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Algorithm 2. Variable (x, b, t)

1: Compute l and u
2: if there exists i such that u(i) < l(i) then return NO
3: z ← 0
4: for i = 1 → n do
5: qL(i) ← min

{
max

{
xi − dti, l(i)

}
, u(i)

}
6: qR(i) ← max

{
min

{
xi + dti, u(i)

}
, l(i)

}
7: if z �∈ [qL(i)− ri(qL(i), t), qR(i) + ri(qR(i), t)] then
8: yi ← max {l(i), yi−1} and ri ← 0 � y0 = 0
9: else
10: yi ← max

{
min

{
pi(z, t), u(i), xi + dti

}
, l(i)

}
and ri ← ri(yi, t)

11: S ← {k : k < i, yi < yk}
12: yk ← yi and rk ← 0, for every k ∈ S
13: z ← yi + ri
14: end if
15: end for
16: if z < 1 then return NO
17: else return YES

sensors. In this case the algorithm moves the sensors such that coverage and
order are maintained. Finally, if z < 1 after placing sensor n, the algorithm
outputs NO, and otherwise it outputs YES.

l and u can be computed in O(n) time. There are n iterations of the main
loop, each taking O(n) time (assuming that computing pi(z, t) takes O(1) time),
thus the running time of the algorithm is O(n2).

In order to analyze Algorithm Variable we define

P (i) = {p : p ∈ [l(i), u(i)] and z ∈ [p− ri(p, t), p + ri(p, t)]} .

P (i) is the set of points from which sensor i can cover z. Observe that P (i) is
an interval due to Lemma 3. Hence, we write P (i) = [pL(i), pR(i)].

In the next two lemmas it is shown that when the algorithm checks
whether z 	∈ [qL(i) − ri(qL(i), t), qR(i) + ri(qR(i), t)] it actually checks whether

P (i) = ∅, and that y∗i
def
= max {min {pi(z, t), u(i), xi + dti} , l(i)} is equal to

argmaxp∈P {p + ri(p, t)}. Hence, in each iteration we check whether [0, z] can
be extended, and if it can, we take the best possible extension.

Lemma 4. [pL(i), pR(i)] ⊆ [qL(i), qR(i)]. Moreover, P (i) = ∅ if and only if
z 	∈ [qL(i) − ri(qL(i), t), qR(i) + ri(qR(i), t)].

Proof. By Lemma 3 qL(i) is the location that maximized coverage to the left,
and qR(i) is the location that maximized coverage to the right. �


Lemma 5. If P (i) 	= ∅, then y∗i = argmaxp∈P (i) {p + ri(p, t)}.

Proof. By Lemma 3, there are three cases:

– If xi + dti ∈ P (i), then argmaxp∈P (i) {p + ri(p, t)} = xi + dti.

y∗i = xi + dti, since pi(z, t) ≥ xi + dti.
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– If xi + dti > pR(i), then argmaxp∈P (i) {p + ri(p, t)} = pR(i).
y∗i = min {pi(z, t), u(i)}, since pR(i) = min {pi(z, t), u(i)} ≥ l(i).

– If xi + dti < pL(i), then argmaxp∈P (i) {p + ri(p, t)} = pL(i).
y∗i = l(i), since qL(i) = l(i) > xi + dti ≥ min {pi(z, t), u(i), xi + dti}. �


We proof of the next theorem is somewhat similar to the proof of Theorem 1.

Theorem 2. Let ε > 0. Given a constrained BCVR instance and t, Algo-
rithm Variable decides whether t− ε is achievable.

3.3 Parametric Search Algorithms

Since we have algorithm thats, given t and an order ≺, decides whether there
exists a solution that satisfies ≺ with lifetime t (or t−ε), we can perform a binary
search on t. The maximum lifetime of a given instance is bounded by the lifetime
of this instance in the case where a = 0. In the full version we show that, for
a = 0, the network lifetime in the fixed case is at most maxi {bi/ραi }, and that
it is (2

∑
j

α
√

bj)
α in the variable radii case. These expression serve as upper

bounds for the case where a > 0. Hence, the running time of the parametric
search in polynomial in the input size and in the log 1

ε , where ε is the accuracy
parameter.

4 Sensors Are Located on the Edges of the Barrier

Consider the case where the initial locations are on either edge of the barrier,
namely, x ∈ {0, 1}n. For both BCVR and BCFR we show that, given an achiev-
able lifetime t, there exists a solution with lifetime t in which the sensors satisfy
a certain ordering. In the case of BCVR, the ordering depends only on the bat-
tery sizes, and hence we may use the parametric search algorithm for constrained
BCVR from Section 3. In the case of BCFR, the ordering depends on t, and
therefore may change. Even so, we may use parametric search for this special
case of BCFR since, given t, the ordering can be computed in polynomial time.

Fixed Radii. We start by considering the special case of BCFR in which all
sensors are located at x = 0. The case where x = 1 is symmetric. Given a BCFR

instance (0, b, ρ) and a lifetime t, the maximum reach of sensor i is defined as the
farthest point from its initial position that sensors i can cover while maintaining
lifetime t, and is given by: ft(i) = 1

a (bi − tραi ) + ρi, if tραi ≤ bi, and ft(i) = 0,
otherwise. We assume without loss of generality that the sensors are ordered
according to reach ordering, namely that i < j if and only if ft(i) < ft(j).
Also, we ignore sensors with zero reach, since they must power down. Hence, if
ft(i) = 0, we place i at 0 and set its radius to 0. Let t be an achievable lifetime,
we show that there exists a solution (y, r) with lifetime t such that sensors are
deployed according to reach ordering.

Lemma 6. Let (0, b, ρ) be a BCFR instance and let p ∈ (0, 1]. Suppose that
there exists a solution that covers [0, p] for t time. Then, there exists a solution
that covers [0, p] lifetime for t time that satisfies reach ordering.
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Variable Radii. We now consider BCVR with x = 0. As before, the case of
x = 1 is symmetric. Given a BCVR instance (0, b) and a lifetime t, the maximum
reach of sensor i is gti(d

t
i). Note that if the sensors are ordered by battery size,

namely that i < j if and only if bi < bj , they are also ordered by reach. Thus,
we assume in the following that sensors are ordered by battery size. Let t be
an achievable lifetime. We show that there exists a deployment y with lifetime t
such that sensors are deployed according to the battery ordering, namely bi ≤ bj
if and only if yi ≤ yj.

We need the following technical lemma.

Lemma 7. Let c1, c2, d1, d2 ≥ 0 such that (i) d1 < c1 ≤ c2 < d2, and (ii) c1 +
c2 > d1 + d2. Also let α ≥ 1. Then, α

√
c1 + α

√
c2 > α

√
d1 + α

√
d2

Lemma 8. Let (0, b) be a BCVR instance and let p ∈ (0, 1]. Suppose that there
exists a deployment that covers [0, p] for t time. Then, there exists a deployment
that covers [0, p] lifetime for t time that satisfies battery ordering.

Proof. Given a solution that covers [0, p] with lifetime t, a pair of sensors is said
to violate battery ordering if bi < bj and yi > yj. Let y be a solution with
lifetime t for (0, b) that minimizes battery ordering violations. If there are no
violations, then we are done. Otherwise, we show that the number of violations
can be decreased. If y has ordering violations, then there must exist at least
one violation due to a pair of adjacent sensors. Let i and j be such sensors. We
assume, without loss of generality, that the batteries of both i and j are depleted
at t, namely that rk = α

√
(bk − a|yk − xk|)/t, for k = i, j.

If the barrier is covered without i, then i is moved to yj . (Namely y′k = yk, for
every k 	= i, and y′i = yj .) y′ is feasible, since i moves to the left. Otherwise, if
the barrier is covered without j, then j is moved to yi and j’s radius is decreased
accordingly. Otherwise, both sensors actively participate in covering the barrier,
which means that the interval [yj−rj, yi+ri] is covered by i and j. In this case, we
place i at y′i with radii r′i, such that y′i−r′i = yj−rj . We place j at the rightmost
location y′j such that y′j ≤ yi and y′j − r′j ≤ y′i + r′i. If y′j = yi then we are done,
as sensor j has more battery power at yi than i does at yi. Otherwise, we may
assume that y′j − r′j = y′i + r′i. We show that it must be that y′j + r′j ≥ yi + ri.
We have that y′i < yj and y′j < yi. It follows that β′

i + β′
j > βi + βj , where

βi = bi − ayi. Also, notice that βi < β′
j < βj and βi < β′

i < βj . It follows that

r′i+r′j = α
√

β′
i/t+

α

√
β′
j/t >

α
√

βi/t+
α
√

βj/t = ri+rj , where the inequality is due

to Lemma 7. Hence, y′j +r′j = (yj−rj)+2r′i+2r′j > (yj−rj)+2ri+2rj ≥ yi+ri.
Since i moves to the left, it may bypass several sensors. In this case we move

all sensors with smaller batteries that were bypassed by i, to y′i. This can be
done since these sensors are not needed for covering to the right of y′i − r′i.
Similarly, since j moves to the right, it may bypass several sensors. As long as
there is a sensor with larger reach that was bypassed by j, let k be the rightmost
such sensor. Notice that k is not needed for covering to the left of y′j . Hence, if
yk + rk ≥ y′j + r′j , we move j to yk. Otherwise, we move k to y′j.

In all cases, we get a deployment y′ that covers [0, p] with lifetime t with a
smaller number of violations than y. A contradiction. �
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Separation. We are now ready to tackle the case where x ∈ {0, 1}n. We start
with the fixed radii case. Given a BCFR instance (x, b, r) and a lifetime t,
we assume without loss of generality that the sensors are ordered according to
the following bi-directional reach order: first the sensors that are located at 0
according to reach order, and then the sensors that are located at 1 according to
reverse reach order. We show that we may assume that the sensors are deployed
using the bi-directional reach order. The first step is to show that the sensors
that are located at 0 are deployed to the left of the sensors that are placed at 1.

Lemma 9. Let (x, b, ρ) be a BCFR instance, where x ∈ {0, 1}n, and let t be
an achievable lifetime. Then, there exists a feasible solution (y, r) with lifetime
t such that yi ≤ yj, for every i < j.

Next we show that we may assume that the sensors are deployed using the
bi-directional reach order.

Theorem 3. Let (x, b, ρ) be a BCFR instance, and let t be an achievable life-
time. Then there exists a feasible solution (y, r) with lifetime t such that the
sensors are deployed using bi-directional reach order.

We treat the variable radii case similarly. Given a BCVR instance (x, b), we
assume without loss of generality that the sensors are ordered according to a
bi-directional battery order: first the sensors that are located at 0 according to
battery order, and then the sensors that are located at 1 according to reverse
battery order.

Lemma 10. Let (x, b) be a BCVR instance, where x ∈ {0, 1}n, and let t be
an achievable lifetime. Then, there exists a feasible solution (y, r) with lifetime
t such that yi ≤ yj, for every i < j.

Theorem 4. Let (x, b) be a BCVR instance, and let t be an achievable lifetime.
Then there exists a feasible solution (y, r) with lifetime t such that the sensors
are deployed using bi-directional battery order.

5 Hardness Results

Theorem 5. It is NP-hard to approximate BCFR in polynomial time (i) within
any multiplicative factor, or (ii) within an additive factor ε, for some ε > 0,
unless P=NP, for any a ∈ (0,∞) and α ≥ 1, even if x = pn, where p ∈ (0, 1).

Theorem 6. BCVR is strongly NP-hard, for every a ∈ (0,∞) and α ≥ 1.

6 Discussion and Open Problems

We briefly discuss some research directions and open questions. We showed that
BCVR is strongly NP-Hard. Finding an approximation algorithm or showing
hardness of approximation remains open. In a natural extension model, sensors
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could be located anywhere in the plane and asked to cover a boundary or a circu-
lar boundary. In a more general model the sensors need to cover the plane or part
of the plane where their initial locations could be anywhere. Another model which
can be considered is the duty cycling model in which sensors are partitioned into
shifts that cover the barrier. Bar-Noy et al. [3] considered this model for station-
ary sensors and α = 1. Extending it to moving sensors and α > 1 is an interesting
research direction. Finally, in the most general covering problem with the goal of
maximizing the coverage lifetime, sensors could change their locations and sensing
ranges at any time. Coverage terminates when all the batteries are drained.
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Abstract. We introduce a new online algorithm for the multiselection
problem which performs a sequence of selection queries on a given un-
sorted array. We show that our online algorithm is 1-competitive in terms
of data comparisons. In particular, we match the bounds (up to lower
order terms) from the optimal offline algorithm proposed by Kaligosi et
al.[ICALP 2005].

We provide experimental results comparing online and offline algo-
rithms. These experiments show that our online algorithms require fewer
comparisons than the best-known offline algorithms. Interestingly, our
experiments suggest that our optimal online algorithm (when used to sort
the array) requires fewer comparisons than both quicksort and mergesort.

1 Introduction

Let A be an unsorted array of n elements drawn from an ordered universe. The
multiselection problem asks for elements of rank ri from the sequence R =
r1, r2, . . . , rq on A. We define B(Sq) as the information-theoretic lower bound
on the number of comparisons required in the comparison model to answer q
unique queries, where Sq = {si} denotes the queries ordered by rank. We define
ΔS

i = si+1 − si, where s0 = 0 and sq+1 = n. Then,

B(Sq) = logn! −
q∑

i=0

log
(
ΔS

i !
)

=

q∑
i=0

ΔS
i log

n

ΔS
i

−O(n).1

As mentioned by Kaligosi et al. [10], intuitively B(Sq) follows from the fact that
any comparison-based multiselection algorithm identifies the ΔS

1 smallest ele-
ments, ΔS

2 next smallest elements, and so on. Hence, one could sort the original
array A using

∑
i ΔS

i log ΔS
i + O(n) additional comparisons.
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The online multiselection problem asks for elements of rank r1, r2, . . . , rq,
where the sequence R is given one element at a time (in any order).

Motivation. Online multiselection is equivalent to generalized partial sorting [9].
Variants of this problem have been studied under the names partial quicksort,
multiple quickselect, interval sort, and chunksort. Several applications, such as
computing optimal prefix-free codes [3] and convex hulls [11], repeatedly com-
pute medians over different ranges within an array. Online multiselection (where
queries arrive one at a time) may be a key ingredient to improved results for
these types of problems, whereas offline algorithms will not suffice. Most recently,
Cardinal et al. [5] generalized the problem to partial order production, and they
use multiselection as a subroutine after an initial preprocessing phase.

Previous Work. Several papers [6,12,9] have analyzed the offline multiselection
problem, but these approaches must all know the queries in advance. Kaligosi et
al. [10] described an algorithm performing B(Sq)+o(B(Sq))+O(n) comparisons.

Our Results. For the multiselection problem in internal memory, we describe
the first online algorithm that supports a sequence R of q selection queries using
B(Sq) + o(B(Sq)) comparisons. Our algorithm is 1-competitive in the number of
comparisons performed. We match the bounds above while supporting search,
insert, and delete operations, achieve similar results in the external memory
model [1]. We invite readers to see [2] (or the upcoming journal version) for
more details on these results.

Preliminaries. Given an unsorted array A of length n, the median of A is the ele-
ment x such that �n/2� elements in A are at least x. The median can be computed
in O(n) comparisons [8,4,13,7], in particular, less than 3n comparisons [7].

Outline. In the next section, we present a simple algorithm for the online mul-
tiselection problem, and introduce some terminology to describe its analysis. In
Section 2.2, we show that the simple algorithm has a constant competitive ratio.
Section 3 describes modifications to the simple algorithm, and shows that the
modified algorithm is optimal up to lower order terms. We describe the experi-
mental results in Section 4.

2 A Simple Online Algorithm

Let A be an input array of n unsorted items. We describe a simple version of our
algorithm for handling selection queries on array A. We call an element A[i] at
position i in array A a pivot if A[1 . . . i− 1] < A[i] ≤ A[i + 1 . . . n].

Bitvector. We maintain a bitvector V of length n where V[i] = 1 if and only if
A[i] is a pivot. During preprocessing, we create V and set each bit to 0. We find
the minimum and maximum elements in array A, swap them into A[1] and A[n]
respectively, and set V[1] = V[n] = 1.
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Selection. The operation A.select(s) returns the sth smallest element of A (i.e.,
A[s] if A were sorted). To compute this result, if V[s] = 1 then return A[s] and
we are done. If V[s] = 0, find a < s and b > s, such that V[a] = V[b] = 1 but
V[a + 1 . . . b − 1] are all 0. Perform quickselect [8] on A[a + 1 . . . b − 1], marking
pivots found along the way in V. This gives us A[s], with V[s] = 1, as desired.

As queries arrive, our algorithm performs the same steps that quicksort would
perform, although not necessarily in the same order. As a result, our recursive
subproblems mimic those from quicksort. We can show that comparisons needed
to perform q select queries on an array of n items is O(n log q). We can improve
this result to O(B(Sq)).2 We do not prove this bound directly, since our main
result is an improvement over this bound. Now, we define terminology for this
improved analysis.

2.1 Terminology

Query and Pivot Sets. Let R denote a sequence of q selection queries, ordered
by time of arrival. Let St = {s1, s2, . . . , st} denote the first t queries from R,
sorted by position. We also include s0 = 1 and st+1 = n in St for convenience of
notation, since the minimum and maximum are found during preprocessing. Let
Pt = {pi} denote the set of k pivots found by the algorithm when processing St,
sorted by position. Note that p1 = 1, pk = n, V[pi] = 1 for all i, and St ⊆ Pt.

Pivot Tree and Recursion Depth. The pivots chosen by the algorithm form a
binary tree structure, defined as the pivot tree T of the algorithm over time.3

Pivot pi is the parent of pivot pj if, after pi was used to partition an interval, pj
was the pivot used to partition either the right or left half of that interval. The
root pivot is the pivot used to partition A[2..n − 1] due to preprocessing. The
recursion depth, d(pi), of a pivot pi is the length of the path in the pivot tree
from pi to the root pivot. All leaves in the pivot tree are also selection queries,
but it may be the case that a query is not a leaf.

Intervals. Each pivot was used to partition an interval in A. Let I(pi) denote the
interval partitioned by pivot pi (which may be empty), and let |I(pi)| denote its
length. Intervals form a binary tree induced by their pivots. If pi is an ancestor
of pivot pj then I(pj) ⊂ I(pi). The recursion depth of an array element is the
recursion depth of the smallest interval containing that element, which in turn
is the recursion depth of its pivot.

Gaps. Define the query gap ΔSt

i = si+1 − si and similarly the pivot gap ΔPt

i =

pi+1 − pi. By telescoping we have
∑

i ΔSt

i =
∑

j ΔPt

j = n− 1.

Fact 1. For all ε > 0, there exists a constant cε such that for all x ≥ 4,
log log log x < ε log x + cε.

2 B(Sq) = n log q when the q queries are evenly spaced over the input array A.
3 Intuitively, a pivot tree corresponds to a recursion tree, since each node represents
one recursive call made during the quickselect algorithm [8].
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Proof. Since limx→∞(log log log x)/(log x) = 0, there exists a kε such that for all
x ≥ kε, we know that (log log log x)/(log x) < ε. Also, in the interval [4, kε], the
continuous function log log log x− ε logx is bounded. Let cε = log log log kε − 2ε,
which is a constant. �


2.2 Analysis of the Simple Algorithm

In this section we analyze the simple online multiselect algorithm of Section 2.
We call a pivot selection method c-balanced for some constant c with 1/2 ≤

c < 1 if, for all pairs (pi, pj) where pi is an ancestor of pj in the pivot tree,
then |I(pj)| ≤ |I(pi)| · cd(pj)−d(pi)+O(1). If the median is always chosen as the
pivot, we have c = 1/2 and the O(1) term is zero. The pivot selection method
of Kaligosi et al. [10, Lemma 8] is c-balanced with c = 15/16.

Lemma 1 (Entropy Lemma). If the pivot selection method is c-balanced, then
B(Pt) = B(St) + O(n).

Proof. We sketch the proof and defer the full details to the journal version
of the paper. (Those results also appear in [2].) Consider any two consecutive
selection queries s and s′, and let Δ = s′ − s be the gap between them. Let
PΔ = (pl, pl+1, . . . , pr) be the pivots in this gap, where pl = s and pr = s′. The
lemma follows from the claim that B(PΔ) = O(Δ), since

B(Pt) − B(St) =

⎛⎝n logn−
k∑

j=0

ΔPt

j log ΔPt

j

⎞⎠−
(
n logn−

t∑
i=0

ΔSt

i log ΔSt

i

)

=

t∑
i=0

ΔSt

i log ΔSt

i −
k∑

j=0

ΔPt

j log ΔPt

j =

t∑
i=0

B(P
Δ

St
i

) = O(n).

We now sketch the proof of our claim, which proves the lemma. There must
be a unique pivot pm in PΔ of minimal recursion depth. We split the gap Δ
at pm. Since we use a c-balanced pivot selection method, we can bound the total
information content of the left-hand side by O(

∑m−1
i=l Δi) and the right-hand

side by O(
∑r−1

i=m Δi), leading to the claim. The result follows. �


3 Optimal Online Multiselection

In this section we prove the main result of our paper, Theorem 1.

Theorem 1 (Optimal Online Multiselection). Given an unsorted array A

of n elements, we provide an algorithm that supports a sequence R of q online
selection queries using B(Sq)(1 + o(1)) + O(n) comparisons.
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Our bounds match those of the offline algorithm of Kaligosi et al. [10]. In
other words, our solution is 1-competitive. We explain our proof in three main
steps. In Section 3.1, we explain our algorithm and describe how it is different
from Kaligosi et al. [10]. We then bound the number of comparisons resulting
from merging by B(Sq)(1+o(1))+O(n) in Section 3.2. In Section 3.3, we bound
the complexity of pivot finding and partitioning by o(B(Sq)) + O(n).

3.1 Algorithm Description

We briefly describe the deterministic algorithm from Kaligosi et al. [10]. Their
result is based on tying the number of comparisons required for merging two
sorted sequences to the information content of those sequences. This simple
observation drives their underlying approach that both finds pivots that are
“good enough” and partitions using near-optimal comparisons.

In particular, they create runs, which are sorted sequences from A of length
roughly � = log(B/n). Then, they compute the median μ of the medians of these
sequences, and partition the runs based on μ. After partitioning, they recurse
on the two sets of runs, sending select queries to the appropriate side of the
recursion. To maintain the invariant on run length on the recursions, they merge
short runs of the same size optimally until all but � of the runs are again of
length between � and 2�.

We make the following modifications to the algorithm of Kaligosi et al. [10]:

– Since the value of B(Sq) is not known in advance (because R is provided
online), we cannot preset a value for �, as done in Kaligosi et al. [10]. Instead,
we locally set � = 1 + �log(d(p) + 1) in the interval I(p). Since we use only
balanced pivots, d(p) = O(log n). We keep track of the recursion depth of
pivots, from which it is easy to compute the recursion depth of an interval.

– We use a bitvector W to identify the endpoints of runs within each interval.
– The queries from R are processed online. We support online queries using

the bitvector V from Section 2. Recall that a search query incurs O(log n)
additional comparisons to find its corresponding interval.

To perform the operation A.select(s), we first use bitvector V to identify the in-
terval I containing s. If |I| ≤ 4�2, we sort the interval I (making all elements of I
pivots) and answer the query s. The cost for this case is bounded by Lemma 5.
Otherwise, we compute the value of � for the current interval, and proceed as in
Kaligosi et al. [10] to answer the query s.

We can borrow much of the analysis done in [10], but it depends heavily on
the use of �, which we do not know in advance. In the rest of Section 3, we
modify their techniques to handle this complication.

3.2 Merging

Kaligosi et al. [10, Lemmas 5—10] count the comparisons resulting from merging.
Lemmas 5, 6, and 7 do not depend on the value of � and so we can use them
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in our analysis. Lemma 8 shows that the median-of-medians built on runs is a
good pivot selection method. Although its proof uses the value of �, its validity
does not depend the size of �. The proof merely requires that there are at least
4�2 items in each interval, which also holds for our algorithm. Lemmas 9 and
10 (from Kaligosi et al. [10]) together will bound the number of comparisons by
B(Sq)(1 + o(1)) +O(n) if we can prove Lemma 2, which bounds the information
content of runs in intervals that are not yet partitioned.

Lemma 2. Let a run r be a sorted sequence of elements from A in a gap ΔPt

i ,

where |r| is its length. Then,
∑k

i=0

∑
r∈Δ

Pt
i

|r| log |r| = o(B(St)) + O(n).

Proof. In a gap of size Δ, � = O(log d) where d the recursion depth of the
elements in the gap. This gives

∑
r∈Δ |r| log |r| ≤ Δ log(2l) = O(Δ log log d),

since each run has size at most 2�. Because we use a good pivot selection method,
we know that the recursion depth of every element in the gap is O(log(n/Δ)).

Thus,
∑k

i=0

∑
r∈Δ

Pt
i

|r| log |r| ≤
∑

i Δi log log log(n/Δi). Recall that B(St) =

B(Pt) + O(n) =
∑

i Δi log(n/Δi) + O(n). Fact 1 completes the proof. �


3.3 Pivot Finding and Partitioning

Now we prove that the cost of computing medians and performing partitions
requires at most o(B(Sq))+O(n) comparisons. The algorithm computes the me-
dian m of medians of each run at a node v in the pivot tree T . Then, it partitions
each run based on m. We bound the number of comparisons at each node v with
more than 4�2 elements in Lemmas 3 and 4. We bound the comparison cost for
all nodes with fewer elements in Lemma 5.

Let d be the current depth of the pivot tree T (defined in Section 2.1), and
let the root of T have depth d = 0. Each node v in T is associated with some
interval I(pv) corresponding to some pivot pv. We define Δv = |I(pv)| as the
number of elements at node v.

Recall that � = 1 + �log(d + 1) , and a run is a sorted sequence of elements
in A. We define a short run as a run of length less than �. Let βn be the number
of comparisons required to compute the exact median for n elements, where β
is a constant less than three [7]. Let rsv be the number of short runs at node v,
and let rlv be the number of long runs (runs of length at least �).

Lemma 3. The number of comparisons required to find the median m of me-
dians and partition all runs at m for any node v in the pivot tree T is at most
β(� − 1) + � log � + β(Δv/�) + (Δv/�) log(2�).

Proof. We compute the cost (in comparisons) for computing the median of me-
dians. For the rsv ≤ �− 1 short runs, we need at most β(� − 1) comparisons per
node. For the rlv ≤ Δv/� long runs, we need at most β(Δv/�).

Now we compute the cost for partitioning each run based on m. We perform
binary search in each run. For short runs, this requires at most

∑�−1
i=1 log i ≤

� log � comparisons per node. For long runs, we need at most (Δv/�) log(2�)
comparisons per node. �
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Since our value of � changes at each level of the recursion tree, we will sum
the costs from Lemma 3 by level. The overall cost at level d is at most 2dβ� +
2d� log � + (n/�)β + (n/�) log(2�) comparisons. Summing over all the levels, we
can bound the total cost of all such nodes in the pivot tree to obtain the following
lemma.

Lemma 4. The number of comparisons required to find the median of medians
and partition over all nodes v in the pivot tree T with at least 4�2 elements is
within o(B(St)) + O(n).

Proof. For all levels of the pivot tree up to level �′ ≤ log(B(Pt)/n), the cost is
at most

log(B(Pt)/n)∑
d=1

2d�(β + log �) + (n/�)(β + log(2�)).

Since � = �log(d + 1) + 1, we can easily bound the first term of the summa-
tion by (B(Pt)/n) log log(B(Pt)/n) = o(B(Pt)). The second term can be easily
upper-bounded by n log(B(Pt)/n)(log log log(B(Pt)/n)/ log log(B(Pt)/n)), which
is o(B(Pt)). Using Lemma 1, the above two bounds are o(B(St)) + O(n).

For each level �′ with log(B(Pt)/n) < �′ ≤ log logn + O(1), we bound the
remaining cost. It is easy to bound each node v’s cost by o(Δv), but this is
not sufficient—though we have shown that the total number of comparisons for
merging is B(St) + O(n), the number of elements in nodes with Δv ≥ 4�2 could
be ω(B(St)).

We bound the overall cost as follows, using the result of Lemma 3. Since
node v has Δv > 4�2 elements, we can rewrite the bounds as O(Δv/� log(2�)).
Recall that � = log d + O(1) = log(O(log(n/Δv))) = log log(n/Δv) + O(1),
since we use a good pivot selection method. Summing over all nodes, we get∑

v (Δv/�) log(2�) ≤
∑

v Δv log(2�) = o (B(Pt)) +O(n), using Fact 1 and recall-
ing that B(Pt) =

∑
v Δv log(n/Δv). Finally, using Lemma 1, we arrive at the

claimed bound for queries. �

We now bound the comparison cost for all nodes v where Δv ≤ 4�2.

Lemma 5. For nodes v in the pivot tree T where Δv ≤ 4�2, the total cost in
comparisons for all operations is at most o(B(St)) + O(n).

Proof. Nodes with no more than 4�2 elements do not incur any cost in compar-
isons for median finding and partitioning, unless there is (at least) one associated
query within the node. Hence, we focus on nodes with at least one query.

Let z be such that z = (log logn)2 log log logn+O(1). We sort the elements of
any node v with Δv ≤ 4�2 elements using O(z) comparisons, since � ≤ log logn+
O(1). We set each element as a pivot. The total comparison cost over all such
nodes is no more than O(tz), where t is the number of queries we have answered
so far. If t < n/z, then the above cost is O(n).

Otherwise, t ≥ n/z. Using Jensen’s inequality, we have B(Pt) ≥ (n/z) log(n/z),
which represents the cost of sorting n/z adjacent queries. Thus, tz = o(B(Pt)).
Using Lemma 1, we know that B(Pt) = B(St) + O(n), which proves the lemma.

�
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4 Experimental Results

In this section, we present the experimental evaluation of the online and offline
multiselection algorithms. Section 4.1 describes the experimental setup. Our re-
sults are described in Section 4.2.

4.1 Experimental Setup

Our input array consists of a random permutation of the (distinct) elements from
[1, 218]. (We also ran some experiments for larger n up to 220, and results were
similar.) Our queries are generated using the indicated distribution for each ex-
periment. We allow repetitions of queries, except in the evenly-spaced case. We
only report comparisons with elements of the input array, averaged over 10 ran-
dom experiments. In particular, we do not count comparisons between indices in
the input array. Finally, we compute the Entropy of a query sequence Sq (defined
in Section 1) by

⌊
log n! −

∑q
i=0 log

(
ΔS

i !
)⌋

using double precision arithmetic on
a 64-bit machine.

Now, we briefly describe the algorithms we considered for choosing the pivot
in an unsorted interval I. The First Element and Random methods choose the
corresponding element as the pivot. The Medof3 method uses the median of the
first, middle, and last elements of I as the pivot. The Median (using MedofMed)
uses Blum et al.’s linear-time algorithm [4] as the pivot. The MedofMed method
is the first step of Blum et al.’s algorithm [4] that computes the median of every
five elements, and then uses the median of those medians as the pivot.
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Fig. 1. Performance of various pivot selection methods on random input sequences

We compared the performance of these pivoting methods for random arrays
in Figure 1 for our simple online algorithm described in Section 2. We performed
similar experiments for different algorithms. The results from Figure 1 are repre-
sentative of all of our findings. One can clearly see that Medof3 uses the fewest
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comparisons and Median requires significantly more comparisons. The perfor-
mance of other pivoting methods fall in between these two extremes. For the
rest of the paper, we show results only for the Medof3 pivoting method.

4.2 Results

Now, we briefly describe the algorithms we considered for multiselection. All
algorithms use Medof3 as the pivoting strategy (where applicable). The Quick-
sort algorithm is the standard quicksort, augmented by q array lookups (which
require no comparisons). The Mergesort algorithm is the standard recursive
mergesort, augmented by q array lookups (which require no comparisons). The
Simple Online algorithm is described in Section 2. The Optimal Online algo-
rithm is described in Section 3.1, where we set � based on the recursion depth
of the corresponding interval. The performance of the online algorithms is inde-
pendent of the order of the queries. (We defer the experiments supporting this
claim until the journal version of this paper.)

The Dobkin-Munro algorithm is described in [6]. The Kaligosi (sorted) algo-
rithm is described in [10], which assumes that queries are given in sorted order.
The Kaligosi (unsorted) algorithm first sorts the unsorted queries, and then
performs the Kaligosi (sorted) algorithm. In some cases, sorting queries is tanta-
mount to sorting the array. Since this algorithm is offline, one can assume that
the algorithm will detect this case and revert to Quicksort or Mergesort instead.

We show our results in Figures 2 and 3. For Figure 2, the queries (in the first
graph) are evenly distributed across the input array. This query distribution
results in a worst-case entropy, and hence is a difficult case for multiselection
algorithms. The second graph in Figure 2 has uniformly distributed queries. For
Figure 3, we display results for a normal query distribution with mean μ = n/2
and standard deviation σ = n/8. The second graph in Figure 3 is an exponential
query distribution with λ = 16/n.

For all query distributions, our online algorithms (Simple Online and Opti-
mal Online) outperform their offline counterparts (respectively, Quicksort and
Kaligosi). The Dobkin-Munro algorithm requires more comparisons than Quick-
sort for any reasonably large number of queries (based on query distribution). In
other words, it is usually better to sort than to use Dobkin-Munro. The Kaligosi
algorithm performs quite well in terms of comparisons, but is relatively slow.
The Simple Online algorithm converges to Quicksort as queries increases, high-
lighting that the online algorithm performs the same work as the Quicksort, as
intuition (and the analysis) suggests.

The Optimal Online algorithm outperforms Mergesort, Quicksort, and Kaligosi
(sorted and unsorted), and is even better than Entropy when the number of
queries is large. Having an algorithm perform fewer comparisons than Entropy
isn’t a contradiction, since Entropy is a worst-case lower bound for an arbitrary
input. Hence, the number of comparisons for an algorithm could be less than
Entropy for a given (specific) input. Even though our algorithm is similar to
Kaligosi, we can clearly see the value of online computation when comparing
these two results. The primary reason for our improved results is due to the fact
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Fig. 2. Performance of multiselection algorithms on random input sequences using
median of three pivot selection method, when the queries are distributed as indicated

that Kaligosi will pre-process runs, even for intervals that do not contain any
queries. For the Optimal Online algorithm, since run lengths are based on the
recursion depth, the algorithm will not spend comparisons generating long runs
unless queries are in those intervals.

In fact, these results suggest that using the Optimal Online algorithm with
n/2 queries (e.g., each odd position) can sort an array in fewer comparisons than
Mergesort. The reason for this is that the runs computed at the beginning of the
algorithm save a lot of comparisons in future recursive rounds. We are currently
running experiments on tuning the length � of the run to see if we can further
improve this performance.

Finally, we provide similar results for a decreasing input array, since this is a
best-case scenario for Mergesort. Notice that both Mergesort, Optimal Online,
and Kaligosi are better than Entropy as queries increase. However, both mul-
tiselection algorithms outperform Mergesort. The sudden dip in the curve cor-
responding to the Kaligosi (sorted) algorithm after 65, 536 queries corresponds
to a discrete increase in the calculated value of � (from 4 to 5). This sort of
stair-stepping behavior is expected to continue as n increases.
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median of three pivot selection method, when the queries are distributed as indicated
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Fig. 4. Performance of multiselection algorithms on a decreasing input sequence using
median of three pivot selection method, when the queries are distributed as indicated
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Abstract. In the past a number of I/O-efficient algorithms were de-
signed to solve a problem on a static data set. However, many data
sets like social networks or web graphs change their shape frequently.
We provide experimental results of the first external-memory dynamic
breadth-first search (BFS) implementation based on earlier theoretical
work [13] that crucially relies on a randomized clustering. We refine this
approach using a new I/O-efficient deterministic clustering, which groups
vertices in a level-aligned hierarchy and facilitates easy access to clusters
of changing sizes during the BFS updates. In most cases the new external-
memory dynamic BFS implementation is significantly faster than recom-
puting the BFS levels after an edge insertion from scratch.

1 Introduction

Breadth first search (BFS) is a fundamental graph traversal strategy. It can be
viewed as computing single source shortest paths on unweighted graphs. BFS
decomposes the input graph G = (V,E) of n = |V | nodes and m = |E| edges
into at most n levels where level i comprises all nodes that can be reached from
a designated source s via a path of i edges, but cannot be reached using less
than i edges.

The objective of a dynamic graph algorithm is to efficiently process an online
sequence of update and query operations; see [11,15] for overviews of classic
and recent results. In this paper we consider dynamic BFS for the incremental
setting where additional edges are inserted one-by-one. After each edge insertion
the updated BFS level decomposition has to be output.

At first sight, dynamic BFS on sparse graphs might not seem interesting since
certain edge insertions could require Ω(n) updates on the resulting BFS levels,
implying that the time needed to report the changes is in the same order of
magnitude as recomputing the BFS levels from scratch using the standard lin-
ear time BFS algorithm. The situation, however, is completely different in the
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external-memory setting, where the currently best static BFS implementations
take much more time to compute the BFS levels as compared to reporting them,
i.e. writing them to disk. Thus, providing a fast dynamic alternative is an im-
portant step towards a toolbox for external-memory graph computing. In this
paper we report on the engineering of an external-memory dynamic BFS im-
plementation (based on earlier theoretical work [13]). To this end a modified
external-memory clustering method tuned to our needs has been developed, too.

2 I/O-Model and Related Work

Computation model. Theoretical results on out-of-core algorithms typically
rely on the commonly accepted external-memory (EM) model by Aggarwal and
Vitter [1]. It assumes a two level memory hierarchy with fast internal memory
having a capacity to store M data items (e.g., vertices or edges of a graph) and a
slow disk of infinite size. In an I/O operation, one block of data, which can store B
consecutive items, is transferred between disk and internal memory. The measure
of performance of an algorithm is the number of I/Os it performs. The number
of I/Os needed to read N contiguous items from disk is scan(N) = Θ(N/B). The
number of I/Os required to sort N items is sort(N) = Θ((N/B) logM/B(N/B)).
For all realistic values of N , B, and M , scan(N) < sort(N) ! N .

Review of Static and Dynamic EM BFS Algorithms. There has been
a significant number of publications on external-memory graph algorithms; see
[3,16] for recent overviews. In the following we shortly review the external mem-
ory MM BFS algorithm by Mehlhorn and Meyer [12] and its dynamic exten-
sion [13]. In order to keep the description simple, we concentrate on edge in-
sertions on already connected undirected sparse graphs with n=|V | vertices and
m = |E| = O(|V |) edges.

MM BFS. The MM BFS algorithm consists of two phases – a preprocessing
phase and a BFS phase. In the preprocessing phase, the algorithm has to pro-
duce a clustering. This can be done with an Euler Tour technique based on an
arbitrary spanning tree T of the graph G. In case T is not part of the input, it
can be obtained using O((1 + log log (B · n/m)) · sort(n+m)) I/Os [6]. Initially,
each undirected edge of T is replaced by two oppositely directed edges. Then, in
order to construct the Euler tour around this bi-directed tree, each node chooses
a cyclic order [7] of its neighbors. The successor of an incoming edge is defined to
be the outgoing edge to the next node in the cyclic order. The tour is then broken
at a special node (say the root of the tree) and the elements of the resulting list
are then stored in consecutive order using an external memory list-ranking algo-
rithm; Chiang et al. [8] showed how to do this in sorting complexity. Thereafter,
the Euler tour is chopped into clusters of μ nodes and duplicates are removed
such that each node only remains in the first cluster it originally occurs; again
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this requires a couple of sorting steps. By construction, the distance in G be-
tween any two vertices belonging to the same cluster is bounded by μ − 1 and
there are O(n/μ) clusters.

For the BFS phase, the key idea is to load whole preprocessed clusters into
some efficient data structure (hot pool) at the expense of few I/Os, since the
clusters are stored contiguously on disk and contain vertices in neighboring BFS
levels. This way, the neighboring nodes N(l) of some BFS level l can be com-
puted by scanning only the hot pool. The next BFS level is obtained by re-
moving those nodes visited in levels l − 1 and l from N(l); see [14]. However,
as the algorithm proceeds, newly discovered neighbor nodes may belong to so
far unvisited clusters. Unstructured I/Os are required to import those clusters
into the hot pool, from where they are gradually evicted again once they have
been used to create the respective BFS levels. Maintaining the hot pool itself
requires O(scan(n+m) ·μ) I/Os, whereas importing the clusters into it accounts
for O(n/μ + sort(n + m)) I/Os. Choosing μ =

√
B yields an I/O-complexity of

O(n/
√
B + sort(n)) for the BFS-phase on sparse graphs.

Dynamic BFS. In the following we review the high-level ideas to computing
BFS on general undirected sparse graphs in an incremental setting. Let us con-
sider the insertion of the ith edge (u, v) and refer to the graph (and the shortest
path distances from the source in the graph) before and after the insertion of
this edge as Gi−1 (di−1) and Gi (di), respectively.

We run the BFS phase of MM BFS, with the difference that the adjacency list
for v is added to the hot pool H when creating BFS level max{0, di−1(v)−α} of
Gi, for a certain advance α > 1. By keeping the adjacency lists sorted according
to node distances in Gi−1 this can be done I/O-efficiently for all nodes v featuring
di−1(v) − di(v) ≤ α. For nodes with di−1(v) − di(v) > α, we import whole
clusters containing their adjacency lists into H using unstructured I/Os. Each
such cluster must comprise the adjacency lists of Ω(α) nodes whose mutual
distances in Gi−1 are bounded by μ = Θ(α), each vertex belongs to exactly one
cluster. If the BFS phase for the currently used value of α would require more
than α ·n/B random cluster accesses, we increase α by a factor of two, compute
a new clustering for Gi−1 with larger chunk size μ and start a new attempt by
repeating the whole approach with the increased parameters.

Meyer [13] proved an amortized high-probability bound of O(n/B2/3+sort(n)·
logB) I/Os per update under a sequence of Θ(n) edge insertions. The analysis
relies on the fact that there can be only be very few updates in which the BFS
levels change significantly for a large number of nodes. If it can be guaranteed
that each cluster loaded into the pool actually carries Ω(α) vertices, most of the
updates will require few cluster fetches in early attempts with small advance.

Unfortunately, the standard Euler tour based clustering method described
above might produce very unbalanced clusters: in fact Ω(n/μ) clusters may
contain only a single vertex each. A randomized clustering approach [13] repairs
this deficiency as follows:
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Each vertex v in the spanning tree Ts is assigned an independent binary
random number r(v) with P[r(v) = 0] = P[r(v) = 1] = 1/2. When removing
duplicates from the Euler tour, instead of storing v in the cluster related to
the chunk with the first occurrence of a vertex v, now we only stick to its first
occurrence iff r(v) = 0 and otherwise (r(v) = 1) store v in the cluster that
corresponds to the last chunk of the Euler tour v appears in. For chunk size
μ > 1 and each but the last chunk, the expected number of kept vertices is at
least μ/8.

3 Challenges and New Results

The dynamic BFS approach in [13] applies several clusterings of different values
for μ (say μ = 21, 22, 23, . . . ,

√
B) for the same input graph. In fact, for incre-

mental dynamic BFS on already connected graphs, these clusterings could be
re-used for all subsequent edge insertions. Unfortunately, while the theoretical
EM model assume external space to be of unlimited size, this is not true in real-
ity. In fact, due to disk space limitations it may often be impossible to keep even
a few different clusterings at the same time. On the other hand, even though it
will not harm the theoretical worst-case bounds, re-computing the same cluster-
ings over and over again could actually become the dominating part of the I/O
numbers we see in practice: for example in improved static BFS implementations
of [4,12], the preprocessing for graph clustering often takes more time than the
actual BFS phase, although the latter comes with a significantly higher asymp-
totic I/O-bound than the preprocessing in the worst case. In addition, the old
clustering method described above crucially relies on randomization. Thus, the
improved deterministic clustering we propose in Section 4 features both practical
and theoretical advantages.

As already mentioned in Section 2 the theoretical I/O bounds for the dy-
namic EM BFS algorithm in [13] are amortized over sequences of Θ(n) edge
insertions. Hence, single updates could theoretically become as costly as with
the static EM-BFS approach, and the hidden constants might be even worse.
On the other hand, edge insertions with little effect on the resulting BFS lev-
els should hopefully be manageable with significantly less I/O. In our practical
experiments we consider such extreme cases on several graph classes. While our
dynamic BFS implementation was never slower than a factor of 1.25 compared
to static BFS, we have also experienced cases where dynamic BFS outperformes
the static re-computation by more than a factor of 70.

4 Level-Aligned Hierarchical Clustering

The high level idea for our hierarchical clustering is rather easy: we renumber
each vertex with a new bit representation 〈br, . . . , bq+1, bq, . . . , b1〉 that is inter-
preted as a combination of prefix 〈br, . . . , bq+1〉 and suffix 〈bq, . . . , b1〉. Different
prefixes denote different clusters, and for a concrete prefix (cluster) its suffixes
denote vertices within this cluster. Depending on the choice of q we get the whole
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spectrum between few larger clusters (q big) or many small clusters (q small).
In particular we would like the following to hold:

For any 1 ≤ μ = 2q ≤
√
B, (1) there are �n/μ� clusters, (2) each cluster

comprises μ vertices (one cluster may have less vertices), and (3) for any two
vertices u and v belonging to the same cluster, their distance in G is O(μ).
In order to make this work the new vertex numbers will have to be carefully
chosen. Additionally, a look-up table is built that allows to find the sequence of
disk blocks for adjacency lists of the vertices associated with a concrete cluster
using O(1) I/Os.

u

v1 v2

Fig. 1. Sibling-Merge

u

v1

Fig. 2. Parent-Merge

u

v1 w1 v2

w2

Fig. 3. Complex merge example

In order to group close-by vertices into clusters (such that an appropriate
renumbering can take place) we start with an arbitrary spanning tree T 0

s rooted

at source vertex s. Then we work in p =
⌈
log

√
B
⌉

phases, each of which trans-

forms the current tree T j
s into a new tree T j+1

s having �|T j
s |/2� vertices. (The

external-memory BFS algorithms considered here only use clusters up to a size
of

√
B vertices so this construction is stopped after p phases. The hierarchical

clustering approach imposes no limitations and can be applied for up to �logn�
phases for other applications.) The tree shrinking is done using time-forward
processing [5,8] from the leaves toward the root (for example by using negated
BFS numbers for the vertices T j

s ). Consider the remaining leaves v1, . . . , vk with
highest BFS numbers and common parent vertex u in T j

s . If k is even then v1
and v2 will form a cluster (and hence a vertex in T j+1

s ), v3 and v4 will be com-
bined, v5 and v6, etc. (sibling-merge, see Figure 1). In case k is odd, v1 will be
combined with u (parent-merge, Figure 2) and (if k ≥ 3) v2 with v3, v4 with v5,
etc. Merged vertices are removed from T j

s and therefore any vertex is a leaf at
the time it is reached by TFP, e.g. node w1 shown in Figure 3 was already con-
sumed by vertex w2, so it is no longer available at the time v1, v2 get processed.
Thus, each vertex of T j+1

s is created out of exactly two vertices from T j
s , except

for the root which may only consist of the root from T j
s . Note that the original

graph vertices kept in a cluster are not necessarily direct neighbors but they do
have short paths connecting them in the original graph. The following lemma
makes this more formal:
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Lemma 1. The vertices of T j
s form clusters in the original graph having size

size(j) = 2j (excluding the root vertex which may be smaller), maximum depth

depth
(j)

= 2j − 1, and maximum diameter diam
(j)

= 2j+1 − 2.

Proof. By induction (obvious for size(j)). The clusters defined by T 0
s consist of

exactly one vertex each and satisfy diam
(0)

= 0 and depth
(0)

= 0. For j > 0,
three ways of merging a vertex v1 have to be considered (with a sibling ({v1, v2}),
the parent ({v1, u}) or not merged at all ({v1})), resulting in

depth
(j)

= max

⎧⎪⎨⎪⎩
depth

(j)
({v1, v2}),

depth
(j)

({v1, u}),
depth

(j)
({v1})

⎫⎪⎬⎪⎭
= max

⎧⎪⎪⎨⎪⎪⎩
max

{
depth

(j−1)
(v1),depth

(j−1)
(v2)

}
,

depth
(j−1)

(v1) + 1 + depth
(j−1)

(u),

depth
(j−1)

(v1)

⎫⎪⎪⎬⎪⎪⎭
= 2 · depth(j−1)

+ 1 = 2 · (2j−1 − 1) + 1 = 2j − 1

diam
(j)

= max

⎧⎪⎨⎪⎩
diam

(j)
({v1, v2}),

diam
(j)

({v1, u}),
diam

(j)
({v1})

⎫⎪⎬⎪⎭
= max

⎧⎪⎨⎪⎩
depth

(j−1)
(v1) + 1 + diam

(j−1)
(u) + 1 + depth

(j−1)
(v2),

depth
(j−1)

(v1) + 1 + diam
(j−1)

(u),

diam
(j−1)

(v1)

⎫⎪⎬⎪⎭
= 2 · depth(j−1)

+ diam
(j−1)

+ 2 = 2 · (2j−1 − 1) + diam
(j−1)

+ 2

= 2j + diam
(j−1)

= 2j + 2j − 2 = 2j+1 − 2

Note that while diam
(j)

and depth
(j)

denote the maximum diameter and depth
possible for a cluster with 2j vertices the actual values may be much smaller. �


The hierarchical approach produces a clustering with (1) Θ(n/μ) clusters each
having (2) size Θ(μ) (excluding the root cluster) and (3) diameter O(μ) for each
1 ≤ μ = 2q ≤

√
B.

Details on the construction of T j+1
s . Two types of messages (connect(id) and

merged(id)) are sent during the time-forward processing. When vertices are com-
bined, the vertex visited first sends the ID of the new vertex in T j+1

s to the other
one in a merged() message. The connect() messages are used to generate edges
of T j+1

s using the new IDs. The merged() message (if any) of a vertex is sorted
before the connect() messages of that vertex, so checking whether the current
minimal entry in the priority queue has received such a message can be done in
O(1).
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Renumbering the vertices. The p phases of contracting the spanning tree each
contribute one bit of the new vertex number 〈br, . . . , bp+1, bp, . . . , b1〉. The con-
struction of T j+1

s defines the bit bj+1 for the vertices from T j
s to be 0 for the left

and 1 for the right child in case of a sibling-merge, to be 0 for the parent and 1
for the child in case of a parent-merge, and to be 1 for the root vertex (unless
it was already merged with another vertex). After p contraction phases T p

s with
c = �n/2p� vertices/clusters remain. The remaining (r − p) bits are assigned by
computing BFS numbers (starting with (2�log2 c�−c) at the root) for the vertices
of T p

s . These BFS numbers are inserted (in their binary representation) as the
bits 〈br, . . . , bp+1〉 of the new labels for the vertices of T p

s .
To efficiently combine the label bits from different phases and propagate them

to the vertices of G again time-forward processing can be applied. The trees
T p
s , . . . , T

0
s will be revisited in that order and vertices of T j

s can be processed
e.g. in BFS order and each vertex v of T j

s will combine the label bits received from
T j+1
s with the bit assigned during the construction phase and then send messages

with its partial label to the vertices in T j−1
s it comprises. The resulting new

vertex numbering of G will cover the integers from [n′−n, n′) where n′ = 2�log2 n�.
There will be a single gap [0, n′ − n) (unless n is a power of two) that can be
easily excluded from storage by applying appropriate offsets when allocating and
accessing arrays. Thereafter the new labeling has to be propagated to adjacency
lists of G and the adjacency lists have to be reordered (O(sort(n + m)) I/Os).

Assuming the adjacency lists are stored as an adjacency array sorted by vertex
numbers (two arrays, the first with vertex information, e.g. offsets into the edge
information; the second with edge information, e.g. destination vertices), there
is no need for an extra index structure to retrieve any cluster in O(1 + x

B )
I/Os where x is the number of edges in that particular cluster. This is possible
because all vertices of a cluster are numbered contiguously (for all values of
1 ≤ μ = 2q ≤

√
B) and the numbers of the first and last vertex in a cluster can

be computed directly from the cluster number (and cluster size μ).

Lemma 2. For an undirected connected graph G with n vertices, m edges, and
given spanning tree Ts the Hierarchical Bottom-Up Clustering for all cluster sizes
1 ≤ μ = 2q ≤ n can be computed using O(sort(n)) I/Os for constructing the new
vertex labeling and O(sort(n +m)) I/Os for the rearrangement of the adjacency
lists of G.

5 Implementation Details of Dynamic BFS

In the theoretical design of dynamic BFS the single parameter α was used to
control the following quantities: the size of the clusters, the timer threshold (to
avoid that elements are kept in the hot pool during the whole computation after
a previous cluster fetch of the same element) and the number of levels that are
prefetched into the hot pool. In our implementation we used two parameters
α1 and α2 instead. The number of levels that are fetched into the hot pool is
denoted by α1 whereas the size of the clusters is controlled by α2. The timer
values are given by a simple approximation of the cluster diameter.
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We split the original hot pool into two hot pools – one for the fetched levels
(denoted as H) and one for the loaded clusters (denoted as HC). The elements
in the two hot pools have different properties (for example the cluster id and
the timer are needed in HC but not in H) and we were able to measure random
I/Os from cluster fetches and sequential I/Os from feeding H with new levels
and removing consumed or outdated entries separately.

For the insertion of an edge (v1, v2) into the graph we made the following
observation. Let l1 be the level of the vertex v1 and l2 the level of vertex v2 and
w.l.o.g be l1 ≤ l2. The first level f1 with possible improvements for the BFS
levels is given by f1 = l1 + � l2−l1

2  + 1. Hence, we do not need to recompute the
level of any vertex in a level l < f1. The distance l2−l1 might be arbitrarily huge.
The α1 levels that could be fetched into H will never be required if l1 +α1 < l2.
Therefore we start prefetching levels into H from level f1 instead of l1. HC will
load clusters in the local neighborhood of v2 to assign new BFS levels to adjacent
vertices.

In Section 4 we argued for simplicity that the hierarchical clustering can be
implemented using the time-forward processing technique and a priority queue.
Since we are operating on a tree we can actually omit the priority queue in
order to achieve better constant factors: we build triples (vertex, level, parent)
for each vertex in our tree and sort them by level and furthermore by parent.
Now we scan the triples and merge two adjacent elements if they have the same
parent. If there is no such adjacent element it is merged with its parent which is
considered in the next level. Hence, we store a message that its parent is already
clustered and then the parent is omitted later. For small levels these messages
fit in internal memory, for larger levels an external sorted vector is used.

6 Experiments

Configuration. Our external-memory dynamic BFS implementation relies on
the STXXL library [10]. For our static EM-BFS results we used the STXXL
code from Ajwani et al. [4]. We performed our experiments on a machine with
an Intel dual core E6750 processor @ 2.66 GHz, 4GB main memory (3.5 GB
free), 3 hard disks with 500 GB each as external memory for STXXL, and a
separate disk for the operating system, graph data, log files etc. The operating
system was Debian GNU/Linux amd64 ’wheezy’ (testing) with kernel 3.2. We
compiled with GCC 4.7.2 in C++11 mode using optimization level 3.

Graph Classes. For our experiments we used four different graph classes: one
real-world graph with logarithmic diameter, two synthetic graph classes with
diameters Θ(

√
n) and Θ(n) and a tree graph class that was designed to elicit poor

performance for the static BFS approach with standard Euler-tour clustering.
The real-world graph sk-2005 has around 50 million vertices, about 1.8 billion

edges and is based on a web-crawl. It was also used by Crescenzi et al. [9] and has
a known diameter of 40. The synthetic x-level graphs are similar to the B-level
random graphs in [2]. They consist of x levels, each having n

x vertices (except
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Fig. 4. Our cl n2 29 graph has the same shape as the graph in this picture but with
1048576 lists of length 511 each. In this picture the result of an Euler tour based
clustering with μ = 6 is shown as it is used in MM BFS.

the level 0 containing only one vertex). The edges are randomly distributed
between consecutive levels. The

√
n-level graph graph features n = 228 nodes and

m = 1.1 · 109 edges, for the Θ(n)-level graph we have n = 228 and m = 0.9 · 109.
The fourth graph class represents trees whose special shape are tuned to yield an
Euler tour clustering that forces the static MM BFS algorithm into Ω(n/

√
B)

unstructured I/Os: whenever a new BFS level is reached, many new clusters are
encountered for the first time. A schematic depiction is presented in Figure 4.
In our concrete case the resulting cl n2 29 graph features about 229 nodes and
220 lists. The parameters were chosen in a way that prefetching heuristics will
not help MM BFS caching adjacency lists in main memory.

6.1 Results

In our experiment we inserted new edges (v1, v2) into the graph, where we set
v1 = s (the source of the BFS tree) and select the other vertex v2 from BFS levels
0.1 · d, 0.2 · d, ..., d where d denotes the height of the BFS tree. The experiments
were executed independently. For each inserted edge the initial BFS tree / graph
was the same. The source of the BFS tree was chosen to make the experiments
more difficult: two vertices far away from the source might have a small distance
to each other and then usually only a small fraction of the whole graph data has
to be reassigned to new BFS levels in our graph data. We measured the time for
dynamic BFS plus the time to write the result and the number of vertices that
have been updated. Experiments during the implementation showed that for a
small cluster size α2, e. g. α2 = 64, its value is algorithmically never increased.
This leads to a high number of random I/Os. Thus we set α2 = 1024 which
causes a small amount of random cluster fetches. For smaller α2 our results were
slightly better for each graph class on our test machine but not for the

√
n-

level graph. The number of elements in the hot pool H is given by the value
of α1. For large α1 a huge hot pool H has to be scanned for each BFS level
computation. We set the initial α1 = 4 to avoid too many sequential I/Os.
Table 1 contains the time for computing static EM-BFS for each graph divided
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into the preprocessing and the BFS computation. The cl n2 29 graph stands
out with a slow BFS computation while the preprocessing is almost as fast as
the preprocessing for the other graph classes. Table 2 contains the time for the
hierarchical clustering and the time that is needed to reorganize the adjacency
lists (add cluster information to edges, sort them, ...). The clustering is slower
than the preprocessing of the static BFS because logarithmically many phases
e. g. containing Euler Tour and list-ranking computation have to be done instead
of one. Nevertheless, the computation time is still independent from the graph
class and the computation time only depends on the input size. The gain of
the hierarchical clustering is obtained in the dynamic BFS computation of the
cl n2 29 graph (details at the end of this section).

Table 1. Running time (in hours) of static EM-BFS with source 0

sk-2005
√
n-level graph Θ(n)-level graph cl n2 29 graph

Time Preprocessing 0.91 1.35 1.19 1.29

Time BFS-level computation 2.41 3.26 1.36 > 17

Table 2. Running time (in hours) of level-aligned hierarchical clustering

sk-2005
√
n-level graph Θ(n)-level graph cl n2 29 graph

Compute hierarchical 0.39 1.64 1.35 3.01
level-aligned clustering

Reorganization of 1.38 0.94 0.84 0.54
adjacency lists

Figure 5 contains the results of our dynamic BFS computing the updated
BFS levels. Because one vertex of the newly inserted edge is always the source,
the results mirror the local hot spots in the graph in which the update of a few
BFS levels is expensive. For example, the web graph sk-2005 has many vertices
in the levels close to the source 0. Vertices with a larger distance to the source
seem to have a list-like path to the source. Hence, an update of the BFS-levels
was very fast from vertices with large distance to the source. In our experiments
the worst scenario is the

√
n-level graph. It is the only case in which our current

implementation loses against EM-BFS for large distance between the two vertices
of the new edge.

Results of experiments with cl n2 29 graph: as expected the hot pool of static
BFS had to go external and reads/writes Terabytes of data (input data set size:
8 GB). Therefore, static MM BFS needs more than 17 hours. Each update during
the dynamic BFS computation needed at most 0.23 hours.

Our results using hard disks were viable due to comparatively large α2. In
experiments on a similar machine using solid state drives we were able to improve
our results. We beat the static BFS for each graph class in each test scenario by
using a smaller α2 = 256. For our

√
n-level graph we were able to beat static

BFS by a factor of 1.14 in our worst case. This is explained by the fact that for
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[number of BFS levels spanned by inserted edge in % of max. BFS level d]

[time in hours] [vertices changed in %]

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

2

4

50%

100% sk-2005

√
n-level graph

Θ(n)-level graph

cl n2 29 graph

Fig. 5. Results of dynamic BFS. The time of each static BFS is plotted in as a dashed
line in the left plot for sk-2005 (2.41 h),

√
n-level graph (3.26 h) and Θ(n)-level graph

(1.36 h). The static BFS time of cl n2 29 graph was not drawn because it is too huge
with 17 hours to suit into the plot.

smaller α2 the work on CPU is much smaller but the I/O-time increases. It seems
that with SSDs the I/O time increases slower than the CPU-time decreases. We
plan to present more details in a full version.

7 Conclusion

We have given initial results of the first external-memory dynamic BFS imple-
mentation using a new deterministic level-aligned hierarchical clustering. Even
though we applied rather hard edge insertion scenarios our implementation was
usually faster, and for some graph classes much faster, than the static BFS im-
plementation. We investigated the interaction of the different parameters that
influence the performance of our dynamic BFS in more detail.

Acknowledgements. We want to thank Asmaa Edres for her work on the
implementation of the time-forward processing hierarchical clustering using a
priority queue in her master’s thesis.
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Versatile Succinct Representations

of the Bidirectional Burrows-Wheeler Transform�
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Helsinki Institute for Information Technology (hiit),
Department of Computer Science, University of Helsinki, Finland

Abstract. We describe succinct and compact representations of the
bidirectional bwt of a string s ∈ Σ∗ which provide increasing navigation
power and a number of space-time tradeoffs. One such representation
allows to extend a substring of s by one character from the left and
from the right in constant time, taking O(|s| log |Σ|) bits of space. We
then match the functions supported by each representation to a number
of algorithms that traverse the nodes of the suffix tree of s, exploiting
connections between the bwt and the suffix-link tree. This results in
near-linear time algorithms for many sequence analysis problems (e.g.
maximal unique matches), for the first time in succinct space.

1 Introduction

Suffix trees are versatile data structures on which myriads of sequence analy-
sis tasks can be solved optimally [1, 11]. Recent progress in compressed data
structures has provided alternatives that replace suffix trees verbatim with more
space-efficient constructions [5, 10, 22–24]. Such black-box replacements do not
always achieve optimal space-time tradeoffs, thus substantial effort has been de-
voted to designing the best possible setup of data structures for specific sequence
analysis problems [6, 13, 15, 19, 27, 28]. In this paper we recognize recurrent pat-
terns in the way many classical sequence analysis algorithms traverse the suffix
tree of a string, and provide a corresponding set of minimal data structures that
can be used to implement all such algorithms at once. The key observation is
that a number of algorithms iterate over the nodes of a suffix tree either in no
particular order, or explicitly in the order induced by suffix links: this allows to
implement navigation using the bidirectional Burrows-Wheeler transform (bwt)
[16, 18, 27, 28], often without even the need of compressed longest common prefix
(lcp) arrays or range minimum query (rmq) data structures.

Let occs(w) be a constant size representation of the occurrences of a string
w in a string s over an alphabet Σ (we assume occs(w) = ∅ if w does not occur
in s). For example, occs(w) could be the locus of w in the suffix tree of s, or the
lexicographical range of the suffixes of s that begin with w. In the bidirectional
bwt, occs(w) consists of two lexicographical ranges of suffixes, one representing

� This work was partially supported by Academy of Finland under grants 250345
(CoECGR) and 118653 (ALGODAN).

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 133–144, 2013.
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Table 1. Representations of the bidirectional BWT: summary of space, time, navi-
gation power, and applications, for the implementations described in Section 4. Time
complexities for enumerateLeft and enumerateRight are per element of output. SUS:
shortest unique substrings; MR: maximal repeats; LB: longest border; QP: quasiperiod;
IPS: inner product of substrings; IPK: inner product of k-mers; (N)SR: (near) super-
maximal repeats; MAW: minimal absent words; BBB: bidirectional b&b (supported
also by Implementation 2a).

Representation 1 2 3
Implementation 1a 1b 2a [27] 2b 3

Space (bits) |s| log |Σ|+ |s| log |Σ|+ 2|s| log |Σ|+ 2|s| log |Σ|+ O(|s| log |Σ|)
+|s| + o(|s|) +o(|s| log |Σ|) +o(|s|) +o(|s| log |Σ|)

isLeftMaximal O(log |Σ|) O(1) O(log |Σ|) O(1) O(1)
isRightMaximal O(1) O(1) O(log |Σ|) O(1) O(1)
enumerateLeft O(log |Σ|) O(1) O(log |Σ|) O(1) O(1)
enumerateRight O(log |Σ|) O(1) O(1)
extendLeft O(log |Σ|) O(|Σ|) O(log |Σ|) O(|Σ|) O(1)
extendRight O(log |Σ|) O(|Σ|) O(1)

Applications MUM, SUS, MR, LB, MUM, SUS, MEM, SR, BBB
QP, IPS, IPK NSR, MAW, IPS, IPK

the occurrences of w in s and the other representing the occurrences of the
reverse of w in the reverse of s. We want to support the following operations:

– extendLeft(a ∈ Σ, occs(w)) = occs(aw)
– extendRight(occs(w), a ∈ Σ) = occs(wa)
– enumerateLeft(occs(w)) = {occs(aw) : a ∈ Σ, occs(w) 	= ∅}
– enumerateRight(occs(w)) = {occs(wa) : a ∈ Σ, occs(w) 	= ∅}
– isLeftMaximal(occs(w)) = true iff |enumerateLeft(occs(w))| > 1
– isRightMaximal(occs(w)) = true iff |enumerateRight(occs(w))| > 1

where enumerateLeft and enumerateRight produce their output in lexico-
graphical order of a. We describe three representations of the bidirectional bwt

with increasing sets of supported operations, tailored for the navigation patterns
of corresponding classes of algorithms. Each representation is realized by corre-
sponding succinct implementations, whose space–time tradeoffs are summarized
in Table 1. In turn, such implementations expose a number of new tradeoffs for
many problems, they achieve the first succinct-space solution for others (namely,
longest border and surprising substrings), and they allow to compute maximal
unique matches in succinct space and near-linear time. Our main technical contri-
bution is to show that the O(log |Σ|)-time bidirectional backward step operation
supported by wavelet trees [27] can be performed in constant time.

2 Definitions and Notation

We use the example in Fig. 1 to introduce and illustrate the formalism of the
following sections. Let Σ be a finite alphabet, let $ /∈ Σ be a symbol lexico-
graphically smaller than any other symbol, and let s ∈ Σ+. The suffix array
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Fig. 1. Main constructs and formalisms applied to string s = agagcgagagcgcgc (see
Sections 1 and 5.2 for more details). (a) The suffix tree Ts with extended nodes. Gray
lines are implicit and explicit Weiner links. To improve clarity, the children of a node
are not drawn in lexicographical order. (b) The suffix-link tree Ls and its supertree
L∗

s .(c) Suffix array and BWT of s and of its reverse s̄. Moving from the ranges of
gcg to the ranges of agcg (respectively, of cgcg) corresponds to navigating an explicit
(respectively, implicit) Weiner link (see Panel b).

SAs[0, |s|] of s$ is the vector of indices such that s[SAs[i], |s| − 1]$ is the i-th
smallest suffix of s$ in lexicographical order. The Burrows-Wheeler transform of
s$ is the string BWTs[0, |s|] satisfying BWTs[i] = s[SAs[i] − 1] if SAs[i] > 0,
and BWTs[i] = $ otherwise. We use s̄ to indicate the reverse of a string s, and
counts(a, i, j) to represent the number of occurrences of symbols lexicographi-
cally smaller than a ∈ Σ in s[i, j]. We define the suffix array range, or identically
the bwt range, of a substring w, as the maximal range (iw, jw)s such that the
suffixes s[SAs[i], |s| − 1], i ∈ [iw, jw], are prefixed by w. The range (iw̄, jw̄)s̄ of
w̄ is defined analogously with suffixes s̄[SAs̄[i], |s| − 1], i ∈ [iw̄, jw̄], prefixed by
w̄. Fig. 1c shows the ranges of gcg, agcg, cgcg, and their reverses.

The suffix tree Ts = (Us ∪ Vs, Es) of s is a rooted tree with leaves Us and
internal nodes Vs. The edge labels �(e) ∈ Σ+ for e ∈ Es induce the node labels
�(v) = �(e0) · �(e1) · · · �(ek−1) for v ∈ Us ∪ Vs, where e0, e1, . . . , ek−1 is the
path from the root to v. Each internal node v ∈ Vs has at least two children,
the labels of the edges to the children have different first symbols, and the
children are ordered by that symbol. Then all node labels are distinct and their
lexicographical order corresponds to the pre-order of the nodes. The set of leaf
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labels is exactly the set of suffixes of s. White squares, black circles and black
lines in Fig. 1a represent Us, Vs and Es, respectively. We denote with Ws =
{(u, v) | u, v ∈ Vs, �(v) = a · �(u), a ∈ Σ} the set of explicit Weiner links of Ts.
A Weiner link (u, v) has a label �(u, v) ∈ Σ such that �(v) = �(u, v) · �(u). The
suffix-link tree Ls = (Vs,Ws) of s is the trie induced by Ws on Vs (black circles
and solid lines in Fig. 1b). If w = �(v) for a node v ∈ Us ∪ Vs, we say that v is
the locus of w, locuss(w) = v. For any substring w of s, let x be the shortest
string such that locuss(wx) = v exists. Then v is the the extended locus of w,
elocuss(w) = v. We indicate the parent of a node v in a tree with parent(v),
and with lca(u, v) the least common ancestor of two nodes u, v.

For a string w, let Ls(w) = {i0, i1, . . . , im−1} be the set of all starting positions
of w in s. Consider the string sets S = {�(v) | v ∈ Vs}, S′ = {a�(v) | a ∈
Σ, v ∈ Vs,Ls(a�(v)) 	= ∅} and S′′ = {�(v)a | a ∈ Σ, v ∈ Vs,Ls(�(v)a) 	= ∅}.
We introduce new nodes to represent the strings in S′ and S′′ when necessary:
V ′
s = {v : �(v) = w ∈ S′ \S} and V ′′

s = {v : �(v) = w ∈ S′′ \ (S ∪S′)}. The suffix
tree Ts, the suffix-link tree Ls, and the suffix-link tree L∗

s extended with nodes
in V ′

s (white circles) and in V ′′
s (white triangles), are illustrated in Fig. 1. The

edges W ′
s = {(u, v) | u ∈ Vs, v ∈ V ′

s , �(v) = a · �(u), a ∈ Σ} are called implicit
Weiner links and are represented as dashed lines in Fig. 1b.

3 Synchronizing the Bidirectional BWT in Constant
Time

For a node v ∈ Vs, let (iv, jv)s and (iv̄, jv̄)s̄ be shorthand notations for (i�(v), j�(v))s
and (i�(v), j�(v))s̄, respectively. Assume that we know (iv, jv)s and (iv̄, jv̄)s̄, and

that we want to derive (ia�(v), ja�(v))s and (i�(v)a, j�(v)a)s̄ for some a ∈ Σ. For

example, we may know the bwt ranges of node u with �(u) = gcg in Fig.
1a, and we may want to derive the ranges for string agcg (Fig. 1c). Belaz-
zougui and Navarro recently showed that the map (iv, jv)s �→ (ia�(v), ja�(v))s
can be implemented in constant time, independent of |Σ|, using O(|s| log log |Σ|)
bits of space [5]. Deriving (i�(v)a, j�(v)a)s̄ from (iv̄, jv̄)s̄ and (iv, jv)s reduces to

computing countBWTs(a, iv, jv), which is typically implemented by subtracting
countBWTs(a, 0, iv−1) from countBWTs(a, 0, jv) (see e.g. [16, 28]). We prove that
the running time of this approach has an intrinsic lower bound imposed by space:

Theorem 1. Let s ∈ Σ+ be a string and let k be a constant number. In the cell
probe model with word size Θ(log |s|), no data structure that uses O(|s| logk |s|)
bits of space can compute counts(a, 0, i) in o((log |Σ|)/(log log |s|)) time, for any
a ∈ Σ and 0 ≤ i < |s|.

The proof reduces two-dimensional orthogonal range counting on an n × n
grid to computing counts(a, 0, i) for a string s of length n on any alphabet size:
we omit it due to lack of space. To compute (i�(v)a, j�(v)a)s̄, however, we are

only interested in computing countBWTs(a, iv, jv) for intervals of BWTs that
correspond to nodes v of the suffix tree of s. Here we show that counts(a, iv, jv)
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for v ∈ Vs can be computed in constant time and O(|s| log |Σ|) bits of space,
independent of |Σ|, by applying the data structures introduced in [5]. To make
the paper self-contained, we first sketch the original construction.

Theorem 2 ([5]). There is an index of size O(|s| log log |Σ|) bits that imple-
ments map (iv, jv)s �→ (ia�(v), ja�(v))s in constant time for any node v ∈ Vs in
the suffix tree of s.

Proof sketch. We use the O(|s|) representation of Ts described in [26] to commute
in constant time between ranges in BWTs and corresponding nodes in Vs, and
vice versa. Assign to every v ∈ Vs a unique identifier id(v) ∈ [1, 2|s| − 1] by
enumerating Vs in depth-first order. Note that explicit Weiner links preserve
depth-first order: if e1 = (u1, v1) and e2 = (u2, v2) are explicit Weiner links
with �(e1) = �(e2), then id(u1) < id(u2) ⇒ id(v1) < id(v2). The same holds
for implicit Weiner links if we give depth-first identifiers to their destinations.
For each character a ∈ Σ, consider set Va = {id(u) : u ∈ Vs, e = (u, v) ∈
Ws ∪ W ′

s, �(e) = a}, and let explicita be a bit vector of size |Va| that marks
with a one (respectively, with a zero) the explicit (respectively, implicit) Weiner
links in Va. Clearly the number of ones in explicita is the number of nodes
in Vs whose label starts with a. Let fa : Va �→ [1, |Va|] be a monotone minimal
perfect hash function [4]. It’s easy to see that the overall space used by fa for
all a ∈ Σ is O(|s| log log |Σ|) bits (see [5] for additional details). The destination
of an explicit Weiner link e = (u, v) with label a can be obtained by first using
fa to map u to a number x ∈ [1, |Va|] in constant time. Then, explicita[x] = 1
implies that e is explicit, and computing id(v) reduces to computing C[a] and the
number of ones in explicita[1, x− 1], where C[a] =

∑
c∈Σ,c<a counts(c, 0, |s|).

Note that the value of C[a] for all a ∈ Σ can be precomputed and stored in
overall o(n log σ) bits. An implicit Weiner link has explicita[x] = 0, and the
identifier of the extended locus of its destination is also the number of ones in
explicita[1, x − 1]. Finally, since fa returns a number in [1, |Va|] even when
there is no Weiner link from u labelled by a, we need to check the existence of
an a in (iu, ju)s. In order to do so, we first convert id(u) into (iu, ju)s and id(v)
into (iv, jv)s, and then check whether iu ≤ select(a, iv − C[a] + 1) ≤ ju. �

The proof of Theorem 2 extends naturally to countBWTs(c, iv, jv).

Theorem 3. There is an index of size O(|s| log |Σ|) bits that implements map
(iv, jv)s �→ countBWTs(c, iv, jv) in constant time for any node v ∈ Vs in the
suffix tree of s.

Proof. As above, we assume the O(|s|) representation of Ts described in [26].
Let Vc = {u ∈ Vs : e = (u, v) ∈ Ws ∪ W ′

s, �(e) = c}, and let Tc = (Vc, Ec) be
a tree induced on Vc by the set of edges Ec defined as follows: Ec contains all
pairs (u, v), u, v ∈ Vc, such that u is an ancestor of v in Ts, and there is no
w ∈ Vc, w 	= v, in the path that connects u to v in Ts. We use a monotone
minimal perfect hash function fc to map the nodes in Vc to identifiers in the
depth-first order of Tc. Let diffc be a bit vector of size |Vc| where position k
corresponds to the kth node in the depth-first order of Vc. Let uk be the kth
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node in the depth-first order of Vc: we set diffc[k] = countBWTs(c, iuk
, juk

) −∑
(uk,v)∈Ec

countBWTs(c, iv, jv). Clearly
∑

0≤k<|Vc| diffc[k] ∈ O(|s|), so diffc

can be encoded in O(|Vc| log(|Σ|/|Vc|)) bits using a prefix-sum data structure
[21]. As in the proof of Theorem 2, it follows that the total space taken by diffc
for all c ∈ Σ is O(|s| log |Σ|) bits. Let v be the node of Vc that corresponds to
interval (iv, jv) in BWTs. To compute countBWTs(c, iv, jv), it suffices to retrieve
the range (i′v, j

′
v) of depth-first identifiers of nodes in the subtree of Tc rooted

at v (including v itself), and to compute
∑j′v

k=i′v
diffc[k]: both such operations

can be implemented in constant time using the data structure in [26] and the
prefix-sum data structure in [21].

4 Succinct Representations of the Bidirectional BWT

We detail here the hierarchy of representations in Table 11. Representation 1
supports just enumerateLeft, isLeftMaximal and isRightMaximal, and can
be implemented as follows. Along the lines of [15], let runss ∈ {0, 1}|s| be a
bit vector such that runss[i] = 1 iff i > 0 and BWTs[i] 	= BWTs[i − 1]. We
encode runss̄ as an array of |s| + o(|s|) bits, and we implement enumerateLeft
and synchronize BWTs and BWTs̄ by representing BWTs as a wavelet tree in
|s| log |Σ|+o(|s|) bits of space. Given (iw, jw)s, the wavelet tree allows to enumer-
ate all distinct characters a ∈ Σ in (iw, jw)s, to obtain countBWTs(a, iw, j), and
to compute the number of occurrences of a in BWTs[1, i−1] and in BWTs[iw, jw],
in O(log |Σ|) time per character [8, 28]. These values suffice to compute all the
corresponding (iaw, jaw)s and (iw̄a, jw̄a)s̄ from (iw, jw)s and (iw̄, jw̄)s̄ in batch.
Note that this implementation supports also extendLeft in O(log |Σ|) time.
Operation isRightMaximal for string w consists in checking whether the range
(iw̄, jw̄)s̄ contains at least two distinct characters, i.e. in counting the number of
ones in runss̄[iw̄+1, jw̄]. Operation isLeftMaximal consists in checking whether
the range (iw, jw)s contains at least two distinct characters: this can be clearly
implemented in O(log |Σ|) time using the wavelet tree representation of BWTs.
We call Implementation 1a this setup of data structures that supports the func-
tions of Representation 1.

Alternatively, we can implement enumerateLeft and synchronize BWTs and
BWTs̄ by representing BWTs in |s| log |Σ| bits as a plain sequence of characters,
and by building a range minimum query data structure (rmq, see [9]). An rmq

allows to enumerate all the distinct characters in a bwt interval in constant time
per character, using 2|s|+ o(|s|) bits of space [25]. Such characters, however, are
not necessarily listed in sorted order: to put them in sorted order, we use a
monotone minimal perfect hash function that stores the distinct characters for

1 For brevity, we omit the space-time tradeoffs that would result from using com-
pressed, rather than succinct, data structures. Some implementations described in
this section can be augmented with data structures that take space within their lower
order terms, and that support (albeit sometimes inefficiently) additional operations
that are not required by their corresponding representations.
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every interval in BWTs. The rank of each character is thus given by the hash
function in constant time per character. Finally, we build the O(|s| log log |Σ|)-
space data structures of Theorem 2: since we know that aw exists for each a ∈ Σ
detected above, we can obtain (iaw, jaw)s for each such a in constant time. As a
byproduct, we also get the number of occurrences of aw: using this information
we can synchronize the corresponding intervals in BWTs̄ in batch, in constant
time per interval. We call Implementation 1b this way of supporting the functions
of Representation 1.

Representation 1 suffices for applications that need to traverse the whole Ls

top-down, or that just need to iterate over every node of Ts exactly once. Our
second representation of the bidirectional bwt supports enumerateRight in ad-
dition to all operations of Representation 1, providing access to all the children
of a node in the suffix tree of s. We implement Representation 2 with the same
data structures as in Implementations 1a and 1b, but replicating them for BWTs̄

and removing runss̄. Thus, Implementation 2a supports also extendRight in
O(log |Σ|) time, and Implementation 2b duplicates Implementation 1b, but with-
out removing runss̄. Implementation 2a was originally described in [27], and it
can easily support isLeftMaximal and isRightMaximal in constant time using
2|s| + o(|s|) additional bits to encode runss and runss̄.

The third level in our hierarchy, called Representation 3, supports extendLeft
and extendRight in addition to all operations of Representation 2, allowing se-
lective extension by a single character in both directions. We implement Repre-
sentation 3 by augmenting Implementation 2b with the data structures described
in Theorem 3.

5 Applications

A number of algorithms can be expressed as iterations over the nodes of the suffix
tree Ts of a string s, either in no particular order or explicitly in the order induced
by a top-down navigation on the suffix-link tree Ls. In this section we implement
a subset of such algorithms using the representations of the bidirectional bwt

described in Section 4, and we show that the corresponding implementations
allow to reach favorable regions in the space-time plane. For brevity, we waive
details related to index construction time.

To warm up, consider the bidirectional branch-and-bound search used by pop-
ular read alignment tools to perform approximate string matching [16–18]: the
state of the art is based on Implementation 2a or slower alternatives, thus using
Representation 3 yields a speedup by a Θ(log |Σ|) factor.

5.1 Maximal Repeats and Maximal Matches

We say that w is left-maximal (respectively, right-maximal) in s if Ls(w) 	=
Ls(aw) (respectively, Ls(w) 	= Ls(wa)) for all a ∈ Σ. We say that w is a max-
imal repeat of s if w is left- and right-maximal [11] (for example, string gag

in Fig. 1 is a maximal repeat). A variety of algorithms have been proposed for
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discovering all the maximal repeats of s, and recently very space-efficient so-
lutions have been achieved (see e.g. [6, 15] and references therein). Most such
algorithms build an lcp array, whose construction takes O(|s| logε |s|) time when
using O(1ε |s| log |Σ|) bits of space [24]. Recently it has been shown that lcp con-
struction is not required to solve the problem in succinct space [6]. We give here
a different algorithm that also avoids lcp construction, which we later extend
to other problems not considered in [6].

Lemma 1. Assume that Implementation 1a (respectively, 1b) has already been
built for a string s ∈ Σ+. We can discover all the τ maximal repeats of s ∈ Σ+

in O(|s| log |Σ|) time and |s| log |Σ| + 2|s| + o(|s|) + O(τ log |s|) bits of space
(respectively, in O(|s|) time and |s| log |Σ| + o(|s| log |Σ|) + O(τ log |s|) bits of
space).

Proof. We navigate Ls top-down by iteratively taking all Weiner links and test-
ing whether the string corresponding to the destination node is right-maximal: in
the negative case, we stop iteration. In the positive case, we test left-maximality.
To navigate Ls we keep a stack S1 of pointers and labels of the children of each
node, and to print maximal repeats to the output we keep a stack of charac-
ters S2. Traversing Ls top-down could potentially make |S1| ∈ O(λ|Σ| log |s|)
bits, where λ is the depth of Ls. In the worst case λ ∈ Θ(|s|), thus it could
be that |S1| ∈ Θ(|Σ| · |s| log |s|). We keep |S1| ∈ O(|Σ| log2 |s|) by using the
strategy of always visiting the child of a node with the largest subtree last (see
e.g. [12]): this limits the depth of the navigation stack to O(log |s|). Clearly
|S2| ∈ O(λ log |Σ|) = O(|s| log |Σ|). Reporting the positions in s of all maximal
repeats would be trivial if we had the suffix array of s. In our case, we build the
set of all occurrences of all maximal repeats in BWTs, we sort them in O(|s|)
time using radix sort, and then we invert BWTs. During inversion, we scan the
list of occurrences and we replace each value by the corresponding position in s.
This process takes overall O(|s| log |Σ|) time.

Note that Implementation 1a can be built in O(|s| log |Σ|) time and space [14],
thus we can discover all maximal repeats of a string s ∈ Σ+ in O(|s| log |Σ|) time
and bits of space – the same bound as in [6]. Both algorithms extend easily to
supermaximal and near-supermaximal repeats.

Let s and t be two strings on alphabet Σ. Substring w is a maximal unique
match (mum) between s and t iff Ls(w) = {i}, Lt(w) = {j}, 0 ≤ i < |s|,
0 ≤ j < |t|, and if s[i−1] 	= t[j−1] and s[i+ |w|] 	= t[j+ |w|]. Current algorithms
to detect maximal unique matches rely on lcp arrays (see e.g. [13] for the most
space-efficient solution to date): using a bidirectional bwt implementation allows
to reduce space.

Lemma 2. Let s and t be two strings in Σ+, and assume that Implementation
1a (respectively, 1b) has already been built for s$t. We can discover all the τ
maximal unique matches between s and t in O((|s| + |t|) log |Σ|) time and (|s| +
|t|) log |Σ|+3(|s|+ |t|)+o(|s|+ |t|)+O(τ log(|s|+ |t|)) bits of space (respectively,
in O(|s|+ |t|) time and (|s|+ |t|) log |Σ|+ o((|s|+ |t|) log |Σ|) +O(τ log(|s|+ |t|))
bits of space).
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Proof. Let u = s$t. The mums between s and t are precisely the nodes v of Tu

with the following properties: (1) they have exactly two children; (2) one child
correspond to a suffix that starts before $ in u; the other child corresponds to a
suffix that starts after $ in u; (3) a�(v) occurs in s, b�(v) occurs in t, a, b ∈ Σ,
and a 	= b. To determine mums it thus suffices to build a bit vector which of
size |u| such that which[i] = 1 iff the ith suffix of u in lexicographic order starts
at position |s| + 2 or larger in u. We follow Lemma 1 to keep the depth of the
navigation stack bounded by O(log |u|) and to report the positions of all mums
in s.

This algorithm can be easily adapted to discover the shortest unique sub-
strings of a single string s. As mentioned above, Implementation 1a is easy to
construct: the following corollary ensues.

Corollary 1. We can discover all the τ maximal unique matches between s ∈
Σ+ and t ∈ Σ+ in O((|s|+ |t|) log |Σ|) time and O((|s|+ |t|) log |Σ|+ τ log(|s|+
|t|)) bits of space.

If we have already indexed two strings s and t separately, we can compute
maximal unique matches by traversing Ls and Lt synchronously:

Lemma 3. Let s and t be two strings in Σ+, and assume that Implementation
2a (respectively, 2b) has already been computed for s and t. We can discover
all the τ maximal unique matches between s and t in O((|s| + |t|) log |Σ|) time
and 2(|s| + |t|) log |Σ| + (|s| + |t|) + o(|s| + |t|) + O(τ log(|s| + |t|)) bits of space
(respectively, in O(|s| + |t|) time and 2(|s| + |t|) log |Σ| + o((|s| + |t|) log |Σ|) +
O(τ log(|s| + |t|)) bits of space).

Proof. Again, let u = s$t. Traversing Lu can be simulated by synchronizing the
top-down traversal of Ls and Lt, as follows. Assume to be at node us in Ls and
at node ut in Lt, and let (us, vs) ∈ Ws ∪W ′

s and (ut, vt) ∈ Wt ∪W ′
t be (explicit

or implicit) Weiner links with label a in Ls and Lt, respectively. If vs ∈ Vs or
vt ∈ Vt, then �(vs) corresponds to a node in Lu. Otherwise, �(vs) is a node in Lu

iff substrings �(vs)a of s and �(vs)b of t, a, b ∈ Σ, are such that a 	= b. To detect
maximal unique matches, it suffices to check that �(vs) occurs once in s and once
in t, and to retrieve the symbols that precede it in s and t. Both operations take
constant time in Representation 2. To bound the depth of the navigation stack
by O(log(|s| + |t|)) it suffices to ensure that the largest subtree in Ls or Lt is
always explored last.

Note that in this application we need enumerateRight just for intervals of
BWTs̄ that do not correspond to nodes of Ts: we could thus use Implementation
1a or 1b with runss̄ replaced by a plain encoding of BWTs̄ as a string of |s| log |Σ|
bits. The proof of Lemma 3 immediately generalizes to a set of m strings:

Corollary 2. Let S = {s0, s1, . . . , sm−1} ⊂ Σ+ be a set of strings, and let

||S|| =
∑m−1

i=0 |si|. Assume that Implementation 2a (respectively, 2b) has al-
ready been computed for all strings in S. We can discover all the τ maxi-
mal unique matches in S in O(m||S|| log |Σ|) time and 2||S|| log |Σ| + ||S|| +
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o(||S||) + O(mτ log ||S||) bits of space (respectively, in O(m||S||) time and
2||S|| log |Σ| + o(||S|| log |Σ|) + O(mτ log ||S||) bits of space).

A maximal exact match between strings s and t (mem, called also maximal pair
if s = t) is a quadruple (is, js, it, jt) such that s[is, js] = t[it, jt], s[is−1] 	= t[it−1]
and s[js + 1] 	= t[jt + 1] [11, 19]. The computation of mems maps naturally to a
navigation of the suffix-link tree of s$t, and can thus be implemented with the
bidirectional bwt:

Lemma 4. Let s and t be strings on alphabet Σ, and assume that Implemen-
tation 2a or 2b has already been built for s and t. We can compute all the τ
maximal exact matches between s and t in O((|s| + |t|) log |Σ| + τ) time and
O((|s| + |t|) log |Σ| + τ log(|s| + |t|)) space.

Proof. Again, we traverse Lu top-down, where u = s$t. Assume we are at a
node v of Lu with label �(v). Build sets Ps(v) = {(ia�(v)b, ja�(v)b)s : a, b ∈
Σ,Ls(a�(v)b) 	= ∅} and Pt(v) = {(ic�(v)d, jc�(v)d)t : c, d ∈ Σ,Lt(c�(v)d) 	= ∅}.
Note that

∑
v∈Vu

|Ps(v)| + |Pt(v)| ∈ O(|s| + |t|), where Vu is the set of nodes
in Lu: indeed, finding Ps(v) and Pt(v) coincides with exploring all explicit and
implicit Weiner links e = (v, w) in Lu that start from v, and then exploring the
children of w in Tu if e is explicit. Linearity ensues from the folk theorem that the
total number of implicit and explicit Weiner links in Tu is O(|u|), and that each
destination of an explicit Weiner link is explored exactly once during the traversal
of Lu. We then compute Ps(v) ⊗ Pt(v) = {((ia�(v)b, ja�(v)b)s, (ic�(v)d, jc�(v)d)t) :
a 	= c, b 	= d} in time linear in |Ps(v)|+|Pt(v)| and in the size of the output, using
a simple algorithm based on pairs of symbols that differ in both components (we
omit details due to lack of space). Finally, we need to map every quadruple
(i, j, i′, j′) ∈ Ps(v) ⊗ Pt(v) into (j − i + 1)(j′ − i′ + 1) pairs of positions in s and
t, for every v ∈ Ls. To do so, we build all pairs (x, y) : x ∈ [i, j], y ∈ [i′, j′] of
corresponding positions in BWTs and BWTt for all nodes of Ls, and we proceed
as in Lemma 1: this takes O((|s| + |t|) log |Σ| + τ) time overall.

String w = axb is a minimal absent word of a string s, where a, b ∈ Σ and
x ∈ Σ∗, if both ax and xb occur in s, but axb does not occur in s [20]. For
example, agaga is a minimal absent word in Fig. 1. Clearly only a maximal
repeat of s can be the infix x of a minimal absent word axb, thus the navigation
of Ls described in Lemma 4 allows to compute all the τ minimal absent words
of s in O(|s| log |Σ| + τ) time and 2|s| log |Σ| + O(τ log |s|) + o(|s|) space, or in
O(|s| + τ) time and 2|s| log |Σ| + O(τ log |s|) + o(|s| log |Σ|) space.

5.2 Borders and Surprising Substrings

Let B(s) ⊂ Σ∗ be the set of nonempty borders of a string s ∈ Σ+, and let
bord(s) be its longest border. We consider the problem of computing |bord(w)|
for all w in S ∪ S′′, where S = {�(v) | v ∈ Vs} and S′′ = {�(v)a | a ∈ Σ, v ∈
Vs,Ls(�(v)a) 	= ∅}. In Fig. 1b, gray lines are pointers from strings in S ∪ S′′ to
their longest border. Due to space constraints we omit the details of computing
borders, and we just summarize the main result:
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Lemma 5. Assume that Implementation 1b has already been built for a string
s ∈ Σ+. We can compute |bord(w)| for all w ∈ S∪S′′ in overall O(|Σ|λ log |s|)+
|s| log |Σ| + o(|s| log |Σ|) bits of space and in O(|s|) time, independent of |Σ|,
where λ = max{|w| : w ∈ S′′}.

Similar lemmas hold for computing the quasiperiod of all strings in S [7], as
well as the inner product and norm of the composition vectors of all substrings
(or k-mers) of two strings s and t. Determining |bord(w)| for all w ∈ S ∪ S′′

is not just a combinatorial exercise. Consider a measure of statistical surprise
f(w) that scores a substring w of s with a function of |Ls(w)|, E(w) and V(w)
– respectively the expectation and variance of |Lr(w)| for a random string r of
length |s| generated by a known IID source. We call f -cover a set of substrings
of s with the following property: for every substring v not in the cover, there
is a substring w in the cover with Ls(w) = Ls(v), |w| > |v|, and f(w) ≥ f(v)
(respectively, |w| < |v| and f(w) ≤ f(v)). A large class of measures of statistical
surprise is monotonic inside edges of Ts, making S (respectively, S′′) an f -cover
[2]. Moreover, E(w) and V(w) for all w ∈ S ∪ S′′ can be computed in constant
time per node v of Ts using a depth-first traversal of Ls, and keeping just pointer
bordv and a constant amount of numerical variables in each v [3]. The following
corollary is thus immediate:

Corollary 3. Assume that Implementation 1b has already been computed for a
string s ∈ Σ+, and assume that E(w) and V(w) can be represented in O(log |s|)
bits for any substring w of s. We can compute an f -cover of s in overall
O(|Σ|λ log |s|) + |s| log |Σ| + o(|s| log |Σ|) bits of space and in O(|s|) time, inde-
pendent of |Σ|, where λ = max{|w| : w ∈ Bs}.
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Abstract. An assignment of colours to the vertices of a graph is stable
if any two vertices of the same colour have identically coloured neigh-
bourhoods. The goal of colour refinement is to find a stable colouring
that uses a minimum number of colours. This is a widely used subrou-
tine for graph isomorphism testing algorithms, since any automorphism
needs to be colour preserving. We give an O((m+n) log n) algorithm for
finding a canonical version of such a stable colouring, on graphs with n
vertices and m edges. We show that no faster algorithm is possible, under
some modest assumptions about the type of algorithm, which captures
all known colour refinement algorithms.

1 Introduction

Colour refinement (also known as naive vertex classification) is a very simple, yet
extremely useful algorithmic routine for graph isomorphism testing. It classifies
the vertices by iteratively refining a colouring of the vertices as follows. Initially,
all vertices have the same colour. Then in each step of the iteration, two vertices
that currently have the same colour get different colours if for some colour c they
have a different number of neighbours of colour c. The process stops if no further
refinement is achieved, resulting in a stable colouring of the graph. To use colour
refinement as an isomorphism test, we can run it on the disjoint union of two
graphs. Any isomorphism needs to map vertices to vertices of the same colour.
So, if the stable colouring differs on the two graphs, that is, if for some colour c,
the graphs have a different number of vertices of colour c, then we know they are
nonisomorphic, and we say that colour refinement distinguishes the two graphs.
Babai, Erdös, and Selkow [2] showed that colour refinement distinguishes almost
all graphs (in the G(n, 1/2) model). In fact, they proved the stronger statement
that the stable colouring is discrete on almost all graphs, that is, every vertex
gets its own colour. On the other hand, colour refinement fails to distinguish any
two regular graphs with the same number of vertices, such as a 6-cycle and the
disjoint union of two triangles.

Colour refinement is not only useful as a simple isomorphism test in itself, but
also as a subroutine for more sophisticated algorithms, both in theory and prac-
tice. For example, Babai and Luks’s [1,3] O(2

√
n logn)-algorithm — this is still
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the best known worst-case running time for isomorphism testing — uses colour
refinement as a subroutine, and most practical graph isomorphism tools (for
example, [9,6,8,12]), starting with McKay’s “Nauty” [9,10], are based on the
individualisation refinement paradigm. The basic idea of these algorithms is to
recursively compute a canonical labelling of a given graph, which may already
have an initial colouring of its vertices, as follows. We run colour refinement
starting from the initial colouring until a stable colouring is reached. If the sta-
ble colouring is discrete, then this already gives us a canonical labelling (provided
the colours assigned by colour refinement are canonical, see below). If not, we
pick some colour c with more than one vertex. Then for each vertex v of colour c,
we modify the stable colouring by assigning a fresh colour to v (that is, we “indi-
vidualise” v) and recursively call the algorithm on the resulting vertex-coloured
graph. Then for each v we get a canonically labelled version of our graph, and we
return the lexicographically smallest among these. (More precisely, each canon-
ical labelling of a graph yields a canonical string encoding, and we compare
these strings lexicographically.) To turn this simple procedure into a practically
useful algorithm, various heuristics are applied to prune the search tree. They
exploit automorphisms of the graph found during the search. However, crucial
for any implementation of such an algorithm is a very efficient colour refinement
procedure, because colour refinement is called at every node of the search tree.

Colour refinement can be implemented to run in time O((n+m) log n), where
n is the number of vertices and m the number of edges of the input graph. To our
knowledge, this was first been proved by Cardon and Crochemore [5]. Later Paige
and Tarjan [11, p.982] sketched a simpler algorithm. Both algorithms are based
on the partitioning techniques introduced by Hopcroft [7] for minimising finite
automata. However, an issue that is completely neglected in the literature is that,
at least for individualisation refinement, we need a version of colour refinement
that produces a canonical colouring. That is, if f is an isomorphism from a graph
G to a graph H , then for all vertices v of G, v and f(v) should get the same colour
in the respective stable colourings of G and H . However, neither of the algorithms
analysed in the literature seem to produce canonical colourings. Very briefly, the
reason is that these algorithms use bucketing techniques for indexing vectors
with an initial segment of the natural numbers that make sure that different
vectors get different indices, but do not assign indices in the lexicographical
or any other canonical order. This issue can be resolved by sorting the vectors
lexicographically, but this causes a logarithmic overhead in the running time. We
resolve the issue differently and avoid the logarithmic overhead, thus obtaining an
implementation of colour refinement that computes a canonical stable colouring
in time O((n+m) logn). Ignoring the canonical part, our algorithmic techniques
are similar to known results: like [11] and various other papers, we use Hopcroft’s
strategy of ‘ignoring the largest new cell’, after splitting a cell [7]. Our data
structures are similar to those described by Junttila and Kaski [8]. Nevertheless,
since [8] contains no complexity analysis, and [11] omits various (nontrivial)
implementation details, it seems that the current paper gives the first detailed
description of an O((m + n) logn) algorithm that uses this strategy. On a high
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level, our algorithm is also quite similar to McKay’s canonical colour refinement
algorithm [9, Alg. 2.5], but with a few key differences which enable an O((n +
m) logn) implementation. McKay [9] gave an O(n2 logn) implementation using
adjacency matrices.

Now the question arises whether colour refinement can be implemented in
linear time. After various attempts, we started to believe that it cannot. Of course
with currently known techniques one cannot expect to disprove the existence of a
linear time algorithm for the standard (RAM) computation model, or for similar
general computation models. Instead, we prove the complexity lower bound for
a broad class of partition-refinement based algorithms, which captures all known
colour refinement algorithms, and actually every reasonable algorithmic strategy
we could think of. This model can alternatively be viewed as a “proof system”.
We use the following assumptions. (See Sections 2 and 4 for precise definitions.)
Colour refinement algorithms start with a unit partition (which has one cell
V (G)), and iteratively refine this until a stable colouring is obtained. This is done
using refining operations: choose a union of current partition cells as refining set
R, and choose another (possibly overlapping) union of partition cells S. Cells in
S are split up if their neighbourhoods in R provide a reason for this. (That is, two
vertices in a cell in S remain in the same cell only if they have the same number
of neighbours in every cell in R.) This operation requires considering all edges
between R and S, so the number of such edges is a very reasonable and modest
lower bound for the complexity of such a refining step; we call this the cost of the
operation. We note that a naive algorithm might choose R = S = V (G) in every
iteration. This then requires time Ω(mn) on graphs that require a linear number
of refining operations, such as paths. Therefore, all fast algorithms are based on
choosing R and S smartly (and on implementing refining steps efficiently).

For our main lower bound result, we construct a class of instances such that
any possible sequence of refining operations that yields the stable partition has
total cost at least Ω((m + n) logn). Note that it is surprising that a tight lower
bound can be obtained in this model. Indeed, cost upper bounds in this model
would not necessarily yield corresponding algorithms, since firstly we allow the
sets R and S to be chosen nondeterministically, and secondly, it is not even clear
how to refine S using R in time proportional to the number of edges between
these classes. However, as we prove a lower bound, this makes our result only
stronger. We formulate the lower bound result for undirected graphs and non-
canonical colour refinement, so that it also holds for digraphs, and canonical
colour refinement. Our proof also implies a corresponding lower bound for the
coarsest relational partitioning problem considered by Paige and Tarjan [11].
Because of space constraints, some details have been omitted.

2 Preliminaries

For an undirected (simple) graph G, N(v) denotes the set of neighbours of
v ∈ V (G), and d(v) = |N(v)| its degree. For a digraph, N+(v) and N−(v) denote
the out- and in-neighbourhoods, and d+(v) = |N+(v)| resp. d−(v) = |N−(v)|
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the out- and in-degree, respectively. A partition π of a set V is a set {S1, . . . , Sk}
of pairwise disjoint nonempty subsets of V , such that ∪k

i=1Si = V . The sets Si

are called cells of π. The order of π is the number of cells |π|. A partition π
is discrete if every cell has size 1, and unit if it has exactly one cell. Given a
partition π of V , and two elements u, v ∈ V , we write u ≈π v if and only if
there exists a cell S ∈ π with u, v ∈ S. We say that a set V ′ ⊆ V is π-closed if
it is the union of a number of cells of π. In other words, if u ≈π v and u ∈ V ′

then v ∈ V ′. For any subset V ′ ⊆ V , π induces a partition π[V ′] on V ′, which is
defined by u ≈π[V ′] v if and only if u ≈π v, for all u, v ∈ V ′.

Let G = (V,E) be a graph. A partition π of V is stable for G if for every
pair of vertices u, v ∈ V with u ≈π v and R ∈ π, it holds that |N(u) ∩ R| =
|N(v) ∩R|. If G is a digraph, then |N+(u) ∩R| = |N+(v) ∩R| should hold. For
readability, all further definitions and propositions in this section are formulated
for (undirected) graphs, but the corresponding statements also hold for digraphs
(replace degrees/neighbourhoods by out-degrees/out-neighbourhoods). One can
see that if π is stable and d(u) 	= d(v), then u 	≈π v, which we will use throughout.

A partition ρ of V refines a partition π of a subset S of V if for every u, v ∈ S,
u ≈ρ v implies u ≈π v. (Usually we take S = V .) If ρ refines π, we write π # ρ.
If in addition ρ 	= π, then we also write π ≺ ρ. Note that # is a partial order on
all partitions of V .

Definition 1. Let G be a graph, and let π and π′ be partitions of V (G). For
vertex sets R,S ⊆ V (G) that are π-closed, we say that π′ is obtained from π by
a refining operation (R,S) if

– for every S′ ∈ π with S′ ∩ S = ∅, it holds that S′ ∈ π′, and

– for every u, v ∈ S: u ≈π′ v if and only if u ≈π v and for all R′ ∈ π with
R′ ⊆ R, |N(u) ∩R′| = |N(v) ∩R′| holds.

Note that if π′ is obtained from π by a refining operation (R,S), then π # π′.
We say that the operation (R,S) is effective if π ≺ π′. In this case, at least
one cell C ∈ π is split, which means that C 	∈ π′. Note that an effective refining
operation exists for π if and only if π is unstable. In addition, the next proposition
says that if the goal is to obtain a (coarsest) stable partition, then applying any
refining operation is safe.

Proposition 2 (*). 1 Let π′ be obtained from π by a refining operation (R,S).
If ρ is a stable partition with π # ρ, then π # π′ # ρ.

A partition π is a coarsest partition for a property P if π satisfies P , and there
is no partition ρ with ρ ≺ π that also satisfies property P .

Proposition 3 (*). Let G = (V,E) be a graph. For every partition π of V ,
there is a unique coarsest stable partition ρ that refines π.

1 In the full version, (detailed) proofs are given for statements marked with a star.
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3 A Fast Canonical Color Refinement Algorithm

Consider a method for obtaining a sequence SG
1 , . . . , SG

k(G) of subsets of V (G),

for any (di)graph G. This method is called canonical if for any two isomor-
phic (di)graphs G and G′, and any isomorphism h : V (G) → V (G′), it holds
that k(G) = k(G′), and u ∈ SG

i implies h(u) ∈ SG′
i , for any u ∈ V (G) and

i ∈ {1, . . . , k(G)}. In a slight abuse of terminology, we also call the sequence
canonical, if the method for obtaining it is clear from the context. For instance,
for simple undirected graphs G, if we define Dd to be the set of vertices of degree
d, for d ∈ {0, . . . , n−1}, n = |V (G)|, then D0, . . . , Dn−1 is a canonical sequence,
because every isomorphism maps vertices to vertices of the same degree. (In
other words: degrees are isomorphism invariant.) In this section we give a fast
algorithm for obtaining a canonical coarsest stable partition of V (G), for any di-
graph G. This is an ordered partition of V , which is a sequence of sets C1, . . . , Ck

such that {C1, . . . , Ck} is a partition of V . To obtain the most general result, we
formulate the algorithm for digraphs.

High-level Description and Correctness Proofs The input to our algorithm
is a digraph G = (V,E), with V = {1, . . . , n}. For every vertex v ∈ V , the
sets of out-neighbours N+(v) and in-neighbours N−(v) are given. Throughout,
the algorithm maintains an ordered partition π = C1, . . . , Ck of V , starting
with the unit partition. This partition is iteratively refined using operations of
the form (R, V ), where R = Cr for some r ∈ {1, . . . , k}. We will show that
when the algorithm terminates, no effective refining operations are possible on
the resulting partition. So the resulting partition is the unique coarsest stable
partition of G.

We now explain how to maintain a canonical order for the partition π =
C1, . . . , Ck. To this end, indices i ∈ {1, . . . , k} are called colours, and the cells Ci

are also called colour classes of the current partition. The partition π is then also
viewed as a colouring of the vertices with colours 1, . . . , k. To canonically choose
the next refining colour r, we maintain a canonical sequence (stack) Srefine of
colours that should still be used as refining colour. When a new refining colour
r should be chosen, we select r to be the last colour added to Srefine (i.e. r
is popped from the stack). For a given refining colour class R = Cr and any
x ∈ V , call d+r (x) := |N+(x) ∩ R| the colour degree of x. Then every colour
s ∈ {1, . . . , k} will be split up according to colour degrees. More precisely, for
a given refining colour r, we partition every cell Cs into new cells Cσ1 , . . . , Cσp ,
such that for x ∈ Cσi and y ∈ Cσj : (i) i = j if and only if d+r (x) = d+r (y), and
(ii) if i < j then d+r (x) < d+r (y). In other words, the new colours are ordered
canonically according to their colour degrees. Since we wish to have nonempty
sets in our partition, we choose σ1 = s, and σi = k + i− 1 for all 2 ≤ i ≤ p, and
then update the number of colours k. To obtain a canonical colouring, it is also
important to split up the colours s ∈ {1, . . . , k} in increasing order.

It remains to explain how newly introduced colours are added to the stack
Srefine in a canonical way. Initially, Srefine contains colour 1, and whenever new
colours are introduced during the splitting of a colour class Cs, these are pushed
onto the stack Srefine, in increasing order. There is however one exception: if we
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have already used the vertex set S = Cs as refining colour class before, and this
set is split up into new colours Cσ1 , . . . , Cσp , then it is not necessary to use all
of these new colours as refining colours later. Indeed, for every i ∈ {1, . . . , p}
and every x, y ∈ V (G), if |N+(x) ∩ S| = |N+(y) ∩ S| and |N+(x) ∩ Cj | =
|N+(y) ∩ Cj | holds for every j 	= i, then it also holds that |N+(x) ∩ Ci| =
|N+(y) ∩ Ci|, since {Cσ1 , . . . , Cσp} is a partition of S. Hence we may select an
i ∈ {1, . . . , p}, and only add the colours {1, . . . , p} \ {i} to the stack Srefine. To
obtain a good complexity, we choose i such that |Cσi | is maximised, in order to
minimise the sizes of the refining colour sets used later during the computation.
(This is Hopcroft’s trick [7].) To be precise, for a given s, we canonically choose
b to be the minimum colour degree that maximises |{x ∈ Cs | d+r (x) = b}|, and
add all newly introduced colours to the stack, in increasing order, except the
new colour that corresponds to b. On the other hand, if s was already on the
stack Srefine, then this argument does not apply, so we have to add every new
colour to the stack. The algorithm terminates when the stack Srefine is empty,
and returns the final ordered partition C1, . . . , Ck.

Lemma 4. For any digraph G, the above algorithm computes a canonical se-
quence C1, . . . , Ck, such that {C1, . . . , Ck} is the coarsest stable partition of G.

Proof sketch: The resulting partition π = {C1, . . . , Ck} is refined by the coars-
est stable partition ω of G because it is obtained from the unit partition by
using refining operations (Proposition 2). It is then equal to ω since it is sta-
ble. This follows since using the argument given above, one can verify that the
following invariant is maintained: if there exist colour classes Cr and Cs such
that the refining operation (Cr, Cs) is effective, then the stack Srefine contains
a colour r′ such that the refining operation (Cr′ , Cs) is effective. Since the stack
Srefine is empty when the algorithm terminates, stability follows. The final se-
quence is canonical since at every point during the computation, both the stack
Srefine and the current ordered partition C1, . . . , Ck are canonical sequences.
This holds because informally, the new colours that we assign to vertices, and
the order in which new colours are added to the stack, are completely determined
by isomorphism-invariant values such as colour degrees with respect to sets from
a canonical sequence. �

Implementation and Complexity Bound. We now describe a fast implemen-
tation of the aforementioned algorithm. The main idea of the complexity proof
is the following: one iteration consists of popping a refining colour r from the
stack Srefine, and applying the refining operation (R, V ), with R = Cr. Below
we show that one such iteration takes time O(|R| + D−(R) + ki log ki), where
D−(R) =

∑
v∈R d−(v) and ki is the number of new colours that are intro-

duced during iteration i. Next, we observe that for every vertex v ∈ V (G), if
Rv

1 , . . . , R
v
q are the refining colour classes Cr with v ∈ Cr that are considered

throughout the computation, in chronological order, then for all i ∈ {1, . . . , q−1},
|Rv

i | ≥ 2|Rv
i+1| holds. This holds because whenever a set S = Cs is split up into

Cσ1 , . . . , Cσp , where S has been considered earlier as a refining colour (so it is
not in Srefine anymore), then for all new colours σi that are added to the stack
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Srefine, |Cσi | ≤ 1
2 |S| holds (since the largest colour class is not added to Srefine).

Note that if a colour class Cσi is subsequently split up before it is considered as
refining colour, the bound of course also holds. It follows that every v ∈ V (G)
appears at most log2 n times in a refining colour class. Then we can write∑

R

|R| + D−(R) ≤
∑

v∈V (G)

(1 + d−(v)) log2 n = (n + m) log2 n,

with m = |E(G)|, where the first summation is over all refining colour classes
R = Cr considered during the computation. In addition, the total number of
new colours that is introduced is at most n, since every colour class, after it is
introduced, remains nonempty throughout the computation. So we may write∑

i ki log ki ≤
∑

i ki logn ≤ n logn. Combining these facts shows that the total
complexity of the algorithm can be bounded by O((n+m) logn) +O(n log n) =
O((n + m) logn).

It remains to describe an implementation such that the complexity of one
iteration i of the while-loop, where refining colour class R = Cr is considered, can
be bounded by O(|R|+D−(R)+ki log ki). The colour classes Ci are represented
by doubly linked lists. For all lists, we maintain the length.

The first challenge is how to compute the colour degrees d+r (v) efficiently
for every v ∈ V (G), with respect to the refining colour r. For this we use an
array cdeg[v], indexed by v ∈ {1, . . . , n}. We use the following invariant: at the
beginning of every iteration, cdeg[v] = 0 for all v. Then we can compute these
colour degrees by looping over all in-neighbours w of all vertices v ∈ R, and
increasing cdeg[w]. At the same time, we compute a list Cadj of colours i that

contain at least one vertex w ∈ Ci with cdeg[w] ≥ 1, and for every such colour
i, we compute a list Ai of all vertices w with cdeg[w] ≥ 1. None of these lists
contain duplicates. This can all be done in time O(|R|+D−(R)), assuming that
at the beginning of every iteration, every Ai is an empty list, Cadj is an empty
list, and flags are maintained for colours to keep track of membership in Cadj.
With the same complexity, we can reset all of these data structures at the end
of every iteration.

Next, we address how we can consider all colours that split up in one itera-
tion, in canonical (increasing) order. To this end, we compute a new list Csplit,
which represents the subset of Cadj containing all colours that actually split up.

By ensuring that all colours in Csplit split up, we have that |Csplit| ≤ ki, and
therefore we can afford to sort this list. This can be done using any list sorting al-
gorithm of complexity O(ki log ki), such as merge sort. To compute which colours
split up, we compute for every colour in i ∈ Cadj the maximum colour degree

maxcdeg[i] and minimum colour degree mincdeg[i]. The value maxcdeg[i] can
easily be computed while computing the colour degrees. We have mincdeg[i] = 0
if |Ai| < |Ci|. Otherwise, we can afford to compute mincdeg[i] by iterating over
Ai = Ci.

Finally, we need to show how a single colour class S = Cs can be split up, and
how the appropriate new colours can be added to the stack Srefine in the proper
order, all in time O(D+

R(S)). Here R = Cr denotes the refining colour class, and
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D+
R(S) =

∑
v∈S |N+(v) ∩R|. Note that when summing over all s ∈ Csplit, this

indeed gives a total complexity of at most O(D−(R)). Firstly, for every relevant
d, we compute how many vertices in Cs have colour degree d. These values are
stored in an array numcdeg[d], indexed by d ∈ {0, . . . ,maxcdeg[s]}. (Note that
maxcdeg[s] ≤ D+

R(S), so we can afford to initialise an array of this size.) Using
this array numcdeg, we can easily compute the (minimum) colour degree b that
occurs most often in S, which corresponds to the new colour that is possibly not
added to Srefine. Using numcdeg, we can also easily construct an array fnewcol,
indexed by d ∈ {0, . . . ,maxcdeg[s]}, which represents the mapping from colour
degrees that occur in S to newly introduced colours, or to the current colour s.
Finally, we can loop over As in time O(D+

R(S)), and move all vertices v ∈ As

from Cs to Ci, where i = fnewcol[cdeg[v]] is the new colour that corresponds to
the colour degree of v. With a proper implementation using doubly linked lists,
this can be done in constant time for a single vertex. Note that looping over As

suffices, because if there are vertices in Cs with colour degree 0, then these keep
the same colour, and thus do not need to be addressed. This fact is essential
since the number of such vertices may not be bounded by O(D+

R(S)).
This shows how the algorithm can be implemented such that one iteration

takes time O(|R| + D−(R) + ki log ki). Combined with the above analysis, this
shows that the algorithm terminates in time O((n+m) log n). So with Lemma 4,
we obtain:

Theorem 5. For any digraph G on n vertices with m edges, in time O((n +
m) logn) a canonical coarsest stable partition can be computed.

In individualisation refinement algorithms, one branch is as follows [9,6,8,12,10]:
whenever a stable but non-discrete colouring is obtained, some new vertex v is
‘individualised’ by assigning it a new unique colour, v is added to Srefine, and
the process continues. Observe that the O((n + m) logn) bound holds for this
entire process.

4 Complexity Lower Bound

The cost of a refining operation (R,S) is cost(R,S) := |{(u, v) | u ∈ R, v ∈ S}|.
This is basically the number of edges between R and S, except that edges with
both ends in R ∩ S are counted twice.

Definition 6. Let G = (V,E) be a graph, and π be a partition of V .

– If π is stable, then cost(π) := 0.
– Otherwise, cost(π) := minR,S cost(π(R,S))+cost(R,S), where the minimum

is taken over all effective refining operations (R,S) that can be applied to π,
and where π(R,S) denotes the partition resulting from the operation (R,S).

A refining operation (R,S) on π is elementary if both R ∈ π and S ∈ π. The
following observation is useful: since non-elementary refining steps can be split
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up into elementary refining steps with the same total cost, we may also take the
minimum over all effective elementary refining operations.

We can now formulate the main result of this section.

Theorem 7. For every integer k ≥ 2, there is a graph Gk with n ∈ O(2kk)
vertices and m ∈ O(2kk2) edges, such that cost(α) ∈ Ω((m + n) logn), where α
is the unit partition of V (Gk).

Note that this theorem implies a complexity lower bound for all partition-
refinement based algorithms for colour refinement, as discussed in the introduc-
tion. We use the following key observation to prove the theorem. For a partition
π of V , denote by π∞ the coarsest stable partition of V that refines π.

Proposition 8 (*). Let π and ρ be partitions of V such that π # ρ # π∞. Then
cost(π) ≥ cost(ρ).

We say that a partition π of V distinguishes two sets V1 ⊆ V and V2 ⊆ V if
there is a set R ∈ π with |R ∩ V1| 	= |R ∩ V2|. This is used often for the case
where V1 = N(u) and V2 = N(v) for two vertices u and v, to conclude that if
π is stable, then u 	≈π v. If V1 = {x} and V2 = {y}, then we also say that π
distinguishes x from y.

v2

v0

v1

AND2

b0
b1 b2

b3

a0 a1
X X Y Y

Fig. 1. The Graph G3

Construction of the Graph For k ∈ N, denote Bk = {0, . . . , 2k − 1}. For
� ∈ {0, . . . , k} and q ∈ {0, . . . , 2�−1}, the subset B�

q = {q2k−�, . . . , (q+1)2k−�−1}
is called the q-th binary block of level �. Analogously, for any set of vertices with
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indices in Bk, we also consider binary blocks. For instance, if X = {xi | i ∈ Bk},
then X�

q = {xi | i ∈ B�
q} is called a binary block of X . For such a set X , a

partition π of X into binary blocks is a partition where every S ∈ π is a binary
block. A key fact for binary blocks that we will often use is that for any � and
q, B�

q = B�+1
2q ∪ B�+1

2q+1.
For every integer k ≥ 2, we will construct a graph Gk. In its core this graph

consists of the vertex sets X = {xi | i ∈ Bk}, X = {xj
i | i ∈ Bk, j ∈ [k]},

Y = {yji | i ∈ Bk, j ∈ [k]} and Y = {yi | i ∈ Bk}. Every vertex xi is adjacent to

xj
i for all j ∈ [k] and every yi is adjacent to all yji . Furthermore, for all i, j1, j2

there is an edge between xj1
i and yj2i . (For X , binary blocks are subsets of the

form X �
q := {xj

i | i ∈ B�
q, j ∈ [k]}, and for Y the definition is analogous.)

We add gadgets to the graph to ensure that any sequence of refining operations
behaves as follows. After the first step, which distinguishes vertices according to
their degrees, X and Y are cells of the resulting partition. Next, X splits up into
two binary blocks X1

0 and X1
1 of equal size. This causes X to split up accordingly

into X 1
0 and X 1

1 . One of these cells will be used to halve Y in the same way. This
refining operation (R,S) is expensive because [R,S] contains half of the edges
between X and Y. Next, Y can be split up into Y 1

0 and Y 1
1 . Once this happens,

there is a gadget AND1 that causes the two cells X1
0 , X1

1 to split up into the
four cells X2

q , for q = 0, . . . , 3. Again, this causes cells in X ,Y and Y to split up
in the same way and to achieve this, half of the edges between X and Y have to
be considered. The next gadget AND2 ensures that if both cells of Y are split,
then the four cells of X can be halved again, etc. In general, we design a gadget
AND� of level � that ensures that if Y is partitioned into 2�+1 binary blocks of
equal size, then X can be partitioned into 2�+2 binary blocks of equal size. By
halving all the cells classes of X and Y k = Θ(log n) times (with n = |V (Gk)|),
this refinement process ends up with a discrete colouring of these vertices. Since
every iteration uses half of the edges between X and Y (which are Θ(m)), we
get the cost lower bound of Ω(m logn) (with m = |E(Gk)|).

We now define these gadgets in more detail. For every integer � ≥ 1, we define
a gadget AND�, which consists of a graph G together with two out-terminals
a0, a1, and an ordered sequence of p = 2� in-terminals b0, . . . , bp−1. For � = 1,
the graph G has V (G) = {a0, a1, b0, b1}, and E(G) = {a0b0, a1b1}. For � = 2, the
graph G is identical to the construction of Cai, Fürer and Immerman [4], but
with an edge a0a1 added (see Figure 1). The out-terminals a0, a1 and in-terminals
b0, . . . , b3 are indicated. For � ≥ 3, AND� is obtained by taking one copy G∗ of
an AND2-gadget, and two copies G′ and G′′ of an AND�−1-gadget, and adding
four edges to connect the two pairs of in-terminals of G∗ with the pairs of out-
terminals of G′ and G′′, respectively. As out-terminals of the resulting gadget
we choose the out-terminals of G∗. The in-terminal sequence is obtained by
concatenating the sequences of in-terminals of G′ and G′′. For any AND�-gadget
G with in-terminals b0, . . . , b2�−1, the in-terminal pairs are pairs b2p and b2p+1,
for all p ∈ {0, . . . , 2�−1 − 1}. We now state the key property for AND�-gadgets,
which can be verified for � = 2, and then follows inductively for � ≥ 3. We say
that ρ agrees with ψ if ρ[S] = ψ.
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Lemma 9 (*). Let G be an AND�-gadget with in-terminals B = {b0, . . . , b2�−1}
and out-terminals a0, a1. For any partition ψ of B into binary blocks, the coarsest
stable partition ρ of V (G) that refines ψ agrees with ψ. Furthermore, ρ distin-
guishes a0 from a1 if and only if ψ distinguishes all in-terminal pairs.

The graph Gk is now constructed as follows. Start with vertex sets X,X ,Y
and Y , and edges between them, as defined above. For every � ∈ {1, . . . , k−1}, we
add a copy G of an AND�-gadget to the graph. Denote the in- and out-terminals
of G by a0, a1 and b0, . . . , b2�−1, respectively.

– For i = 0, 1 and all relevant q: we add edges from ai to every vertex in X�+1
2q+i.

– For every i, we add edges from bi to every vertex in Y �
i .

Finally, we add a starting gadget to the graph, consisting of three vertices
v0, v1, v2, the edge v1v2, and edges {v0xi | i ∈ B1

0} ∪ {v1xi | i ∈ B1
1}. See Fig-

ure 1 for an example of this construction. (In the figure, we have expanded the
terminals of AND2 into edges, for readability. This does not affect the behavior
of the graph.)

Cost Lower Bound Proof Intuitively, at level � of the refinement process, the
current partition contains all blocks X �+1

q of level � + 1 and for all 0 ≤ q < 2�,

either Y�
q or the two blocks Y�+1

2q and Y�+1
2q+1. In this situation one can split

up the blocks Y�
q into blocks Y�+1

2q and Y�+1
2q+1 using either refinement oper-

ation (X �+1
2q ,Y�

q) or (X �+1
2q+1,Y�

q). These operations both have cost 2k−(�+1)k2,

and refining all the Y�
q cells in this way costs 2k−1k2. Once Y is partitioned

into binary blocks of level � + 1, we can partition X into blocks of level � + 2
(using the AND�-gadget), and proceed the same way. Since there are k such
refinement levels, we can lower bound the total cost of refining the graph by
2k−1k3 = Ω(m log n) and are done. What remains to show is that applying the
refinement operations in this specific way is the only way to obtain a stable
partition. To formalise this, we introduce a number of partitions of V (Gk) that
are stable with respect to the (spanning) subgraph G′

k = Gk − [X ,Y], and that
partition X and Y into binary blocks. (For disjoint vertex sets S,T , we denote
[S, T ] = {uv ∈ E(G) | u ∈ S, v ∈ T }.) So on Gk, these partitions can only be
refined using operations (R,S), where R is a binary block of X and S is a binary
block of Y.

Definition 10. For any � ∈ {0, . . . , k − 1}, and nonempty set Q ⊆ B�, by τQ,�

we denote the partition of X ∪ Y that contains cells

– X �+1
q for all q ∈ B�+1,

– Y�
q for all q ∈ Q, and both Y�+1

2q and Y�+1
2q+1 for all q ∈ B� \Q.

πQ,� denotes the coarsest stable partition for G′
k = Gk − [X ,Y] that refines τQ,�.

Since πQ,� is stable on G′
k, any effective refining operation (with respect to Gk)

should involve the edges between X and Y. Using Lemma 9, it can be shown that
πQ,� agrees with τQ,�, and therefore any effective elementary refining operation
has the following form:
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Lemma 11 (*). Let (R,S) be an effective elementary refining operation on
πQ,�. Then for some q ∈ Q, R = X �+1

2q or R = X �+1
2q+1, and S = Y�

q . The cost of

this operation is k22k−(�+1).

This motivates the following definition: for q ∈ Q, by rq(πQ,�) we denote the
partition of V (Gk) that results from (either of) the above refining operation(s).

Proof sketch of Theorem 7: Let Gk be the graph described above and πQ,� be
the partitions of V (Gk) from Definition 10. First, we note that using Lemma 9,
it can be shown that a partition is not stable until it is discrete on X ∪Y . So the
coarsest stable partition ω of G refines all partitions πQ,�. For ease of notation,
we define π∅,� := πB�+1,�+1. By Lemma 11, any effective elementary refinement

operation on a partition πQ,� has cost 2k−(�+1)k2, and results in rq(πQ,�) for
some q ∈ Q. Denote Q′ = Q \ {q}. Note that rq(πQ,�) agrees with τQ′,� on
X ∪ Y. It can actually be shown that rq(πQ, �) # πQ′,�. So we may now apply
Proposition 8 to conclude that cost(πQ,�) ≥ 2k−(�+1)k2 + minq∈Q cost(πQ\{q},�).

By induction on |Q| it then follows that cost(πB�,�) ≥ 2k−1k2 + cost(πB�+1,�+1)
for all 0 ≤ � ≤ k − 1. Hence, by induction on �, cost(πB0,0) ≥ 2k−1k3, which
lower bounds cost(α). It can be verified that n ∈ O(2kk) and m ∈ O(2kk2), so
logn ∈ O(k). This shows that cost(α) ∈ Ω((m + n) logn). �
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Abstract. We consider a 2-edge connected, non-negatively weighted
graph G, with n nodes and m edges, and a single-source shortest paths
tree (SPT) of G rooted at an arbitrary node. If an edge of the SPT
is temporarily removed, a widely recognized approach to reconnect the
nodes disconnected from the root consists of joining the two resulting
subtrees by means of a single non-tree edge, called a swap edge. This
allows to reduce consistently the set-up and computational costs which
are incurred if we instead rebuild a new optimal SPT from scratch. In
the past, several optimality criteria have been considered to select a best
possible swap edge, and here we restrict our attention to arguably the
two most significant measures: the minimization of either the maximum
or the average distance between the root and the disconnected nodes.
For the former criteria, we present an O(m logα(m,n)) time algorithm
to find a best swap edge for every edge of the SPT, thus improving onto
the previous O(m log n) time algorithm (B. Gfeller, ESA’08 ). Concern-
ing the latter criteria, we provide an O(m + n log n) time algorithm for
the special but important case where G is unweighted, which compares
favorably with the O

(
m + nα(n, n) log2 n

)
time bound that one would

get by using the fastest algorithm known for the weighted case – once
this is suitably adapted to the unweighted case.

1 Introduction

In communication networking, broadcasting a message from a source node to
every other node of the network is one of the most common operations. Since
this should be done by making use of a logical communication topology as sparser
and faster as possible, then it is quite natural to resort to a single-source shortest-
paths tree (SPT) rooted at the source node. However, despite its popularity, the
SPT is highly susceptible to link malfunctioning, as any tree-based network
topology: the smaller is the number of links, the higher is the average traffic for
each link, and the bigger is the risk of a link overloading. Even worse, the failure
of a single link may cause the disconnection of a large part of the network.
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In principle, two different approaches can be adopted to solve the problem
of a link failure: either we rebuild a new SPT from scratch (which can be very
expensive in terms of computational and set-up costs), or we quickly reconnect
the two subtrees induced by the link failure by swapping it with a single non-tree
edge (see [10,15] for some practical motivations supporting this latter approach).
Quite obviously, swapping requires that the swap edge is wisely selected so that
the resulting swap tree is as much efficient as possible in terms of some given post-
swap distance measure from the root to the just reconnected nodes. Moreover,
to be prepared to any possible failure event, it makes sense to study the problem
of dealing with the failure of each and every single link in the network. This
defines a so-called all-best-swap edges (ABSE) problem on the SPT [11].

Related work. The problem of swapping in spanning trees has received a sig-
nificant attention from the algorithmic community. There is indeed a line of
papers which address ABSE problems starting from different types of spanning
trees. Just to mention a few, we recall here the minimum spanning tree (MST),
the minimum diameter spanning tree (MDST), and the minimum routing-cost
spanning tree (MRCST). For the MST, a best swap is simply a swap edge min-
imizing the weight of the swap tree, i.e., is a swap edge of minimum weight. 1

This problem is also known as the MST sensitivity analysis problem. Concerning
the MDST, a best swap is instead an edge minimizing the diameter of the swap
tree [9,12]. Finally, for the MRCST, a best swap is naturally an edge minimiz-
ing the all-to-all routing cost of the swap tree [16]. Denoting by n (resp., m) the
number of nodes (resp., edges) of the given graph, the fastest solutions for solving
the corresponding ABSE problems have a running time of O(m logα(m,n)) [14],
O(m log n) [8], and O

(
m2O(α(2m,2m)) log2 n

)
[2], respectively, where α is the in-

verse of the Ackermann function originally defined in [1].
Getting back to the SPT, the appropriate definition of a best swap seems

however more ambiguous, since an SPT is actually the union of all the short-
est paths emanating from a root node, and so there is not a univocal global
optimization measure we have to aim at when swapping. Thus, in [13], where
the corresponding ABSE problem was initially studied, several different criteria
expressing desirable features of the swap tree of an SPT were introduced in or-
der to characterize a best possible swap edge. In particular, among all of them,
two can be viewed as the most prominent ones: the maximum and the average
distance from the root to the disconnected nodes. These two measures reflect
a classic egalitarian versus utilitarian viewpoint as far as the efficiency of the
swap is concerned. From the algorithmic side, the fastest known solutions for the
two problems amount to O(m log n) (as a by-product of the result in [8]) and to
O(mα(m,m) log2 n) time (see [4]2), respectively.

It is worth noticing that swapping in an SPT can be reviewed as fast and
good at the same time: in fact, recomputing every new optimal SPT from scratch

1 Notice that a swap MST is actually a MST of the graph deprived of the failed edge.
2 Actually, in [4] the authors claim an O(m log2 n) time bound, but this must be
augmented by an O(α(m,m)) factor, as pointed out in [2].
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would require as much as O(mn logα(m,n)) time [5] (no faster dynamic algo-
rithm is indeed known). Moreover, it has been shown that in the swap tree the
maximum (resp., average) distance of the disconnected nodes from the root is
at most twice (resp., triple) that of the new optimal SPT, and this is tight [13].

Our Results. In this paper we focus exactly on the ABSE problem on an SPT
w.r.t. these two measures. To this respect, for the former criteria we present an
O(m logα(m,n)) time algorithm. As we will see, our result generalizes to the
ABSE problem on an MDST, and thus, for both problems we improve the time
complexity of O(m log n) given in [8]. It is worth noticing that in this way we
beat the O(m log n) time barrier needed to sort the non-tree edges w.r.t. their
weight, and we meet the time complexity of the best-known algorithm for the
MST sensitivity analysis problem. In our opinion, this is particularly remarkable
since this latter problem can be reduced in linear time to our problem.3 Thus,
improving the time complexity of our algorithm would provide a faster algorithm
for performing a sensitivity analysis of an MST, which is one of the main open
problems in the area of MST related computations.

As far as the second criteria is concerned, we focus on the special but impor-
tant case where G is unweighted. In this case we are indeed able to first exhibit a
sparsification technique on non-tree edges which would immediately allow to use
the O(mα(m,m) log2 n) time algorithm known for the weighted case (see [4]) so
as to obtain a faster O

(
m + nα(n, n) log2 n

)
time solution. However, we go be-

yond this improvement, by building on this sparser graph a new approach which
makes use of sophisticated data structures, so as to eventually get an efficient
O(m + n logn) time algorithm. Unfortunately, the extension of our machinery
to weighted graphs sounds hard, and so we regard this as a challenging problem
left open.

The paper is organized as follows: in Section 2 we describe a preprocessing
step which will be used to guarantee the efficiency of our algorithms, while in
Section 3 and 4, we present our algorithms for the maximum and the average
distance criteria, respectively. Due to space limitations, some of the proofs are
omitted and will be given in the full version of the paper.

2 A Preprocessing Step

In this section we present our notation, and we describe a useful preprocessing
step which allows us to simplify the solution of the ABSE problems we address
in this paper.

We start by defining our notation. Let G = (V,E,w) be a non-negatively
edge-weighted, undirected and 2-edge-connected graph, and let T be an SPT of

3 Indeed, we can perform a sensitivity analysis of an MST as follows: (i) we first root
the MST at any arbitrary vertex, (ii) we set the weight of every tree-edge to 0, and
then (iii) we solve the ABSE problem w.r.t. the maximum distance from the root.
Clearly, for every tree edge e, the best swap edge computed by the algorithm is a
non-tree edge of minimum weight cycling with e.
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G rooted at an arbitrary node r. Thus, T contains a shortest path from r to
every other node of G. For a vertex v 	= r, we denote by v̄ the parent of v in
the tree (in particular, ¯̄v denotes the parent of v̄). The least common ancestor
of a given pair of nodes v, v′ in T is the node of T farthest from r that is an
ancestor of both v and v′; we will indicate it by lca(v, v′). Let e = (x̄, x) be any
tree edge. We denote by Tx the subtree of T rooted at x and containing all the
descendants in T of x and by V (Tx) the set of vertices in Tx. We indicate with
Ce = {(u, y) ∈ E \ E(T ) : (u ∈ V \ V (Tx)) ∧ (y ∈ V (Tx))} the set of swap edges
for e, i.e., the edges that may be used to replace e for reconnecting T . Since
G is 2-edge connected, we have that Ce 	= ∅, ∀e ∈ E(T ). Let in the following
Te/f denote the swap tree obtained from T by swapping e with f ∈ Ce. For any
two vertices v, v′ ∈ V , we finally denote by d(v, v′) and de/f (v, v′) the distance
between v and v′ in T and Te/f , respectively.

Depending on the goal that we pursue in swapping, some swap edge may be
preferable to some other one. We here focus on the following problems:

1. max-ABSE: for every e = (x̄, x) ∈ E(T ), find an edge fe ∈ Ce s.t.:

fe ∈ arg min
f∈Ce

{
max

v∈V (Tx)
de/f (r, v)

}
;

2. sum-ABSE: for every e = (x̄, x) ∈ E(T ), find an edge fe ∈ Ce s.t.:4

fe ∈ arg min
f∈Ce

{ ∑
v∈V (Tx)

de/f (r, v)

}
.

To solve efficiently our ABSE problems, we transform in a standard way (see
for instance [17]) each non-tree edge f = (u, y) into two vertical edges, i.e.,
f ′ = (lca(u, y), y) and f ′′ = (lca(u, y), u), each of them with an appropriate
weight, namely w(f ′) = d(r, u) + w(f) − d(r, lca(u, y)) and w(f ′′) = d(r, y) +
w(f) − d(r, lca(u, y)), respectively. Basically, w(f ′) (resp., w(f ′′)) once added
by d(r, lca(u, y)), is the length of the path in Te/f starting from r, passing
through f , and ending in y (resp., u), after that f has swapped with an edge e
along the path from y (resp., u) to lca(u, y). In this way, we obtain an auxiliary
(multi)graph G′ with at most twice the number of non-tree edges of G, and
which is perfectly equivalent to G as far as the study of our ABSE problems
is concerned. Notice that this transformation can be performed for all non-tree
edges in O(m) time [6], once that the SPT is given, since essentially it only
requires the computation of the least common ancestors of non-tree edges. In
the rest of the paper, we will therefore assume to be working on G′, unless
differently stated, and that for a swap edge f = (u, y), node y ∈ V (Tx), and so
u = lca(u, y).

3 A Faster Algorithm for max-ABSE

In this section we provide the description of an algorithm solving the max-ABSE

problem in O(m logα(m,n)) time and O(m) space. As we will see, our result

4 By definition, fe minimizes the average distance from r to the disconnected nodes.
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generalizes to the ABSE problem on an MDST. Thus, for both problems we
improve the time complexity of O(m logn) given in [8].

We need to introduce some further notation before providing the algorithm
description. We denote by P (v, v′) the (unique) path in T between v and v′

and by w
(
P (v, v′)

)
:= d(v, v′) the length of P (v, v′). A diametral path P of T is

one of the longest simple paths in T and a center of T is a vertex c such that
maxv∈V d(c, v) ≤ maxv∈V d(v′, v), for every v′ ∈ V . It is well known that a tree
has either one center or two centers and, if a tree has two centers, then they
are adjacent. Furthermore, any diametral path of a tree passes through the tree
center(s). In the rest of the paper, w.l.o.g., for every v ∈ V and every v′ ∈ V (Tv),
we will assume that there is only one longest path in Tv having v′ as one of its
endvertices.5 Let v be an inner vertex of T and let P be the longest path starting
at the center c of Tv and entirely contained in Tv. We denote by cv the endvertex
of the unique edge of P incident to c which is farthest from r (possibly cv = c).
For a leaf vertex v of T , we define cv := v. Finally, we denote by Uv the vertices
of the path P (v, cv) and by Ûv = Uv \ {cv}.

The following lemma shows a useful property satisfied by the vertices cv’s.

Lemma 1. Let v and v′ be two distinct vertices of T such that v′ is an ancestor
of v in T . Then either cv′ ∈ Uv or cv′ ∈ V \ V (Tv).

Our algorithm traverses the tree edges in a suitable preorder and, for each
tree edge e = (x̄, x), it computes a best swap edge fe of e in four steps with a
clever implementation of the approach used in [8]. More precisely, for each tree
edge e = (x̄, x), our algorithm does the following:

Step 1: for every vertex v ∈ V (Tx), it computes a best swap edge f̂v of e among
the set of edges in Ce which are also incident to v;6

Step 2: it partitions the vertices of Tx into |Ux| groups, where each vertex z of
Ux defines the group G(x, z) := {v ∈ V (Tx) | lca(v, cx) = z};7

Step 3: for every vertex z ∈ Ux, it computes a group candidate, i.e., best swap
edge fz of e chosen among the set Fz of the best swap edges computed
during Step 1 and associated to vertices of the same group z belongs to, i.e.,
Fz := {f̂v | v ∈ G(x, z)};

Step 4: it selects a best swap edge fe of e among the group candidates computed
in Step 3.

Let f = (u, y) ∈ Ce be a non-tree edge and let lca(y, cx) = z. Observe that
z ∈ Ux. Let κ1(f) := d(r, u) +w(f) + d(r, y) be the primary key associated with
f , and let κ2(f, e) := κ1(f) − 2d(r, z) be the secondary key associated with the
pair f and e. The primary key of f is independent of the failing tree edge and is
used to compare two competing swap edges of the same set Fz. The secondary

5 This property can be achieved by modifying the tree via the addition of dummy
leaves, each connected with a leaf of T by a suitable cheap edge.

6 If no such edge exists, then we assume that f̂v is an imaginary edge of weight +∞.
7 Observe that, if z = cx, then G(x, z) = V (Tcx); if z �= cx, then G(x, z) = V (Tz) \
V (Tv), where v is the child of z such that cx ∈ V (Tv).
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key is used to compare two competing swap edges among the group candidates
fz’s with z 	= cx. The following lemmas provide useful properties suitable for
an efficient implementation of Step 1, Step 3, and Step 4 of our algorithm,
respectively.

Lemma 2. Let e = (x̄, x) be a tree edge with x̄ 	= r, let v be a vertex of Tx, and
let f ′ be a best swap edge of ē = (¯̄x, x̄) among the set of non-tree edges in Cē

which are incident to v. If (x̄, v) 	∈ Ce, then f̂v = f ′, otherwise f̂v is the edge of
minimum primary key between f ′ and (x̄, v).

Lemma 3. Let e = (x̄, x) be a tree edge and let z ∈ Ux. We have that fz ∈
arg min{κ1(f) | f ∈ Fz}.

Lemma 4. Let e = (x̄, x) be a tree edge and let f̂ ∈ arg min{κ2(fz , e) | z ∈ Ûx}.

Then, fcx or f̂ is a best swap edge of e.

The following Corollary of Lemma 1 shows that, thanks to the preorder pro-
cessing of the tree edges, we can compute the new groups G(x, z), and thus
solve Step 2, by suitably splitting some groups G(x̄, z′) which have already been
computed.

Corollary 1. Let {z1, . . . , zk} = Ux \ Ux̄ such that zi is the parent of zi+1, for
every i = 1, . . . , k − 1 (if x = r, then {z1, . . . , zk} = Ur \ {r}) and let z0 be

the parent of z1. We have that (a) G(x̄, z) = G(x, z) for every z ∈ Ûx̄ ∩ Ux, (b)
G(x̄, cx̄) = G(x, cx) iff cx̄ = cx, and (c) G(x, z) ⊆ G(x̄, z0) for every z ∈ Ux \ Ux̄.

Therefore, rather than implementing our algorithm using brute force search,
we make use of split-findmin data structures which are suitable for finding
minimum-key elements of sets that can only be split. A split-findmin is a data
structure that has been successfully used in [14] to solve the sensitivity analy-
sis of an MST in O(m logα(m,n)) time. A split-findmin S maintains a set of
sequences of elements each associated with a key and supports the following
operations:

init(o1, . . . , oN ): initializes the sequence S := {(o1, . . . , oN )} of N elements
with key κ(oi) := +∞ for all i;

split(S, oi): let s = (oj , . . . , oi−1, oi, . . . , ok) be the sequence in S containing oi;
the call of split(S, oi) returns S :=

(
S \{s}

)
∪{(oj , . . . , oi−1), (oi, . . . , ok)};

findmin(S, oi): let s be the sequence in S containing oi; the call of findmin(S, oi)
returns an element of minimum key in s;

decreasekey(S, oi, k): if κ(oi) > k, then decreasekey(S, oi, k) sets κ(oi) = k.

As proven in [14], a split-findmin data structure of N elements requires Θ(N)
space, can be initialized in Θ(N) time, and supports M split, findmin, and
decreasekey operations in time O(M logα(M,N)). The following easy-to-prove
lemma is another key ingredient for the correctness of our algorithm.
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Lemma 5. Let T ′ be a tree rooted at r′, let s be the sequence of nodes as obtained
from a right-to-left preorder visit of T ′, and let Ŝ be a split-findmin initialized
with the sequence s. Let v be the leftmost child of r′. The execution of split(Ŝ, v)
splits s into two sequences s′ and s′′ such that, w.l.o.g., V (T ′) \ V (T ′

v) contains
the vertices of s′ and V (T ′

v) contains the vertices of s′′.8

Our algorithm uses two split-findmin data structures S and S ′ both containing
all the vertices of T as elements. During the visit of the tree edge e = (x̄, x), the
first split-findmin data structure S is updated so as:

(I1): the key associated with v in S is κ1(f̂v);
(I2): for every vertex z ∈ Ux, all the vertices in G(x, z) form a sequence in S.

Thus, thanks to Lemma 3, we can compute fz, for every z ∈ Ux, using a
findmin(S, z) query. The second split-findmin data structure S ′ is used to rep-

resent the group candidates fz of all the groups G(x, z) with z ∈ Ûx. More
precisely, during the visit of the tree edge e = (x̄, x), S′ is updated so as the
following invariants are maintained:

(I ′
1): V (Tx) forms a sequence in S ′;

(I ′
2): for every v ∈ V (Tx), the key associated with v in S ′ is equal to (a) κ2(fv, e),

if v ∈ Ûx and (b) +∞, if v 	∈ Ûx.

Because of both invariants I ′
1 and I ′

2 and thanks to Lemma 4, we can compute

f̂ ∈ arg min{κ2(fz , e) | z ∈ Ûx} by performing a findmin(S ′, x) query.
The algorithm first arranges T in such a way that, for each non-leaf node v, the

subtree rooted at the leftmost child of v contains cv. Then, it initializes S and S ′

with the sequence of vertices as obtained from a right-to-left preorder visit of T
and finally visits all the tree edges according to the left-to-right preorder visit of
T . Let e = (x̄, x) be the tree edge that is visited by the algorithm. The algorithm
follows the four-step approach described above to compute a best swap edge fe
of e by updating the two split-findmin data structures S and S ′. For the base
case x = r, the algorithm performs only Step 2 (i.e., calls split(S, z) for every
z ∈ Ur \ {r}) to initialize S properly.

Step 1 of the algorithm is implemented by calling decreasekey
(
S, v, κ1(f)

)
for every vertex v ∈ V (Tx) such that f = (u, y) is a swap edge of e with u = x̄
and v = y. Indeed, if x̄ 	= r and f ′ is a best swap edge of ē =

(
¯̄x, x̄

)
among the

set of non-tree edges in Cē which are also incident to v, then, from Lemma 2,
maintaining invariant I1 is equivalent to comparing κ1(f) with κ1(f ′) which, by
induction, is the key associated to vertex v in S at the beginning of Step 1.

Let {z1, . . . , zk} = Ux \ Ux̄ such that zi is the parent of zi+1, for every i =
1, . . . , k − 1 (if x = r, then {z1, . . . , zk} = Ur \ {r}) and let z0 be the parent
of z1. Step 2 of the algorithm is implemented by simply calling split(S, zi) for
every i = 1, . . . , k. In what follows, we sketch that invariant I2 is maintained

8 Notice that, from a topological point of view, the split(Ŝ, v) operation can be
viewed as the removal of edge (r′, v) in T ′.
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at the end of Step 2. By induction, S contains the sequence of the vertices in
G(x̄, z) for every z ∈ Ux̄. From Corollary 1, we have that G(x̄, z) = G(x, z)

for every z ∈ Ûx̄ ∩ Ux. Furthermore, G(x̄, cx̄) = G(x, cx) iff cx̄ = cx. Finally,
G(x, z) ⊆ G(x̄, z0) for every z ∈ Ux \ Ux̄. Using induction, we can prove that S
contains the sequence s of all vertices in G(x̄, z0) and z1 is the lefmost child of the
subtree induced by s. Furthermore, Lemma 1 implies that zi+1 is the leftmost
child of zi for every i = 1, . . . , k − 1. Therefore, thanks to repeated applications
of Lemma 5, after the execution of all split(S, zi), S contains the sequence of
all the vertices in G(x, zj), for every j = 0, . . . , k.

Step 3 of the algorithm can be implemented by performing the following set
of operations whenever a group creation or a group modification (i.e., a split or
decreasekey operation on S) occurs during Step 1 or Step 2. Let G(x, v) be a
group that has been created or modified. From Lemmas 2 and 3, updating S ′ is
equivalent to first calling findmin(S, v), which returns a non-tree edge f , and, if
lca(v, cx) 	= cx, to calling decreasekey(S ′, lca(v, cx), κ2(f, e)). Proceeding this
way, we are guaranteed that at the end of Step 3 the invariant I ′

2 holds. Observe
that a decreasekey operation on S modifies one group while a split operation on
S splits one group into two groups, i.e., it creates two new groups.

Step 4 of the algorithm consists of (a) computing f̂ (the explanation of how to

compute f̂ is below), (b) calling findmin(S, cx) to compute fcx , and (c) selecting

a best swap edge of e between f̂ and fcx via the explicit computation of the

objective function values when e is replaced with f̂ and with fcx , respectively.9 To

compute f̂ , the algorithm first performs split(S ′, x) which – thanks to the left-
to-right preorder processing of the tree vertices and to the right-to-left preorder
arrangement of the tree vertices in S ′ – maintains the invariant I1, and then
calls findmin(S ′, x).

We can prove the following.

Theorem 1. The max-ABSE problem can be solved in O(m logα(m,n)) time
and O(m) space.

Corollary 2. The ABSE problem for a MDST can be solved in O
(
m logα(m,n)

)
time and O(m) space.

4 A Faster Algorithm for sum-ABSE on Unweighted
Graphs

In this section we solve efficiently the ABSE problem w.r.t. the criteria of mini-
mizing the average distance from the root on unweighted graphs. Thus, instead
of talking about an SPT, we better will refer to a rooted breadth-first tree (BFT)
T of G.

We start by refining the “verticalization” of non-tree edges described in Sec-
tion 2. Let f ′ = (lca(u, y), y) be a vertical edge associated with a non-tree

9 In [8] it is explained how the value of the objective function can be computed in
O(1) time for every e ∈ E(T ) and every f ∈ Ce after a linear time preprocessing.
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edge f = (u, y). Since G is unweighted and T is a BFT of G, we have that
either of the three following cases apply for edge f : (i) d(r, u) = d(r, y), or (ii)
d(r, u) = d(r, y) − 1, or finally (iii) d(r, u) = d(r, y) + 1. Depending on which
of the three cases apply, we have that f ′ is either of type (i), (ii) or (iii), re-
spectively. Clearly, a symmetric argument applies to the other vertical edge
f ′′ = (lca(u, y), u) associated with f (if any), and notice that if f ′ is of type (i),
then the same holds for f ′′, while if f ′ is of type (ii), then f ′′ is of type (iii), and
vice versa. Then, for any given a node v ∈ V , we can select a representative for
any of these three types of vertical non-tree edges incident to v as follows: For
each type, select a non-tree edge which swaps with a largest number of edges
along the tree path from v to r. Notice that a representative edge is clearly
preferable w.r.t. any other swap edge it was selected out of, since it allows for
the same quality when swapping, while being usable longer. Thus, at most three
vertical non-tree edges will remain associated with v, and all the other non-tree
edges will be discarded. Observe that once again this refined preprocessing phase
can be performed for all non-tree edges in O(m) time, since it only requires to
further classify vertical non-tree edges depending on their type, which is clearly
doable in linear time. Notice that after the preprocessing, we have reduced to
O(n) the number of non-tree edges, and this immediately allows to solve the
sum-ABSE problem in linear space and O

(
m + nα(n, n) log2 n

)
time, by just

using the fastest algorithm known for the weighted case [4]. We will show in the
following how to improve this running time to O(m + n logn).

To solve sum-ABSE, our algorithm will run in three phases, where at each
phase we will only consider representative edges of either of the three types
above. Indeed, for efficiency reasons, representative edges of different type need
to be treated separately. This means, at each phase every node will have at most
a single vertical edge associated, and at the end of a phase every tree edge will
remain associated with a best swap edge of the current type. Finally, a best
swap edge for a given tree edge will be selected as the best among those found
in the three phases. Hence, in the following we assume that all non-tree edges
are of the same type. We define the level of a node v as �(v) := d(r, v), and the
level of a (vertical) non-tree edge (u, y) as the level of its lowest endvertex y.
Furthermore, we define the height of v as h(v) := max{�(v′) | v′ ∈ V (Tv)}.

For efficiency reasons that will be clearer later, our algorithm associates two
keys with each non-tree edge f , and each of these keys will be separately managed
by a suitable priority queue. The first key, say κ1(f), is a (constant) value which
depends only on f , and that can be used to compare two competing swap edges
of the same level. Concerning the second key, this is instead a (non-constant)
value which can be used to compare two competing swap edges of different levels.
More precisely, such a key is a linear function of the form κ2(f, t) := at+b, where
a and b are constant values depending only on f , while t is a variable (called
virtual time) that properly encodes the position in T of the failing edge e for
which f must be evaluated.

The two keys of f = (u, y) are defined as follows: κ1(f) :=
∑

v∈V d(y, v), while
κ2(f, t) := 2�(y)t + κ1(f) − �(y)n. We can prove the following.
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Lemma 6. Let f and f ′ be two swap edges for a tree edge e = (x̄, x). If
κ2(f, |V (Tx)|) ≤ κ2(f ′, |V (Tx)|), then

∑
v∈V (Tx)

de/f (r, v) ≤
∑

v∈V (Tx)
de/f ′(r, v).

Furthermore, Lemma 6 immediately implies the following.

Corollary 3. Let f and f ′ be two non-tree edges of the same level which are also
swap edges for a tree edge e = (x̄, x). If κ1(f) ≤ κ1(f ′), then

∑
v∈V (Tx)

de/f (r, v)

≤
∑

v∈V (Tx)
de/f ′(r, v).

Thus, the main idea of our algorithm is to maintain efficiently a best swap
edge for each of the levels below the failing edge. This will be done through the
use of two types of priority queues, one for each type of key, according to their
nature: Fibonacci heap (F-heap) [7] to manage constant keys of the first type,
and a kinetic heap (K-heap) [3] to manage variable keys of the second type.
Indeed kinetic heaps allow to perform findmin operations parameterized with
respect to a given parameter t, i.e., the virtual time. Moreover, these operations
must satisfy a monotoniticy condition, i.e., successive findmin operations must
be performed with respect to non-decreasing values of t.

Let us now see how these heaps are built and maintained. At the beginning,
for each vertex v different from r, we create an F-heap, say F�(v)(v), and if v has
a non-tree edge f incident to it, we insert v in F�(v)(v) with key κ1(f). Then,
for each leaf v, we create a K-heap, say K(v), and if v has a non-tree edge f
incident to it, we insert �(v) in K(v) with key κ2(f, t) (by also maintaining a
pointer to f).

We consider the tree edges in a bottom-up fashion, by visiting the vertices of
T in any post-order. When we visit node x (i.e., we consider the removal of edge
e = (x̄, x) from T ), we maintain the following invariants:

(I1): for each level �(x) ≤ j ≤ h(x), we have an F-heap Fj(x) containing every
node in Tx of level j having an incident non-tree edge f which can swap with
e (with the corresponding key κ1(f));

(I2): there is a K-heap K(x) containing a subset of levels in the interval
[�(x), h(x)], with the property that a level �(x) ≤ j ≤ h(x) is in K(x) with
key κ2(f, t) iff f is a best swap edge for e of level j.

Notice that from Corollary 3, (I1) allows to compute a best swap edge f = (u, y)
for e with �(y) = j. Furthermore, from Lemma 6, (I2) allows to compute a best
swap edge for e by extracting the minimum from K(x) with current virtual time
|V (Tx)|. As will see, K-heaps are built on top of F-heaps whose use, in turn, will
be only instrumental to keep the number of more expensive operations performed
in the K-heaps low.

Our algorithm proceeds as follows. If x is a leaf, to get a best swap edge
for e we simply perform a findmin operation on K(x) with current virtual time
|V (Tx)| = 1. Otherwise, let q1, . . . , qs be the children of x in T ; then we do the
following (notice that Steps 1-4 are performed to maintain the invariants):

1. We set K(x) := K(qi), where qi is a child of x such that Tqi is a highest
subtree rooted at a child of x.
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2. If x has an incident non-tree edge f such that f ∈ Ce, we insert �(x) in K(x)
with key κ2(f, t).

3. For each non-tree edge f = (u, y) with u = x and �(y) = j, we first delete y
from the F-heap to which y currently belongs to, say Fj(qz). Next we check
whether the key of level j in K(x) is associated with f . If this is the case,
then (i) we delete j from K(x), (ii) we perform an additional findmin on
Fj(qz) to get a new best swap edge f ′ of level j, if any, and if this is the case
(iii) we re-insert j into K(x) with key κ2(f ′, t).

4. If s = 1, then for each level �(x) ≤ j ≤ h(q1) = h(x), the F-heap Fj(x) is
simply inherited from Fj(q1);10 otherwise, let qp be the child of x such that
Tqp is a highest subtree besides Tqi . For each level �(x) ≤ j ≤ h(qp), we merge
all F-heaps Fj(qk), k = 1, . . . , s, and we call the resulting F-heap Fj(x); then,
we perform a findmin operation on Fj(x) to compute a best swap edge f
of level j, if any. If this is the case, we first check if K(x) contains j, and
if so we remove it; afterwards, we re-insert j into K(x), with key κ2(f, t).
Notice that for the remaining levels h(qp)+1 ≤ j ≤ h(qi), the corresponding
F-heaps are simply inherited from Fj(qi).

5. Finally, we perform a findmin operation on K(x) with current virtual time
|V (Tx)| to compute a best swap edge for e = (x̄, x).

Theorem 2. The sum-ABSE problem can be solved in O(m+n logn) time and
O(m) space.

Proof. First of all, recall that the preprocessing step of the algorithm takes
O(m) time and space. Moreover, in order to compute the values of the two keys
efficiently, we can pre-compute the value

∑
v′∈V d(v, v′) for every v ∈ V . This

can be done in O(n) time [4].
To derive the time complexity of the algorithm, we have to bound the number

of operations performed on our data structures in each phase. Let k be the total
number of merge operations on F-heaps. Notice that k ≤ n since the number of
merges is bounded by the initial number of F-heaps, namely n − 1 (no new F-
heaps are created, since inheriting a heap is just a renaming of the heap itself).
The number of insertions and deletions on K-heaps is also O(n), since this is
upper bounded by the number of leaves of T plus the number of merge and
delete operations on F-heaps, which is O(n). Concerning the findmin operations
on F-heaps, it is easy to see that we have at most one such operation for each
merging of F-heaps and each deletion on K-heaps, which implies that they are
O(n). Clearly, we perform a single findmin on a K-heap for each edge of T . From
this, and from the fact that in an F-heap insert, merge and findmin operations
takes each O(1) time, and a delete operation takes O(log n) amortized time,
while in a K-heap the amortized time for insert and delete operations is O(log n),
while for findmin operations is O(1) [3], and finally observing that F-heaps and
K-heaps use O(n) space, the claim follows. �


10 Notice that all these heaps can be inherited in O(1) time by simply changing their
reference from q1 to x.
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From the above discussion, it should be clear that the use of F-heaps is instru-
mental to reduce to O(n) the number of (more expensive) operations on K-heaps,
and this is exactly the key ingredient for the efficiency of our algorithm. Finally,
the sparsification of non-tree edges can be used to solve the max-ABSE problem
on unweighted graphs in O

(
m + n logα(n, n)

)
time.
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shortest paths trees. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982,
pp. 207–217. Springer, Heidelberg (2001)

16. Wu, B.Y., Hsiao, C.-Y., Chao, K.-M.: The swap edges of a multiple-sources routing
tree. Algorithmica 50(3), 299–311 (2008)

17. Tarjan, R.E.: Sensitivity analysis of minimum spanning trees and shortest path
trees. Inf. Process. Lett. 14(1), 30–33 (1982)



Parallel String Sample Sort�

Timo Bingmann and Peter Sanders

Karlsruhe Institute of Technology, Karlsruhe, Germany
{bingmann,sanders}@kit.edu

Abstract. We discuss how string sorting algorithms can be parallelized
on modern multi-core shared memory machines. As a synthesis of the
best sequential string sorting algorithms and successful parallel sorting
algorithms for atomic objects, we propose string sample sort. The algo-
rithm makes effective use of the memory hierarchy, uses additional word
level parallelism, and largely avoids branch mispredictions. Additionally,
we parallelize variants of multikey quicksort and radix sort that are also
useful in certain situations.

1 Introduction

Sorting is perhaps the most studied algorithmic problem in computer science.
While the most simple model for sorting assumes atomic keys, an important class
of keys are strings to be sorted lexicographically. Here, it is important to exploit
the structure of the keys to avoid costly repeated comparisons of entire strings.
String sorting is for example needed in database index construction, some suffix
sorting algorithms, or MapReduce tools. Although there is a correspondingly
large volume of work on sequential string sorting, there is very little work on
parallel string sorting. This is surprising since parallelism is now the only way to
get performance out of Moore’s law so that any performance critical algorithm
needs to be parallelized. We therefore started to look for practical parallel string
sorting algorithms for modern multi-core shared memory machines. Our focus
is on large inputs. This means that besides parallelization we have to take the
high cost of branch mispredictions and the memory hierarchy into account. For
most multi-core systems, this hierarchy exhibits many processor-local caches but
disproportionately few shared memory channels to RAM.

After introducing notation and previous approaches in Section 2, Section 3
explains our parallel string sorting algorithms, in particular super scalar string
sample sort (S5) but also multikey quicksort and radix sort. These algorithms
are evaluated experimentally in Section 4.
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tian Käser, and Sascha Denis Knöpfle who implemented prototypes of our ideas.
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2 Preliminaries

Our input is a set S = {s1, . . . , sn} of n strings with total length N . A string
is a zero-based array of |s| characters from the alphabet Σ = {1, . . . , σ}. For
the implementation, we require that strings are zero-terminated, i.e., s[|s|−1] =
0 /∈ Σ. Let D denote the distinguishing prefix size of S, i.e., the total number
of characters that need to be inspected in order to establish the lexicographic
ordering of S. D is a natural lower bound for the execution time of sequential
string sorting. If, moreover, sorting is based on character comparisons, we get a
lower bound of Ω(D + n logn).

Sets of strings are usually represented as arrays of pointers to the beginning
of each string. Note that this indirection means that, in general, every access to
a string incurs a cache fault even if we are scanning an array of strings. This
is a major difference to atomic sorting algorithms where scanning is very cache
efficient. Let lcp(s, t) denote the length of the longest common prefix (LCP)
of s and t. In a sequence or array of strings x let lcpx(i) denote lcp(xi−1, xi).
Our target machine is a shared memory system supporting p hardware threads
(processing elements – PEs) on Θ(p) cores.

2.1 Basic Sequential String Sorting Algorithms

Multikey quicksort [2] is a simple but effective adaptation of quicksort to strings.
When all strings in S have a common prefix of length �, the algorithm uses
character c = s[�] of a pivot string s ∈ S (e.g. a pseudo-median) as a splitter
character. S is then partitioned into S<, S=, and S> depending on comparisons
of the �-th character with c. Recursion is done on all three subproblems. The
key observation is that the strings in S= have common prefix length �+ 1 which
means that compared characters found to be equal with c never need to be
considered again. Insertion sort is used as a base case for constant size inputs.
This leads to a total execution time of O(D + n logn). Multikey quicksort works
well in practice in particular for inputs which fit into the cache.

MSD radix sort [8,10,7] with common prefix length � looks at the �-th char-
acter producing σ subproblems which are then sorted recursively with common
prefix � + 1. This is a good algorithm for large inputs and small alphabets since
it uses the maximum amount of information within a single character. For in-
put sizes o(σ) MSD radix sort is no longer efficient and one has to switch to a
different algorithm for the base case. The running time is O(D) plus the time
for solving the base cases. Using multikey quicksort for the base case yields an
algorithm with running time O(D + n log σ). A problem with large alphabets is
that one will get many cache faults if the cache cannot support σ concurrent
output streams (see [9] for details).

Burstsort dynamically builds a trie data structure for the input strings. In
order to reduce the involved work and to become cache efficient, the trie is built
lazily – only when the number of strings referenced in a particular subtree of
the trie exceeds a threshold, this part is expanded. Once all strings are inserted,
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the relatively small sets of strings stored at the leaves of the trie are sorted
recursively (for more details refer to [16,17,15] and the references therein).

LCP-Mergesort is an adaptation of mergesort to strings that saves and reuses
the LCPs of consecutive strings in the sorted subproblems [11].

2.2 Architecture Specific Enhancements

Caching of characters is very important for modern memory hierarchies as it
reduces the number of cache misses due to random access on strings. When
performing character lookups, a caching algorithm copies successive characters
of the string into a more convenient memory area. Subsequent sorting steps can
then avoid random access, until the cache needs to be refilled. This technique
has successfully been applied to radix sort [10], multikey quicksort [12], and in
its extreme to burstsort [17].

Super-Alphabets can be used to accelerate string sorting algorithms which
originally look only at single characters. Instead, multiple characters are grouped
as one and sorted together. However, most algorithms are very sensitive to large
alphabets, thus the group size must be chosen carefully. This approach results in
16-bit MSD radix sort and fast sorters for DNA strings. If the grouping is done
to fit many characters into a machine word, this is also called word parallelism.

Unrolling, fission and vectorization of loops are methods to exploit out-of-
order execution and super scalar parallelism now standard in modern CPUs.
However, only specific, simple data in-dependencies can be detected and thus
inner loops must be designed with care (e.g. for radix sort [7]).

2.3 (Parallel) Atomic Sample Sort

There is a huge amount of work on parallel sorting so that we can only dis-
cuss the most relevant results. Besides (multiway)-mergesort, perhaps the most
practical parallel sorting algorithms are parallelizations of radix sort (e.g. [19])
and quicksort [18] as well as sample sort [4]. Sample sort is a generalization of
quicksort working with k − 1 pivots at the same time. For small inputs sample
sort uses some sequential base case sorter. Larger inputs are split into k buckets
b1, . . . , bk by determining k − 1 splitter keys x1 ≤ · · · ≤ xk−1 and then classi-
fying the input elements – element s goes to bucket bi if xi−1 < s ≤ xi (where
x0 and xk are defined as sentinel elements – x0 being smaller than all possible
input elements and xk being larger). Splitters can be determined by drawing a
random sample of size αk − 1 from the input, sorting it, and then taking every
α-th element as a splitter. Parameter α is the oversampling factor. The buckets
are then sorted recursively and concatenated. “Traditional” parallel sample sort
chooses k = p and uses a sample big enough to assure that all buckets have ap-
proximately equal size. Sample sort is also attractive as a sequential algorithm
since it is more cache efficient than quicksort and since it is particularly easy to
avoid branch mispredictions (super scalar sample sort – S4) [13]. In this case, k
is chosen in such a way that classification and data distribution can be done in
a cache efficient way.
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2.4 More Related Work

There is some work on PRAM algorithms for string sorting (e.g. [5]). By com-
bining pairs of adjacent characters into single characters, one obtains algorithms
with work O(N logN) and time O(logN/ log logN). Compared to the sequential
algorithms this is suboptimal unless D = O(N) = O(n) and with this approach
it is unclear how to avoid work on characters outside distinguishing prefixes.

We found no publications on practical parallel string sorting. However, Ta-
kuya Akiba has implemented a parallel radix sort [1], Tommi Rantala’s library
[12] contains multiple parallel mergesorts and a parallel SIMD variant of mul-
tikey quicksort, and Nagaraja Shamsundar [14] also parallelized Waihong Ng’s
LCP-mergesort [11]. Of all these implementations, only the radix sort by Akiba
scales fairly well to many-core architectures. For this paper, we exclude the other
implementations and discuss their scalability issues in our technical report [3].

3 Shared Memory Parallel String Sorting

Already in a sequential setting, theoretical considerations and experiments [3]
indicate that the best string string sorting algorithm does not exist. Rather,
it depends at least on n, D, σ, and the hardware. Therefore we decided to
parallelize several algorithms taking care that components like data distribution,
load balancing or base case sorter can be reused. Remarkably, most algorithms in
Section 2.1 can be parallelized rather easily and we will discuss parallel versions
in Sections 3.2–3.4. However, none of these parallelizations make use of the
striking new feature of modern many-core systems: many multi-core processors
with individual cache levels but relatively few and slow memory channels to
shared RAM. Therefore we decided to design a new string sorting algorithm
based on sample sort, which exploits these properties. Preliminary result on
string sample sort have been reported in the bachelor thesis of Knöpfle [6].

3.1 String Sample Sort

In order to adapt the atomic sample sort from Section 2.3 to strings, we have to
devise an efficient classification algorithm. Also, in order to approach total work
O(D + n logn) we have to use the information gained during classification into
buckets bi in the recursive calls. This can be done by observing that

∀1 ≤ i ≤ k : ∀s, t ∈ bi : lcp(s, t) ≥ lcpx(i) . (1)

Another issue is that we have to reconcile the parallelization and load balancing
perspective from traditional parallel sample sort with the cache efficiency per-
spective of super scalar sample sort. We do this by using dynamic load balancing
which includes parallel execution of recursive calls as in parallel quicksort.

In our technical report [3] we outline a variant of string sample sort that uses
a trie data structure and a number of further tricks to enable good asymptotic
performance. However, we view this approach as somewhat risky for a first rea-
sonable implementation. Hence, in the following, we present a more pragmatic
implementation.



Parallel String Sample Sort 173

x1

x0 x2

b0 b1 b2 b3 b4 b5 b6

<

=

>

< = > < = >

Fig. 1. Ternary search tree for v = 3 splitters

Super Scalar String Sample Sort (S5) – A Pragmatic Solution. We
adapt the implicit binary search tree approach used in S4 [13] to strings. Rather
than using arbitrarily long splitters as in trie sample sort [3], or all characters
of the alphabet as in radix sort, we design the splitter keys to consist of as
many characters as fit into a machine word. In the following let w denote the
number of characters fitting into one machine word (for 8-bit characters and
64-bit machine words we would have w = 8). We choose v = 2d − 1 splitters
x0, . . . , xv−1 from a sorted sample to construct a perfect binary search tree,
which is used to classify a set of strings based on the next w characters at
common prefix �. The main disadvantage of this approach is that there may be
many input strings whose next w characters are identical. For these strings, the
classification does not reveal much information. We make the best out of such
inputs by explicitly defining equality buckets for strings whose next w characters
exactly match xi. For equality buckets, we can increase the common prefix length
by w in the recursive calls, i.e., these characters will never be inspected again.
In total, we have k = 2v + 1 different buckets b0, . . . , b2v for a ternary search
tree (see Figure 1). Testing for equality can either be implemented by explicit
equality tests at each node of the search tree (which saves time when most
elements end up in a few large equality buckets) or by going down the search
tree all the way to a bucket bi (i even) doing only ≤-comparisons, followed by a
single equality test with x i

2
, unless i = 2v. This allows us to completely unroll

the loop descending the search tree. We can then also unroll the loop over the
elements, interleaving independent tree descents. Like in [13], this is an important
optimization since it allows the instruction scheduler in a super scalar processor
to parallelize the operations by drawing data dependencies apart. The strings in
buckets b0 and b2v keep common prefix length �. For other even buckets bi the
common prefix length is increased by lcpx( i

2 ). An analysis similar to the one of
multikey quicksort yields the following asymptotic running time bound.

Lemma 1. String sample sort with implicit binary trees and word parallelism
can be implemented to run in time O

(
D
w log v + n logn

)
.

Implementation Details. Goal of S5 is to have a common classification data
structure that fits into the cache of all cores. Using this data structure, all PEs
can independently classify a subset of the strings into buckets in parallel. As
most commonly done in radix sort, we first classify strings, counting how many
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fall into each bucket, then calculate a prefix sum and redistribute the string
pointers accordingly. To avoid traversing the tree twice, the bucket index of each
string is stored in an oracle. Additionally, to make higher use of super scalar
parallelism, we even separate the classification loop from the counting loop [7].

Like in S4, the binary tree of splitters is stored in level-order as an array,
allowing efficient traversal using i := 2i+ {0, 1}, without branch mispredictions.
To perform the equality check after traversal without extra indirections, the
splitters are additionally stored in order. Another idea is to keep track of the last
≤-branch during traversal; this however was slower and requires an extra register.
A third variant is to check for equality after each comparison, which requires only
an additional JE instruction and no extra CMP. The branch misprediction cost is
counter-balanced by skipping the rest of the tree. An interesting observation is
that, when breaking the tree traversal at array index i, then the corresponding
equality bucket bj can be calculated from i using only bit operations (note that
i is an index in level-order, while j is in-order). Thus in this third variant, no
additional in-order splitter array is needed.

The sample is drawn pseudo-randomly with an oversampling factor α = 2
to keep it in cache when sorting with STL’s introsort and building the search
tree. Instead of using the straight-forward equidistant method to draw splitters
from the sample, we use a simple recursive scheme that tries to avoid using the
same splitter multiple times: Select the middle sample m of a range a..b (initially
the whole sample) as the middle splitter x̄. Find new boundaries b′ and a′ by
scanning left and right from m skipping samples equal to x̄. Recurse on a..b′ and
a′..b.

For current 64-bit machines with 256 KiB L2 cache, we use v = 8191. Note
that the limiting data structure which must fit into L2 cache is not the splitter
tree, which is only 64 KiB for this v, but is the bucket counter array containing
2v + 1 counters, each 8 bytes long. We did not look into methods to reduce this
array’s size, because the search tree must also be stored both in level-order and
in in-order.

Parallelization of S5. Parallel S5 (pS5) is composed of four sub-algorithms for
differently sized subsets of strings. For string sets S with |S| ≥ n

p , a fully parallel

version of S5 is run, for large sizes n
p > |S| ≥ tm a sequential version of S5 is

used, for sizes tm > |S| ≥ ti the fastest sequential algorithm for medium-size
inputs (caching multikey quicksort from Section 3.3) is called, which internally
uses insertion sort when |S| < ti. The thresholds ti and tm depend on hardware
specifics, see Section 4 for empirically determined values.

The fully parallel version of S5 uses p′ = � |S|
p � threads for a subset S. It

consists of four stages: selecting samples and generating a splitter tree, parallel
classification and counting, global prefix sum, and redistribution into buckets.
Selecting the sample and constructing the search tree are done sequentially,
as these steps have negligible run time. Classification is done independently,
dividing the string set evenly among the p′ threads. The prefix sum is done
sequentially once all threads finish counting.
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In the sequential version of S5 we permute the string pointer array in-place
by walking cycles of the permutation [8]. Compared to out-of-place redistribu-
tion into buckets, the in-place algorithm uses fewer input/output streams and
requires no extra space. The more complex instruction set seems to have only
little negative impact, as today, memory access is the main bottleneck. However,
for fully parallel S5, an in-place permutation cannot be done in this manner. We
therefore resort to out-of-place redistribution, using an extra string pointer array
of size n. The string pointers are not copied back immediately. Instead, the role
of the extra array and original array are swapped for the recursion.

All work in parallel S5 is dynamically load balanced via a central job queue.
Dynamic load balancing is very important and probably unavoidable for par-
allel string sorting, because any algorithm must adapt to the input string set’s
characteristics. We use the lock-free queue implementation from Intel’s Thread
Building Blocks (TBB) and threads initiated by OpenMP to create a light-weight
thread pool.

To make work balancing most efficient, we modified all sequential sub-algo-
rithms of parallel S5 to use an explicit recursion stack. The traditional way to
implement dynamic load balancing would be to use work stealing among the
sequentially working threads. This would require the operations on the local re-
cursion stacks to be synchronized or atomic. However, for our application fast
stack operations are crucial for performance as they are very frequent. We there-
fore choose a different method: voluntary work sharing. If the global job queue
is empty and a thread is idle, then a global atomic boolean flag is set to indicate
that other threads should share their work. These then free the bottom level of
their local recursion stack (containing the largest subproblems) and enqueue this
level as separate, independent jobs. This method avoids costly atomic operations
on the local stack, replacing it by a faster (not necessarily synchronized) boolean
flag check. The short wait of an idle thread for new work does not occur often,
because the largest recursive subproblems are shared. Furthermore, the global
job queue never gets large because most subproblems are kept on local stacks.

3.2 Parallel Radix Sort

Radix sort is very similar to sample sort, except that classification is much
faster and easier. Hence, we can use the same parallelization toolkit as with
S5. Again, we use three sub-algorithms for differently sized subproblems: fully
parallel radix sort for the original string set and large subsets, a sequential radix
sort for medium-sized subsets and insertion sort for base cases. Fully parallel
radix sort consists of a counting phase, global prefix sum and a redistribution
step. Like in S5, the redistribution is done out-of-place by copying pointers into a
shadow array. We experimented with 8-bit and 16-bit radixes for the full parallel
step. Smaller recursive subproblems are processed independently by sequential
radix sort (with in-place permuting), and here we found 8-bit radixes to be faster
than 16-bit sorting. Our parallel radix sort implementation uses the same work
balancing method as parallel S5.
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3.3 Parallel Caching Multikey Quicksort

Our preliminary experiments with sequential string sorting algorithms [3] showed
a surprise winner: an enhanced variant of multikey quicksort by Tommi Rantala
[12] often outperformed more complex algorithms. This variant employs both
caching of characters and uses a super-alphabet of w = 8 characters, exactly as
many as fit into a machine word. The string pointer array is augmented with w
cache bytes for each string, and a string subset is partitioned by a whole machine
word as splitter. Key to the algorithm’s good performance, is that the cached
characters are reused for the recursive subproblems S< and S>, which greatly
reduces the number of string accesses to at most �D

w � + n in total.
In light of this variant’s good performance, we designed a parallelized ver-

sion. We use three sub-algorithms: fully parallel caching multikey quicksort, the
original sequential caching variant (with explicit recursion stack) for medium
and small subproblems, and insertion sort as base case. For the fully parallel
sub-algorithm, we generalized a block-wise processing technique from (two-way)
parallel atomic quicksort [18] to three-way partitioning. The input array is viewed
as a sequence of blocks containing B string pointers together with their w cache
characters. Each thread holds exactly three blocks and performs ternary parti-
tioning by a globally selected pivot. When all items in a block are classified as <,
= or >, then the block is added to the corresponding output set S<, S=, or S>.
This continues as long as unpartitioned blocks are available. If no more input
blocks are available, an extra empty memory block is allocated and a second
phase starts. The second partitioning phase ends with fully classified blocks,
which might be only partially filled. Per fully parallel partitioning step there
can be at most 3p′ partially filled blocks. The output sets S<, S=, and S> are
processed recursively with threads divided as evenly among them as possible.
The cached characters are updated only for the S= set.

In our implementation we use atomic compare-and-swap operations for block-
wise processing of the initial string pointer array and Intel TBB’s lock-free queue
for sets of blocks, both as output sets and input sets for recursive steps. When a
partition reaches the threshold for sequential processing, then a continuous array
of string pointers plus cache characters is allocated and the block set is copied
into it. On this continuous array, the usual ternary partitioning scheme of mul-
tikey quicksort is applied sequentially. Like in the other parallelized algorithms,
we use dynamic load balancing and free the bottom level when re-balancing is
required. We empirically determined B = 128 Ki as a good block size.

3.4 Burstsort and LCP-Mergesort

Burstsort is one of the fastest string sorting algorithms and cache-efficient for
many inputs, but it looks difficult to parallelize. Keeping a common burst trie
would require prohibitively many synchronized operations, while building inde-
pendent burst tries on each PE would lead to the question how to merge multiple
tries of different structure.
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One would like to generalize LCP-mergesort to a parallelp-way LCP-aware merg-
ing algorithm. This looks promising in general but we leave this for future work
since LCP-mergesort is not really the best sequential algorithm in our experiments.

4 Experimental Results

We implemented parallel S5, multikey quicksort and radixsort in C++ and com-
pare them with Akiba’s radix sort [1]. We also integrated many sequential imple-
mentations into our test framework, and compiled all programs using gcc 4.6.3
with optimizations -O3 -march=native. In our report [3] we discuss the perfor-
mance of sequential string sorters. Our implementations and test framework are
available from http://tbingmann.de/2013/parallel-string-sorting.

Experimental results we report in this paper stem from two platforms. The
larger machine, IntelE5, has four 8-core Intel Xeon E5-4640 processors contain-
ing a total of 32 cores and supporting p = 64 hardware threads. The second
platform is a consumer-grade Intel i7 920 with four cores and p = 8 hardware
threads. Turbo-mode was disabled on IntelE5. Our technical report [3] contains
further details of these machines and experimental results from three additional
platforms. We selected the following datasets, all with 8-bit alphabets. More
characteristics of these instances are shown in Table 1.

URLs contains all URLs on a set of web pages which were crawled breadth-
first from the authors’ institute website. They include the protocol name.

Random from [16] are strings of length [0, 20) over the ASCII alphabet
[33, 127), with both lengths and characters chosen uniform at random.

GOV2 is a TREC test collection consisting of 25 million HTML pages, PDF
and Word documents retrieved from websites under the .gov top-level domain.
We consider the whole concatenated corpus for line-based string sorting.

Wikipedia is an XML dump of the most recent version of all pages in the
English Wikipedia, which was obtained from http://dumps.wikimedia.org/;
our dump is dated enwiki-20120601. Since the XML data is not line-based, we
perform suffix sorting on this input.

We also include the three largest inputs Ranjan Sinha [16] tested burstsort
on: a set of URLs excluding the protocol name, a sequence of genomic strings of
length 9 over a DNA alphabet, and a list of non-duplicate English words called
NoDup. The “largest” among these is NoDup with only 382 MiB, which is why
we consider these inputs more as reference datasets than as our target.

The test framework sets up a separate run environment for each test run. The
program’s memory is locked into RAM, and to isolate heap fragmentation, it
was very important to fork() a child process for each run. We use the largest
prefix [0, 2d) of our inputs which can be processed with the available RAM. We
determined tm = 64 Ki and ti = 64 as good thresholds to switch sub-algorithms.

Figure 2 shows a selection of the detailed parallel measurements from our
report [3]. For large instances we show results on IntelE5 (median of 1–3 repeti-
tions) and for small instances on Inteli7 (of ten repetitions). The plots show the
speedup of our implementations and Akiba’s radix sort over the best sequential
algorithm [3]. We included pS5-Unroll, which interleaves three unrolled descents

http://tbingmann.de/2013/parallel-string-sorting
http://dumps.wikimedia.org/
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Table 1. Characteristics of the selected input instances

Name n N D
N

(D) σ avg. |s|
URLs 1.11G 70.7Gi 93.5% 84 68.4
Random ∞ ∞ − 94 10.5
GOV2 11.3G 425Gi 84.7% 255 40.3
Wikipedia 83.3G 1

2
n(n+1) (79.56 T) 213 1

2
(n+1)

Sinha URLs 10M 304Mi 97.5% 114 31.9
Sinha DNA 31.6M 302Mi 100% 4 10.0
Sinha NoDup 31.6M 382Mi 73.4% 62 12.7

of the search tree, pS5-Equal, which unrolls a single descent testing equality at
each node, our parallel multikey quicksort (pMKQS), and radix sort with 8-bit
and 16-bit fully parallel steps. On all platforms, our parallel implementations
yield good speedups, limited by memory bandwidth, not processing power. On
IntelE5 for all four test instances, pMKQS is fastest for small numbers of threads.
But for higher numbers, pS5 becomes more efficient than pMKQS, because it
utilizes memory bandwidth better. On all instances, except Random, pS5 yields
the highest speedup for both the number of physical cores and hardware threads.
On Random, our 16-bit parallel radix sort achieves a slightly higher speedup.
Akiba’s radix sort does not parallelize recursive sorting steps (only the top-level
is parallelized) and only performs simple load balancing. This can be seen most
pronounced on URLs and GOV2. On Inteli7, pS5 is consistently faster than
pMKQS for Sinha’s smaller datasets, achieving speedups of 3.8–4.5, which is
higher than the three memory channels on this platform. On IntelE5, the high-
est speedup of 19.2 is gained with pS5 for suffix sorting Wikipedia, again higher
than the 4 × 4 memory channels. For all test instances, except URLs, the fully
parallel sub-algorithm of pS5 was run only 1–4 times, thus most of the speedup
is gained in the sequential S5 steps. The pS5-Equal variant handles URL in-
stances better, as many equal matches occur here. However, for all other inputs,
interleaving tree descents fares better. Overall, pS5-Unroll is currently the best
parallel string sorting implementation on these platforms.

5 Conclusions and Future Work

We have demonstrated that string sorting can be parallelized successfully on
modern multi-core shared memory machines. In particular, our new string sam-
ple sort algorithm combines favorable features of some of the best sequential
algorithms – robust multiway divide-and-conquer from burstsort, efficient data
distribution from radix sort, asymptotic guarantees similar to multikey quick-
sort, and word parallelism from cached multikey quicksort.

Implementing some of the refinements discussed in our report [3] are likely to
yield further improvements for pS5. To improve scalability on large machines,
we may also have to look at NUMA (non uniform memory access) effects more
explicitly. Developing a parallel multiway LCP-aware mergesort might then be-
come interesting.
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Abstract. This paper tackles the well known graph searching prob-
lem, where a team of searchers aims at capturing an intruder in a net-
work, modeled as a graph. All variants of this problem assume that any
node can be simultaneously occupied by several searchers. This assump-
tion may be unrealistic, e.g., in the case of searchers modeling physical
searchers, or may require each individual node to provide additional re-
sources, e.g., in the case of searchers modeling software agents. We thus
investigate exclusive graph searching, in which no two or more searchers
can occupy the same node at the same time, and, as for the classical vari-
ants of graph searching, we study the minimum number of searchers re-
quired to capture the intruder. This number is called the exclusive search
number of the considered graph. Exclusive graph searching appears to
be considerably more complex than classical graph searching, for at least
two reasons: (1) it does not satisfy the monotonicity property, and (2) it
is not closed under minor. Nevertheless, we design a polynomial-time al-
gorithm which, given any tree T , computes the exclusive search number
of T . Moreover, for any integer k, we provide a characterization of the
trees T with exclusive search number at most k. This characterization
allows us to describe a special type of exclusive search strategies, that
can be executed in a distributed environment, i.e., in a framework in
which the searchers are limited to cooperate in a distributed manner.

1 Introduction

Graph Searching was first introduced by Breisch [9, 10] in the context of speleol-
ogy, for solving the problem of rescuing a lost speleologist in a network of caves.
Alternatively, graph searching can be defined as a particular type of cops-and-
robber game, as follows. Given a graph G, modeling any kind of network, design
a strategy for a team of searchers moving in G resulting in capturing an intruder.
There are no limitations on the capabilities of the intruder, who may be arbi-
trary fast, be aware of the whole structure of the network, and be perpetually
aware of the current positions of the searchers. The objective is to compute the
minimum number of searchers required to capture the intruder in G.

To be more formal regarding the behavior of the intruder, it is more convenient
to rephrase the problem in terms of clearing a network of pipes contaminated by
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some gas [22]. In this framework, a team of searchers aims at clearing the edges
of a graph, which are initially contaminated. Searchers stand on the nodes of the
graph, and can slide along its edges. Moreover, a searcher can be removed from
one node and then placed to any other node, i.e., a searcher can “jump” from node
to another. Sliding of a searcher along an edge, as well as positioning one searcher
at each extremity of an edge, results in clearing that edge. Nevertheless, if there
is a path free of searchers between a clear edge and a contaminated edge, then the
former is instantaneously recontaminated. Thus, to actually keep an edge clear,
searchers must occupy appropriate nodes for avoiding recontamination to occur.

Informally, a search strategy is a sequence of movements executed by the
searchers, resulting in all edges being eventually clear. The main question tack-
led in the context of graph searching is, given a graph G, compute a search
strategy minimizing the number of searchers required for clearing G. This num-
ber, denoted by s(G), is called the search number of the graph G. For instance,
one searcher is sufficient to clear a line, while two searchers are necessary in a
ring: the search number of any line is 1, while the search number of any ring is 2.

The above variant of graph searching is actually called mixed-search [4]. Other
classical variants of graph searching are node-search [3], edge-search [21, 22], con-
nected-search [2], etc. All these variants suffer from two serious limitations as far
as practical applications are concerned.

– First, they all assume that any node can be simultaneously occupied by sev-
eral searchers. This assumption may be unrealistic in several contexts. Typically,
placing several searchers at the same node may simply be impossible in a physical
environment in which, e.g., the searchers are modeling physical robots moving
in a network of pipes. In the case of software agents deployed in a computer
network, maintaining several searchers at the same node may consume local re-
sources (e.g., memory, computation cycles, etc.). We investigate exclusive graph
searching, i.e., graph searching bounded to satisfy the exclusivity constraint stat-
ing that no two or more searchers can occupy the same node at the same time.
– Second, most variants of graph searching also suffer from another unrealistic
assumption: searcher are enabled to “jump” from one node of the graph, to
another, potentially far away, node (e.g., see the classical mixed-search, defined
above). We restrict ourselves to the more realistic internal search strategies [2],
in which searchers are limited to move along the edges of the graph, that is,
restricted to satisfy the internality constraint.

To sum up, we define exclusive-search as mixed-search with the additional ex-
clusivity and internality constraints. As for all classical variants of graph search-
ing, we study the minimum number of searchers required to clear all edges of a
graph G. This number is called the exclusive search number, denoted by xs(G).

We show that exclusive graph searching behaves very differently from clas-
sical graph searching, for at least two reasons. First, it does not satisfy the
monotonicity property That is, there are graphs (even trees) in which every ex-
clusive search strategy using the minimum number of searchers requires to let
recontamination occurring at some step of the strategy. Second, exclusive graph
searching is not closed under minor taking (not even under subgraph). That is,
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there are graphs G and H such that H is a subgraph of G, and xs(H) > xs(G).
The absence of these two properties (which will be formally established in the
paper) makes exclusive-search considerably different from classical search, and
its analysis requires introducing new techniques.

Our Results. First, in Sec. 2, we formally define exclusive graph searching and
present basic properties for general graphs. Motivated by certain positive results
for trees and inspired by the pioneering work of Parson [22] and Megiddo et
al. [21], we are then essentially focussing on trees. We observe that the exclusive
search number of a graph can differ exponentially from the values of classical
search numbers: in a tree, the former can be linear in the number of nodes n,
while all classical search numbers of trees are at most O(log n). Our main result
(Sec. 3) is a polynomial-time algorithm which, given any tree T , computes the
exclusive search number xs(T ) of T , as well as an exclusive search strategy using
xs(T ) searchers for clearing T . Our algorithm is based on a characterization of
the trees with exclusive search number at most k, for any given k ≤ n.

The above characterization allows us to describe an important type of exclu-
sive search strategies, that can be executed in a distributed environment, i.e., in
a framework in which the searchers are restricted to cooperate in a distributed
manner (Sec. 4). More specifically, we consider the classical (discrete) CORDA1

(a.k.a. Look-Compute-Move) model [16, 24] for autonomous searchers moving in
a network. We prove that, for any anonymous asymmetric tree T , as well as for
any tree whose nodes are labeled with unique IDs, and for any n ≥ k ≥ xs(T ),
there exists a distributed protocol enabling k searchers to clear T .

Hence, an interesting outcome of this paper is that the minimum number of
searchers needed to clear an (anonymous asymmetric or uniquely labeled) tree
in a distributed manner is not larger than the one required when the searchers
are coordinated and scheduled by a central entity. This is particularly surpris-
ing, especially when having in mind that, in the distributed setting, symmetry
breaking becomes much more harder (even in an asymmetric network), and the
scheduling of the searchers (i.e., which searchers are activated at any point in
time) is under the full control of an adversary. Due to the lack of space, most of
the proofs are omitted or sketched. All complete proofs can be found in [6].

Related Work. Graph searching has mainly been studied in the centralized
setting for its relationship with the treewidth and pathwidth of graphs [4, 18]. The
problem of computing the search number of a graph is NP-hard [21]. However,
this problem is polynomial in various graph classes [17, 19, 26]. In particular, it
has been widely studied in the class of trees [14, 21–23, 25].

An important property of mixed-graph searching is the monotonicity prop-
erty. A strategy is monotone if no edges are recontaminated once they have been
cleared. For any graph G, there is an optimal winning monotone (mixed-search)
strategy [4]. This enables to prove that the number of steps of an optimal strat-
egy is polynomially bounded by the number of edges. Hence, the problem to
decide the mixed-search number of a graph belongs to NP. Instead, connected

1 COordination of Robots in a Distributed and Asynchronous environment.
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graph searching, in which the set of clear edges must always induce a connected
subgraph, is not monotone in general [27] and it is not known if connected search
is in NP. Connected search is monotone in trees [2]. The connectivity constraint
may increase the search number of any graph by a factor up to 2 [13].

Graph searching has been intensively studied in various distributed settings
(see, e.g., [7, 11, 15, 20]). Graph searching in the CORDA model has recently been
studied for rings [12]. The exclusivity constraint has been already considered in
the context of various coordination tasks for mobile entities in enhanced versions
of the CORDA model (see, e.g., [1, 8, 12]). In the context of graph searching,
the exclusivity constraint has been considered for the first time in our brief
announcement [5]. Here, we present and improve some results announced in [5].

2 Exclusive Search

In this section, we provide the formal definition of exclusive graph searching,
and present some basic general properties.

Given a connected graph G, an exclusive search strategy in G, using k ≤ n
searchers consists in (1) placing the k searchers at k different nodes of G, and
(2) performing a sequence of moves. A move consists in sliding one searcher from
one extremity u of an edge e = {u, v} to its other extremity v. Such a move can
be performed only if v is free of searchers. That is, exclusive-search limits the
strategy to place at most 1 searcher at each node, at any point in time. The
edges of graph G are supposed to be initially contaminated. An edge becomes
clear whenever either a searcher slides along it, or one searcher is placed at each
of its extremities. An edge becomes recontaminated whenever there is a path
free of searchers from that edge to a contaminated edge. A search strategy is
winning if its execution results in all edges of the graph G being simultaneously
clear. The exclusive-search number of G, denoted by xs(G) is the smallest k for
which there exists a winning search strategy in G.

Now, we state and explain the main differences between exclusive search and
all classical variants of graph searching. These differences are mainly due to the
combination of the two restrictions introduced in exclusive search: two searchers
cannot occupy the same node (exclusivity) and a searcher cannot “jump” (in-
ternality). Intuitively, the difficulty occurs when a searcher has to go from one
node u to a far away node v, and all paths from u to v contain an occupied node.

Consider a simple example of a star with central node c and n leaves. In the
classical graph searching, one searcher can occupy c, while a second searcher
will sequentially clear all leaves, either by jumping from one leaf to another, or
by sliding from one leaf to another, and therefore occupying several times the
already occupied node c. In exclusive graph searching, such strategies are not
allowed. Intuitively, if a searcher r1 has to cross a node v that is already occupied
by another searcher r2, the latter should step aside for letting r1 pass. However,
r2 may occupy v to preserve the graph from recontamination, and moving away
from v could lead to recontaminate the whole graph. To avoid this, it may be
necessary to use extra searchers (compared to the classical graph searching)
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that will guard several neighbors of v to prevent from recontamination when
r2 gives way to r1. It follows that, as opposed to all classical search numbers,
which differ by at most some constant multiplicative factor, the exclusive search
number may be arbitrary large compared to the mixed-search number, even in
trees. For instance, it is easy to check that xs(Sn) = n− 2 for any n-node star
Sn, n ≥ 3. More generally (see [6]):

Claim 1. For any tree T with maximum degree Δ ≥ 2, xs(T ) > Δ− 2 .

This result shows an exponential increase in the number of searchers used
to clear a graph since the mixed-search number of n-node trees is at most
O(log n) [22]. On the positive side, we show that, for any graph G with maximum
degree Δ, s(G) ≤ xs(G) ≤ (Δ − 1)s(G) [6]. To prove it, we consider a classical
strategy S for G using s(G) searchers. To build an exclusive strategy Sex for G,
we mimic S using a team of Δ− 1 searchers to “simulate” each searcher in S.

We now turn our attention to the monotonicity property. Indeed, another im-
portant difference of exclusive search compared to classical graph searching is
that it is not monotone. As explained in the example of a star, when a searcher
needs to cross another one, letting the former searcher pass may lead to recon-
taminate some edges. In spite of that, the goal of the winning strategy is to
prevent an “uncontrolled” recontamination. In [6], we prove that:

Claim 2. Exclusive graph searching is not monotone, even in trees.

Last, but not least, contrary to classical graph searching, exclusive graph
searching is not closed under minor. Indeed, even taking a subgraph can decrease
the connectivity which, surprisingly, may not help the searchers (due to the
exclusivity constraint). That is, there exist a graph G and a subgraph H of
G such that xs(H) > xs(G) [6]. Nevertheless, exclusive-search is closed under
subgraph in trees (see [6]):

Lemma 1. For any tree T and any subtree T ′ of T , xs(T ′) ≤ xs(T ).

Contrary to classical graph searching, the proof of this result is not trivial be-
cause of the exclusivity property. To prove it, we have to transform an exclusive
strategy S for T into a strategy S ′ for T ′ using the same number of searchers, and
without violating the exclusivity property. The fact that S may be not mono-
tone (i.e., some recontamination may occur during S) makes the proof technical,
because one has to “control” the recontamination of T ′ in S ′.

3 Exclusive Search in Trees

This section is devoted to our main result. We present a polynomial-time algo-
rithm which, given any tree T , computes the exclusive search number xs(T ) of
T and an exclusive search strategy enabling xs(T ) searchers to clear T . Our al-
gorithm is based on a characterization of the trees with exclusive search number
at most k, for any given k. Given a node v in a tree T , a connected component
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of T \ {v} is called a branch at v. Our characterization establishes a relationship
between the exclusive-search number of T and the exclusive-search number of
some of the branches adjacent to any node in T . More precisely, we prove that:

Theorem 1. Let k ≥ 1. For any tree T , xs(T ) ≤ k if and only if, for any
node v, the following three properties hold:

1. v has degree at most k + 1;

2. for any branch B at v, xs(B) ≤ k;

3. for any even i > 1, at most i branches B at v have xs(B) ≥ k − i/2 + 1.

To prove the theorem, we first prove (Sec. 3.1) that, for any tree T and k ≥ 1,
xs(T ) ≤ k, only if the conditions of Th. 1 are satisfied. Then, we show that any
tree satisfying these conditions can be decomposed in a particular way, depending
on k (Fig. 1). Next, in Sec. 3.2, we describe an exclusive search strategy using
at most k searchers, that clears any tree decomposed in such a way.

From the characterization of Th. 1, it follows that xs(T ) can be computed by
dynamic programming on T . Moreover, such an algorithm computes the corre-
sponding decomposition (see Section 3.2). Hence, the following result holds:

Theorem 2. There exists a polynomial-time algorithm that computes xs(T ) and
a corresponding exclusive search strategy for any tree T .

We now prove Theorem 1 using the following notations. For a node v ∈ T , we
denote by N(v) the set of the neighbors of v. A configuration is a set of distinct
nodes C ⊆ V (T ) that describes the positions of |C| searchers in T .

3.1 Necessary Conditions for Theorem 1

We first show that the conditions of Theorem 1 are necessary. The fact that the
first property is necessary directly follows from Claim 1. The second property is
necessary by Lemma 1.

For proving that the third property is necessary, we first have to prove that,
for any tree T , any branch B of T , and any exclusive strategy for T , there is a
step of the strategy where at least xs(B) searchers are occupying the nodes of
B (see [6]). While such a result is trivial in classical graph searching, it is not
the case anymore subject to exclusivity and internality properties. In particular,
in classical graph searching, the result is true for any subtree (not necessarily a
branch) while it is not the case for the exclusive variant (see [6]). Indeed, let us
consider a sub-tree T ′ of tree T . If T ′ is given independently of T , the movements
of searchers are more constrained because the searchers have less “space” in T ′.
On the contrary, when T ′ is inside the tree T , the searchers can use the “extra
space” provides by T to clear T ′.

Lemma 2. Let k ≥ 1. For any tree T , if there exist v ∈ V (T ) and an even
integer i > 1 such that there is a set B = {Tj : xs(Tj) ≥ k− i/2 + 1} of branches
at v and |B| > i, then xs(T ) > k.
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Proof. Let S be any exclusive strategy that clears T . By the remark above, for
any j ≤ |B|, there is a step of the strategy S such that at least k − i/2 + 1
searchers occupy simultaneously vertices in Tj . Let sj be the last such step of S
that occurs in Tj . W.l.o.g. assume that sj−1 < sj , for any 1 < j ≤ |B|, and we
may assume that, before step sj, Tj is not completely clear (this means that S
uses k− i/2 + 1 searchers in Tj only if it is really needed). Then, at step si/2+1,
at least k − i/2 + 1 searchers are in Ti/2+1, some vertices have been cleared in
Tj for any j ≤ i/2, and Tj cannot become fully contaminated anymore until
the end of the strategy (otherwise there would be another step after sj where
k − i/2 + 1 searchers are in Tj).

For the sake of contradiction, let us assume that S uses at most k searchers.
Then, at step si/2+1, at least k− i/2 + 1 searchers are in Ti/2+1 and there are at
most i/2− 1 searchers outside Ti/2+1. That is, at that moment, there is at least
one branch X ∈ {Ti/2+2, . . . , T|B|} (|B| > i) at v with still contaminated edges,
and at least one branch Y ∈ {T1, . . . , Ti/2} at v with (at least) some clear edges
that must not be recontaminated and no searchers occupy nodes in both these
branches. If there is no searcher at v, Y is fully recontaminated - a contradiction.

Otherwise, there is a searcher in v. However, since there is at least one non
cleared yet branch without any searcher in it, it has to be cleared by moving
there at least one searcher. For that, the searcher from v have to move. However,
if this searcher moves (no matter where), there will be still at most i/2 − 1
searchers outside Ti/2+1 and hence, at least one cleared and one uncleared branch
without any searcher, and no searcher in v. The cleared branch will be fully
recontaminated - a contradiction. �


Decomposition. Figure 1 presents a particular structure that we prove to exist
for any tree T satisfying the properties of Theorem 1, for k ≥ 1. Specifically,
following [21], we prove that there is a unique path A = (u1, · · · , up) in T called
avenue such that p ≥ 1 and, for any component T ′ of T \A, there is an exclusive
strategy that clears T ′ using < k searchers, i.e., xs(T ′) < k (bold line in Fig. 1).

In the next section, we describe a strategy, called ExclusiveClear , based on
this decomposition and allowing k searchers to clear T in an exclusive way. The
strategy consists in clearing the subtrees of T \ A, starting with the subtrees
that are adjacent to u1, then the ones adjacent to u2 and so on, finishing in
up. To clear a subtree T ′ of T \ A, we proceed in a recursive way. That is, we
recursively use ExclusiveClear on T ′ using k′ < k searchers. The first difficulty
is to ensure that no subtrees that have been cleared are recontaminated. For this
purpose, when clearing T ′, the remaining k−k′ searchers that are not needed to
clear it are used to prevent recontamination. The second difficulty is to ensure
exclusivity: while these k− k′ searchers are protecting from recontamination, k′

searchers should be able to enter T ′ to clear it.

3.2 Exclusive Search Strategy to Clear Trees

Let k ≥ 1 and let T be any tree satisfying Theorem 1 and thus, given with
the decomposition of Figure 1. In this section, we informally describe a search
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Fig. 1. A tree T with avenue A = (u1, · · · , up). For any subtree X of T \A, xs(X) < k.

strategy that clears T using k searchers. By definition, the following strategy
ensures that all moves are performed along paths free of searchers, satisfying
the exclusivity and internally properties. To prove its correctness, it is sufficient
to show that it uses at most k searchers (in particular, when applying the sub-
procedures bring searchers or transfer defined below). The formal proof mainly
relies on the properties of the decomposition. The formal description of the
strategy and the complete correctness proof are provided in [6].

Strategy ExclusiveClear . For ease of description, let us assume that |V (R1)| ≥
k − 1 (see Fig. 1). Let I be a subset of u1 and k − 1 distinct nodes in R1. The
strategy starts by placing the searchers at the nodes of I. By definition of A,
xs(R1) ≤ k− 1. Then, the k− 1 searchers in R1 apply ExclusiveClear (R1) (such
a strategy exists by induction and by the definition of A). It is important to
mention that the searcher at u1 preserves R1 from being recontaminated by the
rest of T . After this sequence of moves, all edges in E(R1∪{(x, u1)}) are cleared.

Then, we aim at clearing the remaining subtrees of T \A that are adjacent to
u1 ( T 1

1 , · · · , T 1
di

, in Fig. 1). Moreover, after clearing such a subtree, we need to
preserve it from recontamination. Notice that, during the clearing of a subtree,
u1 will always be occupied. However, to ensure that exclusivity property is satis-
fied when searchers go from one subtree to another (during the bring searchers
procedure explained later), we need other nodes being occupied.

In order to use as few searchers as possible, the cleaning of the subtrees
adjacent to u1 must be done in a specific order. The order used to clear the
subtrees is built as follows. Each subtree is considered one after the other, in the
non-increasing order of xs. In this order, we assign the first subtree to a set S1,
the second one to a set S2, the third one to S1, the fourth one to S2, and we
continue to divide the subtrees until each of them is assigned to one of the two
sets. Note that the formula given in Figure 1 respects this order. The resulting
S1 = {T 1

1 , . . . , T
1
�di/2�} and S2 = {T 1

�di/2+1�, . . . , T
1
di
}.
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The clearing of the subtrees is then divided into two phases. The subtrees in
S1 are cleared first, in the non-increasing order of their xs. Then, the subtrees in
S2 are cleared in the non-decreasing order of their xs. Each time that a subtree
T 1
j ∈ S1 has been cleared, one searcher is left on its root v1j (its node adjacent to

u1). That is, once a new subtree is cleared, we somehow lose a searcher to clear
the next one. This is balanced by the fact that the number of searchers needed
to clear the next subtree decrease, according to the order of clearing established
above, and provided by the properties of T (Th. 1).

After clearing the subtrees in S1, there are searchers currently “blocked” in
the roots of the cleared subtrees. In order to “re-use” these searchers to clear the
remaining subtrees, the strategy changes. Now, the roots of the contaminated
subtrees will be occupied to prevent recontamination of the cleared subtrees.
Procedure transfer (explained later) is used to occupy these nodes, ensuring no
recontamination of the subtrees and satisfying the exclusivity property. After
transfer , the searchers at the roots of the cleared subtrees become free, i.e., it is
possible now to use them to clear the next subtrees.

Then, the subtrees in S2 have to be cleared in the non-decreasing order of
their xs. Each time that a subtree T 1

j ∈ S2 has been cleared, the searcher on

its root v1j becomes free. That is, we somehow gain a searcher to clear the next
subtree, whose search number may increase, according to the properties of T .

Once all subtrees of T \A adjacent to u1 are cleared, the searcher at u1 goes
to u2 (unless it is already occupied). Now, all the searchers in R2 (see Fig. 1)
became free. Then, a similar strategy is applied for the subtrees of T \A adjacent
to u2, and so on, until all the subtrees adjacent to up are cleared.

We now describe more precisely two sub-procedures that are used to imple-
ment the strategy we have sketched above.

Procedure bring searchers . It remains to detail how the searchers, once a sub-
tree has been cleared, go to the next subtree, satisfying exclusivity and pre-
venting recontamination. To do so, let 1 ≤ i ≤ p and let us consider the step
of the strategy when the branch Ri (see Fig. 1) and all subtrees T i

1, · · · , T i
j0−1

(1 < j0 ≤ di) are cleared (the grey subtrees in Fig. 2(a)). There are two cases to
be considered: j0 ≤ �di

2 � or otherwise.

Assume first that j0 ≤ �di

2 �. As explained before, at this step, the nodes
in {ui, v

i
1, · · · , vij0−1} are occupied, and all other searchers are free and occupy

nodes of Ri and T i
j , for j < j0. It is ensured that also ui−1 (if i = 1, set ui−1 = x)

will be occupied. The process bring searchers(i, j0) is applied to bring xs(T i
j0)

searchers into T i
j0

. The searchers are brought one by one, from the clear part to

T i
j0

, without recontamination and satisfying the exclusivity property.
Fig. 2(a) depicts one phase of this process. We prove that, before each phase

(but the last one, which is slightly different), there is a free searcher at some
node b, either in Ri \ui−1 or in T i

j \vij (for some j < j0). First, the searcher at ui

goes to the furthest unoccupied node in T i
j0

(dotted line 1 in Fig. 2(a)). Second,

the searcher at vij (or at ui−1) goes to ui (dotted line 2 in Fig. 2(a)). Finally, the

searcher at b goes to vij (or to ui−1) (dotted line 3 in Fig. 2(a)). Clearly, doing
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Fig. 2. Black nodes are occupied. Grey subtrees are cleared. Steps are depicted by
dotted arrows.

so, no recontamination occurs in the cleared subtrees (but in ui) and exclusivity
is satisfied. We apply similar techniques for j0 > �di

2 �.
Procedure transfer . Let 1 ≤ i ≤ p and j0 = �di/2�. Just after clearing T i

j0
,

we reach a configuration where the nodes in {ui, v
i
1, · · · , vij0} are occupied, T i

j0

is clear, and all other searchers are at nodes of Ri or T i
j (j ≤ j0). First, the

searcher at ui goes to ui−1 unless it is already occupied.
As explained before, the nodes in {vij0+1, · · · , vidi

} must now be occupied be-

fore clearing any subtree T i
j , for j > j0. This is the role of sub-process transfer(i).

The searchers are brought one by one, from the clear part to {vij0+1, · · · , vidi
},

without recontamination and satisfying exclusivity.
Fig. 2(b) depicts one phase of this process. We prove that, before each phase,

there is a free searcher at some node b either in Ri \ {ui−1} or in T i
j \ {vij} (for

some j ≤ j0). First, the searcher at vij (if b ∈ V (T i
j )) or at ui−1 (otherwise) goes

to ui (unless ui is occupied) (dotted line 1 in Fig. 2(b)). Second, the searcher
at b goes to vij (or ui−1) (dotted line 2 in Fig. 2(b)). Finally, the searcher at

ui goes to an unoccupied node in {vij0+1, · · · , vidi
} (dotted line 3 in Fig. 2(b)).

Once all these nodes are occupied, the searcher at ui−1 goes back to ui. Clearly,
doing so, exclusivity is satisfied and no recontamination occurs in the cleared
subtrees. This, in particular, since either all the nodes {ui−1, v

i
1, · · · , vij0−1}, or

ui, are always occupied during transfer(i).

4 Application to Distributed Graph Searching

In the previous section, we have described the ExclusiveClear strategy using
xs(T ) searchers controlled by central scheduler. In this section, we briefly explain
how this strategy can be adapted, and then used by the autonomous searchers
operating in an asynchronous distributed manner (see [6] for more details).

We consider a version of the classical discrete CORDA model for autonomous
mobile searchers. The searchers operate in asynchronous cycles of Look-Compute-
Move. During its Look action, a searcher (instantaneously) takes a snapshot of
the network map together with the relative positions of all searchers. Based on
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this information, during the Compute action, it computes (deterministically)
the next neighboring node where to move. During the Move action, the searcher
(instantaneously) changes its position according to its computation. There is a
finite but unbounded delay between any two actions. Moreover, the searchers are
anonymous, uniform (i.e., each searcher executes the same algorithm), oblivious
(i.e., memoryless to observations and to computations performed in previous
cycles) and have no sense of direction.

Let us consider an asymmetric tree, i.e., a tree with no non-trivial automor-
phisms. We show that in such a tree, each searcher can assign distinct labels
to the nodes such that each node of the tree is always given the same label by
all searchers during any Compute action [6]. Hence, in CORDA, an anonymous
asymmetric tree can be seen as uniquely labeled.

To clear a tree T in the distributed setting, at least xs(T ) searchers are
placed in the specified different nodes of T , forming an initial configuration
I. At each Compute action, a searcher computes a winning strategy S, starting
from I, and using xs(T ) searchers. Given any achievable configuration, S de-
scribes the required move (of one of the searchers). S follows the same structure
as ExclusiveClear , inductively clearing the subtrees of T \A, where A is the av-
enue. However, in contrast with ExclusiveClear , the main difficulty is to ensure
that all configurations in S are pairwise distinct. Otherwise, since searchers are
oblivious, they could enter in a loop of configurations, and the clearing would
fail. In particular, an attention should be paid to the case where searchers just
have cleared a subtree of T \A, and must go back towards A to clear the next sub-
tree. Moreover, in ExclusiveClear , it may happen that a searcher slides back and
forth along the same edge, while no other searchers have moved. This must be
avoided in S. The case of a labeled line subtree of T \A is particularly tricky: an
extra searcher is required to clear it compared to ExclusiveClear . Nevertheless,
we succeed to use only xs(T ) searchers, even in the distributed case.

Theorem 3. For any anonymous asymmetric or any uniquely labeled n-node
tree T , and for any integer k with xs(T ) ≤ k ≤ n, there exists a distributed
protocol in the discrete CORDA model enabling k searchers to clear T .
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Abstract. We prove that in an n-vertex graph, induced chordal and
interval subgraphs with the maximum number of vertices can be found
in time O(2λn) for some λ < 1. These are the first algorithms breaking
the trivial 2nnO(1) bound of the brute-force search for these problems.

1 Introduction

The area of exact exponential algorithms is about solving intractable problems
faster than the trivial exhaustive search, though still in exponential time [4]. In
this paper, we give algorithms computing maximum induced chordal and interval
subgraphs in a graph faster than the trivial brute-force search. These problems
are interesting cases of a more general the Maximum Induced Subgraph with

Property Π problem, where for a given graph G and hereditary property Π
one asks for a maximum induced subgraph with property Π .

By the result of Lewis and Yannakakis [11], the problem is NP-complete for ev-
ery non-trivial property Π . Different variants of property Π like being edgeless,
planar, outerplanar, bipartite, complete bipartite, acyclic, degree-constrained,
chordal etc., were studied in the literature. From the point of view of exact
algorithms, as far as property Π can be tested in polynomial time, a trivial
brute-force search trying all possible vertex subsets of G solves Maximum In-

duced Subgraph with Property Π in time O∗(2n) on an n-vertex graph
G.1 However, many algorithms for Maximum Induced Subgraph with Prop-

erty Π which are faster than O∗(2n) can be found in the literature for explicit
properties Π . Notable examples are Π being the property of being edgeless [14]
(equivalent to Maximum Independent Set), acyclic [3] (equivalent to Maxi-

mum Induced Forest), regular [9], 2-colorable [13], planar [5], degenerate [12],
cluster graph [2], or biclique [7]. A longstanding open question in the area is if
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Maximum Induced Subgraph with Property Π can be solved faster than
the trivial O∗(2n) for every hereditary property Π testable in polynomial time.

Since every hereditary class of graphs with property Π can be characterized
by a (not necessarily finite) set of forbidden induced subgraphs, there is an
equivalent formulation of the Maximum Induced Subgraph with Property

Π problem. For a set of graphs F , a graph G is called F -free if it contains
no graph from F as an induced subgraph. The Maximum F-free Subgraph

problem is to find a maximum induced F -free subgraph of G. Clearly, if F
is the set of forbidden induced subgraphs for Π , then the Maximum Induced

Subgraph with Property Π problem and the Maximum F-free Subgraph

problem are equivalent. It is well known that when the set F is finite, then
Maximum F-free Subgraph can be solved in time O∗(2λn), where λ < 1.
This can be seen by applying a simple branching arguments, see Proposition 2,
or by reducing to the d-Hitting Set problem, which is solvable faster than
O∗(2n) for every fixed d [2]. Examples of F -free classes of graphs for some finite
set F are split graphs, cographs, line graphs or trivially perfect graphs; see the
book [1] for more information on these graph classes.

It is however completely unclear if anything faster than the trivial brute-
force is possible in the case when F is an infinite set, even when F consists
of very simple graphs. One of the most known and well studied classes of F -
free graphs is the class of chordal graphs, where F is the set of all cycles of
length more than three. Chordal graphs form a fundamental class of graphs
which properties are well understood. Another fundamental class of graphs is
the class of interval graphs. We refer to the book of Golumbic for an overview
of properties and applications of chordal and interval graphs [8]. In spite of
nice structural properties of these graphs, no exact algorithms for Maximum

Induced Chordal Subgraph and Maximum Induced Interval Subgraph

problems better than the trivial O∗(2n) were known prior to our work.

Our Results. We define four properties of graph classes and give an algorithm
that for every graph class Π satisfying these properties and for a given n-vertex
graph G, returns a maximum induced subgraph of G belonging to Π in time
O∗(2λn) for some λ < 1, where λ depends only on the class Π . Because classes
of chordal and interval graphs satisfy the required properties, as an immediate
corollary of our algorithm we obtain that Maximum Induced Chordal Sub-

graph and Maximum Induced Interval Subgraph can be solved in time
O∗(2λn) for some λ < 1. The main intention of our work was to break the trivial
2n barrier and we did not try to optimize the constant in the exponent. There
are several places where the running time of our algorithm can be improved
by the cost of more involved arguments and intensive case analyses. We tried to
keep the description of our algorithm as simple as possible, leaving only the ideas
crucial for breaking the barrier, and postponing more complicated improvements
till the full version of the paper. Moreover, pipelined with simple branching ar-
guments, our algorithms can be used to obtain time O∗(2λn) algorithms for some
λ < 1 for a variety of Maximum Induced Subgraph with Property Π prob-
lems, where property Π is to be chordal/interval graph containing no induced
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subgraph from a finite forbidden set of graphs. Examples of such graph classes
are proper interval graphs, Ptolemaic graphs, block graphs, and proper circular-
arc graphs; see [1] for definitions and discussions of these graph classes.

2 Preliminaries

In the paper we use standard graph notation. A graph class Π is simply a
family of graphs. We sometimes use terms Π-graph or Π-subgraph to express
membership in Π . An induced subgraph of a graph is a subset of vertices, with
all the edges between those vertices that are present in the larger graph. We say
that a graph class is hereditary if Π is closed under taking induced subgraphs.
Every hereditary graph class can be described by a (possibly infinite) list of
minimum forbidden induced subgraphs FΠ : graph G is in Π if and only if it
does not contain any induced subgraph from FΠ , and for each H ∈ FΠ every
induced subgraph of H , apart from H itself, belongs to Π . The class of graphs
not containing any induced subgraph from a list F will be denoted by F-free
graphs .

Chordal graphs is the class of graphs not containing any induced cycles of
length more than three, that is, chordal graphs are F -free graphs, were the set
F consists of all cycles of length more than three. Chordal graphs are hereditary
and polynomial-time recognizable. Chordal graphs admit many more character-
izations, for example they are exactly graphs admitting a decomposition into a
clique tree. A useful corollary of this fact is the following folklore lemma.

Proposition 1 (Folklore). If H is a chordal graph, then there exists a clique S
in H and a partition of V (H)\S into two subsets X1, X2, such that (i) |X1|, |X2|
≤ 2

3 |V (H)|, and (ii) there is no edge between X1 and X2.

Such a set S is called a 2
3 -balanced clique separator in H . Interval graphs form

a subclass of chordal graphs admitting a decomposition into a clique path instead
of less restrictive clique tree. Interval graphs are also hereditary and polynomial-
time recognizable. Their characterization in terms of minimal forbidden induced
subgraphs was given by Lekkerkerker and Boland [10]. The book of Golumbic [8]
provides a thorough introduction to chordal and interval graphs.

We now describe the classical tools needed for the algorithm. The following
folklore result basically follows from the observation that branching on forbidden
structures of constant size always leads to complexity better than 2n. Due to
space constrains we omit its proof here.

Proposition 2 (Folklore). Let F be a finite set of graphs and let � be the
maximum number of vertices in a graph from F . Let Π be a hereditary graph class
that is polynomial-time recognizable. Assume that there exists an algorithm A
that for a given F-free graph G on n vertices, in O∗(2εn) time finds a maximum
induced Π-subgraph of G, for some ε < 1. Then there exists an algorithm A′ that
for a given graph G on n vertices, finds a maximum induced F-free Π-graph in
G in time O∗(2ε

′n), where ε′ < 1 is a constant depending on ε and �.

We need also the following proposition from [6].
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Proposition 3 ([6]). Let G = (V,E) be a graph. For every v ∈ V , and b, f ≥ 0,
the number of connected vertex subsets B ⊆ V such that (i) v ∈ B, (ii) |B| =
b + 1, and (iii) |N(B)| = f , is at most

(
b+f
b

)
. Moreover, all such subsets can be

enumerated in time O∗(
(
b+f
b

)
).

The last necessary ingredient is the classical idea used by Schroeppel and
Shamir [15] for solving Subset Sum by reducing it to an instance of 2-Table.
In the 2-Table problem, we are given two k × mi matrices Ti, i = 1, 2, and a
vector s ∈ Qk. Columns of each matrix are mi vectors of Qk. The question is,
if there is a column of the first matrix and a column of the second matrix such
that the sum of these two vectors is s. A trivial solution to the 2-Table problem
would be to try all possible pairs of vectors; however, this problem can be solved
more efficiently. We can sort columns of T1 lexicographically in O(km1 logm1)
time, and for every column v of T2 check whether T1 contains a column equal
to s− v in O(k logm1) time using binary search.

Proposition 4. The 2-Table problem can be solved in time O((m1 +m2)k log
m1).

3 Properties of the Graph Class

In this section we gather the required properties of the graph class Π for our
algorithm to be applicable. We consider only hereditary subclasses of chordal
graphs, hence our first property is the following.

Property (1). Π is a hereditary subclass of chordal graphs.

As Π is hereditary, it may be described by a list of vertex-minimal forbidden
induced subgraphs FΠ . We need the following properties of FΠ :

Property (2). All graphs in FΠ are connected, and all of them do not contain
a clique of size ℵ + 1 for some universal constant ℵ.

For chordal graphs FΠ consists of cycles of length at least 4, hence ℵ = 2.
For interval graphs, an inspection of the list of forbidden induced subgraphs
[10], shows that we may take ℵ = 4. In the following, we always treat ℵ as a
universal constant on which all the later constants may depend; moreover, ℵ may
influence the exponents of polynomial factors hidden in the O∗ notation. Let us
remark that connectedness of all the forbidden induced subgraphs is equivalent to
requiring Π to be closed under taking disjoint union. An example of a subclass
of chordal graphs not satisfying this property, is the class of strongly chordal
graphs. The reason for that is that minimal forbidden subgraphs of strongly
chordal graphs can contain a clique of any size, see [1] for more information on
this class of graphs.

Thirdly, we need our graph class to be efficiently recognizable.

Property (3). Π is polynomial-time recognizable.

Chordal graphs and interval graphs have polynomial time recognition algo-
rithms [8]. For our arguments to work we need one more algorithmic property.
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The property that we need can be described intuitively as robustness with re-
spect to clique separators. More precisely, we need the following statement.

Property (4). There exists a polynomial-time algorithm A that takes as an
input a graph G together with a clique S in G. The algorithm answers YES or
NO, such that the following conditions are satisfied:

– If A answers YES on inputs (G1, S1) and (G2, S2) where |S1| = |S2|, then
graph G′, obtained by taking disjoint union of G1 and G2 and identifying
every vertex of S1 with a different vertex of S2 in any manner, belongs to Π .

– If G ∈ Π , then there exists a clique separator S in G such that V (G)\S may
be partitioned into two sets X1, X2 such that (i) |X1|, |X2| ≤ 2

3 |V (G)|, (ii)
there is no edge between X1 and X2, (iii) A answers YES on (G[X1 ∪ S], S)
and on (G[X2 ∪ S], S).

Observe that Property (1) and Proposition 1 already provides us with some
2
3 -balanced clique separator S of G. Shortly speaking, Property (4) requires that
in addition belonging to Π may be tested by looking at G[X1∪S] and G[X2∪S]
independently. For chordal graphs, Property (4) follows from Proposition 1 and
a folklore observation that if S is a clique separator in a graph G, with (X1, X2)
being a partition of V (G) \ S such that there is no edge between X1 and X2,
then G is chordal if and only if G[X1 ∪ S] and G[X2 ∪S] are chordal. Hence, we
may take chordality testing for the algorithm A.

For interval graphs, we take clique path of the graph G and examine the
clique separator S such that there is at most half of vertices before it and at
most half after it. Let X1 be the vertices before S on the clique path, and X2 be
the vertices after S. Clearly, S is then even a 1

2 -balanced clique separator, with
partition (X1, X2) of V (G) \ S. Then it follows that G[X1 ∪ S] and G[X2 ∪ S]
admit clique paths in which S is one of the end bags of the path. On the other
hand, assume that we are given any two graphs G1, G2 with equally sized cliques
S1, S2, such that G1, G2 admit clique paths with S1, S2 as the end bags. Then
we may create a clique path of the graph G′ obtained from the disjoint union
of G1 and G2 and identification of S1 and S2 in any manner, by simply taking
the clique paths for G1 and G2 and identifying the end bags containing S1 and
S2, respectively. Hence, as A we may take an algorithm which for input (G,S)
checks whether G is interval and admits a clique path with S as the end bag.
Such a test may be easily done as follows: we add P4 to G and make one end of
P4 to be adjacent to every vertex of S, thus forcing S to be the end bag, and
run intervality test. Hence, interval graphs also satisfy Property (4).

4 The Algorithm

In this section we prove the main result of the paper, which is the following.

Theorem 5. If Π satisfies Properties (1)-(4), then there exists an algorithm
which, given an n-vertex graph G, returns a maximum induced subgraph of G
belonging to Π in time O∗(2λn) for some λ < 1, where λ depends only on ℵ.
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As we already observed, chordal and interval graphs satisfy Properties (1)-(4).
Thus Theorem 5 implies immediately results claimed in the introduction. Our
approach is based on a thorough investigation of the structure of a maximum
induced subgraph. In each of the cases, we deploy a different strategy to iden-
tify possible suspects for an optimal solution. The properties we strongly rely
on are the balanced separation property of chordal graphs (Property (4)), and
conditions on minimal forbidden induced subgraphs for Π (Property (2)).

Let G = (V,E). In the description of the algorithm we use several small
positive constants: α, β, γ, δ, ε, and one large constant L. The final constant λ
depends on the choice of α, β, L, γ, δ, ε; during the description we make sure
that constants (α, β, L, γ, δ, ε) can be chosen so that λ < 1. The choice of each
constant depends on the later ones, e.g., having chosen L, γ, δ, ε, we may find a
positive upper bound on the value of β so that we may choose any positive β
smaller than this upper bound.

Firstly, we observe that by Proposition 2, we may assume that the input
graph does not contain any forbidden induced subgraph from FΠ of size at most
� for some constant �, to be determined later. Indeed, if we are able to find an
algorithm for maximum induced Π-subgraph running in O∗(2λn) time for some
λ < 1 and working in F ′

Π-free graphs, where F ′
Π consists of graphs of FΠ of size

at most �, then by Proposition 2 we obtain an algorithm for maximum induced
Π-subgraph working in general graphs and with running time O∗(2λ

′n) for some
λ′ < 1. Hence, from now on we assume that the input graph G does not contain
any forbidden induced subgraph from FΠ of size at most �.

The algorithm performs a number of steps . After each step, depending on the
result, the algorithm chooses one of the subcases.

Step 1. Using the algorithm of Robson [14], in O∗(20.276n) time find the largest
clique K in G.

We consider two cases: either K is large enough to finish the search directly,
or K is small and we have a guarantee that the maximum induced Π-graph we
are looking for contains only small cliques. The threshold for small/large is αn
for a constant α > 0, α < 1/48, to be determined later.

Case A: |K| ≥ αn.

We show that in this case, the problem can be solved in O∗(2(1−(1−κ0)α)n)
time for some κ0 < 1 depending only on ℵ. We use the following auxiliary claim.

Lemma 6. Let P be a subset of vertices of an n-vertex graph G that induces a
graph belonging to Π, and let K be a clique in G such that P ∩K = ∅. Then in
time O∗(2κ0·|K|) for some κ0 < 1 depending only on ℵ it is possible to find an
induced subgraph of G with the maximum number of vertices, where maximum is
taken over all induced subgraphs H of G such that (i) H ∈ Π, (ii) V (H)\K = P .
In other words, the maximum is taken over all induced subgraphs belonging to
Π which can be obtained by adding some vertices of K to P .

Proof. For every nonempty subset W of K of size at most ℵ, we colour W red
if G[W ∪ P ] ∈ Π . Note that this construction may be performed using at most
ℵ · |K|ℵ tests of belonging to Π , hence in polynomial time for constant ℵ.
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We observe that for every subset X ⊆ K, G[P ∪X ] belongs to Π if and only
if all nonempty subsets of X of size at most ℵ are red. Indeed, if the latter is not
the case, there is a subset W ⊆ X such that G[P ∪W ] /∈ Π , so by Property (1)
G[P ∪X ] /∈ Π as well. For the opposite direction, let us assume that G[P ∪X ]
contains some forbidden induced subgraph F ∈ FΠ . Then |F ∩X | > ℵ because
otherwise, by the definition of the colouring, F ∩X would not be coloured red.
But since X is a clique, we conclude that F contains a clique on ℵ + 1 vertices,
which is a contradiction with Property (2).

Hence, to obtain a maximum induced subgraph one has to find a maximum
subset of X such that all its subsets of size at most ℵ are coloured red. This
is equivalent to finding a maximum clique in a hypergraph with hyperedges
of cardinality at most ℵ, which can be done using a branching algorithm in
O∗(2κ0·|K|) time for some κ0 < 1, depending only on ℵ.

We now do the following. Let H be a maximum induced subgraph of G be-
longing to Π . We branch into at most 2|V \K| subcases, in each fixing a different
subset P of V \K as V (H) \K; we discard all the branches where the subgraph
induced by P does not belong to Π . For each branch, we use Lemma 6 to find
a maximum induced chordal subgraph, which can be obtained from the guessed
subset by adding vertices of K. This takes time O∗(2κ0·|K|) for each branch.
Thus the running time in this case is O∗(2|V \K| ·2κ0·|K|) ≤ O∗(2(1−α)n ·2κ0·αn) =
O∗(2(1−(1−κ0)α)n). Note that (1 − (1 − κ0)α) < 1 for α > 0 and κ0 < 1.

Case B: G has no clique of size αn.

Firstly, we search for solutions that have at most n/2−βn or at least n/2+βn
vertices for some β > 0, β < 1/16 to be determined later. For this, we may apply
a simple brute-force check that tries all vertex subsets of size at most �n/2−βn�
or at least �n/2 + βn in time O∗(

(
n

�n/2−βn�
)
), which is faster than O∗(2n).

Step 2. Iterate through all subsets of vertices of size at most �n/2 − βn� or
at least �n/2 + βn , and for each of them check if it induces a graph belonging
to Π. If some subset of size at least �n/2 + βn induces a Π-graph, output the
subgraph induced by any of such subsets of maximum cardinality, and terminate
the algorithm. If no subset of size exactly �n/2− βn� induces a Π-graph, output
the subgraph induced by the maximum size subset inducing a Π-graph among
those of size at most �n/2 − βn�, and terminate the algorithm.

If execution of Step 2 did not terminate the algorithm, we know that the
cardinality of the vertex set of a maximum induced subgraph belonging to Π is
between n/2−βn and n/2+βn. We proceed to further steps with this assumption.

Let H be a maximum induced Π-subgraph of G. We do not know how H
looks like and the only information about H we have so far is that H has no
clique of size αn and that n/2 − βn ≤ |V (H)| ≤ n/2 + βn. Let us note that the
number of vertices of G not in H is also between n/2 − βn and n/2 + βn.

We now use Property (4) to find a 2
3 -balanced clique separator in G. More

precisely, there is a clique S in H such that V (H) \ S may be partitioned
into sets X1 and X2 so that (i) 1

3 |V (H)| − |S| ≤ |X1|, |X2| ≤ 2
3 |V (H)|, and

(ii) there is no edge between X1 and X2 in G. Observe that in particular
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|X1|, |X2| ≥ (16 − β
3 − α)n > 1

8n, as β < 1/16 and α < 1/48. As S is also
a clique in G, we have that |S| ≤ αn. Property (4) gives us more algorithmic
claims about the partition (X1, S,X2) of V (H); these claims will be useful later.
As α is small, we may afford the following branching step.

Step 3. Branch into at most (1 +αn)
(

n
αn

)
· (n + 1)2 subproblems, in each fixing

a different subset of V of size at most αn as S, as well as cardinalities of X1,
X2. Discard all the branches where S is not a clique.

From now on we focus on one subproblem; hence, we assume that the clique
S is fixed and cardinalities of X1, X2 are known. Let G′ = G \ S; to ease the
notation, for X ⊆ V (G′) let N ′[X ] = NG′ [X ] and N ′(X) = NG′(X). We now
consider two cases of how the structure of the optimal solution H may look like,
depending on how many connected components H \ S has. The threshold is γn
for a small constant γ > 0 to be determined later.

Step 4. Branch into two subproblems: in the first branch assume that H \S has
at most γn connected components, and in the second branch assume that H \ S
has more than γn connected components.

In the branches of Step 4 the algorithm checks several cases, and for every case
proceeds with further branchings. To ease the description, we do not distinguish
these branchings as separate Steps, but rather explain them in the text.

Branch B.1: Graph H \ S has at most γn connected components.

We first branch into at most (n + 1)3 subproblems, in each guessing the sizes
of sets N ′(X1), N ′(X2) and N ′(X1) ∩ N ′(X2) such that |N ′(X1) ∩ N ′(X2)| ≤
|N ′(X1)|, |N ′(X2)| ≤ n− (|S|+ |X1|+ |X2|). From now on we assume that these
cardinalities are fixed. We consider a few cases depending on the sizes of N ′(X1),
N ′(X2) and N ′(X1) ∩ N ′(X2); in these cases we use small constants δ, ε, to be
determined later.

Case B.1.1: ||N ′(X1)| − |X1|| ≥ δn, or ||N ′(X2)| − |X2|| ≥ δn.

We concentrate only on the subcase of ||N ′(X1)| − |X1|| ≥ δn, as the second
is symmetric. Due to the space constraints, here we give only a brief outline. As
G[X1] has only at most γn components, we can guess with O∗(

(
n
γn

)
) overhead a

set that contains one element from each connected component of G[X1]. Then,

using Proposition 3 we can guess the whole set X1 with
(|X1|+|N ′(X1)|

|X1|
)

overhead.

For X2 we perform a brute-force guess on the remaining part of V (G′), i.e.,
V (G′) \ N ′[X1], and at the end for each candidate set X1 ∪ X2 ∪ S we test in
polynomial time whether it induces a subgraph belonging to Π . As ||N ′(X1)| −
|X1|| ≥ δn, we have that

(|X1|+|N ′(X1)|
|X1|

)
= O∗(2κ2|N [X1]|) for some κ2 < 1

depending only on δ. Since |N ′[X1]| ≥ 1
8n, given δ we can choose α, γ small

enough so that the overhead O∗(
(

n
αn

)
·
(
n
γn

)
) is insignificant compared to the

gain obtained when guessing X1. Hence, we produce O∗(2κ3n) candidates in
total, for some κ3 < 1.

Case B.1.2: Case B.1.1 does not apply, but |N ′(X1) ∩N ′(X2)| ≥ εn.

Again, due to the space constraints, we provide only a short description of this
case. We perform a similar strategy as in Case B.1.1, but we guess both X1 and
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X2 using Proposition 3. Observe that having guessed X1, we can exclude N ′[X1]
from consideration when guessing X2, thus removing at least εn neighbours of
X2. After the removal, the number of neighbours of X2 differs much from |X2|
(recall that δ is significantly smaller than ε), and we obtain a gain when guessing
X2. This gain depends on ε only, so we can choose α and γ small enough so that

overhead O∗(
(

n
αn

)
·
(
n
γn

)2
) is insignificant compared to it.

Case B.1.3: None of the cases B.1.1 or B.1.2 applies.

Summarizing, sets X1 and X2 have the following properties:

– 1
6n− β

3n− αn ≤ |X1|, |X2| ≤ 1
3n + 2β

3 n,
– 1

2n− (α + β)n ≤ |X1| + |X2| ≤ 1
2n + βn,

– ||N ′(Xi)| − |Xi|| ≤ δn for i = 1, 2, and |N ′[X1] ∩N ′[X2]| ≤ εn.

Let Uboth = N ′[X1] ∩N ′[X2] = N ′(X1) ∩N ′(X2), Unone = V (G′) \ (N ′[X1] ∪
N ′[X2]), and U = Uboth ∪ Unone. We already know that |Uboth| ≤ εn. We now
claim that |Unone| ≤ ζn, where ζ = 2α + 2β + 2δ + ε. Indeed, we have that

|Unone| = |V (G′)| − |X1| − |X2| − |N ′(X1)| − |N ′(X2)| + |N ′(X1) ∩N ′(X2)|
≤ n− 2(|X1| + |X2|) + 2δn + εn ≤ (2α + 2β + 2δ + ε)n

Given that sets Uboth and Unone are small, we may fix them with O∗(
(
n
εn

)
·
(
n
ζn

)
)

overhead in the running time: we branch into O∗(
(
n
εn

)
·
(
n
ζn

)
) subproblems, in

each fixing disjoint subsets of V \ S of sizes at most εn and ζn as Uboth, Unone,
respectively. Note that then V (G′)\U is the symmetric difference of N ′[X1] and
N ′[X2]; let I = V (G′) \ U . We are left with determining which part of I is in
X1 ∪X2, and which is outside.

Observe that every vertex of I is in exactly one of the two sets: N [X1] or
N [X2]. Hence, by Property (4) of Π , we may look for subsets X1, X2 of I, such
that (i) algorithm A run on G[X1∪S] and G[X2∪S] with clique S distinguished
provides a positive answer in both of the cases, (ii) I is a disjoint union of N [X1]
and N [X2]. We model this situation as an instance of the 2-Table problem as
follows. For i = 1, 2, enumerate all the subsets of I of size |Xi| as candidates for
Xi, and discard all the candidates for which the algorithm A does not provide
a positive answer when run on the subgraph induced by the candidate plus the
clique S. For each remaining candidate subset create a binary vector of length
|I| indicating which vertices of I belong to its closed neighbourhood. Create
matrices T1, T2 by putting the vectors of candidates for X1, X2 as columns of
T1, T2, respectively. Now, we need to check whether one can find a column of T1

and a column of T2 that sum up to a vector consisting only of ones.
As |Xi| ≤ 1

3n + 2β
3 n for i = 1, 2, we have that tables T1, T2 have at most(

n
1
3n+

2β
3 n

)
columns, which is O∗(2κ6n) for some universal constant κ6 < 1 (recall

that β < 1/16, so 1
3n + 2β

3 n < 3
8n). Hence, by Proposition 4 we may solve the

obtained instance of 2-Table in O∗(2κ6n) time. The total running time used by
Case B.1.3, including the overheads for guessing clique S, set U and cardinalities,
is O∗(

(
n
αn

)
·
(
n
εn

)
·
(
n
ζn

)
· 2κ6n); note that we may choose α, β, δ, ε small enough so

that this running time is O∗(2κ7n) for some κ7 < 1.
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Branch B.2: Graph H \ S has more than γn connected components.

Consider connected components of H \ S and fix a large constant L > 2
depending on γ, to be determined later. We say that a component containing
at most C = L/γ vertices is small, and otherwise it is large. Let r� and rs be
the numbers of large and small components of H \ S, respectively. The number
of vertices contained in large components is hence at least L·r�

γ . Thus, L·r�
γ ≤ n,

r� ≤ γn
L and, consequently, rs ≥ γn − r� ≥ γn(1 − 1

L ) ≥ γn
2 . Since small

components are nonempty, they contain at least γn
2 vertices in total.

Let us wrap up the situation. The vertices of V can be partitioned into disjoint
sets S, X , NX , Y , and Z, where (i) S is the clique guessed in Step 3; (ii) X
are the vertices contained in large components of H \ S; (iii) NX = N ′(X); (iv)
Y are the vertices contained in small components of H \ S; (v) Z consists of
vertices not contained in H and not adjacent to X . Note that V (H) = S ∪X ∪
Y . Unfortunately, even given X and S, the algorithm still cannot deduce the
solution: we still need to split the remaining part V \ (N ′[X ] ∪ S) into Y that
will go into the solution, and Z that will be left out. However, as we know that
G[X ] has a small number of components, we can proceed with a branching step
that guesses X using Proposition 3. Let P be a set of vertices that contains one
vertex from each component of G[X ]; we have that |P | = r� ≤ γn

L .

Step 5. Branch into at most (n + 1)4 subbranches fixing r�, |X |, |Y |, |N ′[X ]|.
Then branch into

(
n
r�

)
≤

(
n
γn
L

)
cases, in each fixing a different set of size r� as

a candidate for P . Add an artificial vertex v1 adjacent to P , and using Proposi-

tion 3 in O∗(
(|N ′[X]|

|X|
)
) ≤ O∗(2|N

′[X]|) time enumerate at most
(|N ′[X]|

|X|
)
≤ 2|N

′[X]|

vertex sets that (i) are connected, (ii) contain P ∪ {v1}, (iii) are of size |X | + 1
and have neighbourhood of size |N ′(X)|. Note that we can do it by filtering out
sets that do not contain P from the list given by Proposition 3. As X ∪ {v}
is among enumerated candidates, branch into at most 2|N

′[X]| subcases, in each
fixing a different candidate for X.

Let R = G[V \(N ′[X ]∪S)]. Note that we need to have |V (R)| ≥ |Y | ≥ rs ≥ γn
2 ,

so if |V (R)| < γn
2 then we may safely terminate the branch. We will now use the

fact that the input graph does not contain any forbidden induced subgraphs of
size bounded by some bound �; recall that this assumption was justified by an
application of Proposition 2. We set � = 3C2 + 1; hence, whenever we examine
an induced subgraph of G of size at most �, we know that it belongs to Π . The
later steps of the algorithm are encapsulated in the following lemma.

Lemma 7. Assuming α < γ
104C3 and � = 3C2 + 1, there exists a universal

constant ρ < 1 and an algorithm working in O∗(2ρ|V (R)|) time that enumer-
ates at most O(2ρ|V (R)|) candidate subsets of V (R), such that Y is among the
enumerated candidates.

The full proof of Lemma 7 is omitted; here, we only sketch the intuition
behind the proof. However, before we proceed to this sketch, let us observe
that application of Lemma 7 finishes the whole algorithm. Indeed, so far in
the branching procedure we have an overhead of O∗(

(
n
αn

)
·
(

n
γn
L

)
· 2|N

′[X]|) for
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guessing S and X . If we now enumerate and examine — by testing whether
G[X ∪ S ∪ Y ] ∈ Π — all the candidates for Y given by Lemma 7, we arrive at
running time O∗(

(
n
αn

)
·
(

n
γn
L

)
· 2|N

′[X]| · 2ρ|V (R)|).

As |N ′[X ]| + |V (R)| ≤ n, ρ < 1 is a universal constant and |V (R)| ≥ γn
2 ,

given γ > 0 we may choose L to be large enough and α > 0 to be small enough
(and smaller than γ

104C3 ) so that this running time is O∗(2κ8n) for some κ8 < 1.
Here we exploit the fact that ρ does not depend on α, γ or L. What is really
happening is that the threshold C for large components depends on γ and L,
and thus the threshold � for forbidden induced subgraphs on which we branch
a priori using Proposition 2 depends on γ and L. Yet this branching is done
outside the current reasoning and we avoid a loop in the definition of thresholds.

We now sketch the proof of Lemma 7. Firstly, as G[Y ] have connected com-
ponents of size at most C, the degrees in G[Y ] are bounded by C − 1. Hence,
whenever we see a vertex v that has high degree in R, say at least 3C, then we
can infer that if it is in Y , then at most a third of its neighbours can be also in
Y . This allows us to design a branching procedure with running time 2O(σ|V (R)|)

for some universal σ < 1 that gets rid of high-degree vertices in R. For simplicity,
assume from now on that the degrees in R are bounded by 3C.

The crucial observation now is that Y must in fact constitute almost the whole
V (R), hence we can guess Y in a much more efficient manner than via a 2|V (R)|

brute-force. For the sake of contradiction, assume that V (R) \ Y constitutes a
constant fraction of V (R). The strategy is to show that the assumed maximum
solution H is in fact not maximum, using the fact that α is very small compared
to |V (R)|. Let us construct an alternative solution H ′ as follows: we remove S
from H , thus losing at most αn vertices, and add vertices of V (R)\Y in a greedy
manner so that no component larger than 3C2 +1 is created in V (R). As G does
not contain any forbidden induced subgraph for Π of size at most 3C2 + 1, all
these components belong to Π . As Π is closed under taking disjoint union, H ′

constructed in this manner also belongs to Π . The bound on the degrees in R

ensures that the greedy procedure adds at least |V (R)\Y |
O(C3) vertices; hence if we

choose α < γ
O(C3) , then H ′ is larger than H , contradicting the maximality of H .

5 Conclusion

Theorem 5 shows that for any class of graphs Π satisfying Properties (1)–(4), a
maximum induced subgraph from Π of an n-vertex graph can be found in time
O∗(2λn) for some λ < 1. Pipelining Proposition 2 with Theorem 5 shows that we
moreover may add any finite family of forbidden subgraphs on top of belonging
to Π . More precisely, we have the following theorem.

Theorem 8. Let F be a finite set of graphs and Π be a class of graphs satisfying
Properties (1)–(4). There exists an algorithm which for a given n-vertex graph
G, finds a maximum induced F-free Π-graph in G in time O∗(2λn) for some
λ < 1, where λ depends only on ℵ and F .
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As mentioned in introduction, Theorem 8 covers such graph classes as proper in-
terval graphs, i.e. claw-free interval graphs, Ptolemaic graphs, which are chordal
and gem-free, block graphs, which are chordal and diamond-free; proper circular-
arc graphs which are chordal, claw-free, and S̄3-free. We refer to [1] for the
definitions and discussions on these graphs.

We conclude with the following open questions. An interesting subclass of
chordal graphs that cannot be handled by our approach is the class of strongly
chordal graphs. The reason is that Property (2) does not hold here and we are
not aware of any algorithm for finding a maximum induced strongly chordal
subgraph faster than the trivial brute-force. Secondly, our approach fails when
we require the induced subgraph to be additionally connected , since connectivity
requirements are not hereditary, and thus is Property (1) is not satisfied. Say,
can a maximum induced connected chordal subgraph be found faster than 2n?
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Abstract. We revisit the problem of searching for a target at an un-
known location on a line when given upper and lower bounds on
the distance D that separates the initial position of the searcher from the
target. Prior to this work, only asymptotic bounds were known for the
optimal competitive ratio achievable by any search strategy in the worst
case. We present the first tight bounds on the exact optimal competitive
ratio achievable, parametrized in terms of the given range for D, along
with an optimal search strategy that achieves this competitive ratio. We
prove that this optimal strategy is unique and that it cannot be com-
puted exactly in general. We characterize the conditions under which
an optimal strategy can be computed exactly and, when it cannot, we
explain how numerical methods can be used efficiently. In addition, we
answer several related open questions and we discuss how to generalize
these results to m rays, for any m ≥ 2.

1 Introduction

Search problems are broadly studied within computer science. A fundamental
search problem, which is the focus of this paper, is to specify how a searcher
should move to find an immobile target at an unknown location on a line such
that the total relative distance travelled by the searcher is minimized in the
worst case [3,10,13]. The searcher is required to move continuously on the line,
i.e., discontinuous jumps, such as random access in an array, are not possible.
Thus, a search corresponds to a sequence of alternating left and right displace-
ments by the searcher. This class of geometric search problems was introduced
by Bellman [4] who first formulated the problem of searching for the bound-
ary of a region from an unknown random point within its interior. Since then,
many variants of the line search problem have been studied, including multiple
rays sharing a common endpoint (as opposed to a line, which corresponds to
two rays), multiple targets, multiple searchers, moving targets, and randomized
search strategies (e.g., [1,2,3,5,6,7,8,9,12,13,14]).

For any given search strategy f and any given target location, we consider the
ratio A/D, where A denotes the total length of the search path travelled by a
searcher before reaching the target by applying strategy f , and D corresponds to
the minimum travel distance necessary to reach the target. That is, the searcher
and target initially lie a distance D from each other on a line, but the searcher
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knows neither the value D nor whether the target lies to its left or right. The
competitive ratio of a search strategy f , denoted CR(f), is measured by the
supremum of the ratios achieved over all possible target locations. Observe that
CR(f) is unbounded if D can be assigned any arbitrary real value; specifically,
the searcher must know a lower bound min ≤ D. Thus, it is natural to consider
scenarios where the searcher has additional information about the distance to
the target. In particular, in many instances the searcher can estimate good lower
and upper bounds on D. Given a lower bound D ≥ min, Baeza-Yates et al. [3]
show that any optimal strategy achieves a competitive ratio of 9. They describe
such a strategy, which we call the Power of Two strategy. Furthermore, they
observe that when D is known to the searcher, it suffices to travel a distance of
3D in the worst case, achieving a competitive ratio of 3.

We represent a search strategy by a function f : N → R+. Given such a
function, a searcher travels a distance of f(0) in one direction from the origin
(say, to the right), returns to the origin, travels a distance of f(1) in the opposite
direction (to the left), returns to the origin, and so on, until reaching the target.
We refer to f(i) as the distance the searcher travels from the origin during
the ith iteration. The corresponding function for the Power of Two strategy
of Baeza-Yates et al. is f(i) = 2i min. Showing that every optimal strategy
achieves a competitive ratio of exactly 9 relies on the fact that no upper bound
on D is specified [3]. Therefore, it is natural to ask whether a search strategy
can achieve a better competitive ratio when provided lower and upper bounds
min ≤ D ≤ max.

Given R, the maximal reach problem examined by Hipke et al. [10] is to
identify the largest bound max such that there exists a search strategy that
finds any target within distance D ≤ max with competitive ratio at most R.
López-Ortiz and Schuierer [13] study the maximal reach problem on m rays,
from which they deduce that the competitive ratio CR(gopt) of any optimal
strategy gopt is at least 1 + 2mm(m− 1)1−m−O(log−2 ρ), where ρ = max /min.
When m = 2, the corresponding lower bound becomes 9 − O(log−2 ρ). They
also provide a general strategy that achieves this asymptotic behaviour for a
general m, given by f(i) = (

√
1 + i/m)(m/(m− 1))i min. Again, for m = 2 this

is f(i) = (
√

1 + i/2)2i min. Surprisingly, this general strategy is independent of
ρ. In essence, it ignores any upper bound on D, regardless of how tight it is.
Thus, we examine whether there exists a better search strategy that depends on
ρ, thereby using both the upper and lower bounds on D. Furthermore, previous
lower bounds on CR(gopt) have an asymptotic dependence on ρ applying only
to large values of ρ, corresponding to having only coarse bounds on D. Can we
express tight bounds on CR(gopt) in terms of ρ?

Let gopt(i) = ai min denote an optimal strategy. Since D ≤ max, then there
must be an n such that an ≥ ρ, i.e., n is the number of iterations necessary
to reach the target, so that gopt(n) ≥ max. López-Ortiz and Schuierer [13] pro-
vide an algorithm to compute the maximal reach for a given competitive ratio
together with a strategy corresponding to this maximal reach. They state that
the value n and the sequence {ai}n−1

i=0 for gopt can be computed using binary
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search, which increases the running time proportionally to log ρ. Can we find a
faster algorithm for computing gopt? Since in general, the values a0, . . . , an−1 are
roots of a polynomial equation of unbounded degree (see Theorem 1), a binary
search is equivalent to the bisection method for solving polynomial equations.
However, the bisection method is a slowly converging numerical method. Can
the computational efficiency be improved? Moreover, given ε, can we bound the
number of steps necessary for a root-finding algorithm to identify a solution
within tolerance ε of the exact value?

1.1 Overview of Results

We address all of the questions raised above. We characterize gopt by computing
the sequence {ai}n−1

i=0 for the optimal strategy. We do this by computing the
number of iterations n needed to find the target and by defining a family of
polynomials p0, . . . , pn, where pi has degree i+1. We can compute n in O(1) time
since we prove that n ∈ {�log2 ρ − 1, �log2 ρ }, where ρ = max /min. We then
show that a0 is the largest real solution to the polynomial equation pn(x) = ρ.
Each of the remaining elements in the sequence {ai} can be computed in O(1)
time since we prove that a1 = a0(a0 − 1) and ai = a0(ai−1 − ai−2) for 2 ≤ i < n.
This also shows that the optimal strategy is unique. Moreover, as we show in
Proposition 1, when no upper bound is known there exist infinitely many optimal
strategies for any m ≥ 2.

We give an exact characterization of gopt and show that CR(gopt) = 2a0 + 1.
This allows us to establish the following bounds on the competitive ratio of an
optimal strategy in terms of ρ:

8 cos2
(

π

�log2 ρ� + 1

)
+ 1 ≤ CR(gopt) ≤ 8 cos2

(
π

�log2 ρ + 4

)
+ 1 .

López-Ortiz and Schuierer [13] show that CR(gopt) → 9 as ρ → ∞. We show
that gopt → g∞ as ρ → ∞, where g∞(i) = (2i+ 4)2i min has a competitive ratio
of 9. We thereby obtain an alternate proof of the result of Baeza-Yates et al. [3].
The strategy g∞ is a member of the infinite family of optimal strategies in the
unbounded case which we describe in Proposition 1.

We assume the Real RAM model of computation, including kth roots, log-
arithms, exponentiation, and trigonometric functions [15]. The computation of
each term ai in the sequence defining gopt involves computing the largest real
root of a polynomial equation of degree n + 1. We prove that n + 1 ≤ 4 if and
only if ρ ≤ 32 cos5(π/7) ≈ 18.99761. In this case the root can be expressed
exactly using only the operations +, −, ×, ÷,

√
· and 3

√
·. This implies that if

max ≤ 32 cos5(π/7) min, then gopt can be computed exactly in O(1) time (O(1)
time per ai for 0 ≤ i ≤ n < 4). In general, when n + 1 ≥ 5, Galois theory
implies that the equation pn(x) = ρ cannot be solved by radicals. Since the
corresponding polynomials have unbounded degree, we are required to consider
approximate solutions when ρ > 32 cos5(π/7). Therefore, we explain how to find
a solution g∗opt, such that CR(g∗opt) ≤ CR(gopt) + ε for a given tolerance ε.
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If n ≥ 7ε−1/3 − 4, we give an explicit formula for a0. Hence, an ε-approxima-
tion can be computed in O(n) = O(log ρ) time (O(1) time per ai for 0 ≤ i ≤ n).
Otherwise, if 32 cos5(π/7) < n < 7ε−1/3 − 4, we show that a0 lies in an interval
of length at most 73 (n+4)−3. Moreover, we prove that the polynomial is strictly
increasing on this interval. Hence, usual root-finding algorithms work well. Given
a0, the remaining elements of the sequence {a1, . . . , an−1} can be computed in
O(n) time (O(1) time per ai for 1 ≤ i ≤ n). Finally, we explain how our technique
can be generalized to m rays.

2 Searching on a Bounded Line

López-Ortiz and Schuierer [13] showed that there always exists an optimal strat-
egy that is periodic and monotone. That is, the strategy alternates searching left
and right between the two rays and the values in the sequence {ai} are increas-
ing: i > j implies ai > aj . Thus, it suffices to consider search strategies that are
periodic and monotone. Our goal is to identify a strategy f that minimizes

CR(f) = sup
D∈[min,max]

φ(f,D)/D, where φ(f,D) = 2
∑f−1(D)

i=0
f(i) + D

denotes the cost incurred by f to find a target at distance D in the worst case
and f−1(D) is the smallest integer j such that f(j) ≥ D.

A simple preliminary strategy is to set g0(i) = max. The corresponding com-
petitive ratio is

CR(g0) = sup
D∈[min,max]

(2 max +D)/D = 2ρ + 1 .

Observe that g0 is optimal when ρ = 1, i.e., when D is known. A second strategy
g1 corresponds to cutting [min,max] once at a point a0 min < ρmin = max.
Namely, we search a sequence of two intervals, [min, a0 min] and (a0 min, ρmin] =
(a0 min,max], from which we define

g1(i) =

{
a0 min if 0 ≤ i < 1,

ρmin if i ≥ 1.

Therefore, a0 needs to be chosen such that CR(g1) is minimized. We have

sup
D∈[min,a0 min]

φ(g1, D)/D = 2a0 +1 and sup
D∈(a0 min,ρmin]

φ(g1, D)/D = 3+2
ρ

a0
.

Hence, to minimize CR(g1), we must select a0, where 1 ≤ a0 ≤ ρ, such that
2a0+1 = 3+2ρ/a0. Therefore, a0 = (1+

√
1 + 4ρ)/2 and CR(g1) = 2+

√
1 + 4ρ.

We have that CR(g0) ≤ CR(g1) if and only if 1 ≤ ρ ≤ 2.
In general, we can partition the interval [min, ρmin] into n + 1 subintervals

whose endpoints correspond to the sequence min, a0 min, . . . , an−1 min, ρmin,
from which we define

gn(i) =

{
ai min if 0 ≤ i < n,

ρmin if i ≥ n.
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Therefore, we must select a0, . . . , an−1, where 1 ≤ a0 ≤ a1 ≤ . . . ≤ an−1 ≤ ρ,
such that CR(gn) is minimized. We have

sup
D∈[min,a0 min]

φ(gn, D)/D = 2a0 + 1 ,

sup
D∈(ai min,ai+1 min]

φ(gn, D)/D = 1 + 2
∑i+1

k=0
ak/ai (1 ≤ i ≤ n− 2),

sup
D∈(an−1 min,ρmin]

φ(gn, D)/D = 1 + 2
∑n−1

k=0
ak/an−1 + 2ρ/an−1 .

Hence, the values ai are solutions to the following system of equations:∑i+1

k=0
ak = a0ai (0 ≤ i ≤ n− 2), and

∑n−1

k=0
ak + ρ = a0an−1. (1)

We prove in Theorem 1 that the solution to this system of equations can be
obtained using the following family of polynomials:

p0(x) = x ,

p1(x) = x(x− 1) ,

pi(x) = x (pi−1(x) − pi−2(x)) (i ≥ 2). (2)

We apply (2) without explicitly referring to it when we manipulate the polyno-
mials pi. Let αi denote the largest real root of pi for each i.

Theorem 1. For all n ∈ N, the values ai (0 ≤ i < n) that define gn satisfy the
following properties:

1. ai = pi(a0),
2. a0 is the unique solution to the equation pn(x) = ρ such that a0 > αn, and
3. CR(gn) = 2a0 + 1.

To prove Theorem 1, we use the following two formulas:

pn+1(x) = xpn(x) −
∑n

i=0
pi(x), and (3)

pn(x) = x
(n+1)/2�
∏
(n+2)/2�

k=1

(
x− 4 cos2(kπ/(n + 2))

)
. (4)

Equation (3) can be proved by induction on n. Equation (4) is a direct conse-
quence of Corollary 10 in [11] since the pn’s are generalized Fibonacci polynomials
(refer to [11]). We can deduce many properties of the pn’s from (4) since it pro-
vides an exact expression for all the roots of the pn’s. For instance, we have the
formula αn = 4 cos2(π/(n + 2)).

Proof. 1. We can prove this theorem by induction on i, using (1) and (3).

2. From the discussion preceding Theorem 1 we know that a0 satisfies
∑n−1

k=0 ak
+ ρ = a0an−1. Therefore,

ρ = a0an−1 −
∑n−1

k=0
ak

= a0pn−1(a0) −
∑n−1

k=0
pk(a0) by Theorem 1-1,

= pn(a0) by (3).
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Suppose a0 < αn. Then, by (4), there exists an i ∈ N such that 0 ≤ i < n
and pi(a0) < 0. Hence, ai = pi(a0) < 0 by Theorem 1-1. This is impossible since
all the ai’s are such that 1 ≤ ai ≤ ρ. Therefore, a0 ≥ αn. Moreover, a0 	= αn

since pn(a0) = ρ ≥ 1, whereas pn(αn) = 0 by the definition of αn. Finally, this
solution is unique since αn is the biggest real root.
3. This follows directly from the discussion preceding Theorem 1. �


From Theorem 1, the strategy gn is uniquely defined for each n. However,
this still leaves an infinite number of possibilities for the optimal strategy (one
for each n). We aim to find, for a given ρ, what value of n leads to the optimal
strategy. Theorem 2 gives a criterion for the optimal n in terms of ρ together
with a formula that enables to compute this optimal n in O(1) time.

Theorem 2.

1. For a given ρ, if n ∈ N is such that

pn(αn+1) ≤ ρ < pn(αn+2) , (5)

then gn is the optimal strategy and αn+1 ≤ a0 < αn+2.
2. For all n ∈ N,

2n ≤ pn(αn+1) ≤ ρ < pn(αn+2) ≤ 2n+2 . (6)

Notice that the criterion in Theorem 2-1 covers all possible values of ρ since
p0(α1) = 1 and pn(αn+2) = pn+1(αn+2) by the definition of the αn’s.

Proof. 1. Consider the strategy gn. By Theorem 1-2 and since pn(αn+1) ≤ ρ <
pn(αn+2), we have αn+1 ≤ a0 < αn+2.

We first prove that gn is better than gm for all m < n. Suppose that there
exists an m < n such that gm is better than gn for a contradiction. By Theorem 1-
2, there exists an a′0 such that a′0 > αm and gm(a′0) = ρ. Moreover, since gm
is better than gn by the hypothesis, then 2a′0 + 1 < 2a0 + 1 by Theorem 1-3.
Therefore,

αm < a′0 < a0 . (7)

Also, since m < n, then m+2 ≤ n+1. Thus, since the αn’s are strictly increasing
with respect to n, a0 ≥ αn+1 ≥ αi for all m + 2 ≤ i ≤ n + 1. Hence, we find

pm(a0) ≤ pm+1(a0) ≤ pm+2(a0) ≤ . . . ≤ pn−1(a0) ≤ pn(a0) . (8)

But then,

ρ = pm(a′0)

< pm(a0) by (7) and since pm is increasing on [αm,∞),

≤ pn(a0) by (8),

= ρ ,

which is a contradiction. Consequently, gn is better than gm for all m < n.
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We now prove that gn is better than gn′ for all n′ > n. Suppose that there
exists an n′ > n such that gn′ is better than gn for a contradiction. By Theorem 1-
2, there exists an a′0 such that a′0 > αn′ and gn′(a′0) = ρ. Moreover, since gn′

is better than gn by the hypothesis, then 2a′0 + 1 < 2a0 + 1 by Theorem 1-3.
Therefore,

αn < αn′ < a′0 < a0 < αn+2 (9)

since the αn’s are strictly increasing with respect to n, from which n′ = n + 1.
But then,

ρ = pn′(a′0)

= pn+1(a′0)

< pn(a′0) by (9) and since αn < αn+1 < αn+2,

< pn(a0) by (9) and since pn is increasing on [αn,∞),

= ρ ,

which is a contradiction. Consequently, gn is better than gn′ for all n′ > n.
2. By standard calculus, we can prove that

2 cosn+1(π/(n + 3)) ≥ 1 (10)

for all n ≥ 0. Therefore,

2n ≤ 2n 2 cosn+1(π/(n + 3)) by (10),

= α
(n+1)/2
n+1 by (4),

= pn(αn+1) this can be proved by induction on n,

≤ ρ by (5),

< pn(αn+2) by (5),

= α
(n+2)/2
n+2 this can be proved by induction on n,

= 2n+2 cosn+2(π/(n + 4)) by (4),

≤ 2n+2 since 0 < cos(π/(n + 4)) < 1. �


From (5), there is only one possible optimal value for n. By (6), it suffices
to examine two values to find the optimal n, namely �log2 ρ − 1 and �log2 ρ .
To compute the optimal n, let n = �log2 ρ and let γ = 2 cos(π/(n + 3)). If
n+1 ≤ logγ ρ, then n is optimal. Otherwise, take n = �log2 ρ −1. By Theorem 2,
this gives us the optimal n in O(1) time.

Now that we know the optimal n, we need to compute ai for each 0 ≤ i < n.
Suppose that we know a0. By (2) and Theorem 1-1, a1 = p1(a0) = a0(a0−1) and
ai = a0(pi−1(a0) − pi−2(a0)) = a0(ai−1 − ai−2) for 2 ≤ i < n. Therefore, given
a0, each ai can be computed in O(1) time for 1 ≤ i < n. It remains to show how
to compute a0 efficiently. Since gn is defined by n values, Ω(n) = Ω(log ρ) time
is necessary to compute gn. Hence, if we can compute a0 in O(1) time, then our
algorithm is optimal.
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By Theorem 2, for a given n, we need to solve a polynomial equation of degree
n + 1 to find the value of a0. By Galois theory, this cannot be done by radicals
if n + 1 > 4. Moreover, the degree of the pn’s is unbounded, so a0 cannot
be computed exactly in general. Theorem 3 explains how and why numerical
methods can be used efficiently to address this issue.

Theorem 3. Take ρ and n such that gn is optimal for ρ.

1. Let a∗0 ∈ R be such that αn+1 ≤ a0 < a∗0 ≤ αn+2 and define g∗n by

g∗n(i) =

⎧⎪⎨⎪⎩
a∗0 min if i = 0,

pi(a
∗
0) min if 1 ≤ i < n,

ρmin if i ≥ n.

Then |CR(gn) − CR(g∗n)| ≤ 73 (n + 4)−3.
2. The polynomial pn is strictly increasing on [αn+1, αn+2) and |αn+2−αn+1| ≤

73 (n + 4)−3/2.

Proof. 1. Let a∗i = pi(a
∗
0). We first prove that CR(g∗n) = 2a∗0 +1. By Theorems 1

and 2-1, there is a ρ∗ ∈ R such that pn(αn+1) ≤ ρ < ρ∗ ≤ pn(αn+2), pn(a∗0) = ρ∗

and g∗n is optimal for ρ∗. By Theorem 1 and the discussion preceding it, we have

sup
D∈[min,a∗

0 min]

1

D
φ(g∗n, D) = 2a∗0 + 1 ,

sup
D∈(a∗

i min,a∗
i+1 min]

1

D
φ(g∗n, D) = 1 + 2

∑i+1

k=0

a∗k
a∗i

(0 ≤ i ≤ n− 2)

= 2a∗0 + 1 (0 ≤ i ≤ n− 2) ,

sup
D∈(a∗

n−1 min,ρmin]

1

D
φ(g∗n, D) = 1 + 2

∑n−1

k=0

a∗k
a∗n−1

+ 2
ρ

a∗n−1

< 1 + 2
∑n−1

k=0

a∗k
a∗n−1

+ 2
ρ∗

a∗n−1

= 2a∗0 + 1 .

This establishes that CR(g∗n) = 2a∗0 + 1. Therefore,

|CR(gn) − CR(g∗n)|
= |(2a0 + 1) − (2a∗0 + 1)| by Theorem 1-3 and since CR(g∗n) = 2a∗0 + 1,

= 2(a∗0 − a0)

≤ 2(αn+2 − αn+1) by the hypothesis and Theorem 2-1,

= 8
(
cos2(π/(n + 4)) − cos2(π/(n + 3))

)
by (4).

≤ 73 (n + 4)−3 by elementary calculus.

2. This is a direct consequence of (4) and Theorem 3-1. �
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We now explain how to compute a0. We know the value of the optimal n. From
(4) and Theorem 2-1, n satisfies n + 1 ≤ 4 if and only if ρ ≤ 32 cos5(π/7) ≈
18.99761. In this case, pn(x) = ρ is a polynomial equation of degree at most
4. Hence, by Theorem 1-2 and elementary algebra, a0 can be computed exactly
and in O(1) time. Otherwise, let ε > 0 be a given tolerance. We explain how to
find a solution g∗opt, such that CR(g∗opt) ≤ CR(gopt) + ε.

If n ≥ 7ε−1/3−4, then by Theorem 3, it suffices to take a0 = αn+2 to compute
an ε-approximation of the optimal strategy. But αn+2 = 4 cos2(π/(n + 4)) by
(4). Hence, a0 can be computed in O(1) time and thus, an ε-approximation of
the optimal strategy can be computed in Θ(n) = Θ(log ρ) time. Otherwise, if
4 ≤ n < 7ε−1/3 − 4, then we have to use numerical methods to find the value of
a0. By Theorem 2-1, we need to solve pn(x) = ρ for x ∈ [αn+1, αn+2). However,
by Theorem 3, |αn+2 − αn+1| < 73(n + 4)−3/2 and pn is strictly increasing on
this interval. Hence, usual root-finding algorithms behave well on this problem.

Hence, if n < 4 or n ≥ 7ε−1/3 − 4, then our algorithm is optimal. When
4 ≤ n < 7ε−1/3 − 4, then our algorithm’s computation time is as fast as the
fastest root-finding algorithm.

It remains to provide bounds on CR(gn) for an optimal n; we present exact
bounds in Theorem 4.

Theorem 4.

1. The strategy g0 is optimal if and only if 1 ≤ ρ < 2. In this case, CR(g0) =
2ρ + 1. Otherwise, if gn is optimal (n ≥ 1), then

8 cos2
(

π

�log2 ρ� + 1

)
+ 1 ≤ CR(gn) ≤ 8 cos2

(
π

�log2 ρ + 4

)
+ 1 . (11)

2. When max → ∞, the best strategy tends toward g∞(i) = (2i + 4)2i min
(i ≥ 0) and CR(g∞) = 9.

Proof. 1. This is a direct consequence of (6), (4), and Theorems 1 and 2-1.
2. Let gn be the optimal strategy for ρ. When max → ∞, then ρ → ∞ and
then, n → ∞ by (6). Hence, by Theorem 2-1 and (4), 4 = limn→∞ αn+1 ≤
limn→∞ a0 ≤ limn→∞ αn+2 = 4. Thus, when max → ∞, ai = pi(a0) = pi(4) =
(2i + 4)2i by Theorem 1-1 and (4). Hence, gn → g∞. �


The competitive cost of the optimal strategy is 2a0 + 1 by Theorem 1-3.
Theorem 4-1 gives nearly tight bounds on 2a0 + 1. Notice that when ρ = 1, i.e.,
when D is known, then 2a0+1 = 3 which corresponds to the optimal strategy in
this case. From the Taylor series expansion of cos2(·) and Theorem 4-1, we have
CR(gn) = 9−O(1/ log2 ρ) for an optimal n. This is consistent with López-Ortiz
and Schuierer’ result (see [13]), although our result (11) is exact.

Letting ρ → ∞ corresponds to not knowing any upper bound on D. Thus,
Theorem 4-2 provides an alternate proof to the competitive ratio of 9 shown by
Baeza-Yates et al. [3]. From Theorems 2 and 4, the optimal solution for a given
ρ is unique. This optimal solution tends towards g∞, suggesting that g∞ is the
canonical optimal strategy when no upper bound is given (rather than the power
of two strategy).
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3 Searching on m Bounded Concurrent Rays

For m ≥ 2, when no upper bound is known, Baeza-Yates et al. [3] proved that
the optimal strategy has a competitive cost of 1+2mm/(m−1)m−1. There exist
infinitely many strategies that achieve this optimal cost.

Proposition 1. All the strategies in the following family are optimal: fa,b(i) =

(ai + b) (m/(m− 1))
i
min, where 0 ≤ a ≤ b/m and (m/(m− 1))

2−m ≤ b ≤
(m/(m− 1))

2
.

Notice that for m = 2, when a and b are respectively equal to their smallest
allowed value, then fa,b corresponds to the power of two strategy of Baeza-Yates
et al. (refer to [3]). Moreover, when a and b are respectively equal to their biggest
allowed value, then fa,b = g∞ (refer to Theorem 4-2). This proposition can be
proved by a careful computation of CR(fa,b). For a general m, we let g∞ be the
strategy such that a and b are respectively equal to their biggest allowed value.

When we are given an upper bound max ≥ D, the solution presented in
Section 2 partially applies to the problem of searching on m concurrent bounded
rays. In this setting, we start at the crossroads and we know that the target is on
one of the m rays at a distance D such that min ≤ D ≤ max. Given a strategy
f(i), we walk a distance of f(i) on the (i mod m)-th ray and go back to the
crossroads. We repeat for all i ≥ 0 until we find the target. As in the case where
m = 2, we can suppose that is the solution is periodic and monotone (refer to
Section 2 or see Lemmas 2.1 and 2.2 in [13]).

Unfortunately, we have not managed to push the analysis as far as in the
case where m = 2 because the expressions in the general case do not simplify as
easily. We get the following system of equations by applying similar techniques
as in Section 2 ∑i+m−1

k=0
ak = ai

∑m−2

k=0
ak (0 ≤ i ≤ n−m),∑n−1

k=0
ak + (i − (n−m))ρ = ai

∑m−2

k=0
ak (n−m + 1 ≤ i ≤ n− 1),

for gn, where

gn(i) =

{
ai min if 0 ≤ i < n,

ρmin if i ≥ n.

We prove in Theorem 5 that the solution to this system of equations can be
obtained using the following family of polynomials in m − 1 variables, where
x = (x0, x1, ..., xm−2) and |x| = x0 + x1 + ... + xm−2.

pn(x) = xn (0 ≤ n ≤ m− 2)

pm−1(x) = |x|(x0 − 1)

pn(x) = |x|(pn−(m−1)(x) − pn−m(x)) (n ≥ m)
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In the rest of this section, for all n ∈ N, we let αn = (αn,0, αn,1, ..., αn,m−2) be
the (real) solution to the system

pn(x) = 0, pn+1(x) = 0, . . . , pn+m−2(x) = 0

such that
0 ≤ αn,0 ≤ αn,1 ≤ · · · ≤ αn,m−2 (12)

and |αn| is maximized. Notice that αn exists for any n ∈ N since (0, 0, ..., 0) is a
solution for any n ∈ N by the definition of the pn’s. The proof of the following
theorem is similar to those of (3) and Theorem 1.

Theorem 5.

1. For all n ∈ N, the values ai (0 ≤ i < n) that define gn satisfy the following
properties.
(a) ai = pi(a).
(b) a is a solution to the system of equations

pn(x) = ρ, pn+1(x) = ρ, . . . , pn+(m−2)(x) = ρ.

(c) CR(gn) = 1 + 2|a|.
2. The strategy g0 is optimal if and only if 1 ≤ ρ ≤ m/(m − 1). In this case,

CR(g0) = 2(m− 1)ρ + 1.

3. For all n ∈ N, pn+m−1(x) = pn(x)
∑m−2

i=0 xi −
∑n+m−2

i=0 pi(x).
4. For all n ∈ N, pn (g∞(0), g∞(1), ..., g∞(m− 2)) = g∞(n).
5. For all 0 ≤ n ≤ m− 2, αn = (0, 0, ..., 0). Moreover, αm−1 = (1, 1, ..., 1) and

αm = (m/(m− 1),m/(m− 1), ...,m/(m− 1)).

4 Conclusion

We have generalized many of our results for searching on a line to the problem
of searching on m rays for any m ≥ 2. Even though we could not extend the
analysis of the polynomials pn as far as was possible for the case where m = 2, we
believe this to be a promising direction for future research. By approaching the
problem directly instead of studying the inverse problem (maximal reach), we
were able to provide exact characterizations of gopt and CR(gopt). Moreover, the
sequence of implications in the proofs of Section 2 all depend on (4), where (4)
is an exact general expression for all roots of all equations pn. As some readers
may have observed, exact values of the roots of the equation pn are not required
to prove the results in Section 2; we need disjoint and sufficiently tight lower
and upper bounds on each of the roots of pn. In the case where m > 2, finding
a factorization similar to (4) appears highly unlikely. We believe, however, that
establishing good bounds for each of the roots of the pn should be possible.
Equipped with such bounds, the general problem could be solved exactly on
m > 2 concurrent rays. We conclude with the following conjecture. It states that
the strategy gn is uniquely defined for each n, it gives a criterion for the optimal
n in terms of ρ (and m) and gives the limit of gn when max → ∞.
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Conjecture 1.

1. For all n ∈ N, the system of equations of Theorem 5-1b has a unique solution
a∗ = (a∗0, a

∗
1, ..., a

∗
m−2) satisfying (12) and such that |a∗| > |αn|. Moreover,

there is a unique choice of a for gn and this choice is a = a∗.
2. For a given ρ, if pn(αn+m−1) ≤ ρ < pn(αn+m), then gn is the best strategy

and |αn+m−1| ≤ |a| < |αn+m|.
3. When max → ∞, then the optimal strategy tends toward g∞.
4. For all n ∈ N, 0 ≤ |αn| ≤ |αn+1| < mm/(m − 1)m−1 with equality if and

only if 0 ≤ n ≤ m− 3.
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Abstract. Rothvoss [1] showed that there exists a 0/1 polytope (a poly-
tope whose vertices are in {0, 1}n) such that any higher-dimensional
polytope projecting to it must have 2Ω(n) facets, i.e., its linear exten-
sion complexity is exponential. The question whether there exists a 0/1
polytope with high PSD extension complexity was left open. We answer
this question in the affirmative by showing that there is a 0/1 polytope
such that any spectrahedron projecting to it must be the intersection of
a semidefinite cone of dimension 2Ω(n) and an affine space. Our proof
relies on a new technique to rescale semidefinite factorizations.

Keywords: semidefinite extended formulations, extended formulations,
extension complexity.

1 Introduction

The subject of lower bounds on the size of extended formulations has recently
regained a lot of attention. This is due to several reasons. First of all, essen-
tially all NP-Hard problems in combinatorial optimization can be expressed as
linear optimization over an appropriate convex hull of integer points. Indeed,
many past (erroneous) approaches for proving that P=NP have proceeded by
attempting to give polynomial sized linear extended formulations for hard con-
vex hulls (convex hull of TSP tours, indicators of cuts in a graph, etc.). Recent
breakthroughs of Fiorini et al. [2] and Braun et al. [3] have unconditionally ruled
out such approaches for the TSP and Correlation polytope, complementing the
classic result of Yannakakis [4] which gave lower bounds for symmetric extended
formulations. Furthermore, even for polytopes over which optimization is in P, it
is very natural to ask what the “optimal” representation of the polytope is. From
this perspective, the smallest extended formulation represents the “description
complexity” of the polytope in terms of a linear or semidefinite program.
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A (linear) extension of a polytope P ⊆ Rn is another polytope Q ⊆ Rd, so
that there exists a linear projection π with π(Q) = P . The extension complexity
of a polytope is the minimum number of facets in any of its extensions. The
linear extension complexity of P can be thought of as the inherent complexity
of expressing P with linear inequalities. Note that in many cases it is possible
to save an exponential number of inequalities by writing the polytope in higher-
dimensional space. Well-known examples include the regular polygon [5, 6] or
the permutahedron [7]. A (linear) extended formulation is simply a normalized
way of expressing an extension as an intersection of the nonnegative cone with
an affine space; in fact we will use these notions in an interchangeable fashion.
In the seminal work of Yannakakis [8] a fundamental link between the extension
complexity of a polytope and the nonnegative rank of an associated matrix, the
so called slack matrix, was established and it is precisely this link that provided
all known strong lower bounds. It states that the nonnegative rank of any slack
matrix is equal to the extension complexity of the polytope.

Fiorini et al. [2] and Gouveia et al. [9] showed that the above readily gener-
alizes to semidefinite extended formulations. Let P ⊆ Rn be a polytope. Then
a semidefinite extension of P is a spectrahedron Q ⊆ Rd so that there exists a
linear map π with π(Q) = P . While the projection of a polyhedron is polyhedral,
it is open which convex sets can be obtained as projections of spectrahedra. We
can again normalize the representation by considering Q as the intersection of an
affine space with the cone of positive semidefinite (PSD) matrices. The semidefi-
nite extension complexity is then defined as the smallest r for which there exists
an affine space such that its intersection with the cone of r × r PSD matrices
projects to P . We thus ask for the smallest representation of P as a projection
of a spectrahedron. In both the linear and the semidefinite case, one can think of
the extension complexity as the minimum size of the cone needed to represent P .
Yannakakis’s theorem can be generalized to this case [2, 9], and it asserts that
the semidefinite extension complexity of a polytope equals the semidefinite rank
(see Definition 3) of any of its slack matrices.

An important fact in the study of extended formulations is that the encoding
length of coefficients is ignored: only the dimension of the required cone is mea-
sured. Also, a lower bound on the extension complexity of a polytope does not
imply that building a separation oracle for the polytope is computationally hard.
Indeed the perfect matching polytope is conjectured to have super polynomial
extension complexity, while the associated separation problem (which allows us
to compute min-cost perfect matchings) is in P. Thus standard complexity theo-
retic assumptions and limitations do not apply. In fact one of the main features
of extended formulations is that they unconditionally provide lower bounds for
the size of linear and semidefinite programs independent of P vs. NP.

The first class of polytopes with high linear extension complexity was found
by Rothvoss [1]. He showed that “random” 0/1 polytopes have exponential linear
extension complexity via an elegant counting argument. Given that SDP relax-
ations are often more powerful than LP relaxations, an important open question
is if random 0/1 polytopes also have high PSD extension complexity.
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1.1 Related Work

The basis for the study of linear and semidefinite extended formulations is the
work of Yannakakis [8, 4]). The existence of a 0/1 polytope with exponential
extension complexity was shown in [1] which in turn was inspired by work of
Shannon [10]. The first explicit example, answering a long standing open prob-
lem of Yannakakis, was provided in [2] which, together with [9], also lay the
foundation for the study of extended formulations over general closed convex
cones. In [2] it was also shown that there exist matrices with large nonnegative
rank but small semidefinite rank, indicating that semidefinite extended formu-
lations can be exponentially stronger than linear ones, however falling short of
giving an explicit proof. They thereby separated the expressive power of linear
programs from those of semidefinite programs and raised the question:

Does every 0/1 polytope have an efficient semidefinite lift?

Other related work includes [3], where the authors study approximate ex-
tended formulations and provide examples of spectrahedra that cannot be ap-
proximated well by linear programs with a polynomial number of inequalities as
well as improvements thereof in [11]. In [12] the authors prove equivalence of ex-
tended formulations to communication complexity. Recently there has been also
significant progress in terms of lower bounding the linear extension complexity
of polytopes by means of information theory [11, 13]. Similar techniques are not
known for the semidefinite case.

1.2 Contribution

We answer the above question in the negative, i.e., we show the existence of a
0/1 polytope with exponential semidefinite extension complexity. In particular,
we show that the counting argument of [1] extends to the PSD setting.

Our main technical contribution is a new rescaling technique for semidefinite
factorizations of slack matrices. In particular, we show that any rank r semidefi-
nite factorization of a slack matrix with maximum entry size Δ can be “rescaled”
to a semidefinite factorization where each factor has operator norm at most

√
rΔ

(Theorem 6). Our proof proceeds by a variational argument and relies on John’s
theorem on ellipsoidal approximation of convex bodies [14]. We note that in the
linear case proving such a result is far simpler, here the only required observation
is that after independent nonnegative scalings of the coordinates a nonnegative
vector remains nonnegative. However, one cannot in general independently scale
the entries of a PSD matrix while maintaining the PSD property.

Using our rescaling lemma, the existence proof of the 0/1 polytopes with high
semidefinite extension complexity follows in a similar fashion to the linear case as
presented in [1]. In addition to our main result, we show the existence of a poly-
gon with d integral vertices and semidefinite extension complexity Ω(( d

log d )
1
4 ).

The argument follows similarly to [6] adapting [1].
For complete proofs as well as the exact result on the polygon we refer the

reader to http://arxiv.org/abs/1305.3268.

http://arxiv.org/abs/1305.3268
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2 Preliminaries

Let [n] := {1, . . . , n}. In the following we will consider semidefinite extended
formulations. We refer to [2, 3] for a broader overview and proofs.

Let Bn
2 ⊆ Rn denote the n-dimensional euclidean ball, and let Sn−1 = ∂Bn

2

denote the euclidean sphere in Rn. We denote by Sn+ the set of n × n PSD
matrices which form a (non-polyhedral) convex cone. Note that M ∈ Sn+ if and
only if M is symmetric (MT = M) and xTMx ≥ 0 for any x ∈ Rn. Equivalently,
M ∈ Sn+ iff M is symmetric and has nonnegative eigenvalues.

For a matrix A ∈ Rn×n, we denote its trace by Tr[A] =
∑n

i=1 Aii. For a pair
of equally-sized matrices A,B we let 〈A,B〉 = Tr[ATB] denote their trace inner
product and let ‖A‖F =

√
〈A,A〉 denote the Frobenius norm of A. We denote

the operator norm of a matrix M ∈ Rm×n by ‖M‖ = sup‖x‖2=1 ‖Mx‖2. If M is
square and symmetric (MT = M), then ‖M‖ = sup‖x‖2=1 |xTMx|, in which case
‖M‖ denotes the largest eigenvalue of M in absolute value. Lastly, if M ∈ Sn+
then ‖M‖ = sup‖x‖2=1 x

TMx by nonnegativity of the inner expression.
For every positive integer � and any �-tuple of matrices M = (M1, . . . ,M�)

we define ‖M‖∞ = max{‖Mi‖
∣∣ i ∈ [�]}.

Definition 1 (Semidefinite extended formulation). Let K ⊆ Rn be a con-
vex set. A semidefinite extended formulation (semidefinite EF) of K is a system
consisting of a positive integer r, an index set I and a set of triples (ai, Ui, bi)i∈I ⊆
Rn × Sr+ × R such that

K = {x ∈ Rn
∣∣∃Y ∈ Sr+ : aTi x + 〈Ui, Y 〉 = bi ∀i ∈ I}.

The size of a semidefinite EF is the size r of the positive semidefinite matrices Ui.
The semidefinite extension complexity of K, denoted xcSDP(K), is the minimum
size of a semidefinite EF of K.

In order to characterize the semidefinite extension complexity of a polytope
P ⊆ [0, 1]n we will need the concept of a slack matrix.

Definition 2 (Slack matrix). Let P ⊆ [0, 1]n be a polytope, I, J be finite sets,
A = (ai, bi)i∈I ⊆ Rn × R be a set of pairs and let X = (xj)j∈J ⊆ Rn be a set of
points, such that

P = {x ∈ Rn
∣∣ aTi x ≤ bi ∀i ∈ I} = conv (X ) .

Then, the slack matrix of P associated with (A,X ) is given by Sij = bi − aTi xj.

Finally, the definition of a semidefinite factorization is as follows.

Definition 3 (Semidefinite factorization). Let I, J be finite sets, S ∈ RI×J
+

be a nonnegative matrix and r be a positive integer. Then, a rank-r semidefinite
factorization of S is a set of pairs (Ui, V

j)(i,j)∈I×J ⊆ Sr+ × Sr+ such that

Sij = 〈Ui, V
j〉

for every (i, j) ∈ I × J . The semidefinite rank of S, denoted rankPSD(S), is the
minimum r such that there exists a rank r semidefinite factorization of S.
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The semidefinite extension complexity of a polytope can be characterized by
the semidefinite rank of any of its slack matrices, which is a generalization of
Yannakakis’s factorization theorem [8, 4] established in [2, 9].

Theorem 4 (Yannakakis’s Factorization Theorem for SDPs). Let P ⊆
[0, 1]n be a polytope and A = (ai, bi)i∈I and X = (xj)j∈J be as in Definition 2.
Let S be the slack matrix of P associated with (A,X ). Then, S has a rank-r
semidefinite factorization if and only if P has a semidefinite EF of size r. That
is, rankPSD(S) = xcSDP(P ).

Moreover, if (Ui, V
j)(i,j)∈I×J ⊆ Sr+ × Sr+ is a factorization of S, then

P = {x ∈ Rn
∣∣∃Y ∈ Sr+ : aTi x + 〈Ui, Y 〉 = bi ∀i ∈ I}

and the pairs (xj , V
j)j∈J satisfy aTi xj + 〈Ui, V

j〉 = bi for every i ∈ I.
In particular, the extension complexity is independent of the choice of the slack

matrix and the semidefinite rank of all slack matrices of P is identical.

The following well-known theorem due to [14] lies at the core of our rescaling
argument. We state a version that is suitable for the later application. Recall
that Bn

2 denotes the n-dimensional euclidean unit ball. A probability vector is a
vector p ∈ Rn

+ such that p(1) + p(2) + · · · + p(n) = 1. For a convex set K ⊆ Rn,
we let aff(K) denote the affine hull of K, the smallest affine space containing
K. We let dim(K) denote the linear dimension of the affine hull of K. Last, we
let relbd(K) denote the relative boundary of K, i.e., the topological boundary
of K with respect to its affine hull aff(K).

Theorem 5 ([14]). Let K ⊆ Rn be a centrally symmetric convex set with
dim(K) = k. Let T ∈ Rn×k be such that E = T · Bk

2 = {Tx
∣∣‖x‖ ≤ 1} is

the smallest volume ellipsoid containing K. Then, there exist a finite set of
points Z ⊆ relbd(K) ∩ relbd(E) and a probability vector p ∈ RZ

+ such that∑
z∈Z

p(z) zzT =
1

k
TTT.

We will need the following lemma and corollary, whose proofs can be found
in the full version of this paper.

Lemma 1. Let r be a positive integer, X ∈ Sr+ be a non-zero positive semidefi-
nite matrix. Let λ1 = ‖X‖, W denote the λ1-eigenspace of X. Then for Z ∈ Rr×r

symmetric,
d

dε
‖X + εZ‖

∣∣∣∣
ε=0

= max
w∈W
‖w‖=1

wTZw

Recall that for a square matrix X , its exponential is given by

eX =
∞∑
k=0

1

k!
Xk = I + X +

1

2
X2 + · · · .
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Corollary 1. Let r be a positive integer, X ∈ Sr+ be a non-zero positive semidef-
inite matrices. Let λ1 = ‖X‖, W denote the λ1-eigenspace of X. Then for
Z ∈ Rr×r symmetric,

d

dε

∥∥eεZXeεZ
∥∥∣∣∣∣

ε=0

= 2λ1 max
w∈W

‖w‖2=1

wTZw

3 Rescaling Semidefinite Factorizations

A crucial point will be the rescaling of a semidefinite factorization of a nonneg-
ative matrix M . In the case of linear extended formulations an upper bound
of Δ on the largest entry of a slack matrix S implies the existence of a mini-
mal nonnegative factorization S = UV where the entries of U, V are bounded
by

√
Δ. This ensures that the approximation of the extended formulation can

be captured by means of a polynomial-size (in Δ) grid. In the linear case, we
note that any factorization S = UV can be rescaled by a nonnegative diago-
nal matrix D where S = (UD)(D−1U) and the factorization (UD,D−1V ) has
entries bounded by

√
Δ. However, such a rescaling relies crucially on the fact

that after independent nonnegative scalings of the coordinates a nonnegative
vector remains nonnegative. However, in the PSD setting, it is not true that the
PSD property is preserved after independent nonnegative scalings of the matrix
entries. We circumvent this issue by showing that a restricted class of transfor-
mations, i.e. the symmetries of the semidefinite cone, suffice to rescale any PSD
factorization such that the largest eigenvalue occurring in the factorization is
bounded in terms of the maximum entry in M and the rank of the factorization.

Theorem 6 (Rescaling semidefinite factorizations). Let Δ be a positive
real number, I, J be finite sets, M ∈ [0, Δ]I×J be a nonnegative matrix and
r := rankPSDM . Then, there exists a semidefinite factorization (Ui, V

j)(i,j)∈I×J

of M (i.e., Mij = 〈Ui, V
j〉 and Ui, Vj ∈ Sr+) such that maxi∈I ‖Ui‖ ≤

√
rΔ and

maxj∈J

∥∥V j
∥∥ ≤

√
rΔ.

Proof: Let us denote by Er
M the set of rank-r semidefinite factorizations (U,V)

of M , where U = (Ui)i∈I and V = (V j)j∈J . We study the potential func-
tion ΦM : Er

M → R defined by ΦM (U,V) = ‖U‖∞ · ‖V‖∞. In particular, we
analyze how this function behaves under small perturbations of its minimizers.

To begin, we first argue that there exists a minimizer of ΦM that satisfies
‖U‖∞ = ‖V‖∞. For an invertible matrix A ∈ Rr×r and semidefinite factoriza-
tion (U,V) ∈ Er

M , notice that the tuple

(U′,V′) =
(
(ATUiA)mi=1, (A

−1V jA−T)nj=1

)
is also a semidefinite factorization of M . To see this observe that by invariance
of the trace function under similarity transformations (Tr[BWB−1] = Tr [W ]),

〈ATUiA,A−1V jA−T〉 = 〈Ui, V
j〉 = Mij .



On the Existence of 0/1 Polytopes with High Semidefinite Extension 223

For A := (‖V‖∞ / ‖U‖∞)1/4 · I it is then easy to see that we obtain a factor-
ization (U′,V′) of M such that

‖U′‖∞ = ‖V′‖∞ = ‖U‖1/2∞ ‖V‖1/2∞ .

It follows that ΦM (U′,V′) = ΦM (U,V). By standard compactness argument it
follows that the function ΦM has a minimizer (U,V) such that ‖U‖∞ = ‖V‖∞
as claimed. Let us fix such a factorization (Ũ, Ṽ) and let

μ = ‖Ũ‖∞ = ‖Ṽ‖∞ = ΦM (Ũ, Ṽ)1/2.

Our goal is to obtain a contradiction by assuming that μ2 > Δr + τ for
some τ > 0. To this end we bound the value of ΦM at infinitesimal perturbations
of the point (Ũ, Ṽ). For a symmetric matrix Z and parameter ε > 0 the type of
perturbations we consider are those defined by the invertible matrix e−εZ , which
will take the role of the matrix A above. Notice that if Z is symmetric, then so
is e−εZ . We show that there exists a matrix Z such that for every U ∈ {Ũi

∣∣ i ∈ I}
such that ‖U‖ = μ, we have∥∥e−εZUe−εZ

∥∥ ≤ μ− 2μ

r
ε + O(ε2), (1)

while at the same time for every V ∈ {Ṽ j
∣∣ j ∈ J} such that ‖V ‖ = μ, we have∥∥eεZV eεZ

∥∥ ≤ μ +
2Δ

μ
ε + O(ε2). (2)

This implies that there is a point (U′,V′) in the neighborhood of the mini-
mizer (Ũ, Ṽ) where

ΦM (U′,V′) < μ2 − 2τ

r
ε + O(ε2).

Thus, for small enough ε > 0, we have ΦM (U′,V′) < μ2, a contradiction to the
minimality of μ. It suffices to consider the factorization matrices with the largest
eigenvalues as small perturbations cannot change the eigenvalue structure. To
prove the theorem we show the existence of such a matrix Z.

Let Z ⊆ Sr−1 be a finite set of unit vectors such that every z ∈ Z is a
μ-eigenvector of at least one of the matrices Ũi for i ∈ I. Let p ∈ RZ

+ be a
probability vector (i.e.,

∑
z∈Z p(z) = 1) and define the symmetric matrix

Z =
∑
z∈Z

p(z) zzT. (3)

Claim. Let V ∈ {Ṽ j
∣∣ j ∈ J} be one of the factorization matrices such that

‖V ‖ = μ. Then,
d

dε

∥∥eεZV eεZ
∥∥∣∣∣∣

ε=0

≤ 2Δ

μ
. (4)



224 J. Briët, D. Dadush, and S. Pokutta

Proof of claim: Let V ⊆ Sr−1 be the set of eigenvectors of V that have
eigenvalue μ. Then, Corollary 1 gives

d

dε

∥∥eεZV eεZ
∥∥∣∣∣∣

ε=0

= 2μmax
v∈V

vTZv = 2μmax
v∈V

∑
z∈Z

p(z)(zTv)2 (5)

Fix z ∈ Z and v ∈ V . Let U ∈ {Ũ1, . . . , Ũm} be such that z is a μ-eigenvector
of U . Let U =

∑
k∈[r] λkuku

T
k and V =

∑
�∈[r] γ�v�v

T
� be spectral decompositions

of U and V , respectively, and recall that the uk are pairwise orthogonal as are
the v�. Note that since z is an eigenvector of U and v is an eigenvector of V , we
may choose spectral decompositions of U and V such that u1 = z and v1 = v
respectively. Then, by our assumed bounds on the maximum entry-size of the
matrix M and the fact that λk and γ� are nonnegative (since U and V are PSD),

Δ ≥ Tr
[
UTV

]
=

∑
k,�∈[r]

λkγ�(u
T
kv�)

2 ≥ λ1γ1(uT
1 v1)2 = μ2(zTv)2

Putting it all together, we get that

2μmax
v∈V

∑
z∈Z

p(z)(zTv)2 ≤ 2μmax
v∈V

∑
z∈Z

p(z)
Δ

μ2
= 2μmax

v∈V

Δ

μ2
=

2Δ

μ
,

as needed. �

Claim. There exists a choice of unit vectors Z and probabilities p such that the
following holds. Let I ′ = {i ∈ I

∣∣ ‖Ũi‖ = μ}. Then, for Z as in (3) we have

d

dε

∥∥∥e−εZŨie
−εZ

∥∥∥∣∣∣∣
ε=0

≤ −2μ

r
∀i ∈ I ′. (6)

Proof of claim: For every i ∈ I ′, let Ui ⊆ Rr be the vector space spanned
by the μ-eigenvectors of Ũi. Define the convex set K = conv

(⋃
i∈I′(Ui ∩Br

2)
)
.

Notice that K is centrally symmetric. Let k = dim(K), and let T ∈ Rr×k denote
a linear transformation such that that E = TBk

2 is the smallest volume ellipsoid
containing K. By John’s Theorem, there exists a finite set Z ⊆ relbd(K) ∩
relbd(E) and a probability vector p ∈ RZ

+ such that

Z =
∑
z∈Z

p(z) zzT =
1

k
TTT. (7)

Notice that each z ∈ Z must be an extreme point of K (as it is one for E) and
the set of extreme points of K is exactly

⋃
i∈I′(Ui ∩Sr−1). Hence, each z ∈ Z is

a unit vector and at the same time a μ-eigenvector of some Ũi, i ∈ I ′.
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For i ∈ I ′, by Corollary 1 and (7) we have that

d

dε

∥∥∥e−εZ Ũie
−εZ

∥∥∥∣∣∣∣
ε=0

= 2μmax{uT(−Z)u
∣∣u ∈ Ui ∩ Sr−1}

= −2μmin{uTZu
∣∣u ∈ Ui ∩ Sr−1}

= −2μ

k
min{uTTTTu

∣∣u ∈ Ui ∩ Sr−1}

≤ −2μ

r
min{

∥∥TTu
∥∥2
2

∣∣u ∈ Ui ∩ Sr−1}.

Since E ⊇ K ⊇ (Ui ∩ Sr−1), for any u ∈ Ui ∩ Sr−1, we have∥∥TTu
∥∥
2

= sup
x∈E

xTu ≥ sup
y∈K

yTu ≥ uTu = 1 as needed.

�

Notice that the first claim implies (2) and the second claim implies (1). Hence,
our assumption μ2 > Δr + τ contradicts that μ is the minimum value of ΦM . �

4 0/1 Polytopes with High Semidefinite xc

The lower bound estimation will crucially rely on the fact that any 0/1 polytope
in the n-dimensional unit cube can be written as a linear system of inequalities
Ax ≤ b with integral coefficients where the largest coefficient is bounded by
(
√
n + 1)n+1 ≤ 2n log(n), see e.g., [15, Corollary 26]. Using Theorem 6 the proof

follows along the lines of [1]; for simplicity and exposition we chose a compatible
notation. We use different estimation however and we need to invoke Theorem 6.
In the following let Sr+(α) =

{
X ∈ Sr+ | ‖X‖ ≤ α

}
.

Lemma 2 (Rounding lemma). For a positive integer n set Δ := (n+1)(n+1)/2.
Let X ⊆ {0, 1}n be a nonempty set, let r := xcSDP(conv (X )) and let δ ≤(
16r3(n + r2)

)−1. Then, for every i ∈ [n + r2] there exist:

1. an integer vector ai ∈ Zn such that ‖ai‖∞ ≤ Δ,
2. an integer bi such that |bi| ≤ Δ,
3. a matrix Ui ∈ Sr+(

√
rΔ) whose entries are integer multiples of δ/Δ and have

absolute value at most 8r3/2Δ, such that

X =
{
x ∈ {0, 1}n

∣∣ ∃Y ∈ Sr+(
√
rΔ) :

∣∣bi−aTi x−〈Y, Ui〉
∣∣ ≤ 1

4(n + r2)
∀i ∈ [n+r2]

}
.

Proof: For some index set I let A = (ai, bi)i∈I ⊆ Zn × Z be a non-redundant
description of conv (X ) (i.e., |I| is minimal) such that for every i ∈ I, we have
‖ai‖∞ ≤ Δ and |bi| ≤ Δ. Let J be an index set for X = (xj)j∈J and let S ∈ ZI×J

≥0

be the slack matrix of conv (X ) associated with the pair (A,X ). The largest entry
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of the slack matrix is at most Δ. By Yannakakis’s Theorem (Theorem 4) there
exists a semidefinite factorization (Ui, V

j)(i,j)∈I×J ⊆ Sr+ × Sr+ of S such that

conv (X ) = {x ∈ Rn
∣∣ ∃Y ∈ Sr+ : aTi x + 〈Ui, Y 〉 = bi ∀i ∈ I}.

By Theorem 6 we may assume that ‖Ui‖ ≤
√
rΔ for every i ∈ I and

∥∥V j
∥∥ ≤√

rΔ for every j ∈ J . We will now pick a subsystem of maximum volume. For
a linearly independent set of vectors x1, . . . , xk ∈ Rn, we let vol ({x1, . . . , xk})
denote the k-dimensional parallelepiped volume

vol

(
k∑

i=1

aixi

∣∣ a1, . . . , ak ∈ [0, 1]

)
= det((xT

i xj)ij)
1
2 .

If the vectors are dependent, then by convention the volume is zero. Let W =
span

{
(ai, Ui)

∣∣ i ∈ I
}

and let I ′ ⊆ I be a subset of size |I ′| = dim(W) such that
vol

(
{(ai, Ui)

∣∣ i ∈ I ′}
)

is maximized. Note that |I ′| ≤ n + r2.
For any positive semidefinite matrix U ∈ Sr+ with spectral decomposition

U =
∑
k∈[r]

λk uku
T
k , we let Ū =

∑
k∈[r]

λ̄k ūkū
T
k

be the matrix where for every k ∈ [r], the value of λ̄k is the nearest integer
multiple of δ/Δ to λk and ūk is the vector we get by rounding each of the
entries of uk to the nearest integer multiple of δ/Δ. Since each uk is a unit
vector, the matrices uku

T
k have entries in [−1, 1] and it follows that U has entries

in r ‖U‖ [−1, 1]. Similarly, since each ūk has entries in (1 + δ/Δ)[−1, 1] each of
the matrices ūkū

T
k has entries in (1 + δ/Δ)2[−1, 1], and it follows that Ū has

entries in r(‖U‖ + δ/Δ)(1 + δ/Δ)2[−1, 1]. In particular, for every i ∈ I ′, the
entries of Ūi are bounded in absolute value by

r
(
‖Ui‖ + δ/Δ

)
(1 + δ/Δ)2 ≤ r(

√
rΔ + δ/Δ)(1 + δ/Δ)2 ≤ 8r3/2

√
Δ.

We use the following simple claim.

Claim. Let U and Ū be as above. Then, ‖Ū − U‖2 ≤ 4δr2/
√
Δ

Define the set

X̄ =
{
x ∈ {0, 1}n

∣∣ ∃Y ∈ Sr+(
√
rΔ) :

∣∣bi − aTi x− 〈Ūi, Y 〉
∣∣ ≤ 1

4(n + r2)
∀i ∈ I ′

}
.

We claim that X̄ = X , which will complete the proof.
We will first show that X ⊆ X̄ . To this end, fix an index j ∈ J . By Theorem 4

we can pick Y = V j ∈ Sr+ such that aTi xj + 〈Ui, Y 〉 = bi for every i ∈ I ′.
Moreover, ‖Y ‖ =

∥∥V j
∥∥ ≤

√
rΔ. This implies that for every i ∈ I ′, we have∣∣bi − aTi xj − 〈Ūi, Y 〉

∣∣ =
∣∣bi − aTi xj − 〈Ui, Y 〉 + 〈Ūi − Ui, Y 〉

∣∣
≤

∥∥Ūi − Ui

∥∥
F
‖Y ‖F ≤ 4δr3,
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where the second line follows from the Cauchy-Schwarz inequality, the above
claim, and ‖Y ‖F ≤

√
r ‖Y ‖ ≤ r

√
Δ. Now, since 4δr3 ≤ 4r3/(16r3(n + r2)) =

1/(4(n + r2)) we conclude that xj ∈ X̄ and hence X ⊆ X̄ .
It remains to show that X̄ ⊆ X . For this we show that whenever x ∈ {0, 1}n

is such that x /∈ X it follows that x /∈ X̄ . To this end, fix an x ∈ {0, 1}n such
that x 	∈ X . Clearly x /∈ conv (X ) and hence, there must be an i∗ ∈ I such that
aTi∗x > bi∗ . Since x, ai∗ and bi∗ are integral we must in fact have aTi∗x ≥ bi∗ + 1.
We express this violation in terms of the above selected subsystem corresponding
to the set I ′.

There exist unique multipliers ν ∈ RI′
such that

(
ai∗ , Ui∗

)
=

∑
i∈I′ νi(ai, Ui).

Observe that this implies that
∑

i∈I′ νibi = bi∗ ; otherwise it would be impossible
for aTi x + 〈Ui, Y 〉 = bi to hold for every i ∈ I and hence we would have X = ∅
(which we assumed is not the case).

Using the fact that the chosen subsystem I ′ is volume maximizing and using
Cramer’s rule,

|νi| =
vol ({(at, Ut) | t ∈ I ′ \ {i} ∪ {i∗}})

vol ({(at, Ut) | t ∈ I ′})
≤ 1.

For any Y ∈ Sr+(
√
rΔ) using 〈Ui∗ , Y 〉 ≥ 0 it follows thus

1 ≤
∣∣aTi∗x− bi∗ + 〈Ui∗ , Y 〉

∣∣ =

∣∣∣∣∣∑
i∈I′

νi(a
T
i x− bi + 〈Ui, Y 〉)

∣∣∣∣∣
≤

∑
i∈I′

|νi|
∣∣aTi x− bi + 〈Ui, Y 〉

∣∣ ≤ (n + r2) max
i∈I′

∣∣aTi x− bi + 〈Ui, Y 〉
∣∣ .

Using a similar estimation as above, for every i ∈ I ′, we have∣∣aTi x− bi + 〈Ui, Y 〉
∣∣ = |aTi x− bi + 〈Ūi, Y 〉 + 〈Ui − Ūi, Y 〉|

≤ |aTi x− bi + 〈Ūi, Y 〉| +
1

4(n + r2)
.

Combining this with 1 ≤ (n + r2) maxi∈I′
∣∣aTi x− bi + 〈Ui, Y 〉

∣∣ we obtain

1

2(n + r2)
≤ 1

n + r2
− 1

4(n + r2)
≤ max

i∈I′

∣∣aTi x− bi + 〈Ūi, Y 〉
∣∣ ,

and so x /∈ Y .
Via padding with empty rows we can ensure that |I ′| = n + r2 as claimed. �

Using Lemma 2 we can establish the existence of 0/1 polytopes that do not
admit any small semidefinite extended formulation following the proof of [1,
Theorem 4].

Theorem 7. For any n ∈ N there exists X ⊆ {0, 1}n such that

xcSDP(conv (X )) = Ω

(
2n/4

(n logn)1/4

)
.
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Abstract. In the two-dimensional range minimum query problem an
input matrix A of dimension m× n, m ≤ n, has to be preprocessed into
a data structure such that given a query rectangle within the matrix, the
position of a minimum element within the query range can be reported.
We consider the space complexity of the encoding variant of the problem
where queries have access to the constructed data structure but can not
access the input matrix A, i.e. all information must be encoded in the
data structure. Previously it was known how to solve the problem with
space O(mnmin{m, log n}) bits (and with constant query time), but the
best lower bound was Ω(mn logm) bits, i.e. leaving a gap between the
upper and lower bounds for non-quadratic matrices. We show that this
space lower bound is optimal by presenting an encoding scheme using
O(mn logm) bits. We do not consider query time.

1 Introduction

We study the problem of preprocessing a two dimensional array (matrix) of
elements from a totally ordered set into a data structure that supports range
minimum queries (RMQs) asking for the position of the minimum element within
a range in the array. More formally, we design a data structure for a matrix
A[1..m] × [1..n] with N = mn elements, and each RMQ asks for the position of
the minimum element within a range [i1..i2]×[j1..j2]. We refer to this problem as
the 2D-RMQ problem, in contrast with the 1D-RMQ problem, where the input
array is one-dimensional.

Study of the 1D-RMQ and 2D-RMQ problems dates back to three decades ago,
when data structures of linear size were proposed for both of the problems [8,3].
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Both problems have known applications including information retrieval, compu-
tational biology, and databases [4]. In this paper, we study the space-efficiency of
the 2D-RMQ data structures.

1.1 Previous Work

There exists a long list of articles on the 1D-RMQ problem which resolve vari-
ous aspects of the problem including the space-efficiency of the data structures.
However, the literature of the 2D-RMQ problem is not so rich in space-efficient
data structures. In the following, we review the previous results on both of the
problems that deal with the space-efficiency of data structures.

1D-RMQs. Let A be an input array with n elements which we preprocess into a
data structure that supports 1D-RMQs on A. A standard approach to solve this
problem is to make the Cartesian tree of A, which is a binary tree with n nodes
defined as follows: the root of the Cartesian tree is labeled by i, where A[i] is
the minimum element in A; the left and right subtrees of the root are recursively
the Cartesian trees of A[1..i− 1] and A[i + 1..n] respectively.

The property of the Cartesian tree is that the answer to a query with range [i..j]
is the label of the lowest common ancestor (LCA) of the nodes with labels i and j.
Indeed, the Cartesian tree stores a partial ordering between the elements that is
appropriate to answer 1D-RMQs. This property has been utilized to design data
structures that support 1D-RMQs in constant time [8,9].

The space usage of the 1D-RMQ data structures that rely on Cartesian trees
is the amount of space required to represent a Cartesian tree plus the size of an
LCA data structure. There exists a one-to-one correspondence between the set
of Cartesian trees and the set of different arrays, where two arrays are different
iff there exists a 1D-RMQ with different answers on these two arrays. The total
number of binary trees with n nodes is

(
2n
n

)
/(n + 1), and thus the logarithm of

this number yields an information-theoretic lower bound on the number of bits
required to store a 1D-RMQ data structure, which is 2n−Θ(log n) bits.

Storing the Cartesian tree using the standard pointer-based representation
and a linear-space LCA data structure takes O(n log n) bits. There have been
a number of attempts to design 1D-RMQ data structures of size close to the
lower bound. Sadakane [10] and then Fischer and Heun [7] improved the space
to 4n + o(n) and 2n + o(n) bits respectively by representing the Cartesian tree
using succinct encoding of the topology of the tree and utilizing the encoding to
support LCA queries (in fact, Fischer and Heun [7] proposed a representation
of another tree which is a transformed Cartesian tree [5]). Both of these data
structures support 1D-RMQs in O(1) time.

2D-RMQs. A standard two-level range tree along with a 1D-RMQ data structure
can be used to design a 2D-RMQ data structure. This method was used to give a
data structure of size O(N logN) that supports 2D-RMQs in O(logN) time [8].
The state of the art 1D-RMQ data structures can improve the space to O(N).

The literature contains a number of results that have advanced the performance
of 2D-RMQ data structures in terms of preprocessing and query times [3,1], which
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ended in a brilliant 2D-RMQ data structure of sizeO(N) (that is,O(N logN) bits)
which can be constructed in O(N) time and supports queries in O(1) time [11].

Although the complexity of the preprocessing and query times of 2D-RMQ
data structures have been settled, the space complexity of 2D-RMQ data struc-
tures has been elusive.

In contrast with 1D-RMQs where the partial ordering of elements can be en-
coded in linear number of bits using Cartesian trees, it has been shown that encod-
ing partial ordering of elements for 2D-RMQs would require super-linear number
of bits (there is no “Cartesian tree-like” data structure for 2D-RMQs) [6]. The
number of different n × n matrices is Ω((n4 !)n/4), where two matrices are differ-
ent if there exists a 2D-RMQ with different answers on the two matrices [6]. This
counting argument implies the lower bound Ω(N logN) on the number of bits
required to store a 2D-RMQ data structure on an n × n matrix with N = n2

elements.
The above counting argument was later extended to rectangular m × n ma-

trices where m ≤ n, yielding the information-theoretic lower bound Ω(N logm)
bits on the space of 2D-RMQ data structures [2]. This lower bound raised the
question of encoding partial ordering of elements for 2D-RMQs using space close
to the lower bound. In other words, the new question shifted the focus from de-
signing 2D-RMQ data structures with efficient queries to designing encoding
data structures, which we simply call encodings, that support 2D-RMQs dis-
regarding the efficiency of queries. In fact, the fundamental problem here is to
discover whether the partial ordering of elements for 2D-RMQs can be encoded
in O(N logm) bits.

There exist simple answers to the above question which do not really satisfy
an enthusiastic mind. On the one hand, we can ensure that each element in
A takes O(logN) bits in the encoding data structure by sorting the elements
and replacing each element with its rank (recall that a query looks for the posi-
tion of minimum rather than its value). This provides a simple encoding of size
O(N logN) bits, while this upper bound was already achieved by all the linear
space 2D-RMQ data structures [3,1,11]. On the other hand, we can make a data
structure of size O(Nm) bits which improves the size of the first encoding for
m = o(logn). This latter encoding is achieved by taking the multi-row between
every two rows i and j; making an array R[1..n] out of each multi-row by as-
signing the minimum of the k-th column of the multi-row to R[k]; encoding R
using a 1D-RMQ data structure of size O(n) bits; and making a 1D-RMQ data
structure of size O(m) bits for each column of A. A 2D-RMQ can be answered by
finding the appropriate multi-row, computing the column of the multi-row with
minimum element, and computing the minimum element in the column within
the query range [2].

1.2 Our Results

The 2D-RMQ encodings mentioned above leave a gap between the lower bound
Ω(N logm) and the upper bound O(N · min{logN,m}) on the number of bits
stored in a 2D-RMQ encoding. A quick comparison between the encoding com-
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plexity of 1D-RMQ and 2D-RMQ data structures can convince the reader that
the optimal number of bits per element stored in an encoding should be a func-
tion of m, at least for small enough m. For example, we should not look for
functions such as O(N log logN) as the encoding complexity of the problem.
While the upper bound O(N ·min{logN,m}) would provide such a characteris-
tic, it is often hard to believe the minimum of two functions as the complexity
of a problem. In this work, we prove that the encoding complexity of 2D-RMQ
data structures is Θ(N logm) bits. As previously mentioned, we only consider
the encoding complexity of the problem, and a problem that remains open from
this paper is how to actually support queries efficiently, ideally in O(1) time.

We describe our solution in three steps, incrementally improving the space.
First we present a solution using space O(N(logm+ log log n)) bits, introducing
the notion of components. We then improve this to an O(N logm log∗ n) bit
solution by bootstrapping our first solution and building an O(log∗ n) depth
hierarchical partitioning of our components. Finally, we arrive at an O(N logm)
bit solution using a more elaborate representation of a hierarchical decomposition
of components of depth O(log n).

1.3 Preliminaries

We formally define the problem and then we introduce the notation used in the
paper. The input is assumed to be an m × n matrix A, where m ≤ n. We let
N = m · n. The j-th entry in row i of A is denoted by A[i, j], where 1 ≤ i ≤ m
and 1 ≤ j ≤ n. For a query range q = [i1, i2]× [j1, j2], the query RMQ(q) reports
the index (i, j) of A containing the minimum value in rows i1..i2 and columns
j1..j2, i.e.

RMQ(q) = argmin(i,j)∈qA[i, j] .

For two cells c1 and c2 we define Rect[c1, c2] to be the minimal rectangle con-
taining c1 and c2, i.e. c1 and c2 are at the opposite corners of Rect[c1, c2].

We assume all values of a matrix to be distinct, such that RMQ(q) is always
a unique index into A. This can e.g. be achieved by ordering identical matrix
values by the lexicographical ordering of the indexes of the corresponding cells.

2 Tree Representation

The basic approach in all of our solutions is that we convert our problem on
the matrix A into a tree representation problem, where the goal is to find a tree
representation that can be represented within small space.

For a given input matrix A, we build a left-to-right ordered tree T with N
leaves, where each leaf of T corresponds to a unique cell of A and each internal
node of T has at least two children. Furthermore, the tree should satisfy the
following crucial property:

Requirement 1. For any rectangular query q, consider the leaves of T cor-
responding to the cells contained in q. The answer to the query q must be the
rightmost of these leaves.
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Trivial solution. The most trivial solution is to build a tree of depth one, where
all cells/leaves are the children of the root and sorted left-to-right in decreasing
value order. A query q will consist of a subset of the leaves, and the rightmost
of these leaves obviously stores the minimal value within q, since the leaves are
sorted in decreasing order with respect to values. To represent such a tree we
store for each leaf the index (i, j) of the corresponding cell, i.e. such a tree can
be represented by a list of N pairs, each requiring �logm� + �logn� bits. Total
space usage is O(N logn) bits.

Note that at each leaf we explicitly store the index of the corresponding cell
in A, which becomes the space bottleneck of the representation: The left to right
ordering of the leaves always stores the permutation of all matrix values, i.e.
such a representation will require Ω(N · logN) bits in the worst-case. In all
the following representations we circumvent this bottleneck by not storing the
complete total order of all matrix values and by only storing relative positions
to other (already laid out) cells of A.

The structure (topology) of any tree T with N leaves can be described using
O(N) bits (since all internal nodes are assumed to be at least binary), e.g. using
a parenthesis notation. From the known lower bound of Ω(N logm) bits for
the problem, it follows that the main task will be to find a tree T satisfying
Requirement 1, and where the mapping between leaves of T and the cells of A
can be stored succinctly.

3 Space O(N(logm + log logn)) Solution

We present a solution using space O(N(logm + log logn)) bits, i.e. it achieves
optimal space O(N logm) for logn = mO(1). The idea is to build a tree T of
depth two in which the nodes C1, C2, . . . , Ck with depth one, from left-to-right,
form a partitioning of A. Let Ci denote both a node in T and the subset of cells in
A corresponding to the leaves/cells in the subtree of T rooted at Ci. We call such
a Ci a component. We construct C1, . . . , Ck incrementally from left-to-right such
that Requirement 1 is satisfied. The children of Ci (i.e. leaves/cells) are sorted in
decreasing value ordered left-to-right. We first describe how to construct C1, and
then describe how to construct Ci given C1, . . . , Ci−1, generalizing the notation
and algorithm used for constructing C1. In the following we let α denote a
parameter of our construction. We will later set α = �logN/ log logN�.

Constructing C1. To construct C1 we need the following notation: Two cells in
A are adjacent if they share a side, i.e. (i, j) is adjacent to the (up to) four cells
(i− 1, j), (i + 1, j), (i, j − 1) and (i, j + 1). Given a set of cells S ⊆ A, we define
the undirected graph GS = (S,E), where E ⊆ S×S and (c1, c2) ∈ E if and only
if c1 and c2 are adjacent cells in A.

Let S be an initially empty set. We now incrementally include the cells of A in
S in decreasing order of the value of the cells. While all the connected components
of GS contain less than α cells, we add one more cell to S. Otherwise the largest
component C contains at least α cells, and we terminate and let C1 = C. In the
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7.5.9.2.︸ ︷︷ ︸
spanning tree edges

C1︷ ︸︸ ︷
L1.L2.

C2︷ ︸︸ ︷
L1.L0.

C3︷ ︸︸ ︷
R2.L0.L2.L0.︸ ︷︷ ︸

local leaf index

C1︷ ︸︸ ︷
0.2.1.

C2︷ ︸︸ ︷
0.1.2.

C3︷ ︸︸ ︷
4.2.0.1.3

Representation of A

Fig. 1. Construction of C1, . . . , C4 for a 3 × 4 matrix and α = 3: In the input matrix
(left) subscripts indicate the component numbers. In the tree T (middle) the leaves
are labeled with the corresponding values of the cells in A. The spanning trees for
C1, . . . , C4 are shown (right). In the final representation of A (bottom) “.” is not part
of the stored representation.

example in Fig. 1, where α = 3, we terminate when S = {12, 11, 10, 9, 8} and GS

contains the two components {11, 9} and {12, 10, 8}, and let C1 be the largest
of these two components.

We first prove the size of the constructed component C1.

Lemma 1. |C1| ≤ 4α− 3.

Proof. Let S be the final set in the construction process of C1, such that S
contains a connected component of size at least α. Before inserting the last cell
c into S, all components in GS\{c} have size at most α− 1. Since c is adjacent to
at most four cells, the degree of c in GS is at most four, i.e. including c in S can
at most join four existing components in GS\{c}. It follows that the component
C1 in GS containing c contains at most 1 + 4(α− 1) cells. �


Next we will argue that the partition of A into C1 and R = A \C1 (R will be
the leaves to the right of C1 in T ) supports Requirement 1, i.e. for any query q
that overlaps both with C1 and R there is an element c ∈ q ∩R that is smaller
than all elements in q ∩C1, implying that the answer is not in C1 and will be to
the right of C1 in T . Since by construction all values in R \ S are smaller than
all values in S ⊇ C1, it is sufficient to prove that there exists a c ∈ (q ∩R) \ S.

Lemma 2. For a query q with q ∩ C1 	= ∅ and q ∩ R 	= ∅, there exists a cell
c ∈ (q ∩R) \ S.

Proof. Assume by contradiction that q ⊆ S. Then each cell in q is either in C1

or in S \ C1, and by the requirements of the lemma and the assumption q ⊆ S,
there exists at least one cell in both q ∩ C1 and (q ∩ S) \ C1. Since each cell in
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c1

c

c2

A

r

Fig. 2. The edges of G
(L)
A\L. The cells of L are shown as grey.

q belongs to one of these sets, there must exist two adjacent cells c1 and c2 in q
such that c1 ∈ q ∩ C1 and c2 ∈ (q ∩ S) \ C1. But since c1 and c2 are adjacent,
both in S, and c1 ∈ C1, then c2 must also be in C1 which is a contradiction. �


Constructing Ci. Given how to construct C1, we now give a description of how
to construct Ci when C1, . . . , Ci−1 have already been constructed. To construct
Ci we let L = C1 ∪ · · · ∪ Ci−1. We generalize the notion of adjacency of cells to
L-adjacency: Given a set L, two cells c1 and c2 in A \ L are L-adjacent if and
only if Rect[c1, c2] \ {c1, c2} ⊆ L. Note that the adjacency definition we used to
construct C1 is equivalent to ∅-adjacency. Finally given a set S ⊆ A\L, we define

the undirected graph G
(L)
S = (S,E), where (c1, c2) ∈ E if and only if c1 and c2

are L-adjacent. See Fig. 2 for an example of edges defined by L-adjacency.
The algorithm for constructing C1 now generalizes as follows to Ci: Start with

an empty set S. Consider the cells in A\L in decreasing value order and add the

cells to S until the largest connected component C of G
(L)
S has size at least α

(or until all elements in A \L have been added to S). We let Ci = C. Note that
with L = ∅ this algorithm is exactly the algorithm for constructing C1. Fig. 1
illustrates an example of such a partitioning of a 3 × 4 matrix for α = 3.

Lemma 3. All nodes in a graph G
(L)
S have degree at most 2m.

Proof. Let G
(L)
S = (S,E). Consider a cell c ∈ S. For any row r, there exists at

most one cell c1 ∈ S in row r to the left of c (or immediately above c), such that
(c, c1) ∈ E. Otherwise there would exist two cells c1 and c2 in S to the left of c
in row r, where c1 is to the left of c2 (see Fig. 2). But then c2 ∈ Rect[c, c1], i.e. c
and c1 would not be L-adjacent and (c, c1) /∈ E. It follows that for any row, at
most one cell to the left and (symmetrically) one cell to the right of c can have

an edge to c in G
(L)
S . �


The following two lemmas generalize Lemmas 1 and 2 for C1 to Ci.

Lemma 4. |Ci| ≤ m(α− 1) + α ≤ 2mα.

Proof. Since the last cell c added to S is in Ci and by Lemma 3 has degree at

most 2m in G
(L)
S , and before adding c to S all components had size at most

α− 1, it follows that |Ci| ≤ 1 + 2m(α− 1) ≤ 2mα. This bound can be improved
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to 1 + (m+ 1)(α− 1) by observing that adding c can at most join m+ 1 existing
components: if c is adjacent to two cells c1 and c2 in the same row, one in a
column to the left and one in a column to the right of c, then c1 and c2 must be
L-adjacent, provided if c is not in the same row as c1 and c2, i.e. c1 and c2 were
already in the same component before including c. �


We next prove the generalization of Lemma 2 to Ci. Let L = C1 ∪ · · · ∪Ci−1

be the union of the already constructed components (to the left of Ci) and let
R = A \ {C1 ∪ · · · ∪Ci} be the set of cells that eventually will be to the right of
Ci in T . The following lemma states that if a query q contains one element from
each of Ci and R, then there exists a cell c ∈ q ∩ R with smaller value than all
values in Ci. It is sufficient to show that there exists a cell c ∈ q ∩ R \ S since
by construction all values in R \ S are smaller than min(S) ≤ min(Ci).

Lemma 5. For a query q with q∩Ci 	= ∅ and q∩R 	= ∅, there exists a c ∈ q∩R\S.

Proof. Assume by contradiction that q ∩R \ S = ∅. Then q ⊆ S ∪L = Ci ∪ (S \
Ci) ∪ L. By the requirement of the lemma and the assumption q ∩ R \ S = ∅,
there exist c1 ∈ q ∩Ci and c2 ∈ q ∩ S \Ci. We will now show that c1 and c2 are

connected in G
(L)
S (not necessarily by a direct edge), i.e. c1 and c2 are both in

Ci, which is a contradiction.

We construct a path from c1 to c2 in G
(L)
S = (S,E) as follows. If Rect[c1, c2] \

{c1, c2} ⊆ L, then c1 and c2 are L-adjacent, and we are done. Otherwise let c3
be the cell, where Rect[c1, c3] \ {c1, c3} contains no cell from S (c3 is the closest
cell to c1 in S ∩ Rect[c1, c2] \ {c1, c2}). Therefore, c1 and c3 are L-adjacent,
i.e. Rect[c1, c3] \ {c1, c3} ⊆ L and (c1, c3) ∈ E. By applying this construction

recursively between c3 and c2 we construct a path from c1 to c2 in G
(L)
S . �


Representation. We now describe how to store sufficient information about the
tree T such that we can decode T and answer a query. For each connected
component Ci we store a spanning tree Si, such that Si consists exactly of the
edges that were joining different smaller connected components while including
new cells into S. We root Si at the cell with smallest value in Ci (but any node
of Ci could have been chosen as the root/anchor of the component).

In the following representation we assume n and m are already known (can
be coded using O(logN) bits). Furthermore it is crucial that when we layout Ci

we have already described (and can decode) what are the cells of C1, . . . , Ci−1,
i.e. L in the construction of Ci.

Crucial to our representation of Ci is that we can efficiently represent edges

in G
(L)
S : If there is an edge from c1 to c2 in G

(L)
S , then c1 and c2 are L-adjacent,

i.e. to navigate from c1 to c2 it is sufficient to store what row c2 is stored in,
and if c2 is to the left (L) or right (R) of c1 (if they are in the same column,
then c2 is to the left of c1), since we just move vertically from c1 to the row of
c2 and then move in the left or right direction until we find the first non-L slot
(here it is crucial for achieving our space bounds that we do not need to store
the number of columns moved over). It follows that a directed edge from c1 to
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c2 identifying the cell c2 can be stored using 1 + �logm� bits, provided we know
where the cell c1 (and L) is.

The details of the representation are the following (See Fig. 1 for a detailed
example of the representation):

– We first store the structure of the spanning trees for C1, . . . , Ck as one big
tree in parenthesis notation (putting a super-root above the roots of the
spanning trees); requires 2(N + 1) bits. This encodes the number of compo-
nents, the size of each component, and for each component the tree structure
of the spanning tree.

– The global index of the root cell for each Ci, where we enumerate the cells
of A by 0..N − 1 row-by-row, top-down and left-to-right; requires k�logN�
bits.

– For each of the components C1, . . . , Ck, we traverse the spanning tree in a
DFS traversal, and for each edge (c1, c2) of the spanning tree for a component
Ci, where c1 is the parent of c2, we store a bit L/R and the row of c2
(note that our representation ensures that the cells of L = C1 ∪ · · · ∪ Ci−1

are previously identified, which is required). Since there are N − k edges
in total in the k spanning trees, we have that the edges in total require
(N − k)(1 + �logm�) bits.

– For each component Ci, we store the leaves/cells of Ci in decreasing value
order (only if |Ci| ≥ 2): For each leaf, we store its local index in Ci with
respect to the following enumeration of the cells. Since the spanning tree
identifies exactly the cells in Ci and |Ci| ≤ 2mα, we can enumerate these
cells by 0..2mα− 1, say row-by-row, top-down and left-to-right; in total at
most N�log(2mα)� bits.

Lemma 6. The representation of T requires O(N(logm + logN
α + logα)) bits.

Proof. From the above discussion we have that the total space usage in bits is

2(N + 1) + k�logN� + (N − k)(1 + �logm�) + N�log(2mα)� .

For all Ci we have α ≤ |Ci| ≤ 2mα, except for the last component Ck, where we
have 1 ≤ |Ck| ≤ 2mα. It follows that k ≤ �N/α�, and the bound stated in the
lemma follows. �


Setting α = �logN/ log logN� and using logN ≤ 2 logn, we get the following
space bound.

Theorem 1. There exists a 2D-RMQ encoding of size O(N(logm + log logn))
bits.

We can reconstruct T by reading the encoding from left-to-right, and thereby
answer queries. We reconstruct the tree structure of the spanning trees of the
components by reading the parenthesis representation from left-to-right. This
gives us the structure of T including the size of all the components from left
to right. Given the structure of T and the spanning trees, the positions of the
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remaining fields in the encoding are uniquely given. Since we reconstruct the
components from left-to-right and we traverse the spanning trees in depth first
order, we can decode each spanning tree edge since we know the relevant set L
and the parent cell of the edge. Finally we decode the indexes of the leaves in
each Ci, by reading their local indexes in Ci in decreasing order.

4 Space O(N logm log∗ n) Solution

In the following we describe how to recursively apply our O(N(logm+log logn))
bit space solution to arrive at an O(N logm log∗ n) bit solution, where log∗ n =

min{i | log(i) n ≤ 1}, log(0) n = n, and log(i+1) n = log log(i) n.
Let K be an integer determining the depth of the recursion. At the root

we have a problem of size N0 = N and apply the partitioning algorithm of
Section 3 with α = �logN0�, resulting in sub-components C1, C2, C3, . . . each
of size at most N1 = 2m�logN0�. Each Ci is now recursively partitioned. A
component C at level i in the recursion has size at most Ni. When constructing
the partitioning of C, we initially let L = A \ C, i.e. all cells outside C act
as neutral “+∞” elements for the partitioning inside Ci. The component C is
now partitioned as in Section 3 with α = �logNi� into components of size at
most Ni+1 = 2m�logNi�. A special case is when |C| ≤ Ni+1, where we skip
the partitioning of C at this level of the recursion (to avoid creating degree one
nodes in T ).

Let Ni denote an upper bound on the problem size at depth i of the recursion,
for 0 ≤ i ≤ K. We know N0 = N and Ni+1 ≤ 2m logNi. By induction it can be

seen that Ni ≤ 2m log(i) N+12m logm: For i = 0 we have N0 = N ≤ 2m log(0) N
and the bound is true. Otherwise we have

Ni+1 ≤ 2m�logNi�
≤ 2m�log(2m log(i) N + 12m logm)�
≤ 2m�log((2m + 12m logm) log(i) N)� (for log(i) N ≥ 1)

≤ 2m log(i+1) N + 2m log(2m + 12m logm) + 2m

≤ 2m log(i+1) N + 12m logm (for m ≥ 2) .

Representation. Recall that T is an ordered tree with depth K, in which each leaf
corresponds to a cell in A, and each internal node corresponds to a component
and the children of the node is a partitioning of the component.

– First we have a parenthesis representation of T ; requiring 2N bits.
– For each internal node C of T in depth first order, we store a parenthesis

representation of the structure of the spanning tree for the component rep-
resented by C. Each cell c of A corresponds to a leaf � of T and is a node in
the spanning tree of each internal node on the path from � to the root of T ,
except for the root, i.e. c is in at most K spanning trees. It follows that the
parenthesis representation of the spanning trees takes 2KN bits.
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– For each internal node C of T in depth first order, we store the local index of
the root r of the spanning tree for C as follows. Let C′ be the parent of C in
T , where C′ is partitioned at depth i of the recursion. We enumerate all cells
in C′ row-by-row, top-down and left-to-right by 0..|C′|−1 and store the index
of r among these cells. Since |C′| ≤ Ni−1, this index requires �logNi−1� bits.
The total number of internal nodes in T resulting from partitionings at depth
i in the recursion is at most 2N/�logNi−1� (at least half of the components
in the partitionings are large enough containing at least �logNi−1� cells),
from which it follows that to store the roots we need at most 2N bits at
each depth of the recursive partitioning, i.e. in total at most 2KN bits.

– For each internal node C of T in depth first order, we store the edges of
the spanning tree of C in a depth first traversal of the spanning tree edges.
Each edge requires 1 + �logm� bits. Since there are less than N spanning
tree edges for each level of T , the total number of spanning tree edges is
bounded by NK, i.e. total space NK(1 + �logm�) bits.

– For each leaf � of T with parent C we store the index of � among the up to
NK cells in C, requiring �logNK� bits. Total space N�logNK� bits.

The total number of bits required becomes 2N + 2KN + 2KN + NK(1 +

�logm�) + N�logNK� = O(NK logm + N log(K+1) N). Setting K = log∗ N =
O(log∗ n) we get the following theorem.

Theorem 2. There exists a 2D-RMQ encoding using O(N logm log∗ n) bits.

5 Space O(N logm) Solution

The O(N logm log∗ n) bits solution of the previous section can be viewed as
a top-down representation, where we have a representation identifying all the
cells of a component C before representing the recursive partitioning of C, and
where each Ci is identified using a spanning tree local to C. To improve the
space to O(N logm) bits we adopt a bottom-up representation, such that the
representation of C is the concatenation of the representations of C1, . . . , Ck,
prefixed by information about the sizes and the relative placements of the Ci

components.
We construct T top-down as follows. Let C be the current node of T , where

we want to identify its children C1, . . . , Ck. Initially C is the root of T covering
all cells of A. If |C| < m8, we just make all cells of (the component) C leaves
below (the node) C in T in decreasing value order from left-to-right. Otherwise
we create a partition C1, . . . , Ck of C, make C1, . . . , Ck the children of C from
left-to-right, and recurse for each of the generated Ci components.

This solution which partitions a component C into a set of smaller components
C1, . . . , Ck, takes a parameter α = �|C|1/4/2 and the set of cells L to the left
of C in the final tree T , i.e. given C and L, we for Ci have the corresponding
Li = L ∪ C1 ∪ · · · ∪ Ci−1. To be able to construct the partitioning, the graph

G
(L)
C must be connected and |C| ≥ α. Given such a C we can find a partition

satisfying that each of the constructed Ci components has size at least α and at
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most 4α2m2, and G
(Li)
Ci

is a connected graph. It follows that k ≤ 4 · |C|3/4 (since

α = �|C|1/4/2 ≥ |C|1/4/4) and |Ci| ≤ 4α2m2 ≤ 4 · �|C|1/4/2 2 · |C|1/4 ≤ |C|3/4
(since m2 = (m8)1/4 ≤ |C|1/4 for |C| ≥ m8).

The details of how to construct the partitions and how to use it to derive a
space-efficient representation is described in the full version of the paper.

Theorem 3. There exists a 2D-RMQ encoding using O(N logm) bits.

6 Conclusion

We have settled the encoding complexity of the two dimensional range minimum
problem as being Θ(N logm). In the worst case, a query algorithm requires to
decode the representation to be able the answer queries. It remains an open prob-
lem to build a data structure with this space bound and with efficient queries.
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Abstract. All known algorithms for the Fréchet distance between
curves proceed in two steps: first, they construct an efficient oracle for
the decision version; then they use this oracle to find the optimum among
a finite set of critical values. We present a novel approach that avoids
the detour through the decision version. We demonstrate its strength by
presenting a quadratic time algorithm for the Fréchet distance between
polygonal curves in Rd under polyhedral distance functions, including
L1 and L∞. We also get a (1+ ε)-approximation of the Fréchet distance
under the Euclidean metric. For the exact Euclidean case, our framework
currently gives an algorithm with running time O(n2 log2 n). However,
we conjecture that it may eventually lead to a faster exact algorithm.

1 Introduction

Measuring the similarity of curves is a classic problem in computational geome-
try with many applications. For example, it is used for map-matching tracking
data [3, 15] and moving objects analysis [5, 6]. In all these applications it is im-
portant to take the continuity of the curves into account. Therefore, the Fréchet
distance and its variants are popular metrics to quantify (dis)similarity.

The Fréchet distance between two curves is defined by taking a homeomor-
phism between the curves that minimizes the maximum pairwise distance. It is
commonly described using the leash-metaphor: a man walks on one curve and
has a dog on a leash on the other curve. Both man and dog can vary their
speeds, but they may not walk backwards. The Fréchet distance is the length of
the shortest leash with which man and dog can walk from the beginning to the
end of the respective curves.

Related work. The algorithmic study of the Fréchet distance was initiated by
Alt and Godau [1]. For polygonal curves, they give an algorithm to solve the
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decision version in O(n2) time, and then use parametric search to find the op-
timum in O(n2 logn) time. Several randomized algorithms have been proposed
which are based on the decision version in combination with sampling possi-
ble values for the distance, one running in O(n2 log2 n) time [10] and the other
in O(n2 logn) time [13]. Recently, Buchin et al. [8] showed how to solve the
decision version in subquadratic time, resulting in a randomized algorithm for
computing the Fréchet distance in O(n2 log1/2 n log log3/2 n) time. In terms of
the leash-metaphor these algorithms simply give a leash to the man and his dog
to try if a walk is possible. By cleverly picking the different leash-lengths, one
then finds the Fréchet distance in an efficient way. Several algorithms exist to
approximate the Fréchet distance (e.g. [2, 12]). However, these rely on various
assumptions of the input curve; no approximation algorithm is known for the
general case.

Contribution. We present a novel approach that does not use the decision prob-
lem as an intermediate stage. We give the man a “retractable leash” which can
be lengthened or shortened as required. To this end, we consider monotone paths
on the distance terrain, a generalization of the free space diagram typically used
for the decision problem. Similar concepts have been studied before, but without
the monotonicity requirement (e.g., [11] or the weak Fréchet distance [1]).

We show that it is sufficient to focus on the boundaries of cells of the distance
terrain (defined by the vertices of the curves). It seems natural to propagate
through the terrain for any point on a boundary the minimal “height” (leash
length) ε required to reach that point. However, this may lead to an amortized
linear number of changes when moving from one boundary to the next, giving a
lower bound of Ω(n3). We therefore do not maintain these functions explicitly.
Instead, we maintain sufficient information to compute the lowest ε for a bound-
ary. A single pass over the terrain then finds the lowest ε for reaching the other
end, giving the Fréchet distance.

We present the core ideas for our approach in Section 2. This framework gives
a choice of distance metric, but it requires an implementation of a certain data
structure. We apply this framework to the Euclidean distance (Section 3) and
polyhedral distances (Section 4). We also show how to use the latter to obtain a
(1 + ε)-approximation for the former. This is the first approximation algorithm
for the general case. We conclude with two open problems in Section 5.

2 Framework

2.1 Preliminaries

Curves and distances. Throughout we wish to compute the dissimilarity of
two polygonal curves, P and Q. For simplicity, we assume that both curves
consist of n segments. This represents the computational worst case; of course
our algorithm can also cope with asymmetric cases. Both curves are given as
piecewise-linear functions P,Q : [0, n] → Rd. That is, P (i + λ) = (1 − λ)P (i) +
λP (i + 1) holds for any integer i ∈ [0, n) and λ ∈ [0, 1], and similarly for Q.
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Let Ψ be the set of all continuous and nondecreasing functions ψ : [0, n] → [0, n]
with ψ(0) = 0 and ψ(n) = n. Then the Fréchet distance is defined as

dF(P,Q) = inf
ψ∈Ψ

max
t∈[0,n]

{δ(P (t), Q(ψ(t)))}.

Here, δ may represent any distance function between two points in Rd. Typically,
the Euclidean distance function is used; we consider this scenario in Section 3.
Another option we shall consider are polyhedral distance functions (Section 4).
For our framework, we require that the distance function is convex.

Distance terrain. Let us consider the joint parameter space R = [0, n] × [0, n]
of P and Q. A pair (s, t) ∈ R corresponds to the points P (s) and Q(t), and
the distance function δ assigns a value δ(P (s), Q(t)) to (s, t). We interpret this
value as the “height” at point (s, t) ∈ R. This gives a distance terrain T , i.e.,
T : R → R with T (s, t) = δ(P (s), Q(t)). We segment T into n2 cells based on
the vertices of P and Q . For integers i, j ∈ [0, n), the cell C[i, j] is defined as
the subset [i, i + 1] × [j, j + 1] of the parameter space. The cells form a regular
grid, and we assume that i represents the column and j represents the row of
each cell. An example of two curves and their distance terrain is given in Fig. 1.

A path π : [0, 1] → R is called bimonotone if it is both x- and y-monotone.
For (s, t) ∈ R, we let Π(s, t) denote the set of all bimonotone continuous paths

from the origin to (s, t). The acrophobia function T̃ : R → R is defined as

T̃ (s, t) = inf
π∈Π(s,t)

max
λ∈[0,1]

T (π(λ)).

Intuitively, T̃ (s, t) represents the lowest height that an acrophobic climber needs
to master in order to reach (s, t) from the origin on a bimonotone path. Clearly,

we have dF(P,Q) = T̃ (n, n).
Let x ∈ R and π ∈ Π(x) be a bimonotone path from (0, 0) to x. Let ε be a

value greater than zero. We call π an ε-witness for x if maxλ∈[0,1] T (π(λ)) ≤ ε.

We call π a witness for x if maxλ∈[0,1] T (π(λ)) = T̃ (x), i.e., π is an optimal path
for the acrophobic climber.

Fig. 1. Distance terrain with the Euclidean distance in R2. (left) Two curves. (middle)
Cells as seen from above. Dark colors indicate low “height”. (right) Perspective view.
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2.2 Analysis of the Distance Terrain

To compute T̃ (n, n), we show that it is sufficient to consider only the cell bound-
aries. For this, we generalize the fact that cells of the free space diagram are
convex [1] to convex distance functions. For the proof, we refer to [7].

Lemma 2.1. For a convex distance function δ and ε ∈ R, the set of points (s, t)
in a given cell C[i, j] with T (s, t) ≤ ε is convex.

Lemma 2.1 has two important consequences. First, it implies that it is indeed
sufficient to consider only the cell boundaries. Second, it tells us that the distance
terrain along a boundary is well-behaved. In this corollary and in the remainder
of the paper, we refer to a function with a single local minimum as unimodal.

Corollary 2.2. Let C[i, j] be a cell of the distance terrain, and let x1 and x2

be two points on different boundaries of C[i, j]. For any y on the line segment
x1x2, we have T (y) ≤ max{T (x1), T (x2)}.

Corollary 2.3. The distance along every boundary of a cell in distance terrain
T is a unimodal function.

For any cell C[i, j], we denote with L[i, j] and B[i, j] its left and bottom bound-
ary respectively (and their height functions in T ). The right and top boundary

are given by L[i + 1, j] and B[i, j + 1].1 With L̃[i, j] and B̃[i, j] we denote the
acrophobia function along the boundary. All these restricted functions have a
single parameter in the interval [0, 1] that represents the boundary.

Assuming that the distance function δ is symmetric, computing values for
rows and columns of T is symmetric as well. Hence, we present only how to
compute with rows. If δ is asymmetric, our methods still work, but some extra
care needs to be taken when computing distances.

Consider a vertical boundary L[i, j]. We use L̃∗[i, j] to denote the minimum

of the acrophobia function L̃[i, j] along L[i, j]. An analogous definition is used

for horizontal boundaries. Our goal is to compute L̃∗[i, j] and B̃∗[i, j] for all cell
boundaries of the grid. We say that an ε-witness π passes through an edge B[i, j],
if there is a λ ∈ [0, 1] with π(λ) ∈ B[i, j].

Lemma 2.4. Let ε > 0, and let x be a point on L[i, j]. Let π be an ε-witness
for x that passes through B[a, j], for 1 ≤ a < i. Suppose further that there exists

a column b with a < b < i and B̃∗[b, j] ≤ ε. Then there exists an ε-witness for x
that passes through B[b, j].

Proof. Let y be the point on B[b, j] that achieves B̃∗[b, j], and let πy be a witness
for y. Since π is bimonotone and since π passes through B[a, j], it follows that π
must also pass through L[b + 1, j]. Let z be the (lowest) intersection point, and
πz the subpath of π from z to x. Let π′ be the path obtained by concatenating
πy, line segment yz, and πz . By our assumption on ε and by Corollary 2.2, path
π′ is an ε-witness for x that passes through B[b, j]. �

1 Note that there need not be an actual cell C[i+ 1, j] or C[i, j + 1].
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Lemma 2.4 implies that there are always rightmost witnesses for any point
x on L[i, j]. For such witness, if it passes through B[a, j] for some a < i, then

B̃∗[b, j] > T̃ (x) for any a < b < i.

Corollary 2.5. Let x be a point on L[i, j]. Then there is a witness for x that

passes through some B[a, j] such that B̃∗[b, j] > T̃ (x) for any a < b < i.

Next, we argue that there is a witness for L̃∗[i + 1, j] that enters row j at

or after the horizontal boundary point used by the witness for L̃∗[i, j]. In other
words, the rightmost witnesses behave “monotonically” in the terrain.

Lemma 2.6. Let π be a witness for L̃∗[i, j] that passes through B[a, j], for a

1 ≤ a < i. Then there exists a a ≤ b ≤ i such that L̃∗[i+ 1, j] has a witness that
passes through B[b, j].

Proof. Choose b maximal such that L̃∗[i+1, j] has a witness that passes through

B[b, j]. Suppose b < a. Let π′ be such a witness. We know that L̃∗[i + 1, j] ≥
L̃∗[i, j], since π′ passes through L[i, j]. However, we can now construct a witness

for L̃∗[i + 1, j] that passes through B[a, j]: follow π to B[a, j] and then switch
to the intersection of π′ and L[a + 1, j]. This contradicts the choice of b. �


We now characterize L̃[i, j] via a witness envelope, defined as follows. Fix a

row j and two columns a < i. Suppose that L̃∗[i− 1, j] has a witness that passes
through B[a′, j] with a′ ≤ a. The witness envelope for the column interval [a, i]
in row j is the upper envelope of the following functions on the interval [0, 1]:

(i) the terrain function L[i, j](λ);

(ii) the constant function B̃∗[a, j];

(iii) the constant function L̃∗[i− 1, j] if a ≤ i− 2;
(iv) the truncated terrain functions L[b, j](λ) = minμ∈[0,λ] L[b, j](μ) for a < b < i.

Lemma 2.7. Fix a row j and two columns a < i as above. Let α ∈ [0, 1] and
ε > 0. The point x = (i, j + α) has an ε-witness that passes through B[a, j] if
and only if (α, ε) lies above the witness envelope for [a, i] in row j.

Proof. Let π be an ε-witness for x that passes through B[a, j]. Then clearly

ε ≥ B̃∗[a, j] and ε ≥ L[i, j](α). If a ≤ i− 2, then π must pass through L[i− 1, j],

so ε ≥ L̃∗[i − 1, j]. Since π is bimonotone, it has to pass through L[b, j] for
a < b < i. Let y1 = (a + 1, j + α1), y2 = (a + 2, j + α2), . . . , yk = (a + k, j + αk)
be the points of intersection, from left to right. Then α1 ≤ α2 ≤ · · · ≤ αk ≤ α
and ε ≥ T (yl) = L[a + l, j](αi) ≥ L[a + l, j](α), for l = 1, . . . , k. Hence (α, ε) is
above the witness envelope.

Suppose (α, ε) is above the witness envelope. The conclusion follows directly

if a = i− 1. Otherwise, ε ≥ L̃∗[i− 1, j] holds. Let α′ be such that the witness for

L̃∗[i−1, j] that passes through B[a′, j] reaches L[i−1, j] at point (i−1, j+α′). If
α ≥ α′, we construct an appropriate ε-witness π′ for x by following the witness
for B̃∗[a, j], then passing to the witness for L̃∗[i − 1, j] and then taking the
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line segment to x. If α < α′, we construct a curve π′ as before. However, π′

is not bimonotone (the last line segment goes down). To fix this, let p and x
be the two intersection points of π′ with the horizontal line y = j + α. We
shortcut π′ at the line segment px. The resulting curve π is clearly bimonotone
and passes through B[a, j]. To see that π is an ε-witness, it suffices to check
that along the segment px, the distance terrain never goes above ε. For this, we
need to consider only the intersections of px with the vertical cell boundaries.
Let L[b, j] be such a boundary. We know that L[b, j] is unimodal (Corollary 2.3)
and let α∗ denote the value where the minimum is obtained. By definition of
the truncated terrain function, L[b, j](α) = L[b, j](α) if α ≤ α∗. By assumption,

the witness for L̃∗[i − 1, j] passes L[b, j] at α or higher. Hence, if α ≥ α∗, then

L̃∗[i− 1, j] ≥ L[b, j](α). It follows that max{L[b, j](α), L̃∗[i− 1, j]} ≥ L[b, j](α).

By definition ε ≥ max{L[b, j](α), L̃∗[i− 1, j]} holds and thus ε ≥ L[b, j](α). �


2.3 Algorithm

We are now ready to present the algorithm. We walk through the distance ter-
rain, row by row, in each row from left to right. When processing a cell C[i, j],

we compute L̃∗[i + 1, j] and B̃∗[i, j + 1]. For each row j, we maintain a double-
ended queue (deque) Qj that stores a sequence of column indices. We also store
a data structure Uj that contains a set of (truncated) terrain functions on the
vertical boundaries in j. It supports insertion, deletion, and a minimum-point
query that, given up to two additional constants, returns the lowest point on the
upper envelope of the terrain functions and the given constants.

The data structures fulfill the following invariant. Suppose that L̃∗[i, j] is
the rightmost optimum we have computed so far in row j, and suppose that a
rightmost witness for L̃∗[i, j] passes through B[a, j]. A point (α, β) dominates
a point (γ, δ) if α > γ and β ≤ δ. Then Qj stores the first coordinates of the

points in the sequence (a, B̃∗[a, j]), (a + 1, B̃∗[a + 1, j]), . . . , (i − 1, B̃∗[i − 1, j])
that are not dominated by any other point in the sequence. Furthermore, the
structure Uj stores the terrain functions for the boundaries from column a + 1
to i. We maintain analogous data structures for each column i.

The algorithm proceeds as follows (see Algorithm 1): since (0, 0) belongs to
any path through the distance terrain, we initialize C[0, 0] to use (0, 0) as its
lowest point and compute the distance accordingly. The left- and bottommost
boundaries of the distance terrain are considered unreachable. Any path to such a
point also goes through the adjacent horizontal boundaries or vertical boundaries
respectively. These adjacent boundaries therefore ensure a correct result.

In the body of the for-loop, we compute L̃∗[i + 1, j] and B̃∗[i, j + 1]. Let us

describe how to find L̃∗[i + 1, j]. First, we add index i to Qj and remove all
previous indices that are dominated by it from the back of the deque. We add
L[i + 1, j] to upper envelope Uj . Let h and h′ be the first and second element
of Qj . We perform a minimum query on Uj in order to find the smallest εα for
which a point on L[i + 1, j] has an εα-witness that passes through B[h, j]. By
Lemma 2.7, this query requires the height at which the old witness enters the
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Algorithm 1. FrechetDistance(P,Q, δ)

Input: P and Q are polygonal curves with n edges in Rd;
δ is a convex distance function in Rd

Output: Fréchet distance dF(P,Q)

{We show computations only within a row, column computations are analogous}
1: L̃∗[0, 0] ← δ(P (0),Q(0))

2: L̃∗[0, j] ← ∞ for all 0 < j < n
3: For each row j, create empty deque Qj and upper envelope structure Uj

4: for j ← 0 to n− 1; i ← 0 to n− 1 do
5: Remove any values x from Qj with B̃∗[x, j] ≥ B̃∗[i, j] and append i to Qj

6: if |Qj | = 1 then Clear Uj

7: Add L[i+ 1, j] to Uj

8: Let h and h′ be the first and second element in Qj

9: (α, εα) ← Uj .minimumQuery(L̃∗[i, j], B̃∗[h, j])

10: while |Qj | ≥ 2 and B̃∗[h′, j] ≤ εα do
11: Remove all L[x, j] from Uj with x ≤ h′ and remove h from Qj

12: Let h and h′ be the first and second element in Qj

13: (α, εα) ← Uj .minimumQuery(L̃∗[i, j], B̃∗[h, j])

14: L̃∗[i+ 1, j] ← εα
15: return max{δ(P (n), Q(n)),min{L̃∗[n− 1, n− 1], B̃∗[n− 1, n− 1]}}

row (B̃∗[h, j]) and the value of the previous boundary L̃∗[i, j]. (The latter is
needed only for h < i, i.e. if |Qj | ≥ 2. For simplicity, we omit this detail in the

overview.) If εα ≥ B̃∗[h′, j], there is an εα witness for L[i+1, j] through B[h′, j],
so we can repeat the process with h′ (after updating Uj). If h′ does not exist

(i.e., |Qj| = 1) or εα < B̃∗[h′, j], we stop and declare εα to be optimal. We prove
that this process is correct and maintains the invariant. Since the invariant is
clearly satisfied at the beginning, correctness then follows by induction.

Lemma 2.8. Algorithm 1 computes L̃∗[i + 1, j] and maintains the invariant.

Proof. By the invariant, a rightmost witness for L̃∗[i, j] passes through B[h0, j],
where h0 is initial head of Qj. Let h∗ be the column index such that a rightmost

witness for L̃∗[i + 1, j] passes through B[h∗, j]. Then h∗ must be contained in
Qj initially, because by Lemma 2.6, we have h0 ≤ h∗ ≤ i, and by Corollary 2.5,
there can be no column index a with h∗ < a ≤ i that dominates (h∗, B[h∗, j]).
(Note that if h∗ = i, it is added at the beginning of the iteration.)

Now let h be the current head of Qj . By Lemma 2.7, the minimum query on
Uj gives the smallest εα for which there exists an εα-witness for L[i + 1, j] that

passes through B[h, j]. If the current h is less than h∗, then εα ≥ L̃∗[i + 1, j]

(definition of L̃∗); L̃∗[i + 1, j] ≥ B̃∗[h∗, j] (there is a witness through B[h∗, j]);

and B̃∗[h∗, j] ≥ B̃∗[h′, j] (the dominance relation ensures that the B̃∗-values for
the indices in Qj are increasing). Thus, the while-loop in line 10 proceeds to
the next iteration. If the current h equals h∗, then by Corollary 2.5, we have
B̃∗[a, j] > B̃∗[h∗, j] for all h∗ < a ≤ i, and the while-loop terminates with
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the correct value for L̃∗[i, j]. It is straightforward to check that Algorithm 1
maintains the data structures Qj and Uj according to the invariant. �

Theorem 2.9. Algorithm 1 computes dF(P,Q) for convex distance function δ
in Rd in O(n2 · f(n, d, δ)) time, where f(n, d, δ) represents the time to insert
into, delete from, and query the upper envelope data structure.

Proof. The correctness of the algorithm follows from Lemma 2.8. For the running
time, we observe that we insert values only once into Qj and Uj. Hence, we
can remove elements at most once, leading to an amortized running time of
O(1 + f(n, d, δ)) for a single iteration of the loop. Since there are O(n2) cells,
the total running time is O(n2 · f(n, d, δ)) assuming that f(n, d, δ) is Ω(1). �


In the generic algorithm, we must take care that Uj uses the (full) unimodal
function only for L[i+ 1, j] and the truncated versions for the other boundaries.
As it turns out, we can use the full unimodal distance functions if these behave as
pseudolines (i.e., they intersect at most once). Since we compare only functions
in the same row (or column), functions of different rows or columns may still
intersect more than once. For this approach to work, we must remove from Uj

any function that is no longer relevant for our computation. This implies that
Uj no longer contains all functions L[k, j] with h < k ≤ i + 1 but a subset of
these. We prove the following (see [7] for a full proof).

Lemma 2.10. Assume that distance functions L[x, j] in row j intersect pairwise
at most once. Let h denote a candidate bottom boundary. Let (α, εα) denote the
minimum on the upper envelope of the full unimodal distance functions in Uj.
Then one of the following holds:

(i) (α, εα) is the minimum of the upper envelope of L[i+ 1, j] and the truncated
L[k, j] for h < k ≤ i.

(ii) (α, εα) lies on two functions L[a, j] and L[b, j], one of which can be removed
from Uj.

(iii) εα ≤ L̃∗[i, j].

Proof (sketch). (α, εα) either lies on the minimum of a function or on the inter-
section of two, one increasing and one decreasing. In the first case, it is easy to
see that case (i) holds. In the second case, it depends on whether the increasing
function is from an earlier or later column than the decreasing one. If the in-
creasing one comes first, then we can argue that the truncated function is never
part of the witness envelope for L[i+ 1, j] or later boundaries. Hence, case (ii) is
applicable. If the decreasing one comes first, then we argue that case three must
hold: the given intersection is a lower bound for the minimum of the acrophobia
function on the second boundary and therefore a lower bound on L̃∗[i, j]. �


From this lemma, we learn how to modify a minimum-point query. We run
the query on the full unimodal functions, ignoring the given constants. If case
(ii) holds, that is, the minimum lies on an increasing L[a, j] and a decreasing
L[b, j] with a < b, we remove L[a, j] from Uj and repeat the query. In both of
the other cases, the minimum is either the computed minimum or one of the
constants L̃∗[i, j] and B̃∗[h, j]. We take the maximum of these three values.
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3 Euclidean Distance

In this section we apply our framework to the Euclidean distance measure δE.
Obviously, δE is convex (and symmetric), so our framework applies. However,
instead of computing with the Euclidean distance, we use the squared Euclidean
distance δ2E = δE(x, y)2. Squaring does not change any relative order of height
on the distance terrain T , so computing the Fréchet distance with the squared
Euclidean distance is equivalent to the Euclidean distance: if ε = dF(P,Q) for δ2E,
then

√
ε = dF(P,Q) for δE. We now show that for δ2E, the distance functions in a

row or column behave like pseudolines. We argue only for the vertical boundaries;
horizontal boundaries are analogous.

Lemma 3.1. For δ = δ2E, each distance terrain function L[i, j] is part of a
parabola, and any two functions L[i, j] and L[i′, j] intersect at most once.

Proof. Function L[i, j] represents part of the distance between point p = P (i)
and line segment � = Q(j)Q(j + 1). Assume �′ is the line though �, uniformly
parameterized by λ ∈ R, i.e. �(λ) = (1 − λ)Q(j) + λQ(j + 1). Let λp denote the
λ such that �′(λ) is closest to p. We see that L[i, j](λ) = |p− �′(λp)|2 + |�′(λ) −
�′(λp)|2. Since �′ is uniformly parameterized according to �, we get that the last
term is |�|2(λ− λp)2. Hence, the function is equal to |�|2λ2 − 2|�|2λpλ+ |�|2λ2

p +
|p − �′(λp)|2, which is a parabolic function in λ. The quadratic factor depends
only on �. For two functions in the same row, this line segment is the same, and
thus the parabolas intersect at most once. �


By Lemma 2.10, we know that data structure Uj can use the full parabolas.
The parabolas of a single row share the same quadratic term, so we can treat
them as lines by subtracting |�|λ2. Now we can use for Uj a standard data
structure for dynamic half-plane intersections, or its dual problem: dynamic
convex hulls. The fastest dynamic convex hull structure is given by Brodal and
Jacob [4]. However, it does not support a query to find a minimal point for the
upper envelope; it is unclear whether the structure can support such a query.
Instead, we use the slightly slower structure by Overmars and Van Leeuwen [14]
with O(log2 n) time insertions and deletions. For each insertion, we also have
to compute the corresponding parabola, in O(d) additional time. It remains to
show how to perform the minimum-point query. The data structure by Overmars
and Van Leeuwen maintains a concatenable queue for the upper envelope. We
assume this to be implemented via a red-black tree that maintains predecessor
and successor pointers. We perform a binary for the minimum point using the
intersection pattern of a node, its predecessor, and its successor (see [7] for
details). To include the constants, we take the maximum of the minimum point
and the constants. Hence, a single query takes O(log n) time. We obtain the
following result.

Theorem 3.2. Algorithm 1 computes the Fréchet distance under the Euclidean
distance in R2 in O(n2(d + log2 n)) time.

This is slightly slower than known results for the Euclidean metric. However,
we think that our framework has potential for a faster algorithm (see Section 5).
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4 Polyhedral Distance

Here we consider the Fréchet distance with a (convex) polyhedral distance func-
tion δP, i.e., the “unit sphere” of δP is a convex polytope in Rd. For instance, the
L1 and the L∞ distance are polyhedral with the cross-polytope and the hyper-
cube as respective unit spheres. Throughout we assume that δP has complexity k,
i.e., its unit sphere has k facets. The distance terrain functions L[i, j] and B[i, j]
are now piecewise linear with at most k parts; in each row and column the cor-
responding parts are parallel. Depending on the polytope, the actual maximum
number k′ of parts may be less. The distance δP has to be neither regular nor
symmetric, but as before, we simplify the presentation by assuming symmetry.

We present three approaches. First, we use an upper envelope structure on
piecewise linear functions. Second, we use a brute-force approach which is more
efficient for small d and k. Third, we combine these methods.

Upper envelope data structure. For piecewise linear L[i, j] and B[i, j], we can
relax the requirements for the upper envelope data structure Uj . There are no
parabolas involved, so we only need a data structure that dynamically maintains
the upper envelope of lines under insertions, deletions, and minimum queries.
Every function contains at most k′ parts, so we insert at most nk′ lines into the
upper envelope. Maintaining and querying the upper envelope per row or column
takes O(nk′ log(nk′)) time [4]. Thus, the total running time is O(n2k′ log(nk′) +
n2gδ(d)), where gδ(d) is the time to find the parts of the function.

Brute-force approach. We implement Uj naively. For each segment of P,Q,
we sort the facets of δP by the corresponding slope on the witness envelope,
in O(nk(d + log k)) total time. For each facet l = 1, . . . k, we store a doubly
linked list Fl of lines representing the linear parts of the unimodal functions in
Uj corresponding to facet l, sorted from top to bottom (the lines are parallel).
When processing a cell boundary L[i, j], we update each list Fl: remove all lines
below the line for P (i) from the back, and append the line for P (i). This takes
amortized O(d) time per facet, O(kd) time per cell boundary. We then go through
the top lines in the Fl in sorted order to determine (the minimum of) the upper
envelope. This takes O(k) time. The total time is O(n2kd + nk(d + log k)).

A hybrid approach. As in the brute force approach, we maintain a list Fl for
each of the k slopes. For each segment in P,Q we initialize these lists, which
takes O(nkd) time. But instead of sorting the slopes initially, we maintain the
upper hull of the top lines in each Fl. Thus, we only need a dynamic upper
hull for k lines. At each cell boundary, we only update k′ lines, so we need
O(k′ log k) time per cell boundary, O(n2k′ log k) in total. Therefore, the total
time is O(n2k′ log k + nkd), an improvement for k′ ! k.

Combining the previous three paragraphs, yields the following result. The
method that works best depends on the relation between n, k, k′, and d.

Theorem 4.1. Algorithm 1 computes the Fréchet distance with a convex polyhe-
dral distance function δ of complexity k in Rd in O(min{n2k′ log(nk′)+n2gδ(d),
n2kd+nk(d+ log k), n2k′ log k + nkd}) time, where gδ(d) is the time to find the
parts of a distance function.
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Let us consider the implications for L1 and L∞. Let � be the line segment and
p the point defining L[i, j]. For L1 at the breakpoints between the linear parts of
L[i, j] one of the coordinates of �− p is zero: there are at most k′ = d + 1 parts.
The facet of the cross-polytope is determined by the signs of the coordinates. For
each linear part we compute the slope in O(d) time, thus g(d) = O(d2). Hence,
the hybrid approach outperforms the brute-force approach.

Corollary 4.2. Algorithm 1 computes the Fréchet distance with the L1 distance
in Rd in O(min{n2d log(nd) + n2d2, n2d2 + nd2d}) time.

For the L∞ distance the facet is determined by the maximum coordinate.
We have k′ ≤ k = 2d. However a facet depends on only one dimension. Hence,
for the brute-force method computing the slopes does not take O(kd) time, but
O(k). Thus the brute-force method outperforms the other methods for L∞.

Corollary 4.3. Algorithm 1 computes the Fréchet distance with the L∞ distance
in Rd in O(n2d + nd log d) time.

Approximating the Euclidean distance. We can use a polyhedral distance func-
tion to approximate the Euclidean distance. A line segment and a point span
exactly one single plane in Rd (unless they are collinear, in which case we pick
an arbitrary one). On this plane, the Euclidean unit sphere is a circle. We ap-
proximate this circle with a k-regular polygon in R2 that has one side parallel
to the line segment. Simple geometry shows that for k = O(ε−1/2), we get a
(1 + ε)-approximation. The computation is two-dimensional, but we must find
the appropriate transformations, which takes O(d) time per boundary. We no
longer need to sort the facets of the polytope for each edge; the order is given
by the k-regular polygon. This saves a logarithmic factor for the initialization.
Again, the brute-force method is best, and Theorem 4.1 gives the following.

Corollary 4.4. Algorithm 1 computes a (1 + ε)-approximation of the Fréchet
distance with the Euclidean distance in Rd in O(n2(d + ε−1/2)) time.

Alternatively we can use Corollary 4.3 to obtain a
√
d-approximation for the

Euclidean distance. If we are willing to invoke an algorithm for the decision
version, we can go to a (1 + ε)-approximation by binary search.

Corollary 4.5. We can calculate a (1+ε)-approximation of the Fréchet distance

with the Euclidean distance in O(n2d+nd log d+T (n) log
√
d−1
ε ) time, where T (n)

is the time needed to solve the decision problem for the Fréchet distance.

5 Open Problems

Faster Euclidean distance. Our framework computes the Fréchet distance for
polyhedral distance functions in quadratic time. For the Euclidean distance we
do not achieve this running time, but we conjecture that our result can be
improved to an O(n2) algorithm. Currently we use the full power of dynamic
upper envelopes, which seems unnecessary as all information is available upfront.
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We can for instance determine the order in which the parabolas occur on the
upper envelopes, in O(n2) time for all boundaries. From the proof of Lemma 3.1,
we know that the order is given by the projection of the vertices onto the line. We
compute the arrangement of the lines dual to the vertices of a curve in O(n2)
time. We then determine the order of the projected points by traversing the
zone of a vertical line. This takes O(n) for one row or column. Unfortunately,
this alone is insufficient to obtain the quadratic time bound.

Locally correct Fréchet matchings. A matching between two curves that is a
Fréchet matching for any two matched subcurves is called a locally correct
Fréchet matching [9]. It enforces a relatively “tight” matching. The algorithm
in [9] uses a linear overhead on the algorithm of Alt and Godau [1] resulting in
an O(n3 logn) execution time. We conjecture that our framework is able to avoid
this overhead. However, the information we currently propagate is insufficient:
a large distance early on may “obscure” the rest of the computations.
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Distance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010,
pp. 63–74. Springer, Heidelberg (2001)

[3] Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle track-
ing data. In: Proc. 31st Int. Conf. VLDBs, pp. 853–864 (2005)

[4] Brodal, G., Jacob, R.: Dynamic planar convex hull. In: Proc. 43rd FOCS,
pp. 617–626 (2002)

[5] Buchin, K., Buchin, M., Gudmundsson, J.: Constrained free space diagrams: a
tool for trajectory analysis. IJGIS 24(7), 1101–1125 (2010)

[6] Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting com-
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Abstract. We show how to delete a vertex q from a three-dimensional
Delaunay triangulation DT(S) in expected O(C⊗(P )) time, where P is
the set of vertices neighboring q in DT(S) and C⊗(P ) is an upper bound
on the expected number of tetrahedra whose circumspheres enclose q that
are created during the randomized incremental construction of DT(P ).
Experiments show that our approach is significantly faster than existing
implementations if q has high degree, and competitive if q has low degree.

1 Introduction

Some geometric applications require the ability to delete a vertex from a Delau-
nay triangulation. An early algorithm by Chew [9] for generating guaranteed-
quality triangular meshes uses Delaunay vertex deletion to obtain a better bound
on the minimum angle than is achieved by similar algorithms that do not use
vertex deletion, and the same principle has been exploited by mesh generators
that generate better-quality tetrahedra by occasionally deleting vertices from a
three-dimensional Delaunay triangulation [7, Section 14.5]. Another application
of Delaunay vertex deletion is interactive data cleaning, in which a user desires
to remove outlier vertices from a triangulation used to interpolate data.

Let S be a finite set of points in R2 or R3, and let DT(S) denote its Delaunay
triangulation. We study how to delete a vertex from DT(S) while maintaining
the Delaunay property of the triangulation. That is, given a point q ∈ S, we
wish to transform DT(S) into DT(S \ {q}) quickly.

In two dimensions, Delaunay deletion is well understood. By 1990, several
algorithms were known that delete a vertex q with degree d in optimal O(d)
time [1, 8], and fast, practical implementations are available now [13]. In three
dimensions, there is still room for improvement. In theory, the best methods
known are triangulate and sew and ear queue. The ear-queue algorithm has
worst-case running time O(k log d) where k is the number of new tetrahedra
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created. The triangulate-and-sew algorithm triangulates the set P of vertices
neighboring q in DT(S) with the standard randomized incremental construc-
tion (RIC) algorithm, then takes the tetrahedra adjoining q in DT(P ) and sews
them into the cavity. This method runs in expected O(d log d+C(P )) time, where
d = |P | and C(P ) is the expected number of tetrahedra created during the ran-
domized incremental construction of DT(P ). These two complexities, O(k log d)
and O(d log d + C(P )), are not comparable as Ω(d) ≤ k ≤ C(P ) ≤ O(d2).

The main innovations behind our algorithms are fast methods for point loca-
tion, so all the point location steps of the incremental construction take expected
total time linear in d, and a vertex insertion procedure whose cost is C⊗(P ), the
expected number of tetrahedra in conflict with q created during the randomized
incremental construction of DT(P ). Our complexity O(d+C⊗(P )) = O(C⊗(P ))
is always better than O(d log d+C(P )) and better than the ear queue algorithm
in the usual circumstance that C⊗(P ) = o(k log d). Moreover, it uses less com-
plicated numerical predicates than the ear queue, and therefore it is easier to
implement robustly. A prototype implementation of our algorithm compares fa-
vorably with existing codes, particularly if q has high degree.

2 Related Work

Existing Algorithms. The literature contains several algorithms for Delaunay
vertex deletion. All of them begin by deleting q and the simplices adjoining q,
thereby evacuating a star-shaped cavity in the DT, which must be retriangulated.
Some vertex deletion algorithms are primarily concerned with the asymptotic
running time as a function of the degree d of q, but the average vertex degree
in a two-dimensional DT is less than six, so some authors emphasize the speed
when d is small. The cavity’s Delaunay triangulation always has size Θ(d) in 2D,
but in 3D its size may be as small as Θ(d) or as large as Θ(d2).

The gift-wrapping or boundary completion algorithm constructs one triangle
or tetrahedron at a time by choosing a known facet (edge or triangle) f and
finding a vertex p ∈ P so that f and p together form a Delaunay triangle or
tetrahedron. Its worst-case running time is Θ(d2) in 2D [13] and Θ(d3) in 3D.

The ear queue algorithm [12] is a gift-wrapping algorithm that uses a priority
queue to quickly identify an ear that can be cut off the star-shaped cavity. Each
ear is assigned a priority proportional to a numerical quantity called the power
of the circumsphere with respect to the deleted vertex q; the highest-priority
ear is guaranteed to be Delaunay. The algorithm runs in O(d log d) time in 2D
and O(k log d) time in 3D, where k is the number of new tetrahedra created.
Unfortunately, it requires a new geometric predicate that compares the powers
of two ears. This makes the code less generic and more difficult to make robust
and efficient.

The flip algorithm connects all the facets on the cavity boundary to a single
vertex in P , then performs a sequence of flips that replace simplices with other
simplices. In 2D, the flip algorithm finds the Delaunay triangulation in O(d2)
time [16], but in 3D, the flip algorithm does not always work; it can get stuck in
a non-Delaunay triangulation from which no flip can make further progress [15].
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In 2D, two algorithms are known that run in linear time, which is optimal.
Aggarwal, Guibas, Saxe, and Shor [1] describe an algorithm that runs in deter-
ministic O(d) time, but it is complicated and not practical. In a classic paper that
introduced the randomized algorithm analysis technique now known as backward
analysis, Chew [8] proposes a simple, practical, randomized algorithm that runs
in expected O(d) time. The algorithm, which we call backward reinsertion, com-
bines RIC with a backward point location method. The algorithm of Aggarwal et
al. does not appear to generalize to 3D, but in this paper we generalize backward
reinsertion to 3D.

Devillers [13] has explicitly constructed optimal algebraic decision trees for
deleting vertices of degree at most 7 from 2D Delaunay triangulations. This
approach, called low-degree optimization, obtains notable speedups for vertices
of small degree. We do not foresee it being extended to 3D, where the complexity
of the decision trees grows very quickly.

The triangulate-and-sew algorithm retriangulates the cavity by computing
DT(P ) from scratch, taking the subset of simplices in DT(P ) that lie inside the
cavity, and sewing them into the cavity to obtain DT(S \ {q}). If we use a RIC
algorithm to compute DT(P ), triangulate-and-sew runs in O(d log d + C(P ))
time, whether in 2D or 3D. This approach may create many simplices that are
unnecessary because they lie outside the cavity or are not helpful in computing
the final simplices inside the cavity. We address this drawback below.

Existing Implementations. For Delaunay vertex deletions in 2D, Cgal [5] imple-
ments low-degree optimization for vertices of degree 7 or less. For higher degrees,
it uses flipping. In 3D, the current implementation offers triangulate-and-sew.
A previous version used a simplified ear queue algorithm with running time
O(dk) [12].

3 Preliminaries and Notation

We are given a finite point set S ⊆ R3 and its Delaunay triangulation DT(S),
and we wish to delete the vertex q ∈ S from DT(S), yielding DT(S \ {q}). A
point p ∈ S is a neighbor of q if DT(S) contains the edge pq. Let P be the set
of neighbors of q in DT(S). Let d = d◦(q,DT(S)) = |P | be the degree of q in
DT(S).

We use a randomized incremental construction (RIC) algorithm to compute
DT(P ). The standard RIC algorithm successively inserts the points in P into
a Delaunay triangulation, one by one, in an order determined by a random
permutation p1, p2, . . . , pd of P . For i = 1, . . . , d, let Pi = {p1, . . . , pi} contain
the first i points of the permutation. The standard RIC constructs DT(P ) by
successively inserting each pi into DT(Pi−1). A tetrahedron in DT(Pi−1) is said
to conflict with pi if its circumsphere encloses pi. The algorithm identifies all the
conflict tetrahedra in three steps. First, a method called point location identifies
one tetrahedron Δ that conflicts with pi. Second, the algorithm finds all the
other tetrahedra in DT(Pi−1) that conflict with pi by a depth-first search from
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qq

DT�(Q) DT(P ) DT⊗
q (P )DT(S)

q q

Fig. 1. A DT of S, a link DT for q, a DT of q’s neighbors, and q’s conflict DT

Δ. This search treats DT(Pi−1) as a graph in which each tetrahedron acts as a
graph node and two nodes are connected by a graph edge if the corresponding
tetrahedra share a triangular face. Third, the conflict tetrahedra are all deleted.
The union of the conflict tetrahedra is a cavity which we retriangulate with
tetrahedra adjoining pi. This step is called structural change. The expected cost
of the structural change, denoted C(P ), is obtained by summing the cost of
inserting a random point into DT(Pi) for i = 1, . . . , d.

Point location is usually the most difficult part of incremental construction
algorithms; we will discuss it at length later. We will use the special nature of
Delaunay vertex deletion both to speed up point location and to reduce the
number of structural changes we must make. We will also use a variant of RICs
that inserts points in batches.

Let Q = P ∪ {q} and Qi = Pi ∪ {q} for i = 1, . . . , d. The link DT, denoted
DT�(Qi), is the subset of DT(Qi) containing only the tetrahedra adjoining q
and their faces, as illustrated in Figure 1. The name stems from the fact that
the boundary faces of DT�(Qi) form a triangulation of a topological sphere.
The conflict DT, denoted DT⊗

q (Pi), is the subset of DT(Pi) containing only
the tetrahedra whose circumspheres enclose q. Observe that the boundaries of
DT⊗

q (Pi) and DT�(Qi) are identical. The expected cost of the structural change
restricted to the tetrahedra of DT⊗

q is denoted C⊗(P ).

4 Algorithm

Our algorithm uses randomized incremental construction to compute DT⊗
q (P ),

the tetrahedra that conflict with q in the DT of q’s neighbors, and uses it to fill the
cavity evacuated by q’s deletion. To insert each new point pi into DT⊗

q (Pi−1), we
need to quickly identify a tetrahedron that conflicts with pi. For this, we maintain
the link DT DT�(Qi): the DT of the points Pi ∪ {q}, restricted to the tetrahedra
adjoining q. The boundaries of DT�(Qi) and DT⊗

q (Pi) are identical, so we can use

any edge of DT�(Qi) adjoining pi to find a conflict tetrahedron in DT⊗
q (Pi−1).

To obtain the sequence DT�(Q4), . . . ,DT�(Qd), we use the reverse deletion
trick [8]. By construction, DT�(Q) ⊆ DT(S). We remove the points pd, . . . , p5 in
that order from DT�(Q). If the deletion order is sufficiently random, this process
can be implemented efficiently, as the boundary of DT�(Q) behaves like a 2D
Delaunay triangulation. Each time we remove a point pi from DT�(Qi), we store
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Fig. 2. An illustration of the deletion and reinsertion process in 2D

a guide for pi, denoted guide(pi), to help the point location of pi in DT⊗
q (Pi−1);

see Figure 2. The guide is usually a neighbor of pi in DT�(Qi), but different
variants of the algorithm use different guides.

We now describe how to use guide(pi) when inserting pi into DT⊗
q (Pi−1). The

point location uses two steps: (i) finding the tetrahedron adjoining guide(pi) that
intersects the line segment guide(pi)pi; and (ii) walking to the tetrahedron that
contains pi. The second step visits only tetrahedra that are destroyed during
insertion, so its cost can be charged to the structural change C⊗(P ). The time
for the first step is proportional to d◦(guide(pi),DT�(Qi−1)). This depends on
the exact nature of the insertion order, and we will discuss it below.

The Link Delaunay Triangulation. All the tetrahedra of DT�(Qi) share the
vertex q, so the link of q (i.e., the triangles in DT�(Qi) that do not contain
q) has the topology of a 2D sphere. Hence, we can represent DT�(Qi) as a 2D
triangulation. The triangulation DT�(Qd) can be extracted from DT(S) in O(d)
time by a simple traversal of the tetrahedra adjoining q. To maintain DT�(Qi)
under deletion, we can use any ordinary 2D Delaunay algorithm while replacing
the in-circle test w.r.t. a triangle by the in-sphere test w.r.t. the tetrahedron
formed by the triangle and q; see Section 4.1. Correctness follows because we
are looking for the triangles t where the sphere passing through the vertices of
t and q is empty.

The Conflict Delaunay Triangulation. Recall that we defined DT⊗
q (Pi) as

the set of all tetrahedra in DT(Pi) that have q in their circumsphere. Our goal
is to prevent DT(Pi) \DT⊗

q (Pi) from being constructed. If we were to construct
all of DT(P ), we might create tetrahedra that would be discarded when we sew
the cavity back into the original triangulation. In 3D, the number of unnecessary
tetrahedra can be quadratic.

Lemma 1. For any d ∈ N, there is a d-point set P ⊆ R3 with C(P ) = Ω(d2)
and C⊗(P ) = O(d).

Proof. We take P to be d points on the three-dimensional moment curve t �→
(t, t2, t3). It is well known that DT(P ) has complexity Ω(d2) and that all points
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Fig. 3. 2D example of the deletion and reinsertion process with q on the convex hull

of P are on the lower part of the convex hull. Thus, if we take q sufficiently far
below P , then q connects to all points of P in DT(P ∪ {q}). When deleting q,
DT⊗

q (P ) contains only O(d) infinite tetrahedra, but the full triangulation DT(P )
consists of Ω(d2) tetrahedra. �


4.1 Managing the Boundaries

During the randomized incremental construction of a triangulation, we need to
take care of handling the boundary and the adjacencies between boundary facets.
In a full Delaunay triangulation, this boundary is the convex hull, while in an
intermediate triangulation such as DT⊗

q (P ) it may be not convex.
To avoid complicated code for all the special cases, a classic approach adds a

dummy vertex ∞ and creates for each facet f of the convex hull a tetrahedron
between f and ∞ [3]. Thus, adjacencies between convex hull facets are managed
as adjacencies between infinite tetrahedra. The circumsphere of an infinite tetra-
hedron is defined as the half space that is delimited by the plane through its
finite facet, the side of the plane is determined by the tetrahedron orientation.
The construction algorithm needs no special code for infinite tetrahedra, except
inside the in-sphere predicates.

In our setting, we have three different triangulations: DT(S), DT�(Qi), and
DT⊗

q (Pi). The boundary of DT(S) is managed as above, using a dummy vertex

∞3 (the index 3 emphasizes the dimension). The triangulation DT�(Qi) does not
have a boundary, since it is just the link of q in some triangulation. However,
note that if q lies on the convex hull of S, then ∞3 is a vertex of DT�(Q). Finally,
DT⊗

q (Pi) is a 3D triangulation with boundary DT�(Qi); to handle this boundary,
we introduce another dummy vertex q∂ (pronounced “q boundary”) that forms
a tetrahedron with each face of the boundary of DT⊗

q (Pi).

With this approach, we can use a standard deletion algorithm for each DT�(Qi)
and a standard construction algorithm for each DT⊗

q (Pi). All special treatment
goes into the in-sphere and in-circle predicates, see below. Figure 2 shows the
deletion and reinsertion process when q is not on the convex hull of S. In Figure 3,
the point q is on the convex hull of S, and ∞2 and q∂ must interact.
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In-circle Predicate for the Link DT. Let incircle(a, b, c, w) be the predicate
that is true if and only if either w is inside the circumcircle for the triangle
abc and abc is positively oriented or w is outside the circumcircle and abc is
negatively oriented. The predicate insphere(a, b, c, d, w) is defined analogously
for the point w and the tetrahedron abcd.

A triangle abc belongs to the link DT and is positively oriented if and only if
the sphere through qabc is empty and the tetrahedron qabc is positively oriented.
More precisely, the incircle test incircle�(a, b, c, w) for the 2D deletion algorithm
is implemented as insphere(q, a, b, c, w). If one of a, b, c or w is ∞3, the usual
way of solving it is used, that is, insphere(q, a, b,∞3, w) is true if tetrahedron
qabw is positively oriented.

Although q initially lies inside of DT(Qi), it might end up on the boundary
during the deletion process (e.g., in Figure 2 at the deletion of p4). We defined
insphere in such a way that this does not cause a problem: if a tetrahedron
has negative orientation, we want the point to be outside of its circumsphere
(in Figure 2, when deleting p4, the outside of the circle through p2p3q does not
contain p1, and p2p3 is a boundary face of DT�(Q3)).

In-sphere Predicate for the Conflict DT. Let abcd be a positively ori-
ented tetrahedron of DT⊗

q (Pi). By definition, insphere(a, b, c, d, q) holds. If q∂ 	∈
{a, b, c, d}, the predicate insphere⊗(a, b, c, d, w), used to compute DT⊗

q , is defined
as insphere(a, b, c, d, w) (notice that a, b, c, or d might be ∞3). If, without loss
of generality, q∂ = d, we consider bacd′, the neighboring tetrahdron of abcq∂ in
DT⊗

q (Pi). Let C be the circumsphere of bacd′. Then q lies inside of C. Consider
moving C in the pencil of spheres through abc in the direction that places d′

outside. Since abc is a face of the boundary of DT⊗
q (Pi), the moving sphere will

encounter q before any other point, so the sphere through bacq is empty, and
we consider it as the circumsphere of abcq∂. Again, if q is not on the same side
of abc as d′, the conflict zone is actually the outside of the ball. More formally,
insphere⊗(a, b, c, q∂ , w) is defined as insphere⊗(b, a, c, q, w). For an example in
2D refer to Figure 2: when p5 is inserted, it is in conflict with p4p2q∂ and not
with p2p1q∂ creating a non-convex angle on the boundary of DT⊗

q (P5). When p4
is inserted, since p3p2q is counterclockwise the disk circumscribing p3p2q∂ is the
outside of the circumscribing circle of p2p3q, and p4 is in conflict.

4.2 Main Algorithm

We now present several variations of our randomized incremental algorithm.
All variants use the same framework, given in Algorithm DeleteVertex, but
they differ in the implementation of ConstructDT in line 3. Some of our
schemes achieve good worst-case performance, while others yield more practical
implementations.
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DeleteVertex(DT(S), q)

� Preprocessing
1 DT�(Q) ← ConstructLinkDT(DT(S), q);
2 P ← the neighbors of q;

� The actual implementation for filling the cavity
3 DT⊗

q (P ) ← ConstructDT(DT�(Q), P, q);
� Postprocessing

4 Sew the tetrahedra from DT⊗
q (P ) into DT(S)

using the correspondence between DT�(Q) and the boundary of DT⊗
q (P );

5 Delete the tetrahedra of DT�(Q);

It is plain to observe that the pre- and postprocessing takes time O(|P |). Thus,
the complexity lies in the recursive function ConstructDT.

We give two approaches for ConstructDT: incremental backward reinsertion
(IBR) and a biased randomized insertion order (BRIO). IBR samples random
points from P one-by-one and updates DT�(Qi) before sampling a new point.
BRIO uses a gradation of P , i.e., it batches the sampling process into rounds,
and it updates DT�(Qi) only once all points of a round have been determined.

Incremental Backward Reinsertion. The IBR-approach is given as Algo-
rithm IBR-Construct. It samples a point pi from DT�(Qi), recursively con-
structs DT(Pi−1), and then inserts pi into DT(Pi−1) using guide(pi). The cor-
rectness of Algorithm IBR-Construct follows immediately by induction, but
there are several choices for the implementation: how do we sample pi in line 3,
and how do we determine its guide in line 4? We discuss several variations to-
gether with the implications on the expected running time.

IBR-Construct(DT�(Qi), Pi, q)

1 if |Pi| = 4
2 then return CreateQConflictDT(Pi);
3 Sample pi ∈ Pi;
4 guide(pi) ← one neighbor of pi in DT�(Qi);
5 Pi−1 ← Pi \ {pi};
6 DT�(Qi−1) ← LinkDTDelete(DT�(Qi), pi);
7 DT⊗

q (Pi−1) ← IBR-Construct(DT�(Qi−1, Pi−1, q));
8 DT⊗

q (Pi) ← QConflictDTInsert(DT⊗
q (Pi−1), pi, guide(pi));

9 return DT⊗
q (Pi);

Uniform Sampling. A natural approach is to take pi uniformly at random. How-
ever, if the guide is a neighbor of pi, it is not clear how to bound the running time.
If the triangulations store only incidence relations, the point location time for
pi will be proportional to d◦(guide(pi),DT�(Qi−1)). If DT�(Qi−1) were a planar
triangulation, choosing the nearest neighbor of pi as guide would yield constant
expected point location time [11, Lemma 1]. Unfortunately, as DT�(Qi−1) is em-
bedded in 3D, the nearest neighbor is no longer guaranteed to be a neighbor in
DT�(Qi−1).
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An alternative is to use a triangle as a guide instead of a vertex. Let guide(pi) =
t�i = pjpkpl be a triangle created by the removal of pi in DT�(Pi) (without loss
of generality j > k, l). Then, t�i can be matched to a tetrahedron t⊗i = pjpkplq∂
created in DT⊗

q when pj is inserted. This matching can be efficiently computed

by storing in pj all its incident triangles in DT�(Pj) in counterclockwise order
when pj is deleted in DT�. After the insertion of pj in DT⊗

q , we walk simultane-
ously around the edge pjq∂ of DT⊗

q (Pj) and through the list of triangles in order

to put pointers from each t�i to the matching t⊗i . In a more powerful model of
computation, we could also represent triangles as triples of indices in [1, d] and
maintain the correspondence between t�i and t⊗i using universal hashing [4] in
O(1) expected time.

Low-degree Vertex Sampling. Instead of sampling pi at random, another choice
can be to sample it uniformly among the points with degree at most 7. Since
DT�(Qi) is planar, there are 2

5 i candidates to choose from. The advantage is
that we can delete pi quickly using “low degree optimization”. As previously, we
need to take triangles as guide. Unfortunately, Pi is no longer a random subset
of P of size i, and we cannot bound the expected structural change with such a
sequence.

Low-degree Edge Sampling. As already pointed out, for vertex guides to be
efficient, we need to control their degrees. To this aim, instead of choosing
pi first and then guide(pi) amongst its neighbors, we will choose directly the
edge pi guide(pi). The following lemma ensures that we can find an edge with
d◦(pi,DT�(Qi)) ≤ 8, d◦(guide(pi),DT�(Qi)) ≤ 230, and pi sampled at random
in a subset of Pi of size greater than i

96 . As for low-degree vertex sampling, we
cannot guarantee a bound on the structural change for such a permutation.

Lemma 2. Let T be a planar triangulation with n vertices such that the external
face of T is a triangle. Then T contains Ω(n) edges whose both endpoints have
degree O(1).

Proof. It is well known that T contains an independent set I ⊆ P of vertices such
that (i) |I| ≥ n

18 , and (ii) d◦(p, T ) ≤ 8 for all p ∈ I. Let N be the neighborhood
of I in T . The set N induces a planar graph with at least n

18 facets (each facet
contains a single point of I). Hence, |N | ≥ 2 + n

36 and the average degree of a
vertex in N (wrt T ) is at most 3+3·36 = 111 (using the fact that ∀v, d◦(v, T ) ≥ 3
if n ≥ 4), so at least half of the vertices in N have degree at most 222. Thus, at
least n

96 points in I have a neighbor of degree at most 230. �


BRIO Sampling. The BRIO -approach [2] uses a gradation to construct the
permutation {pi}. We construct a sequence P = Sr ⊇ Sr−1 ⊇ · · · ⊇ S0 = ∅ of
subsets such that Si−1 is obtained from Si by sampling each point independently
with probability 1/2. Note that for p ∈ P , we have Pr[p ∈ Si] = 2−(r−i), so
r = O(log d) with high probability. Now the algorithm proceeds in r rounds : in
round r − i + 1, we have DT�(Si ∪ {q}), and we compute a spanning tree Ti for
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DT�(Si ∪ {q}) that has maximum degree 3. This takes time O(|Si|), using an
algorithm by Choi [10]. We store Ti as a guide. Then, we delete all points from
Si \Si−1 to obtain DT�(Si−1∪{q}) and proceed to round r− i+2. This deletion
takes time O(|Si|) [6]. The construction of DT⊗

q (P ) also proceeds in r rounds. In
round i, we have DT⊗

q (Si), and we would like to obtain DT⊗
q (Si+1). For this, we

perform a BFS along Ti+1, starting from a vertex in Si, and we insert the points
as they are encountered. Since each edge of Ti+1 must appear in in DT⊗

q (Si+1),
the time for walking along each edge can be charged to the structural change.
However, we need to bound the time it takes to locate the tetrahedron that is
intersected by the next edge. This is done in the following lemma.

Lemma 3. The total time for locating the tetrahedra that are intersected by the
edges of the bounded-degree spanning tree is O(|Si| + C⊗(Si)).

Proof. The point location takes place on the boundary of DT⊗
q (Si). The standard

BRIO analysis shows that biasing the permutation in each round increases the
expected structural change by at most a constant factor [2]. Thus, throughout
the round the total number of triangles that can appear on the boundary are
O(|Si| + C⊗(Si)) (the ones present initially, plus the ones created). Since Ti

has bounded degree, we scan each triangle at most O(1) times for each incident
vertex. The claim follows. �


We can summarize these results in the following theorem:

Theorem 4. Backward Reinsertion takes O(C⊗(P )) expected time using
(i) uniform sampling using triangle guides, or
(ii) BRIO sampling using vertex guides

5 Experimental Setup and Results

Variant Sampling Guide

IBR-Hashing deg pi ≤ 7, low deg optimized delete hash triangle
IBR-Neighbor deg pi ≤ 7, low deg optimized delete lowest degree neighbor of pi
IBR-Edge Random edge uv with d◦(u) ≤ 7, d◦(u) + d◦(v) ≤ 15 guide(u) = v
IBR-BRIO Independent rounds with probability 1/2 BDST of Choi [10]
Guide-only Constructing DT(P ) and sew, edge guide and edge sampling.
DT⊗

q -only Constructing DT⊗
q (P ) and sew, no guide, random order.

Cgal Cgal: constructing DT(P ) and sew, no guide, “Dijkstra order” from DT�(Q).
Cgal-rnd Randomized Cgal: constructing DT(P ) and sew, no guide, random order.

We implemented the above variants of our algorithm using Cgal 4.2.1 In
practice, our implementations differ a bit from theory. For IBR-hashing, we did
not use a real hash table, but a balanced binary search tree. IBR-Neighbor has
not been proven to be optimal in theory, taking the neighbor of pi of lowest
degree has the disadvantage of needing the computations of these degrees.

1 The experiments were performed on a 32-bit 2.53 GHz quad-core Intel i5 running
Microsoft Windows 7 operating system with 3 gigabytes usable RAM. Code has been
compiled using Microsoft Visual C++ in Cgal release mode.
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The conditions proved in Lemma 2 are too restrictive to implement IBR-Edge,
thus we are looking for edges uv such that the sum of the degrees of the two end-
points is less than 15. The vertex of smallest degree of such an edge is chosen
as pi and the other as guide. The fact that there are Ω(n) such edges is not
guaranteed by our lemma but works well in practice.

We experimented on var-
ious “reasonable” datasets
(several random distributions,
real 3D models) where the
degree of points is bounded,
and we observed similar run-
ning times for all methods.
Our experimental results
are interesting when we use
distributions with high de-
gree points such as points
on the moment curve
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to 250 on a scale in
milliseconds. The data
is aggregated over all
distributions, however the
long term behavior is domi-
nated by the moment curve
distribution. IBR-Edge is
the best variant, the good
performance of DT⊗

q -only
indicates that comput-
ing DT⊗

q (P ) instead of
DT(P ) is the source

of a big part of the improvement, while the improvement due to the use of
guides to speed up point location is less crucial. Timings above address a com-
plete deletion, the side figure details how this time is split in the different parts
of the algorithm. More details about experiments can be found in Schrijvers’s
thesis [17].

In our analysis of the algorithm, we have made the general position assump-
tion. In combination with numerical stability issues, this generally does not hold
in real-world data sets. Our implementation is meant as a proof-of-concept, not
production-quality code. Whenever we were unable to complete a deletion be-
cause of stability issues, we have discarded the results. This has only happened
a few dozen times for the 182,051 data points we have gathered. Since our al-
gorithm works in arbitrary dimensions, it would be possible to go to a lower-
dimensional DT whenever the general position assumption is violated, as Cgal

currently does for their deletion code.
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6 Conclusion

Our vertex deletion algorithm has running time O(C⊗(P )), improving in theory
on previous algorithms in the common circumstance that C⊗(P ) = o(k log d)
where k is the number of tetrahedra needed to retriangulate the cavity and d
its number of vertices. In practice our implementation outperforms the current
Cgal implementation when the deleted point has high degree (≥ 100) and
remains competitive for low degree. Going from theory to practice required some
compromises; our best implementations differ from the theoretical model: IBR-
edge uses different degrees in the sampling method while IBR-hash does not
actually use hashing but a binary search tree.

The low degree sampling schemes has not been proven to have theoretically
optimal complexity. It is an open question to prove or disprove that such a
permutation, where the next point is randomly chosen in a linear size subset, is
random enough to obtain an expected complexity O(C⊗(P )).
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Abstract. We describe an algorithm to subdivide an arbitrary trian-
gulation of a surface to produce a triangulation that is vertex-colorable
with three colors. (Three-colorable triangulations can be efficiently rep-
resented and manipulated by the GEM data structure of Montagner and
Stolfi.) The standard solution to this problem is the barycentric subdivi-
sion, which produces 6n triangles when applied to a triangulation with n
faces. Our algorithm yields a subdivision with at most 2n−m+4(2−χ)
triangles, where χ is the Euler characteristic of the surface and m is the
number of border edges (adjacent to only one triangle). This bound is
rarely reached in practice; in particular, if the triangulation is already
three-colorable the algorithm does not split any triangles.

Keywords: triangulation, 3-coloration, subdivision.

1 Introduction

We describe an algorithm to subdivide an arbitrary triangulation T of a surface,
with or without border, to produce a triangulation R that is 3-vertex-colorable,
namely whose vertices can be labeled with the three “colors” {0, 1, 2} in such
a way that the endpoints of every edge have distinct colors. Vertex-colorable
triangulations have theoretical interest, since they can be elegantly represented
by the GEM (Graph-Encoded Manifolds) graph class created by Sóstenes Lins
and Arnaldo Mandel [3]. They are also relevant to geometric modeling, since
they can be represented by the GEM data structure of Montagner and Stolfi [1,2]
that allows efficient traversal and modification of d-dimensional triangulations,
for any d, with only three topological operators.

The standard solution to this problem is the barycentric subdivision [4], where
each edge of T is divided into two new edges and a new vertex, and each face of
T into six new triangles, six new edges, and a new vertex. The procedure also
yields a 3-vertex-coloration for R, where each vertex has color 0, 1 or 2 depend-
ing on whether it is contained in a vertex, edge, or face of T , respectively. The
barycentric subdivision is easily implemented, but always produces a triangula-
tion R with 6n faces when applied to a triangulation T with n faces, even when
T is already 3-vertex-colorable.

For triangulations of the sphere, a more economical solution is to find a pairing
of the dual graph, and then split the quadrilateral formed by each pair of triangles

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 265–276, 2013.
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into four triangles by adding its missing diagonal. In the resulting triangulation
R every vertex has even degree, and therefore R is three-colorable [8]. This
method can be adapted to work for planar triangulations with non-triangular
outer face and holes. However, it always doubles the number of faces (even in
cases where it would suffice to split only two of them); and it does not work for
non-planar, non-spherical triangulations.

In contrast, our algorithm works for any triangulation, and yields a subdivision
with at most 2n − m + 4(2 − χ) triangles, where χ is the Euler characteristic
of the surface and m is the number of edges on its border. This bound is 2n
for a triangulation of the sphere with no border, and 2n−m + 4k for a planar
triangulation with m border edges in k border cycles. Moreover, these upper
bounds are only rarely attained: in experiments with Delaunay triangulations
of normally distributed points, for example, the average number of triangles in
R was about 1.25n. In particular, if the triangulation T is already 3-vertex-
colorable, the algorithm will not split any faces and will return R = T .

A lower bound to the size of R (for any algorithm) is n + p, where p is the
number of odd-degree vertices that are not on the border. For every such vertex,
at least one of the incident triangles must be bisected at that corner before those
triangles can be 3-colored. Thus, if all n/2 + 2 vertices are odd, R will have at
least 3n/2+2 triangles. However, additional triangles may have to be subdivided
to obtain a 3-colorable triangulation.

2 Definitions

For this paper, we define a surface as a connected compact topological space X
where every point p has a neighborhood that is either homeomorphic to the plane
R2, or homeomorphic to the closed half-plane H2 = { (x, y) : x, y ∈ R ∧ x ≥ 0 },
with p corresponding to the origin. Points of the second type comprise the border
of X , while the others comprise its interior. Note that the border is the union
of zero or more connected components, each homeomorphic to the circle S1. See
Figure 1a.

A triangulation T is a partition of a surface, denoted by ST , into a finite
collection of parts, comprising its vertices VT , edges ET , and faces (or triangles)
FT , such that: (i) each vertex is a singleton set; (ii) each edge is homeomorphic
to R; (iii) each face is homeomorphic to R2; (iv) the boundary in ST of every
edge is a pair of distinct vertices; (v) the boundary in ST of every face is the
union of three distinct vertices and three distinct edges.

With this definition, the border of ST is necessarily the union of a subset of
the edges and vertices of T , the border edges and border vertices. Any edge or
vertex of T that is not on the border is an interior edge or interior vertex. A
part p of T is said to incide on another part q if one of them is contained in the
boundary of the other. An interior edge is incident to exactly two faces of T ;
whereas any border edge is incident to exactly one face. These faces are called
the wings of the edge. See Figure 1b.

Note that a triangulation T cannot have any of the features highlighted in
Figure 2. In particular, it cannot have a vertex incident to more than two border
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(a) (b)

Fig. 1. A surface homeomorphic to the side surface of a cylinder, with the points p
on the border and q in the interior (a); a triangulation for the surface, with a border
vertex u, an interior vertex v, a border edge e and an interior edge f (b). The border
has two connected components.

Fig. 2. A partition of a topological space that is not a triangulation. It has a local
cut point w, an edge e bounded by only one vertex, a face t with only two boundary
vertices and a face t′ with only two boundary edges.

edges. Such a vertex would be a local cut point of the space ST , which we define as
a point p in a topological space with a neighborhood X such that X is connected
but X \ {p} is not. Note that a surface, as defined above, cannot have any local
cut points.

A sub-triangulation T ′ of a triangulation T is a subset of the triangles of T ,
together with all (and only) the edges and vertices that are incident to those
triangles. A sub-triangulation has all the defining properties of a triangulation,
except that its underlying space ST ′ may not be connected, and may have local
cut points. The border edges of T ′ are the edges of T that are incident to only
one triangle of T ′. The border vertices of T ′ are the ones incident to those edges.
Note that the local cut points of ST ′ are the vertices of T ′ that are incident to
four or more border edges of T ′.

A triangulation R is said to be a subdivision of another triangulation T if
ST = SR and every part of T is the union of some subset of the parts of R.

The Euler characteristic of a triangulation T is the number χT = |VT | −
|ET | + |FT |. It is a topological property of the surface ST alone [6], being 2
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for the sphere S2, 0 for the torus T2 = S1 × S1, 1 for the closed unit disk
D2 = { (x, y) : x2 + y2 ≤ 1 }.

3 The Algorithm

3.1 Overview

Our algorithm receives a triangulation T as input, and outputs a subdivision R
of T and a 3-coloration for R. The algorithm operates on one triangle of T at a
time, either preserving it or replacing it (in R) by two or more new triangles, in
such a way that the part of the triangulation that has already been processed is
3-vertex-colorable.

In the description of the algorithm, we will denote by R′ the part of R that
has already been built, and by T ′ the part of T that still remains to be processed.
Each vertex v of R′ has an assigned color λ(v) ∈ {0, 1, 2}. See Figure 3. Both
R′ and T ′ are valid sub-triangulations (as defined in Section 2) of R and T ,
respectively. Also, R′ is a valid subdivision of a sub-triangulation of T .

The border edges of R′ may include some edges that are contained on the
border of ST , but also some edges that are contained in the interior of ST but
lie between processed and unprocessed triangles. Likewise, the border edges of
T ′ may comprise some border edges of T , but also some interior edges of T
that separate T ′ from R′ (that is, which are incident to exactly one unprocessed
triangle).

The algorithm never splits an edge of T into more than two edges. Therefore,
each border edge of T ′ is either an unprocessed border edge of T , or a border
edge of R′, or the union of two border edges and a border vertex of R′.

The surface SR′ of R′ is always connected once R′ has been initialized. This
follows from the fact that the algorithm only adds a new triangle to R′ if it is
incident to some edge of R′ (that, by definition, is already incident to some other
triangle of R′).

3.2 The Old Dual Graph

Although T ′ may be split into two or more connected components at some stage,
that may only happen, in a sense, because of the “holes” bounded by the border
of ST . The triangulation T ′ would remain connected if those holes were filled in
the proper way.

In order to formalize this statement (which is important for the proof of
correctness) we define the old dual graph T ′∗ that represents the connectivity
of T ′. The vertices of T ′∗ are all the faces of T ′, plus a null vertex t∅ if T ′ has
any border edges of T . The edges of T ′∗ are all the interior edges of T ′, plus
the border edges of T ′ that are border edges of T . Each interior edge e of T ′

connects in T ′∗ its two wings in T ′. Each border edge of T ′ that is a border edge
of T connects in T ′∗ the vertex t∅ to its wing in T ′. See Figure 4.

Throughout the algorithm, the graph T ′∗ remains connected. Note that the
vertex t∅ may provide a path between two connected components of T ′, as long
as each still has at least one border edge of T .
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(a) (b)

(c) (d)

Fig. 3. Processing of a sample triangulation T , showing the situation (a) just before,
(b) during, and (c) just after the main loop of the 3-coloring algorithm, and (d) the
final result R. The triangles of R′ are in dark gray and those of T ′ in light gray. The
white square is a hole in ST .
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Fig. 4. The old dual graph corresponding to the situation of Figure 3(b)

3.3 Detailed Algorithm

We now show a precise description of the algorithm. It receives a triangulation T
as input, and outputs a subdivision R of T and a 3-coloration λ for the vertices
of R:

1. Choose any triangle t of T . Let R′ and T ′ be the sub-triangulations of T
such that FR′ = {t}, and FT ′ = FT \ {t}. Let u0, u1, u2 be the vertices of t.
Set λ(ui) = i for each i (see Figure 3a).

2. While |FT ′ | ≥ 2 do:

(a) Find a triangle t of T ′ that fits any of the patterns in the left column of
Figure 5, and whose removal will not disconnect the graph T ′∗.

(b) Apply the replacement operation shown in the second column of Figure 5,
in the row corresponding to the pattern matched by t.

3. If |FT ′ | > 0, then |FT ′ | = 1. Let t be the only remaining triangle of T ′. If
any side of t is a border edge of T , it must fit one of the patterns in Figure 5,
cases a to h; otherwise it must fit one of the patterns in Figure 6, cases n
to r. Apply the corresponding replacement operation, that makes T ′ empty
and turns R′ into the final triangulation R.

On the diagrams of Figures 5 and 6, thick lines denote border edges of R′. On
the left (pattern) diagrams, thin lines are edges of T ′ that are not in the border
of R′, and the only triangle shown is a triangle of T ′. On the right (replacement)
diagrams, all thin lines are interior edges of R′, and all vertices and triangles are
parts of R′. In either diagram, numbered vertices are vertices of R′ (which may
or may not be also vertices of T ′), and the numbers are their assigned colors.
The other columns of Figures 5 and 6 will only be needed in Section 5.

In steps 2a and 3, the algorithm must match a triangle t of T ′ to one of those
pattern diagrams. Specifically, it must pair each vertex v of t with one of the
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three corners of the diagram, and also choose a permutation π of the three colors.
If a vertex v of t is also a vertex of R′, then it must be paired with a labeled
vertex of the diagram, and the label of the latter should be π(λ(v)). Then each
edge e of t will be paired with one side of the pattern diagram. Each side may
be one edge of T ′, one edge of R′, or two edges and a vertex of R′.

Note that every pattern diagram in Figures 5 and 6 has one or more thick
sides. Therefore, the triangle t of T ′ chosen in step 2a will have at least one edge
contained in the border of R′.

The replacement operation performed in steps 2b and 3 consists of: (i) re-
move the triangle t from T ′, (ii) partition it into triangles, edges and vertices as
indicated by the replacement diagram, (iii) add those triangles to R′, and (iv)
assign colors to the new vertices of R′. In items (i) and (ii) it is understood that
the sets VR′ , ER′ , VT ′ and ET ′ are adjusted as required by the definition of sub-
triangulation. In item (iv), each new vertex v of R′ gets a color λ(v) = π−1(c)
where c is the corresponding color on the replacement diagram.

4 Correctness

Through the execution of the algorithm the following properties can be verified:
(i) the union of the parts of R′ and T ′ is the surface ST ; (ii) the intersection of
SR′ and ST ′ consists only of points in edges and vertices of R′ and T ′; (iii) T ′ is
a valid sub-triangulation of T ; (iv) R′ is a valid sub-triangulation of R; (v) R′ is
a valid subdivision of a sub-triangulation of T ; (vi) λ is a valid 3-coloring of R′.

These properties are true after step 1, and each of the replacements in step 2b
preserves these properties. Moreover, after the replacement in step 3, T ′ will
have no triangles and R′ will be a valid subdivision of T . Therefore, R will be
a valid subdivision of T and λ will be a valid 3-coloring of R. Note that the
algorithm terminates, because at each iteration the triangulation T ′ loses one
triangle.

To prove the correctness of the algorithm we must show that there is always a
triangle t that satisfies either the conditions of step 2a or the conditions of step 3.
For that purpose, we define the old front as being the set of edges and vertices
of T ′ that are in the border of T ′ but not in the border of T ; and, similarly,
the new front as the edges and vertices in the border of R′ that are not in the
border of T . Note that the union of the parts of the old front and the union of
those of the new front are the set of points of SR′ ∩ ST ′ , only partitioned into
edges and vertices in two different ways.

The proof of correctness also rests on the following loop invariants, that will
be shown to hold just before every execution of step 2a:

L0 The new front has at least one edge of R′.
L1 Each triangle of T ′ is incident to at most two edges of the old front.
L2 Every edge e of the old front is either an edge of the new front, or the union

of two edges a, b and one vertex w of the new front. In the second case, if
u, v are the ends of e, then λ(u) = λ(v).
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Pattern Replacement δFR′ δEb
R′ δFT ′ δχR′ δΔ

a

2

01

2

01 +1 +1 −1 0 0 (−2)

b

2

00 1

2

00 1 +2 0 −1 0 0 (−2)

c

0

12

0

12 +1 −1 −1 0 −2 (−4)

d

0

11

0

11 2 +2 0 −1 0 0 (−2)

e

0

10

2

0

10

2

+2 −2 −1 0 −2 (−4)

f

0

10

1

0

10

1
2

+4 −2 −1 0 0 (−2)

g

0

00

2 1

0

00

2 1

1 +4 −2 −1 0 0 (−2)

h

0

00

1 1

0

00

1 1

2 +4 −2 −1 0 0 (−2)

i

0

12

0

12 +1 +1 −1 −1 −4 (−6)

j

0

11 2

0

11 2 +2 0 −1 −1 −4 (−6)

k

0

11 0

0

11 0
2

+4 0 −1 −1 −2 (−4)

l

0

01

0

01

2

+2 +2 −1 −1 −2 (−4)

m

0

00 1

0

00

2 2

1 +4 +2 −1 −1 0 (−2)

Fig. 5. Possible patterns (modulo color permutations) and the respective replacements
for each iteration after step 1 of the algorithm
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Pattern Replacement δFR′ δEb
R′ δFT ′ δχR′ δθT ′ δΔ

n

0

12

0

12 +1 −3 −1 +1 −1 −2

o

0

11 2

0

11 2 +2 −4 −1 +1 −1 −2

p

0

11 0

0

11 0
2

+4 −4 −1 +1 −1 0

q

0

00 1

1 1

0

00

1 1

1
2

+6 −6 −1 +1 −1 0

r

0

00 1

2 2

0

00 1

2 2

+4 −6 −1 +1 −1 −2

Fig. 6. Additional possible patterns for the last operation (step 3) of the algorithm,
and their replacements

The invariants L0 and L2 are also true just before step 3, as will be shown. The
validity of L0, L1, and L2 is established by lemmas 1–3:

Lemma 1. The replacement in step 2b preserves invariant L0.

Proof. Each replacement in Figure 5 creates at least one new edge in the border
of R′, so after each iteration of step 2b the border of R′ is not empty.

Note that FT ′ is not empty, because the main loop of the algorithm processes
one triangle of T ′ at a time and stops if |FT ′ | < 2. Since ST is connected, the
two closed subsets SR′ and ST ′ of ST must have a non-empty intersection. Since
FR′ and FT ′ are disjoint and ST has no local cut-points, the intersection must
include at least one whole edge of R′, which must be contained in the border of
R′ and the border of T ′. As observed before, this edge must be part of the new
front.

Lemma 2. Invariant L1 is valid just before every execution of step 2a.

Proof. Just before each step 2a there are at least two triangles in T ′. By the
choice of t in step 2a, T ′∗ is always connected. Therefore, there is at least one
edge of T ′∗ connecting each triangle of T ′. Thus, there is no triangle of T ′ with
all its three boundary edges in the old front and the lemma is true.

Lemma 3. The replacement in step 2b preserves invariant L2.

Proof. Every replacement diagram in Figure 5 has at most two edges for each
corresponding edge e in the border of T ′. Moreover, every time the replacement
splits an edge e, the two ends of e are assigned the same same color in R′.
Therefore invariant L2 is preserved.
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Lemmas 4, 5 and 6 guarantee the triangles chosen at steps 2a and 3 exist.

Lemma 4. Just before every execution of step 2a, there is a triangle t of T ′ that
has an edge e in the old front, whose removal does not disconnect the T ′∗ graph.

Proof. Let FB
T ′ be the set of triangles of T ′ that are incident to edges of the old

front, and FI
T ′ = FT ′ \ FB

T ′ . Note that the vertices of T ′∗ are FB
T ′ ∪ FI

T ′ ∪ T∅,
where T∅ is {t∅}, if t∅ exists or the empty set otherwise. By invariant L1, the
degree of each vertex of FB

T ′ in T ′∗ is one or two, and the degree of each vertex
of FI

T ′ in T ′∗ is three. FB
T ′ cannot be empty due to invariant L0.

Let G be the graph obtained from T ′∗ by contracting all edges of T ′∗ \FB
T ′ [5],

removing any loops, and coalescing any parallel edges. Note that every vertex of
FB

T ′ still exists in G, and its degree in G is at most two.
Since edge contraction preserves connectedness, the graph G is connected,

and therefore has a spanning tree M [7]. We will now show that M has at least
one leaf t that is a vertex of FB

T ′ . The removal of t will not disconnect T ′∗, so
the lemma will be proved.

Since FB
T ′ is not empty and T ′ has at least two triangles, M has at least two

vertices, and therefore at least two leaves. Even if there is one vertex t∅ in T ′∗,
there is one leaf m in M that is a vertex of FB

T ′ , or is the contraction of some
subset X of FI

T ′ (that does not include t∅). In the first case, we are done. In
the second case, the border B of X in T is not empty and doesn’t contain any
border edges of T or of R′. Therefore B must consist of k ≥ 2 edges of triangles
from FB

T ′ , and j ≤ k vertices of those triangles. Since each triangle in FB
T ′ has

degree at most 2 in T ′∗ but it also has 3 distinct vertices, B must contain edges
from at least two distinct triangles of FB

T ′ .
It follows that m has at least two neighbors in G that are in FB

T ′ but only one
neighbor in M . Let t be one of these neighbors that is not the neighbor of m in
M . Since t has degree at most 2 in G and M is connected, t must have exactly
one neighbor in M , and therefore is a leaf of M .

Lemma 5. Just before every execution of step 2a, there is a triangle t of T ′ that
fits one of the patterns in Figure 5 and whose removal does not disconnect the
T ′∗ graph.

Proof. Let t be any triangle of T ′ that satisfies the conditions of lemma 4. By
invariants L0 and L1, t has one or two sides in the old front.

By inspection one can verify that all possible cases (apart from a permuta-
tion of the colors already assigned) are covered in the left column of Figure 5.
Specifically, if only one side e of t is in the old front, then t must fit one of the
patterns (a) or (b) if the vertex of t that is not incident to e is not in the old
front, and one of the patterns (i) through (m) otherwise. If two sides of t are in
the old front, then t must fit one of the patterns (c) through (h).

Note that the color patterns that do not appear in those pattern diagrams
are forbidden by invariant L2.

Lemma 6. The last triangle t of T ′ fits one of the patterns in Figure 5 or
Figure 6.
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Proof. Just before the execution of step 3, by lemma 4, t is either incident to t∅
in T ′∗ or an isolated vertex of T ′∗. For the first case, t has one or two sides in the
old front and, by inspection, one can verify that all possible cases are covered
in the left column of Figure 5. For the second case, t has three sides in the old
front and, by inspection, one can verify that all possible cases are covered in in
the left column of Figure 6.

From these lemmas we conclude the following:

Theorem 1. For any triangulation T , the algorithm returns a 3-colored subdi-
vision R of T .

5 Efficiency

For the proof of efficiency we define:

Δ = |FR′ | + 2|FT ′ | + |Eb
R′ | − |Eb

T | + 4(χR′ − χT ) + 2θT ′ (1)

where χR′ and χT are the Euler characteristics of R′ and T , respectively; Eb
R′

and Eb
T are the set of border edges of R′ and T , respectively; and θT ′ is the

number of connected components of T ′∗, that is, 1 if T ′ is not empty (before
step 3) and 0 otherwise (after step 3). Note that χT and |Eb

T | are constants while
the other parameters vary during the algorithm.

Observe that, at each execution of steps 2b and 3, the quantity Δ decreases
or stays equal. The change of its value is denoted by δΔ. Analogously, we can
define δ|FR′ |, δ|FT ′ |, δ|Eb

R′ |, δχR′ and δθT ′ . See Figures 5 and 6. Specifically for
Figure 5, δΔ has two values: the first (out of the parentheses) is for step 2b; the
second (in parentheses) is for step 3.

We will prove below that, after step 1, Δ is an upper bound for the number
of triangles of the final triangulation R.

Lemma 7. At any point during the execution of the algorithm, except before
step 1, Δ ≥ |FR|

Proof. At the end of the execution of the algorithm, |FR′ | = |FR|, |FT ′ | = 0,
|Eb

R′ | ≥ |Eb
T | and χR′ = χT . Substituting in formula (1), we have Δ ≥ |FR|.

According to lemmas 5 and 6, Figures 5 and 6 represent all possible operations
during the execution of the algorithm, except for step 1. Since the change δΔ in
Δ in all those cases is zero or negative, and Δ ≥ |FR| at the end, the lemma is
true.

Theorem 2. For any triangulation T , the algorithm returns a subdivision R
with at most 2|FT | − |Eb

T | + 4(2 − χT ) faces.

Proof. Just after step 1 we have |FR′ | = 1, |FT ′ | = |FT | − 1, |Eb
R′ | = 3, χR′ = 1

and θT ′ = 1. Therefore, at this point, Δ = 1+2|FT |−2+3−|Eb
T |+4(1−χT )+2,

and then Δ = 2|FT | − |Eb
T | + 4(2 − χT ). By lemma 7, the theorem is true.



276 L.M. Bueno and J. Stolfi

In particular, if T is a triangulation of the sphere, Eb
T is empty and χT = 2, so

the bound reduces to |FR| ≤ 2|FT |. Also, if T is a planar triangulation whose
border consists of k separate cycles (including the outermost boundary), then
χT = 2 − k, and the bound becomes |FR| ≤ 2|FT | − |Eb

T | + 4k.
Note that these are only upper bounds, and |FR| may be substantially smaller.

In particular, if the triangulation T already has a 3-coloration σ, only cases (a),
(c), and (i) of Figure 5 and case (n) of Figure 6 may occur. Then the algorithm
will not split any triangles and will color the vertices of R′ with λ = σ apart
from a permutation of the three colors.
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Abstract. The seminal work of Myerson (Mathematics of OR 81) char-
acterizes incentive-compatible single-item auctions among bidders with
independent valuations. In this setting, relatively simple deterministic
auction mechanisms achieve revenue optimality. When bidders have cor-
related valuations, designing the revenue-optimal deterministic auction is
a computationally demanding problem; indeed, Papadimitriou and Pier-
rakos (STOC 11) proved that it is APX-hard, obtaining an explicit in-
approximability factor of 99.95%. In the current paper, we strengthen
this inapproximability factor to 57/58 ≈ 98.3%. Our proof is based on
a gap-preserving reduction from the problem of maximizing the number
of satisfied linear equations in an over-determined system of linear equa-
tions modulo 2 and uses the classical inapproximability result of H̊astad
(J. ACM 01). We furthermore show that the gap between the revenue of
deterministic and randomized auctions can be as low as 13/14 ≈ 92.9%,
improving an explicit gap of 947/948 ≈ 99.9% by Dobzinski, Fu, and
Kleinberg (STOC 11).

1 Introduction

In the classical model of Auction Theory [10], a seller auctions off an item to
n bidders with valuations for the item drawn independently from known but
not necessarily identical probability distributions. Myerson’s seminal work [14]
gives an elegant characterization of revenue-maximizing auctions in this setting.
Optimal revenue is achieved by simple deterministic auctions that are defined
using succinct information about the probability distributions. In contrast, the
case of bidders with correlated valuations has been a mystery; in spite of the
vast related literature in Economics and Computer Science, no such general
characterization result has been presented so far. Due to their simplicity and
amenability to implement in practice, deterministic auctions are of particular
importance. Recently, Papadimitriou and Pierrakos [16] provided an explanation
— from the computational complexity point of view — for this lack of results, by
proving that the problem of designing the optimal deterministic auction given
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the explicit description of the joint probability distribution (with finite support)
is APX-hard. Furthermore, Dobzinski et al. [7] provided a separation between
randomized (truthful in expectation) and deterministic truthful auctions; there
are (single-item) settings in which randomized auctions may extract strictly more
revenue than any deterministic auction. Both results hold even when only three
bidders participate in the auction. In this paper, we strengthen both results.

Existing approaches to single-item auctions with correlated bidders fall into
three different categories. A first approach that has been mostly followed by
economists (e.g, see [13,11,12,3]) assumes that each bidder has her own valua-
tion function that depends on a shared random variable; this model is usually
referred to as the interdependent valuations model. In a second approach, the
support of the joint probability distribution is extremely large (exponentially
larger than the number of players or even infinite) and an auction mechanism
can obtain information about the distribution through queries (e.g, see [17,18]).
The related literature focuses on the design of auctions that use only a polyno-
mial (in terms of the number of bidders) number of queries. In the third one, the
joint probability has finite support and the related work seeks for auctions that
are defined in polynomial time in terms of the support size and the number of
players (e.g, see [7,16]). The last two models are known as the query model and
the explicit model, respectively. Among these models, the explicit one allows us
to view the design of the revenue-optimal (deterministic) auction as a standard
optimization problem. The auction has to define the bidder that gets the item
and her payment to the auctioneer for every valuation vector of the support of
the joint probability distribution. Both the allocation and the payments should
be defined in such a way that no bidder has an incentive to misreport her true
valuation; this constraint is known as incentive compatibility. The objective is to
maximize the expected revenue of the auctioneer over all valuation vectors.

Since our purpose is to explore the limitations of deterministic auctions, we
focus on the explicit model and the case of three bidders. Following [16], we refer
to the optimization problem mentioned above (when restricted to three bidders)
as 3OptimalAuctionDesign. The inapproximability bound presented by Pa-
padimitriou and Pierrakos [16] is marginally smaller than 1, namely 1999/2000.
It is achieved by a gap-preserving reduction from a structured maximum sat-
isfiability problem called CatSat. This problem has an inapproximability of
79/80; hence, the gap obtained for 3OptimalAuctionDesign is even closer to
1. We present a different reduction from the classical Max-3-Lin(2) problem
of approximating the number of satisfied linear equations in an over-determined
system of linear equations modulo 2 (with three binary variables per equation).
Our proof uses the seminal 1/2-inapproximability result of H̊astad [9] and yields
a significantly improved inapproximability bound of 57/58 ≈ 98.3% for 3Opti-

malAuctionDesign. Furthermore, we demonstrate a rather significant revenue
gap between deterministic truthful mechanisms and randomized auctions that
are truthful in expectation; the revenue of any deterministic auction can be at
most 13/14 ≈ 92.9% of the optimal randomized one. This result improves the
previously known explicit bound of 947/948 ≈ 99.9% of Dobzinski et al. [7].
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Extending Myerson’s work, Crémer and McLean [4,5] characterize the in-
formation structure that guarantees the auctioneer full surplus, under several
settings with correlated valuations. They consider interim individual rational-
ity which allows players to have negative utility for some valuation vectors. In
contrast, our work focuses on ex post individual rationality, a design require-
ment that does not allow such situations. Ronen [17] and Ronen and Saberi [18]
consider single-item optimal auctions in the query model. They design auctions
that use queries of the form: given the valuations of a set of players, which is
the conditional distribution of the remaining ones? The 1-lookahead auction in
[17] yields at least half the optimal revenue to the seller. Essentially, the auction
ignores the n− 1 lowest bids and offers the item to the remaining bidder at the
price that maximizes the revenue considering the distribution of her valuations
conditioned on the valuations of everybody else. Ronen and Saberi [18] present
several impossibility results for auctions of particular type, e.g., no ascending
auction can approximate the optimal revenue to a factor greater than 7/8.

Dobzinski et al. [7] consider k-lookahead auctions and show that a 2/3-
approximation of the optimal revenue can be achieved by randomized auctions
in the query model. For the explicit model, they show that the optimal random-
ized auction can be computed by linear programming while the deterministic
2-lookahead auction achieves a 3/5-approximation of revenue. Their positive re-
sults have been strengthened by Chen et al. [2] to factors of 0.731 and 0.622,
respectively. Both [7] and [16] prove that revenue-optimal auction design can be
solved in polynomial time in the 2-bidder case. The 2-bidder case has also been
considered in [8] and [6]. In particular, Diakonikolas et al. [6] study the tradeoff
between efficiency and revenue in deterministic truthful auctions and prove that
any point of the Pareto curve can be approximated with arbitrary precision.

The rest of the paper is structured as follows. We begin with preliminary
definitions in Section 2. The reduction and the proof of the inapproximability
of 3OptimalAuctionDesign are presented in Section 3. The revenue-gap con-
struction is presented in Section 4. Due to lack of space, several details in the
constructions and some proofs have been omitted.

2 Preliminaries

We study the setting in which an item is auctioned off among players (or bidders)
with correlated valuations and quasi-linear utilities. Players draw their valuations
from a joint probability distribution D over valuation vectors. A single-item auc-
tion mechanism is defined by an allocation and a payment function. For every
vector of bids that are submitted by the players to the auctioneer, the allo-
cation defines who among the players (if any) gets the item and the payment
function decides the payment of the winning player to the auctioneer. Incentive
compatibility, individual rationality, and the no-positive-transfers property are
classically considered as important desiderata for auction mechanisms [10,15]. In-
centive compatibility requires that truth-telling maximizes players’ utility (i.e.,
valuation minus payment). Hence, each player always submits as bid her actual
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valuation for the item. Individual rationality encourages players to participate.
In particular, we consider ex post individual rationality that requires that players
always have non-negative utility. We also require that the players never receive
payments from the auctioneer (no positive transfer). An obvious objective for
auction mechanisms is the maximization of the expected revenue, i.e., the ex-
pectation over all valuation vectors of the payment received by the auctioneer.

The recent work on revenue-optimal deterministic auction mechanisms (e.g.,
see [16]) restricts the search space to monotone allocations and threshold payment
functions. An allocation is monotone if when the item is allocated to some player
i for some bidding vector b, player i is allocated the item when the bid vector
is (b′, b−i) with b′ > bi. The notation (b′, b−i) denotes the bidding vector where
player i bids b′ and the remaining players keep their bids as in b. A threshold
payment for a winning player i is then defined as the infimum bid b′′ so that
player i gets the item for the bidding vector (b′′, b−i).

We consider auctions with three players and assume that D is defined by a set
S of points in R3 and weights associated with these points. The weight of a point
indicates the probability that the corresponding valuation vector is realized. We
refer to the three players as player x, y, and z; a point of S corresponds to a
valuation vector where players x, y, and z have as valuation the x-, y-, and z-
coordinate of the point. Naturally, we will refer to allocations of points to players.
In the following, we say that two points are x-aligned (resp., y-aligned, z-aligned)
if they have the same y- and z-coordinates (resp., x- and z-coordinates, x- and
y-coordinates). Monotonicity implies that if a point p is allocated to a player
(say, x), then all points that are x-aligned with p and have higher x-coordinate
are enforced to be allocated to player x as well (similarly for the other players).
The payment associated with a point p that is allocated to player x is then
the lowest x-coordinate of the x-aligned points with p that are allocated to x
(similarly for the other players). So, we can state the problem of designing the
optimal deterministic auction mechanism as follows:

3OptimalAuctionDesign: Given a finite set of points S ⊂ R3 and associated
weights, compute a monotone allocation of the points of S to players x, y,
and z so that the weighted sum of the implied threshold payments (expected
revenue) is maximized.

Randomized allocations can allocate fractions of points to players under the
restriction that the total allocation fraction for a point is at most 1. Fractions
correspond to allocation probabilities. In randomized auction mechanisms that
are truthful-in-expectation, the allocation is monotone in the sense that the
allocation probabilities to player x (similarly for the other players) are non-
decreasing in the terms of the x-coordinate of x-aligned points. The payment
when player x gets the item at point p depends on the x-coordinate of the
points that are x-aligned to p and have lower x-coordinates and their allocation
probabilities (e.g., see Chapter 13 of [15]). In any case, this payment is at least
the lowest x-coordinate among the x-aligned points to p that have non-zero
probability to be allocated to x.
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3 The Inapproximability Result

In this section we present our gap-preserving reduction from Max-3-Lin(2) to
3OptimalAuctionDesign.

Max-3-Lin(2): Given a set of n binary variables v1, . . . , vn and a set of m
linear equations modulo 2 each containing exactly three variables, find an
assignment of the variables that maximizes the number of satisfied equations.

Consider an instance I of Max-3-Lin(2), with n variables vi, for i = 1, . . . , n
and m linear equations modulo 2, i.e., e(h) : vh1 + vh2 + vh3 = αh (mod 2),
for h = 1, . . . ,m, with 1 ≤ h1 < h2 < h3 ≤ n and αh ∈ {0, 1}. Let di be the
degree of variable vi, i.e., the number of equations in which vi participates. Our
reduction constructs an instance R(I) of 3OptimalAuctionDesign with a
polynomial number of points. We describe the reduction giving only the relative
location of most of these points; this suffices to give the intuition behind our
proof. The majority of the points in R(I) have coordinates in (1−θ, 1+θ) where
θ ∈ (0, 1/3600) is a very small constant; there are additional points called blockers
which lie outside (and significantly far from) this region. Both the coordinates
of points and their weights are rational numbers that require only polynomial
precision. Without loss of generality, we consider weights that do not sum up to
1 and we consistently compute the revenue contributed by (the allocation of) a
point as the product of the threshold payment and its weight.

We exploit the following property which has also been used in [1]. Given a
linear equation e(h) : vi + vj + vk = α, define the four boolean clauses e1(h) =
(vi ∨ vj ∨ vk), e2(h) = (¬vi ∨ ¬vj ∨ vk), e3(h) = (¬vi ∨ vj ∨ ¬vk), and e4(h) =
(vi ∨¬vj ∨¬vk) if α = 1 and e1(h) = (¬vi ∨¬vj ∨¬vk), e2(h) = (vi ∨ vj ∨¬vk),
e3(h) = (vi ∨ ¬vj ∨ vk), and e4(h) = (¬vi ∨ vj ∨ vk) if α = 0.

Fact 1. If a linear equation e(h) is true then the four boolean clauses e1(h),
e2(h), e3(h), e4(h) are true. Otherwise, exactly three of these clauses are true.

Instance R(I) contains one variable gadget and four clause gadgets per equa-
tion (each clause gadget corresponds to one of the clauses mentioned above).
The clause gadgets are carefully connected to the variable gadget. We begin by
presenting the variable gadget.

The variable gadget. For every variable vi, i = 1 . . . n, the variable gadget has
a variable point vi with weight di(1/2 + 23θ). All these points are x-aligned
with (1, 1, 1) and their x-coordinate is in (1, 1+θ) so that the x-coordinate of
vi+1 is higher than the x-coordinate of vi. For each appearance of variable vi
in an equation e, there are four connection points Hi

1(e), Hi
2(e), Hi

3(e), and
Hi

4(e) with weight θ. Two of these points are y-aligned with vi; the other
two are z-aligned with vi. The exact location of these points will become
clear after the description of the clause gadgets; for the moment, we remark
that these points have coordinates in [1, 1 + θ). We also add a point b with
weight θ, at point (L(b), 1, 1) such that θL(b) = 3m(1 + θ)(1/2 + 23θ).
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Point b belongs to a special class of points in our construction which we call
blockers. The idea is that a blocker can prevent the allocation of a point to a
certain player. Blockers essentially play the same role that scaffolding segments
play in the reduction of [16]. In particular, b x-blocks the points v1, ..., vn in the
following sense. It has weight θ (i.e., it corresponds to a highly unlikely valuation
vector) but a very large x-coordinate 3m(1 + θ)(1/2 + 23θ)/θ to compensate for
that (i.e., player x values the item greatly, unlike the other two players). In a
revenue-optimal allocation, the only point among v1, v2, ..., vn, and b that is
allocated to player x is b. To see why this is true, observe that the contribution of
b to the revenue is 3m(1+θ)(1/2+23θ) whereas by allocating some variable points
and b to x, their contribution to the revenue is less than 3m(1 + θ)(1/2 + 23θ).
Furthermore, the weight di(1/2 + 23θ) of point vi is significantly high so that in
any revenue-optimal allocation, point vi should be allocated to either player y
or player z; these allocations correspond to setting variable vi to values 1 and 0,
respectively. Due to monotonicity, this will enforce the allocation of the y-aligned
or z-aligned connection points; intuitively, this will propagate the fact that the
variable vi is set to a certain value to the clause gadgets.

We continue by presenting the clause gadgets and clarify the connection to
the variable gadget. For each equation of I, we define four clause gadgets, one
for each clause corresponding to the equation. For two x-aligned points p and q,
we use the notation p(+x)q and p(−x)q to denote that q has larger and smaller
x-coordinate than p, respectively (similarly for the other coordinates). We define
the four clause gadgets corresponding to the equation e(h) : vi + vj + vk = 1
(mod 2).

The clause gadget corresponding to clause e1(h) = (vi ∨ vj ∨ vk). The
clause gadget corresponding to e1(h) consists of the 5-sequence of points
[A1(h)(+x)B1(h)(−z)C1(h)(+x)D1(h)(−z)E1(h)]. All these points have y-
coordinate in (1 − θ, 1), i.e., they lie below the plane y = 1. Points A1(h),
C1(h), and E1(h) have weight 1; points B1(h) and D1(h) have weight θ.
The points A1(h), C1(h), and E1(h) are y-aligned to the connection points
Hi

1(h), Hj
1(h), and Hk

1 (h), respectively. Point A1(h) is z-blocked by blocker
bA1(h) while point E1(h) is x-blocked by blocker bE1(h). See Figure 1.

The z-blocker bA1(h) has weight θ and a very high z-coordinate equal to (1+θ)2/θ.
This implies that the highest revenue allocation is the one in which bA1(h) is
allocated to player z and point A1(h) is not allocated to player z. To see why
this is true, observe that the contribution of bA1(h) to the revenue is (1 + θ)2

whereas by allocating both A1(h) and bA1(h) to z or neither of them to z, their
contribution to the revenue is less than (1 + θ)2. All blockers in the following
have the same coordinate (1 + θ)2/θ in the dimension that they block. Points
with negligibly small weight θ that are part of the gadgets are crucial since they
indirectly influence the allocation of unit-weight points, e.g., B1(h) prevents
A1(h) and C1(h) to be allocated to x and z, respectively, at the same time.
Consider a monotone allocation in which the connection points Hi

1(h), Hj
1(h),

and Hk
1 (h) are allocated to players x or z. In this case, we say that the clause
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Fig. 1. The clause gadgets corresponding to equation e(h) : vi + vj + vk = 1 (mod 2).
Large black disks represent unit-weight or variable points, smaller black disks represent
connection points or θ-weight points, whereas white disk represent blockers. Note that
the notation of points has been simplified by dropping the index h.

gadget is non-breathing in the sense that none of the points A1(h), C1(h), and
E1(h) can be allocated to player y. Hence, among the monotone allocations in
which the clause gadget is non-breathing, the one that maximizes revenue leaves
one of A1(h), C1(h), and E1(h) unallocated. In this case, the contribution of
these three unit-weight points to revenue is at least 2 and at most 2 + 2θ. In
contrast, if some of the connection points (say Hj

1(h)) is not allocated to players
x or z (i.e., the clause gadget is breathing), the contribution of A1(h), C1(h), and
E1(h) can increase to at least 3 − θ and at most 3 + 2θ by allocating A1(h) and
B1(h) to player x, C1(h) and Hj

1(h) to player y, and D1(h) and E1(h) to player
z. The other cases (i.e., when Hi

1(h) or Hk
1 (h) are not allocated to any player)

have similar allocations of the same improved revenue.
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The clause gadget corresponding to clause e2(h) = (¬vi ∨ ¬vj ∨ vk).
The clause gadget corresponding to e2(h) consists of the 7-sequence of
points [A2(h)(+x)B2(h)(−y)C2(h)(+x)D2(h)(−y)E2(h)(+z)F2(h)(−x)G2(h)].
Points A2(h), B2(h), C2(h), D2(h), and E2(h) have z-coordinate in (1−θ, 1),
i.e., they lie behind the plane z = 1. Points E2(h), F2(h), and G2(h) have
y-coordinates in (1 − θ, 1), i.e., they lie below the plane y = 1. Points
A2(h), C2(h), E2(h) and G2(h) have weight 1; points B2(h), D2(h), and
F2(h) have weight θ. The points A2(h) and C2(h) are z-aligned to the
connection points Hi

2(h) and Hj
2(h), respectively. Point G2(h) is y-aligned

to connection point Hk
2 (h). Point A2(h) is y-blocked by blocker bA2(h),

point E2(h) is x-blocked by blocker bE2(h), and point G2(h) is z-blocked by
blocker bG2(h). See Figure 1.

Among the monotone allocations in which the connection points Hi
2(h) and

Hj
2(h) are allocated to players y or x, and Hk

2 (h) is allocated to players x or z
(i.e., the clause gadget is non-breathing), the one that maximizes revenue should
leave at least one of the points A2(h), C2(h), E2(h), or G2(h) unallocated. In
this case, the total contribution of the unit-weight points to revenue is at least 3
and at most 3 + 3θ. In contrast, if some of the connection points (say Hi

2(h)) is
not allocated to the players mentioned above, the contribution of A2(h), C2(h),
E2(h), and G2(h) can increase to at least 4−2θ and at most 4+2θ by allocating
A2(h) and Hi

2(h) to player z, C2(h) and B2(h) to player y, E2(h) and D2(h) to
player y, and G2(h) and F2(h) to x. The other cases (i.e., when Hj

2(h) or Hk
2 (h)

are not allocated to any player) have similar allocations of the same improved
revenue.

The clause gadgets corresponding to clauses e3(h) and e4(h) are analogous.
Observations about potential revenue similar to those for the clause gadget cor-
responding to clause e2(h) apply to these cases as well. An important property
is that points in different clause gadgets are never aligned. This is achieved by
dedicating a distinct xz-plane for the points in the the gadget associated with
clause e1(h) and a distinct xz-plane and a distinct xy-plane for the points in each
gadget associated with clause e2(h), e3(h), and e4(h), respectively. The clause
gadgets corresponding to clauses of an equation e(h′) : vi + vj + vk = 0 (mod 2)
are symmetric and have identical properties.

We will show that the optimal revenue in R(I) strongly depends on the max-
imum number of satisfied equations in I. Since approximating the second objec-
tive is hard, we will show that approximating the first objective is also hard. We
exploit a particular type of monotone allocations.

Definition 1. An allocation of instance R(I) is called simple if for every con-
nection point that is allocated to a player, unallocating it violates monotonicity.

Note that the definition implies that a connection point is allocated to a player
only if the allocation of its aligned variable point or clause gadget point also
enforces it to be allocated to the same player. We will now explain a relation
between simple allocations in R(I) and assignments for I. First observe that, if
the variable point vi is not allocated, then the fact that the allocation is simple
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implies that all connection points aligned to vi are not enforced by vi and,
hence, the clause gadgets corresponding to equations in which vi participates
are all breathing. Consider an equation e(h) : vi + vj + vk = α (mod 2), one of
its clauses e�(h), the corresponding clause gadget, and an allocation of variable
points vi, vj , and vk to players y and z. As mentioned above, we will associate the
allocation of a variable point to player y (resp., to player z) with the assignment
of value 1 (resp., 0) to its corresponding variable. Then, we can easily verify that
the clause gadget associated with e�(h) is breathing if and only if the allocation
of the variable points vi, vj , and vk implies an assignment that satisfies clause
e�(h). By Fact 1, either the four clause gadgets of e(h) are breathing (if the
implied assignment satisfies e(h)) or exactly three of them are breathing (if the
implied assignment does not satisfy e(h)).

Furthermore, when accounting for the revenue of a simple allocation A, we
will disregard the revenue obtained by connection points as well as non-blocker
points in clause gadgets with weight θ; we will refer to such points as θ-weight
points. We refer to the revenue obtained by the remaining points (i.e., variable
points, blockers, and unit-weight points in clause gadgets) as discounted revenue
drev(A).

Lemma 1. Consider a simple allocation of maximum discounted revenue. If the
four clause gadgets corresponding to an equation e(h) are breathing, then their
contribution to the discounted revenue is at least 26 + 15θ + 11θ2 and at most
26 + 30θ + 11θ2. If only three of them are breathing, the contribution of the four
clause gadgets to the discounted revenue is at least 25 + 16θ + 11θ2 and at most
25 + 31θ + 11θ2.

We will call a simple allocation in which all variable points are allocated to
players y and z a complete simple allocation.

Lemma 2. The simple allocation of maximum discounted revenue is complete.

Lemma 3. For every monotone allocation A with revenue rev(A), there is a
complete simple allocation A′ such that drev(A′) ≥ rev(A) − 46mθ.

Since θ has an extremely small value in our construction, it is clear that the
optimal discounted revenue over complete simple allocations is a very good ap-
proximation of the optimal revenue over all monotone allocations. The proof of
the next lemma exploits this observation.

Lemma 4. If the maximum number of satisfied equations in I is K, then the
revenue in the revenue-optimal monotone allocation of R(I) is between (28 −
300θ)m + K and (28 + 300θ)m + K.

Proof. Let us consider an optimal assignment of values to the variables of I so
that K linear equations are true. We construct a complete simple allocation A
for R(I) as follows. For every variable vi that is set to 0 (resp., to 1), we allocate
the variable point vi to player z (resp., to player y). In this way, the variable
points contribute

∑n
i=1 di(

1
2 + 23θ) ≥ 3m/2 to the discounted revenue of A. The
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blocker b is allocated to player x and contributes 3m(1 + θ)(12 + 23θ) ≥ 3m/2
to the discounted revenue. Then, every clause gadget corresponding to a true
(resp., false) clause is breathing (resp., non-breathing). The points in the clause
gadgets are allocated so that their contribution to the discounted revenue is
as high as possible. By Lemma 1, we have that the contribution of the four
breathing clause gadgets associated with an equation to the discounted revenue
is at least 26 + 15θ + 11θ2 ≥ 26. For each unsatisfied equation, three of the
corresponding clause gadgets are breathing and one is non-breathing. Hence,
their contribution to the discounted revenue is at least 25 + 16θ+ 11θ2 ≥ 25. So,
the total discounted revenue is at least

3m/2 + 3m/2 + 26K + 25(m−K) ≥ (28 − 300θ)m + K.

Clearly, the right-hand side of this inequality is a lower bound on the revenue of
the revenue-optimal monotone allocation as well.

Now, consider a complete simple allocation of maximum discounted revenue
and the assignment of values to the variables vi this allocation implies. Consider
the equations in which the four corresponding clause gadgets are all breathing.
By our construction, this implies that the corresponding equations are satisfied
by the assignment; so, there are at most K such quadruples and the remaining
m − K quadruples of clause gadgets will have three breathing and one non-
breathing clause gadgets. In total, using Lemma 1, the discounted revenue of
the complete simple allocation is at most

3m(
1

2
+23θ)+3m(1+θ)(

1

2
+23θ)+K(26+30θ+11θ2)+(m−K)(25+31θ+11θ2)

< (28 + 251θ)m + K.

Hence, by Lemma 3, the revenue-optimal monotone allocation has revenue at
most (28 + 300θ)m + K. �


We are ready to prove our main result.

Theorem 1. For every constant δ ∈ (0, 1/2), it is NP-hard to approximate
3OptimalAuctionDesign within a factor 57+δ

58−δ .

Proof. Let δ ∈ (0, 1/2), η = δ/3 and θ = δ/1800. Since, given I, it is NP-hard
to distinguish cases where the maximum number of satisfied equations is at
least (1 − η)m or at most (1/2 + η)m [9], Lemma 4 implies that it is NP-hard
to distinguish between cases where the maximum revenue among all monotone
allocations of R(I) is at least (28 − 300θ)m + (1 − η)m = (58 − δ)m/2 and at
most (28 + 300θ)m + (1/2 + η)m = (57 + δ)m/2 is NP-hard as well. �


4 Deterministic vs Randomized Auctions

We now present the upper bound on the revenue-gap between deterministic and
randomized mechanisms.
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Theorem 2. The revenue obtained by the optimal deterministic truthful mech-
anism can be at most 13

14 of the revenue obtained by the optimal truthful-in-
expectation mechanism.

Proof. Our construction consists of 22 points described in Table 1. The param-
eter θ is positive and arbitrarily small. Point b(u) is a z-blocker for point u. The

Table 1. The construction in the proof of Theorem 2

Point cx cy cz wgt

q1 1 1 + θ 1 θ

q2 1 1 + θ 1− θ 1

b(q2) 1 (1 + θ)2/θ 1− θ θ

q3 1 + θ/3 1 + θ 1− θ θ

q4 1 + θ/3 1 + θ/2 1− θ 1

b(q4) (1 + θ)2/θ 1 + θ/2 1− θ θ

q5 1 + θ/3 1 + θ/2 1− θ/2 θ

q6 1 1 + θ/2 1− θ/2 1

b(q6) 1 (1 + θ)2/θ 1− θ/2 θ

q7 1 1 + θ/2 1 θ

u 1 1 1 1

Point cx cy cz wgt

p1 1 + θ 1 1 θ

p2 1 + θ 1− θ 1 1

b(p2) (1 + θ)2/θ 1− θ 1 θ

p3 1 + θ 1− θ 1 + θ/2 θ

p4 1 + 2θ/3 1− θ 1 + θ/2 1

b(p4) 1 + 2θ/3 1− θ (1 + θ)2/θ θ

p5 1 + 2θ/3 1− θ/2 1 + θ/2 θ

p6 1 + 2θ/3 1− θ/2 1 1

b(p6) (1 + θ)2/θ 1− θ/2 1 θ

p7 1 + 2θ/3 1 1 θ

b(u) 1 1 (1 + θ)2/θ θ

existence of b(u) guarantees that in a revenue maximizing allocation b(u) will
be allocated to player z and point u should not be allocated to z. A similar
observation applies for blockers b(q2), b(q4), b(q6), b(p2), b(p4), and b(p6) and
their corresponding blocked points. Regarding the remaining points, we refer to
the ones of weight 1 as heavy points, and to the ones of weight θ as light points.

Consider the randomized allocation in which the blockers are allocated to their
preferred direction, the heavy points are allocated equiprobably between their
two non-blocked directions, and the light points are allocated as follows: points
q1, q7, and p5 are allocated equiprobably between players y and z, points p1, p7,
and q3 are allocated equiprobably between players x and y, and points q5 and p3
are allocated equiprobably between players x and z. It can be easily verified that
this is a monotone allocation with revenue at least 7(1+θ)2+(7+8θ)(1−θ) ≥ 14.

Now, let us examine the possible deterministic allocations. If u is not allocated
the maximum revenue does not exceed 7(1+θ)2+(6+8θ)(1+θ) ≤ 13+28θ+15θ2.
Otherwise, if u is allocated to player y or z, some of the other heavy points can
not be allocated to a non-blocked direction/player. To see why this is true,
assume that u is allocated to player y (the case that u is allocated to player
z is symmetric). Then, points q2 and q6 can only be allocated to player x in a
monotone allocation, thus point q4 can not be allocated to any of its non-blocked
directions. Again, the maximum revenue does not exceed 13 + 28θ + 15θ2. The
theorem follows since θ can take any arbitrarily small positive value. �
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1 INRIA Sophia-Antipolis - Méditerranée
2 Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271,

06900 Sophia Antipolis, France

Abstract. We consider the following Minimum Connectivity Infer-

ence problem (MCI), which arises in structural biology: given vertex sets
Vi ⊆ V, i ∈ I , find a graph G = (V,E) minimizing the size of the edge set
E, such that the sub-graph of G induced by each Vi is connected. This
problem arises in structural biology, when one aims at finding the pair-
wise contacts between the proteins of a protein assembly, given the lists
of proteins involved in sub-complexes. We present four contributions.

First, using a reduction of the set cover problem, we establish that the
MCI problem is APX-hard. Second, we show how to solve the problem to
optimality using a mixed integer linear programming formulation (MILP).
Third, we develop a greedy algorithm based on union-find data structures
(Greedy), yielding a 2(log2 |V |+log2 κ)-approximation, with κ the maxi-
mum number of subsets Vi a vertex belongs to. Fourth, application-wise,
we use the MILP and the greedy heuristic to solve the aforementioned
connectivity inference problem in structural biology. We show that the
solutions of MILP and Greedy are more parsimonious with respect to edges
than those reported by the algorithm initially developed in biophysics,
which are not qualified in terms of optimality. Since MILP outputs a set
of optimal solutions, we introduce the notion of consensus solution. Us-
ing assemblies whose pairwise contacts are known exhaustively, we show
an almost perfect agreement between the contacts predicted by our algo-
rithms and the experimentally determined ones, especially for consensus
solutions.

1 Introduction

1.1 Connectivity Inference for Macro-molecular Assemblies

Macro-molecular Assemblies. Building models of macro-molecular machines is a
key endeavor of biophysics, as such models not only unravel fundamental mech-
anisms of life, but also offer the possibility to monitor and to fix defaulting
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systems. Example of such machines are the eukaryotic initiation factors which
initiate protein synthesis by the ribosome, the ribosome which performs the
synthesis of a polypeptide chain encoded in a messenger RNA derived from a
gene, chaperonins which help proteins to adopt their 3D structure, the protea-
some which carries out the elimination of damaged or misfolded proteins, etc.
These macro-molecular assemblies involve from tens to hundreds of molecules,
and range in size from a few tens of Angstroms (the size of one atom) up to 100
nanometers.

But if atomic resolution models of small assemblies are typically obtained
with X-ray crystallography and/or nuclear magnetic resonance, large assemblies
are not, in general, amenable to such studies. Instead, their reconstruction by
data integration requires mixing a panel of complementary experimental data [4].
In particular, information on the hierarchical structure of an assembly, namely
its decomposition into sub-complexes (complexes for short in the sequel) which
themselves decompose into isolated molecules (proteins or nucleic acids) can be
obtained from mass spectrometry.

Mass Spectrometry. Mass spectrometry (MS) is an analytical technique allowing
the measurement of the mass-to-charge (m/z) ratio of molecules [22], based on
three devices, namely a source to produce ions from samples in solution, an ana-
lyzer separating them according to their m/z ratio, and a detector to count them.
The process results in a m/z spectrum, whose deconvolution yields a mass spec-
trum, i.e. an histogram recording the abundance of the various complexes as a
function of their mass. Considering this spectrum as raw data, two mathematical
questions need to be solved. The first one, known as stoichiometry determina-
tion (SD), consists of inferring how many copies of the individual molecules are
needed to account for the mass of a mode of the spectrum [2,6]. The second one,
known as connectivity inference, aims at finding the most plausible connectivity
of the molecules involved in a solution of the SD problem.

Connectivity Inference. Given a macro-molecular assembly whose individual
molecules (proteins or nucleic acids) are known, we aim at inferring the con-
nectivity between these molecules. In other words, we are given the vertices of
a graph, and we wish to figure out the edges it should have. To constrain the
problem, we assume that the composition, in terms of individual molecules, of
selected complexes of the assembly is known. Mathematically, this means that
the vertex sets of selected connected subgraphs of the graph sought are known.
To see where this information comes from, recall that a given assembly can be
chemically denatured i.e. split into complexes by manipulating the chemical con-
ditions prior to ionization. In extreme conditions, complete denaturation occurs,
so that the individual molecules can be identified using MS. In milder conditions,
multiple overlapping complexes are generated: once the masses of the proteins
are known, the list of proteins in each such complex is determined by solving the
aforementioned SD problem [20]. As a final comment, it should be noticed that in
inferring the connectivity, smallest-size networks (i.e. graphs with as few edges as
possible) are sought [3,25]. Indeed, due to volume exclusion constraints, a given
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protein cannot contact all the remaining ones, so that the minimal connectivity
assumption avoids speculating on the exact (unknown) number of contacts.

Mathematical Model. Let G = (V,E) be a graph, where V is the set of vertices
and E the set of edges. We denote G[V ′], respectively G[E′], the subgraph of G
induced by V ′ ⊆ V , resp. by E′ ⊆ E.

Consider an assembly together with the list of constituting proteins, as well as
a list of associated complexes. Prosaically, we associate to each protein a vertex
v ∈ V and to each complex i ∈ I ⊆ N a subset Vi ⊆ V , such that if the protein
v belongs to the complex i, then v ∈ Vi. Our goal is to infer the connectivity
inside each complex of proteins. Therefore, we need to select a set of edges Ei

between the vertices of Vi such that the graph Gi = (Vi, Ei) is connected. The
Minimum Connectivity Inference problem is to find a graph G = (V,E)
with minimum cardinality set of edges E such that the subgraph G[Vi] induced
by each Vi, i ∈ I, is connected. Formally, we state the problem as follows.

Definition 1 (Minimum Connectivity Inference problem, MCI).

Inputs: A set V of n vertices (proteins) and a set of subsets (complexes)
C = {Vi | Vi ⊆ V and i ∈ I}.

Constraint: A set E of edges is feasible if G[Vi] ⊆ G = (V,E) is connected,
for every i ∈ I.

Output: A feasible set of edges E with minimum cardinality.

Related Work. The connectivity inference problem was first addressed in [25]
using a two-stage algorithm, called network inference (NI in the sequel). First,
random graphs meeting the connectivity constraint are generated, by incremen-
tally adding edges at random. Second, a genetic algorithm is used to reduce the
number of edges, and also boost the diversity of the connectivity. Once the av-
erage size of the graphs stabilizes, the pool of graphs is analyzed to spot highly
conserved edges.

From the Computer Science point of view, MCI is a network design problem
in which one wants to choose a set of edges with minimum cost to connect enti-
ties (e.g., routers, antennas, etc.) subject to particular connectivity constraints.
Typical examples of such constraints are that the subgraph must be k-connected,
possibly with minimum degree or maximum diameter requirements (see [19] for
a survey). Such network design problems are generally hard to solve. To the best
of our knowledge, the problem of ensuring the connectivity for different subsets
of nodes has not been addressed before.

2 Preliminaries and Hardness

2.1 Simplifying an Instance of MCI: Reduction Rules

Let (V,C) be an instance of MCI. We denote by (V,C) \ u the instance (V ′, E′)
of MCI obtained from (V,C) by removing u from V and all the subsets of C it
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belongs to. So we have V ′ = V \ {u} and C′ = {Vi \ {u} | Vi ∈ C and i ∈ I}.
Moreover, we denote by OPT((V,C)) the cardinality of an optimal solution of
MCI for the instance (V,C). Let us now denote C(v) = {i | Vi ) v} ⊆ I, the set
of complexes of the protein v ∈ V . We observe that we can apply the following
reduction rules to any instance of MCI:

Lemma 1 (Reduction Rules). Let (V,C) be an instance of MCI.

1. If Vi ∈ C is such that |Vi| = 1, then any feasible solution for (V,C \ Vi) is
also feasible for (V,C), and we have OPT((V,C \ Vi)) = OPT((V,C));

2. If C(u) ⊆ C(v), for some u, v ∈ V , then a feasible solution for (V,C) is
obtained from a feasible solution for (V,C) \ u by adding the edge uv, and
we have OPT((V,C)) = OPT((V,C) \ u) + 1;

The proof is provided in the technical report [1].
By applying Lemma 1, we conclude that we can reduce the input instances of

MCI to instances where every subset Vi has at least two vertices, every vertex
appears in at least two subsets Vi and Vj with i 	= j, and the sets C(u) and C(v)
are different, for any two vertices u and v.

2.2 Hardness

We establish that MCI is APX-hard, by showing a reduction of the Set Cover

problem. The Set Cover problem is defined as follows:

Definition 2 (Set Cover problem).

Inputs: a ground set X = {x1, . . . , xm}, a collection F = {Xi ⊆ X , i ∈ I} and
a positive integer k.

Question: does there exist J ⊆ I such that
⋃

i∈J Xi = X and |J | ≤ k?

It is well-known that the Set Cover problem is NP-complete [13] and that
this problem cannot be approximated in polynomial-time by a factor of lnn,
unless P = NP [5, 17]. In order to prove our NP-completeness result, let us
formally define the decision version of MCI as:

Definition 3 (Decision version of the Connectivity Inference problem,
CI).

Inputs: A set of vertices V , a set of subsets C = {Vi | Vi ⊂ V and i ∈ I} and
a positive integer k.

Constraint: A set E of edges is feasible if G[Vi] ⊆ G = (V,E) is connected,
for every i ∈ I.

Question: Does there exists a feasible set E of edges such that |E| ≤ k?

Theorem 1. The decision version of the Connectivity Inference problem
is NP-complete.

The proof is provided in the technical report [1].
From the reduction used in the proof of Theorem 1 and the previous results

on Set Cover problem [5, 17], we conclude that MCI is APX-hard:

Corollary 1. There exists a constant μ > 0 such that approximating MCI
within 1 + μ is NP-hard.
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3 Solving the Problem to Optimality Using Mixed
Integer Linear Programming

3.1 Flow Based Formulation

To solve an instance (V,C) of the MCI problem, we introduce one binary vari-
able ye for each edge e = uv of the undirected complete graph on |V | vertices
K|V |, to determine whether edge e is selected in the solution. Thus, the objec-
tive function consists of minimizing the sum of the y variables, as specified by
Eq. (1). To solve this problem, we form the directed graph D = (V,A) in which
each edge e = uv of the complete graph K|V | is replaced by two directed arcs
(u, v) and (v, u). The solution using MILP satisfies the following constraints:

! Connectivity constraints. To enforce the connectivity of each complex, we select
one vertex si per subset Vi ∈ C as the source of a flow that must reach all
other vertices in Vi using only arcs in D[Vi]. We introduce continuous variables
f i
a ∈ R+ to express the quantity of flow originating from si and circulating along

the arc a = (u, v) (i.e. from node u to v), with u, v ∈ Vi. Constraint (2), the
flow conservation constraint of Eq. (2), expresses that |Vi| − 1 units of flow are
sent from si, and each vertex ui collects 1 unit of flow from si and forwards the
excess it has received from si to its neighbors in D[Vi].

! Capacity constraints. We also introduce a continuous variable xa ∈ [0, 1], with
a = (u, v) ∈ A and u, v ∈ V , that is strictly positive if arc a carries some flow
and 0 otherwise. In other words, no flow can use arc a when xa = 0 as ensured
by Constraint (3).

! Symmetry constraints. If there is some flow on arc (u, v) or (v, u) in D, then
variable x is strictly positive and so the corresponding edge uv must be selected
in the solution, meaning that ye = 1, as ensured by Constraints (4) and (5).

Denoting E the edges of the complete graph K|V |, and A+
i (u) (resp. A−

i (u)) the
subset of arcs of D[Vi] entering (resp. leaving) node u, the formulation reads as:

min
∑
e∈E

ye (1)

s.t.
∑

a∈A+
i (u)

f i
a −

∑
a∈A−

i (u)

f i
a =

{
|Vi| − 1 if u = si
−1 if u 	= si

∀u ∈ Vi, Vi ∈ C (2)

f i
a ≤ |Vi| · xa, ∀ Vi ∈ C, a ∈ A (3)

x(u,v) ≤ yuv, ∀ uv ∈ E (4)

x(v,u) ≤ yuv, ∀ uv ∈ E (5)

Observe that this formulation can be turned into a decision formulation, by
removing the objective and adding the constraint of Eq. (6). If the formulation
becomes infeasible, the optimal solution as more than k edges.∑

e∈E
ye ≤ k (6)

∑
e∈E�

ye < k ∀E� ∈ S (7)
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Moreover, we can use the decision formulation to enumerate all feasible solu-
tions for an instance (V,C, k). To do so, we use Constraints (7), where S is the
set of feasible solutions that have already been found. This constraint prevents
finding twice a solution. We first set S = ∅, then we add it to all newly found
solutions and repeat until the problem becomes infeasible for a solution of size k.

3.2 Implementation

The formulation has been implemented using IBM CPLEX solver 12.1, the cor-
responding software being named MILP in the sequel. Starting from the complete
graph of size |V |, MILP allows one to compute one optimal solution, or the set
of all solutions involving at most OPT + k edges. For k = 0, one gets the set of
all optimal solutions, denoted SMILP in the sequel.

4 Approximate Solution Based on a Greedy Algorithm

4.1 Design and Properties

We now propose a greedy algorithm for MCI. Starting from the empty graph
G0 = (V,E0 = ∅), Algorithm 1 iteratively builds a graph Gt = (V,Et), with
Et = Et−1 ∪ {et}. The edge et = uv chosen at step t aims at reducing the
number of connected components in the induced subgraphs Gt−1[Vi] of Gt−1,
for i ∈ C(u) ∩ C(v). More formally, at step t, we choose an edge et maximizing
mt(e = uv) among all pairs u, v ∈ V , with mt(e = uv) the number of complexes
containing u and v, and such that u and v belong to two different connected
components of Gt−1[Vi]. The quantity mt(e = uv) is called the priority of the
edge e.

Algorithm 1. Greedy algorithm for MCI

Require: V = {v1, . . . , vn} and C = {Vi | Vi ⊆ V and i ∈ I}.
Ensure: A set E of edges such that G[Vi] ⊆ G = (V,E) is connected, for every i ∈ I .
1: t := 1, E0 := ∅
2: while there exists a disconnected graph Gt−1[Vi], for some i ∈ I do
3: Find edge et maximizing the priority mt(e)
4: Et := Et−1 ∪ {et} and t := t+ 1
5: return Et−1

Proposition 1. Algorithm 1 is a 2(log2 |V | + log2 κ)-approximation algorithm
for MCI, with κ being the maximum number of subsets Vi a vertex belongs to.

The proof is provided in the technical report [1].

Proposition 2. When maxv∈V |C(v)| = 2, Algorithm 1 always returns an op-
timal solution.

The proof is provided in the technical report [1].
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4.2 Implementation

In the following, we sketch an implementation of Algorithm 1, denoted Greedy

in the sequel, which does not scan every candidate edge in Et to find the (or a)
best one, but instead maintains the priorities of all candidate edges.

Consider the following data structures:

– a priority queue Q associating to each candidate edge e its priority defined by
mt(e). Note that the initial priority is given by m0(e = uv) = |C(u)∩C(v)|.

– a union-find data structure UFi used to maintain the connected components
of the induced graph Gt[Vi]. We assume in particular the existence of a
function Find vertices() such that UFi.Find vertices(u) returns the vertices
of the connected component of the graph Gt[Vi] containing the vertex u.

Upon popping the edge et = (u, v) from Q, the following updates take place:

Update of the Priority Queue Q. For each complex Vi such that et triggers
a merge between two connected components of Gt[Vi], consider the two sets of
vertices associated to these components, namely Ki,u = UFi.Find vertices(u)
and Ki,v = UFi.Find vertices(v). The priority of all edges in the set Ki,u ×
Ki,v \ {et} is decreased by one unit.

Update of the Union-Find Data Structures. For each complex Vi such that
et triggers a merge between two connected components of Gt−1[Vi], the union
operation UFi.Union(UFi.Find(u), UFi.Find(v),) is performed.

It should be noticed that up to the logarithmic factor involved in the mainte-
nance of Q, and up to the factor involving the inverse of Ackermann’s function to
run the union and find operations [24], the update complexity is output sensitive
in the number of candidate edges affected in Ki,u ×Ki,v.

5 Experimental Results

5.1 Test Set: Assemblies of Interest

We selected three assemblies investigated by mass spectrometry, as explained in
Section 1, for which we also found reference contacts between pairs of constitut-
ing proteins, against which to compare the output of our algorithms.

As explained in the appendix of [1], we classified all collected contacts into
three sets, namely crystal contacts (set CXtal) observed in high resolution crystal
structures, cross-linking contacts (set CXL), obtained by so-called cross-linking
experiments, and miscellaneous dimers (set CDim) obtained by various biophys-
ical experiments. In case the crystal contacts are not available, we define the
reference set of contacts as CExp = CDim ∪ CXL. The three systems we selected
are:

!Yeast Exosome. The exosome is a 3’- 5’ exonuclease assembly involved in
RNA processing and degradation, composed of 10 different protein types with
unit stoichiometry [10]. A total of 21 complexes were determined by mass
spectrometry. (See also the appendix of [1].)
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!Yeast 19S Proteasome lid. Proteasomes are assemblies involved in the elim-
ination of damaged or misfolded proteins, and the degradation of short-lived
regulatory proteins. The most common form of proteasome is the 26S, which
involves two filtering caps (the 19S), each cap involving a peripheral lid, com-
posed of 9 distinct protein types each with unit stoichiometry [21]. A total of 14
complexes were determined by mass spectrometry. (See also the appendix of [1].)

!Eukaryotic Translation Factor eIF3. Eukaryotic initiation factors (eIF)
are proteins involved in the initiation phase of the eukaryotic translation. They
form a complex with the 40S ribosomal subunit, initiating the ribosomal scan-
ning of mRNA. Among them, eIF3 consists of 13 different protein types each
with unit stoichiometry [26]. A total of 27 complexes were determined by mass
spectrometry. (See also the appendix of [1].)

5.2 Assessment Method

Let SMILP be the set of optimal solutions returned by MILP, and let SNI and SG

be the solutions computed by the algorithms NI [25] and Greedy respectively.
Consider an ensemble of solutions S. The size of a solution S ∈ S, denoted

|S|, is its number of contacts. The precision of a solution S w.r.t. a reference set
of contacts C is defined as the size of the intersection, i.e. PMILP;C(S) = |S∩C|.
The precision is maximum if S ⊂ C, in which case no predicted contact is
a false positive. The notion of precision makes sense if the reference contacts
are exhaustive, which is the case for the exosome (since a crystal structure is
known) and for the proteasome lid (exhaustive list of cross-links). We summarize
the precision of the ensemble of solutions S, denoted PMILP;C(S), by the triple
(min, median, max) of the precisions of the solutions S ∈ S.

The score of a contact appearing in a solution is the number of solutions from
S containing it, and its signed score is its score multiplied by ±1 depending on
whether it is a true or false positive w.r.t C. The score of a solution S ∈ S is
the sum of the scores of its contacts. Finally, a consensus solution is a solution
achieving the maximum score over S, the set of all such solutions being denoted
Scons.. Note that the score of a solution is meant to single out the consensus
solutions from a solution set S, while the signed score is meant to assess the
solutions in S w.r.t a reference set.

5.3 Results

Except for the analysis of Table 1, due to the lack of space, we focus on the
exosome (Fig. 1).

!Parsimony and Precision. It is first observed that on the three systems,
the algorithms MILP and Greedy are more parsimonious than NI (Table 1). For
example, on the exosome, 10 edges are used instead of 12. The precision is ex-
cellent (≥ 80%) for the three algorithms on the two systems where the reference
set of contacts is exhaustive (exosome and lid).
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Table 1. Size and precision of solutions. First section of the table: assembly,
number of protein types, and size of the reference set C; second and third sections:
size and precision for the solution returned by the algorithms NI [25] and Greedy;
fourth and fifth sections: size and precision of algorithm MILP, for the whole set of
optimal solutions SMILP , and for consensus solutions Scons.

MILP . NB: **The assignment
of contacts was done manually [26]; NC∗: assembly not connected.

Complex #types Ref. set C |C| |SNI| PMILP;C(SNI) |SG| PMILP;C(SG) |SMILP| |SMILP | PMILP;C(SMILP ) |Scons.
MILP | PMILP;C(Scons.

MILP )

Exosome 10 CXtal 26 12 12(100%) 10 10 (100%) 10 1644 (7, 9, 10) 12 (8, 9, 10)

19S Lid 9 CExp 16 9 (NC)∗ 7(77.8%) 10 8 (80%) 10 324 (6, 7, 10) 18 (8, 8, 10)

eIF3 13 CExp 19 17∗∗ 14 (82.3%) 14 9 (64.2%) 14 2160 (8, 9, 11) 432 (8, 9, 10)

!Contact Scores for SMILP on the Exosome. Two facts emerge (Fig. 1(A)).
First, four ubiquitous contacts are observed, while the remaining ones vary in
the frequency. Second, there are few false positive overall. An interesting case is
(Rrp42, Rrp45), which has the 7th highest count. The two polypeptide chains
Rrp42 and Rrp45 are found in 16 out of 21 complexes used as input, accompanied
in all cases by Rrp41. Interestingly, the point of closest approach between Rrp42
and Rrp45 in the crystal structure is circa 24Å, and this gap is precisely filled by
Rrp41. That is, these three chains behave like a rigid body. Further inspection of
the structure and of the behavior of MILP on such patterns is needed to explain
why the edge (Rrp42, Rrp45) is reported.

!Scores for Consensus Solutions on the Exosome. It is first observed that
12 consensus solutions amidst 1644 optimal ones are observed (Table 1 and Fig.
1(B)). In moving from SMILP to Scons.

MILP , the precision increases from (7, 9, 10)
to (8, 9, 10) — as also seen by a Pearson correlation coefficient of -0.51 between
the mean false positive count per score, and the score (of a solution).

!Overall Assessment. The consensus solutions from MILP are more parsimo-
nious than those form NI, and compare favorably in terms of precision.
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GREEDYB
Fig. 2. Yeast

Exosome: contacts
computed by the
algorithms. (A)
Top and side view
of the crystal struc-
ture [18, PDB 4IFD].
(B,C,D) Structure
decorated with one
edge per contact. the
dash style reads as
follows: bold: contacts
in S ∩ CXtal; dotted:
contacts in S but not in
CXtal; dashed: contact
in CXtal but not in S
(Note that only most
prominent contacts in
CXtal are shown to
avoid cluttering). Note
that a long edge i.e.
an edge between two subunits that appear distant on the top view of the assembly
corresponds to a contact of these subunits located further down along the vertical
direction. Also, note that part of the subunits Dis3 and Rrp42 are visible in the middle
of the assembly and are trapped in between Csl4, Rrp40, Rrp41. The contact node
therefore is placed there for convenience.

6 Conclusion and Outlook

A key endeavor of biophysics, for macro-molecular systems involving up to hun-
dreds of molecules, is the determination of the pairwise contacts between these
constituting molecules. The corresponding problem, known as connectivity in-
ference, is central in mass-spectrometry based studies, which over the past five
years, has proved crucial to investigate large assemblies. In this context, this
paper presents a thorough study of the problem, encompassing its hardness, a
greedy strategy, and a mixed integer programming algorithm. Application-wise,
the key advantage of our methods w.r.t. the algorithm network inference de-
veloped in biophysics, is that we fully master all optimal solutions instead of a
random collection of solutions which are not qualified w.r.t. the optimum. As
shown by careful experiments on three assemblies recently scrutinized by other
bio-physical experiments (exosome, proteasome lid, eIF3), our predictions are in
excellent agreement with the experimental contacts. We therefore believe that
our algorithms should leverage the interpretation of protein complexes obtained
by mass spectrometry, a research vein currently undergoing major developments.

From a theoretical standpoint, a number of challenging problems deserve fur-
ther work. The first one is to understand the solution space as a function of
the number of input vertex sets and the structure of the unknown underlying
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graph. This problem is also related to the (output-sensitive) enumeration of con-
nected subgraphs of a given graph. The second challenge is concerned with the
generalization where the stoichiometry (the number of instances) of the proteins
involved is more than one. In that case, complications arise since the connectivity
information associated to the vertex sets of the connected subgraphs is related to
protein types, while the connectivity sought is between protein instances. This
extension would allow processing cases such as the nuclear pore complex, the
biggest assembly known to date in eukaryotic cells, as it involves circa 450 pro-
tein instances of 30 different protein types, some of them present in 16 copies.
The third one is of geometric flavor, and is concerned with the 3D embedding of
the graph(s) generated. Since the nodes represent proteins and since two proteins
must form a bio-physically valid interface if they touch at all, information on
the shape of the proteins could be used to find plausible embeddings that would
constrain the combinatorially valid solutions. This would be especially helpful
to recover the edges which are known from experiments, but do not appear in
exact or approximate solution to the minimal connectivity problem. Finally, the
Minimum Connectivity Inference problem also deserves investigation when
the pool of candidate edges is a subset of the complete graph, which is especially
relevant since pre-defined sets of edges may have been reported by a variety of
experiments, some of them producing false positives.
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Abstract. Consider a setting where possibly sensitive information sent
over a path in a network is visible to every neighbor of (some node on)
the path, thus including the nodes on the path itself. The exposure of
a path P can be measured as the number of nodes adjacent to it, de-
noted by N [P ]. A path is said to be secluded if its exposure is small. A
similar measure can be applied to other connected subgraphs, such as
Steiner trees connecting a given set of terminals. Such subgraphs may
be relevant due to considerations of privacy, security or revenue maxi-
mization. This paper considers problems related to minimum exposure
connectivity structures such as paths and Steiner trees. It is shown that
on unweighted undirected n-node graphs, the problem of finding the
minimum exposure path connecting a given pair of vertices is strongly

inapproximable, i.e., hard to approximate within a factor of O(2log
1−ε n)

for any ε > 0 (under an appropriate complexity assumption), but is
approximable with ratio

√
Δ + 3, where Δ is the maximum degree in

the graph. One of our main results concerns the class of bounded-degree
graphs, which is shown to exhibit the following interesting dichotomy.
On the one hand, the minimum exposure path problem is NP-hard on
node-weighted or directed bounded-degree graphs (even when the max-
imum degree is 4). On the other hand, we present a polynomial time
algorithm (based on a nontrivial dynamic program) for the problem on
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shown to be polynomial also for the class of (weighted or unweighted)
bounded-treewidth graphs. Turning to the more general problem of find-
ing a minimum exposure Steiner tree connecting a given set of k ter-
minals, the picture becomes more involved. In undirected unweighted
graphs with unbounded degree, we present an approximation algorithm
with ratio min{Δ, n/k,

√
2n,O(log k · (k +

√
Δ))}. On unweighted undi-

rected bounded-degree graphs, the problem is still polynomial when the
number of terminals is fixed, but if the number of terminals is arbitrary,
then the problem becomes NP-hard again.

1 Introduction

The Problem. Consider a setting where possibly sensitive information sent over
a path in a network is visible to every neighbor of (some node on) the path, thus
including the nodes on the path itself. The exposure of a path P can be measured
as the size (possibly node-weighted) of its neighborhood in this sense, denoted
by N [P ]. A path is said to be secluded if its exposure is small. A similar measure
can be applied to other connected subgraphs, such as Steiner trees connecting
a given set of terminals. Our interest is in finding connectivity structures with
exposure as low as possible. This may be motivated by the fact that in real-life
applications, a connectivity structure operates normally as part of the entire
network G (and is not “extracted” from it), and so controlling the effect of its
operation on the other nodes in the network may be of interest, in situations in
which any “activation” of a node (by taking it as part of the structure) leads to
an activation of its neighbors as well. In such settings, to minimize the set of total
active nodes, we aim toward finding secluded or sufficiently private connectivity
structures. Such subgraphs may be important in contexts where privacy is an
important concern, or in settings where security measures must be installed on
any node from which the information is visible, making it desirable to minimize
their number. Another context where minimizing exposure may be desirable is
when the information transferred among the participants has commercial value
and overexposure to “free viewers” implies revenue loss.

This paper considers the problem of minimizing the exposure of subgraphs
that satisfy some desired connectivity requirements. Two fundamental connectiv-
ity problems are considered, namely, single-path connectivity and Steiner trees,
formulated as the Secluded Path and Secluded Steiner Tree problems, re-
spectively, as follows. Given a graph G = (V,E) and an s, t pair (respectively, a
terminal set S), it is required to find an s− t path (respectively, a Steiner tree)
of minimum exposure.

Related Work. The problems considered in this paper are variations of the
classical shortest path and Steiner tree problems. In the standard versions of
these problems, a cost measure is associated with edges or vertices, e.g., repre-
senting length or weight and the task is to identify a minimum cost subgraph
satisfying the relevant connectivity requirement. Essentially, the cost of the so-
lution subgraph is a linear sum of the solution’s constituent parts, i.e., the sum
of the weights of the edges or vertices chosen.
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In contrast, in the setting of labeled connectivity problems, edges (and occa-
sionally vertices) are associated with labels (or colors) and the objective is to
identify a subgraph G′ ⊆ G that satisfies the connectivity requirements while
minimizing the number of used labels. In other words, costs are now assigned to
labels rather than to single edges. Such labeling schemes incorporate grouping
constraints, based on partitioning the set of available edges into classes, each
of which can be purchased in its entirety or not at all. These grouping con-
straints are motivated by applications from telecommunication networks, elec-
trical networks, and multi-modal transportation networks. Labeled connectiv-
ity problems have been studies extensively from complexity-theoretic and al-
gorithmic points of view [8,25,13,10]. The optimization problems in this cate-
gory include, among others, the Minimum Labeled Path problem [13,25], the
Minimum Labeled Spanning Tree problem [17,13], the Minimum Labeled Cut

problem [26], and the Labelled Prefect Matching problem [22].
In both the traditional setting and the labeled connectivity setting, only edges

or nodes that are explicitly part of the selected output structure are “paid for”
in solution cost. That is, the cost of a candidate structure is a pure function of
its components, ignoring the possible effects of “passive” participants, such as
nodes that are “very close” to the structure in the input graph G. In contrast,
in the setting considered in this paper, the cost of a connectivity structure G′ is
a function not only of its components but also of their immediate surroundings,
namely, the manner in which G′ is embedded in G plays a role as well. (Alter-
natively, we can say that the cost is a not necessarily a linear function of its
components.)

A variant of the Secluded Path problem was recently introduced as the
Thinnest Path Problem [11], where the focus was on directed hypergraph in-
stances modeling transmission in wireless networks. In that application setting,
each possible transmission power of a node yields a particular transmission range
and hence a hyperedge directed from that node to the neighbors reached. The
special case of that problem in which each node has a single possible transmission
range is equivalent to our Secluded Path problem. They give a

√
n
2 approxi-

mation result for the DegCost algorithm (see Section 2) applied to this (more
general) hypergraph setting.

The Secluded Path and Secluded Steiner Tree problems are related to sev-
eral existing combinatorial optimization problems. These include the Red-Blue

Set Cover problem [4,23], the Minimum Labeled Path problem [13,25] and the
Steiner Tree [15] and Node Weighted Steiner Tree problems [16]. A proto-
typical example is the Red-Blue Set Cover problem, in which we are given a
set R of red elements, a set B of blue elements and a family S ⊆ 2|R|∪|B| of
subsets of blue and red elements, and the objective is to find a subfamily C ⊆ S
covering all blue elements that minimizes the number of red elements covered.
This problem is known to be strongly inapproximable.

Finally, turning to geometric settings, similarly motivated problems have been
studied in the networking and sensor networks communities, where sensors are of-
ten modeled as unit disks. For example, the Maximal Breach Path problem [21]
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is defined in the context of traversing a region of the plane that contains sensor
nodes at predetermined points, and its objective is to maximize the minimum
distance between the points on the path and the sensor nodes. A dual prob-
lem studied extensively is barrier coverage, i.e., the (deterministic or stochastic)
placement of sensors (see [18], [6]). Similarly motivated problems have been
studied in the context of path planning in AI [14,19,20]. Although the moti-
vation is similar, such problems are technically quite different from the graph-
based problems studied here; those problems are typically posed in the geometric
plane, amid obstacles that cause occlusion, and visibility is defined in terms of
line-of-sight.

Contributions. In this paper, we introduce the concept of secluded connectivity
and study some of its complexity and algorithmic aspects. We first state that the
Secluded Path (and hence also Secluded Steiner Tree) problem is strongly
inapproximable on unweighted undirected graphs with unbounded degree (more

specifically, is hard to approximate with ratio O(2log
1−ε n), where n is the number

of nodes in the graph G, assuming NP 	⊆ DT IME
(
npoly logn

)
). Conversely, we

devise a
√
Δ+ 3 approximation algorithm for the Secluded Path problem and a

min{Δ,n/k,
√

2n,O(log k·(k+
√
Δ))} approximation algorithm for the Secluded

Steiner Tree problem, where Δ is the maximum degree in the graph and k is
the number of terminals.

One of our key results concerns bounded-degree graphs and reveals an inter-
esting dichotomy. On the one hand, we show that Secluded Path is NP-hard
on the class of node-weighted or directed bounded-degree graphs, even if the
maximum degree is 4. In contrast, we show that on the class of unweighted
undirected bounded-degree graphs, the Secluded Path problem admits an exact
polynomial-time algorithm, which is based on a complex dynamic programming
and requires some nontrivial analysis. Likewise, the Secluded Steiner Tree

problem with fixed size terminal set is in P as well.
Finally, we consider some specific graph classes. We show that the

Secluded Path and Secluded Steiner Tree problems are time polynomial
for bounded-treewidth graphs. We also show that the Secluded Path (resp.,
Secluded Steiner Tree) problem can be approximated with ratio O(1) (resp.,
Θ(log k)) in polynomial time for hereditary graph classes of bounded density.
As an example, the Secluded Path problem has a 6 approximation on planar
graphs. (A more careful direct analysis of the planar case yields ratio 3.)

2 Preliminaries and Notation

Consider a node-weighted graph G(V,E,W ), for some weight function W : V →
R≥0, with n nodes and maximum degree Δ. For a node u ∈ V , let N(u) = {v ∈
V | (u, v) ∈ E} be the set of u’s neighbors and let N [u] = N(u) ∪ {u} be u’s
closed neighborhood, i.e., including u itself. A path is a sequence P = [u1, . . . , u�],
oriented from left to right, also termed a u1 − u� path. Let P [i] = ui for i ∈
{1, . . . , �}. Let First(P ) = u1 and Last(P ) = u�. For a path P and nodes x, y
on it, let P [x, y] be the subpath of P from x to y. For a connected subgraph
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G′ ⊆ G and for ui, uj ∈ V (G′), let distG′(ui, uj) be the distance between ui and
uj in G′. Let N(G′) =

⋃
u∈G′ N(u) \G′ be the nodes that are strictly neighbors

of G′ nodes and N [G′] =
⋃

u∈G′ N [u] be the set of nodes in the 1-neighborhood
of G′. Define the cost of G′ as

Cost(G′) =
∑

u∈N [G′]

W (u) . (1)

Note that if G is unweighted, then the cost of a subgraph G′ is simply the
cardinality of the set of G′ nodes and their neighbors, Cost(G′) = |N [G′]|.

We sometimes consider the neighbors of node u ∈ V (G) in different subgraphs.
To avoid confusion, we denote NG′(u) the neighbors of u restricted to graph G′.

For a subgraph G′ ⊆ G, let DegCost(G′) denote the sum of the degrees of the
nodes of G′. If G′ is a path, then this key parameter is closely related to our
problem. It is not hard to see that for any given path P , Cost(P ) ≤ DegCost(P ).
The problem of finding an s−t path P with minimum DegCost(P ) is polynomial,
making it a convenient starting-point for various heuristics for the problem.

In this paper we consider two main connectivity problems. In the Secluded

Path problem we are given an unweighted graph G(V,E), a source node s and
target node t, and the objective is to find an s− t path P with minimum neigh-
borhood size. A generalization of this problem is the Secluded Steiner Tree

problem, in which instead of two terminals s and t we are given a set of k ter-
minal nodes S and it is required to find a tree T in G covering S, of minimum
neighborhood size. If the given graph G is node-weighted, then the weighted
Secluded Path and Secluded Steiner Tree problems require minimizing the
neighborhood cost as given in Eq. (1). We now define these tasks formally. For
an s − t pair, let Ps,t = {P | P is a s-t path} be the set of all s − t paths and
let q∗s,t = min{Cost(P ) | P ∈ Ps,t} be the minimum cost among these paths.
Then the objective of the Secluded Path problem is to find a path P ∗ ∈ Ps,t

that attains this minimum, i.e., such that Cost(P ∗) = q∗s,t. For the Secluded

Steiner Tree problem, let T (S) = {T ⊆ G | S ⊆ V (T ), T is a tree} be the set
of all trees in G covering S, and let q∗(S) be the minimum cost among these
trees, i.e.,

q∗(S) = min{Cost(T ) | T ∈ T (S)} . (2)

Then the solution for the problem is a tree T ∗ ∈ T (S) such that Cost(T ∗) =
q∗(S). For paths P1 and P2, P1 ◦ P2 denote the path obtained by concatenating
P2 to P1.

3 Unweighted Undirected Graphs with Unbounded
Degree

Hardness of Approximation

Theorem 1. On unweighted undirected graphs with unbounded degree, the
Secluded Path problem (and hence also the Secluded Steiner Tree problem)
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is strongly inapproximable. Specifically, unless NP ⊆ DT IME(npoly log(n)), the

Secluded Path problem cannot be approximated to within a factor O(2log
1−ε n)

for any ε > 0.

Due to space limitation, missing proofs are provided in the full version of this
paper [5].

Corollary 1. The Secluded Path problem (and hence also the
Secluded Steiner Tree problem) is strongly inapproximable in directed acyclic
graphs.

Approximation for the Secluded Path Problem

Theorem 2. The Secluded Path problem in unweighted undirected graphs can
be approximated within a ratio of

√
Δ + 3.

Proof: Given an instance of the Secluded Path problem, let P ∗ be an s−t path
that minimizes Cost(P ∗). Note that we may assume without loss of generality
that for every node u in P ∗, the only neighbors of u in G from among the nodes
of V (P ∗) are the nodes adjacent to u in P ∗. To see this, note that otherwise,
if u had an edge to some neighbor u′ ∈ V (P ∗) such that e is not on P ∗, we
could have shortened the path P ∗ (by replacing the subpath from u to u′ with
the edge e) and obtained a shorter path with at most the same cost as P ∗.
Recall that DegCost(P ) denotes the sum of the node degrees of the path P ,
and that Cost(P ) ≤ DegCost(P ) for any P . Recall also that the problem of
finding an s − t path P with minimum DegCost(P ) is polynomial. We claim
that the algorithm that returns the path Q∗ minimizing DegCost(Q∗) yields a
(
√
Δ+3) approximation ratio for the Secluded Path problem. In order to prove

this, we show that there exists a path Q such that DegCost(Q) ≤ (
√
Δ + 3) ·

Cost(P ∗). This implies that DegCost(Q∗) ≤ DegCost(Q) ≤ (
√
Δ+3) ·Cost(P ∗),

as required. The path Q is constructed by the following iterative process. Initially,
all nodes are unmarked and we set Q = P ∗. While there exists a node with more
than

√
Δ + 3 unmarked neighbors on the path Q, pick such a node x. Let y be

the first (closest to s) neighbor of x in Q and let z be the last (closest to t)
neighbor of x in Q. Replace the subpath Q[y, z] in Q with the path [y, x, z] and
mark the node x. We now show that DegCost(Q) ≤ (

√
Δ + 3) · Cost(P ∗). Let

X = {x1, . . . x�} be the set of marked nodes in Q, where xi is the node marked
in iteration i. Note that � = |X | is the number of iterations in the entire process.
For the sake of analysis, partition N [P ∗] into two sets: S1, those that have no
unmarked neighbor in Q, and S2, those that do. We claim that |S1| ≥ � ·

√
Δ.

For each xi ∈ X , let P (xi) be the path that was replaced by the process of
constructing Q in iteration i, and let Q(xi) be the path Q in the beginning of
that iteration. Since xi has more than

√
Δ+ 3 unmarked neighbors in Q(xi), we

get that |P (xi)∩P ∗| ≥
√
Δ+4. Let P−(xi) be the path obtained by removing the

first two nodes and last two nodes from P (xi). Note that |P−(xi) ∩ P ∗| ≥
√
Δ.

In addition, the sets P−(xi) ∩ P ∗ for i = {1, . . . , �} are pairwise disjoint, and
moreover, none of the nodes in Q has a neighbor in P−(xi)∩P ∗. We thus get that
(P−(xi) ∩ P ∗) ⊆ S1. Note that Cost(P ∗) = |S1| + |S2| and that � ≤ |S1|/

√
Δ.
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We get that DegCost(Q) ≤ |S2| · (
√
Δ+ 3) + � ·Δ≤ |S2| · (

√
Δ+ 3) + |S1| ·

√
Δ ≤

(|S2| + |S1|) · (
√
Δ + 3) = Cost(P ∗) · (

√
Δ + 3).

In addition, for the Secluded Steiner Tree problem with k terminals, in the
full version [5], we establish the following.

Theorem 3. The Secluded Steiner Tree problem in unweighted undirected
graphs can be approximated within a ratio of min{Δ,n/k,

√
2n,O(log k · (k +√

Δ))}.

4 Bounded-Degree Graphs

Weighted/Directed Graphs. We first show that the Secluded Path prob-
lem (and thus also the Secluded Steiner Tree problem) is NP -hard on both
directed graphs and weighted graphs, even if the maximum node degree is 4. We
have the following.

Theorem 4. The Secluded Path problem is NP-complete even for graphs of
maximum degree 4 if they are either (a) node-weighted, or (b) directed.

The Unweighted Undirected Case. In contrast, for unweighted undirected
case of bounded-degree graphs, we show that the Secluded Path problem is
solvable in polynomial time.

Theorem 5. The Secluded Path problem is solvable in O(n2 · ΔΔ+1) time
on unweighted undirected graphs, hence in polynomial time for degree-bounded
graphs.

Note that in the previous section we showed that if the graph is either weighted
or directed then the Secluded Path problem (i.e., the special case of Secluded
Steiner Tree with two terminals) is NP-hard. In addition, it is noteworthy that
the related problem of Minimum Labeled Path problem [25,13] is NP-hard even
for unweighted planar graph with max degree 4 (this follows from a straightfor-
ward reduction from Vertex Cover).

We begin with notation and couple of key observations in this context. For
two subpaths P1, P2, define their asymmetric difference as

Diff(P1, P2) = |N [P1] \N [P2]| .

Observation 6. (a) Diff(P1, P2) ≤ Diff(P1, P
′) for every P ′ ⊆ P2.

(b) Cost(P1 ◦ P2) = Cost(P1) + Diff(P2, P1).

For a given path P , let distP (s, u) be the distance in edges between s and u in
the path P . Recall, that Δ is the maximum degree in graph G.

Observation 7. Let u, v be two nodes in some optimal s− t path P ∗ that share
a common neighbor, i.e., N(u) ∩N(v) 	= ∅. Then distP∗(u, v) ≤ Δ + 1.
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Proof: Assume for contradiction that there exists an optimal s − t path P ∗

such that N(u) ∩ N(v) 	= ∅ where u = P ∗[i] and v = P ∗[j], 1 < i < j for
(i − j) ≥ Δ + 2. Recall that due to the optimality of P ∗, for every node u in
P ∗, the only neighbors of u in G from among the nodes of V (P ∗) are the nodes
adjacent to u in P ∗ (otherwise the path can be shortcut). Let w ∈ N(u) ∩N(v)

be the mutual neighbor of u and v and consider the alternative s − t path P̂
obtained from P ∗ by replacing the subpath Q = P [i, . . . , j] by the subpath
P ′ = [u,w, v]. Let Q− = P [i + 2, . . . , j − 2] be an length-�′ internal subpath of
Q where �′ ≥ Δ− 1. Then since the degree of w is at most Δ, it follows that

Cost(P̂ ) ≤ N [V (P ) \ V (Q−)] + Δ− 2 , (3)

where Δ− 2 is an upper bound on the number w′s neighbors other than u and
v. In addition, note that by the optimality of P ∗ it contains no shortcut and
hence V (Q−) ∩ (N [V (P ) \ V (Q−)]) = ∅ (i.e., for node P [i] the only neighbors
on the path P are P [i− 1] and P [i + 1]). Thus,

Cost(P ∗) ≥ N [V (P ) \ V (Q−)] + |V (Q−)|
≥ N [V (P ) \ V (Q−)] + Δ− 1 > Cost(P̂ ) ,

where the last inequality follows from Eq. (3), contradicting the optimality of
P ∗. The observation follows.

In other words, the observation says that two vertices on the optimal path
at distance Δ + 2 (which is constant for bounded-degree graphs) or more have
no common neighbors. This key observation is at the heart of our dynamic
program, as it enables the necessary subproblem independence property. The
difficulty is that this observation applies only to optimal paths, and so a delicate
analysis is needed to justify why the dynamic program works. Note that the main
difficulty of computing the optimal secluded path P ∗ is that the cost function
Cost(P ∗) is not a linear function of path’s components as in the related DegCost

measure. Instead, the residual cost of the ith vertex in the path depends on the
neighborhood of the length-(i − 1) prefix of P ∗. This dependency implies that
the secluded path computation cannot be simply decomposed into independent
subtasks. However, in contrast to suboptimal s−t paths, the dependency (due to
mutual neighbors) between the components of an optimal path is limited by the
maximum degree Δ of the graph. The limited dependency exhibited by any s− t′

optimal path facilitates the correctness of the dynamic programming approach.
Essentially, in the dynamic program, entries that correspond to subsolution σ
of any optimal s − t′ path enjoy the limited dependency, and hence the values
computed for these entries correspond to the exact cost of an optimal path that
starts with s and ends with σ. In contrast, entries of subpaths σ that do not
participate in any optimal s− t′ path, correspond to an upper bound on the cost
of some path P that starts with s and ends with σ. This is due to the fact that the
value of the entry is computed under the limited dependency assumption, and
thus does not take into account the possible double counting of mutual neighbors
between distant vertices in the path. Therefore, the possibly “falsified” entries
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cannot compete with the exact values, which are guaranteed to be computed for
the entries that hold the subpaths of the optimal path. This informal intuition
is formalized below.

For a path P of length � ≥ Δ+1, let Suff(P ) = 〈v�−Δ, . . . , v�〉 be the (Δ+1)-
suffix of P .

Lemma 1. Let P ∗ be an optimal s − t′ path of length ≥ Δ + 1. Let P ∗ =
P1 ◦ P2 be some partition of P ∗ into two subpaths such that |P1| ≥ Δ + 1. Then
Diff(P2, P1) = Diff(P2, Suff(P1)).

Proof: For ease of notation, let � = |P1|, P ′ = P1[1, . . . , � − (Δ + 1)], and
σ = Suff(P1). By definition, Δ(P2, P1) = | (N [P2] \N [σ]) \ N [P ′]|. In the same
manner, Δ(P2, σ) = | (N [P2] \N [σ]) |. Assume for contradiction that the lemma
does not hold, namely, Δ(P2, σ) 	= Δ(P2, P

′ ◦ σ). Then by Obs. 6(a) we have
that Δ(P2, σ) > Δ(P2, P

′ ◦ σ). This implies that N [P2] ∩ N [P ′] 	= ∅. Let u ∈
N [P2] ∩ N [P ′]. There are two cases to consider: (a) u ∈ P ′, and (b) u has a
neighbor v1 in P ′. We handle case (a) by further dividing it into two subcases:
(a1) u ∈ P2, i.e., u occurs at least twice in P ∗, once in P ′ and once in P2,
and (a2) u has a neighbor v2 in P2. Note that in both subcases, there exists a
shortcut of P ∗, obtained in subcase (a1) by cutting the subpath between the two
duplicates of u and in subcase (a2) by shortcutting from u to v2. This shortcut
results in a strictly lower cost path, in contradiction to the optimality of P ∗. We
proceed with case (b). Let v2 ∈ P2 be such that u ∈ N [v2]. If v2 = u, then clearly
the path can be shortcut by going from v1 ∈ P ′ directly to u ∈ P2, resulting
in a lower cost path, in contradiction to the optimality of P ∗. If v2 	= u, then
distP∗(v1, v2) ≥ Δ + 2 (since |σ| ≥ Δ + 1) and N [v1] ∩ N(v2) 	= ∅, which in
contradiction to Obs. 7. The Lemma follows.

Corollary 2. Let P ∗ be an optimal s − t′ path of length ≥ Δ + 1. Let P ∗ =
P1 ◦ P2 be some partition of P ∗ into two subpaths such that |P1| ≥ Δ + 1. Then
Cost(P ∗) = Cost(P1) + Diff(P2, Suff(P1)).

For clarity of representation, we describe a polynomial algorithm for the
Secluded Path problem, i.e., where S = {s, t} and in addition Δ ≤ 3, in which
case Suff(P ) = 〈v�−3, . . . , v�〉. The general case of Δ = O(1) is immediate by the
description for the special case of Δ = 3. The case of Secluded Steiner Tree

with a fixed number of terminals |S| = O(1) is described in [5].
The algorithm we present is based on dynamic programming. For each 4 ≤ i ≤

n, and every length-4 subpath given by a quartet of nodes σ ⊆ V (G), it computes
a length-i path π(σ, i) that starts with s and ends with σ (if such exists) and
an upper bound f(σ, i) on the cost of this path, f(σ, i) ≥ Cost(π(σ, i)). These
values are computed inductively, using the values previously computed for other
σ’s and i − 1. In contrast to the general framework of dynamic programming,
the interpretation of the computed values f(σ, i) and π(σ, i), namely, the relation
between the dynamic programming values f(σ, i) and π(σ, i) and some “optimal”
counterparts is more involved. In general, for arbitrary σ and i, the path π(σ, i)
is not guaranteed to be optimal in any sense and neither is its corresponding
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value f(σ, i) (as f(σ, i) ≥ Cost(π(σ, i))). However, quite interestingly, there is a
subset of quartets for which a useful characterization of f(σ, i) and π(σ, i) can be
established. Specifically, for every 4 ≤ i ≤ n, there is a subclass of quartets Ψ∗

i ,
for which the computed values are in fact “optimal”, in the sense that for every
σ ∈ Ψ∗

i , the length-i path π(σ, i) is of minimal cost among all other length-i paths
that start with s and end with σ. We call such a path a semi-optimal path, since
it is optimal only restricted to the length and specific suffix requirements. It turns
out that for the special class of quartets Ψ∗

i , every semi-optimal path of σ ∈ Ψ∗
i is

also a prefix of some optimal s− t′ path. This property allows one to apply Cor.
2, which constitutes the key ingredient in our technique. In particular, it allows
us to establish that f(σ, i) = Cost(π(σ, i)). This is sufficient for our purposes
since the set

⋃n
i=1 Ψ

∗
i contains any quartet that occurs in some optimal secluded

s − t path P ∗. Specifically, for every s − t optimal path P ∗, it holds that the
quartet Suff(P ∗) = P ∗[i − 3, i] satisfies Suff(P ∗) ∈ Ψ∗

i . The correctness of the
dynamic programming is established by the fact that the values computed for
quartets that occur in optimal paths in fact correspond to optimal values as
required (despite the fact the these values are “useless” for other quartets).

The Algorithm. If the shortest path between s and t is less than 3, then the
optimal Secluded Path can be found by an exhaustive search, so we assume
throughout that distG(s, t) ≥ 3. Let Ψ be the set of all length-4 subpaths σ in
G. That is, for every σ ∈ Ψ , we have V (σ) ⊆ V (G) and (σ[i], σ[i + 1]) ∈ E(G)
for every i ∈ [1, 3]. For σ ∈ Ψ , define the collection of shifted successor of G as
Next(σ) = {〈σ[2], . . . , σ[4], u〉 | u ∈ (N [σ[4]] \ σ)}. For every pair (σ, i), where
σ ∈ Ψ and i ∈ {1, . . . , n}, the algorithm computes a value f(σ, i) and length-
i path π(σ, i) ending with σ (i.e., π(σ, i)[i − 3, . . . , i] = σ). These values are
computed inductively. For i = 4, let π(σ, 4) = σ and

f(σ, 4) =

{
Cost(σ), if σ[1] = s

∞, otherwise

Once the algorithm has computed f(σ, j) for every 4 ≤ j ≤ i − 1 and every
σ ∈ Ψ , in step i ∈ {5, n} it computes

f(σ, i) = min{f(σ′, i− 1) + Diff(σ, σ′) | σ ∈ Next(σ′)}. (4)

Note that
Diff(σ, σ′) = Diff(σ[4], σ′) = |N [σ[4]] \N [σ′]|. (5)

Let σ′ ∈ Ψ such that σ ∈ Next(σ′) and σ′ achieves the minimum value in Eq.
(4). Then define Pred(σ) = σ′ and let

π(σ, i) = π(Pred(σ), i − 1) ◦ σ[4]. (6)

Let q∗s,t = min{f(σ, i) | i ∈ {4, . . . , n}, Last(π(σ, i)) = t}, and set P ∗ = π(σ∗, i∗)
for σ∗, i∗ such that f(σ∗, i∗) = q∗s,t. Note that there are at most O(n2) entries
f(σ, i), each computed in constant time, and so the overall running time is O(n2).
In [5], we provide a detailed analysis and establish Thm. 5. For the Secluded

Steiner Tree problem, we show the following.
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Theorem 8. On unweighted undirected degree-bounded graphs, we have the fol-
lowing: (a) for arbitrary k, the Secluded Steiner Tree problem is NP-hard; (b)
for k = O(1), the Secluded Steiner Tree problem is polynomial.

5 Secluded Connectivity for Specific Graph Families

Bounded-treewidth Graphs. For a graph G(V,E), let TW (G) denote the
treewidth of G. For bounded treewidth graph, i.e. TW (G) = O(1), we have the
following.

Theorem 9. The Secluded Steiner Tree problem (and hence also the
Secluded Path problem) can be solved in linear time for graphs with fixed
treewidth. In addition, given the tree decomposition of G, the Secluded Steiner

Tree problem is solvable in Õ(n3) if TW (G) = O(log n/ log logn). This holds
even for weighted and directed graphs.

Bounded Density Graphs. Let DegCost∗(S) = min{DegCost(T ) | T ∈ T (S)}.
In the full version [5], we show the following.

Proposition 1. Let G be a hereditary class of graphs with a linear number of
edges, i.e., a set of graphs such that for each G ∈ G, |E(G)| ≤ � · |V (G)| for
some constant �, and where G ∈ G implies that G′ ∈ G for each subgraph G′ of
G. Then DegCost∗(S) ≤ 2� · q∗(S).

An example of such a class of graphs is the family of planar graphs. For
this family, the above proposition yields a 6-approximation for the Secluded

Path problem. (A more careful direct analysis for planar graphs yields a 3-
approximation.) Finally, note that whereas computing DegCost∗(S) for a con-
stant number of terminals k is polynomial, for arbitrary k, computing
DegCost∗(S) is NP-hard but can be approximated to within a ratio of Θ(log k),
see [5]. Thus, for the class of bounded density graphs, by Prop. 1, the Secluded

Path problem has a constant ratio approximation and the Secluded Steiner

Tree problem has an Θ(log k) ratio approximation.

Theorem 10. For the class of bounded-density graphs, the Secluded Path prob-
lem (respectively, Secluded Steiner Tree problem) is approximated within a
ratio of O(1) (respectively, Θ(log k)).

Acknowledgment. We are grateful to Amotz Bar-Noy, Prithwish Basu and
Michael Dinitz for helpful discussions.
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Abstract. In the deletion version of the list homomorphism problem,
we are given graphs G and H , a list L(v) ⊆ V (H) for each vertex
v ∈ V (G), and an integer k. The task is to decide whether there exists a
set W ⊆ V (G) of size at most k such that there is a homomorphism from
G \ W to H respecting the lists. We show that DL-Hom(H), parame-
terized by k and |H |, is fixed-parameter tractable for any (P6, C6)-free
bipartite graph H ; already for this restricted class of graphs, the problem
generalizes Vertex Cover, Odd Cycle Transversal, and Vertex Multiway
Cut parameterized by the size of the cutset and the number of termi-
nals. We conjecture that DL-Hom(H) is fixed-parameter tractable for
the class of graphs H for which the list homomorphism problem (without
deletions) is polynomial-time solvable; by a result of Feder et al. [9], a
graph H belongs to this class precisely if it is a bipartite graph whose
complement is a circular arc graph. We show that this conjecture is
equivalent to the fixed-parameter tractability of a single fairly natural
satisfiability problem, Clause Deletion Chain-SAT.

1 Introduction

Given two graphs G and H (without loops and parallel edges; unless otherwise
stated, we consider only such graphs throughout this paper), a homomorphism
φ : G → H is a mapping φ : V (G) → V (H) such that {u, v} ∈ E(G) implies
{φ(u), φ(v)} ∈ E(H); the corresponding algorithmic problem Graph Homomor-
phism asks if G has a homomorphism to H . It is easy to see that G has a
homomorphism into the clique Kc if and only if G is c-colorable; therefore, the
algorithmic study of (variants of) Graph Homomorphism generalizes the study
of graph coloring problems (cf. Hell and Nešetřil [15]). Instead of graphs, one can
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consider homomorphism problems in the more general context of relational struc-
tures. Feder and Vardi [12] observed that the standard framework for Constraint
Satisfaction Problems (CSP) can be formulated as homomorphism problems for
relational structures. Thus variants of Graph Homomorphism form a rich family
of problems that are more general than classical graph coloring, but does not
have the full generality of CSPs.

List Coloring is a generalization of ordinary graph coloring: for each vertex
v, the input contains a list L(v) of allowed colors associated to v, and the task
is to find a coloring where each vertex gets a color from its list. In a similar
way, List Homomorphism is a generalization of Graph Homomorphism: given
two undirected graphs G,H and a list function L : V (G) → 2V (H), the task is
to decide if there exists a list homomorphism φ : G → H , i.e., a homomorphism
φ : G → H such that for every v ∈ V (G) we have φ(v) ∈ L(v). The List
Homomorphism problem was introduced by Feder and Hell [8] and has been
studied extensively [7, 9–11, 14, 17]. It is also referred to as List H-Coloring the
graph G since in the special case of H = Kc the problem is equivalent to list
coloring where every list is a subset of {1, . . . , c}.

An active line of research on homomorphism problems is to study the complex-
ity of the problem when the target graph is fixed. Let H be an undirected graph.
The Graph Homomorphism and List Homomorphism problems with fixed target
H are denoted by Hom(H) and L-Hom(H), respectively. A classical result of
Hell and Nešetřil [16] states that Hom(H) is polynomial-time solvable if H is
bipartite and NP-complete otherwise. For the more general List Homomorphism
problem, Feder et al. [9] showed that L-Hom(H) is in P if H is a bipartite graph
whose complement is a circular arc graph, and it is NP-complete otherwise. Egri
et al. [7] further refined this characterization and gave a complete classification
of the complexity of L-Hom(H): they showed that the problem is complete for
NP, NL, or L, or otherwise the problem is first-order definable.

In this paper, we increase the expressive power of (list) homomorphisms by
allowing a bounded number of vertex deletions from the left-hand side graph
G. Formally, in the DL-Hom(H) problem we are given as input an undirected
graph G, an integer k, a list function L : V (G) → 2V (H) and the task is to decide
if there is a deletion set W ⊆ V (G) such that |W | ≤ k and the graph G \W has
a list homomorphism to H . Let us note that DL-Hom(H) is NP-hard already
when H consists of a single isolated vertex: in this case the problem is equivalent
to Vertex Cover, since removing the set W has to destroy every edge of G.

We study the parameterized complexity of DL-Hom(H) parameterized by
the number of allowed vertex deletions and the size of the target graph H . We
show that DL-Hom(H) is fixed parameter tractable (FPT) for a rich class of
target graphs H . That is, we show that DL-Hom(H) can be solved in time
f(k, |H |) · nO(1) if H is a (P6, C6)-free bipartite graph, where f is a computable
function that depends only of k and |H | (see [5, 13, 24] for more background on
fixed parameter tractability). This unifies and generalizes the fixed parameter
tractability of certain well-known problems in the FPT world:
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– Vertex Cover asks for a set of k vertices whose deletion removes every
edge. This problem is equivalent to DL-Hom(H) where H is a single vertex.

– Odd Cycle Transversal (also known as Vertex Bipartization) asks
for a set of at most k vertices whose deletion makes the graph bipartite. This
problem can be expressed by DL-Hom(H) when H consists of a single edge.

– In Vertex Multiway Cut parameterized by the size of the cutset and the
number of terminals, a graph G is given with terminals t1, . . . , td, and the
task is to find a set of at most k vertices whose deletion disconnects ti and
tj for any i 	= j. This problem can be expressed as DL-Hom(H) when H is
a matching of d edges, in the following way. Let us obtain G′ by subdividing
each edge of G (making it bipartite) and let the list of ti contain the vertices
of the i-th edge ei; all the other lists contain every vertex of H . It is easy to
see that the deleted vertices must separate the terminals otherwise there is
no homomorphism to H and, conversely, if the terminals are separated from
each other, then the component of ti has a list homomorphism to ei.

Note that all three problems described above are NP-hard but known to be
fixed-parameter tractable [4, 5, 21, 25].

Our Results: Clearly, if L-Hom(H) is NP-complete, then DL-Hom(H) is NP-
complete already for k = 0, hence we cannot expect it to be FPT. Therefore,
by the results of Feder et al. [9], we need to consider only the case when H is
a bipartite graph whose complement is a circular arc graph. We focus first on
those graphs H for which the characterization of Egri et al. [7] showed that L-

Hom(H) is not only polynomial-time solvable, but actually in logspace: these
are precisely those (bipartite) graphs that exclude the path P6 on six vertices
and the cycle C6 on six vertices as induced subgraphs. This class of graphs
admits a decomposition using certain operations (see [7]), and to emphasize this
decomposition, we also call this class of graphs skew decomposable graphs. Let
us emphasize that these graphs are bipartite by definition. Note that the class
of skew decomposable graphs is a strict subclass of chordal bipartite graphs (P6

is chordal bipartite but not skew decomposable), and bipartite cographs and
bipartite trivially perfect graphs are trivially skew decomposable.

Our first result is that the DL-Hom(H) problem is fixed-parameter tractable
for this class of graphs.

Theorem 1. If H is a skew decomposable bipartite graph, then DL-Hom(H)

is FPT parameterized by solution size and |H |.
Observe that the graphs considered in the examples above are all skew decompos-
able bipartite graphs, hence Theorem 1 is an algorithmic meta-theorem unifying
the fixed-parameter tractability of Vertex Cover, Odd Cycle Transver-

sal, and Vertex Multiway Cut parameterized by the size of the cutset and
the number of terminals, and various combinations of these problems.

Theorem 1 shows that, for a particular class of graphs where L-Hom(H)

is known to be polynomial-time solvable, the deletion version DL-Hom(H) is
fixed-parameter tractable. We conjecture that this holds in general: whenever
L-Hom(H) is polynomial-time solvable (i.e., the cases described by Feder et
al. [9]), the corresponding DL-Hom(H) problem is FPT.
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Conjecture 2. If H is a fixed graph whose complement is a circular arc graph,
then DL-Hom(H) is FPT parameterized by solution size.

It might seem unsubstantiated to conjecture fixed-parameter tractability for ev-
ery bipartite graph H whose complement is a circular arc graph, but we show
that, in a technical sense, proving Conjecture 2 boils down to the fixed-parameter
tractability of a single fairly natural problem. We introduce a variant of max-
imum �-satisfiability, where the clauses of the formula are implication chains1

x1 → x2 → · · · → x� of length at most �, and the task is to make the formula
satisfiable by removing at most k clauses; we call this problem Clause Deletion
�-Chain-SAT (�-CDCS) (see Definition 14). We conjecture that for every fixed
�, this problem is FPT parameterized by k.

Conjecture 3. For every fixed � ≥ 1, Clause Deletion �-Chain-SAT is FPT pa-
rameterized by solution size.

We show that for every bipartite graph H whose complement is a circular arc
graph, the problem DL-Hom(H) can be reduced to CDCS for some � depending
only on |H |. Somewhat more surprisingly, we are also able to show a converse
statement: for every �, there is a bipartite graph H� whose complement is a
circular arc graph such that �-CDCS can be reduced to DL-Hom(H�). That is,
the two conjectures are equivalent. Therefore, in order to settle Conjecture 2,
one necessarily needs to understand Conjecture 3 as well. Since the latter con-
jecture considers only a single problem (as opposed to an infinite family of prob-
lems parameterized by |H |), it is likely that connections with other satisfiability
problems can be exploited, and therefore it seems that Conjecture 3 is a more
promising target for future work.

Theorem 4. Conjectures 2 and 3 are equivalent.

Our Techniques: For our fixed-parameter tractability results, we use a combi-
nation of several techniques (some of them classical, some of them very recent)
from the toolbox of parameterized complexity. Our first goal is to reduce DL-

Hom(H) to the special case where each list contains vertices only from one side
of one component of the (bipartite) graph H ; we call this special case the “fixed
side, fixed component” version. We note that the reduction to this special case
in non-trivial: as the examples above illustrate, expressing Vertex Multiway

Cut seems to require that the lists contain vertices from more than one com-
ponent of H , and expressing Odd Cycle Transversal seems to require that
the lists contain vertices from both sides of H .

We start our reduction by using the standard technique of iterative com-
pression to obtain an instance where, besides a bounded number of precolored
vertices, the graph is bipartite.

We look for obvious conflicts in this instance. Roughly speaking, if there are
two precolored vertices u and v in the same component of G with colors a and b,

1 The notation x1 → x2 → · · · → x� is a shorthand for (x1 → x2) ∧ (x2 → x3) ∧ · · · ∧
(x�−1 → x�).
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respectively, such that either a and b are in different components of H , or a and
b are in the same component of H but the parity of the distance between u and
v is different from the parity of the distance between a and b, then the deletion
set must contain a u− v separator. We use the treewidth reduction technique of
Marx et al. [22] to find a bounded-treewidth region of the graph that contains
all such separators. As we know that this region contains at least one deleted
vertex, every component outside this region can contain at most k − 1 deleted
vertices. Thus we can recursively solve the problem for each such component,
and collect all the information that is necessary to solve the problem for the
remaining bounded-treewidth region. We are able to encode our problem as a
Monadic Second Order (MSO) formula, hence we can apply Courcelle’s Theorem
[3] to solve the problem on the bounded-treewidth region.

Even if the instance has no obvious conflicts as described above, we might still
need to delete certain vertices due to more implicit conflicts. But now we know
that for each vertex v, there is at most one component C of H and one side of
C that is consistent with the precolored vertices appearing in the component of
v, otherwise a direct conflict between two precolored vertices would arise. This
seems to be close to our goal of being able to fix a component C of H and a side
of C for each vertex. However, there is a subtle detail here: if the deleted set
separates a vertex v from every precolored vertex, then the precolored vertices
do not force any restriction on v. Therefore, it seems that at each vertex v, we
have to be prepared for two possibilities: either v is reachable from the precolored
vertices, or not. Unfortunately, this prevents us from assigning each vertex to
one of the sides of a single component. We get around this problem by invoking
the “randomized shadow removal” technique introduced by Marx and Razgon
[23] (and subsequently used in [1, 2, 18–20]) to modify the instance in such a
way that we can assume that the deletion set does not separate any vertex from
the precolored vertices, hence we can fix the components and the sides.

Note that the above reductions work for any bipartite graph H , and the
requirement that H be skew decomposable is used only at the last reduction
step: if H is a skew decomposable graph, then the fixed side fixed component
version of the problem can be solved by appealing to the inductive construction
of such graphs given by Egri et al. [7] and using bounded depth search.

If H is a bipartite graph whose complement is a circular arc graph (recall that
this class strictly contains all skew decomposable graphs), then we show how to
formulate the problem as an instance of �-CDCS (showing that Conjecture 3
implies Conjecture 2). Let us emphasize that the reduction to �-CDCS works
only if the lists of the DL-Hom(H) instance have the “fixed side” property, and
therefore our proof for the equivalence of the two conjectures (Theorem 4) needs
the reduction machinery described above.

2 Preliminaries

Given a graph G, let V (G) denote its vertices and E(G) denote its edges. If
G = (U, V,E) is bipartite, we call U and V the sides of H . Let G be a graph
and W ⊆ V (G). Then G[W ] denotes the subgraph of G induced by the vertices
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in W . To simplify notation, we often write G \W instead of G[V (G) \W ]. The
set N(W ) denotes the neighborhood of W in G, that is, the vertices of G which
are not in W , but have a neighbor in W . Similarly to [22], we define two types
of separators:

Definition 5. A set S of vertices separates the sets of vertices A and B if no
component of G \ S contains vertices from both A \ S and B \ S. If s and t are
two distinct vertices of G, then an s− t separator is a set S of vertices disjoint
from {s, t} such that s and t are in different components of G \ S.

Definition 6. Let G,H be graphs and L be a list function V (G) → 2V (H). A list
homomorphism φ from (G,L) to H (or if L is clear from the context, from G to
H) is a homomorphism φ : G → H such that φ(v) ∈ L(v) for every v ∈ V (G). In
other words, each vertex v ∈ V (G) has a list L(v) specifying the possible images
of v. The right-hand side graph H is called the target graph.

When the target graph H is fixed, we have the following problem:

L-Hom(H)
Input : A graph G and a list function L : V (G) → 2V (H).
Question : Does there exist a list homomorphism from (G,L) to H?

The main problem we consider in this paper is the vertex deletion version of
the L-Hom(H) problem, i.e., we ask if a set of vertices W can be deleted from
G such that the remaining graph has a list homomorphism to H . Obviously, the
list function is restricted to V (G) \W , and for ease of notation, we denote this
restricted list function L|V (G)\W by L\W . We can now ask the following formal
question:

DL-Hom(H)
Input : A graph G, a list function L : V (G) → 2V (H), and an integer k.
Parameters : k , |H |
Question : Does there exist a set W ⊆ V (G) of size at most k such that there
is a list homomorphism from (G \W,L \W ) to H?

Notice that if k = 0, then DL-Hom(H) becomes L-Hom(H). In the first part of
the paper, we reduce DL-Hom(H) to a more restricted version of the problem
where every list L(v) contains vertices only from one component of H , and
moreover, only from one side of that component (recall that we are assuming that
H is bipartite). We call lists satisfying this property fixed side fixed component.

DL-Hom(H)-Fixed-Side-Fixed-Component , where H is bipartite
(FS-FC(H))
Input : A graph G, a fixed side fixed component list function
L : V (G) → 2V (H), and an integer k.
Parameters : k, |H |
Question : Does there exist a set W ⊆ V (G) such that |W | ≤ k and G \W
has a list homomorphism to H?



List H-Coloring a Graph by Removing Few Vertices 319

We argue that it is sufficient to solve the FS-FC(H) problem:

Theorem 7. If the FS-FC(H) problem is FPT (where H is bipartite), then the
DL-Hom(H) problem is also FPT.

The main ideas in the reduction from DL-Hom(H) to FS-FC(H) are presented
below. The proof is by induction on k, i.e., we are assuming that such a reduction
is possible for k − 1. In the full version of the paper, we solve FS-FC(H) for
skew decomposable graphs, completing the proof of Theorem 1.

Theorem 8. If H is a skew decomposable graph, then the FS-FC(H) problem
is FPT.

3 The Algorithm

The algorithm proving Theorem 1 is constructed through a series of reductions.
We begin with applying the standard technique of iterative compression [25], and
this is followed by some preprocessing of the disjoint version of the compression
problem.

DL-Hom(H)-Disjoint-Compression
Input : A graph G0, a list function L : V (G0) → 2V (H), an integer k, and a set
W0 ⊆ V (G0) of size at most k+1 such that G0\W0 has a list homomorphism
to H .
Parameters : k, |H |
Question : Does there exist a set W ⊆ V (G0) disjoint from W0 such that
|W | ≤ k and (G0 \W,L \W ) has a list homomorphism to H?

Since the techniques related to iterative compression are folklore, we just note
here that any FPT algorithm for the DL-Hom(H)-Disjoint-Compression

problem defined below translates into an FPT algorithm for DL-Hom(H) with
an additional blowup factor of O(2|W0|n) in the running time. The details of this
reduction are given in the full version of the paper. In the rest of the paper,
we concentrate on giving an FPT algorithm for the DL-Hom(H)-Disjoint-

Compression problem.
Since the new solution W can be assumed to be disjoint from W0, for any

solution set W , we must have a partial homomorphism from G0[W0] to H .
We guess all such partial list homomorphisms γ from G0[W0] to H , and we
hope that we can find a set W such that γ can be extended to a total list
homomorphism from G0[W ] to H . To guess these partial homomorphisms, we
simply enumerate all possible mappings from W0 to H and check whether the
given mapping is a list homomorphism from (G0[W0], L|W0) to H . If not we
discard the given mapping. Observe that we need to consider only |V (H)||W0| ≤
|V (H)|k+1 mappings. Hence, in what follows we can assume that we are given a
partial list homomorphism γ from G0[W0] to H .

Recall that we are assuming that H is bipartite. Since we have a fixed partial
homomorphism γ from W0 to H , we can propagate the consequences of this
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homomorphism to the lists of the vertices in the neighborhood of W0, as follows.
For every v ∈ W0, let Hv be the component of H in which γ(v) appears. Fur-
thermore, let Sv be the side of Hv in which γ(v) appears, and let S̄v be the other
side of Hv. For each neighbor u of v in N(W0), trim L(u) as L(u) ← L(u) ∩ S̄v.
The list of each vertex in N(W0) is now contained in one of the sides of a single
component of H . We say that such a list is fixed side and fixed component. Note
that while doing this, some of the lists might become empty. We delete those
vertices from the graph, and reduce the parameter accordingly.

Recall that G0 \W0 has a list homomorphism to the bipartite graph H , and
therefore G0\W0 must be bipartite. We will later make use of the homomorphism
from G0\{W0∪N(W0)} to H , so we name this homomorphism φ0. To summarize
the properties of the problem we have at hand, we define it formally below. Note
that we will not need the graph G0 and the set W0 any more, only the graph
G0\W0, and the neighborhood N(W0). To simplify notation, we refer to G0\W0

and N(W0) as G and N0, respectively.

DL-Hom(H)-Bipartite-Compression (BC(H))
Input : A bipartite graph G, a list function L : V (G) → 2V (H), a set N0 ⊆
V (G), where for each v ∈ N0, the list L(v) is fixed side and fixed component,
a list homomorphism φ0 from (G \N0, L \N0) to H , and an integer k.
Parameters : k, |H |
Question : Does there exist a set W ⊆ V (G), such that |W | ≤ k and (G \
W,L \W ) has a list homomorphism to H?

We define two types of conflicts between the vertices of N0 (Definition 9).
Our algorithm has two subroutines, one to handle the case when such a conflict
is present, and one to handle the other case.

3.1 There Is a Conflict

If a conflict exists, its presence allows us to invoke the treewidth reduction tech-
nique of Marx et al. [22] to split the instance into a bounded-treewidth part,
and into instances having parameter value strictly less than k. After solving
these instances with smaller parameter value recursively, we encode the problem
in Monadic Second Order logic, and apply Courcelle’s theorem [3]. We outline
these ideas, as follows.

Recall that the lists of the vertices in N0 in a BC(H) instance are fixed side
fixed component.

Definition 9. Let (G,L,N0, φ0, k) be an instance of BC(H). Let u and v be
vertices in the same component of G. We say that u and v are in component
conflict if L(u) and L(v) are subsets of vertices of different components of H.
Furthermore, u and v are in parity conflict if u and v are not in component
conflict, and either u and v belong to the same side of G but L(u) is a subset of
one of the sides of a component of C of H and L(v) is a subset of the other side
of C, or u and v belong to different sides of G but L(u) and L(v) are subsets of
the same side of a component of H.
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The following lemma easily follows from the definitions.

Lemma 10. Let (G,L,N0, φ0, k) be an instance of BC(H). If u and v are any
two vertices in N0 that are in component or parity conflict, then any solution W
must contain a set S that separates the sets {u} and {v}.

The result we need from [22] states that all the minimal s − t separators of
size at most k in G can be covered by a set C inducing a bounded-treewidth
subgraph of G. In fact, a stronger statement is true: this subgraph has bounded
treewidth even if we introduce additional edges in order to take into account
connectivity outside C. This is expressed by the operation of taking the torso:

Definition 11. Let G be a graph and C ⊆ V (G). The graph torso(G,C) has
vertex set C and two vertices a, b ∈ C are adjacent if {a, b} ∈ E(G) or there is
a path in G connecting a and b whose internal vertices are not in C.

Observe that by definition, G[C] is a subgraph of torso(G,C).

Lemma 12 ([22]). Let s and t be two vertices of G. For some k ≥ 0, let Ck be
the union of all minimal sets of size at most k that are s− t separators. There is
a O(g1(k) · (|E(G) + V (G)|)) time algorithm that returns a set C ⊃ Ck ∪ {s, t}
such that the treewidth of torso(G,C) is at most g2(k), for some functions g1
and g2 of k.

Lemma 10 gives us a pair of vertices that must be separated, and Lemma 12
gives us a bounded-treewidth region C of the input graph in which we know that
at least one vertex must be deleted.

Courcelle’s Theorem gives an easy way of showing that certain problems are
linear-time solvable on bounded-treewidth graphs: it states that if a problem
can be formulated in MSO, then there is a linear-time algorithm for it. This
theorem also holds for relational structures of bounded-treewidth instead of just
graphs, a generalization we need because we introduce new relations to encode
the properties of the components of G \ C.

The following lemma formalizes the above ideas to prove that the subroutine
used to handle the case when a conflict exists is correct:

Lemma 13. Let A be an algorithm that correctly solves DL-Hom(H) for input
instances in which the first parameter is at most k− 1. Suppose that the running
time of A is f(k−1, |H |)·xc, where x is the size of the input, and c is a sufficiently
large constant. Let I be an instance of BC(H) with parameter k that contains a
component or parity conflict. Then I can be solved in time f(k, |H |) · xc (where
f is defined in the proof).

Proof. Let I = (G,L,N0, φ0, k) be an instance of BC(H). Let v, w ∈ N0 such
that v and w are in component or parity conflict. Then by Lemma 10, the
deletion set must contain a v − w separator. Using Lemma 12, we can find
a set C with the properties stated in the lemma (and note that we will also
make use of the functions g1 and g2 in the statement of the lemma). Most
importantly, C contains at least one vertex that must be removed in any solution,



322 R. Chitnis, L. Egri, and D. Marx

so the maximum number of vertices that can be removed from any connected
component of G[V (G) \ C] without exceeding the budget k is at most k − 1.
Therefore, the outline of our strategy is the following. We use A to solve the
problem for some slightly modified versions of the components of G[V (G) \ C],
and using these solutions, we construct an MSO formula that encodes our original
problem I. Furthermore, the relational structure over which this MSO formula
must be evaluated has bounded treewidth, and therefore the formula can be
evaluated in linear time using Courcelle’s theorem. The details of the proof are
deferred to the full version of the paper. �

3.2 There Is no Conflict

In the case when there is no component or parity conflict, the problem FS-FC-
IG(H) is the same as FS-FC(H) except that if the solution separates a vertex v
from N0, then we do not require that v is assigned to any vertex of H . We first
trim the lists which allows us to reduce the BC(H) problem to the FS-FC-IG(H)
problem. Then we use the “shadow removal” technique of Marx and Razgon [23]
which allows us to reduce the FS-FC-IG(H) problem to the FS-FC(H) problem.
Finally, we use the inductive construction of skew decomposable bipartite graphs
[7] which allows us to solve the FS-FC(H) problem recursively. The details about
this case are deferred to the full version of the paper.

4 Relation between DL-Hom(H) and Satisfiability
Problems

Theorem 4 establishes the equivalence of DL-Hom(H) with the Clause Deletion
�-Chain SAT (�-CDCS) problem, where H is restricted to be a graph for which
L-Hom(H) is characterized as polynomial-time solvable by Feder et al. [9], that
is, where H is restricted to be a bipartite graph whose complement is a circular
arc graph. Here we only define the �-CDCS problem, and the technical proof of
Theorem 4 can be found in the full version of the paper.

Definition 14. A chain clause is a conjunction of the form

(x0 → x1) ∧ (x1 → x2) ∧ · · · ∧ (xm−1 → xm),

where xi and xj are different variables if i 	= j. The length of a chain clause
is the number of variables it contains. (A chain clause of length 1 is a variable,
and it is satisfied by both possible assignments.) To simplify notation, we denote
chain clauses of the above form as

x0 → x1 → · · · → xm.

An �-Chain-SAT formula consists of:

– a set of variables V ;
– a set of chain clauses over V such that any chain clause has length at most �;
– a set of unary clauses (a unary clause is a variable or its negation).
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Clause Deletion �-Chain-SAT (�-CDCS)
Input : An �-Chain-SAT formula F .
Parameter : k
Question : Does there exist a set of clauses of size at most k such that removing
these clauses from F makes F satisfiable?

5 Concluding Remarks

The list homomorphism problem is a widely investigated problem in classical
complexity theory. In this work, we initiated the study of this problem from the
perspective of parameterized complexity: we have shown that the DL-Hom(H)

is FPT for any skew decomposable graph H parameterized by the solution size
and |H |, an algorithmic meta-result unifying the fixed parameter tractability
of some well-known problems. To achieve this, we welded together a number
of classical and recent techniques from the FPT toolbox in a novel way. Our
research suggests many open problems, four of which are:

1. If H is a fixed bipartite graph whose complement is a circular arc graph, is
DL-Hom(H) FPT parameterized by solution size? (Conjecture 2.)

2. If H is a fixed digraph such that L-Hom(H) is in logspace (such digraphs
have been recently characterised in [6]), is DL-Hom(H) FPT parameterized
by solution size?

3. If H is a matching consisting of n edges, is DL-Hom(H) FPT, where the
parameter is only the size of the deletion set?

4. Consider DL-Hom(H) for target graphs H in which both vertices with and
without loops are allowed. It is known that for such target graphs L-Hom(H)

is in P if and only if H is a bi-arc graph [10], or equivalently, if and only if H
has a majority polymorphism. If H is a fixed bi-arc graph, is there an FPT
reduction from DL-Hom(H) to �-CDCS, where � depends only on |H |?

Note that for the first problem, we already do not know if DL-Hom(H) is FPT
when H is a path on 7 vertices. (If H is a path on 6 vertices, there is a simple
reduction to Almost 2-SAT once we ensure that the instance has fixed side
lists.) Observe that the third problem is a generalization of the Vertex Mul-

tiway Cut problem parameterized only by the cutset. For the fourth problem,
we note that the FPT reduction from DL-Hom(H) to CDCS for graphs without
loops relies on the fixed side nature of the lists involved. Since the presence of
loops in H makes the concept of a fixed side list meaningless, it is not clear how
to achieve such a reduction.
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15. Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University Press
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Abstract. In this paper, we aim at analyzing the classical information
spreading Push protocol in dynamic networks. We consider the edge-
Markovian evolving graph model which captures natural temporal de-
pendencies between the structure of the network at time t, and the one
at time t + 1. Precisely, a non-edge appears with probability p, while
an existing edge dies with probability q. In order to fit with real-world
traces, we mostly concentrate our study on the case where p = Ω( 1

n
) and

q is constant. We prove that, in this realistic scenario, the Push protocol
does perform well, completing information spreading in O(log n) time
steps, w.h.p., even when the network is, w.h.p., disconnected at every
time step (e.g., when p � logn

n
). The bound is tight. We also address

other ranges of parameters p and q (e.g., p+q = 1 with arbitrary p and q,
and p = Θ

(
1
n

)
with arbitrary q). Although they do not precisely fit with

the measures performed on real-world traces, they can be of independent
interest for other settings. The results in these cases confirm the positive
impact of dynamism.

1 Introduction

Context and Objective. Rumor spreading is a well-known gossip-based dis-
tributed algorithm for disseminating information in large networks. According
to the synchronous Push version of this algorithm, an arbitrary source node is
initially informed, and, at each time step (a.k.a. round), each informed node
u chooses one of its neighbors v uniformly at random, and this node becomes
informed at the next time step.

Rumor spreading (originally called rumor mongering) was first introduced
by [13], in the context of replicated databases, as a solution to the problem of
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distributing updates and driving replicas towards consistency. Successively, it has
been proposed in several other application areas (for a nice survey of gossip-based
algorithm applications, see also [31]). Rumor spreading has also been deeply
analyzed from a theoretical and mathematical point of view. Indeed, as already
observed in [13], rumor spreading is just an example of an epidemic process:
hence, its analysis “benefits greatly from the existing mathematical theory of
epidemiology”.

In particular, the completion time of rumor spreading, that is, the number of
steps required in order to have all nodes informed with high probability1 (w.h.p.),
has been investigated in the case of several network topologies [6, 14, 17, 20–
22, 30, 34], to mention just a few. Further works also derive deep connections
between the completion time itself and some classic measures of graph spectral
theory [7, 8, 23, 24, 35]. Recently, rumor spreading has been also analysed in the
presence of transmission failures of the protocol [15, 19].

It is important to observe that the techniques and the arguments adopted in
these studies strongly rely on the fact that the underlying graph is static and
does not change over time. For instance, most of these analyses exploit the crucial
fact that the degree of every node (no matter whether this is a random variable
or a deterministic value) never changes during the entire execution of the rumor
spreading algorithm. This paper addresses the speed of rumor spreading in the
case of dynamic networks, where nodes and edges can appear and disappear over
time (several emerging networking technologies such as ad hoc wireless, sensor,
mobile networks, and peer-to-peer networks are indeed inherently dynamic).

In order to investigate the behavior of distributed protocols in the case of
dynamic networks, the concept of evolving graph has been introduced in the
literature. An evolving graph is a sequence of graphs (Gt)t≥0 where t ∈ N (to in-
dicate that we consider the graph snapshots at discrete time steps t, although it
may evolve in a continuous manner) with the same set of n nodes.2 This concept
is rater general, ranging from adversarial evolving graphs [11, 32] to random
evolving graphs [4]. In the case of random evolving graphs, at each time step,
the graph Gt is chosen randomly according to some probability distribution over
a specified family of graphs. One very well-known and deeply studied example
of such a family is the set Gn,p of Erdős-Rényi random graphs [1, 16, 25]. In the
evolving graph setting, at every time step t, each possible edge exists with prob-
ability p (independently of the previous graphs Gt′ , t

′ < t, and independently of
the other edges in Gt).

Random evolving graphs can exhibit communication properties which are
much stronger than static networks having the same expected edge density (for
a recent survey on computing over dynamic networks, see [33]). This has been
proved in the case of the simplest communication protocol that implements the
broadcast operation, that is, the Flooding protocol. It has been shown [3, 10, 12]
that the Flooding completion time may be very fast (typically poly-logarithmic
in the number of nodes) even when the network topology is, w.h.p., sparse, or

1 An event holds w.h.p. if it holds with probability 1−O(1/nc) for some c > 0.
2 As far as we know, this has been formally introduced for the first time in [18].
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even highly disconnected at every time step. Therefore, such previous results
provide analytical evidences of the fact that random network dynamics not only
do not hurt, but can actually help data communication, which is of the utmost
importance in several contexts, such as, e.g., delay-tolerant networking [37, 38].

The same observation has been made when the model includes some sort of
temporal dependency, as it is in the case of the random edge-Markovian model.
According to this model, at every time step t,

• if an edge does not exist in Gt, then it appears in Gt+1 with probability p;
• if an edge exists in Gt, then it disappears in Gt+1 with probability q.

For every initial graph G0, and 0 < p, q < 1, an edge-Markovian evolving
graph will eventually converge to a (random) graph in Gn,p̃ with stationary edge-
probability p̃ = p

p+q . However, there is a Markovian dependence between graphs
at two consecutive time steps, hence, given Gt, the next graph Gt+1 is not neces-
sarily a random graph in Gn,p̃. Interestingly enough, the edge-Markovian model
has been recently subject to experimental validations, in the context of sparse
opportunistic mobile networks [38], and of dynamic peer-to-peer systems [37].
These validations demonstrate a good fitting of the model with some real-world
data traces.

The completion time of the Flooding protocol has been recently analyzed in
the edge-Markovian model, for all possible values of p̃ (see [3, 12]). The Flooding
protocol however generates high message complexity. Moreover, although its
completion time is an interesting analog for dynamic graphs of the diameter
for static graphs, it is not reflecting the kinds of gossip protocols mentioned at
the beginning of this introduction, used for practical applications. Hence the
main objective of this paper is to analyze the more practical Push protocol, in
edge-Markovian evolving graphs.

Framework. We focus our attention on dynamic network topologies yielded by
the edge-Markovian evolving graphs for parameters p (birth) and q (death) that
correspond to a good fitting with real-world data traces, as observed in [37, 38].
These traces describe networks with relatively high dynamics, for which the
death probability q is at least one order of magnitude greater than the birth
probability p. In order to set parameters p and q fitting with these observations,
let us consider the expected number of edges m̄, and the expected node-degree
d̄ at the stationary regime, governed by p̃ = p

p+q . We have m̄ = p
p+q

(
n
2

)
, and

d̄ = 2m̄
n = (n − 1) p

p+q . Thus, at the stationary regime, the expected number of

edges ν that switch their state (from non existing to existing, or vice versa) in
one time step satisfies

ν = m̄q + (
(
n
2

)
− m̄)p = n(n−1)

2

(
pq
p+q +

(
1 − p

p+q

)
p
)

= n(n− 1) pq
p+q = nqd̄.

Hence, in order to fit with the high dynamics observed in real-world data traces,
we set q constant, so that a constant fraction of the edges disappear at every
step, while a fraction p of the non-existing edges appear. We consider an arbi-
trary range for p, with the unique assumption that p ≥ 1

n . (For smaller p’s, the
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completion time of any communication protocol is subject to the expected time
1
np , 1 required for a node to acquire just one link connected to another node).
To sum up, we essentially focus on the following range of parameters:

1

n
� p < 1 and q = Ω(1). (1)

This range includes network topologies for a wide interval of expected edge
density (from very sparse and disconnected graphs, to almost-complete ones),
and with an expected number of switching edges per time step equal to some
constant fraction of the expected total number of edges. Other ranges are also
analyzed in the paper (e.g., p + q = 1 with arbitrary p and q, and p = Θ

(
1
n

)
with arbitrary q), but the range in Eq. (1) appears to be the most realistic one,
according to the current measurements on dynamic networks.

Our Results. For the parameter range in Eq. (1), we show that, w.h.p., starting
from any n-node graph G0, the Push protocol informs all n nodes in Θ(log n)
time steps. Hence, in particular, even if the graph Gt is w.h.p. disconnected at
every time step (this is the case for p ! logn

n ), the completion time of the Push

protocol is as small as it could be (the Push protocol cannot perform faster than
Ω(log n) steps in any static or dynamic graph since the number of informed
nodes can at most double at every step).

We also address other ranges of parameters p and q. One such case is the
sequence of independent Gn,p graphs, that is, the case where p+ q = 1. Actually,
the analysis of this special case will allow us to focus on the first important
probabilistic issue that needs to be solved: spatial dependencies. Indeed, even in
this case, the Push protocol induces a positive correlation among some crucial
events that determine the number of new informed nodes at the next time step.
This holds despite the fact that every edge is set independently from the others.
For a sequence of independent Gn,p graphs, we prove that for every p (i.e., also
for p = o( 1

n )) and q = 1 − p the completion time of the Push protocol is,
w.h.p., O(log n/(p̂n)), where p̂ = min{p, 1/n}. By comparing the lower bound
for Flooding in [12], it turns out that this bound is tight, even for very sparse
graphs.

Finally, we show that the logarithmic bound for the Push protocol holds for
more “static” network topologies as well, e.g., for the range p = c

n where c > 0
is a constant, and q is arbitrary. This parameter range includes edge-Markovian
graphs with a small expected number of switching edges (this happens when
q = o(1)). In this case, too, Push completes, w.h.p., in O(log n) rounds. This
gives yet another evidence that dynamism helps.

Due to lack of space several proofs are omitted. We refer the interested reader
to the full version of the paper [9].

2 Preliminaries

The number of vertices in the graph will always be denoted by n. We abbreviate
[n] := {1, . . . , n} and

(
[n]
2

)
:= {{i, j} | i, j ∈ [n]}. For any subset E ⊆

(
[n]
2

)
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and any two subsets A,B ⊆ [n], define E(A) = {edges of E incident to A} and
E(A,B) = {{u, v} ∈ E | u ∈ A, v ∈ B}. We consider the edge-Markovian
evolving graph model G(n, p, q;E0) where E0 is the starting set of edges.

The Push Protocol over G(n, p, q;E0) can be represented as a random process
over the set S of all possible pairs (E, I) where E is a subset of edges and I is
a subset of nodes. In particular, the combined Markov process works as follows

. . . → (Et, It)
edge-Markovian−→ (Et+1, It)

Push protocol−→ (Et+1, It+1)
edge-Markovian−→ . . .

where Et and It represent the set of existing edges and the set of informed nodes
at time t, respectively. All events, probabilities and random variables are defined
over the above random process. Given a graph G = ([n], E), a node v ∈ [n], and a
subset of nodes A ⊆ [n] we define degG(v,A) = |{(v, a) ∈ E | a ∈ A}|. When we
have a sequence of graphs {Gt = ([n], Et) : t ∈ N} we write degt(v,A) instead
of degGt

(v,A).
Given a graph G and an informed node u ∈ I, we define δG(u) as the random

variable indicating the node selected by u in graph G according to the Push

protocol. When G and/or t are clear from the context, they will be omitted.

Remark. It is worth noticing that analyzing the Push protocol in edge-Markovian
graphs is not only subject to temporal dependencies, but also to spatial depen-
dencies. To see why, consider a time step of the Push protocol. For an informed
node u and a non-informed one v it is not hard to calculate the probability
that δ(u) = v by conditioning on the degree of u. However, if u1, u2 are two
informed nodes and v1, v2 are two non-informed ones, events “δ(u1) = v1” and
“δ(u2) = v2” are not independent. Indeed, since the underlying graph is random,
event “δ(u1) = v1” decreases the probability of existence of an edge between u1

and u2, and so it affects the value of the random variable δ(u2).

3 Warm Up: The Time-Independent Case

In this section we analyze the special case of a sequence of independent Gn,p

(observe that a sequence of independent Gn,p is edge-Markovian with q = 1−p).
We show that the completion time of the Push protocol is O(log n/(p̂n)) w.h.p.,
where p̂ = min{p, 1/n}. In Theorem 1 we prove the result for p � 1/n and in
Theorem 2 for p � 1/n. From the lower bound on the flooding time for edge-
Markovian graphs [12], it turns out that our bound is optimal.

As mentioned in Section 2, even though in this case there is no time-dependency
in the sequence of graphs, the Push protocol introduces a kind of dependence
that has to be carefully handled. The key challenge is to evaluate the probabil-
ity that v receives the information from at least one of the informed nodes; i.e.,
1 −P (∩u∈I{δ(u) 	= v}). We consider the Push operation on a modified random
graph where we prove that the above events become independent and the num-
ber of new informed nodes in the original random graph is at least as large as
in the modified version.
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Definition 1. Let G = ([n], E) be a graph, let I ⊆ [n] be a set of nodes, and
let b ∈ [n] be a positive integer. The (I, b)-modified graph G is the graph H =
([n] ∪ {v1, . . . , vb}), where {v1, . . . , vb} is a set of extra virtual nodes, obtained
from G by the following operations: 1. For every node u ∈ I with degG(u) > b,
remove all edges incident to u; 2. For every node u ∈ I with degG(u) � b, add all
edges {u, v1}, . . . , {u, vb} between u and the virtual nodes; 3. Remove all edges
between any pair of nodes that are both in I.

Let I be the set of informed nodes performing a Push operation on a Gn,p

random graph. As previously observed, if v ∈ [n]\I is a non-informed node, then
the events {{δG(u) = v} : u ∈ I} are not independent, but the events {{δH(u) =
v} : u ∈ I} on the (I, b)-modified graph H are independent because of Operation
3 in Definition 1. In the next lemma we prove that, if the informed nodes perform
a Push operation both in a graph and in its modified version, then the number
of new informed nodes in the original graph is (stochastically) larger than the
number of informed nodes in the modified one. We will then apply this result to
Gn,p random graphs.

Lemma 1. Let G([n], E) be a graph and let b an integer such that 1 � b � n.
Let I ⊆ [n] be a set of nodes performing a Push operation in graphs G and
H, where H is the (I, b)-modified G according to Definition 1. Let X and Y be
the random variables counting the numbers of new informed nodes in G and H
respectively. Then for every h ∈ [0, n] it holds that P (X � h) � P (Y � h).

Proof. Consider the following coupling: Let u ∈ I be an informed node such
that degG(u) � b and let h and k be the number of informed and non-informed
neighbors of u respectively. Choose δH(u) u.a.r. among the neighbors of u in H .
As for δG(u), we do the following: If δH(u) ∈ [n] \ I then choose δG(u) = δH(u);
otherwise (i.e., when δH(u) is a virtual node) with probability 1−x choose δG(u)
u.a.r. among the informed neighbors of u in G, and with probability x choose

δG(u) u.a.r. among the non-informed ones, where x = k(b−h)
(h+k)b . Every informed

node u with degG(u) > b instead performs a Push operation in G independently.
By construction we have that the set of new (non-virtual) informed nodes in H
is a subset of the set of new informed nodes in G. Moreover, it is easy to check
that, for every informed node u in I, δG(u) is u.a.r. among neighbors of u. �


In the next lemma we give a lower bound on the probability that a non-
informed node gets informed in the modified Gn,p.

Lemma 2. Let I ⊆ [n] be the set of informed nodes performing the Push op-
eration in a Gn,p random graph and let X be the random variable counting the
number of non-informed nodes that get informed after the Push operation. It
holds that P (X � λ · min{|I|, n− |I|}) � λ, where λ is a positive constant.

Proof. Let I be the set of currently informed nodes, let G = ([n], E) be the
random graph at the next time step and let H be its (I, 3np)-modified version.
Now we show that the number of nodes that gets informed in H is at least
λ · min{|I|, n− |I|} with probability at least λ, for a suitable constant λ.
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Let u ∈ I be an informed node and let v ∈ [n] \ I be a non-informed one.
Observe that by the definition of H , u cannot choose v in H if the edge {u, v} /∈ E
or if the degree of u in G is larger than 3np (see Operation 3 in Definition 1).
Thus the probability P (δH(u) = v) that node u chooses node v in random graph
H according to the Push protocol is equal to

P (δH(u) = v | {u, v} ∈ E ∧ degG(u) � 3np) ·P ({u, v} ∈ G ∧ degG(u) � 3np) .
(2)

If degG(u) � 3np then node u in H has exactly 3np virtual neighbors plus at
most other 3np non-informed neighbors. It follows that

P (δH(u) = v | {u, v} ∈ E ∧ degG(u) � 3np) � 1/(6np). (3)

We also have that

P ({u, v} ∈ E, degG(u) � 3np) = P ({u, v} ∈ E)P (degG(u) � 3np | {u, v} ∈ E)

= p ·P (degG(u) � 3np | {u, v} ∈ E) .

Since E [degG(u) | {u, v} ∈ E] � np + 1 with np � 1, from the Chernoff bound
we can choose a positive constant c and then a positive constant β < 1 such that

P (degG(u) > 3np | {u, v} ∈ E) � P (degG(u) > 2np + 1 | {u, v} ∈ E)

� e−cnp = β < 1. (4)

By replacing Eq.s 3 and 4 into Eq. 2 we get P (δH(u) = v) � α
n , for some

constant α > 0. Since the events {{δH(u) = v}, u ∈ I} are independent, the
probability that node v is not informed in H is thus P (∩u∈IδH(u) 	= v) �
(1 − α/n)

|I| � e−α|I|/n. Let Y be the random variable counting the number of
new informed nodes in H . The expectation of Y is E [Y ] � (n − |I|)(
1 − e−α|I|/n) � (α/2)(n− |I|)|I|/n. Hence we get

E [Y ] �
{

(α/4)|I| if |I| � n/2 ,

(α/4)(n− |I|) if |I| � n/2 .

Since Y � min{|I|, n − |I|}, it follows that P (Y � (α/8) · min{|I|, n− |I|}) �
α/8. Finally we get the thesis by applying Lemma 1. �


We can now derive the upper bound on the completion time of the Push protocol
on Gn,p random graphs.

Theorem 1. Let G = {Gt : t ∈ N} be a sequence of independent Gn,p with
p � 1/n. The completion time of the Push protocol over G is O(log n) w.h.p.

Proof. Consider a generic time step t of the execution of the Push protocol where
It ⊆ [n] is the set of informed nodes and mt = |It| is its size. For any t such
that mt � n/2, Lemma 2 implies that P (mt+1 � (1 + λ)mt) � λ, where λ is a
positive constant. Let us define event Et = {mt � (1 +λ)mt−1} ∨ {mt−1 � n/2}
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and let Yt = Yt((E1, I1), . . . , (Et, It)) be the indicator random variable of that
event. Observe that if t = logn

log(1+λ) then (1 + λ)t � n/2. Hence, if we set

T1 = 2
λ

logn
log(1+λ) , we get P (mT1 � n/2) � P

(∑T1

t=1 Yt � (λ/2)T1

)
. This prob-

ability is at most as large as the probability that in a sequence of T1 inde-
pendent coin tosses, each one giving head with probability λ, we see less than
(λ/2)T1 heads (see e.g. Lemma 3.1 in [2]). A direct application of the Cher-
noff bound shows that this probability is smaller than e−(1/4)λT1 � n−c, for
a suitable constant c > 0. We can thus state that, after O(log n) time steps,
there at least n/2 informed nodes w.h.p. If mT1 � n/2, then, for every t � T1,
Lemma 2 implies that P (n−mt+1 � (1 − λ)(n−mt)) � λ. Observe that if
t = logn

λ then (1 − λ)t � 1/n, so that for T2 = 2
λ · logn

λ + T1 the probabil-
ity that the Push protocol has not completed at time T2 is P (mT2 < n) �
P

(
mT2 < n |mT1 � n

2

)
+ P

(
mT1 < n

2

)
. As we argued in the analysis of the

spreading till n/2, the probability P
(
mT2 < n |mT1 � n

2

)
is not larger than the

probability that in a sequence of 2
λ · log n

λ independent coin tosses, each one giving

head with probability λ, there are less than logn
λ heads. Again, by applying the

Chernoff bound, the latter is not larger than n−c for a suitable positive con-
stant c. �


In order to prove the bound for p � 1/n, we first show that one single Push

operation over the union of a sequence of graphs informs (stochastically) less
nodes than the sequence of Push operations performed in every single graph
(this fact will also be used later in Section 4 to analyse the edge-MEG).

Lemma 3. Let {Gt = ([n], Et) : t = 1, . . . , T } be a finite sequence of graphs
with the same set of nodes [n]. Let I ⊆ [n] be the set of informed nodes in the
initial graph G1. Suppose that at every time step every informed node performs
a Push operation, and let X be the random variable counting the number of
informed nodes at time step T . Let H = ([n], F ) be such that F = ∪T

t=1Et and let
Y be the random variable counting the number of informed nodes when the nodes
in I perform one single Push operation in graph H. Then for every � = 0, 1, . . . , n
it holds that P (X � �) � P (Y � �) .

Observe that if we look at a sequence of independent Gn,p with p � 1/n for
a time-window of approximately 1/(np) time steps, then every edge appears at
least once in the sequence with probability at least 1/n. The above lemma thus
allows us to reduce the case p � 1/n to the case p � 1/n.

Theorem 2. Let G = {Gt : t ∈ N} be a sequence of independent Gn,p with
p � 1/n and let s ∈ [n]. The Push protocol with source s over G completes the
broadcast in O(log n/(np)) time steps w.h.p.

4 Edge-Markovian Graphs with High Dynamics

In this section we prove that the Push protocol over an edge-Markovian graph
G(n, p, q;E0) with p � 1/n and q = Ω(1) has completion time O(log n) w.h.p.
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As observed in the Introduction, the stationary random graph is an Erdős-Rényi
Gn,p̃ where p̃ = p

p+q and the mixing time of the edge Markov chain is Θ( 1
p+q ).

Thus, if p and q fall into the range defined in Eq. 1, we get that the stationary
random graph can be sparse and disconnected (when p = o( logn

n )) and that the
mixing time of the edge Markov chain is O(1). Thus, we can omit the term E0

and assume it is random according to the stationary distribution.
The time-dependency between consecutive snapshots of the dynamic graph

does not allow us to obtain directly the increasing rate of the number of informed
nodes that we got for the independent-Gn,p model. In order to get a result like
Lemma 2 for the edge-Markovian case, we need in fact a bounded-degree condition
on the current set of informed nodes (see Definition 2) that does not apply when
the number of informed nodes is small (i.e., smaller than logn). However, in order
to reach a state where at least logn nodes are informed, we can use a different
ad-hoc technique that analyzes the spreading rate yielded by the source only.

Lemma 4. Let G = G(n, p, q) be an edge-Markovian graph with p � 1/n and
q = Ω(1), and consider the Push protocol in G starting with one informed node.
For any positive constant γ, after O(log n) time steps there are at least γ logn
informed nodes w.h.p.

We can now start the second part of our analysis where the Push operation of
all informed nodes (forming the subset I) will be considered and, thanks to the
bootstrap, we can assume that |I| = Ω(log n). As mentioned at the beginning
of the section, we need to introduce the concept of bounded-degree state (E, I)
of the Markovian process describing the information-spreading process over the
dynamic graph, where E is the set of edges and I is the set of informed nodes.

Definition 2. A state (E, I) such that |E(I)| � (8/q)np̃|I| (with p̃ = p
p+q the

stationary edge probability) will be called a bounded-degree state.

In the next lemma we show that, if I is the set of informed nodes with |I| �
logn, if in the starting random graph G0 every edge exists with probability
approximately (1± ε)p, and if it evolves according to the edge-Markovian model
and the informed nodes perform the Push protocol, then for a long sequence of
time steps the random process is in a bounded-degree state. We will use this
property in Theorem 3 by observing that, for every initial state, after O(log n)
time steps an edge-Markovian graph with p � 1/n and q ∈ Ω(1) is in a state
where every edge {u, v} exists with probability p{u,v} ∈ [(1 − ε)p̃, (1 + ε)p̃].

Lemma 5. Let G = G(n, p, q, E0) be an edge-Markovian graph starting with G0

and consider the Push protocol in G where I0 is the set of informed nodes at time
t = 0. Then, for any constant c > 0, for a sequence of c logn time steps every
state is a bounded-degree one w.h.p.

Now we can bound the increasing rate of the number of informed nodes in an
edge-Markovian graph. The proof of the following lemma combines the analysis
adopted in the proof of Lemma 2 with some further ingredients required to
manage the time-dependency of the edge-Markovian model.
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Lemma 6. Let (E, I) be a bounded-degree state and let X be the random vari-
able counting the number of non-informed nodes that get informed after two
steps of the Push operation in the edge-Markovian graph model. It holds that
P (X � ε · min{|I|, n− |I|}) � λ, where ε and λ are positive constants.

Now we can prove that in O(log n) time steps the Push protocol informs all
nodes in an edge-Markovian graph, w.h.p.

Theorem 3. Let G = G(n, p, q, E0) be an edge-Markovian graph with p � 1/n
and q = Ω(1) and let s ∈ [n] be a node. The Push protocol with source s completes
the broadcast over G in O(log n) time steps w.h.p.

Proof. Lemma 4 implies that after O(log n) time steps there are Ω(log n) in-
formed nodes w.h.p. From Lemma 5, it follows that, after further O(log n) time
steps, the edge-Markovian graph reaches a bounded-degree state and remains so
for further Ω(logn) time steps. Let us rename t = 0 the time step where there

are Ω(logn) informed nodes and every edge e ∈
(
[n]
2

)
exists with probability

pe ∈ [(1 − ε)p̃ , (1 + ε)p̃]. We again abbreviate mt := |It|. Observe that if re-
currence m2(t+1) � (1 + ε)m2t holds logn/ log(1 + ε) times, then there are n/2

informed nodes. Let us thus name T = 2
λ

logn
log(1+ε) . If at time 2T there are less

than n/2 informed nodes, then recurrence m2(t+1) � (1 + ε)m2t held less than
λT/2 times. Since, at each time step, the recurrence holds with probability at
least λ (there are less than n/2 informed nodes and the state is a bounded-degree
one w.h.p.), the above probability is at most as large as the probability that in
a sequence of T independent coin tosses, each one giving head with probability
λ, we see less than (λ/2)T heads (see, e.g., Lemma 3.1 in [2]). By the Chernoff
bound such a probability is smaller than e−γλT , for a suitable positive constant
γ. Since γ and λ are constants and T = Θ(log n) we have that

P (m2T � n/2) � n−δ (5)

for a suitable positive constant δ. When mt is larger than n/2 and the edge-
Markovian graph is in a bounded-degree state, from Lemma 6 it follows that
recurrence n−mt+1 � (1 − ε)(n−mt) holds with probability at least λ. If this
recurrence holds logn/ log (1/(1 − ε)) times then the number of informed nodes
cannot be smaller than n. Hence, if we name T̃ := (2/λ) logn/ log (1/(1 − ε)),
with the same argument we used to get Eq. 5, we obtain that after 2T +2T̃ time
steps all nodes are informed w.h.p. �


5 Edge-Markovian Graphs with Slow Dynamics

We have also considered “more static” sparse dynamic graphs. In particular, we
can provide a logarithmic bound on the completion time of the Push protocol
over the G(n, p, q) model even for p = Θ(1/n) and for q = o(1). The proof of the
following result combines some new coupling arguments with a previous analysis
of the Push protocol for static random graphs given in [17].
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Theorem 4. Let p = d
n for some absolute constant d ∈ N and let q = q(n)

be such that q(n) = o(1). The Push protocol over edge-Markovian graphs in
G(n, p, q) completes in O(log n) time, w.h.p.

6 Conclusion

Completing the whole figure, i.e., for every (p, q) ∈ [0, 1]2, is of intellectual interest.
Our results obtained for the most realistic cases are however already sufficient to
measure the positive impact of a certain form of network dynamics on information
spreading. To go one step further, we think that the most challenging question is
to analyze rumor spreading over more general classes of evolving graphs where
edges may not be independent. For instance, it would be interesting to analyze
the Push protocol over geometric models of mobile networks [12, 28].
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Abstract. We present the first algorithms for processing graphs in the sliding-
window model. The sliding window model, introduced by Datar et al. (SICOMP
2002), has become a popular model for processing infinite data streams in small
space when older data items (i.e., those that predate a sliding window contain-
ing the most recent data items) are considered “stale” and should implicitly be
ignored. While processing massive graph streams is an active area of research, it
was hitherto unknown whether it was possible to analyze graphs in the sliding-
window model. We present an extensive set of positive results including algo-
rithms for constructing basic graph synopses like combinatorial sparsifiers and
spanners as well as approximating classic graph properties such as the size of a
graph matching or minimum spanning tree.

1 Introduction

Massive graphs arise in any application where there is data about both basic entities
and the relationships between these entities, e.g., web-pages and hyperlinks; papers and
citations; IP addresses and network flows; phone numbers and phone calls; Tweeters
and their followers. Graphs have become the de facto standard for representing many
types of highly-structured data. Furthermore, many interesting graphs are dynamic, e.g.,
hyperlinks are added and removed, citations hopefully accrue over time, and the volume
of network traffic between two IP addresses may vary depending on the time of day.

Consequently there is a growing body of work on designing algorithms for analyz-
ing dynamic graphs. This includes both traditional data structures where the goal is to
enable fast updates and queries [16, 22–24, 29] and data stream algorithms where the
primary goal is to design randomized data structures of sublinear size that can answer
queries with high probability [2, 3, 17, 18, 25, 27, 30]. The paper focuses on the latter:
specifically, processing graphs using sublinear space in the sliding-window model. Al-
though our focus isn’t on update time, many of our algorithms can be made fast by
using standard data structures.

Dynamic Graph Streams. Almost all of the existing work on processing graph streams
considers what is sometimes referred to as the partially-dynamic case where the stream
consists of a sequence of edges 〈e1, e2, e3, . . .〉 and the graph being monitored consists
of the set of edges that have arrived so far. In other words, the graph is formed by a se-
quence of edge insertions. Over the last decade, it has been shown that many interesting
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problems can be solved using O(n polylog n) space, where n is the number of nodes
in the graph. This is referred to as the semi-streaming space restriction [18]. It is only
in the last year that semi-streaming algorithms for the fully-dynamic case, where edges
can be inserted and deleted, have been discovered [2, 3]. A useful example illustrating
why the fully-dynamic case is significantly more challenging is testing whether a graph
is connected. If there are only insertions, it suffices to track which nodes are in which
connected component since these components only merge over time. In the dynamic
case, connected components may also subdivide if bridge edges are deleted.

Sliding-Window Model. The sliding-window model, introduced by Datar et al. [14],
has become a popular model for processing infinite data streams in small space when
the goal is to compute properties of data that has arrived in the last window of time.
Specifically, given an infinite stream of data 〈a1, a2, . . . 〉 and a function f , at time
t we need to return an estimate of f(at−L+1, at−L+2, . . . , at). We refer to 〈at−L+1,
at−L+2, . . . , at〉 as the active window where L is length of this window. The length
of the window could correspond to hours, days, or years depending on the application.
The motivation is that by ignoring data prior to the active window, we focus on the
“freshest” data and can therefore detect anomalies and trends more quickly. Existing
work has considered estimating various numerical statistics and geometric problems in
this model [5–8,11,12,19], as well developing useful techniques such as the exponential
histogram [14] and smooth histogram data structures [11, 12].

1.1 Our Contributions

The paper initiates the study of processing graphs in the sliding-window model where
the goal is to monitor the graph described by the last L entries of a stream of inserted
edges. Note the following differences between this model and fully-dynamic model. In
the sliding-window model the edge deletions are implicit, in the sense that when an edge
leaves the active window it is effectively deleted but we may not know the identity of
the deleted edge unless we store the entire window. In the case of fully-dynamic graph
streams, the identity of the deleted edge is explicit but the edge could correspond to any
of the edges already inserted but not deleted.

We present semi-streaming algorithms in the sliding-window model for various clas-
sic graph problems including testing connectivity, constructing minimum spanning
trees, and approximating the size of graph matchings. We also present algorithms for
constructing graph synopses including sparsifiers and spanners. We say a subgraph H
of G is a (2t− 1)-spanner if:

∀u, v ∈ V : dG(u, v) ≤ dH(u, v) ≤ (2t− 1)dG(u, v)

where dG(u, v) and dH(u, v) denote the distance between nodes u and v in G and H
respectively. We say a weighted subgraph H of G is a (1 + ε) sparsifier if

∀U ⊂ V : (1 − ε)λG(U) ≤ λH(u, v) ≤ (1 + ε)λG(U)

where λG(U) and λH(U) denote the weight of the cut (U, V \ U) in G and H respec-
tively. A summary of our results can be seen in Table 1 along with the state-of-the-art
results for these problems in the insert-only and insert/delete models.
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Table 1. Single-Pass, Semi-Streaming Results: All the above algorithms use O(n polylog n)
space with the exception of the spanner constructions

Insert-Only Insert-Delete Sliding Window (this paper)

Connectivity Deterministic [18] Randomized [2] Deterministic
Bipartiteness Deterministic [18] Randomized [2] Deterministic

(1 + ε)-Sparsifier Deterministic [1] Randomized [3, 21] Randomized
(2t− 1)-Spanners O(n1+1/t) space [9, 15] None O(L1/2n(1+1/t)/2) space

Min. Spanning Tree Exact [18] (1 + ε)-approx. [2] (1 + ε)-approx.
Unweighted Matching 2-approx. [18] None (3 + ε)-approx.

Weighted Matching 4.911-approx. [17] None 9.027-approx.

2 Connectivity and Graph Sparsification

We first consider the problem of testing whether the graph is k-edge connected for a
given k ∈ {1, 2, 3 . . .}. Note that k = 1 corresponds to testing connectivity. To do this,
it is sufficient to maintain a set of edges F ⊆ {e1, e2, . . . , et} along with the time-of-
arrival toa(e) for each e ∈ F where F satisfies the following property:

– Recent Edges Property. For every cut (U, V \ U), the stored edges F contain the
most recent min(k, λ(U)) edges across the cut where λ(U) denotes the total num-
ber of edges from {e1, e2, . . . , et} that cross the cut.

Then, we can easily tell whether the graph on the active edges, 〈et−L+1, et−L+2,
. . . , et〉, is k-connected by checking whether F would be k-connected once we remove
all edges e ∈ F where toa(e) ≤ t − L. This follows because if there are k or more
edges among the last L edges across a cut, F will include the k most recent of them.

Algorithm. The following simple algorithm maintains a set F with the above prop-
erty. The algorithm maintains k disjoint sets of edges F1, F2, . . . , Fk where each Fi is
acyclic. Initially, F1 = F2 = . . . = Fk = ∅ and on seeing edge e in the stream, we
update the sets as follows:

1. Define the sequence f0, f1, f2, f3, . . . where f0 = {e} and for each i ≥ 1, fi
consists of the oldest edge in a cycle in Fi ∪ fi−1 if such a cycle exists and fi = ∅
otherwise. Since each Fi is acyclic, there will be at most one cycle in each Fi∪fi−1.

2. For i ∈ {1, 2, . . . , k},
Fi ← (Fi ∪ fi−1) \ fi

In other words, we add the new edge e to F1. If it completes a cycle, we remove the
oldest edge on this cycle and add that edge to F2. If we now have a cycle in F2, we
remove the oldest edge on this cycle and add that edge to F3. And so on. By using an
existing data structure for constructing online minimum spanning trees [28], the above
algorithm can be implemented with O(k logn) update time.

Lemma 1. F = F1 ∪ F2 ∪ . . . ∪ Fk satisfies the Recent Edges Property.
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Proof. Fix some i ∈ [k] and a cut (U, V \ U). Observe that the youngest edge y ∈ Fi

crossing a cut (U, V \U) is never removed from Fi since its removal would require it to
be the oldest edge in some cycle C. This cannot be the case since there must be an even
number of edges in C that cross the cut and so there is another edge x ∈ C crossing the
cut. This edge must have been older than y since y was the youngest.

It follows that F1 always contains the youngest edge crossing any cut, and by in-
duction on i, the ith youngest edge crossing any cut is contained in

⋃i
j=1 Fj . This is

true because this edge was initially added to F1 ⊆
⋃i

j=1 Fj , and cannot leave
⋃i

j=1 Fj .
That is, for the ith youngest edge to leave Fi, there would have to be a younger crossing
edge in Fi, but, inductively, any such edge is contained in

⋃i−1
j=1 Fj . �


Theorem 1. There exists a sliding-window algorithm for monitoring k-connectivity us-
ing O(kn logn) space.

2.1 Applications: Bipartiteness and Graph Sparsification

Bipartiteness. To monitor whether a graph is bipartite, we run the connectivity tester
on the input graph and also simulate the connectivity tester on the cycle double cover
of the input graph. The cycle double cover D(G) of a graph G = (V,E) is formed
by replacing each node v ∈ V by two copies v1 and v2 and each edge (u, v) ∈ E
by the edges (u1, v2) and (u2, v1). Note that this transformation can be performed in
a streaming fashion. Furthermore, D(G) has exactly twice the number of connected
components as G iff G is bipartite [2].

Theorem 2. There exists a sliding-window algorithm for monitoring bipartiteness us-
ing O(n logn) space.

Graph Sparsification. Using the k-connectivity tester as a black-box we can also con-
struct a (1 + ε)-sparsifier following the approach of Ahn et al. [3]. The approach is
based upon a result by Fung et al. [20] that states that sampling each edge e with prob-
ability pe ≥ min

{
253λ−1

e ε−2 log2 n, 1
}

, where λe is the size of the minimum cut that
includes e, and weighting the sampled edges by 1/pe results in a (1 + ε) sparsifier with
high probability. To emulate this sampling without knowing λe values, we subsample
the graph stream to generate sub-streams that define O(log n) graphs G0, G1, G2, . . .
where each edge is in Gi with probability 2−i. For each i, we store the set of edges
F (Gi) generated by the k-connectivity algorithm. If k = Θ(ε−2 log2 n), then note that
e is in some F (Gi) with probability at least min{Ω(λ−1

e ε−2 log2 n), 1} as required.
See Ahn et al. [3] for further details.

Theorem 3. There exists a sliding-window algorithm for maintaining a (1 + ε) sparsi-
fier using O(ε−2n polylogn) space.

3 Matchings

We next consider the problem of finding large matchings in the sliding-window model.
We first consider the unweighted case, maximum cardinality matching, and then gener-
alize to the weighted case.
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3.1 Maximum Cardinality Matching

Our approach for estimating the size of the maximum cardinality matching combines
ideas from the powerful “smooth histograms” technique of Braverman and Ostrovsky
[11, 12] with the fact that graph matchings are submodular and satisfy a “smooth-like”
condition.

Smooth Histograms. The smooth histogram technique gives a general framework for
maintaining an estimate of a function f on a sliding window provided that f satisfies a
certain set of conditions. Among these conditions are:

1. Smoothness: For any α ∈ (0, 1) there exists β ∈ (0, α] such that

f(B) ≥ (1 − β)f(AB) implies f(BC) ≥ (1 − α)f(ABC) (1)

where A, B, and C are disjoint segments of the stream and AB,BC,ABC denote
concatenations of these segments.

2. Approximability: There exists a sublinear space stream algorithm that returns an
estimate f̃(A) for f evaluated on a (non-sliding-window) stream A, such that

(1 − β/4)f(A) ≤ f̃(A) ≤ (1 + β/4)f(A)

The basic idea behind smooth histograms is to approximate f on various suffixes
B1, B2, . . . , Bk of the stream where B1 ⊇ W � B2 � · · · � Bk and W is the active
window. We refer to the Bi as “buckets.” Roughly speaking, if we can ensure that
f(Bi+1) ≈ (1 − ε)f(Bi) for each i then f(B2) is a good approximation for f(W ) and
we will only need to consider a logarithmic number of suffixes. We will later present the
relevant parts of the technique in more detail in the context of approximate matching.

Matchings are Almost Smooth. Let m(A) denote the size of the maximum matching on
a set of edges A. Unfortunately, the function m does not satisfy the above smoothness
condition and cannot be approximated to sufficient accuracy. It does however satisfy a
“smooth-like” condition:

Lemma 2. For disjoint segments of the stream A, B, and C and for any β > 0:

m(B) ≥ (1 − β)m(AB) implies m(BC) ≥ 1

2
(1 − β)m(ABC) (2)

Proof. 2m(BC) ≥ m(B)+m(BC) ≥ (1−β)m(AB)+m(BC) ≥ (1−β)m(ABC).
The last step follows since m(AB) + m(BC) ≥ m(A) + m(BC) ≥ m(ABC). �


The best known semi-streaming algorithm for approximating m on a stream A is a
2-approximation and a lower bound 1.582 has recently been proved [25]. Specifically,
let m̂(A) be the size of the greedy matching on A. Then it is easy to show that

m(A) ≥ m̂(A) ≥ m(A)/2 (3)
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Unfortunately, it is not possible to maintain a greedy matching over a sliding win-
dow.1 However, by adjusting the analysis of [12], properties (2) and (3) suffice to show
that smooth histograms can obtain an (8 + ε)-approximation of the maximum matching
in the sliding-window model. However, by proving a modified smoothness condition
that takes advantage of relationships between m and m̂, and specifically the fact that m̂
is maximal rather than just a 2-approximation, we will show that a smooth histograms-
based approach can obtain a (3 + ε)-approximation.

Lemma 3. Consider any disjoint segments A, B, C of a stream of edges and β ∈ (0, 1).

m̂(B) ≥ (1 − β)m̂(AB) implies m(ABC) ≤
(

3 +
2β

1 − β

)
m̂(BC) .

Note that it the size of the maximum matching on ABC that is being compared with the
size of the greedy matching on BC. Also to see that the above lemma is tight for any
β ∈ (0, 1) consider the following graph on O(n) nodes:

u z z

û v̂

(1− β)n copies

u

û

u

βn copies

and let A be the stream of the û edges (which are placed in greedy matching) followed
the u edges; B are the v̂ edges, and C are the z edges. Then m̂(AB) = n, m̂(B) =
(1 − β)n = m̂(BC), and m(ABC) = (3 − β)n.

Proof (Lemma 3). Let M(X) and M̂(X) be the set of edges in an optimal matching
on X and a maximal matching on X . We say that an edge in a matching covers the two
nodes which are its endpoints.

We first note that every edge in M(ABC) covers at least one node which is cov-
ered by M̂(AB) ∪ M̂(BC); otherwise, the edge could have been added to M̂(AB) or
M̂(BC) or both. Since M(ABC) is a matching, no two of its edges can cover the same
node. Thus m(ABC) is at most the number of nodes covered by M̂(AB) ∪ M̂(BC).

The number of nodes covered by M̂(AB) ∪ M̂(BC) is clearly at most 2m̂(AB) +
2m̂(BC). But this over-counts edges in M̂(B). Every edge in M̂(B) is clearly in

1 Maintaining the matching that would be generated by a greedy algorithm on the active window
requires Ω(min(n2, L)) space since it would always contain the oldest edge in the window
and advancing the window allows us to recover all the edges. Similarly, it is not possible to
construct the matching that would be returned by a greedy algorithm on reading the active
window in reverse. This can be seen to require Ω(n2) space even in the unbounded-stream
model via reduction from INDEX. Alice considers the possible edges on an n-clique, and in-
cludes an edge iff the corresponding bit of her input is a 1. Bob then adds edges forming
a perfect matching on all nodes except the endpoints of an edge of interest. The backwards
greedy matching on the resulting graph consists of all of Bob’s edges, plus one additional edge
iff Alice’s corresponding bit was a 1.
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M̂(BC); also, every edge in M̂(B) shares at least one node with an edge in M̂(AB)
since the construction was greedy. Thus we find

m(ABC) ≤ 2m̂(BC) + 2m̂(AB) − m̂(B)

≤ 2m̂(BC) +
2

1 − β
m̂(B) − m̂(B)

= 2m̂(BC) +
1 + β

1 − β
m̂(B)

≤
(

3 +
2β

1 − β

)
m̂(BC) .

where the second inequality follows from the assumption m̂(B) ≥ (1−β)m̂(AB). �


Theorem 4. There exists a sliding-window algorithm for maintaining a (3+ε) approx-
imation of the maximum cardinality matching using O(ε−1n log2 n) space.

Proof. We now use the smooth histograms technique to estimate the maximum match-
ing size. The algorithm maintains maximal matchings over various buckets B1, . . . , Bk

where each bucket comprises of the edges in some suffix of the stream. Let W be the
set of updates within the window. The buckets will always satisfy B1 ⊇ W � B2 �
· · · � Bk, and thus m(B1) ≥ m(W ) ≥ m(B2).

Within each bucket B, we will keep a greedy matching whose size we denote by
m̂(B). To achieve small space usage, whenever two nonadjacent buckets have greedy
matchings of similar size, we will delete any buckets between them. Lemma 3 tells
us that if the greedy matchings of two buckets have ever been close, then the smaller
bucket’s greedy matching is a good approximation of the size of the maximum matching
on the larger bucket.

When a new edge e arrives, we update the buckets B1, . . . , Bk and greedy matchings
m̂(B1), . . . , m̂(Bk) as follows where β = ε/4:

1. Create a new empty bucket Bk+1.
2. Add e to the greedy matching within each bucket if possible.
3. For i = 1 . . . k − 2:

(a) Find the largest j > i such that m̂(Bj) ≥ (1 − β)m̂(Bi)

(b) Delete Bt for any i < t < j and renumber the buckets.
4. If B2 contains the entire active window, delete B1 and renumber the buckets.

Space Usage: Step 3 deletes “unnecessary” buckets and therefore ensures that for all
i ≤ k − 2 then m̂(Bi+2) < (1 − β)m̂(Bi). Since the maximum matching has size
at most n, this ensures that the number of buckets is O(ε−1 logn). Hence, the total
number of bits used to maintain all k greedy matchings is O(ε−1n log2 n).

Approximation Factor: We prove the invariant that for any i < k, either m̂(Bi+1) ≥
m(Bi)/(3 + ε) or |Bi| = |Bi+1| + 1 (i.e., Bi+1 includes all but the first edge of
Bi) or both. If |Bi| 	= |Bi+1| + 1, then we must have deleted some bucket B which
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Bi � B � Bi+1. For this to have happened it must have been the case that m̂(Bi+1) ≥
(1 − β)m̂(Bi) at the time. But then Lemma 3 implies that we currently satisfy:

m(Bi) ≤
(

3 +
2β

1 − β

)
m̂(Bi+1) ≤ (3 + ε)m̂(Bi+1) .

Therefore, either W = B1 and m̂(B1) is a 2-approximation for m(W ), or we have

m(B1) ≥ m(W ) ≥ m(B2) ≥ m̂(B2) ≥ m(B1)

3 + ε

and thus m̂(B2) is a (3 + ε)-approximation of m(W ). �


3.2 Weighted Matching

We next consider the weighted case where every edge e in the stream is accompanied
by a numerical value corresponding to its weight. We combine our algorithm for max-
imum cardinality matching with the approach of Epstein et al. [17] to give a 9.027
approximation. In this approach, we partition the set of edges into classes of geometri-
cally increasing weights and construct a large cardinality matching in each weight class.
We assume that the edge weights are polynomially bounded in n and hence there are
O(log n) weight classes.

Geometrically Increasing Edge Weights. Initially, we assume that for some constants
γ > 1, φ > 0, every edge has weight γiφ for some i ∈ {0, 1, 2, . . .}. Let Ei denote the
set of edges with weight γiφ. Our algorithm will proceed as follows:

1. For each i, use an instantiation of the maximum cardinality algorithm from the
previous section to maintain a matching Ai ⊆ Ei among the active edges.

2. LetR be the matching formed by greedily adding all possible edges fromA = ∪iAi

in decreasing order of weight.

The next lemma bounds the total weight of edges in A in terms of the total weight of
edges in R.

Lemma 4. w(R)/w(A) ≥ (γ − 1)/(γ + 1).

Note that the lemma is tight: consider the graph with a single edge of weight γk, itself
adjacent to two edges of each smaller weight γk−1, γk−2, . . .. If A = E, we have
w(R) = γk = (1 − 2/(γ + 1))w(A).

Proof (Lemma 4). Consider the process of greedily constructing R. Call an edge e ∈ A
“chosen” when it is added to R, and “discarded” if some covering edge is added to R.
Edges which have not yet been chosen or discarded are said to be “in play”. Note that
once edges are discarded they cannot be added to R, and that the greedy construction
continues until no edges remain in play.

We bound the weight of edges discarded when an edge is chosen. For an edge to be
chosen, it must be the heaviest edge in play. None of its in-play neighbors can be in the
same weight class, because within each weight class we have a matching. Thus, when
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an edge is chosen, the edges discarded are all in smaller weight classes; there are at
most two edges discarded in each of these classes. If the edge e ∈ Ai is chosen, it has
weight γiφ. For each j < i there are at most two edges discarded with weight γjφ. Let
T (e) be the set of edges discarded when e ∈ Ai is chosen including e itself. Then,

w(e)

w(T (e))
=

γiφ

γiφ + 2
∑i−1

j=0 γ
jφ

=
γi

γi + 2γi−1
∑i−1

j=0 γ
−j

≥ 1

1 + 2
γ−1

=
γ − 1

γ + 1

Since this holds for each chosen edge and all the edges appear in some T (e), we con-
clude

w(R) =
∑
e∈R

w(e) ≥ γ − 1

γ + 1

∑
e∈A

w(e) =
γ − 1

γ + 1
w(A)

as required. �


Let OPT be the maximum-weight matching on E. w(OPT) is clearly at most the sum
of the optimum-weight matchings on each Ei. Thus we have

Corollary 1. If eachAi is an (3+ε) approximation for the maximum cardinality match-
ing on Ei then

w(OPT) ≤ (3 + ε)
γ + 1

γ − 1
w(R) (4)

Arbitrary Edge Weights. We now reduce the case of arbitrary edge weights to the ge-
ometric case. Let OPT be the maximum-weight matching on G = (V,E,w) and let
OPT′ be the maximum weight matching on G′ = (V,E,w′

φ) where w′
φ(e) = γiφ for

some γ > 1, φ > 0 and i satisfies γi+1φ > w(e) ≥ γiφ. This ensures that

w(OPT) < γw′
φ(OPT) ≤ γw′

φ(OPT′) .

However, Epstein et al. show that there exists φ ∈ {γ0/q, γ1/q, γ2/q, . . . , γ1−1/q}
where q = O(logγ(1 + ε)) such that

w(OPT) ≤ (1 + ε)γ ln γ

γ − 1
w′

φ(OPT) ≤ (1 + ε)γ ln γ

γ − 1
w′

φ(OPT′) .

And so, if we run the above algorithm with respect to w′
φ in parallel for each choice of

φ, we ensure that for some φ,

w(OPT) ≤ (1 + ε)γ ln γ

γ − 1
w′

φ(OPT) ≤ (3 + ε) · (1 + ε)γ ln γ

γ − 1
· γ + 1

γ − 1
w(R) ,

by appealing to the analysis for geometrically increasing weights (Corollary 1). This is
minimized at γ ≈ 5.704 to give an approximation ratio of less than 9.027 when we set
ε to be some sufficiently small constant.

Theorem 5. There exists a sliding-window algorithm for maintaining a 9.027 approx-
imation for the maximum weighted matching using O(n log3 n) space.
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4 Minimum Spanning Tree

We next consider the problem of maintaining a minimum spanning forest in the sliding-
window model. We show that it is possible to maintain a spanning forest that is at most
a factor (1 + ε) from optimal but that maintaining the exact minimum spanning tree
requires Ω(max(n2, L)) space where L is the length of the sliding window.

The approximation algorithm is based on an idea of Chazelle et al. [13] where the
problem is reduced to finding maximal acyclic subgraphs, i.e., spanning forests, among
edges with similar weights. If each edge weight is rounded to the nearest power of
(1+ ε), it can be shown that the minimum spanning tree in the union of these subgraphs
is a (1 + ε) approximation of the minimum spanning tree of the original graph. The
acyclic subgraphs can be found in the sliding-window model using the connectivity
algorithm we presented earlier. The proof of the next theorem is almost identical to
those in [2, Lemma 3.4].

Theorem 6. There exists a sliding-window algorithm for maintaining a (1+ε) approx-
imation for the minimum spanning tree using O(ε−1n log2 n) bits of space.

In the unbounded stream model, it was possible to compute the exact minimum span-
ning tree via a simple algorithm: 1) add the latest edge to an acyclic subgraph that is
being maintained, 2) if this results in a cycle, remove the heaviest weight edge in the
cycle. However, the next theorem shows that maintaining an exact minimum spanning
tree in the sliding-window model is not possible in sublinear space.

Theorem 7. Maintaining an exact minimum spanning forest in the sliding-window
model requires Ω(min(L, n2)) space.

Proof. Let p = min(L, n2/4). The proof is by a reduction from the communication
complexity of the two-party communication problem INDEX(p) where Alice holds a
binary string a = a1a2 . . . ap and Bob has an index k ∈ [p]. If Alice sends a single
message to Bob that enables Bob to output ak with probability at least 2/3, then Alice’s
message must contain at Ω(p) bits [26].

Alice encodes her bits on the edges of a complete bipartite graph, writing in or-
der the edges (u1, v1), (u1, v2), (u1, v3), . . . , (u1, v√p), (u2, v1), . . . , (u2, v√p), . . . ,
(u√

p, v√p) where the ith edge weight 2i + ai. Note that all these edges are in the cur-
rent active window. Suppose she runs a sliding-window algorithm for exact MST on
this graph and sends the memory state to Bob. Bob continues running the algorithm on
an arbitrary set of L−p+k−1 edges each of weight 2p+2. At this point any minimum
spanning forest in the active window must contain the edge of weight 2k+ak since it is
the lowest-cost edge in the graph. Bob can thus learn ak and hence the algorithm must
have used Ω(p) bits of memory. Note that if Bob can only determine what the MST
edges are, but not their weights, he can add an alternative path of weight 2k + 1/2 to
the node in question. �


5 Graph Spanners

In the unbounded stream model, the following greedy algorithm constructs a 2t − 1
stretch spanner with O(n1+1/t) edges [4, 18]. We process the stream of edges in order;
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when seeing each edge (u, v), we add it to the spanner if there is not already a path
from u to v of length 2t− 1 or less. Any path in the original graph then increases by a
factor of at most 2t−1, so the resulting graph is a (2t−1)-spanner. The resulting graph
has girth at least 2t + 1, so it has at most O(n1+1/t) edges [10].

For graphs G1, G2 on the same set of nodes, let G1 ∪G2 denote the graph with the
union of edges from G1 and G2. We will need the following simple lemma.

Lemma 5. Let G1 and G2 be graphs on the same set of nodes, and let H1 and H2 be
α-spanners of G1 and G2 respectively. Then H1 ∪H2 is an α-spanner of G1 ∪G2.

Proof. Let G = G1 ∪G2 and H = H1 ∪H2. For arbitrary nodes u, v, consider a path
of length dG(u, v). Each edge in this path is in G1 or G2 (or both). There is thus a path
between the edge’s endpoints in the correspondingH1 or H2 which is of length at most
α. Thus, there is a path of length at most αdG(u, v) in H = H1 ∪H2.

Theorem 8. There exists a sliding-window algorithm for maintaining a (2t− 1) span-
ner using O(

√
Ln1+1/t) space.

Proof. We batch the stream into blocks E1, E2, E3, . . . , where each consists of s edges.
We buffer the edges in each block until it has been read completely, marking each edge
with its arrival time. We then run the greedy spanner construction on each block in
reverse order, obtaining a spanner Si. By Lemma 5, the union of the spanners Si and
the edges in the current block, restricted to the active edges, is a spanner of the edges
in the active window. This algorithm requires space s to track the edges in the current
block. Each spannerSi has O(n1+1/t) edges, and at most L/s past blocks are within the
window. The total number of edges stored by the algorithm is thus s+(L/s)O(n1+1/t).
Setting s =

√
Ln1+1/t gives O(

√
Ln1+1/t) edges. �


6 Conclusions

We initiate the study of graph problems in the well-studied sliding-window model. We
present algorithms for a wide range of problems including testing connectivity and con-
structing combinatorial sparsifiers; constructing minimum spanning trees; approximat-
ing weighted and unweighted matchings; and estimating graph distances via the con-
struction of spanners. Open problems include reducing the space required to construct
graph spanners and improving the approximation ratio when estimating matching size.

References
1. Ahn, K.J., Guha, S.: Graph sparsification in the semi-streaming model. In: Albers, S.,

Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
II. LNCS, vol. 5556, pp. 328–338. Springer, Heidelberg (2009)

2. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. In:
SODA, pp. 459–467 (2012)

3. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs.
In: PODS, pp. 5–14 (2012)
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Abstract. We consider the smoothed analysis of Euclidean optimiza-
tion problems. Here, input points are sampled according to density func-
tions that are bounded by a sufficiently small smoothness parameter φ.
For such inputs, we provide a general and systematic approach that al-
lows to design linear-time approximation algorithms whose output is
asymptotically optimal, both in expectation and with high probability.

Applications of our framework include maximum matching, maximum
TSP, and the classical problems of k-means clustering and bin packing.
Apart from generalizing corresponding average-case analyses, our results
extend and simplify a polynomial-time probable approximation scheme
on multidimensional bin packing on φ-smooth instances, where φ is con-
stant (Karger and Onak, SODA 2007).

Both techniques and applications of our rounding-based approach are
orthogonal to the only other framework for smoothed analysis on Eu-
clidean problems we are aware of (Bläser et al., Algorithmica 2012).

1 Introduction

Smoothed analysis has been introduced by Spielman and Teng [26] to give a
theoretical foundation for analyzing the practical performance of algorithms.
In particular, this analysis paradigm was able to provide an explanation why
the simplex method is observed to run fast in practice despite its exponential
worst-case running time.

The key concept of smoothed analysis, i.e., letting an adversary choose worst-
case distributions of bounded “power” to determine input instances, is especially
well-motivated in a Euclidean setting. Here, input points are typically deter-
mined by physical measurements, which are subject to an inherent inaccuracy,
e.g., from locating a position on a map. For clustering problems, it is often
even implicitly assumed that the points are sampled from unknown probability
distributions which are sought to be recovered.

Making the mentioned assumptions explicit, we call a problem smoothed
tractable if it admits a linear-time algorithm with an approximation ratio that is
bounded by 1 − o(1) with high probability over the input distribution specified
by the adversary. Such an approximation performance is called asymptotically
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optimal. We provide a unified approach to show that several Euclidean optimiza-
tion problems are smoothed tractable, which sheds light onto the properties that
render a Euclidean optimization problem likely to profit from perturbed input.

We employ the one-step model, a widely-used and very general perturbation
model, which has been successfully applied to analyze a number of algorithms
[9,10,11,15]. In this model, an adversary chooses probability densities on the
input space, according to which the input instance is drawn. To prevent the
adversary from modeling a worst-case instance too closely, we bound the density
functions from above by a parameter φ. Roughly speaking, for large φ, we expect
the algorithm to perform almost as bad as on worst-case instances. Likewise,
choosing φ as small as possible requires the adversary to choose the uniform
distribution on the input space, corresponding to an average-case analysis. Thus,
the adversarial power φ serves as an interpolation parameter between worst and
average case.

Formally, given a set of feasible distributions F that depends on φ, and a per-
formance measure t, we define the smoothed performance of an algorithm under
the perturbation model F as maxf1,...,fn∈F E(X1,...,Xn)∼(f1,...,fn)[t(X1, . . . , Xn)].
In this work, we will be concerned with analyzing the smoothed approxima-
tion ratio, as well as bounds on the approximation ratio that hold with high
probability over the perturbations.

For given φ, we require the density functions chosen by the adversary to be
bounded by φ. For real-valued input, this includes the possibility to add uniform
noise in an interval of length 1/φ or Gaussian noise with variance σ ∈ Θ(1/φ).
In the Euclidean case, the adversary could, e.g., specify for each point a box of
volume at least 1/φ, in which the point is distributed uniformly.

Related Work. Recently, Bläser, Manthey and Rao [10] established a framework
for analyzing the expectation of both running times and approximation ratios for
some partitioning algorithms on so-called smooth and near-additive functionals.
We establish a substantially different framework for smoothed analysis on a
general class of Euclidean functionals that is disjoint to the class of smooth
and near-additive functionals (see Section 7 for further discussion). We contrast
both frameworks by considering the maximization counterparts of two problems
studied in [10], namely Euclidean matching and TSP. Our algorithms have the
advantage of featuring deterministic running times and providing asymptotically
optimal approximation guarantees both in expectation and with high probability.

All other related work is problem-specific and will be described in the cor-
responding sections. As an exception, we highlight the result of Karger and
Onak [22], who studied bin packing. To the best of our knowledge, this is the
only problem that fits into our framework and has already been analyzed under
perturbation. In this paper, a linear-time algorithm for bin packing was given
that is asymptotically optimal on instances smoothed with any constant φ. We
provide a new, conceptually simpler rounding method and analysis that replaces
a key step of their algorithm and puts the reasons for its smoothed tractability
into a more general context.
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Table 1. All (near) linear-time algorithms derived in our framework

problem running time restriction on adversary power
MaxM O(n) φ ∈ o( 4

√
n) or φ ∈ o(n

1
2

d
d+2

−ε)

MaxTSP O(n) φ ∈ o( 4
√
n) or φ ∈ o(n

1
2

d
d+2

−ε)

KMeans O(n) kφ ∈ o(n
1
2

1
kd+1

d
d+1 )

BP1 O(n log n) φ ∈ o(n1−ε)

BPd O(n) φ ∈ o

(
d(d+1)

√
log log n/ log(3) n

)

Our Results. We provide very fast and simple approximation algorithms on suf-
ficiently smoothed inputs for the following problems: The maximum Euclidean
matching problem MaxM, the maximum Euclidean Traveling Salesman problem
MaxTSP, the k-means clustering problem KMeans where k denotes the number
of desired clusters and is part of the input, and the d-dimensional bin packing
problem BPd. The approximation ratio converges to one with high probability
over the random inputs. Additionally, all of these algorithms can be adapted to
yield asymptotically optimal expected approximation ratios as well. This gener-
alizes corresponding average-case analysis results [14,23].

Almost all our algorithms allow trade-offs between running time and approx-
imation performance: By choosing a parameter p within its feasible range, we
obtain algorithms of running time O(np), whose approximation ratio converges
to 1 as n → ∞, provided that φ small enough, where the restriction on φ depends
on p. The special case of linear-time algorithms is summarized in Table 1.

2 Preliminaries

Given an n-tuple of density functions f = (f1, . . . , fn) and random variables
X = (X1, . . . , Xn), we write X ∼ f for drawing Xi according to fi for 1 ≤ i ≤ n.
We call Y = (Y1, . . . , Yn) a δ-rounding of X if ‖Xi − Yi‖ ≤ δ for all 1 ≤ i ≤ n.
For a given X , let Yδ

X := {Y | ‖Xi − Yi‖ ≤ δ} be the set of δ-roundings of X .
We will analyze Euclidean functionals F : ([0, 1]d)∗ → R, denoting the dimen-

sion of the input space by d ∈ N. For formalizing the perturbation model, let
φ : N → [1,∞) be an arbitrary function measuring the adversary’s power. For
better readibility, we usually write φ instead of φ(n). We define Fφ to be the set
of feasible probability density functions f : [0, 1]d → [0, φ].

Note that if φ = 1, the set Fφ only consists of the uniform distribution
on [0, 1]d. If however φ = n, the adversary may specify disjoint boxes for each
point. Intuitively, to obtain a particular worst-case instance, the adversary would
need to specify Dirac delta functions, which corresponds figuratively to setting φ
to infinity. Observe also that already φ ∈ ω(1) suffices to let all possible locations
of a fixed point Xi converge to a single point for n tending to infinity, hence we
believe that a superconstant φ is especially interesting to analyze.

For a given Euclidean functional F , we analyze the approximation ratio ρ of
approximation algorithms ALG. If the functional is induced by an optimization
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problem, we do not focus on constructing a feasible approximate solution, but
rather on computing an approximation of the objective value. However, we adopt
this simplification only for clarity of presentation. Each of the discussed algo-
rithms can be tuned such that it also outputs a feasible approximate solution for
the underlying optimization problem. The approximation ratio on instance X is
defined as ρ(X) = min

{
ALG(X)
F (X) , F (X)

ALG(X)

}
, which allows to handle both maxi-

mization and minimization problems at once.
For analyzing running times, we assume the word RAM model of computation

and reveal real-valued input by reading in words of at least logn bits in unit time
per word. We call an approximation algorithm a probable gφ(n)-approximation on
smoothed instances if ρ(X) ≥ gφ(n) with high probability, i.e., with probability
1 − o(1), when X is drawn from Fn

φ . The algorithms derived in our framework
feature deterministic running times t(n) ∈ poly(n) and asymptotically optimal
approximation ratios gφ(n), i.e., gφ(n) → 1 for n → ∞ if φ is small enough.
For such choices of φ, each of our algorithms induces a (non-uniform) probable
polynomial-time approximation scheme (PTAS) on smoothed instances.

3 Framework

Our framework builds on the notion of quantizable functionals. These are func-
tionals that admit fast approximation schemes on perturbed instances using
general rounding strategies. The idea is to round an instance of n points to
a quantized instance of � ! n points, each equipped with a multiplicity. This
quantized input has a smaller problem size, which allows to compute an approx-
imation faster than on the original input. However, the objective function needs
to be large enough to make up for the loss due to rounding.

We aim at a trade-off between running time and approximation performance.
As it will turn out, varying the number �(n) of quantized points on an instance
of n points makes this possible. Thus, we keep the function � variable in our
definition. On instances of size n, we will write � := �(n) for short.

Definition 1. Let d ≥ 1 and F be a family of probability distributions [0, 1]d →
R≥0. Let t, R : N → R and Q ∈ R. We say that a Euclidean functional F :
([0, 1]d)∗ → R≥0 is t-time (R,Q)-quantizable with respect to F , if there is a
quantization algorithm A and an approximation functional g : ([0, 1]d×N)∗ → R
with the following properties. For any function � satisfying � ∈ ω(1) and � ∈ o(n),

1. The quantization algorithm A maps, in time O(n), a collection of points X =
(X1, . . . , Xn) ∈ [0, 1]dn to a multiset A(X) = X ′ = ((X ′

1, n1), . . . , (X ′
�, n�)),

the quantized input, with X ′
i ∈ [0, 1]d.

2. The approximation functional g is computable in time t(�) and, for any f ∈
Fn, fulfills PrX∼f [|F (X) − g(A(X))| ≤ nR(�)] ∈ 1 − o(1).

3. For any f ∈ Fn, we have Prx∼f [F (X) ≥ nQ] ∈ 1 − o(1).

The following theorem states that quantizable functionals induce natural approx-
imation algorithms on smoothed instances. We can thus restrict our attention
to finding criteria that make a functional quantizable.
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Theorem 2. Let F be a family of probability distributions and F be t(�)-time
(R(�), Q)-quantizable with respect to F . Then for every � with � ∈ ω(1) and
� ∈ o(n), there is an approximation algorithm ALG with the following property.
For every f ∈ Fn, the approximation ALG(X) on the instance X drawn from
f is (1 − R(�)

Q )-close to F (X) with high probability. The approximation can be
computed in time O(n + t(�)).

For all problems considered here, we also design algorithms whose expected ap-
proximation ratio converges to optimality in the sense that both E[ρ] → 1, as
already achieved by the framework algorithm, and E[ρ−1] → 1, the desired guar-
antee for minimization problems, which we ensure using auxiliary algorithms.
A sufficient auxiliary algorithm for F is a linear-time algorithm approximat-
ing F within a constant factor 0 < c < 1. Outputting the better solution of our
framework algorithm and the c-approximation does not increase the order of the
running time, but achieves an approximation ratio of 1 − o(1) with probability
1 − o(1) due to the previous theorem, yielding E[ρ] → 1, and still provides a
constant approximation ratio on the remaining instances sampled with proba-
bility o(1). Thus, additionally E[ρ−1] ≤ (1 − o(1)) 1

1−o(1) + o(1)c−1 → 1 holds.
We respresent multisets of points either as X ′ = ((X ′

1, n1), . . . , (X ′
�, n�)) ∈

([0, 1]d × N)� or expand this canonically to a tuple X ′ ∈ ([0, 1]d)∗. By T :
([0, 1]d × N)∗ → ([0, 1]d)∗ we denote the transformation that maps the former
representation to the latter.

4 Grid Quantization

Our first method for verifying quantizability is grid quantization. Here, the idea
is to round the input to the centers of grid cells, where the coarseness of the
grid is chosen according to the desired number of distinct points. This method
works well for functionals that allow for fast optimal computations on their
high-multiplicity version and provide a large objective value on the chosen per-
turbation model.

Theorem 3. (Grid quantization) Let d ≥ 1, Q ∈ R and F be a family of
probability distributions [0, 1]d → R≥0. Let F : ([0, 1]d)∗ → R≥0 be a Euclidean
functional with the following properties.

1. On the quantized input X ′ = ((X ′
1, n1), . . . , (X ′

�, n�)), the value F (T (X ′))

can be computed in time t(�) + O(
∑�

i=1 ni).
2. There is a constant C such that w.h.p., the functional differs by at most Cδn

on all δ-roundings of an instance X drawn from any f ∈ Fn. Formally, for
each δ > 0 we require PrX∼f

[
∀Y ∈ Yδ

X : |F (X) − F (Y )| ≤ Cδn
]
∈ 1− o(1).

3. For each f ∈ Fn, it holds that PrX∼f [F (X) ≥ nQ] ∈ 1 − o(1).

Then F is t(�)-time (O(�−
1
d ), Q)-quantizable with respect to F .

In this section, we apply the framework to two Euclidean maximization problems,
namely maximum matching and maximum TSP. Both problems have already
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been analyzed in the average-case world, see, e.g., an analysis of the Metropolis
algorithm on maximum matching in [28]. We generalize the result of Dyer et
al. [14], who proved the asymptotic optimality of two simple partitioning heuris-
tics for maximum matching and maximum TSP on the uniform distribution in
the unit square. However, in contrast to our approach, their partitioning methods
typically fail if the points are not identically distributed.

4.1 Maximum Matching and Maximum TSP

Let MaxM(X) denote the maximum weight of a matching of the points X ⊆
[0, 1]d, where the weight of a matching M is defined as

∑
{u,v}∈M ‖u− v‖. For

simplicity, we assume that |X | is even. For the more general problem of finding
maximum weighted matchings on general graphs with non-integer weights, the
fastest known algorithm due to Gabow [19] runs in time O(mn + n2 log n).

We aim to apply Theorem 3, for which we only need to check three conditions.
The rounding condition (2) is easily seen to be satisfied by a straight-forward
application of the triangle inequality. The lower bound condition (3) is satisfied
by the following lemma.

Lemma 4. Let f ∈ Fn
φ . Some γ > 0 satisfies Pr

X∼f

[
MaxM(X) < γn

d
√
φ

]
≤ e−Ω(n).

We call the task of computing a functional on quantized inputs quantized version
of the functional. In the case of MaxM, an algorithm for b-matchings from [1]
can be exploited, satisfying condition (1).

Lemma 5. The quantized version of MaxM can be computed in time O(�4 +

�3 logn), where n =
∑�

i=1 ni.

These observations immediately yield the following result.

Theorem 6. MaxM is O(�4)-time (O(1/ d
√
�), Ω(1/ d

√
φ))-quantizable w. r. t. Fφ.

Hence, for 1 ≤ p < 4, there is a O(np)-time probable (1 − O( d
√

φ/np/4))-
approximation to MaxM for instances drawn according to some f ∈ Fn

φ . This is
asymptotically optimal on smoothed instances with φ ∈ o(np/4).

Interestingly, the restriction on φ is independent of the dimension. Note that
only p < 3 is reasonable, since deterministic cubic-time algorithms for exactly
computing MaxM exist. Furthermore, as described in Section 3, an algorithm
with an asymptotically optimal expected approximation ratio can be designed.
E.g., we might utilize a simple greedy linear-time 1

2 -approximation for MaxM [4].
Similar ideas can be applied to the maximum TSP problem. For d ≥ 2, define

MaxTSP(X) as the maximum weight of a Hamiltonian cycle on X ⊆ [0, 1]d,
where the weight of a Hamiltonian cycle C is defined as

∑
{u,v}∈C ‖u− v‖. The

problem is NP-hard (proven for d ≥ 3 in [7], conjectured for d = 2,) but admits
a PTAS, cf. [8,7]. According to [16], these algorithms are not practical. They
stress the need for (nearly) linear-time algorithms.
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Theorem 7. Let 1 ≤ p ≤ 4d/(d+ 1) and f ∈ Fn
φ . On instances drawn from f ,

there is a O(np)-time computable probable (1−O( d
√

φ/np/4))-approximation for
MaxTSP. This is asymptotically optimal for φ ∈ o(np/4).

Since MaxM is a 1
2 -approximation to MaxTSP, the greedy linear-time com-

putable 1
2 -approximation to MaxM is a 1

4 -approximation to MaxTSP and thus
provides an adapted algorithm with asymptotically optimal expected approxi-
mation ratio for φ ∈ o(np/4).

5 Balanced Quantization

Grid quantization proves useful for problems in which algorithms solving the
high-multiplicity version are available. To solve even more problems, this sec-
tion establishes a more careful quantization step yielding balanced instances,
i.e., instances in which each of the distinct points occurs the same number of
times. This has direct applications to k-means clustering and similar problems.
In general, this method can be applied to problems in which the objective scales
controllably when duplicating all points.

Theorem 8. Let � : N → N with � ∈ ω(1) and � ∈ o(n). There is a function
�′ : N → N such that for each n ∈ N and X = (X1, . . . , Xn) ∈ [0, 1]dn, we can
find, in linear time, a family of �′(n) cells, i.e., collections of points C1, . . . , C�′(n)
with the following properties.

1. �′(n)
�(n) → 1 (we obtain � cells asymptotically),

2. |Ci| = |Cj | for all 1 ≤ i, j ≤ �′(n) (all cells are of equal size),
3. n−

∑�′(n)
i=1 |Ci| ∈ O( n

�1/(d+1) ) (almost all points are covered),
4. diam(Ci) ∈ O( 1

�1/(d+1) ) (each element in a cell represents this cell well).

For some problems, an instance in which every distinct point occurs equally
often can be reduced to its distinct points only. In the following, we exploit this
property by applying the previous theorem to k-means clustering. The method
also allows for improving the results on maximum matching and maximum TSP.
We defer the details of this to a full version of this article.

5.1 K-Means Clustering

Let d ≥ 2 and k ∈ N. We define KMeans(X, k) to be the k-means objective on
the points X where k is the desired number of clusters, i.e.,

KMeans(X, k) = min
C1 ∪̇··· ∪̇Ck=X

k∑
i=1

∑
x∈Ci

‖x− μi‖2 , where μi =
1

|Ci|
∑
x∈Ci

x.

K-Means clustering is an important problem in various areas including ma-
chine learning and data mining. If either k or d is part of the input, it is NP-
hard [13,24]. However, a popular heuristic, the k-means algorithm, usually runs
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fast on real-world instances despite its worst-case exponential running time. This
is substantiated by results proving a polynomial smoothed running time of the
k-means method under Gaussian perturbations [3,2]. In terms of solution quality,
however, such a heuristic can perform poorly.

Consequently, k-means clustering has also received considerable attention con-
cerning the design of fast deterministic approximation schemes. There exist
linear-time asymptotically optimal algorithms, e.g., PTASs with running time
O(nkd+dpoly(k/ε)+2Õ(k/ε)) [17] and O(ndk+2(k/ε)

O(1)

d2nσ) for any σ > 0 [12].
Treating the dimension as a constant as we do, [20] showed how to compute a
(1 + ε)-approximation in time O(n + kk+2ε−(2d+1)k logk+1 n logk 1

ε ). On a side
note, a different perturbation concept has been applied to k-means clusterings
in [5]. They restrict their attention to input instances which, when perturbed,
maintain the same partitioning of the input points in the optimal clustering.

Define the center of mass of a set C as cm(C) := 1
|C|

∑
c∈C c and consider

X ′ = ((X1, n1), . . . , (X�′ , n�′)) = ((cm(C1), |C1|), . . . , (cm(C�′), |C�′ |)), a quan-
tized instance using the cells C1, . . . , C�′ obtained by applying Theorem 8. It
holds that n1 = n2 = · · · = n�′ = w. Let Y = T (X ′) = (Y1, . . . , Yn′), where Yi

is the rounded version of Xi. Note that the number n′ of points in the rounded
instance is potentially smaller than n, since points may be lost in the application
of Theorem 8.

Lemma 9. There is a real Δ with |KMeans(X, k) − KMeans(Y, k)| ≤ Δn
�1/(d+1) .

After establishing that rounding the input does not affect the objective value too
much, the following lemma enables us to reduce the instance size significantly.

Lemma 10. Consider X = ((X1, w), . . . , (X�, w)) and Z = ((X1, 1), . . . ,
(X�, 1)). It holds that KMeans(T (X), k) = wKMeans(T (Z), k).

It is left to give a lower bound on the objective value. Note that for other
minimization functionals like minimum Euclidean matching or TSP, already
the uniform distribution on the unit cube achieves an objective value of only
O(n(d−1)/d) [27], making the framework inapplicable in this case (for a more
detailed discussion, refer to Section 7).

Lemma 11. Let f ∈ Fn
φ and k ∈ o( n

logn ). There exists some constant γ > 0

such that PrX∼f

[
KMeans(X, k) < γn

(kφ)2/d

]
= e−Ω(n).

For solving the smaller instance obtained by quantization, two approaches are
reasonable. The first is to compute an optimal solution in time O(nkd+1) [21]
and results in the following theorem.

Theorem 12. For any k ∈ o(n/ logn), the functional KMeans(X, k) is
O(�kd+1)-time (O(�−1/(d+1)), Ω((kφ)−2/d))-quantizable with respect to Fφ. Con-
sequently, for k ∈ O(log n/ log logn) and 1 ≤ p ≤ kd + 1, there is a O(np)-time

computable probable
(

1 −O

(
(kφ)2/d

n
p

(d+1)(kd+1)

))
-approximation for KMeans(X, k)

on smoothed instances.
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Note that this is asymptotically optimal if φ ∈ o( c
√
n) with c = 2(1 + 1/d)(kd +

1)/p if k ∈ O(1), or more generally, if kφ ∈ o(n
pd

2(d+1)(kd+1) ). Using existing
linear-time approximation schemes, also an asymptotically optimal expected ap-
proximation ratio can be obtained for the same values of φ. Our framework
algorithm applies even for large values of k, e.g., k = logn/ log logn, in which
case known deterministic approximation schemes require superlinear time. How-
ever, for small k, incorporating such an approximation scheme into our algorithm
yields a further improvement of the previous theorem. The details for this second
approach are deferred to a full version of this article.

6 Bin Packing

For X = (X1, . . . , Xn) ∈ [0, 1]dn, define BPd(X) to be the minimum number of
bins of volume one needed to pack all elements. An item X = (x1, . . . , xd) is
treated as a d-dimensional box, where xi is its side length in dimension i. Items
must not be rotated and must be packed such that their interior is disjoint.

In the following, we extend the result of Karger and Onak [22], who gave linear-
time asymptotically optimal approximation algorithms for smoothed instances
with φ ∈ O(1) and for instances with i.i.d. points drawn from a fixed distribution.
These tractability results are highly interesting due to the fact that there is not
even an asymptotic polynomial-time approximation scheme (APTAS) solving
the two-dimensional bin packing problem unless P = NP, cf. [6].

Karger and Onak’s approach appears rather problem-specific, whereas our
solution embeds nicely into our framework. The main difference of our approach
lies in a much simpler rounding routine and analysis, after which we solve the
problem exactly as in their distribution-oblivious algorithm. Note that their
algorithm is supplied with a desired approximation performance ε > 0 and
suceeds with probability of 1 − 2−Ω(n). Although not stated for this case, we
believe that their algorithm may also apply to superconstant choices of φ, at a
cost of decreasing the success probability. We feel that our analysis offers more
insights on the reasons why bin packing is smoothed tractable by putting it into
the context of our general framework.

Consider first the case that d = 1. Unless P = NP, BP1 does not admit a
3
2 -approximation. However, asymptotic polynomial approximation schemes ex-
ist [18], i.e., (1−ε)-approximations on instances with a sufficiently large objective
value. These approximation schemes have an interesting connection to smoothed
analysis due to the following property.

Lemma 13. For f ∈ Fn
φ , there is a γ > 0 with Pr

X∼f

[
BPd(X) < γ n

φd

]
≤ e−Ω(n).

Using this bound on the objective value, we show an example of how to transform
an APTAS into a PTAS on smoothed instances. Plotkin et al. [25] have shown
how to compute, in time O(n log ε−1+ε−6 log6 ε−1), a solution with an objective
value of at most (1 + ε)BP1(X) + O(ε−1 log ε−1). We derive

ρ =
ALG

BP1(X)
≤ (1 + ε) + O

(
ε−1 log ε−1

BP1(X)

)
≤ (1 + ε) + O

(
φε−1 log ε−1

n

)
,
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where the last inequality holds w.h.p. over the perturbation of the input. Setting
ε := logn/nδ with some δ < 1/6 yields a running time of O(n logn) with an
approximation ratio ≤ 1+logn/nδ +O(φ/n1−δ). Consequently, there is a linear-
time asymptotically optimal approximation algorithm on instances smoothed
with φ ∈ o(n1−δ) for any δ > 0. Unfortunately, this approach is not easily
generalizable to d > 1, since already for d = 2, no APTAS exists unless P = NP,
as shown in [6]. Nevertheless, the problem is quantizable in our framework.

We say that a single item X = (x1, . . . , xd) fits in a box B = (b1, . . . , bd) if
xi ≤ bi for all 1 ≤ i ≤ d. In this case, we write X - B, adopting the notation of
[22]. Regarding an item as a box as well, this relation is transitive and any feasible
packing containing Y induces a feasible packing by replacing Y with X . Thus,
bin packing admits the monotonicity property that for each X = (X1, . . . , Xn)
and Y = (Y1, . . . , Yn) with Xi - Yi, it holds that BPd(X) ≤ BPd(Y ).

To apply the quantization framework, we require a suitable bound on the
rounding errors. Unlike for MaxM and MaxTSP, no deterministic bound of nδ is
possible for a δ-rounding: Let the instance X(n) consist of n copies of (12 , . . . ,

1
2 ).

Packing 2d of the items per bin results in zero waste, hence BPd(X(n)) =
n/2d. However, for any δ > 0, the δ-rounding Yn consisting of n copies of
(12 + δ√

d
, . . . , 1

2 + δ√
d
) has an objective value of BPd(Y (n)) = n = 2dBPd(X(n)).

Thus, a smoothed analysis of the rounding error is necessary.

Lemma 14. For f ∈ Fn
φ and t > 0,

Pr
X∼f

[
∀Y ∈ Yt

X : |BPd(X) − BPd(Y )| > 2ntdφ
]
≤ 2 exp(−2n(dtφ)2).

Note that this probability tends to zero if t ∈ ω( 1
φ
√
n

). Since grid quantization
rounds the points to � distincts points by moving each item by at most t =√
d�−d, the requirement � ∈ o(n) even implies that t ∈ ω( 1√

n
) for d ≥ 2.

Solving the high-multiplicity version of the one-dimensional case has been a
key ingredient in approximation schemes for this problem since the first APTAS
by [18]. The following lemma from [22] solves the multi-dimensional case.

Lemma 15. Let X ′ = ((X1, n1), . . . , (X�, n�)) be a quantized input with Xi ∈
[δ, 1]d. Then BPd(T (X ′)) can be computed in time O(f(�, δ)polylog(n)) where
n :=

∑�
i=1 ni, f(�, δ) is independent of n and f(�, 1/ d√�) ∈ 2�

O(�)

.

Observe that each coordinate of the quantized points obtained by grid quantiza-
tion is at least 1/(2 d

√
�), since these points are the centroids of cubic cells of side

length 1/ d
√
�. Hence, applying a slightly stronger form of the grid quantization

theorem yields the following result using Lemmas 13, 14 and 15.

Theorem 16. For d ≥ 2, BPd is O(2�
O(�)

)-time (O( φ
d√
�
), Ω( 1

φd ))-quantizable
w.r.t. Fφ.

Consequently, there is a linear-time probable (1−O(φd+1/
d

√
log logn/ log(3) n))-

approximation. Hence, BPd can be computed asymptotically exactly in time
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O(n) if φ ∈ o(
d(d+1)

√
log logn/ log(3) n). Here, allowing superlinear time has no

effect on the admissible adversarial power. Furthermore, since BPd can be triv-
ially approximated by a factor of n and the success probability of our algorithm
is of order 1 − exp(−Ω(n1−ε)), asymptotically optimal expected approximation
ratios can be obtained for the same values of φ.

7 Concluding Remarks

Generalizing previous rounding-based approaches, we demonstrate that the gen-
eral solution technique of quantization performs well on Euclidean optimization
problems in the setting of smoothed analysis. We are optimistic that our frame-
work can also be applied to disk covering and scheduling problems.

Note that our approach is orthogonal to the framework for smooth and near-
additive Euclidean functionals due to Bläser et al. [10]: A smooth Euclidean
functional F on n points can be bounded by O(n1−1/d) by definition of smooth-
ness. Hence, it can never compensate for the rounding error of at least Ω(�−1/d)
per point that our quantization methods induce, as quantization is only reason-
able for � ≤ n and consequently, the total rounding error amounts to Ω(n1−1/d).
Conversely, if a functional is large enough to compensate for rounding errors in-
duced by quantization, it cannot be smooth. Thus, for any Euclidean functional,
at most one of both frameworks is applicable.
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Abstract. Kernelization is a strong and widely-applied technique in
parameterized complexity. In a nutshell, a kernelization algorithm for a
parameterized problem transforms a given instance of the problem into
an equivalent instance whose size depends solely on the parameter. Re-
cent years have seen major advances in the study of both upper and lower
bound techniques for kernelization, and by now this area has become one
of the major research threads in parameterized complexity.

We consider kernelization for problems on d-degenerate graphs, i.e.
graphs such that any subgraph contains a vertex of degree at most d.
This graph class generalizes many classes of graphs for which effective
kernelization is known to exist, e.g. planar graphs, H-minor free graphs,
H-topological minor free graphs. We show that for several natural prob-
lems on d-degenerate graphs the best known kernelization upper bounds
are essentially tight. In particular, using intricate constructions of weak
compositions, we prove that unless NP⊆ coNP/poly:

– Dominating Set has no kernels of size O(k(d−1)(d−3)−ε) for any

ε > 0. The current best upper bound is O(k(d+1)2).

– Independent Dominating Set has no kernels of size O(kd−4−ε)
for any ε > 0. The current best upper bound is O(kd+1).

– Induced Matching has no kernels of size O(kd−3−ε) for any ε > 0.
The current best upper bound is O(kd).

We also give simple kernels for Connected Vertex Cover and Ca-

pacitated Vertex Cover of size O(kd) and O(kd+1) respectively. Both
these problems do not have kernels of size O(kd−1−ε) unless coNP/poly.

In this extended abstract we will focus on the lower bound for
Dominating Set, which we feel is the central result of our study. The
proofs of the other results can be found in the full version of the paper.
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1 Introduction

Parameterized complexity is a two-dimensional refinement of classical complexity
theory introduced by Downey and Fellows [14] where one takes into account not
only the total input length n, but also other aspects of the problem quantified
in a numerical parameter k ∈ N. The main goal of the field is to determine
which problems have algorithms whose exponential running time is confined
strictly to the parameter. In this way, algorithms running in f(k) · nO(1) time
for some computable function f() are considered feasible, and parameterized
problems that admit feasible algorithms are said to be fixed-parameter tractable.
This notion has proven extremely useful in identifying tractable instances for
generally hard problems, and in explaining why some theoretically hard problems
are solved routinely in practice.

A closely related notion to fixed-parameter tractability is that of kernel-
ization. A kernelization algorithm (or kernel) for a parameterized problem
L ⊆ {0, 1}∗ × N is a polynomial time algorithm that transforms a given in-
stance (x, k) to an instance (x′, k′) such that: (i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L,
and (ii) |x′| + k′ ≤ f(k) for some computable function f . In other words, a
kernelization algorithm is a polynomial-time reduction from a problem to itself
that shrinks the problem instance to an instance with size depending only on the
parameter. Appropriately, the function f above is called the size of the kernel.

Kernelization is a notion that was developed in parameterized complexity,
but it is also useful in other areas of computer science such as cryptography [21]
and approximation algorithms [27]. In parameterized complexity, not only is
it one of the most successful techniques for showing positive results, it also
provides an equivalent way of defining fixed-parameter tractability: A decidable
parameterized problem is solvable in f(k) · nO(1) time iff it has a kernel [6].
From a practical point of view, compression algorithms often lead to efficient
preprocessing rules which can significantly simplify real life instances [16,19]. For
these reasons, the study of kernelization is one of the leading research frontiers
in parameterized complexity. This research endeavor has been fueled by recent
tools for showing lower bounds on kernel sizes [2,4,5,7,10,11,13,22,26] which rely
on the standard complexity-theoretic assumption of coNP� NP/poly.

Since a parameterized problem is fixed-parameter tractable iff it is kerneliz-
able, it is natural to ask which fixed-parameter problems admit kernels of reason-
ably small size. In recent years there have been significant advances in this area.
One particularly prominent line of research in this context is the development of
meta-kernelization algorithms for problems on sparse graphs. Such algorithms
typically provide compressions of either linear or quadratic size to a wide range
of problems at once, by identifying certain generic problem properties that allow
for good compressions. The first work in this line of research is due to Guo and
Niedermeier [20], which extended the ideas used in the classical linear kernel for
Dominating Set in planar graphs [1] to linear kernels for several other planar
graph problems. This result was subsumed by the seminal paper of Bodlaender
et al. [3], which provided meta-kernelization algorithms for problems on graphs
of bounded genus, a generalization of planar graphs. Later Fomin et al. [17]
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Table 1. Lower and upper bounds for kernel sizes for problems in d-degenerate graphs.
Only the exponent of the polynomial in k is given. Results without a citation are
obtained in this paper.

Lower Bound Upper Bound

Dominating Set (d− 3)(d− 1) − ε (d+ 1)2 [28]

Independent Dominating Set d− 4− ε d+ 1 [28]

Induced Matching d− 3− ε d [15,23]

Connected Vertex Cover d− 1− ε [9] d

Capacitated Vertex Cover d− ε d+ 1

provided a meta-kernel for problems on H-minor free graphs which include all
bounded genus graphs. Finally, a recent manuscript by Langer et al. [25] pro-
vides a meta-kernelization algorithm for problems on H-topological-minor free
graphs. All meta-kernelizations above have either linear or quadratic size.

How far can these meta-kernelization results be extended? A natural class
of sparse graphs which generalizes all graph classes handled by the meta-
kernelizations discussed above is the class of d-degenerate graphs. A graph is
called d-degenerate if each of its subgraphs has a vertex of degree at most d.
This is equivalent to requiring that the vertices of the graph can be linearly
ordered such that each vertex has at most d neighbors to its right in this or-
dering. For example, any planar graph is 5-degenerate, and for any H-minor
(resp. H-topological-minor) free graph class there exists a constant d(H) such
that all graphs in this class are d(H)-degenerate (see e.g. [12]). Note that the
Independent Set problem has a trivial linear kernel in d-degenerate graphs,
which gives some hope that a meta-kernelization result yielding small degree
polynomial kernels might be attainable for this graph class.

Arguably the most important kernelization result in d-degenerate graphs is
due to Philip et al. [28] who showed a O(k(d+1)2) size kernel for Dominating

Set, and an O(kd+1) size kernel for Independent Dominating Set. Erman
et al. [15] and Kanj et al. [23] independently gave a O(kd) kernel for the In-

duced Matching problem, while Cygan et al. [9] showed a O(kd+1) kernel for
Connected Vertex Cover. While all these results give polynomial kernels,
the exponent of the polynomial depends on d, leaving open the question of ker-
nels of polynomial size with a fixed constant degree. This question was answered
negatively for ConVC in [9] using the standard reduction from d-Set Cover.
It is also shown in [9] that other problems such as Connected Dominating

Set and Connected Feedback Vertex Set do not admit a kernel of any
polynomial size unless coNP⊆ NP/poly. Furthermore, the results in [10,22] can
be easily used to exclude a O(kd−ε)-size kernel for Dominating Set, for some
small positive constant ε.

In the full version of the paper we show that all remaining kernelization upper
bounds for d-degenerate graphs mentioned above have matching lower bounds
up to some small additive constant; see Table 1 for details. Perhaps the most
surprising result we obtain is the exclusion of O(k(d−3)(d−1)−ε) size kernels for
Dominating Set for any ε > 0, under the assumption of coNP � NP/poly. This
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result is obtained by an intricate application of weak compositions which were
introduced by [11], and further applied in [10,22]. What makes this result sur-
prising is that it implies that Independent Dominating Set is fundamentally
easier than Dominating Set in d-degenerate graphs.

In the current extend abstract we focus on the lower bound obtained for
Dominating Set, since we feel it is the most interesting and most technically
challenging result we obtain. Following a brief overview of the lower bound ma-
chinery that we will use for our result, including the definition of

2 Kernelization Lower Bounds

In the following section we quickly review the main tool that we will be using for
showing our kernelization lower bounds, namely compositions. A composition
algorithm is typically a transformation from a classical NP-hard problem L1 to
a parameterized problem L2. It takes as input a sequence of T instances of L1,
each of size n, and outputs in polynomial time an instance of L2 such that (i)
the output is a YES-instance iff one of the inputs is a YES-instance, and (ii)
the parameter of the output is polynomially bounded by n and has only “small”
dependency on T . Thus, a composition may intuitively be thought of as an “OR-
gate” with a guarantee bound on the parameter of the output. More formally,
for an integer d ≥ 1, a weak d-composition is defined as follows:

Definition 1 (weak d-composition). Let d ≥ 1 be an integer constant, let
L1 ⊆ {0, 1}∗ be a classical (non-parameterized) problem, and let L2 ⊆ {0, 1}∗×N
be a parameterized problem. A weak d-composition from L1 to L2 is a polynomial
time algorithm that on input x1, . . . , xtd ∈ {0, 1}n outputs an instance (y, k′) ∈
{0, 1}∗ × N such that:

– (y, k′) ∈ L2 ⇐⇒ xi ∈ L1 for some i, and
– k′ ≤ t · nO(1).

The connection between compositions and kernelization lower bounds was
discovered by [2] using ideas from [21] and a complexity theoretic lemma of [18].
The following particular connection was first observed in [11].

Lemma 1 ([11]). Let d ≥ 1 be an integer, let L1 ⊆ {0, 1}∗ be a classical NP-
hard problem, and let L2 ⊆ {0, 1}∗ × N be a parameterized problem. A weak-d-
composition from L1 to L2 implies that L2 has no kernel of size O(kd−ε) for any
ε > 0, unless coNP ⊆ NP/poly.

Remark 1. Lemma 1 also holds for compressions, a stronger notion of kerneliza-
tion, in which the reduction is not necessarily from the problem to itself, but
rather from the problem to some arbitrary set.

3 Construction Overview

We next briefly sketch the main ideas behind our lower bound construction for
Dominating Set. The general idea and framework that we use was introduced
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in [13], and further developed in [22]. For convenience purposes, we will show a
lower bound for essentially equivalent Red Blue Dominating Set problem (d-
RBDS). In this problem we are given a parameter k and a n-vertex d-degenerate
graph which is properly colored by two colors, red and blue, and the question
is whether there are k red vertices which dominate all the blue vertices in the
graph. Our goal is show how to compose any T ≈ td instances I1, . . . , IT of some
NP-hard problem – each with the same size n – into a single instance I of RBDS

which is (i) a YES-instance iff one of the T input instances is a YES-instance,
and (ii) has parameter at most t · nO(1).

As our starting problem we use the NP-hard Multicolored Perfect

Matching problem: Given an undirected graph G with an even number of
vertices n, together with a color function that assigns one of n/2 colors to the
edges of the graph, determine whether G has a perfect matching where all edges
have distinct colors. This problem easily reduces to RBDS by constructing a
red vertex for each edge in G, and a blue vertex for each vertex and each edge-
color, and then connecting each red vertex representing an edge to the blue
vertices representing its endpoints and color. Clearly, the graph obtained by this
construction is 3-degenerate.

So we want to compose a sequence I1, . . . , IT of MPM instances into a single
instance of RBDS. As the first step, we transform each instance Ii to an instance
I ′i of RBDS almost as described above. The difference is that we do not create
blue vertices for edge colors, but we store the color of an edge that a given red
vertex represents to use that information later on. Now the “bipartiteness” of
RBDS allows for an easy start in our construction. To obtain a single RBDS

instance from I ′1, . . . , I
′
T , we identify the T sets of blue vertices in each instance

into a single set. This can easily be done as all instances I ′i have the same number
of blue vertices (since all instances Ii had the same number of edges and edge-
colors). We then take the disjoint union of the T sets of red vertices, and connect
each set to the identified set of blue vertices in the natural way. In this way, we
obtain a single 2-degenerate bipartite graph Hinst for our instance I of RBDS.
It is easy to see that if one of the instances I ′i has a solution of at most k red
vertices these same red vertices form a solution in Hinst. The problem is that I
can have a solution of size k even if all instances I1, . . . IT are NO-instances, since
a solution in I can be composed of red vertices from more than one instance in
I1, . . . IT and moreover we do not control the colorfulness aspect of the initial
MPM instances.

Observe that we still have a lot of leeway in the parameter of our output, as we
can afford a solution size of t·nO(1), and also some leeway in the degeneracy of the
output graph. Thus, we circumvent the problem above by adding an enforcement
graph Henf to our construction which is essentially another instance of RBDS

which ensures that vertices corresponding to edges in different instances Ii will
not be selected in any solution of size k′, for some carefully chosen k′ = tnO(1).
This is done by connecting red vertices in Hinst via the edge set Econn to the
blue vertices of Henf in an intricate manner that ensures that the resulting graph
is only (d + 2)-degenerate.
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4 Construction Details

Let us begin recalling the definition of the Dominating Set (DS) problem.
In this problem, we are given an undirected graph G = (V,E) together with an
integer k, and we are asked whether there exists a set S of at most k vertices such
that each vertex of G either belongs to S or has a neighbor in S (i.e. N [S] = V ).
The main result of this section is stated in Theorem 1 below.

Theorem 1. Let d ≥ 4. The Dominating Set problem in d-degenerate graphs
has no kernel of size O(k(d−1)(d−3)−ε) for any constant ε > 0 unless NP ⊆
coNP/poly.

In order to prove Theorem 1, we show a lower bound for a similar problem
called the Red Blue Dominating Set problem (RBDS): Given a bipartite
graph G = (R∪B,E) and an integer k, where R is the set of red vertices and B
is the set of blue vertices, determine whether there exists a set D ⊆ R of at most
k red vertices which dominate all the blue vertices (i.e. N(D) = B). According
to Remark 1, the lemma below shows that focusing on RBDS is sufficient for
proving Theorem 1 above.

Lemma 2. There is a polynomial time algorithm, which given a d-degenerate
instance I = (G = (R∪B,E), k) of RBDS creates a (d+1)-degenerate instance
I ′ = (G′, k′) of DS, such that k′ = k + 1 and I is YES-instance iff I ′ is a
YES-instance.

Proof. As the graph G′ we initially take G = (R ∪ B,E) and then we add two
vertices r, r′ and make r adjacent to all the vertices in R ∪ {r′}. Clearly G′

is (d + 1)-degenerate. Note that if S ⊆ R is a solution in I, then S ∪ {r} is
a dominating set in I ′. In the reverse direction, observe that w.l.o.g. we may
assume that a solution S′ for I ′ contains r and moreover contains no vertex of
B. Therefore I is a YES-instance iff I ′ is a YES-instance. �


We next describe a weak d(d + 2)-composition from Multicolored Per-

fect Matching to RBDS in (d + 2)-degenerate graphs. The Multicolored

Perfect Matching problem (MPM) is as follows: Given an undirected graph
G = (V,E) with even number n of vertices, together with a color function
col : E → {0, . . . , n/2 − 1}, determine whether there exists a perfect match-
ing in G with all the edges having distinct colors. A simple reduction from
3-Dimensional Perfect Matching, which is NP-complete due to Karp [24],
where we encode one coordinate using colors, shows that MPM is NP-complete
when we consider multigraphs. In the full version of the paper we show that
MPM is NP-complete even for simple graphs.

The construction of the weak composition is rather involved (see Fig. 1).
We construct an instance graph Hinst which maps feasible solutions of each
MPM instance into feasible solutions of the RBDS instance. Then we add an
enforcement gadget (Henf , Econn) which prevents partial solutions of two or
more MPM instances to form altogether a solution for the RBDS instance.
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The overall RBDS instance will be denoted by (H, k), where H is the union of
Hinst and Henf along with the edges Econn that connect between these graphs.
The construction of the instance graph is relatively simple, while the enforcement
gadget is rather complex. In the next subsection we describe Henf and its crucial
properties. In the following subsection we describe the rest of the construction,
and prove the claimed lower bound on RBDS (and hence DS). Both Henf and
Hinst contain red and blue nodes. We will use the convention that R and B
denote sets of red and blue nodes, respectively. We will use r and b to indicate
red and blue nodes, respectively. A color is indicated by �.

4.1 The Enforcement Graph

The enforcement graph Henf = (Renf ∪ Benf , Eenf ) is a combination of 3
different gadgets: the encoding gadget, the choice gadget, and the fillin gadget
(see also Fig. 1), i.e. Renf = Rcode ∪ Rfill and Benf = Bcode ∪ Bchoice ∪ Bfill

(Rchoice is empty).

Encoding Gadget: The role of this gadget is to encode the indices of all the
instances by different partial solutions. It consists of nodes Rcode ∪ Bcode, plus
the edges among them. The set Rcode contains one node rδ,λ,γ for all integers
0 ≤ δ < d + 2, 0 ≤ λ < d, and 0 ≤ γ < t. In particular, |Rcode| = (d + 2)dt. The
set Bcode is the union of sets B�

code for each color 0 ≤ � < n/2. In turn, B�
code

contains a node b�a for each integer 0 ≤ a < (dt)d+2. We connect nodes rδ,λ,γ
and b�a iff aδ = λ · t+γ, where (a0, . . . , ad+1) is the expansion of a in base dt, i.e.
a =

∑
0≤δ<d+2 aδ(dt)

δ . There is a subtle reason behind this connection scheme,
which hopefully will be clearer soon. Note that since 0 ≤ γ < t, pairs (λ, γ) are
in one to one correspondence with possible values of digits aδ.

Choice Gadget: The role of the choice gadget is to guarantee the following
choice property: Any feasible solution to the overall RBDS instance (H, k)
contains all nodes Rcode except possibly one node rδ,λ,γδ,λ

for each pair (δ, λ)
(hence at least (d + 2)d(t− 1) nodes of Rcode altogether are taken). Intuitively,
the γδ,λ’s will be used to identify the index of one MPM input instance. In
order to do that, we introduce a set of nodes Bchoice, containing a node bδ,λ,γ1,γ2

for every pair (δ, λ) and for every 0 ≤ γ1 < γ2 < t. We connect bδ,λ,γ1,γ2 to both
rδ,λ,γ1 and rδ,λ,γ2 . It is not hard to see that, in order to dominate Bchoice, it is
necessary and sufficient to select from Rcode a subset of nodes with the choice
property.

Fillin Gadget: We will guarantee that, in any feasible solution, precisely (d +
2)d(t−1) nodes from Rcode are selected. Given that, for each pair (δ, λ), there will
be precisely one node rδ,λ,γδ,λ

which is not included in the solution. Consequently,

as we will prove, for each 0 ≤ � < n/2 in B�
code there will be exactly dd+2

uncovered nodes, namely the nodes b�a = b�(a0,...,ad+1)
such that for each 0 ≤ δ <

d+2 and λt ≤ aδ < (λ+1)t one has aδ = λt+γδ,λ. Ideally, we would like to cover
such nodes by means of red nodes in the instance graph Hinst (to be defined
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later), which encode a feasible solution to some MPM instance. However, the
degeneracy of the overall graph would be too large. The role of the fillin gadget
is to circumvent this problem, by leaving at most d uncovered nodes in each
B�

code. The fillin gadget consists of nodes Rfill ∪Bfill, with some edges incident
to them. The set Rfill is the union of sets R�

fill for each color �. In turn R�
fill

contains one node r�a,j for each 1 ≤ j ≤ dd+2 − d and 0 ≤ a < (dt)d+2. We

connect each r�a,j to b�a. The set Bfill contains one node b�j , for each color � and

for all 1 ≤ j ≤ dd+2 − d. We connect b�j to all nodes {r�a,j : 0 ≤ a < (dt)d+2}.
Observe that, in order to cover Bfill, it is necessary and sufficient to select one
node r�a,j for each � and j. Furthermore, there is a way to do that such that each

selected r�a,j covers one extra node in B�
code w.r.t. selected nodes in Rcode. Note

that we somewhat abuse notation as we denote by b�j vertices of Bfill, while we

use b�a for vertices of Bcode, hence the only distinction is by the variable name.

Lemma 3. For any matrix (γδ,λ)0≤δ<d+2,0≤λ<d of size (d + 2) × d with entries

from {0, . . . , t − 1}, there exists a set R̃enf ⊆ Renf of size k′ := n
2 (dd+2 − d) +

(d + 2)d(t− 1), such that:

• each vertex in Bchoice ∪Bfill has a neighbor in R̃enf , and

• for every 0 ≤ � < n/2 we have B�
code \ N(R̃enf ) = {b�a : 0 ≤ λ < d, a =∑

0≤δ<d+2(λt + γδ,λ)(dt)δ}.

Proof. For each 0 ≤ δ < d + 2 and 0 ≤ λ < d, add to R̃enf the set {rδ,λ,γ :

0 ≤ γ < t, γ 	= γδ,λ} containing t − 1 vertices. Note that by construction R̃enf

dominates the whole set Bchoice. Consider a vertex b�a ∈ B�
code \ N(R̃enf ) and

observe that for each coordinate 0 ≤ δ < d + 2, there are exactly d values that
aδ can have, where (a0, . . . , ad+1) is the (dt)-ary representation of a. Indeed, for
any 0 ≤ δ < d+ 2, we have aδ ∈ Xδ = {λt+γδ,λ : 0 ≤ λ < d}, since otherwise b�a
would be covered by R̃enf due to the δ-th coordinate. Moreover if we consider
any b�(a0,...,ad+1)

∈ B�
code such that aδ ∈ Xδ for 0 ≤ δ < d+ 2, then b�(a0,...,ad+1)

is

not dominated by the vertices added to R̃enf so far.
Next, for each � define M � := {b�a : 0 ≤ λ < d, a =

∑
0≤δ<d+2(λt+ γδ,λ)(dt)δ}

and observe that M � are not dominated R̃enf . For each 0 ≤ � < n/2, let Z� be

the vertices of B�
code not yet covered by R̃enf and for each 1 ≤ j ≤ dd+2 − d

select exactly one distinct vertex vj ∈ Z� \M �, where vj = b�a, and add to R̃enf

the vertex r�a,j . Observe that after this operation R̃enf covers Bfill and moreover

the only vertices of Bcode not covered by R̃enf are the vertices of
⋃

0≤�<n/2 M
�.

Since the total size of R̃enf equals d(d + 2)(t − 1) + n
2 (dd+2 − d), the lemma

follows. �


Lemma 4. Consider an RBDS instance (H = (R∪B,E), k) containing Genf =
(Renf ∪Benf , Eenf ) as an induced subgraph, with Renf ⊆ R and Benf ⊆ B, such
that no vertex of Bchoice∪Bfill has a neighbor outside of Renf . Then any feasible

solution R̃ to (H, k) contains at least k′ := n
2 (dd+2−d)+(d+2)d(t−1) nodes R̃enf
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of Renf . Furthermore, for any feasible solution R̃ to (H, k) containing exactly
k′ vertices of Renf , there exist a matrix (γδ,λ)0≤δ<d+2,0≤λ<d of size (d + 2) × d
with entries from {0, . . . , t− 1}, such that for each 0 ≤ � < n/2:

(a) there are at least d vertices in U � = B�
code \N(R̃ ∩Renf ), and

(b) U � is a subset of the dd+2 nodes b�a = b�(a0,...,ad+1)
such that for each δ ∈

{0, . . . , d + 1} there exists λ ∈ {0, . . . d− 1} with aδ = λt + γδ,λ.

Proof. Let R̃ be any feasible solution to (H, k). Observe that since R̃ dominates
Bchoice, for each 0 ≤ δ < d+2 and 0 ≤ λ < d we have |R̃∩{rδ,λ,γ : 0 ≤ γ < t}| ≥
t− 1. Moreover in order to dominate vertices of Bfill, the set R̃ has to contain

at least n/2(dd+2 − d) vertices of Rfill. Consequently, if R̃ contains exactly k′

vertices of Renf , then for each 0 ≤ δ < d+ 2 and 0 ≤ λ < d, there is exactly one

γδ,λ such that rδ,λ,γδ,λ
/∈ R̃. By the same argument as in the proof of Lemma 3,

we infer that for each �, the set B�
code \ N(R̃ ∩ Rcode) contains exactly dd+2

vertices, and we denote them as U �
0 . Observe that the set R̃ \ Rcode dominates

at most dd+2 − d vertices of U �
0 , for each 0 ≤ � < n/2, which proves properties

(a) and (b) of the lemma. �


4.2 The Overall Graph

The construction of Hinst = (Rinst ∪ Binst, Einst) is rather simple. Let (Gi =
(V,Ei), coli) be the input MPM instances, with 0 ≤ i < T = td(d+2). By stan-
dard padding arguments we may assume that all the graphs Gi are defined over
the same set V of even size n, i.e. Gi = (V,Ei). For each v ∈ V , we create a blue
node bv ∈ Binst. For each ei = {u, v} ∈ Ei, we create a red node re,i ∈ Ri

inst

and connect it to both bu and bv. We let Rinst :=
⋃

0≤i<T Ri
inst. Intuitively,

we desire that a RBDS solution, if any, selects exactly n/2 nodes from one set
Ri

inst, corresponding to edges of different colors, which together dominate all
nodes Binst: This induces a feasible solution to MPM for the i-th instance.

It remains to describe the edges Econn which connect Henf with Hinst. This is
the most delicate part of the entire construction. We map each index i, 0 ≤ i < T ,
into a distinct (d + 2) × d matrix Mi with entries Mi[δ, λ] ∈ {0, . . . , t − 1}, for
all possible values of δ and λ. Consider an instance Gi. We connect re,i to b�a iff
� = coli(ei) and there exists 0 ≤ λ < d such that the expansion (a0, . . . , ad+1) of
a in base dt satisfies aδ = Mi[δ, λ] + λ · t on each coordinate 0 ≤ δ < d + 2. The
final graph H := (R ∪B,E) we construct for our instance RBDS is then given
by R := Rinst ∪Renf and E := Einst ∪ Eenf ∪ Econn. See Fig. 1.

Lemma 5. H is (d + 2)-degenerate.

Proof. Observe that each vertex of
⋃

0≤i<T Ri
inst is of degree exactly d + 2 in

H , so we put all those vertices first to our ordering. Next, we take vertices of
Binst, as those have all neighbors already put into the ordering. Therefore it is
enough to argue about the (d + 2)-degeneracy of the enforcement gadget. We
order vertices of Rfill ∪ Bchoice, since those are of degree exactly two in H .
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Binst

R0
inst Ri

inst RT−1
inst

. . .. . .

Bchoice B�
code

Bfill

bδ,λ,γ1,γ2

rδ,λ,γ1 rδ,λ,γ2 d

d

Rcode R�
fill

bvbu

ruv,i

Fig. 1. Construction of the graph H . For simplicity the figure does not include sets
R�′

fill and B�′
code for �′ �= �.

In H \ Rfill the vertices of Bfill become isolated, so we put them next to our
ordering. We are left with the vertices of the encoding gadget. Observe, that
each blue vertex of the encoding gadget has exactly d + 2 neighbors in Rcode,
one due to each coordinate, hence we put the vertices of Bcode next and finish
the ordering with vertices of Rcode. �


Lemma 6. Let k := (d + 2)d(t − 1) + n/2(dd+2 − d) + n/2 = k′ + n/2. Then
(H, k) is a YES-instance of RBDS iff (Gi, coli) is a YES-instance of MPM for
some i ∈ {0, . . . , T − 1}.

Proof. Let us assume that for some i0 the instance (Gi0 , coli0) is a YES-instance
and E′ ⊆ Ei0 is the corresponding solution. We use Lemma 3 with the matrix
Mi0 assigned to the instance i0 to obtain the set R̃enf of size (d + 2)d(t− 1) +
n
2 (dd+2 − d). As the set R̃ we take R̃enf ∪ {re,i0 : e ∈ E′}. Clearly |R̃| = k.

Since E′ is a perfect matching, R̃ dominates Binst. By Lemma 3, R̃ dominates
Bfill ∪ Bchoice and all but d vertices of each B�

code, so denote those d vertices
by M �. Consider each 0 ≤ � < n/2, and observe that since E′ is multicolored
and by the construction of H , the set of neighbors of re,i0 in Bcode is exactly

M coli0 (e); and hence R̃ is a solution for (H, k).
In the other direction, assume that (H, k) is a YES-instance and let R̃ be a

solution of size at most k. By Lemma 4, the set R̃ contains at least k′ = n
2 (dd+2−

d) + (d + 2)d(t − 1) vertices of Renf and since R̃ needs to dominate also Binst

it contains at least n
2 vertices of

⋃
0≤i<T Ri

inst, since no vertex of H dominates

more than two vertices of Binst. Consequently |
⋃

0≤i<T Ri
inst ∩ R̃| = n/2 and
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|Renf∩R̃| = k′. We use Lemma 4 to obtain a matrix M = (γδ,λ) of size (d+2)×d.
Moreover, by property (a) of Lemma 4, there are at least d vertices in U �, and
consequently for each color � the set R̃ contains exactly one vertex of the set
{re,i : 0 ≤ i < T, coli(e) = �}. Our goal is to show that for each 0 ≤ i < T ,
such that a matrix different than M is assigned to the i-th instance, we have
R̃∩Ri

inf = ∅, which is enough to finish the proof of the lemma. Consider any such
i and assume that the matrices Mi and M differ in the entry Mi[δ

′, λ′] 	= γδ′,λ′ .

Let � be a color such that re,i ∈ R̃ and coli(e) = �. By property (b) of Lemma 4,

the set of at least d vertices of B�
code not dominated by R̃ ∩ Renf is contained

in U �
0 = {b�(a0,...,ad+1)

: ∀0≤δ<d+2 if λt ≤ aδ < (λ + 1)t then aδ = λt + γδ,λ}.

However, by our construction of edges of H between Ri
inst and B�

code, we have
(NH(re,i) ∩ B�

code) 	⊆ U �
0 since the vertex b�(a0,...,aδ+1)

∈ NH(re,i) ∩ B�
code with

aδ = λ′t+ Mi[δ
′, λ′] does not belong to U �

0 and consequently does not belong to
U �, which leaves at least one vertex of B�

code not dominated by R̃; a contradiction.
�
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Labeling Moving Points with a Trade-Off

between Label Speed and Label Overlap

Mark de Berg and Dirk H.P. Gerrits
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Abstract. Traditional map-labeling algorithms ensure that the labels
being placed do not overlap each other, either by omitting labels or
scaling them. This is undesirable in applications where the points to be
labeled are moving. We develop and experimentally evaluate a heuristic
for labeling moving points. Our algorithm labels all the points with labels
of a fixed size, while trying to minimize the number of overlapping labels
and ensuring smoothly moving labels. It allows a trade-off between label
speed and label overlap.

1 Introduction

To do their jobs air-traffic controllers need a real-time visualization of the air-
planes in their designated air space. Similarly, companies may want to track their
fleet of taxis, trucks, or ships, and biologists may want to track wildlife tagged
with GPS devices. A natural visualization for these kinds of applications is to
represent each object as a moving point, and to place a label with each point
that gives information about the object—an identifier, velocity and/or altitude,
and so on. This leads to the dynamic point-labeling problem, which is the topic
of our paper: how can we maintain a suitable labeling of a set of moving points
in the plane?

Dynamic point labeling generalizes static point labeling, a problem in auto-
mated cartography that has attracted much attention; see the online Map La-
beling Bibliography [9]. Here a static set of points (representing cities, say) is
to be labeled (with their names). Such a static labeling should have readable
labels, and an unambiguous association between labels and points. Readability
is typically formalized by regarding the labels as axis-aligned rectangles slightly
larger than the text they contain, and requiring that they be placed so that their
interiors are disjoint. To associate labels with their points one usually requires
each label to be placed so that it contains the point on its boundary. This can
be done in several different ways, for example by requiring that the point is one
of the four corners of the label (the 4-position model), or by allowing the point
to be anywhere on the boundary (the 4-slider model). Other models, such as the
2-position model or the 1-slider model, have been studied as well.

Given a label model, one would like to label all of the points with non-
overlapping labels. Unfortunately, this is not always possible and deciding

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 373–384, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



374 M. de Berg and D.H.P. Gerrits

whether this is the case is strongly NP-complete for most label models [5]. This
led to the investigation of two optimization problems: the size-maximization
problem, which asks for the maximum scaling factor for the labels that al-
lows them to be placed without overlap, and the number-maximization prob-
lem, which asks for a maximum-cardinality subset of the points that allows a
non-overlapping labeling. Results have been obtained for many variants of these
problems.

One way to extend these results to dynamic point labeling would be to re-
compute a static labeling in real time—say 50 times per second. While several
algorithms for static labeling are fast enough for this, and while the quality of
the static solution is very good in practice, it still does not lead to satisfactory
results. Indeed, algorithms for number-maximization would lead to labels ap-
pearing and disappearing between consecutive time steps, which is distracting
for the user—note that heuristics for the dynamic number-maximization prob-
lem (see, for instance, [1,7,8] and their references) suffer from the same problem.
Algorithms for size-maximization would lead to labels changing size (possibly in
a non-continuous manner), which is disturbing as well. In an earlier paper [2],
we therefore studied the free-label maximization problem which asks to label all
points with labels of a given size, while maximizing the number of labels that are
free (that is, interior-disjoint with all other labels). This avoids the downsides
of the size- and number-maximization problems mentioned above. In our earlier
paper we studied the static variant of the free-label maximization problem. In
this paper we turn our attention to the dynamic version of the problem.

Our results. The formal problem setting is as follows. The input is a dynamic
point set P , which specifies for each point p ∈ P the time birth(p) at which
it is added to the point set, the time death(p) at which it is removed, and its
continuous trajectory between those times. For simplicity we assume that the
trajectories are polygonal, although the results can be extended to curved tra-
jectories. We refer to the time interval during which p is present in the point set
as its lifespan and denote it by life(p) = [birth(p), death(p)]. Whenever t ∈ life(p)
we say that p is alive at time t, and then denote its position by p(t). For such a
dynamic point set P we compute a dynamic labeling L, which for all t assigns a
static labeling L(t) to the point set P (t). Here P (t) = {p(t) | p ∈ P, t ∈ life(p)}
denotes the set of points that are alive at time t, at their respective locations.
The label model we use is a slider model, where we require the axis-aligned label
to be “behind” the point (with respect to its direction of movement) at all times.
More precisely, the ray from the point to the center of its label should make an
angle of at least 90◦ with the ray from the point in its direction of movement.
This way, the label placement does not obscure the movement of the points.

Our global approach is simple: we compute a static labeling at regular in-
tervals, and then interpolate between successive static labelings to obtain the
dynamic labeling. For the static labeling we use an algorithm from our previ-
ous paper [2]; the crucial and novel part lies in the interpolation. Our solution
has several attractive properties. Firstly, it is fast. The static labelings can be
computed in O(n log n) time for n points, and interpolating takes time linear in
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the combined complexity of the point trajectories. Secondly, the static labelings
contain many free labels and the interpolation is such that it minimizes both the
maximum speed of the labels as well as their average speed. Thirdly, the user can
vary Δt, the time between successive time steps, to obtain a trade-off between
label speed and label overlap. The trade-off turns out be to be very favorable in
practice: a small sacrifice in label freeness can yield greatly reduced label speeds.
Finally, the algorithm is “semi-online”, in the sense that it only needs to know
the trajectories and the times at which points are added or removed Δt time in
advance.

2 A Heuristic Algorithm

As mentioned above, we propose a dynamic labeling algorithm that computes
a series of static labelings and then moves the labels smoothly from their po-
sitions in one static labeling to their positions in the next. In computing the
static labelings we try to maximize the number of free labels, in computing the
interpolation between labelings we try to minimize the movement speed of the
labels. Thus we hope to achieve a good dynamic labeling according to all criteria
mentioned above. The algorithm can be expressed by the following pseudocode,
where Δt > 0 is the time between successive static labelings, and L(t, t′) refers
to the part of a dynamic labeling L between times t and t′.

Algorithm InterpolativeLabeling(P , tmax)
1. L ← ∅; t ← 0
2. L(t) ← StaticLabeling(P, t)
3. while t < tmax

4. do tnext ← min(t + Δt, tmax)
5. L(tnext) ← StaticLabeling(P, tnext)
6. L(t, tnext) ← Interpolate(L(t), t, L(tnext), tnext)
7. t ← tnext
8. return L

This method has three parameters. Firstly, the size of the time step Δt. Smaller
time steps may lead to a greater number of free labels over time. Larger time
steps may lead to less or slower label movement, and fewer calls to the Static-

Labeling subroutine. Secondly, the algorithm used for StaticLabeling. We
shall use a simple, greedy algorithm called FOURGREEDYSWEEPS, which was
described in an earlier paper [2]. For labels of equal dimensions that can be
placed anywhere around their point it yields a constant-factor approximation to
free-label maximization. The algorithm still works in our setting where labels
may only be placed behind their points, but the proof of its approximation ratio
unfortunately does not. Lastly, the algorithm used for Interpolate. We shall
use the simple, linear-time algorithm described below. It minimizes both the
average and the maximum movement speed of each label.

Interpolation algorithm. We are given two moments in time t1 and t2, and static
labelings L(t1) and L(t2) of the dynamic point set at those times. We then wish
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to compute a dynamic labeling L(t1, t2) which respects them, that is, whose static
labelings at times t1 and t2 equal L(t1) and L(t2). We will do this independently
for each moving point p ∈ P with life(p)∩ [t1, t2] 	= ∅. For the rest of this section,
let p be such a point and let [t′1, t

′
2] = life(p) ∩ [t1, t2].

Recall that the position of a label is restricted in that it must contain the
point it labels on its boundary. Furthermore, the labels must trail “behind” the
points. Specifically, a ray from the point in its direction of movement must make
an angle of at least 90◦ with a ray from the point through its label’s center.
Now suppose we translate the coordinate system so that point p is always at the
origin. The allowed positions for the center of p’s label then trace out part of
the surface of a box in 3-dimensional space-time. We refer to this configuration
space for point p over the interval [t′1, t

′
2] as C. Figure 1(b) shows an example of

such a configuration space for the point trajectory shown in Figure 1(a).
A label trajectory for p corresponds to a path through C, monotone with

respect to the time axis. To compute one, it will be convenient to “unfold” C
into a rectilinear polygon R as in Figure 1(c). If point trajectory p has k vertices,
then R is the union of k − 1 closed, axis-aligned rectangles. The intersection of
any two consecutive rectangles is a vertical line segment which we refer to as
a portal—see Figure 1(c). If a portal’s coordinate along the time axis is t we
refer to it as the portal at t, denoted by Ψ(t). In addition to these k − 2 portals
we define two extra portals at t′1 and t′2. These are simply the sets of label
positions that respect L(t1) and L(t2). If t′1 = t1 then Ψ(t′1) is a single point
representing the label given to p by L(t1). If t′1 	= t1 then L(t1) specifies nothing
about p’s label position at time t′1, and Ψ(t′1) is simply the leftmost edge of R.

(a)

(b)

(c)

y

x

t

y

tx

Fig. 1. (a) A piecewise linear point trajectory (in gray, with dots as vertices) with
given labels (in gray, hatched, centers marked by crosses) at the endpoints. (b) The
corresponding configuration space of allowed label positions. (c) An unfolding of (b)
and a shortest path through it. Portals are shown as dotted line segments.
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Analogously, Ψ(t′2) is either the rightmost edge of R, or a point representing
p’s label in L(t2). With these definitions, a label trajectory for p corresponds
to a time-monotone path through R from portal Ψ(t′1) to portal Ψ(t′2), passing
through all intermediate portals in sequence. We will now argue that the shortest
such path produces the most desirable label trajectory.

Lemma 1. A shortest path from Ψ(t′1) to Ψ(t′2) through R yields a label trajec-
tory minimizing both (i) the average speed and (ii) the maximum speed of p’s
label relative to p.

Proof. (i) Let π be such a shortest path, which must be a t-monotone polygonal
chain. Let T (π) be the summed length of the projections onto the t-axis of the
links of π, and let Y (π) the same quantity for the y-axis. Every t-monotone
path π′ from Ψ(t′1) to Ψ(t′2) must traverse the same distance in the t-direction,
namely T (π′) = T (π) = t′2 − t′1. Since π is the shortest such path, it minimizes
the distance traveled in y-direction, that is, Y (π) � Y (π′) for all π′. Thus π
minimizes the average speed Y (π)/T (π) of p’s label.

(ii) Let ab be a steepest link of π, that is, ab has the maximum absolute
slope among the links of π. Suppose that ab’s projection onto the t-axis is [t′, t′′]
and that ab has negative slope (the case where it has positive slope is similar).
Then π cannot make a left turn at a, as that would make ab less steep than the
link preceding it. So π must either make a right turn at a, or start at a. If π
makes a right turn at a, then a must be the bottom endpoint of portal Ψ(t′),
as we could otherwise shorten π by a downward deformation at a. Since a lies
above b, this makes ab the shortest path not only from a to b, but also from Ψ(t′)
to b. If π instead starts at a, then t′1 = t′, so the same condition holds. Reasoning
symmetrically for b yields that ab must also be the shortest path from a to Ψ(t′′).
We conclude that ab is the shortest path from Ψ(t′) to Ψ(t′′). This implies that
any t-monotone path from Ψ(t′) to Ψ(t′′) must be at least as steep as ab some-
where between t′ and t′′. Thus π minimizes the maximum speed Y (ab)/T (ab)
of p’s label. �

Theorem 1. Suppose we are given a dynamic point set P with n points, along
with static labelings L(t1) and L(t2) of it at times t1 and t2. For each p ∈ P let kp
be the number of vertices in its polygonal trajectory between times t1 and t2. In
O(

∑
p∈P kp) time and O(max{kp | p ∈ P}) space we can then compute a dynamic

labeling L(t1, t2) respecting L(t1) and L(t2), that for each point minimizes both
its average and its maximum label speed.

Proof. Lemma 1 shows that L(t1, t2) can be obtained by computing a shortest
path through the unfolded configuration space for each point. It remains to
show that this can be done in O(kp) time and space for a point p ∈ P with
life(p) ∩ [t1, t2] = [t′1, t

′
2] 	= ∅. As before, let R denote the simple, rectilinear

polygon with O(kp) vertices that is p’s unfolded configuration space. Through R
we seek either a shortest point-to-point path (if life(p) ⊇ [t1, t2]), a shortest edge-
to-edge path (if life(p) ⊂ [t1, t2]), or a shortest point-to-edge path (otherwise).
This can be done in linear time using an algorithm by Lee and Preparata [6],
with some additional techniques by Guibas et al. [4]. �
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Hourglass trimming. In the previous section we described an algorithm to mini-
mize both the average and the maximum speed of all labels in a dynamic labeling
that interpolates between two given static labelings. As the experimental eval-
uation in the next section will show, however, high label speeds can still occur
when a poor choice of static labelings is made. To see why this occurs, consider
the example in Figure 2. Recall that we compute static labelings at regular in-
tervals of Δt time. In the example, point p’s trajectory makes a sharp left turn
at time t + ε for some small ε > 0. The static labeling algorithm completely
disregards this when computing the labeling for time t, and comes up with the
depicted leftmost label position for p. Now whatever labeling is picked for time
t + Δt, the label for p will have to move substantially within ε time units. The
problem here is that the chosen label position is just in the range of positions
considered to be behind the point at time t, but the same position lies quite a
bit in front of the point at time t + ε.

To fix this, we shall restrict the range of label positions that the static labeling
algorithm is allowed to use, based on the trajectories of the points. We will
need some definitions first. Consider a fixed point p, and let R be its unfolded
configuration space. Let π(a, b) denote the shortest path in R from a to b, for any
a, b ∈ R. For a time interval [t′, t′′] in which p is alive, we define the hourglass
H(t′, t′′) as the region enclosed by π(a, c) and π(b, d), where the segments ab
and cd are the intersections of R with the vertical lines at t′ and t′′. Of the two
paths π(a, c) and π(b, d) we call the upper one the hourglass’s upper chain, and
the other its lower chain. If the two chains intersect, then their intersection is
a common subchain called the string. The hourglass is then called closed, and
removal of the string leaves two connected components called funnels. If the
hourglass is not closed, it is called open. Figure 3(a) illustrates these concepts.

Now consider a time instance t ∈ life(p). Let t− = max
(
birth(p), t − Δt

)
, let

t+ = min
(
t + Δt, death(p)

)
, and consider the hourglasses H(t−, t) and H(t, t+).

Whatever label positions are chosen at times t−, t, and t+, the slowest interpo-
lation between them (that is, the shortest path connecting them in R) must stay
within the union of these two hourglasses. If H(t−, t) or H(t, t+) has steep edges,
as in the example of Figure 3, then a fast moving label may result. We shall there-
fore narrow the ranges of valid label positions in such a way that these steep edges
are “trimmed off” the hourglasses. If H(t−, t) is closed, then let F−(t) denote

t t+Δtt−Δt

Fig. 2. An example of the static labeling algorithm making a poor choice with regards
to the dynamic labeling



Labeling Moving Points with a Trade-Off between Speed and Overlap 379

slope +v

slope −v

t+tt−

H(t−,t)=F−(t)=F+(t−)

open hourglass

H(t, t+)

closed hourglass

F+(t)

funnel string

F−(t+)

funnel
R

(a)
(b)

(c)

Fig. 3. (a) An example of an open hourglass (left) and a closed hourglass (right),
the latter consisting of two funnels connected by a string. (b) The same hourglasses
after trimming, shown in white. (c) When necessary (as in this case), the trimmed
hourglasses are modified so that they connect to each other.

the rightmost funnel of H(t−, t), and let F−(t) = H(t−, t) otherwise. Similarly,
let F+(t) denote either H(t, t+) (if open) or its leftmost funnel (if closed). We
assume we are given a parameter v that denotes a speed deemed reasonable for
labels. We now translate a line with slope +v down from positive infinity along
the y-axis until it has become tangent to one of the two chains defining F−(t).
Similarly, we translate a line with slope −v up from negative infinity until it has
become tangent to one of the two chains defining F−(t). These two lines define a
narrower interval on the vertical line at t—see Figure 3(b). If we apply the same
procedure at time t− (using F+(t−)), then the new hourglass H ′(t−, t) between
the two narrowed intervals at t− and t is the trimmed hourglass we are after.
Specifically, the slowest label interpolation through H ′(t−, t) cannot exceed the
speed v, except in two cases. Firstly, this occurs when H ′(t−, t) is closed, and
its string contains an edge steeper than v, as on the right in Figure 3(b). In this
case there is nothing that can be done to avoid exceeding the speed v with p’s
label. Secondly, this occurs when H ′(t−, t) is open, and a bi-tangent of its upper
and lower chain is steeper than v, as on the left in Figure 3(b). In this case it
might be possible to trim the hourglass further, but sometimes this will simply
result in a closed hourglass, making the previous case apply. Hence, we decided
not to trim the hourglass further. Our experiments described in the next section
show that our current method works quite well in practice.

In the same way, we compute the trimmed hourglass H ′(t, t+), using F+(t)
and F−(t+). Typically, the narrowed interval at t that defines H ′(t−, t) will
differ from the narrowed interval at t that defines H ′(t, t+). If they overlap this
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poses no problem, as we may then simply take their intersection. In Figure 3(b),
however, they are disjoint. In that case, there is nothing we can do to avoid high
label speeds on both sides of t. We then take the interval in between the two,
as in Figure 3(c). Note that this can undo some of the trimming, making the
hourglass wider again.

3 Experimental Evaluation

We will now evaluate the effect of varying the time-step parameter Δt on the
quality of the produced labeling, that is, on the number of free labels and on the
speeds at which labels move. Intuitively, one would expect both the number of
free labels and the label speeds to increase as the time step approaches 0. Thus
there should be a trade-off between how many labels are free and how slow the
labels move. Our main goal is to quantify this trade-off experimentally.

Computation time. We have measured the computation time of our C++ imple-
mentation only informally, just to ensure it was fast enough for use in interactive
applications. On the modest hardware used for our experiments (an Intel Q6600
2.40GHz with 3GB RAM running Ubuntu 12.10), Interpolation takes about
0.4 milliseconds to interpolate between two 100-point labelings, and 2.2 millisec-
onds between two 1,000-point labelings. Producing such labelings with FOUR-
GREEDYSWEEPS takes about 5 milliseconds for 100 points, and 189 milliseconds
for 1,000 points. Note that this is with a simple O(n2)-time implementation, even
though a more sophisticated O(n log n)-time implementation is possible [2]. The
latter could no doubt label 1,000 points much more quickly, but such large num-
bers of labels cannot be legibly displayed on a reasonably sized screen anyway.
The extra engineering effort was therefore deemed unnecessary.

Experimental setup. To evaluate the quality of the produced dynamic labelings,
we have used a network of streets in the Dutch city of Eindhoven (see Figure 5).
Moving points were created to move along five polygonal paths through the net-
work, at constant and equal speeds of 35 px/s. The arrival times of the points
on each route were created by a Poisson process with parameter 5 s. This makes
the time between arrivals of successive points on a route an exponentially dis-
tributed random variable with a mean of 5 s. Different seeds for the random
number generator thus create different problem instances. We used 100 differ-
ent seeds to create 100 problem instances. For each problem instance we used
our algorithm to produce dynamic labelings from t = 0 to t = tmax = 60 s for
several different values of the time step Δt. To determine the quality of such
a dynamic labeling L we did not compute the exact intervals of time during
which each label was free. Instead, L was sampled at regular times at a rate of
25.6 samples per second (1537 samples total over 60 seconds). This is roughly
the same framerate as used in movies (24 frames per second), but with the time
between samples changed to have a finite binary floating point representation
(from 1/24 s = 5/120 s to 5/128 s). For each sample we recorded the number
of free and non-free labels, as well as the amount each label moved (relative to
its point) since the last sample. In addition, we recorded the free label area for



Labeling Moving Points with a Trade-Off between Speed and Overlap 381

each sample: the area covered by the union of the labels, minus the area cov-
ered by more than one label. In practice, this might be a more useful measure
to maximize than the number of completely free labels. All of the above was
done for several different time steps, the lowest being Δt = 1/25.6 s ≈ 0, so
that each sample is labeled independently without regard for label speed, and
the highest being Δt = 61 s > 60 s, so that label speeds are minimized without
regard for label freeness. The graphs below offer a summary of the resulting
data. The software used to generate the data and the graphs can be downloaded
from http://dirkgerrits.com/programming/flying-labels/.

Results at a glance. The graphs in Figure 4 provides a high-level overview of
the quality of labelings computed by our algorithm. The top graph shows how
the label speed (measured in pixels per second), averaged over all moving points
and over the whole time interval [0, tmax], decreases as we pick higher and higher
values for Δt. The middle graph shows the same for the fraction of the labels that
are completely free. The bottom graph, lastly, shows the free label area divided
by the total area that would be spanned by the labels if they did not overlap.
Each graph shows the minimum and maximum (dotted lines), 25% and 75%
quantiles (dashed lines), and mean (solid line) over the 100 problem instances.
The red lines show the results of the algorithm without hourglass trimming, the
black lines show the results when hourglass trimming is used with a parameter
of v = 10 px/s. In both cases we see a very sharp decline in label speeds until
around Δt = 2 s, with a more modest corresponding decrease in label freeness.
For higher Δt the decrease in label speeds slows down substantially while the
decrease in label freeness continues. Thus, these preliminary results suggest that
a time step of around 2 seconds should yield good labelings.

Detailed analysis of one instance. The effect of turning hourglass trimming on
is similar to that of increasing the time step: the label speeds and freenesses
both decrease. In this sense it forms an alternative to raising the time step.
Hourglass trimming does something more, however, as can be seen when we
examine a single problem instance in more details. We have selected an instance
with particularly few free labels, but the effect can also be seen in other instances.

In Figure 6, seven graphs show how the label speeds of the individual moving
points develop over time in this problem instance, for seven different values of
Δt. Each of the moving points is drawn as a polyline, showing its speeds at all
time samples. The red lines show the situation when hourglass trimming is not
used. In the case of Δt ≈ 0 almost all labels move rather violently (as was to be
expected). For the other values of Δt, and especially the higher ones, a curious
pattern appears. Label movement tends to be slow overall and decrease when
Δt increases, but there are “spikes” of very high label movement near times
that are a multiple of Δt. This effect is caused by a point changing direction
near a multiple of Δt, as was explained in Section 2. This was our motivation
for introducing hourglass trimming. The black lines show what happens when
hourglass trimming is employed with the parameter v = 10 px/s. The regularly
occurring spikes vanish, leaving label speeds with less variance. Note that the
resulting label speeds do still exceed v, and by quite a bit for smaller time steps.

http://dirkgerrits.com/programming/flying-labels/
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Fig. 4. The effects of varying the time step from Δt ≈ 0 to Δt > 60 s on label
speeds, number of free labels, and free label area, both with (black) and without (red)
hourglass trimming. Shown are the minimum and maximum (dotted lines), 25% and
75% quantiles (dashed lines), and mean (solid line) over the 100 problem instances.
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Fig. 5. The road network used for our experiments, and some labeled points moving
across it along five routes. Blue labels are free, red labels are not.
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4 Conclusion

We developed a heuristic algorithm for free-label maximization on dynamic point
sets, and evaluated it experimentally. The algorithm has been presented with the
assumption that all points move on polygonal trajectories, but could be imple-
mented just as well for curved trajectories. Instead of operating on polygons our
algorithms will then work with curved splinegons. This change can be effected
using techniques due to Garćıa-López and Ramos [3]. Our algorithm works by
computing static labelings with many free labels at regular intervals, and then
interpolating between these static labelings in a way that minimizes both the
average and the maximum label speed. By varying the time between static la-
belings one obtains a trade-off between the number of free labels over time, and
the speeds of the labels. The trade-off seemed favorable in experiments: a small
increase in label speeds can yield a great increase in the number of free labels.

With these preliminary results we have only scratched the surface. From a
theoretical point of view, algorithms with proven approximation ratios are still
sorely lacking for dynamic labeling. From a practical point of view, there is
room for improvement in other directions. While hourglass trimming was a step
in the right direction, our method for choosing static labelings can undoubtedly
be improved further. Testing on real-world data is also needed to get a more
realistic picture of our method’s performance.
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Abstract. We study two standard multi-unit auction formats for allo-
cating multiple units of a single good to multi-demand bidders. The first
one is the Discriminatory Auction, which charges every winner his win-
ning bids. The second is the Uniform Price Auction, which determines a
uniform price to be paid per unit. Variants of both formats find appli-
cations ranging from the allocation of state bonds to investors, to online
sales over the internet. For these formats, we consider two bidding inter-
faces: (i) standard bidding, which is most prevalent in the scientific liter-
ature, and (ii) uniform bidding, which is more popular in practice. In this
work, we evaluate the economic inefficiency of both multi-unit auction
formats for both bidding interfaces, by means of upper and lower bounds
on the Price of Anarchy for pure Nash equilibria and mixed Bayes-Nash
equilibria. Our developments improve significantly upon bounds that
have been obtained recently for submodular valuation functions. Also, for
the first time, we consider bidders with subadditive valuation functions
under these auction formats. Our results signify near-efficiency of these
auctions, which provides further justification for their use in practice.

1 Introduction

We study standard multi-unit auction formats for allocating multiple units of a
single good to multi-demand bidders. Multi-unit auctions are one of the most
widespread and popular tools for selling identical units of a good with a single
auction process. In practice, they have been in use for a long time, one of their
most prominent applications being the auctions offered by the U.S. and U.K.
Treasuries for selling bonds to investors, see e.g., the U.S. treasury report [21].
In more recent years, they are also implemented by various online brokers [17].
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Table 1. Upper bounds on the (Bayesian) economic inefficiency of multi-unit auctions

Valuation Functions
Auction Format

(bidding: standard | uniform)
Discriminatory Auction Uniform Price Auction

Submodular e/(e− 1) 3.1462
Subadditive 2 | 2e/(e− 1) 4 | 6.2924

In the literature, multi-unit auctions have been a subject of study ever since the
seminal work of Vickrey [22] (although the need for such a market enabler was
conceived even earlier, by Friedman, in [8]) and the success of these formats has
led to a resurgence of interest in auction design.

There are three simple Standard Multi-Unit Auction formats that have pre-
vailed and are being implemented; these are the Discriminatory Auction, the
Uniform Price Auction and the Vickrey Multi-Unit Auction. All three formats
share a common allocation rule and bidding interface and have seen extensive
study in auction theory [12,15]. Each bidder under these formats is asked to issue
a sequence of non-increasing marginal bids, one for each additional unit. For an
auction of k units, the k highest marginal bids win, and each grants its issuing
bidder a single unit. The formats differ in the way that payments are determined
for the winning bidders. The Discriminatory Auction prescribes that each bid-
der pays the sum of his winning bids. The Uniform Price Auction charges the
lowest winning or highest losing marginal bid per allocated unit. The Vickrey
auction charges according to an instance of the Clarke payment rule (thus being
a generalization of the well known single-item Second-Price auction).

Except for the Vickrey auction, which is truthful and efficient, the others suf-
fer from a demand reduction effect [1], whereby bidders may have incentives to
understate their value, so as to receive less units at a better price. This effect
is amplified when bidders have non-submodular valuation functions, since the
bidding interface forces them to encode their value within a submodular bid vec-
tor. Even worse, in many practical occasions bidders are asked for a uniform bid
per unit together with an upper bound on the number of desired units. In such
a setting, each bidder is required to “compress” his valuation function into a
bid that scales linearly with the number of units. The mentioned allocation and
pricing rules apply also in this uniform bidding setting, thus yielding different
versions of Discriminatory and Uniform Price Auctions. Despite the volume of
research from the economics community [1,16,6,3,4] and the widespread popu-
larity of these auction formats, the first attempts of quantifying their economic
efficiency are only very recent [14,19]. There has also been no study of these
auction formats for non-submodular valuations, as noted by Milgrom [15].

Our Contributions. We study the inefficiency of the Discriminatory Auction
and Uniform Price Auction under the standard and uniform bidding interfaces.
Our main results are improved inefficiency bounds for bidders with submodu-
lar valuation functions and new bounds for bidders with subadditive valuation
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functions.1 The results are summarized in Table 1. Our bounds indicate that
these auctions are nearly efficient, which, paired with their simplicity, provides
further justification for their use in practice.

Our focus is on the inefficiency of Bayes-Nash equilibria; we refer the reader to
the full version of the paper [11] for a discussion of pure Nash equilibria. For sub-
modular valuation functions, we derive upper bounds of e

e−1 and 3.1462 < 2e
e−1

for the Discriminatory and the Uniform Price Auctions, respectively. These im-
prove upon the previously best known bounds of 2e

e−1 and 4e
e−1 [19]. For the

Uniform Price Auction, our bound is less than a factor 2 away from the known
lower bound of e

e−1 [14]. We also prove lower bounds of e
e−1 and 2 for the Dis-

criminatory Auction and Uniform Price Auction, with respect to the currently
known proof techniques [19,7,5,2,10]. As a consequence, unless the upper bound
of e

e−1 for the Discriminatory Auction is tight, its improvement requires the de-
velopment of novel tools; the same holds for reducing the Uniform Price Auction
upper bound below 2 (if e

e−1 from [14] is indeed worst-case). For subadditive

valuations, we obtain bounds of 2e
e−1 and 6.2924 < 4e

e−1 for Discriminatory and
Uniform Price Auctions respectively, independent of the bidding interface. Fur-
ther, for the standard bidding interface we are able to derive improved bounds
of 2 and 4, respectively, by adapting a recent technique from [7]. We also give
a lower bound of almost 2 for uniform pricing and subadditive valuations. In
Section 4 we discuss further applications of our results in connection with the
smoothness framework of [19]. In particular, some of our bounds carry over to
simultaneous and sequential compositions of such auctions (Table 2).

Related Work. The multi-unit auction formats that we examine here present
technical and conceptual resemblance to the Simultaneous Auctions format that
has received significant attention recently [7,5,2,10,19]. However, upper bounds
in this setting do not carry over to our format. Simultaneous auctions were first
studied by Christodoulou, Kovacs and Schapira [5]. The authors proposed that
each of a collection of distinct goods, with one unit available for each of them,
is sold in a distinct Second Price Auction, simultaneously and independently
of the other goods. Bidders in this setting may have combinatorial valuation
functions over the subsets of goods, but they are forced to bid separately for
each good. For bidders with fractionally subadditive valuation functions, they
proved a tight upper bound of 2 on the mixed Bayesian Price of Anarchy of the
Simultaneous Second Price Auction. Bhawalkar and Roughgarden [2] extended
the study of inefficiency for subadditive bidders and showed an upper bound of
O(logm) which was recently reduced to 4 by Feldman et al. [7]. For arbitrary
valuation functions, Fu, Kleinberg and Lavi [9] proved an upper bound of 2 on
the inefficiency of pure Nash equilibria, when they exist.

Hassidim et al. [10] studied Simultaneous First Price Auctions. They showed
that pure Nash equilibria in this format are always efficient, when they exist.
They proved constant upper bounds on the inefficiency of mixed Nash equilibria
for (fractionally) subadditive valuation functions and O(logm) and O(m) for

1 To the best of our knowledge, for subadditive valuation functions our bounds provide
the first quantification of the inefficiency of these auction formats.
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the inefficiency of mixed Bayes-Nash equilibria for subadditive and arbitrary
valuation functions. Syrgkanis showed in [20] that this format has Bayesian Price
of Anarchy e

e−1 for fractionally subadditive valuation functions. Feldman et al. [7]
proved an upper bound of 2 for subadditive ones.

Recently, Syrgkanis and Tardos [19] and Roughgarden [18] independently de-
veloped extensions of the smoothness technique for games of incomplete informa-
tion. In [19], these ideas are further developed for analyzing the inefficiency of
simultaneous and sequential compositions of simple auction mechanisms. They
demonstrate applications of their techniques on welfare analysis of standard
multi-unit auction formats and their compositions. For submodular valuation
functions, they prove inefficiency upper bounds of 2e

e−1 and 4e
e−1 for the Discrimi-

natory Auction and Uniform Price Auction, respectively. Here, we improve upon
these results, also regarding simultaneous and sequential compositions.

2 Definitions and Preliminaries

We consider auctioning k units of a single good to a set [n] = {1, ..., n} of n
bidders, indexed by i = 1, . . . , n. Every bidder i ∈ [n] has a non-negative non-
decreasing private valuation function vi : ({0} ∪ [k]) �→ /+ over quantities of
units, where vi(0) = 0. We denote by v = (v1, . . . , vn) the valuation function
profile of bidders. We consider in particular (symmetric) submodular and subad-
ditive functions:

Definition 1. A valuation function f : ({0} ∪ [k]) �→ /+ is called:
– submodular iff for every x < y, f(x) − f(x− 1) ≥ f(y) − f(y − 1).
– subadditive iff for every x, y, f(x + y) ≤ f(x) + f(y).

The class of submodular functions is strictly contained in the class of subadditive
ones [13]. For any non-negative non-decreasing function f : ({0}∪ [k]) �→ /+ and
any integers x, y ∈ [k], x < y, the following are known to hold: If f is submodular,
then f(x)/x ≥ f(y)/y. If f is subadditive, then f(x)/x ≥ f(y)/(x + y).

Standard Multi-unit Auctions. The standard format, as described in auction
theory [12,15], prescribes that each bidder i ∈ [n] submits a vector of k non-
negative non-increasing marginal bids bi = (bi(1), . . . , bi(k)) with bi(1) ≥ · · · ≥
bi(k). We will often refer to these simply as bids. In the uniform bidding format,
each bidder i submits only a single bid b̄i along with a quantity qi ≤ k, the
interpretation being that i is willing to pay at most b̄i per unit for up to qi units.

The allocation rule of standard multi-unit auctions grants the issuer of each
of the k highest (marginal) bids a distinct unit per winning bid. The pricing
rule differentiates the formats. Let xi(b) be the number of units won by bidder
i under profile b = (b1, . . . ,bn). We study the following two pricing rules:

(i) Discriminatory Pricing. Every bid-
der i pays for every unit a price equal
to his corresponding winning bid, i.e.,
the utility of i is

uvi
i (b) = vi (xi(b)) −

∑xi(b)
j=1 bi(j).

(ii) Uniform Pricing. Every bid-
der i pays for every unit a price equal
to the highest losing bid p(b), i.e., the
utility of i is

uvi
i (b) = vi (xi(b)) − xi(b)p(b).
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For a bidding profile b, the produced allocation x(b) = (x1(b), x2(b), . . . , xn(b))
has a social welfare equal to the bidders’ total value: SW (v,b) =

∑n
i=1 vi(xi(b)).

The (pure) Price of Anarchy is the worst case ratio, over all pure Nash equilib-
rium profiles b, of the optimal social welfare over SW (v,b).

Incomplete Information. Under the incomplete information model of Harsa-
nyi, the valuation function vi of bidder i is drawn from a finite set Vi according
to a discrete probability distribution πi : Vi → [0, 1] (independently of the other
bidders); we will write vi ∼ πi. The actual drawn valuation function of every
bidder is private. A valuation profile v = (v1, . . . ,vn) ∈ V = ×i∈[n]Vi is drawn
from a publicly known distribution π : V → [0, 1], where π is the product distri-
bution of π1, . . . , πn, i.e., π(v) �→

∏
i∈[n] πi(vi). Every bidder i knows his own

valuation function but does not know the valuation function vi′ drawn by any
other bidder i′ 	= i. Bidder i may only use his knowledge of π to estimate v−i.
Given the publicly known distribution π, the (possibly mixed) strategy of ev-
ery bidder is a function of his own valuation vi, denoted by Bi(vi). Bi maps a
valuation function vi ∈ Vi to a distribution Bi(vi) = Bvi

i , over all possible bid
vectors for i. In this case we will write bi ∼ Bvi

i , for any particular bid vector
bi drawn from this distribution. We also use the notation B

v−i

−i , to refer to the
vector of randomized strategies of bidders other than i, under profile v−i.

A Bayes-Nash equilibrium (BNE) is a strategy profile B = (B1, . . . , Bn) such
that for every bidder i and for every valuation vi, Bi(vi) maximizes the utility
of i in expectation, over the distribution of the other bidders’ valuations w−i

given vi and over the distribution of i’s own and the other bidders’ strategies,
B(vi,w−i), i.e., for every pure strategy ci of i:

Ew−i|vi, b∼B(vi,w−i) [uvi
i (b)] ≥ Ew−i|vi, b−i∼Bw−i [uvi

i (ci,b−i)]

where Ev and Ew−i|vi
denote expectation over the distributions π and π(·|vi).

Fix a valuation profile v ∈ V and consider a (mixed) bidding configuration
Bv under v. The Social Welfare SW (v,Bv) under Bv when the valuations are
v is defined as the expectation over the bidding profiles chosen by the bidders
from their randomized strategies, i.e., SW (v,Bv) = Eb∼Bv [

∑
i vi(xi(b))]. The

expected Social Welfare in Bayes-Nash equilibrium Bv is then Ev∼π[SW (v,Bv)].
The socially optimum assignment under valuation profile v ∈ V will be denoted
by xv. The expected optimum social welfare is then Ev[SW (v,xv)]. Under these
definitions, we will study the Bayesian Price of Anarchy, i.e., the worst case
ratio Ev[SW (v,xv)]/Ev[SW (v,Bv)] over all possible product distributions π
and Bayes-Nash equilibria B for π.2 Similarly to previous works, when analyzing
the Uniform Price Auction we assume no-overbidding, i.e., each bidder never
bids more than his value for every number of units; formally, for every s ∈ [k],∑

j∈[s] bi(j) ≤ vi(s). In our analysis, we will use βj(b) to refer to the j-th lowest

winning bid under profile b; thus β1(b) ≤ · · · ≤ βk(b).

2 As in previous works [5,7], we ensure existence of Bayes-Nash equilibria in our auction
formats by assuming that bidders have bounded and finite strategy spaces, e.g.,
derived through discretization. Our bounds on the auctions’ Bayesian inefficiency
hold for sufficiently fine discretizations (see also Appendix D of [7]).
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Due to space limitations, we omit several proofs from this extended abstract;
all missing proofs can be found in the full version of the paper [11].

3 Bayes-Nash Inefficiency

Our main results concern the inefficiency of Bayes-Nash equilibria (we defer a
discussion of pure Nash equilibria to the full version [11]). We derive bounds on
the (mixed) Bayesian Price of Anarchy for the Discriminatory and the Uniform
Price Auctions with submodular and subadditive valuation functions. For the
latter class our bounds are the first results to appear in the literature of standard
multi-unit auctions (see also the commentary in [15, Chapter 7]).

Theorem 1. The Bayesian Price of Anarchy (under the standard or uniform
bidding format) is at most

(i) e
e−1 and 2e

e−1 for the Discriminatory Auction with submodular and subad-
ditive valuation functions, respectively,

(ii) |W−1(−1/e2)| ≈ 3.1462 < 2e
e−1 and 2|W−1(−1/e2)| ≈ 6.2924 < 4e

e−1 for the
Uniform Price Auction with submodular and subadditive valuation func-
tions, respectively, W−1 being the lower branch of the Lambert W function.

This theorem improves on the currently best known upper bounds of 2e
e−1 and

4e
e−1 for the Discriminatory Auction and the Uniform Price Auction, respectively,
with submodular valuation functions due to Syrgkanis and Tardos [19]. For the
Uniform Price Auction, this further reduces the gap from the known lower bound
of e

e−1 [14].
Syrgkanis and Tardos [19] obtained their bounds through an adaptation of

the smoothness framework for games with incomplete information ([18,20]). The
bounds of Theorem 1 and some additional results can also be obtained through
this framework. We comment on this in more detail in Section 4.

For subadditive valuation functions and the standard bidding format, however,
better bounds can be obtained by adapting a technique recently introduced by
Feldman et al. [7], which does not fall within the smoothness framework. We
were unable to derive these bounds via a smoothness argument and believe that
this is due to the additional flexibility provided by this technique.

Theorem 2. The Bayesian Price of Anarchy is at most 2 and 4 for the Discrim-
inatory Auction and the Uniform Price Auction, respectively, with subadditive
valuation functions under the standard bidding format.

3.1 Proof Template for Bayesian Price of Anarchy

In order to present all our bounds from Theorem 1 and Theorem 2 in a self-
contained and unified manner, we make use of a proof template, formalized in
Theorem 3, below. Adaptations of it have been used in previous works [14,5,2].
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Theorem 3. Let V be a class of valuation functions. Suppose that for every
valuation profile v ∈ V n, for every bidder i ∈ [n], and for every distribution
P−i over non-overbidding profiles b−i, there is a bidding profile b′

i such that the
following inequality holds for some λ > 0 and μ ≥ 0:

Eb−i∼P−i

[
uvi

i (b′
i,b−i)

]
≥ λ · vi(xv

i ) − μ · Eb−i∼P−i

[ xv
i∑

j=1

βj(b−i)

]
. (1)

Then the Bayesian Price of Anarchy is at most
(i) max{1, μ}/λ for the Discriminatory Auction,

(ii) (μ + 1)/λ for the Uniform Price Auction.

In this theorem we make no assumptions regarding the bidding interface;
proving a bound for the uniform bidding interface only requires that we exhibit
a uniform bidding strategy b′

i for each bidder i and for any distribution P−i over
uniform non-overbidding profiles b−i. In Section 3.3 we show that our bound
of e

e−1 for the Discriminatory Auction is best possible, for the proof template
of Theorem 3; this rules out achievement of better bounds via the techniques
in [19,7].

3.2 Key Lemma and Proofs of Theorem 1 and Theorem 2

The following is our key lemma to prove Theorem 1. We point out that it ap-
plies to arbitrary valuation functions and to any multi-unit auction which is
discriminatory price dominated, i.e., the total payment Pi(b) of bidder i under
profile b satisfies Pi(b) ≤

∑
j∈[xi(b)]

bi(j). Note that every multi-unit auction
guaranteeing individual rationality must satisfy this condition.

Lemma 1 (Key Lemma). Let v be a valuation profile and suppose that the
pricing rule is discriminatory price dominated. Define τi = arg minj∈[xv

i ]
vi(j)/j

for every i ∈ [n]. Then for every bidder i ∈ [n] and every bidding profile b−i

there exists a randomized uniform bidding profile b′
i such that for every α > 0

E[uvi

i (b′
i,b−i)] ≥ α

(
1 − 1

e1/α

)
xv
i

vi(τi)

τi
− α

xv
i∑

j=1

βj(b−i). (2)

Proof. Define B = (1 − e−1/α) and let ci be the vector that is vi(τi)/τi on the
first xv

i entries, and is 0 everywhere else. Let t be a random variable drawn from
[0, B] with probability density function f(t) = α/(1 − t). Define the random
deviation of bidder i as b′

i = tci. Note that b′
i is always a uniform bid vector.

Let k∗ be the number of items that bidder i would win in profile (Bci,b−i),
i.e., the number of items won by i, when i would deviate to bid vector Bci. For
j = 0, . . . , k∗, let γj refer to the infimum value in [0, B] such that bidder i would
win j items if he would deviate to bid vector γjci. Note that this definition is
equivalent to defining γj as the least value in [0, B] that satisfies γjvi(τi)/τi =
βj(b−i). For notational convenience, we define γk∗+1 = B.
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Let xi(b
′
i,b−i) be the random variable that denotes the number of units

allocated to bidder i under (b′
i,b−i). It always holds that xi(b

′
i,b−i) ≤ k∗ ≤ xv

i ,
because bidder i bids b′i(j) = 0 for all j = xv

i + 1, . . . , k. More precisely, we have
xi(b

′
i,b−i) = j if t ∈ (γj , γj+1] for j = 0, . . . , k∗. By assumption, the payment of

bidder i under profile (b′
i,b−i) is at most txi(b

′
i,b−i)vi(τi)/τi. Also note that,

by definition of τi, it holds that vi(j) ≥ jvi(τi)/τi for j ≤ xv
i . Using these two

facts, we can bound the expected utility of bidder i as follows:

E[uvi

i (b′
i,b−i)] ≥

k∗∑
j=1

∫ γj+1

γj

(
vi(j) − tj

vi(τi)

τi

)
f(t)dt

≥
k∗∑
j=1

∫ γj+1

γj

j
vi(τi)

τi
(1 − t)f(t)dt = α

k∗∑
j=1

j
vi(τi)

τi

∫ γj+1

γj

1dt

= α
k∗∑
j=1

j
vi(τi)

τi
(γj+1 − γj) = αBk∗

vi(τi)

τi
− α

k∗∑
j=1

γj
vi(τi)

τi

= αBk∗
vi(τi)

τi
− α

k∗∑
j=1

βj(b−i) ≥ αBxv
i

vi(τi)

τi
− α

xv
i∑

j=1

βj(b−i).

The last inequality holds because Bvi(τi)/τi ≤ βj(b−i), for k∗ + 1 ≤ j ≤ xv
i , by

the definition of k∗. The above derivation implies (2). �


The deviation b′
i defined in Lemma 1 is a distribution on uniform bidding

strategies. That is, the lemma applies to both the standard and the uniform
bidding format. Observe also that b′

i satisfies the no-overbidding assumption.

Proof (of Theorem 1). First consider the case of submodular valuation functions.
In this case, τi = xv

i for every i ∈ [n], as explained in Section 2. Using our Key
Lemma, we conclude that Theorem 3 holds for (λ, μ) = (α

(
1 − e−1/α

)
, α). The

stated bounds are obtained by choosing α = 1 for the Discriminatory Auction
and α = −1/(W−1(−1/e2) + 2) ≈ 0.87 for the Uniform Price Auction.

Next consider the case of subadditive valuation functions. The following lemma
shows that subadditive valuation functions can be approximated by uniform
ones, thereby losing at most a factor 2.

Lemma 2. If vi is subadditive, τi = arg minj∈[xv
i ]

vi(j)
j yields vi(τi)

τi
≥ 1

2
vi(x

v
i )

xv
i

.

By combining Lemma 2 with our Key Lemma, it follows that Theorem 3 holds
for (λ, μ) = (α2

(
1 − e−1/α

)
, α). The bounds stated in Theorem 1 are obtained

by the same choices of α as for the submodular valuation functions. �


Next, consider subadditive valuations under the standard bidding format. We
derive improved bounds of 2 and 4 for the Discriminatory and Uniform Price
Auction, respectively. To this end, we adapt an approach recently developed by
Feldman et al. [7] to establish an analog of our Key Lemma. The main idea is to
construct the bid b′

i by using the distribution P−i on the profiles b−i. Theorem 2
then follows from Theorem 3 in combination with Lemma 3 below.



Inefficiency of Standard Multi-unit Auctions 393

Lemma 3. Let V be the class of subadditive valuation functions. Then Theo-
rem 3 holds true with (λ, μ) = (12 , 1) for the Discriminatory and (λ, μ) = (12 , 1)
for the Uniform Price Auction (under the standard bidding format).

3.3 Lower Bounds

A lower bound of approximately e
e−1 for Uniform Price Auctions with submod-

ular bidders was given in [14]; our upper bound is less than a factor 2 away. For
subadditive valuation functions, we prove a lower bound of almost 2:

Theorem 4. The Price of Anarchy is at least 2k
k+1 for the Uniform Price Auc-

tion with subadditive valuations (under the uniform bidding interface).

No lower bound is known for the Discriminatory Auction, although Demand
Reduction (which is responsible for welfare loss in this format) has been observed
previously [12,1]. In light of this, we prove here an impossibility result showing
that for the Discriminatory Auction no bound better than e

e−1 on the Price of
Anarchy can be achieved via the proof template given in Theorem 3. Similarly,
for the Uniform Price Auction we rule out that a bound better than 2 on the
Price of Anarchy can be derived through this template.

Theorem 5. There is a lower bound of e
e−1 and 2 on the Bayesian Price of

Anarchy for the Discriminatory Auction and the Uniform Price Auction, re-
spectively, with submodular valuation functions that can be derived through the
proof template given in Theorem 3.

Theorem 5 rules out the possibility of obtaining better bounds by means of the
smoothness framework of [19], or by means of any approach aiming at identifying
the b′

i required by Theorem 3, including [7]. These are essentially the only known
techniques for obtaining upper bounds on the Bayesian Price of Anarchy. Thus,
any improvement on our upper bound for the Discriminatory Auction must use
either specific properties of the (Bayes-Nash equilibrium) distribution D, or a
completely new approach altogether. The same holds for improvements of the
upper bound for the Uniform Price Auction below 2 – and towards the only
known lower bound of e

e−1 from [14] (should it be worst-case).

4 Smoothness and Its Implications

We elaborate on the connections of our results to the smoothness framework
for auction mechanisms, which has very recently been developed by Syrgkanis
and Tardos [19]. We first review the smoothness definitions introduced in [19]
(adapted to our multi-unit auction setting). As introduced earlier, let Pi(b) refer
to the payment of bidder i under bidding profile b.

Definition 2 ([19]). A mechanism M is (λ, μ)-smooth for λ > 0 and μ ≥ 0 if
for any valuation profile v and for any bidding profile b there exists a randomized
bidding profile b′

i = b′
i(v,bi) for each i such that∑

i∈[n]

E[uvi

i (b′
i,b−i)] ≥ λSW (v,xv) − μ

∑
i∈[n]

Pi(b).
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Table 2. Upper bounds on the Bayesian Price of Anarchy for compositions

Valuation Functions
Discriminatory Auction Uniform Price Auction
Simultaneous Sequential Simultaneous/Sequential

Submodular e/(e− 1) 2e/(e− 1) 3.1462
Subadditive 2e/(e− 1) 4e/(e− 1) 6.2924

In [19] it is shown that if a mechanism is (λ, μ)-smooth, then several re-
sults follow automatically. One such result concerns upper bounds on the Price
of Anarchy. Another result is that the smoothness property is retained under
simultaneous and sequential compositions. In these compositions there are m
mechanisms with separate allocation and payment rules. Every bidder specifies
for each mechanism a bidding profile. In the simultaneous composition, these
profiles are submitted simultaneously, while in the sequential composition, they
are submitted sequentially. A bidder expresses his valuation for the m-tuples
of outcomes of the mechanisms in a restricted way.3 We summarize the main
composition results of Syrgkanis and Tardos [19] in the theorem below.

Theorem 6 (Theorems 4.2, 4.3, 5.1, and 5.2 in [19]).
(i) If M is (λ, μ)-smooth, then the correlated (or mixed Bayesian) Price of

Anarchy of M is at most max{1, μ}/λ.
(ii) If M is a simultaneous (respectively, sequential) composition of m (λ, μ)-

smooth mechanisms, then M is (λ, μ)-smooth (resp., (λ, μ + 1)-smooth).

By exploiting our Key Lemma, we can show that the Discriminatory Auction
is smooth. Theorem 7 in combination with Theorem 6 leads to the composition
results stated in Table 2 (these bounds are achieved for α = 1).

Theorem 7. The Discriminatory Auction is (λ, μ)-smooth (both in the standard
and uniform bidding format) with

(i) (λ, μ) = (α
(
1 − e−1/α

)
, α) for submodular valuation functions, and

(ii) (λ, μ) = (α2
(
1 − e−1/α

)
, α) for subadditive valuation functions.

For auction mechanisms where one needs to impose a no-overbidding assump-
tion, a different smoothness notion is introduced in [19]. Given a mechanism M,
define bidder i’s willingness-to-pay as the maximum payment he could ever pay
conditional to being allocated x units, i.e., Bi(bi, x) = maxb−i:xi(b)=x Pi(b).

Definition 3 ([19]). A mechanism M is weakly (λ, μ1, μ2)-smooth for λ > 0
and μ1, μ2 ≥ 0 if for any valuation profile v and for any bidding profile b there
exists a randomized bidding profile b′

i = b′
i(v,bi) for each bidder i such that∑

i∈[n]

E[uvi

i (b′
i,b−i)] ≥ λSW (v,xv) − μ1

∑
i∈[n]

Pi(b) − μ2

∑
i∈[n]

Bi(bi, xi(b)).

3 More precisely, in the simultaneous composition it is assumed that the valuation
function of each bidder is fractionally subadditive across the m mechanisms (see [19]
for formal definitions). In the sequential composition, the valuation function of each
bidder is defined as the maximum of his valuations over these mechanisms.
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Syrgkanis and Tardos [19] establish the following results.

Theorem 8 (Theorems 7.4, C.4 and C.5 in [19]).
(i) If M is (λ, μ1, μ2)-weakly smooth, then the correlated (or mixed Bayesian)

Price of Anarchy of M is at most (μ2 + max{1, μ1})/λ.
(ii) If M is a simultaneous (resp., sequential) composition of m (λ, μ1, μ2)-

weakly smooth mechanisms, then M is (λ, μ1, μ2)-weakly smooth (resp.,
(λ, μ1 + 1, μ2)-weakly smooth).

Using our Key Lemma, we can show that the Uniform Price Auction is weakly
smooth. As a consequence, we obtain the composition results stated in Table 2
(these bounds are achieved for α = −1/(W−1(−1/e2) + 2) ≈ 0.87).

Theorem 9. The Uniform Price Auction is weakly (λ, μ1, μ2)-smooth (both in
the standard and uniform bidding format) with

(i) (λ, μ1, μ2) = (α
(
1 − e−1/α

)
, 0, α) for submodular valuation functions, and

(ii) (λ, μ1, μ2) = (α2
(
1 − e−1/α

)
, 0, α) for subadditive valuation functions.

Some additional results on mechanisms with budgets (see [19]) can be inferred
from Theorems 7 and 9. We defer further details to the full version of the paper.

5 Conclusions

We derived inefficiency upper bounds in the incomplete information model for
the widely popular Discriminatory and Uniform Price Auctions, when bidders
have submodular or subadditive valuation functions. Notably, our bounds for
subadditive valuation functions already improve upon the ones that were known
for submodular bidders [14,19]. Moreover, for each of the two formats and valu-
ation function classes we considered both the standard bidding interface [12,15]
and a practically motivated uniform bidding interface.

To derive our results, we elaborated on several techniques from the recent lit-
erature on Simultaneous Auctions [19,7,5,2]. By the recent developments of [19],
our bounds for submodular bidders yield improved inefficiency bounds for simul-
taneous and sequential compositions of the considered formats. In absence of an
indicative lower bound in the incomplete information model, we showed that our
upper bound of e

e−1 for the Discriminatory Auction with submodular valuation
functions is best possible, w.r.t. the currently known proof techniques. Addition-
ally, for the Uniform Price Auction (with submodular bidders), we showed that,
proving an upper bound of less than 2, also requires novel techniques; this poses
a particularly challenging problem, given the lower bound of e

e−1 from [14].
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Abstract. In this paper, we consider the problem (denoted as EMDRT)
of minimizing the earth mover’s distance between two sets of weighted
points A and B in a fixed dimensional Rd space under rigid transforma-
tion. EMDRT is an important problem in both theory and applications
and has received considerable attentions in recent years. In this paper,
we present the first FPTAS algorithm for EMDRT. Our algorithm runs
roughly in O((nm)d+2(log nm)2d) time which matches the order of mag-
nitude of the degree of a lower bound for any PTAS of this problem,
where n and m are the sizes of A and B, respectively. Our result is based
on several new techniques, such as the Sequential Orthogonal Decompo-
sition (SOD) and Optimum Guided Base (OGB). Our technique can also
be extended to several related problems, such as the alignment problem,
and achieves FPTAS for each of them.

1 Introduction

In this paper, we study the problem (denoted as EMDRT) of minimizing the
earth mover’s distance between two sets of weighted points A and B (with size
n and m, respectively) in a fixed dimensional Rd space under rigid transfor-
mation. In EMDRT, each point in A and B is associated with a nonnegative
weight, and the objective is to determine the best rigid transformation T for B
so that the earth mover’s distance (EMD) between A and T (B) is minimized,
where EMD is the minimum transportation cost between the two point sets.
EMDRT is an important problem in both theory and applications. In theory, it
generalizes the bipartite matching problem (i.e., from one-to-one matching to
many-to-many matching) and is a powerful model for a number of other match-
ing or partial matching problems. For instance, if all points in A and B have
unit weight, EMDRT becomes a one-to-one matching problem (e.g., the congru-
ent and alignment problem). If all points in A have unit weight and all points
in B have infinity weight, EMDRT becomes a many-to-one matching problem
(i.e., the Hausdorff distance matching problem). In applications, EMDRT has
connections to many EMD based problems in pattern recognition and computer
vision [5, 12], and can be used to solve the challenging alignment problem for
rigid objects and detect the similarity between multi-dimensional point sets.
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A number of results exist for EMDRT and its related problems. Cabello et.
al [7] presented several approximation results in R2 space; particularly, they gave
a (2 + ε)-approximation solution for the 2D EMDRT problem, and a (1 + ε)-
approximation solution for some special cases. Later, Klein and Veltkamp [11]
introduced a few improved results by using reference points, and achieved an
O(2d−1)-approximation for EMDRT in Rd space. Andoni et al. presented several
algorithms for computing EMD (without transformation) [2, 3]. For the one-to-
one and many-to-one matching problems, a number of existing results (mainly on
lower dimensional space) can be found in the survey paper by Alt and Guibas [1].
For the related alignment problem, there is a long and rich history [4, 8–10].

In this paper, we present the first FPTAS algorithm for EMDRT in any fixed
dimensional space. Our result is based on a few new techniques, such as Sequen-
tial Orthogonal Decomposition (SOD) and Optimum-Guided-Base (OGB). SOD
decomposes a rigid transformation into a sequence of primitive operations which
enables us to accurately analyze how the transportation flow changes in a step-
by-step fashion during the whole process of rigid transformation and therefore
have a better estimation on the quality of solution. OGB enables us to use some
information of the unknown optimal solution to select some critical points which
partially define the rigid transformation. We show that although OGB cannot be
explicitly implemented, its result can actually be implicitly obtained. A major
advantage of OGB is that it can help us to significantly reduce the search space.
Consequently, our FPTAS runs in roughly O((nm)d+2(log nm)2d) time, which
is close (i.e., matches the order of magnitude of the degree) to the lower bound
Ω(mnO(d)) (where m ≤ n) for any FPTAS algorithm of EMDRT [6].

Our technique for EMDRT can be extended to several related problems, such
as the problem of minimizing EMD for weighted point sets under similarity trans-
formation (i.e., rigid transformation plus scaling), and the alignment problem,
and achieve an FPTAS for each of them. For the alignment problem, we consider
one-to-one matching and many-to-one matching (Hausdorff distance). Our result
for the Hausdorff distance metric is an FPTAS, while existing results [8, 9] are
only pseudo-polynomial (depending on the spread ratio).

2 Preliminaries

This section introduces several definitions to be used throughout the paper.

Definition 1 (Rigid Transformation). Let P be a set of points in Rd. A
rigid transformation T (P ) of P is a transformation (e.g., rotation, translation,
reflection, or their combinations) preserving the pairwise distances of its points.
After a rigid transformation, the new point set T (P ) is called an image of P .

Definition 2 (Earth Mover’s Distance (EMD)). Let A = {p1, · · · , pn} and
B = {q1, · · · , qm} be two sets of weighted points in Rd with nonnegative weights
αi and βj for each pi ∈ A and qj ∈ B respectively, and WA and WB be their
respective total weights. The earth mover’s distance between A and B is

EMD(A,B) =
minF

∑n
i=1

∑m
j=1 fij ||pi − qj ||

min{WA,WB} , (1)
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where F = {fij} is a feasible flow satisfying the following conditions. (1) fij ≥ 0,
for any 1 ≤ i ≤ n and 1 ≤ j ≤ m; (2)

∑m
j=1 fij ≤ αi for any 1 ≤ i ≤ n; (3)∑n

i=1 fij ≤ βj for any 1 ≤ j ≤ m; (4)
∑n

i=1

∑m
j=1 fij = min{WA,WB}.

Definition 3 (Earth Mover’s Distance Under Rigid Transformation
(EMDRT)). Given two weighted point sets A and B in Rd, the problem of
the earth mover’s distance between A and B under rigid transformation is to
determine a rigid transformation T for B so as to minimize the earth mover’s
distance EMD(A, T (B)).

Orientation and Reflection: For simplicity, we do not consider reflection in
the rigid transformation, as it can be captured by performing our algorithm
twice, one for the original point set and the other for its mirror image.

3 Overview of Our Approach

From Definition 3, we know that our main task for achieving an FPTAS is to
find a good approximation of the optimal rigid transformation Topt for B. In
Lemma 1, we show that this is equivalent to identify d points R (called reference
system) from A and another d sorted points (called base) from B and determine
a rigid transformation T to map points in the base to the neighborhoods of R.

Our approach consists of two main steps: (1) Design a polynomial-approxima-
tion algorithm to compute an upper bound of the optimal objective value, and
(2) use the upper bound to derive an FPTAS. In both steps, directly searching
for T in the rigid transformation space could be very costly. Our idea is to intro-
duce a new technique called Sequential Orthogonal Decomposition (SOD), which
decomposes the rigid transformation into a sequence of d primitive operations
(i.e., a translation and d − 1 one-dimensional rotations). One important prop-
erty of SOD is that its outcome is independent of the initial position of B and
depends only on the choice of R and the base. This enables us to assume that
B is initially located at Topt(B). Another important property of SOD is that it
allows us to analyze, in a step by step fashion, how the transportation flow (e.g.,
bottleneck flow) changes when B changes from Topt(B) to SOD(B). This gives
us an accurate estimation of the quality of solution.

The quality of the rigid transformation T determined by SOD depends on
the reference system R and the base. To find a good R, we first build a grid
in the neighborhood of each point in A and then consider as R all possible
subsets (with cardinality d) of A and its grid points. To find a good base, a
key problem we need to avoid is that a small error in the rotation could cause
some point in B to move a long distance and therefore introduce a large error.
To avoid this problem, we select the base as a set of d ordered points in B
which are as “dispersed” as possible (since other choices cause larger error). We
consider two types of dispersions. Type 1 dispersion is based on the weighted
distance (with weight βj) between each point qj and the flat spanned by all points
appearing before qj in the sorted order of the base (see Algorithm Base-Selection
in Section 5.1). Type 2 dispersion considers not only the weighted distance, but
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also the distance between each qj and all points in A in the optimal solution
(see Optimum-Guided-Base (OGB) in Section 6). We show that although OGB
cannot be explicitly implemented (as it depends on the optimal solution), it
can actually be implicitly obtained. A major advantage of the second type of
dispersion is that it enables us to significantly improve the running time. Note
that since type 2 is modified from type 1, we present both of them for better
understanding of the readers.

4 Sequential Orthogonal Decomposition

To solve the EMDRT problem, we first introduce the sequential orthogonal de-
composition which will be used as a key technique in our algorithms. We start
with the following lemma on rigid structure.

Lemma 1. For any rigid structure in Rd with m ≥ d vertices (or points), its
position is completely fixed if the locations of any d vertices, which are not con-
tained in any (d− 2)-dimensional flat, are fixed.

Sequential Orthogonal Decomposition (SOD). Let P = {p1, p2, · · · , pn}
be a set of points in Rd with n ≥ d, and R = {r1, · · · , rd} be another set
of fixed points (i.e. whose locations will not change) which spans a (d − 1)-
dimensional flat in Rd, called a reference system. Then for any injective mapping
f from {1, · · · , d} to {1, · · · , n}, we define a sequential orthogonal decomposition,
SOD(P,R, f), as follows.

1. In step 1, perform a translation on P such that pf(1) coincides with r1. Let
p1i be pi ∈ P in its new position, and P 1 be the new image of P .

2. In the j-th step for 2 ≤ j ≤ d
(a) Let Hj−1 be the flat spanning {r1, · · · , rj−1}, and p̃j−1

f(j) and r̃j be the

projections of pj−1
f(j) and rj on Hj−1, respectively.

(b) Let Δj be the two dimensional subspace determined by the two vectors,

pj−1
f(j)−p̃j−1

f(j) and rj−r̃j , and Δ⊥
j be the (d−2)-dimensional flat orthogonal

to Δj and containing p̃j−1
f(j).

(c) Perform a one-dimensional rotation T on P j−1 about Δ⊥
j such that the

vector T (pj−1
f(j)) − p̃j−1

f(j) is parallel to the vector rj − r̃j (see Fig. 1).

(d) Let pji denote pi in its new position, and P j denote the new image of P .

We first prove the feasibility of SOD.

Theorem 1 (SOD feasibility). In Step j (2 ≤ j ≤ d) of SOD, there exists a
one-dimensional rotation T on P j−1 about Δ⊥

j such that the vector T (pj−1
f(j)) −

p̃j−1
f(j) is parallel to the vector rj − r̃j .

Next, we study some important properties of SOD.

Lemma 2. Let I(P ) be any image of P (i.e., I(P ) is the new P after a rigid
transformation). Then the output of SOD(P,R, f) and SOD(I(P ), R, f) are the
same.
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T (pj−1
f (j ))

rj

r̃j

pj−1
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Δ⊥
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p̃j−1
f (j )

Fig. 1. Rotation in SOD

qb(1) qb(2)

qb(3)

qj

F3

dist(qj,F3)

Fig. 2. An illustration for Algorithm Base-
Selection (for l = 3)

Lemma 3. For 2 ≤ j ≤ d, ||pjf(j) − pj−1
f(j)|| ≤ 2||pj−1

f(j) − rj ||.

As for the running time of SOD, we know that there are d steps in the process,
and each step involves computing the projection of one point to the correspond-
ing flat, which costs O(d3) time. Thus, we have the following lemma.

Lemma 4. SOD can be performed in O(|P |d4) time.

5 FPTAS for EMDRT

In this section, we present an FPTAS for EMDRT. Our algorithm first applies
SOD to obtain an upper bound on the optimal objective value of EMDRT, and
then use it to determine a proximity region (called grid-ball) for each point in
A containing its possible match in B. By searching a grid in each such grid-ball,
we show that an FPTAS can be attained for EMDRT.

To solve EMDRT, a basic problem is to determine the earth mover’s distance
(EMD) between two sets of fixed points without considering any rigid trans-
formation. In [7], Cabello et al. introduced a (1 + ε)-approximation algorithm
for computing EMD in a plane, and generalized it to any d-dimensional space.
Below is a lemma proved in [7].

Lemma 5 ( [7]). Given two weighted point sets A and B in Rd and a small
ε > 0, there exists an algorithm which outputs a (1 + ε)-approximation of EMD
between A and B in O((n2/ε2(d−1)) log2(n/ε)) time, where n = max{|A|, |B|}.

5.1 Upper Bound

For the upper bound, we notice that although [11] provides an O(2d−1)-approxim-
ate solution, it cannot be used as an upper bound as it assumes that the two
input point sets have equal total weight, which may not be the case in our prob-
lem. To obtain an upper bound for EMDRT, we need the following definition.

Definition 4 (Bottleneck). Let F = {fij} be any feasible flow between A
and B in Definition 2. Then the Bottleneck of F is defined as BN (A,B, F ) =

maxi,j{ fij ||pi−qj ||
min{WA,WB}}.
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From the above definition, we immediately have the following lemma.

Lemma 6. For any feasible flow F between A and B,

1

nm

∑n
i=1

∑m
j=1 fij ||pi − qj ||

min{WA,WB} ≤ BN (A,B, F ) ≤
∑n

i=1

∑m
j=1 fij ||pi − qj ||

min{WA,WB} .

Our main idea for obtaining an upper bound is to first identify a good base
from B, then enumerate all possible subsets of A with cardinality d as the ref-
erence system R, and finally use SOD to obtain a rigid transformation for B.
The criterium for selecting the base is to make them as “dispersed” as possi-
ble, where the dispersiveness is measured by the weighted distance between each
point qj ∈ B and the flat spanned by all determined base points.

Algorithm Upper-Bound-for-EMDRT
Input: Two weighted point sets A = {p1, · · · , pn} and B = {q1, · · · , qm} in Rd

with weight αi ≥ 0 and βj ≥ 0 for pi and qj respectively, and WA ≥ WB.
Output: An upper bound on minT EMD(A, T (B)).

1. Call Base-Selection on B, and let {qb(1), · · · , qb(d)} be the output base.

2. Enumerate all d-point tuples from [A]d = A × · · · × A. For each tuple R =
{pi(1), · · · , pi(d)}, Do

(a) Define the mapping such that f(i(j)) = b(j) for each 1 ≤ j ≤ d.

(b) Emulate the execution of the procedure SOD(B,R, f), and stop at the
final step or at the l-th step if pi(l) locates on the flat span{pi(1), · · · ,
pi(l−1)}. Then compute the (1 + ε)-approximation of EMD between A
and the output the image of B by using the algorithm in Lemma 5.

3. Output the image of B which has the minimum EMD to A among all images
of B corresponding to the tuples of [A]d.

Algorithm Base-Selection
Input: A weighted point set B = {q1, · · · , qm} in Rd with nonnegative weight
βj for each qj .
Output: A base which is an ordered subset {qb(1), · · · , qb(d)} of points in B.

1. Select the point with largest weight from B, and denote it as qb(1). Let l = 1,
and repeat the following steps until l = d.

(a) Let Fl be the flat spanned by {qb(1), · · · , qb(l)}. See Fig. 2

(b) Find the point realizing max{βj · dist(qj ,Fl) | 1 ≤ j ≤ m}, and denote
it as qb(l+1), where dist(qj ,Fl) is the distance between qj and Fl.

(c) Let l = l + 1.

2. Output {qb(1), · · · , qb(d)}.

Theorem 2. The algorithm of Upper-Bound-for-EMDRT yields in O(nd+2(log
n)2md4) time an upper bound T which is a ((1 + ε)nm(n + 1)(2n + 1)d−1)-
approximation of the optimal objective value.
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Let Topt be an optimal rigid transformation (i.e., the one realizing the value
of minT EMD(A, T (B))), and F = {f ij} be the corresponding optimal flow.

Since the algorithm enumerates all d-point tuples in [A]d, we just need to focus
on the tuple {pi(1), · · · , pi(d)} which has f i(j)b(j) = max{f ib(j) | 1 ≤ i ≤ n} for
each 1 ≤ j ≤ d. With a slight abuse of notation, we use R = {pi(1), · · · , pi(d)}
to denote the tuple which satisfies this requirement. Before proving Theorem 2,
we first introduce the following lemma.

Lemma 7. Let I(B) be the final output image of B by SOD(B,R, f) in the
above algorithm. Then BN (A, I(B), F ) ≤ (n+ 1)(2n+ 1)d−1BN (A, Topt(B), F ).

Proof (of Theorem 2). Let Topt = EMD(A, Topt(B)), and T be the objective
value returned by the algorithm. Obviously, Topt ≤ T . By Lemma 6, we know

T ≤ nmBN (A, I(B), F ), (2)

BN (A,Topt(B), F ) ≤ Topt. (3)

By Lemma 7, we immediately have T ≤ nm(n + 1)(2n + 1)d−1Topt. Since the
algorithm in Lemma 5 only yields a (1 + ε)-approximation of EMD, we have an
additional (1 + ε) factor in the approximation ratio.

Running Time: It is easy to see that the Base-Selection algorithm takes O(md4)
time. Since we enumerate all nd tuples in [A]d and each tuple corresponds to a
call to the procedure of SOD which costs O(md4) time (by Lemma 4), the total
running time is thus O(nd+2(logn)2md4) (including the time by the algorithm
in Lemma 5), where the hidden constant depends on ε and d. �


5.2 The FPTAS Algorithm

The upper bound determined in last section enables us to achieve a (1 + ε)-
approximation for EMDRT in the following way. We first draw d balls (called
Grid-Ball) centered at the d points of A respectively, and then build a grid
inside each ball. For each d-grid-point tuple (one from each grid-ball), emulate
the SOD procedure on B. The purpose of using grid points is for determining
more “accurate” rigid transformation for B. To implement this approach, we
need to resolve two major issues: (1) What is the radius of each grid-ball and
(2) what is the density of the grids. Below we discuss our ideas on each of them.

Lemma 8. If WA ≥ WB in EMDRT, then for any 1 ≤ j ≤ m,

min
1≤i≤n

||pi − Topt(qj)|| ≤
nWB

βj
EMD(A, Topt(B)). (4)

Lemma 8 indicates that for each qj , there exists some pi whose grid-ball

contains Topt(qj) if its radius is set to be nWB

βj
EMD(A, Topt(B)). However, since

EMD(A, Topt(B)) is unknown, we can use the upper bound to approximate it.
The following lemma determines the density of the grid.
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Lemma 9. If WA ≥ WB and T is a rigid transformation for B such that for
each 1 ≤ j ≤ m, at least one of the following two conditions hold,

1. ||T (qj) − Topt(qj)|| ≤ cεmin1≤i≤n ||pi − Topt(qj)||;
2. ||T (qj) − Topt(qj)|| ≤ cεWB

mβj
EMD(A, Topt(B)),

where c > 0 is a constant, then EMD(A, T (B)) ≤ (1 + 2cε)EMD(A, Topt(B)).

Algorithm FPTAS-for-EMDRT
Input: Two weighted point sets A = {p1, · · · , pn} and B = {q1, · · · , qm} in Rd

with weight αi ≥ 0 and βj ≥ 0 for pi and qj respectively, and WA ≥ WB; a
small number ε > 0.
Output: A rigid transformation T for B with EMD(A, T (B)) ≤ (1+ε)EMD(A,
Topt(B)).

1. Call Upper-Bound-for-EMDRT in Section 5.1, and let T be the yielded upper
bound. Construct the set Γ = { T

2t | t = 0, 1, · · · , 2d log(max{n,m})}.
2. Call Base-Selection on B in Section 5.1, and let {qb(1), · · · , qb(d)} be the base.

3. Enumerate all d-point tuples from [A]d = A × · · · × A. For each tuple R =
{pi(1), · · · , pi(d)}, do
(a) Call Grid-Construction algorithm, and let {G1, · · · , Gd} be the output.
(b) For each tuple {g1, · · · , gd} ∈ G1 ×G2 × · · · × Gd, emulate SOD on B,

{g1, · · · , gd}, and the mapping f , where f(j) = b(j). Compute the EMD
between A and the output image of B.

4. Output the image of B among all the obtained images which has the mini-
mum EMD to A.

Algorithm Grid-Construction
Input: Γ , {qb(1), · · · , qb(d)} and R = {pi(1), · · · , pi(d)}.
Output: Grids {G1, · · · , Gd}

1. For each 1 ≤ j ≤ d, do:

(a) Build the set of radius candidates {nWB

βb(j)
γ | γ ∈ Γ}.

(b) For each radius candidate r, construct a grid-ball centered at pi(j) and
with radius r, and build a grid inside the ball with grid length rε

8·3dnm
√
d
.

(c) Let Gj denote the union of the grids inside all the grid-balls.
2. Output {G1, · · · , Gd}.

Theorem 3. The above FPTAS-for-EMDRT algorithm yields a (1 + ε)-

approximation for the EMDRT problem in O((nm)O(d2)(
√
d/ε)d

2

3d
3

d4) time.

Sketch for the Proof: From Lemma 8 and 9, we know that for each Topt(qb(j)),
there is one grid point close to it. We denote these d grid points as {g1, · · · , gd}
(see Figure 3). We construct an implicit set of points B′ = {q′1, · · · , q′m} called
‘relayer’, where q′b(j) = gj for 1 ≤ j ≤ d, and q′l = Topt(ql) for any l /∈ {b(j) |
1 ≤ j ≤ d}, and assign each q′l a weight βl. B

′ is used as a bridge to show the
quality of solution from the above algorithm. Particularly, we first prove that
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pi(j)

gj

Topt(qb(j))

Fig. 3. Black points are A, red points are
Topt(B), and green points are grid points

I(qj) q′j

pi

f ′
jj = βj

fij

Fig. 4. An example showing the flow from
I(qj) to pi passing through the q′j

EMD(A,B′) is close to the optimal objective value, since B′ is close to Topt(B).
Then, we show that I(B) is close to B′, where I(B) is the output from the
execution of SOD on B and {g1, · · · , gd}. Finally, we view B′ as the one who
relays all flow from I(B) to A, which implies the EMD(A, I(B)) is also close to
the optimal objective value.

Proof. First, by Theorem 2 and Step 1 of the FPTAS-for-EMDRT algorithm,
we know that there must exist γ0 ∈ Γ such that

EMD(A, Topt(B)) ≤ γ0 ≤ 2EMD(A, Topt(B)). (5)

Since the algorithm enumerates all the d-tuples from [A]d, we can focus on the tu-
ple {pi(1), · · · , pi(d)}, such that ||pi(j)−Topt(qb(j))|| = min1≤i≤n ||pi−Topt(qb(j))||
for each 1 ≤ j ≤ d. We know that if let rj = nWB

βb(j)
γ0 for each 1 ≤ j ≤ d, then

the grid length satisfies the following inequality,

rjε

8 · 3dnm
√
d
≤ εWB

4 · 3dm
√
dβb(j)

EMD(A, Topt(B)). (6)

From Lemma 8, we know that Topt(qb(j)) locates inside the grid-ball centered at
pi(j) and with radius rj . Thus, there exists one grid point gj ∈ Gj such that

||gj − Topt(qb(j))|| ≤ cε
WB

mβb(j)

EMD(A, Topt(B)), (7)

where c = 1/(4 · 3d) (see Figure 3). Now, we construct an implicit point set
B′ = {q′1, · · · , q′m} as the relayer point set, where q′b(j) = gj for 1 ≤ j ≤ d, and

q′l = Topt(ql) for any l /∈ {b(j) | 1 ≤ j ≤ d}, and assign each q′l a weight βl. From
Lemma 9 and inequality (7), we have

EMD(A,B′) ≤ (1 + 2cε)EMD(A, Topt(B)). (8)

This means that EMD(A,B′) is close to the optimal objective value.
Consider executing the SOD procedure on B and {g1, · · · , gd} (i.e., {q′b(1),

· · · , q′b(d)}), and let I(B) be the output image of B. We define the flow F ′ = {f ′
ij}
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from Topt(B) to B′ as f ′
jj = βj for each 1 ≤ j ≤ m and f ′

ij = 0 for all i 	= j.

Note that from (7), we have

BN (Topt(B), B′, F ′) ≤ cε

m
EMD(A, Topt(B)). (9)

Using a similar idea in the proof of Lemma 7, we have

BN (I(B),B′, F ′) ≤ 2 · 3d−1BN (Topt(B),B′, F ′) ≤ ε

2m
EMD(A, Topt(B)). (10)

The only difference from Lemma 7 is that we replace the factor of (n + 1)(2n +
1)d−1 in Lemma 7 by 2 · 3d−1 (due to the difference in the flow F ′).

In the above construction, B′ can be viewed as a point set which relays all
the flow from I(B) to A. More specifically, any flow from I(qj) to pi can be
thought as a flow arriving q′j first, and then flowing to pi (see Figure 4). From
(8), (10), and triangle inequality, we have

EMD(A, I(B)) ≤ EMD(A,B′) +

m∑
j=1

BN (I(B),B′, F ′) ≤ (1 + ε)EMD(A, Topt(B)).

This means that I(B) is the desired image of B which yields a (1+ ε)-approxim-
ation for EMDRT. Since the algorithm enumerates all tuples in [A]d and G1 ×
G2 × · · · ×Gd, I(B) must be one of the output images.

Running Time: The most time consuming step is enumerating all tuples in

G1 × G2 × · · · × Gd. Since each |Gj | = O(d log(max{n,m})(8·3
dnm

√
d

ε )d), the

total running time is O((nm)O(d2)(
√
d/ε)d

2

3d
3

d4) (including the time for SOD).
�


6 FPTAS with Improved Running Time

The FPTAS algorithm given in Section 5.2 can be further improved in its run-
ning time. To achieve this, we notice that the most time-consuming part of the
algorithm is for examining all combinations of the grid points inside the d grid-
balls. To speed up the computation, it is desirable to reduce the size of the
grids. For this purpose, we first observe that the contribution of a point qj ∈ B
to the optimal objective value is

∑n
i=1 fij ||pi−Topt(qj)||/min{WA,WB}, where∑n

i=1 fij can be viewed as the weight βj of qj (by Definition 2) and ||pi−Topt(qj)||
is the distance between pi ∈ A and the position of qj in the optimal solution.
This means that, to avoid the error caused by the rigid transformation, we need
to consider both βj and ||pi − Topt(qj)|| when selecting the base. The Base-
Selection Algorithm in Section 5.1 maximizes the dispersion of the base using
only the weight (i.e., type 1 dispersion; see Section 3). Thus, a better way for
maximizing the dispersion of the base is to consider both factors (i.e., type 2
dispersion). This motivates us to consider the following algorithm.

Algorithm Optimum-Guided-Base (OGB)
Input: A weighted point set B = {q1, · · · , qm} in Rd with weight βj ≥ 0 for qj .
Output: A base which is an ordered subset of points in B.
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1. For each 1 ≤ j ≤ m, define a value vj = max{min1≤i≤n ||pi − Topt(qj)||,
WB

mβj
EMD(A, Topt(B))}.

2. Select the point in B with the minimum vj value, and denote it as qb(1).

3. Set l = 1, and repeat the following steps until l = d.

(a) Let Fl the flat spanning {qb(1), · · · , qb(l)}.

(b) Find the point in B realizing the value of max{ 1
vj
dist(qj ,Fl) | 1 ≤ j ≤

m}, and denote it as qb(l+1), where dist(qj ,Fl) is the distance between
qj and Fl.

(c) Let l = l + 1.

4. Output {qb(1), · · · , qb(d)}.

Note: The above OGB algorithm differs from the Base-Selection algorithm
mainly on the use of vj value for selecting the base. However, since vj depends
on the optimal solution, OGB cannot be directly implemented. To resolve this
issue, we can enumerate all tuples in [B]d, and find the one corresponding to the
output of OGB. Thus, for ease of analysis, we can assume that OGB is available.

With OGB, we can now discuss our improved FPTAS algorithm. Since most
part of the improved algorithm is similar to the original FPTAS algorithm given
in Section 5.2, below we just list the main differences.

1. Replace the Base-Selection algorithm by the OGB algorithm.

2. In the Grid-Construction algorithm, replace the set of radius candidates by

{ nWB

2tβb(j)
γ | γ ∈ Γ, t = 1, 2, · · · , log(nm)} for each 1 ≤ j ≤ d, and change the

grid length to rε

8·3d
√
d
.

Why is the Grid Size Reduced? To see why the above algorithm is an
improved FPTAS, we first analyze the grid size. Similar to the original FP-
TAS, we can build a grid-ball centered at pi(j) and with radius vb(j) (i.e.,

max{min1≤i≤n ||pi−Topt(qb(j)||, WB

mβb(j)
EMD(A, Topt(B))}). With this, we know

that (1) Topt(qb(j)) locates inside the grid-ball of pi(j) and (2) the grid length
can be set as ε√

d
vb(j) (by Lemma 9). Thus, the grid size of each grid-ball is

O((
√
d/ε)d), which is independent of n and m, and thus a significant reduction

on its size. Note that although the exact value of vb(j) is unknown, it is possible
to find a good approximation ( less than 2vb(j) by Lemma 8) from the set of new
radius candidates, which increases the grid size only by a constant factor.

With the above understanding, we can show the following theorem using a
similar argument given in the proof of Theorem 3.

Theorem 4. The improved FPTAS algorithm yields a (1+ε)-approximation for

the EMDRT problem in O((nm)d+2(log(nm))2d(
√
d/ε)d

2

3d
3

d4) time.

Lower Bound on Running Time. Any PTAS for EMDRT has a lower bound
of Ω(mnO(d)) on its running time, where m ≤ n [6]. Since our algorithm takes
roughly O((nm)d+2 (log(nm))2d)-time, it is close to the limit.
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Maximizing a Submodular Function
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Abstract. We study the problem of maximizing a monotone submod-
ular function with viability constraints. This problem originates from
computational biology, where we are given a phylogenetic tree over a set
of species and a directed graph, the so-called food web, encoding via-
bility constraints between these species. These food webs usually have
constant depth. The goal is to select a subset of k species that satisfies
the viability constraints and has maximal phylogenetic diversity. As this
problem is known to be NP-hard, we investigate approximation algo-
rithm. We present the first constant factor approximation algorithm if
the depth is constant. Its approximation ratio is (1− 1√

e
). This algorithm

not only applies to phylogenetic trees with viability constraints but for
arbitrary monotone submodular set functions with viability constraints.
Second, we show that there is no (1− 1/e+ ε)-approximation algorithm
for our problem setting (even for additive functions) and that there is no
approximation algorithm for a slight extension of this setting.

1 Introduction

We consider the problem of maximizing a monotone submodular set function
f over subsets of a ground set X , subject to a restriction on what subsets are
allowed. As discussed below, this problem has been well-studied with constraints
on the allowed sets that are downward-closed; that is, if S is allowed subset, then
so is any S′ ⊂ S. Here we study the problem of maximizing such a function with
a constraint that is not downwards-closed. Specifically, we assume that there
exists a directed acyclic graph D with the elements of X as nodes in the graph
and only consider so-called viable sets of a certain size. A set S is viable if each
element either has no outgoing edges in D or it has a path P to such an element
with P ⊆ S. Such viability constraints are a natural way to model dependencies
between elements, where an element can only contribute to the function if it
appears together with specific other elements.

We are motivated by a problem arising in conservation biology. The problem
is given as a rooted phylogenetic tree T with nonnegative weights on the edges,
where the leaves of the tree represent species, and the weights represent genetic
distance. Given a conservation limit k, we would like to select k species so as

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 409–420, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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to maximize the overall phylogenetic diversity of the set, which is equivalent
to maximizing the weight of the induced subtree on the k selected leaves plus
the root. This problem, known as Noah’s Ark problem [16], can be solved in
polynomial time via a greedy algorithm [3,12,14]. Moulton, Semple, and Steel
[10] introduced a more realistic extension of the problem which takes into account
the dependence of various species upon one another in a food web. In this food
web, an arc is directed from species a towards species b if a’s survival depends
on species b’s. Moulton et al. now consider selecting viable subsets given by the
food web of size k, i.e. a species is viable if also at least one of its successors in
the food web is preserved. Note that in real life the depth of the food web, i.e.,
the longest shortest path between any node in D and the “nearest” node with
no out-edge, is constant (usually no larger than 30). Faller et al. [4] show that
the problem of maximizing phylogenetic diversity with viability constraints is
NP-hard, even in simple special cases with constant depth (e.g. the food web is
a directed tree of constant depth).

Since phylogenetic diversity induces a monotone, submodular function on a
set of species, this problem is a special case of the problem of maximizing a sub-
modular function with viability constraints. There exists a long line of research
on approximately maximizing monotone submodular functions with constraints.
This line of work was initiated by Nemhauser et al. [11] in 1978; they give a
greedy (1− 1

e )-approximation algorithm for maximizing a monotone submodular
function subject to a cardinality constraint. Fisher et al. [6] introduced approx-
imation algorithms for maximizing a monotone submodular function subject to
matroid constraints (in which the set S must be an independent set in a single or
multiple matroids). In recent work other types of constraints have been studied,
as well as nonmonotone submodular functions; see the surveys by Vondrak [15]
and Goundan and Schulz [7].

In our case, the viability constraints are not downwards-closed while most
of the prior work studies downwards-closed constraints. One notable exception,
where not downwards-closed constraints are considered, are matroid base con-
straints [9]. The viability constraint could be extended to be downwards-closed
by simply defining every subset of a viable set to be allowable. But then it would
be NP-hard to test whether a given set satisfies the constraint (this is equivalent
to the acyclic directed Steiner tree problem). Moreover this extension violates
the exchange property of matroids and thus viability constraints also differ from
matroid base constraints. Hence we consider a new type of constraint in sub-
modular function maximization. We show how variants on the standard greedy
algorithm can be used to derive approximation algorithms for maximizing a
monotone, submodular function with viability constraints; thus we show that a
new type of constraint can be handled in submodular function maximization.

Specifically we first present a scheme of (1 − 1
ep/(p+d−1) )/2 - approximation

algorithms for monotone submodular set functions with viability constraints,
where d is the depth of the food web and p is a parameter of the algorithm,
such that the running time is exponential in p but is polynomial for any fixed p.
For instance if we set p = d we achieve a (1− 1√

e
)/2 - approximation algorithm.
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We further present a variant of these algorithms which are (1 − 1
ep/(p+d−1) ) -

approximations, but whose running time is exponential in both d and p. For fixed
d=p this is polynomial and provides an (1− 1√

e
) - approximation algorithm.

Next by a reduction from the maximum coverage problem, we show that there
is no (1−1/e+ε)-approximation algorithm for the phylogenetic diversity problem
with viability constraints (unless P = NP). Finally we consider a generalization
of our problem where we additionally allow AND-constraints such as “species
a is only viable if we preserve both species b and species c” and show that
this generalization has no approximation algorithm (assuming P 	= NP) by a
reduction from 3-SAT.

We define the problem more precisely in Section 2, introduce our algorithms
in Section 3, and give the hardness results in Section 4. All omitted proofs are
available at: http://eprints.cs.univie.ac.at/3736/.

2 Phylogenetic Diversity with Viability Constraints

We first give a formal definition of the problem.

Definition 1. A (rooted) phylogenetic tree T = (T,ET ) is a rooted tree with
root r and each non-leaf node having at least 2 child-nodes together with a weight
function w assigning non-negative integer weights to the edges. Let X denote the
set of leaf nodes of T . For any set A ⊆ X the operator T (A) yields the spanning
tree of the set A ∪ {r}, and by TE(A) we denote the edges of this spanning tree.
Then for any set S ⊆ X the phylogenetic diversity is defined as

PD(S) =
∑

e:e∈TE(S)

w(e)

A food web D for the phylogenetic tree T = (T,ET ) is an acyclic directed graph
(X,E). A set S ⊆ X is called viable if each s ∈ S is either a sink (a node with
out-degree 0) in D or there is a s′ ∈ S such that (s, s′) ∈ E.

Now our problem of interest is defined as follows.

Definition 2. The problem of Optimizing Phylogenetic Diversity with Viability
Constraints (OptPDVC) is defined as follows. You are given a phylogenetic tree
T and a food web D = (X,E), and a positive integer k. Find a viable subset
S ⊆ X of size (at most) k maximizing PD(S).

OptPDVC is known to be NP-hard [4], even for restricted classes of phylogenetic
trees and dependency graphs.

First we study fundamental properties of the function PD.

Definition 3. The set function PD(.|.) : 2X × 2X �→ N0 for each A,B ⊆ X is
defined as PD(A|B) = PD(A ∪B)− PD(B).

The intuitive meaning of PD(A|B) is the gain of diversity we get by adding the
set A to the already selected species B.

http://eprints.cs.univie.ac.at/3736/
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We next recall the definition of submodular set functions.We call a set function
submodular if

∀A,B,C ⊆ Ω : A ⊆ B ⇒ f(A ∪ C)− f(A) ≥ f(B ∪ C)− f(B).

Proposition 1. PD is a non-negative, monotone, and submodular function [2].

Now consider the function PD(.|.). As PD(.) is monotone also PD(.|.) is
monotone in the first argument and because of the submodularity of PD(.) the
function PD(.|.) is anti-monotone in the second argument.

In the remainder of the paper we will not refer to the actual definition of the
functions PD(.), PD(.|.), but only exploit monotonicity, submodularity and the
fact that these functions can be efficiently computed.

Moreover we will consider a function VE (viable extension) which, given a
set of species S, returns a viable set S′ of minimum size containing S. In the
simplest case where S consist of just one species it computes a shortest path to
any sink node in the food web. We define the depth d of a food web (X,E) as

d(X,E) = max
s∈X

|VE({s})|.

If the food web is clear from the context we just write d instead of d(X,E).
Note that the problem remains NP-hard for instances with d = 2, even if PD is
additive [4]. Finally we define the costs of adding a set of species A to a set B

c(A|B) = |VE(B ∪ A)| − |B|.

We will tacitly assume that d ≤ k. Otherwise we can eliminate species s with
c({s}|∅) > k by polynomial time preprocessing, using a shortest path algorithm.

3 Approximation Algorithms

In this section we assume that a non-negative, monotone submodular function
PD(.) is given as an oracle and we want to maximize PD(.) under viability
constraints together with a cardinality constraint. We first review the greedy
algorithm given by Faller et al. [4] presented in Algorithm 1. The idea is that, in
each step, one considers only species which either have no successors in the food
web or for which one of the successors has already been selected (adding one of
these species will keep the set viable). Then one adds the species that gives the

Algorithm 1. Greedy, Faller et al.

1: S ← ∅
2: while |S| < k do
3: s ← argmax

c(s|S)=1

v({s}|S)

4: S ← S ∪ {s}
5: end while
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Fig. 1. An illustration of Example 1

largest gain of preserved diversity. By the restriction on the considered species
the constructed set is always viable, but we might miss highly valuable species
which is illustrated by the following example.

Example 1. Consider the set of species X = {y, z, x1, x2} the phylogenetic tree
T = ({r} ∪ X, {(r, y), (r, z), (r, x1), (r, x2)}, weights w(r, xi) = 1, w(r, y) = 0,
w(r, z) = C with C > 2 and the food web (X, {(z, y)}) (see Fig. 1). Assume a
budget k = 2, now as the species y has weight 0, Algorithm 1 would pick x1, and
x2. Hence Algorithm 1 results a viable set with diversity 2. But the set {z, y} is
viable and has diversity C, which can be made arbitrarily large.

This example shows that the greedy solution might have an approximation
ratio that is arbitrarily bad, because it ignores highly weighted species if they
are “on the top of” less valuable species.

Hence, to get approximation ratio, we have to consider all subsets of species
up to a certain size which can be made viable and pick the most valuable subset.
Algorithm 2 deals with this observation. It generalizes concepts from [1], which
itself builds on [8]. Lines 5 - 10 of the algorithm implement a greedy algorithm
that in each step selects the most “cost efficient” subset of species of size p, i.e.
the subset S of species that maximizes the ratio of the increase in PD over the
cost of adding S, and adds it to the solution. But Algorithm 2 does not solely
run the greedy algorithm, it first computes the set with maximal PD among

Algorithm 2.

1: B ← {B ⊆ X | |B| ≤ p, 1 ≤ c(B|∅) ≤ k}
2: S ← argmax

B∈B
PD(B)

3: G = VE(S)
4: G ← ∅
5: while B �= ∅ do
6: S ← argmax

B∈B

PD(B|G)
c(B|G)

7: G = VE(G ∪ S)
8: B ← {B ∈ B | |B| ≤ p, 1 ≤ c(B|G) ≤ k − |G|}
9: end while
10: if PD(G) > PD(G) then
11: G ← G
12: end if
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all sets of size ≤ p that can be made viable. In certain cases this set is better
than the viable set obtained by the greedy algorithm, a fact that we exploit in
the proof of Theorem 1. In the algorithm G denotes the current set of selected
species; B contains the species we might add to G; G denotes the best viable set
we have found so far.

The next theorem will analyze the approximation ratio of Algorithm 2.

Theorem 1. Algorithm 2 is a (1 − 1
ep/(p+d−1) )/2 approximation (for any p ∈

{1, . . . , �k/3 }).

To prove Theorem 1, we introduce some notation. First let O ⊆ X denote the op-
timal solution. We will consider a decompositionDO of O into sets O1, . . . , O�k/p�

of size ≤ p. By decomposition we mean that (i)
⋃�k/p�

i=1 Oi = O and (ii) Oi∩Oj =
∅ if i 	= j. Moreover we require that |VE(Oi)| ≤ p + d − 1 and

∑
i |VE(Oi)| ≤

k
p (p+ d− 1). Next we show that such a decomposition DO always exists.

Lemma 1. There exist �k
p� many pairs (O1, B1), . . . , (O� k

p �
, B� k

p �
) such that

O =
⋃

1≤i≤� k
p �Oi, Oi ∪ Bi is viable, |Oi| ≤ p, |Bi| ≤ d − 1 and

∑
i |Oi ∪ Bi| ≤

k
p (p+ d− 1).

Proof. The optimal solution O is a viable subset of size at most k. Consider the
reverse graph G of D projected on the set O i.e. G = (O,E−∩(O×O)), and add
an artificial root r that has an edge to all roots of G. Start a depth-first-search in
r and with the empty sets O1, B1. Whenever the DFS removes a node from the
stack, we add this node to the current set Oi, i ≥ 1. When |Oi| = p then we add
the nodes on the stack, except r, to the set Bi, but do not change the stack itself.
Then we continue the DFS with the next pair (Oi+1, Bi+1), again initialized by
empty sets. Eventually the DFS stops, then the stack is empty and thus (O� k

p �
, ∅)

is the last pair. Notice that by the definition of d there are at most d nodes on the
stack, one being the root r and hence |Bi| ≤ d− 1. Since the DFS removes each
node exactly once from the stack, all the sets Oi ⊆ O are disjoint and all except
the last one are of size p. Hence the DFS produces �k

p � many sets Oi satisfying

Oi∪Bi is viable, |Oi| ≤ p and |Bi| ≤ d−1. Finally as, by construction, B� k
p �

= ∅

and |O� k
p �

| = k mod p we obtain that
∑� k

p �
i=1 |Oi ∪ Bi| =

∑
 k
p �

i=1 |Oi ∪ Bi| + (k

mod p) ≤ �k
p  (p+ d− 1) + (k mod p) ≤ k

p (p+ d− 1). �


Now consider the greedy algorithm and the value l where the l-th iteration is

the first iteration such that after executing the loop body, maxOj∈DO

PD(Oj |G)
c(Oj |G) >

maxB∈B
PD(B|G)
c(B|G) . If G 	= O the inequality holds at least for the last iteration

of the loop where B = ∅. We define O′
l+1 = argmax

Oj∈DO

PD(Oj |G)
c(Oj |G) , i.e. O′

l+1 is

in the optimal viable set and would be a better choice than the selection of
the algorithm, but the greedy algorithm cannot make S ∪ O′

l+1 viable without
violating the cardinality constraint.
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Let Si denote the set S added to G in iteration i of the while loop in Line 6.
Moreover, for i ≤ l we denote the set G after the i-th iteration by Gi, with
G0 = ∅, the set G ∪ S from Line 7 as G∗

i = Gi−1 ∪ Si and the “costs” of adding
set Si by ci = c(Si|Gi−1) = c(Gi|Gi−1). With a slight abuse of notation we will
use Gl+1 to denote the viable set VE(Gl ∪O′

l+1), cl+1 to denote c(O′
l+1|Gl) and

G∗
l+1 to denote the set Gl ∪O′

l+1 (Gl+1 is not a feasible solution as |Gl+1| > k).
Notice that while the sets G∗

i are not necessarily viable sets, all the Gi, i ≥ 0 are
viable sets and moreover PD(G) ≥ PD(Gi), i ≤ l.

First we show that in each iteration of the algorithm the set Si gives us a
certain approximation of the missing part of the optimal solution.

Lemma 2. For 1 ≤ i ≤ l + 1, p ∈ {1, . . . , �k/3 }:

PD(Si|Gi−1)

ci
≥ p

(p+ d− 1)k
· PD(O|Gi−1)

Proof. By the definition of Si for each Oj ∈ DO the following holds:

PD(Oj |Gi−1)

c(Oj |Gi−1)
≤ PD(Si|Gi−1)

c(Gi|Gi−1)

Next we use the monotonicity and submodularity of PD (for the first inequality)
and the inequality from above (for the second inequality).

PD(O|Gi−1) ≤
∑

Oj∈DO

PD(Oj |Gi−1) =
∑

Oj∈DO

PD(Oj |Gi−1)

c(Oj |Gi−1)
c(Oj |Gi−1)

≤
∑

Oj∈DO

PD(Si|Gi−1)

ci
c(Oj |Gi−1) ≤

PD(Si|Gi−1)

ci

p+ d− 1

p
· k

The last step exploits that by Lemma 1
∑

Oj∈DO
c(Oj |Gi−1) ≤ k

p ·(p+d−1). �

Lemma 3. For 1 ≤ i ≤ l + 1:

PD(G∗
i ) ≥

⎡⎣1−
i∏

j=1

(
1− p · cj

(d+ p− 1) · k

)⎤⎦ PD(O)

Proof. The proof is by induction on i. The base case for i = 1 is by Lemma 2.
For the induction step we show that if the claim holds for all i′ < i then it must
also hold for i. For convenience we define Ci =

p·ci
(d+p−1)·k .

PD(G∗
i ) = PD(Gi−1) + PD(G∗

i |Gi−1) ≥ PD(Gi−1) + Ci · PD(O|Gi−1)

= PD(Gi−1) + Ci · (PD(O ∪Gi−1)− PD(Gi−1))

≥ (1− Ci) · PD(Gi−1) + Ci · PD(O) ≥ (1− Ci) · PD(G∗
i−1) + Ci · PD(O)

≥ (1− Ci)

[
1−

i−1∏
j=1

(1− Cj)

]
PD(O) + Ci · PD(O)

=

[
1−

i∏
j=1

(1−Cj)

]
PD(O)

�
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Proof (Theorem 1). Towards a bound for G∗
l+1 consider

∑l+1
m=1 cm. As Gl+1

exceeds the cardinality constraint
∑l+1

m=1 cm > k it follows that:

1−
l+1∏
j=1

(
1− p · cj

(d+ p− 1) · (k)

)
≥ 1−

l+1∏
j=1

(
1− p · cj

(d+ p− 1) ·
∑l+1

m=1 cm

)

≥ 1−
(
1− p

(d+ p− 1) · (l + 1)

)l+1

≥ 1− 1

ep/(d+p−1)

To obtain Line 2 we used the fact the term 1−
∏l+1

j=1

(
1− c′j

C

)
with constant C

and the constraint
∑l+1

j=1 c
′
j = 1 has its maximum at c′j = 1/(l + 1).

By Lemma 3 we obtain PD(G∗
l+1) ≥

(
1− 1

ep/(d+p−1)

)
· PD(O), thus it only

remains to relate PD(G∗
l+1) to PD(Gl). To this end we consider the optimal

set of size p computed in Line 3 and denote it by So. If the greedy solution has
higher PD than So the algorithm returns a superset of G∗

l otherwise a superset
of So. Hence, PD(G) is larger or equal to the maximum of PD(G∗

l ) and PD(So).
From the definitions of G∗

l and So it follows that

PD(G∗
l+1) ≤ PD(G∗

l ) + PD(O′
l+1) ≤ PD(G∗

l ) + PD(So).

With the above result for PD(G∗
l+1) we obtain that:

PD(G) ≥ max(PD(G∗
l ),PD(So)) ≥

(
1− 1

ep/(d+p−1)

)
· PD(O)

2

Hence Algorithm 2 provides an
(
1− 1

ep/(d+p−1)

)
/2 - approximation. �


Theorem 2. Algorithm 2 is in time O
(
k · (3pnp+2 + np+1m)

)
.

Proof. First notice that computing the function VE can be reduced to a Steiner
tree problem by (i) taking all the species in S that are already connected (via
nodes in S) to a sink node in S, and merging these nodes into a single terminal
node t, and (ii) connecting the remaining sink nodes to t. As starting nodes
for the Steiner tree problem we use the remaining species in S. A viable set
S is reduced to a single vertex t and thus the number of terminal nodes in
the Steiner tree problems is bounded by a constant, hence we can solve them
in polynomial time: The Steiner tree problem on acyclic directed graphs can be
solved in time O(3jn2+nm) [13], where j is the number of starting and terminal
nodes. In Line 2 we have to consider O(np) sets S and for each of them we solve
a Steiner tree problem. with at most p starting nodes. So this first loop can be
done in time O(3pnp+2 + np+1m). The number of iterations of the while loop is
bounded by k and in each iteration, in Line 6, we have to solve O(np) Steiner
tree problems with at most p starting nodes. Now as each iteration takes time
O(3pnp+2+np+1m) we get a total running time of O(k · (3pnp+2+np+1m)). �


Finally, notice that one can use a modification of the enumeration technique
as described in [8], to get rid of the factor 1/2 in the approximation ratio. The
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idea is to consider all (viable) sets of a certain size and for each of them to run
the greedy algorithm starting with this set. Finally one chooses the best of the
produced solutions. These sets typically have to contain three objects of interest,
in the case of the maximum coverage problem [8] (cf. Def. 4 below) just three
sets from the collection SC. However, in our setting an object of interest is a pair
(Oi, Bi), i.e. a set Oi of size ≤ p and a set Bi of size < d making Oi viable. Thus
three objects result in a set of size of 3p + 3d − 3. This increases the running
time by a factor of n3p+3d−3. The proof of the following theorem is very similar
to the above analysis for Algorithm 2 (details are provided in the appendix).

Theorem 3. There exists an
(
1− 1

ep/(d+p−1)

)
- approximation algorithm for

OptPDVC which runs in time O
(
k · (3pn4p+3d−1 + n4p+3d−2m)

)
.

4 Impossibility Results

If we allow arbitrary monotone submodular functions it is easy to see that no
1− 1

e + ε-approximation algorithm exists (unless P = NP). This is immediate by
the corresponding result for Max Coverage (with cardinality constraints). Here
we show that, when considering viability constraints, this also holds for additive
functions and in particular for the phylogenetic diversity PD.

Definition 4. The input to the Max Coverage problem is a set of domain ele-
ments D = {1, 2, . . . , n}, together with non-negative integer weights w1, . . . wn,
a collection of subsets of D SC = {S1, . . . Sm} and a positive integer k. The goal
is to find a set SC′ ⊆ SC of cardinality k maximizing

∑
i∈

⋃
S∈SC′ S

wi.

Proposition 2. There is no α-approximation algorithm for Max Coverage with
α > 1− 1

e (unless P = NP) [5,8].

Reduction 1. Given an instance (D, SC, k) of the Max Coverage problem, we
build an instance of OptPDVC as follows (cf. Fig. 2)

X = D ∪ {Si,j | Si ∈ SC, 1 ≤ j ≤ n}
E = {(j, Si,n) | j ∈ Si} ∪ {(Si,j+1, Si,j) | 1 ≤ i ≤ m, 1 ≤ j < n}
T = ({r} ∪X, {(r, s) | s ∈ X})

we =

{
wi e = (r, i), i ∈ D

0 otherwise

k′ = (k + 1) · n

Lemma 4. Let (D, SC, k) be an instance of the Max Coverage problem and let
(TC, (X,E), k′) be an instance of OptPDVC given by Reduction 1. Let W > 0.
Then there exists a cover C ⊆ SC of size k with w(C) ≥ W for (D, SC, k) iff
there exists a viable set A of size k′ = (k + 1) · n with PD(A) ≥ W .
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r

1 2 3 4 S1,1 . . . S3,4

w1 w2 w3 w4 0 0

(a) Phylogenetic Tree (T,ET ) with weights wi

1 2 3 4

S1,4 S2,4 S3,4

S1,3 S2,3 S3,3

S1,2 S2,2 S3,2

S1,1 S2,1 S3,1

(b) Food Web (X,E)

Fig. 2. An illustration of Reduction 1, applied to D = {1, 2, 3, 4}, SC = {S1, S2, S3},
S1 = {1, 2, 3}, S2 = {2, 4}, S3 = {1, 3, 4}

Proof. ⇒: First assume that there is a cover C of size k with w(C) = W . Then
A′ = {Si,j | Si ∈ C, 1 ≤ j ≤ n} ∪

⋃
Si∈C Si is a viable set of size ≤ k · n + n.

Clearly PD(A′) = W and thus we have a viable set A of size (k + 1) · n with
PD(A) ≥ W by adding arbitrary viable species.

⇐: Assume there is a viable set A of size (k+1) · n with PD(A) = W . There
are at most k + 1 elements Si ∈ SC such that Si,n ∈ A. This is by the fact that
if Si,n ∈ A then also Si,1, . . . , Si,n−1 ∈ A. Now consider the case where there
are exactly k + 1 such elements. Then we already have (k + 1) · n species in A
and thus no x ∈ D is contained in A. But then PD(A) = 0 as only the edges
(r, x) with x ∈ D have non-zero weight. Assuming W > 0 we thus have at most
k elements Si ∈ E such that Si,n ∈ A and further as A is viable for each x ∈ A
there is an Si,n ∈ A such that x ∈ Si. Hence C

′ = {Si | Si,n ∈ A} is of size
at most k and covers all x ∈ A ∩D, i.e. w(C′) = W . Now by adding arbitrary
Si ∈ SC we can construct a cover C of size k with w(C) ≥ W . �


Theorem 4. There is no α-approximation algorithm for OptPDVC with α >
1− 1

e (unless P = NP), even if PD is an additive function.

Proof. Immediate by Proposition 2, Lemma 4 and the fact that Reduction 1 can
be performed in polynomial time. �


Finally let us consider a straightforward generalization of the viability con-
straints. So far we assumed that a species is viable iff at least one of its successors
survives, but one can also imagine cases where one node needs several or even
all of its successors to survive to be viable. In the following we consider food
webs where we allow two types of nodes: (i) nodes that are viable if at least one
successors survives and (ii) nodes that are only viable if all successors survive.
We will show that in this setting no approximation algorithm is possible using
a reduction from the NP-hard problem of deciding whether a propositional for-
mula in 3-CNF is satisfiable. A 3-CNF formula is a propositional formula which
is the conjunction of clauses, and each clause is the disjunction of exactly three
literals, e.g. φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4).
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r

t x1 x̄1 cx1
. . . x4 x̄4 cx4 c1 c2 c3

1 0 0 0 0 0 0 0 0 0

(a) Phylogenetic Tree (T,ET ) with weights wi

t

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

cx1 cx2 cx3 cx4

(b) Food Web (X,E)

Fig. 3. An illustration of Reduction 2, applied to the propositional formula φ = (x1 ∨
x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4)

Reduction 2. Given a propositional formula φ in 3-CNF over propositional
variables V = {x1, . . . , xn} with clauses c1, . . . , cm build the following instance
(T,ET ), (X,E) and weight we (cf. Fig. 3) :

X = {c1, . . . , cm} ∪ {x, x̄, cx | x ∈ V} ∪ {t}
T = ({r} ∪X, {(r, s) | s ∈ X})

we =

{
1 e = (r, t)

0 otherwise

E = {(cx, x), (cx, x̄) | x ∈ V} ∪ {(ci, x) | x ∈ ci} ∪ {(ci, x̄) | ¬x ∈ ci}
∪ {(t, ci), (t, cx) | 1 ≤ i ≤ m,x ∈ V}

k = 2 · |V| + m + 1

The species {c1, . . . cm} ∪ {x, x̄, cx | x ∈ V} are viable in the traditional sense
and t is viable iff all its successors survive. More formally, a set S ⊆ X is viable
if (i) for each s ∈ S either s is a sink or there is a s′ ∈ S with (s, s′) ∈ E and
(ii) if t ∈ S it holds for all s′ with (t, s′) ∈ E that s′ ∈ S.

Lemma 5. Given a propositional formula φ and the instance (TC, (X,E), k) of
OptPDVC given by Reduction 2. Then φ is satisfiable iff there exists a viable set
A of size ≤ k with PD(A) > 0.

Now assuming that there is an approximation algorithm for OptPDVC with
generalized viability constraints we would immediately get an procedure deciding
3-CNF formulas: apply Reduction 2, compute PD using the α-approximation
algorithm, and return satisfiable if PD is positive.

Theorem 5. It is NP-hard to decide whether an instance of OptPDVC with
generalized viability constraints has a viable set S with PD(S) > 0. Thus no
approximation algorithm for the problem can exist unless P = NP.

Proof. Immediate by Lemma 5, and the fact that Reduction 2 can be performed
in polynomial time.
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15. Vondrák, J.: Submodular functions and their applications. In: SODA 2013 Plenary
Talk (2013) Slides available at,
http://theory.stanford.edu/~jvondrak/data/SODA-plenary-talk.pdf

16. Weitzman, M.L.: The Noah’s ark problem. Econometricay 66, 1279–1298 (1998)

http://www.optimization-online.org/DB_HTML/2007/08/1740.html
http://theory.stanford.edu/~jvondrak/data/SODA-plenary-talk.pdf


Table Cartograms
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Abstract. A table cartogram of a two dimensional m × n table A of
non-negative weights in a rectangle R, whose area equals the sum of the
weights, is a partition of R into convex quadrilateral faces corresponding
to the cells of A such that each face has the same adjacency as its cor-
responding cell and has area equal to the cell’s weight. Such a partition
acts as a natural way to visualize table data arising in various fields of
research. In this paper, we give a O(mn)-time algorithm to find a table
cartogram in a rectangle. We then generalize our algorithm to obtain ta-
ble cartograms inside arbitrary convex quadrangles, circles, and finally,
on the surface of cylinders and spheres.

1 Introduction

A cartogram, or value-by-area diagram, is a thematic cartographic visualization,
in which the areas of countries are modified in order to represent a given set
of values, such as population, gross-domestic product, or other geo-referenced
statistical data. Red-and-blue population cartograms of the United States were
often used to illustrate the results in the 2000 and 2004 presidential elections.
While geographically accurate maps seemed to show an overwhelming victory
for George W. Bush, population cartograms effectively communicated the near
50-50 split, by deflating the rural and suburban central states.

The challenge in creating a good cartogram is thus to shrink or grow the
regions in a map so that they faithfully reflect the set of pre-specified area values,
while still retaining their characteristic shapes, relative positions, and adjacencies
as much as possible. In this paper we introduce a new table cartogram model,
where the input is a two dimensional m×n table of non-negative weights, and the
output is a rectangle with area equal to the sum of the input weights partitioned
into m×n convex quadrilateral faces each with area equal to the corresponding
input weight. Fig. 1 shows two such examples. Such a visualization preserves
both area and adjacencies, furthermore, it is simple, visually attractive, and
applicable to many fields that require visualization of data table.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 421–432, 2013.
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7 9 9 6

62.5 10.54.5

2.54.5 4.5 16

33 4.54

B (2.34) C (2.26) N(1.25) O(1.45)

Al (2.70) Si (2.33) P (1.82) S (2.07)

Ga (5.91) Ge (5.32) As (5.72) Se(4.79)

In (7.31) Sn (7.31) Sb (6.68)Te(4.93)

Fig. 1. A 4 × 4 table, its table cartogram, and a cartogram of some elements of the
periodic table according to their density in grams per cubic centimeter (for solids) or
per liter (for gases).

The solution to the problem is not obvious even for a 2×2 table. For example,
Fig. 2(a) shows a table A. One attempt to find the cartogram of A in a unit
square R may be to first split R horizontally according to the sum of each row,
and then to find a good split in each subrectangle to realize the correct areas.
But this approach does not work, because the first split prevents the creation
of the two convex quadrilaterals with area ε in opposite corners that share a
boundary vertex, Fig. 2(b). Fig. 2(c) shows a possible cartogram.

The following little argument shows that 2 × 2 table cartograms exist. The
argument contains some elements that will be reused for the general case. The
input is a 2 × 2 table with four positive reals a, b, c, d with a + b + c + d = 1,
as shown in Fig. 2(d). Rotational symmetry of the problem allows us to assume
that a + b ≤ 1/2. Fix the unit square R with corners (0, 0), (0, 1), (1, 1), (1, 0)
as the frame for the table cartogram. Now consider the horizontal line � with
the property that every triangle T (p) with top side equal to the top side of R
and one corner p on � has area a + b. Since a + b ≤ 1/2, the line � intersects
R in a horizontal segment. For p ∈ � ∩ R, the vertical line through p partitions
R\T (p) into a left 4-gon S− and a right 4-gon S+. The areas of these two 4-gons
depend continuously on the position of point p but their sum is always c + d. If
p is on the left boundary, Area (S+) = c + d, and if p is on the right boundary,
Area (S+) = 0. Hence, it follows from the intermediate value theorem that there
is a position for p on � ∩ R such that Area (S−) = c and Area (S+) = d. By
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(e)

c d

a b

�
p

Fig. 2. (a) A 2×2 table A. (b) R. (c) An attempt to find a cartogram. (d) A cartogram
of A in R. (e) A 2× 2 table A. (f) The cartogram showing � as a dashed line.
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rotating a line around this p, we find a line that partitions T (p) such that the
left triangle has area a and thus the right triangle has area b, this again uses the
intermediate value theorem. The resulting partition of R into four parts is a table
cartogram for the input table, see Fig. 2(e). The critical reader may object that
two of the 4-gons have a degenerate side. This can be avoided by perturbing the
cartogram slightly to make a very short edge instead of a point. The result is an
ε approximate cartogram without degeneracies. Another approach is to modify
the construction rules so that degeneracies are avoided. We take this approach
in Section 2 to show the existence of non-degenerate table cartograms in general.

Related Work. The problem of representing additional information on top
of a geographic map dates back to the 19th century, and highly schematized
rectangular cartograms can be found in the 1934 work of Raisz [1]. Recently, van
Kreveld and Speckmann describe automated methods to produce rectangular
cartograms [2]. With such rectangular cartograms it is not always possible to
represent all adjacencies and areas accurately [3,2]. However, in many “simple”
cases, such as France, Italy and the USA, rectangular cartograms and even table
cartograms offer a practical and straightforward schematization, e.g., Fig. 3. Grid
maps are a special case of single-level spatial treemaps: the input is a geographic
map mapped onto a grid of equal-sized rectangles, in such a way as to preserve
as well as possible the relative positions of the corresponding regions [4,5]. As
we show, such maps can always be visualized as table cartograms.

Eppstein et al. studied area-universal rectangular layouts and characterized
the class of rectangular layouts for which all area-assignments can be achieved
with combinatorially equivalent layouts [6]. If the requirement that rectangles
are used is relaxed to allow the use of rectilinear regions then de Berg et al. [7]
showed that all adjacencies can be preserved and all areas can be realized with
40-sided regions. In a series of papers the polygon complexity that is sufficient to
realize any rectilinear cartogram was decreased from 40 sides down to 8 sides [8],
which is best possible due to an earlier lower bound [9].

More general cartograms without restrictions to rectangular or rectilinear
shapes have also been studied. For example adjacencies can be preserved and
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Fig. 3. A table cartogram of USA according to the population of the states in 2010,
using the grid map of [5].
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areas represented perfectly using convex quadrilaterals if the dual of the map
is an outerplanar graph [10]. Dougenik et al. introduced a method based on
force fields where the map is divided into cells and every cell has a force related
to its data value which affects the other cells [11]. Dorling used a cellular au-
tomaton approach, where regions exchange cells until an equilibrium has been
achieved, i.e., each region has attained the desired number of cells [12]. This
technique can result in significant distortions, thereby reducing readability and
recognizability. Keim et al. defined a distance between the original map and the
cartogram with a metric based on Fourier transforms, and then used a scan-
line algorithm to reposition the edges so as to optimize the metric [13]. Gastner
and Newman [14] project the original map onto a distorted grid, calculated so
that cell areas match the pre-defined values. The desired areas are then achieved
via an iterative diffusion process inspired by physical intuition. The cartograms
produced this way are mostly readable but the complexity of the polygons can
increase significantly. Edelsbrunner and Waupotitsch [15] generated cartograms
using a sequence of homeomorphic deformations. Kocmoud and House [16] de-
scribed a technique that combines the cell-based approach of Dorling [12] with
the homeomorphic deformations of Edelsbrunner and Waupotitsch [15].

There are many papers, spanning over a century, and covering various aspects
of cartograms, from geography to geometry and from interactive visualization to
graph theory and topology. The above brief review is woefully incomplete; the
survey by Tobler [17] provides a more comprehensive overview.

Our Results. The main construction is presented in Section 2. We start with a
simple constructive algorithm that realizes any table inside a rectangle in which
each cell is represented by a convex quadrilateral with its prescribed weight. The
approach relies on making many of the regions be triangles. We then modify the
method to remove such degeneracies. The construction can be implemented to
run in O(mn) time, i.e., in time linear in the input size.

In Section 3 we find table cartograms inside arbitrary triangles or convex
quadrilaterals, which is best possible, because regular n-gons, n ≥ 5, do not
always support table cartograms (e.g., consider a table with some cell value
larger than the maximum-area convex quadrangle that can be drawn inside the
n-gon). We also realize table cartograms inside circles, using circular-arcs, and
on the surface of a sphere via a transformation from a realization on the cylinder.

2 Table Cartograms in Rectangles

We first construct a cartogram with degenerate 4-gons. The input is a table A
with m rows and n columns of non-negative numbers Ai,j . Let S =

∑
i,j Ai,j

and let Si be the sum of the numbers in row i, i.e., Si =
∑

1≤j≤n Ai,j . Assume,
by scaling, that S > 4. Let R be the rectangle with corners (0, 0), (S/2, 0),
(S/2, 2), (0, 2). We construct the cartogram within R and later generalize the
construction to all rectangles with area S. Let k be the largest index such that
the sum of the numbers in rows 1, 2, . . . , k − 1 is less than S/2. We may then
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Fig. 4. (a) Illustration for A,At and Ab, where k = 2 and λ ≈ 0.886. (b) The zigzag
path Z. We have distorted the aspect ratio of the figure to increase readability. (c) The
subdivision of triangles, where Z is shown in red, and (d) the complete cartogram.

choose λ ∈ (0, 1] such that
∑

1≤i≤k−1 Si + λSk = S/2. We split the table A into

two tables At and Ab. Table At consists of k rows and n columns. The first k−1
rows are taken from A, i.e., At

i,j = Ai,j for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n. The
last row is a λ-fraction of row k from A, i.e., At

k,j = λ · Ak,j for all j. Table

Ab consists of m− k + 1 rows and n columns. The first row accommodates the
remaining portion of row k from A, i.e., Ab

1,j = (1− λ) ·Ak,j . All the other rows

are taken from A, i.e., Ab
i,j = Ai+k−1,j for i > 1 and all j. An example is shown

in Fig. 4(a). If λ = 1, then Ab contains a top row of zeros.
Let Dt

j be the sum of entries in columns 2j − 2 and 2j − 1 from At, where
1 ≤ j ≤ �m/2 + 1�. Note that Dt

1 is only responsible for one column. The same
may hold for the last Dt

j depending on the parity of m. Similarly, Db
l is the sum of

entries in columns 2l−1 and 2l from Ab, where 1 ≤ l ≤ �m/2	. Again, depending
on the parity of m the last Db

l may only be responsible for one column.
We now define a zig-zag Z in R (formally, Z is a polygonal line) such that the

areas of the triangles defined by Z are the numbers Dt
1, D

b
1, D

t
2, D

b
2, D

t
3, . . . in

this order. The zig-zag starts at z0 = (0, 0). Since the height of R is 2, the first
segment ends at z1 = (Dt

1, 2) and the second segment goes down to z2 = (Db
1, 0).

In general, for i odd, zi = (
∑�i/2�

j=1 Dt
j, 2) and for i even, zi = (

∑i/2
l=1 D

b
l , 0). An

important property of Z is that it ends at one of the two corners on the right
side of R. This is because

∑
j D

t
j = S/2 =

∑
l D

b
l .

Lemma 2 shows that we can partition each triangle created by the zig-zag
Z into triangles whose areas are the corresponding entries in At or Ab. It re-
lies on the following lemma which is a consequence of properties of barycentric
coordinates. We omit the proof due to space constraints.
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Lemma 1 (Triangle Lemma). Let 
abc be a triangle and let α, β, γ be non-
negative numbers, where α + β + γ = Area(
abc). Then we can find a point p
in 
abc, where Area(
pbc) = α, Area(
apc) = β, Area(
abp) = γ, in O(1)
arithmetic operations.

Lemma 2. Let A be an m×2 table such that each cell is assigned a non-negative
number. Let 
abc be a triangle such that the area of 
abc is equal to the sum
of the numbers of A. Then A admits a cartogram inside 
abc such that all
cells of A are represented by triangles and the boundary between those triangles
representing cells in the left column and those representing cells in the right
column is a polygonal path connecting point a to some point on the segment bc.

Proof. The proof is by induction on m. The case m = 1 is obvious. If m > 1
we define α =

∑
1≤i≤m−1 Ai,1 + Ai,2, β = Am,1 and γ = Am,2. Using Lemma 1

we find a point p in 
abc that partitions the triangle into triangles of areas α,
β and γ. We keep the triangles 
apc and 
abp as representatives for Am,1 and
Am,2 and construct the cartogram for the first m − 1 rows of A in the triangle

pbc by induction. ��

To partition triangle 
z2j−2, z2j−3, z2j−1, for 1 ≤ j ≤ �m/2 + 1� (where
z−1 = (0, 2) and zm+1 = (S/2, 2) if needed), we appeal to Lemma 2 with A (in
the lemma) being the two columns from At whose sum is Dt

j . To make Lemma 2
applicable to cases like Dt

1 which represent only one column from At, we simply
add a column of zeros to A. Similarly, we can partition triangle 
z2l−1, z2l−2, z2l,
for 1 ≤ l ≤ �m/2	.

This yields a table cartogram of the (m+ 1)×n table A+ that is obtained by
stacking At on Ab. Note, however, that all triangles representing cells from the
last row of At have a side that equals one of the edges of Z. Symmetrically, all
triangles representing cells from the first row of Ab have a side on Z. Hence, by
removing the edge of Z we glue two triangles of area λAk,j and (1− λ)Ak,j into
a 4-gon of area Ak,j . The 4-gons obtained by removing edges of Z are convex
because they have crossing diagonals. This completes the construction.

To complete the proof of the following theorem, in which R is a w×h rectangle
with area S, we scale the above cartogram by a factor of h/2 vertically and a
factor of 2/h horizontally.

Theorem 1. Let A be an m×n table of non-negative numbers Ai,j. Let R be a
rectangle with width w, height h and area equal to the sum of the numbers of A.
Then there exists a cartogram of A in R such that every face in the cartogram
is convex. The construction requires O(mn) arithmetic operations.

Removing degeneracies. The construction of the proof of Theorem 1 creates
faces of degenerate shape, i.e., some faces may not be perfect quadrangles, as
shown in Fig. 4(d). We modify this construction to avoid the degeneracies. Of
course we have to make a stronger assumption on the input: All entries Ai,j of the
table are strictly positive. The first part of the construction remains unaltered.
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– Determine k and λ such that
∑

1≤i≤k−1 Si + λSk = S/2.

– Define At and Ab and the two-column sums Dt
j and Db

l for these tables.
– Compute the zig-zag in the rectangle R of height 2 and width S/2.

Let z0, z1, . . . , zn be the corner points of the zig-zag Z. For i even we define
z′i = zi + (0, v) and for i odd z′i = zi − (0, v), i.e., z′i is obtained by shifting zi
vertically a distance of v into R. We will choose this positive value v to obey con-
ditions (B1) and (B2) required by the construction (these conditions have been
specified later). Let Z ′ be the zig-zag with corners z′0, z

′
1, . . . , z

′
n. The segment

z′i, zi is the leg at z′i. The union of all the legs and Z ′ is the skeleton G′ of a parti-
tion of R into 5-gons. We refer to the 5-gons with corners zi−1, zi+1, z

′
i+1, z

′
i, z

′
i−1

as Fi. We abstain from introducing extra notation for the two 4-gons at the ends
of Z ′ and just think of them as degenerate 5-gons.

Lemma 3. A 5-gon in R with vertices (x1, 0), (x3, 0), (x3, v), (x2, 2 − v), (x1, v)
has the same area x3 − x1 as the triangle with corners (x1, 0), (x3, 0), (x2, 2).

Proof. First note that changing the value of x2 (shear) preserves the area of the
5-gon and of the triangle. Hence we may assume that x2 = x3. Now let P be
the parallelogram with corners (x1, 0), (x1, v), (x2, 2), (x2, 2−v). Both, the 5-gon
and the triangle can be partitioned into the triangle (x1, 0), (x2, 2 − v), (x3, 0)
and a triangle that makes a half of P . ��

Some of the 5-gons Fi may not be convex. However, concave corners can
only be at z′i+1 or z′i−1. To get rid of concave corners we deal with corners at
z′1, z

′
2, . . . , z

′
n−1 in this order. At each z′i we may slightly shift z′i horizontally

and bend the leg to rebalance the areas. This can be done so that the concave
corner at z′i is resolved. We then say that z′i has been convexified. Fig. 5 shows
an example of the process.

The vertex z′i has a concave corner in at most one of Fi−1 and Fi+1 In the
first case we move z′i to the right in the second case we move z′i to the left. By
symmetry, we only detail the second case, i.e, z′i has a concave corner in Fi+1.

v

2 − 2v

δ

τ
(x, 0)

(x′, 2 − v)

z′i

zi−1 zi+1

z′i+1

zi

z′i−1

Fi

Fi−1 Fi+1

z′i−1 z′i+1

Fig. 5. Before and after convexifying z′i. The dashed lines represent the original Z′.



428 W. Evans et al.

Shifting z′i horizontally keeps the area of Fi invariant, only the areas of Fi−1

and Fi+1 are affected by the shift. By shifting z′i a distance of δ to the left while
keeping zi at its place the increase in area of Fi+1 is δ(2 − v)/2. To balance the
increase we move zi, the other end of the leg, to the right by an amount τ , where
τv/2 = δ(2 − v)/2. To make sure that the corners at z′i after shifting are convex
we choose δ and τ so that the line connecting the new positions of zi and z′i
contains the midpoint of z′i−1 and z′i+1. If the new position of zi is (x, 0) and
(x′, 2 − v) is the midpoint of z′i−1 and z′i+1 then v/(τ + δ) = 2/(x− x′).

We do not want the shift of zi to introduce a crossing. We ensure this with a
bound on v. For all j, let Tj = Area(Fj) and this is the distance between zj−1

and zj+1 before shifting (since the height of the strip is 2). If τ ≤ Ti+1, then
the leg z′i, zi does not intersect leg z′i+2, zi+2. The absolute value of the slope of
the leg z′i, zi after convexifying z′i is less than v/τ . The slope of the leg is also
between the slopes of z′i, z

′
i−1 and z′i, z

′
i+1. The absolute value of these slopes is

larger than (2 − 2v)/(S/2) which is the minimum possible slope of a segment of
Z ′ in R. Define T = minj Tj . Hence, if v/T < (2− 2v)/(S/2) = 4(1− v)/S, then
τ < T . We thus have an inequality that we want to be true for v:

v ≤ 4T

S + 4T
. (B1)

Observe that convexifying z′i+1 may require a shift of z′i+1 by δ′ (and a compen-
sating shift of zi+1 by τ ′) after z′i has been convexified. However, if v ≤ 1/4, then
balancing area and (B1) imply 1

4T > vτ ′ = δ′(2 − v) ≥ δ′ 74 whence δ′ ≤ T/7.
This shows that z′i+1 stays on the right side of the old midpoint of z′i−1 and z′i+1

so that the corners at z′i stay convex.
The next step of the construction is to place equidistant points on each of

the legs. The segments between two consecutive points on the leg z′i, zi will
serve as sides for quadrangles of the quadrangular subdivision of Fi−1 and Fi+1.
Specifically, a leg z′i, zi with i odd is subdivided into k − 1 segments of equal
length and a leg z′i, zi with i even is subdivided into m − k segments. Recall
that k is the number of rows in At. For the partition of Fi into 4-gons with
the prescribed areas we proceed inductively as in Lemma 2. We again need a
partition lemma, whose proof is omitted due to space constraints.

Lemma 4. Consider a convex 5-gon F as shown in Fig. 6(a). Let α, β, γ
be positive numbers with α + β + γ = Area(F ). If α > Area(�p0, q0, qj , pj),

pj+1

p0 q0

qj+1
qjpj

α

β γ
p

r

(b)(a)

Fig. 6. (a) The α, β and γ partition of F . (b) A final partition of Fi.
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β > Area(
pj , r, pj+1), γ > Area(
qj , qj+1, r), then there exists p ∈ F
such that α = Area(�p0, q0, qj , p, pj), β = Area(�pj , p, r, pj+1),
γ = Area(�qj , qj+1, r, p).

To ensure that the conditions for Lemma 4 are satisfied throughout the in-
ductive partition of the regions Fi we need to bound v. Let M = mini,j Ai,j

be the minimum value in the table. Recall that S/2 is the width of R, and the
y-distance of pj and pj+1 is at most v. Hence, vS/2 is a generous upper bound
on Area(
pj , r, pj+1), Area(
qj , qj+1, r), and Area(�p0, q0, qj , pj). We ensure
that these areas are less than β, γ, and α respectively by requiring

v <
2M

S
(B2)

Theorem 2. Let A be an m×n table of non-negative numbers Ai,j. Let R be a
rectangle of width w and height h such that w · h =

∑
i,j Ai,j . Then there exists

a non-degenerate cartogram of A in R such that every face in the cartogram is
convex. The construction requires O(mn) arithmetic operations.

Proof. The steps of the construction are:

– Construct the table cartogram with degeneracies.
– Compute the bounds and fix an appropriate value for v, compute the skeleton

G′ and its regions Fi, and convexify the legs in order of increasing index.
– Subdivide each of the regions Fi into convex 4-gons (and two triangles).
– Remove the edges of the zig-zag to get the cells of the middle row as unions of

two triangles, which must generate convex quadrangles, since these triangles
are contained in rectangle R and the common side of a pair of triangles
connects opposite sides of R.

All can be done with O(mn) arithmetic operations. Regarding the degeneracies,
however, there is an issue that remains. To break A into At and Ab, we split row
k so that the last row of At is a λ-fraction of row k from A while the rest of this
row becomes the first row of Ab. Degeneracies occur if λ = 1. However, rather
than splitting row k in this case, we can treat cells of row k as generic cells and
assign a section of a leg to each of them. The construction is almost as before.
Two details have to be changed. The first partition of each Fi into three pieces
now produces two 4-gons and a 5-gon, before (see Fig. 6(b)) we had two triangles
and a 5-gon in this step. The other change is that we don’t remove zig-zag edges
belonging to Z ′ to merge triangles to 4-gons at the end of the construction. ��

Instead of just knowing that there are no degeneracies, it would be nice to
have a lower bound on the feature size, that is the minimum side-length of a
4-gon in the table cartogram. The segments subdividing the legs have length at
least v/m. Because these leg segments have length at most v and vS/2 < M (by
(B2)), the opposite edges in a generic 4-gon (the blue edges in Fig. 6(b)) have
length at least v. However, the triangles whose composition creates the 4-gons
representing cells of row k can have area smaller than M . These triangles may
have area λ̂M where λ̂ = min{λ, 1 − λ}. This may lead to a very small feature
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size. To improve on this, another degree of freedom in the construction can be
used. Instead of breaking each cell Ak,j into a λ and a 1−λ fraction, we can use
individual values λj to define At

k,j = λjAk,j . The choice of the values λj must
satisfy two conditions: (1)

∑
j λjAk,j = λSk = λ

∑
j Ak,j and (2) if λi = 0 and

λj = 1 then |i − j| > 1. By choosing most of the λj to be 0 or 1, and avoiding
degeneracies, we may be able to have a substantial improvement in feature size.

3 Generalizations

We generalize the notion of “area” by specifying the weight of a region as an
integral over some density function w : R → R

+. The density function should be
positive, meaning that the integrals over triangular regions with nonempty inte-
riors exist and are positive. The following generalizes Lemma 1 for any positive
density function, allowing us to compute cartograms on weighted R

2.

Lemma 5 (Weighted Triangle Lemma). Let 
abc be a triangle and w :

abc → R

+ be a positive density function on 
abc. Let Area(
abc) be the w-
weighted area of the triangle 
abc. Given three non-negative real numbers α, β,
γ, where α + β + γ = Area(
abc), there exists a unique point p inside 
abc
such that Area(
pbc) = α, Area(
apc) = β, and Area(
abp) = γ.

We now discuss some scenarios where the outerface of the cartogram has a
more general shape. The following theorem considers the case when the outerface
is a convex quadrangle �pqrs. In such a case, we use a binary search to find the
zigzag path that starts at q and ends at r or s.

Theorem 3. Let A be an m × n table of non-negative numbers. Let �pqrs be
an arbitrary convex quadrilateral with area equal to the sum, S, of the numbers
of A. Then there exists a cartogram of A in �pqrs (with degeneracies).

Next, we show how to compute a table cartogram inside a circle. A circular
triangle 
©abc is a region in the plane bounded by three circular arcs (called
arms) that pairwise meet at the points a, b, and c (called vertices), such that for
every vertex v ∈ {a, b, c} and for every point x on the arc that is not incident to
v, one can draw a circular arc between v and x inside 
©abc that does not cross
the boundary of 
©abc. An arm is convex if the straight line joining any two

(e)(a) (b) (c) (d)

a

b c

a

b c

a

c

a

b cb

a b
c

Fig. 7. (a–d) A circular triangle of Type i, 0 ≤ i ≤ 3, i.e., a circular triangle with i
concave arms. (e) A region bounded by circular arcs, but not a circular triangle.
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(a) (b) (c) (d)

(e) (f) (g) (h)

3 4 1

2 36

1.5 4 1 1.5

1 36 1

Fig. 8. Cylindrical cartogram construction. (a–d) n is even, (e–h) n is odd. Note that
when n is even, the faces are convex quadrilaterals. However, when n is odd, the faces
with areas from the leftmost column of A may be concave hexagons.

points on the arm is interior to the region bounded by the triangle. Otherwise,
the arm is concave. We distinguish four types of circular triangles, see Figs. 7(a–
d). We generalize Lemma 1 for circular triangles, i.e., given a circular triangle,
one can split it into three other circular triangles with prescribed areas, and find
the following generalization of Theorem 1.

Theorem 4. Let A be an m × n table of non-negative numbers. Let C be an
arbitrary circle with area equal to the sum of the numbers of A. Then there exists
a cartogram of A in C where every face is a circular triangle.

One can compute a cartogram of a table on the surface of a sphere using
area preserving map projection techniques. For example, here we use Lambert’s
cylindrical equal-area projection. The construction used is shown in Fig. 8.

Theorem 5. Every m × n table of non-negative numbers admits a cartogram
on a sphere.

4 Conclusions and Future Work

We have presented a simple constructive algorithm that realizes any table inside
a rectangle in which each cell is represented by a convex quadrilateral with its
prescribed weight. If all weights are strictly positive, then we can also obtain
non-degenerate realizations. This method can be further extended to realize any
table inside an arbitrary convex quadrilateral, inside a circle using circular arcs,
or even on a sphere. From a practical point of view, the cartograms obtained by
our method may not be visually pleasing, but by using additional straightforward
heuristics that improve the visual quality while keeping the areas the same, we
can obtain cartograms of practical relevance, as shown in Figs. 1 and 3. Our
theoretical solution plays a vital role in this context, since heuristics used directly
may get stuck, being unable to obtain the correct areas. Whether there exists a
method that can gradually change the areas to provably obtain the correct areas
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remains an interesting open problem. It would also be interesting to examine
table cartograms for other types of tables, such as triangular or hexagonal grids.
From a theoretical point of view, finding algorithms for table cartograms on a
sphere with less distortion, and generalizing our result to 3D table cartograms
(inside a box) are further interesting open problems.

Acknowledgments. Initial work on this problem began at Dagstuhl Seminar
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paper were obtained at the Barbados Computational Geometry workshop in
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Network Bargaining with General Capacities
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Abstract. We study balanced solutions for network bargaining games
with general capacities, where agents can participate in a fixed but ar-
bitrary number of contracts. We provide the first polynomial time al-
gorithm for computing balanced solutions for these games. In addition,
we prove that an instance has a balanced solution if and only if it has
a stable one. Our methods use a new idea of reducing an instance with
general capacities to a network bargaining game with unit capacities de-
fined on an auxiliary graph. This represents a departure from previous
approaches, which rely on computing an allocation in the intersection of
the core and prekernel of a corresponding cooperative game, and then
proving that the solution corresponding to this allocation is balanced.
In fact, we show that such cooperative game methods do not extend
to general capacity games, since contrary to the case of unit capacities,
there exist allocations in the intersection of the core and prekernel with
no corresponding balanced solution. Finally, we identify two sufficient
conditions under which the set of balanced solutions corresponds to the
intersection of the core and prekernel, thereby extending the class of
games for which this result was previously known.

1 Introduction

Exchanges in networks have been studied for a long time in both sociology and
economics. In sociology, they appear under the name of network exchange theory,
a field which studies the behaviour of agents who interact across a network to
form bilateral relationships of mutual benefit. The goal is to determine how an
agent’s location in the network influences its ability to negotiate for resources
[1992]. In economics, they are known as cooperative games and have been used
for studying the distribution of resources across a network, for example in the
case of two-sided markets [1971] [1984].

From a theoretical perspective the most commonly used framework for study-
ing such exchanges is that of network bargaining games. The model consists of
an undirected graph G = (V,E) with edge weights w : E(G) → R+ and ver-
tex capacities c : V (G) → Z+. The vertices represent the agents, and the edges
represent possible pairwise contracts that the agents can form. The weight of
each edge represents the value of the corresponding contract. If a contract is
formed between two vertices, its value is divided between them, whereas if the
contract is not formed neither vertex receives any profit from this specific con-
tract. The capacity of each agent limits the number of contracts it can form.
This constraint, together with an agent’s position in the network determine its
bargaining power.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 433–444, 2013.
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A solution for the network bargaining model specifies the set of contracts which
are formed, and how each contract is divided. Specifically, a solution consists of a
pair (M, z), where M is a c-matching of the underlying graph G, and z is a vector
which assigns each edge uv two values zuv, zvu ≥ 0 corresponding to the profit that
agent u, respectively agent v, earn from the contract uv. To be a valid solution,
the two values zuv and zvu must add up to the value of the contract whenever the
edge uv belongs to the c-matching M , and must be zero otherwise.

Solutions to network bargaining games are classified according to two main
concepts: stability and balance. A solution is stable if the profit an agent earns
from any formed contract is at least as much as its outside option. An agent’s
outside option, in this context, refers to the maximum profit that the agent can
rationally receive by forming a new contract with one of its neighbours, under
the condition that the newly formed contract would benefit both parties. The
notion of balance, first introduced in [1983], [1984], is a generalization of the Nash
bargaining solution to the network setting. Specifically, in a balanced solution
the value of each contract is split according to the following rule: both endpoints
must earn their outside options, and any surplus is to be divided equally among
them. Balanced solutions have been shown to agree with experimental evidence,
even to the point of picking up on subtle differences in bargaining power among
agents [1999]. This is an affirmation of the fact that these solutions are natural
and represent an important area of study.

Our Contribution and Results. Our main result is providing the first poly-
nomial time algorithm for computing balanced solutions for network bargaining
games with general capacities and fully characterizating the existence of bal-
anced solutions for these games. Specifically we show the following results in
sections 4.3 and 4.4 respectively:

Result 1. There exists a polynomial time algorithm which given an instance
of a network bargaining game with general capacities and a maximum weight
c-matching M , computes a balanced solution (M, z) whenever one exists.

Result 2. A network bargaining game with general capacities has a balanced
solution if and only if it has a stable one.

Our method relies on a new approach of reducing a general capacity instance
to a network bargaining game with unit capacities defined on an auxiliary graph.
This allows us to use existing algorithms for obtaining balanced solutions for
unit capacities games, which we can then transform to balanced solutions of our
original instance. This represents a departure from previous approaches of [2010]
which relied on proving an equivalence between the set of balanced solutions and
the intersection of the core and prekernel of the corresponding matching game.
In section 3.1 we show that such an approach cannot work for our case, since
this equivalence does not extend to all instances of general capacity games:

Result 3. There exists an instance of a network bargaining game with general
capacities for which we can find an allocation in the intersection of the core and
prekernel such that there is no corresponding balanced solution for this allocation.



Network Bargaining with General Capacities 435

Despite this result, we provide two necessary conditions which ensure that
the correspondence between the set of balanced solutions and allocations in
the intersection of the core and prekernel is maintained. Using the definition of
gadgets from section 3.2 we have the following result given in section 3.3:

Result 4. If the network bargaining game has no gadgets and the maximum
c-matching M is acyclic, the set of balanced solutions corresponds to the inter-
section of the core and prekernel.

Related Work. Kleinberg and Tardos [2008] studied network bargaining games
with unit capacities and developed a polynomial time algorithm for computing
the entire set of balanced solutions. They also show that such games have a
balanced solution whenever they have a stable one and that a stable solution
exists if and only if the linear program for the maximum weight matching of the
underlying graph has an integral optimal solution.

Bateni et al. [2010] consider network bargaining games with unit capacities, as
well as the special case of network bargaining games on bipartite graphs where
one side of the partition has all unit capacities. They approach the problem
of computing balanced solutions from the perspective of cooperative games. In
particular they use the matching game of Shapley and Shubik [1971] and show
that the set of stable solutions corresponds to the core, and the set of balanced
solutions corresponds to the intersection of the core and prekernel.

Like we do here, Kanoria et al. [2009] also study network bargaining games
with general capacities. They show that a stable solution exists for these games
if and only the linear program for the maximum weight c-matching of the un-
derlying graph has an integral optimal solution. They are also able to obtain a
partial characterization of the existence of balanced solutions by proving that if
this integral optimum is unique, then a balanced solution is guaranteed to exist.
They provide an algorithm for computing balanced solutions in this case which
uses local dynamics but whose running time is not polynomial.

2 Preliminaries and Definitions

An instance of the network bargaining game is a triple (G,w, c) where G is a

undirected graph, w ∈ R
|E(G)|
+ is a vector of edge weights, and c ∈ Z

|V (G)|
+ is a

vector of vertex capacities. A set of edges M ⊆ E(G) is a c-matching of G if
| {v : uv ∈ M} | ≤ cu for all u ∈ V (G). Given a c-matching M , we let du denote
the degree of vertex u in M . We say that vertex u is saturated in M if du = cu.

A solution to the network bargaining game (G,w, c) is a pair (M, z) where

M is a c-matching of G and z ∈ R
2|E(G)|
+ assigns each edge uv a pair of values

zuv, zvu such that zuv + zvu = wuv if uv ∈ M and zuv = zvu = 0 otherwise.
The allocation associated with the solution (M, z) is the vector x ∈ R|V (G)|

where xu represents the total payoff of vertex u, that is for all u ∈ V (G) we have
xu =

∑
v:uv∈M zuv. The outside option of vertex u with respect to a solution

(M, z) is defined as
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αu(M, z) := max

(
0, max

v:uv∈E(G)\M

(
wuv − 1[dv=cv] min

vw∈M
zvw

))
,

where 1E is the indicator function for the event E, which takes value one when-
ever the event holds, and zero otherwise. If {v : uv ∈ E(G)\M} = ∅ then we set
αu(M, z) = 0. We write αu instead of αu(M, z) whenever the context is clear.

A solution (M, z) is stable if for all uv ∈ M we have zuv ≥ αu(M, z), and for
all unsaturated vertices u we have αu(M, z) = 0.

A solution (M, z) is balanced if it is stable and in addition for all uv ∈ M we
have zuv − αu(M, z) = zvu − αv(M, z).

2.1 Special Case: Unit Capacities

The definitions from the previous section simplify in the case where all vertices
have unit capacities. Specifically a solution to the unit capacity game (G,w) is

a pair (M,x) where M is now a matching of G and x ∈ R
|V (G)|
+ assigns a value

to each vertex such that for all edges uv ∈ M we have xu + xv = wuv and for
all u ∈ V (G) not covered by M we have xu = 0. Since each vertex has at most
one unique contract, the vector x from the solution (M,x) is also the allocation
vector in this case.

The outside option of vertex u can now be expressed as

αu(M,x) := max
v:uv∈E(G)\M

(wuv − xv) ,

where as before we set αu(M,x) = 0 whenever {v : uv ∈ E(G)\M} = ∅.
A solution (M,x) is stable if for all u ∈ V (G) we have xu ≥ αu(M,x) and

balanced if it is stable and in addition xu − αu(M,x) = xv − αv(M,x) for all
uv ∈ M .

2.2 Cooperative Games

Given an instance (G,w, c) of the network bargaining game we let N = V (G)
and define the value ν(S) of a set of vertices S ⊆ N as

ν(S) := max
M c-matching of G[S]

w(M).

Then the pair (N, v) denotes an instance of the matching game of Shapley and
Shubik [1971]. We will refer to this as the matching game associated with the
instance (G,w, c).

Given x ∈ R
|N |
+ and two vertices u, v ∈ V (G) we define the power of vertex u

over vertex v with respect to the vector x as

suv(x) := max
S⊆N :u∈S,v/∈S

ν(S) − x(S),
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where x(S) =
∑

u∈S xu. We write suv instead of suv(x) whenever the context is
clear. The core of the game is defined as the set

C :=
{
x ∈ R

|N |
+ : x(S) ≥ ν(S), ∀S ⊂ N, x(N) = ν(N)

}
.

The prekernel of the game is the set

K :=
{
x ∈ R

|N |
+ : suv(x) = svu(x) ∀u, v ∈ N

}
.

3 Balanced Solutions via Cooperative Games

The first attempt towards computing balanced solutions for the network bar-
gaining game with general capacities is to use the connection to cooperative
games presented in [2010]. For the special class of unit capacity and constrained
bipartite games, Bateni et al. show that the set of stable solutions corresponds
to the core, and the set of balanced solutions corresponds to the intersection
of the core and prekernel of the associated matching game. This implies that
efficient algorithms, such as the one of [1998], can be used to compute points in
the intersection of the core and prekernel from which a balanced solution can be
uniquely obtained.

3.1 Allocations in C ∩K with No Corresponding Balanced Solutions

The first question of interest is whether this equivalence between balanced solu-
tions and the intersection of the core and prekernel extends to network bargain-
ing games with arbitrary capacities. The following lemma proves that this is not
always the case.

Lemma 1. There exists an instance (G,w, c) of the network bargaining game
and a vector x ∈ C∩K such that there exists no balanced solution (M, z) satisfying
xu =

∑
v:uv∈M zuv for all u ∈ V (G).

Proof. Consider the following graph where every vertex has capacity 2 and the
edge weights are given above each edge
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Consider the vector x defined as xu = 20 for all u ∈ V (G). We claim that
the vector x is in the intersection of the core and prekernel and there exists no
balanced solution (M, z) corresponding to x. The proof is deferred to the full
version of this paper [2013]. ��

In view of Lemma 1, we cannot hope to extend the correspondence between
balanced solutions and allocations in the intersection of the core and prekernel
to all network bargaining games. However we can generalize the results of [2010]
by characterizing a larger class of network bargaining games, including unit
capacity and constrained bipartite games, for which this correspondence holds.
We achieve this by defining a certain gadget whose absence, together with the
fact that the c-matching M is acyclic, will be sufficient for the correspondence
to hold.

3.2 Gadgets

Let (G,w, c) be an instance of the network bargaining game and (M, z) a solu-
tion. Consider a vertex u ∈ V (G) with αu(M, z) > 0 and let v be a neighbour
of u in M . Let v′ be vertex u’s best outside option and if v′ is saturated in M ,
let u′ be its weakest contract. Using these definitions we have

αu(M, z) = wuv′ − 1[dv′=cv′ ]zv′u′ .

We say that u is a bad vertex in the solution (M, z) if at least one of the
following two conditions holds:

1. There is a v − v′ path in M ,
2. There is a u− u′ path in M , that does not pass through vertex v′.

We refer to such v − v′ or u − u′ paths as gadgets of the solution (M, z). The
following figure depicts these two types of gadgets, solid lines denote edges in M
and dashed lines denote edges in E\M .

3.3 Sufficient Conditions for Correspondence between Set of
Balanced Solutions and C ∩ K

We can now state our main theorem of this section.

Theorem 1. Let (G,w, c) be an instance of the network bargaining game. Let
x ∈ C and (M, z) be a corresponding stable solution so that xu =

∑
v:uv∈M zuv

for all u ∈ V (G). If the following two conditions are satisfied
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1. M is acyclic,
2. there are no bad vertices in the solution (M, z),

then, the following statement holds

(M, z) is a balanced solution if and only if x ∈ K.

Proof. Fix uv ∈ M . Note that it suffices to show suv = −zuv + αu, since this
would imply that suv = svu if and only if zuv−αu = zvu−αv. Our strategy is to
first show that suv is upper bounded −zuv + αu, after which it will be sufficient
to find a set T for which ν(T ) − x(T ) achieves this upper bound. We start with
the following lemma whose proof is deferred to the full version [2013].

Lemma 2. suv ≤ −zuv + αu.

Hence it suffices to find a set T ⊆ V (G) such that u ∈ T , v /∈ T and show
that ν(T ) − x(T ) ≥ −zuv + αu. Given a set of vertices S we let MS denote the
edges of M which have both endpoints in S. Note that for any set of vertices S
we have

w(MS) − x(S) = −
∑

ab∈M :a∈S,b/∈S

zab. (1)

We define C to be the set of components of G induced by the edges in M . Since
u and v are neighbours in M they will be in the same component, call it C. Now
suppose we remove the edge uv from C. Since M is acyclic, this disconnects C
into two components Cu and Cv, containing vertices u and v respectively. Now
MCu is a valid c-matching of Cu hence applying equation (1) to the vertex set
the component Cu we obtain

ν(Cu) − x(Cu) ≥ w(MCu) − x(Cu) = −zuv.

If αu = 0 then setting T to be the vertex set of component Cu completes the
proof for this case. Hence it remains to consider the case where αu > 0. Then
by stability of the solution (M, z) vertex u must be saturated in M . Let v′ be
vertex u’s best outside option. We split the analysis into four cases. Figure 3.3
shows an example of the first two cases.

Case 1: v′ ∈ Cu and v′ is not saturated in M . Since uv /∈ Cu and v′ is not
saturated in M the set of edges MCu ∪ {uv′} is a valid c-matching of Cu and
therefore

ν(Cu) − x(Cu) ≥ w(MCu ∪ {uv′}) − x(Cu)

= w(MCu) − x(Cu) + wuv′

= −zuv + wuv′ by applying (1) to Cu.

Case 2: v′ ∈ Cu and v′ is saturated in M . Let u′ be the weakest contract
of v′ and suppose we remove the edge v′u′ from Cu. Since M is acyclic, this
disconnects Cu into two components. From condition (2) we know that u′ is not
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on the u−v′ path in M . Hence u and v′ are in the same component of Cu\ {v′u′}.
Denote this component by Du. Now MDu ∪{uv′} is a c-matching of Du and thus

ν(Du) − x(Du) ≥ w (MDu ∪ {uv′}) − x(Du)

= w(MDu) − x(Du) + +wuv′

= −zuv − zv′u′′ + +wuv′ by applying (1) to Du

= −zuv + αu by choice of v′ and u′.

(a) Case 1 (b) Case 2

Fig. 1. Cases 1 and 2 in the proof Theorem 1

It remains to consider the following two cases whose proof is deferred to the
full version [2013]:

Case 3: v′ /∈ Cu and v′ is not saturated in M .
Case 4: v′ /∈ Cu and v′ is saturated in M . ��

We note that all network bargaining games studied in [2010] satisfy conditions
(1) and (2) of Theorem 1. In addition to these, Theorem 1 also covers the case of
network bargaining games where the underlying graph is a tree, but the vertices
are allowed to have arbitrary capacities. Hence starting with a maximum weight
c-matching M we can use the polynomial time algorithm of [1998] to compute a
point in the intersection of the core and prekernel for these games, from which
we can obtain a corresponding solution (M, z). Then using Theorem 1 we know
that (M, z) will be balanced.

4 Balanced Solutions via Reduction to the Unit Capacity
Games

While we were able to generalize the class of network bargaining games for which
balanced solutions can be obtained by computing a point in the intersection of
the core and prekernel, we were not able to apply this technique to all network
bargaining games. In this section we show that balanced solutions can be ob-
tained to any network bargaining game (G,w, c) by a reduction to a unit capacity
game defined on an auxiliary graph.
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4.1 Construction of the Instance (G′, w′) and Matching M ′

Suppose we are given an instance (G,w, c) of the network bargaining game to-
gether with a c-matching M of G. We describe below how to obtain an instance
(G′, w′) of the unit capacity game together with a matching M of G.

Construction: [(G,w, c) ,M ] → [(G′, w′),M ′]

1. for each u ∈ V (G): fix a labelling σu : {v : uv ∈ M} → {1, · · · , d(u)} and
create cu copies u1, · · · , ucu in V (G′).

2. for each uv in E(G) ∩M : add the edge uσv(u)vσu(v) to E(G′) ∩M ′ and set
its weight to wuv.

3. for each edge uv ∈ E(G)\M : add all edges uivj to E(G′) for all i ∈ [cu] and
j ∈ [cv], and set all their weights to wuv.

Example 1: Consider the instance depicted on the left hand side of the figure
below. The solid edges are in the c-matching M and the dotted edges are in
E\M . Node u has capacity four, nodes x and y have capacity two and all other
nodes have capacity one. All edges have unit weight.

We make four copies of u in G′, two copies of x and y, and one copy of every
other node. Each edge in M corresponds to a unique edge in M ′. For the edges
uv and uw which are not in M , we connect every copy of u to every copy of v
and w with edges in E(G′)\M ′. The resulting graph is on the right.

4.2 Mapping between the Two Solution Sets

Suppose we are given an instance of the network bargaining game (G,w, c) with
a c-matching M . Let [(G′, w′),M ′] be obtained using the construction given in
section 4.1. Note that M and M ′ have the same number of edges and each edge
uv ∈ M is mapped to the unique edge uivj ∈ M ′ where i = σv(u) and j = σu(v).
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This allows us to go back and forth between solutions on M and M ′ by dividing
the weight of each edge in the same way as its corresponding pair.

We define the two solution sets:

X :=
{
x ∈ R|V (G′)| : (M ′, x) is a solution to (G′, w′)

}
Z :=

{
z ∈ R2|E(G)| : (M, z) is a solution to (G,w, c)

}
.

And the two mappings:

1. φ : X → Z
For all uv ∈ E define

(φ(x)uv , φ(x)vu) :=

{(
xuσv(u)

, xvσu(v)

)
if uv ∈ M ,

(0, 0) otherwise.

2. φ−1 : Z → X .
For all ui ∈ V (G′) define

φ−1(z)ui :=

{
zuv if i = σu(v),

0 otherwise.

Note that z = φ(x) if and only if x = φ−1(z). The following lemma, whose
proof is deferred to the full version [2013], shows that the mapping given by the
function φ and its inverse φ−1 defines a bijection between the X and Z

Lemma 3. 1. If x ∈ X and z = φ(x), then z ∈ Z.
2. If z ∈ Z and x = φ−1(z) then x ∈ X .

From now on we write (M, z) ∼ (M ′, x) whenever z = φ(x) or equivalently
x = φ−1(z). The next lemma is the key step in showing that certain properties
of a solution are preserved under our mapping.

Lemma 4. Let (G,w, c) be an instance of the network bargaining game and M
a c-matching on G. Suppose the auxiliary instance (G′, w′) and the matching M ′

were obtained using the construction given in section 4.1. Let (M, z) be a solution
to (G,w, c) and (M ′, x′) a solution to (G′, w′) such that (M, z) ∼ (M ′, x). Then
for any u ∈ V (G) and any i ∈ [du] we have

αu(M, z) = αui (M ′, x) .

The proof is deferred to the full version [2013]. Using Lemma 4 we can now
prove that stability and balance are preserved when mapping between solutions
of the network bargaining game and the corresponding unit capacity game of
the auxiliary instance.

Theorem 2. Let (G,w, c) be an instance of the network bargaining game and M
a c-matching on G. Suppose the auxiliary instance (G′, w′) and the matching M ′

were obtained using the construction given in section 4.1. Let (M, z) be a solution
to (G,w, c) and (M ′, x′) a solution to (G′, w′) such that (M, z) ∼ (M ′, x). Then:
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1. (M, z) is stable if and only if (M ′, x) is stable.
2. (M, z) is balanced if and only if (M ′, x) is balanced.

Proof. Let uv ∈ M . Suppose that i = σv(u). Then zuv = xui and using Lemma
4 we have

zuv ≥ αu(M, z) if and only if xui ≥ αuσv(u)
(M ′, x) .

It remains to show that if (M ′, x) is stable then αu(M, z) = 0 for any unsaturated
vertices u of G. Suppose u is such a vertex. Then the vertex udu+1 is not covered
in M ′ and therefore x′

du+1 = 0. If (M ′, x) is stable then αudu+1
= 0 and by

Lemma 4 we have αu(M, z) = 0 as desired. This completes the proof of the
first statement. To prove the second statement let uv ∈ M and suppose that
i = σv(u) and j = σu(v). Then zuv = xui , zvu = xvj and by Lemma 4 we have:

zuv − αu(M, z) = zvu − αv(M, z) ⇔ xui − αui (M ′, x) = xvj − αvj (M ′, x) .

This completes the proof. ��

4.3 Algorithm for Computing Balanced Solutions

Using Theorem 2 we have the following algorithm for finding a balanced solution
to the network bargaining game (G,w, c):

1. Find a maximum c-matching M in G.
2. Obtain unit capacity game (G′, w′) with matching M ′ using the construction

from section 4.1.
3. Find a balanced solution x on the matching M ′ in G′.
4. Set z = φ(x) and return (M, z).

We note that step 3 of the algorithm can be implementing using the existing
polynomial time algorithm of Kleinberg and Tardos [2008]. Given any instance of
a network bargaining game with unit capacities together with a maximum weight
matching, their algorithm returns a balanced solution on the given matching,
whenever one exists.

4.4 Existence of Balanced Solutions

Using Theorem 2 we know that stable solutions of the original problem map to
stable solutions of the matching problem and viceversa. Since any stable solution
must occur on a c-matching, respectively matching, of maximum weight we have
the following corollary

Corollary 1. Let (G,w, c) be an instance of the network bargaining game and
M a c-matching on G. Suppose the auxiliary instance (G′, w′) and the matching
M ′ were obtained using the given construction. Then

1. M is a maximum weight c-matching for (G,w, c) if and only if M ′ is a
maximum weight matching for (G′, w′).
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2. There exists a balanced solution for (G,w, c) on the c-matching M if and
only if there exists a balanced solution for (G′, w′) on the matching M ′.

It was previously shown in [2008] that a unit capacity game possesses a bal-
anced solution if and only if it has a stable solution, which in turn happens if and
only if the linear program for the maximum weight matching of the underlying
graph has an integral optimal solution. For the case of network bargaining game
with general capacities, [2009] have shown that a stable solution exists if and
only if the linear program for the maximum weight c-matching of the underlying
graph has an integral optimal solution. In terms of existence of balanced solu-
tions, they only obtain a partial characterization by proving that if this integral
optimum is unique, then a balanced solution is guaranteed to exist. Our results
imply the following full characterization for the existence of balanced solutions,
thus extending the results of [2009]:

Theorem 3. An instance (G,w, c) of the network bargaining game has a bal-
anced solution if and only if it has a stable one.
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Abstract. We study algorithms for computing the convolution of a pri-
vate input x with a public input h, while satisfying the guarantees of
(ε, δ)-differential privacy. Convolution is a fundamental operation, in-
timately related to Fourier Transforms. In our setting, the private in-
put may represent a time series of sensitive events or a histogram of
a database of confidential personal information. Convolution then cap-
tures important primitives including linear filtering, which is an essential
tool in time series analysis, and aggregation queries on projections of the
data. We give an algorithm for computing convolutions which satisfies
(ε, δ)-differentially privacy and is nearly optimal for every public h, i.e. is
instance optimal with respect to the public input. We prove optimality
via spectral lower bounds on the hereditary discrepancy of convolution
matrices. Our algorithm is very efficient – it is essentially no more com-
putationally expensive than a Fast Fourier Transform.1

1 Introduction

Much useful data contains sensitive information about individuals (or the ac-
tions they take): typical examples are census data, data from medical studies,
and financial data. While analyzing such sensitive datasets is valuable for sci-
entific studies, policy and decision making, care must be taken to protect the
privacy of the individuals represented in the data. Simple measures such as re-
moving personally identifying attributes, replacing names with pseudonyms and
publishing only aggregate statistics have proved inadequate protection from so-
phisticated linkage attacks [27,25,26]. An extreme solution would be to remove
all sensitive information from the datasets, but this approach can destroy the
utility of the data: a medical study without disease incidence rates would be use-
less, for example. In recent years differential privacy [10] has become a standard
framework in which to reason about trade offs between privacy and utility, and
this is the framework we adopt in this paper.

We study the noise complexity of a special class of queries. Consider a database
representing users of N different types, or a time series of events that occurred
over N time steps. We may encode the database as a vector x indexed by
{1, . . . , N}, where xi gives the number of users of type i, in the database exam-
ple, or xi is the count of events that occurred at time step i. We say that two such
vectors x and x′ are neighbors when ‖x − x′‖1 ≤ 1. Neighboring input vectors

1 The full version of this paper can be found at http://arxiv.org/abs/1301.6447

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 445–456, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://arxiv.org/abs/1301.6447


446 N. Fawaz, S. Muthukrishnan, and A. Nikolov

correspond to databases that differ in at most a single user/event. Informally,
an algorithm is differentially private if its output distribution is almost identi-
cal for neighboring inputs. More precisely, a randomized algorithm A satisfies
(ε, δ)-differential privacy if for all neighbors x,x′ ∈ [0, 1]n, and all measurable
subsets T of the range of A, we have

Pr[A(x) ∈ T ] ≤ eεPr[A(x′) ∈ T ] + δ,

where probabilities are taken over the randomness of A.
In this work we are interested in workloads of M linear queries, given as

a matrix A; the intended output for the workload is Ax. Differential privacy
necessitates randomization and approximation for all non-trivial workloads; we
discuss accuracy in terms of mean squared error (MSE) as a measure of approx-
imation: the expected average of squared error over all M queries. The MSE
achieved by an algorithm is the worst MSE the algorithm achieves on any input
database.

The queries in a workload A can have different degrees of correlation, and
this poses different challenges for the private approximation algorithm. In one ex-
treme, whenA is a set of Ω(N) independently sampled random {0, 1} (i.e. count-
ing) queries differentially private algorithm needs to incur at least Ω(N) squared
error per query on average [9]. On the other hand, ifA consists of the same count-
ing query repeatedM times, we only need to addO(1) noise per query [10]. While
these two extremes are well understood, relatively less is known about workloads
of queries with some, but not perfect, correlation.

The convolution2 y = x ∗ y of the private input sequence x with a public
sequence h is defined as

yi =
N−1∑
j=0

hjxi−j mod N .

If we view the input sequence as a vector x, and define the circulant convolution
matrix H = (hN+j−i mod N )i,j∈{0,...,N−1}, we see the convolution map is equiv-
alent to computing the N linear queries Hx. Each query is a circular shift of
the previous one, and, therefore, the queries are far from independent but not
identical either. Convolution is a fundamental operation that arises in algebraic
computations such as polynomial multiplication, in signal analysis, and has well
known connection to Fourier transforms. Of primary interest to us, it is a natural
primitive in various applications:

– linear filters in the analysis of time series data can be cast as convolutions; as
example applications, linear filtering can be used to isolate cycle components
in time series data from spurious variations, and to compute time-decayed
statistics of the data;

– when user type in the database is specified by d binary attributes, aggre-
gate queries such as k-wise marginals and generalizations to other predicate
queries can be represented as convolutions.

2 Here we define circular convolution, but, as discussed in the paper, our results gen-
eralize to other types of convolution, which are defined similarly.
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Privacy concerns arise naturally in these applications: the time series data can
contain records of sensitive events, such as financial transactions, records of user
activity, etc.; some of the attributes in a database can be sensitive, for example
when dealing with databases of medical data.

We give the first (ε, δ)-differentially private algorithm which is nearly query-
optimal: it achieves MSE which is not much smaller than the smallest MSE that
any (ε, δ)-differentially private algorithm can achieve on the given convolution
query.3

To prove the optimality of our algorithm, we need to prove optimal lower
bounds on the noise complexity of private algorithms for computing convolu-
tions. We use the recent discrepancy-based noise lower bounds of Muthukrish-
nan and Nikolov [24]. We use a characterization of combinatorial discrepancy
in terms of determinants of submatrices discovered by Lovász, Spencer, and
Vesztergombi [23], together with ideas by Hardt and Talwar [18]. A main tech-
nical ingredient in the proof of our lower bound is a connection between the
discrepancy of a matrix A and the discrepancy of PA where P is an orthogonal
projection operator.

Related Work. The problem of computing private convolutions has not been
considered in the literature before. However, there is a fair amount of work on
the more general problem of computing arbitrary linear queries, as well as some
work on special cases of convolution maps.

Bolot et al. [4] give algorithms for various decayed sum queries: window sums,
exponentially and polynomially decayed sums. Any decayed sum function is a
type of linear filter, and, therefore, a special case of convolution. Thus, our cur-
rent work gives a nearly optimal (ε, δ)-differentially private approximation for
any decayed sum function. Moreover, as far as mean squared error is concerned,
our algorithms give improved error bounds for the window sums problem: con-
stant squared error per query. However, unlike [4], we only consider the offline
batch-processing setting, as opposed to the online continual observation setting.

The work of Barak et al. [1] on computing k-wise marginals concerns a re-
stricted class of convolutions (see Section 5). Moreover, Kasiviswanathan [19]
show a noise lower bound for k-wise marginals which is tight in the worst case.
Our work is a generalization: we are able to give nearly optimal approximations
to a wider class of queries, and our lower and upper bounds nearly match for
any convolution.

Li and Miklau [21,22] proposed the class of extended matrix mechanisms,
building on prior work on the matrix mechanism [20], and showed how to effi-
ciently compute the optimal mechanism from the class. Since our mechanism is
a special instance of the extended matrix mechanism, the algorithms of Li and
Miklau have at most as much error as our algorithm. They also derived a spectral
lower bound [22] on the extended matrix mechanism; their results further imply
that the spectral lower bound is tight for the extended mechanism for workloads
corresponding to convolutions. However, unlike our lower bounds, this has no

3 We note that while our algorithm is instance optimal with respect to queries, the
measure of error we use is still worst-case over databases.
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direct implication for private algorithms which are not an instantiation of the
matrix mechanism.

Independently and concurrently with our work, Cormode et al. [8] considered
adding optimal non-uniform noise to a fixed transform of the private database.
Similarly to [8], we gain significantly in efficiency over the general extended ma-
trix mechanism by fixing a specific transform (in our case the Fourier transform)
of the data and computing a closed form expression for the optimal noise magni-
tudes. Our lower bounds show that, somewhat surprisingly, this simplification of
Cormode et al. in fact comes without loss of generality for any set of convolution
queries.

In the setting of (ε, 0)-differential privacy, [18,2] prove nearly optimal upper
and lower bounds on approximating Ax for any matrix A. Prior to our work
a similar result was not known for the weaker notion of approximate privacy,
i.e. (ε, δ)-differential privacy. After a preliminary version of this paper was made
available, our results were generalized by Nikolov, Talwar, and Zhang [28] to
give nearly optimal algorithms for computing any linear map A under (ε, δ)-
differential privacy. However, this comes at the cost of higher computational
complexity: even the algorithm from [28], which is more efficient than the al-
gorithms from [18,2], has running time Ω(N3), as it needs to approximate the
minimum enclosing ellipsoid of an N -dimensional convex body. By contrast our
algorithm’s running time is dominated by the running time of the Fast Fourier
Transform, i.e. O(N logN), making it suitable for practical applications.

A related line of research exploits sparsity assumptions on the private database
in order to reduce error [3,11,16,28]. Using techniques from learning theory,
more efficient algorithms for sparse databases have been designed for the set
of marginal queries [15,17,7,29,6]. As we do not limit the database size, our re-
sults are not directly comparable. Also, our lower bounds already hold when the
database size (which in our notation corresponds to ‖x‖1) is at least the num-
ber of linear queries, and in that regime our algorithm is nearly optimal, and
cannot be significantly improved in terms of noise complexity. Finally, note that
the optimal error for a subset of all marginal queries may be less than linear
in database size, and our algorithms will give near optimal error for the specific
subset of interest.

Recent work [17,7,29] on privately answering marginal queries has taken the
approach of treating the database as a function from queries to the reals, and
approximating this function by a small degree polynomial. This technique bears
some resemblance to our approach for generalized marginals: we compute the
Fourier transform of the database privately and spend most of the privacy budget
on lower order Fourier coefficients, since they carry the most information.

Organization. We begin with preliminaries on differential privacy and convo-
lution operators. In section 3 we derive our main lower bound result, and in
section 4 we describe and analyze our nearly optimal algorithm. In section 5 we
describe applications of our main results.
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2 Preliminaries

Notation: N, R, and C are the sets of non-negative integers, real, and complex
numbers respectively. By log we denote the logarithm in base 2 while by ln we
denote the logarithm in base e. Matrices and vectors are represented by boldface
upper and lower cases, respectively. AT , A∗, AH stand for the transpose, the
conjugate and the transpose conjugate of A, respectively. The trace and the
determinant ofA are respectively denoted by tr(A) and det(A). Am: denotes the
m-th row of matrix A, and A:n its n-th column. A|S , where A is a matrix with
N columns and S ⊆ [N ], denotes the submatrix of A consisting of those columns
corresponding to elements of S. λA(1), . . . , λA(n) represent the eigenvalues of
an n × n matrix A. IN is the identity matrix of size N . E[·] is the statistical
expectation operator. Lap(x, s) denotes the Laplace distribution centered at x
with scale s, i.e. the distribution of the random variable x + η where η has
probability density function p(y) ∝ exp(−|y|/s).

2.1 Fourier Eigen-Decomposition of Convolution

In this section, we recall the definition of the Fourier basis, and the eigen-
decomposition of circular convolution in this basis.

Definition 1. The normalized Discrete Fourier Transform (DFT) matrix of
size N is defined as

FN =

(
1√
N

exp

(
− j2π m n

N

))
m,n∈{0,...,N−1}

. (1)

Note that FN is symmetric (FN = FT
N ) and unitary (FNFH

N = FH
NFN = IN ).

We denote by fm = N−1/2(1, e
j2π m

N , . . . , e
j2π m (N−1)

N )T ∈ CN the m-th column
of the inverse DFT matrix FH

N . Or alternatively, fHm is the m-th row of FN . The

normalized DFT of a vector h is simply given by ĥ = FNh.

Theorem 1 ([14]). Any circulant matrix H can be diagonalized in the Fourier
basis FN : the eigenvectors of H are given by the columns (fm)m∈{0,...,N−1} of
the inverse DFT matrix FH

N , and the associated eigenvalues {λm}m∈{0,...,N−1}
are given by

√
N ĥ, i.e. by the DFT of the first column h of H:

∀m ∈ {0, . . . , N − 1}, Hfm = λmfm

where λm =
√
Nĥm =

N−1∑
n=0

hne
− j2π m n

N .

Equivalently, in the Fourier domain, the circular convolution matrix H becomes
a diagonal matrix Ĥ = diag{

√
N ĥ}.

Corollary 1. Consider the circular convolution y = Hx of x and y. Let x̂ =
FNx and ĥ = FNh denote the normalized DFT of x and h. In the Fourier
domain, the circular convolution becomes a simple entry-wise multiplication of
the components of

√
N ĥ with the components of x̂: ŷ = FN y = Ĥ x̂.
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2.2 Accuracy

Definition 2. Given a vector h ∈ RN which defines a convolution matrix H,
the mean (expected) squared error (MSE) of an algorithm A is defined as

MSE = sup
x∈RN

1

N
E[‖A(x)−Hx‖22].

Note that MSE measures the mean expected squared error per output compo-
nent. Note further that MSE is a function of both the algorithm and the public
convolution matrix, but is defined to be worst-case over private inputs.

3 Lower Bounds

In this section we derive a spectral lower bound on mean squared error of dif-
ferentially private approximation algorithms for circular convolution. We prove
that this bound is nearly tight for every fixed h in the Section 4. The lower
bound is stated as Theorem 2.

Theorem 2. Let h ∈ RN be an arbitrary real vector and let us relabel the
Fourier coefficients of h so that |ĥ0| ≥ . . . ≥ |ĥN−1|. For all sufficiently small ε
and δ, the expected mean squared error MSE of any (ε, δ)-differentially private
algorithm A that approximates h ∗ x is at least

MSE = Ω

(
N

max
K=1

K2ĥ2K−1

N log2N

)
. (2)

For the remainder of the paper, we define the notation specLB(h) for the right

hand side of (2), i.e. specLB(h) = maxNK=1
K2ĥ2

K−1

N log2 N
.

3.1 Discrepancy Preliminaries

We define (�2) hereditary discrepancy as

herdisc(A) = max
W⊆[N ]

min
v∈{−1,+1}W

‖Av‖2.

The following result connects discrepancy and differential privacy:

Theorem 3 ([24]). Let A be an M ×N complex matrix and let A be an (ε, δ)-
differentially private algorithm for sufficiently small constant ε and δ. There
exists a constant C and a vector x ∈ {0, 1}N such that E[‖A(x) − Ax‖22] ≥
C herdisc(A)2

log2 N
.

The determinant lower bound for hereditary discrepancy due to Lovász,
Spencer, and Vesztergombi gives us a spectral lower bound on the noise required
for privacy.
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Theorem 4 ([23]). There exists a constant C′ such that for any complex M ×
N matrix A, herdisc(A) ≥ C′ maxK,B

√
K| det(B)|1/K , where K ranges over

[min{M,N}] and B ranges over K ×K submatrices of A.

Corollary 1. Let A be an M × N complex matrix and let A be an (ε, δ)-
differentially private algorithm for sufficiently small constant ε and δ. There
exists a constant C and a vector x ∈ {0, 1}N such that, for any K ×K subma-

trix B of A, E[‖A(x)−Ax‖22] ≥ CK| det(B)|2/K
log2 N

.

3.2 Proof of Theorem 2

We exploit the power of the determinant lower bound of Corollary 1 by combining
the simple but very useful observation that projections do not increase mean
squared error with a lower bound on the maximum determinant of a submatrices
of a rectangular matrix. We present these two ingredients in sequence and finish
the section with a proof of Theorem 2.

Lemma 1. Let A be an M×N complex matrix and let A be an (ε, δ)-differentially
private algorithm for sufficiently small constant ε and δ. There exists a constant
C and a vector x ∈ {0, 1}N such that for any L ×M projection matrix P and for

any K ×K submatrix B of PA, E[‖A(x)−Ax‖22] ≥ C K| det(B)|2/K
log2 N

.

The proof of the lemma is based on the observation that A can be used to
answer linear queries Bx by computing y = A(x) and outputting (a subset of
the coordinates of) Px. The MSE of this new mechanism is no larger than the
error of A. Details can be found in the full version of the paper.

Our main technical tool is a linear algebraic fact connecting the determinant
lower bound for A and the determinant lower bound for any projection of A.

Lemma 2. Let A be an M ×N complex matrix with singular values λ1 ≥ . . . ≥
λN and let P be a projection matrix onto the span of the left singular vectors
corresponding to λ1, . . . , λK . There exists a constant C and K×K submatrix B
of PA such that

| det(B)|1/K ≥ C

√
K

N

(
K∏
i=1

λi

)1/K

Proof. Let C = PA and consider the matrix D = CCH . It has eigenvalues
λ21, . . . , λ

2
K , and therefore det(D) =

∏K
i=1 λ

2
i . On the other hand, by the Binet-

Cauchy formula for the determinant, we have

det(D) = det(CCH) =
∑

S∈([N ]
K )

det(C|S)2 ≤
(
N

K

)
max

S∈([N ]
K )

det(C|S)2.

Rearranging and raising to the power 1/2K, we get that there exists a K ×K

submatrix of C such that | det(B)|1/K ≥
(
N
K

)−1/2K
(∏K

i=1 λi

)1/K

. Using the

bound
(
N
K

)
≤

(
Ne
K

)K
completes the proof.
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We can now prove our main lower bound theorem by combining Lemma 1
and Lemma 2.

Proof (of Theorem 2). As usual, we will express h ∗ x as the linear map Hx,
where H is the convolution matrix for h. By Lemma 1, it suffices to show that
for each K, there exists a projection matrix P and a K × K submatrix B of
PH such that | det(B)|1/K ≥ Ω(

√
K|ĥK |). Recall that the eigenvalues of H are√

Nĥ0, . . . ,
√
NĥN−1, and, therefore, the i-th singular value of H is

√
N |ĥi−1|.

By Lemma 2, there exists a constant C, a projection matrix P , and a submatrix
B of PH such that

| det(B)|1/K ≥ C

√
K

N

(
K−1∏
i=0

√
N |ĥi|

)1/K

≥ C
√
K|ĥK |.

This completes the proof.

4 Upper Bounds

Next we describe an algorithm which is nearly optimal for (ε, δ)-differential pri-
vacy. This algorithm is derived by formulating the error of a natural class of
private algorithms as a convex program and finding a closed form solution. The
class of private algorithms we consider is those which add independent Gaussian
noise to the Fourier coefficients of the private input x. This is a special case of
the extended matrix mechanism [21]; working with a less general algorithm is
what allows us to derive a closed form for the optimal algorithm. At the same
time, the error of our algorithm matches the lower bound on extended matrix
mechanisms from [22].

Consider the class of algorithms, which first add independent Laplacian noise
variables zi = Lap(0, bi) to the Fourier coefficients x̂i to compute x̃i = x̂i + zi,

and then output ỹ = FH
NĤx̃. This class of algorithms is parameterized by the

vector b = (b0, . . . , bN−1); a member of the class will be denoted A(b) in the
sequel. The question we address is: For given ε, δ > 0, how should the noise
parameters b be chosen such that the algorithm A(b) achieves (ε, δ)-differential
privacy in x for �1 neighbors, while minimizing the mean squared error MSE?
It turns out that by convex programming duality we can derive a closed form
expression for the optimal b, and moreover, the optimal A(b) is nearly optimal
among all (ε, δ)-differentially private algorithms. The optimal parameters are
used in Algorithm 1.

Theorem 5. Algorithm 1 satisfies (ε, δ)-differential privacy, and achieves ex-
pected mean squared error

MSE = 4
ln(1/δ)

ε2N
‖ĥ‖21. (3)

Moreover, Algorithm 1 runs in time O(N logN).
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Algorithm 1. Fourier Mechanism

Set γ = 2 ln(1/δ)‖ĥ‖1
ε2N

Compute x̂ = FNx and ĥ = FNx.
for all i ∈ {0, . . . , N − 1} do

if |ĥi| > 0 then

Set zi = Lap

(√
γ

|ĥi|

)
else if |ĥi| = 0 then

Set zi = 0
end if
Set x̃i = x̂i + zi.
Set ȳi =

√
Nĥix̃i.

end for
Output ỹ = FH

N ȳ

The proof of Theorem 5 is omitted from the current version of the paper.
Next, we show that it implies that Algorithm 1 is almost optimal for any
given h.

Theorem 6. For any h, Algorithm 1 satisfies (ε, δ)-differential privacy and

achieves expected mean squared error O
(
specLB(h) log

2 N log2 |I| ln(1/δ)
ε2

)
.

Proof. Assume that |ĥ0| > |ĥ1| > . . . > |ĥN−1|. Then, by definition of I = {0 ≤
i ≤ N − 1 : |ĥi| > 0}, we have |ĥj | = 0, for all j > |I| − 1. Thus,

‖ĥ‖1 =

|I|−1∑
i=0

|ĥi| =
|I|∑
i=1

1

i
i|ĥi−1| ≤

⎛⎝ |I|∑
i=1

1

i

⎞⎠√
N logN

√
specLB(h)

= H|I|
√
N logN

√
specLB(h), (4)

where Hm =
∑m

i=1
1
i denotes the m-th harmonic number. Recalling that Hm =

O(logm), and combining the bound (4) with the expression of the MSE (3)
yields the desired bound.

5 Generalizations and Applications

In this section we describe some generalizations and applications of our lower
bounds and algorithms for private convolution. Next we sketch applications to
computing running sums, and linear filters motivated by analysis of time series
data. Applications to computing compressible convolution maps, and comput-
ing generalized marginals on data cubes (which are an example of compressible
convolutions) are described in the full version of the paper.

5.1 Running Sum

Running sums can be defined as the circular convolution x′ ∗ h of the se-
quences h = (1, . . . , 1, 0, . . . , 0), where there are N ones and N zeros, and
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x′ = (x, 0, . . . , 0), where the private input x is padded with N zeros. An ele-

mentary computation reveals that ĥ1 =
√
N and ĥi = O(N−1/2) for all i > 1.

By Theorem 5, Algorithm 1 computes running sums with mean squared error
O(1) (ignoring dependence on ε and δ), improving on the bounds of [5,12,30] in
the mean squared error regime.

5.2 Linear Filters in Time Series Analysis

Linear filtering is a fundamental tool in analysis of time-series data. A time series
is modeled as a sequence x = (xt)

∞
t=−∞, supported on a finite set of time steps.

A filter converts the time series into another time series. A linear filter does so by
computing the convolution of x with a series of filter coefficients w, i.e. computing
yt =

∑∞
i=−∞ wixt−i. For a finitely supported x, y can be computed using circular

convolutionby restrictingx to its support set andpaddingwith zeros on both sides.
We consider the case where x is a time series of sensitive events. Each element

xi is a count of events or sum of values of individual transactions that have
occurred at time step i. When we deal with values of transactions, we assume that
individual transactions have much smaller value than the total. We emphasize
that the definition of differential privacy with respect to x defined this way
corresponds to event-level privacy.

We consider applications to financial analysis, but our methods are applicable
to other instances of time series data, e.g. we may also consider network traffic
logs or a time series of movie ratings on an online movie streaming service. We
can perform almost optimal differentially private linear filtering by casting the
filter as a circular convolution. For more references and detailed description, we
refer the reader to the full version of our paper and the book of Gençan, Selçuk,
and Whitcher [13].

6 Conclusion

We derive nearly tight upper and lower bounds on the error of (ε, δ)-differentially
private algorithms for computing convolutions. Our lower bounds rely on recent
general lower bounds based on discrepancy theory and elementary linear alge-
bra; our upper bound is a simple computationally efficient algorithm. We also
sketch several applications of private convolutions, in time series analysis and in
computing generalizes marginal queries on a d-attribute database.

Since our algorithm for computing convolutions has running time O(N logN),
we conjecture that there exists an Õ(Nn) time algorithm for computing convolu-
tions with optimal error when the database size is at most n. This would improve
on the more general algorithm from [28], which has running time O(M2Nn).
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Abstract. The Minimum Linear Arrangement (MLA) problem asks
to embed a given graph on the integer line so that the sum of the edge
lengths of the embedded graph is minimized. Most layout problems are
either intractable, or not known to be tractable, parameterized by the
treewidth of the input graphs. We investigate MLA with respect to three
parameters that provide more structure than treewidth. In particular,
we give a factor (1+ε)-approximation algorithm for MLA parameterized
by (ε, k), where k is the vertex cover number of the input graph. By a
similar approach, we describe two FPT algorithms that exactly solve
MLA parameterized by, respectively, the max leaf and edge clique cover
numbers of the input graph.

1 Introduction

Given a graph G = (V,E), a linear arrangement is a linear ordering on the set of
vertices V of G which is specified by a permutation π : V → {1, 2, . . . , |V |}. The
cost of the arrangement is defined by cost(π) =

∑
(u,v)∈E |π(u) − π(v)|; that is,

the cost of the ordering is the sum total of the edge lengths under the ordering.
In typical applications one is interested in linear arrangements of low cost. The
Minimum Linear Arrangement (MLA) problem is the problem of finding a
linear arrangement of minimum cost, and the standard parameterization of the
problem is to determine if an input graph G has a layout of cost at most k (the
parameter).

MLA is one of the most important and well studied graph ordering problems.
It is in some sense closely related to the Bandwidth problem, which seeks to
minimize the maximum edge length of an ordering of the vertices. It has various
applications, most of which stem from the domain of VLSI circuit design. As it
was known to be NP-complete already from the mid 70’s [12], most of the early
work on this problem focused on designing heuristics and approximation algo-
rithms. For a graph with n vertices, the best known approximation ratio for MLA

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 457–468, 2013.
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is O(
√
logn log logn), due to Feige and Lee [5], and Charikar, Hajiaghayi, Karloff

and Rao [4]. Earlier notable work includes the paper by Rao and Richa [18] who
presented an O(log n)-approximation algorithm for the problem, along with an-
other algorithm for planar graphs that achieves a ratio of O(log logn). Recently,
Ambühl, Mastrolilli, and Svensson [1] showed that MLA does not admit a PTAS
unless NP-complete problems can be solved in randomized subexponential time.
We refer the reader to [18] for a further account of earlier work on MLA.

In terms of parameterized complexity, the standard parameterization of MLA

is trivially fixed-parameter tractable (FPT). Gutin et al. presented in [14] an FPT
algorithm which, given a graph on n vertices and m edges, and a parameter
k, outputs a linear arrangement of cost at most m + k, if one exists. Fernau
in [11] described efficient bounded search tree FPT algorithms forMLA under its
standard parameterization. Bodlaender et al. [3] investigated exact exponential-
time algorithms for several ordering problems, including MLA.

Most parameterized problems are FPT parameterized by the treewidth of the
input graph. However, graph layout and width problems are a notable exception
(but see also [6] for further examples of parameterized problems that are W [1]-
hard when parameterized by the input treewidth, or even the input vertex cover
number). Parameterized by the treewidth of the input graph, Bandwidth is
known to be hard for W [t] for all t (this follows from the results in [2]). Whether
something similar holds for MLA is unknown. This general situation motivates
studying the complexity of these problems, parameterized by structural parame-
ters even stronger than treewidth, a program that is sometimes called parameter
ecology. See [8] for a recent survey of this area.

In this paper, we consider the complexity of MLA parameterized by three
structural parameters that have a certain commonality: all three, when bounded,
force the input graph G to have a structure that essentially consists of an elab-
oration of some small (parametrically bounded) “seed” graph H , that gives us
sufficient information about the entire graph G to be able to derive efficient
algorithms. The three graph structural parameters we consider are:

(i) The vertex cover number of G, denoted vc(G), which is the size of the
smallest set of vertices intersecting every edge in G.

(ii) The maximum leaf number of G, denoted m�(G), which is the maximum
number of leaves in any spanning tree of G.

(iii) The edge clique cover number of G, denoted ecc(G), which is defined to be
the minimum number of cliques required to cover all the edges of G.

The question of whether MLA is FPT by the vertex cover number of the in-
put graph has been prominently raised in [10], where it is shown that a number
of graph layout and width problems such as Bandwidth, Cutwidth and Dis-

tortion are FPT by this parameter, and this question has been a noted open
problem in parameterized algorithmics. Here we offer a partial positive answer
by taking an approach that combines parameterization and approximation. One
of our main results shows that MLA can be approximated to within a factor of
(1 + ε) of optimal, in FPT time for the aggregate parameter (1/ε, k), where k is
the vertex cover number of the input graph. (Whether the MLA problem can be
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exactly solved in FPT time for the parameter k alone still remains open.) In [9]
it is shown that Bandwidth is FPT, parameterized by the max leaf number of
the input graph. Here we obtain a matching result for MLA; it can be exactly
solved in FPT time for this parameter. While the techniques used in both re-
sults look similar from a bird’s eye, there are several major differences hiding in
the details. Finally, our last result shows that the edge clique cover number can
potentially be a useful parameterization for other graph layout problems.

The paper is organized as follows. In Section 2 we give a (1+ε)-approximation
for MLA parameterized by vc(G). In Sections 3 and 4 we present FPT algorithms
for MLA using the parameters m�(G) and ecc(G), respectively. We conclude in
Section 5 with some open problems. Due to space constraints some of the proofs
are omitted. The detailed results appear in [7].

2 MLA Parameterized by Vertex-Cover Number

In this section we present an algorithm which yields a (1+ ε)-approximation for
MLA in FPT-time with respect to k = vc(G) and 1/ε, where G is the input
graph and ε > 0. Our algorithm proceeds as follows.

W.l.o.g., we assume that G has no isolated vertices, and let m = |E|. The first
step of our algorithm is to compute a vertex cover V ′ ⊆ V of G of size k; let
I = V \ V ′. Note that each vertex in I has neighbors only in V ′. We define the
type of node u ∈ I to be its set of neighbors, N(u). Clearly, there are T ≤ 2k

different types of vertices in I. Let nt denote the number of vertices of type t,
1 ≤ t ≤ T . The main idea of our algorithm is as follows. We put together vertices
of the same type into groups of an appropriately chosen size, and then compute
an optimal linear arrangement for the graph obtained by merging each group
into a single mega-vertex. The analysis of our algorithm relies on an interesting
homogeneity lemma, which relates to the behavior of vertices of identical type
inside “gaps” formed by the vertices of V ′ in an optimal arrangement for G. A
detailed description of the algorithm is given below (see Algorithm 1).

2.1 Analysis

We now prove that the algorithm yields a solution that is within factor (1 + ε)
from the optimal.

Theorem 1. Algorithm 1 computes a (1 + ε)-approximate linear arrangement
for G in FPT time with respect to k and 1/ε.

We use in the proof a few lemmas. Given a layout π for G, let u1, . . . , uk
denote the vertices in V ′ as ordered in π. We say that a vertex v ∈ I is in gap i,
1 ≤ i ≤ k− 1, if π(ui) < π(v) < π(ui+1). Similarly, v is in gap 0 if π(v) < π(u1),
and in gap k if π(uk) < π(v). The following lemma shows that the vertices
of V ′ \ V appear homogenously according to their type in some optimal linear
arrangement of G.
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Algorithm 1. MLA parameterized by vc(G)

Input: (G, ε, k).
Output: A linear ordering π = (π(1), . . . , π(n)) for the vertices in G.

1: Set s = εm
4k2(k+1)2k

.

2: Apply an FPT algorithm to find a minimum vertex cover V ′ ⊆ V of G. If |V ′| > k
then STOP.

3: Partition the vertices in I into T types.
4: for all 1 ≤ t ≤ T do
5: Partition the vertices of type t arbitrarily to groups (mega-vertices), where each

group is of size s (except, maybe, for the last group).
6: Set the neighbors of each mega-vertex to be the neighbors (in V ′) of a vertex of

type t.
7: Let G′ = (VM ∪ V ′, EM ) be the graph formed by the mega-vertices, where VM is

the set of mega-vertices and EM is the set of edges connecting VM and V ′.
8: for all linear arrangements π′ of G′ do
9: Lift π′ to a linear arrangement π of G, replacing each mega-vertex by the corre-

sponding set of vertices in I ; calculate the cost of π.
10: return the layout π found in Step 9 yielding the minimum cost.

Lemma 1 (Homogeneity for vc(G)). There exists an optimal solution in
which the vertices of each type appear in gap i consecutively, for all 1 ≤ i ≤ k−1.

Proof. Let π : V → {1, . . . , n} denote an optimal linear arrangement of G, and
let δ(v) denote the force of v (with respect to π) defined by

δ(v) = |{u ∈ N(v)| π(u) > π(v)}| − |{u ∈ N(v)| π(u) < π(v)}|.

We note that for any gap i, 0 ≤ i ≤ k, placing the vertices in I from left to
right in non-decreasing order by δ(v) gives an optimal ordering within this gap.
Indeed, if there exists a pair of vertices u, v ∈ I which are adjacent according to
π in gap i with δ(v) > δ(u) and π(v) < π(u), we can swap v and u and obtain a
linear arrangement of smaller cost. It follows that all of the vertices v with equal
force in gap i will be placed consecutively. We can thus place all of the vertices
of type t as a contiguous block in gap i without harming the optimality of the
arrangement, since all of these vertices have the same force in gap i. �

Lemma 2. The cost of any linear arrangement for G is at least m2

4k2 .

Proof. It is not difficult to see that a graph G with vc(G) = k and m edges
attaining the minimum possible cost of a linear arrangement is the disjoint union
of k stars. Consider such a graph G∗, and let �r denote the number of edges in
the r-th star of G∗, 1 ≤ r ≤ k. Then the cost of a minimum linear arrangement
of G∗ is lower-bounded by

MLA(G∗) ≥
k∑

r=1


�r/2�∑
d=1

2d ≥
k∑

r=1

�2r
4
.
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The function
∑k

r=1
�2r
4 above is minimized when �r = m

k for all 1 ≤ r ≤ k. Thus,

MLA(G∗) ≥ m2

4k2 , and the lemma follows. �

Lemma 3. Let MLA(G) denote the cost of the optimal arrangement for G,
and let MLA(G′) denote the cost of the layout returned by Algorithm 1. Then

MLA(G′) ≤ MLA(G) + εm2

4k2 .

Proof. We note that Algorithm 1 considers only assignments of integral num-
bers of mega-vertices in each gap. However, it may be the case that any optimal
ordering for G contains fractional assignments of mega-vertices in some of the
gaps. Consider such an optimal ordering πo for G. Let πI

o be an integral as-
signment in which the number of mega-vertices of each type in any gap of πo
is rounded up/down to the next integral value. Thus, the total increase in the
number of vertices in any gap is at most s · 2k = εm

4k2(k+1) . Let lengtho(e) be

the cost incurred by e ∈ E (or, the length of e) in πo. Consider an iteration of
Algorithm 1, in which it considers an integral assignment that corresponds to
πo. Then, lengtho(e) is stretched by the additional vertices in πI

o , in each gap
that e crosses, i.e., at most by s · 2k · (k + 1) = εm

4k2 . Since Algorithm 1 outputs
an integral assignment of minimum cost, we have the statement of the lemma.

Proof of Theorem 1: Observe that the running time of Algorithm 1 can be
roughly bounded by the number of linear arrangements of G′. Note that |E′| =
�m/s� = O(2kk3) and |V ′| ≤ 2|E′|, as G′ has no isolated vertices. Thus, the total
running time of the algorithm can be bounded by O∗((2kk3)!). Furthermore, by
Lemmas 2 and 3, we have

MLA(G′)

MLA(G)
≤ 1 +

εm2

4k2 ·MLA(G)
≤ 1 + ε,

where MLA(G′) denotes the minimum cost of the layout returned by the al-
gorithm, and MLA(G) denotes the optimal cost. Thus, Algorithm 1 returns a
(1 + ε)-approximate solution in FPT time with respect to (ε, k). �

3 MLA Parameterized by Max-Leaf Number

In this section we give an FPT algorithm for MLA parameterized by k =
m�(G), for k > 1. We start with some definitions. Given a graph H =
(V ′, E′), a subdivision of an edge e′ = (u, v) ∈ E′ replaces e′ by Esub(e

′)
= {(u, v1)(v1, v2) . . . (vne′ , v)}, for some ne′ ≥ 1. Thus, the edge e′ becomes
an edge-path, and we add to H ′ ne′ vertices. We say that a graph G is a subdi-
vision of a graph H if G was generated by subdivision operations on the edges
of H .

As shown in [16], if m�(G) = k then G is a subdivision of a graph H on at
most 4k−2 vertices. We call H = (V ′, E′), where V ′ ⊆ V and |V ′| = k′ ≤ 4k−2,
the seed graph of G. Let S ⊆ E′ denote the set of subdivided edges in H . Then,
V = V ′ ∪ (∪e′∈S{v1, . . . , vne′ }), and E = E′ \ S ∪ (

⋃
e′∈S Esub(e

′)). We say that
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a vertex w ∈ V \ V ′ belongs to e′, where e′ = (u, v) ∈ E′, if w is on the path
(u, v1, . . . vne′ , v) in G.

Our algorithm for MLA, parameterized by m�(G), branches on an exhaustive
set of solution patterns which has size bounded by a function of k. This set of
patterns contains at least one optimal solution for the graph G, if one exists.
Then, to determine when a solution pattern can be realized, we solve a linear
integer program which outputs placements for all vertices of G in a permuta-
tion that is consistent with the given pattern. A detailed description is given in
Algorithm 2.

Algorithm 2. MLA parametrized by m�(G)

Input: (G, k).
Output: A linear ordering π = (π(1), . . . , π(n)) for the vertices in G.

1: Let H = (V ′, E′) be the seed graph of G, where E′ = {e1, . . . , em′}
2: for all permutations σ ∈ Sk′ of the vertices in V ′ do
3: for all configurations of E′, C̄ = (C̄e1 , . . . , C̄em′ ) do
4: Solve an integer linear program to determine the position of vertices in V \V ′

among vertices in V ′, such that the total cost is minimized (see details below).

5: return a permutation σ of V ′ which yields minimum cost for G.

We define a permutation π of the vertices in G, by extending a permutation
σ of the vertices in H . Given such a permutation σ, we now formulate an integer
linear program to find the position of vertices in V \ V ′ among the vertices of
H . Recall that any permutation σ = (u1, . . . , uk′) defines (k′+1) gaps. Let π be
a permutation of V that is consistent with σ. Let π(v) ∈ [n] denote the position
of vertex v ∈ V in π, where n = |V |. We say that a vertex w ∈ V \ V ′ is placed
in gap i in π , 1 ≤ i ≤ k′ − 1, if π(ui) < π(w) < π(ui+1), where ui, ui+1 ∈ V ′; w
is placed in gap 0 (k′) if π(w) < π(u1) (π(w) > π(uk′)).

A configuration for an edge-path of e′ ∈ E′ is a (k′ + 1)-vector, C̄e′ =
(ce′,0, . . . , ce′,k′), in which the i-th entry is equal to ’1’ if gap i contains a vertex
in e′, and ’0’ otherwise. Let |E′| = m′. Then, a configuration for E′ is a set of m′

configuration vectors for all edge-paths in E′. We use in the integer program the
variables xe′,i to indicate the number of vertices on the edge-path of e′ ∈ E′ in
the i-th gap, 0 ≤ i ≤ k′. Let σ ∈ Sk′ be a permutation of the vertices in V ′. We
denote by Cost(G|σ, x̄) the total cost of the linear arrangement of the vertices
in G, with the given permutation σ and the variable values. This cost can be
computed in FPT time, using Lemma 5 (see Section 3.1). Then our program can
be formulated as LPm� below.

3.1 Analysis

We now prove that Algorithm 2 yields an optimal solution. Our analysis crucially
relies on the next two lemmas.
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(LPm�) : minimize Cost(G| σ, x̄)

subject to:

k′∑
i=0

xe′,i = ne′ ∀ e′ ∈ E′

xe′,i = 0 if ce′,i = 0

xe′,i ∈ {1, . . . , ne′} if ce′,i = 1

Lemma 4. Given a permutation σ ∈ Sk′ for V ′, and the number of vertices of
edge-path e′ in gap i, xe′,i, 0 ≤ i ≤ k′, there exists an optimal order for V where
each gap i for which xe′,i > 0 contains exactly one or two contiguous segments
of e′.

Lemma 5 (Homogeneity form�(G)). There exists an optimal layout in which
vertices in V \ V ′ that belong to the same edge-path appear consecutively in gap
i, for all 0 ≤ i ≤ k′.

Proof. Given a permutation π of the vertices in G, we show below that if the
ordering of vertices in gap i does not satisfy the contiguity property in the
lemma then we can modify the order of vertices to satisfy the property, without
increasing the total cost. Given the permutation π, we say that a vertex v ∈ V \V ′

is a right-bend of an edge-path if its two neighbors, u,w, satisfy π(u) < π(v) and
π(w) < π(v), i.e., both u and w appear to the left of v in π. Similarly, v is a
left-bend if its two neighbors appear to its right in π.

In proving the lemma, we consider pairs of vertices in gap i and show that
we can swap the order of vertices in these pairs until we obtain a consecutive
ordering of the vertices in each edge-path. Let z, v ∈ V \V ′ be a pair of vertices
that appear consecutively in π. Suppose that z and v belong to two different
edge-paths, e′1 and e′2, respectively. Also, assume that the two neighbors of z on
e′1 are r, x ∈ V , and the two neighbors of v on e′2 are u,w ∈ V . We distinguish
between four cases.

(i) Neither z nor v is a bend. Let π′ be the permutation resulting from a swap
of z and v in π = (vi1 , . . . , x, . . . , u, . . . v, z, . . . , w, . . . r, . . . , vin). Then, due
to the swap, the distance between z and r (x) increases (decreases) by one;
similarly, the distance between v and u (w) increases (decreases) by one.
Thus, the overall change in the permutation cost is equal to zero.

(ii) Exactly one of z, v is a bend. W.l.o.g, assume that v is a right bend (the
proof is similar for the case where v is a left bend). Suppose that π(w) <
π(u) < π(v), and assume that the vertex z precedes v in gap i, i.e., we have
π = (vi1 , . . . , w . . . , u, . . . , z, v, . . . , vin). We show that swapping z and v
does not increase the total cost. Let π′ be the resulting permutation. Since
z is not a bend, it has two neighbors x, r, such that π(x) < π(z) < π(r).
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Thus, after swapping z and v, z gets closer (by one) to r, while its distance
from x increases by one. On the other hand, v gets closer to both u and w.
Hence, overall, we have that cost(π′)− cost(π) < 0.

(iii) Suppose that z, v are bends of the same direction. W.l.o.g., assume that
both are right bends, and we have that π(x) < π(r) < π(z), π(w) < π(u) <
π(v). More precisely, let π = (vi1 , . . . , x . . . , w, . . . , r, . . . , u, . . . z, v, . . . , vin).
Then, it is easy to verify that cost(π′)− cost(π) = 0.

(iv) Suppose that z, v are bends having opposite directions. W.l.o.g., assume
that v is a right bend and z is a left bend. We further assume that π(z) <
π(r) < π(x), and π(w) < π(u) < π(v), i.e., π = (vi1 , . . . , w . . . , u, . . . , z, v,
. . . r, . . . , x, . . . , vin). Indeed, as a result of the swap, both v and z become
closer to their neighbors. Hence, cost(π′)− cost(π) < 0. �

We can perform a sequence of the above swaps for pairs of vertices that belong to
different edge-paths, until we have that all of the vertices on the same edge-path
appear consecutively in gap i, without increasing the cost.

Lemma 6. Given a permutation σ and the vector x̄, Cost(G| σ, x̄) is linear and
can be computed in FPT time.

Proof. We can write Cost(G| σ, x̄) =
∑k′

i=0 Cost(gap i|σ, x̄), where
Cost(gap i|σ, x̄) is the contribution of gap i to the total cost. Specifically, sup-
pose that the two ends of gap i are x, y ∈ V ′, where π(x) < π(y). Let (v1, . . . , vh)
be a segment of edge-path e′ in gap i. W.l.o.g., we assume that v1 is closer to x.
Then we compute the contribution of this segment to the cost of gap i as follows.
We compute the cost incurred by each internal edge on this segment and add
to that a term that depends on the type of the segment. By Lemma 4, we may
assume that the segment (v1, . . . , vh) is contiguous.

(a) If the segment is straight (i.e., has no bend in gap i), we add the distance
from v1 to x and from vh to y. This term would then partially account for
the cost incurred by the edges connecting the two ends of the segment, v1
and vh, to their neighbors in other gaps.

(b) If the segment has a right bend, we add the distance between v1 and x plus
the distance between vh and x.

(c) If the segment has a left bend, we add the distance between v1 and y and
the distance between vh and y.

Thus, it suffices to show that Cost(gap i|σ, x̄) is linear and can be computed
in FPT time. We now show how to order optimally the segments in gap i.
Let B�, Br and S denote the sets of segments of types left-bend, right-bend and
straight in gap i, respectively. We denote by zi =

∑
e′∈E′ xe′,i the number of

vertices assigned to gap i.

Claim 2. The cost incurred by any segment of type S in gap i is equal to zi.

Claim 3. Given a set of segments in Br in gap i, of lengths xe1,i ≤ xe2,i ≤
· · · ≤ xer ,i, the minimum total cost incurred by these segments in gap i is given
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by r ·xe1,i+(r− 1)xe2,i+ · · ·+xer ,i. Similarly, given a set of segments in B�, of
lengths xe1,i ≤ xe2,i ≤ · · · ≤ xe�,i, the minimum cost incurred by these segments
is � · xe1,i + (�− 1)xe2,i + · · ·+ xe�,i.

Thus, letting |Br| = r and |B�| = �, by Claims 2 and 3 we have that the total
cost of gap i is given by

Cost(gap i|σ, x̄) = |S| ·
∑
e′∈E′

xe′,i +
r∑

j=1

(r− j +1)xej ,i +
�∑

j=1

(�− j +1)xej ,i, (1)

where e1, . . . , er are the edge-paths having in gap i segments in Br, and e1, . . . , e�
are the edge-paths having in gap i segments in B�. For a vector x̄ that is consis-
tent with a given configuration of E′, we have that the values of r and � in (1)
are fixed, thus Cost(gap i|σ, x̄) is linear, and so is Cost(G|σ, x̄). Hence, we can
solve the integer program in FPT time (see, e.g., [17,15]). �

We summarize in the next result.

Theorem 4. There is an FPT algorithm for MLA parameterized by the maxi-
mum leaf number.

Proof. Clearly, by Lemmas 4 and 5, our algorithm exhaustively searches over the
set of solution patterns which contains an optimal one. It remains to show that
the algorithm runs in FPT time. We note that the two outer loops of Algorithm
2 require O(k′! · 2k3

) iterations, each requires solving an integer linear program
having O(|E′| · k′) = O(k3) variables. This gives the statement of the theorem.

4 MLA Parameterized by Edge-Clique-Cover Number

In this section we show that MLA parameterized by the edge clique cover number
of the input graph is in FPT. More precisely, we prove the following.

Theorem 5. There is an O∗(2k!)-time algorithm for MLA where k = eec(G) is
the edge clique cover number of the input graph G.

We define the type of node u ∈ V to be N [u] = N(u) ∪ {u}. Note that our
notion of type here is different from the one we use in Section 2, as vertices of
the same type are necessarily adjacent. Nevertheless, the two different definitions
are conceptually very similar, as we can prove a certain homogeneity lemma for
this notion of type as well.

Lemma 7 (Homogeneity for ecc(G)). There exists an optimal vertex order-
ing which is homogenous. That is, an ordering in which vertices of each type
appear consecutively.

Proof of Theorem 5 [assuming Lemma 7]: By Lemma 7, there exists an
optimal solution in which vertices of each type appear consecutively. Observe
that in any such homogenous ordering, the ordering of vertices of the same type
can be arbitrary. That is, reordering vertices of a given type does not affect the
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Algorithm 3. MLA parametrized by ecc(G)

Input: (G, k).
Output: A linear ordering π for the vertices of G.

1: Compute the type of each vertex of G.
2: Compute the cost of each homogenous ordering of types.
3: return a homogenous ordering with minimum cost.

total edge lengths of the ordering. Now, it is well known that a graph with edge
clique cover number at most k has at most 2k different types [13]. Thus, our
algorithm searches through all O(2k!) homogenous vertex orderings and outputs
the best one. �
To prove Lemma 7, we introduce some additional notation. For an ordering
π = V → {1, . . . , n} and a pair of vertices u, v ∈ V such that π(u) < π(v), we
let ←−−πu,v and −−→πu,v denote the following permutations:

←−−πu,v(x) =

⎧⎪⎨⎪⎩
π(x) if π(x) ≤ π(u) or π(v) < π(x),

π(u) + 1 if x = v,

π(x) + 1 if π(u) < π(x) < π(v),

and

−−→πu,v(x) =

⎧⎪⎨⎪⎩
π(x) if π(x) < π(u) or π(v) ≤ π(x),

π(v) − 1 if x = u,

π(x) − 1 if π(u) < π(x) < π(v).

Thus, ←−−πu,v is the vertex ordering obtained from π by placing v directly after u,
and −−→πu,v is the ordering obtained from π by placing u directly before v.

Lemma 8. Let π = V → {1, . . . , n} be an optimal vertex ordering, and let u
and v be two vertices of the same type with π(u) < π(v). Then both ←−−πu,v and
−−→πu,v are optimal as well.

Proof. Define three set of vertices A = {x ∈ V : π(x) < π(u)}, B = {x ∈
V : π(u) < x < π(v)}, and C = {x ∈ V : π(v) < π(x)}, and consider the

two quantities
←−
Δ = cost(←−−πu,v)− cost(π) and

−→
Δ = cost(−−→πu,v) − cost(π). As π is

optimal, both these quantities are non-negative, i.e.
←−
Δ ≥ 0 and

−→
Δ ≥ 0. If the

lemma were false, at least one of these quantities would be strictly positive, i.e.

we would either have
←−
Δ > 0 or

−→
Δ > 0. Aiming towards a contradiction let us

assume that
←−
Δ > 0 (the proof in case

−→
Δ > 0 is symmetric).

Let us examine which edges contribute to
←−
Δ, i.e. which edges {x, y} ∈ E

have different lengths in −−→πu,v and π (|−−→πu,v(x)−−−→πu,v(y)| 	= |π(x)−π(y)|). Clearly,
edges in E(A,A), E(B,B), E(C,C) and E(A,C) do note contribute to

←−
Δ. All

other edge lengths are different in the two orderings. The length of each edge
in E(v, C) increases by |B| in ←−−πu,v when compared to its length in π, while the
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length of each edge in E(v,A) decreases by |B|. Similarly, the length of each edge
in E(A,B) increases by 1, while the length of each edge in E(B,C) decreases
by 1.

What remains to account for are the edges involving u and v. Let �(u,B) =∑
b∈B |π(u)− π(b)| and �(v,B) =

∑
b∈B |π(v) − π(b)| denote the total length of

the edges of E(u,B) and E(v,B) with respect to π. Observe that as u and v are
twins (and are thus adjacent to the same set of vertices in B), the total length
of all edges of E(v,B) becomes �(u,B) in ←−−πu,v, while the length of each edge of
E(u,B) increases by 1. Thus, the total contribution of edges in E(u,B)∪E(v,B)

to
←−
Δ is |E(u,B)| + �(u,B) − �(v,B). Finally, the last edge contributing to

←−
Δ

is the edge {u, v} itself (which necessarily exists as u and v are from the same
type) whose length decreases by |B| in ←−−πu,v when compared to π.

Summing up all these contributions, we get the following equality for
←−
Δ:

←−
Δ = |E(v, C)| · |B| + |E(A,B)| + �(u,B) + |E(u,B)|

− |E(v,A)| · |B| − |E(B,C)| − �(v,B) − |B|. (2)

Symmetrically, a similar calculation will give us the following equation for
−→
Δ:

−→
Δ = |E(u,A)| · |B| + |E(B,C)| + �(v,B) + |E(v,B)|

− |E(u,C)| · |B| − |E(A,B)| − �(u,B) − |B|. (3)

Now as u and v are twins, we know that |E(u,A)| = |E(v,A)| and |E(u,C)| =
|E(v, C)|. Furthermore, we also have |B| ≥ |E(u,B)| = |E(v,B). Thus, using

equations (2) and (3), and our assumption that
←−
Δ > 0 and

−→
Δ ≥ 0, we get

|E(v, C)| · |B| + |E(A,B)| + �(u,B) + |E(u,B)| >
|E(v,A)| · |B| + |E(B,C)| + �(v,B) + |B| ≥

|E(u,A)| · |B| + |E(B,C)| + �(v,B) + |E(v,B)| ≥
|E(u,C)| · |B| + |E(A,B)| + �(u,B) + |B| ≥

|E(v, C)| · |B| + |E(A,B)| + �(u,B) + |E(u,B)|

our desired contradiction. �
Proof of Lemma 7: Let π be an optimal vertex ordering. If π is not homogenous
we can use Lemma 8 repeatedly to transform it into one. The lemma thus follows.

5 Summary and Open Problems

We have shed light on the complexity of MLA for structural parameterizations
stronger than treewidth, including a nice example of a successful combination
of parameterization and approximation. We believe our algorithmic strategy in
this may be applicable elsewhere, but can only so far show its applicability
for the three parameters above. Can our results be extended to the aggregate
parameterization based on treewidth? Furthermore, the aim of this paper was
only at qualitative FPT results. We leave the best running times for such FPT
algorithms as an open problem.
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Compressed Cache-Oblivious String B-tree�
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Abstract. In this paper we address few variants of the well-known
prefix-search problem in a dictionary of strings, and provide solutions
for the cache-oblivious model which improve the best known results.

1 Introduction

The Prefix Search problem is probably the most well-known problem in data-
structural design for strings. It asks for preprocessing a set S of K strings, hav-
ing total length N , in such a way that, given a query-pattern P , it can return
efficiently in time and space (the range of) all strings in S having P as a prefix.
This easy-to-formalize problem is the backbone of many other algorithmic appli-
cations, and recently it received a revamped interest because of its Web-search
(e.g., auto-completion search) and Internet-based (e.g., IP-lookup) applications.

In order to prove our surprising statement, and thus contextualize the contri-
bution of this paper, we need to survey the main achievements in this topic and
highlight their missing algorithmic points. The first solution to the prefix-search
problem dates back to Fredkin [13], who introduced in 1960 the notion of (Com-
pacted) trie to solve it. The trie structure became very famous in the ’80s-’90s
due to its suffix-based version, known as the Suffix Tree, which dominated first
the String-matching scene [1], and then Bio-Informatics [15]. Starting from the
Oxford English Dictionary initiative [12], and the subsequent advent of the Web,
the design of tries managing large sets of strings became mandatory. It turned
immediately clear that laying out a trie in a disk memory with page size B words,
requiring optimal space and path traversals in O(|P |/B) I/Os was not an easy
task. And indeed Demaine et al. [6] showed that any layout of an arbitrary tree
(and thus a trie) in external memory needs a poor number of I/Os to traverse a
downward path spelling the pattern P .

The turning point in disk-efficient prefix-searching was the design of the String
B-tree data structure [9], which was able to achieve O(logB K + Scan(P )) I/Os,

where Scan(P ) = O(1 + |P |
B·logN ) indicates the number of I/Os needed to exam-

ine the input pattern, given that each disk page consists of B memory-words
each of Θ(logN) bits, and |P | denotes the length of the binary representation
of the pattern P . String B-trees provided I/O-efficient analogues of tries and
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EU Project.
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suffix trees, with the specialty of introducing some redundancy in the represen-
tation of the classic trie, which allowed the author to surpass the lower bounds
in [6]. The I/O-bound is optimal whenever the alphabet size is large and the
data structure is required to support the search for the lexicographic position of
P among the strings S too. The space usage is O(K logN + N) bits, which is
uncompressed, given that strings and pointers are stored explicitly. The string
B-tree is based upon a careful orchestration of a B-tree layout of string point-
ers, plus the use of a Patricia Trie [19] in each B-tree node which organizes its
strings in optimal space and supports prefix searches in O(1) string accesses.
Additionally, the string B-tree is dynamic in that it allows the insertion/deletion
of individual strings from S. As for B-trees, the data structure needs to know
B in advance so depending from this parameter crucially for its design. Brodal
and Fagerberg [4] made one step further by removing the dependance on B, and
thus designing a static cache-oblivious trie-like data structure [14]. Unlike string
B-trees, this structure is independent of B and does store, basically, a trie over
the indexed strings plus few paths which are replicated multiple times. This re-
dundancy is the essential feature that gets around the lower bound in [6], and it
comes essentially at no additional asymptotic space-cost. Overall this solution
solves the prefix-search in O(logB K + Scan(P )) I/Os by using O(K logN +N)
bits of space, simultaneously over all values of B and thus cache-obliviously, as
currently said in the literature. In order to reduce the space-occupancy, Ben-
der et al. [3] designed the (randomized) cache-oblivious string B-tree (shortly,
COSB). It achieves the improved space of (1+ ε)FC(S)+O(K logN) bits, where
FC(S) is the space required by the Front-coded storage of the strings in S (see
Section 2), and ε is a user-defined parameter that controls the trade-off between
space occupancy and I/O-complexity of the query/update operations. COSB
supports searches in O(logB K+(1+ 1

ε )(Scan(P )+Scan(succ(P )))) I/Os, where
succ(P ) is the successor of P in the ordered S.1 The solution is randomized
so I/O-bounds holds with high probability. Furthermore, observe that the term
O((1 + 1

ε )Scan(succ(P ))) may degenerate becoming Θ((1 + 1
ε )
√
N/B) I/Os for

some sets of strings. Subsequently, Ferragina et al. [10] proposed an improved
cache-oblivious solution for the static-version of the problem regarding the space
occupancy. They showed that there exists a static data structure which takes
(1 + ε)LT(S) + O(K) bits, where LT(S) is a lower-bound to the storage com-
plexity of S. Searches can be supported in O(log2K + Scan(P )) I/Os or in
O(logB K+(1+ 1

ε )(Scan(P )+Scan(succ(P )))) I/Os. Even if this solution is deter-
ministic, its query complexity still has the costly dependency on Scan(succ(P )).
For completeness, we notice that the literature proposes many other compressed
solutions but their searching algorithms are not suitable for the Cache-oblivious
model (see e.g., [11,21,17]).

Recently, Belazzougui et al. [2] introduced the weak variant of the problem
that allows for a one-side answer, namely the answer is requested to be correct

1 This index can be also dynamized to support insertion and deletion of a string P
in O(logB K + (log2 N) (1 + 1

ε
)Scan(P )) I/Os plus the cost of identifying P ’s rank

within S .
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only in the case that P prefixes some of the strings in S; otherwise, it leaves
to the algorithm the possibility to return a un-meaningful solution to the query.
The weak-feature allowed the authors of [2] to reduce the space occupancy from
O(N), which occurs when strings are incompressible, to the surprisingly succinct
bound of O(K log N

K ) bits which was indeed proved to be a space lower-bound,
regardless of the query complexity. In the cache-oblivious model the query com-
plexity of their solution is O(log2 |P |+Scan(P )) I/Os. Their key contribution was
to propose a solution which do not store the string set S but uses only O(log N

K )
bits per string. This improvement is significant for very-large string sets, and we
refer the reader to [2] for a discussion on its applications. Subsequently, Ferrag-
ina [8] proposed a very simple (randomized) solution for the weak-prefix search
problem which matches the best known solutions for the prefix-search and the
weak prefix-search, by obtaining O(logB N + Scan(P )) I/Os within O(K log N

K )
bits of space occupancy. The searching algorithm is randomized, and thus its
answer is correct with high probability.

In this paper we attack three problems of increasing sophistication by posing
ourselves the challenging question: how much redundancy we have to add to the
classic trie space occupancy in order to achieve O(logB K + Scan(P )) I/Os in
the supported search operations.2

Weak-Prefix Search. Returns the (lexicographic) range of strings prefixed by
P , or an arbitrary value whenever such strings do not exist.

Full-Prefix Search. Returns the (lexicographic) range of strings prefixed by
P , or ⊥ if such strings do not exist.

Longest-Prefix Search. Returns the (lexicographic) range of strings sharing
the longest common prefix with P .

We get the above I/O-bound for Weak-Prefix Search Problem, for the other
problems we achieve O(logB K + (1 + 1

ε )Scan(P )) I/Os, for any constant ε >
0. The space complexities are asymptotically optimal, in that they match the
space lower bound for tries up to constant factors. The query complexity is
optimal for the latter problem. This means that for Weak-Prefix Search Problem
we improve [8] via a deterministic solution (rather than randomized) with a
better space occupancy and a better I/O-complexity; for Longest-Prefix Search
Problem we improve both [3] and [10] via a space-I/O optimal deterministic
solution (rather than randomized, space sub-optimal, or I/O-inefficient solutions
in [3] and [10]). Technically speaking, our results are obtained by adopting few
technicalities plus a new storage scheme that extends the Locality Preserving
Front-Coding scheme, at the base of COSB, in such a way that prefixes of the
compressed strings can be decompressed in optimal I/Os, rather than just the
entire strings. This scheme is surprisingly simple and it can be looked as a
compressed version of the Blind-trie, backbone of the String B-tree [9].

2 We remark that this query bound can be looked at as nearly optimal for the first
two problems because it has not been proved yet that the term logB K is necessary
within the space bounds obtained in this paper.
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Table 1. A summary of our notation and terminology

S The set of strings
N Total length of the strings in S
K Number of strings in S
TS The compact trie built on S
t Number of nodes in TS , it is t ≤ 2K − 1
p(u) The parent of the node u in TS
string(u) The string spelled out by the path in TS reaching u from the root
label(u) The label of the edge (p(u), u)

Ŝ The set S augmented with all strings string(u)
Trie(S) The sum of edge-label lengths in TS
LT(S) Lower bound (in bits) to the storage complexity of the set of strings S

(it is LT(S) = Trie(S) + log
(
Trie(S)
t−1

)
)

2 Notation and Background

In order to simplify the following presentation of our results, we assume to deal
with binary strings. In the case of a larger alphabet Σ, it is enough to transform
the strings over Σ into binary strings, and then apply our algorithmic solutions.
The I/O complexities do not change because they depend only on the number
of strings K in S and on the number of bits that fit in a disk block (hence
Θ(B logN) bits). As a further simplifying assumption we take S to be prefix
free, so that no string in the set is prefix of another string; condition that is
satisfied in practice because of the null-character terminating each string.

Table 1 summarizes all our notation and terminology. Below we will briefly
recall few algorithmic tools that we will deploy to design our solutions to the
prefix-search problem. We start with Front Coding, a compression scheme for
strings which represents S as the sequence FC(S) = 〈n1, L1, n2, L2, . . . , nK , LK〉,
where ni is the length of longest common prefix between Si−1 and Si, and Li

is the suffix of Si remaining after the removal of its first ni (shared) characters,
hence Li = |Si|−ni. The first string S1 is represented in its entirety, so that L1 =
S1 and n1 = 0. FC is a well established practical method for encoding a string
set [22], and we will use interchangeably FC to denote either the algorithmic
scheme or its output size in bits.

In order to estimate the space-cost of FC(S) in bits, the authors of [10]

introduced the so called trie measure of S, defined as: Trie(S) =
∑K

i=1 |Li|,
which accounts for the number of characters outputted by FC(S). And then,
they devised a lower-bound LT(S) to the storage complexity of S which adds
to the trie measure the cost, in bits, of storing the lengths |Li|s. We have

LT(S) = Trie(S) + log
(
Trie(S)
t−1

)
bits.

In the paper we will often obtain bounds in terms of log
(
Trie(S)
t−1

)
, so the

following fact is helpful:
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Fact 1. For any dictionary of strings S, we have log
(
Trie(S)
t−1

)
= O(K log N

K ).

Nevertheless there exist dictionaries for which K log N
K may be up to logK times

larger than log
(
Trie(S)
t−1

)
. Finally, it is O(log

(
Trie(S)
t−1

)
) = o(Trie(S)) +O(K).

Despite its simplicity FC(S) is a good compressor for S, and indeed [10] showed
that the representation obtained via Front-Coding takes the following number
of bits:

LT(S) ≤ FC(S) ≤ LT(S) +O(K log
N

K
). (1)

It is possible to show that there exist pathological cases in which Front Coding
requires space close to that upper bound. The main drawback of Front-coding
is that decoding a string Sj might require the decompression of the entire se-
quence 〈0, L1, . . . , nj , Lj〉. In order to overcome this drawback, Bender et al. [3]
proposed a variant of FC, called locality-preserving front coding (shortly, LPFC),
that, given a parameter ε, adaptively partitions S into blocks such that decod-
ing any string Sj takes O((1 + 1

ε )|Sj |/B) optimal time and I/Os, and requires
(1+ε)FC(S) bits of space. This adaptive scheme offers a clear space/time tradeoff
in terms of the user-defined parameter ε and it is agnostic in the parameter B.

A different linearization, called rear-coding (RC), is a simple variation of FC
which implicitly encodes the length ni by specifying the length of the suffix of
Si−1 to be removed from it in order to get the longest common prefix between
Si−1 and Si. This change is crucial to avoid repetitive encodings of the same
longest common prefixes, the space inefficiency in FC. And indeed RC is able to
come very close to LT, because we can encode the lengths of the suffixes to be
dropped via a binary array of length Trie(S) with K − 1 bits set to 1, as indeed
those suffixes partition TS into K disjoint paths from the leaves to the root. So
RC can be encoded in

RC(S) ≤ Trie(S)+ 2 log

(
Trie(S)
K − 1

)
+O(logTrie(S)) = (1+ o(1))LT(S) bits, (2)

where the latter equality follows from the third statement in Fact 1. Comparing
eqn. (2) and (1), the difference between RC and FC is in the encoding of the ni,
so Trie(S) ≤ N (in practice Trie(S) ! N).

In the design of our algorithms and data structures we will need two other
key tools which are nowadays the backbone of every compressed index: namely,
Rank/Select data structures for binary strings. Their complexities are recalled in
the following theorems.

Theorem 1 ([7]). A binary vector B[1..m] with n bits set to 1 can be en-
coded within log

(
m
n

)
+ O(n) bits so that we can solve in O(1) time the query

Select1(B, i), with 1 ≤ i ≤ n, which returns the position in B of the ith occur-
rence of 1.

Theorem 2 ([20]). A binary vector B[1..m] with n bits set to 1 can be encoded
within m+ o(m) bits so that we can solve in O(1) time the queries Rank1(B, i),
with 1 ≤ i ≤ m, which returns the number of 1s in the prefix B[1..i], and
Select1(B, i), with 1 ≤ i ≤ n, which returns the position in B of the ith occurrence
of 1.



474 P. Ferragina and R. Venturini

3 A Key Tool: Cache-Oblivious Prefix Retrieval

The novelty of our paper consists of a surprisingly simple representation of S
which is compressed and still supports the cache-oblivious retrieval of any prefix
of any string in this set in optimal I/Os and space (up to constant factors).
The striking news is that, despite its simplicity, this result will constitute the
backbone of our improved algorithmic solutions.

In this section we instantiate our solution on tries even if it is sufficiently gen-
eral to represent any (labeled) tree in compact form still guaranteeing optimal
traversal in the cache-oblivious model of any root-to-a-node path. We assume
that the trie nodes are numbered accordingly to the time of their DFS visit. Any
node u in TS is associated with label(u) which is (the variable length) string
on the edge (p(u), u), where p(u) is the parent of u in TS . Observe that any
node u identifies uniquely the string string(u) that prefixes all strings of S de-
scending from u. Obviously, string(u) can be obtained by juxtaposing the labels
of the nodes on the path from the root to u. Our goal is to design a storage
scheme whose space occupancy is (1+ ε)LT(S)+O(K) bits and supports in opti-
mal time/IO the operation Retrieval(u, �) which asks for the prefix of the string
string(u) having length � ∈ (|string(p(u))|, |string(u)|]. Note that the returned
prefix ends up in the edge (p(u), u). In other words, we want to be able to ac-
cess the labels of the nodes in any root-to-a-node path and any of their prefixes.
Formally, we aim to prove the following theorem.

Theorem 3. Given a set S of K binary strings having total length N , there
exists a storage scheme for S that occupies (1+ε)LT(S)+O(K) bits, where ε > 0
is any fixed constant, and solves the query Retrieval(u, �) in O(1+(1+ 1

ε )
�

B logN )

optimal I/Os.

Before presenting a proof, let us discuss efficiency of two close relatives of
our solution: Giraffe tree decomposition [4] and Locality-preserving front Coding
(LPFC) [3]. The former solution has the same time complexity of our solution but
has a space occupancy of at least 3 ·LT(S)+O(K) bits. The latter approach has
(almost) the same space occupancy of our solution but provides no guarantee on
the number of I/Os required to access prefixes of the strings in S.

Our goal is to accurately lay out the labels of nodes of TS so that any string(u)
can be retrieved in optimal O((1 + 1

ε )Scan(string(u))) I/Os. This suffices for
obtaining the bound claimed in Theorem 3 because, once we have reconstructed
string(p(u)), Retrieval(u, �) is completed by accessing the prefix of label(u) of
length j = � − |string(p(u))| which is written consecutively in memory. One key
feature of our solution is a proper replication of some labels in the lay out, whose
space is bounded by ε · LT(S) bits.

The basis of our scheme is the amortization argument in LPFC [3] which
represents S by means of a variant of the classic front-coding in which some
strings are stored explicitly rather than front-coded. More precisely, LPFC writes
the string S1 explicitly, whereas all subsequent strings are encoded in accordance
with the following argument. Suppose that the scheme already compressed i− 1
strings and has to compress string Si. It scans back c|Si| characters in the current
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representation to check if it is possible to decode Si, where c = 2 + 2/ε. If
this is the case, Si is compressed by writing its suffix Li, otherwise Si is fully
written. A sophisticated amortization argument in [3] proves that LPFC requires
(1+ε)LT+O(K log(N/K)) bits. This bound can be improved to (1+ε)LT+O(K)
bits by replacing front-coding with rear-coding (see eqn. 2). By construction,
this scheme guarantees an optimal decompression time/IO of any string Si ∈
S, namely O((1 + 1

ε )Scan(Si)) I/Os. But unfortunately, this property does not
suffice to guarantee an optimal decompression for prefixes of the strings: the
decompression of a prefix of a string Si may cost up to Θ((1+ 1

ε )Scan(Si)) I/Os.
In order to circumvent this limitation, we modify LPFC as follows. We define

the superset Ŝ of S which contains, for each node u in TS (possibly a leaf),
the string string(u). This string is a prefix of string(v), for any descendant v of
u in TS , so it is lexicographically smaller than string(v). The lexicographically
ordered Ŝ can thus be obtained by visiting the nodes of TS according to a DFS
visit. In our solution we require that all the strings emitted by LPFC(Ŝ) are
self-delimited. Thus, we prefix each of them with its length coded with Elias’
Gamma coding. Now, let R be the compressed output obtained by computing
LPFC(Ŝ) with rear-coding. We augment R with two additional data structures:

– The binary array E[1..|R|] which sets to 1 the positions in R where the
encoding of some string(u) starts. E contains t− 1 bits set to 1. Array E is
enriched with the data structure in Theorem 1 so that Select1 queries can
be computed in constant time.

– The binary array V [1..t] that has an entry for each node in TS according
to their (DFS-)order. The entry V [u] is sets to 1 whenever string(u) has
been copied in R, 0 otherwise. We augment V with the data structure of
Theorem 2 to support Rank and Select queries.

In order to answer Retrieval(u, �) we first implement the retrieval of string(u).
The query Select1(E, u) gives in constant time the position in R where the en-
coding of string(u) starts. Now, if this string has been fully copied in R then we
are done; otherwise we have to reconstruct it. This has some subtle issues that
have to be addressed efficiently, for example, we do not even know the length
of string(u) since the array E encodes the individual edge-labels and not their
lengths from the root of TS . We reconstruct string(u) forward by starting from
the first copied string (say, string(v)) that precedes string(u) in R. The node
index v is obtained by computing Select1(V,Rank1(V, u)) which identifies the
position of the first 1 in V that precedes the entry corresponding to u (i.e., the
closer copied strings preceding u in the DFS-visit of TS).

Assume that the copy of string(v) starts at position pv, which is computed
by selecting the v-th 1 in the E. By the DFS-order in processing TS and by the
fact that string(u) is not copied, it follows that string(u) can be reconstructed
by copying characters in R starting from position pv up to the occurrence of
string(u). We recall that rear-coding augments each emitted string with a value:
let w and w′ two nodes consecutive in the DFS-visit of TS , rear-coding writes
the value |string(w)| − lcp(string(w), string(w′)) (namely, the length of the suf-
fix of string(w) that we have to remove from w in order to obtain the length
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of its longest common prefix with string(w′)). This information is exploited in
reconstructing string(u). We start by copying string(v) in a buffer by scanning
R forward from position pv. At the end, the buffer will contain string(u). For
every value m written by rear-coding, we overwrite the last m characters of the
buffer with the characters in R of the suffix of the current string (delimited by
E’s bits set to 1). By LPFC-properties, we are guaranteed that this scan takes
O((1 + 1

ε )Scan(string(u)) I/Os.
Let us now come back to the solution of Retrieval(u, �). First of all we re-

construct string(p(u)), then determine the edge-label (p(u), u) in E given the
DFS-numbering of u and a select operation over E. We thus take from this
string its prefix of length �− |string(p(u))|, the latter is known because we have
indeed reconstructed that string.

To conclude the proof of Theorem 3 we are left with bounding the space
occupancy of our storage scheme. We know that R requires no more than (1 +
ε)LT(Ŝ)+O(K) bits, since we are using rear-coding. The key observation is then
the trie measure of Ŝ coincides with the one of S (i.e., Trie(Ŝ) = Trie(S)), so that
|R| = (1 + ε)LT(Ŝ) + O(K) = (1 + ε)LT(S) +O(K). The space occupancy of E

is log
( |R|
t−1

)
bits (Theorem 1), therefore |E| ≤ t log(|R|/t) + O(t) = o(Trie(S)) +

O(K) bits. It is easy to see that the cost of self-delimiting the strings emitted
by LPFC with Elias’ Gamma coding is within the same space bound. The vector
V requires just O(K) bits, by Theorem 2.

The query Retrieval(u, �) suffices for the aims of this paper. However, it is
more natural an operation that, given a string index i and a length �, returns the
prefix of Si[1..�]. This can be supported by using a variant of the ideas presented

later for the Weak-prefix Search problem, which adds O(log
(
Trie(S)
t−1

)
+ K) =

o(Trie(S)) + O(K) bits to space complexity (hidden by the other terms) and
a term O(logB K) I/Os to query time. Alternatively, it is possible to keep an
I/O-optimal query time by adding O(K log N

K ) bits of space.

4 Searching Strings: Three Problems

In this section we address the three problems introduced in the Introduction,
they allow us to frame the wide spectrum of algorithmic difficulties and solutions
related with the search for a pattern within a string set.

Problem 1 (Weak-Prefix Search Problem). Let S = {S1, S2, . . . , SK} be a set
of K binary strings of total length N . We wish to preprocess S in such a way
that, given a pattern P , we can efficiently answer the query weakPrefix(P ) which
asks for the range of strings in S prefixed by P . An arbitrary answer could be
returned whenever P is not a prefix of any string in S. �

The lower bound in [2] states that Ω(K log N

K ) bits are necessary regardless the
query time. We show the following theorem.

Theorem 4. Given a set of S of K binary strings of total length N , there
exists a deterministic data structure requiring 2 · log

(
Trie(S)
t−1

)
+O(K) bits of space
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that solves the Weak-Prefix Search Problem for any pattern P with O(logB K +
Scan(P )) I/Os.

The space occupancy is optimal up to constant factor since log
(
Trie(S)
t−1

)
is al-

ways at most K log N
K (see Fact 1). Moreover, our refined estimate of the space

occupancy, by means of Trie(S), shows that it can go below the lower bound
in [2] even by a factor Θ(logK) depending on the characteristics of the indexed
dictionary (see Fact 1). The query time instead is almost optimal, because it is
not clear whether the term logB K is necessary within this space bound. Sum-
marizing, our data structure is smaller, deterministic and faster than previously
known solutions.

We follow the solution in [8] by using a two-level indexing. We start by par-
titioning S into s = K/ logN groups of (contiguous) strings defined as follows:
Si = {S1+i logN , S2+i logN , . . . , S(i+1) logN} for i = 0, 1, 2, . . . , s − 1. We then
construct a subset Stop of S consisting of 2s = Θ( n

logn ) representative strings
obtained by selecting the smallest and the largest string in each of these groups.
The index in the first level is responsible for searching the pattern P within the
set Stop, in order to identify an approximated range. This range is guaranteed to
contain the range of strings prefixed by P . A search on the second level suffices
to identify the correct range of strings prefixed by P . We have two crucial differ-
ences w.r.t. the solution in [8]: 1) our index is deterministic; 2) our space-optimal
solution for the second level is the key for achieving Theorem 4.

First level. As in [8] we build the Patricia Trie PTtop over the strings in Stop with
the speciality that we store in each node u of PTtop a fingerprint of O(logN)
bits computed for string(u) according to Karp-Rabin fingerprinting [18]. The
crucial difference w.r.t. [8] is the use of a (deterministic) injective instance of
Karp-Rabin that maps any prefix of any string in S into a distinct value in a
interval of size O(N2).3 Given a string S[1..s], the Karp-Rabin fingerprinting
rk(S) is equal to

∑s
i=1 S[i] · ti (mod M), where M is a prime number and t is a

randomly chosen integer in [1,M − 1]. Given the set of strings S, we can obtain
an instance rk() of the Karp-Rabin fingerprinting that maps all the prefixes of
all the strings in S to the first [M ] integers without collisions, with M chosen
among the first O(N2) integers. It is known that a value of t that guarantees no
collisions can be found in expected O(1) attempts. In the cache-oblivious setting,
this implies that finding a suitable function requires O(Sort(N) +N/B) I/Os in
expectation, where Sort(N) is the number of I/Os required to sort N integers.

Given PTtop and the pattern P , our goal is that of finding the lowest edge e =
(v, w) such that string(v) is a prefix of P and string(w) is not. This edge can be
found with a standard blind search on PTtop and by also comparing fingerprints
of P with the ones stored in the traversed nodes (see [8] for more details). A
cache-oblivious efficient solution is obtained by laying out PTtop via the centroid
trie decomposition [3]. This layout guarantees that the above search requires
O(logB K + Scan(P )) I/Os. However, in [8] the edge e is correctly identified

3 Notice that we require the function to be injective for prefixes of strings in S not
Stop.
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only with high probability. The reason is that a prefix of P and a prefix of a
string in S may have the same fingerprint even if they are different. Our use of
the injective Karp-Rabin fingerprints avoids this situation guaranteeing that the
search is always correct4.

Second level. For each edge e = (u, v) of PTtop we define the set of strings Se

as follows. Assume that each node v of PTtop points to its leftmost/rightmost
descending leaves, denoted by L(v) and R(v) respectively. We call SL(v) and
SR(v) the two groups of strings, from the grouping above, that contain SL(v)

and SR(v). Then Se = SL(v) ∪ SR(v). We have a total of O(K/ logn) sets, each
having O(logN) strings. The latter is the key feature that we exploit in order
to index these small sets efficiently by resorting to the following lemma. We
remark that Se will not be constructed and indexed explicitly, rather we will
index the sets SL(v) and SR(v) individually, and keep two pointers to each of
them for every edge e. This avoids duplication of information and some subtle
issues in the storage complexities. But poses the problem of how to weak-prefix
search in Se which is only virtually available. The idea is to search in SL(v) and
SR(v) individually, three cases may occur. Either we find that the range is totally
within one of the two sets, and in this case we return that range; or we find that
the range includes the rightmost string in SL(v) and the leftmost string in SR(v),
and in this case we merge them. The correctness comes from the properties of
trie’s structure and the first-level search, as one can prove by observing that
the trie built over SL(v) ∪ SR(v) is equivalent to the two tries built over the two
individual sets except for the rightmost path of SL(v) and the leftmost path of
SR(v) which are merged in the trie for Se. This merging is not a problem because
if the range is totally within SR(v), then the dominating node is within the trie
for this set and thus the search for P would find it by searching both SR(v) or
Se. Similarly this holds for a range totally within SL(v). The other case comes by
exclusion, so the following lemma allows to establish the claimed I/O and space
bounds.

Lemma 1. Let Si be a set of Ki = O(logN) strings of total length at most N .

The Patricia trie of Si can be represented by requiring log
(
Trie(Si)
ti−1

)
+O(Ki) bits

of space so that the blind search of any pattern P with O((logKi)/B+ Scan(P ))
I/Os, where ti is the number of nodes in the trie of the set Si.

To conclude the proof of Theorem 4, we distinguish two cases based on the
value of K. If K = O(logN), we do not use the first level since Lemma 1 with
Ki = K already matches the bounds in Theorem 4. Otherwise K = Ω(logN),
and so searching P requires O(logB K + Scan(P )) I/Os on the first level and
O((log logN)/B + Scan(P )) = O(logB K + Scan(P )) I/Os on the second level.
For the space occupancy, we observe that the first level requires O(K) bits,

and the second level requires
∑

i(log
(
Trie(Si)
ti−1

)
+Ki) bits (Lemma 1). Note that∑

i ti ≤ t = O(K) because each string of S belongs to at most one Si.

4 Recall that in the Weak-Prefix Search Problem we are searching under the assumption
that P is a prefix of at least a string in S .
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Problem 2 (Full-Prefix Search Problem). Let S = {S1, S2, . . . , SK} be a set of
K binary strings of total length N . We wish to preprocess S in such a way that,
given a pattern P , we can efficiently answer the query Prefix(P ) which asks for
the range of strings in S prefixed by P , the value ⊥ is returned whenever P is
not a prefix of any string in S. �

This the classic prefix-search which requires to recognize whether P is or is not
the prefix of any string in S. By combining Theorems 3 and 4 we get:

Theorem 5. Given a set of S of binary strings of size K of total length N , there
exists a data structure requiring (1+ ε)LT(S)+O(K) bits of space that solves the
Full-Prefix Search Problem for any pattern P with O(logB K + (1 + 1

ε )Scan(P ))
I/Os, where ε > 0 is any constant.

We use the solution of Theorem 4 to identify the highest node u from which
descends the largest range of strings that are prefixed by P . Then, we use The-
orem 3 to check I/O-optimally whether Retrieval(u, |P |) equals P . The space
occupancy of this solution is optimal up to a constant factor; the query complex-
ity is almost optimal being unclear whether it is possible to remove the logB K
term and still maintain optimal space.

Problem 3 (Longest-Prefix Search Problem). Let S = {S1, S2, . . . , SK} be a set
of K binary strings of total length N . We wish to preprocess S in such a way
that, given a pattern P , we can efficiently answer the query LPrefix(P ) which
asks for the range of strings in S sharing the longest common prefix with P . �

This problem waives the requirement that P is a prefix of some string in S, and
thus searches for the longest common prefix between P and S’s strings. If P
prefixes some strings in S, then this problem coincides with the classic prefix-
search. Possibly the identified lcp is the null string, and thus the returned range
of strings is the whole set S. We will prove the following result.

Theorem 6. Given a set of S of K binary strings of total length N , there
exists a data structure requiring (1+ ε)LT(S)+O(K) bits of space that solves the
Longest-Prefix Search Problem for any pattern P with O(logB K+(1+ 1

ε )Scan(P ))
I/Os, where ε > 0 is any constant.

First we build the data structures of Theorem 3 with a constant ε′ to be fixed
later, in order to efficiently access prefixes of strings in S but also as a basis
to partition the strings. It is convenient to observe this process on TS . Recall
that the data structure of Theorem 3 processes nodes of TS in DFS-order. For
each visited node u, it encodes string(u) either by copying string(u) or by writing
label(u). In the former case we will say that u is marked. Let Scopied be the set
formed by the string(u) of any marked node u. The goal of a query LPrefix(P )
is to identify the lowest node w in TS sharing the longest common prefix with
P . We identify the node w in two phases. In the first phase we solve the query
LPrefix(P ) on the set Scopied in order to identify the range of all the (consecutive)
marked nodes [vl, vr] sharing the longest common prefix with P . Armed with
this information, we start a second phase that scans appropriate portions of the
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compressed representation R of Theorem 3 to identify our target node w. (For
space reasons we defer the description of our solution to the full paper.)
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Abstract. We design a data stream algorithm for the k-means problem,
called BICO, that combines the data structure of the SIGMOD Test of
Time award winning algorithm BIRCH [27] with the theoretical concept
of coresets for clustering problems. The k-means problem asks for a set
C of k centers minimizing the sum of the squared distances from every
point in a set P to its nearest center in C. In a data stream, the points
arrive one by one in arbitrary order and there is limited storage space.

BICO computes high quality solutions in a time short in practice.
First, BICO computes a summary S of the data with a provable quality
guarantee: For every center set C, S has the same cost as P up to a
(1 + ε)-factor, i. e., S is a coreset. Then, it runs k-means++ [5] on S.

We compare BICO experimentally with popular and very fast heuris-
tics (BIRCH, MacQueen [24]) and with approximation algorithms
(Stream-KM++ [2], StreamLS [16, 26]) with the best known quality guar-
antees. We achieve the same quality as the approximation algorithms men-
tioned with a much shorter running time, and we get much better solutions
than the heuristics at the cost of only a moderate increase in running time.

1 Introduction

Clustering is the task to partition a set of objects into groups such that objects in
the same group are similar and objects in different groups are dissimilar. There
is a huge amount of work on clustering both in practice and in theory. Typically,
theoretic work focuses on exact solutions or approximations with guaranteed
approximation factors, while practical algorithms focus on speed and results
that are reasonably good on the particular data at hand.

We study the k-means problem, which given a set of points P from Rd asks for
a set of k centers such that the cost defined as the sum of the squared distances
of all points in P to their closest center is minimized. The centers induce a
clustering defined by assigning every point to its closest center.

For this problem, the algorithm most used in practice is Lloyd’s algorithm,
an iterative procedure that converges to a local optimum after a possibly ex-
ponential number of iterations. An improved algorithm known as k-means++ by
Arthur and Vassilvitskii [6] has a O(log k) approximation guarantee.
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Big Data is an emerging area of computer science. Nowadays, data sets arising
from large scale physical experiments or social networks analytics are far too
large to fit in main memory. Some data, e. g., produced by sensors, additionally
arrives one by one, and it is desirable to filter it at arrival without intermediately
storing large amounts of data. Considering k-means in a data stream setting, we
assume that points arrive in arbitrary order and that there is limited storage
capacity. Neither Lloyd’s algorithm nor k-means++ work in this setting, and
both would be too slow even if the data already was on a hard drive [2].

A vast amount of approximation algorithms were developed for the k-means
problem in the streaming setting. They usually use the concept of coresets. A
coreset is a small weighted set of points S, that ensures that if we compute the
weighted clustering cost of S for any given set of centers C, then the result will
be a (1 + ε)-approximation of the cost of the original input.

Approximation algorithms are rather slow in practice. Algorithms fast in prac-
tice are usually heuristics and known to compute bad solutions on occasions. The
best known one is BIRCH [27]. It also computes a summary of the data, but
without theoretical quality guarantee.

This paper contributes to the field of interlacing theoretical and practical
work to develop an algorithm good in theory and practice. An early work in this
direction is StreamLS [16, 26] which applies a local search approach to chunks
of data. StreamLS is significantly outperformed by Stream-KM++[2] which com-
putes a coreset and then solves the k-means problem on the coreset by applying
k-means++. Stream-KM++ computes very good solutions and is reasonably fast
for small k. However, especially for large k, its running time is still far too large
for big data sets.

We develop BICO, a data stream algorithm for the k-means problem which
also computes a coreset and achieves very good quality in practice, but is signif-
icantly faster than Stream-KM++.

Related Work. To solve k–means in a stream, there are three basic ap-
proaches. First, one can apply an online gradient descent such as MacQueen’s
algorithm [24]. Such an algorithm is usually the fastest available, yet the com-
puted solution has poor performance in theory and (usually) also in practice.

The other two approaches compute summaries of the data for further process-
ing. Summaries should be small to speed up the optimization phase, they should
have a good quality, and their computation should be fast. Summary computing
algorithms either update the summary one point at a time or read a batch of
points and process them together.

Theoretical analysis has mostly focused on the latter scenario and then relies
on the merge & reduce framework originally by Bentley and Saxe [7] and first
applied to clustering in [4]. Informally speaking, a coreset construction can be
defined in a non-streaming manner and then be embedded into the merge & re-
duce framework. The computed coreset is by a factor of logt+1 n larger than the
non-streaming version where t is the exponent of ε−1 in the coreset size. The
running time is increased to 2C(m) · n/m where m is the batch size and C(m)
is the time of the non-streaming version of the coreset construction. Thus, the



BICO: BIRCH Meets Coresets for k-Means Clustering 483

asymptotic running time is not increased (for at least linear C(m)), but from
a practical point of view this overhead is not desirable. Another drawback is
that the size of the computed coresets usually highly depends on logn. Stream-
ing algorithms using summaries include [8, 10, 11, 12, 20, 21, 22]. In particular,
StreamLS uses a batch approach, and Stream-KM++ uses merge & reduce. There
is usually a high dependency on logn in merge & reduce constructions. If d is
not a constant, the smallest dependency on the dimension is achieved by [12]
and this coreset has a size of O(k2 · ε−4 log5 n) (which is independent of d).

For pointwise updates, in particular notice the construction in [15] computing
a streaming coreset of size O(k · logn ·ε−(d+2)). For low dimensions, i. e., if d is a
constant, this is the lowest dependency on k and logn of any coreset construction.
This is due to the fact that the coreset is maintained without merge & reduce.
The time to compute the streaming coreset is Õ(n · ρ+ k · logn · ρ · ε−(d+2)) with
ρ = log(nΔ/ε) where Δ is the spread of the points, i. e., the maximal distance
divided by the smallest distance of two distinct points.

Pointwise updates are usually preferable for practical purposes. Probably the
best known practical algorithm is BIRCH [27]. It reads the input only once and
computes a summary by pointwise updates. Then, it solves the k-means problem
on the summary using agglomerative clustering.

The summary that BIRCH computes consists of a tree of so-called Clustering
Features. A Clustering Feature (CF) summarizes a set of points by the sum
of the points, the number of points and the sum of the squared lengths of all
points. BIRCH has no theoretical quality guarantees and does indeed sometimes
perform badly in practice [18, 19].

We are not aware of other very popular data stream algorithms for the k-means
problem. There is a lot of work on related problems, for example CURE [18] which
requires more than one pass over the data, DBSCAN [9] which is not center based,
CLARANS [25] which is typically used when centers have to be chosen from the
dataset and is not particularly optimized for points in Euclidean space and ROCK
[17] and COBWEB [14] which are designed for categorical attributes.

Our Contribution. We develop BICO, a data stream algorithm based on the
data structure of BIRCH. Both algorithms compute a summary of the data, but
while the summary computed by BIRCH can be arbitrarily bad as we show at the
start of Section 3, we show that BICO computes a coreset S, so for every set of
centers C, the cost of the input point set P can be approximated by computing
the cost of S. For constant dimension d, we bound the size m of our coreset
by O(k · logn · ε−(d+2)) and show that BICO needs O (N(m) · (n+m lognΔ))
time to compute it where N(m) is the time needed to solve a nearest neighbor
problem within m points. Trivially, N(m) = O(m). By using range query data
structures, N(m) = O(logd−1m) can be achieved at the cost of O(m logd−1m)
additional space [3]. Notice that the size of the coreset is asymptotically equal
to [15].

We implement BICO and show how to realize the algorithm in practice by in-
troducing heuristic enhancements. Then we compare BICO experimentally to two
heuristics, BIRCH and MacQueen’s k-means algorithm, and to two algorithms
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designed for high quality solutions, Stream-KM++ and StreamLS. BICO computes
solutions of the same high quality as Stream-KM++ and StreamLS which we be-
lieve to be near optimal. For small k, BICOs running time is only beaten by Mac-
Queen’s and in particular, BICO is 5-10 times faster than Stream-KM++ (and
more for StreamLS). For larger k, BICO needs to maintain a larger coreset to
keep the quality up. However, BICO can trade quality for speed. We do additional
testruns showing that with different parameters, BICO still beats the cost of Mac-
Queen and BIRCH in similar running time. We believe that BICO provides the
best quality-speed trade-off in practice.

2 Preliminaries

The k-means Problem. Let P ⊆ Rd be a set of points in d-dimensional Eu-
clidean space with |P | = n. For two points p, q ∈ P , we denote their Euclidean

distance by ||p − q|| :=
√∑d

i=1(pi − qi)2. The k-means problem asks for a set
C of k points in Rd (called centers) that minimizes the sum of the squared
distances of all points in P to their closest point in C, i. e., the objective is
minC⊂Rd,|C|=k

∑
p∈P minc∈C ||p− c||2 =: minC⊂Rd,|C|=k cost(P,C).

The weighted k-means cost is defined by costw(P,C) :=
∑

p∈P w(p)minc∈C

||p−c||2 for any weight function w : P → R+, and the weighted k-means objective
then is minC⊂Rd,|C|=k costw(P,C). For a point set P , we denote the centroid of
P as μ(P ) := 1

|P |
∑

p∈P p. The k-means objective function satisfies the following
well-known equation that allows to compute cost(P, {c}) via μ(P ).

Fact 1. Let P ⊂ Rd be a finite point set. Then the following equation holds:∑
p∈P ||p− c||2 =

∑
p∈P ||p− μ(P )||2 + |P |||μ(P )− c||2.

BIRCH. We only describe the main features of BIRCH’s preclustering phase.
The algorithm processes given points on the fly, storing them in a so called CF
Tree where CF is the abbreviation of Clustering Feature.

Definition 1 (Clustering Feature). Let P := {p1, . . . , pn} ⊂ Rd be a set of n
d-dimensional points. The Clustering Feature CFP of P is a 3-tuple (n, s1, S2)
where n is number of points, s1 =

∑n
i=1 pi is the linear sum of the points, and

S2 =
∑n

i=1 ||pi||2 is the sum of the squared lengths of the points.

The usage of Clustering Features are the main space reduction concept of
BIRCH. Notice that given a Clustering Feature CFP = (n, s1, S2), the squared
distances of all points in a point set P to one given center c can be calculated
exactly by cost (P, {c}) =

∑n
i=1 ||pi||2 − n · ||μ(P ) − 0||2 + n · ||c− μi||2 = S2 −

1
n ||s1||2 + n||c− s1/n||2.

When using Clustering Features to store a small summary of points, the qual-
ity of the summary decreases when storing points together in one CF that should
be assigned to different centers later on. If we summarize points in a CF and
later on get centers where all these points are closest to the same center, then
their clustering cost can be computed with the CF without any error. Thus, the
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idea of BIRCH is to heuristically identify points that are likely to be clustered
together. For this purpose, they use the following insertion process.

The first point in the input opens the first CF, i. e., a CF only containing the
first point is created. Then, iteratively, the next points are added. For a new
point p, BIRCH first looks for the CF which is ‘closest’ to p. Let CFS be an
arbitrary existing CF in the CF tree of BIRCH and recall that CFS represents
the set of points S. The distance between p and CFS is defined as∑

q∈S∪{p}
(q − (

∑
q′∈(S∪{p})

q′)/(|S|+ 1))2 −
∑
q∈S

(q − (
∑
q′∈S

q′)/|S|)2. (1)

Let CFS∗ be the CF closest to p. Then, p is added to CFS∗ if the radius√
(
∑

p∈(S∗∪{p})(q − μS∗)2)/(|S|+ 1) is smaller than a given threshold t. If the
radius exceeds the threshold, then p opens a new CF.

BIRCH works with increasing thresholds when processing the input data. It
starts with threshold t = 0 and then increases t whenever the number of CFs
exceeds a given space bound, calling a rebuilding algorithm to shrink the tree.
This algorithm ensures that the number of CFs is decreased sufficiently. Notice
that CFs cannot be split again, so the rebuilding might return a different tree
than the one computed directly with the new threshold.

Coresets. BIRCH decides heuristically how to group the points into subclus-
ters. We aim at refining this process such that the reduced set is not only small
but is also guaranteed to approximate the original point set. More precisely, we
aim at constructing a coreset:

Definition 2 ([21]). A (k, ε)-coreset is a subset S ⊂ Rd weighted with a weight
function w′ : S → Rd such that for all C ⊂ Rd, |C| = k, it holds that
|costw′(S,C)− cost(P,C)| ≤ ε · cost(P,C).

3 BICO: Combining BIRCH and Coresets

The main problem with the insertion procedure of BIRCH is that the decision
whether points are added to a CF or not is based on the increase of the radius of
the candidate CF. Figure 1 shows a point set that was generated with two rather
close but clearly distinguishable clusters plus randomly added points serving as
noise. The problem for BIRCH is that the distance between the two clusters is
not much larger than the average distance between the points in the noise. We
see that BIRCH merges the clusters together and thus later computes only one
center for them while the second center is placed inside the noise.

Our lower bound example for the quality guarantee of BIRCH follows this
intuition. It looks similar to Figure 1, but is multi-dimensional and places the
points deterministically in a structured way useful for the theoretical analysis.

Let d > 1 and define the point sets P1 := {(7, 3i2, . . . , 3id) | i2, . . . , id ∈
{−2,−1, 0, 1, 2}} and P2 := {(−7, 3i2, . . . , 3id) | i2, . . . , id ∈ {−2,−1, 0, 1, 2}}.
Let R be the set of (n−|P1|− |P2|)/2 points at position (1, 0, . . . , 0) and equally
many points at position (−1, 0, . . . , 0) and set P̃ = P1 ∪ P2 ∪R.
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Fig. 1. An example created by drawing 150 points uniformly at random from the areas
around (−0.5, 0) and (0, 0.5) and 75 points from [−4,−2]× [4, 2]. BIRCH computed the
centers marked by x leading to the partitioning by the solid line. BICO computed the
same centers in 10 independent runs, marked by circles and the dashed line partitioning.

Theorem 1. For c > 0, input P̃ and threshold T > 0, BIRCH either has Ω(n1/c)

CFs or the computed solution has cost of at least Ω
(
(n1− 1

c /logn) ·OPT
)
.

The Basic Algorithm. Like BIRCH, BICO uses a tree whose nodes corre-
spond to CFs. The tree has no distinguished root, but starts with possibly many
CFs in level 1 (which can be seen as children of an imaginary root node). When
we open a CF, we keep the first point in the CF as its reference point. The first
point in the stream just opens a CF in level 1. Now, for each new point, we first
try to add the point into an existing CF. We start on the first level i = 1. We
try to insert the current point to the nearest CF in level i. The insertion fails
if all CFs are far away, i.e. the distance between the current point and all CF
reference points is larger than the radius Ri of CFs on level i, or the nearest CF
is full, i.e. the cost of the point set represented by the CF is greater or equal than
a threshold parameter T . In the first case we open a new CF with the current
point as reference point in level i and in the second case we recurse and try to
insert the point into the children of the nearest CF which are on level i+ 1.

The algorithm is given in Algorithm 1. We assume that nmax is large enough
to ensure that line 13 is never executed. We denote the CF that a point r is
reference point of as CF (r). By nearest(p, S) we refer to the reference point
closest to p of all CFs in S. By children(CF (r)) we denote the set of CFs that
are children of CF (r) in the tree. For sake of shorter notation, we also use a
virtual point ρ with virtual CF CF (ρ) for the root node of the tree.

Theorem 2. Let ε > 0, f(ε) = (2·(log n)·4d ·
√
40

d+2
)/(εd+2), OPT/(k·f(ε)) ≤

T ≤ 2 ·OPT/(k · f(ε)) and Ri =
√
T/(8 · 2i). The set of centroids s1/n′, where

(n′, s1, S2) is a CF resulting from Algorithms 1, weighted with n′ is a (k, ε)-
coreset of size O(k · logn · ε−(d+2)) if the dimension d is a constant.

The Rebuilding Algorithm. Above, we assumed that we know the cost of
an optimal solution beforehand. To get rid of this assumption, we start with a
small threshold, increase it if necessary and use the rebuilding algorithm given
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Algorithm 1. Update mechanism where T and Ri are fixed parameters
input: p ∈ Rd

1 Set f = ρ, S = children (CF (ρ)) and i = 1;
2 if S = ∅ or ||p − nearest(p, S)|| > Ri then
3 Open new CF with reference point p in level i as child of CF (f);
4 else
5 Set r := nearest(p, S);
6 if costCF (CF (r) ∪ {p}) ≤ T then
7 Insert p in CF (r);
8 else
9 Set S := children (CF (r));

10 Set f := r and i := i+ 1;
11 Goto line 2;

12 if number of current CFs > nmax then
13 Start rebuilding algorithm;

in Algorithm 2 to adjust the tree to the new threshold. If we start with a T
smaller than OPT/(k · f(ε)) and keep doubling it, then at some point T will be
in [OPT/(k · f(ε)), 2 ·OPT/(k · f(ε))], and at this point in time our coreset size
of O(k · logn · ε−(d+2)) is sufficient to store a (k, ε)-coreset. Until this point, we
will need rebuilding steps, but we will not lose quality.

The aim of the rebuilding algorithm is to create a tree which is similar to the
tree which would have resulted from using the new threshold in the first place. Let
R′

i be the radii before and let Ri be the radii after one iteration of the rebuilding
algorithm. Notice that Ri =

√
2 · T ′/(8 · 2i) =

√
T ′/(8 · 2i−1) = R′

i−1. Thus, if a
CF is not moved up and thus its level is increased by one, the radius will remain
the same. This is nice as thus the CF in the same level automatically satisfy
that the reference points are not within the radii of their neighbors. However,
other properties of the tree do no longer hold in the original way: (1) If a CF
CF (r) on level i is inserted to a CF CF (r′) on level i− 1, i. e., CF (r) becomes
a new child of CF (r′) or they are merged, it is possible that some points which
are represented by CF (r) are not within the radius Ri−1 of r′. But the distance
can be bounded by Ri−1+Ri such that the CFs on each level do not overlap too
much. (2) The rebuilding algorithm can not split CFs. Thus, the set of CFs is
different compared to a run where the new threshold was used in the first place.
In total, these changes slightly increase the coreset size compared to Theorem 2,
but it can be still bounded by O(k · logn · ε−(d+2)), and the weighted set of
centroids also remains a (k, ε)-coreset.

Running Time. When trying to insert a point on level i, we need to decide
whether the point is within distance Ri of its nearest neighbor, and if so, we
need to locate the nearest neighbor. Let N(m) denote the time needed for this,
depending on the coreset size m ∈ O(k · logn · ε−(d+2)). The running time of
BICO is O(N(m) · n) plus the time needed for the rebuilding steps.
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Algorithm 2. Rebuilding algorithm when number of CFs gets too large
1 Set T := 2 · T ;
2 Create a new empty level 1 (which implicitly increases the number of all

existing levels);
3 Let S1 be the empty set of Clustering Features in level 1;
4 Let S2 be the set of all Clustering Features in level 2;
5 for all Clustering Features X ∈ S2 with reference point p do
6 if S1 = ∅ or ||p− nearest(p,S1)||2 > R1 then
7 Move X from S2 to S1;
8 Notice that this implicitly moves all children of X one level up;
9 else

10 if cost (X ∪ CF (nearest(p,S1))) ≤ T then
11 Insert X into CF (nearest(p,S1));
12 else
13 Make X a child of CF (nearest(p,S1));

14 Traverse through the CF tree and, if possible, merge CFs into parent CFs

A rebuilding step needs to go through all m elements of the coreset and to
insert them into the new-build tree. This takes O(m ·N(m)) time. The number
of rebuilding steps depends on how we choose the start value for T . We proved
that BICO computes a (k, ε)-coreset for large enough m. In particular, this
means that for any m + 1 points, BICO contracts at least two of them during
the process. We use this observation by scanning through the first m+ 1 points
and calculating the minimal distance d0 between two points (here, just ignore
multiple points at the same position). Notice that if T < d20, we are not able
to merge any two points into one Clustering Feature. We set T = d20. Then, T
cannot be too small, because otherwise we cannot contract the m points.

The cost of any clustering is bounded from above by n ·Δmax where Δmax is
the maximal distance between any two points. Our start value for T is bounded
from below by the smallest distance Δmin between any two points. Thus, the
factor between the start and end value of T is bounded by n · Δmax

Δmin
. The fraction

Δ := Δmax

Δmin
is called the spread of the points. With each rebuilding step we double

T , and thus the number of rebuilding steps is bounded by log(n ·Δ).

Corollary 1. BICO computes a coreset for a set of n points in Rd given as an
input only data stream in time bounded by O(N(m)(n+log(nΔ)m)) using O(m)
space where m ∈ O(k · log n · ε−(d+2)) is the coreset size and d is constant.

4 Experiments

Algorithms. We compare BICO with Stream-KM++, StreamLS, BIRCH and
MacQueen’s k-means algorithm. Stream-KM++ also aims at a trade-off between
quality and speed which makes it most relevant for our work. BIRCH is the
most relevant practical algorithm. We include MacQueen because it performed
very well on one data set and is very fast. We use the author’s implementations
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for Stream-KM++ [2], BIRCH [27] and StreamLS [16, 26] and an open source
implementation of MacQueen’s k-means [13]. We use the same parameters for
BIRCH as in [2] except that we increase the memory to 26% on BigCross and
8% on Census in order to enable BIRCH to compute solutions for our larger k.

Setting. All computations were performed on seven identical machines with
the same hardware configuration (2.8 Ghz Intel E7400 with 3 MB L2 Cache and
8 GB main memory). BICO and k-means++ are implemented in C++ and com-
piled with gcc 4.5.2. The source code for the algorithms, the testing environment
and links to the other algorithms’ source codes will appear at our website1.

After computing the coreset, we determine the final solution via five weighted
k-means++ runs (until convergence) and chose the solution with best cost on the
coreset. The implementation of BICO differs from Section 3 in two points.

Coreset Size. Our theoretic analysis gives a worst case bound on the space
needed by BICO even for adversarial inputs. On average instances, we expect
that O(k) Clustering Features suffice to get a very good solution. The authors
in [2] used the size 200k for Stream-KM++ which we also opted to use for both
Stream-KM++ and BICO in our line of experiments. This leads to a asymptotic
running time of O (k · (n+ k lognΔ)) for BICO.

Filtering. A large part of the running time of BICO is spent for nearest
neighbor queries on the first level of the tree. We speed it up by an easy heuristic:
All CF reference points are projected to d one-dimensional subspaces chosen
uniformly at random at the start of BICO. Let p be a new point. Since only
reference points that are close to p in each subspace are candidates for the
cluster feature we are searching for, we take the subspace where the number of
points within distance R1 of p is smallest and only iterate through these to find
the nearest neighbor.

Datasets. We used the four largest data sets evaluated in [2], Tower, Cover-
type and Census from the UCI Machine Learning Repository [1] and BigCross,
which is a subset of the Cartesian product of Tower and Covertype, created by
the authors of [2] to have a very large data set. Additionally, we use a data set
we call CalTech128 which is also large and has higher dimension. It consists of
128 SIFT descriptors [23] computed on the Caltech101 object database.

BigCross CalTech128 Census CoverType Tower
Number of Points (n) 11620300 3168383 2458285 581012 4915200
Dimension (d) 57 128 68 55 3
Total size (n · d) 662357100 405553024 167163380 31955660 14745600

Experiments. On Census, Tower and BigCross, we ran tests with all values
for k from [2], and k = 250 and k = 1000 in addition. On CalTech128, we
tested k = 50, 100, 250 and k = 1000. We repeated all randomized algorithms
100 times and the diagrams show the mean values. In all diagrams, the bar of
BICO is composed of two bars on top of each other corresponding to the core
BICO part and the k-means++ part of BICO. We did not find parameters that
enabled BIRCH to compute centers on CalTech128. Due to tests that we did
1 http://ls2-www.cs.uni-dortmund.de/bico/

http://ls2-www.cs.uni-dortmund.de/bico/
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Fig. 2. Running times (in seconds) and costs for datasets BigCross and Census
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Fig. 3. Running times and costs for datasets BigCross and CalTech for large k
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with modified versions of CalTech128 we believe that the implementation is not
able to handle data with a dimension like CalTech128.

Comparison with Stream-KM++ and StreamLS. StreamLS, Stream-
KM++ and BICO all have comparable solution quality (see Figures 2, 4, 3).
StreamLS, however, is rather slow such that we did not include it in the diagrams
and did not include Stream-LS in the tests for larger k. The running times
of Stream-KM++ and BICO both depend on the number of centers which is
reasonable because more centers require a larger coreset size which induces more
effort to keep the coreset up to date. However, BICO is 5-10 times faster and
applicable to much higher values of k (see Figure 2, 3, 4).

Comparison with BIRCH and MacQueen. BIRCH and MacQueen both
tend to compute much worse solutions. MacQueen performs okay on Census,
really well on CalTech128, but badly on BigCross and worse on Tower and
Covertype (see Figures 2, 3, 4). MacQueen starts being faster than BIRCH,
but is slower for larger k (compare BigCross in Figure 2 and 3) because BIRCH
does not adjust for larger k. The running time of BICO is nearly always lower
than that of BIRCH for small k (see Figures 2, 4) and within two times the
running time of MacQueen in most experiments. For large k, BICO has signif-
icantly larger running time. If the dataset is high-dimensional like CalTech128,
this is mainly due to k-means++, while on data sets with a lot of points of lower
dimension like BigCross, the core part of BICO is dominating.

BICO for Large k. We point out that BICO is still practical for large k
despite the large running times when adjusted. We chose BigCross because a
running time of 4.6 hours is unfavourable and because here, the running time is
due to core BICO and cannot be tackled by improving the k-means++ implemen-
tation (which is implemented without any speed-ups). By reducing the coreset
size, the running time of BICO decreases. We lower it until BICO runs in 619
seconds compared to a running time of 616 seconds by BIRCH and 4241 seconds
by MacQueen. The solution computed by BICO is still significantly better than
the solutions by MacQueen and BIRCH.

Remark. Notice that many proof and experiment details are omitted due to
space restrictions and will appear in a long version of the paper.
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Abstract. An undirected graph is Eulerian if it is connected and all its
vertices are of even degree. Similarly, a directed graph is Eulerian, if for
each vertex its in-degree is equal to its out-degree. It is well known that
Eulerian graphs can be recognized in polynomial time while the problems
of finding a maximum Eulerian subgraph or a maximum induced Eule-
rian subgraph are NP-hard. In this paper, we study the parameterized
complexity of the following Euler subgraph problems:

– Large Euler Subgraph: For a given graph G and integer param-
eter k, does G contain an induced Eulerian subgraph with at least k
vertices?

– Long Circuit: For a given graph G and integer parameter k, does
G contain an Eulerian subgraph with at least k edges?

Our main algorithmic result is that Large Euler Subgraph is fixed
parameter tractable (FPT) on undirected graphs. We find this a bit
surprising because the problem of finding an induced Eulerian subgraph
with exactly k vertices is known to be W[1]-hard. The complexity of the
problem changes drastically on directed graphs. On directed graphs we
obtained the following complexity dichotomy: Large Euler Subgraph

is NP-hard for every fixed k > 3 and is solvable in polynomial time for
k ≤ 3. For Long Circuit, we prove that the problem is FPT on directed
and undirected graphs.

1 Introduction

One of the oldest theorems in Graph Theory is attributed to Euler, and it says
that a (undirected) graph admits an Euler circuit, i.e., a closed walk visiting
every edge exactly once, if and only if the graph is connected and all its vertices
are of even degrees. Respectively, a directed graph has a directed Euler circuit if
and only if the graph is (weakly) connected and for each vertex, its in-degree is
equal to its out-degree. While checking if a given directed or undirected graph is
Eulerian is easily done in polynomial time, the problem of finding k edges (arcs)
in a graph to form an Eulerian subgraph is NP-hard. We refer to the book of
Fleischner [12] for a thorough study of Eulerian graphs and related topics.

In [5], Cai and Yang initiated the study of parameterized complexity of sub-
graph problems motivated by Eulerian graphs. Particularly, they considered the
following parameterized subgraph and induced subgraph problems:
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k-Circuit Parameter: k
Input: A (directed) graph G and non-negative integer k
Question: Does G contain a circuit with k edges (arcs)?

and

Euler k-Subgraph Parameter: k
Input: A (directed) graph G and non-negative integer k
Question: Does G contain an induced Euler subgraph with k vertices?

The decision versions of both k-Circuit and Euler k-Subgraph are known
to be the NP-complete [5]. Cai and Yang in [5] proved that k-Circuit on
undirected graphs is FPT. On the other hand, the authors have shown in [14] that
Euler k-Subgraph is W[1]-hard. The variant of the problem (m−k)-Circuit,
where one asks to remove at most k edges to obtain an Eulerian subgraph was
shown to be FPT by Cygan et al. [7] on directed and undirected graphs. The
problem of removing at most k vertices to obtain an induced Eulerian subgraph,
namely Euler (n−k)-Subgraph, was shown to be W[1]-hard by Cai and Yang
for undirected graphs [5] and by Cygan et al. for directed graphs [7]. Dorn et al.
in [8] provided FPT algorithms for the weighted version of Eulerian extension.

In this work we extend the set of results on the parameterized complexity of
Eulerian subgraph problems by considering the problems of finding an (induced)
Eulerian subgraph with at least k (vertices) edges. We consider the following
problems:

Large Euler Subgraph Parameter: k
Input: A (directed) graph G and non-negative integer k
Question: Does G contain an induced Euler subgraph with at least k ver-
tices?

and

Long Circuit Parameter: k
Input: A (directed) graph G and non-negative integer k
Question: Does G contain a circuit with at least k edges (arcs)?

The decision version of Long Circuit was shown to be NP-complete by
Cygan et al. in [7] and it is not difficult to see that the same is true for Large
Euler Subgraph. Let us note that by plugging-in these observations into the
framework of Bodlaender et al. [4], it is easy to conclude that on undirected
graphs both problems have no polynomial kernels unless NP ⊆ coNP /poly.

However, the parameterized complexity of these problems appears to be much
more interesting.

Our Results. We show that Large Euler Subgraph behaves differently for
directed and undirected cases. For undirected graphs, we prove that the problem
is FPT. We find this result surprising, because the very closely related Euler
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k-Subgraph problem is known to be W[1]-hard [14]. The proof is based on a
structural result interesting in its own. Roughly speaking, we show that large
treewidth certifies containment of a large induced Euler subgraph. For directed
graphs, Large Euler Subgraph is NP-complete for each k ≥ 4, and this
bound is tight—the problem is polynomial-time solvable for each k ≤ 3. We also
prove that Euler k-Subgraph is W[1]-hard for directed graphs. Long Circuit

is proved to be FPT for directed and undirected graphs. Our algorithm is based
on the results by Gabow and Nie [15] about the parameterized complexity of
finding long cycles. The known and new results about Euler subgraph problems
are summarized in Table 1.

Table 1. Parameterized complexity of Euler subgraph problems

Undirected Directed

k-Circuit FPT [5] FPT, Prop. 2

Euler k-Subgraph W[1]-hard [14] W[1]-hard, Thm 3

(m− k)-Circuit FPT [7] FPT [7]

Euler (n− k)-Subgraph W[1]-hard [5] W[1]-hard [7]

Long Circuit FPT, Thm 7 FPT, Thm 7

Large Euler Subgraph FPT, Thm 2 NP-complete for ∀ k ≥ 4, Thm 4;
in P for k ≤ 3

This paper is organised as follows. Section 2 contains basic definitions and
preliminaries. In Section 3.1 we show that Large Euler Subgraph is FPT
on undirected graphs. In Section 3.2 we prove that on directed graphs, Euler
k-Subgraph is W[1]-hard while Large Euler Subgraph is NP-complete for
each k ≥ 4. In Section 4 we treat Long Curcuit and show that it is FPT on
directed and undirected graphs.

2 Basic Definitions and Preliminaries

Graphs. We consider finite directed and undirected graphs without loops or
multiple edges. The vertex set of a (directed) graph G is denoted by V (G), the
edge set of an undirected graph and the arc set of a directed graph G is denoted
by E(G). To distinguish edges and arcs, the edge with two end-vertices u, v is
denoted by {u, v}, and we write (u, v) for the corresponding arc. For a set of
vertices S ⊆ V (G), G[S] denotes the subgraph of G induced by S, and by G−S
we denote the graph obtained form G by the removal of all the vertices of S, i.e.,
the subgraph of G induced by V (G) \ S. Let G be an undirected graph. For a
vertex v, we denote by NG(v) its (open) neighborhood, that is, the set of vertices
which are adjacent to v. The degree of a vertex v is denoted by dG(v) = |NG(v)|,
and Δ(G) is the maximum degree of G. Let now G be a directed graph. For a
vertex v ∈ V (G), we say that u is an in-neighbor of v if (u, v) ∈ E(G). The set
of all in-neighbors of v is denoted by N−

G (v). The in-degree d−G(v) = |N−
G (v)|.
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Respectively, u is an out-neighbor of v if (v, u) ∈ E(G), the set of all out-
neighbors of v is denoted by N+

G (v), and the out-degree d+G(v) = |N+
G (v)|.

For a (directed) graph G, a (directed) trail of length k is a sequence
v0, e1, v1, e2, . . . , ek, vk of vertices and edges (arcs resp.) of G such that
v0, . . . , vk ∈ V (G), e1, . . . , ek ∈ E(G), the edges (arcs resp.) e1, . . . , ek are pair-
wise distinct, and for i ∈ {1, . . . , k}, ei = {vi−1, vi} (ei = (vi−1, vi) resp.). A
trail is said to be closed if v0 = vk. A closed (directed) trail is called a (directed)
circuit, and it is a (directed) cycle if all its vertices except v0 = vk are distinct.
Clearly, any cycle is a subgraph of G, and it is said that C is an induced cycle
of G if C = G[V (C)]. A (directed) path is a trail such that all its vertices are
distinct. For a (directed) walk (trail, path resp.) v0, e1, v1, e2, . . . , ek, vk, v0 and
vk are its end-vertices, and v1, . . . , vk−1 are its internal vertices. For a (directed)
walk (trail, path resp.) with end-vertices u and v, we say that it is an (u, v)-walk
(trail, path resp.). We omit the word “directed” if it does not create a confusion.
Also we write a trail as a sequence of its vertices v0, . . . , vk.

A connected (directed) graph G is an Euler (or Eulerian) graph if it has
a (directed) circuit that contains all edges (arcs resp.) of G. By the celebrated
result of Euler (see, e.g., [12]), a connected graph G is an Euler graph if and only
if all its vertices have even degrees. Respectively, a connected directed graph G is
an Euler directed graph if and only if for each vertex v ∈ V (G), d−G(v) = d+G(v).

Ramsey Numbers. The Ramsey number R(r, s) is the minimal integer n such
that any graph on n vertices has either a clique of size r or an independent set
of size s. By the famous paper of Erdös and Szekeres [10], R(r, s) ≤

(
r+s−2
r−1

)
.

Parameterized Complexity. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One dimen-
sion is the input size n and another one is a parameter k. It is said that a problem
is fixed parameter tractable (or FPT), if it can be solved in time f(k) · nO(1) for
some function f , and it is said that a problem is in XP, if it can be solved in time
O(nf(k)) for some function f . One of the basic assumptions of the Parameterized
Complexity theory is the conjecture that the complexity class W[1] 	= FPT, and
it is unlikely that a W[1]-hard problem could be solved in FPT time. A problem
is Para-NP-hard(complete) if it is NP-hard (complete) for some fixed value of
the parameter k. Clearly, a Para-NP-hard problem is not in XP unless P=NP.
We refer to the books of Downey and Fellows [9], Flum and Grohe [13], and
Niedermeier [19] for detailed introductions to parameterized complexity.

Treewidth. A tree decomposition of a graph G is a pair (X,T ) where T is a
tree and X = {Xi | i ∈ V (T )} is a collection of subsets (called bags) of V (G)
such that:

1.
⋃

i∈V (T )Xi = V (G),

2. for each edge {x, y} ∈ E(G), x, y ∈ Xi for some i ∈ V (T ), and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) {|Xi| − 1}.
The treewidth of a graph G (denoted as tw(G)) is the minimum width over all
tree decompositions of G.
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3 Large Euler Subgraphs

3.1 Large Euler Subgraphs for Undirected Graphs

In this section we show that Large Euler Subgraph is FPT for undirected
graphs. Using Ramsey arguments, we prove that if a graph G has sufficiently
large treewidth, then G has an induced Euler subgraph on at least k vertices.
Then if the input graph has large treewidth, we have a YES-answer. Otherwise,
we use the fact that Large Euler Subgraph can be solved in FPT time for
graphs of bounded treewidth. All graphs considered here are undirected.

For a given positive integer k, we define the function f(�) for integers � ≥ 2
recursively as follows:

– f(2) = R(k, k − 1) + 1,
– f(�) = (k − 1)(2(�− 1)(f(� �

2 + 1)− 1) + 1) + 1 for � > 2.

We need the following two lemmas.

Lemma 1. Let G be a graph, and suppose that s, t are distinct vertices joined
by at least f(�) internally vertex-disjoint paths of length at most � in G for some
� ≥ 2. Then G has an induced Euler subgraph on at least k vertices.

Proof. Consider the minimum value of � such that G has f(�) internally vertex
disjoint (s, t)-paths. We have at least r = f(�) − 1 such paths P1, . . . , Pr that
are distinct from the trivial (s, t)-path with one edge. We assume that each path
Pi has no chords that either join two internal vertices or an internal vertex and
one of the end-vertices, i.e., each internal vertex is adjacent in G[V (Pi)] only to
its two neighbors in Pi. Otherwise, we can replace Pi by a shorter path with all
vertices in V (Pi) distinct from the path s, t. We consider two cases.

Case 1. � = 2. The paths P1, . . . , Pr are of length two and therefore have exactly
one internal vertex. Assume that u1, . . . , ur are internal vertices of these paths.
Because r = f(2)−1 = R(k, k−1), the graph G[{u1, . . . , ur}] either has a clique
K of size k or an independent set I of size at least k − 1. Suppose that G has a
clique K. If k is odd, then G[K] is an induced Euler subgraph on k vertices. If k
is even, then G[K ∪{s}] is an induced Euler subgraph on k+1 vertices. Assume
now that that I ⊆ {u1, . . . , ur−1} is an independent set of size k − 1. Let v ∈ I.
If {s, t} ∈ E(G) and k is even or {s, t} /∈ E(G) and k is odd, then G[I ∪ {s, t}]
is an induced Euler subgraph on k + 1 vertices. Else if {s, t} /∈ E(G) and k is
even or {s, t} ∈ E(G) and k is odd, then G[I ∪ {s, t} \ {v}] is an induced Euler
subgraph on k vertices.

Case 2. � ≥ 3. We say that paths Pi and Pj are adjacent if they have adjacent
internal vertices. Let p = f(��/2 + 1). Suppose that there is an internal vertex
v of one of the paths P1, . . . , Pr that is adjacent to at least 2p − 1 internal
vertices of some other distinct 2p − 1 paths. Then there are p = f(��/2 + 1)
paths Pi1 , . . . , Pip that have respective internal vertices v1, . . . , vp such that i) v
is adjacent to v1, . . . , vp and ii) either each vj is at distance at most ��/2 from
s in Pij for all j ∈ {1, . . . , p} or each vj is at distance at most ��/2 from t in Pij
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for all j ∈ {1, . . . , p}. But then either the vertices s, v or v, t are joined by at least
f(��/2 +1) internally vertex-disjoint paths of length at most ��/2 +1 < �. This
contradicts our choice of �. Hence, for each i ∈ {1, . . . , r}, any internal vertex of
Pi has adjacent internal vertices in at most 2p−2 other paths, and Pi is adjacent
to at most 2(�− 1)(p− 1) other paths. As r = (k− 1)(2(�− 1)(p− 1)+ 1), there
are k − 1 distinct paths Pi1 , . . . , Pik−1

that are pairwise non-adjacent, i.e., they
have no adjacent internal vertices.

Let H = G[V (Pi1 )∪. . .∪V (Pik−1
)] andH ′ = G[V (Pi1 )∪. . .∪V (Pik−2

)]. Notice
that by our choice of the paths, H = Pi1 ∪ . . .∪Pik−1

and H ′ = Pi1 ∪ . . .∪Pik−2
if

{s, t} /∈ E(G), and Pi1 ∪ . . .∪Pik−1
(Pi1 ∪ . . .∪Pik−2

resp.) can be obtained from
H (H ′ resp.) by the removal of {s, t} if s, t are adjacent. If {s, t} ∈ E(G) and k
is even or {s, t} /∈ E(G) and k is odd, then H is an induced Euler subgraph on
at least k + 1 vertices. Else if {s, t} /∈ E(G) and k is even or {s, t} ∈ E(G) and
k is odd, then H ′ is an induced Euler subgraph on at least k vertices. �


For k ≥ 4, let

Δk = 1 +
(f(3k − 8)− 1)((f(3k − 8)− 2)3(k−3) − 1)

f(3k − 8)− 3
.

Lemma 2. For k ≥ 4, any 2-connected graph G with Δ(G) > Δk has an induced
Euler subgraph on at least k vertices.

Proof. Let G be a 2-connected graph and let u be a vertex of G with dG(u) =
Δ(G). As G is 2-connected, G′ = G−u is connected. Let v be an arbitrary vertex
of NG(u). Denote by T a tree of shortest paths from v to all other vertices of
NG(u) in G

′.

Claim A. If there is a (v, w)-path P of length at least 3(k − 3) + 1 in T for
some w ∈ NG(u), then G has an induced Euler subgraph on at least k vertices.

v4

u

v = v0 v1 vr = wv2 v3

Fig. 1. The path P and the graphs Q1 (shown by the thick lines), Q2 (shown by the
thin lines), and Q3 (shown by the dashed lines)

Proof (of Claim A). Denote by v0, . . . , vr the vertices of NG(u) in P in
the path order, v0 = v and vr = w. Let Q1 be the union of the
(v0, v1), (v3, v4), . . . , (v
r/3�, v
r/3�+1)-subpaths of P , let Q2 be the union of the
(v1, v2), (v4, v5), . . . , (v
r/3�+1, v
r/3�+2)-subpaths of P , and let Q3 be the union
of the (v2, v3), (v5, v6), . . . , (v
r/3�−1, v
r/3�)-subpaths of P as it is sown in Fig. 1.
Notice that some subpaths can be empty depending whether r modulo 3 is 0, 1
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or 2. Observe that Q1, Q2, Q3 are edge-disjoint induced subgraphs of G. Since
Q1 ∪ Q2 ∪ Q3 = P , there is Qi for i ∈ {1, 2, 3} with at least k − 2 edges. Then
Qi has at least k − 1 vertices. Let H = G[V (Qi) ∪ {u}]. By the definition of Qi,
H is a union of induced cycles with one common vertex u such that for different
cycles C1, C2 in the union, V (C1) ∩ V (C2) = {u} and {x, y} /∈ E(G) whenever
x ∈ V (C1) \ {u} and y ∈ V (C2) \ {u}. Hence, H is an Euler graph with at least
k vertices. �


From now we assume that all (v, w)-paths in T have length at most 3(k− 3) for
w ∈ NG(u).

Claim B. If there is a vertex w ∈ V (T ) with dT (w) ≥ f(3(k − 3) + 1), then G
has an induced Euler subgraph on at least k vertices.

Proof (of Claim B). Recall that T is a tree of shortest paths from v to all other
vertices of NG(u) in G

′.. We assume that T is rooted in v. Then the root defines
the parent-child relation on T . Let x0 be a parent ofw (if exists) and let x1, . . . , xr
be the children of w. If w has no parent, then w = v and r ≥ f(3(k − 3) + 1).
Otherwise, r ≥ f(3(k− 3)+1)− 1. Let y0 = v. Because each leaf of T is a vertex
of NG(u), for each i ∈ {1, . . . , r}, there is a descendant yi ∈ V (T )∩NG(u) of xi
in T . Denote by Pi the unique (w, yi)-path in T for i ∈ {0, . . . , r}. As all (v, w)-
paths in T have length at most 3(k − 3) for w ∈ NG(u), the paths P0, . . . , Pr

have length at most 3(k − 3). Notice that these paths have no common vertices
except w. Observe now that y0, . . . , yr are adjacent to u in G. Therefore, we have
at least f(3(k−3)+1) internally vertex-disjoint (u,w)-paths in G. By Lemma 1,
it implies that G has an induced Euler subgraph on at least k vertices. �


To complete the proof of the lemma, it remains to observe that if Δ(T ) < f(3(k−
3) + 1) and all (v, w)-paths in T have length at most 3(k − 3) for w ∈ NG(u),
then

dG(u) ≤ |V (T )| ≤ 1 +
(f(3k − 8)− 1)((f(3k − 8)− 2)3(k−3) − 1)

f(3k − 8)− 3
= Δk.

�


Kosowski et al. [18] obtained the following bound for treewidth.

Theorem 1 ([18]). Let G be a graph without induced cycles with at least k ≥ 3
vertices and let Δ(G) ≥ 1. Then tw(G) ≤ k(Δ(G) − 1) + 2.

This theorem together with Lemma 2 immediately imply the next lemma.

Lemma 3. Let G be a graph and let k ≥ 4. If tw(G) > k(Δk − 1) + 2, then G
has an induced Euler subgraph on at least k vertices.

Proof. Suppose that tw(G) > k(Δk − 1)+ 2. Then G has a 2-connected compo-
nent G′ with tw(G′) > k(Δk − 1) + 2. If Δ(G′) > Δk, then G′ has an induced
Euler subgraph on at least k vertices by Lemma 2. Otherwise, by Theorem 1, G′

has an induced cycle on at least k vertices, i.e., an induced Euler subgraph. �




500 F.V. Fomin and P.A. Golovach

Now we observe that Large Euler Subgraph is FPT for graphs of bounded
treewidth.

Lemma 4. For any positive integer t, Large Euler Subgraph can be solved
in linear time for graphs of treewidth at most t.

Now we can prove the main result of this section.

Theorem 2. For any positive integer k, Large Euler Subgraph can be
solved in linear time for undirected graphs.

Proof. Clearly, we can assume that k ≥ 3, as any Euler graph has at least
three vertices. If k = 3, then we can find any shortest cycle in the input graph
G. It is straightforward to see that if G has no cycles, then we have no Euler
subgraph, and any induced cycle is an induced Euler subgraph on at least three
vertices. Hence, it can be assumed that k ≥ 4. We check in linear time whether
tw(G) ≤ k(Δk − 1)+2 using the Bodlaender’s algorithm [3]. If it is so, we solve
our problem using Lemma 4. Otherwise, by Lemma 3, we conclude that G has
an induced Euler subgraph on at least k vertices and return a YES-answer. �


Notice, that the proof of Theorem 2 is not constructive. Next, we sketch the
algorithm that produces an induced Euler subgraph on at least k ≥ 4 vertices if
it exists.

First, for each � ≥ 2, we can test the existence of two vertices s, t such that the
input graph G has at least f(�) internally vertex-disjoint (s, t)-paths of length at
most � in FPT time with the parameter � using the color coding technique [17].
If we find such a structure for � ≤ 3k − 8, we find an induced Euler subgraph
with at least k vertices that is either a clique or a union of (s, t)-paths as it is
explained in the proof of Lemma 1.

Otherwise, we find all 2-connected components. If there is a 2-connected com-
ponent G′ with a vertex u with dG′(u) > Δk, then we find an induced Euler
subgraph with at least k vertices that is a union of cycles with the common
vertex u using the arguments form the proof of Lemma 2.

If all 2-connected components have bounded maximum degrees, we use the
algorithm of Kosowski et al. [18] that in polynomial time either finds an induced
cycle on at least k vertices or constructs a tree decomposition of width at most
k(Δk − 1) + 2. In the fist case we have an induced Euler subgraph on at least
k vertices. In the second case the treewidth is bounded, and Large Euler

Subgraph is solved by a dynamic programming algorithm instead of applying
Lemma 4.

3.2 Large Euler Subgraphs for Directed Graphs

In this section we show that Euler k-Subgraph and Large Euler Subgraph

are hard for directed graphs. Due the space restrictions, the proofs are omitted.
First, we consider Euler k-Subgraph. It is straightforward to see that this

problem is in XP, since we can check for every subset of k vertices, whether it
induces an Euler subgraph. We prove that this problem cannot be solved in FPT
time unless FPT = W[1].
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Theorem 3. The Euler k-Subgraph is W[1]-hard for directed graphs.

For Large Euler Subgraph for directed graphs, we prove that this problem
is Para-NP-complete.

Theorem 4. For any k ≥ 4, Large Euler Subgraph is NP-complete for
directed graphs.

We proved that Large Euler Subgraph is NP-complete for directed graphs
for k ≥ 4. In the conclusion of this section we observe that the bound k ≥ 4 is
tight unless P=NP.

Proposition 1. Large Euler Subgraph can be solved in polynomial time
for k ≤ 3.

4 Long Circuits

In this section we show that the Long Circuit problem is FPT for directed
and undirected graphs.

We need the following auxiliary problem:

At least k and at most k′-Circuit Parameter: k′

Input: A (directed) graph G and non-negative integers k, k′, k ≤ k′

Question: Does G contain a circuit with at least k and at most k′ edges
(arcs)?

Clearly, we can solve this problem in FPT time for undirected graphs apply-
ing the algorithm by Cai and Yang [5] for r-Circuit for each r ∈ {k, . . . , k′}.
For directed graphs, we can use the same approach based on the color coding
technique introduced by Alon, Yuster and Zwick [1]. For completeness, we sketch
the proof here.

Lemma 5. The At least k and at most k′-Circuit problem can be solved
in 2O(k′) ·nm expected time and in 2O(k′) ·nm log n worst-case time for (directed)
graphs with n vertices and m edges (arcs).

Proof. As the algorithms for directed and undirected graphs are basically the
same, we consider here the directed case. For simplicity, we solve the decision
problem, but the algorithm can be easily modified to obtain a circuit of pre-
scribed size if it exists.

Let G be a directed graph with n vertices and m arcs.
First, we describe the randomized algorithm. We color the arcs of G by k′

colors 1, . . . , k′ uniformly at random independently from each other. Now we are
looking for a colorful circuit in G that has at least k arcs, i.e., for a circuit such
that all arcs are colored by distinct colors.
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To do it, we apply the dynamic programming across subsets. We choose an
initial vertex u and try to construct a circuit that includes u. For a set of colors
X ⊆ {1, . . . , k′}, denote by U(X) the set of vertices v ∈ V (G) such that there is a
(u, v)-trail with |X | edges colored by distinct colors fromX . It is straightforward
to see that U(∅) = {u}. For X 	= ∅, v ∈ U(X) if and only if v has an in-neighbor
w ∈ N−

G (v) such that (w, v) is colored by a color c ∈ X and w ∈ U(X \ {c}).
We consequently construct the sets U(X) for X with 1, 2, . . . , k′ elements. We
stop and return a YES-answer if u ∈ U(X) for some X of size at least k. Notice
that the sets U(X) can be constructed in time O(k′2k

′ · m). Since we try all
possibilities to select u, the running time is O(k′2k

′ ·mn).
Now we observe that for any positive number p < 1, there is a constant cp

such that after running our randomized algorithm cp2
O(k′) times, we either get a

YES-answer or can claim that with probability p G has no directed circuit with
at least k and at most k′ arcs.

This algorithm can be derandomized by the technique proposed by Alon,
Yuster and Zwick [1]. To do it, we replace random colorings by a family of at
most 2O(k′) logn hash functions that can be constructed in time 2O(k′) ·m logn.

�


If we set k′ = k, then Lemma 5 immediately implies the following proposition.
Notice that it was proved in [5] for undirected graphs.

Proposition 2. The k-Circuit problem can be solved in 2O(k) · nm expected
time and in 2O(k) ·nm logn worst-case time for (directed) graphs with n vertices
and m edges (arcs).

Gabow and Nie in [15] considered the Long Cycle problem:

Long Cycle Parameter: k
Input: A (directed) graph G and a positive integer k
Question: Does G contain a cycle with at least k edges (arcs)?

In particular, they proved the following theorem.

Theorem 5 ([15]). The Long Cycle problem can be solved in 2O(k log k) · nm
expected time and in 2O(k log k) ·nm logn worst-case time for directed graphs with
n vertices and m arcs.

Let us recall that a fundamental cycle in undirected graph is formed from
a spanning tree and a nontree edge. For undirected graphs, it is slightly more
convenient to use the structural result by Gabow and Nie.

Theorem 6 ([15]). In a connected undirected graph having a cycle with k edges,
either every depth-first search tree has a fundamental cycle with at least k edges
or some cycle with at least k edges has at most 2k − 4 edges.

We need the following observation.
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Lemma 6. Let G be a (directed) graph without cycles of length at least k. If G
has a circuit with at least k edges (arcs resp.), then G has a circuit with at least
k and at most 2k − 2 edges (arcs resp.).

Proof. Let C be a circuit in G. It is well-known (see, e.g., [12]) that C is a union
of edge-disjoint (arc-disjoint) cycles C1, . . . , Cr. Moreover, it can be assumed
that for any i ∈ {1, . . . , r}, the circuit C1 ∪ . . . ∪ Ci is connected. Suppose now
that C is a circuit with at least k edges (arcs resp.) that has minimum length.
Then the circuit C′ = C1 ∪ . . .∪Cr−1 has at most k− 1 edges (arcs resp.). Since
G has no cycles of length at least k, Cr has at most k − 1 edges (arcs resp.).
Thus C has at most 2k − 2 edges (arcs resp.). �


Now we are ready to prove the main result of this section.

Theorem 7. The Long Circuit problem can be solved in 2O(k log k) · nm ex-
pected time and in 2O(k log k) · nm logn worst-case time for directed graphs with
n vertices and m arcs, and in 2O(k) · nm expected time and in 2O(k) · nm logn
worst-case time for undirected graphs with n vertices and m edges.

Proof. First, we consider directed graphs. Let G be a directed graph. By Theo-
rem 5, we can check whether G has a cycle with at least k arcs. If we find such
a cycle C, then C is a circuit with at least k arcs, and we have a YES-answer.
Otherwise, we conclude that each cycle in G is of length at most k− 1. Then by
Lemma 6, if G has a circuit with at least k arcs, then it has a circuit with at
least k and at most 2k− 2 arcs. We find such a circuit (if it exist) by solving At

least k and at most k′-Circuit for k′ = 2k− 2 by making use of Lemma 5.
Combining the running times, we have that Long Circuit can be solved in
2O(k log k) · nm expected time and in 2O(k log k) · nm logn worst-case time.

For the undirected case, we assume that the input graph G is connected, as
otherwise we can solve the problem for each component. We choose a vertex
v arbitrarily and perform the depth-first search from v. In this way we find
the fundamental cycles for the dfs-tree rooted in v, and check whether there
is a fundamental cycle of length at least k. If we have such a cycle, then it
is a circuit with at least k edges, and we have a YES-answer. Otherwise, by
Theorem 6, either G has no cycles of length at least k or G has a cycle with
at least k and at most 2k − 4 edges. If G has no cycles with at least k edges,
then by Lemma 6, if G has a circuit with at least k edges, it contains a circuit
with at least k and at most 2k − 2 edges. We conclude that if the constructed
fundamental cycles have lengths at most k − 1, then G either has a circuit with
at least k and at most 2k − 2 edges or has no circuit with at least k edges. We
check whether G has a circuit with at least k and at most 2k−2 edges by solving
At least k and at most k′-Circuit for k′ = 2k − 2 using Lemma 5. Since
the depth-first search runs in linear time, we have that on undirected graphs
Long Circuit can be solved in 2O(k) ·nm expected time and in 2O(k) ·nm logn
worst-case time. �
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Abstract. Cutwidth of a digraph is a width measure introduced by
Chudnovsky, Fradkin, and Seymour [4] in connection with development
of a structural theory for tournaments, or more generally, for semi-
complete digraphs. In this paper we provide an algorithm with running
time 2O(

√
k log k)·nO(1) that tests whether the cutwidth of a given n-vertex

semi-complete digraph is at most k, improving upon the currently fastest
algorithm of the second author [18] that works in 2O(k) · n2 time. As a
byproduct, we obtain a new algorithm for Feedback Arc Set in tour-

naments (FAST) with running time 2c
√

k · nO(1), where c = 2π√
3·ln 2

≤
5.24, that is simpler than the algorithms of Feige [9] and of Karpinski

and Schudy [16], both also working in 2O(
√
k) ·nO(1) time. Our techniques

can be applied also to other layout problems on semi-complete digraphs.
We show that the Optimal Linear Arrangement problem, a close

relative of Feedback Arc Set, can be solved in 2O(k1/3·
√

log k) · nO(1)

time, where k is the target cost of the ordering.

1 Introduction

A directed graph is simple if it contains no multiple arcs or loops; it is more-
over semi-complete if for every two vertices v, w, at least one of the arcs (v, w) or
(w, v) is present. An important subclass of semi-complete digraphs is the class of
tournaments , where we require that exactly one of these arcs is present. Tourna-
ments are extensively studied both from combinatorial and computational point
of view; see the book of Bang-Jensen and Gutin [2] for an overview.

One reason why semi-complete digraphs are interesting, is that for this class
it is possible to construct a structural theory, resembling the theory of mi-
nors for undirected graphs. This theory has been developed recently by Chud-
novsky, Fradkin, Kim, Scott, and Seymour [4,5,6,12,13,17]. In particular, two
natural notions of digraph containment, namely immersion and minor orders,
have been proven to well-quasi-order the set of semi-complete digraphs [6,17].
The developed structural theory has many algorithmic consequences, including
fixed-parameter tractable algorithms for containment testing problems [4,11,18].
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In both theories, for undirected graphs and semi-complete digraphs, width
parameters play crucial roles. While in the theory of undirected graph minors
the main parameter is treewidth, for semi-complete digraphs cutwidth becomes
one of the key notions. Given a semi-complete digraph T and a vertex ordering
σ = (v1, v2, . . . , vn) of V (T ), the width of σ is the maximum number of arcs
that are directed from a suffix of the ordering to the complementary prefix. The
cutwidth of T , denoted ctw(T ), is the smallest possible width of an ordering of
V (T ). It turns out that excluding a fixed digraph as an immersion implies an
upper bound on cutwidth of a semi-complete digraph [4]. Hence, the claim that
the immersion relation is a well-quasi-ordering of semi-complete digraphs can
be easily reduced to the case of semi-complete digraphs of bounded cutwidth;
there, a direct reasoning can be applied [6].

From the computational point of view, Chudnovsky, Fradkin, and Seymour
give an approximation algorithm that, given a semi-complete digraph T on n
vertices and an integer k, in time O(n3) either outputs an ordering of widthO(k2)
or concludes that ctw(T ) > k [4]. It also follows from the work of Chudnovsky,
Fradkin, and Seymour [4,5] that the value of cutwidth can be computed exactly
by a non-uniform fixed-parameter algorithm working in f(k) · n3 time: as the
class of semi-complete digraphs of cutwidth at most k is characterized by a finite
set of forbidden immersions, we can approximate cutwidth and test existence of
any of them using dynamic programming on the approximate ordering. These
results were further improved by the second author [18]: he gives an O(OPT )-
approximation in O(n2) time by proving that any ordering of V (T ) according
to outdegrees has width at most O(ctw(T )2), and a fixed-parameter algorithm
that in 2O(k) · n2 time finds an ordering of width at most k or concludes that it
is not possible.

Our results and techniques. In this work we present an algorithm that, given a
semi-complete digraph T on n vertices and an integer k, in 2O(

√
k log k) · nO(1)

time computes an ordering of width at most k or concludes that ctw(T ) > k.
In other words, we prove that the cutwidth of a semi-complete digraph can be
computed in subexponential parameterized time.

The idea behind our approach is inspired by the recent work of a superset of
the current authors on clustering problems [10]. The algorithm in [10] is based
on a combinatorial result that in every YES instance of that problem the number
of k-cuts, i.e., partitions of the vertex set into two subsets with at most k edges
crossing the partition, is bounded by a subexponential function of k. We apply
a similar strategy to compute the cutwidth of a semi-complete digraph. A k-cut
in a semi-complete digraph T is a partition of its vertices into two sets X and Y ,
such that only at most k arcs are directed from Y to X . Our algorithm is based
on a new combinatorial lemma that the number of k-cuts in a semi-complete
digraph of cutwidth at most k is at most 2O(

√
k log k) · n. The crucial ingredient

of its proof is to relate k-cuts of a transitive tournament to partition numbers: a
notion extensively studied in classical combinatorics and which subexponential
asymptotics is very well understood. Then we roughly do the following. It is
possible to show that all k-cuts can be enumerated with polynomial time delay.
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We enumerate all k-cuts and if we exceed the combinatorial bound, we are able to
say that the cutwidth of the input digraph is more than k. Otherwise, we have a
bounded-size family of objects on which we can employ a dynamic programming
routine. The running time of this step is up to a polynomial factor proportional
to the number of k-cuts, and thus is subexponential.

As a byproduct of the approach taken, we also obtain a new algorithm for

Feedback Arc Set (FAS) in semi-complete digraphs, with running time 2c
√
k ·

nO(1) for c = 2π√
3·ln 2

≤ 5.24. The FAS problem was the first problem in tour-

naments shown to admit subexponential parameterized algorithms. The first

algorithm with running time 2O(
√
k log k) · nO(1) is due to Alon, Lokshtanov, and

Saurabh [1]. This has been further improved by Feige [9] and by Karpinski and
Schudy [16], who have independently shown two different algorithms with run-

ning time 2O(
√
k) ·nO(1). The algorithm of Alon et al. introduced a new technique

called chromatic coding that proved to be useful also in other problems in dense
graphs [14]. The algorithms of Feige and of Karpinski and Schudy were based
on the degree ordering approach, and the techniques developed there were more
specific to the problem.

In our approach, the 2O(
√
k) · nO(1) algorithm for FAS on semi-complete di-

graphs follows immediately from relating k-cuts of a transitive tournament to
partition numbers, and an application of the general framework. It is also worth
mentioning that the explicit constant in the exponent obtained using our ap-
proach is much smaller than the constants in the algorithms of Feige and of
Karpinski and Schudy; however, optimizing these constants was not the pur-
pose of these works. Similarly to the algorithm of Karpinski and Schudy, our
algorithm works also in the weighted setting.

Lastly, we show that our approach can be also applied to other layout problems
in semi-complete digraphs. For example, we consider a natural variant of the well-
studied Optimal Linear Arrangement problem [3,7], and we prove that one

can compute in 2O(k1/3·
√
log k) · nO(1) time an ordering of cost at most k, or

conclude that it is impossible (see Section 2 for precise definitions). Although
such a low complexity may be explained by the fact that the optimal cost may
be even cubic in the number of vertices, we find it interesting that results of this
kind can be also obtained by making use of our techniques.

Organization of the paper. In Section 2 we introduce basic notions and problem
definitions. In Section 3 we prove combinatorial lemmata concerning k-cuts of
semi-complete digraphs. In Section 4 we apply the results of the previous section
to obtain the algorithmic results. Section 5 is devoted to concluding remarks.

2 Preliminaries

We use standard graph notation. For a digraph D, we denote by V (D) and E(D)
the vertex and arc sets of D, respectively. A digraph is simple if it has no loops
and no multiple arcs, i.e., for every pair of vertices v, w, the arc (v, w) appears
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in E(D) at most once. Note that we do not exclude existence of arcs (v, w) and
(w, v) at the same time. All the digraphs considered in this paper will be simple.

A digraph is acyclic if it contains no cycle. It is known that a digraph is
acyclic if and only if it admits a topological ordering of vertices, i.e., an ordering
(v1, v2, . . . , vn) of V (D) such that arcs are always directed from a vertex with a
smaller index to a vertex with a larger index.

A simple digraph T is semi-complete if for every pair (v, w) of vertices at
least one of the arcs (v, w), (w, v) is present. A semi-complete digraph T is
moreover a tournament if for every pair (v, w) of vertices exactly one of the arcs
(v, w), (w, v) is present. A transitive tournament with ordering (v1, v2, . . . , vn)
is a tournament T defined on vertex set {v1, v2, . . . , vn} where (vi, vj) ∈ E(T ) if
and only if i < j.

We use Iverson notation: for a condition ϕ, [ϕ] denotes value 1 if ϕ is true
and 0 otherwise. We also use exp(t) = et.

2.1 Feedback Arc Set

Definition 1. Let T be a digraph. A subset F ⊆ E(T ) is called a feedback arc
set if T \ F is acyclic.

The FAS problem in semi-complete digraphs is defined as follows.

Feedback Arc Set Parameter: k
Input: A semi-complete digraph T , an integer k
Question: Is there a feedback arc set of T of size at most k?

We have the following easy observation that enables us to view FAS as a
graph layout problem.

Lemma 2. Let T be a digraph. Then T admits a feedback arc set of size at most
k if and only if there exists an ordering (v1, v2, . . . , vn) of V (T ) with at most k
arcs of E(T ) directed backward in this ordering, i.e., of form (vi, vj) for i > j.

Proof. If F is a feedback arc set in T then the ordering can be obtained by
taking any topological ordering of T \F . On the other hand, given the ordering
we may simply define F to be the set of backward edges.

2.2 Cutwidth

Definition 3. Let T be a digraph. For an ordering σ = (v1, v2, . . . , vn) of V (T ),
the width of σ is max1≤t≤n−1 |E({vt+1, vt+2, . . . , vn}, {v1, v2, . . . , vt})|. Cutwidth
of T , denoted ctw(T ), is the smallest possible width of an ordering of V (T ).

The Cutwidth problem can be hence defined as follows:

Cutwidth Parameter: k
Input: A semi-complete digraph T , an integer k
Question: Is ctw(T ) ≤ k?
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Note that the introduced notion reverses the ordering with respect to the
standard literature on cutwidth [4,18]. We chose to do so to be consistent within
the paper, and compatible with the literature on FAS in tournaments.

2.3 Optimal Linear Arrangement

Definition 4. Let T be a digraph and (v1, v2, . . . , vn) be an ordering of its ver-
tices. Then the cost of this ordering is defined as∑

(vi,vj)∈E(T )

(i − j) · [i > j],

that is, every arc directed backwards in the ordering contributes to the cost with
the distance between the endpoints in the ordering.

Whenever the ordering is clear from the context, we also refer to the contribu-
tion of a given arc to its cost as to the length of this arc. By a simple reordering
of the computation we obtain the following:

Lemma 5. For a digraph T and ordering (v1, v2, . . . , vn) of V (T ), the cost of
this ordering is equal to:

n−1∑
t=1

|E({vt+1, vt+2, . . . , vn}, {v1, v2, . . . , vt})|.

Proof. Observe that

∑
(vi,vj)∈E(T )

(i − j) · [i > j] =
∑

(vi,vj)∈E(T )

n−1∑
t=1

[j ≤ t < i]

=

n−1∑
t=1

∑
(vi,vj)∈E(T )

[j ≤ t < i] =

=

n−1∑
t=1

|E({vt+1, vt+2, . . . , vn}, {v1, v2, . . . , vt})|.

The problem OLA (Optimal Linear Arrangement) in semi-complete di-
graphs is defined as follows:

Optimal Linear Arrangement Parameter: k
Input: A semi-complete digraph T , an integer k
Question: Is there an ordering of V (T ) of cost at most k?

3 k-Cuts of Semi-complete Digraphs

In this section we provide all the relevant observations on k-cuts of semi-complete
digraphs. We start with the definitions, and then proceed to bounding the num-
ber of k-cuts when the given semi-complete digraph is close to a structured one.



510 F.V. Fomin and M. Pilipczuk

3.1 Definitions

Definition 6. A k-cut of a digraph T is a partition (X,Y ) of V (T ) with the
following property: there are at most k arcs (u, v) ∈ E(T ) such that u ∈ Y and
v ∈ X.

The following lemma will be needed to apply the general framework.

Lemma 7. k-cuts of a digraph T can be enumerated with polynomial-time delay.

Proof. Let σ = (v1, v2, . . . , vn) be an arbitrary ordering of vertices of T . We per-
form a classical branching strategy: we start with empty X and Y , and consider
the vertices in order σ, at each step branching into one of the two possibilities:
vertex vi is to be incorporated into X or into Y . However, after assigning each
consecutive vertex we run a max-flow algorithm from Y to X to find the size of
a minimum edge cut between Y and X . If this size is more than k, we terminate
the branch as we know that it cannot result in any solutions found. Otherwise
we proceed. We output a partition after the last vertex, vn, is assigned a side;
note that the last max-flow check ensures that the output partition is actually
a k-cut. Moreover, as during the algorithm we consider only branches that can
produce at least one k-cut, the next partition will be always found within poly-
nomial waiting time, proportional to the depth of the branching tree times the
time needed for computations at each node of the branching tree.

3.2 k-Cuts of a Transitive Tournament and Partition Numbers

For a nonnegative integer n, a partition of n is a multiset of positive integers
whose sum is equal to n. The partition number p(n) is equal to the number of
different partitions of n. Partition numbers are studied extensively in analytic
combinatorics, and there are sharp estimates on their value. In particular, we
will use the following:

Lemma 8 ([8,15]). There exists a constant A such that for every nonnegative

k it holds that p(k) ≤ A
k+1 · exp(C

√
k), where C = π

√
2
3 .

We remark that the original proof of Hardy and Ramanujan [15] shows more-
over that the optimal constant A tends to 1

4
√
3
as k goes to infinity. From now

on, we adopt constants A,C given by Lemma 8 in the notation. We use Lemma 8
to obtain the following result, which is the core observation of this paper.

Lemma 9. Let T be a transitive tournament with n vertices and k be a non-
negative integer. Then T has at most A · exp(C

√
k) · (n+ 1) k-cuts, where A,C

are defined as in Lemma 8.

Proof. We prove that for any number a, 0 ≤ a ≤ n, the number of k-cuts (X,Y )
such that |X | = a and |Y | = n − a, is bounded by A · exp(C

√
k); summing

through all the possible values of a proves the claim.
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We naturally identify the vertices of T with numbers 1, 2, . . . , n, such that arcs
of T are directed from smaller numbers to larger. Let us fix some k-cut (X,Y )
such that |X | = a and |Y | = n− a. Let x1 < x2 < . . . < xa be the vertices of X .

Let mi = xi+1 − xi − 1 for i = 0, 1, . . . , a; we use convention that x0 = 0
and xa+1 = n + 1. In other words, mi is the number of elements of Y that
are between two consecutive elements of X . Observe that every element of Y
between xi and xi+1 is the tail of exactly a − i arcs directed from Y to X : the
heads are xi+1, xi+2, . . . , xa. Hence, the total number of arcs directed from Y to
X is equal to k′ =

∑a
i=0mi · (a− i) =

∑a
i=0ma−i · i ≤ k.

We define a partition of k′ as follows: we take ma−1 times number 1, ma−2

times number 2, and so on, up to m0 times number a. Clearly, a k-cut of T
defines a partition of k′ in this manner. We now claim that knowing a and the
partition of k′, we can uniquely reconstruct the k-cut (X,Y ) of T , or conclude
that this is impossible. Indeed, from the partition we obtain all the numbers
m0,m1, . . . ,ma−1, while ma can be computed as (n− a)−

∑a−1
i=0 mi. Hence, we

know exactly how large must be the intervals between consecutive elements of
X , and how far is the first and the last element of X from the respective end
of the ordering, which uniquely defines sets X and Y . The only possibilities of
failure during reconstruction are that (i) the numbers in the partition are larger
than a, or (ii) computedma turns out to be negative; in these cases, the partition
does not correspond to any k-cut. Hence, we infer that the number of k-cuts of
T having |X | = a and |Y | = n− a is bounded by the sum of partition numbers
of nonnegative integers smaller or equal to k, which by Lemma 8 is bounded by
(k + 1) · A

k+1 · exp(C
√
k) = A · exp(C

√
k).

3.3 k-Cuts of Semi-complete Digraphs with a Small FAS

We have the following simple fact.

Lemma 10. Assume that T is a semi-complete digraph with a feedback arc set
F of size at most k. Let T ′ be a transitive tournament on the same set of vertices,
with vertices ordered as in any topological ordering of T \ F . Then every k-cut
of T is also a 2k-cut of T ′.

Proof. The claim follows directly from the observation that if (X,Y ) is a k-cut
in T , then at most k additional arcs directed from Y to X can appear after
introducing arcs in T ′ in place of deleted arcs from F .

From Lemmata 9 and 10 we obtain the following corollary.

Corollary 11. Every semi-complete digraph with n vertices and with a feedback
arc set of size at most k, has at most A · exp(C

√
2k) · (n+ 1) k-cuts.

3.4 k-Cuts of Semi-complete Digraphs of Small Cutwidth

To bound the number of k-cuts of semi-complete digraphs of small cutwidth, we
need the following auxiliary combinatorial result.
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Lemma 12. Let (X,Y ) be a partition of {1, 2, . . . , n} into two sets. We say that
a pair (a, b) is bad if a < b, a ∈ Y and b ∈ X. Assume that for every integer t
there are at most k bad pairs (a, b) such that a ≤ t < b. Then the total number
of bad pairs is at most k(1 + ln k).

Proof. Let y1 < y2 < . . . < yp be the elements of Y . Let mi be equal to the
total number of elements of X that are greater than yi. Note that mi is exactly
equal to the number of bad pairs whose first element is equal to yi, hence the
total number of bad pairs is equal to

∑p
i=1mi. Clearly, sequence (mi) is non-

increasing, so let p′ be the last index for which mp′ > 0. We then have that the

total number of bad pairs is equal to
∑p′

i=1mi. Moreover, observe that p′ ≤ k,
as otherwise there would be more than k bad pairs (a, b) for which a ≤ yp′ < b:
for a we can take any yi for i ≤ p′ and for b we can take any element of X larger
than yp′ .

We claim that mi ≤ k/i for every 1 ≤ i ≤ p′. Indeed, observe that there are
exactly i · mi bad pairs (a, b) for a ≤ yi and b > yi: a can be chosen among
i distinct integers y1, y2, . . . , yi, while b can be chosen among mi elements of
X larger than yi. By the assumption we infer that i · mi ≤ k, so mi ≤ k/i.

Concluding, we have that the total number of bad pairs is bounded by
∑p′

i=1mi ≤∑p′

i=1 k/i = k · H(p′) ≤ k · H(k) ≤ k(1 + ln k), where H(k) =
∑k

i=1 1/i is the
harmonic function.

We now apply Lemma 12 to the setting of semi-complete digraphs.

Lemma 13. Assume that T is a semi-complete digraph with n vertices that
admits an ordering of vertices (v1, v2, . . . , vn) of width at most k. Let T ′ be a
transitive tournament on the same set of vertices, where (vi, vj) ∈ E(T ′) if and
only if i < j. Then every k-cut of T is a 2k(1 + ln 2k)-cut of T ′.

Proof. Without loss of generality we assume that T is in fact a tournament, as
deleting any of two opposite arcs connecting two vertices can only make the set
of k-cuts of T larger, and does not increase the width of the ordering.

Identify vertices v1, v2, . . . , vn with numbers 1, 2, . . . , n. Let (X,Y ) be a k-cut
of T . Note that arcs of T ′ directed from Y to X correspond to bad pairs in the
sense of Lemma 12. Therefore, by Lemma 12 it suffices to prove that for every
integer t, the number of arcs (a, b) ∈ E(T ′) such that a ≤ t < b, a ∈ Y , and
b ∈ X , is bounded by 2k. We know that the number of such arcs in T is at most
k, as there are at most k arcs directed from Y toX in T in total. Moreover, as the
considered ordering of T has cutwidth at most k, at most k arcs between vertices
from {1, 2, . . . , t} and {t+ 1, . . . , n} can be directed in different directions in T
and in T ′. We infer that the number of arcs (a, b) ∈ E(T ′) such that a ≤ t < b,
a ∈ Y , and b ∈ X , is bounded by 2k, and so the lemma follows.

From Lemmata 9 and 13 we obtain the following corollary.

Corollary 14. Every tournament with n vertices and of cutwidth at most k,
has at most A · exp(2C

√
k(1 + ln 2k)) · (n+ 1) k-cuts.
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3.5 k-Cuts of Semi-complete Digraphs with an Ordering of Small
Cost

We firstly show the following lemma that proves that semi-complete digraphs
with an ordering of small cost have even smaller cutwidth.

Lemma 15. Let T be a semi-complete digraph on n vertices that admits an
ordering (v1, v2, . . . , vn) of cost at most k. Then the width of this ordering is at
most (4k)2/3.

Proof. We claim that for every integer t ≥ 0, the number of arcs in T directed
from the set {vt+1, . . . , vn} to {v1, . . . , vt} is at most (4k)2/3. Let � be the number
of such arcs; without loss of generality assume that � > 0. Observe that at most
one of these arcs may have length 1, at most 2 may have length 2, etc., up to at

most �
√
� −1 may have length �

√
� −1. It follows that at most

∑

√
��−1

i=1 i ≤ �/2

of these arcs may have length smaller than �
√
� . Hence, at least �/2 of the

considered arcs have length at least �
√
� , so the total sum of lengths of arcs is

at least �·

√
��

2 ≥ �3/2

4 . We infer that k ≥ �3/2

4 , which means that � ≤ (4k)2/3.

Lemma 15 ensures that only (4k)2/3-cuts are interesting from the point of view
of dynamic programming. Moreover, from Lemma 15 and Corollary 14 we can
derive the following statement that bounds the number of states of the dynamic
program.

Corollary 16. If T is a semi-complete digraph with n vertices that admits an
ordering of cost at most k, then the number of (4k)2/3-cuts of T is bounded by

A · exp(2C · (4k)1/3 ·
√
1 + ln(2 · (4k)2/3)) · (n+ 1).

4 The Algorithms

In this section we apply the results of the previous section to obtain algorithmic
results. We begin with the algorithm for Feedback Arc Set, and then proceed
to Cutwidth and OLA. All three applications are very similar and based on
the principle of dynamic programming. Therefore we give in detail only the
first algorithm, which contains all the necessary ingredients. The remaining two
algorithms (marked with (†)) we defer to the full version of the paper.

For a semi-complete digraph T , let N (T, k) denote the family of k-cuts of T .

Theorem 17. There exists an algorithm that, given a semi-complete digraph T
on n vertices and an integer k, in time exp(C

√
2k) ·nO(1) either finds a feedback

arc set of T of size at most k or correctly concludes that this is impossible, where

C = π
√

2
3 .

Proof. Using Lemma 7, we enumerate all the k-cuts of T . If we exceed the
bound of A · exp(C

√
2k) · (n+ 1) during enumeration, by Corollary 11 we may

safely terminate the computation providing a negative answer; note that this



514 F.V. Fomin and M. Pilipczuk

happens after using at most exp(C
√
2k) ·nO(1) time, as the cuts are output with

polynomial time delay. Hence, from now on we assume that we have the set
N := N (T, k) and we know that |N | ≤ A · exp(C

√
2k) · (n+ 1).

We now describe a dynamic programming procedure that computes the size
of optimal feedback arc set from the set N ; the dynamic program is based on
the approach presented in [18]. We define an auxiliary weighted digraph D with
vertex set N . Intuitively, a vertex from N corresponds to a partition into prefix
and suffix of the ordering.

Formally, we define arcs of D as follows. We say that cut (X2, Y2) extends
cut (X1, Y1) if there is one vertex v ∈ Y1 such that X2 = X1 ∪ {v} and, hence,
Y2 = Y1 \ {v}. We put an arc in D from cut (X1, Y1) to cut (X2, Y2) if (X2, Y2)
extends (X1, Y1); the weight of this arc is equal to |E({v}, X1)|, that is, the
number of arcs that cease to be directed from the right side to the left side of
the partition when moving v between these parts. Note that thus each vertex of
D has at most n outneighbours, so |E(D)| is bounded by O(|N | · n). Moreover,
the whole graph D can be constructed in |N | · nO(1) time by considering all the
vertices of D and examining each of at most n candidates for outneighbours in
polynomial time.

Observe that a path from vertex (∅, V (T )) to a vertex (V (T ), ∅) of total weight
� defines an ordering of vertices of T that has exactly � backward arcs — each of
these edges was taken into account while moving its tail from the right side of the
partition to the left side. On the other hand, every ordering of vertices of T that
has exactly � ≤ k backward arcs defines a path from (∅, V (T )) to (V (T ), ∅) in D
of total weight �; note that all partitions into prefix and suffix in this ordering are
k-cuts, so they constitute legal vertices in D. Hence, we need to check whether
vertex (V (T ), ∅) can be reached from (∅, V (T )) by a path of total length at
most k. This, however, can be done in time O((|V (D)| + |E(D)|) log |V (D)|) =
O(exp(C

√
2k) ·nO(1)) using Dijkstra’s algorithm. The feedback arc set of size at

most k can be easily retrieved from the constructed path in polynomial time.

We remark that it is straightforward to adapt the algorithm of Theorem 17 to
the weighted case, where all the arcs are assigned a real weight larger or equal to
1 and we parametrize by the target total weight of the solution. As the minimum
weight is at least 1, we may still consider only k-cuts of the digraph where the
weights are forgotten. On this set we employ a modified dynamic programming
routine, where the weights of arcs in digraph D are not simply the number of
arcs in E({v}, X1), but their total weight. We omit the details here.

We now proceed to the main result of this paper, i.e., the subexponential algo-
rithm for cutwidth of a semi-complete digraph. The following theorem essentially
follows from Lemma 7, Corollary 14 and the dynamic programming algorithm
from [18].

Theorem 18 (†). There exists an algorithm that, given a semi-complete digraph

T on n vertices and an integer k, in time 2O(
√
k log k) · nO(1) either computes a

vertex ordering of width at most k or correctly concludes that this is impossible.
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Similarly as in the proof of Theorem 17, the algorithm builds an auxiliary
digraph D on the set N (T, k). Lemma 7 can be used to enumerate N (T, k)
with polynomial delay, while Corollary 14 ensures that the enumeration can
be terminated after finding 2O(

√
k log k) · n cuts. Arcs of D are defined via the

same notion of extension, and this time D is unweighted. Then paths in D from
(∅, V (T )) to (V (T ), ∅) correspond to orderings of V (T ) of cutwidth at most k.
Details are omitted.

Finally, we present how the framework can be applied to the OLA problem.

Theorem 19 (†). There exists an algorithm that, given a semi-complete digraph

T on n vertices and an integer k, in time 2O(k1/3√log k) · nO(1) either computes
a vertex ordering of cost at most k, or correctly concludes that it is not possible.

Here, Lemma 15 ensures that we may work on family N (T, (4k)2/3), while
Corollary 16 gives us a bound after which enumeration of cuts may be termi-
nated. Weights of arcs in the digraph D are set according to the formula from
Lemma 5.

Similarly to Theorem 17, it is also straightforward to adapt the algorithm of
Theorem 19 to the natural weighted variant of the problem, where each arc is
assigned a real weight larger or equal to 1, each arc directed backward in the
ordering contributes to the cost with its weight multiplied by the length of the
arc, and we parametrize by the total target cost.

5 Conclusions

In this paper we have showed that a number of vertex ordering problems on tour-
naments, and more generally, on semi-complete digraphs, admit subexponential
parameterized algorithms. We believe that our approach provides a new insight
into the structure of problems on semi-complete digraphs solvable in subexpo-
nential parameterized time: in instances with a positive answer the space of
naturally relevant objects, namely k-cuts, is of subexponential size. We hope
that such an algorithmic strategy may be applied to other problems as well.

Clearly, it is possible to pipeline the presented algorithm for FAS on semi-
complete digraphs with a simple kernelization algorithm, which can be found,
e.g., in [1], to separate the polynomial dependency on n from the subexponential
dependency on k in the running time. This can be done also for OLA, as this
problem admits a simple linear kernel; we omit the details here.

However, we believe that a more important challenge is to investigate whether
the

√
log k factor in the exponent of the running times of the algorithms of

Theorems 18 and 19 is necessary. At this moment, appearance of this factor is a
result of pipelining Lemma 9 with Lemma 12 in the proof of Lemma 13. A closer
examination of the proofs of Lemmata 9 and 12 shows that bounds given by
them are essentially optimal on their own; yet, it is not clear whether the bound
given by pipelining them is optimal as well. Hence, we would like to pose the
following open problem: is the number of k-cuts of a semi-complete digraph on

n vertices and of cutwidth at most k bounded by 2O(
√
k) ·nO(1)? If the answer to

this combinatorial question is positive, then the
√
log k factor could be removed.
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Abstract. Binary jumbled pattern matching asks to preprocess a binary
string S in order to answer queries (i, j) which ask for a substring of
S that is of length i and has exactly j 1-bits. This problem naturally
generalizes to vertex-labeled trees and graphs by replacing “substring”
with “connected subgraph”. In this paper, we give an O(n2/ log2 n)-time
solution for trees, matching the currently best bound for (the simpler
problem of) strings. We also give an O(g2/3n4/3/(log n)4/3)-time solution
for strings that are compressed by a grammar of size g. This solution
improves the known bounds when the string is compressible under many
popular compression schemes. Finally, we prove that the problem is fixed-
parameter tractable with respect to the treewidth w of the graph, even for
a constant number of different vertex-labels, thus improving the previous
best nO(w) algorithm.

1 Introduction

Jumbled pattern matching is an important variant of classical pattern matching
with several applications in computational biology, ranging from alignment [4]
and SNP discovery [6], to the interpretation of mass spectrometry data [9] and
metabolic network analysis [21]. In the most basic case of strings, the problem
asks to determine whether a given pattern P can be rearranged so that it appears
in a given text T . That is, whether T contains a substring of length |P | where
each letter of the alphabet occurs the same number of times as in P . Using
a straightforward sliding window algorithm, such a jumbled occurrence can be
found optimally in O(n) time on a text of length n. While jumbled pattern
matching has a simple efficient solution, its indexing problem is much more
challenging. In the indexing problem, we preprocess a given text T so that on
queries P we can determine quickly whether T has a jumbled occurrence of P .
Very little is known about this problem besides the trivial naive solution.

Most of the interesting results on indexing for jumbled pattern matching re-
late to binary strings (where a query pattern (i, j) asks for a substring of T that
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is of length i and has j 1s). Given a binary string of length n, Cicalese, Fici and
Lipták [13] showed how one can build in O(n2) time anO(n)-space index that an-
swers jumbled pattern matching queries in O(1) time. Their key observation was
that if one substring of length i contains fewer than j 1s, and another substring
of length i contains more than j 1s, then there must be a substring of length i
with exactly j 1s. Using this observation, they construct an index that stores the
maximum and minimum number of 1s in any i-length substring, for each possi-
ble i. Burcsi et al. [9] (see also [10,11]) andMoosa and Rahman [22] independently
improved the construction time toO(n2/ logn), then Moosa and Rahman [23] fur-
ther improved it to O(n2/ log2 n) in the RAMmodel. Currently, faster algorithms
than O(n2/ log2 n) exist only when the string compresses well using run-length
encoding [3,19] or when we are willing to settle for approximate indexes [14].

The natural extension of jumbled pattern matching from strings to trees is
much harder. In this extension, we are asked to determine whether a vertex-
labeled input tree has a connected subgraph where each label occurs the same
number of times as specified by the input query. The difficulty here stems from
the fact that a tree can have an exponential number of connected subgraphs
as opposed to strings. Hence, a sliding window approach becomes intractable.
Indeed, the problem is NP-hard [21], even if our query contains at most one oc-
currence of each letter [17]. It is not even fixed-parameter tractable when parame-
terized by the alphabet size [17]. The fixed-parameter tractability of the problem
was further studied when extending the problem from trees to graphs [2,5,15,16].
In particular, the problem (also known as the graph motif problem) was recently
shown by Fellows et al. [17] to be polynomial-time solvable when the number of
letters in the alphabet as well as the treewidth of the graph are both fixed.

Our results. In this paper we extend the currently known state-of-the-art for
binary jumbled pattern matching. Our results focus on trees, and tree-like struc-
tures such as grammars and bounded treewidth graphs. The problem on such
trees turns out to be more challenging than on strings and requires substantially
different ideas and techniques.

• Trees: For a tree T of size n, we present an index of size O(n) bits that
is constructed in O(n2/ log2 n) time and answers binary jumbled pattern
matching queries in O(1) time. This matches the performance of the best
known index for binary strings. In fact, our index for trees is obtained
by multiple applications of an efficient algorithm for strings [23] under a
more careful analysis. This is combined with both a micro-macro [1] and
centroid decomposition of the input tree. Our index can also be used as
an O(ni/ log2 n)-time algorithm for the pattern matching (as opposed to
the indexing) problem, where i denotes the size of the pattern. Finally,
by increasing the space of our index to O(n logn) bits, we can output in
O(log n) time a node of T that is part of the pattern occurrence.

• Grammars: For a binary string S of length n derived by a grammar of
size g, we show how to construct in O(g2/3n4/3/ log4/3 n) time an index
of size O(n) bits that answers jumbled pattern matching queries on S in
O(1) time. The size of the grammar g can be exponentially smaller than
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n and is always at most O(n/ logn). This means that our time bound is
O(n2/ log2 n) even when S is not compressible. If S is compressible but
with other compression schemes such as the LZ-family, then we can trans-
form it into a grammar-based compression with little or no expansion [12,24].

• Bounded Treewidth Graphs: For a graph G with treewidth bounded by
w, we show how to improve on the O(nO(w)) time algorithm of Fellows et

al. [17] to an algorithm which runs in 2O(w3)n + wO(w)nO(1) time. Thus,
we show that for a binary alphabet, jumbled pattern matching is fixed-
parameter tractable when parameterized only by the treewidth. This result
extends easily to alphabets of constant sizes.

We present our results for trees, grammars, and bounded treewidth graphs in
sections 2, 3 and 4 respectively. Proofs of all lemmas are given in the full version
of this paper.

2 Jumbled Pattern Matching on Trees

In this section we consider the natural extension of binary jumbled pattern
matching to trees. Recall that in this extension we are given a tree T with n
nodes, where each node is labeled by either 1 or 0. We will refer to the nodes
labeled 1 as black nodes, and the nodes labeled 0 as white nodes. Our goal is to
construct a data structure that on query (i, j) determines whether T contains a
connected subgraph with exactly i nodes, j of which are black. Such a subgraph
of T is referred to as a pattern and (i, j) is said to appear in T . The main result
of this section is stated below.

Theorem 1. Given a tree T with n nodes that are colored black or white, we
can construct in O(n2/ log2 n) time a data structure of size O(n) bits that given
a query (i, j) determines in O(1) time if (i, j) appears in T .

Notice that the bounds of Theorem 1 match the currently best bounds for the
case where T is a string [22,23]. This is despite the fact that a string has only
O(n2) substrings while a tree can haveΩ(2n) connected subgraphs. The following
lemma indicates an important property of string jumbled pattern matching that
carries on to trees. It gives rise to a simple index described below.

Lemma 1. If (i, j1) and (i, j2) both appear in T , then for every j1 ≤ j ≤ j2,
(i, j) appears in T .

2.1 A Simple Index

As in the case of strings, the above lemma suggests anO(n)-size data structure: For
every i = 1, . . . , n, store the minimum and maximum values imin and imax such
that (i, imin) and (i, imax) appear inT . This way, upon query (i, j), we can report in
constant time whether (i, j) appears in T by checking if imin ≤ j ≤ imax. However,
while O(n2) construction-time is trivial for strings (for every i = 0, . . . , n, slide a
window of length i through the text in O(n) time) it is harder on trees.
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To obtain O(n2) construction time, we begin by converting our tree into a
rooted binary tree. We arbitrarily root the tree T . To convert it to a binary tree,
we duplicate each node with more than two children as follows: Let v be a node
with children u1, . . . , uk, k ≥ 3. We replace v with k− 1 new nodes v1, . . . , vk−1,
make u1 and u2 be the children of v1, and make v�−1 and u�+1 be the children
of v� for each � = 2, . . . , k − 1. We call the nodes v2, . . . , vk dummy nodes.
This procedure at most doubles the size of T . To avoid cumbersome notation,
we henceforth use T and n to denote the resulting binary rooted tree and its
number of nodes. For a node v, we let Tv denote the subtree of T rooted at v
(i.e. the connected subgraph induced by v and all its descendants).

Next, in a bottom-up fashion, we compute for each node v of T an array Av

of size |Tv|+ 1. The entry Av[i] will store the maximum number of black nodes
that appear in a connected subgraph of size i that includes v and another i− 1
nodes in Tv. Computing the minimum (rather than maximum) number of black
nodes is done similarly. Throughout the execution, we also maintain a global
array A such that A[i] stores the maximum Av[i] over all nodes v considered so
far. Notice that in the end of the execution, A[i] holds the desired value imax

since every connected subgraph of T of size i includes some node v and i − 1
nodes in Tv.

We now show how to compute Av[i] for a node v and a specific value i ∈
{1, . . . , |Tv|}. If v has a single child u, then v is necessarily not a dummy node
and we set Av[i] = col(v)+Au[i−1], where col(v) = 1 if v is black and col(v) = 0
otherwise. If v has two children u and w, then any pattern of size i that appears in
Tv and includes v is composed of v, a pattern of size � in Tu that includes u, and
a pattern of size i−1−� in Tw that includes w. We therefore set Av[i] = col(v)+
max0≤�≤i−1{Au[�]+Aw[i−1−�]} and Av[i] = max1≤�≤i−1{Au[�]+Aw[i−1−�]}
when v is a dummy node. Observe that in the latter the � index starts with 1 to
indicate that the non-dummy copy of v is already included in the pattern.

Lemma 2. The above algorithm runs in O(n2) time.

Note that if at any time the algorithm only stores arrays Av which are neces-
sary for future computations, then the total space used by the algorithm is O(n).
The space can be made O(n) bits by storing the Av arrays in a succinct fashion
(this will also prove useful later for improving the running time): Observe that
A[i] is either equal to Av[i] or to Av[i] + 1. This is because any pattern of size i
with b black nodes can be turned into a pattern of size i− 1 with at least b− 1
black nodes by removing a leaf. We can therefore represent Av as a binary string
Bv of n bits, where Bv[0] = 0, and Bv[i] = Av[i]−Av[i−1] for all i = 1, . . . , n−1.

Notice that since Av[i] =
∑i

�=0Bv[�], each entry of Av can be retrieved from Bv

in O(1) time using rank queries [20].

2.2 Pattern Matching

Before improving the above algorithm, we show that it can already be analyzed
more carefully to get a bound of O(n · i) when the pattern size is known to be at
most i. This is useful for the pattern matching problem: Without preprocessing,
decide whether a given pattern (i, j) appears in T .
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In the case of strings, this problem can trivially be solved in O(n) time by
sliding a window of length i through the string thus effectively considering every
substring of length i. This sliding-window approach however does not extend to
trees since we cannot afford to examine all connected subgraphs of T . We next
show that, in trees, searching for a pattern of size i can be done in O(n · i) time
by using our above indexing algorithm. This is useful when the pattern is small
(i.e., when i = o(n)). Obtaining O(n) time remains our main open problem.

Lemma 3. Given a tree T with n nodes that are colored black or white and a
query pattern (i, j), we can check in O(n · i) time and O(n) space if T contains
the pattern (i, j).

2.3 An Improved Index

In this subsection, we will gradually improve the construction time from O(n2)
to O(n2/ log2 n). For simplicity of the presentation, we will assume the input
tree T is a rooted binary tree. This extends to arbitrary trees using a similar
dummy-nodes trick as above.

From trees to strings. Recall that we can represent every Av by a binary
string Bv where Bv[i] = Av[i] − Av[i − 1]. We begin by showing that if v has
two children u,w then the computation of Bv can be done by solving a variant
of jumbled pattern matching on the string Sv = Xv ◦ col(v) ◦ Yv (here ◦ denotes
concatenation) of length |Sv| = |Tu|+ |Tw|+1, where Xv is obtained from Bu by
reversing it and removing its last bit, and Yv is obtained from Bw by removing
its first bit. We call the position in Sv with col(v) the split position of Sv. Recall
that Av[i] = col(v) + max0≤�≤i−1{Au[�] + Aw[i − 1 − �]}. This is equal to the
maximum number of 1s in a window of S that is of length i and includes the
split position of Sv.

We are therefore interested only in windows including the split position, and
this is the important distinction from the standard jumbled pattern matching
problem on strings. Clearly, using the fastest O(n2/ log2 n)-time algorithm [23]
for the standard string problem we can also solve our problem and compute Av

in O(|S|2/ log2 n) time. However, recall that for our total analysis (over all nodes
v) to give O(n2/ log2 n) we need the time to be O(|Xv| · |Yv|/ log2 n) and not
O((|Xv|+ |Yv|)2/ log2 n).

First Speedup. The O(log2 n)-factor speedup for jumbled pattern matching
on strings [23] is achieved by a clever combination of lookup tables. One log
factor is achieved by computing the maximum 1s in a window of length i only
when i is a multiple of s = (logn)/6. Using a lookup table over all possible
windows of length s, a sliding window of size i can be extended in O(1) time to
all windows of sizes i+1, . . . , i+s−1 that start at the same location (see [23] for
details). Their algorithm can output in O(n2/ logn) time an array of O(n/ log n)
words. For each i that is a multiple of s, the array keeps one word storing the
maximum number of 1s over all windows of length i and another word storing
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the binary increment vector for the maximum number of 1s in all windows of
length i+ 1, . . . , i+ s− 1.

By only considering windows that include the split position of Sv, this idea
easily translates to an O(|Xv | · |Yv|/ logn)-time algorithm to compute Av and
implicitly store it in O((|Xv | + |Yv|)/ logn) words. From this it is also easy
to obtain an O((|Xv| + |Yv|)/ logn)-words representation of Bv. Notice that if
v has a single child then the same procedure works with |Xv| = 0 in time
O(|Yv|/ logn) = O(n/ logn). Summing over all nodes v, we get an O(n2/ logn)-
time solution for binary jumbled indexing on trees.

Second Speedup. In strings, an additional logarithmic improvement shown
in [23] can be obtained as follows: When sliding a window of length i (i is a
multiple of s) the window is shifted s locations in O(1) time using a lookup
table over all pairs of binary substrings of length ≤ s (representing the leftmost
and rightmost bits in all these s shifts). This further improvement yields an
O(n2/ log2 n)-time algorithm for strings. In trees however this is not the case.
While we can compute Av in O((|Xv| + |Yv|)2/ log2 n) time, we can guarantee
O(|Xv|·|Yv |/ log2 n) time only if both |Xv| and |Yv| are greater than s. Otherwise,
say |Xv| < s and |Yv| ≥ s, we will get O(|Xv| · |Yv|/|Xv| logn) = O(|Yv|/ logn)
time. This is because our windows must include the col(v) index and so we
never shift a window by more than |Xv| locations. Overcoming this obstacle is
the main challenge of this subsection. It is achieved by carefully ensuring that the
O(|Yv|/ logn) = O(n/ logn) costly constructions will be done only O(n/ log n)
times.

A Micro-Macro Decomposition. A micro-macro decomposition [1] is a par-
tition of T into O(n/ log n) disjoint connected subgraphs called micro trees. Each
micro tree is of size at most log n, and at most two nodes in a micro tree are adja-
cent to nodes in other micro trees. These nodes are referred to as top and bottom
boundary nodes. The top boundary node is chosen as the root of the micro tree.
The macro tree is a rooted tree of size O(n/ logn) whose nodes correspond to
micro trees as follows (See Fig 1): The top boundary node t(C) of a micro tree C
is connected to a boundary node in the parent micro tree parent(C) (apart from
the root). The boundary node t(C) might also be connected to a top boundary
node of a child micro tree child(C).1 The bottom boundary node b(C) of C is
connected to top boundary nodes of at most two child micro trees �(C) and r(C)
of C.

A Bottom Up Traversal of the Macro Tree. With each micro tree C we
associate an array AC . Let TC denote the union of micro tree C and all its
descendant micro trees. The array AC stores the maximum 1s (black nodes)
in every pattern that includes the boundary node t(C) and other nodes of TC .
We also associate three auxiliary arrays: Ab, At and Atb The array Ab stores

1 The root of the macro tree is unique as it might have a top boundary node connected
to two child micro trees. We focus on the other nodes. Handling the root is done in
a very similar way.
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t(C)
b(C) C

parent(C)

child (C)

r (C)l (C)

Fig. 1. A micro tree C and its neighboring micro trees in the macro tree. Inside each
micro tree, the black nodes correspond to boundary nodes and the white nodes to
non-boundary nodes.

the maximum 1s in every pattern that includes the boundary node b(C) and
other nodes of C, T�(C), and Tr(C). The array At stores the maximum 1s in
every pattern that includes the boundary node t(C) and other nodes of C and
Tchild(C). Finally, the array Atb stores the maximum 1s in every pattern that
includes both boundary nodes t(C) and b(C) and other nodes of C, T�(C), and
Tr(C).

We initialize for every micro tree C its O(|C|) = O(log n) sized arrays. Arrays
AC and At are initialized to hold the maximum 1s in every pattern that includes
t(C) and nodes of C. This can be done in O(|C|2) time for each C by rooting C
at t(C) and running the algorithm from the previous subsection. Similarly, we
initialize the array Ab to hold the maximum 1s in every pattern that includes
b(C) and nodes of C. The array Atb is initialized as follows: First we check how
many nodes are 1s and how many are 0s on the unique path between t(C) and
b(C). If there are i 1s and j 0s we set Atb[k] = 0 for every k < i + j and we
set Atb[i + j] = i. We compute Atb[k] for all k > i + j in total O(|C|2) time by
contracting the b(C)-to-t(C) path into a single node and running the previous
algorithm rooting C in this contracted node. The total running time of the
initialization step is therefore O(n · |C|2/ logn) = O(n logn) which is negligible.
Notice that during this computation we have computed the maximum 1s in all
patterns that are completely inside a micro tree. We are now done with the leaf
nodes of the macro tree.

We next describe how to compute the arrays of an internal node C of the macro
tree given the arrays of �(C), r(C) and child(C). We first compute the maximum
1s in all patterns that include b(C) and vertices of T�(C) and Tr(C). This can

be done using the aforementioned string speedups in O(|T�(C)| · |Tr(C)|/ log2 n)
time when both |T�(C)| > logn and |Tr(C)| > log n and in O(n/ log n) time oth-
erwise. Using this and the initialized arrayAb of C (that is of size |C| ≤ logn) we
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can compute the final array Ab of C in time O((|T�(C)| + |Tr(C)|)/ logn) =
O(n/ logn). Similarly, using the initialized Atb of C, we can compute the final
array Atb of C in O(n/ logn) time. Next, we compute the array At using the
initialized arrayAt of C and the arrayAt of child(C) in time O(n/ logn). Finally,
we compute AC of C using Atb of C and At of child(C) in O((|T�(C)|+ |Tr(C)|+
|C|)·|Tchild(C)|/ log2 n) time if both |T�(C)|+|Tr(C)|+|C| > logn and |Tchild(C)| >
logn and in O(n/ logn) otherwise. To finalize AC we must then take the entry-
wise maximum between the computed AC and At. This is because a patten in
TC may or may not include b(C).

To bound the total time complexity over all clusters C, notice that some
computations required O(α(v) ·β(v)/ log2 n) when α(v) > logn and β(v) > logn
are the subtree sizes of two children of some node v ∈ T . We have already seen
that the sum of all these terms over all nodes of T is O(n2/ log2 n). The other type
of computations each require O(n/ logn) time but there are at most O(n/ log n)
such computations (O(1) for each micro tree) for a total of O(n2/ log2 n). This
completes the proof of Theorem 1.

2.4 Finding the Query Pattern

In this subsection we extend the index so that on top of identifying in O(1) time
if a pattern (i, j) appears in T , it can also locate in O(log n) time a node v ∈ T
that is part of such a pattern appearance. We call this node an anchor of the
appearance. This extension increases the space of the index from O(n) bits to
O(n log n) bits (i.e., O(n) words).

Recall that given a tree T we build in O(n2/ log2 n) time an array A of size
n = |T | where A[i] stores the minimum and maximum values imin and imax

such that (i, imin) and (i, imax) appear in T . Now consider a centroid decom-
position of T : A centroid node c in T is a node whose removal leaves no con-
nected component with more than n/2 nodes. We first construct the array A
of T in O(n2/ log2 n) time and store it in node c. We then recurse on each re-
maining connected component. This way, every node v ∈ T will compute the
array corresponding to the connected component whose centroid was v. No-
tice that this array is not the array Av since we do not insist the pattern uses
v. Observe that since each array A is implicitly stored in an n-sized bit ar-
ray B, and since the recursion tree is balanced the total space complexity is
O(n log n) bits. Furthermore, the time to construct all the arrays is bounded by
T (n) = 2T (n/2) +O(n2/ log2 n) = O(n2/ log2 n).

Let c denote the centroid of T whose removal leaves at most three connected
components T1, T2, and T3 (recall we assume degree at most 3). Upon query (i, j)
we first check the array of c if pattern (i, j) appears in T (i.e., if imin ≤ j ≤ imax).
If it does then we check the centroids of T1, T2 and T3. If (i, j) appears in any of
them then we continue the search there. This way, after at most O(log n) steps
we reach the first node v whose connected component includes (i, j) but none of
its child components do. We return v as the anchor node since such a pattern
must include v. Finally, we note that the above can be extended so that for every
occurrences of (i, j) one node that is part of this occurrence is reported.
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3 Jumbled Pattern Matching on Grammars

In grammar compression, a binary string S of length n is compressed using a
context-free grammar G(S) in Chomsky normal form that generates S and only
S. Such a grammar has a unique parse tree that generates S. Identical subtrees
of this parse tree indicate substring repeats in S. The size of the grammar g =
|G(S)| is defined as the total number of variables and production rules in the
grammar. Note that g can be exponentially smaller than n = |S|, and is always at
most O(n/ logn). We show how to solve the jumbled pattern matching problem
on S by solving it on the parse tree of G(S), taking advantage of subtree repeats.
We obtain the following bounds. The proof is given in the appendix.

Theorem 2. Given a binary string S of length n compressed by a grammar
G(S) of size g, we can construct in O(g2/3n4/3/(logn)4/3) time a data structure
of size O(n) bits that on query (i, j) determines in O(1) time if S has a substring
of length i with exactly j 1s.

We also note that similarly to the case of trees (subsection 2.4), if we are willing to
increase our index space to O(n log n) bits, then it is not difficult to turn indexes
for detecting jumbled pattern matches in grammars into indexes for locating
them. To obtain this, we build an index for S and recurse (build indexes) on
S1 = B1 ◦ · · · ◦Bk and S2 = Bk+1 ◦ · · · ◦Bd where |S1| and |S2| are roughly n/2.
This way, like in the centroid decomposition for trees, we can get in O(log n) time
an anchor index of S. That is, an index of S that is part of a pattern appearance.
Furthermore, as opposed to trees, we can then find the actual appearance (not
just the anchor) in additionalO(i) time by sliding a window of size i that includes
the anchor.

4 Jumbled Pattern Matching on Bounded Treewidth
Graphs

In this section we consider the extension of binary jumbled pattern matching to
the domain of graphs: Given a graph G whose vertices are colored either black
and white, and a query (i, j), determine whether G has a connected subgraph
G′ with i white vertices and j black vertices2. This problem is also known as
the (binary) graph motif problem in the literature. Fellows et al. [17] provided
an nO(w) algorithm for this problem, where w is the treewidth of the input
graph. Here we will substantially improve on this result by proving the following
theorem, asserting that the problem is fixed-parameter tractable in the treewidth
of the graph.

Theorem 3. Binary jumbled pattern matching can be solved in f(w)·nO(1) time
on graphs of treewidth w.

2 The difference between the meaning of the query here and elsewhere in the paper is
for ease of the presentation.



526 T. Gagie et al.

The function f(w) in the theorem above can be replaced with wO(w) in case
a tree decomposition of width w (see below) is provided with the input graph,

and otherwise it can be replaced by 2O(w3). Also, the algorithm in the theorem
actually computes all queries (i, j) that appear in G, and can thus be easily
converted to an index for the input graph.

We begin by first introducing some necessary notation and terminology. Let
G = (V (G), E(G)) be a graph. A tree decomposition of G is a tree T whose
nodes are subsets of V (G), called bags, with the following two properties: (i) the
union of all subgraphs induced by the bags of T is G, and (ii) for any vertex
v, the set of all bags including v induces a connected subgraph in T . We use
X to denote the set of bags in a given tree decomposition. The width of the
decomposition is defined as maxX∈X |X | − 1. The treewidth of G is the smallest
possible width of any tree decomposition of G. Given a bag X of a given tree
decomposition T , we let GX denote the subgraph induced by the union of all
bags in TX . Bodlaender [7] gave an algorithm for computing a width-w tree

decomposition of a given graph with treewidth w in 2O(w3)n time.
We next describe the information we store for each bag in the tree decom-

position of G. Let X be an arbitrary bag. A partition ΠX = {X0, X1, . . . , Xx}
of X is positive for a given query (i, j) in GX if there are x disjoint connected
subgraphs G1, . . . , Gx of GX such that (1) the total number of black and white
vertices in G′ = G1∪· · ·∪Gx is i and j respectively, and (2) V (G′)∩X0 = ∅ and
V (G�) ∩X = X� for each � = 1, . . . , x. Here we slightly abuse our terminology
and allow X0 to be the empty set. The information we compute for each bag
X is an array AX which has an entry for each possible query (i, j), where the
entry AX [i, j] contains the set of all positive partitions of X for (i, j) in GX .
Note that the query (i, j) appears in GX iff there exists some partition into two
sets {X0, X1} that is positive for (i, j). Since (i, j) appears in G iff (i, j) appears
in GX for some bag X ∈ X , computing the arrays AX for all bags allows us to
determine whether (i, j) appears in G. Our algorithm computes all arrays AX in
a bottom-top fashion from the leaves to the root of T . It is easy to verify that
the size of each array AX is bounded by wO(w)n2. To get a similar term in our
running time, we will show that computing the array AX from the arrays of the
children of X can be done in polynomial-time with respect to the child array
sizes.

We will work with a specific kind of tree decompositions, namely nice tree
decompositions [8]. A nice tree decomposition is a binary rooted tree decomposi-
tion T with four types of bags: Leaf, forget, introduce, and join. Leaf bags are the
leaves of T and include a single vertex of G, and so computing AX for leaf bags
is trivial. A forget bag X has a single child Y with X = Y \ {v} for some vertex
v of G. Computing AX from AY in this case amounts to converting each positive
partition ΠY of Y to a corresponding positive partition ΠX of X by removing
v from the class it belongs to in ΠY . An introduce bag X also has a single child
Y , but this time we have X = Y ∪ {v} for some vertex v /∈ Y of G. By the
properties of a tree decomposition, we know that v is only adjacent to vertices
of Y in GX . Computing AX from AY in this case requires the consideration of
all partitions of X which are formed from positive partitions ΠY of Y by adding
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v to a class in ΠY with one of its neighbors (or adding {v} as a new singleton
class). We leave the precise details to the full version of this paper, but it should
be easy to see that computing AX in this case, as well as in all cases above, can
be done in wO(w)nO(1).

The more challenging case is when X is a join bag. A join bag X has two chil-
dren Y and Z in T , withX = Y = Z. Consider two partitionsΠY = {Y0, . . . , Yy}
and ΠZ = {Z0, . . . , Zz} for Y and Z. We define the partition ΠY ⊕ΠZ as fol-
lows: First we set X0 to be Y0 ∩Z0. The remaining classes are constructed such
that any pair of vertices in X belong to the same class in ΠX \ {X0} iff they
belong to the same class in ΠY \ {Y0} or to the same class in ΠZ \ {Z0}.

Let i0 and j0 respectively denote the number of white and black vertices in X .
We claim that if (i1, j1) and (i2, j2) are two queries for which ΠY and ΠZ are
respectively positive in GY andGZ , thenΠX = ΠY ⊕ΠZ is positive for (i1+ i2−
i0, j1 + j2 − j0). This can be verified by considering the connected components
in GY

1 ∪ · · · ∪ GY
y ∪ GZ

1 · · · ∪ GZ
z , where G

Y
1 , . . . , G

Y
y and GZ

1 , . . . , G
Z
z are sets of

graphs witnessing that ΠY and ΠZ are positive for (i1, j1) in GY and (i2, j2) in
GZ . It is easy to see that the total number of white and black vertices in these
components is i1 + i2 − i0 and j1 + j2 − j0, where i0 white vertices and j0 black
vertices are subtracted due to double counting the vertex colors in X . Moreover,
it can be verified that these components intersect X as required by ΠX .

On the other hand, it can also be seen on the same lines that if (i, j) is a query
for which ΠX is positive in GX , then (i, j) = (i1 + i2 − i0, j1 + j2 − j0) for some
pair of queries (i1, j1) and (i2, j2) for which ΠY and ΠZ are positive in GY and
GZ . We can therefore compute AX [i, j] by examining all such pairs (i1, j1) and
(i2, j2), and computing the partition ΠY ⊕ΠZ for each pair of positive partitions
ΠY ∈ AY [i1, j1] and ΠZ ∈ AZ . This requires w

O(w)nO(1) time.
To summarize we compute each array AX in wO(w)nO(1) time. As the total

number of bags is O(wn), we obtain an algorithm whose total running time is
wO(w)nO(1), excluding the time required to compute the nice tree decomposition
T . We note that the running time of our algorithm can be improved slightly
by using an extension of Lemma 1 to graphs. Also, our result straightforwardly
extends to an wO(w)nO(c) time algorithm for the case where the vertices of G
are colored with c colors.
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Abstract. Meta-theorems for polynomial (linear) kernels have been the
subject of intensive research in parameterized complexity. Heretofore,
there were meta-theorems for linear kernels on graphs of bounded genus,
H-minor-free graphs, and H-topological-minor-free graphs. To the best
of our knowledge, there are no known meta-theorems for kernels for any
of the larger sparse graph classes: graphs of bounded expansion, locally
bounded expansion, and nowhere dense graphs. In this paper we prove
meta-theorems for these three graph classes. More specifically, we show
that graph problems that have finite integer index (FII) admit linear
kernels on hereditary graphs of bounded expansion when parameterized
by the size of a modulator to constant-treedepth graphs. For hereditary
graph classes of locally bounded expansion, our result yields a quadratic
kernel and for hereditary nowhere dense graphs, a polynomial kernel.
While our parameter may seem rather strong, a linear kernel result on
graphs of bounded expansion with a weaker parameter would for some
problems violate known lower bounds. Moreover, we use a relaxed no-
tion of FII which allows us to prove linear kernels for problems such as
Longest Path/Cycle and Exact s, t-Path which do not have FII in
general graphs.

1 Introduction

Data preprocessing has always been a part of algorithm design. The last decade
has seen steady progress in the area of kernelization, an area which deals with
the design of polynomial-time preprocessing algorithms. These algorithms com-
press an input instance of a parameterized problem into an equivalent output in-
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complexity theory guarantees the existence of such kernels for problems that are
fixed-parameter tractable. Some problems admit stronger kernelization in the sense
that the size of the output instance is bounded by a polynomial (or even linear)
function of the parameter, the so-called polynomial (or linear) kernels.

Of great interest are algorithmic meta-theorems, results that focus on problem
classes instead of single problems. In the area of graph algorithms, such meta-
theorems usually have the following form: all problems with a specific property
admit an algorithm of a specific type on a specific graph class. In this paper
we focus on meta-theorems for linear or polynomial kernels on sparse graph
classes. After early results such as [2, 20], the first such meta-theorem due to
Bodlaender et al. [4] states that problems that have finite integer index (FII) and
are quasi-compact admit linear kernels on graphs of bounded genus. Fomin et
al. [18] extended the result to the strictly larger class of H-minor-free graphs, for
problems which have FII, are bidimensional and satisfy the separation property.
This result was, in turn, generalized in [21] to H-topological-minor-free graphs,
which strictly contain H-minor-free graphs. Here, the problems are required to
have FII and to be treewidth-bounding.

The keystone of all these meta-theorems is finite integer index. This property
is the basis of the protrusion replacement rule whereby protrusions (pieces of the
input graph satisfying certain requirements) are replaced by members of a finite
set of canonical graphs. The protrusion replacement rule is a crucial ingredient
to obtaining small kernels.

Although these meta-theorems (viewed in chronological order) steadily cov-
ered larger graph classes, the set of problems captured in their framework dimin-
ished as the second precondition became stricter. For H-topological-minor-free
graphs this precondition is to be treewidth bounding. A (parameterized) graph
problem is treewidth-bounding if yes-instances have a vertex set of size linear
in the parameter, deletion of which results in a graph of bounded treewidth.
Such a vertex set is called a modulator to bounded treewidth. While treewidth-
boundedness is a strong prerequisite, it is important to note that the combined
properties of bidimensionality and separability (used to prove the result on
H-minor-free graphs) imply treewidth-boundedness [18]. Quasi-compactness on
bounded genus graphs imply the same [4]. This demonstrates that all three
previous meta-theorems on linear kernels implicitly or explicitly used treewidth-
boundedness.

Another way of viewing the meta-theorem in [21] is as follows: when param-
eterized by a treewidth modulator, problems that have FII have linear kernels
in H-topological-minor-free graphs. A natural problem therefore is to identify
the least restrictive parameter that can be used to prove a meta-theorem for lin-
ear kernels for the next well-known class in the sparse-graph hierarchy, namely,
graphs of bounded expansion. This class was defined by Nešetřil and Ossona de
Mendez [26] and subsumes the class of H-topological-minor-free graphs. How-
ever, a modulator to bounded treewidth does not seem to be a useful parameter
for this class. Any graph class G can be transformed into a class G̃ of bounded
expansion by replacing every graph G ∈ G with G̃, obtained in turn by replacing
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each edge of G by a path on |V (G)| vertices. For problems like Treewidth t-
Vertex Deletion and, in particular, Feedback Vertex Set this operation
neither changes the instance membership nor does it increase the parameter. As
both problems do not admit kernels of size O(k2−ε) unless coNP ⊆ NP/poly by
a result of Dell and Melkebeek [10], a linear kernelization result on this class of
graph and under this parameterization must necessarily exclude both problems.

This suggests that to encompass these problems, the chosen parameter must
not be invariant under edge subdivision. If we assume that the parameter does
not increase for subgraphs, it must necessarily attain high values on paths.
Treedepth [26] is precisely a parameter that enforces this property, since graphs
of bounded treedepth are essentially degenerate graphs with no long paths. Note
that bounded treedepth implies bounded treewidth.

In terms of parameters, a modulator to bounded treedepth is a generalization
of vertex cover. This is easy to see as a vertex cover leaves a graph of treedepth
one. The vertex cover number has often been used as a parameter for problems
that are W-hard or otherwise difficult to parameterize such as Longest Path [5],
Cutwidth [8]. Bandwidth, Imbalance, Distortion [14], List Coloring,

Precoloring Extension, Equitable Coloring, L(p,1)-Labeling, Chan-

nel Assignment [15]. Other generalizations of vertex cover have also been used
as a parameter [12, 19]. Treedepth thus seems to be a good compromise.

Our contribution. We show that, for the class of problems with FII, a parame-
terization by the size of a modulator to bounded treedepth allows for linear ker-
nels in linear time on graphs of bounded expansion. The same parameter yields
quadratic kernels in graphs of locally bounded expansion and polynomial ker-
nels in nowhere dense graphs, both strictly larger classes. In particular, nowhere
dense graphs are the largest class that may still be called sparse [26]. In these
results we do not require a treedepth modulator to be supplied as part of the
input, as we show that it can be approximated to within a constant factor.

Furthermore, we only need FII to hold on graphs of bounded treedepth, thus
including problems which do not have FII in general. This relaxation enables us
to obtain kernels for Longest Path/Cycle none of which have polynomial ker-
nels even on sparse graphs with respect to their standard parameters since they
admit simple AND/OR-Compositions [3]. Problems covered by our framework in-
clude Hamiltonian Path/Cycle, several variants of Dominating Set, (Con-

nected) Vertex Cover, Chordal Vertex Deletion, Feedback Vertex

Set, Induced Matching, and Odd Cycle Transversal. In particular, we
cover all problems having FII in general graphs that were considered in earlier
frameworks [4,18,21]. We wish to emphasize, however, that this paper does not
subsume these results because of our usage of a structural parameter.

Finally, notice that a kernelization result for Longest Cycle on graphs
of bounded expansion with a parameter closed under edge subdivision would
automatically imply the same result for general graphs. This forms the crux
of our belief that any relaxation of the treedepth parameter to prove a meta-
theorem for linear kernels on graphs of bounded expansion will exclude problems
such as this one.
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2 Preliminaries

We use standard graph-theoretic notation (see [11] for any undefined terminol-
ogy). All our graphs are finite and simple. Given a graph G, we use V (G) and
E(G) to denote its vertex and edge sets. For convenience we assume that V (G)
is a totally ordered set, and use uv instead of {u, v} to denote an edge of G. Since
we primarily consider sparse graphs, we let |G| denote the number of vertices
in the graph G. The distance dG(v, w) between two vertices v, w ∈ V (G) is the
length (number of edges) of a shortest v, w-path in G and ∞ if v and w lie in dif-
ferent connected components. By ω(G) we denote the size of the largest complete
subgraph of G. For a class G of graphs we denote ω(G) the max{ω(G)|G ∈ G}
and set ω(G) = ∞ if the maximum does not exist.

For S ⊆ V (G), we let NG(S) denote the set of vertices in V (G) \ S that have
at least one neighbor in S, and for a subgraph H of G we define NG(H) :=
NG(V (H)). If X is a subset of vertices disjoint from S, then NG

X(S) is the set
NG(S) ∩ X (and similarly for NG

X (H)). Given a graph G and a set W ⊆ V (G),
we define ∂G(W ) as the set of vertices in W that have a neighbor in V \W . Note
that NG(W ) = ∂G(V (G) \ W ). A graph G is d-degenerate if every subgraph G′

of G contains a vertex v ∈ V (G′) with degG(v) � d. The degeneracy of G is
the smallest d such that G is d-degenerate. In the rest of the paper we drop the
index G from all the notation if it is clear which graph is being referred to.

A graph problem Π is a set of pairs (G, ξ), where G is a graph and ξ ∈ N0,
such that for all graphs G1, G2 and all ξ ∈ N0, if G1 is isomorphic to G2, then
(G1, ξ) ∈ Π iff (G2, ξ) ∈ Π . For a graph class G, we define ΠG as the set of pairs
(G, ξ) ∈ Π such that G ∈ G.

Graph Classes. We denote the treewidth of a graph G by tw(G) and its path-
width by pw(G). As treedepth is not a well-known measure, we provide its
definition here. In this context, a rooted forest is a disjoint union of rooted
trees. For a vertex x in a tree T of a rooted forest, the depth of x in the for-
est is the number of vertices in the path from the root of T to x. The height
of a rooted forest is the maximum depth of a vertex of the forest. The closure
clos(F) of a rooted forest F is the graph with vertex set

⋃
T ∈F V (T ) and edge

set {xy | x �= y is an ancestor of y in F}. A treedepth decomposition of a graph
G is a rooted forest F such that G ⊆ clos(F).

Definition 1 (Treedepth). The treedepth td(G) of a graph G is the minimum
height of any treedepth decomposition of G.

We list some well-known facts about graphs of bounded treedepth. Proofs
are omitted and can be found in [26]. If a graph has no path with more than d
vertices, then its treedepth is at most d. For any graph G with td(G) � d, it holds
that (1) G has no paths with 2d vertices and, in particular, any DFS-tree of G
has height at most 2d −1; (2) G is d-degenerate and hence has at most d · |V (G)|
edges; (3) tw(G) � pw(G) � d − 1. A useful way of thinking about graphs of
bounded treedepth is that they are (sparse) graphs with no long paths. Similar
to treewidth, a treedepth decomposition can be computed in linear time.
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Definition 2 (Shallow minor [26]). For d ∈ N0, a graph H is a shallow
minor at depth d of G if there exist disjoint subsets V1, . . . , Vp of V (G) such that

1. each graph G[Vi] has radius at most d, meaning that there exists vi ∈ Vi (a
center) such that every vertex in Vi is within distance at most d in G[Vi];

2. there is a bijection ψ : V (H) → {V1, . . . , Vp} such that for every u, v ∈ V (H),
if uv ∈ E(H) then there is an edge in G with an endpoint each in ψ(u) and
ψ(v).

Note that if u, v ∈ V (H), ψ(u) = Vi 	 vi, and ψ(v) = Vj 	 vj then dG(vi, vj) �
(2d + 1) · dH(u, v). The class of shallow minors of G at depth d is denoted by
G� d. This notation is extended to graph classes G as well: G � d =

⋃
G∈G G� d.

The class of graphs of bounded expansion is defined using the notion of great-
est reduced average density (grad) (see [23, 27] for details). Let G be a graph
class. Then the greatest reduced average density of G with rank d is defined as
∇d(G) = supH∈G � d(|E(H)|/|V (H)|). This notation is extended to graphs via
the convention ∇d(G) := ∇d({G}). In particular, note that G� 0 denotes the
set of subgraphs of G and hence 2∇0(G) is the maximum average degree of all
subgraphs of G—i.e. its degeneracy.

Definition 3 (Bounded expansion [23]). A graph class G has bounded ex-
pansion if there exists a function f : N → R (called the expansion function) such
that for all d ∈ N, ∇d(G) � f(d). We say that G has expansion bounded by f .

An important relation we make use of later is: ∇d(G) = ∇0(G� d), i.e. the grad
of G with rank d is precisely one half the maximum average degree of subgraphs
of its depth d shallow minors.

3 The Protrusion Machinery

We state the main definitions of the protrusion machinery developed in [4, 18],
in some cases modifying them to suit our purpose.

Definition 4 (r-protrusion [4]). Given a graph G = (V, E), a set W ⊆ V is
an r-protrusion of G if |∂G(W )| � r and tw(G[W ]) � r − 1. 1 We call ∂G(W )
the protrusion boundary and |W | the size of the protrusion W .

A t-boundaried graph is a pair (G, bd(G)), where G = (V, E) is a graph and
bd(G) ⊆ V is a set of t vertices with distinct labels from the set {1, . . . , t}. The
graph G is called the underlying unlabeled graph and bd(G) is called the boundary2.
Given a graph class G, we let Gt denote the class of t-boundaried graphs (G, bd(G))
where G ∈ G. For t-boundaried graphs (H, bd(H)) and (G, bd(G)), we say that
(H, bd(H) is a subgraph of (G, bd(G)) if H ⊆ G and bd(H) = bd(G). We say that
(H, bd(H)) is an induced subgraph of (G, bd(G)) if for some X ⊆ V (G), H = G[X ]

1 We want the bags in a tree-decomposition of G[W ] to be of size at most r.
2 Usually denoted by ∂(G), but this collides with our usage of ∂.
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and bd(H) = bd(G). We say that the boundaries of two t-boundaried graphs G̃ =
(G, bd(G)) and H̃ = (H, bd(H)) are identical if the function mapping each vertex
of bd(G) to that vertex of bd(H) with the same label is an isomorphism between
G[bd(G)] and H [bd(H)]. Note that in the case of H̃ being an induced subgraph
of G̃, the boundaries are identical. By slightly abusing notation, we often denote
a t-boundaried graph by the underlying unlabeled graph when the boundary is
clear from the context.

If W ⊆ V (G) is an r-protrusion of G, we let GW be the r-boundaried graph
(G[W ], B), where B is the labeled set of vertices of ∂(W ), each vertex being
assigned a unique label from the set {1, . . . , r} according to its order in G. For
t-boundaried graphs (G1, bd(G1)) and (G2, bd(G2)), we let G1 ⊕ G2 denote the
graph obtained by taking the disjoint union of G1 and G2 and identifying each
vertex in bd(G1) with the vertex in bd(G2) with the same label, and then mak-
ing the graph simple, if necessary. The resulting order of vertices is an arbitrary
extension of the orderings on V (G1) and V (G2) \ V (G1). Note that the ⊕ “de-
stroys” the boundaries of two t-boundaried graphs and creates a simple graph.
In the opposite direction, let H ⊆ G such that ∂(H) has t vertices. Let B be
the labeled set of vertices from ∂(H) such that each vertex is assigned a unique
label from {1, . . . , t} according to its order in G. We define G �B H to be the
t-boundaried graph (G − (V (H) \ B), B). The � operation, therefore, creates
a t-boundaried graph from a simple graph. To make things clear we sometimes
annotate the ⊕ operator with the boundary as well.

Definition 5 (Replacement). Let W be a t-protrusion of a graph G and let
B be the labeled set of vertices of ∂(W ), where the labels are assigned to ver-
tices from {1, . . . , t} according to their order in G. For a t-boundaried graph H,
replacing W by H is defined by the operation (G �B G[W ]) ⊕B H.

The following definition concerns the centerpiece of our framework.

Definition 6 (Finite integer index; FII). Let Π be a graph problem and
let G̃1 = (G1, bd(G1)), G̃2 = (G2, bd(G2)) be two t-boundaried graphs. We say
that G̃1 ≡Π,t G̃2 if there exists an integer constant ΔΠ,t(G̃1, G̃2) such that for
all t-boundaried graphs H̃ = (H, bd(H)) and for all ξ ∈ N: (G̃1 ⊕ H̃, ξ) ∈
Π iff (G̃2 ⊕ H̃, ξ + ΔΠ,t(G̃1, G̃2)) ∈ Π. We say that Π has finite integer index
in the class F if, for every t ∈ N, the number of classes of ≡Π,t which have a
non-empty intersection with F is finite.

Note that the constant ΔΠ,t(G̃1, G̃2) depends on Π , t, and the ordered pair
(G̃1, G̃2) so that ΔΠ,t(G̃1, G̃2) = −ΔΠ,t(G̃2, G̃1). On most occasions, the prob-
lem Π and the class F will be clear from the context and in such situations, we
use ≡t and Δt instead of ≡Π,t and ΔΠ,t, respectively.

The next lemma shows that if we assume that a graph problem Π has FII in
a graph class F , then we can choose representatives for the equivalence classes
of ≡Π,t from a (possibly different) graph class G under certain circumstances.
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Lemma 1. Let � be a relation on graphs, let F , G be graph classes and Π a
graph problem such that Π has FII in F and G is well quasi-ordered by �. Then
for each t ∈ N, there exists a finite set R(t, F , G, �) ⊆ Ft ∩Gt with the following
property: for every G̃ = (G, bd(G)) ∈ Ft ∩ Gt there exists H̃ = (H, bd(H)) ∈
R(t, F , G, �) such that G̃ ≡Π,t H̃; bd(G) and bd(H) are identical; and H � G.

Let us explain how we use Lemma 1. The graph problems Π that we consider
in this paper have FII on the class of general graphs or, for all p ∈ N, in the class
of graphs of treedepth at most p. In accordance with the notation in Lemma 1,
the class F corresponds to the class where Π has FII. The choice of our parameter
now ensures that our kernelization replaces protrusions of treedepth at most a
previously fixed constant d: choosing G to be the graphs of treepdepth at most
d, all protrusions (actually the graphs induced by them) are members of F ∩ G.
As G is well-quasi ordered under the induced subgraph relation [26, Chapter 6,
Lemma 6.13], we choose � to be ⊆ind.

Now consider a restriction of the graph problem Π to a class K that is closed
under taking induced subgraphs. In this paper, the class K is a hereditary graph
class of bounded expansion or locally bounded expansion or a hereditary nowhere
dense class. This ensures that ∅ �= K ∩ G ⊆ F ∩ G. Given an instance (G, ξ)
of Π with G ∈ K, one can replace a protrusion of G by a representative (of
constant size) that is an induced subgraph of that protrusion, ensuring that this
replacement creates a graph that still resides in K. To summarize, Lemma 1
guarantees that the protrusion replacement rule (described next) preserves the
graph class K and the parameter.

As preparation for the kernelization theorems of the next section, let P denote
the set of all graph problems that have FII on general graphs or, for each p ∈ N,
in the set of graphs of treedepth at most p. Our reduction rule is formalized as
follows.

Reduction Rule 1 (Protrusion replacement) Let t, d ∈ N and let Π ∈ P.
Let (G, ξ) be an instance of Π and suppose that W ⊆ V (G) is a t-protrusion
of treedepth at most d such that β(t, d) < |W | � β(t, d) + t, where β is some
function fixed in advance. Let R ∈ R(t, d) be the representative of GW . The
protrusion replacement rule is the following: Reduce (G, ξ) to (G′, ξ′) := ((G �
G[W ]) ⊕ R, ξ + Δt(GW , R)).

The existence of a finite set of representatives R(t, d) is guaranteed by Lemma 1.
The safety of the protrusion replacement follows from the definition of FII.

As usual, we let F denote the class on which the problem has FII. For a
problem Π ∈ P and the class G of graphs of treedepth at most d, we let R(t, d)
denote the finite set R(t, F , G, ⊆ind) from Lemma 1 and ρ(t, d) to denote the size
of the largest member of R(t, d). In what follows, when applying the protrusion
replacement rule, we will assume that for each t, d ∈ N, we are given the set
R(t, d) of representatives of the equivalence classes of ≡Π,t. Note that previous
work on meta-kernels implicitly made this assumption [4, 16–18].
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4 Linear Kernels on Graphs of Bounded Expansion

In this section we show that graph problems that have FII on general graphs or
in the class of graphs with bounded treedepth admit linear kernels on hereditary
graph classes with bounded expansion, when parameterized by the size of a
modulator to constant treedepth. On hereditary graph classes of locally bounded
expansion we obtain quadratic vertex kernels and on hereditary nowhere dense
classes, polynomial kernels. Our main theorem is the following.

Theorem 1. Let K be a hereditary graph class of bounded expansion and let d ∈
N be a constant. Let Π ∈ P. Then there is an algorithm that takes as input
(G, ξ) ∈ K × N and, in time O(|G| + log ξ), outputs (G′, ξ′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ′) ∈ Π;
2. G′ is an induced subgraph of G; and
3. |G′| = O(|S|), where S is an optimal treedepth-d modulator of the graph G.

In the rest of this section we let Π ∈ P and let K be a hereditary graph class
whose expansion is bounded by f .

We proceed as follows. Because an optimal treedepth-d modulator cannot be
assumed as part of the input, we obtain an approximate modulator S ⊆ V (G)
to partition V (G) into sets Y0 � Y1 � · · · � Y� such that S ⊆ Y0 and |Y0| = O(|S|)
and for 1 � i � l, Yi induces a collection of connected components of G − Y0
that have exactly the same small neighborhood in Y0. We then use bounded
expansion to show that 
 = O(|S|) and use protrusion reduction to replace
each G[Yi], 1 � i � l, by an induced subgraph of G[Yi] of constant size. Every
time the protrusion replacement rule is applied, ξ is modified. This results in an
equivalent instance (G′, ξ′) such that G′ ⊆ G and |G′| = O(|S|), as claimed in
Theorem 1.

Lemma 2. Fix d ∈ N. Given a graph G, one can in O(|G|2) time compute a
subset S ⊆ V (G) such that td(G − S) � d and |S| is at most 2d times the size
of an optimal treedepth-d modulator of G. For graphs of bounded expansion, S
can be computed in linear time.

To prove the size bounds on decompositions of V (G) into vertex-disjoint sets
Y0 � Y1 � · · · � Y�, we use the following lemma about grads of bipartite graphs.

Lemma 3. Let G = (X, Y, E) be a bipartite graph, and p � ∇1(G). Then there
are at most 2p|X | vertices in Y with degree greater than 2p; and at most (4p +
2p) · |X | subsets X ′ ⊆ X such that X ′ = N(u) for some u ∈ Y .

The proof of the next lemma tells us how to find clusters of connected com-
ponents with a small neighborhood, which will be targeted by the reduction.

Lemma 4. Let G ∈ K and S ⊆V (G) be a set of vertices such that td(G − S) � d
(d ∈ N is a constant). There is an algorithm that runs in time O(|G|) and com-
putes a partition, called protrusion-decomposition, of V (G) into sets Y0 � Y1 �
· · · � Y� such that the following hold:
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1. S ⊆ Y0 and |Y0| = O(|S|);
2. for 1 � i � 
, Yi induces a set of connected components of G − Y0 that have

the same neighborhood in Y0 of size at most 2d+1 + 2 · f(2d);
3. 
 �

(
4f(2d) + 2f(2d)

) · |S| = O(|S|).

Proof Sketch. We first construct a DFS-forest D of G−S. Assume that there are q
trees T1, . . . , Tq in this forest rooted at r1, . . . , rq, respectively. Since td(G−S) �
d, the height of every tree in D is at most 2d − 1. Next we construct for each Ti,
1 � i � q, a path decomposition of the subgraph of G[V (Ti)]. Suppose that Ti has
leaves l1, . . . , ls ordered according to their DFS-number. For 1 � j � s, create a
bag Bj containing the vertices on the unique path from lj to ri and string these
bags together in the order B1, . . . , Bs. Clearly, this is a path decomposition Pi

of G[V (Ti)] with width at most 2d − 2. Note that the root ri is in every bag
of Pi.

We now use a marking algorithm similar to the one in [21] to mark O(|S|)
bags in the path decompositions P1, . . . , Pq with the property that each marked
bag can be uniquely identified with a connected subgraph of G − S that has a
large neighborhood in S. We use Lemma 3 to show that the set M of marked
bags has at most 2 · f(2d − 1 + 1) · |S| = O(|S|) members, allowing us to put
Y0 := V (M) ∪ S. We also show that each connected component in G − Y0 has
less than 2d+1 + 2 · f(2d) neighbors in Y0. As the marking stage of the algorithm
runs through P1, . . . , Pq exactly once, this phase takes only linear time.

Finally, we cluster the connected components of G − Y0 according to their
neighborhoods in Y0 to obtain the sets Y1, . . . , Y�. We again use Lemma 3 to
show that the number 
 of clusters is at most

(
4f(2d) + 2f(2d)

) · |S| = O(|S|), as
claimed. To accomplish this in linear time, we use a radix sort on the constant-
sized neighborhoods in Y0 of the components of G − Y0. Thus the clustering and
therefore the whole decomposition is linear-time computable. ��

All which is left to show is that each cluster Yi, 1 � i � 
, can be reduced to
constant size. Note that each cluster is separated from the rest of the graph via
a small set of vertices in Y0 and that each component of G − Y0 has constant
treedepth. These facts enable us to use the protrusion reduction rule. Lemma 1
assures us that FII either on general graphs or in the class of graphs with bounded
treedepth, implies the existence of a finite set of representatives such that every
protrusion can be replaced by an induced subgraph.

Lemma 5. For fixed d, h ∈ N, let (G, ξ) be an instance of Π with G ∈ K and
let S ⊆ V (G) be a treedepth-d modulator of G. Let Y0�Y1�· · ·�Y� be a protrusion-
decomposition of G, where S ⊆ Y0 and for 1 � i � 
, |NY0(Yi)| � h. Then
one can in O(|G| + log ξ) time obtain (G′, ξ′) and a protrusion-decomposition
Y ′

0 � Y ′
1 � · · · � Y ′

� of G′ such that

1. (G, ξ) ∈ Π if and only if (G′, ξ′) ∈ Π;
2. G′ is an induced subgraph of G with Y ′

0 = Y0; and
3. for 1 � i � 
 it is |NY ′

0
(Y ′

i )| � h, |Y ′
i | � ρ(d + h, d) = O(1) and td(Yi) � d.
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Proof (Theorem 1). Given an instance (G, ξ) of Π with G ∈ K having fixed a
constant d ∈ N, we calculate a 2d-approximate modulator S using Lemma 2.
Using the algorithm outlined in the proof of Lemma 4, we compute the de-
composition Y0 � Y1 � · · · � Y�. Each cluster Yi, 1 � i � 
 forms a protru-
sion with boundary size |N(Yi)| � 2d+1 + 2f(2d) =: h and treedepth (and
thus treewidth) � d. Applying Lemma 5 now yields an equivalent instance
(G′, ξ′) with |V (G′)| = |Y0| +

∑�
i=1 |Y ′

i | vertices, where Y ′
i denote the clusters

obtained through applications of the reduction rule. This quantity is at most
O(|S|) + 
 · ρ(d + 2d+1 + 2f(2d), d) = O(|S|). As G′ is an induced subgraph of G,
the above implies that |V (G′)| + |E(G′)| = O(|S|) by the degeneracy of G and
that G′ ∈ K. ��

Some problems do not have FII in general (see [9]) but only when restricted
to, say, graphs of bounded treedepth.

Lemma 6. Let G(d) be the class of all graphs that have treedepth at most d. The
problems Longest Path, Longest Cycle, Exact s, t-Path, Exact Cycle

have FII in G(d) for each d ∈ N.

Corollary 1. The following graph problems either have FII in general or in the
class of graphs with bounded treedepth, and hence have linear kernels in hereditary
graph classes of bounded expansion, when the parameter is the size of a modulator to
constant treedepth: (Connected) Dominating Set, r-Dominating Set, Effi-

cient Dom. Set, (Connected) Vertex Cover, Longest Path/Cycle and
hence also Hamiltonian Path/Cycle, Independent Set, Feedback Ver-

tex Set, Edge Dom. Set, Induced Matching, Chordal Vertex Deletion,
Odd Cycle Transversal, Induced d-Degree Subgraph, Min Leaf Span-

ning Tree, Max Full Degree Spanning Tree, Exact s, t-Path, Exact

Cycle.

For a more comprehensive list of problems that have FII in general graphs
(and hence fall under the purview of the above corollary), see [4].

Extension to Larger Graph Classes. We can lift our results to prove poly-
nomial kernels in graphs of locally bounded expansion and the even larger class
of nowhere dense graphs. Let Nd(v) denote the neighborhood of a vertex v up
to distance d.

A graph class K has locally bounded expansion if there exists a function f : N×
N → R such that for every graph G ∈ K and all r, d ∈ N and each v ∈ V (G),
it holds ∇r(G[Nd(v)]) � f(d, r) [13]. A graph class K is nowhere dense if for all
r ∈ N it holds that ω(K� r) < ∞ [24, 25].

The two kernelization results that we are about to state apply to all problems
listed in Section 4. Note that the running time of the kernelization algorithm
is quadratic only because it starts by computing an approximate treedepth-d
modulator which takes quadratic time. If we assume that we are given such a
modulator as part of the input, then the kernelization algorithm runs in linear
time.
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Theorem 2. Let K be a hereditary class of locally bounded expansion and let d ∈
N be a constant. Let Π ∈ P. Then there is an algorithm that takes as input
(G, ξ) ∈ K × N and, in time O(|G|2 + log ξ), outputs (G′, ξ′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ′) ∈ Π;
2. G′ is an induced subgraph of G; and
3. |G′| = O(|S|2), where S is an optimal treedepth-d modulator of G.

Theorem 3. Let K be hereditary and nowhere-dense and let d ∈ N be a con-
stant. Let Π ∈ P, Then there is a constant c > 0 and an algorithm that takes
as input (G, ξ) ∈ K × N and, in time O(|G|2 + log ξ), outputs (G′, ξ′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ′) ∈ Π;
2. G′ is an induced subgraph of G; and
3. |G′| = O(|S|c), where S is an optimal treedepth-d modulator of G.

5 Further Research

We conclude with some open problems. Which graph problems admit linear
kernels on graphs of bounded expansion with the natural parameter? Is there a
meta-theorem on graphs of bounded expansion for problems that are not closed
under edge-subvisions with a weaker parameterization?
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Abstract. The Erdős-Szekeres theorem states that, for every k, there
is a number nk such that every set of nk points in general position in
the plane contains a subset of k points in convex position. If we ask the
same question for subsets whose convex hull does not contain any other
point from the set, this is not true: as shown by Horton, there are sets
of arbitrary size that do not contain an empty convex 7-gon.

These problems have been studied also from a computational point
of view, and, while several polynomial-time algorithms are known for
finding a largest (empty) convex subset in the planar case, the complexity
of the problems in higher dimensions has been, so far, open. In this paper,
we give the first non-trivial results in this direction. First, we show that
already in dimension 3 (the decision versions of) both problems are NP-
hard. Then, we show that when an empty convex subset is sought, the
problem is even W[1]-hard w.r.t. the size of the solution subset.

1 Introduction

Let P be a set of points. A set P ′ ⊆ P is in convex position, if no point p′ ∈ P ′ is
contained in the convex hull of P ′ ∖ {p′}. It is in emtpy convex position if it is
in convex position and does not contain any other point of P in its convex hull.

The Erdős-Szekeres theorem [7], one of the major theorems from combinatorial
geometry and one of the earliest results in geometric Ramsey theory, states
that, for every k, there is a number nk such that every set of nk points in
general position in the plane contains a subset of k points in convex position. In
particular, if n∗k is the smallest such number, it holds that 2k−2 + 1 ≤ n∗k ≤ 4

k.
A closely related question is whether the theorem still holds when we ask for

subsets that are in empty convex position. As shown by Horton [9], this is not
the case: there are arbitrarily large sets in the plane that do not contain empty
7-gons; see also Matoušek [10, Chapter 3] for further details and references.
Both questions generalize to dimension larger than 2 in the obvious way, and,
clearly, the numbers n∗k do not increase when the dimension gets higher (proof:
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project to some plane); see the surveys by Bárány and Károly [2] and Morris
and Soltan [12] for (more or less) recent progress in the subject.

In this paper, we study the corresponding computational problems. More
specifically, we study the following decision problems:

Given a set P of n points in Rd and k ∈ N,

(i) (Erdős-Szekeres) decide whether there is a set Q ⊂ P of k points in convex
position;

(ii) (Largest-Empty-Convex-Subset) decide whether there is a set Q ⊂ P
of k points in empty convex position.

1.1 Previous Results

For the planar case, the computational problems have received a lot of attention
in the past. Chvátal and Klincsek [5] gave an O(n3

)-time algorithm for the
problem of finding a largest convex subset. This algorithm was used by Avis
and Rappaport [1] for finding a largest empty convex subset. Several years later,
Dobkin et al. [6] improved this algorithm to run in time O(γ3(P )), where γ3(P )
is the number of empty triangles in P , which lies between n2 and n3. These
algorithms are all based on dynamic programming and do not generalize to
higher dimensions. Another approach that enumerates all empty convex sets of
size k in time that is polynomial in both n and k was given by Mitchell et
al. [11]. On the other hand, in higher dimensions, the only computational result
appears in [6], where it was shown that, in R3, all subsets of size k in empty
convex position can be found in time O(k!n log3 n) per set. As there can be as
many as nk such subsets, this is (at best) a small improvement over the trivial
O(nk+1

)-time algorithm. Consequently, in that paper, the question was raised
whether it is possible to find a largest subset in (empty) convex position in R3

in polynomial time.

1.2 Our Contributions

We first show, in Section 2, that, already in R3, both the Erdős-Szekeres

and Largest-Empty-Convex-Subset problems are NP-hard, therefore giv-
ing a negative answer to the question of Dobkin et al. [6]. We reduce from the
independent set problem in penny graphs [4]. The reduction also uses a lifting
transform to the elliptic paraboloid, which is well known in computational ge-
ometry, but whose only other application in an NP-hardness proof that we are
aware of is due to Buchin et al. [3] for the problem of approximating polyhedral
objects by spherical caps.

Having established NP-hardness, it it natural to ask whether any of these
problems is fixed-parameter tractable with respect to the solution size k, i.e.,
solvable in time O(f(k) ⋅ nc

) for some computable function f and constant c
(NP-hardness does not rule out this possibility). Observe here that due to the
Erdős-Szekeres theorem itself, this is trivially true for the Erdős-Szekeres
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problem. The theorem states that any set of at least 4k points admits a convex
subset of size k. Therefore, given a point set P and a k ∈ N, if n > 4k, we simply
answer yes, while if n ∶= ∣P ∣ ≤ 4k, we use a brute force algorithm, i.e., simply try
all subsets of size k; this takes time (n

k
) ≈ nk

≤ (4k)k.
In Section 3, we show that, in contrast to Erdős-Szekeres, the Largest-

Empty-Convex-Subset problem in R3 is W[1]-hard with respect to the solu-
tion size k, under the extra condition that the solution set is strictly convex, i.e.,
the interior of the convex hull of any of its subsets is empty. This implies that
(under standard complexity-theoretic assumptions) the problem is not fixed-
parameter tractable with respect to k; see Flum and Grohe [8] for basic notions
of parameterized complexity theory.

2 NP-Hardness

We first prove NP-hardness for the Largest-Empty-Convex-Subset problem
and then show how to adapt the reduction to the Erdős-Szekeres problem.

2.1 Largest Empty Convex Subset

We use a reduction from a slight modification of the following problem: Given
a set of pairwise non-overlapping unit disks in R2, decide whether there are k
disks such that no two of them touch.

Here, non-overlapping means that the interiors of the disks are pairwise dis-
joint. The intersection graphs of non-intersecting unit disks are also called penny
graphs. As shown by Cerioli et al. [4], this problem is NP-hard by a simple reduc-
tion from a variant of the Vertex-Cover problem. However, the reduction has
a little flaw, because some of the centers of the disks have irrational coordinates.

We overcome this obstacle by perturbing each disk center a little by at most
some small ε, and enlarging the diameter of each disk by 2ε. This way, we get an
instance of unit disks that almost forms a penny graph—some of the disks may
now overlap a little. Moreover, in the original construction, the angle between
any two intersections along a circle is always at least π/2. Thus, by choosing ε
appropriately, after the perturbation and enlargement of the circles, the angle
between the two closest points of two circles intersecting a common circle is still
π/2 ± α∗, for some small α∗ < π/2 − π/100, and the minimum distance between
two centers is still at least δ∗ = 2 − 4ε. Observe that the value of this ε does
not depend on the input, and thus can be chosen as some arbitrarily small
constant, say ε = 10−6. We call instances of unit disks that arise this way quasi
non-intersecting.

In particular, instances that arise this way do not induce any new incidences,
and thus there is an independent set of size k among the perturbed disks if and
only if there is a set of k independent disks in the original instance. Combining
this with the reduction from [4] gives the following corollary:

Corollary 1. The following problem is NP-hard: Given a set of quasi non-
intersecting unit disks and k ∈ N, decide whether there are k disks such that
no two of them intersect.
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For a given instance D of unit disks in the plane, we will create a set of points
in R3. All these points will lie close to the elliptic paraboloid, in a sense to be
made precise later.

For a point x = (x1, x2) ∈ R2, let lift∶ (x1, x2) ↦ (x1, x2, x
2
1 + x

2
2) denote the

standard lifting transform to the paraboloid. Also, let Dc denote the n centers
of the disks in D, and let L denote the set of all points x̂ = lift(x), for x ∈ Dc.
Finally, let ch(P ) be the convex hull of a set P .

We want to forbid certain pairs of points to lie in empty convex positions,
namely, those for which the corresponding disks intersect. Thus, for a pair of
intersecting disks d, d′ and their centers cd, cd′ , we add a blocking point

bdd′ =
1

2
(lift(cd′) + lift(cd)) .

Let B = {bdd′ ∣ d∩d
′

≠ ∅}. Note that B lies slightly above the paraboloid. Finally,
we set P = L ∪B.

We have created O(∣D∣) points, and as the underlying geometric graph is
planar, the size of the reduction is linear in the input size.

Lemma 1. A blocking point bdd′ is contained in the convex hull of a set Q ⊆ L
if and only if both ĉd and ĉd′ are contained in Q.

Proof. “⇐” By definition.
“⇒” We show that there is a plane that contains bdd′ , ĉd, and ĉd′ and is strictly

below all other points. Here we will make use of the fact that our instance consists
of quasi non-intersecting unit disks—otherwise, the claim would not hold.

Let C be the circle whose center is the projection of bdd′ to the first two
coordinates that passes through cd and cd′ . Since the centers of the disks have a
distance at least δ∗ > 3/2, and every point in C is at most at distance

√

2 < 3/2
from either cd or cd′ , this circle does not contain any other points from Dc.
Further, since all intersection points are at least an angle of α∗ apart, the circle
does not contain any (projection of) a blocking point. See Fig. 1. Define h to be
the unique plane whose intersection with the paraboloid projects to the circle
C. This plane contains all three points, and because C does not contain any
other points, all other points from L and thus B lie strictly above h. Thus bdd′

is contained in ch(Q) if and only if bdd′ ∈ ch(Q ∩ h) = ch ({ĉd, ĉd′}). ⊓⊔

The following lemma states that whether or not a set is in empty convex position
will depend only on which points we choose from L. Set B can always be added
without destroying this property.

Lemma 2. Sets L and B are in empty convex position, and ch(L) = ch(L∪B).

Proof. By construction, all points of L lie on the paraboloid. The points from B
can be separated from each other by the plane defined in the previous proof. As
all of them are convex combinations of points in L, we have ch(B) ⊆ ch(L). ⊓⊔

Combining Lemmas 1 and 2, we get the following.
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cd

cd′

pr(bdd′)

cd

cd′

pr(bdd′)

C

α∗

(b)(a)

Fig. 1. Finding an empty circle: (a) Two intersecting disks and the projected blocking
point; (b) Since all intersections with other disks lie at the bold arcs, no projected
blocking points lies inside C

Corollary 2. A set L′ ∪Q′ ⊆ P is in empty convex position if and only if no
point of Q′ ⊆ Q is contained in the convex hull of L′ ⊆ L.

Lemma 3. There is an independent set of size m among the unit disks if and
only if there are m + ∣B∣ points in empty convex position.

Proof. “⇒” Let I, ∣I ∣ = m, be an independent set among the set of disks. Let
Î ⊆ L denote the corresponding lifted centers. We claim that S = Î∪B is in empty
convex position. Indeed, by Corollary 2, no point of L∖ Î is in the convex hull of
S. Further, by Lemma 1, if some point b ∈ B was in ch(S), this would mean that
there are two points in Î that contained b in their convex hull. Thus, by Lemma 1,
the corresponding disks would touch, and I would not be an independent set.
This means that there are m + ∣B∣ points in empty convex position.
“⇐” Now assume that there is no independent set of size m. This means that for
any choice of m disks, two of them touch. Now take any set S of m+ ∣B∣ points.
As there are only ∣L∣+∣B∣ points in total, this must contain at leastm points from
L. Thus, at least two of them belong to disks that intersect. By Lemma 1, their
convex hull contains a point of B. Thus, S is not in empty convex position. ⊓⊔

Theorem 1. Problem Largest-Empty-Convex-Subset is NP-hard in R3.

2.2 Erdős-Szekeres

In order to show NP-hardness of this problem, we use the same construction as
in the previous section. We need only the following analogue of Lemma 3.

Lemma 4. There is an independent set of size m among the unit disks if and
only if there are m + ∣B∣ points in convex position.

Proof. “⇒” By Lemma 3, the existence of an independent set of size m corre-
sponds to an empty convex set of size m + ∣B∣.
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“⇐” We show that every set of points in convex position can be modified to
yield a set in empty convex position.

Let S be a set ofm+∣B∣ points in convex position with ∣S∩B∣ < ∣B∣, let I = S∩L,
and let DI be the corresponding set of disks. Observe that, if ∣S ∩B∣ < ∣B∣, then
∣I ∣ >m, and thus if all disks from DI are independent, we are done.

Otherwise, we show how to construct a set S′ in convex position of the same
size such that ∣S′ ∩ B∣ = ∣S ∩ B∣ + 1. Let d and d′ be two disks from DI that
intersect. The point bdd′ cannot be part of S, for otherwise S would not be in
convex position. If we thus set S′ = I ∖{d̂}∪B ∪{bdd′}, by Corollary 2 the set is
still in convex position, and we have ∣S′∣ = ∣S∣ and ∣S′ ∩B∣ > ∣S ∩B∣.

Thus, after finitely many steps we end up with a set of m + ∣B∣ points in
convex position which contains all points from B. In particular, no point of B
is contained in the convex hull of S ∩ L. By Lemma 3, this means that the
disks corresponding to the m points from L do not intersect. Thus, we have an
independent set of size m. ⊓⊔

Theorem 2. Problem Erdős-Szekeres is NP-hard in R3.

3 Fixed-Parameter Intractability

In this section, we show that, under the strict convexity condition, Largest-
Empty-Convex-Subset is W[1]-hard by an fpt -reduction from the W[1]-hard
k-Clique problem [8]: Given a graph G([n],E) and k ∈ N, decide whether G
contains a k-size clique. More precisely, we will construct a set P of Θ(k2n2

)

points in R3 such that there exists a set Q ⊂ P in empty convex position and
∣Q∣ = f(k), for some function f(k) ∈ Θ(k2), if and only if G has a clique of size
k; a clique will actually correspond to k! emtpy convex subsets of P .

3.1 High-Level Description

We begin with a high-level description of the construction, see Fig. 2. Initially,
the construction will lie on the plane; later on, it will be lifted to the elliptic
paraboloid with a (more or less) standard transform. The construction is orga-
nized as the upper diagonal part of a grid with k rows and k columns. The ith
row and column represent a choice for the ith vertex of a clique in G and are
made of 4i − 2 and 4(k − i + 1) − 2 gadgets respectively. There are n choices and
each choice is represented by a collection of empty convex subsets of points –
one subset with a constant number of points from each gadget.

Each gadget consists of Θ(n) points within a rectangular region, which are
organized in sets (of pairs) of collinear points. There is a constant number of
such sets and, since we are looking for strictly convex subsets, only one pair
of consecutive points per set can be chosen at any time. Certain choices are
rendered invalid by additional points. Neighboring gadgets share the points on
their common rectangle edge, see the zoomed-in area in Fig 2. Through these
common points, the choice of subsets is made consistent among the gadgets. In
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1

2

k

1 2 k

Fig. 2. High-level schematic of the construction. The zoomed-in area shows points
shared among gadgets on their common boundaries and some pairs of points inside
each gadget that take part in a choice of an empty convex set (in dashed).

particular, the choice in the ith row is made consistent with the choice in the
ith column via the ‘diagonal’, ⌟� gadget in their intersection corner; consistency
here means that they both correspond to the same choice of a vertex of G. On
the other hand, in the intersection of the ith column with the jth row, for every
j ≥ i+1, there is a ‘cross’, � gadget, which ensures that the choice in the column
is propagated independently of the choice in the row and vice versa. Finally,
the jth column is ‘connected’ to the ith row, for every j + 1 ≤ i ≤ k, by three
additional gadgets. One of them, the ‘star’, � gadget, encodes graph G, i.e., it
allows only for combinations of choices (in the column and the row) that are
consistent with the edges in G.

Locally, every valid subset from a gadget consists of points that are in strictly
convex position and whose convex hull is empty. By lifting the whole construction
to the paraboloid appropriately, we make sure that this property is true globally,
i.e., for any set constructed from the local choices in a consistant manner.

3.2 Gadgets

There are five different types of gadgets, and each type has a specific function.

� gadget. This gadget propagates a choice of pairs of points horizontally, see
Fig. 3. It has n pairs of points Li, Ri on the left and right side of its rectangle
respectively, which correspond to the vertices of G; pairs corresponding to the
same vertex are aligned horizontally. It also has n(n − 1) + 2 points inside the
rectangle on a vertical line � as follows. For every two pairs Li and Rj , with i ≠ j,
a point is placed such that it is inside the parallelogram LiRj formed by the pairs
but outside the parallelogram formed by any other two pairs. Effectively, this
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1 1

2 2

n n

�

Fig. 3. The � gadget. Dashed parallelograms represent choices cancelled by points on
�. Parallelograms in full are not cancelled. There are n choices of empty convex 6-gons.

point cancels a choice of pairs that correspond to different vertices of G. One
point is placed above L1R1 on � and close to its boundary; similarly one point
is placed below LnRn. Due to the strict convexity condition, at most one pair
per rectangle side and at most one pair on � can be chosen. Thus, there are
n maximum size empty convex subsets. Each subset contains six points and
is formed by three pairs: Li, Ri, for some i, and the pair of points on � that
are closest to the parallelogram LiRi; this latter pair is formed by the point
that cancels LiRi−1 and the point that cancels LiRi+1. The � gadget is just a
90○-rotated copy of the � gadget.

n

n

2

2

1

1�

Fig. 4. The ⌟� gadget
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ith row

ith row

jth column

jth column

(a) (b)

Fig. 5. (a) The � gadget: there are n choices of empty convex 10-gons; an empty
convex 6-gon, as described in the text, is shown only for i = 2. (b) The � gadget: a
high level schematic.

⌟� gadget. This gadget has basically the same structure as the � gadget but
propagates information diagonally. See Fig. 4.
� gadget. This gadget propagates information both horizontally and diagonally,
see Fig. 5(a). It has n pairs of points Li, Ri, and Bi, on the left, right, and bottom
side of its rectangle respectively. As before, an ith pair corresponds to the ith
vertex of G. There will be only n valid choices and three pairs per choice, namely,
the ith pair from each side. This is enforced by the strict convexity condition
and by placing, for every i, four additional points on two vertical lines � and �′

inside the rectangle. These points are placed outside the convex 6-gon LiRiBi

that is formed by the points in the corresponding pairs. (The points are also
outside every other 6-gon for j ≠ i.) See the example for i = 2 in Fig. 5(a).

More specifically, looking at the gadget from top to bottom and from left to
right, a point is placed on the intersection of � and the line through the second
point of Li and the second point of Bi−1; for the case of i = 1, the point is placed
just below the 6-gon. A second point is placed on � just above the 6-gon. At
the right side, two points are placed on �′ as follows. One point is placed on the
intersection of �′ and the line through the second point of Li and the first point
of Ri+1; for i = 1, the point is placed just above the 6-gon. A second point is
placed on the intersection of �′ and the line through the second point of Ri and
the first point of Bi+1; for i = n, the point is placed just below the 6-gon.

There are nmaximum size empty convex subsets with 10 points each. A subset
is formed by the points in the pairs Li, Ri, Bi, and the four points on � and �′

that are closest to the corresponding 6-gon.

� gadget. This gadget consists of eight subgadgets, which are very similar to
the ones we have already described above. See Fig. 5(b). It can be thought of as
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having two inputs (at the upper and lower left corner) and two outputs (at the
upper and lower right corner). It propagates the inputs (choices) independently
from each other, one horizontally and one vertically. The input subgadgets � and
�are respectively connected (through their left and bottom rectangle sides) to

the � and � gadgets of the ith row and jth column of the global construction
(Fig. 2). The output subgadgets

�
and � are similarly connected to a � and

� gadget. Note that the subgadgets � and � in the middle of the � gadget
(Fig. 5(b)) as well as the subgadgets ⌟ � and

⌟�
are not connected directly to

any row or column of the global construction. Roughly speaking, the � gadget
has the following function: it multiplexes the two inputs, then it mirrors them
(vertically and horizontally), and then demultiplexes them. Next, we describe
the subgadgets in more detail.

1

2

n

1, 1

1, 2

1, n

2, 1

2, 2

2, n

n, 1

n, 2

n, n

�

1 1

2 2

n n

�

(a) (b)

Fig. 6. (a) The � subgadget. (b) The � gadget: several examples of cancelled choices
(in dashed) and of empty convex 6-gons (in bold) are shown.

The � subgadget is shown in Fig. 6(a). It is similar to the previously described
� gadget in Fig. 3. It has again n pairs of points Li on the left side. The difference
now is that there are n2 pairs of points Ri,j , 1 ≤ i, j ≤ n, on the right side of the
gadget. The second index j basically encodes the choice coming from the input
subgadget �at the lower left corner, which is communicated through the � and

⌟ � subgadgets inbetween. Only the n2 pairs Li and Ri,j constitute valid choices.
The rest are cancelled by additional points as usually. Together with pairs of
canceling points (which are also chosen as before) there are exactly n2 empty
convex 6-gons, and these are of maximum size.

The input �subgadget propagates information vertically and is defined sim-
ilarly to the � subgadget. It has n pairs of points Bj on the bottom side and n2

pairs Tij on the top side. Note that now only the n2 pairs Bj and Ti,j are valid.
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The output subgadgets
�
and � are just mirrored images of their input coun-

terparts. The ⌟ � and

⌟�
subgadgets are constructed in the same way as the ⌟�

gadget in Fig. 4 but have n2 valid 6-gons, while the � and � subgadgets are
constructed in the same way as the � gadget in Fig. 5 and have n2 valid 10-gons.

� gadget. This gadget encodes the edges of the input graph G. See Fig. 6(b).
It is similar to gadget � (Fig. 3) and allows only combinations of pairs that
correspond to edges of the graph: for every non-edge ij of G, a point is placed
inside the parallelogram LiRj .

3.3 Lifting to R3 and Correctness

Every corner of a gadget rectangle is lifted to the paraboloid with the map
(x1, x2) ↦ (x1, x2, x

2
1 + x

2
2). The images of the corners of each rectangle lie on

one distinct plane (since the corners lie on a circle). The points in the gadget
are projected orthogonally on the corresponding plane. As this is an affine map,
collinearity and convexity within the gadget are preserved. Each gadget lies on
a distinct facet (a parallelogram) of a convex polyhedron.

The total number of (sub)gadgets of each type together with the size of a
largest valid (i.e., empty and convex) subset in a gadget of the type is

� : k2, 6;

� : k(3k − 1)/2, 6;
⌟�, ⌟ �,

⌟�
: k(3k − 1)/2, 6;

�, �, � : 2k(k − 1), 10;

� ,
�
, �,

�
: 2k(k − 1), 6;

� : k(k − 1)/2, 6.

A global valid subset is formed by locally choosing one valid subset from every
gadget in a consistent manner. When a largest locally possible subset (as given
above) can be chosen, the global subset has size k(35k − 23). As we will now
prove, such a global subset corresponds to a k-size clique of G. Let P be the set
of all the points in our construction.

Lemma 5. There exists an empty convex subset of P with k(35k− 23) points if
and only if G has a clique of size k.

Proof. “⇒” Suppose there exists a global valid subset of size k(35k−23). Then, a
largest locally possible valid subset must be chosen from every gadget. Consider
such a choice of subsets and let vi be the vertex of G corresponding to the
choice from the leftmost gadget of the ith grid row. By construction, the subset
corresponding to the same vertex vi must be chosen from every other gadget in
this row as well as every gadget in the ith column. Consider the jth row, for
some j ≠ i. Through the � gadget that connects the ith column to the jth row,
when i + 1 ≤ j, or the jth column to the ith row, when j < i, the subset chosen
from the jth row must correspond to a vertex vj such that vivj is an edge of G.
Hence {v1, . . . , vk} is a clique in G.

“⇐” Obvious. ⊓⊔

Therefore, we have shown the following.

Theorem 3. Largest-Empty-Convex-Subset is W[1]-hard, under the con-
dition of strict convexity.
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4 Open Problems

The approximability status of both problems studied in the paper is open:
none of our reductions imply hardness while no constant-factor approximation
algorithms are known.
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Abstract. We study the problem of encoding the positions the top-k
elements of an array A[1..n] for a given parameter 1 ≤ k ≤ n. Specifically,
for any i and j, we wish create a data structure that reports the positions
of the largest k elements in A[i..j] in decreasing order, without accessing
A at query time. This is a natural extension of the well-known encoding
range-maxima query problem, where only the position of the maximum
in A[i..j] is sought, and finds applications in document retrieval and
ranking. We give (sometimes tight) upper and lower bounds for this
problem and some variants thereof.

1 Introduction

We consider the problem of encoding range top-k queries over an array of distinct
values A[1..n]. Given an integer 1 ≤ k ≤ n, we wish to preprocess A and create
a data structure that can answer top-k-pos queries: given two indices i and j,
return the positions where the largest k values in A[i..j] occur.

The encoding version of the problem requires this query to be answered with-
out accessing A: this is useful when the values in A are intrinsically uninteresting
and only the indices where the top-k values occur are of interest. An example is
auto-completion search in databases and search engines [13, 15]. Here, as the user
types in a query, the system presents the user with the k most popular comple-
tions, chosen from a lexicon of phrases, based on the text entered so far. Viewing
the lexicon as a sorted sequence of strings with popularity scores stored in A,
the indices i and j can specify the range of phrases prefixed by the text typed in
so far. Similarly, in document search engines, A could contain the (virtual) se-
quence of PageRank values of the pages in an inverted list sorted by URL. Then
we could efficiently retrieve the k most highly ranked documents that contain a
query term, restricted to a range of page identifiers (which can model a domain
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of any granularity). An encoding data structure for top-k queries will allow us to
reduce the amount of space needed to perform these searches in main memory.

One can always use a non-encoding data structure (i.e., one that accesses A
during the execution of queries) for top-k-pos, such as that of Brodal et al. [4], on
an array A′ that contains the sorted permutation of the elements in A, and thus
trivially avoid access to A at query time. This yields an encoding that uses O(n)
words, or O(n lg n) bits, of memory and answers top-k-pos queries in optimal
O(k) time. We aim to find non-trivial encodings of size o(n lg n) bits (from which,
of course, it is not possible to recover the sorted permutation, but one can still
answer any top-k-pos query). As we prove a lower bound of Ω(n lg k) bits on the
space of any top-k encoding, non-trivial encodings can exist only if lg k = o(lg n).
This is a reasonable assumption for the aforementioned applications.

Related Work. The encoding top-k problem is closely related to the problem
of encoding range maximum query (RMQ), which is the particular case with
k = 1: RMQA(i, j) = argmaxi≤p≤jA[p]. The RMQ problem has a long history
and many applications [2, 3, 12], and the problem of encoding RMQs has been
studied in [8, 19]. In particular, Fischer and Heun [8] gave an encoding of A
that uses 2n + o(n) bits and answers RMQ in O(1) time; their space bound is
asymptotically optimal to within lower-order terms. We are not aware of any
work on top-k encoding for k > 1.

Our work is also related to range selection, which is to preprocess A to find the
kth largest element in a range A[i..j], with i, j, k given at query time. This prob-
lem has recently been studied intensively in its non-encoding version [5, 6, 9, 10,
14]. Jørgensen and Larsen [14] obtained a query time of O(lg k/ lg lgn+ lg lg n),
very recently improved to O(lg k/ lg lgn) by Chan and Wilkinson [6], both us-
ing Θ(n) words, i.e., Ω(n lg n) bits. Jørgensen and Larsen [14] introduced the
κ-capped range selection problem, where a parameter κ is given at preprocess-
ing time, and the data structure only supports selection for ranks k ≤ κ. They
showed that even the one-sided κ-capped range selection problem requires query
time Ω(lg k/ lg lg n) for structures using O(n polylog n) words, and the result of
Chan and Wilkinson is therefore the best possible. Although the problems we
consider are different in essential ways, we borrow some techniques, most notably
that of shallow cuttings [6, 14], in some of our results.

Contributions. We present new lower and upper bounds shown in Table 1, where
we assume that the word RAM model has word size of w = Ω(lg n) bits, for the
following operations on encoding data structures for one- and two-sided range
selection and range top-k queries and for any 1 ≤ i ≤ j ≤ n.

1. kth-pos(i) returns the position of the k-th largest value in range A[1..i] for
any array A, and

2. top-k-pos(i) returns the top-k largest positions in A[1..i] (one-sided variant)
or top-k-pos(i, j) for the top-k largest positions in A[i..j] (two-sided variant).

We make heavy use of rank and select operations on bitmaps. Given a bitmap
B[1..n], operation rankb(B, i) is the number of occurrences of bit b in the prefix



Encodings for Range Selection and Top-k Queries 555

Table 1. Our lower and upper bounds for encodings for one- and two-sided range
selection and range top-k queries, simplified for the interesting case lg k = o(lgn), and
valid for any function lg lg k/ lg k � ε(k) � 1

Problem Lower bound Upper bound Upper bound
space (bits) space (bits) time

kth-pos(i) n lg k −O(n) n lg k +O(ε(k)n lg k) O(1/ε(k))
top-k-pos(i) n lg k −O(n) n lg k +O(n) O(k)
top-k-pos(i, j) n lg k −O(n) O(n lg k) O(k)

B[1..i], whereas selectb(B, j) is the position in B of the j-th occurrence of bit b.
These operations generalize in the obvious way to sequences over an alphabet
[σ]. We also make use of the Cartesian tree [21] of an array A[1..n], which is
fundamental for RMQ solutions. The root of the Cartesian tree represents the
position m of a maximum of A[1..n], thus m = rmqA(1, n). Its left and right
subtrees are the Cartesian trees of A[1..m− 1] and A[m+ 1..n], respectively.

2 One-Sided Queries

We start by considering one-sided queries. We are given an array A of n integers
and a fixed value k. We can assume w.l.o.g. that A is a permutation in [n],
otherwise we can replace each A[i] by its rank in {A[1], . . . , A[n]}, breaking ties
as desired, and obtain the same results from queries. We want to preprocess and
encode A to support the one-sided operations of Table 1 efficiently.

2.1 Lower Bounds

For queries kth-pos(i) and top-k-pos(i), we give a lower bound of Ω(n lg k) bits
on the size of the encoding. Assume for simplicity that n = �k, for some integer
�. Consider an array A of length n, with A[i] initialized to i, for 1 ≤ i ≤ n, and
re-order its elements as follows: take � − 1 permutations πj of size k, 0 ≤ j <
�− 1, and permute the elements in the subarray A[jk+1..(j+1)k] according to
permutation πj , A[jk+ i] = jk+ πj(i) for 0 ≤ j < �− 1 and 1 ≤ i ≤ k. Observe
that, for each 1 ≤ j < �, A[x] < A[y] for any x ≤ jk and y > jk. We now show
how to reconstruct the �− 1 permutations by performing several kth-pos queries
on the array A. By the above property of A, the position of the k-th value in
the prefix A[1..jk + i− 1] is the position of value (j − 1)k + i, for any 1 ≤ j < �
and 1 ≤ i ≤ k. This position is (j − 1)k+ π−1

j−1(i). Then, any πj−1 can be easily
computed with the k queries, kth-pos(jk + i − 1) for 1 ≤ i ≤ k. Since the � − 1
permutations require (� − 1) lg k! = (n− k) lg k −O(n) bits, the claim follows.

Similar arguments apply to top-k-pos(i) as well, even if it gives the results
not in order: using the array A above, kth-pos(i) is precisely the element that
disappears from the answer when we move from top-k-pos(i) and top-k-pos(i+1).

Theorem 1. Any encoding of an array A[1..n] answering kth-pos or top-k-pos
queries requires at least (n− k) lg k −O(n) bits of space.
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Fig. 1. Encoding of an array A of length n to support kth-pos and top-k-pos queries,
for k = 3. The encoding consists of a bitmap P of length n = 18 with n′ = 13 ones,
and a string X of length n′ over the alphabet [1..k].

2.2 Upper Bounds and Encodings

We first consider query kth-pos(i). We scan the array from left to right, and keep
track of the top-k values in the prefix seen so far. At any position i > k, if we
insert A[i] into the top-k values, then we have to remove the k-th largest value
of the prefix A[1..i− 1]. The idea to solve these queries is to record the position
of that leaving k-th largest value, so that to solve kth-pos(i) we find the next
i′ > i where the top-k list changes, and then find the value leaving the list when
A[i′] enters it. This one was the k-th largest value in A[1..i]. We wish to store
this data using O(n lg k) bits.

We store a bit vector P of length n, where P [i] = 1 iff a new element is
inserted into the top-k values at position i (or equivalently, the k-th largest
value of A[1..i − 1] is deleted at position i). Let n′ ≤ n be the number of ones
in P . The first k bits of P are set to 1. We encode P using n+ o(n) bits, while
supporting constant-time rank and select operations on it [7, 16].

Further, we store string X of length n′, such that X [j] = j for 1 ≤ j ≤ k, and
X [j] = X [rank1(P, kth-pos(select1(P, j) − 1))], for k < j ≤ n′. String X encodes
the positions of the top-k values in A[1..i] as follows. Let j = rank1(P, i) > k.
Then the last occurrence of X [j] = α in X [1..j − 1] marks the position of the
element that was the k-th in the segment A[1..i − 1]. This is because the last
occurrence of each distinct symbol α in X [1..j] is the position of a top-k value
in A[1..i]. This is obviously true for i = j = k, and by induction it stays true
when, at a position P [i] = 1, we set X [j + k] = α, where α marked the position
of the k-th maximum in A[1..i− 1]. Figure 1 shows an example.

Note that X is a string of length n′ over the alphabet [k]. Hence, X can be
encoded using (1+ ε(k))n′ lg k bits, so that select is supported in O(1) time and
access in O(1/ε(k)) time [11], for any ε(k) = O(1) (including functions in o(1)).
On top of this we add O(n′ lg lg k) bits. to support in constant time partial rank
queries, of the form rankX[i](X, i). This is obtained by storing one monotone
minimum perfect hash function (mmphf) [1] per distinct symbol c appearing
nc > 0 times in X . The space for each c is O(nc lg lg(n

′/nc)) bits, which adds
up to O(n′ lg lg k) by Jensen’s inequality.

By the discussion above, for i < n we compute j = rank1(P, i) + 1, and
α = X [j]. Then it holds kth-pos(i) = select1(P, selectα(X, rankα(X, j)−1)). This
is correct because the top-k list changes when A[i] enters the list, and we find
the next time X [j] = α is mentioned, which is where A[i] is finally displaced
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from the top-k list. Thus, this operation can be supported in O(1/ε(k)) time,
where the time to access X dominates. Theorem 2 follows.

Theorem 2. Given an array A[1..n] and a value k, there is an encoding of A
and k on a RAM machine of w = Ω(lg n) bits that uses n lg k+O(ε(k)n lg k) bits
and support kth-pos(i) queries in O(1/ε(k)) time, for any function ε(k) ∈ O(1)
and ε(k) ∈ Ω(lg lg k/ lg k).

For supporting top-k-pos(i) queries we need a different query on X : Given a
position j, find the rightmost occurrence preceding j of every symbol in [k]. This
can be done in O(k) time using our representation of X [11]: The string is cut
into chunks of size k. We can traverse the chunk of j in time O(k) to find all the
last occurrences, preceding j, of distinct symbols1. For each symbol not found in
the chunk, we use constant-time rank and select on bitmaps already present in
the representation to find the previous chunk where it appears, and finally find
in constant time its last occurrence in that previous chunk (as we have already
chosen, for our purposes, constant-time select inside the chunks).

By the discussion above on the meaning of X , it is clear that the rightmost
occurrences, up to position j = rank1(P, i) + 1, of the distinct symbols in [k],
form precisely the answer to top-k-pos(i). Thus we find all those positions p in
time O(k) and remap them to the original array using select1(P, p). Since we
need only select queries on X , we need only n lg k +O(n) bits for it [11].

Note the top-k positions do not come sorted by largest value. By the same
properties ofX , if the first occurrence of α afterX [j] precedes the first occurrence
of β after X [j], then the value associated to α in our answer is smaller than that
associated to β, as it is replaced earlier. Thus we find the first occurrence, after
j, of all the symbols in [k], analogously as before, and sort the results according
to the positions found to the right, in O(k lg k) time. Thus Theorem 3 follows.

Theorem 3. Given an array A[1..n] and a value k, there is an encoding of A
and k that uses n lg k+O(n) bits and supports top-k-pos(i) queries in O(k) time
on a RAM machine of w = Ω(lg n) bits. The result can be sorted from largest to
lowest value in O(k lg k) time. The encoding is a subset of that of Theorem 2.

3 Two-Sided Range Top-k Queries

We now consider the problem of encoding the array A[1..n] so as to answer the
query top-k-pos(i, j). We will also consider solving top-k queries for any k ≤ κ,
where κ is set at construction time. Clearly, a lower bound on the encoding size
of Ω(n lg κ) bits follows from Section 2.1.

Corollary 1. Any encoding of an array A[1..n] answering top-k-pos(i, j) queries
requires at least (n− k) lg k −O(n) bits of space.

We give now two upper bounds for query top-k-pos(i, j). The first is weaker,
but it is used to obtain the second.
1 Although we do not have constant-time access to the symbols, we can select all the
(overall) k positions of all the k distinct symbols in the chunk, in time O(k).
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3.1 Using O(kn) Bits and O(k2) Time

Let A[1..n] = a1 . . . an. We define, for each element aj , κ pointers j > P1[j] >
. . . > Pκ[j], to the last κ elements to the left of j that are larger than aj .

Definition 1. Given a sequence a1, . . . , an, we define arrays of pointers P0[1..n]
to Pκ[1..n] as P0[j] = j, and Pk+1[j] = max ({i, i < Pk[j] ∧ ai > aj} ∪ {0}).

These pointers allow us to answer top-k queries without accessing A. We now
prove a result that is essential for their space-efficient representation.

Lemma 1. Let 1 ≤ j1, j2 ≤ n and 0 < k ≤ κ, and let us call i1 = Pk−1[j1] and
i2 = Pk−1[j2]. Then, if i1 < i2 and Pk[j2] < i1, it holds Pk[j1] ≥ Pk[j2].

Proof. It must hold ai1 < ai2 , since otherwise Pk[j2] ≥ i1 by Definition 1 (as it
would hold aj2 < ai2 ≤ ai1 and 0 < i1 < i2), contradicting the hypothesis.

Now let us call r1 = Pk[j1] and r2 = Pk[j2] < i1. If it were r1 < r2 (and
thus r2 > 0), then we would have the following contradiction: (1) aj1 ≥ ar2
(because otherwise it would be r1 = Pk[j1] ≥ r2, as implied by Definition 1 since
r2 = Pk[j2] < i1 = Pk−1[j1] and ar2 > aj1); (2) ar2 > aj2 (because r2 = Pk[j2]);
(3) aj2 ≥ ai1 (because otherwise it would be r2 = Pk[j2] ≥ i1, as implied by
Definition 1 since i1 < i2 = Pk−1[j2] and ai1 > aj2 , and r2 ≥ i1 contradicts the
hypothesis); (4) ai1 > aj1 (because i1 = Pk−1[j1]). �


This lemma shows that if we draw, for a given k, all the arcs starting at Pk−1[j]
and ending at Pk[j] for all j, then no arc “crosses” another. This property enables
a space-efficient implementation of the pointers.

Pointer Representation. We represent each “level” k > 0 of pointers sepa-
rately, as a set of arcs leading from Pk−1[j] to Pk[j]. For a level k > 0 and for
any 0 ≤ i ≤ n, let pk[i] = |{j, Pk[j] = i}| be the number of pointers of level k
that point to position i. We store a bitmap

Tk[1..2n+ 1] = 10pk[0] 10pk[1] 10pk[2] . . .10pk[n],

where we mark the number of times each position is the target of pointers from
level k. Each 1 corresponds to a new position and each 0 to the target of an arc.
Note that the sources of those arcs correspond to the 0s in bitmap Tk−1, that
is, to arcs that go from Pk−2[j] to Pk−1[j]. Arcs that enter the same position i
are sorted according to their source position, so that we associate the leftmost
0s of 0pk[i] to the arcs with the rightmost sources. Conversely, we associate the
rightmost 0s of 0pk−1[i] to the arcs with the leftmost targets. This rule ensures
that those arcs entering, or leaving from, a same position do not cross in Tk.
Then we define a balanced sequence of parentheses

Bk[1..2n] = (
pk−1[0])

pk−1[0](
pk[0]−pk−1[0])

pk−1[1](
pk[1])

pk−1[2](
pk[2] . . . )

pk−1[n].
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This sequence matches arc targets (opening parentheses) and sources (their
corresponding closing parentheses). The arcs that leave from and enter at the
special position 0 receive special treatment to make the sequence balanced.

Calling findopen(Bk, i) the position of the opening parenthesis matching the
closing parenthesis at Bk[i], the following algorithm computes the position zk
of the 0 of Tk corresponding to Pk[j], given the position zk−1 of the 0 of Tk−1

corresponding to Pk−1[j].

1. p ← rank0(Tk−1, zk−1) 5. c ← select )(Bk, p)
2. z ← select1(Tk−1, zk−1 − p) 6. o ← findopen(Bk, c)
3. z′ ← select1(Tk−1, zk−1 − p+ 1) 7. r ← rank ((Bk, o)
4. p ← z′ − (zk−1 − z) 8. zk ← select0(Tk, r)

The code works as follows. Given the position Tk−1[zk−1] = 0 corresponding
to the target of pointer Pk−1[j], we first compute in p the number of 0s up to
zk−1 in Tk−1. This position is corrected so as to (virtually) reverse the 0s that
form the run where zk−1 lies (between the 1s at positions z and z′), in order to
convert entering into leaving arcs. Then we find c, the p-th closing parenthesis
in Bk, which is the target of this arc, and find its source o, the matching opening
parenthesis. Finally we compute the rank r of o among the opening parentheses
to the left, and match it with the corresponding 0 in Tk, zk.

We use the code as follows. Starting with P0[j] = j and z0 = 2j + 1, we use
the code up to κ times in order to find, consecutively, z1, z2, . . . , zκ. At any point
we have that Pk[j] = rank1(Tk, zk) − 1. Finally, since we know T0 = 1(10)n, we
can avoid storing it, and replace lines 1–4 by p ← j + 1, when computing z1.

By using a representation of Tk that supports constant-time rank and select
operations in 2n + O(n/ lg2 n) bits [17], and a representation of Bk that in
addition supports operation findopen in constant time and the same space [20],
we have that the overall space is 4κn+o(n) bits for any κ = O(lg n). With such a
representation, we can compute any Pk[j], for any j and any 1 ≤ k ≤ κ, in time
O(k) and, more precisely, in time O(1) after having computed Pk−1[j] using the
same procedure.

Top-k Algorithm. To find the k largest elements of A[i..j] we use the structure
of Fischer and Heun [8] that takes 2n+o(n) bits and answers RMQs in constant
time. Our algorithm reconstructs the top part of the Cartesian tree [21] of A[i..j]
that contains the top-k elements, and also their children. The invariant of the
algorithm is that, at any time, the internal nodes of the reconstructed tree are
top-k elements already reported, whereas the next largest element is one of the
current leaves. The tree that is reconstructed is of size at most 3k.

The nodes p of the tree will be associated with an interval [ip..jp] of [1..n], and
with a position mp where the maximum of A[ip..jp] occurs. In internal nodes it
will hold ip = jp = mp. Those intervals will form a cover of [i..j] (i.e., will be
disjoint and their union will be [i, j]), and values ip (and jp) will increase as we
traverse the tree in inorder form.
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We start taking rmq(i, j), which gives the position m of the maximum (top-
1); this would be enough for k = 1. In general, we initialize a tree of just one leaf
and no internal nodes. The leaf is associated to position m and interval [i..j].
This establishes the invariants.

To report the next largest element, we take the position ml of the maximum
of the rightmost leaf l, and traverse the interval [i..ml] backwards using P1[ml],
P2[ml], and so on. Each position (larger than 0) we arrive at contains an element
larger than A[ml]. However, if those are elements we have already reported, our
candidate ml is still good to be the next one to report. To determine this in
constant time, we traverse the tree in reverse inorder at the same time we do the
backward interval traversal. When we are at an internal node, we know that the
backward traversal will stop there, as the element is larger than A[ml]. Leaves,
instead, are not yet reported and their interval may be skipped by the traversal.

If, however, the backward traversal stops at a position Pr[ml] that falls within
the interval of another leaf p, thenml is not the next largest element, since Pr[ml]
is not yet reported. Instead of continuing with the new candidate at position
Pr[ml], we take the leaf position mp, which is indeed the largest of the interval.
We restart the backward traversal from l ← p, using again P1[ml], P2[ml], and so
on. When the backward traversal surpasses the left limit i, the current candidate
is the next largest element to report. We split its area into two, compute rmqs
to define the two new leaves of l, and restart the process.

For example, the first thing that happens when we start this algorithm for
k > 1 is that P1[m] < i, thus we report m and create a left child with interval
[i..m − 1] and position rmq(i,m − 1) and a right child with interval [m + 1..j]
and position rmq(m+ 1, j). Then we go on to report the second element.

Since each step can be carried out in constant time, and our backward traversal
performs k to 3k steps to determine the k-th answer, it follows that the time
complexity of the algorithm is O(k2). We are able to run this algorithm for any
k ≤ κ+ 1. By renaming κ we have our final result, that with κ = 1 matches the
RMQ lower bounds.

Theorem 4. Given an array A[1..n] and a value κ, there is an encoding of A
and κ that uses (4κ− 2)n+ o(n) bits and supports top-k-pos(i, j) queries for any
k ≤ κ, in O(k2) time on a RAM machine of w = Ω(lg n) bits. The positions are
given sorted by value.

3.2 Using O(n lg k) Bits and O(k) Time

Our final solution achieves asymptotically optimal time and space, building on
the results of Section 3.1. It uses Jørgensen and Larsen’s “shallow cuttings” idea
[14], which we now outline. Imagine the values of A[1..n], already mapped to
the interval [n], as a grid of points (i, A[i]). Now sweep a horizontal line from
y = n to y = 1. Include all the points found along the sweep in a cell, that is, a
rectangle [1, n]× [y, n]. Once we reach a point y0 such that the cell reaches the
threshold of containing 2κ+1 points, create two new cells by splitting the current
cell. Let (x, y) be the point whose x-coordinate is the median in the current cell.
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This will be called a split point; note it is not necessarily the point (x0, y0) that
caused the split. Then the two new cells are initialized as [1, x] × [y0, n] and
[x, n] × [y0, n] (note the vertical limit is y0, that of the point causing the split,
which now belongs to one of the two cells). Both cells now contain κ points, and
the sweep continues, further splitting the new cells as we include more points.
We create a binary tree of cells TC , where the new cells are the left and right
children, respectively, of the current cell.

In general, at any point in time, we will have a sequence of split points already
determined, x1, x2, . . ., and the cells that are leaves in the current TC cover an
x-coordinate interval of the form [xi, xi+1] (we implicitly add split points 1 and
n at the extremes). When the next split occurs at a point (x0, y0) within the
cell covering the interval [xi, xi+1], we will split it into two new cells covering
[xi, x] × [y0, n] and [x, xi+1] × [y0, n], for some x. We will associate to those
cells the keys [xi, x] and [x, xi+1], respectively, and the extents [xi−1, xi+1] and
[xi, xi+2], respectively. Finally, once we have finished the sweep on the plane, we
are left with a final set of split points x1, x2, . . . , xt (from now on xi will refer
to this final sequence of split points). We add t further keyless cells with extents
[xi−1, xi+1] for all 1 ≤ i ≤ t.

Jørgensen and Larsen prove various interesting properties of this process: (i)
it creates O(t) = O(n/κ) cells, each containing κ to 2κ points (if n ≥ κ); (ii) if
c = [xi, xj ]× [y0, n] is the cell with maximum y0 value whose key is contained in
a query range [l, r], then [l, r] is contained in the extent of c and (iii) the top-κ
values in [l, r] belong to the union of the 3 cells that comprise the extent of c.

We give now an encoding of this data structure that contains two parts. The
first part uses O((n/κ) lg κ) + o(n) = o(n) bits2 and identifies in constant time
the desired cell whose extent contains [l, r]. The second part uses O(n lg κ) bits
and gives us the first κ elements in the extent, in O(κ) time.

Finding the Cell. We mark the final split points xi in a bitmap S[1..n] with
constant-time rank and select support. As there are t bits set, S can be imple-
mented in O((n/κ) lg κ)+o(n) bits [18]. It allows us finding in constant time the
range [m,M ] of split points l ≤ xm < . . . < xM ≤ r contained in [l, r]. If this
range contains zero or one split point (i.e., m ≥ M), then [l, r] is contained in
the extent of the keyless cell number m and we are done for the first part.

Otherwise, the following procedure finds the desired key [14]. Find the split
point xi with maximum associated y0-coordinate (this is the y0 coordinate given
to the two cells created by split point xi). Find the split point xj with second
maximum. If j < i (i.e., xj is to the left of xi), then the desired key is [xj , xi],
else it is [xi, xj ].

We map, using rank1 on S, the range [l, r] to the range [m,M ]. Consider the
array Y [1..t] of y0 values associated to the t split points. We store a range top-2
encoding T on the array Y , using the result of Section 3.1. This requires O(n/κ)
bits and returns the positions of the first and second maxima in Y [m,M ], xi and

2 It is not o(n) if κ = O(1), yet in this case the results of Section 3.1 are asymptotically
equivalent.
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xj , in O(1) time. Assume w.l.o.g. that i < j and thus the desired key is [xi, xj ];
the case [xj , xi] is symmetric.

Now the final problem is to find the extent associated to the key [xi, xj ]. For
this we need to find the split points that, at the moment when the key [xi, xj ]
was created, preceded xi and followed xj . Since, at the time we created split
point xj , the split points that existed were precisely those with y0 larger than
that associated to xj , it follows that the split point that preceded xi is xi′ ,
where i′ = P2[j], as defined in Section 3.1 (Def. 1). Similarly, the split point that
followed xj was xj′ , where j

′ = N1[j] (Nk is defined symmetrically to Pk but
pointing to the right, and it can be represented analogously). Those structures
still require O(n/κ) bits and answer in O(1) time.

Thus, using O((n/κ) lg κ) + o(n) bits and O(1) time, we find the extent that
contains query [l, r]. The actual x-coordinates of the extent, [xi′ , xj′ ], are found
using select1 on S.

Traversing the Maxima. For the second structure, we represent the tree of
cells TC using O(n/κ) bits, so that a number of operations are supported in
constant time [20]. Since the key [xi, xj ] was created with the split point xj , the
corresponding node of TC is the left child of the j-th node of TC in inorder. This
node with inorder j is computed in constant time, and then we can compute
the preorder of its left child also in constant time (note that leaves do not have
inorder number, but all nodes have a preorder position) [20].

Associated to the preorder index of each node of TC we store an array
M [1..O(κ)] over [O(κ)], using O(κ lg κ) bits (and O(n lg κ) overall). This ar-
ray stores the information necessary to find the successive maxima of the ex-
tent of the node. We use RMQ queries on A[xi′ , xj′ ]. Clearly the maximum
in the extent is m1 = rmqA(xi′ , xj′ ). The second maximum is either m2 =
rmqA(xi′ ,m1 − 1) or m2 = rmqA(m1 + 1, xj′). Which of the two is greater
is stored (in some way to be specified soon) in M [1]. Assume M [1] indicates
that m2 = rmqA(xi′ ,m1 − 1) (the other case is symmetric). Then the third
maximum is either m3 = rmqA(xi′ ,m2 − 1), m3 = rmqA(m2 + 1,m1 − 1), or
m3 = rmqA(m1 +1, xj′ ). Which of the three is the third maximum is indicated
by M [2], and so on. Note that we cannot store directly the maxima positions in
M because we would need O(κ lg n) bits. Rather, we use M to guide the search
across the Cartesian tree slice that covers the extent.

To achieve O(κ) time we will encode the values in M in the following way.
At query time, will initialize an array I[1..k] and start with the interval I[1] =
[xi′ , xj′ ]. Now M [1] = 1 will tell us that we must now split the interval at I[1]
using an RMQ query, m1 = rmqA(I[M [1]]) = rmqA(I[1]) = rmqA(xi′ , xj′ ). We
write the two resulting subintervals in I[2] = [xi′ ,m1−1] and I[3] = [m1+1, xj′ ].
Now M [2] ∈ {2, 3} will tell us in which of those intervals is the second maxi-
mum. Assume again it is in M [2] = 2. Then we compute m2 = rmqA(I[2]) =
rmq(xi′ ,m1 − 1), and write the two resulting subintervals in I[4] = [xi′ ,m2 − 1]
and I[5] = [m2 + 1,m1 − 1]. Now M [3] ∈ {3, 4, 5} tells which interval contains
the third maximum, and so on. Note the process is deterministic, so we can
precompute the M values.
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Therefore, we obtain in O(κ) time the O(κ) elements that belong to the extent,
that is, the union of the three cells. By the properties of the shallow cutting,
those contain the κ maxima of the query interval [l, r]. Therefore, in O(κ) time
we obtain the successive maxima of the extent, and filter out those not belonging
to [l, r]. We are guaranteed to have seen the κ maxima of [l, r], in order, after
examining O(κ) maxima of the extent. Note that if we want only the top-k, for
k ≤ κ, we also need O(κ) time.

Theorem 5. Given an array A[1..n] and a value κ, there is an encoding of A
and κ that uses O(n lg κ) bits and supports top-k-pos(i, j) queries for any k ≤ κ,
in O(κ) time on a RAM machine of w = Ω(lg n) bits. The positions are given
sorted by value.

By building this structure for �lg κ� successive powers of 2, we can use one
where the search cost is O(k), for any k ≤ κ.

Corollary 2. Given an array A[1..n] and a value κ, there is an encoding of A
and κ that uses O(n lg2 κ) bits and supports top-k-pos(i, j) queries for any k ≤ κ,
in O(k) time on a RAM machine of w = Ω(lg n) bits. The positions are given
sorted by value.

4 Conclusions

We have given lower and upper bounds to several extensions of the RMQ prob-
lem, considering the encoding scenario. Some variants of range selection and
range top-k queries were considered in the simpler one-sided version, where the
interval starts at the beginning of the array. For those, we have obtained optimal
or nearly-optimal time, and matched the space lower bound up to lower-order
terms. For the general two-sided version of the problem we have largely focused
on the range top-k query, where we have obtained optimal time and asymp-
totically optimal space (up to constant factors). Several problems remain open,
especially handling range selection queries in the two-sided case, which we have
not addressed. Tightening the constant space factors is also possible. Finally,
most of our results fix k at construction time (although for two-sided queries we
can fix a maximum k at construction time, at the price of an O(lg k) extra space
factor). Removing these restrictions is also of interest.
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Abstract. Let T be a tree that is embedded in the plane and letΔ, ε > 0
be real numbers. The aim is to preprocess T into a data structure, such
that, for any query polygonal path Q, we can decide if T contains a
path P whose Fréchet distance δF (P,Q) to Q is less than Δ. We present
an efficient data structure that solves an approximate version of this
problem, for the case when T is c-packed and each of the edges of T and Q
has lengthΩ(Δ) (not required if T is a path): If the data structure returns
NO, then there is no such path P . If it returns YES, then δF (P,Q) ≤√
2(1 + ε)Δ if Q is a line segment, and δF (P,Q) ≤ 3(1 + ε)Δ otherwise.

1 Introduction

The Fréchet distance [14] is a measure of similarity between two curves P and Q
that takes into account the location and ordering of the points along the curves.
Let p and p′ be the endpoints of P and let q and q′ be the endpoints of Q.
Imagine a dog walking along P and, simultaneously, a person walking along Q.
The person is holding a leash that is attached to the dog. Neither the dog nor
the person is allowed to walk backwards along their curve, but they can change
their speeds. The Fréchet distance between P and Q is the length of the shortest
leash such that the dog can walk from p to p′ and the person can walk from q to
q′. To define this formally, let |xy| denote the Euclidean distance between two
points x and y. Then the Fréchet distance δF (P,Q) between P and Q is

δF (P,Q) = inf
f

max
z∈P

|zf(z)|,

where f is any orientation-preserving homeomorphism f : P → Q with f(p) = q
and f(p′) = q′.

Measuring the similarity between curves has been extensively studied in the
last 20 years in computational geometry [3,13,16], as well as in other areas.

Alt and Godau [3] showed that the Fréchet distance between two polygonal
curves P and Q can be computed in O(n2 logn) time, where n is the total
number of vertices of P and Q. Buchin et al. [8] improved the running time to
O(n2

√
logn(log logn)3/2) expected time. A lower bound of Ω(n logn) was given

by Buchin et al. [7]. Alt [1] conjectured the decision problem to be 3SUM-hard.
Until recently, subquadratic time algorithms were only known for restricted

cases, such as closed convex curves and κ-bounded curves [4]. In 2010, Driemel et
al. [13] introduced a new class of realistic curves, the so-called c-packed curves.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 565–576, 2013.
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A polygonal path is c-packed if the total length of the edges inside any ball is
bounded by c times the radius of the ball. The definition generalizes naturally
to geometric graphs. Driemel et al. showed that a (1 + ε)-approximation of the
Fréchet distance between two c-packed curves with a total of n vertices can
be computed in O(cn/ε + cn logn) time. The notion of c-packedness has been
argued [9,13] to capture many realistic settings for geometric paths and graphs.

In many applications, it is important to find the path in a geometric graph G
that is most similar to a polygonal curve Q [2]. Given a planar geometric graph
G with n vertices and a polygonal curve Q with n′ vertices, the problem is to find
the path P on G that has the smallest Fréchet distance to Q. They presented an
algorithm that finds such a path P , with both endpoints being vertices of G, in
O(nn′ log(nn′) logn) time using O(nn′) space; see also [6,17]. The bound on the
running time is close to quadratic in the worst case. Chen et al. [9] considered
the case when the embedding of G is so-called φ-low density and the curve Q is c-
packed. In Rd, they presented a (1+ε)-approximation algorithm for the problem
with running time O((φn′ + cn) log(nn′) log(n+n′) + (φn′/εd+ cn/ε) log(nn′)).

Little is known about query variants. The aim is to preprocess a given geo-
metric graph G, such that, for a polygonal path Q and a real value Δ > 0 as
a query, it can be decided if there exists a path P in G whose Fréchet distance
to Q is less than Δ; the path P does not have to start or end at a vertex of G.
In [5], de Berg et al. studied the case when G is a polygonal path with n vertices
and Q is a straight-line segment. For any fixed Δ and any s with n ≤ s ≤ n2,
they show how to build, in O(n2 + s polylog(n)) time, a data structure of size
O(s polylog(n)), such that for any query segment Q of length more than 6Δ,
the query algorithm associated with the data structure returns YES or NO in
O((n/

√
s) polylog(n)) time. If the output is YES, then there exists a path P in

G such that δF (Q,P ) ≤ (2 + 3
√
2)Δ. (In fact, their algorithm counts all such

“minimal” paths.) On the other hand, if the output is NO, then δF (Q,P ) ≥ Δ
for any path P in G. By increasing the preprocessing time to O(n3 logn), the
same result holds for the case when the threshold Δ is part of the query.

We consider the same problem as de Berg et al. [5] for the case when the
graph is a tree and a query consists of a polygonal path Q. Let T be a tree
(not necessarily plane) with n vertices that is embedded in the plane. Thus, any
vertex of T is a point in R2 and any edge is the line segment joining its two
vertices. A point x in R2 is said to be on T , if either x is a vertex of T or x is
in the relative interior of some edge of T . If x and y are two points on T , then
T [x, y] denotes the path on T from x to y.

Let Δ > 0 be a fixed real number. We want to preprocess T such that given
a (possibly crossing) polygonal path Q with n′ vertices, decide if there exist two
points x and y on T , for which δF (Q, T [x, y]) < Δ.

Assume that the tree T is c-packed, for some constant c. Also, assume that
each edge of T has length Ω(Δ). For any constant ε > 0, we show that a
data structure of size O(n polylog(n)) can be built in O(n polylog(n)) time. For
any polygonal path Q with n′ vertices, each of whose edges has length Ω(Δ),
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the query algorithm associated with the data structure returns YES or NO in
O(n′ polylog(n)) time.

1. If the output is YES and n′ = 2 (i.e., Q is a segment), then the algorithm
also reports two points x and y on T such that δF (Q, T [x, y]) ≤

√
2(1+ ε)Δ.

2. If the output is YES and n′ > 2, then the algorithm also reports two points
x and y on T such that δF (Q, T [x, y]) ≤ 3Δ.

3. If the output is NO, then δF (Q, T [x, y]) ≥ Δ for any x and y on T .

Compared to the structure in [5], the main drawbacks are that we require the
input tree T to be c-packed and all its edges to have length Ω(Δ) (not required
if T is a path). However, the advantages are that (1) our structure can report
a path T [x, y], (2) the approximation bound is improved from (2 + 3

√
2) to√

2(1 + ε) for query segments, (3) our query algorithm can handle polygonal
query paths Q, (4) the preprocessing time is improved from nearly quadratic to
O(n polylog(n)), and (5) the input graph can be a tree and is not restricted to
being a polygonal path.

The rest of this paper is organized as follows. In Section 2, we present the gen-
eral approach for querying a tree with a line segment, by giving a generic query
algorithm and proving its correctness. Since the running time of this algorithm
can be Ω(n) for arbitrary trees, we recall c-packed trees and μ-simplifications
in Section 3. In Section 4, we use μ-simplifications to show how the generic al-
gorithm can be implemented efficiently for querying a polygonal c-packed path
with a query segment. In Section 5, we generalize the result of Section 4 to
c-packed trees, all of whose edges have length Ω(Δ). In Section 6, we use the
previous results to query polygonal paths and trees with a polygonal path.

2 A Generic Algorithm for Query Segments

We first state two technical lemmas. Let T be a tree embedded in the plane and
let Δ > 0 be a real number. We assume that a query consists of a line segment
Q = [a, b] with endpoints a and b. We also assume that |ab| > 2Δ.

Let R(a, b) be the rectangle with sides of length |ab| and 2Δ as indicated in
Figure 1. Let Da be the disk with center a and radius Δ, and let Cab be the
part of the boundary of this disk that is contained in R(a, b). Define Db and Cba

similarly with respect to b.

Lemma 1. Let ε > 0 be a sufficiently small real number, let Q = [a, b] be a
line segment of length more than 2Δ, and assume that the angle between Q and
the positive X-axis is at most ε. Assume there exist two points x and y on T ,
such that δF (Q, T [x, y]) < Δ. Then, there exist two points x′ and y′ on T [x, y],
such that the following are true: 1. x′ and y′ are on the half-circles Cab and Cba,
respectively, and x′ is on the path T [x, y′]. 2. The path T [x′, y′] is completely
contained in the region R(a, b) \ (Da ∪Db). 3. δF (Q, T [x

′, y′]) ≤ Δ. 4. Let p and
q be the first and last vertices of T on the path T [x′, y′], respectively. For each
vertex r on the path T [p, q], let Lr be the vertical line through r, and let L′

r be
the vertical line that is obtained by translating Lr by a distance 2(1+ ε)Δ to the
left. Then, for each such r, the path T [r, q] does not cross the line L′

r.
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a

b

R(a, b)

Δ

Δ

Cab

Cba

Fig. 1. The rectangle R(a, b) and the half-circles Cab and Cba corresponding to the line
segment ab

Lemma 2. Let ε > 0 be a sufficiently small real number, let Q = [a, b] be a
line segment of length more than 2Δ, and assume that the angle between Q and
the positive X-axis is at most ε. Assume there exist two points x′ and y′ on T ,
such that the following are true: (i) x′ and y′ are on the half-circles Cab and
Cba, respectively, and (ii) the second and fourth item in Lemma 1 hold. Then,
δF (Q, T [x

′, y′]) ≤
√
2(1 + 3ε)Δ.

2.1 The Generic Algorithm

As before, let T be a tree embedded in the plane and let Δ > 0. We define T (x, y)
to be the “open” path obtained by removing x and y from T [x, y]. We choose a
small ε > 0. For each m with 0 ≤ m < π/ε, consider the (Xm, Ym)-coordinate
system that is obtained by rotating the X-axis and Y -axis by an angle of 2mε.

Consider a query segment Q = [a, b] with |ab| > 2Δ. We present a generic
algorithm that approximately decides if there exist two points x and y on T such
that δF (Q, T [x, y]) < Δ. The idea is to choose a coordinate system in which Q
is approximately horizontal. Using this, we find all pairs (x, y) of points on T for
which the three conditions in Lemma 2 hold.
Step 1: Compute the set A of intersection points between T and the half-circle
Cab, and the set B of intersection points between T and the half-circle Cba.
Step 2: Compute I = {(x, y) ∈ A×B : T (x, y) ∩ A = ∅ and T (x, y) ∩B = ∅}.
Step 3: Compute J = {(x, y) ∈ I : T [x, y] is completely contained in R(a, b)}.
Step 4: Let m be an index such that the angle between Q and the positive
Xm-axis is at most ε. For each pair (x, y) in J , do the following: Let p and q be
the first and last vertices of T on the path T [x, y], respectively. For each vertex
r on T [p, q], let Lr be the line through r that is parallel to the Ym-axis, and
let L′

r be the line obtained by translating Lr by a distance 2(1 + ε)Δ in the
negative Xm-direction. Decide if, for each vertex r on T [p, q], the path T [r, q]
does not cross the line L′

r. If this is the case, then return YES together with the
two points x and y, and terminate the algorithm. If, at the end of this fourth
step, the algorithm did not terminate yet, then return NO and terminate.

If T has n vertices, then the worst-case running time of this algorithm will be
Ω(n), because the sets A and B in Step 1 may have size Θ(n).
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Lemma 3. Let Q = [a, b] be a line segment of length more than 2Δ and consider
the output of the generic algorithm on input Q. If the output is YES, then there
exist two points x and y on T such that δF (Q, T [x, y]) ≤

√
2(1 + 3ε)Δ. If the

output is NO, then for all x and y on T , δF (Q, T [x, y]) ≥ Δ.

3 c-Packed Trees and μ-Simplifications

Following Driemel et al. [13], we say that a tree T is c-packed if for any ρ > 0
and any disk D of radius ρ, the total length of D ∩ T is at most cρ.

Lemma 4. The arrangement of a c-packed tree with n vertices has size O(cn).

Lemma 5. Let Δ > 0 and c′ ≥ 1, and let T be a c-packed tree, all of whose
edges have length at least Δ/c′. Then, for any circle C of radius Δ, the number
of intersection points between T and C is O(cc′).

In Section 4, we consider polygonal paths P that are c-packed, but do not have
the property that each edge has length Ω(Δ). Since Lemma 5 does not hold for
such a path, we would like to simplify P , resulting in a path P ′, such that P ′

is O(c)-packed, each of its edges has length Ω(Δ), and P ′ is close to P with
respect to the Fréchet distance. This leads to the notion of a μ-simplification:

Let P = (p1, p2, . . . , pn) be a polygonal path in the plane and let μ > 0 be a
real number. A μ-simplification of P is a polygonal path P ′ = (pi1 , pi2 , . . . , pik)
such that 1 = i1 < i2 < . . . < ik = n and each edge of P ′, except possibly the
last one, has length at least μ.

Lemma 6 (Driemel et al. [13]). In O(n) time, a μ-simplification P ′ of P can
be computed such that δF (P, P

′) ≤ μ. If the polygonal path P is c-packed, then
this μ-simplification P ′ is (6c)-packed.

4 Polygonal Paths and Query Segments

In this section, we assume that the tree T is a polygonal path and write P =
(p1, p2, . . . , pn) instead of T . For two points x and y on P , we write x ≤P y if
x is on the subpath P [p1, y]. We choose positive real numbers c, c′, and ε. We
assume that P is c-packed and that each edge of P , except possibly the last one,
has length at least Δ/c′. At the end of this section, we will show how to remove
the latter assumption. We start by describing the preprocessing algorithm.

Arrangement A(P ): We construct the arrangement A(P ) induced by the
path P and preprocess it for point-location queries. By Lemma 4, A(P ) has size
O(cn).

Circular ray shooting structures: For each face F of A(P ), we construct
the data structure CRS(F ) in Cheng et al. [10], which supports circular ray
shooting queries for the fixed radius Δ. If m is the number of vertices on F ,
then CRS (F ) has query time O(logm), size O(m), and can be constructed in
O(m logm) time.
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Subpath rectangle intersection structure: We construct a balanced bi-
nary search tree storing the points p1, p2, . . . , pn at its leaves (sorted by their
indices). At each node v of this tree, we store the convex hull CH v of all points
stored in the subtree of v. The resulting structure SRI (P ) can be used to an-
swer the following type of query in O(log2 n) time: Given any rectangle R (not
necessarily axes-parallel) and any two indices i and j with 1 ≤ i ≤ j ≤ n, decide
if the subpath P [pi, pj ] = (pi, pi+1, . . . , pj) of P is completely contained in R.

Priority search trees: In Section 2.1, we defined, for each m with 0 ≤ m <
π/ε, the coordinate system with axesXm and Ym. For eachm with 0 ≤ m < π/ε,
we do the following: For any k with 1 ≤ k ≤ n, let Lkm be the line through the
point pk that is parallel to the Ym-axis, and let L′

km be the line obtained by
translating Lkm by a distance 2(1 + ε)Δ in the negative Xm-direction. Define

fm(k) = min{� : k < � ≤ n, p� is to the left (w.r.t. the Xm-direction) of L′
km}.

Consider the set Sm = {(k, fm(k)) : 1 ≤ k ≤ n} of n points in the plane. We
construct a priority search tree PSTm(P ) for the set Sm; see McCreight [15].
We can use PSTm(P ) to answer the following query in O(log n) time: Given any
two indices i and j with 1 ≤ i ≤ j ≤ n, decide if, for each k with i ≤ k ≤ j, the
subpath P [pk, pj ] does not cross the line L′

km. Indeed, observe that this is the
case if and only if no point of Sm is in the three-sided rectangle [i, j]× (−∞, j].

Lemma 7. The entire preprocessing algorithm takes O((c + 1/ε)n logn) time
and produces a data structure of size O(n log n+ (c+ 1/ε)n).

The query algorithm: Let Q = [a, b] be a query line segment of length more than
2Δ. Recall that we assume that the polygonal path P is c-packed and each edge
of P , except possibly the last one, has length at least Δ/c′. We show how the
data structures can be used to implement the four steps of the generic algorithm.
Step 1: Consider the half-circle Cab and let z be one of its endpoints. Find the
face F in the arrangement A(P ) that contains z. Then use CRS (F ) to find the
first intersection between the boundary of F and the circular ray along Cab that
starts at z. This gives us the first intersection, say x, between P and Cab. Set
z to x and repeat this procedure. We obtain the set A of intersection points
between P and Cab. Similarly we obtain the set B of intersection points between
P and the half-circle Cba. Using Lemma 5, this step takes O(cc′ logn) time.
Step 2: We sort the points of A∪B in the order in which they occur along the
path P . By scanning the sorted order, we obtain the set

I = {(x, y) ∈ A×B : x ≤P y, P (x, y) ∩ A = ∅ and P (x, y) ∩B = ∅}.

Since |A|+ |B| = O(cc′), this step takes O(cc′ log(cc′)) time.
Step 3: For each (x, y) in I, we use the data structure SRI (P ) to decide if the
subpath P [x, y] is completely contained in the rectangle R(a, b). If this is the
case, then we add the pair (x, y) to an initially empty set. In this way, we obtain
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J = {(x, y) ∈ I : P [x, y] is completely contained in R(a, b)}.

Since |I| = O(cc′), this step takes O(cc′ log2 n) time.
Step 4: Let m be an index such that the angle between Q and the positive Xm-
axis is at most ε. For each (x, y) in the set J , do the following: If x and y are on
the same edge of P , then return YES together with the two points x and y, and
terminate the algorithm. Otherwise, let pi and pj be the first and last vertices
of P on the path P [x, y], respectively. Use the priority search tree PSTm(P ) to
decide if, for each k with i ≤ k ≤ j, the subpath P [pk, pj] does not cross the line
L′
km. If this is the case, then return YES together with the two points x and y,

and terminate the algorithm. If the algorithm did not terminate yet, then return
NO and terminate. Since |J | = O(cc′), this step takes O(cc′ logn) time.

Lemma 8. The query algorithm takes O(cc′ log2 n) time and correctly imple-
ments the generic algorithm of Section 2.1. Thus, the two claims in Lemma 3
hold for the output of this algorithm.

This result assumes that each edge of P , except possibly the last one, has
length at least Δ/c′. We now remove this assumption.

Let P be a polygonal path and assume that P is c-packed for some real number
c > 0. We choose real numbers Δ, ε, and c′. Let μ = Δ/c′. In O(n) time, we
compute a μ-simplification P ′ of P ; see Lemma 6. Then we run the preprocessing
algorithm on P ′. For any given query segment Q = [a, b] of length more than
2Δ, we run the above query algorithm on the data structure for P ′.

Assume the output of the query algorithm is YES. By Lemma 3, there exist
two points x′ and y′ on P ′ such that x′ ≤P ′ y′ and δF (Q,P

′[x′, y′]) ≤
√
2(1 +

3ε)Δ. Since, by Lemma 6, δF (P, P
′) ≤ μ = Δ/c′, it follows that there exist two

points x and y on P such that x ≤P y and

δF (Q,P [x, y]) ≤
√
2(1 + 3ε)Δ+Δ/c′ =

√
2Δ(1 + 3ε+ 1/(c′

√
2)). (1)

On the other hand, if the output of the query algorithm is NO, then we have,
by Lemma 3, δF (Q,P

′[x′, y′]) ≥ Δ for any two points x′ and y′ on P ′ with
x′ ≤P ′ y′. Therefore, we have δF (Q,P [x, y]) ≥ Δ− μ = (1− 1/c′)Δ for any two
points x and y on P with x ≤P y.

By taking c′ = 1/ε and defining Δ0 = (1− 1/c′)Δ, the right-hand side in (1)
becomes

√
2Δ0(1 + O(ε)). This proves the following result (rename Δ0 as Δ).

Theorem 1. Let P be a polygonal path in the plane with n vertices, let c and Δ
be positive real numbers, and assume that P is c-packed. For any ε > 0, we can
construct a data structure of size O(n log n+ (c+ 1/ε)n) in O((c+ 1/ε)n logn)
time. Given any segment Q of length more than 2Δ, the query algorithm cor-
responding to this data structure takes O((c/ε) log2 n) time and outputs either
YES or NO. If the output is YES, then there exist two points x and y on P
with x ≤P y such that δF (Q,P [x, y]) ≤

√
2(1 + ε)Δ. If the output is NO, then

δF (Q,P [x, y]) ≥ Δ for any two points x and y on P with x ≤P y.
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Remark 1. Using a recent result of Driemel and Har-Peled [12], the approxima-
tion factor can be improved from

√
2(1 + ε) to 1 + ε. For constant c and ε,

the space and query time improve to O(n) and O(log n log logn), respectively,
whereas the preprocessing time increases to O(n log2 n). It is not clear if this can
be used to improve the approximation factors in the rest of this paper.

5 Trees and Query Segments

Let T be a tree with n vertices that is embedded in the plane. We fix a real
number Δ > 0 and consider query segments Q = [a, b] of length more than 2Δ.
We choose positive real numbers c, c′, and ε, and assume that T is c-packed and
each edge of T has length at least Δ/c′.

Cole and Vishkin [11] show how to decompose the tree T into a collection of
paths; we refer to this collection as the path decomposition PD(T ) of T . For any
two points x and y on T , the path T [x, y] overlaps O(log n) paths in PD(T ).
More precisely, given x and y, in O(log n) time, a sequence v1, . . . , vk can be
computed, such that (i) k = O(log n), (ii) v1 = x and vk = y, (iii) for each i with
2 ≤ i ≤ k−1, vi is an endpoint of some path in PD(T ) (and, thus, a vertex of T ),
(iv) for each i with 1 ≤ i < k, the path T [vi, vi+1] is contained in some path in
PD(T ), (v) the path T [x, y] in T between x and y is equal to the concatenation
of the paths T [v1, v2], T [v2, v3], . . . , T [vk−1, vk]. Using this, the following query
can be answered in O(log n) time: Given points x, y, and z on T , together with
the edges that contains them, decide if z is on the path T [x, y].

We first describe the preprocessing algorithm. Construct the arrangement
A(T ) induced by the tree T and preprocess it for point-location queries. For each
face F of A(T ), construct the data structure CRS(F ) for circular ray shooting
queries, as in Section 4. Compute the path decomposition PD(T ) of T . For each
path P in PD(T ), construct the data structure SRI (P ) of Section 4. Also, for
each path P in PD(T ) and for each m with 0 ≤ m < π/ε, construct two data
structures PST→

M (P ) and PST←
M (P ) one structure for each direction in which

the path P can be traversed. Additionally, we do the following:

Leftmost and rightmost structures: For each (Xm, Ym)-coordinate systems, 0 ≤
m < π/ε, and each path P in PD(T ), construct a balanced binary search tree
LRm(P ) storing the points of P at its leaves, in the order in which they appear
along P . At each node v of this tree, we store the point in the subtree of v that
is extreme in the positive Xm-direction and the point in the subtree of v that
is extreme in the negative Xm-direction. For any given path P in PD(T ), any
index m, and any two points x and y on P , we can use LRm(P ) to compute, in
O(log n) time, the point on P [x, y] that is extreme in the positive Xm-direction
and the point on P [x, y] that is extreme in the negative Xm-direction.

The query algorithm: Consider a query segment Q = [a, b] of length more than
2Δ. We show how to implement the four steps of the generic algorithm.

Step 1: As in Section 4, we compute the sets A and B of intersection points
between T and the half-circles Cab and Cba, respectively.
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Step 2: For each x in A and each y in B: Consider all points z ∈ (A∪B)\{x, y}
and, for each such point, decide if it is on the path T [x, y]. If this is not the case
for all such z, then we add the pair (x, y) to an initially empty set. At the end
of this step, we have computed

I = {(x, y) ∈ A× B : T (x, y) ∩ A = ∅ and T (x, y) ∩B = ∅}.

Step 3: For each (x, y) in I: Use the path decomposition PD(T ) to compute the
sequence of O(log n) paths in PD(T ) that overlap T [x, y]. For each such path
P , use the data structure SRI (P ) to decide if the maximal subpath of P that is
on T [x, y] is completely contained in the rectangle R(a, b). If this is the case for
each such P , then we add the pair (x, y) to an initially empty set. At the end of
this step, we have computed the set

J = {(x, y) ∈ I : T [x, y] is completely contained in R(a, b)}.

Step 4: Let m be an index such that the angle between Q and the positive
Xm-axis is at most ε. Consider any pair (x, y) in the set J . Let p and q be
the first and last vertices on the path T [x, y], respectively. For each vertex r on
T [p, q], let Lr be the line through r that is parallel to the Ym-axis, and let L′

r be
the line obtained by translating Lr by a distance of 2(1 + ε)Δ in the negative
Xm-direction. We have to decide if for each such vertex r, the path T [r, q] does
not cross the line L′

r.
We compute the sequence v1, . . . , vk as explained in the beginning of this

section. For each i with 1 ≤ i < k, let Pi be the path in the path decomposition
PD(T ) that contains T [vi, vi+1].

Assume there are two vertices r and s on T [p, q], such that s is on T [r, q]
and s is to the left of L′

r (with respect to the Xm-direction). Let i and j be
the indices such that r is on the path Pi and s is on the path Pj . Observe that
i ≤ j. There are two possibilities: If i = j, then we use one of the two priority
search trees PST→

M (Pi) and PST←
M (Pi) to find such vertices r and s. If i < j,

then we may assume that r is the vertex on Pi ∩ T [p, q] that is extreme in the
positive Xm-direction, whereas s is the vertex on the concatenation of the paths
Pi+1 ∩ T [p, q], . . . , Pk−1 ∩ T [p, q] that is extreme in the negative Xm-direction.
Thus, we handle this case in the following way: For each i with 1 ≤ i < k,
use the data structure LRm(Pi) to find the two points ri and si on Pi ∩ T [p, q]
that are extreme in the positive and negative Xm-direction, respectively. Then
for i = k − 2, k − 3, . . . , 1, find the point s′i on the concatenation of the paths
Pi+1 ∩ T [p, q], . . . , Pk−1 ∩ T [p, q] that is extreme in the negative Xm-direction.
Finally, for each i, 1 ≤ i < k, check if the point s′i is to the left of the line L′

ri .

Theorem 2. Let T be a tree with n vertices that is embedded in the plane, and
let c, c′, and Δ be positive real numbers. Assume that T is c-packed and each
of its edges has length at least Δ/c′. For any ε > 0, we can construct a data
structure of size O(n log n+ (c+ 1/ε)n) in O((c + 1/ε)n logn) time. Given any
segment Q of length more than 2Δ, the query algorithm corresponding to this
data structure takes O((cc′)2 log3 n + (cc′)3 logn) time and outputs either YES
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or NO. If the output is YES, then there exist two points x and y on T such that
δF (Q, T [x, y]) ≤

√
2(1 + ε)Δ. If the output is NO, then δF (Q, T [x, y]) ≥ Δ for

any x and y on T .

Unfortunately, the simplification technique of Section 3 cannot be used to
remove the assumption that each edge of T has length at leastΔ/c′: The number
of paths in the path decomposition PD(T ) of the tree T can be Ω(n). Therefore,
if we apply the simplification technique to each such path, as we did in Section 4,
we may get Ω(n) simplified paths, each of which contains one edge of length less
than μ = Δ/c′. As a result, the sets A and B that are computed in Step 1 of
the query algorithm may have linear size.

6 Querying with a Polygonal Path

Until now, we have considered querying polygonal paths or trees with a line
segment. In this section, we generalize our results to queries Q consisting of a
polygonal path. Unfortunately, the approximation factor increases from

√
2(1+ε)

to 3, and we need the requirement that edge lengths of Q are more than 4Δ.
Let T be a tree embedded in the plane and let Δ > 0 be a real number. We

consider polygonal query paths Q = (q1, q2, . . . , qn′), all of whose edges have
length more than 4Δ. As before, we fix a sufficiently small real number ε > 0.
The following two lemmas generalize Lemmas 1 and 2.

Lemma 9. Let Q = (q1, q2, . . . , qn′) be a polygonal path, all of whose edges have
length more than 4Δ. Assume there exist two points x and y on T , such that
δF (Q, T [x, y]) < Δ. Then, there exist points x′1, y

′
1, . . . , x

′
n′−1, y

′
n′−1 on T [x, y],

such that the following are true:

1. By traversing the path T [x, y], we visit x′1, y
′
1, . . . , x

′
n′−1, y

′
n′−1 in this order.

2. For each i with 1 ≤ i < n′,
(a) x′i and y′i are on the half-circles Cqiqi+1 and Cqi+1qi , respectively,
(b) the path T [x′i, y

′
i] is completely contained in the region R(qi, qi+1)\(Dqi ∪

Dqi+1).
3. For each i with 1 ≤ i < n′ − 1, the path T [y′i, x

′
i+1] is completely contained

in the disk with center qi+1 and radius 3Δ.
4. δF (Q, T [x

′
1, y

′
n′−1]) ≤ Δ.

5. For each i with 1 ≤ i < n′, let mi be an index such that the angle between
the line segment [qi, qi+1] and the positive Xmi-axis is at most ε. Let pi and
qi be the first and last vertices of T on the path T [x′i, y

′
i], respectively. For

each vertex r on the path T [pi, qi], let Lr be the line through r that is parallel
to the Ymi-axis, and let L′

r be the line that is obtained by translating Lr by
a distance 2(1 + ε)Δ in the negative Xmi-direction. Then, for each such r,
the path T [r, qi] does not cross the line L′

r.

Lemma 10. Let Q = (q1, q2, . . . , qn′) be a polygonal path, all of whose edges
have length more than 4Δ. Assume there exist points x′1, y

′
1, . . . , x

′
n′−1, y

′
n′−1 on

T , such that the first (with x = x′1 and y = y′n′−1), second, third, and fifth items
in Lemma 9 hold. Then, δF (Q, T [x

′
1, y

′
n′−1]) ≤ 3Δ.
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Our algorithm will run the query algorithms of the previous sections sepa-
rately on each edge of Q. Afterwards, we check if the partial paths in T obtained
for the edges of Q can be combined into one global path that is close to the
entire path Q with respect to the Fréchet distance. The following lemma implies
that this combining step is possible and, in fact, unique, if such a global path
exists. This is where we need that each edge of Q has length more than 4Δ.

Lemma 11. Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn′) be polygonal
paths and assume that each edge of Q has length more than 4Δ. Let i be any
index with 1 ≤ i < n′ − 1 and assume that there exists a point y on P , such that
y is on the half-circle Cqiqi+1 . Then there exists at most one pair (x′, y′) of points
on P such that (i) y ≤P x′ ≤P y′, (ii) x′ and y′ are on the half-circles Cqi+1qi+2

and Cqi+2qi+1 , respectively, (iii) the path P [x′, y′] is completely contained in the
region R(qi+1, qi+2)\(Dqi+1 ∪Dqi+2), (iv)the path P [y, x′] is completely contained
in the disk with center qi+1 and radius 3Δ.

Assume that the tree T is a polygonal path P = (p1, p2, . . . , pn). We choose
Δ, c, c′, and ε, and assume that P is c-packed. We start by assuming that each
edge of P , except possibly the last one, has length at least Δ/c′. We run the
preprocessing algorithm of Section 4. Additionally, we do the following:

Subpath furthest point structure: We construct a balanced search tree storing
the vertices of P at its leaves, sorted by their indices. At each node v, we store
the furthest-point Voronoi diagram of all points in the subtree of v. Let SFP(P )
be the resulting data structure. For any disk D in the plane and any two indices
i and j with 1 ≤ i ≤ j ≤ n, we can use SFP(P ) to decide if the subpath P [pi, pj ]
is completely contained in D. The time to answer such a query is O(log2 n).

Consider a query path Q = (q1, q2, . . . , qn′) all of whose edges have length
more than 4Δ. As mentioned before, we run the query algorithm of the previous
section on each edge [qi, qi+1] of Q. If (xi, yi) and (xi+1, yi+1) are returned for
the i-th and (i + 1)-st edges, respectively, then we check if yi ≤P xi+1 and the
path P [yi, xi+1] is completely contained in the disk with center qi+1 and radius
3Δ. By doing this for i = 1, 2, . . . , n′ − 2, we answer the query.

To remove the assumption that each edge of P has length at least Δ/c′, we
compute a μ-simplification P ′ of P , and proceed as in Section 4.

Theorem 3. Let P be a polygonal path in the plane with n vertices, let c and Δ
be positive real numbers, and assume that P is c-packed. For any ε > 0, we can
construct a data structure of size O(n log n+ cn) in O(n log2 n+ cn logn) time.
Given any polygonal path Q with n′ vertices, all of whose edges have length
more than 4Δ, the query algorithm corresponding to this data structure takes
O((c/ε)2n′ log2 n) time and outputs either YES or NO. If the output is YES,
then there exist two points x and y on P with x ≤P y such that δF (Q,P [x, y]) ≤
3(1 + ε)Δ. If the output is NO, then δF (Q,P [x, y]) ≥ Δ for any two points x
and y on P with x ≤P y.

Theorem 4. Let T be a tree with n vertices that is embedded in the plane, and
let c, c′, and Δ be positive real numbers. Assume that T is c-packed and each
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of its edges has length at least Δ/c′. We can construct a data structure of size
O(n log n+ cn) in O(n log2 n+ cn logn) time. Given any polygonal path Q with
n′ vertices, all of whose edges have length more than 4Δ, the query algorithm
corresponding to this data structure takes O((cc′)4n′ log3 n) time and outputs
either YES or NO. If the output is YES, then there exist two points x and y on
T such that δF (Q, T [x, y]) ≤ 3Δ. If the output is NO, then δF (Q, T [x, y]) ≥ Δ
for any x and y on T .
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with shortcuts. In: SODA, pp. 318–337 (2012)

13. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for re-
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Abstract. We propose a computationally efficient Fully Polynomial-
Time Approximation Scheme (FPTAS) for convex stochastic dynamic
programs using the technique of K-approximation sets and functions in-
troduced by Halman et al. This paper deals with the convex case only,
and it has the following contributions: First, we improve on the worst-
case running time given by Halman et al. Second, we design an FPTAS
with excellent computational performance, and show that it is faster
than an exact algorithm even for small problem instances and small ap-
proximation factors, becoming orders of magnitude faster as the problem
size increases. Third, we show that with careful algorithm design, the er-
rors introduced by floating point computations can be bounded, so that
we can provide a guarantee on the approximation factor over an exact
infinite-precision solution. Our computational evaluation is based on ran-
domly generated problem instances coming from applications in supply
chain management and finance.

1 Introduction

We consider a finite horizon stochastic dynamic program (DP), as defined in
[1]. Our model has an underlying discrete time dynamic system, and a cost
function that is additive over time. We now introduce the type of problems
addressed in this paper. We postpone a rigorous definition of each symbol until
Sect. 2, without compromising clarity. The system dynamics are of the form:
It+1 = f(It, xt, Dt), t = 1, . . . , T , where:

t : discrete time index,
It ∈ St : state of the system at time t

(St is the state space at stage t),
xt ∈ At(It) : action or decision to be selected at time t

(At(It) is the action space at stage t and state It),
Dt : discrete random variable over the sample space Dt,
T : number of time periods.
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The cost function gt(It, xt, Dt) gives the cost of performing action xt from state
It at time t for each possible realization of the random variable Dt. The random
variables are assumed independent but not necessarily identically distributed.

The total incurred cost is
∑T

t=1 gt(It, xt, Dt) + gT+1(IT+1), where gT+1 is the
terminal cost function. The problem is that of choosing a sequence of actions
x1, . . . , xT that minimizes the expectation of the total incurred cost. This prob-
lem is called a stochastic dynamic program. Formally, we want to determine:

z∗(I1) = min
x1,...,xT

E

[
g1(I1, x1, D1) +

T∑
t=2

gt(f(It−1, xt−1, Dt−1), xt, Dt) + gT+1(IT+1)

]
,

where I1 is the initial state of the system and the expectation is taken with
respect to the joint probability distribution of the random variables Dt.

Theorem 1.1. [2] For every initial state I1, the optimal value z∗(I1) of the DP
is given by z1(I1), where z1 is the function defined by the recursion:

zt(It) =

{
gT+1(IT+1) if t = T+1

minxt∈At(It)EDt [gt(It, xt, Dt) + zt+1(f(It, xt, Dt))] if t = 1,. . . ,T.

Assuming that |At(It)| = |A| and |St| = |S| for every t and It ∈ St, this gives a
pseudopolynomial algorithm that runs in time O(T |A||S|).

Halman et al. [3] give an FPTAS for three classes of problems that fall into this
framework. This FPTAS is not problem-specific, but relies solely on structural
properties of the DP. The three classes of [3] are: convex DP, nondecreasing DP,
nonincreasing DP. In this paper we propose a modification of the FPTAS for
the convex DP case that achieves better running time. Several applications of
convex DPs are discussed in [4]. Two examples are:

1. Stochastic single-item inventory control [5]: we want to find replen-
ishment quantities for a warehouse in each time period to minimize the ex-
pected procurement and holding/backlogging costs. This is a classic problem
in supply chain management.

2. Cash Management [6]: we want to manage the cash flow of a mutual fund.
At the beginning of each time period we can buy or sell stocks, thereby
changing the cash balance. At the end of each time period, the net value of
deposits/withdrawals is revealed. If the cash balance of the mutual fund is
positive, we incur some opportunity cost because the money could have been
invested somewhere. If the cash balance is negative, we must borrow money
from the bank at some cost.

Assuming convex cost functions, these problems fall under the Convex DP case.
Our modification of the FPTAS is designed to improve the theoretical worst-

case running time while making the algorithm a computationally useful tool.
We show that our algorithm, unlike the original FPTAS of [3], has excellent
performance on randomly generated problem instances of the two applications
described above: it is faster than an exact algorithm even on small instances
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where no large numbers are involved and for low approximation factors (0.1%),
becoming orders of magnitude faster on larger instances. To the best of our
knowledge, this is the first time that a framework for the automatic generation
of FPTASes is shown to be a practically as well as theoretically useful tool.
The only computational evaluation with positive results of an FPTAS we could
find in the literature is [7], which tackles a specific problem (multiobjective 0-1
knapsack), whereas our algorithm addresses a whole class of problems, without
explicit knowledge of problem-specific features. We believe that this paper is a
first step in showing that FPTASes do not have to be looked at as a purely
theoretical tool. Another novelty of our approach is that the algorithm design
allows bounding the errors introduced by floating point computations, so that
we can guarantee the specified approximation factor with respect to the optimal
infinite-precision solution under reasonable assumptions.

The rest of this paper is organized as follows. In Sect. 2 we introduce our
notation and the original FPTAS of [3]. In Sect. 3, we improve the worst-case
running time of the algorithm. In Sect. 4, we discuss our implementation of the
FPTAS. Sect. 5 contains an experimental evaluation of the proposed method.

An important difference between our approach and traditional Approximate
DP (ADP) methods (see e.g. [1]) is that we provide an approximation guarantee.
For this reason, a fair comparison with ADP is difficult and is not undertaken in
this work, but a brief discussion is presented in Sect. 5. Note that at this stage,
our comparison with ADP methods is only preliminary.

2 Preliminaries and Algorithm Description

Let N, Z, Q, R be the sets of nonnegative integers, integers, rational numbers and
real numbers respectively. For �, u ∈ Z, we call any set of the form {�, �+1, . . . , u}
a contiguous interval. We denote a contiguous interval by [�, . . . , u], whereas
[�, u] denotes a real interval. Given D ⊂ R and ϕ : D → R such that ϕ is
not identically zero, we denote Dmin := min{x ∈ D}, Dmax := max{x ∈ D},
ϕmin := minx∈D{|ϕ(x)| : ϕ(x) 	= 0}, and ϕmax := maxx∈D{|ϕ(x)|}. Given a
finite set D ⊂ R and x ∈ [Dmin, Dmax], for x < Dmax let next(x,D) := min{y ∈
D : y > x}, and for x > Dmin let prev(x,D) := max{y ∈ D : y < x}. Given a

function defined over a finite set ϕ : D → R, we define σϕ(x) :=
ϕ(next(x,D))−ϕ(x)

next(x,D)−x

as the slope of ϕ at x for any x ∈ D \ {Dmax}, σϕ(Dmax) := σϕ(prev(D
max, D)).

Let ST+1 and St be contiguous intervals for t = 1, . . . , T . For t = 1, . . . , T and
It ∈ St, let At and At(It) ⊆ At be contiguous intervals. For t = 1, . . . , T let
Dt ⊂ Q be a finite set, let gt : St × At × Dt → N and ft : St × At × Dt → St+1.
Finally, let gT+1 : ST+1 → N.

In this paper we deal with a class of problems labeled “convex DP” for which
an FPTAS is given by [3]. [3] additionally defines two classes of monotone DPs,
but in this paper we address the convex DP case only. The definition of a convex
DP requires the notion of an integrally convex set, see [8].

Definition 2.1. [3] A DP is a Convex DP if: The terminal state space ST+1

is a contiguous interval. For all t = 1, . . . , T + 1 and It ∈ St, the state space
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St and the action space At(It) are contiguous intervals. gT+1 is an integer-
valued convex function over ST+1. For every t = 1, . . . , T , the set St ⊗ At is
integrally convex, function gt can be expressed as gt(I, x, d) = gIt (I, d)+g

x
t (x, d)+

ut(ft(I, x, d)), and function ft can be expressed as ft(I, x, d) = a(d)I + b(d)x +
c(d) where gIt (·, d), gxt (·, d), ut(·) are univariate integer-valued convex functions,
a(d) ∈ Z, b(d) ∈ {−1, 0, 1}, and c(d) ∈ Z.

Let US := maxt=1,...,T+1 |St|, UA := maxt=1,...,T |At| and Ug :=
maxt=1,...,T+1 gmax

t

mint=1,...,T+1 gmin
t

. Given ϕ : D → R, let σmax
ϕ := maxx∈D{|σϕ(x)|} and

σmin
ϕ := minx∈D{|σϕ(x)| : |σϕ(x)| > 0}. For t = 1, . . . , T , we define σmax

gt :=

maxxt∈At,dt∈Dt σ
max
gt(·,xt,dt)

and σmin
gt := minxt∈At,dt∈Dt σ

min
gt(·,xt,dt)

. Let Uσ :=
maxt=1,...,T+1 σmax

gt

mint=1,...,T+1 σmin
gt

. We require that logUS , logUA and logUg are polynomially

bounded in the input size. This implies that logUσ is polynomially bounded.
Under these conditions, it is shown in [3] that a Convex DP admits an FP-

TAS, using a framework that we review later in this section. Even though these
definitions may look burdensome, the conditions cannot be relaxed. In partic-
ular, [3] shows that a Convex DP where b(d) 	∈ {−1, 0, 1} in Def. 2.1 does not
admit an FPTAS unless P = NP.

The input data of a DP problem consists of the number of time periods T ,
the initial state I1, an oracle that evaluates gT+1, oracles that evaluate the
functions gt and ft for each time period t = 1, . . . , T , and the discrete random
variable Dt. For each Dt we are given nt, the number of different values it
admits with positive probability, and its support Dt = {dt,1, . . . , dt,nt}, where
dt,i < dt,j for i < j. Moreover, we are given positive integers qt,1, . . . , qt,nt such
that P [Dt = dt,i] =

qt,i∑nt
j=1 qt,j

(see [9] for an extension). For every t = 1, . . . , T

and i = 1, . . . , nt, we define the following values:

pt,i := P [Dt = dt,i] : probability that Dt takes value dt,i,
n∗ := maxt nt : maximum number of different values that Dt can take.

For any function ϕ : D → R, tϕ denotes an upper bound on the time needed to
evaluate ϕ.

The basic idea underlying the FPTAS of Halman et al. is to approximate the
functions involved in the DP by keeping only a logarithmic number of points in
their domain. We then use a step function or linear interpolation to determine
the function value at points that have been eliminated from the domain.

Definition 2.2. [10] Let K ≥ 1 and let ϕ : D → R+, where D ⊂ R is a finite
set. We say that ϕ̃ : D → R+ is a K-approximation function of ϕ (or more
briefly, a K-approximation of ϕ) if for all x ∈ D we have ϕ(x) ≤ ϕ̃(x) ≤ Kϕ(x).

Definition 2.3. [10] Let K ≥ 1 and let ϕ : D → R+, where D ⊂ R is a finite
set, be a unimodal function. We say that W ⊆ D is a K-approximation set of ϕ
if the following three properties are satisfied: (i) Dmin, Dmax ∈ W . (ii) For every
x ∈ W \{Dmax}, either next(x,W ) = next(x,D) or max{ϕ(x), ϕ(next(x,W ))} ≤
Kmin{ϕ(x), ϕ(next(x,W ))}. (iii) For every x ∈ D \W , we have
ϕ(x) ≤ max{ϕ(prev(x,W )), ϕ(next(x,W ))} ≤ Kϕ(x).
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An algorithm to construct K-approximations of functions with special struc-
ture (namely, convex or monotone) in polylogarithmic time was first introduced
in [5]. In this paper we only deal with the convex case, therefore when presenting
results from [3,10] we try to avoid the complications of the two monotone cases.
In the rest of this paper it is assumed that the conditions of Def. 2.1 are met.

Definition 2.4. [10] Let ϕ : D → R. ∀E ⊆ D, the convex extension of ϕ
induced by E is the function ϕ̂ defined as the lower envelope of the convex hull
of {(x, ϕ(x)) : x ∈ E}.

The main building block of the FPTAS is the routine ApxSet (see [10]),
which computes a K-approximation set of a function ϕ over the domain D.
The idea is to only keep points in D such that the function value “jumps” by
less than a factor K between adjacent points. For brevity, in the rest of this
paper the algorithms to compute K-approximation sets are presented for convex
nondecreasing functions. They can all be extended to general convex functions
by applying the algorithm to the right and to the left of the minimum, which
can be found in O(log |D|) time by binary search. Hence, theorems are presented
for the general case.

Theorem 2.5. [10] Let ϕ : D → R+ be a convex function over a finite domain
of real numbers, and let x∗ = argminx∈D{ϕ(x)}. Then for every K > 1 the
following holds. (i) ApxSet computes a K-approximation set W of cardinality

O(1+logK
ϕmax

ϕmin ) in O(tϕ(1+logK
ϕmax

ϕmin ) log |D|) time. (ii) The convex extension
ϕ̂ of ϕ induced by W is a convex K-approximation of ϕ whose value at any point
in D can be determined in O(log |W |) time for any x ∈ [Dmin, Dmax] if W is
stored in a sorted array (x, ϕ(x)), x ∈ W . (iii) ϕ̂ is minimized at x∗.

Proposition 2.6. [10] Let 1 ≤ K1 ≤ K2, 1 ≤ t ≤ T, It ∈ St be fixed. Let
ĝt(It, ·, dt,i) be a convex K1-approximation of gt(It, ·, dt,i) for every i = 1, . . . , nt.
Let ẑt+1 be a convex K2-approximation of zt+1, and let:

Ĝt(It, ·) := EDt [ĝt(It, ·, Dt)] , Ẑt+1(It, ·) := EDt [ẑt+1(ft(It, ·, Dt))] .

Then
z̄t(It) := min

xt∈A(It)

{
Ĝt(It, xt) + Ẑt+1(It, xt)

}
(1)

is a K2-approximation of zt that can be computed in O(log(|At|)nt(tĝ+tẑt +tft))
time for each value of It.

We now have all the necessary ingredients to describe the FPTAS for convex
DPs given in [10]. The algorithm is given in Algorithm 1. It is shown in [10] that
z̄t, ẑt are convex for every t.

Theorem 2.7. [10] Given 0 < ε < 1, for every initial state I1, ẑ1(I1) is a (1+ε)-
approximation of the optimal cost z∗(I1). Moreover, Algorithm 1 runs in O((tg+

tf + log(Tε log(TUg)))
n∗T 2

ε log(TUg) logUS logUA) time, which is polynomial in
1/ε and the input size.



582 N. Halman, G. Nannicini, and J. Orlin

Algorithm 1. FPTAS for convex DP.

1: K ← 1 + ε
2(T+1)

2: WT+1 ← ApxSet(gT+1,ST+1,K)
3: Let ẑT+1 be the convex extension of gT+1 induced by WT+1

4: for t = T, . . . , 1 do
5: Define z̄t as in (1) with ĝt set equal to gt
6: Wt ← ApxSet(z̄t,St,K)
7: Let ẑt be the convex extension of z̄t induced by Wt

8: return ẑ1(I1)

Algorithm 2. ApxSetSlope(ϕ,D,K)

1: x ← Dmin

2: W ← {Dmin}
3: while x < Dmax do
4: x ← max{next(x,D),max{y ∈ D : (y ≤ Dmax) ∧ (ϕ(y) ≤ K(ϕ(x) +

σϕ(x)(y − x))}}
5: W ← W ∪ {x}
6: return W

3 Improved Running Time

In this section we show that for the convex DP case, we can improve the running
time given in Thm. 2.7.

In the framework of [10], monotone functions are approximated by a step
function, and Def. 2.3 guarantees the K-approximation property for this case.
However, ApxSet greatly overestimates the error committed by the convex ex-
tension induced byW . For the convex DP case we propose the simpler Def. 3.1 of
K-approximation set, that preserves correctness of the FPTAS and the analysis
carried out in [10].

Definition 3.1. Let K ≥ 1 and let ϕ : D → R+, where D ⊂ R is a finite set,
be a convex function. Let W ⊆ D and let ϕ̂ be the convex extension of ϕ induced
by W . We say that W is a K-approximation set of ϕ if: (i) Dmin, Dmax ∈ W ;
(ii) For every x ∈ D, ϕ̂(x) ≤ Kϕ(x).

Note that a K-approximation set according to the new definition is not neces-
sarily such under the original Def. 2.3 as given in [10]. E.g.: D = {0, 1, 2}, ϕ(0) =
0, ϕ(1) = 1, ϕ(2) = 2K; the only K-approximation set according to the original
definition is D itself, whereas {0, 2} is also a K-approximation set in the sense
of Def. 3.1. An algorithm to compute a K-approximation set in the sense of
Def. 3.1 is given in Algorithm 2 (for nondecreasing functions).

Theorem 3.2. Let ϕ : D → N+ be a convex function over a finite domain of
integers. Then for every K > 1, ApxSetSlope(ϕ,D,K) computes
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a K-approximation set W of size O(logK min{σmax
ϕ

σmin
ϕ

, ϕ
max

ϕmin }) in

O(tϕ logK min{σmax
ϕ

σmin
ϕ

, ϕ
max

ϕmin } log |D|) time.

We can improve on Thm. 2.7 by replacing each call to ApxSet with a call to
ApxSetSlope in Algorithm 1.

Theorem 3.3. Given 0 < ε < 1, for every initial state I1, ẑ1(I1) is a (1 + ε)-
approximation of the optimal cost z∗(I1). Moreover, Algorithm 1 runs in O((tg+

tf + log(Tε logmin{Uσ, TUg}))n
∗T 2

ε logmin{Uσ, TUg} logUS logUA) time, which
is polynomial in both 1/ε and the (binary) input size.

4 From Theory to Practice

In this section we introduce an algorithm that computes smallerK-approximation
sets than ApxSetSlope in practice, although we do not improve over Thm. 3.2
from a theoretical standpoint, and the analysis is more complex. Given two points
(x, y), (x′, y′) ∈ R2 we denote by Line((x, y), (x′, y′), ·) : R → R the straight line
through them. We first discuss how to exploit convexity of ϕ to compute a bound

on the approximation error Line((x,ϕ(x)),(x′,ϕ(x′)),w)
ϕ(w) ∀w ∈ [x, . . . , x′].

Proposition 4.1. Let ϕ : [�, u] → R+ be a nondecreasing convex function. Let
h ≥ 3, E = {xi : xi ∈ [�, u], i = 1, . . . , h} with � = x1 < x2 < · · · < xh−1 < xh =
u, let yi := ϕ(xi)∀i, (x0, y0) := (x1 − 1, y1) and (xh+1, yh+1) := (xh + 1, 2yh −
f(xh − 1)). For all i = 1, . . . , h− 1, define LBi(x) as:

LBi(x) := max{Line((xi−1, yi−1), (xi, yi), x),Line((xi+1, yi+1), (xi+2, yi+2), x)}

for x ∈ [xi, xi+1], and LBi(x) := 0 otherwise. Define ϕ(x) :=
∑h−1

i=1 LBi(x).
Observe that LBi(x) is the maximum of two linear functions, so it has at most
one breakpoint over the interval (xi, xi+1). Let B be the set of these breakpoints.
For 1 ≤ j < k ≤ h let

γE(xj , xk) := max
xe∈[xj ,xk]∩(E∪B)

{
Line((xj , yj), (xk, yk), xe)

ϕ(xe)

}
. (2)

Then

∣∣∣∣Line((xj , yj), (xk, yk), w)ϕ(w)

∣∣∣∣ ≤ γE(xj , xk) ≤
yk
yj

∀w ∈ [xj , xk].

The set B of Prop. 4.1 allows the computation of a bound γE(xj , xk) on
the error committed by approximating ϕ with a linear function between xj , xk.
We use this bound in ApxSetConvex, see Algorithm 3 (for nondecreasing
functions). In the description of ApxSetConvex, Λ > 1 is a given constant.
We used Λ = 2 in our experiments. The running time of ApxSetConvex can
be a factor log |D| slower than ApxSetSlope, but its practical performance is
superior for two reasons: it produces smaller approximation sets, and evaluates
z̄ fewer times (each evaluation of z̄ is expensive, see below). We experimented
with applying Prop. 4.1 in conjunction with ApxSetSlope, but this did not
improve the algorithm’s performance, therefore we omit the discussion.
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Algorithm 3. ApxSetConvex(ϕ,D,K).

1: W ← {Dmin, Dmax}
2: x ← Dmax

3: E ← {Dmin,
⌊
(Dmin +Dmax)/2

⌋
, Dmax}

4: while x > Dmin do
5: � ← Dmin, r ← x, counter ← 0, z ← x
6: while r > next(�,D) do
7: w ← min{y ∈ E : (y > Dmin) ∧ (γE(y, x) ≤ K)}
8: � ← prev(w,E), r ← w, counter++

9: E ← E ∪ {�(�+ r)/2 } ∩ [Dmin,max{next(r, E), arg γE(r, x)}]
10: if counter > Λ log(|D|) then
11: if ϕ(z) > Kϕ(r) then
12: counter ← 0, z ← r
13: else
14: � ← prev(r,D)
15: x ← min{prev(x,D), r}
16: W ← W ∪ {x}, E ← E ∩ [Dmin, x]
17: return W

Theorem 4.2. Let ϕ : D → N+ be a convex function defined over a set of
integers. Then ApxSetConvex(ϕ,D,K) computes a K-approximation set of ϕ

of size O(logK min{σmax
ϕ

σmin
ϕ

, ϕ
max

ϕmin }) in time O(tϕ logK min{σmax
ϕ

σmin
ϕ

, ϕ
max

ϕmin } log2 |D|).

We now briefly discuss our implementation of the FPTAS, omitting details
for space reasons. By (1), each evaluation of z̄t requires the minimization of
a convex function. Hence, evaluating z̄t is expensive. We briefly discuss our
approach to perform the computation of a K-approximation set of z̄ efficiently,
which is crucial because such computation is carried out T times in the FPTAS.
First, we use a dictionary to store function values of z̄t to make sure that the
minimization in (1) is performed at most once for each state It. Second, we use
golden section search [11] instead of binary search to minimize convex functions,
in all cases where a function evaluation requires more than O(1) time.

Our implementation uses floating point arithmetics for the sake of speed. Most
modern platforms provide both floating point (fixed precision) arithmetics and
rational (arbitrary precision) arithmetics. The latter is not implemented in hard-
ware and is considerably slower, but does not incur into numerical errors and can
handle arbitrarily large numbers. In particular, only by using arbitrary precision
one can guarantee to find the optimal solution of a problem instance. Our im-
plementation guarantees that the final result satisfies the desired approximation
guarantee, by bounding the error introduced by the floating point computations,
and rounding key calculations appropriately.

Finally, at each stage of the dynamic program, we adaptively compute an
approximation factor Kt that guarantees the approximation factor (1 + ε) for
the value function at stage 1 taking into account the errors in the floating point
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Algorithm 4. Implementation of the FPTAS for convex DP.

1: K ← (1 + ε)
1

T+1

2: WT+1 ← ApxSetConvex(gT+1,ST+1,K)
3: Let K ′

T+1 be the maximum value of γE recorded by ApxSetConvex

4: Let ẑT+1 be the convex extension of gT+1 induced by WT+1

5: for t = T, . . . , 1 do
6: Define z̄t as in (1) with ĝt set equal to gt
7: Kt ← KT+2−t

∏T+1
j=t+1 K′

j

.

8: Wt ← ApxSetConvex(z̄t,St,Kt)
9: Let K ′

t be the maximum value of γE recorded by ApxSetConvex

10: Let ẑt be the convex extension of z̄t induced by Wt

11: return ẑ1(I1)

computations. The choice of Kt is based on the actual maximum approximation
factor recorded at all stages τ > t. We summarize the FPTAS for convex DPs
in Algorithm 4.

5 Computational Experiments

We implemented the FPTAS in Python 3.2. Better performance could be
obtained using a faster language such as C. However, in this context we are
interested in comparing different approaches, and because all the tested algo-
rithms are implemented in Python, the comparison is fair. The tests were run
on Linux on an Intel Xeon E5-4620@2.20 Ghz (HyperThreading and TurboBoost
disabled).

5.1 Generation of Random Instances

We now give an overview of how the problem instances used in the computa-
tional testing phase are generated. We consider two types of problems: stochas-
tic single-item inventory control problems, and cash management problems. For
each instance we require 4 parameters: the number of time periods T , the state
space size parameter M , the size of the support of the random variable N , the
degree of the cost functions d. The state space size parameter determines the
maximum demand in each period for single-item inventory control instances,
and the maximum difference between cash deposit and cash withdrawal for cash
management instances. The actual values of these quantities for each instance
are determined randomly, but we ensure that they are beetween M/2 and M , so
that the difficulty of the instance scales with M . Each instance requires the gen-
eration of some costs: procurement, storage and backlogging costs for inventory
control instances; opportunity, borrowing and transaction costs for cash man-
agement instances. We use polynomial functions ctx

d to determine these costs,
where ct is a coefficient that is drawn uniformly at random in a suitable set of
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Fig. 1. Average CPU time on
Inventory(T,M,N, 1) instances.
On the x-axis we identify the group
of instances with the label M,T,N .
The y-axis is on a logarithmic
scale. The label of the approx-
imation algorithms indicates the
value of ε and the subroutine used
to compute the K-approximation
sets, namely: “Apx” uses ApxSet,
“Slope” uses ApxSetSlope, “Con-
vex” uses ApxSetConvex.
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values for each stage, and d ∈ {1, 2, 3}. The difficulty of the instances increases
with d, as the numbers involved and Uσ grow.

The random instances are labeled Inventory(T,M,N, d) and Cash(T,M,
N, d) to indicate the values of the parameters. In the future we plan to experi-
ment on real-world data. At this stage, we limit ourselves to random instances
with “reasonable” numbers.

5.2 Analysis of the Results

We generated 50 random Inventory and Cash instances for each possible
combination of the following values: T ∈ {5, 10, 20},M ∈ {100, 1000, 10000},
N ∈ {5, 10}. We applied to each instance the following algorithms: an exact DP
algorithm (label Exact), and the FPTAS for ε ∈ {0.001, 0.01, 0.1} as described
in Alg. 4 using one of the subroutines ApxSet, ApxSetSlope, ApxSetCon-

vex. This allows us to verify whether or not the modifications proposed in this
paper are beneficial. We remark that our implementation of Exact runs in
O(T |S| log |A|) time exploiting convexity.

For each group of instances generated with the same parameters, we look at
the sample mean of the running time for each algorithm. Because the sample
standard deviation is typically low, comparing average values is meaningful.
When the sample means are very close, we rely on additional tests – see below.

The maximum CPU time for each instance was set to 1000 seconds. Part of
the results are reported in Fig. 1, the rest are omitted for space reasons.

We summarize the results. The FPTAS with ApxSet is typically slower than
Exact, whereas ApxSetSlope and ApxSetConvex are always faster than
Exact. Surprisingly, they are faster than Exact by more than a factor 2 even
on the smallest instances in our test set: T = 5,M = 100, N = 5, d = 1 (on
Inventory, 0.32 seconds for Exact vs. 0.12 seconds for ApxSetConvex with
ε = 0.001). As the size of the instances and the numbers involved grows, the
difference increases in favor of the FPTAS. For Inventory instances with d = 1
the FPTAS with ApxSetConvex and ε = 1% can be faster than Exact by
more than 2 orders of magnitude (482.8 seconds for Exact, 3.0 seconds for
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Fig. 2. Average solution quality (computed as fapx/f∗ − 1, where fapx is the cost of
the approximated policy, and f∗ the cost of the optimal policy) vs. average CPU time.

ApxSetConvex with ε = 1%). For the largest problems in our test set, Exact
does not return a solution before the time limit whereasApxSetSlope (ε = 0.1)
and ApxSetConvex (ε ∈ {0.01, 0.1}) terminate on all instances. The results
suggest that the improvements of the FPTAS can be over 3 orders of magnitude
and increase with the problem size. The Cash problem seems to heavily favor
the FPTAS over Exact, with consistent speed-ups of two (resp. three) orders of
magnitude on medium (resp. large) instances. On the largest Cash instance that
can be solved by Exact with d = 1 (T = 5,M = 10000, N = 5), ApxSetCon-

vex takes 0.9 seconds, compared to 717.6 for Exact. The difference increases
in favor of the FPTAS for larger d. This may be due to our random instance
generator, and has to be investigated further.

ApxSetConvex is faster than ApxSetSlope despite its overhead per iter-
ation on all groups of instances except two (out of 108). This was verified with a
Wilcoxon rank-sum test at the 95% significance level. For two groups of Inven-
tory instances with d = 2, ApxSetConvex and ApxSetSlope yield compa-
rable CPU time. For d = 1, 3 ApxSetConvex is clearly the fastest algorithm,
whereas for Inventory and d = 2 ApxSetSlope is occasionally comparable
with ApxSetConvex, see below the analysis on solution quality. At this stage
we do not have a clear explanation for this behavior.

We analyze the quality of the approximated solutions using the three possi-
ble ApxSet routines. We run the FPTAS with 9 different values of K (equally
spaced on a log scale between 10−3 and 10−1) on Inventory and Cash in-
stances with T = 10, N = 10, and varying M,d. We then compare on a graph
the average cost of the policy (i.e. the sequence of actions) obtained with the
different ApxSet routines, and the respective average running times. This can
only be done for instances on which Exact finds a solution. The graphs for
Cash with M = 1000, d = 1 and for Inventory with M = 10000, d = 1 are
reported in Fig. 2. They show very clearly that ApxSetConvex is faster than
ApxSetSlope for equal solution quality, and both algorithms are much faster
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than ApxSet. Graphs for other instances with d = 1, 3 yield similar conclusions
and do not contribute further insight. On Inventory problems with d = 2, in
some cases the performance of ApxSetSlope is comparable to ApxSetCon-

vex, as stated above. However, ApxSetConvex gives a better approximation
factor guarantee for equal CPU time, and seems therefore the best algorithm.

We conclude with a short comparison with the ADP approach of [6] for Cash

problems. The instances and approach discussed in [6] are significantly different
from ours, hence we cannot provide a fair comparison. However, to give a rough
idea, we observe that [6] reports speed-ups of three orders of magnitude over
an exact DP approach with an average approximation factor of 0.28% and no
approximation guarantee, whereas our FPTAS achieves similar speed-ups on
large instances guaranteeing an approximation factor of 0.1% and achieving an
actual approximation factor < 0.001% in most cases.
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vertices on the left-hand side arrive online in random order. Whenever a
vertex arrives, its adjacent edges with the corresponding weights are re-
vealed and the online algorithm has to decide which of these edges should
be included in the matching. The studied matching problems have ap-
plications, e.g., in online ad auctions and combinatorial auctions where
the right-hand side vertices correspond to items and the left-hand side
vertices to bidders.

Our main contribution is an optimal algorithm for the weighted match-
ing problem on bipartite graphs. The algorithm is a natural generaliza-
tion of the classical algorithm for the secretary problem achieving a com-
petitive ratio of e ≈ 2.72 which matches the well-known upper and lower
bound for the secretary problem. This shows that the classic algorithmic
approach for the secretary problem can be extended from the simple se-
lection of a best possible singleton to a rich combinatorial optimization
problem.

On hypergraphs with (d + 1)-uniform hyperedges, corresponding to
combinatorial auctions with bundles of size d, we achieve competitive
ratio O(d) in comparison to the previously known ratios O

(
d2)

and
O(d log m), where m is the number of items. Additionally, we study
variations of the hypergraph matching problem representing combina-
torial auctions for items with bounded multiplicities or for bidders with
submodular valuation functions. In particular for the case of submodu-
lar valuation functions we improve the competitive ratio from O(log m)
to e.
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1 Introduction

Consider the following natural generalization of the classical secretary problem:
Suppose an administrator wants to hire people for a set of open positions (rather
than only one secretary for a single position). The applicants are interviewed one
at a time and in every interview the interviewer learns weights representing the
degree of qualification of the current candidate for each of the possible positions.
Now, immediately after an interview, the administrator has to either assign the
applicant to one of the open positions or the candidate will leave the room and
take a job at another company. The administrator is interested in maximizing
the sum of the assigned weights.

The described problem corresponds to the weighted online bipartite matching
problem. In general, the jobs correspond to the offline vertices on the right-
hand side which are known in advance. The vertices on the left-hand side arrive
online one by one, each with its incident edges and their respective weights. The
decision whether and how to assign the current vertex has to be made online.
Unfortunately, for general weights and when the vertices arrive in adversarial
order, every algorithm can perform arbitrarily bad. To achieve any reasonable
competitive ratio, it is necessary to make additional assumptions on the model.
In this work, we assume that the vertices arrive in random order, analogously
to the original secretary problem.

The weighted online matching problem in the secretary model was introduced
by Korula and Pál [19]. It is a generalization of the matroid secretary problem
on transversal matroids which was introduced by Babaioff et al. [3] and later
improved by Dimitrov and Plaxton [9]. This, respectively, is a generalization of
the classical secretary problem. Here, we present the first optimal algorithm for
weighted online matching which also matches the lower bound for the secretary
problem.

The online matching problem is closely related to combinatorial auctions. Let,
e.g., the right-hand side of the graph represent the items and the left-hand side
correspond to the bidders. Then the weighted online bipartite matching corre-
sponds to an online combinatorial auction where every bidder can buy at most
one item. Now, we extend the graph towards (d + 1)-uniform hyperedges so that
every edge contains exactly one bidder and d items. Thus, every hyperedge rep-
resents a bid on a bundle of items in a combinatorial auction. This setting was
first analyzed by Korula and Pál [19] on whose results we improve. Addition-
ally, we allow for multiplicities on the items, the right-hand side vertices of the
hypergraph, which has applications in ad auctions. Furthermore, we consider
submodular1 weight functions which is a reasonable assumption for these eco-
nomically motivated problems. Like Korula and Pál, we analyze our algorithms
in terms of competitive ratio, i.e. the ratio of the value of an optimal offline
solution to the expected weight achieved by the online algorithm.

1 A set function f : 2Ω → R is submodular if for every X, Y ⊆ Ω we have that f(X ∪
Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ).
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Our Contribution: We provide algorithms for several variants of weighted
bipartite matching in the secretary model, i.e. with random arrival order. All
our algorithms are generalizations of the classical approach to the secretary
problem. First, they gather information on the instance via sampling. Then, in
every later step, they solve the known part of the instance optimally and treat
the left-hand side vertex that has just arrived according to that locally optimal
solution. The most important feature of our analysis is to interpret the random
arrival order as a sequence of stochastically independent experiments.

For online bipartite matching we obtain an e-competitive algorithm. This
improves on the 8-competitive algorithm by Korula and Pál [19] and matches
the lower bound on the classical secretary problem, see e.g. Buchbinder et al. [5].
While Korula and Pál follow a similar approach, their analysis requires them to
use a greedy approximation algorithm for the online decision making instead of
locally optimal solutions.

When we apply the algorithmic approach to online bipartite hypermatching,
we use randomized rounding on a fractional LP solution. Therefore, the obtained
competitive ratios are with respect to the fractional offline optimum. When the
online bidders are interested in sets of size at most d and every item is available at
least b times, we obtain an expected competitive ratio of O

(
d

1/b
)
. Thus, for clas-

sical combinatorial auctions this translates to a O(d)-approximation in contrast
to the previously known O

(
d2)

by Korula and Pál. For multiplicities b ≥ log(d),
a common assumption in ad auctions, the competitive ratio becomes a constant
O(1). For general valuations on sets of unbounded size, our randomized algo-
rithm is O(m1/(b+1))-competitive, where m is the number of items. Furthermore,
if valuation functions are submodular, the competitive ratio of our algorithm is
again e even for multiplicity one and thus optimal.

All these results are based on a random order of arrivals. Using this assump-
tion, we beat the lower bound of Ω

(
b · d1/b

)
for any deterministic set packing

algorithm in the online adversary model by Azar and Regev [2]. We show that
for b = 1, every randomized online algorithm in the secretary model, even with
unlimited computational power, is Ω (ln(d)/ln ln(d))-competitive.

Related Work: When analyzing online bipartite matching, it is necessary to
make additional assumptions on the model as no algorithm can handle adver-
sarial arrival with general edge weights; see Aggarwal et al. [1] for a proof. A
common choice is to assume a random order of the vertices on the left-hand side.
Another option is to admit arbitrary order but to make restrictions on the edge
weights. Some recent, loosely related papers adopt slight changes to the model
and assume budgeted allocations with stochastic arrivals, see e.g. [7,12,22].

The random order model has its origins in the famous secretary problem,
where n candidates for a job arrive online in random order and the goal is to
pick the best one with maximal probability. This is identical to edge-weighted
bipartite matching with only one vertex on the right-hand side. Although the
problem was folklore, it was not published until 1960 by Gardner and it was
solved many times. See Ferguson [11] for historical details. The optimal algorithm
for the secretary problem is e-competitive in expectation.
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A generalization of the classical secretary problem is the matroid secretary
problem, introduced by Babaioff et al. [3]. Here, the elements of a matroid ar-
rive online in random order and the objective is to select an independent set
of maximum weight. For general matroids they gave an O

(
log(ρ)

)
-competitive

algorithm, where ρ is the rank of the matroid. This result was later improved to
O

(√
log(ρ)

)
by Chakraborty and Lachish [6]. Various results are known for spe-

cial kinds of matroids, see [3,13,14,18,19]. Note that transversal matroids are a
special case of bipartite matching, where all edges incident to the same left-hand
side vertex have identical weight. Babaioff et al. [3] presented a 4d-competitive
algorithm for the case of transversal matroids with bounded left degree d. This
was improved by Dimitrov and Plaxton [9] who gave a 16-competitive algorithm
for transversal matroids. The first result on general bipartite matching in the
secretary model is by Korula and Pál [19] who presented an 8-competitive online
algorithm.

The research on online bipartite matching with adversarial arrival was initi-
ated by Karp et al. [17] who analyzed the unweighted case. They presented a
randomized algorithm obtaining an expected competitive ratio of e/(e−1) and a
matching lower bound. The proof was later simplified by Goel and Mehta [12]
and Birnbaum and Mathieu [4]. A primal-dual analysis was given by Devanur et
al. [8]. Karande et al. [16] and independently Mahdian and Yan [21] showed that
the lower bound of e/(e−1) does not hold when the left-hand side vertices arrive
in random, instead of arbitrary, order. Aggarwal et al. [1] were the first to ana-
lyze online matching with adversarial order in a general weighted setting. They
obtained an expected competitive ratio of e/(e−1) as long as all edges incident to
the same vertex on the right-hand side have identical weight. Kalyanasundaram
and Pruhs [15] presented a deterministic 3-competitive algorithm when the edge
weights represent a metric space.

Bipartite hypermatching in the secretary model was first analyzed by Korula
and Pál [19]. They obtained an expected competitive ratio of O

(
d2)

when the
hyperedges have bounded size d + 1. Krysta and Vöcking [20] investigated on-
line combinatorial auctions with random arrival of the bidders and developed
randomized mechanisms that are incentive compatible. For valuations on sets
of bounded size d and when each of the m items is available b times, they
showed an expected competitive ratio of O

(
d1/b log(bm)

)
. In the case of general

valuations, they obtained an expected competitive ratio of O
(
m1/(b+1) log(bm)

)
.

When the valuation functions are XOS and b = 1 the achieved competitive ratio
is O

(
log(m)

)
. Feldmann et al. [10] provide constant competitive algorithms for

different variants of the secretary problem using submodular weight functions.
E.g., they consider a submodular secretary problem on partition matroids.

2 Edge-Weighted Bipartite Online Matching

In the bipartite online matching problem, we are initially given the set R of an
edge-weighted bipartite graph G = (L ∪ R, E) and the cardinality n := |L| of
the set L. At every step, a new vertex v ∈ L arrives together with the weights
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w(e) ∈ R≥0 of its incident edges. Most importantly, the vertices in L are revealed
online and in random order. The algorithm always has to either assign the current
vertex to one of its unmatched neighbors in R, or decide to leave it unassigned.

Our algorithm is a generalization of the classical approach to the secretary
problem. There, a constant fraction of the candidates is ignored. Then, when an
online candidate arrives that is better than all previous ones, it is selected. We
also start by sampling a constant fraction of the vertices on the left-hand side.
Afterwards, whenever a new vertex is presented to the algorithm, we compute
an optimum solution on the revealed part of the graph. If, in this local solution,
the current vertex on the left-hand side is assigned to an unmatched vertex, we
add this edge to our matching.

Algorithm 1. Bipartite online matching
Input : vertex set R and cardinality n = |L|
Output: matching M

Let L′ be the first �n/e	 vertices of L;
M := ∅;
for each subsequent vertex � ∈ L − L′ do // steps �n/e
 to n

L′ := L′ ∪ �;
M (�) := optimal matching on G[L′ ∪ R]; // e.g. by Hungarian method
Let e(�) := (�, r) be the edge assigned to � in M (�);
if M ∪ e(�) is a matching then

add e(�) to M ;

For convenience of notation, we will number the vertices in L from 1 to n in
the (random) order they are presented to the algorithm. Hence, we will use the
variable 
 synonymously as an integer, the name of an iteration and the name
of the current vertex.

Lemma 1. Let the random variable Av denote the contribution of the vertex
v ∈ L to the output, i.e. the weight of the edge (v, r) assigned to v in M . And let
OP T be the value of a maximum-weight matching in the full graph G. For the
vertices 
 ∈ {�n/e�, . . . , n} we have,

E [A�] ≥ �n/e�

 − 1

· OP T

n
.

Proof. First, we will show that the expected weight of e(�), i.e. of the edge
assigned to vertex 
 in the matching M (�), is a significant fraction of OP T .
Then, we will analyze the probability of adding this edge to the matching M .

The proof relies on the fact that in any step k of the algorithm the choice of
the random permutation up to this point can be modeled as a sequence of the
following independent random experiments: First choose a set of size k from L.
Then determine the order of these k vertices by iteratively selecting a vertex at
random and removing it. We need this interpretation to exploit the randomness
in each of these experiments separately.



594 T. Kesselheim et al.

Now in step 
 we have |L′| = 
 and the algorithm calculates an optimal
matching M (�) on G[L′ ∪ R]. As explained, the current vertex 
 can be seen as
being selected uniformly at random from the set L′. Hence, the expected weight
of the edge e(�) in M (�) is w(M(�))/�. Also, since L′ can be seen as being uniformly
selected from L with size 
 we know E

[
w

(
M (�))] ≥ �/n · OP T . Together we

have,

E
[
w(e(�))

]
≥ OP T

n
. (1)

Note that the above expectation is only over the random choice of the set L′

and the choice of the element to be last in their order. The rest of the proof will
exploit the randomness in the order of the remaining 
 − 1 vertices in L′.

The edge e(�) = (
, r) can only be added to the matching M if r has not
already been matched in an earlier step. Consider the vertex r. In any of the
preceding steps k ∈ {�n/e�, . . . , 
 − 1} the vertex r was only matched if it was in
e(k), i.e. if in M (k) the vertex r was assigned to the left-hand side vertex k. Again,
the last vertex in the order can be seen as being chosen uniformly at random
from the k participating vertices on the left-hand side. Hence, the probability of
r being matched in step k was at most 1/k. As before, the order of the vertices
1, . . . , k − 1 is irrelevant for this event. Therefore, also the respective events if
some vertex k′ < k was matched to r can be regarded as independent. Following
this argument inductively from k = 
 − 1 down to �n/e�, we get,

Pr [r unmatched in step 
] = Pr

⎡
⎣ �−1∧

k=�n/e�
r /∈ e(k)

⎤
⎦ ≥

�−1∏
k=�n/e�

k − 1
k

=
� n

e � − 1

 − 1

.

Thus we have Pr
[
M ∪ e(�) is a matching

] ≥ �n/e	
�−1 . Together with inequal-

ity (1) we obtain the lemma. ��

Theorem 2. The online matching algorithm is e-competitive in expectation.

Proof. The weight of the matching M is obtained by summing the variables A�.
Using Lemma 1 we get,

E [w(M)] = E

[
n∑

�=1
A�

]
≥

n∑
�=�n/e�

�n/e�

 − 1

· OP T

n
= �n/e�

n
·

n−1∑
�=�n/e	

1



· OP T .

We have �n/e	
n ≥ 1

e − 1
n and

∑n−1
�=�n/e	

1
� ≥ ln

(
n

�n/e	
) ≥ 1 which gives,

E [w(M)] ≥ �n/e�
n

·
n−1∑

�=�n/e	

1



· OP T ≥
(

1
e

− 1
n

)
· OP T .

��
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3 Packing Sets of Size at Most d with Capacity b

A common generalization of bipartite online matching is the bipartite online
b-hypermatching problem. Here, the underlying structure is an edge-weighted
hypergraph H = (L ∪ R, E). We assume that the hyperedges in E are of the
form e = (v, S), with v ∈ L, S ⊆ R and |S| ≤ d. Again, we are initially given the
vertex set R together with the size n of the vertex set L and the capacity b. The
vertices in L are presented to the algorithm online and in a random order. At each
step, when a vertex v ∈ L is revealed, the algorithm also observes all its incident
hyperedges δ(v) := {e ∈ E | v ∈ e} together with their respective weights2

w(e) ∈ R≥0. As before, the algorithm decides online whether to assign one of
the edges in δ(v), or to leave v unmatched. The objective is a b-hypermatching
in H of maximum weight, i.e. every vertex r ∈ R may be contained in up to b
edges of the matching but every vertex in L may be matched only once.

In every step 
 we will solve the LP-relaxation of max-weight b-hypermatching
on the revealed part of the graph computing a fractional solution x(�). Note
that for a particular subset L′ ⊆ L of the left-hand side vertices the restricted
hypergraph H [L′ ∪ R] has exactly the edge set E′ := {(v, S) ∈ E | v ∈ L′}.

In a matching, a vertex on the left-hand side is assigned to at most one hy-
peredge. Hence, for every vertex v ∈ L′ a feasible solution to the LP-relaxation
satisfies the constraint

∑
e=(v,S)∈E′ xe ≤ 1. Therefore we can interpret the re-

stricted vector x
∣∣
δ(v) as a probability distribution over all hyperedges incident to

v. The second LP-constraint is
∑

e=(v,S)∈E′, r∈S xe ≤ b for every vertex r ∈ R.

Algorithm 2. Bipartite online b-hypermatching
Input : vertex set R, cardinality n = |L| and parameter p < 1
Output: b-hypermatching M

Let L′ be the first p · n vertices of L;
M := ∅;
for each subsequent vertex � ∈ L − L′ do // steps pn + 1 to n

L′ := L′ ∪ �;
x(�) := optimal fractional solution of LP-relaxation on H [L′ ∪ R];
Choose e(�) randomly according to the distribution x(�)

∣∣
δ(�);

if M ∪ e(�) is a b-hypermatching then
add e(�) to M ;

The parameter p < 1 will be set later. In line with the analysis of bipartite
matching, we will number the vertices in L from 1 to n in their online order.

Note that the linear program and the randomized rounding in the above
algorithm are only required to maintain polynomial runtime. Furthermore, all
following competitive ratios are with respect to the optimal fractional solution.

2 The weight functions are generally represented implicitly, e.g. by demand oracles,
which allows to solve the LP-relaxation in polynomial time, see [23].
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Lemma 3. Let the random variable Av denote the contribution of the vertex
v ∈ L to the output, i.e. the weight of the edge (v, S) assigned to v in M . And
let OP TLP be the value of a fractional offline optimum, i.e. of the LP-relaxation
on the full hypergraph H. For the vertices 
 ∈ {pn + 1, . . . , n} we have,

E [A�] ≥
(

1 − d ·
(

e(1 − p)
p

)b
)

OP TLP

n
.

Proof. In analogy to the proof of Lemma 1, we interpret the random permutation
up to any step k as multiple independent experiments: Choose k vertices out
of L, then pick one of these to be the last in the ordering and remove it. To
determine the ordering of the other k − 1 elements, iteratively select and remove
the remaining vertices. Here we have to consider one additional independent
random experiment due to the randomized rounding.

In step 
, the algorithm calculates an optimal fractional solution x(�) to the
LP-relaxation on H [L′∪R] with value OP TLP (�) . Since e(�) is chosen according to
the restricted vector x(�)∣∣

δ(�), we have E
[
w

(
e(�))]

=
∑

e∈δ(�) w(e) · x
(�)
e . Exactly

as in the proof of Lemma 1 one can show

E
[
w

(
e(�)

)]
≥ OP TLP

n
. (2)

The expectation is taken over the choice of the set L′, the choice of the vertex
to be last in their order and the randomized rounding.

The rounded hyperedge e(�) = (
, S) is only added to M if every vertex in S
is covered by at most b − 1 other edges in M .

We will first bound the probability of covering a vertex r ∈ R in any preceding
step k ∈ {pn + 1, . . . , 
 − 1}. Assume for the moment that, within step k, all
participating left-hand side vertices did randomized rounding according to their
respective restriction of x(k). Let us denote these tentative hyperedges by h1 to
hk and remember that e(k) corresponds to the last one. For r ∈ R the probability
of being covered in step k is at most

Pr
[
r ∈ e(k)

]
= Pr

⎡
⎣ ∨

v∈{1,...,k}
((v is last in the order) ∧ (r ∈ hv))

⎤
⎦

≤
∑

v∈{1,...,k}
Pr [(v is last in the order) ∧ (r ∈ hv)] .

The randomized rounding is stochastically independent of the order and we know
that the last vertex in the order is chosen uniformly out of k vertices. Hence,

Pr
[
r ∈ e(k)

]
≤ 1

k
·

∑
v∈{1,...,k}

Pr [r ∈ hv] .

The hyperedge hv was drawn according to the distribution x(k)∣∣
δ(v). This gives

Pr [r ∈ hv] =
∑

e∈δ(v), r∈e x
(k)
e . Since x(k) is a feasible LP solution and thus

satisfies
∑

e∈δ(v), r∈e x
(k)
e ≤ b for all r ∈ R, we have,
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Pr
[
r ∈ e(k)

]
≤ 1

k
·

∑
v∈{1,...,k}

∑
e∈δ(v),

r∈e

x(k)
e ≤ b

k
, (3)

which bounds the probability of r ∈ R being covered in step k.
Finally, we can bound the probability of adding e(�) = (
, S) to M . The

attempt fails if any of the vertices in S was already covered b times in previous
steps. For any vertex r ∈ S, we have by inequality (3),

Pr [r is covered at least b times] ≤
∑

C⊆{pn+1,...,�−1},
|C|=b

( ∏
k∈C

b

k

)
(4)

≤
(

(1 − p)n
b

)
·
(

b

pn

)b

≤
(

e(1 − p)
p

)b

.

Using a union bound over all vertices r ∈ S, and as |S| ≤ d, we get,

Pr
[
M ∪ e(�) is a b-hypermatching

]
≥ 1 − d ·

(
e(1 − p)

p

)b

.

Together with inequality (2) we obtain the result. ��
Theorem 4. Set the parameter p to e(2d)1/b

1+e(2d)1/b
. Then the expected competitive

ratio of the b-hypermatching algorithm for edges of size at most d + 1 is O
(
d

1/b
)
.

Proof. The weight w(M) of the b-hypermatching is equal to
∑n

�=1 A�. Using
Lemma 3 we get,

E [w(M)] ≥
n∑

�=pn+1

(
1 − d ·

(
e(1 − p)

p

)b
)

OP TLP

n
.

The sum yields a factor of (1 − p) · n, substituting p = e(2d)1/b

1+e(2d)1/b
, we obtain,

E [w(M)] ≥ OP TLP

1 + e(2d)1/b
·
(

1 − d ·
(

e
e(2d)1/b

)b
)

≥ OP TLP

2 + 4ed1/b
.

��
A tighter analysis for the case of b = 1 gives a competitive ratio of ed.

The above result for hyperedges of bounded size can be generalized to hyper-
edges of unbounded size using a technique by Krysta and Vöcking [20]. Flip a
fair coin to choose one out of two algorithms. In case one, apply the algorithm
for hyperedges of bounded size where the instance is restricted to those edges
covering at most d = �|R|b/(b+1)� vertices on the right-hand side. In the other
case, restrict the hyperedges of every vertex on the left-hand side to the single
incident hyperedge of maximum weight. Now, apply Algorithm 2 as for sets of
size d = 1 and with only one vertex on the right-hand side which is available b
times. For a proof see full version.
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Corollary 5. For online b-hypermatching with general weight functions the de-
scribed randomized algorithm has an expected competitive ratio of O(|R|1/(b+1)).

4 Lower Bound

In Section 3, we presented an O(d)-competitive algorithm for online hypermatch-
ing with edges of size at most d + 1. Here, we will complement this result with a
lower bound of Ω (ln(d)/ln ln(d)). Note that this bound is due to the online nature
of the problem and holds even when we admit unbounded computational power.
The result is inspired by a lower bound from Babaioff et al. [3].

We will construct a set system with the following more easily imaginable
conflict graph, i.e. where we have a vertex for every set and an edge between
intersecting sets. The conflict graph is d-partite and all partitions are completely
connected to each other. Therefore, choosing a single set (resp. vertex in the
conflict graph) precludes the selection of any other set whose corresponding
vertex in the conflict graph is in a different partition.

Proposition 6. For every prime number q, there is a hypergraph H = (V, E)
with |E| = |V | = q2 and |e| = q (∀e ∈ E), satisfying the following properties:

1. the edges E can be partitioned into q disjoint sets Ci each containing q edges,
2. the q hyperedges in each set Ci are pairwise disjoint,
3. every edge in Ci intersects all q · (q − 1) edges that belong to any Cj , j �= i.

For a proof see full version. To turn the graph in Proposition 6 into a lower
bound instance for d = q, we set R := V and let every vertex in L be incident to
exactly one of the hyperedges. So, the edges of the graph arrive online in random
order. Every hyperedge is independently assigned the weight 1 with probability
1/d, and 0 otherwise.

Theorem 7. Any online algorithm obtains a matching of expected weight less
than 2. With high probability there is a matching of weight Ω

(
ln(d)

ln ln(d)

)
.

Proof. When an algorithm assigns the first hyperedge e, say e ∈ Ci, all the edges
that do not belong to Ci are blocked by Property 3. The only edges disjoint to
e are those in Ci. There are at most d − 1 such edges, each having an expected
weight of 1/d. So their accumulated expected weight is less than 1.

By Property 2 the d edges of a set Ci form a hypermatching. For any i we
have Pr [at least λ edges in Ci have weight 1] =

(
d
λ

)
( 1

d)λ ≥ ( d
λ)λ( 1

d )λ = λ−λ.
Choosing λ := ln(d)/2 ln ln(d), the last term is at least 1/

√
d. The probability that

every set Ci has less than λ heavy edges is at most (1 − 1/
√

d)d ≤ e−d/
√

d = e−√
d.

Hence, w.h.p. there is a matching of weight Ω (ln(d)/ln ln(d)). ��

5 Submodular Weight Functions

Let us assume that the hypergraph is complete, i.e. H = (L ∪ R, E) with
E = L × 2R. Then we can define a weight function wv : 2R → R≥0 for every
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vertex v ∈ L by setting wv(S) := w
(
(v, S)

)
, ∀S ⊆ R. Now, if all these weight

functions are normalized monotone submodular, then we can modify Algorithm 2
to obtain a constant competitive ratio. Note that this setting corresponds to on-
line combinatorial auctions with submodular valuations, where the bidders arrive
in random order.

Let us first analyze the case when the vertices in R have multiplicity one. In
every online step 
 ∈ {�n/e�, . . . , n} we solve the LP-relaxation of the revealed
part of the instance and randomly round the vector to obtain e(�). Hence we have
E

[
w

(
e(�))] ≥ OP TLP

n . Remember that in Algorithm 2 we had to completely re-
ject a hyperedge e(�) = (
, S) if any of the vertices in S was already covered. Here,
we can still add the hyperedge e(�)′ := (
, S′), where S′ ⊆ S are those vertices
in S that are not yet covered by the matching. For every r ∈ R the probability
of still being unmatched at the beginning of step 
 can be analyzed exactly as
in Lemma 1. Thus, we again have Pr [r was still unmatched in step 
] ≥ �n/e	

�−1 .
A known property of submodular functions is the following, see e.g. [10].

Proposition 8. Given a normalized monotone submodular function f : 2R →
R≥0, a set S ⊆ R and a random set S′ ⊆ S, where every element of S is
contained in S′ with probability at least p (not necessarily independently). Then
E [f(S′)] ≥ p · f(S).

Combining the above observations with Proposition 8 we get,

E
[
w

(
e(�)′

)]
≥ �n/e�


 − 1
· OP TLP

n
.

This inequality is identical to the one in Lemma 1. By the same calculations
as in Theorem 2 we obtain our result.

Theorem 9. For online combinatorial auctions with submodular weight func-
tions the algorithm is e-competitive.

Note that for b-hypermatching, i.e. when the vertices in R are available with
multiplicity b, we can obtain the same competitive ratio. Simply replace every
vertex in R by b copies, each with multiplicity one, and expand the valuation
function in the obvious way. This equivalent instance can then be handled with
the above algorithm.
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Abstract. Balls-into-bins games describe in an abstract setting several
multiple-choice scenarios, and allow for a systematic and unified theoret-
ical treatment. In the process that we consider, there are n bins, initially
empty, and m = �cn� balls. Each ball chooses independently and uni-
formly at random k ≥ 3 bins. We are looking for an allocation such that
each ball is placed into one of its chosen bins and no bin has load greater
than 1. How quickly can we find such an allocation? We present a simple
and novel algorithm that finds such an allocation (if it exists) and runs
in linear time with high probability.

Our algorithm finds applications in finding perfect matchings in a
special class of sparse random bipartite graphs, orientation of random
hypergraphs, load balancing and hashing.

1 Introduction

Balls and bins games offer a powerful model with various applications in com-
puter science and mathematics, e.g., the analysis of hashing, the modeling of
load balancing strategies and matchings in bipartite graphs. The typical aim
of such games is to allocate a collection of m balls into a set of n bins such
that the maximum load is minimized. A simple strategy would be to place each
ball randomly into one of the bins. For m = n the maximum load then grows
like logn

log log n . Now suppose that balls arrive sequentially and each ball chooses

two bins independently and uniform at random. Azar et al. [1] showed that if
each ball is placed into the one which is least loaded at the time of placement
then with high probability1 the maximum load is log log n

log 2 + Θ(1), which is an
exponential improvement over the previous case.

In this work we restrict the maximum capacity of any bin to one, i.e., each
bin can hold at most 1 ball. Additionally we provide that each ball, in addition
to having k ≥ 3 choices, can also be moved among its choices on demand. An
important example of an allocation strategy in this direction is cuckoo hash-
ing [14,4]. Cuckoo hashing is a collision resolution scheme used in building large
hash tables. Here bins are the locations on the hash table and balls represent the
items. In this scheme when a ball arrives, it chooses its k random bins (chosen
using k random hash functions) and is allocated to one of them. In case the bin

1 We use with high probability to mean with probability 1 − n−ζ for some constant
ζ > 0.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 601–612, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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is full, the previously allocated ball is moved out and placed in one of its other
k − 1 choices. This process may be repeated indefinitely or until a free bin is
found. We give a simple linear time algorithm that builds on the idea of cuckoo
hashing and is asymptotically optimal. Roughly speaking we propose an efficient
strategy to choose the bin in case all the choices of the incoming ball are full.

We model the k-choice balls-into-bins game by a directed graph G = (V,E)
such that the set of vertices V corresponds to bins. We say a vertex is occupied
if there is a ball assigned to the corresponding bin, otherwise it is free. Let I be
the set of m balls. We represent each ball x ∈ I as a tuple of its k chosen bins,
so we say a vertex v ∈ x if v corresponds to one of the chosen bins of ball x.
For vertices u, v ∈ V , a directed edge e = (u, v) ∈ E if and only if there exists
a ball y ∈ I so that the following two conditions hold, (i) u, v ∈ y, and (ii) u is
occupied by y. Note that a vertex with outdegree 0 is a free vertex. We denote
the set of free vertices by F and the minimum of the distance of vertices in F
from v by d(v, F ). Since G represents an allocation we call G an allocation graph.

Assume that at some instance a ball z arrives such that all its k choices are
occupied. Let v ∈ z be the vertex chosen to place z. The following are the main
observations.

1. The necessary condition for ball z to be successfully assigned to v is the
existence of a path from v to F . This condition remains satisfied as long as
some allocation is possible.

2. A free location will be found in the minimum number of steps if for all u ∈ z
the distance d(v, F ) ≤ d(u, F ).

With respect to our first observation, a natural question would be the follow-
ing. Is it possible to place each of the m = �cn balls into one of their chosen
bins such that each bin holds at most one ball? From [11,6,8] we know that
there exists a critical size c∗kn such that if c < c∗kn then such an allocation is
possible with high probability, otherwise this is not the case. In particular the
following is known.

Theorem 1. For integers k ≥ 3 let ξ∗ be the unique solution of the equation

k =
ξ(1 − e−ξ)

1− e−ξ − ξe−ξ
. (1)

Let c∗k = ξ∗

k(1−e−ξ∗ )k−1 . Then

Pr allocation of m = �cn balls to n bins is possible
(n→∞)
=

{
0, if c > c∗k
1, if c < c∗k

.

(2)

The proof of the above theorem is non-constructive, i.e., it does not give us an
algorithm to find such an allocation.

Our second observation suggests that the allocation time depends on the se-
lection of the bin, which we make for each assignment, from among the k possible
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bins. One can in principle use breadth first search (BFS) to always make assign-
ments over the shortest path (in the allocation graph). BFS is analyzed in [4] and
is shown to run in linear time only in expectation. One can also select uniformly
at random a bin from the available bins. This resembles a random walk on the
vertices of the allocation graph and is called the random walk insertion. In [7,9]
the authors analyzed the random walk insertion method and gave a polyloga-
rithmic bound (with high probability) on the maximum allocation time, i.e., the
maximum time it can take to allocate a single ball. The random walk method
does not provide any guarantees for the total allocation time. In fact it might
run for ever in some worst case. In this paper we propose a novel allocation algo-
rithm which runs in linear time with probability 1−n−ζ for some constant ζ > 0.
Moreover it is guaranteed to find an allocation if it exists. Through simulations
we demonstrate that the our allocation method requires drastically less number
of selections (to place or replace an item) when compared to the random walk
method (which to our knowledge is also the state of art method for the process
under consideration). For instance the number of selections in the worst case is
reduced by a factor of 10 when using our method.

1.1 More Related Work

Questions in the multiple choice balls-into-bins games can also be phrased in
terms of orientation of graphs or more generally orientations of k-uniform hy-
pergraphs. The n bins are represented as vertices and each of the m balls form
an edge with its k-vertices representing the k random choices of the ball. In fact,
this is a random hypergraph Hn,m,k (or random graph Gn,m for k = 2) with n
vertices and m edges where each edge is drawn uniformly at random ( with re-
placement) from the set of all k-multisubsets of the vertex set. An s-orientation
of a graph then amounts to a mapping of each edge to one of its vertices such
that no vertex receives more than one edge. For k = 2 several allocation algo-
rithms and their analysis are closely connected to the cores of the associated
graph. The s-core of a graph is the maximum vertex induced subgraph with
minimum degree at least s. For instance Czumaj and Stemann [8] give a lin-
ear time algorithm achieving maximum load O(m/n) based on computation of
all cores. Fernholz and Ramachandran [3] and Cain, Sanders, and Wormald [2]
gave linear time algorithms for computing an optimal allocation (asymptotically
almost surely). Their analysis also determined the threshold for s-orientability
of sparse random graphs which is also the threshold for the s + 1 core to have
density (ratio of number of edges to that of vertices) less than s.

Another closely related problem is that of finding maximum cardinality match-
ings in random bipartite graphs. Consider a bipartite graph G = (E, V ; E) where
E corresponds to the m balls and V represents the n bins. For e ∈ E and v ∈ V ,
we have (e, v) ∈ E if and only if v represent one of the k choices of the ball
represented by e. This represents a k-left regular random (as the k- neighbors of
left vertex set are chosen randomly) bipartite graph. The problem of finding an
optimal allocation now reduces to finding a left perfect matching in G. One can
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refer [13,4] for expected linear time algorithms for maximum matchings for k-left
regular random bipartite graphs. More results and techniques in multiple-choice
allocation schemes can be found in [12].

1.2 Applications

Load Balancing. We are given a set of m = �cn identical jobs, and n machines
on which they can be executed. Suppose that each job may choose randomly
among k different machines. Our result implies that as long as c < c∗k,�, we
can find an assignment of the jobs to their preferred machines, such that each
machine is assigned at most one task, in time O(n) with high probability.

Parallel Access to Hard Disks. We are given n hard disks (or any other means
of storing large amounts of information), which can be accessed independently
of each other. The goal would be to store large data sets allowing for a level of
redundancy for fault tolerance, and at the same time minimize the number of I/O
steps needed to retreive the data (see [15] for more details ). Using our allocation
algorithm we can allocate k copies of each of the m = �cn blocks randomly on
n hard disks in linear time (with high probability) as long as c < c∗k. The m
different data blocks can now be read with at most 1 parallel query on each
disk.

Efficient Dictionaries. In the data structure language one can understand the
above problem as one of designing efficient dictionaries. We are given m = �cn 
items (balls) and n locations (bins). Each item chooses its preferred k locations
by using k random hash functions. Our aim is to assign each item to one of its
chosen locations such that all items are assigned and no location receives more
than 1 item. Assuming that such an allocation is possible our proposed algorithm
constructs the dictionary in time O(n) with high probability.

1.3 Notation

Throughout the paper we use n to denote the number of bins, m for the number
of balls and k denotes the number of random choices of any ball. For an allocation
graph G = (V,E) and any two vertices u, v ∈ V , the shortest distance from u
to v is denoted by d(u, v). We denote the set of free vertices by F . We denote
the shortest distance from a vertex v ∈ V to any set of vertices say S by d(v, S)
which is defined as

d(v, S) := min
u∈S

d(v, u).

We use R to denote the set of vertices furthest to F , i.e.,

R := {v ∈ V |d(v, F ) ≥ max
u∈V

d(u, F )}.

For an integer t ∈ {0, 1, . . . , n} and a subset of vertex set V ′ ⊆ V we use Nt(u)
and Nt(V

′) to denote the set of vertices at distance at most t from the vertex
u ∈ V and the set V ′ respectively. Mathematically,
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Nt(u) := {v ∈ V | d(u, v) ≤ t} and Nt(V
′) := {v ∈ V | d(v, V ′) ≤ t}.

We say an allocation is proper if each of the m balls is allocated to one of its
chosen bins and no bin holds more than one ball. We use a common definition
of with high probability, namely the event occurs with probability 1−O(n−ζ) for
some ζ > 0. log refers to the natural logarithms.

1.4 Our Contribution

We propose a simple and efficient algorithm to find a proper allocation. In a
nutshell we provide a deterministic strategy of how to select a vertex (bin) for
placing a ball when all its choices are occupied. We assign to each vertex v ∈ V
an integer label, L(v). Initially all vertices have 0 as their labels. Note that at
this stage, for all v ∈ V , L(v) = d(v, F ), i.e., the labels on the vertices represent
their shortest distances from F . When a ball x appears, it chooses the vertex
with the least label from among its k choices. If the vertex is free, the ball is
placed on it. Otherwise, the previous ball is kicked out. The label of the vertex
is then updated and set to one more than the minimum label of the remaining
k − 1 choices of the ball x. The kicked out ball chooses the bin with minimum
label from its k choices and the above procedure is repeated till an empty bin is
found. Note that to maintain the labels of the vertices as their shortest distances
to F we would require to update labels of the neighbors of the selected vertex
and the labels of their neighbors and so on. This corresponds to performing a
breadth first search starting from the selected vertex. We avoid the BFS and
perform only local updates. Therefore, we also call our method as local search
allocation.

Previous work [4] on total allocation time for the case k ≥ 3 has analysed
breadth first search, and it was shown to be linear only in expectation. A simple
reduction suggests that to match the probability bounds given by our algorithm,
BFS would require O(n log(n)) run time. Our algorithm finds an allocation (with
probability 1) whenever it exists. This is in contrast to the random walk insertion
method which might run indefinitely for a solvable instance. In the last section we
present experimental results comparing the performance of these two algorithms.
The results reveal that local search allocation is at least 10 times faster even for
the worst case allocation. We now state our main result.

Theorem 2. Let k ≥ 3. For any fixed ε > 0, set m = (1 − ε)c∗kn. Assume that
each of the m balls chooses k random bins from a total of n bins. Then with high
probability, a proper allocation of these balls can be found in time O(n).

We prove the above theorem in two steps. First we show that the algorithm
is correct and finds an allocation in polynomial time. To this end we prove
that, at any instance, the label of a vertex is at most its shortest distance to
the set of free vertices. Therefore, no vertex can have a label greater than n− 1.
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This would imply that the algorithm could not run indefinitely and would stop
after making at most n changes at each location. We then show that the local
search allocation method will find an allocation in a time proportional to the
sum of distances of the n vertices to F (in the resulting allocation graph). We
complete the proof by showing that (i) if for ε > 0, m = (1 − ε)c∗k balls are
placed in n bins using k random choices for each ball then the corresponding
allocation graph has two special structural properties with high probability, and
(ii) if the allocation graph has these two properties, then the sum of distances
of its vertices to F is linear in n. In the next section we give a formal description
of our algorithm and its analysis.

2 Local Search Allocation and Its Analysis

Assume that we are given balls in an online fashion, i.e., each balls chooses its k
random bins whenever it appears. Moreover, balls appear in an arbitrary order.
The allocation using local search method goes as follows. For each vertex v ∈ V
we maintain a label. Initially each vertex is assigned a label 0. To assign a ball x
at time t we select one of its chosen vertices v such that its label is minimum and
assign x to v. We assign a new label to v which is one more than the minimum
label of the remaining k − 1 choices of x. However, v might have already been
occupied by a previously assigned ball y. In that case we kick out y and repeat
the above procedure. Let L = {L(v) | v ∈ V } and T = {T (v) | v ∈ V } where
L(v) denotes the label of vertex v and T (v) denotes the ball assigned to vertex
v. We initialize L with all 0s and T with ∅, i.e., all vertices are free. We then use
Algorithm 1 to assign an arbitrary ball when it appears. In the next subsection

Algorithm 1. AssignBall (x,L,T)

1: Choose a bin v among the k choices of x with minimum label L(v).
2: if (L(v) == n− 1) then
3: EXIT �Allocation does not exist
4: else
5: L(v) ← 1 + min (L(w)|w �= v and w ∈ x)
6: if (T (v) �= ∅) then
7: y ← T (v) �Move that replaces a ball
8: T (v) ← x
9: CALL AssignBall(y,L,T)
10: else
11: T (v) ← x �Move that places a ball

we first prove the correctness of the algorithm, i.e., it finds an allocation in a
finite number of steps whenever an allocation exists. We show that the algorithm
takes a maximum of O(n2) time before it obtains a bin for each ball. We then
proceed to give a stronger bound on the running time.
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2.1 Analysis of the Local Search Allocation

We need some additional notation. In what follows a move denotes either placing
a ball in a free bin or replacing a previously allocated ball. Let M be the total
number of moves performed by the algorithm. For p ∈ [M ] we use Lp(v) to
denote the label of vertex v at the end of the pth move. Similarly we use Fp

to denote the set of free vertices at the end of pth move. The corresponding
allocation graph is denoted as Gp = (V,Ep). We need the following proposition.

Proposition 1. For all p ∈ [M ] and all v ∈ V , the shortest distance of v to Fp

is at least the label of v, i.e., d(v, Fp) ≥ Lp(v).

Proof. We first note that the label of a free vertex always remain 0, i.e.,

∀p ∈ [M ], ∀w ∈ Fp, Lp(w) = 0. (3)

We will now show that throughout the algorithm the label of a vertex is at most
one more than the label of any of its immediate neighbors (neighbors at distance
1). More precisely,

∀p ∈ [M ], ∀(u, v) ∈ Ep, Lp(u) ≤ Lp(v) + 1. (4)

We prove (4) by induction on the number of moves performed by the algorithm.
Initially when no ball has appeared all vertices have 0 as their labels. When the
first ball is assigned, i.e., there is a single vertex say u such that L1(u) = 1.
Clearly, (4) holds after the first move. Assume that (4) holds after p moves.

For the (p+ 1)th move let w ∈ V be some vertex which is assigned a ball x.
Consider an edge (u, v) ∈ Ep such that u 	= w and v 	= w. Note that the labels
of all vertices v ∈ V \ w remain unchanged in the (p+ 1)th move. Therefore by
induction hypothesis, (4) is true for all edges which does not contain w. By Step
2 of Algorithm 1 the new label of w is one more than the minimum of the labels
of its k − 1 neighbors, i.e,

Lp+1(w) = min
w′∈x\w

Lp+1(w
′) + 1.

Therefore (4) holds for all edges originating from w. Now consider a vertex u′ ∈ V
such that (u′, w) ∈ Ep. Now by induction hypothesis we have Lp+1(u) = Lp(u) ≤
Lp(w)+1. Note that the vertex w was chosen because it had the minimum label
among the k possible choices for the ball x, i.e.,

Lp(w) ≤ min
w′∈x

Lp(w
′) = min

w′∈x\w
Lp+1(w

′) < Lp+1(w).

We therefore obtain Lp+1(u) ≤ Lp(w) + 1 < Lp+1(w) + 1, thereby completing
the induction step. We can now combine (3) and (4) to obtain the desired result.
To see this, consider a vertex v at distance s < n to a free vertex f ∈ Fp such
that s is also the shortest distance from v to Fp. By iteratively applying (4) we
obtain Lp(v) ≤ s+ Lp(f) = d(v, Fp), which completes the proof.
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We know that whenever the algorithm visits a vertex, it increases its label by at
least 1. Trivially the maximum distance of a vertex from a free vertex is n−1 (if
an allocation exists), and so is the maximum label. Therefore the algorithm will
stop in at most n(n−1) steps, i.e., after visiting each vertex at most n−1 times,
which implies that the algorithm is correct and finds an allocation in O(n2) time.
In the following we show that the total running time is proportional to the sum
of labels of the n vertices.

Lemma 1. Let L∗ be the array of labels of the vertices after all balls have been
allocated using Algorithm 1. Then the total time required to find an allocation is
O(

∑
v∈V L

∗(v)).

Proof. Now each invocation of Algorithm 1 increases the label of the chosen
vertex by at least 1. Therefore, a vertex with label � has been selected (for any
move) at most � times. Now the given number of balls can be allocated in a time
proportional to the number of steps required to obtain the array L∗ (when the
initial set consisted of all zeros) and hence is O(

∑
v∈V L

∗(v)).

For notational convenience let F := FM and G := GM denote the set of free
vertices and the allocation graph (respectively) at the end of the algorithm. By
Proposition 1 we know that for each v ∈ V , L∗(v) ≤ d(v, F ). Moreover, by Step
2 of Algorithm 1 the maximum value of a label is n. Thus the total sum of labels
of all vertices is bounded as follows.

∑
vi∈V

L∗(vi)) ≤ min

(∑
vi∈V

d(v, F ), n2

)
.

To compute the desired sum, i.e.,
∑

vi∈V d(v, F ), we study the structure of the
allocation graph. The following lemma states that, with probability 1 − o(1), a
fraction of the vertices in the allocation graph are at a constant distance to the
set of free vertices, F . This would imply that the contribution for the above sum
made by these vertices is O(n).

Lemma 2. For any fixed ε > 0, let m = (1− ε)c∗kn balls are assigned to n bins
using k random choices for each ball. Then the corresponding allocation graph
G = (V,E) satisfies the following with probability 1 − O(1/n): for every α > 0
there exist C = C(α, ε) > 0 and a set S ⊆ V of size at least (1 − α)n such that
every vertex v ∈ S satisfies d(v, F ) ≤ C.

We remark that the above lemma has been originally proved in [7]. With respect
to an allocation graph recall that we denote the set of vertices furthest from F by
R. Also for an integer s, Ns(R) denotes the set of vertices at distance at most s
fromR. The next lemma states that the neighborhood ofR expands suitably with
high probability. We remark that the estimate, for expansion factor, presented
here is not the best possible but nevertheless suffices for our analysis. Our proof
is similar to the proof of Proposition 2.4 in [7] and is deferred to the full version.
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Lemma 3. For any fixed ε > 0, let m = (1 − ε)c∗kn balls are assigned to n
bins using k random choices for each ball and G = (V,E) be the corresponding
allocation graph. Then for any 0 < α < 1

k−1 and every integer s such that
1 ≤ |Ns(R)| ≤ αn, there exists a constant ζ > 0 such that G satisfies the
following with probability 1− n−ζ .

|Ns+1(R)| >
(
k − 1− log ek(k − 1)

log 1
α(k−1)

)
|Ns(R)|.

The following corollary easily follows from the above two lemmas.

Corollary 1. With high probability, the maximum label of any vertex in the
allocation graph is O(log n).

Due to space constraints, the missing proofs are deferred to the full version. We
now prove our main theorem.

Proof (Proof of Theorem 2). Let for γ > 0

α = min

{
0.1

k − 1
, exp

(
−1− k

k − 2− γ

)
· (k − 1)

1
k−2−γ

}
andδ =

log ek(k − 1)

log 1
α(k−1)

.

Then by Lemma 2, with probability 1−O(1/n), there exists a C = C(α, ε) and
a set S such that |S| ≥ (1 − α)n and every vertex v ∈ S satisfies d(v, F ) ≤ C.
Let T + 1 be the maximum of the distances of vertices in R to S, i.e.,

T = max
v∈R

d(v, S)− 1.

Clearly the number of vertices at distance at most T from R is at most αn, i.e.,
|NT (R)| ≤ αn. Moreover for all t < T , |Nt(R)| < |NT (R)|. Then by Lemma 3,
for all t ≤ T the following holds with high probability,

|Nt+1(R)| > (k − 1− δ) |Nt(R)|.

One can check that for γ > 0 and α as chosen above, δ < k − 2 − γ. The total
distance of all vertices from F is then given by

D =
∑

v∈NT (R)

d(v, F ) +
∑
v∈S

d(v, F ).

As every vertex in S is at a constant distance from F , we obtain
∑

v∈S d(v, F ) =
O(n). Note that for every i > 0, |Ni(R)| − |Ni−1(R)| is the number of vertices
at distance i from R. Therefore,
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∑
v∈NT (R)

d(v, F ) = (T + C)|N0(R)|+
T∑

i=1

(T + C − i)(|Ni(R)| − |Ni−1(R)|)

= (T +C)|N0(R)|+
T∑

i=1

(T − i)(|Ni(R)| − |Ni−1(R)|) + C
T∑

i=1

(|Ni(R)| − |Ni−1(R)|)

= (T +C)|N0(R)|+
T∑

i=1

(T − i)(|Ni(R)| − |Ni−1(R)|) + C(|NT (R)| − |N0(R)|)

=
T∑

i=1

(
(T − i)(|Ni(R)| − |Ni−1(R)|) + |N0(R)|

)
+ C · |NT (R)| =

T−1∑
i=0

|Ni(R)|+O(n).

Now with high probability, we have |NT−j(R)| < |NT (R)|
(k−1−δ)j . Therefore,

T−1∑
i=0

|Ni(R))| < |NT (R)|
T∑

j=1

1

(k − 1− δ)j
< |NT (R)|

T∑
j=1

1

(1 + γ)j
= O(n),

which completes the proof of Theorem 2.

2.2 Experimental Results and Discussion

We present some simulations to compare the performance of local search allo-
cation with the random walk method which (to the best of our knowledge) is
currently the state-of-art method and so far considered to be the fastest algo-
rithm for the case k ≥ 3. We recall that in the random walk method we choose
a bin at random from among the k possible bins to place the ball. If the bin
is not free, the previous ball is moved out. The moved out ball again chooses a
random bin from among its choices and the procedure goes on till an empty bin
is found. In our experiments we consider n ∈ [105, 5× 106] balls and �cn bins.
The k random bins are chosen when the ball appears. All random numbers in our
simulations are generated by ranlxs2 generator of GNU Scientific Library [10].

Recall that a move is either placing an item at a free location or replacing it
with other item. In Figure 1 we give a comparison of the total number of moves
(averaged over 50 random instances) performed by local search and random
walk methods for k = 3 and k = 4. Figure 2 compares the maximum number
of moves (averaged over 50 random instances) for a single insertion performed
by local search and random walk methods. Figure 3 shows a comparison when
the number of balls are fixed and density (ratio of number of balls to that of
bins) approaches the threshold density. Note that the time required to obtain
an allocation by random walk or local search methods is directly proportional
to the number of moves performed.

We remark that local search allocation has some additional cost, i.e., the extra
space required to store the labels. Though this space is O(n), local search alloca-
tion is still useful for the applications where the size of objects (representing the
balls) to be allocated is much larger than the labels which are integers. Moreover,
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Fig. 1. Comparison of total number of moves performed by local search and random
walk methods
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Fig. 2. Comparison of maximum number of moves performed by local search and ran-
dom walk methods

 1

 10

 100

 1000

 10000

 100000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
ax

im
um

 n
um

be
r 

of
 m

ov
es

 (
lo

g 
sc

al
e)

Density, c

Local Search
Random Walk

(a) k = 3, c ≤ 0.915 (c∗3 ≈ 0.917)
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Fig. 3. Comparison of total number of moves and maximum number of moves (for fixed
number of locations, n = 105) performed by local search and random walk methods
when density c approaches c∗k.

with high probability, the maximum label of any vertex is O(log n). Many inte-
ger compression methods [16] have been proposed for compressing small integers
and can be potentially useful for further optimizations. Also in most of the load
balancing problems, the speed of assignment is a much desired and the most im-
portant requirement. Though we have not provided any theoretical guarantees
for the maximum allocation time, our simulations suggest that the local search
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allocation is at least 10 times faster than the random walk. As future work it
would be interesting to extend our algorithm for the case where each bin can
hold more than one ball [5,11].

Acknowledgements. The author would like to thank Kurt Mehlhorn and Ali
Pourmiri for their valuable suggestions to improve the presentation of the paper.
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Abstract. Alternatives to a shortest path are a common feature for
modern navigation providers. In contrast to modern speed-up techniques,
which are based on the unique distance between two locations within
the map, computing alternative routes that might include slightly sub-
optimal routes seems a way more difficult problem. Especially testing a
possible alternative route for its quality can so far only be done utiliz-
ing considerable computational overhead. This forces current solutions
to settle for any viable alternative instead of finding the best alternative
routes possible. In this paper we show a way on how to deal with this
overhead in an effective manner, allowing for the computation of high
quality alternative routes while maintaining competitive query times.

1 Introduction

The process of finding a single shortest path in a graph with respect to some
weight function has come a long way from Dijkstra’s algorithm [1], which al-
lows for solutions in almost linear time. Speed-up techniques [2–5] offer real
time shortest path computation through extensive use of preprocessing. These
techniques are used in many web-based navigation services that provide driving
directions to the general public.

Even though the computed paths do not rely on heuristics, the optimality of
a shortest path remains a subjective measure. Navigation services offer multi-
ple choices, hoping one of them might reflect the preferences of the user. These
choices are referred to as alternative routes. The first formal mention of alterna-
tive routes, aside from the k-shortest path problem or blocked vertex/arc routes,
can be found in [6]. Still, until Abraham et al. [7] introduced the idea of via-node
alternatives, which describe an alternative route using source, target, and an ad-
ditional vertex, only proprietary algorithms were used by navigation providers.
This approach was later on improved by Luxen and Schieferdecker through use
of extensive preprocessing [8], while Bader et al. [9] proposed an entirely different
approach using penalties.

In this paper we focus on alternative routes using the definition of Abraham et
al. [7]. So far, via-node alternatives [7,8] focus on reporting any alternative route,
satisfying some minimal quality1 requirements, as current techniques require

1 We will focus on the exact definition of quality later on.
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three full shortest path queries, which we will describe later on, to check a
potential route for its quality.

After the introduction of our terminology in Section 2 and a more extensive
discussion of the work related to this paper in Section 3, we introduce a new
algorithm to solve the problem of alternative routes in Section 4. Our algorithm
allows for the selection of the best possible among the found candidates by reduc-
ing the problem to a small graph representing all potentially viable alternative
routes. We evaluate our algorithm in Section 5 where we show not only the pos-
sibility of calculating higher quality routes but also show the competitiveness
regarding query times.

2 Definitions and Terminology

Every road network can be viewed as a directed and weighted graph:

Definition 1 (Graph,Restricted Graph). A weighted graph G = (V,A, c)
is described as a set of vertices V, |V | = n, a set of arcs A ⊆ V ×V, |A| = m and

a cost function c : A �→ N>0. We might choose to restrict G to a subset Ṽ ⊆ V .
This restricted graph GṼ is defined as GṼ = (Ṽ , Ã, c), with Ã = {a = (u, v) ∈
A | u, v ∈ Ṽ }.

All methods described within this work are targeted at shortest path compu-
tations. We define paths and the associated distances as follows:

Definition 2 (Paths,Length,Distance). Given a graph G = (V,A, c): We
call a sequence ps,t = 〈s = v0, . . . , vk = t〉 with vi ∈ V, (vi, vi+1) ∈ A a path
from s to t. Its length L(ps,t) is given as the combined weights of the represented

arcs: L(ps,t) =
∑k−1

i=0 c(vi, vi+1). If the length of a path ps,t is minimal over all
possible paths between s and t with respect to c, we call the path a shortest
path and denote ps,t = Ps,t. The length of such a shortest path is called the
distance between s and t: D(s, t) = L(Ps,t). Furthermore, we define Ps,v,t as
the concatenated path Ps,v,t = Ps,v · Pv,t.

In the context of multiple graphs or paths, we denote the desired restriction
via subscript. For example DG(s, t) denotes the distance between s and t in G,
with Dps,t(a, b) we denote the distance between a and b when following ps,t.

Our metric of choice is the average travel time. Therefore, we might choose to
omit the cost function c when naming a graph and simply give G = (V,A).

3 Related Work

The large amount of research available that addresses shortest paths in road
networks cannot be appropriately discussed within the limits of this paper. We
therefore focus on the work most closely related to ours. Existing overview papers
like [4] can give a better impression of available speed-up techniques and their
different properties. In the following, we first discuss speed-up techniques and
focus on alternative routes afterwards.
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3.1 Speed-Up Techniques

While Dijkstra’s algorithm [1] still is the fastest algorithm to calculate a single
shortest path on a single CPU, the same does not hold true any more in the
case of static graph data and multiple queries. The assumption that a large
number of queries will be directed at a static network allows to invest a lot of
computing power in advance to speed up queries later on. This idea has led to a
large number of speed-up techniques. Due to the close relation to our work we
cover Reach [2, 10], Contraction Hierarchies [3], and PHAST [11].

Contraction Hierarchies: Contraction Hierarchies [3] are a hierarchical speed-
up technique. The hierarchy itself is defined through some strict order of the
vertices ≺: V ×V �→ {true, false}. Vertices are processed, or contracted, in this
order. During the contraction of a vertex v we inspect all pairs of u ∈ Vi = {u ∈
V | (u, v) ∈ A+, v ≺ u} and w ∈ Vo = {w ∈ V | (v, w) ∈ A+, v ≺ w}, where
A+ is initially given as A but continually augmented with additional arcs. So
to speak, we check whether the distance between two neighbouring vertices of v
depends on v; whenever DG+

v≺
(u,w) > DG+

v�
(u,w), we add the arc (u,w) with

cost DG+
v�

(u,w) to the current A+, where G+
v≺ = (Vv≺, A

+
v≺), which represents

G augmented with additional arcs and restricted to vertices u ∈ V with v ≺ u.
These new arcs are called shortcuts and preserve shortest path distances between
vertices of the restricted graph G+

v≺. Each G
+
v≺ can be interpreted as an overlay

graph to G in which added shortcuts represent whole shortest paths containing
vertices u ≺ v. When all vertices have been processed, the graph G+ is split up
into two new graphs: G↑and G↓, which represent sets of arcs leading away from
(G↑) or to (G↓) the vertices.

Formally, G↑ is defined as G↑ = (V,A↑) with A↑ = {a = (v, u) ∈ A+ | v ≺ u}.
G↓ is defined the same way: G↓ = (V,A↓) with A↓ = {a = (u, v) ∈ A+ | v ≺ u}.

A search within a Contraction Hierarchy consists of a forward search from
s in G↑ and a backwards search from t in G↓. Geisberger et al. [3] prove the
correctness of this approach by showing that for any Ps,t in the original graph, a
concatenated path Ps,v,t can be found with Ps,v,t = PG↑,s,v·PG↓,v,t with identical
length to Ps,t within the original, unprocessed graph. This specific form of path
is called an up-down path, as it climbs up the hierarchy to v and then descends
to t. To retrieve the full shortest path information the concatenated path has
to be unpacked : All shortcuts are of the form (u, v, w) with (u, v) and (v, w)
potentially describing shortcuts as well. By remembering the middle vertex v
for every shortcut, the full shortest path in the original graph can be extracted
recursively.

PHAST: This technique, though not really a speed-up technique itself, is a
method to exploit Contraction Hierarchies and modern hardware architectures
to compute full shortest path trees [11]. It exploits the up-down characteristic of
shortest paths within a Contraction Hierarchy as well as the fact that, though
originally designed as an n-level hierarchy (compare the strict ordering), the
actual hierarchical information of a Contraction Hierarchy order represents a
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rather shallow hierarchy; whenever two vertices cannot reach each other within
the hierarchy, they are completely independent from one another and can be
viewed as if they were in the same level. The method performs two consecutive
steps: In a first step Delling et al. perform a full upwards search from s in G↑. In
the second step, vertices are processed (or swept) in reverse contraction order,
updating distances whenever a better distance value than the current one can be
found by using an arc from G↓ in combination with the by now correct distance
values of higher level vertices. The nature of a Contraction Hierarchy guarantees
the distance value of the vertex with the highest level to be set correctly after
this initial search. Inductively, the correctness of lower level vertices follows. This
principle can be localized [12,13] by restricting the set of swept vertices to those
reachable in backwards direction in G↓, starting at one of the desired targets.

Reach: Reach is a goal-directed technique introduced by Gutman [10]. Gutman
defines the reach of a vertex v as r(v) = maxPs,t,v∈Ps,t min(Ps,v,Pv,t). During
a search between s and t, the reach of a vertex v allows for pruning of v when-
ever D(s, v) > r(v) and D(v, t) > r(v). Goldberg et al. [2] improved Gutman’s
approach through the inclusion of shortcuts, allowing for better pruning.

3.2 Alternative Routes

Alternative routes in road networks have first been formally studied by Abraham
et al. [7]. By now two general approaches can be found in the literature: via-
node alternative routes or the related plateaux-method [6–9], and penalty-based
approaches [9]. Due to the large differences between the two approaches and the
limited scope of this paper, we only cover the via-node approach at this point.

Via-Node Alternative Routes: Within a graph G = (V,A), a via-node alternative
to a shortest path Ps,t can be described by a single vertex v ∈ V \ Ps,t. The
alternative route is described as Ps,v,t. As this simple description can result in
arbitrarily bad paths, for example paths containing loops, Abraham et al. [7]
define a set of criteria to be fulfilled for an alternative route to be viable. A
viable alternative route provides the user with a real alternative, not just minimal
variations (limited sharing), is not too much longer (bounded stretch) and does
not contain obvious flaws, i.e. sufficiently small sub-paths have to be optimal
(local optimality). Formally, we define these criteria as follows:

Definition 3 (Viable Alternative Route). Given a graph G = (V,A), a
source s, a target t, and a via-candidate v as well as three tuning parameters
γ, ε, α; v is a viable via-candidae, and thus defines a viable via-node alternative
route Ps,v,t = Ps,v · Pv,t, if following three criteria are fulfilled:

1. L(Ps,t ∩ Ps,v,t) ≤ γ · D(s, t) (limited sharing)
2. ∀a, b ∈ Ps,v,t,DPs,v,t(s, a) < DPs,v,t(s, b) :

DPs,v,t(a, b) ≤ (1 + ε) · D(a, b) (bounded stretch)
3. ∀a, b ∈ Ps,v,t,DPs,v,t(s, a) < DPs,v,t(s, b),

DPs,v,t(a, b) ≤ α · D(s, t) : DPs,v,t(a, b) = D(a, b) (local optimality)



An Alternative Approach to Alternative Routes: HiDAR 617

The usual choice of γ, ε, and α is to allow at most γ = 80 % overlap between
Ps,v,t and Ps,t. Furthermore the user should never travel more than ε = 25 %
longer than necessary between any two points on its track, and every subpath
that is at most α = 25 % as long as the original shortest path should be an
optimal path.

These criteria require a quadratic number of shortest path queries to be fully
evaluated. Therefore, Abraham et al. propose a possibility to approximate these
criteria [7]. The approximated viability test requires three shortest path queries.
The first two queries are required to calculate the actual candidate itself, which is
necessary to test the amount of sharing; this is unless we use Dijkstra’s algorithm,
which already computes the shortest path information. For the stretch, we have
to check the distance between the two vertices d1, d2 where both Ps,t and the
alternative candidate Ps,v,t deviate/meet up. As long as DPs,v,t(d1, d2) does not
violate the stretch criteria in respect to D(d1, d2), the path passes the test.
Subpath optimality gives the distance necessary for the comparison. The third
query is used to approximate the local optimality and is performed between the
two vertices o1, o2 which are closest to v on Ps,v,t and still fulfil DPs,v,t(o1, v) ≥ T
and DPs,v,t(v, o2) ≥ T respectively, where T = α · D(d1, d2). This check is called
the T-test. Note that for a correct approximation of the above mentioned criteria,
T = α ·D(s, t) would be required. Due to the nature of the test, that would make
it impossible to allow for alternatives with up to 80% sharing without setting α
to less than 10%. Therefore Abraham et al. [7] propose to check against α, and
for consistency reasons ε, in relation to D(d1, d2).

Definition 3 can be directly extended to allow for second or third alternatives
(alternative routes of degree 2, 3 or even n). Only the limited sharing parameter
has to be tested against the full set of alternatives already known. Bounded
stretch and local optimality are only checked against the original shortest path
and therefore translate directly.

Abraham et al. [7] give multiple algorithms to compute alternative routes. The
reference algorithm (X-BDV) is based on a bidirectional implementation of Di-
jkstra’s algorithm and is used as the gold standard. To avoid the long query time
of Dijkstra’s algorithm on continental-sized networks, they also give techniques
based on Reach and Contraction Hierarchies. Due to the strong restrictions of
the search spaces caused by the speed-up techniques, they present weakened
search criteria which they call relaxation. For example, in the Contraction Hi-
erarchy they allow to look downwards the hierarchy under certain conditions.
The relaxation can be applied in multiple levels. The respective algorithms are
referred to by X-CHV-3/X-CHV-5 for the Contraction Hierarchy-based meth-
ods with relaxation levels of 3/5 and X-REV-1/X-REV-2 for the Reach-based
variants and their respective relaxation levels2.

Luxen and Schieferdecker [8] improved the algorithm of Abraham et al. in
terms of query times by storing a precomputed small set of via-candidates for
pairs of regions within the graph. While their method is faster than our algo-
rithm, we refrain from comparing ours to their implementation as they require

2 We refer to these in the experimental section.
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significantly more preprocessing and storage overhead. Additionally, the small
set of candidates lowers the chance to find high quality routes even more.

Plateaux and Via-Nodes: A plateau is defined with respect to two shortest paths
Ps,u and Pv,t. If Ps,u ∩ Pv,t 	= ∅, the common segment is called a plateau.
It is easy to see that if two paths share a plateau of appropriate length, any
vertex on said plateau can be chosen as via-candidate and will fulfil the local
optimality criterion. It is therefore equally valid to find plateaux of length T
(compare approximated viability) instead of performing the T-test. Even prior
to [7], Cambridge Vehicle Information Technology Ltd. published a method based
on full shortest path trees and plateaux [6] called Choice Routing. Our algorithm
takes a rather similar approach to [6] while not relying on full shortest path trees.

4 Hierarchy Decomposition for Alternative Routes

One of the most unsatisfying properties of the known algorithms for via-node
alternatives is the selection process. Due to the three necessary shortest path
queries, testing all potential candidates proves expensive. The relaxation process,
which is necessary to increase the chance of finding alternative routes in the
first place, does not only increase the number of valid via candidates, it also
increases the number of candidates that do not provide viable alternative routes
immensely. Therefore, current algorithms order the candidates heuristically. The
candidates are tested in this order until a first candidates passes the viability test;
the respective candidate is reported as the result. Potentially better candidates
are discarded.

For our new algorithm, we want to take a different approach. The main goal
is to make the check for viability fast enough to test all potential candidates.
Our algorithm (HiDAR), makes the approach of [6] viable:

1. Compute (pruned) shortest path DAGs from s and directed at t
2. Utilize plateaux to create a compact and meaningful alternative graph
3. Extract alternative routes from this graph

The main task is the calculation of the alternative graph. In this alternative
graph H = (VH , AH) we want to encode the following information: D(s, v) and
D(v, t) for any v ∈ VH . Furthermore, we encode for any a ∈ AH whether a forms
a plateau with respect to the paths in the shortest path DAGs from the first
step. No vertex in VH , except for s, t or the first/last vertex of a plateau should
have indegree and outdegree equal to one. It is obvious that alternative graph
extraction on such graphs is simple, as all the information for the (approximated)
viability check is present. Sufficiently small graphs allow for very fast alternative
graph extraction. This process is illustrated graphically in Figure 2.

4.1 High Level Algorithm Description

The first step of our algorithm computes shortest path trees within a Contraction
Hierarchy, instead of the full graph (compare Figure 1). Due to possible overlaps
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hidden within shortcuts, these shortest path trees actually describe a shortest
path DAG in the original graph.

Shortest Path Search: Our approach resembles the behaviour described in [12,
13]. In a first step, we perform two exhaustive upwards searches from s in G↑

and backwards from t in G↓. These searches describe two sets of vertices Vs
and Vt which contain those vertices which were reached by the two respective
searches, together with their (tentative) distance values. We aim at computing
the correct distance values from s to Vs ∪ Vt as well as from Vs ∪ Vt to t. In the
following, we describe the process for s, t is handled analogously. Following the
principles of [12, 13], we can compute D(s, v) for any v ∈ Vt by sweeping (see
Section 3) Vt in reverse contraction order. To compute D(s, v) for all v ∈ Vs, we
need to extract what we call the backwards hull HG↓(Vs) of Vs: the union of all
vertices reachable by backwards arcs in G↓ from any vertex in Vs. Note that in
an undirected graph HG↓(Vs) = Vs. By sweeping HG↓(Vs) in reverse contraction
order, we can calculate D(s, v) for all v ∈ Vs.

s t(1
+
ε)
· L(

P s,t
)

(a) Choice Routing [6]

s t

(b) HiDAR; dots mark Vs ∪ Vt, forward
tree painted solid, backward tree dashed

Fig. 1. Schematic representation of graph exploration for shortest path tree calculation

For the further steps, we restrict the processing to vertices v ∈ Vs ∪ Vt with
D(s, v) +D(v, t) ≤ (1 + ε) · D(s, t) (compare Definition 3, Figure 2(b)).

Hierarchy Decomposition: The data calculated in the first step contains all neces-
sary distance information for our alternative graph. The alternative graph itself
has to be calculated by finding all vertices that actually provide relevant infor-
mation. Those vertices might currently be encoded within the shortcuts of the
shortest path trees: any two shortcuts, whether they belong to the tree rooted
at s or the one rooted at t, can have common segments, as each of the shortcuts
represents a shortest path in the original graph. We need to find the vertices
at which two of these paths meet up or deviate from one another and decide
whether they form a plateau, i.e. do not belong to the same DAG.

We perform a Hierarchy Decomposition [14] to unpack all shortcuts at once.
During the process, we handle shortcuts in reverse contraction order of their
middle vertices, ordering them with a priority queue. The order enables us to
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s t

(a) Shortest Path Search

s t

D(s, v) +D(v, t) ≤ (1 + ε) · D(s, t)

(b) Distance Pruning

s t

(c) Hierarchy Decomposion

s t

detour too long

(d) Depth First Search Pruning

Fig. 2. Schematic representation of the alternative graph generation process of HiDAR.
H(Vs, Vt) is marked with solid dots. The forward shortest path tree is marked with solid
curves, the backward tree with dashed ones. Hollowed circles represent newly found
important vertices. Solid straight lines (c,d) mark arcs in the alternative graphs. Dashed
straight lines mark plateaux within the alternative graph. Grayed out information
represents pruned information.

decide locally whether a given middle vertex is important by just storing its
predecessor and successor in the fully unpacked shortcut, as all shortcuts con-
taining the same middle vertex are processed subsequently. All vertices with
indegree+ outdegree > 2 are deemed important for the alternative graph.

We can avoid special cases in this process by including some dummy arcs and
vertices. By handling the shortcuts in a carefully chosen order, we also manage
to calculate some additional data during the unpacking process that allows for
direct generation of a compacted version of the alternative graph, consisting only
of important vertices as well as source/target vertices of the input shortcuts. This
step is illustrated schematically in Figure 2(c).

Alternative Graph Extraction: While the graph calculated in the previous step
already contains all necessary information desired for our alternative graph, it
still contains a lot of unwanted information, too. Actually important for the
alternative route extraction are only paths that connect plateaux of sufficient
size to the source and the target vertex. To finalize our alternative graph, we
perform a depth first search (DFS) from the source. Whenever this DFS en-
counters a plateau large enough to justify the necessary detour to reach it,
which we approximate by trivial lower bounds, we mark the paths from s to
the plateau and from the plateau to t to be included in the alternative graph.
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Fig. 3. Query time, in total and restricted to the graph generation process (left).
Quality measurements in terms of success rates for the first three alternatives and
specifically for the first alternative (right).

All other plateaux, compare Figure 2(d), are discarded. Finally, we compact the
graph to get the alternative graph we report as the result of our algorithm. A
more in depth discussion of our algorithm can be found in [15].

5 Experiments

Our experimental configuration is as follows: All our experiments were performed
on a single core of an Intel(R) Core(TM) i7 920 CPU clocked at 2.67 GHz. The
machine is equipped with 12GB DDR3-1333 RAM, runs SUSE Linux (kernel
2.6.34.10-0.6-default), and approximates the machine used in [7]. The code was
developed in c++ and compiled using g++ in version 4.5.0 using -std=c++0x -O3

-mtune=native as parameters. We use two kinds of inputs to test our algorithm.
The first set Tn is composed of 10 000 source and target pairs, the second set
Tr of 1 000 source and target pairs per Dijkstra rank. All queries are chosen
uniformly at random. We use classic parallel Contraction Hierarchies prepro-
cessing, allowing to process the European road network within a few minutes.
In this section, we focus only on the runtime and the quality of our algorithm.
Success rates given describe the number of times an alternative route of a given
degree was found. For alternative route selection, we follow the approach of [6]
and select long plateaux first.

Runtime: First, we compare the query time and success rates of our algorithm to
the techniques presented in [7]. For the first alternative, our algorithm is already
competitive in its query time. Higher degree alternative route extraction does
not really affect our algorithm. In fact, we can extract all alternatives within
less than 0.1 ms. In contrast, the other algorithms, which provide similar success
rates, require significantly longer query times for higher degree alternatives. The
algorithm by Luxen and Schieferdecker would outperform ours in pure query
time, but requires additional sets of via candidates for any possible further al-
ternative and a significant amount of additional storage and preprocessing time.
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Table 1. Comparison of runtime and success rates for multiple alternatives based on
the test set Tn. Numbers for X-BDV, X-CHV-3/X-CHV-5, X-REV-1/X-REV-2 are
based upon the data given in [7]. Query times are accumulated times up to the n-th
alternative.

first second third

time success time success time success
algorithm [ms] rate [%] [ms] rate [%] [ms] rate [%]

X-BDV 11 451.5 94.5 12 225.9 80.6 13 330.9 59.6
X-CHV-3 16.9 90.7 20.3 70.1 22.1 42.3
X-CHV-5 55.2 92.9 65.0 77.0 73.2 53.3
X-REV-1 20.4 91.3 33.6 70.3 42.6 43.0
X-REV-2 34.3 94.2 50.3 79.0 64.9 56.9
HiDAR 18.2 91.5 18.2 75.7 18.2 55.9

Our algorithm not only allows for finding second and third degree alternatives
with a high success rate; we observe a fourth alternative in about 36.4% of all
cases and a fifth/sixth alternative in 22.4% and 12.18% of the cases while still
only requiring 18.2 ms on average.

The runtime of our algorithm is dominated by the graph generation process,
as can be seen in Figure 3. While unpacking shortcuts in advance does speed up
most techniques, it does not so in ours. On the contrary, we measured signifi-
cantly longer query times for our algorithm, well beyond the 80 ms mark. But
due to the large amount of overlaps present in our data and due to the faster
compression of our new technique, our live extraction manages to outperform
pre-unpacked shortcuts.

Quality: As our method to alternative routes differs greatly from the approaches
presented in the literature so far, we also evaluate the quality of the alternative
routes generated by our algorithm based on stretch, sharing and local optimality.
The quality values are given in Table 2. In the worst case, we report stretch values
worse than previous algorithms. These values originate from a very small set of
outliers that would have been deemed viable by the other algorithms as well.
On the other hand, we outperform the classic algorithms by far by providing
better stretch values than previously known algorithms. What strikes the eye
the most are the values for local optimality. The worst case performance of our
algorithm can nearly compete with the average case performance of the other
algorithms. On average, we can report local optimality of 90 %. These routes
are probably not reported by X-BDV, as the selection method prefers other
alternatives first that share some parts with the high quality route, thus making
it inadmissible later on. However, the computational overhead of X-BDV does
not allow to justify this assumption by fully exploring all potential candidate
selection schemes. Only in terms of sharing our first alternative performs worse
than other algorithms.



An Alternative Approach to Alternative Routes: HiDAR 623

Table 2. Quality of HiDAR alternatives (based on test set Tn) compared to X-BDV,
X-CHV and X-REV. For optimality we report local optimality restricted to the detour
(as also done in [7]). For second and third alternatives, no quality measures are given
for the relaxed variants of X-CHV and X-REV.

success UBS sharing [%] loc opt [%]

# algorithm rate [%] avg max avg max avg min

first X-BDV 94.5 9.4 35.8 47.2 79.9 73.1 30.3
X-CHV-3 90.7 11.5 45.4 45.4 80.0 67.7 30.0
X-REV-2 94.2 9.7 31.6 46.6 79.9 71.3 27.6
HiDAR 91.5 6.6 64.2 63.0 80.0 97.4 70.5

second X-BDV 80.6 11.8 38.5 62.4 80.0 71.8 29.6
HiDAR 75.7 10.6 57.7 63.2 80.0 94.4 64.0

third X-BDV 59.6 13.2 41.2 68.9 80.0 68.7 30.6
HiDAR 55.9 12.9 76.2 62.5 80.0 92.4 65.3

The quality for higher degree alternatives still remains high. The uniformly
bounded stretch gradually increases to 21.4 % on average for the 10th alternative,
while the amount of sharing averages out at around 60 % and local optimality
remains high with an average of around 82.9 %. Figure 3 shows that we can
achieve this high quality over the full range of queries.

6 Conclusion and Future Work

We have presented a new method to compute alternative routes in a competitive
way, allowing for high success rates and the extraction of a maximum number
of alternative routes without additional effort. By this, we present the only al-
gorithm providing reasonable means for extracting up to 10 alternative routes.
The high performance during the actual alternative route extraction allows for a
precise evaluation of the alternative candidates and for extraction schemes based
on personal preferences instead of accepting any acceptable candidate.

Still, the runtime of our algorithm itself could possibly be improved. The full
extraction of shortcuts does seem like an unnecessary amount of effort com-
pared to the low number of important vertices. Finding methods to restrict the
extractions to only shortcuts promising some results would greatly speed up our
algorithm.

Although every plateau defines a viable via-node alternative route, this does
not hold true the other way around. Therefore, it would be interesting to see
how many more alternative routes can be found through a combination of both
via-node alternatives and our method or even to incorporate other approaches
like [13].

Acknowledgements. We would like to thank Dennis Schieferdecker for inter-
esting discussions and insight into the world of alternative routes.
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Abstract. We introduce efficient data structures for an indexing prob-
lem in non-standard stringology — jumbled pattern matching. Moosa
and Rahman [J. Discr. Alg., 2012] gave an index for jumbled pattern

matching for the case of binary alphabets with O( n2

log2 n
)-time construc-

tion. They posed as an open problem an efficient solution for larger alpha-
bets. In this paper we provide an index for any constant-sized alphabet.
We obtain the first o(n2)-space construction of an index with o(n) query
time. It can be built in O(n2) time. Precisely, our data structure can be
implemented with O(n2−δ) space and O(m(2σ−1)δ) query time for any
δ > 0, where m is the length of the pattern and σ is the alphabet size
(σ = O(1)). We also break the barrier of quadratic construction time for
non-binary constant alphabet simultaneously obtaining poly-logarithmic
query time.

1 Introduction

The problem of jumbled pattern matching is a variant of the standard pattern
matching problem. The match between a given pattern and a factor of the word
is defined in a nonstandard way. In this paper by a match of two words we
mean their commutative (Abelian) equivalence: one word can be obtained from
the other by permuting its symbols. This relation can be conveniently described
using Parikh vectors, which show frequency of each symbol of the alphabet in
a word: u and v are commutatively equivalent (denoted as u ≈ v) if and only
if their Parikh vectors are equal. In the jumbled pattern matching the query
pattern is given as a Parikh vector, which in our case is of a constant size (due
to small alphabet).

Several results related to indexes for jumbled pattern matching in binary
words have been obtained recently. Cicalese et al. [8] proposed an index with
O(n) size and O(1) query time and gave an O(n2) time construction algorithm
for the index. The key observation used in this index is that if a word contains
two factors of length � containing i and j ones, i < j, respectively, then it
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H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 625–636, 2013.
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must contain a factor of length � with any intermediate number of ones. The
construction time was improved independently by Burcsi et al. [4] (see also [5,6])
and Moosa and Rahman [20] to O(n2/logn) and then by Moosa and Rahman [21]
to O(n2/log2 n). An index for trees vertex-labeled with {0, 1} achieving the same
complexity bounds (O(n2/log2 n) construction time, O(n) size and O(1) query
time) was given in [17]. The general problem of computing an index for jumbled
pattern matching in trees and graphs is known to be NP-complete [13,19].

Moosa and Rahman [20,21] posed an open problem for a construction of an
o(n2) indexing scheme for general alphabet (with o(n) query time). In particular,
even for a ternary alphabet none was known, the basic observation used to
obtain a binary index does not hold for any larger alphabet. We prove that the
answer for this problem is positive for any constant-sized alphabet. We show
an O(n2(log logn)2/logn) time and space construction of an index that enables
queries in O(( log n

log logn )
2σ−1) time. We also give a solution with O(n2−δ) size of the

index, O(n2) construction time and O(m(2σ−1)δ) query time. Here σ is the size of
the alphabet and m is the length of the pattern, that is, the sum of components
of the Parikh vector of the pattern. Our construction algorithms are randomized
(Las Vegas) and work in word-RAM model with word size Ω(log n). The latter
index is described in Section 3 and in Section 4 (improvement from n(2σ−1)δ to
m(2σ−1)δ in query time) and the former index is given in Section 5 (auxiliary
tools) and in Section 6.

A notion closely related to jumbled pattern matching are Abelian periods, first
defined in [9]. The pair (i, p) is an Abelian period of w if w = u0u1 . . . ukuk+1

where u1 ≈ u2 ≈ . . . ≈ uk, u0 and uk+1 contain a subset of letters of u1,
and |u0| = i, |u1| = p. Recently there have been a number of results related
to efficient algorithms for Abelian periods [9,14,15,18,10]. There have also been
several combinatorial results on Abelian complexity in words [1,7,11,12] and
partial words [2,3].

2 Preliminaries

In this paper we assume that the alphabet Σ is {1, 2, . . . , σ} for σ = O(1). For
a word w ∈ Σn by w[i . . j] denote a factor of w equal to wi . . . wj . We say that
the factor w[i . . j] occurs at the position i.

Let #s(x) denote the number of occurrences of the letter s in x. The Parikh
vector Ψ(x) of the word x ∈ Σ∗ is defined as:

Ψ(x) = (#1(x), #2(x), #3(x), . . . ,#σ(x)).

We say that the words x and y are commutatively equivalent (denoted as x ≈ y)
if y can be obtained from x by a permutation of its letters. Observe that we
have:

x ≈ y ⇐⇒ Ψ(x) = Ψ(y).

Example 1. 1221 ≈ 2211, since Ψ(1221) = (2, 2) = Ψ(2211).
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We define Occ(p) as the set of all positions where factors of w with the Parikh
vector p occur. If Occ(p) 	= ∅, we say that p occurs in w.

The problem of indexing for jumbled pattern matching (also called indexing for
permutation matching [20,21]) is defined as follows:

Preprocessing: build an index for a given word w of length n;

Query: for a given Parikh vector (a pattern) p decide whether p occurs
in w.

1 2 3 1 2 3 4 3 2 1 3 4 1 2 2 3 1 3 4 3

Fig. 1. Let w = 12 3 1 2 3 4 3 2 1 3 4 1 2 2 3 1 3 4 3. The factor 2 3 1 2 3 4 occurs (as a word)
starting at position 2. We have Ψ(2 3 1 2 3 4) = (1, 2, 2, 1), hence the jumbled pattern
p = (1, 2, 2, 1) (Parikh vector) also occurs at position 2. There are several occurrences
of the jumbled pattern p: Occ(p) = {2, 4, 5, 11, 14}.

Define the norm of a Parikh vector p = (p1, p2, . . . , pσ) as:

|p| =
σ∑

i=1

|pi|.

For two Parikh vectors p, q, by p+ q and p− q we denote their component-wise
sum and difference. We define the extension sets of Parikh vectors:

Ext<r(p) = {p+ p′ : |p′| < r}, Extr(p) = {p+ p′ : |p′| = r}.

Also define

Ext ′<r(p) = Ext<r(p) ∩ {p′ : Occ(p) ∩ Occ(p′) 	= ∅}.

For a set X of Parikh vectors, we define:

Ext<r(X) =
⋃
p∈X

Ext<r(p), Ext ′<r(X) =
⋃
p∈X

Ext ′<r(p).

Lemma 2. For any Parikh vector p and integer r ≥ 0, |Extr(p)| = O(rσ−1),
|Ext<r(p)| = O(rσ) and |{q : p ∈ Extr(q)}| = O(rσ−1).

Proof. Both |Extr(p)| and |{q : p ∈ Extr(q)}| are bounded by the number of
Parikh vectors of norm r, which is

(
r+σ−1
σ−1

)
, since each Parikh vector corresponds

to a placement of r indistinguishable balls (‘positions’) into σ distinguishable
urns (‘letters’).
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To bound |Ext<r(p)| it suffices to observe that

Ext<r(p) =

r−1⋃
k=0

Extk(p).

�

Let us also introduce an efficient tool for determining Parikh vectors of factors
of a given word.

Lemma 3. After O(n) time preprocessing, the Parikh vector Ψ(w[i . . j]) for any
1 ≤ i ≤ j ≤ n can be computed in O(1) time.

Proof. For each k ∈ {0, . . . , n} we precompute Ψ(w[1 . . k]) in O(n) time. Then

Ψ(w[i . . j]) = Ψ(w[1 . . j])− Ψ(w[1 . . i− 1]). �


3 Index with Sublinear Time Queries

A Parikh vector which occurs in w is called an Abelian factor of w. Observe that
the zero vector is an Abelian factor of every word, since it corresponds to the
empty word.

Define Abelian(w) as the set of all Abelian factors of w. For example:

Abelian(akbk) = {(i, j) : 0 ≤ i, j ≤ k}.

For a positive integer L we say that a pair (A,B) of two disjoint subsets of
Abelian(w) is L-good if the following conditions are satisfied:

(1)
∑

p∈A∪B |Occ(p)| ≤ n2/L;

(2) |Ext<L(B)| = O(n2/L);

(3) |Occ(p)| ≤ Lσ for each p ∈ A;

(4) for each z ∈ Abelian(w) we have:

z ∈ Ext ′<L(B) or ∃p∈A, 0≤|z|−|p|<L Occ(z) ∩ Occ(p) 	= ∅.
Note that condition (4) could also be stated as z ∈ Ext ′<L(B) ∪ Ext<L(A),
however we choose the above statement due to operational reasons (see the
following Query algorithm).

Let
FL = {p ∈ Abelian(w) : |p| mod L = 0}.

Elements of FL are called L-factors, clearly |FL| ≤ n2

L .
We partition the set of L-factors into the set LL of light Abelian factors

(small number of occurrences) and the set HL of heavy Abelian factors (more
occurrences in w). More formally:

LL = {p ∈ FL : |Occ(p)| ≤ Lσ},
HL = {p ∈ FL : |Occ(p)| > Lσ} ∪ {0̄}.
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Lemma 4. The pair (LL,HL) is L-good.

Proof. The total size of Occ(p) for all p, such that |p| = k · L for a fixed k, is at

most n. Hence, the total size of Occ(p) for all p ∈ FL is at most n2

L , which gives
part (1) of the definition of an L-good pair.

Part (3) follows from the definition of LL. As for part (2), by Lemma 2, for
each p ∈ HL we have

|Ext<L(p)| = O(Lσ) = O(|Occ(p)|).

The latter inequality follows from the definition of HL. This shows that the size
of Ext<L(HL) is bounded by the total size of Occ(p) for p ∈ HL, which we have

already shown (part (1)) to be bounded by n2

L .
As for property (4), consider any z ∈ Abelian(w) and its occurrence at position

i. Let p = Ψ(w[i . . i + k · L − 1]), where k · L ≤ |z| < (k + 1) · L. Then either
p ∈ HL and therefore z ∈ Ext ′<L(p) or p ∈ LL and clearly i ∈ Occ(p). �


Data Structure. The index consists of the following parts:

1. the sets LL, HL and Ext ′<L(HL);

2. Occ(p) for each p ∈ LL.

All the components are stored in hash tables indexed by p. With perfect hashing
[16] we obtain O(1) access time and O(n2/L) space. The following algorithm
realizes a query. Note that the only Abelian factor of length 0 is heavy. Hence,
if |z| < L then z is an Abelian factor of w if and only if z ∈ Ext ′<L(HL).

Algorithm Query(z)

if z ∈ Ext ′<L(HL) then

return true;

r := |z| mod L;

foreach p : z ∈ Extr(p) do

if p ∈ LL then

foreach i ∈ Occ(p) do

if w[i . . i+ |z| − 1] ≈ z then

return true;

return false;

In the query algorithm we check if z ∈ Ext ′<L(HL) or, otherwise, if there
exists p ∈ LL, 0 ≤ |z| − |p| < L, such that z occurs as an extension of p. Hence,
the correctness of the query algorithm follows from property (4) of an L-good
pair. Let us analyze the complexity of the data structure.



630 T. Kociumaka, J. Radoszewski, and W. Rytter

L L L L

z’
e

Fig. 2. When searching for the Abelian factor z we look for any L-factor z′ and (short)
factor e such that z = z′ + e and |e| < L

Theorem 5. For any integer L > 0 there exists an index for jumbled pattern
matching with O(n2/L) space and O(L2σ−1) query time. The preprocessing time
is O(n2).

Proof. Assume that the elements of FL are indexed using a hash table. Let us
consider the complexity of the main iteration of a single query. By Lemma 2,
|{p : p ∈ Extr(z)}| ≤ Lσ−1, and for any p ∈ LL, by definition, |Occ(p)| ≤ Lσ.
Thus, using constant-time equivalence queries from Lemma 3, we obtain the
desired O(L2σ−1) query time.

The index size is bounded by

|FL|+
∑
p∈FL

|Occ(p)|+ |Ext ′<L(HL)|

which is O(n2/L) by the conditions (1-2) of an L-good pair.
Finally consider the preprocessing time. The sets FL, LL and HL, and also

Occ(p) for all p ∈ FL, can be computed inO(n2/L) time. To compute Ext ′<L(HL),
we consider each z ∈ HL, all the elements of Occ(z) and all the extensions
z + e of the corresponding occurrences of z by at most L letters. This yields
O(n2/L · L) = O(n2) time. �


Corollary 6. For any 0 < δ < 1 there exists an index for jumbled pattern
matching with O(n2−δ) space and O(n(2σ−1)δ) query time.

Proof. We take L = nδ and apply Theorem 5. �


4 The Case of Small Patterns

While O(n(2σ−1)δ) is sublinear in n for small δ, it is still rather large, and,
especially for very small patterns, might be considered unsatisfactory. We modify
the data structure to handle such patterns much more efficiently, in O(m(2σ−1)δ)
time for patterns of length m. We start with an auxiliary data structure.

Lemma 7. For any 0 < δ < 1 there exists an index for jumbled pattern match-
ing with O(n · k1−δ) space and O(k(2σ−1)δ) query time for patterns of size that
is at most k.
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Proof. We slightly change the definition of L-factors, we only take the L-factors
of size at most k. Let FL,k denote the set of these factors. Similarly as in the
case of FL we obtain |FL,k| ≤ n·k

L .
Now we take L = kδ and the rest of the construction is essentially the same

as before. The size of the data structure is O(n·kL ), which is O(n · k1−δ). The

query time is O(L2σ−1), hence of order O(k(2σ−1)δ). �


Theorem 8. For any δ > 0 there exists an index for jumbled pattern matching
with O(n2−δ) space and O(m(2σ−1)δ) query time, where m is the size of the
pattern.

Proof. Let
K = {2i : 0 ≤ i ≤ �logn } ∪ {n}.

We can precompute the data structures from Lemma 7 for each k ∈ K. The
total size will be of order:

n2−δ +


logn�∑
i=0

n · 2i(1−δ) = n2−δ + n · O(2(1−δ) logn) = O(n2−δ).

To answer a query about a pattern p of size m we take

k = min {j ∈ K : j ≥ m}.

Then we apply the query algorithm from Lemma 7 (using only the part of the
data structure relevant to k). This completes the proof. �


In particular if we take δ = 1/((2σ − 1)a) then we have a more concrete result.

Observation 9. For any integer a > 1 there exists an index for jumbled pattern
matching with O(n2−1/((2σ−1)a)) space and O( a

√
m) query time.

5 Efficient Merging of Packed Sets

In this section by merging we mean computing a set-theoretic union, i.e. at most
one copy of each element is preserved. We merge large families of sets whose
union is relatively small. We aim at sublinear time in the total size of those
families, which requires suitable compact encoding of sets. The algorithm that
we develop in this section is used to obtain an o(n2) time construction algorithm
for an index for jumbled pattern matching, which is shown in the following
section.

Let U = {1, 2, . . . , N}, where N =
⌈(

logn
log logn

)σ⌉
and M(n) = δ · logn

(σ log logn) .

The set U is called the universe, and its subsets of size not larger than
M(n) are called here small sets. We have log |U | = σ log logn and |U |M(n) =
2log |U|·M(n) = nδ. Consequently, we obtain a bound for the number of small sets.

Observation 10. There are O(nδ) small sets.
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Assume all small subsets are listed in lexicographic order (t = O(nδ)):

S = {S0, S1, . . . , St}.

Then each small subset can be identified by its rank in the list above. A set
of identifiers X = {γ1, γ2, . . . , γm} ⊆ {0, 1, . . . , t} represents a family R =
Sγ1 , Sγ2 , . . . , Sγm . We say that each identifier in X is a packed representation of
the subset of U and X is the packed version of a family R of small sets. We
denote:

R = UNPACK (X ) and X = PACK (R).

For a family R of subsets of U denote by Merge(R) the sorted set of all elements
of

⋃
S∈R S, with duplicates removed (each element has unique occurrence in the

merge). Denote

PackedMerge(X ) = Merge(UNPACK (X )).

Define the following Packed Merging Problem:

Input: a family X = {γ1, γ2, . . . , γm} of integers (packed small sets);

Output: PackedMerge(X ).

Example 11. Let U = {1, 2, 3, 4} and M(n) = 2. Then:
PackedMerge({2, 4, 7}) = Merge(S2, S4, S7) = {1, 2, 4}.

In this case the lexicographically ordered ordered list of small sets is:
S0 = ∅, S1 = {1}, S2 = {1, 2}, S3 = {1, 3}, S4 = {1, 4}, S5 = {2},
S6 = {2, 3}, S7 = {2, 4}, S8 = {3}, S9 = {3, 4}, S10 = {4}.

Lemma 12. [PackedMerge Lemma] Let δ = 1
2 − ε for any 0 < ε < 1

2 .
Then after O(n) time preprocessing, for each packed family X of m integers
S = PackedMerge(X ) can be computed in O(|S| + (m+ logσ n) log logn) time.

Proof. For a set S of integers we write S ≤ K if all elements of S are smaller
than or equal to K, similarly we write S > K if all the elements are greater than
K. For two identifiers i, j denote SmallSplit(i, j,K) = (p, q), where (p, q) is any
pair of indices of subsets such that:

Sp ∪ Sq = Si ∪ Sj and (Sp ≤ K or Sp > K).

For an identifier i and an integer K also denote Split(i,K) = (p, q), where (p, q)
is any pair of indices of subsets such that:

Sp ∪ Sq = Si and Sp ≤ K and Sq > K.

Note that the number of triples (i, j,K) is o(n). Hence:

Claim. After o(n)-time preprocessing each SmallSplit and Split query can be
answered in constant time.
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Using SmallSplit and Split operations we can scan the sequence X , then each
time we process two current consecutive sets Si, Si+1, Si+1 is replaced by Sq and
we have Sp ≤ K or Sp > K, where SmallSplit(i, j,K) = (p, q).

Algorithm LargeSplit(X ,K)

Assume X = {γ1, γ2, . . . , γm};
X1 := X2 := ∅;
for i := 1 to m− 1 do

(p, q) := SmallSplit(γi, γi+1,K);

γi+1 := q;

if Sp ≤ K then add p to X1 else add p to X2;

(p, q) := Split(γm,K);

add p to X1;

add q to X2;

return (X1, X2);

In this way we have shown:

Claim. We can compute in O(|X |) time two families X1, X2 of packed sets such
that:

– PackedMerge(X1) ∪ PackedMerge(X2) = PackedMerge(X );
– PackedMerge(X1) ≤ K, PackedMerge(X2) > K.
– The total number of packed sets in X1, X2 is at most |X |+ 1.

After at most log |U | operations LargeSplit, each time applied to a smaller
range of integers in U , we arrive at the situation when X is transformed into a se-
ries of nonempty packed families, each of them contains packed subsets included
in the subrange of U of size at most M(n).

Algorithm Generate(X )

Queue := {(X , [0, N ])}; OutputList := ∅;
while Queue �= ∅ do

(X ′, Δ) := delete(Queue); middle := mid(Δ);

(X1, X2) :=LargeSplit(X ′,middle);

if |Δ|/2 ≤ M(n) then add X1, X2 to OutputList;

else add (X1, left(Δ)), (X2, right(Δ)) to Queue;

return OutputList;

The algorithm above returns the set of families of packed subsets, for each
family all its sets are subsets of the same interval of size M(n). For an interval
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Δ let mid(Δ) be the middle point in Δ and left(Δ), (right(Δ)) be the left (resp.
right) half of Δ.

Similarly as for SmallSplit queries, we obtain the following claim that enables
us to efficiently merge packed sets belonging to the same short range.

Claim. After O(n) time preprocessing for each two packed sets Si, Sj which are
subsets of some range Δ′, |Δ′| ≤ M(n), we can compute the packed version of
their union (the identifier p such that Sp = Si ∪ Sj) in O(1) time.

Now we can compute union of each subfamily in OutputList in time proportional
to the number of returned elements. Since returned sets are disjoint for different
subfamilies the time is proportional to the total number of returned elements.

The total time of all operations LargeSplit is O((m+ |U |) log |U |) = O((m+
logσ n) log logn) since we perform operations on O(log |U |) levels (a level cor-
responds iterations with the same |Δ|) and at each level we spend O(m + |U |)
time. �


6 Reducing Preprocessing Time

In Section 3 we have presented a subquadratic-space and sublinear query-time
index. However the construction time was quadratic. Now we give an index which
can be built slightly faster. The following theorem solves an open problem stated
by Moosa and Rahman [20,21] for the case of constant-sized alphabet.

Theorem 13. Each query in the index for jumbled pattern matching can be

answered in O(( logn
log logn )

2σ−1) time after preprocessing in O
(

(log log n)2

logn · n2
)

time

and space.

Proof. The queries work as in Theorem 5 with L = �M(n) . Recall thatM(n) =
δ · log n/(σ log logn), where δ = 1

2 −ε for any 0 < ε < 1
2 . For simplicity we extend

the word w with L trailing sentinel letters. The index itself is also the same,

its space complexity is O(n2/L) = O
(

log logn
log n · n2

)
. As described in the proof

of Theorem 5, all the parts of the preprocessing excluding the computation of
Ext ′<L(HL) work in O(n2/L) time. The missing component is constructed by a
reduction to Packed Merging Problem.

Let N be the number of distinct Abelian factors e of the input word such that
|e| < L. Then N ≤ Lσ = O(logσ n). All such e’s can be computed and assigned
different identifiers from {0, 1, . . . , N} in O(nL) time. These identifiers form the
universe in the Packed Merging Problem.

Denote by A the number of distinct (ordinary) factors u of the input word such
that |u| = L. We have A ≤ σL = O(nδ). All such factors can be computed and
assigned different identifiers from {0, 1, . . . , A} in O(n · (L+ log n)) = O(n log n)
time.

For each factor u ∈ {0, 1, . . . , A} we can also compute in O(nδ · L) total time
the set S(u) of identifiers of all Parikh vectors corresponding to prefixes of u.
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Note that the size of S(u) is L = �M(n) . Hence, the sets S(u) form the small
sets from the PackedMerge problem.

Now the extension sets Ext ′<L(p) for each p ∈ HL are computed separately.We
consider all positions in Occ(p), for each such position i we take the identifier u
of the L-letter word coming after the corresponding occurrence of p. To compute
Ext ′<L(p), it suffices to find all the distinct elements among all the sets S(u) and
add p to each of them. By the PackedMerge Lemma, this can be performed in
O(|S|+(log n)σ log logn+ |Occ(p)| · log logn) time, where S = Ext ′<L(p). In total
|S| > (log n)σ both sum up to at most O(n2/L) and |Occ(p)| · log logn sum up
to O(n2 log logn/L), which yields the time complexity of the construction. �


Acknowledgement. The authors would like to thank several researchers present
at the Stringmasters 2013 workshop in Verona for introducing the problem
and comments on the preliminary solution: Péter Burcsi, Ferdinando Cicalese,
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Abstract. Motivated by cascade effects arising in network technology
upgrade processes in the Internet, Goldberg and Liu [SODA, 2013] re-
cently introduced the following natural technology diffusion problem.
Given a graph G = (V,E), and thresholds θ(v), for all v ∈ V . A vertex
u activates if it is adjacent to a connected component of active nodes of
size at least θ(v). The goal is to find a seed set A whose initial activation
would trigger a cascade activating the entire graph.

Goldberg and Liu presented an algorithm for this problem that returns
a seed set of size O(rl log(n)) times that of an optimum seed set, where r
is the diameter of the given graph, and l is the number of distinct thresh-
olds used in the instance. We improve upon this result by presenting an
O(min{r, l} log(n))-approximation algorithm. Our algorithm is simple
and combinatorial, in contrast with the previous approach that is based
on randomized rounding applied to the solution of a linear program.

Keywords: Approximation Algorithms, Technology Diffusion, Combi-
natorial Optimization.

1 Introduction

Networks connecting autonomous entities are pervasive in today’s world, and
it is not surprising that their various properties are the subject of a vast and
growing body of research (e.g., see the two books [2, 9]). In this paper, we focus
on the study of algorithmic aspects of diffusion processes and cascade effects in
such networks. How does a virus spread through a population of individuals, and
how quickly is a rumor propagated through the members of a group of friends?
Modeling dynamic network aspects like this has been an increasingly active sub-
area in its own right and we refer the reader to Kleinberg’s survey in [14] for an
introduction.

Our work here is specifically motivated by a question addressed by Domingos
and Richardson [1, 15] and their work on viral marketing. The authors studied
“word-of-mouth” strategies in advertising a new product. The authors posed the
following question: given a social network that connects potential customers, can
we identify a small seed set of influential individuals that, if initially convinced
to adopt a product, will eventually persuade all other customers to follow? The
authors propose a probabilistic model, and heuristics to address this question.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 637–646, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Kempe et al. [10] later recast the questions of Domingos and Richardson in the
language of discrete optimization. The authors single out two diffusion models:
the linear threshold [7, 16], and independent cascade [6] models. In this paper,
we will focus on adaptations of the former, where an individual’s inclination
to adopt the product is a function of the behaviour of her immediate network
neighbours. Each edge uv ∈ E has a weight buv such that the sum of weights
incident to a node v is at most 1. A vertex v adopts the product (activates) if
the total weight of active neighbours is at least her threshold θv. The goal in
the influence maximization problem is to find a minimum-size set of initially
active seed vertices A that cause all vertices to eventually adopt the product.
In [10], the authors proved that this problem is NP-hard, and presented several
approximation algorithms.

The threshold model described above is inherently local as a player’s behaviour
is only impacted by immediate network neighbours. Goldberg and Liu [5] recently
pointed out that locality may not adequately model network externalities [12];
the authors argue that the standard threshold model used by Kempe et al. is a
particularly unsuitable model for cascade effects arising in technology upgrade
processes in the Internet [4, 8]. The authors propose a generalized threshold
model in which a vertex’ utility is influenced by the size of its connected com-
ponent in the graph of active nodes. We describe this model formally next.

1.1 Non-local Threshold Model

Consider a network G = (V,E) connecting a population of individuals, each
of which has a threshold θ(v) ∈ {θ1, . . . , θl}. Choose a seed set A0 ⊆ V of
vertices that are initially active. Goldberg and Liu describe the following diffusion
process: in any step i ≥ 1, the set of active vertices Ai consists of all previously
active vertices Ai−1 and vertices v whose connected component in the graph
G[Ai−1 ∪ {v}] induced by Ai−1 and v has size at least θ(v). The smallest t such
that v ∈ At is called the activation time of v.

In the technology diffusion (TD) problem, we want to find a minimum-
cardinality seed set A0 such that the above process yields the activation of all
vertices in V .

1.2 Goldberg-Liu and Our Results

Following the notation of [5], we let r be the diameter of G; i.e., if P (u, v) is the
smallest number of edges on any u, v-path in G, than we let r be the maximum of
P (u, v) over all pairs u, v of vertices. We also use l for the number of thresholds
of the given TD instance, and assume that

θ1 < θ2 < . . . < θl.

We useA∗
0 for the seed set of an optimum solution. Goldberg and Liu showed that

TD is as hard to approximate as set-cover, and hence, no o(log(n))-approximation
may exist unless NP has nO(log log(n))-time deterministic algorithms [3]. In the
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same paper the authors propose an O(rl log(n))-approximation. Our main result
is the following improvement over Goldberg and Liu’s work.

Theorem 1. There is an O(min{r, l} log(n))-approximation algorithm for TD.

The algorithm is obtained in two steps. We first describe an O(r log(n))-
approximation by reducing an instance of TD to one of submodular set-cover [17].
In order to obtain an O(l log(n))-approximation, we reduce the problem to an
instance of the quota version of the node-weighted Steiner tree problem [11, 13].
Both of our algorithms are substantially simpler than those presented in [5], and
are deterministic and combinatorial while Goldberg and Liu’s methods relied on
randomized rounding applied to the solution of a linear program.We complement
our algorithmic improvements with the following negative result.

Theorem 2. TD is as hard to approximate as the quota-version of the unit-
weight node-weighted Steiner tree problem.

The above theorem is as strong as that given in [5] as the quota-version of the
unit-weight node-weighted Steiner tree problem generalizes set cover, and at the
same time it is based on a simpler reduction. Although the above theorem does
not immediately imply any new hardness result for TD, it show that TD with
only two thresholds is already as hard to approximate as the quota-version of
the unit-weight node-weighted Steiner tree problem, and this may indicate the
need for new ideas to shave off the min{r, l} factor in our result in Theorem 1.

2 An O(r log(n)) Approximation Algorithm for TD

In this section we develop an O(r logn) approximation algorithm for TD. In the
following, we use A∗

0 for an optimum seed set, and let A∗
t be the set of vertices

that are activated at the end of round t of the dynamics described in Section 1.1.
We begin by obtaining a good lower-bound on the cardinality of A∗

0. For a
threshold θi and a vertex v, let Gθi

v be the subgraph induced by v and all vertices
of G with threshold at most θi:

Gθi
v = G[{v} ∪ {u|θ(u) ≤ θi}].

Note that Gθi
v may in general be disconnected. In the following, let Γ (θi, v)

be the vertex set of the connected component of Gθi
v containing v. Note that,

by definition, v ∈ Γ (θi, v). Similarly, for a general set of vertices S ⊆ V , we
define Γ (θi, S) =

⋃
v∈S Γ (θi, v). For ease of notation, we let θ0 = 0, so that

Γ (θ0, S) = S for every S ⊆ V .

Lemma 21. For all θi ∈ {θ0, . . . , θl−1}, |Γ (θi,A∗
0)| ≥ θi+1 − 1.

Proof. Consider a threshold θi. If for all vertices v /∈ A∗
0 we have θ(v) ≤ θi, then

by definition Γ (θi,A∗
0) = V and therefore |Γ (θi,A∗

0)| = |V | ≥ θi+1 − 1.
Now assume that there is a vertex v /∈ A∗

0 with threshold at least θi+1. In
particular, among such vertices, let v be one with smallest activation time t;



640 J. Könemann, S. Sadeghian, and L. Sanità

i.e., v ∈ A∗
t \ A∗

t−1. Directly from the definition we now see that v’s connected
component in G[A∗

t−1 ∪ {v}] has at least θ(v) = θi+1 vertices, and among these,
only v has threshold larger than θi. Thus A∗

t−1 ⊆ Γ (θi,A∗
0), and |A∗

t−1| ≥
θi+1 − 1. The lemma follows.

By the previous lemma, we can conclude that the size of the minimum cardi-
nality subset of vertices S satisfying |Γ (θi, S)| ≥ θi+1 − 1 for all 1 ≤ i < l, gives
us a lower bound on |A∗

0|.

Corollary 22. An optimal solution S∗ to the following minimum threshold
problem

min
S⊆V

{|S| : |Γ (θi, S)| ≥ θi+1 − 1, ∀ 0 ≤ i < l}. (MT)

has size at most A∗
0.

The above corollary suggests the strategy to follow in designing an approxima-
tion algorithm. First, we will search for a vertex set that is a good approximate
solution to the minimization problem (MT), and then we will slightly adjust it
to turn it into a feasible solution for the technology diffusion problem. As a first
step, we present an O(log(n))-approximation algorithm for (MT) by reducing it
to the submodular set-cover (SSC) problem. The input to an instance of SSC is
a universe U , and a submodular function f defined over the subsets of U . Recall
that f is submodular, whenever it satisfies

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B)

for all A ⊆ B ⊆ U and for all e ∈ U \B. Given a cost ce for all e ∈ U , the goal
is now to find a minimum-cost set T ⊆ U such that f(T ) = f(U). The problem
clearly generalizes the set-cover problem, and admits an O(log(maxe∈U f({e})))-
approximation [17].

Theorem 23. There is an O(log n)-approximation algorithm for (MT).

Proof. As promised, we achieve the result by reducing (MT) to SSC. Let

U = V = {v1, . . . , vn}

be the universe of the SSC instance. For each threshold θi, 0 ≤ i ≤ l, we define
function fi by letting

fi(D) = min{|Γ (θi, D)|, θi+1 − 1},

for all D ⊆ U . It is an easy exercise to show that fi is indeed submodular for all
i, and hence, so is their sum f , defined by

f(D) =

l−1∑
i=0

fi(D),
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ALGORITHM 1. SelectSeedSet1
Input: Graph G = (V,E), thresholds θ.
Output: A seed set Ar

0.
Ar

0 = ∅
Compute a solution D to the instance of (MT) according to Theorem 23
While D �= ∅ Choose v ∈ D and add it to Ar

0

If (G[S] is not connected)
Compute a shortest v, S-path P in G
Add the vertices of the path P to Ar

0

Remove v from D

for allD ⊆ U . Consider the SSC instance with groundset U , submodular function
f , and unit cost for each e ∈ U . Suppose that S∗ is an optimal solution to (MT)
and note that

f(S∗) =
l−1∑
i=0

fi(S
∗) =

l−1∑
i=0

θi+1 − 1 = f(U).

Thus, an optimal solution D∗ of the SSC instance defined above has cardinality
at most |S∗|. Finally note that

f(U) =

l−1∑
i=0

(θi+1 − 1) ≤ n2,

and the algorithm of [17] therefore returns a set D ⊆ U of size at most

O(log(n))|S∗|. By definition, f(D) = f(U) =
∑l−1

i=0 θi+1 − 1, and therefore
fi(D) = θi+1−1, for all i = 0, . . . , l−1. But this implies that |Γ (θi, D)| ≥ θi+1−1
for all such i, and thus, D is a feasible solution to the instance of our minimum
threshold problem.

We are now ready to give our O(r logn)-approximation algorithm for the
technology diffusion problem.

Theorem 24. Algorithm 1 is an O(r logn)-approximation algorithm for TD.

Proof. Given an instance of the technology diffusion problem, Algorithm 1 first
computes a solutionD to the instance of the minimum threshold problem defined
by G and θ, according to Theorem 23. Note that Theorem 23 and Corollary 22
imply |D| = O(log n)|A∗

0|. Then, the algorithm constructs the connected seed
set Ar

0 from D as follows.
The algorithm adds to Ar

0, one by one, each vertex v ∈ D: after each addition,
if the vertex v is not adjacent to any vertex in the current set Ar

0, the algorithm
also adds to Ar

0 the vertices of a shortest v, S-path P . Note that P has at most r
new vertices. Therefore, eventually the set Ar

0 output by the algorithm has size
≤ r |D| ≤ O(r logn)|A∗

0|.
Finally, we argue thatAr

0 is a feasible solution to our instance of the technology
diffusion problem.
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By induction, we prove that if we start the technology diffusion process with
the seed set Ar

0, all of the vertices in Γ (θi,Ar
0) will be activated at some time

t < ∞, for all 1 < i ≤ l. Since Γ (θl,Ar
0) = V , this will prove feasibility for our

seed set Ar
0.

By definition, Γ (θ0,Ar
0) = Ar

0 and G[Ar
0] is connected and contains at least

θ1− 1 vertices. Assume now that all vertices in Γ (θi,Ar
0) are activated, for some

i ≥ 0. By the definition of our minimum threshold problem, the set D computed
by the algorithm in its first step is such that |Γ (θi, D)| ≥ θi+1 − 1 and since
D ⊆ S, |Γ (θi,Ar

0)| ≥ θi+1 − 1. Therefore, Γ (θi,Ar
0) is a set that induces a

connected subgraph of activated vertices of size at least θi+1 − 1. This implies
that all the vertices in Γ (θi+1,Ar

0) will be activated after some finite time.

3 An O(l log(n)) Approximation Algorithm

In this section, we give an O(l logn)-approximation algorithm for the technology
diffusion problem. We recall from [5] that we may, w.l.o.g., limit our search to
seed sets that induce connected activation sequences.

Definition 1. A seed set A0 induces a connected activation sequence with an-
chor s if there is a permutation v1, . . . , vn of vertices so that (i) s = v1, (ii) for
all 1 ≤ t ≤ n, vertices v1, . . . , vt−1 induce a connected component in G and vt is
adjacent to it, and (iii) vt is in A0 whenever t < θ(vt).

[5] showed that there is a choice of anchor such that the size of a minimum
cardinality seed set inducing a connected activation sequence is at most twice
the size of an optimal seed set.

Lemma 31 ([5]). Given an instance of TD, let A∗
0 be the optimal seed set.

There is a choice of anchor s ∈ A∗
0 such that the minimum-cardinality seed set

Ac that induces a connected activation sequence anchored at s has cardinality at
most 2|A∗

0|.

Given the above lemma, we will from now on assume that we know anchor
vertex s, and will search for a seed set that induces a connected activation
sequence anchored at s.

The key insight in our algorithm is its connection with the quota-constrained
node-weighted Steiner Tree (qNST) problem. In an instance of qNST we are
given an undirected graph G = (V,E), a root vertex s ∈ V , vertex weights w(v)
for all v ∈ V , and a quota Q ∈ �+. The goal is to find a tree T containing s ∈ T ,
that spans at least Q vertices, and has smallest weight w(T ) =

∑
v∈V (T ) w(v).

This problem is known to have an O(log n)-approximation algorithm.

Theorem 3 ([11, 13]). There is a polynomial time O(log n) approximation
algorithm for qNST.

We now show how to use the above theorem to give anO(l logn)-approximation
for the technology diffusion problem. Algorithm 2 runs in l steps. In each step



Better Approximation Algorithms for Technology Diffusion 643

ALGORITHM 2. SelectSeedSet2
Input: Graph G = (V,E), thresholds θ and a vertex s.
Output: A seed set Al

0.
Al

0 = ∅
for i = 1 . . . l do

For each v ∈ V , set wi(v) = 0 if θ(v) < θi and wi(v) = 1, otherwise
Find an O(log n)-approximate tree Ti for the instance (G, s,wi, θi − 1) of
qNST problem
Add to Al

0 each vertex v ∈ Ti with wi(v) = 1
end

i, we define a weight function wi(v) = 1 for all v : θ(v) ≥ θi, and wi(v) = 0
otherwise, and find an O(log n)-approximate minimum wi-weight tree containing
s and covering at least θi − 1 vertices. This can be done in polynomial time as
stated in Theorem 3.

We now argue that (i) the set Al
0 output by the algorithm is a feasible seed

set and (ii) the cardinality of Al
0 is O(l logn)|A∗

0|.

Lemma 32. Algorithm 2 outputs a feasible seed set Al
0.

Proof. By induction on i, we prove that Al
0 activates all the vertices in Ti at

some time t < ∞. This implies that Al
0 activates θi − 1 vertices which form a

connected component. For i = l, this would lead to the result since if there is a
connected component C of activated vertices of size at least θl − 1 at some time
t, clearly all non-activated vertices adjacent to C will become activated at time
t+ 1, and therefore eventually all vertices in V will be activated.

In the first step, the algorithm finds a set T1 of θ1 − 1 vertices and adds all of
them to the seed set Al

0, since w1(v) = 1 for every vertex v. For i > 1, assume
that all vertices in Ti−1 are activated at time t. Clearly they form a connected
component of size at least θi−1−1. Consider the setWt of non-activated vertices
in Ti \ Ti−1 at time t. If Wt = ∅, we are done. If not, clearly there is a subset
W ′ ⊆ Wt of vertices that are adjacent to the connected component formed by the
vertices in Ti−1: this is because Ti ∩ Ti−1 	= ∅, since both contains the vertex s.
Note that a vertex u ∈ W ′ cannot have wi(u) = 1, since otherwise the algorithm
would have added it to Al

0, and therefore u would be activated, a contradiction.
It follows that wi(u) = 0, i.e. θ(v) ≤ θi−1 and therefore it becomes activated at
time t+1. If we now consider the set Wt+1 we have that Wt+1 ⊂ Wt: so we can
repeat this process till eventually all vertices in Wt become activated.

Lemma 33. In each phase i, Algorithm 2 adds to Al
0 a number of vertices equals

to wi(Ti) = O(log n)|A∗
0|.

Proof. Consider the connected activation process starting with the seed set Ac.
Let t be the first time in which at least θi − 1 vertices forming a connected
component are activated. If a vertex v with θ(v) ≥ θi is active at time t, then v
must be in the seed set Ac. Note that Ac

t contains a tree T ∗
i of at least θi − 1



644 J. Könemann, S. Sadeghian, and L. Sanità

vertices and wi(T
∗
i ) is exactly the number of vertices in T ∗

i with threshold ≥ θi.
Since Ti is an O(log n)-approximate minimum wi-weight tree, it follows that
wi(Ti) ≤ O(log n)wi(T

∗
i ) ≤ O(log n)|Ac|. The lemma follows from Lemma 31.

Lemma 33, Lemma 32 and Lemma 31 imply:

Theorem 34. Algorithm 2 is an O(l logn) approximation algorithm for tech-
nology diffusion problem.

Theorems 24 and 34 together provide a proof of Theorem 1.

4 Complexity

We now provide a proof of Theorem 2, and show that TD with only two thresh-
olds is as hard to approximate as 0, 1-cost qNST. Our reduction is simpler and
at the same time as strong as that given in [5] as 0, 1-cost qNST generalizes set
cover.

Consider an unrooted instance of qNST on graph G = (V,E) with weights
w(v) ∈ {0, 1} for all v ∈ V , and quota Q. We define an instance of TD as follows.
For every vertex v ∈ V (G), let θ(v) = Q if w(v) = 1 and let θ(v) = 1 if w(v) = 0.

First assume that T is a solution for the given qNST instance of cost k. Then
let A0 be the set of k weight 1 vertices of T . Since all other vertices of T have
threshold 1, using seed set A0 will lead to the activation of all vertices of T .
Since T spans at least Q vertices, and all thresholds are at most Q, all other
vertices will eventually be activated. Hence, the constructed TD instance has a
solution of size at most k.

Now let A0 be a valid seed set of size k for the TD instance. If there is no
vertex in V \ A0 with threshold Q then all vertices not in A0 have weight 0.
Thus, any spanning tree T of G has weight at most |A0| = k.

Now assume that there is a vertex v ∈ V \A0 with threshold Q. Pick such a
vertex with smallest activation time t. By definition, the connected component
T containing v in G[At−1 ∪{v}] has at least Q vertices. Moreover, all but one of
the weight-1 vertices in T are also in A0. Thus, the weight of T is at most k+1.

As we discussed in previous section, we can solve the technology diffusion
problem using an algorithm for qNST which together with the discussion above
shows that the technology diffusion problem with two threshold is essentially
equivalent to 0, 1-weight qNST.

5 Further Work

Using the threshold model proposed by Goldberg and Liu, we studied the prob-
lem of finding a smallest seed set whose activation triggers a cascade that even-
tually activates the entire population. We presented improved approximation
algorithms for this problem, and pointed out challenges standing in the way of
further improvements.
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Many open problems remain. For example, given a target value Q, can we find
a small seed set whose activation triggers the activation of at least Q vertices?
Or, given a parameter k, we could be looking for a seed set of size at most k
such that the largest number of vertices are activated.

Another natural generalization is the weighted version of TD where each ver-
tex v ∈ V has an associated cost cv, and the goal is to find a minimum-cost
seed set activating all vertices. Unlike the unit-cost version in which the optimal
solution inducing connected activation sequence approximates the optimal solu-
tion within factor of two, there is an arbitrarily large gap between these two for
version of the problem with costs.

This can be easily seen by way of the following example. Consider a star graph
with n+1 vertices such that the threshold of every vertex is n+ 1. Let the cost
of each leaf vertex be 1

n while the cost of the vertex at center of the star be
an arbitrary large value C. Then, the optimal solution is the set of leaf vertices
with total cost of 1 while the cost of any optimal solution inducing a connected
activation sequence is at least C as it must contain the vertex at the center.
This suggests that one should seek other approaches for solving the version of
problem with vertex costs.
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Abstract. We study the existence of polynomial kernels for the problem
of deciding feasibility of integer linear programs (ILPs), and for finding
good solutions for covering and packing ILPs. Our main results are as
follows: First, we show that the ILP Feasibility problem admits no
polynomial kernelization when parameterized by both the number of
variables and the number of constraints, unless NP ⊆ coNP/poly. This
extends to the restricted cases of bounded variable degree and bounded
number of variables per constraint, and to covering and packing ILPs.
Second, we give a polynomial kernelization for the Cover ILP problem,
asking for a solution to Ax ≥ b with cTx ≤ k, parameterized by k, when
A is row-sparse; this generalizes a known polynomial kernelization for
the special case with 0/1-variables and coefficients (d-Hitting Set).

1 Introduction

This work seeks to extend the theoretical understanding of preprocessing and
data reduction for Integer Linear Programs (ILPs). Our motivation lies in the
fact that ILPs encompass many important problems, and that ILP solvers, espe-
cially CPLEX, are known for their preprocessing to simplify (and shrink) input
instances before running the main solving routines (cf. [2]). When it comes to NP-
hard problems, then, formally, being able to reduce every instance of some prob-
lem would give an efficient algorithm for solving it entirely, and prove P = NP
(cf. [3]). We avoid this issue by studying the question for efficient preprocess-
ing via the notion of kernelization from parameterized complexity [4], which
relates the performance of the data reduction to one or more problem-specific
parameters, like the number n of variables of an ILP.

A kernelization with respect to some parameter n is an efficient algorithm
that given an input instance returns an equivalent instance of size depending only
on n; a polynomial kernelization guarantees size polynomial in the parameter (see
Section 2 for formal definitions). This notion has been successfully applied to a
wide range of problems (see Lokshtanov et al. [5] for a recent survey). A break-
through result by Bodlaender et al. [6] (using [7]) gave a framework for ruling out
polynomial kernels for certain problems, assuming NP � coNP/poly (else the
polynomial hierarchy collapses).1

� Some proofs are omitted from this extended abstract and can be found in [1].
�� Supported by the DFG, research project PREMOD, KR 4286/1.
1 All kernelization lower bounds mentioned in this work are modulo this assumption.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 647–658, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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ILP Feasibility. Let us first discuss the Integer Linear Program Feasi-

bility (ILPF) problem: Given a set of m linear (in)equalities in n variables with
integer coefficients, decide whether some integer point x ∈ Zn fulfills all of them.
A well-known result of Lenstra [8] gives an O(αn3

mc) time algorithm for this
problem, later improved, e.g., by Kannan [9] to O(nO(n)mc). We can trivially
“reduce” to size N = O(nO(n)) by observing that Kannan’s algorithm solves
all larger instances in polynomial time O(Nmc) = NO(1). Can actual reduction
rules give smaller kernels, for example with size polynomial in n?

It is clear that we can store an ILPF instance, for example, (A, b), with A ∈
Zm×n, b ∈ Zm, asking for x ≥ 0 with Ax ≤ b, by encoding all O(nm) coefficients,
which takes O(nm logC) bits where C is the largest absolute value among co-
efficients. Let us check what can be said about polynomial kernels with respect
to these parameters for ILPF and the r-row-sparse2 variant r-ILPF:

If the row-sparseness is unrestricted, then ILPF(n + C) and ILPF(m + C)
encompass Hitting Set(n) and Hitting Set(m)3, respectively, which admit
no polynomial kernels [10,11]. What about ILPF(n+m), which is the maximal
open case below the trivial parameter n+m+ logC?

With bounded row-sparseness r, things turn out differently: For r-ILPF(n+C)
and r-ILPF(m + logC) there are polynomial kernels: The former is not hard
and a sketch is provided in the full version [1]; the latter is trivial since row-
sparseness r entails n ≤ r ·m and hence the above encoding uses O(nm logC) =
O(rm2 logC) = (m + logC)O(1) bits. It was showed previously that r-ILPF(n)
admits no polynomial kernel [12], and it can be seen that the proof works also
for r-ILPF(n+ logC).4 Again, this leaves parameter n+m open.

Our contribution for ILPF is the following theorem which, unfortunately, set-
tles both ILPF(n + m) and r-ILPF(n + m) negatively (see Section 3). It can
be seen that this completes the picture regarding the existence of polynomial
kernels for ILPF and r-ILPF for parameterization by any subset of n, m, logC,
and C (see [1]). The same is true for the column-sparse case q-ILPF, but we
omit a detailed discussion since it is quite similar to the row-sparse case.

Theorem 1. ILPF(n +m) does not admit a polynomial kernelization or com-
pression, unless NP ⊆ coNP/poly. This holds also if each constraint has at most
three variables and each variable is in at most three constraints.

It appears that ILPF(n +m) is the first problem for which we know that a
polynomial kernelization fails solely due to the encoding size of large numbers in
the input data (and taking into account our proof that no reduction is possible);
an additional parameter logC would trivially give a polynomial kernel. This
of course fits into the picture of hardness results for weight(ed) problems, e.g.,

2 Row-sparseness r: at most r variables per constraint; column-sparseness q: each
variable occurs in at most q constraints; we use r and q throughout this work.

3
Hitting Set: Given a base set U of size n, a set F of m subsets of U , and an
integer k, find a set of k elements of U that intersects each set in F (if possible). ILP
formulation: Is there (x)u∈U with

∑
u∈U xu ≤ k, and

∑
u∈F xu ≥ 1 for all F ∈ F?

4 The used cross-composition with t input instances creates coefficients of value O(t2)
with encoding size logC = O(log t) which is permissible for a cross-composition.



On Polynomial Kernels for Integer Linear Programs 649

W[1]-hardness of Small Subset Sum(k) where the task is to pick a subset of
at most k numbers to match some target sum [13] and the kernelization lower
bound for Small Subset Sum(k+d) where the value of numbers is upper bound
by 2d [10]; however, in both cases the number of weights is not bounded in the
parameters. Furthermore, there are lower bounds for weighted graph problems
(e.g., [14]), but there the used weights have value polynomial in the instance size
and hence negligible encoding size. We also point out two contrasting positive
results: A randomized polynomial compression of Subset Sum(n) [3], and a
randomized reduction of Knapsack(n) to many instances of size polynomial
in n [15] (the number of instances depends on the bit size of the largest weight).

Covering and Packing ILPs. Given the overwhelming amount of negative
results for ILPF, we turn to the more restricted cases of covering and packing
ILPs (cf. [16]) with the hope of identifying some positive cases:

(covering ILP:) min cTx (packing ILP:) max cTx

s.t. Ax ≥ b s.t. Ax ≤ b

x ≥ 0 x ≥ 0

Here A, b, and c have non-negative integer entries (coefficients). Feasibility for
these ILPs is usually trivial (e.g., x = 0 is feasible for packing), and the more
interesting question is whether there exist feasible solutions x with small (resp.
large) value of cTx. Encompassing many well-studied problems from parameter-
ized complexity, we ask whether cTx ≤ k (resp. cTx ≥ k), and parameterize by k;
instances are given as (A, b, c, k). Unsurprisingly, there are a couple of special
cases contained in this setting that have been studied before (e.g., with 0/1-
variables and coefficients); some of those are W[1]-hard (and are hence unlikely
to have polynomial kernels), whereas others have positive results that we could
hope to generalize to the more general ILP setting. To capture the different cases,
we use the column-sparseness q and row-sparseness r of the matrix A: taking q
and r as constants, additional parameters, or unrestricted values defines different
problems. Our main result in this part is a polynomial kernelization for r-Cover

ILP(k) (see Section 4); the special case of only 0/1 variables and coefficients is
known as r-Hitting Set(k) and admits kernels of size O(kr) [17,18]. Our re-
sult also uses the Sunflower Lemma (like [17]), but the reduction arguments for
sunflowers of linear constraints are of course more involved than for sets.

Theorem 2. The r-Cover ILP(k) problem admits a reduction to O(kr
2+r)

variables and constraints, and a polynomial kernelization.

Furthermore, we show how to preprocess instances of Packing ILP(k+q+r)
and Cover ILP(k+ q+ r) to equivalent instances with polynomial in kqr many
variables and constraints (see Section 5). For r-Packing ILP(k + q) this is
extended to a polynomial kernelization, generalizing that for the special case of
bounded degree Independent Set(k). To put these results into context, we
provide an overview containing also the inherited hard cases in Tables 1 and 2;
a brief discussion of these cases can be found in the full version [1].
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Table 1. “PK” stands for polynomial kernel, “no PK” stands for no polynomial kernel
unless NP ⊆ coNP/poly. All normal-font entries are implied by boldface entries.

Parameterized complexity of Packing ILP(k)

row-sparseness r
constant parameter unrestricted

co
lu
m
n
-s
p
a
rs
e.

q constant (PK) (FPT)
W[1]-hard from
Subset Sum(k)

parameter PK (Theorem 4)
FPT; n = O(kqr)
and m = O(kq2r)
(Theorem 4)

(W[1]-hard)

unrestricted
W[1]-hard from In-
dependent Set(k)

(W[1]-hard) (W[1]-hard)

Table 2. “PK” stands for polynomial kernel, “no PK” stands for no polynomial kernel
unless NP ⊆ coNP/poly. All normal-font entries are implied by boldface entries.

Parameterized complexity of Cover ILP(k)

row-sparseness r
constant parameter unrestricted

co
lu
m
n
-s
p
a
rs
e.

q constant (PK) (FPT)
W[1]-hard from
Subset Sum(k)

parameter (PK)
(FPT); n = O(kqr)
and m = O(kq)
(Theorem 5)

(W[1]-hard)

unrestricted PK (Theorem 2)
FPT but no PK
(cf. [1, Prop. 4])

W[2]-hard from
Hitting Set(k)

2 Preliminaries

A parameterized problem over some finite alphabet Σ is a language P ⊆ Σ∗×N.
The problem P is fixed-parameter tractable if (x, k) ∈ P can be decided in
time f(k) · (|x|+ k)O(1), where f is an arbitrary computable function. A kernel-
ization for P is a polynomial-time algorithm that, given input (x, k), computes
an equivalent instance (x′, k′) with |x′|, k′ ≤ h(k) where h is some computable
function; K is a polynomial kernelization if h(k) is polynomially bounded in k.
By relaxing the restriction that the created instance (x′, k′) must be of the same
problem and allow the output to be an instance of any language (i.e., any deci-
sion problem) we get the notion of (polynomial) compression. Almost all lower
bounds for kernelization apply also for this weaker notion.

We also use the concept of an (or-)cross-composition of Bodlaender et al. [19]
which builds on the breakthrough results of Bodlaender et al. [6] and Fortnow
and Santhanam [7] for proving lower bounds for kernelization.

Definition 1 ([19]). An equivalence relation R on Σ∗ is called a polynomial
equivalence relation if the following two conditions hold:
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1. There is a polynomial-time algorithm that decides whether two strings belong
to the same equivalence class (time polynomial in |x|+ |y| for x, y ∈ Σ∗).
2. For any finite set S ⊆ Σ∗ the relation R partitions the elements of S into a
number of classes that is polynomial in the size of the largest element of S.

Definition 2 ([19]). Let L ⊆ Σ∗ be a language, let R be a polynomial equiva-
lence relation on Σ∗, and let P ⊆ Σ∗ × N be a parameterized problem. An or-
cross-composition of L into P (with respect to R) is an algorithm that, given t
instances x1, x2, . . . , xt ∈ Σ∗ of L that are R-equivalent, takes time polynomial
in

∑t
i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ × N such that:

1. The parameter value k is polynomially bounded in maxi |xi|+ log t.
2. The instance (y, k) is yes for P iff at least one instance xi is yes for L.
We then say that L or-cross-composes into P.

Theorem 3 ([19]). If an NP-hard language L or-cross-composes into the pa-
rameterized problem P, then P does not admit a polynomial kernelization or
compression unless NP ⊆ coNP/poly and the polynomial hierarchy collapses.

3 A Kernel Lower Bound for ILPs with Few Coefficients

In this section, we prove Theorem 1, i.e., that Integer Linear Program

Feasibility(n+m) admits no polynomial kernelization unless NP ⊆ coNP/poly.
We begin with a technical lemma that expresses multiplication by powers of
two in an ILP; its proof can be found in [1]. The crucial point is that we need
multiplication by t different powers of two, but can afford only O(logc t) variables
and coefficients (direct products of variables are not legal in linear constraints).

Lemma 1. Let a, b, and p be variables, and let bmax, pmax ≥ 0 be integers.
Let � = �log pmax�. There is a system of 6� + 7 linear constraints with 2� −
1 auxiliary variables such that all integer solutions have 0 ≤ b ≤ bmax, 0 ≤
p ≤ pmax, and a = b · 2p. Conversely, if these three conditions hold then feasible
values for the auxiliary variables exist. The system uses coefficients with bit
size O(pmax log bmax) and all variables have range at most {0, . . . , bmax · 2pmax}.

Now we are set up to prove the first part of Theorem 1.

Lemma 2. Integer Linear Program Feasibility(n+m) admits no poly-
nomial kernelization or compression unless NP ⊆ coNP/poly.

Proof. We give an or-cross-composition from the NP-hard Independent Set

problem. The input instances are of the form (G = (V,E), k) where G is a graph
and k ≤ |V | is an integer, asking whether G contains an independent set of size
at least k. For the polynomial equivalence relation R we let two instances be
equivalent if they have the same number of vertices and the same solution size k.
It is easy to check that this fulfills Definition 1. For convenience we consider all
input graphs to be on vertex set V = {1, . . . , n}, for some integer n.

Let t R-equivalent instances (G0 = (V,E0), k), . . . , (Gt−1 = (V,Et−1), k) be
given. Without loss of generality we assume that t = 2� for some integer � since
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otherwise we could copy one instance sufficiently often (at most doubling the
input size and not affecting whether at least one of the given instances is yes).

Construction. We now describe an instance of Integer Linear Program

Feasibility that is yes if and only if at least one of the instances (G0 =
(V,E0), k), . . . , (Gt−1 = (V,Et−1), k) is yes for Independent Set. We first
define an encoding of the t edge sets Ep into

(
n
2

)
integer constants D(i, j), one

for each possible edge {i, j} ∈
(
V
2

)
(throughout the proof we use 1 ≤ i < j ≤ n):

D(i, j) :=
t−1∑
p=0

2p ·D(i, j, p), where D(i, j, p) :=

{
1 if {i, j} ∈ Ep,

0 else.

In other words, the p-th bit of D(i, j) is one if and only if {i, j} is an edge
of Gp = (V,Ep). The values 0 ≤ D(i, j) ≤ 2t − 1 will be used as constants in the
ILP that we construct next.

1. We start with a single variable p that is intended for choosing an instance
number; its range is {0, . . . , t− 1}. The rest of the ILP will be made in such
a way that it ensures that a feasible solution for the ILP will imply that
instance (Gp, k) is yes for Independent Set, and vice versa.

2. Now we will add constraints that allow us to extract the necessary infor-
mation regarding which of the possible edges {i, j} are present in graph Gp.
Recall that the p-th bit of the constant D(i, j) encodes this. For convenience,
we will derive the needed constraints and argue their correctness right away.
For each possible edge {i, j} with 1 ≤ i < j ≤ n we introduce a variable ei,j
with the goal of enforcing ei,j = 1 if {i, j} ∈ Ep, and ei,j = 0 else.
Let i, j with 1 ≤ i < j ≤ n be fixed (we apply the following for all these
choices). Clearly,

D(i, j) =

p−1∑
s=0

2sD(i, j, s) + 2pD(i, j, p) +

t−1∑
s=p+1

2sD(i, j, s).

We are of course interested in the 2pD(i, j, p) term, which takes value either 0

or 2p. Since the first term
∑p−1

s=0 2
sD(i, j, s) is at most 2p − 1 and the last is

a multiple of 2p+1, we will extract it via a constraint

D(i, j) = α+ β + γ, (1)

assuming that we can enforce the following conditions: (i) 0 ≤ α ≤ 2p − 1,
(ii) β ∈ {0, 2p}, and (iii) γ ∈ {0, 2p+1, 2 · 2p+1, . . .}. (Note that we use new
variables αi,j , βi,j , γi,j , δi,j , εi,j for each choice of i and j, but in the con-
struction the indices are omitted for readability.) This is where Lemma 1
comes into the picture as it permits us to enforce the creation of the re-
quired values and range restrictions without using overly many variables
and constraints. For (i) we add a variable δ and enforce δ = 2p by using
Lemma 1 on a = δ, b = bmax = 1, and p with pmax = t−1. We then add con-
straints α ≥ 0 and α ≤ δ− 1. For (ii) we apply the lemma on a = β, b = ei,j
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with bmax = 1, and p with pmax = t− 1, enforcing β = 2pei,j . (Note that we
want to get ei,j = D(i, j, p) from β = 2p · D(i, j, p) anyway; this way it is
already enforced.) For (iii) we add a new variable ε ≥ 0 and apply the lemma
on a = γ, b = 2ε with bmax = 2t− 1 (formally, this requires a new variable b′

and constraint b′ = 2ε), and p with pmax = t−1, enforcing γ = 2p2ε = 2p+1ε.
The fact that there are no further restrictions on ε effectively allows γ to
take on any multiple of 2p+1 (and no other values). The upper bound bmax

on b = ε for Lemma 1 comes from D(i, j) ≤ 2t − 1 (we do not require larger
values of γ and ε since γ ≤ D(i, j) and γ = 2pε).
The most costly application of Lemma 1 is for (iii) where we have bmax = 2t−
1 and pmax = t− 1. This incurs O(log pmax) = O(log t) additional variables
and constraints, and uses coefficient bit size O(pmax log bmax) = O(t2) (same
bounds suffice also for (i) and (ii)). Thus, over all choices of 1 ≤ i < j ≤ n,
i.e., for getting all the needed edge information, we use O(

(
n
2

)
log t) additional

variables and constraints. For each variable ei,j our constraints ensure that
it is equal one if {i, j} is an edge in Gp; else it has value zero.

3. Now we can finally add the actual edge constraints needed to express the
Independent Set problem.We add n variables x1, . . . , xn with range {0, 1},
one variable xi for each vertex i ∈ V . For each possible edge {i, j} ∈

(
V
2

)
,

i.e., for all 1 ≤ i < j ≤ n we add the following constraint.

xi + xj + ei,j ≤ 2 (2)

Finally, we add a constraint

n∑
i=1

xi ≥ k (3)

to ensure that we select at least k vertices. This completes the construction.

Let us now check the number of variables and constraints in our created ILP.
The number of variables is dominated by the O(

(
n
2

)
log t) variables added in

Step 2, which come from O(
(
n
2

)
) applications of Lemma 1. The same is true for

the number of constraints used. Thus both parameters of our target instance are
polynomially bounded in the largest input instance plus log t. Since we postu-
lated no further restrictions on the target ILP (e.g., A and b may have negative
coefficients), we will omit a discussion of how to write all constraints as Ax ≤ b
with x ≥ 0 (here x is the vector of all variables used) since that is straightfor-
ward. The largest bit size of a coefficient is O(t2) hence it is easy to see that the
whole ILP can be generated in time polynomial in the total input size (which is
roughly O(t · n2) from the t Independent Set instances with n vertices each).

It remains to argue correctness of the construction. Due to space restrictions,
and since most of the needed arguments were already given, this is deferred to
the full version [1].

Thus we have an or-cross-composition from the NP-hard Independent Set

problem to the Integer Linear Program Feasibility(n+m) problem. By
Theorem 3, this implies that Integer Linear Program Feasibility(n+m)
has no polynomial kernel or compression unless NP ⊆ coNP/poly. �
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The second part of Theorem 1 is now an easy corollary. Similarly, we get
lower bounds for covering and packing ILP with parameter n+m. Getting the
sparseness for Corollary 1 is easier than what was needed for r-ILPF(n) in [12]
since both number of constraints and number of variables are bounded in the
parameter value. Proofs for both corollaries are given in the full version [1].

Corollary 1. Integer Linear Program Feasibility(n + m) restricted to
instances that have at most 3 variables per constraint (row-sparseness) and with
each variable occurring in at most 3 constraints (column-sparseness) admits no
polynomial kernel or compression unless NP ⊆ coNP/poly.

Corollary 2. Cover ILP(n + m) and Packing ILP(n + m) do not admit
polynomial kernelizations or compressions unless NP ⊆ coNP/poly.

4 Polynomial Kernelization for Row-Sparse Cover ILP(k)

In this section, we prove Theorem 2, by giving a polynomial kernelization for r-
Cover ILP(k), generalizing polynomial kernelizations for r-Hitting Set(k)
[17,18]. Our result uses the sunflower lemma (stated below) that can also be
used for r-Hitting Set (as in [17]). However, the application is complicated by
the fact that the replacement rules for a sunflower of constraints are not as clear-
cut as for sets in the hitting set case: Constraints forming a sunflower pairwise
overlap on the same variables but with (in general) different coefficients; hence
no small replacement is implied. Additionally, we have to bound the number of
constraints that have exactly the same set of variables with nonzero coefficients,
called scope, since the sunflower lemma will only be applied to the set of different
scopes. The main work lies in the proof of the following lemma; the polynomial
kernelization is given as a corollary.

Lemma 3. The r-Cover ILP(k) problem admits a polynomial-time preprocess-

ing to an equivalent instance with O(kr
2+r) constraints and variables.

Before we turn to the proof, we give a lemma that captures some initial
reduction arguments including a bound on the number of constraints with the
same scope. The full proof is given in [1].

Lemma 4. Given an instance (A, b, c, k) of r-Cover ILP(k) we can in poly-
nomial time reduce to an equivalent instance (A′, b′, c′, k) such that:
1. No constraint is satisfied if all variables in its scope are zero, i.e., b′i ≥ 1.
2. The cost function c′T is restricted to 1 ≤ c′i ≤ k.
3. All feasible solutions with c′Tx ≤ k have xi ∈ {0, . . . , k} for all i.
4. There are at most (k + 1)d constraints for any scope of at most d variables.

Proof (Part 4.). Consider any set of d variables with more than (k + 1)d con-
straints having exactly this scope. It is clear that there are at most (k + 1)d

possible assignments to these variables that do not violate the maximum cost
of k. Each constraint can rule out some of those. It is therefore sufficient to keep
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only one constraint for each infeasible assignment, as all further constraints are
redundant and may be deleted, giving the claimed bound. Note that each con-
straint has at most r variables in its scope, hence we can perform this reduction
in time polynomial in n. �


We recall sunflowers and the sunflower lemma of Erdős and Rado [20].

Definition 3 ([20]). Let F denote a family of sets. A sunflower in F of car-
dinality t and with core C is a collection of t sets {F1, . . . , Ft} ⊆ F such
that Fi ∩ Fj = C for all i 	= j. The sets F1 \ C, . . . , Ft \ C are called the petals
of the sunflower; they are pairwise disjoint. The core C may be empty.

Lemma 5 (Sunflower Lemma [20]). Let F denote a family of sets each of
size d. If the cardinality of F is greater than d! · (t − 1)d then F contains a
sunflower of cardinality t, and such a sunflower can be found in polynomial time.

Proof (Lemma 3). To begin with, we apply Lemma 4 in polynomial time. After-
wards, for each constraint scope with d ≤ r variables, there are at most (k+1)d =
O(kr) constraints with that scope. Now, we will apply the sunflower lemma
to the set of all scopes of size d, for each d ∈ {1, . . . , r}. If there are more
than d! · (t − 1)d = O(tr) sets then we find a sunflower consisting of t sets
(scopes). We will show how to remove at least one constraint matching one of
the scopes, when t is sufficiently large (and polynomially bounded in k).

If, instead, the number of scopes is at most d! · (t − 1)d (for all d) then
we can bound the total number of constraints as follows: We have r choices
for d ∈ {1, . . . , r}. For each d we have at most d! · (t − 1)d = O(tr) constraint
scopes. For each scope there are at most O(kr) constraints. In total this gives
a bound of r · O(tr) · O(kr) = O(tr · kr). Since each constraint has at most r
variables we get the same bound (in O-notation) for the number of variables.

Removing a Constraint. Let us now see how to find a redundant constraint
when there are more than d! · (t− 1)d constraint scopes for some 1 ≤ d ≤ r. We
will also derive an appropriate value for t (at least t > k). Consider a t-sunflower
in the set of constraint scopes of size d (which we can get in polynomial time from
the sunflower lemma). Let its core be denoted by C = {x1, . . . , xs}, with 0 ≤ s <
d ≤ r, and its pairwise disjoint petals by {y1,s+1, . . . , y1,d}, . . . , {yt,s+1, . . . , yt,d}.
(Note that s < d is needed since all sets are different, which requires nonempty
petals; else they would all equal the core.) Thus there must be constraints in the
ILP matching these scopes. We arbitrarily pick one constraint for each scope:

a1,1x1 + a1,2x2 + . . .+ a1,sxs + a1,s+1y1,s+1 + . . .+ a1,dy1,d ≥ b1

a2,1x1 + a2,2x2 + . . .+ a2,sxs + a2,s+1y2,s+1 + . . .+ a2,dy2,d ≥ b2

...

at,1x1 + at,2x2 + . . .+ at,sxs + at,s+1yt,s+1 + . . .+ at,dyt,d ≥ bt

Note that to keep notation simple the indexing of the variables and coefficients
is only with respect to the sunflower and makes no assumption about the actual
numbering within Ax ≥ b; all arguments are local to the sunflower.
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First, let us note that we may return no (or a dummy no-instance) if the core
is empty and t > k: That would give us more than k constraints on disjoint sets
of variables that each require at least one nonzero variable; this is impossible at
maximum cost k. In the following, assume that s ≥ 1.

Since each variable takes values from {0, 1, . . . , k} (by Lemma 4), there are at
most (k+1)s possible assignments for the s core variables (in fact there are even
less since the sum is at most k). It is clear that assigning zero to all core variables
does not lead to a feasible solution since each of the t constraints requires at least
one nonzero variable and the petal variables are disjoint. However, unlike for r-
Hitting Set, assigning one to a single core variable is not necessarily sufficient
to satisfy all constraints, and the value of each variable for a constraint might be
quite different. Thus, we may not simply replace the constraints of the sunflower
by the restriction of one constraint to the core variables.

To cope with this difficulty we employ a marking strategy. We check all (k+1)s

assignments of choosing a value from {0, 1, . . . , k} for each core variable. It is
possible that some of the constraints are already satisfied by this core assignment
due to the monotone behavior of covering constraints. If more than k constraints
need an additional nonzero variable (which would be a petal variable) then
clearly this core assignment is infeasible. In this case we arbitrarily mark k + 1
constraints that are not satisfied by the core assignment alone (i.e., if all their
other variables would be zero); these serve to prevent the core assignment from
being chosen. If at most k constraints are not yet satisfied then we mark all of
them. Clearly, in total we mark at most (k + 1) · (k + 1)s constraints.

We will now argue that all unmarked constraints can be deleted. Clearly,
deletion can only create false positives, so consider a solution to the instance
obtained by deleting any unmarked constraint. If the assignment does not also
satisfy the removed constraint (where we take value zero for variables that do not
occur after deletion) then, in particular, the same is true for the core assignment
made by this assignment. Hence, while marking constraints with respect to this
core assignment we must have marked k+1 other constraints (that are also not
satisfied by the core assignment alone), which are hence not deleted. However,
these other constraints cannot all be satisfied with a budget of at most k, a
contradiction. Thus, deleting all unmarked constraints is safe.

Therefore, if we have a sunflower with core size s and more than (k + 1) ·
(k+1)s constraints then our marking procedure allows us to delete at least one
constraint. Thus, allowing for core size s up to r − 1, we set t = (k + 1) · (k +
1)r−1+1 = O(kr). While we can find t-sunflowers (via the sunflower lemma) we
can always delete at least one constraint. Our earlier discussion at the start of the
proof now gives a bound of O(tr · kr) = O(kr

2+r) on the number of constraints
and variables achieved by this reduction process. This completes the proof. �

Corollary 3. The r-Cover ILP(k) problem admits a polynomial compression

to size O(kr
2+2r) and a polynomial kernelization.

Proof (sketch). We know how to reduce to O(kr
2+r) constraints in polynomial

time. Since each constraint can equivalently be described by the infeasible assign-
ments that it defines for the variables in its scope, we may encode the instance by
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replacing each constraint on d ≤ r variables by a 0/1-table of dimension (k+1)d:
Each 0 entry means that the assignment corresponding to this coordinate is in-
feasible (e.g., entry at (2, 3, 5) tells whether x1 = 2, x2 = 3, and x3 = 5 is
feasible for this constraint, when (x1, x2, x3) is its scope); each 1 stands for a
feasible entry. For each constraint this requires (k+1)d = O(kr) bits for the table

plus r · log(kr2+r) = O(log k) bits for encoding the scope (there are at most r

variables, each one encoded by a number from 1 to O(kr
2+r)). The cost func-

tion cTx requires only the storing of O(kr
2+r) integers with values from 0 to k,

taking O(log k) bits each. In total this gives the claimed size for the compression.
To get a polynomial kernelization let us first observe that the problem de-

scribed above is clearly in NP since feasible solutions (certificates) can be verified
in polynomial time. Thus, by an argument of Bodlaender et al. [21], we get an
encoding as an instance of r-Cover ILP(k) by using the implicit Karp reduc-
tion whose existence follows from the fact that r-Cover ILP(k) is complete for

NP. The size of this instance is polynomial in O(kr
2+2r), and hence polynomial

in k. This completes the polynomial kernelization. �


5 Further Results

In this section we state some results for Packing ILP(k) and Cover ILP(k)
with column-sparseness q and row-sparseness r as additional parameters or con-
stants; proofs are deferred to [1].

Theorem 4. Packing ILP(k + q + r) is fixed-parameter tractable and admits
a polynomial-time preprocessing to O(kqr) variables and O(kq2r) constraints.
For r-Packing ILP(k + q) this gives a polynomial kernelization.

Theorem 5. Cover ILP(k + q + r) is fixed-parameter tractable and admits
a polynomial-time preprocessing to O(kqr) variables and O(kq) constraints. (A
polynomial kernelization for r-Cover ILP(k + q) follows from Corollary 3.)

6 Conclusion

We have studied different problem settings on integer linear programs. For In-

teger Linear Program Feasibility parameterized by the numbers n of
variables and m of constraints we ruled out polynomial kernelizations, assum-
ing NP � coNP/poly. This still holds when both column- and row-sparseness
are at most three. Adding further new and old results, this settles the existence
of polynomial kernels for ILPF and r-ILPF for parameterization by any subset
of {n,m, logC,C} where C is the maximum absolute value of coefficients.

Regarding covering and packing ILPs, we gave polynomial kernels for r-
Cover ILP(k), generalizing r-Hitting Set(k), and for r-Packing ILP(k+q).
Further results and observations give an almost complete picture regarding q
and r except for the question about polynomial kernels for parameter k+ q+ r.
We recall that for both problems one can reduce to n,m ≤ (kqr)O(1) but param-
eterization by n and m only admits no polynomial kernelization (Corollary 2).
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Abstract. In this paper we propose a new way of constructing the evolv-
ing graph in BitTorrent (BT) as new peers join the system one by one.
The maximum degree in the constructed graph will be O(1) while the
diameter will remain O(lnn), with high probability, where n is the num-
ber of nodes. Considering a randomized upload policy, we prove that
the distribution of b blocks on the overlay generated by our neighbor
selection strategy takes O(b + lnn) phases only, with high probability,
which is optimal up to a constant factor. It improves the previous upper
bound of O(b + (lnn)2) by Arthur and Panigrahy (SODA’06). Besides
theoretical analysis, thorough simulations have been done to validate our
algorithm and demonstrate its applicability in the BT network.

1 Introduction

In the past decade, tracker-based peer-to-peer networks like BitTorrent (BT) [1]
and Tribler [2] have emerged as popular solutions in the area of not only sim-
ple file-sharing, but video-on-demand services as well. These applications are
still showing an increasing interest, generating a significant part of the overall
Internet traffic.

The selection of neighbors is an important design decision of peer-to-peer sys-
tems. In tracker-based peer-to-peer networks, each peer that enters the network,
first has to connect to a central component called tracker to obtain a peer set
representing the initial neighborhood of the joining client. The tracker maintains
a list of all nodes in the system, called the swarm, and returns a random subset
of the existing nodes. This random neighbor selection may lead to suboptimal
overlay topologies. In order to optimize the network, various neighbor selection
strategies can be found in the literature that considers different aspects from
locality [14] and load balancing [3,8] to quality of experience [12].

The performance of BT like peer-to-peer systems has been widely analyzed in
the past few years from theoretical and practical aspects as well. The empirical

� Supported by the EU EIT project SmartUC, the grant EITKIC-12-1-2012-0001 of
the National Development Agency, and the EU FP7 OpenLab project (Grant No.
287581). Performed in cooperation with the EIT ICT Labs Budapest Associate Part-
ner Group (www.ictlabs.elte.hu).

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 659–670, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



660 S. Laki and T. Lukovszki

results [9,5] show that the simple routing policy applied by the original BT is
quite effective even in case of a flash crowd setting when a great deal of peers
join the network almost at the same time. Besides empirical evidence, this heavy
loaded case has already been investigated from a theoretical perspective as well.
In [3], several algorithms are demonstrated that share b data blocks among n
clients in a network of diameter d and degree D in O(D(b+ d)) steps with high
probability1, where in one time step, each client can upload one data block to,
and download one block from one of its neighbor. For a network used by BT it
results in a time bound of O(b lnn) time steps. They propose a neighbor selection
strategy which improves this bound to a near-optimal O(b + (lnn)2) steps.

In this paper, we improve the neighbor selection strategy resulting in a time
bound of O(b+lnn) steps, which is optimal up to a constant factor. Our method
uses the idea of multiple choice [4] and takes into account not only the actual
load of the peers, but the possibility as well that a client will be selected in the
future. This will ensure an overlay network of constant degree and logarithmic
diameter with high probability. The constructed overlay topologies are examined
from both theoretical and practical perspectives as well. We model these overlay
networks as a graph, whose vertices are the peers and neighboring peers are con-
nected by an edge. We analyze the key graph properties of the proposed network,
showing that the maximum degree in our overlay topology is O(1), with high
probability, while its diameter still remains logarithmic in the number of peers n.
In such a network, the randomized upload policy will share b data blocks among
n clients in O(b+lnn) time steps with high probability, which is optimal in net-
works of n vertices, in which the degree of the vertices is bounded by a constant.
Besides the theoretical analysis thorough simulations have been performed to
validate the different properties of the constructed overlay networks.

The rest of the paper is organized as follows: in Section 2, we briefly overview
the related works. In Section 3, we describe our model and the different neighbor
selection methods. Section 4 details our theoretical analysis and includes the
proof of our theoretical upper bounds. In Section 5, we experimentally analyze
the different properties of the constructed overlay networks. Finally, we include
some concluding remarks in Section 6.

2 Related Works

A great deal of theoretical and empirical studies have emerged in the past decade
to analyze the performance of existing BT like peer-to-peer networks and propose
new neighbor selection methods to optimize the constructed overlay topology.
At the empirical end, Izal et al. [9] and Pouwelse et al. [13] present measurement
based studies of BT which are based on tracker logs of different torrents. Their
analysis show that the simple mechanisms that can be found in the original BT
makes this file-sharing system very efficient.

1 An event E is said to occur with high probability, if given n > 1, Pr[E] > 1− 1/nc,
where c > 1 is a constant [10].
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Bharambe et al. [6] conducted simulations to confirm that BT performs near-
optimally in terms of uplink bandwidth utilization, and download time except
under certain extreme conditions. They have also found that the rate-based tit-
for-tat policy is not effective in preventing unfairness, which means that low
bandwidth peers can download more than they upload to the network when
high bandwidth peers are present. To solve this issue, they propose some slight
changes to the tracker and a stricter tit-for-tat policy.

Bindal et al. [7] examine a new approach to enhance BT traffic locality, in
which a peer chooses the majority, but not all, of its neighbors from peers within
the same ISP. In this way the traffic costs at ISPs can significantly be reduced.

Besides empirical works there are several theoretical ones as well. Zhang et
al. [15] formulate an optimization problem to solve for the optimal peer selec-
tion strategy to maximize the global system-wide performance. They also derive
a purely distributed algorithm that is provably globally optimal. Besides the
tracker, the proposed solution requires some changes in the ordinary peers as
well.

Arthur and Panigrahy [3] propose a mathematical framework to model the
distribution of individual data blocks. They examine several properties of BT like
networks and discuss a number of extensions to them, including a new neighbor
selection strategy that can easily be implemented in the trackers to achieve near-
optimal performance in the distribution of data blocks. In our work, we use the
same analytical framework introduced in [3].

3 System Model

In this section, we briefly outline our system model, which is in accordance with
what is proposed by Arthur and Panigrahy in [3], and describe the neighbor
selection strategies to be examined.

For the sake of simplicity, we model the constructed overlay topologies as
directed graphs where each vertex represents a client in the peer-to-peer network.
We also assume equal bandwidth and delay among all the peers, and ignore
other BT specific mechanisms such as tit-for-tat and optimistic unchoke. This
simplified model does not take care of the process of clients joining and leaving
the network during the file-sharing. Furthermore, the file sharing process can be
considered as routing data blocks on the directed graph over discrete time steps.
To this end, Arthur and Panigrahy [3] proposed the randomized upload policy
where each vertex attempts to upload a block to a random neighboring client
during each time step. They proved the following theorem.

Theorem 1 ([3]). Suppose a vertex u begins with a copy of every block. Let D
denote the maximum out-degree in a directed graph consisting of n vertices, and
suppose the distance from u to every other vertex is at most d. If we route on this
graph using the randomized upload policy, then T ≤ 4D(4d+ b) with probability
at least 1 − 2n exp (− d

2 ), where b denotes the number of distinct blocks to be
distributed and T is the number of time steps before the routing completes.
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We introduce a neighbor selection strategy, which results in a network of
constant degree and logarithmic diameter. Applying Theorem 1 to this network
we obtain a bound of O(b + logn) time steps for the completion of the routing
of the b blocks, with high probability. Note that every graph of n vertices with
constant degree has a diameter Ω(log n). Thus the routing of a block to the
farthest vertex takes Ω(log n) steps. Since it can receive one block in a step
receiving all the blocks takes Ω(b + logn) steps. Thus, our result is optimal up
to a constant factor.

As we mentioned before, in BT each joining client first sends a request to the
tracker that returns a peer set chosen uniformly at random among the existing
peers. These nodes form the initial neighborhood of the new client. To model
such a peer-to-peer network, Arthur and Panigrahy [3] propose the BitTorrent-C
graph (C ≥ 2) which is a directed graph constructed by the following method.

BitTorrent-C graph (abbr. BT-C graph)[3]:

1. At the beginning it consists of C vertices, v1, ..., vC and edges from vj to vi
if and only if j < i.

2. While the total number of vertices is less than n, add a vertex and add
directed edges from C existing vertices chosen uniformly at random to the
new vertex.

This graph has been analyzed thoroughly in [3]. It has been shown that with
high probability the maximum out-degree in a BT-C graph is at most 3C(1 +
lnN), while the diameter is at most 3 lgn. Furthermore, based on Theorem 1
they also proved that the required time steps for distributing b blocks with
the randomized upload policy can be bounded by O(lnn(b + lgn)), with high
probability.

To improve the performance of the original BT, especially in case of flash
crowd settings, they recommend a practical variant of BT-C, called Smoothed-
BT-C graph that can be constructed as follows.

Smoothed-BT-C graph [3]:

1. At the beginning it consists of C vertices, v1, ..., vC and edges from vj to vi
if and only if j < i.

2. While the total number of vertices is less than n, add a vertex and add di-
rected edges from C existing vertices to the new vertex, but instead of choos-
ing each previous vertex uniformly at random, select two previous nodes and
connect the one with higher index to the new vertex.

In [3] it has been proved that by using the randomized upload policy in a
Smoothed-BT-C graph with n vertices, the routing completes in at most O(b+
(lnn)2) time steps, with high probability.

In this paper, we propose two novel neighbor selection strategies that use the
idea of multiple choice to ensure an overlay network of constant out-degree, with
high probability. We first introduce the MultipleChoice-BT-C graph that can be
built up in the following manner.
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MultipleChoice-BT-C graph:

1. At the beginning it consists of C vertices, v1, ..., vC and edges from vj to vi
if and only if j < i.

2. We add the remaining vertices in order. Let t > 2 be a constant. When we
add the ith vertex, C < i ≤ n, we choose t logn vertex from the vertex set
{vj : j ∈ [min(i/2, i−C), i− 1]} uniformly at random and connect the lowest
degree vertex to the new vertex. We repeat this C times in order to add C
directed edges to the new vertex.

Estimating logn can be done in various ways, some simple methods are dis-
cussed e.g. in [11]. We will show in Section 4 that the multiple choice policy
guarantees constant out-degrees with high probability. The disadvantage of this
strategy is that at the insertion of the ith vertex it tends to select the neighbors
from the last 1

2t logn fraction of the previous vertices, since the newer vertices have
more likely a lower degree. The consequence of this will be a super-logarithmic
diameter.

To remedy this problem, we present a modification of this multiple choice
neighbor selection policy, which guaranties an overlay topology with O(C) max-
imal degree and logarithmic diameter with high probability. This improved vari-
ant of BT-C is called Balanced-BT-C graph. It is similar to the MultipleChoice-
BT-C graph with the following modification. Instead of choosing the vertex with
the smallest out-degree from t logn previous vertices, we also take into account
the expected number of times it will be selected in the future. Before the insertion
of the i-th node, for a vertex vj , j < i, let δ(vj) denote the out-degree of vj and
w(vj) :=

∑
i<�≤2j

2C
� . The value w(vj) · t logn expresses the expected number of

times vj will be chosen after the insertion of vi. For j < i/2, w(vj) = 0 and for
j ≥ i, w(vj) is the expected number of future edges. Let δ∗(vj) := δ(vj)+w(vj).

Balanced-BT-C graph:

1. At the beginning the graph consists of C vertices, v1, ..., vC and edges from
vj to vi if and only if j < i.

2. We add the remaining vertices in order. Let t > 2 be a constant. When we
add the ith vertex, C < i ≤ n, we choose t logn vertex from the vertex the
set {vj : j ∈ [min(i/2, i − C), i − 1]} uniformly at random and connect the
vertex vj with the lowest δ(vj) +w(vj) to the new vertex. We repeat this C
times in order to add C directed edges to the new vertex.

Using this neighbor selection strategy ensures that at the moment we insert
the ith vertex, the expected values of δ∗(vj), j ∈ [i/2, i−1] are approximately the
same. Thus the selected neighbor is distributed evenly among {vj : j ∈ [i/2, i−1]}.
As a consequence, the median neighbor is selected expectedly from the middle of
the interval [i/2, i− 1], which results a network with logarithmic diameter.

4 Theoretical Analysis

In order to give a bound on the diameter of the network the term of median
depth has been introduced in [3], and defined as follows.
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Median Depth: For any i, consider the set of integers j such that there is an
edge from vj to vi. Let m(i) denote a median element in this set. Recursively, let
mk(i) = m(mk−1(i)) for k > 0 and m0(i) = i. The median depth of vi is defined
as the the smallest k such that mk(i) = 1.

Clearly, the distance from v1 to vi is at most the median depth of vi.

Lemma 1. For t ≥ 2, the maximum out-degree in a MultipleChoice-BT-C graph
is at most 2C with probability 1− C

n .

Proof. Consider the insertion of the ith vertex. To create a maximum out-degree
greater than 2C, at least one edge to be inserted from a previous vertex with
out-degree of at least 2C. The neighborhood of the ith vertex consists of peers
from the interval I = [ i2 , i− 1]. We also know that peers from I may previously

have been selected by at most i
2 − 1 vertices as neighbors, so the number of

edges originated from I is at most C( i
2 − 1) < C i

2 . Consequently, the interval

contains less than i
4 peers with out-degree 2C. Thus the probability that we

select a vertex from I having out-degree 2C is at most 1
2 . The probability that

all the t logn vertices have out-degree 2C is at most (12 )
t log(n) = 1

nt . Since all
the vertices have C ingress edges, the probability that after inserting the ith
vertex there is a peer with out-degree 2C+1 is at most C

nt . Since t ≥ 2 using the
union bound over the error probabilities of all the vertices proves the lemma:
n∑

i=1

C
nt <

C
nt−1 ≤ C

n . �


Although this neighbor selection strategy guarantees a constant degree with
high probability, themedian depth of the resulting graphwill be super-logarithmic.
The reason is that newer vertices tend to have lower degree and the neighbors of
the new vertex are preferentially selected among the last 1

2t logn fraction of the

previous vertices. When we insert the nth vertex, a vertex vj , j ∈ [n/2, n − 1]
has been chosen before the nth insertion expectedly t logn

∑
j<i<n

2
i times. Thus

newer vertices have been chosen less frequently and more likely have lower degree.

Lemma 2. For t ≥ 2, the maximum out-degree in a Balanced-BT-C graph is at
most 6C with probability 1− C

n .

Proof. Consider the insertion of the ith vertex. The neighborhood of the ith
vertex consists of peers from the interval I = [ i2 , i − 1]. We prove that after
the insertion of the ith vertex, for each vj , j ∈ I, δ∗(vj) ≤ 6C, with high
probability. It will imply the claim of the lemma. To create a vertex vj with
δ∗(vj) > 6C, all of the t logn chosen vertices must have a δ∗(.) value of at
least 6C. We know that peers from I may previously have been selected by at
most i

2 − 1 vertices as neighbors, so the number of edges originated from I is

at most C( i
2 − 1) < C i

2 . Furthermore, we know that, for each j ∈ I, w(vj) =∑
i<�≤2j

2C
� ≤ (2j − i)2Ci ≤ 2C. Since I contains i

2 vartices,
∑

j∈I w(vj) ≤ Ci.

Therefore,
∑

j∈I δ
∗(vj) < C 3i

2 . Consequently, less less than
i
4 peers with a δ∗(.)

value 6C. Thus the probability that we select a vertex from I having a δ∗(.)
value 6C is at most 1

2 . The probability that all the t logn vertices have a δ∗(.)



Balanced Neighbor Selection for BitTorrent-Like Networks 665

value 6C is at most (12 )
t log(n) = 1

nt . Since all vertices have C ingress edges, the
probability that, after inserting the ith vertex, there is a peer with a δ∗(.) value
greater than 6C is at most C

nt . Since t ≥ 2 using the union bound over the error

probabilities of all the vertices proves the lemma:
n∑

i=1

C
nt <

C
nt−1 ≤ C

n . �


One can observe that our balanced neighbor selection strategy ensures that
at the moment we insert the ith vertex, the expected values of δ∗(vj), j ∈
[i/2, i − 1] are approximately the same, resulting that the selected neighbor is
distributed evenly among {vj : j ∈ [i/2, i−1]}. In this case, the median neighbor
is expectedly from the middle of the interval [i/2, i−1], which leads to a network
with logarithmic median-depth.

Applying Theorem 1, it can be claimed that in a Balanced-BT-C graph with
n vertices, routing b data blocks with the randomized upload policy completes in
at most O(b+logn) time steps, with high probability, which is provable optimal
up to constants.

5 Experimental Results

In the previous section, high probability upper bounds have been proved for the
maximum out-degree and the diameter of the different networks. In addition,
simulations enable us not only to validate these theoretical results but to re-
veal more information on the distributions themselves and explore the practical
strength of the above bounds.

The parameters of the constructed overlay networks have been varying in
a reasonable wide range: C was chosen from the range [2, 90], while n from
[500, 100000]. Due to page limitation, results for C = 2 and 30 are only presented
in this paper. C = 2 demonstrates well the behavior of different strategies for
constant size neighbor set, while C = 30 corresponds to the neighbor set whose
size is rather logarithmic in the number of peers in our simulations. For each
setting, the simulations have been repeated 100 times to obtain statistically
enough data for further analysis. Note that the constant t in our multiple choice
methods has been fixed to 2 during the analysis.

First, we pay attention to the maximum out degrees observed in the differ-
ent networks. In a file sharing network, the out-degree of a peer determines the
maximum load on it, indicating the maximum number of other nodes that the
given peer can upload data to. Figure 1 illustrates the maximum out-degrees
for two different C values. Each dot in these figures indicates the maximum
out-degree observed in a given experiment. Since for each setting and algorithm,
the simulations have been repeated 100 times, we can see 100 individual dots for
each n value and graph construction. The fitted curves for the different networks
are marked by different colors, expressing the connection between the maximum
out-degree values and the number of clients. Looking at Figure 1(a), one can
observe that, not surprisingly, the original BT-C results the highest maximum
out-degrees and shows a logarithmic correlation between the maximum values
and the network size. In case of a such small C, Smoothed-BT-C behaves very
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Fig. 1. Maximum out-degrees for the different overlay networks. Each dot represents a
maximum out-degree value after the given simulation has been done. For each param-
eterization and algorithm, the simulations have been repeated 100 times. The fitted
curves/lines indicate the relationship between the maximum out-degrees and the num-
ber of clients in the network.

similarly to the previous overlay construction. Although it provides less max-
imum out-degrees for large n values, it is almost the half of what we can see
in BT-C, but the above relationship is still logarithmic. In accordance with the
theory, both our MultipleChoice-BT-C and Balanced-BT-C algorithms aim at
keeping the out-degrees at a constant level. For C = 2, the maximum values are
3 and 4, respectively. These values correspond to the theoretical high probability
upper bounds. Considering larger neighborhood sizes in Figure 1(b), where C
is 30, similar correlations can be identified, but there are some slight differences
we have to shed light on. First of all, for large peer set sizes (C), the maximum
out-degrees in the networks constructed by MultipleChoice-BT-C and Balanced-
BT-C never reach the theoretical upper bound and, as it is expected, the former
method results a bit lower load level on the peers than the latter one. From a
practical perspective, when the network size is within a reasonable range (e.g.
less than 1 million), the out-degrees in a Smoothed-BT-C graph are only slightly
influenced by the number of peers.

Besides the analysis of the maximum values, our experiments enable us to ex-
amine the out-degree distributions themselves. Figure 2 shows the complementer
cumulative distribution function (CCDF) of the out-degrees for the different al-
gorithms on a semi-log plot. First, we consider C = 2, in case of BT-C the
out-degrees seem to follow an exponential decay, but for larger C values the re-
sults show slightly better load distribution, for the tail of the distribution decays
sharply after a certain point. For Smoothed-BT-C, the figures indicate that the
CCDF of the out-degrees decreases faster than exponential, for both C values.
Not surprisingly, our MultipleChoice-BT-C and Balanced-BT-C methods result
a sudden drop in the CCDF plots at a constant value which is less than or
equal to 2C, indicating that the majority of the nodes have the same constant
out-degree, and the load of the peers are much more balanced.
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Fig. 2. The CCDF of the out-degrees in a network containing n = 100000 peers. Each
method has been evaluated 100 times.

Besides the maximum out-degree, the diameter of the overlay topology also
plays a crucial role in data distribution. For example, if we consider a peer-to-peer
network containing only one seeder node having the whole file at the beginning,
the data blocks need to propagate through the whole network to reach all the
peers. It has already shown in Section 4 that besides the number of blocks to be
distributed and the maximum out-degree, the diameter of the network has also
significant effect on the time required for spreading the blocks of a given file.

Figure 3 depicts the relationship between the maximum median-depth and
the number of peers in the different overlay networks. Each dot in the figures
represents an individual experiment where the network size can be seen on the
horizontal axis, while the observed maximum median-depth on the vertical ones.
The fitted curves show the trend of this relationship for the different methods.
Looking at the case C = 2, the smallest maximum median-depth values are pro-
duced by the simple BT-C and our Balanced-BT-C approaches. In accordance
with our theoretical results, in both cases a logarithmic correlation can be iden-
tified, with a slight difference between them. Considering larger C values, this
difference increases a bit, but it is not significant. For C = 30, in BT-C and
Balanced-BT-C networks with 100000 clients, the maximum median-depths are
20 and 30, respectively, and they are even less in smaller networks. Smoothed-
BT-C also produces a logarithmic relationship with a bit larger base. In the
previous example, the maximum diameter resulted by this approach is less than
65. Taking into account the resulted maximum out-degrees and the ease of its im-
plementability, this method could also perform well in practice, providing a good
trade-off between reduced load and a bit longer diameter. In addition, we have
seen that MultipleChoice-BT-C results constant maximum out-degree which is
less than what we can get in the case of our Balanced-BT-C method. However,
the correlation between the diameter and the network size is much worse than
logarithmic and seems to be proportional to (lnn)2. According to Theorem 1,
both the diameter and the maximum out-degree of a network have significant
influence on how much time it takes to fully distribute the data blocks of a given
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Fig. 3. Maximum median-depth for the different overlay networks. Each dot represents
a maximum median-depth value after the given simulation has been done. For each
parameterization and algorithm, the simulations have been repeated 100 times. The
fitted curves/lines indicate the relationship between the maximum median-depth and
the number of clients in the network.

file in the network. In this respect, our improved Balanced-BT-C method sur-
passes all the other examined approaches, keeping the load of peers at a constant
level and producing short paths in the network whose lengths can be bounded
by O(lnn) with high probability.

It can be said that though the multiple choice can reduce the maximum out-
degree in the overlay topology, but in itself it results a too regular network with
unmanageably huge diameter. It shows the practical meaning of our balancing
technique that can remedy this phenomenon.

The histograms of the maximum median-depth values observed in our sim-
ulations are presented in Figure 4. The first conspicuous difference we can rec-
ognize is that our balanced algorithm shows significantly narrower distribution
compared to the other cases. All the values fall between 34 and 47, while in the
other networks they show much higher variance, resulting twice or more wider
ranges. We can also see that the difference between BT-C and Balanced-BT-C
is even less than what can be derived from Figure 3. The most likely maximum
median-depth values are 39 and 42, respectively. In case of Smoothed-BT-C and
MultipleChoice-BT-C the observed values cover significantly larger ranges.

Besides themaximumvalues, we have also examined the distribution ofmedian-
depths in the different overlays. Figure 5 depicts the CCDF of the median-depth
values where each network consists of 100000 peers. As it is expected,
MultipleChoice-BT-C provides significantly higher median-depths with a much
slower decay than the others. Meanwhile, the other three methods show very sim-
ilar distributions. In Figure 5(a), where C = 2, the slope in the CCDF plot of
Balanced-BT-C is much sharper than in the case of the other two methods, which
indicates that the most likely values are coming from amuch wider range. It means
that not only the maximum diameters have smaller variance, but the median dis-
tances from the source to ordinary peers as well. The CCDF of Balanced-BT-C
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Fig. 4. The empirical distribution of the maximum median-depths observed in our
simulations. Each algorithm has been performed 500 times with the parameters n =
100000 and C = 2.
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Fig. 5. The CCDF of the median-depths for different overlay constructions with fixed
network sizes n = 100000. Each method has been evaluated 100 times.

takes place between BT-C and Smoothed-BT-C in all three figures (C = 2 and
30). One can also recognize that for larger C, the median-depths in our balanced
overlay follow almost the same distribution as what can be seen in the case of
Smoothed-BT-C. AsC is increasing, the difference between the two distribution is
basically disappearing which suggests that, in terms of median-depths, Balanced-
BT-C could be at most as worse as the Smoothed-BT-C method.

6 Conclusion

In this paper, we have introduced a novel neighbor selection strategy which uses
the idea of multiple choice to improve the performance of spreading blocks in a
BT like peer-to-peer network. Our multiple choice algorithm takes into account
not only the current load of a given peer, but the expected value that it will be
selected as uploading neighbor in the future. The constructed overlay topology
has been analyzed from both theoretical and experimental aspects and it has
been proved that this topology has constant degree and logarithmic diameter
with high probability. We have also shown that considering a randomized up-
load policy, routing of b data blocks in the proposed network requires at most
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O(b+ logn) time steps with high probability, which is optimal up to a constant
factor. Besides the theoretical analysis, thorough simulations has been performed
to examine the graph properties of the constructed networks and validate the
theoretical results as well.
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Abstract. We study the parameterized complexity of the directed vari-
ant of the classical Steiner Tree problem on various classes of directed
sparse graphs. While the parameterized complexity of Steiner Tree

parameterized by the number of terminals is well understood, not much
is known about the parameterization by the number of non-terminals
in the solution tree. All that is known for this parameterization is that
both the directed and the undirected versions are W[2]-hard on gen-
eral graphs, and hence unlikely to be fixed parameter tractable (FPT).
The undirected Steiner Tree problem becomes FPT when restricted to
sparse classes of graphs such as planar graphs, but the techniques used
to show this result break down on directed planar graphs.

In this article we precisely chart the tractability border for Directed

Steiner Tree (DST) on sparse graphs parameterized by the number of
non-terminals in the solution tree. Specifically, we show that the problem
is fixed parameter tractable on graphs excluding a topological minor,
but becomes W[2]-hard on graphs of degeneracy 2. On the other hand
we show that if the subgraph induced by the terminals is required to be
acyclic then the problem becomes FPT on graphs of bounded degeneracy.

We also show that our algorithm achieves the best possible running
time dependence on the solution size and degeneracy of the input graph,
under standard complexity theoretic assumptions. Using the ideas de-
veloped for DST, we also obtain improved algorithms for Dominating

Set on sparse undirected graphs. These algorithms are asymptotically
optimal.
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1 Introduction

In the Steiner Tree problem we are given as input a n-vertex graph G =
(V,E) and a set T ⊆ V of terminals. The objective is to find a subtree ST
of G spanning T that minimizes the number of vertices in ST . Steiner Tree

is one of the most intensively studied graph problems in Computer Science.
Steiner trees are important in various applications such as phylogenetic tree
reconstruction [11] and network routing [16]. We refer to the book of Prömel and
Steger [20] for an overview of the results on, and applications of the Steiner

Tree problem. The Steiner Tree problem is known to be NP-hard [8], and
remains hard even on planar graphs [7]. The minimum number of non-terminals
can be approximated to within O(log n), but cannot be approximated to o(log t),
where t is the number of terminals, unless P ⊆ DTIME[npolylog n] (see [14]).
Furthermore the weighted variant of Steiner Tree remains APX-complete,
even when the graph is complete and all edge costs are either 1 or 2 (see [2]).

In this paper we study a natural generalization of Steiner Tree to directed
graphs, from the perspective of parameterized complexity. The goal of parame-
terized complexity is to find ways of solving NP-hard problems more efficiently
than by brute force. The aim is to restrict the combinatorial explosion in the
running time to a parameter that is much smaller than the input size for many
input instances occurring in practice. Formally, a parameterization of a problem
is the assignment of an integer k to each input instance and we say that a pa-
rameterized problem is fixed-parameter tractable (FPT) if there is an algorithm
that solves the problem in time f(k) · |I|O(1), where |I| is the size of the input
instance and f is an arbitrary computable function depending only on the pa-
rameter k. Above FPT, there exists a hierarchy of complexity classes, known as
the W-hierarchy. Just as NP-hardness is used as an evidence that a problem is
probably not polynomial time solvable, showing that a parameterized problem
is hard for one of these classes gives evidence that the problem is unlikely to be
fixed-parameter tractable. The main classes in this hierarchy are:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P ] ⊆ XP.

The principal analogue of the classical intractability class NP is W[1]. In partic-
ular, this means that an FPT algorithm for any W[1]-hard problem would yield
an f(k)nc time algorithm for every problem in the class W[1]. For more back-
ground on parameterized complexity the reader is referred to the monograph [6].
We consider the following directed variant of Steiner Tree.

Directed Steiner Tree (DST) Parameter: k
Input: A directed graph D = (V,A), a root vertex r ∈ V , a set T ⊆ V \ {r}
of terminals and an integer k ∈ N.
Question: Is there a set S ⊆ V \ (T ∪ {r}) of at most k vertices such that
the digraph D[S ∪T ∪{r}] contains a directed path from r to every terminal
t ∈ T ?

The DST problem is well studied in approximation algorithms, as the
problem generalizes several important connectivity and domination problems
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on undirected as well as directed graphs [4,5,10,21,22]. These include Group

Steiner Tree, Node Weighted Steiner Tree, TSP and Connected

Dominating Set. However, this problem has so far largely been ignored in
the realm of parameterized complexity. The aim of this paper is to fill this gap.

It follows from the reduction presented in [18] that DST is W[2]-hard on
general digraphs. Hence we do not expect FPT algorithms to exist for these
problems, and so we turn our attention to classes of sparse digraphs. Our results
give a nearly complete picture of the parameterized complexity ofDST on sparse
digraphs. Specifically, we prove the following results. We use the O∗ notation to
suppress factors polynomial in the input size.

1. There is a O∗(2O(hk))-time algorithm for DST on digraphs excluding Kh as
a minor1. Here Kh is a clique on h vertices.

2. There is a O∗(f(h)k)-time algorithm for DST on digraphs excluding Kh as
a topological minor. This algorithm is quite involved and uses the recently
developed Grohe-Marx decomposition for graphs excluding Kh as a topolog-
ical minor [9] and our algorithm for the problem on Kh-minor free digraphs
as a subroutine. The proof is given in the appended full version of the paper.

3. There is a O∗(2O(hk))-time algorithm for DST on digraphs excluding Kh as
a topological minor if the graph induced by the set of terminals (also referred
to as the graph induced on terminals) is acyclic.

4. DST isW[2]-hard on 2-degenerate digraphs if the graph induced on terminals
is allowed to contain directed cycles.

5. There is a O∗(2O(dk))-time algorithm for DST on d-degenerate graphs if the
graph induced on terminals is acyclic, implying that DST is FPT parame-
terized by k on o(logn)-degenerate graph classes. This yields the first FPT
algorithm for Steiner Tree on undirected d-degenerate graphs.

6. For any constant c > 0, there is no f(k)no( k
log k )-time algorithm on graphs of

degeneracy c logn even if the graph induced on terminals is acyclic, unless
the Exponential Time Hypothesis [12] (ETH) fails.

Our algorithms for DST hinge on a novel branching which exploits the
domination-like nature of the DST problem. The branching is based on a new
measure which seems useful for various connectivity and domination problems on
both directed and undirected graphs of bounded degeneracy.We demonstrate the
versatility of the new branching by applying it to the Dominating Set problem
on graphs excluding a topological minor and more generally, graphs of bounded
degeneracy. In the Dominating Set problem, we are given an undirected graph
G = (V,E) and a positive integer k and the objective is to check whether there
exists a subset S ⊆ V of size at most k such that every vertex in G is either in
S or adjacent to a vertex in S. Our O∗(2O(dk))-time algorithm for Dominating

Set on d-degenerate graphs improves over theO∗(kO(dk))-time algorithmby Alon
and Gutner [1]. It turns out that our algorithm is essentially optimal – we show

1 When we say that a digraph excludes a fixed (undirected) graph as a minor or a
topological minor, or that the digraph has degeneracy d we mean that the statement
is true for the underlying undirected graph.
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that assuming the ETH, the running time dependence of our algorithm on the de-
generacy of the input graph and solution size k can not be significantly improved.
Using these ideas we also obtain a polynomial time O(d2) factor approximation
algorithm for Dominating Set on d-degenerate graphs. The results related to
Dominating Set as well as proofs missing in this paper appear in the full ver-
sion [13]. We believe that our new branching and corresponding measure will turn
out to be useful for several other problems on sparse (di)graphs.

2 Preliminaries

Given a digraph D = (V,A), for each vertex v ∈ V , we define N+(v) = {w ∈
V |(v, w) ∈ A} and N−(v) = {w ∈ H |(w, v) ∈ A}. In other words, the sets N+(v)
and N−(v) are the set of out-neighbors and in-neighbors of v, respectively.

The degeneracy of an undirected graph G = (V,E) is defined as the least
number d such that every subgraph of G contains a vertex of degree at most d.
The degeneracy of a digraph is defined to be the degeneracy of the underlying
undirected graph. We say that a class of (di)graphs C is o(log n)-degenerate if
there is a function f(n) = o(log n) such that every (di)graph G ∈ C is f(|V (G)|)-
degenerate.

In a directed graph, we say that a vertex u dominates a vertex v if there is an
arc (u, v) and in an undirected graph, we say that a vertex u dominates a vertex
v if there is an edge (u, v) in the graph.

Given a vertex v in a directed graph D, we define the operation of short-
circuiting across v as follows. We add an arc from every vertex in N−(v) to
every vertex in N+(v) and delete v.

For a set of vertices X ⊆ V (G) such that G[X ] is connected we denote by
G/X the graph obtained by contracting edges of a spanning tree of G[X ] in G.

Given an instance (D, r, T, k) of DST, we say that a set S ⊆ V \ (T ∪ {r}) of
at most k vertices is a solution to this instance if in the digraph D[S ∪ T ∪ {r}]
there is a directed path from r to every terminal t ∈ T .

Minors and Topological Minors. For a graph G = (V,E), a graph H is a mi-
nor of G if H can be obtained from G by deleting vertices, deleting edges, and
contracting edges. We denote that H is a minor of G by H # G. A mapping
ϕ : V (H) → 2V (G) is a model of H in G if for every u, v ∈ V (H) with u 	= v
we have ϕ(u) ∩ ϕ(v) = ∅, G[ϕ(u)] is connected, and, if {u, v} is an edge of H ,
then there are u′ ∈ ϕ(u) and v′ ∈ ϕ(v) such that {u′, v′} ∈ E(G). It is known,
that H # G iff H has a model in G. A subdivision of a graph H is obtained by
replacing each edge ofH by a non-trivial path. We say that H is a topological mi-
nor of G if some subgraph of G is isomorphic to a subdivision of H and denote
it by H #T G. In this paper, whenever we make a statement about a directed
graph having (or being) a minor of another graph, we mean the underlying undi-
rected graph. A graph G excludes graph H as a (topological) minor if H is not a
(topological) minor of G. We say that a class of graphs C excludes o(logn)-sized
(topological) minors if there is a function f(n) = o(log n) such that for every graph
G ∈ C we have that Kf(|V (G)|) is not a (topological) minor of G.
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3 DST on Sparse Graphs

In this section, we introduce our main idea and use it to design algorithms for
the Directed Steiner Tree problem on classes of sparse graphs. We begin
by giving a O∗(2O(hk))-time algorithm for DST on Kh-minor free graphs. Then,
we show that in general, even in 2-degenerate graphs, we cannot expect to have
an FPT algorithm for DST parameterized by the solution size. Finally, we show
that when the graph induced on the terminals is acyclic, then our ideas are
applicable and we can give a O∗(2O(hk))-time algorithm onKh-topological minor
free graphs and a O∗(2O(dk))-time algorithm on d-degenerate graphs.

DST on minor free graphs. We begin with a polynomial time preprocessing
which will allow us to identify a special subset of the terminals with the property
that it is enough for us to find an arborescence from the root to these terminals.

Rule 1. Given an instance (D, r, T, k) of DST, let C be a strongly connected
component with at least 2 vertices in the graph D[T ]. Then, contract C to a
single vertex c, to obtain the graph D′ and return the instance (D′, r, T ′ = (T \
C) ∪ {c}, k).

Lemma 1. Rule 1 is sound, i.e., the instance (D′, r, T ′, k) produced by the rule
is a yes-instance of DST if and only if (D, r, T, k) is a yes-instance of DST.

Proof. Suppose S is a solution to (D, r, T, k). Then there is a directed path from
r to every terminal t ∈ T in the digraph D[S∪T ∪{r}]. Contracting the vertices
of C will preserve this path. Hence, S is also a solution for (D′, r, T ′, k).

Conversely, suppose S is a solution for (D′, r, T ′, k). If the path P from r to
some t ∈ T ′ \C in D′[S ∪T ′ ∪ {r}] contains c, then there must be a path from r
to some vertex x of C and a path (possibly trivial) from some vertex y ∈ C to t
in D[S∪T ∪{r}]. As there is a path between any x and y in D[C], concatenating
these three paths results in a path from r to t in D[S ∪ T ∪ {r}]. Hence, S is
also a solution to (D, r, T, k). �


Proposition 1. Given an undirected graph G = (V,E) which excludes Kh as a
minor for some h, and a vertex subset X ⊆ V inducing a connected subgraph of
G, the graph G/X also excludes Kh as a minor.

We call an instance reduced if Rule 1 cannot be applied to it. Given an instance
(D, r, T, k), we first apply Rule 1 exhaustively to obtain a reduced instance. Since
the resulting graph still excludes Kh as a minor (by Proposition 1), we have not
changed the problem and hence, for ease of presentation, we denote the reduced
instance also by (D, r, T, k). We call a terminal vertex t ∈ T a source-terminal
if it has no in-neighbors in D[T ]. We use T0 to denote the set of all source-
terminals. Since for every terminal, the graph D[T ] contains a path from some
source terminal to this terminal, we have the following observation.

Observation 1. Let (D, r, T, k) be a reduced instance and let S ⊆ V . Then the
digraph D[S ∪ T ∪ {r}] contains a directed path from r to every terminal t ∈ T
if and only if it contains a directed path from r to every source-terminal t ∈ T0.
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The following is an important subroutine of our algorithm.

Lemma 2. Let D be a digraph, r ∈ V (D), T ⊆ V (D) \ {r} and T0 ⊆ T . There
is an algorithm which can find a minimum size set S ⊆ V (D) such that there is
path from r to every t ∈ T0 in D[T ∪ {r} ∪ S] in time O∗(2|T0|).

Proof. Nederlof [19] gave an algorithm to solve the Steiner Tree problem on
undirected graphs in time O∗(2t) where t is the number of terminals. Misra et
al. [17] observed that the same algorithm can be easily modified to solve the
DST problem in time O∗(2t) with t being the number of terminals. In our case,
we create an instance of the DST problem by taking the same graph, defining
the set of terminals as T0 and for every vertex t ∈ T \T0, short-circuiting across
this vertex. Clearly, a k-sized solution to this instance gives a k-sized solution
to the original problem. To actually find the set of minimum size, we can first
find its size by a binary search and then delete one by one the non-terminals, if
their deletion does not increase the size of the minimum solution. �


We call the algorithm from Lemma 2, Nederlof(D, r, T, T0). We also need the
following structural claim regarding the existence of low degree vertices in graphs
excluding Kh as a topological minor.

Lemma 3. Let G = (V,E) be an undirected graph excluding Kh as a topological
minor2 and let X,Y ⊆ V be two disjoint vertex sets. If every vertex in X has at
least h−1 neighbors in Y , then there is a vertex in Y with at most ch4 neighbors
in X ∪ Y for some constant c.

Proof. It was proved in [3,15] that there is a constant a such that any graph that
does not contain Kh as a topological minor is d = ah2-degenerate. Consider the
graph H0 = G[X ∪ Y ] \ E(X). We construct a sequence of graphs H0, . . . , Hl,
starting from H0 and repeating an operation which ensures that any graph in
the sequence excludes Kh as a topological minor. The operation is defined as
follows. In graph Hi, pick a vertex x ∈ X . As it has degree at least h− 1 in Y
and there is no Kh topological minor in Hi, it has two neighbors y1 and y2 in Y ,
which are non-adjacent. Remove x from Hi and add the edge (y1, y2) to obtain
the graph Hi+1. By repeating this operation, we finally obtain a graph Hl where
the set X is empty. As the graphHl still excludes Kh as a topological minor, it is
d-degenerate, and hence it has at most d|Y | edges. In the sequence of operations,
every time we remove a vertex from X , we added an edge between two vertices
of Y . Hence, the number of vertices of X in H0 is bounded by the number of
edges within Y in Hl, which is at most d|Y |. As H0 is also d-degenerate, it has at
most d(|X |+ |Y |) = d(d+1)|Y | edges. Therefore, there is a vertex in Y incident
on at most 2d(d+1) = 2ah2(ah2+1) ≤ ch4 edges where c = 4a2. This concludes
the proof of the lemma. �

2 As a graph G which exludes Kh as a minor also excludes Kh as a topological minor,
the lemma also applies in the former case. While a stronger bound can be given for
this case, stating the lemma this way allows us to use it in further sections and does
not hurt the asymptotic running time.
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Let (D, r, T, k) be a reduced instance of DST, Y ⊆ V \ T be a set of non-
terminals representing a partial solution and db be some fixed positive integer.
We define the following sets of vertices

– T1 = T1(Y ) is the set of source terminals dominated by Y .
– Bh = Bh(Y, db) is the set of non-terminals not in Y , which dominate at least
db + 1 terminals in T0 \ T1.

– Bl = Bl(Y, db) is the set of non-terminals not in Y , which dominate at most
db terminals in T0 \ T1.

– Wh = Wh(Y, db) is the set of terminals in T0 \ T1 which are dominated by
Bh.

– Wl = Wl(Y, db) = T0 \ (T1 ∪Wh) is the set of source terminals which are not
dominated by Y or Bh.

Note that the sets Y, T1, Bh, Bl,Wh,Wl are pairwise disjoint. The constant db is
introduced to describe the algorithm in a more general way so that we can use it
in further sections of the paper. Throughout this section, we will have db = h−2.

Lemma 4. Let (D, r, T, k) be a reduced instance of DST, Y ⊆ V \ T , db ∈ N,
and T1, Bh, Bl, Wh, and Wl as defined above. If |Wl| > db(k − |Y |), then the
given instance does not admit a solution containing Y .

Proof. This follows from the fact that any non-terminal from V \ (Bh ∪ Y ) in
the solution, which dominates a vertex in Wl can dominate at most db of these
vertices. Since the solution contains at most k−|Y | such non-terminals, at most
db(k − |Y |) of these vertices can be dominated. This completes the proof.

Lemma 5. Let (D, r, T, k) be a reduced instance of DST, Y ⊆ V \ T , db ∈ N,
and T1, Bh, Bl, Wh, and Wl as defined above. If Wh is empty, then there is
an algorithm which can test if this instance has a solution containing Y in time
O∗(2db(k−|Y |)+|Y |).

Proof. We use Lemma 2 and test whether |Nederlof(D, r, T ∪ Y ,Y ∪ (T0 \
T1))| ≤ k − |Y |. We know that |Y | ≤ k and, by Lemma 4, we can assume
that |T0 \ T1| ≤ db(k − |Y |). Therefore, the size of Y ∪ (T0 \ T1) is bounded by
|Y |+ db(k− |Y |), implying that we can solve the DST problem on this instance
in time O∗(2db(k−|Y |)+|Y |). This completes the proof of the lemma. �


We now proceed to the main algorithm of this subsection.

Theorem 2. DST can be solved in time O∗(3hk+o(hk)) on graphs excluding Kh

as a minor.

Proof. Let T0 be the set of source terminals of this instance. The algorithm
we describe takes as input a reduced instance (D, r, T, k), a vertex set Y and a
positive integer db and returns a smallest solution for the instance which contains
Y if such a solution exists. If there is no solution, then the algorithm returns
a dummy symbol S∞. To simplify the description, we assume that |S∞| = ∞.
The algorithm is a recursive algorithm and at any stage of the recursion, the
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Input : An instance (D, r, T, k) of DST, degree bound db, set Y
Output: A smallest solution of size at most k and containing Y for the instance (D, r, T, k)

if it exists and S∞ otherwise
1 Compute the sets Bh, Bl, Y , Wh, Wl

2 if |Wl| > db(k − |Y |) then return S∞
3 else if Bh = ∅ then
4 S ← Nederlof(D, r, T ∪ Y,Wl ∪ Y ) ∪ Y .
5 if |S| > k then S ← S∞
6 return S

7 end
8 else
9 S ← S∞

10 Find vertex v ∈ Wh with the least in-neighbors in Bh.

11 for u ∈ Bh ∩ N−(v) do
12 Y ′ ← Y ∪ {u},
13 S′ ← DST-solve((D, r, T, k), db, Y

′).
14 if |S′| < |S| then S ← S′

15 end

16 D′ ← D \ (Bh ∩ N−(v))

17 S′ ← DST-solve((D′, r, T, k), db, Y ).

18 if |S′| < |S| then S ← S′

19 return S

20 end

Algorithm 3.1. Algorithm DST-solve for DST on graphs excluding Kh as a
minor

corresponding recursive step returns the smallest set found in the recursions
initiated in this step. We start with Y being the empty set.

By Lemma 4, if |Wl| > db(k−|Y |), then there is no solution containing Y and
hence we return S∞ (see Algorithm 3.1). If Bh is empty, then we apply Lemma 5
to solve the problem in time O∗(2dbk). If Bh is non-empty, then we find a vertex
v ∈ Wh with the least in-neighbors in Bh. Suppose it has dw of them.

We then branch into dw + 1 branches described as follows. In the first dw
branches, we move a vertex u of Bh which is an in-neighbor of v, to the set Y .
Each of these branches is equivalent to picking one of the in-neighbors of v from
Bh in the solution. We then recurse on the resulting instance. In the last of the
dw+1 branches, we delete from the instance non-terminals in Bh which dominate
v and recurse on the resulting instance. Note that in the resulting instance of
this branch, we have v in Wl(Y ).

Correctness. At each node of the recursion tree, we define a measure μ(I) =
db(k − |Y |) − |Wl|. We prove the correctness of the algorithm by induction on
this measure. In the base case, when db(k − |Y |)− |Wl| < 0, then the algorithm
is correct (by Lemma 4). Now, we assume as induction hypothesis that the
algorithm is correct on instances with measure less than some μ ≥ 0. Consider
an instance I such that μ(I) = μ. Since the branching is exhaustive, it is sufficient
to show that the algorithm is correct on each of the child instances. To show
this, it is sufficient to show that for each child instance I ′, μ(I ′) < μ(I). In the
first dw branches, the size of the set Y increases by 1, and the size of the set
Wl does not decrease. Hence, in each of these branches, μ(I ′) ≤ μ(I) − db. In
the final branch, though the size of the set Y remains the same, the size of the
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set Wl increases by at least 1. Hence, in this branch, μ(I ′) ≤ μ(I)− 1. Thus, we
have shown that in each branch, the measure drops, hence completing the proof
of correctness of the algorithm.

Analysis. Since D exludes Kh as a minor, Lemma 3, combined with the fact
that we set db = h−2, implies that dmax

w = ch4, for some c, is an upper bound on
the maximum dw which can appear during the execution of the algorithm. We
first bound the number of leaves of the recursion tree as follows. The number
of leaves is bounded by

∑dbk
i=0

(
dbk
i

)
(dmax

w )
k− i

db . To see this, observe that each
branch of the recursion tree can be described by a length-dbk vector as shown
in the correctness paragraph. We then select i positions of this vector on which
the last branch was taken. Finally for k − i

db
of the remaining positions, we

describe which of the first at most dmax
w branches was taken. Any of the first

dmax
w branches can be taken at most k − i

db
times if the last branch is taken i

times.
The time taken along each root to leaf path in the recursion tree is polynomial,

while the time taken at a leaf for which the last branch was taken i times is
O∗(2

db(k−(k− i
db

))+k− i
db ) = O∗(2i+k) (see Lemmata 4 and 5). Hence, the running

time of the algorithm is

O∗

(
dbk∑
i=0

(
dbk

i

)
(dmax

w )
k− i

db · 2i+k

)
= O∗

(
(2dmax

w )k ·
dbk∑
i=0

(
dbk

i

)
· 2i

)
.

For db = h − 2 and dmax
w = ch4 this is O∗(3hk+o(hk)). This completes the proof

of the theorem. �


Theorem 2 has the following corollary.

Corollary 1. If C is a class of digraphs excluding o(log n)-sized minors, then
DST parameterized by k is FPT on C.

DST on d-degenerate graphs. Since DST has a O∗(f(k, h)) algorithm on
graphs excluding minors (the previous subsection) and topological minors, a
natural question is- does DST have a O∗(f(k, d)) algorithm on d-degenerate
graphs. However, we show that in general, we cannot expect an algorithm of
this form even for an arbitrary 2-degenerate graph.

Theorem 3. DST parameterized by k is W[2]-hard on 2-degenerate graphs.

Proof. The proof is by a parameterized reduction from Set Cover. Given an
instance (U ,F = {F1, . . . , Fm}, k) of Set Cover, we construct an instance of
DST as follows. Corresponding to each set Fi, we have a vertex fi and corre-
sponding to each element u ∈ U , we add a directed cycle Cu of length lu where
lu is the number of sets in F which contain u. For each cycle Cu, we add an
arc from each of the sets containing u, to a unique vertex of Cu. Since Cu has
lu vertices, this is possible. Finally, we add another directed cycle C of length
m + 1 and for each vertex fi, we add an arc from a unique vertex of C to fi.
Again, since C has length m + 1, this is possible. Finally, we set as the root r,
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the only remaining vertex of C which does not have an arc to some fi and we set
as terminals all the vertices involved in a directed cycle Cu for some u and all
the vertices in the cycle C except the root r. It is easy to see that the resulting
digraph has degeneracy 3. Finally, we subdivide every edge which lies in a cycle
Cu for some u, or on the cycle C and add the new vertices to the terminal set.
This results in a digraph D of degeneracy 2. Let T be the set of terminals as
defined above. This completes the construction. We defer the straightforward
proof that (U ,F , k) is a Yes instance of Set Cover iff (D, r, T, k) is a Yes

instance of DST to the full version of the paper.

In the instance of DST obtained in the above reduction, it seems that the pres-
ence of directed cycles in the subgraph induced by the terminals plays a major
role in the hardness of this instance. We formally show that this is indeed the
case by presenting an FPT algorithm for DST for the case the digraph induced
by the terminals is acyclic.

Theorem 4. DST can be solved in time O∗(2O(dk)) on d-degenerate graphs if
the digraph induced by the terminals is acyclic.

Theorem 4 has the following corollary.

Corollary 2. If C is an o(log n)-degenerate class of digraphs, then DST param-
eterized by k is FPT on C if the digraph induced by terminals is acyclic.

Before concluding this section, we also observe that analogous to the algorithms
in Theorems 2 and 4, we can show that in the case when the digraph induced
by terminals is acyclic, the DST problem admits an algorithm running in time
O∗(2O(hk)) on graphs excluding Kh as a topological minor.

Theorem 5. DST can be solved in time O∗(2O(hk)) on graphs excluding Kh as
a topological minor if the digraph induced by terminals is acyclic.

Hardness of DST. In this section, we show that the algorithm given by The-
orem 4 is essentially the best possible with respect to the dependency on the
degeneracy and the solution size. We begin by proving a lower bound on the
time required by any algorithm for DST on O(log n)-degenerate graphs.

Theorem 6. DST cannot be solved in time f(k)no( k
log k ) on c logn-degenerate

graphs for any constant c > 0 even if the digraph induced by terminals is acyclic,
where k is the solution size and f is an arbitrary function, unless ETH fails.

In order to prove Theorem 6, we first prove the following lemma.

Lemma 6. There is a constant γ such that Set Cover with size of each set

bounded by γ logm cannot be solved in time f(k)mo( k
log k ), unless ETH fails,

where k is the size of the solution and m is the size of the family of sets.

Proof of Theorem 6. The proof is by a reduction from the restricted version
of Set Cover shown to be hard in Lemma 6. Fix a constant c > 0 and let
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(U = {u1, . . . , un},F = {F1, . . . , Fm}, k) be an instance of Set Cover, where
the size of any set is at most γ logm, for some constant γ. For each set Fi, we
have a vertex fi. For each element ui, we have a vertex xi. If an element ui is
contained in set Fj , then we add an arc (fj , xi). Further, we add another vertex
r and add arcs (r, fi) for every i. Finally, we add m2γ/c isolated vertices. This
completes the construction of the digraph D. We set T = {x1, . . . , xn} ∪ {r} as
the set of terminals and r as the root.

We claim that (U ,F , k) is a Yes instance of Set Cover iff (D, r, T, k) is a
Yes instance of DST. Suppose that {F1, . . . , Fk} is a set cover for the given
instance. Clearly, the vertices {f1, . . . , fk} form a solution for the DST instance.

Conversely, suppose that {f1, . . . , fk} is a solution for theDST instance. Since
the only way that r can reach a vertex xi is through some fj, and the construction
implies that ui ∈ Fj , the sets {F1, . . . , Fk} form a set cover for (U ,F , k). This
concludes the proof of equivalence of the two instances.

We claim that the degeneracy of the graph D is c logn1 + 1. First, we show
that the degeneracy of the graph D is bounded by γ logm + 1. This follows
from that each vertex fi has total degree at most γ logm+ 1 and if a subgraph
contains none of these vertices, then it contains no edges. Now, n1 is at least
m2γ/c. Hence, log n1 ≥ (2γ/c) logm and the degeneracy of the graph is at most
γ logm+1 ≤ c·(2γ/c) logm ≤ c logn1. Finally, since each vertex fi is adjacent to
at most γ logm+1 vertices, n1 = O(m logm+m2γ/c) and, thus, it is polynomial

inm. Hence, an algorithm for DST of the form f(k)n
o( k

log k )

1 implies an algorithm

of the form f(k)mo( k
log k ) for the Set Cover instance. This concludes the proof.

�

By Theorem 6 we get the following corollary.

Corollary 3. There are no two functions f and g such that g(d) = o(d) and
DST has an algorithm on d-degenerate graphs running in time O∗(2g(d)f(k))
unless ETH fails.

To examine the dependency on the solution size we utilize the following theorem,
leading to Corollary 4.

Theorem 7. ([12]) There is a constant c such that Dominating Set does not
have an algorithm running in time O∗(2o(n)) on graphs of maximum degree ≤ c
unless ETH fails.

Corollary 4. There are no two functions f and g such that f(k) = o(k) and
DST has an algorithm on d-degenerate graphs running in time O∗(2g(d)f(k)),
unless ETH fails.
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Abstract. The projection games (aka Label-Cover) problem is of great
importance to the field of approximation algorithms, since most of the
NP-hardness of approximation results we know today are reductions from
Label-Cover. In this paper we design several approximation algorithms
for projection games:

1. A polynomial-time approximation algorithm that improves on the
previous best approximation by Charikar, Hajiaghayi and Karloff [7].

2. A sub-exponential time algorithm with much tighter approximation
for the case of smooth projection games.

3. A PTAS for planar graphs.

Keywords: Label-Cover, projection games.

1 Introduction

The projection games problem (also known as Label Cover) is defined as
follows.

Input: A bipartite graph G = (A,B,E), two finite sets of labels ΣA, ΣB,
and, for each edge e = (a, b) ∈ E, a “projection” πe : ΣA → ΣB.

Goal: Find an assignment to the vertices ϕA : A → ΣA and ϕB : B →
ΣB that maximizes the number of edges e = (a, b) that are “satisfied”, i.e.,
πe(ϕA(a)) = ϕB(b).

An instance is said to be “satisfiable” or “feasible” or have “perfect complete-
ness” if there exists an assignment that satisfies all edges. An instance is said
to be “δ-nearly satisfiable” or “δ-nearly feasible” if there exists an assignment
that satisfies (1 − δ) fraction of the edges. In this work we focus on satisfiable
instances of projection games.

Label Cover has gained much significance for approximation algorithms
because of the following PCP Theorem, establishing that it is NP-hard, given a
satisfiable projection game instance, to satisfy even an ε fraction of the edges:
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Theorem 1 (Strong PCP Theorem). For every n, ε = ε(n), there is k =
k(ε), such that deciding Sat on inputs of size n can be reduced to finding, given
a satisfiable projection game on alphabets of size k, an assignment that satisfies
more than an ε fraction of the edges.

This theorem is the starting point of the extremely successful long-code based
framework for achieving hardness of approximation results [6,11], as well as of
other optimal hardness of approximation results, e.g., for Set-Cover [9,16,8].

We know several proofs of the strong PCP theorem that yield different param-
eters in Theorem 1. The parallel repetition theorem [19], applied on the basic
PCP Theorem [5,4,3,2], yields k(ε) = (1/ε)O(1). Alas, it reduces exact Sat on
input size n to Label Cover on input size nO(log 1/ε). Hence, a lower bound
of 2Ω(n) for the time required for solving Sat on inputs of size n only implies

a lower bound of 2n
Ω(1/ log 1/ε)

for Label Cover via this theorem. A different
proof is based on PCP composition [17,8]. It has smaller blow up but larger
alphabet size. Specifically, it shows a reduction from exact Sat with input size n
to Label Cover with input size n1+o(1)poly(1/ε) and alphabet size exp(1/ε).

One is tempted to conjecture that a PCP theorem with both a blow-up of
n1+o(1)poly(1/ε) and an alphabet size (1/ε)O(1) holds. See [16] for a discussion
of potential applications of this “Projection Games Conjecture”.

Finding algorithms for projection games is therefore both a natural pursuit
in combinatorial optimization, and also a way to advance our understanding of
the main paradigm for settling the approximability of optimization problems.
Specifically, our algorithms help make progress towards the following questions:

1. Is the ”Projection Games Conjecture” true? What is the tradeoff between
the alphabet size, the blow-up and the approximation factor?

2. What about even stronger versions of the strong PCP theorem? E.g., Khot
introduced “smooth” projection games [13] (see discussion below for the
definition). What kind of lower bounds can we expect to get via such a
theorem?

3. Does a strong PCP theorem hold for graphs of special forms, e.g., on planar
graphs?

2 Our Results

2.1 Better Approximation in Polynomial Time

In 2009, Charikar, Hajiaghayi and Karloff presented a polynomial-time
O((nk)1/3)-approximation algorithm for Label Cover on graphs of size n with
alphabets of size k [7]. This improved on Peleg’s O((nk)1/2)-approximation al-
gorithm [18]. Both Peleg’s and the CHK algorithms worked in the more general
setting of arbitrary constraints on the edges and possibly unsatisfiable instances.
We show a polynomial-time algorithm that achieves a better approximation for
satisfiable projection games:

Theorem 2. There is a polynomial-time algorithm that given a satisfiable in-
stance of projection games on a graph of size n and alphabets of size k, finds an
assignment that satisfies O((nk)1/4) edges.
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2.2 Algorithms for Smooth Projection Games

Khot introduced “smooth” projection games in order to obtain new hardness of
approximation results, e.g., for coloring problems [13]. In a smooth projection
game, for every vertex a ∈ A, the assignments projected to a’s neighborhood by
the different possible assignments σa ∈ ΣA to a, differ a lot from one another
(alternatively, form an error correcting code with high relative distance). More
formally:

Definition 1. A projection game instance is μ-smooth if for every a ∈ A and
any distinct assignments σa, σ

′
a ∈ ΣA, we have

Prb∈N(a)[π(a,b)(σa) = π(a,b)(σ
′
a)] ≤ μ.

Intuitively, smoothness makes the projection games problem easier, since know-
ing only a small fraction of the assignment to a neighborhood of a vertex a ∈ A
determines the assignment to a.

Smoothness can be seen as an intermediate property between projection and
uniqueness, with uniqueness being 0-smoothness. Khot’s Unique Games Con-
jecture [14] is that the Strong PCP Theorem holds for unique games on nearly
satisfiable instances for any constant ε > 0.

The Strong PCP Theorem (Theorem 1) is known to hold for μ-smooth projec-
tion games with μ > 0. However, the known reductions transformSat instances of
size n to instances of smoothLabelCover of size at leastnO((1/μ) log(1/ε)) [13,12].
Hence, a lower bound of 2Ω(n) for Sat only translates into a lower bound of

2n
Ω(μ/ log(1/ε))

for μ-smooth projection games.
Interestingly, the efficient reduction of Moshkovitz and Raz [17] inherently

generates instances that are not smooth. Moreover, for unique games it is known
that if they admit a reduction from Sat of size n, then the reduction must incur

a blow-up of at least n1/δΩ(1)

for δ-almost satisfiable instances. This follows from
the sub-exponential time algorithm of Arora, Barak and Steurer [1].

Given this state of affairs, one wonders whether a large blow-up is also neces-
sary for smooth projection games. We make progress toward settling this ques-
tion by showing:

Theorem 3. There exists c ≥ 1 for which the following holds: there is a random-
ized algorithm that given an μ-smooth satisfiable projection game in which dA ≥
c lognA

μ , finds an optimal assignment in time exp(O(μnB log |ΣB|))poly(nA, |ΣA|)
with probability 2/3.

There is also a deterministic O(1)-approximation algorithm for μ-smooth sat-
isfiable projection games of any degree. The deterministic algorithm runs in time
exp(O(μnB log |ΣB|))poly(nA, |ΣA|) as well.

The algorithms work by finding a subset of fraction μ in B that is connected to
all, or most, of the vertices in A and going over all possible assignments to it.

Theorem 3 essentially implies that a blow-up of n/μ is necessary for any reduc-
tion from Sat to μ-smooth Label Cover, no matter what is the approximation
factor ε.
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2.3 PTAS For Planar Graphs

As the strong PCP Theorem shows, Label Cover is NP-hard to approximate
even to within very small ε. Does Label Cover remain as hard when we con-
sider special kinds of graphs?

In recent years there has been much interest in optimization problems over
planar graphs. These are graphs that can be embedded in the plane without edges
crossing each other. Many optimization problems have very efficient algorithms
on planar graphs.

We show that while projection games remain NP-hard to solve exactly on
planar graphs, when it comes to approximation, they admit a PTAS:

Theorem 4. The following hold:

1. Given a satisfiable instance of projection games on a planar graph, it is NP-
hard to find a satisfying assignment.

2. There is a polynomial time approximation scheme for satisfiable instances of
projection games on planar graphs.

The PTAS works via Klein’s approach [15] of approximating the graph by a
graph with constant tree-width.

3 Conventions

We define the following notation to be used in the paper.

– Let nA = |A| denote the number of vertices in A and nB denote the number
of vertices in B. Let n denote the number of vertices in the whole graph, i.e.
n = nA + nB.

– Let dv denote the degree of a vertex v ∈ A ∪B.
– For a vertex u, we use N(u) to denote set of vertices that are neighbors of
u. Similarly, for a set of vertex U , we use N(U) to denote the set of vertices
that are neighbors of at least one vertex in U .

– For each vertex u, define N2(u) to be N(N(u)). This is the set of neighbors
of neighbors of u.

– Let σOPT
v be the assignment to v in an assignment to vertices that satisfies

all the edges. In short, we will sometimes refer to this as “the optimal assign-
ment”. This is guaranteed to exist from our assumption that the instances
considered are satisfiable.

– For any edge e = (a, b), we define pe to be |π−1(σOPT
b )|. In other words,

pe is the number of assignments to a that satisfy the edge e given that b
is assigned σOPT

b , the optimal assignment. Define p to be the average of pe

over all e; that is p =
∑

e∈E pe

|E| .

– For each set of vertices S, define G(S) to be the subgraph of G that contains
all edges with at least one endpoint in S, i.e., the set of edges E(S) of G(S)
is {(u, v) ∈ E | u ∈ S or v ∈ S}.

– For each a ∈ A, let h(a) denote |E(N2(a))|. Let hmax = maxa∈Ah(a).
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For simplicity, we make the following assumption:

– G is connected. This assumption can be made without loss of generality, as
if G is not connected, we can always perform any algorithm presented below
on each of its connected component and get an equally good or a better
approximation ratio.

– For every e ∈ E and every σb ∈ ΣB, the number of pre-images in π−1
e (σb) is

the same. In particular, pe = p for all e ∈ E.

We only make use of the assumptions in the algorithms for proving Theorem 2.
We defer the treatment of graphs with general number of pre-images to the
journal version.

4 Polynomial-Time Approximation Algorithms for
Projection Games

In this section, we present an improved polynomial time approximation algo-
rithm for projection games and prove Theorem 2.

To prove the theorem, we proceed to describe four polynomial-time approx-
imation algorithms. In the end, by using the best of these four, we are able to
produce a polynomial-time O

(
(nA|ΣA|)1/4

)
-approximation as desired (See also

figure below):

1. Satisfy one neighbor – |E|/nB-approximation. Assign each vertex in A
an arbitrary assignment. Each vertex in B is then assigned to satisfy one of
its neighboring edges. This algorithm satisfies at least nB edges.

2. Greedy assignment – |ΣA|/p-approximation. Each vertex in B is as-
signed an assignment σb ∈ ΣB that has the largest number of preimages
across neighboring edges

∑
a∈N(b) |π

−1
(a,b)(σb)|. Each vertex in A is then as-

signed so that it satisfies as many edges as possible. This algorithm works
well when ΣB assignments have many pre-images.

3. Know your neighbors’ neighbors – |E|p/hmax-approximation. For a
vertex a0 ∈ A, we go over all possible assignments to it. For each assignment,
we assign its neighbors N(a0) accordingly. Then, for each node in N2(a0) we
leave only the assignments that satisfy all the edges between it and vertices
in N(a0).

When a0 is assigned the optimal assignment, the number of choices for each
node inN2(a0) is reduced to at most p possibilities. In this way, we can satisfy
1/p fraction of the edges that touch N2(a0). This satisfies many edges when
there exists a0 ∈ A such that N2(a0) spans many edges.

4. Divide and Conquer – O(nAnBhmax/|E|2)-approximation. For every
a ∈ A we can fully satisfy N(a) ∪ N2(a) efficiently, and give up on satis-
fying other edges that touch N2(a). Repeating this process, we can satisfy
Ω(|E|2/(nAnBhmax)) fraction of the edges. This is large when N2(a) does
not span many edges for all a ∈ A.



688 P. Manurangsi and D. Moshkovitz

(1) (2)

(3) (4)

Fig. 1. The Four approximation algorithms

The largest of the four approximation factors is at least as large as their geometric
mean, i.e.,

O

(
4

√
|E|
nB

· |ΣA|
p

· |E|p
hmax

· nAnBhmax

|E|2

)
= O((nA|ΣA|)1/4).

Due to space limitations, we only describe the fourth algorithm here, which
is arguably the most complicated algorithm of the four.

We will present an algorithm that separates the graph into disjoint subgraphs
for which we can find the optimal assignment in polynomial time. We shall show
below that, if h(a) is small for all a ∈ A, then we are able to find such subgraphs
that contains most of the graph’s edges.

Lemma 1. There exists a polynomial-time O
(

nAnBhmax

|E|2
)

-approximation algo-

rithm for satisfiable instances of projection games.

Proof. To prove lemma 1, it is enough to find an algorithm that gives an assign-

ment that satisfies Ω
(

|E|3
nAnBhmax

)
edges.
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We use P to represent the collection of subgraphs we find. The family P
consists of disjoint sets of vertices. Let VP be

⋃
P∈P P .

For any set X of vertices, define GX to be the graph induced by X with
respect to G. Moreover, define EX to be the set of edges of GX . We also define
EP =

⋃
P∈P EP .

The algorithm works as follows.

1. Set P ← ∅.
2. While there exists a vertex a ∈ A such that |E(N(a)∪N2(a))−VP | ≥ 1

4
|E|2
nAnB

:

(a) Set P ← P ∪ {(N2(a) ∪N(a))− VP}.

3. For each P ∈ P , find in time |ΣA| · |P |O(1) an assignment to the vertices in
P that satisfies all the edges spanned by P .

We will divide the proof into two parts. First, we will show that when we

cannot find a vertex a in step 2,
∣∣E(A∪B)−VP

∣∣ ≤ |E|
2 . Second, we will show that

the resulting assignment from this algorithm satisfies Ω
(

|E|3
nAnBhmax

)
edges.

We will start by showing that if no vertex a in step 2 exists, then∣∣E(A∪B)−VP

∣∣ ≤ |E|
2 .

Suppose that we cannot find a vertex a in step 2. In other words,

|E(N(a)∪N2(a))−VP | < 1
4

|E|2
nAnB

for all a ∈ A.

Consider
∑

a∈A |E(N(a)∪N2(a))−VP |. Since |E(N(a)∪N2(a))−VP | < 1
4

|E|2
nAnB

for all
a ∈ A, we have the following inequality.

|E|2
4nB

≥
∑
a∈A

|E(N(a)∪N2(a))−VP |.

Let Np(v) = N(v)−VP and Np
2 (v) = N2(v)−VP . Similary, define Np(S) for a

subset S ⊆ A∪B. It is easy to see thatNp
2 (v) ⊇ Np(Np(v)). This implies that, for

all a ∈ A, we have |E(Np(a)∪Np
2 (a))

| ≥ |E(Np(a)∪Np(Np(a)))| =
∑

b∈Np(a) |Np(b)|.
Moreover: ∑

a∈A

|E(N(a)∪N2(a))−VP | =
∑
a∈A

|E(Np(a)∪Np
2 (a))

|

≥
∑
a∈A

∑
b∈Np(a)

|Np(b)|

=
∑
b∈B

∑
a∈Np(b)

|Np(b)|

=
∑
b∈B

|Np(b)|2.
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From Jensen’s inequality, we have

∑
a∈A

|E(N(a)∪N2(a))−VP | ≥ 1

nB

(∑
b∈B

|Np(b)|
)2

=
1

nB

∣∣E(A∪B)−VP

∣∣2 .
Since |E|2

4nB
≥

∑
a∈A |E(N(a)∪N2(a))−VP | and

∑
a∈A |E(N(a)∪N2(a))−VP | ≥

1
nB

∣∣E(A∪B)−VP

∣∣2, we can conclude that

|E|
2

≥
∣∣E(A∪B)−VP

∣∣
which concludes the first part of the proof.

Next, we will show that the assignment the algorithm finds satisfies at least

Ω
(

|E|3
nAnBhmax

)
edges. Since we showed that |E|

2 ≥
∣∣E(A∪B)−VP

∣∣ when the algo-

rithm terminates, it is enough to prove that |EP | ≥
|E|2

4nAnBhmax

(
|E| −

∣∣E(A∪B)−VP

∣∣). Note that the algorithm guarantees to satisfy
all the edges in EP .

We will prove this by using induction to show that at any point in the algo-

rithm, |EP | ≥ |E|2
4nAnBhmax

(
|E| −

∣∣E(A∪B)−VP

∣∣).
Base Case. At the beginning, we have |EP | = 0 =
|E|2

4nAnBhmax

(
|E| −

∣∣E(A∪B)−VP

∣∣), which satisfies the inequality.
Inductive Step. The only step in the algorithm where any term in the inequal-

ity changes is step 2a. Let Pold and Pnew be the set P before and after step 2a
is executed, respectively. Let a be the vertex selected from step 2. Suppose that
Pold satisfies the inequality.

From the condition in step 2, we have |E(N(a)∪N2(a))−VPold
| ≥ 1

4
|E|2
nAnB

. Since

|EPnew | = |EPold
|+ |E(N(a)∪N2(a))−VPold

|, we have

|EPnew | ≥ |EPold
|+ 1

4

|E|2
nAnB

.

Now, consider
(
|E| −

∣∣E(A∪B)−VPnew

∣∣)−
(
|E| −

∣∣∣E(A∪B)−VPold

∣∣∣). We have

(
|E| −

∣∣∣E(A∪B)−VPnew

∣∣∣
)
−

(
|E| −

∣∣∣E(A∪B)−VPold

∣∣∣
)
=

∣∣∣E(A∪B)−VPold

∣∣∣ −
∣∣∣E(A∪B)−VPnew

∣∣∣

Since VPnew = VPold
∪ (N2(a) ∪N(a)), we can conclude that

((A ∪B)− VPold
) ⊆ ((A ∪B)− VPnew) ∪ (N2(a) ∪N(a)) .

Thus, we can also derive

E(A∪B)−VPold
⊆ E((A∪B)−VPnew )∪(N2(a)∪N(a))

= E(A∪B)−VPnew
∪ {(a′, b′) ∈ E | a′ ∈ N2(a) or b

′ ∈ N(a)}.
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From the definition of N and N2, for any (a′, b′) ∈ E, if b′ ∈ N(a) then
a′ ∈ N2(a). Thus, we have {(a′, b′) ∈ E | a′ ∈ N2(a) or b

′ ∈ N(a)} = {(a′, b′) ∈
E | a′ ∈ N2(a)} = E(N2(a)). The cardinality of the last term was defined to be
h(a). Hence, we can conclude that∣∣∣E(A∪B)−VPold

∣∣∣ ≤ ∣∣E(A∪B)−VPnew
∪ {(a′, b′) ∈ E | a′ ∈ N2(a) or b

′ ∈ N(a)}
∣∣

≤
∣∣E(A∪B)−VPnew

∣∣ + |{(a′, b′) ∈ E | a′ ∈ N2(a) or b
′ ∈ N(a)}|

=
∣∣E(A∪B)−VPnew

∣∣ + |{(a′, b′) ∈ E | a′ ∈ N2(a)}|
=

∣∣E(A∪B)−VPnew

∣∣ + |E(N2(a))|
=

∣∣E(A∪B)−VPnew

∣∣ + h(a)

≤
∣∣E(A∪B)−VPnew

∣∣ + hmax.

This implies that
(
|E| −

∣∣E(A∪B)−VP

∣∣) increases by at most hmax.

Hence, since
(
|E| −

∣∣E(A∪B)−VP

∣∣) increases by at most hmax and |EP | in-

creases by at least 1
4

|E|2
nAnB

and from the inductive hypothesis, we can conclude
that

|EPnew | ≥ |E|2
4nAnBhmax

(
|E| −

∣∣E(A∪B)−VPnew

∣∣) .
Thus, the inductive step is true and the inequality holds at any point during

the execution of the algorithm.

When the algorithm terminates, since |EP | ≥ |E|2
4nAnBhmax

(
|E| −

∣∣E(A∪B)−VP

∣∣)
and |E|

2 ≥
∣∣E(A∪B)−VP

∣∣, we can conclude that |EP | ≥ |E|3
8nAnBhmax

. Since the
algorithm guarantees to satisfy every edge in EP , we can conclude that the
algorithm gives O(nAnBhmax

|E|2 ) approximation ratio, which concludes our proof of

Lemma 1.

5 Sub-exponential Time Algorithms for Smooth
Projection Games

Due to space limitations we omit the proof of Theorem 3 from the current
version.

6 PTAS for Projection Games on Planar Graphs

The NP-hardness of projection games on planar graphs is proved by reduction
from 3-coloring on planar graphs. The latter was proven to be NP-hard by Garey,
Johnson and Stockmeyer [10]. The reduction will appear in the full version of
this paper.

Next, we will describe PTAS for projection game instances on planar graph
and prove Theorem 4. We use the framework presented by Klein for finding
PTAS for problems on planar graphs [15] to one for satisfiable instances of the
projection games problem. The algorithm consists of the following two steps:
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1. Thinning Step: Delete edges from the original graph to obtain a graph
with bounded treewidth.

2. Dynamic Programming Step: Use dynamic programming to solve the
problem in the bounded treewidth graph.

6.1 Tree Decomposition

Before we proceed to the algorithm, we first define tree decomposition. A tree
decomposition of a graph G = (V,E) is a collection of subsets {B1, B2, . . . , Bn}
and a tree T whose nodes are Bi such that

1. V = B1 ∪B2 ∪ · · · ∪Bn.
2. For each edge (u, v) ∈ E, there exists Bi such that u, v ∈ Bi.
3. For each Bi, Bj , if they have an element v in common. Then v is in every

subset along the path in T from Bi to Bj .

The width of a tree decomposition ({B1, B2, . . . , Bn}, T ) is the largest size of
B1, . . . , Bn minus one. The treewidth of a graph G is the minimum width across
all possible tree decompositions.

6.2 Thinning

Even though a planar graph itself does not necessarily have a bounded treewidth,
it is possible to delete a small set of edges from the graph to obtain a graph with
bounded treewidth. Since the set of edges that get deleted is small, if we are
able to solve the modified graph, then we get a good approximate answer for the
original graph.

Klein has proved the following lemma in his paper [15].

Lemma 2. For any planar graph G = (V,E) and integer k, there is a linear-
time algorithm returns an edge-set S such that |S| ≤ 1

k |E|, a planar graph H,
such that H−S = G−S, and a tree decomposition of H having width at most 3k.

By selecting k = 1+ 1
ε , we can conclude that the number of edges in H−S =

G− S is at least
(
1− 1

k

)
|E| = 1

1+ε |E|.
Moreover, since a tree decomposition of a graph is also a tree decomposition

of its subgraph, we can conclude that the linear-time algorithm in the lemma
gives tree decomposition for G−S = H−S which is a subgraph of H with width
at most 3k = 3(1 + 1

ε ).

6.3 Dynamic Programming

In this section, we will present a dynamic programming algorithm that solves
the projection game problem in a bounded treewidth bipartite graph G′ =
(A′, B′, E′) and projections πe : ΣA → ΣB for each e ∈ E′, given its tree
decomposition ({B1, . . . , Bn}, T ) with a bounded width w.
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The algorithm works as follows. We use depth first search to traverse the tree
T . Then, at each node Bi, we solve the problem concerning only the subtree of
T starting at Bi.

At Bi, we consider all possible assignments φ : Bi → (ΣA ∪ ΣB) of Bi. For
each assignment φ and for each edge (u, v) ∈ E′ such that both u, v are in Bi,
we check whether the condition π(u,v)(φ(u)) = φ(v) is satisfied or not. If not,
we conclude that this assignment does not satisfy all the edges. Otherwise, we
check that the assignment φ works for each subtree of T starting at each child
Bj of Bi in T ; this result was memoized when the algorithm solved the problem
at Bj . The full algorithm will appear in the full version of the paper.
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Abstract. Persistent homology with coefficients in a field F coincides
with the same for cohomology because of duality. We propose an imple-
mentation of a recently introduced algorithm for persistent cohomology
that attaches annotation vectors with the simplices. We separate the
representation of the simplicial complex from the representation of the
cohomology groups, and introduce a new data structure for maintaining
the annotation matrix, which is more compact and reduces substancially
the amount of matrix operations. In addition, we propose a heuristic
to simplify further the representation of the cohomology groups and im-
prove both time and space complexities. The paper provides a theoretical
analysis, as well as a detailed experimental study of our implementation
and comparison with state-of-the-art software for persistent homology
and cohomology.

1 Introduction

Persistent homology [10] is an algebraic method for measuring the topological
features of a space induced by the sublevel sets of a function. Its generality and
stability with regard to noise have made it a widely used tool for the study of
data, where it does not need any knowledge a priori. A common approach is
the study of the topological invariants of a nested family of simplicial complexes
built on top of the data, seen as a set of points in a geometric space. This
approach has been successfully used in various areas of science and engineering,
as for example in sensor networks, image analysis, and data analysis where one
typically needs to deal with big data sets in high dimensions. Consequently, the
demand for designing efficient algorithms and software to compute persistent
homology of filtered simplicial complexes has grown.

The first persistence algorithm [11,14] can be implemented by reducing a
matrix defined by face incidence relations, through column operations. The run-
ning time is O(m3) where m is the number of simplices of the simplicial complex
and, despite good performance in practice, Morozov proved that this bound is
tight [13]. Recent optimizations taking advantage of the special structure of the
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matrix to be reduced have led to significant progress in the theoretical analy-
sis [5,12] as well as in practice [1,5].

A different approach [7,8] interprets the persistent homology groups in terms
of their dual, the persistent cohomology groups. The cohomology algorithm has
been reported to work better in practice than the standard homology algo-
rithm [7] but this advantage seems to fade away when optimizations are employed
to the homology algorithms [1]. An elegant description of the cohomology algo-
rithm, using the notion of annotations [3], has been introduced in [9] and used
to design more general algorithms for maintaining cohomology groups under
simplicial maps.

In this work, we propose an implementation of the annotation-based algorithm
for computing persistent cohomology. A key feature of our implementation is a
distinct separation between the representation of the simplicial complex and
the representation of the cohomology groups. Currently the simplicial complex
can be represented either by its Hasse diagram or by using the more compact
simplex tree [2]. The cohomology groups are stored in a separate data structure
that represents a compressed version of the annotation matrix. As a consequence,
the time and space complexities of our algorithm depend mostly on properties
of the cohomology groups we maintain along the computation and only linearly
on the size of the simplicial complex.

Moreover, maintaining the simplicial complex and the cohomology groups
separately allows us to reorder the simplices while keeping the same persistent
cohomology. This significantly reduces the size of the cohomology groups to be
maintained, and improves considerably both the time and memory performance
as shown by our detailed experimental analysis on a variety of examples. Our
method compares favourably with state-of-the-art software for computing per-
sistent homology and cohomology.

Background: A simplicial complex is a pair K = (V, S) where V is a finite set
whose elements are called the vertices of K and S is a set of non-empty subsets
of V that is required to satisfy the following two conditions : 1. p ∈ V ⇒ {p} ∈ S
and 2. σ ∈ S, τ ⊆ σ ⇒ τ ∈ S. Each element σ ∈ S is called a simplex or a face of
K and, if σ ∈ S has precisely s+ 1 elements (s ≥ −1), σ is called an s-simplex
and its dimension is s. The dimension of the simplicial complex K is the largest
k such that S contains a k-simplex. We define Kp to be the set of p-dimensional
simplices of K, and note its size |Kp|. Given two simplices τ and σ in K, τ is a
subface (resp. coface) of σ if τ ⊆ σ (resp. τ ⊇ σ). The boundary of a simplex σ,
denoted ∂σ, is the set of its subfaces with codimension 1.

A filtration [10] of a simplicial complex is an order relation on its simplices
which respects inclusion. Consider a simplicial complex K = (V, S) and a func-
tion ρ : S → R. We require ρ to be monotonic in the sense that, for any two
simplices τ ⊆ σ in K, ρ satisfies ρ(τ) ≤ ρ(σ). We will call ρ(σ) the filtration value
of the simplex σ. Monotonicity implies that the sublevel sets K(r) = ρ−1(−∞, r]
are subcomplexes of K, for every r ∈ R. Let m be the number of simplices of K,
and let (ρi)i=1···n be the n different values ρ takes on the simplices of K. Plainly
n ≤ m, and we have the following sequence of n+ 1 subcomplexes:
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∅ = K0 ⊆ · · · ⊆ Kn = K, −∞ = ρ0 < · · · < ρn, Ki = ρ−1(−∞, ρi]

Applying a (co)homology functor to this sequence of simplicial complexes turns
(combinatorial) complexes into (algebraic) abelian groups and inclusion into
group homomorphisms. Roughly speaking, a simplicial complex defines a domain
as an arrangement of local bricks and (co)homology catches the global features
of this domain, like the connected components, the tunnels, the cavities, etc. The
homomorphisms catch the evolution of these global features when inserting the
simplices in the order of the filtration. Let Hp(K) and Hp(K) denote respectively
the homology and cohomology groups of K of dimension p with coefficients in
a field F. The filtration induces a sequence of homomorphisms in the homology
and cohomology groups in opposite directions:

0 = Hp(K0) → Hp(K1) → · · · → Hp(Kn−1) → Hp(Kn) = Hp(K) (1)

0 = Hp(K0) ← Hp(K1) ← · · · ← Hp(Kn−1) ← Hp(Kn) = Hp(K) (2)

We refer to [10] for an introduction to the theory of homology and persistent
homology. Computing the persistent homology of such a sequence consists in
pairing each simplex that creates a homology feature with the one that destroys
it. The usual output is a persistence diagram, which is a plot of the points
(ρ(τ), ρ(σ)) for each persistent pair (τ, σ). It is known that because of duality
the homology and cohomology sequences above provide the same persistence
diagram [8].

The original persistence algorithm [11] considers the homology sequence in
Equation 1 that aligns with the filtration direction. It detects when a new ho-
mology class is born and when an existing class dies as we proceed forward
through the filtration. Recently, a few algorithms have considered the coho-
mology sequence in Equation 2 which runs in the opposite direction of the fil-
tration [7,8,9]. The birth of a cohomology class coincides with the death of a
homology class and the death of a cohomology class coincides with the birth of
a homology class. Therefore, by tracking a cohomology basis along the filtration
direction and switching the notions of births and deaths, one can obtain all in-
formation about the persistent homology of the complex. The algorithm of de
Silva et al. [8] computes the persistent cohomology following this principle which
is reported to work better in practice than the original persistence algorithm [7].
Recently, Dey et al. [9] recognized that tracking cohomology bases provides a
simple and natural extension of the persistence algorithm for filtrations con-
nected with general simplicial maps (and not simply inclusion). Their algorithm
is based on the notion of annotation [3] and, when restricted to only inclusions,
is a re-formulation of the algorithm of de Silva et al. [8]. Here we follow this
annotation based algorithm.
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2 Persistent Cohomology Algorithm and Annotations

In this section, we recall the annotation-based persistent cohomology algorithm
of [9]. It maintains a cohomology basis under simplex insertions, where repre-
sentative cocycles are maintained by the value they take on the simplices. We
rephrase the description of this algorithm with coefficients in an arbitrary field
F, and use standard field notations 〈F,+, ·,−, /, 0, 1〉.

Definition 1. Given a simplicial complex K, let Kp denote the set of p-simplices
in K. An annotation for Kp is an assignement ap : Kp → Fg of an F-vector
aσ = ap(σ) of same length g for each p-simplex σ ∈ Kp. We use a when there
is no ambiguity on the dimension. We also have an induced annotation for any
p-chain c =

∑
i fiσi given by linear extension: ac =

∑
i fi · aσi .

Definition 2. An annotation a : Kp → Fg is valid if:
1. g = rankHp(K) and 2. two p-cycles z1 and z2 have az1 = az2 iff their homology
classes [z1] and [z2] are identical.

Proposition 1 ([9]). The following two statements are equivalent:
1. An annotation a : Kp → Fg is valid
2. The cochains {φj}j=1···g given by φj(σ) = aσ[j] for all σ ∈ Kp are cocycles
whose cohomology classes {[φj ]}j=1···g constitute a basis of Hp(K).

A valid annotation is thus a way to represent a cohomology basis. The al-
gorithm for computing persistent cohomology consists in maintaining a valid
annotation for each dimension when inserting all simplices in the order of the
filtration. Since we process the filtration in a direction opposite to the cohomol-
ogy sequence (as in Equation 2), we discover the death points of cohomology
classes earlier than their birth points. To avoid confusion, we still say that a
new cocycle (or its class) is born when we discover it for the first time and an
existing cocycle (or its class) dies when we see it no more.

We present the algorithm and refer to [9] for its validity. We insert simplices
in the order of the filtration. Consider an elementary inclusion Ki ↪→ Ki ∪ {σ},
with σ a p-simplex. Assume that to every simplex τ of any dimension in Ki is
attached an annotation vector aτ from a valid annotation a of Ki. We describe
how to obtain a valid annotation for Ki ∪ {σ} from that of Ki. We compute the
annotation a∂σ for the boundary ∂σ in Ki and take actions as follows:

Case 1: If a∂σ = 0, g ← g+1 and the annotation vector of any p-simplex τ ∈ Ki

is augmented with a 0 entry so that aτ = [f1, · · · , fg]T becomes [f1, · · · , fg, 0]T .
We assign to the new simplex σ the annotation vector aσ = [0, · · · , 0, 1]T . Ac-
cording to Proposition 1, this is equivalent to creating a new cohomology class
represented by φ(τ) = 0 for τ 	= σ and φ(σ) = 1.

Case 2: If a∂σ 	= 0, we consider the non-zero element cj of a∂σ with maximal
index j. We now look for annotations of those (p−1)-simplices τ that have a non-
zero element at index j and process them as follows. If the element of index j of
aτ is f 	= 0, we add −f/cj ·a∂σ to aτ . Note that, in the annotation matrix whose
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columns are the annotation vectors, this implements simultaneously a series of
elementary row operations, where each row φi receives φi ← φi−(a∂σ[i]/cj)×φj .
As a result, all the elements of index j in all columns are now 0 and hence the
entire row j becomes 0. We then remove the row j and set g ← g − 1. σ is
assigned aσ = 0. According to Proposition 1, this is equivalent to removing the
jth cocycle φj(τ) = aτ [j].

As with the original persistence algorithm, the pairing of simplices is derived
from the creation and destruction of the cohomology basis elements.

3 Data Structures and Implementation

In this section, we present our implementation of the annotation-based persistent
cohomology algorithm. We separate the representation of the simplicial complex
from the representation of the cohomology groups.

Representation of the Simplicial Complex. We represent the simplicial complex
K in a data structure KDS equipped with the operationCompute-boundary(σ)
that computes the boundary of a simplex σ. We denote by Cp

∂ the complexity
of this operation where p is the dimension of σ. Additionally, the simplices are
ordered according to the filtration.

Two data structures to represent simplicial complexes are of particular interest
here. The first one is the Hasse diagram, which is the graph whose nodes are
in bijection with the simplices (of all dimensions) of the simplicial complex and
an edge links two nodes representing two simplices τ and σ iff τ ⊆ σ and the
dimensions of τ and σ differ by 1. The second data structure is the simplex tree
introduced in [2], which is a specific spanning tree of the Hasse diagram. For a
simplicial complex K of dimension k and a simplex σ ∈ K of dimension p, the
Hasse diagram has size O(k|K|) and allows to compute Compute-boundary(σ)
in time Cp

∂ = O(p), whereas the simplex tree has size O(|K|) and allows to
compute Compute-boundary(σ) in time Cp

∂ = O(p2Dm), whereDm is typically
a small value related to the time needed to traverse the simplex tree. Both
structures can be used in our setting. For readability, we will use a Hasse diagram
in the following.

The Compressed Annotation Matrix. For each dimension p, the pth cohomology
group can be seen as a valid annotation for the p-simplices of the simplicial com-
plex. Hence, an annotation a : Kp → Fg can be represented as a g× |Kp| matrix
with elements in F, where each column is an annotation vector associated to a
p-simplex. We describe how to represent this annotation matrix in an efficient
way.
Compressing the annotation matrix: In most applications, the annotation matrix
is sparse and we store it as follows. A column is represented as the singly-linked
list of its non-zero elements, where the list contains a pair (i, f) if the ith element
of the column is f 	= 0. The pairs in the list are ordered according to row index
i. All pairs (i, f) with same row index i are linked in a doubly-linked list.
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Removing duplicate columns: To avoid storing duplicate columns, we use two
data structures. The first one, AVp, stores the annotation vectors and allows
fast search, insertion and deletion. AVp can be implemented as a red-black tree
or a hash table. We denote by Cp

AV the complexity of an operation in AVp.
For example, if AVp contains n elements and cmax is the length of the longest
column, we have Cp

AV = O(cmax log(n)) for a red-black tree implementation and
Cp
AV = O(cmax) amortized for a hash-table. The simplices of the same dimension

that have the same annotation vector are now stored in a same set and the
various (and disjoint) sets are stored in a union-find data structure denoted
UFp. UFp is encoded as a forest where each tree contains the elements of a set,
the root being the “representative” of the set. The trees of UFp are in bijection
with the different annotation vectors stored in AVp and the root of each tree
maintains a pointer to the corresponding annotation vector in AVp. Each node
representing a p-simplex σ in the simplicial complex KDS stores a pointer to an
element of the tree of UFp associated to the annotation vector aσ. Finding the
annotation vector of σ consists in getting the element it points to in a tree of
UFp and then finding the root of the tree which points to aσ in AVp. We avail
the following operations on UFp:

• Create-set: creates a new tree containing one element.
• Find-root: finds the root of a tree, given an element in the tree.
• Union-sets: merges two trees.
The number of elements maintained in UFp is at most the number of sim-

plices of dimension p, i.e. |Kp|. The operations Find-root and Union-sets

on UFp can be computed in amortized time O(α(|Kp|)), where α(·) is the very
slowly growing inverse Ackermann function (constant less than 4 in practice),
and Create-set is performed in constant time. We will refer to this data struc-
ture as the Compressed Annotation Matrix.
Operations: The compressed annotation matrix described above supports the
following operations. We define cmax to be the maximal number of non-zero
elements in a column of the compressed annotation matrix (or equivalently in
an annotation vector) and rmax to be the maximal number of non-zero elements
in a row of the compressed annotation matrix, during the computation. We will
express our complexities using cmax and rmax:

• Sum-ann(a1, a2): computes the sum of two annotation vectors a1 and a2,
and returns the lowest non-zero coefficient if it exists. The column elements are
sorted by increasing row index, so the sum is performed in O(cmax) time.

• Search-ann/Add-ann/Remove-ann (a): searches, adds or removes an
annotation vector a from AVp in O(Cp

AV) time.
• Create-cocycle(): implements Case 1 of the algorithm described in sec-

tion 2. It inserts a new column in AVp containing one element (inew, 1), where
inew is the index of the created cocycle. This is performed in time O(Cp

AV ). We
also create a new disjoint set in UFp for the new column. This is done in O(1)
time using Create-set. Create-cocycle() takes O(Cp

AV ) in total.
• Kill-cocycle(a∂σ, cj , j): implements Case 2 of the algorithm. It finds all

columns with a non-zero element at index j and, for each such column A, it adds
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to A the column −f/cj · a∂σ if f is the non-zero element at index j in A. To
find the columns with a non-zero element at index j, we use the doubly-linked
list of row j. We call Sum-ann to compute the sums. The overall time needed
for all columns is O(cmax rmax) in the worst-case. Finally, we remove duplicate
columns using operations on AVp (in O(rmax Cp−1

AV ) time in the worst-case) and
call Union-sets on UFp−1 if two sets of simplices, which had different anno-
tation vectors before calling Kill-cocycle, are assigned the same annotation
vector. This is performed in at most O(rmax α(|Kp−1|)) time. The total cost of
Kill-cocycle is O(rmax(cmax + Cp−1

AV + α(|Kp−1|))).

Computing Persistent Cohomology. Given as input a filtered simplicial complex
represented in a data structure KDS, we compute its persistence diagram.
Implementation of the persistent cohomology algorithm: We insert the simplices
in the filtration order and update the data structures during the successive inser-
tions. The simplicial complex K is stored in a simplicial complex data structure
KDS and we maintain, for each dimension p, a compressed annotation matrix,
which is empty at the beginning of the computation. For readability, we add the
following operation on the set of data structures:

• Compute-a∂σ(σ): given a p-simplex σ in K, computes its boundary in KDS

using Compute-boundary (in O(Cp
∂) time). For each of the p + 1 simplices

in ∂σ, it then finds their annotation vector using Find-root in UFp−1 (in
O(pα(|Kp−1|)) time). Finally, it sums all these annotation vectors together (with
the appropriate +/− sign) using at most p + 1 calls to Sum-ann (in O(p gm)
time). Note that, with the compression method, two simplices in ∂σ may point to
the same annotation vector; the computation is fasten by adding such annotation
vector only once, with the appropriate multiplicative coefficient. The total worst
case complexity of this operation is O(Cp

∂ + p α(|Kp−1|) + p gm).
Let σ be a p-simplex to be inserted. We compute the annotation vector of

∂σ using Compute-a∂σ . Depending on the value of a∂σ, we call either Create-

cocycle or Kill-cocycle. The algorithm computes the pairing of simplices
from which one can deduce the persistence diagram. By reversing the pointers
from the UFps to the simplices in KDS, one can compute explicitly the repre-
sentative cocycles of the basis classes and have an explicit representation of the
cohomology groups along the computation.
Complexity analysis: Let k be the dimension and m the number of simplices of
K. Recall that cmax and rmax represent respectively the maximal number of non-
zero elements in an annotation vector and in a row of the compressed annotation
matrix, along the computation. Recall that, in dimension p, Cp

∂ is the complexity
of Compute-boundary in KDS and Cp

AV the complexity of an operation in AVp.
α(·) is the inverse Ackermann function.

The complexity for inserting σ of dimension p is:

O
(
Cp
∂ + p(α(|Kp−1|) + cmax) + Cp

AV + rmax(cmax + Cp−1
AV + α(|Kp−1|))

)
Consequently, the total cost for computing the persistent cohomology is:

O
(
m×

[
Ck
∂ + k(α(m) + cmax) + rmax(cmax + CAV + α(m))

])
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Fig. 1. Inclusion Ki ⊆ Ki+1. Left: upward traversal (in green) from simplex {c}. The
ordering of the maximal cofaces appears in blue. Right: downward traversal (in orange)
from simplex {abc}. The ordering of the subfaces appears in blue.

Specifically, if we implement KDS as a Hasse diagram and the AVs as hash-tables,
we get Ck

∂ = O(k) and CAV = O(cmax). If we consider α(m) as a small constant
and remove it for readability, we get that the total cost for computing persistent
cohomology is O(mcmax(k + rmax)). We show in section 5 that cmax and rmax

remain small in practice. Hence, the practical complexity of the algorithm is
linear in m for a fixed dimension.

4 Reordering Iso-simplices

Many simplices, called iso-simplices, may have the same filtration value. This
situation is common when the filtration is induced by a geometric scaling pa-
rameter. Assume that we want to compute the cohomology groups Hp(Ki+1)
from Hp(Ki) where Ki ⊆ Ki+1 and all simplices in Ki+1 \ Ki have the same fil-
tration value. Depending on the insertion order of the simplices of Ki+1 \Ki, the
dimension of the cohomology groups to be maintained along the computation
may vary a lot as well as the computing time. This may lead to a computational
bottleneck. We propose a heuristic to reorder iso-simplices and show its practical
efficiency in Section 5.

Intuitively, we want to avoid the creation of many “holes” of dimension p and
want to fill them up as soon as possible with simplices of dimension p + 1. For
example, in Figure 1, we want to avoid inserting all edges first, which will create
two holes that will be filled when inserting the triangles. To do so, we look for the
maximal faces to be inserted and recursively insert their subfaces. We conduct
the recursion so as to minimize the maximum number of holes. In addition, to
avoid the creation of holes due to maximal simplices that are incident, maximal
simplices sharing subfaces are inserted next to each other. We can describe the
reordering algorithm in terms of a graph traversal. The graph considered is the
graph of the Hasse diagram of Ki+1 \ Ki, defined in section 3 (see Figure 1).

Let σ1 · · ·σ� be the iso-simplices of Ki+1 \ Ki, sorted so as to respect the
inclusion order. We attach to each simplex two flags, a flag Fup and a flag Fdown,
set to 0 originally. When inserting a simplex σj , we proceed as follows. We
traverse the Hasse diagram upward in a depth-first fashion and list the inclusion-
maximal cofaces of σj in Ki+1 \ Ki. The flags Fup of all traversed nodes are set
to 1 and the maximal cofaces are ordered according to the traversal. From each
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maximal coface in this order, we then traverse the graph downward and order
the subfaces in a depth-first fashion: this last order will be the order of insertion
of the simplices. The flags Fdown of all traversed nodes are set to 1. We stop
the upward (resp. downward) traversal when we encounter a node whose flag
Fup (resp. Fdown) is set to 1. We do not insert either simplices that have been
inserted previously.

By proceeding as above on all simplices of the sequence σ1 · · ·σ�, we define a
new ordering which respects the inclusion order between the simplices. Indeed,
as the downward traversal starts from a maximal face and is depth first, a face
is always inserted after its subfaces. Every edge in the graph is traversed twice,
once when going upward and the other when going downward. Indeed, during the
upward traversal, at each node N associated to a simplex σN , we visit only the
edges between N and the nodes associated to the cofaces of σN and, during the
downward traversal, we visit only the edges between N and the nodes associated
to the subfaces of σN . If Ki+1 \ Ki contains � simplices, the reordering takes in
total O(� × (C∂ + Cco∂)) time, where C∂ (resp. Cco∂) refers to the complexity
of computing the codimension 1 subfaces (resp. cofaces) of a simplex in the
simplicial complex data structure KDS. The reordering of the filtration can either
be done as a preprocessing step if the whole filtration is known, or on-the-fly as
only the neighboring simplices of a simplex need to be known at a time. The
reordering of a set of iso-simplices respects the inclusion order of the simplices
and the filtration, and therefore does not change the persistence diagram of the
filtered simplicial complex. This is a direct consequence of the stability theorem
of persistence diagrams [6]. However, it may change the pairing of simplices.

5 Experiments

In this section, we report on the experimental performance of our implementation.
Given a filtered simplicial complex as input, we measure the time taken by our im-
plementation to compute its persistent cohomology, and provide various statistics.
We compare the timings with state-of-the-art software computing persistent ho-
mology and cohomology. Specifically, we compare our implementation with the
Dionysus library (www.mrzv.org/software/dionysus/) which provides imple-
mentation for persistent homology [11,14] and persistent cohomology [8] (denoted
DioCoH) with field coefficients in Zp, for any prime p. We also compare our im-
plementation with the PHAT library (version 1.0) (www.phat.googlecode.com)
which provides an implementation of the optimized algorithm for persistent ho-
mology [1,4] (using the -twist option) as well as an implementation of persis-
tent cohomology [1,7] (using the -dualize option), with coefficients in Z2 only.
DioCoH and PHAT have been reported to be the most efficient implementation in
practice [1,7]. All timings are measured on a Linux machine with 3.00 GHz pro-
cessor and 32 GB RAM. Dionysus, PHAT and our implementation are written in
C++ and compiled with gcc 4.6.2with optimization level -O3. Timings are all av-
eraged over 10 independent runs. The symbols T∞ means that the computation
lasted more than 12 hours.

www.mrzv.org/software/dionysus/
www.phat.googlecode.com
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DioCoH PHAT⊥ PHAT CAM

Data Cpx |P| D d ρmax k |K| Z2 Z11 Z2 Z11 Z2 Z11 Z2 Z11

Cy8 Rips 6040 24 2 0.41 16 21× 106 420 4822 44 − 5.3 − 6.4 6.5
S4 Rips 507 5 4 0.715 5 72× 106 943 1026 95 − 3591 − 22.5 23.2
L57 Rips 4769 − 3 0.02 3 34× 106 239 240 35.2 − 972 − 9.3 9.5
Bro Wit 500 25 ? 0.06 18 3.2 × 106 807 T∞ 6.3 − 0.88 − 2.7 2.9
Kl Wit 10000 5 2 0.105 5 74× 106 569 662 101 − 1785 − 19.7 19.9
L35 Wit 700 − 3 0.06 3 18× 106 109 110 17.5 − 869 − 5.1 5.1
Bud αSh 49990 3 2 ∞ 3 1.4 × 106 30.0 30.9 2.6 − 0.32 − 0.7 0.7
Nep αSh 2× 106 3 2 ∞ 3 57× 106 T∞ T∞ 163 − 33 − 39.5 40.2

Fig. 2. Data, timings (in seconds) and statistics

We construct three families of simplicial complexes [10] which are of partic-
ular interest in topological data analysis: the Rips complexes (denoted Rips),
the relaxed witness complexes (denoted Wit) and the α-shapes (denoted αSh).
These complexes depend on a relaxation parameter ρ. When the data points
are embedded, the complexes are constructed up to embedding dimension, with
euclidean metric. They are constructed up to the intrinsic dimension of the
space with intrinsic metric otherwise. We use a variety of both real and syn-
thetic datasets: Cy8 is a set of points in R24, sampled from the space of con-
formations of the cyclo-octane molecule, which is the union of two intersect-
ing surfaces; S4 is a set of points sampled from the unit 4-sphere in R5; L57
and L35 are sets of points in the lens spaces L(5, 7) and L(3, 5) respectively,
which are non-embedded spaces; Bro is a set of 5 × 5 high-contrast patches
derived from natural images, interpreted as vectors in R25, from the Brown
database; Kl is a set of points sampled from the surface of the figure eight
Klein Bottle embedded in R5; Bud is a set of points sampled from the surface
of the Happy Buddha (http://graphics.stanford.edu/data/3Dscanrep/) in
R3; and Nep is a set of points sampled from the surface of the Neptune statue
(http://shapes.aimatshape.net/). Datasets are listed in Figure 2 with details
on the sets of points P , their size |P|, the ambient dimension D, the intrinsic
dimension d of the object the sample points belong to (if known), the thresh-
old ρmax, the dimension k of the simplicial complexes and the size |K| of the
simplicial complexes.

Time Performance: As Dionysus and PHAT encode explicitely the boundaries
of the simplices, we use a Hasse diagram for implementing KDS. We thus have
the same time complexity for accessing the boundaries of simplices. We use
the persistent homology algorithm of PHAT with options -twist -sparse-pivot

and the persistent cohomology algorithm (noted PHAT⊥) with option -twist

-sparse-pivot -dualize as the -sparse-pivot representation of columns has
been observed to be the most efficient in practice. As illustrated in Figure 2,
the persistent cohomology algorithm of Dionysus is always several times slower
than our implementation. Moreover, DioCoH is sensitive to the field used, as
illustrated in the case of Cy8 and Bro. On the contrary, CAM shows almost

http://graphics.stanford.edu/data/3Dscanrep/
http://shapes.aimatshape.net/
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Nep |M | #Fop.
Compression 126057 84× 106

¬Compression 574426 3860× 106

Nep average maximum

cav, cmax 0.79 18
rav, rmax 1.02 18

Bro time

Reordering 2.9 s.
¬Reordering 14.2 s.

Bro Z11 Q
MDS a∂σ Mop MDS a∂σ Mop

71% 19% 10% 67% 21% 12%

Fig. 3. Statistics on the effect of the optimizations

identical performance for Z2 and Z11 coefficients on all examples. The persistent
cohomology algorithm PHAT⊥ performs better than DioCoH. However, CAM is still
between 2.3 and 6.9 times faster.

The persistent homology algorithm of PHAT shows good performance in the case
of the alpha shapes and onCy8 and Bro: CAM and PHAT have close timings. How-
ever, PHAT provides computation with Z2 coefficients only, whereas CAM computes
persistence for general field coefficients and integrates no specific optimization for
Z2. Moreover, CAM scales better to more complex examples (such as S4, L57, Kl
and L35, which have higher intrinsic dimension and more complex topology). In-
deed, the running time per simplex of CAM remains stable on all examples and for
all field coefficients (between 2.7× 10−7 and 9.1× 10−7 seconds per simplex).

Statistics and Optimization: Figure 3 presents statistics about the computa-
tion. The top table presents, on the left, the effect of the compression (removal
of duplicate columns) of the annotation matrix on the number of elements |M |
stored in the sparse representation and the number of changes #Fop. in the ma-
trix during the computation of the persistence diagram ofNep. We note a reduc-
tion factor of 4.5 for the size of the matrix, and we proceed to 46 times less field
operations with the compression. ConsideringNep is 57 million simplices, we pro-
ceed to less than 1.5 field operations per simplex on average. The right part of the
table shows the average and maximum number of non-zero elements in a column
when proceeding to a sum of annotation vectors (Sum-ann) and the average and
maximum number of non-zero elements in a row when proceeding to its reduction
(Kill-cocycle). These values are key variables (cmax and rmax respectively) in
the complexity analysis of the algorithm. We note that these values remain really
small. The bottom table presents the effect of the reordering strategy on the exam-
ple Bro. We note that reordering iso-simplices makes the computation 4.9 faster.
Finally, the right side of the table presents how the computing time is divided into
maintaining the compressed annotationmatrix (notedMDS), computing the anno-
tation vector a∂σ andmodifying the values of the elements in the compressed anno-
tation matrix (notedMop). The percentage are given when computing persistent
cohomology with Z11 and Q coefficients. The computational complexity of field
operations 〈F,+, ·,−, /, 0, 1〉 depends on the field we use. For Z11, or any field of
small cardinal, the operations can be precomputed and accessed in constant time.
The field operations in Q are more costly. Specifically, an element q in Q is repre-
sented as a pair of coprime integers (r, s) such that q = r/s, and field operations
may require gcd computation to ensure that nominator and denominator remain



706 J.-D. Boissonnat, T.K. Dey, and C. Maria

coprime. However, the computational time of CAM is quite insensitive to the field
we use. Specifically, as it minimizes the number of matrix changes using the com-
pressionmethod, the computational time is only increased by 8%when computing
persistence with Q coefficients instead of Z11, whereas the computation involving
field operations takes 34% more time.

In all our experiments, the size of the compressed annotation matrix is neg-
ligible compared to the size of the simplicial complex. Consequently, combined
with the simplex tree data structure [2] for representing the simplicial complex,
we have been able to compute the persistent cohomology of simplicial complexes
of several hundred million simplices in high dimension.

A public and fully documented version of our code will be released soon.
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Abstract. We consider a generalization of the uncapacitated facility
location problem that occurs in planning of optical access networks in
telecommunications. Clients are connected to open facilities via depth-
bounded trees. The total demand of clients served by a tree must not
exceed a given tree capacity. We investigate a framework for combining
facility location algorithms with a tree-based clustering approach and de-
rive approximation algorithms for several variants of the problem, using
techniques for approximating shallow-light Steiner trees via layer graphs,
simultaneous approximation of shortest paths and minimum spanning
trees, and greedy coverings.

1 Introduction

We study a generalization of the uncapacitated facility location (UFL) problem
where instead of directly connecting a client to an open facility, shared access
trees connecting multiple clients to an open facility are allowed. Problems of this
type arise in the planning of optical access networks in telecommunications. In
these so-called fiber-to-the-home (FTTH) or fiber-to-the-curb (FTTC) networks,
optical splitters are used to split a single fiber emanating from the central office
into a fiber tree serving multiple clients. The main advantage of this technology,
compared to using an individual fiber for each client, is a considerable reduc-
tion in the number of fibers and, more importantly, the active fiber termination
equipment at the central office location. On the other hand, all clients in the
same fiber tree share the limited transmission capacity of a single fiber. Thus,
not too many clients may be aggregated into such a tree. Furthermore, the op-
tical signal emitted at the central office must fulfill several power and quality
requirements when reaching a client, in order to guarantee a reliable connection.
These technical requirements imply an upper bound on the path length between
the central office and any client within the fiber tree or, in other words, on the
depth of the tree.

When planning the deployment of such a network, one generally has to decide
where to set up central offices and how to connect the clients to these offices via
fiber trees. One of the most important objectives in this planning is to minimize
the total network cost, which is comprised by cost for setting up the offices and
the cost for laying out the fibers.
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We model this planning problem as an uncapacitated facility location prob-
lem with capacitated and length-bounded tree connections (UFL-CLT), which
is defined as follows. We are given a graph G = (V,E) whose vertex set is par-
titioned into a set of n clients C and a set of possible facilities F . The facilities
correspond to the potential central office locations and the edges correspond to
routes where fibers might be installed. Each edge e ∈ E has length �(e) ∈ Z+

and cost c(e) ∈ Z+. Each facility w ∈ F has an opening cost f(w) ∈ Z+ and
each client v ∈ C has a demand d(v) ∈ Z+. Finally, there is a cable capacity
U ∈ Z+ and a length bound L ∈ Z+.

A solution to UFL-CLT consists of a set of open facilities F ⊆ F , a set of (not
necessarily disjoint) trees T ⊆ 2E , with each tree T being rooted at a facility
wT ∈ F , and an assignment φ that specifies for each client v a tree φ(v) ∈ T
that contains v. Let Pv denote the unique path from v to wφ(v) in φ(v). The
solution is feasible, if it respects the length bound

�(Pv) :=
∑
e∈Pv

�(e) ≤ L ∀v ∈ C (1)

and the capacity constraint∑
v∈C:φ(v)=T,e∈Pv

d(v) ≤ U ∀e ∈ E, T ∈ T . (2)

Using a framework that combines approximation algorithms for various sub-
problems, we obtain bicriteria approximation algorithms for several variants of
UFL-CLT, approximating length bound and optimal cost at the same time.

Definition 1. An (α, β)-approximation algorithm for UFL-CLT is an algorithm
that computes in polynomial time a solution fulfilling (2) and �(Pv) ≤ αL for
all v ∈ C, with cost at most βOPT, where OPT denotes the minimum cost of a
solution fulfilling both (1) and (2).

1.1 Related Work

UFL-CLT is closely related to the capacitated cable facility location problem
(CCFL), which corresponds to UFL-CLT without the length bound and where
additionally the demand of a client can be split among several trees. Ravi and
Sinha [13] devise a framework to combine a ρST-approximation for Steiner tree
and a ρUFL-approximation for UFL to obtain a (ρST+ρUFL)-approximation algo-
rithm for CCFL. Our algorithms are largely based on a variant of their framework,
incorporating a partitioning technique by Harks et al. [5] to ensure that demands
do not have to be split. Similar clustering techniques have also been applied by
Maßberg and Vygen [12] for a related problem in VLSI design, where capacities
bound the total cost of a tree rather than the demand of its clients.

UFL-CLT combines two combinatorial optimization problems, uncapacitated
facility location (UFL) and shallow-light Steiner tree (SLST), both of which have
been studied extensively in literature. We give a short overview on approxima-
bility results for each problem, with a particular focus on those algorithms and
special cases occurring in this paper.
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Facility Location. The general (non-metric) version of UFL does not allow for an
o(log(n))-approximation unless P = NP . The greedy algorithm of Hochbaum [7]
achieves a ratio of O(log(n)). If the connection cost is metric, the best known
constant factor approximation is a 1.5-approximation by Byrka and Aardal [2]
that also allows for adjustable individual approximation ratios for connection
cost and opening cost.

Shallow-light Trees. The shallow-light Steiner tree problem (SLST) asks for
a Steiner tree with the property that the length of a path from each termi-
nal to the given root obeys the length bound while minimizing the cost. It
corresponds to the special case of UFL-CLT with U = ∞ and |F| = 1. Us-
ing a matching augmentation technique, Marathe et al. [11] give a polyno-
mial time (O(log(n)), O(log(n)))-approximation for SLST. While known lower
bounds do not rule out the possibility of an (O(1), O(1))-approximation, the
only improvement on the approximation factor in [11] so far is a parameterized
(O(p log(n)/ log(p)), O(log(n)/ log(p)))-approximation for an input parameter p,
1 ≤ p < n by Kapoor and Sarwat [8].

The directed Steiner tree problem asks for a minimum cost arborescence in a
directed graph rooted at a given node and spaninng all terminals. Charikar
et al. [4] provide an algorithm for this problem that returns an O(p2s1/p)-
approximation in time O(s3p) for a parameter p, where s is the number of termi-
nals. Setting p = log(s) yields an O(log2(s))-approximation in time O(s3 log(s)).
Using a condensed layer graph, this result immediately translates into a quasi-
polynomial (1 + ε,O(log2(n)))-approximation for SLST.

The special case of SLST with � ≡ 1 is known as hop-constrained Steiner
tree problem. For this problem, Kortsarz and Peleg [10] give a (1, O(log(n)))-
approximation, whose running time is polynomial when L is bounded by a
constant. For the hop-constrained spanning tree problem with metric costs,
Althaus et al. [1] provide a (1, O(log(n)))-approximation using approximation
of metrics by trees. Finally, for SLST instances with c = �, Khuller et al. [9]
devise an algorithm that transforms a given tree T into a tree T ′ with cost
c(T ′) ≤ (1 + 2/(1 − α))c(T ) such that the path length of any vertex v to the
specified root r in T ′ is a most α times the length of a shortest v-r-path in the
graph. They call such trees light approximate shortest-path trees (LAST).

Remark 1. Some of the references cited above in fact study bounded diameter
versions of the problem instead of shallow-light trees. However, the two prob-
lems are polynomially equivalent in the sense that any instance of SLST can
be transformed into an equivalent instance of the diameter version, while any
instance of bounded diameter Steiner tree can be solved by solving at most |E|
instances of SLST.

1.2 Contribution and Structure of the Paper

In this paper, we study a general framework for obtaining approximation algo-
rithms to UFL-CLT with varying ratios for path lengths and cost. All our al-
gorithms deviate from best-known approximation factors for the corresponding
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versions of SLST at most by a constant factor, showing the power of the chosen
approach for resolving capacity restrictions in depth-bounded tree networks.

In Section 2, we establish hardness of approximation better than (3, O(log(n)))
even for a very restriced special case of UFL-CLT and introduce two lower bounds
on the cost of an optimal solution. We then describe the general algorithmic
framework in Section 3 and use it to devise two algorithms for the general
version of UFL-CLT, a polynomial (O(log(n)), O(log(n)))-approximation and
a quasi-polynomial (3 + ε, O(log2(n)))-approximation. The remainder of the
paper investigates two important special cases, for which we can obtain con-
siderably better approximation factors. In Section 4, we show how to obtain a
(3α, (1+2/(α−1))O(1))-approximation for a parameter α > 1 in case c and � are
proportional to a common metric. In Section 5, we consider the hop-constrained
version of UFL-CLT, i.e., � ≡ 1, and obtain a (1 + ε,O(log(n)))-approximation
algorithm.

2 Preliminaries

2.1 Basic Definitions and Notations

Given a rooted tree T and two vertices v, w ∈ V (T ), we denote by T [v, w]
the unique path from v to w in T and by T [v] the subtree rooted at v. Let
x : E → Q+ be a function. For a vertex v ∈ V , and a set of vertices W ⊆ V , we
define x(v,W ) := minw∈W {x(vw)}. For S ⊆ E we define x(S) :=

∑
e∈S x(e).

2.2 Hardness of Approximation

As already indicated in Section 1.1, UFL-CLT generalizes several problems that
(unless P = NP ) do not allow for an approximation ratio better than O(log(n)),
like (non-metric) UFL or SLST. This is even true for the special case c = �.

Theorem 1. Unless P = NP , there is no (3 − ε, o(log(n)))-approximation to
UFL-CLT for any ε > 0, even when restricting to instances where cost and length
are proportional to a common metric.

2.3 Two Lower Bounds

Assume we are given an instance of UFL-CLT and let OPT be the cost of an
optimal solution to this instance. The following two lower bounds are general-
izations of the lower bounds used in [13].

Lemma 1. For v ∈ C and w ∈ F define

c̃(v, w) :=
d(v)

U
min{c(P ) : P is a v-w-path in G with �(P ) ≤ L}.

Let F̃ ⊆ F be an optimal solution to the UFL instance with facilities F , clients C,
opening costs f and connection costs c̃. Then

∑
w∈F̃ f(w)+

∑
v∈C c̃(v, F̃ ) ≤ OPT.
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Lemma 2. Let G′ := (V ′, E′) with V ′ := V ∪ {r} and E′ := E ∪ {rw : w ∈ F}.
Extend c and � by defining c(rw) := f(w) and �(rw) := 0 for all w ∈ F .
Let T ⊆ E′ be a tree of minimal cost among all trees spanning C ∪ {r} with
�(T [r, v]) ≤ L for all v ∈ C (i.e., T is an optimal shallow-light Steiner tree on
G′). Then c(T ) ≤ OPT.

3 Approximation Algorithms for General UFL-CLT

In this section, we introduce the algorithmic framework. We apply it to the gen-
eral version of UFL-CLT and derive two approximation algorithms. The first
runs in polynomial time and approximates both length bound and optimal cost
by a logarithmic factor. The second runs in quasi-polynomial time, violating the
length bound only by a constant while approximating the cost by a polyloga-
rithmic factor.

3.1 Algorithmic Framework

The algorithm consists of three main steps. In the first two steps, the facility
location and shallow-light tree instances introduced in Lemmas 1 and 2 are
constructed and approximately solved. The two solutions are merged in the third
step, using opened facilities to relieve overloaded subtrees. In a fourth step, the
final solution, consisting of the subtrees of the main tree rooted at facilities and
the additional subtrees constructed in the third step, is returned.

Algorithm 1

Step 1: Construct the UFL instance described in Lemma 1 and compute a
βUFL-approximate solution F̃ ⊆ F to this instance.

Step 2: Construct the graph G′ as described in Lemma 2 and compute an
(αSLST, βSLST)-approximate shallow-light Steiner tree T on G′ spanning C ∪
{r}. Set φ(v) = T [w] for all v ∈ C, where w is the last facility on T [v, r].

Step 3: Let T ′ be an initially empty set of trees. While there is an edge e ∈ T∩E
with

∑
v:φ(v)=T (w),e∈T [r,v] d(v) > U , let v′ be a client incident to exactly one

such edge and call relieve(v′).
Step 4: Let F = F̃ ∪ {w ∈ F : rw ∈ T } and T = {T [w] : rw ∈ T } ∪ T ′, and

return (F, T , φ).

relieve(v′): Let S := {v ∈ C : v is a child of v′ in T } and for each v ∈ S,
let S(v) := {u ∈ V (T [v]) : φ(u) = φ(v)}, and let S(v′) := {v′}. Partition
S ∪ {v′} into groups S0, . . . , Sk such that

∑
v∈S0

d(S(v)) ≤ U and U/2 ≤∑
v∈Si

d(S(v)) ≤ U for all i ∈ {1, . . . , k}. Then, for each i ∈ {1, . . . , k}
– find a client-facility pair vi, wi with vi ∈

⋃
v∈Si

S(v) and wi ∈ F ′ such
that c(vi, wi) is minimum among all such pairs,

– add Ti :=
⋃

v∈Si
(T [v] ∪ {v′v}) ∪ {viwi} to T ′ and remove the edges of

Ti from T ,
– set φ(u) = Ti for all u ∈

⋃
v∈Si

S(v) .
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Remark 2. An approximate version of the UFL instance in Step 1 can be con-
structed in polynomial time by using an FPTAS for the length constrained short-
est path problem yielding a path from v to w with length at most L and cost at
most 1 + ε times the cost of an optimal length constrained path [6].

Lemma 3. Let (F, T , φ) be the solution computed by the algorithm. Let T̂ be
the tree computed in Step 2. Then the following three statements hold true.

1.
∑

v∈C:φ(v)=T ′, e∈Pv
d(v) ≤ U for all T ′ ∈ T and all e ∈ T

2. �(Pv) ≤ (2αSLST + 1)L for all v ∈ C
3.

∑
w∈F f(w) +

∑
T ′∈T c(T

′) ≤
∑

w∈F̃ f(w) + c(T̂ ) + 2
∑

v∈C c̃(v, F̃ )

Proof. 1. After termination of the while loop in Step 3, the capacity constraint
is fulfilled for all edges e ∈ T . Every tree introduced in the relieve procedure
only serves a demand of at most U and thus the capacity constraint is fulfilled
in these trees as well.

2. Let v ∈ C. If φ(v) = T , then �(Pv) ≤ αSLSTL. If φ(v) 	= T , then v has been
removed from T in Step 3 when relieving the subtree T [v′] for some client v′.
In this case, its demand was rerouted to some facility wi via a client vi and
thus �(Pv) ≤ �(T̂ [v, v′])+�(T̂ [v′, vi])+�(viwi). While the first two summands
each are bounded by αSLSTL by construction of T̂ , the third summand is
bounded by L by construction of the UFL instance in Step 1.

3. Clearly,
∑

w∈F f(w) ≤
∑

w∈F̃ f(w)+
∑

w:rw∈T̂ c(rw). If e ∈ T ′ for some T ′ ∈
T , then either e ∈ T̂ , or e = viwi was introduced in the relieve procedure
when connecting the clients in group Si for some i ∈ {1, . . . , k}. In the latter
case, c(e) ≤ c(u, F̃ ) for all u ∈ Ui :=

⋃
v∈Si

S(v). Then
∑

v∈Si
d(S(v)) ≥ U/2

implies c(e) ≤ 2
∑

u∈Ui
(d(u)/U)c(u, F ) = 2

∑
u∈Ui

c̃(u, F̃ ). As the sets Ui are
disjoint, the third statement follows. �


The algorithmic framework introduced above can be implemented using dif-
ferent variants of approximation algorithms for the UFL and SLST instances in
Steps 1 and 2, resulting in different overall approximation factors and running
times.

3.2 A Polynomial-Time (O(log(n)), O(log(n)))-Approximation

A natural choice for the UFL approximation of Step 1 is the greedy O(log(n))-
approximation by Hochbaum [7]. In Step 2, the (O(log(n)), O(log(n)))-approxi-
mation for diameter-constrained Steiner trees by Marathe et al. [11] can be used
to approximate the SLST instance. Thus, Lemma 3 yields the following theorem.

Theorem 2. Using the greedy UFL approximation [7] in Step 1 and the (diam-
eter, cost)-algorithm of [11] in Step 2, Algorithm 1 computes in polynomial time
an (O(log(n)), O(log(n)))-approximate solution to UFL-CLT.
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3.3 A Quasi-Polynomial (3 + ε,O(log2(n)))-Approximation

In order to improve the approximation guarantee for the length bound to con-
stant factor, we employ a quasi-polynomial directed Steiner tree algorithm on
the layer graph corresponding to the SLST instance in Step 2.

Definition 2 (Layer graph). Given an instance of SLST on a graph G =
(V,E) with root r ∈ V , terminal set S ⊆ V , costs c, edge lengths �, and length
bound L, the corresponding layer graph is a directed graph GL with node set VL,
arc set EL, and costs cL defined as follows. For every vertex v ∈ V and every
t ∈ {0, . . . , L}, there is a node vt in V ∗. For every edge e ∈ E with end points
v and w, and every t ∈ {0, . . . , L− �(e)}, there is an arc from vt to wt+�(e) and
an arc from wt to vt+�(e) both with cost c(e). Finally, there also is an arc from
vt to vL for every terminal v ∈ S and every t ∈ {0, . . . , L− 1} with cost 0.

A directed Steiner tree on GL is an aborescence rooted at r0 that spans all
vertices vL for v ∈ S.

Lemma 4. Given an instance of SLST on a graph G, the minimum cost of
a directed Steiner tree in GL is equal to the minimum cost of a shallow-light
Steiner tree in G. Given a directed Steiner tree TL in GL, one can compute in
time polynomial in |TL| a shallow-light Steiner tree T in G with c(T ) ≤ cL(TL).

Lemma 5. For every ε > 0, there is an O(n3 log(n))-time algorithm that com-
putes a (1+ε,O(log2(n)))-approximate solution to SLST (where n is the number
of terminals).

Proof. Let ε > 0 and let (G = (V,E), S, r, c, �, L) be an instance of SLST. Define
κ := εL/|V |, L̃ := �(1/κ)L , and �̃(e) := �(1/κ)�(e) for all e ∈ E. Construct
the layer graph GL̃ w.r.t. �̃ and L̃ and apply the O(p2s1/p)-approximation for
directed Steiner tree of [4] on GL̃ with p = log(s). Observe that the number s
of terminals in GL̃ is n and that GL̃ has at most ε−1|V |2 nodes and ε−1|E||V |
arcs. Thus the algorithm computes an O(log2(n))-approximate directed Steiner
tree T̃ in quasi-polynomial time (depending on |V |, |E|, and ε−1, but not on L).
Using Lemma 4, we can compute a Steiner tree T in G with cost at most cL̃(T̃ )

and �̃(T [v, r]) ≤ L̃ for all v ∈ S. Thus

�(T [v, r]) ≤ κ
∑

e∈T [v,r]

(�̃(e) + 1) ≤ κ(L̃ + |V |) ≤ (1 + ε)L.

Furthermore, observe that if �(P ) ≤ L for any path P in G, then also �̃(P ) ≤ L̃,
implying that the cost of an optimal shallow-light Steiner tree in G w.r.t. �̃ and
L̃ is at most the cost of a shallow-light Steiner tree w.r.t. � and L. Thus, by
Lemma 4, T is a (1 + ε,O(log2(n)))-approximate shallow-light Steiner tree to
the original SLST instance. �


Again using the greedy UFL approximation [7] in Step 1 and the quasi-
polynomial algorithm for SLST in Step 2 of Algorithm 1, we can achieve a
constant factor approximation of the length bound by Lemma 3.

Theorem 3. For every ε > 0, there is an algorithm that computes a (3 +
ε,O(log2(n)))-approximate solution to UFL-CLT in time O(n3 log(n)).
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4 Length-Dependent Cost

Throughout this section, we assume G to be complete and both c and � to
be proportional to a common metric on G (w.l.o.g., this implies c = �). For
this special case, a modified version of Algorithm 1, using the LAST algorithm
of Khuller et al. [9] and a greedy covering, yields a solution that approximates
both the length bound and the optimal cost by constants. We can adjust the
two constants by modifying the parametric approximation factor of the LAST.

4.1 μ-Stretched Covers

Before applying the LAST algorithm, we need to ensure that for each client there
is an open facility whose distance to the client does not exceed the length bound
by more than a constant factor.

Definition 3. Given an instance of UFL-CLT, a μ-stretched cover is a set of
facilities F ⊆ F such that for every client v ∈ C there is a facility w ∈ F with
�(vw) ≤ μL.

Greedy 3-Streched Covering Algorithm.

Input: an instance of UFL-CLT
Output: a set of facilities F ′ ⊆ F
C′ ← C; F ′ ← ∅
while C′ �= ∅ do

choose any v′ ∈ C′ and a let Fv′ = {w ∈ F : �(v′w) ≤ L}
choose w′ ∈ Fv′ minimizing f(w′)
F ′ ← F ′ ∪ {w′}
C′ ← C′ ∩ {v ∈ C : �(vw′) > 3L}

end
return F’

Lemma 6. The set of facilities F ′ returned by the greedy 3-streched covering
algorithm is a 3-stretched cover and

∑
w∈F ′ f(w) ≤ OPT.

Proof. A client v is only removed from C′ if �(v, F ′) ≤ 3L, thus, when the
algorithm terminates, F ′ is a 3-stretched cover. For any facility w ∈ F ′, let
vw ∈ C be the client that was chosen in the first line of the while loop in the
iteration where w was added to F ′, and let o(w) ∈ F be the facility that serves vw
in a fixed optimal solution. Clearly, f(w) ≤ f(o(w)) as o(w) ∈ Fvw . We now show
o(w) 	= o(w′) for w 	= w′, which implies the claim of the lemma. By contradiction
assume o(w) = o(w′) for w 	= w′. W.l.o.g., w was added to F ′ before w′. Then
o(w) = o(w′) implies �(vw′ , w) ≤ �(vw′ , o(w′)) + �(vw, o(w)) + �(vw, w) ≤ 3L.
Thus vw′ was erased from C′ when w was added to F ′. �


4.2 The Algorithm

The first three steps of Algorithm 2 resemble those of Algorithm 1 with the only
difference that we ignore the length bound. We therefore can apply constant
factor approximations for the resulting metric UFL and Steiner tree instances in
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Fig. 1. Approximation factors achieved by Algorithm 2 for UFL-CLT with length-
proportional cost, using the Steiner tree approximation by Byrka et al. [3] with
βST = 1.39

Step 1 and 2, respectively. After applying the relieve procedure, the algorithm
computes a 3-stretched cover of facilities to be opened in addition to those stem-
ing from the previous steps. Finally, each tree in the solution computed thus far
is processed using the LAST algorithm, ensuring that the distance of each client
to the root of its tree is at most α times the distance to the closest open facility
(which is at most 3L), while increasing the cost of the tree by a factor of at most
1 + 2/(α− 1).

In order to improve the approximation guarantee of the algorithm, the con-
nection and opening costs of the UFL approximation are balanced carefully: The
UFL algorithm of Byrka and Aardal [2] takes as additional input a parameter
γ, returning a solution whose opening cost is at most γ times the opening cost
of an initial LP solution and whose connection cost is at most 1 + 2e−γ times
the connection cost of that LP solution. We denote the optimal choice of γ for
a given α by γα. It is the unique solution to (1 + 2/(α− 1))(2 + 4e−γ) = γ, as
can be derived from the proof of Theorem 4.

Algorithm 2

Step 1: Construct the UFL instance with facilities F , clients C, opening costs
f and connection costs c̄(v, w) := (d/u)c(v, w). Compute an approximate
solution F̃ ⊆ F to this instance using the algorithm in [2] with γ = γα.

Step 2: Construct the graph G′ as described in Lemma 2 and compute w.r.t. c′

a βST-approximate Steiner tree T with terminals C on G′.
Step 3: Let T ′ be an initially empty set of trees. While there is an edge e ∈ T∩E

with
∑

v:e∈T [r,v] d(v) > U , let v′ be a client incident to exactly one such edge

and call relieve(v′).
Step 4: Compute a 3-stretched cover F̄ .
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Step 5: Let F = F̃ ∪ {w ∈ F : rw ∈ T } ∪ F̄ and T = {T [w] : rw ∈ T } ∪ T ′.
Temporally contract F to a single vertex r′. For each T ′ ∈ T , apply the
algorithm of Khuller et al. [9] using T ′ as initial tree and the star {r′v : v ∈
V (T ′)} as shortest path tree, to compute an (α, 1 + 2/(α − 1))-LAST T ∗

w.r.t. c and root r′. Replace T ′ by T ∗. Expand r′ to F and return (F, T , φ).

Theorem 4. For every α > 1 there is a polynomial-time algorithm that com-
putes a (3α, (1 + 2/(α − 1))βST + γα + 1)-approximate solution for UFL-CLT
restricted to instances with length-proportional cost, where γα is the unique so-
lution to (1 + 2/(α− 1))(2 + 4e−γ) = γ and βST is the approximation factor of
a Steiner tree algorithm.

5 Hop Constraints

We now consider the case where � ≡ 1, the graph is complete and c is a metric.
In this case, the length bound is also known as hop constraint. We will show how
to adapt Algorithm 1 so as to approximate the hop constraint with arbitrary
precision while still achieving a logarithmic cost approximation and polynomial
run time. This is done by applying two different tree algorithms, depending on
the number of hops allowed in the instance.

If L is large, we will use a (1, O(log(n)))-approximation for the minimum
hop-constraint spanning tree problem by Althaus et al. [1]. However, the trans-
formation of the corresponding lower bound from Steiner tree to spanning tree
incurs an increase in the number of hops by an additive constant. We will com-
pensate for this by using a different algorithm for instances where L is small:
The (1, O(log(n)))-approximation for shallow light Steiner tree by Kortsarz and
Peleg [10] runs in polynomial time for constant number of hops. The final in-
gredient is a slight modification of the relieve subprocedure, ensuring that the
depth of newly created trees does not exceed that of the original tree.

Lemma 7 (Spanning tree variant of Lemma 2). Let G′ be the graph con-
structed in Lemma 2 and let ĉ(rw) := 0 for all w ∈ F , ĉ(vw) = c(vw) + f(w)
for all v ∈ C and w ∈ F , and ĉ(e) = c(e) for all other edges. Then the cost of a
minimum (L + 2)-hop spanning tree in G′ w.r.t. ĉ and root r is at most 2OPT.

Proof. Let (F, T , φ) be an optimal solution to the UFL-CLT instance. For a
tree T and a facility w ∈ V (T ), let vmin

w,T be a child of w in T that minimizes
c(vw) among all children v of w. We modify each tree T ∈ T by applying the
following change for each facility w 	= wT in T . Let u be the parent of w in T .
Remove vmin

w,Tw and wu from T and insert vmin
w,Tu. Then, for each child v of w

with v 	= vmin
w,T , replace vw by vvmin

w,T in T . Observe that this modification does
not increase the length of any client-root-path in the tree.

Thus, for each client v ∈ C there is a tree T ∈ T with a v-wT -path of length at
most L. The set T ∗ :=

⋃
T∈T T ∪ {rw : w ∈ F} spans G′ and contains a path of

length L+1 from each client to r. If T ∗ contains a cycle, there must be at least
one edge uv in the cycle such that dist�(u, r)+1 > dist�(v, r). Iteratively remove
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such edges until T ∗ contains no more cycles and is an (L+1)-hop spanning tree.
If there is a facility w ∈ F that has more than one child in T ∗, again for each
child v of w with v 	= vmin

w,T∗ , replace vw by vvmin
w,T∗ in T . This increases the length

of any client-root-path by at most 1. Observe that by triangle inequality, every
replacement of an edge vw by vvmin

w,T increases the cost of the corresponding tree

w.r.t. c by at most c(vmin
w,Tw) ≤ c(vw). As this replacement happens at most once

for every client, the total increase in cost is bounded by
∑

T∈T c(T ). Also, every
facility w ∈ F \F is a leaf in T ∗ and every facility w ∈ F has at most one child in
T ∗. Thus, T ∗ is an (L+2)-hop spanning tree and ĉ(T ∗) ≤ c(T ∗)+

∑
w∈F f(w) ≤∑

w∈F f(w) + 2
∑

T∈T c(T ) ≤ 2OPT . �


Algorithm 3. Let ε > 0. Run Algorithm 1 with the following modifications.

– In Step 1, use the greedy O(log(n))-approximation for (non-metric) UFL [7].
– In Step 2: If L ≤ �1/ε�, then use the algorithm of Kortsarz and Peleg [10] to

compute an O(log(n))-approximate (L+1)-hop Steiner tree in G′ w.r.t. cost
c, root r and terminals C. Otherwise, use the algorithm of Althaus et al. [1] to
compute anO(log(n))-approximate (L+2)-hop spanning tree inG′ w.r.t. cost
ĉ and root r.

– In relieve(v′): When creating tree Ti, insert edge v
′wi instead of edge viwi.

Theorem 5. Algorithm 3 is a polynomial time (1+ ε,O(log(n))-approximation
for instances of UFL-CLT where � ≡ 1, G is complete, and c is a metric.

Proof. Statement 1 of Lemma 3 is still valid and guarantees that the solution
respects link capacities. Using the triangle inequality, the modified relieve pro-
cedure exceeds the cost bound given in Lemma 3 at most by the cost of the
initial tree. In conjunction with Lemma 7, the total costs are thus bounded by
O(log(n)OPT).

Let D be the depth of the tree T computed in Step 2 (recall that D ≤ L+ 1
if L ≤ �1/ε� and D ≤ L + 2 otherwise). We now argue that for each client
v, the client-facility-path Pv has length at most D − 1. If φ(v) = T [w] for a
tree that arose as a subtree of T rooted at facility w, then Pv = T [v, r] \ {wr},
so the assertion is true. Otherwise, v was reassigned to a newly created tree
Ti with facility root wi when relieving the subtree at client v′. In this case
|Pv| = |Ti[v, wi]| ≤ |T [v, v′]|+ 1 = |T [v, r]| − |T [v′, r]|+ 1. As v′ is not a facility,
|T [v′, r]| ≥ 2 and the assertion is correct again. Thus, if L ≤ �1/ε�, then |Pv| ≤ L.
If L > �1/ε�, then |Pv| ≤ L+ 1 ≤ (1 + ε)L. �


6 Conclusion

In this article, we studied a framework for approximating the UFL-CLT problem
achieving individual approximation guarantees for maximum connection length
and cost. By choosing suitable shallow-light tree and facility location algorithms
as subroutines and carefully adapting the algorithm, improved approximation
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guarantees can be achieved for two special cases of particular importance, demon-
strating the power and flexibility of the combined approach.

In the practical application motivating this work, precise client demands are
unknown during the early planning phase but can only be estimated roughly.
However, fixing location decisions with sufficient lead time can reduce install-
ment costs considerably. Designing approximation algorithms for a generaliza-
tion of UFL-CLT that incorporates this uncertainty in a 2-stage optimization
problem is an interesting subject of future research. Further, the suitability of
the algorithmic approach in practical applications (providing initial solutions for
improvement heuristics) should be investigated in a computational study.
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Abstract. Intersection graphs of geometric objects have been exten-
sively studied, both due to their interesting structure and their numerous
applications; prominent examples include interval graphs and permuta-
tion graphs. In this paper we study a natural graph class that generalizes
both interval and permutation graphs, namely simple-triangle graphs.
Simple-triangle graphs – also known as PI graphs (for Point-Interval) –
are the intersection graphs of triangles that are defined by a point on a
line L1 and an interval on a parallel line L2. They lie naturally between
permutation and trapezoid graphs, which are the intersection graphs of
line segments between L1 and L2 and of trapezoids between L1 and L2,
respectively. Although various efficient recognition algorithms for per-
mutation and trapezoid graphs are well known to exist, the recognition
of simple-triangle graphs has remained an open problem since their in-
troduction by Corneil and Kamula three decades ago. In this paper we
resolve this problem by proving that simple-triangle graphs can be rec-
ognized in polynomial time. As a consequence, our algorithm also solves
a longstanding open problem in the area of partial orders, namely the
recognition of linear-interval orders, i.e. of partial orders P = P1 ∩ P2,
where P1 is a linear order and P2 is an interval order. This is one of
the first results on recognizing partial orders P that are the intersec-
tion of orders from two different classes P1 and P2. In contrast, partial
orders P which are the intersection of orders from the same class P have
been extensively investigated, and in most cases the complexity status
of these recognition problems has been established.

Keywords: Intersection graphs, PI graphs, recognition problem, partial
orders, polynomial algorithm.

1 Introduction

A graph G is the intersection graph of a family F of sets if we can bijectively
assign sets of F to vertices of G such that two vertices of G are adjacent if and
only if the corresponding sets have a non-empty intersection. It turns out that
many graph classes with important applications can be described as intersection
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graphs of set families that are derived from some kind of geometric configura-
tion. One of the most prominent examples is that of interval graphs, i.e. the
intersection graphs of intervals on the real line, which have natural applications
in several fields, including bioinformatics and involving the physical mapping of
DNA and the genome reconstruction1 [3, 6, 7].

Generalizing the intersections on the real line, consider two parallel horizontal
lines on the plane, L1 (the upper line) and L2 (the lower line). A graph G is
a simple-triangle graph if it is the intersection graph of triangles that have one
endpoint on L1 and the other two on L2. Furthermore, G is a triangle graph
if it is the intersection graph of triangles with endpoints on L1 and L2, but
now there is no restriction on which line contains one endpoint of every trian-
gle and which contains the other two. Simple-triangle and triangle graphs are
also known as PI and PI∗ graphs, respectively [2, 4, 14], where PI stands for
“Point-Interval”. Such representations of simple-triangle and of triangle graphs
are called simple-triangle (or PI ) and triangle (or PI ∗) representations, respec-
tively. Simple-triangle and triangle graphs lie naturally between permutation
graphs (i.e. the intersection graphs of line segments with one endpoint on L1

and one on L2) and trapezoid graphs (i.e. the intersection graphs of trapezoids
with one interval on L1 and the opposite interval on L2) [2, 14]. Note that, us-
ing the notation PI for simple-triangle graphs, permutation graphs are PP (for
“Point-Point”) graphs, while trapezoid graphs are II (for “Interval-Interval”)
graphs [4].

A partial order is a pair P = (U,R), where U is a finite set and R is an
irreflexive transitive binary relation on U . Whenever (x, y) ∈ R for two elements
x, y ∈ U , we write x <P y. If x <P y or y <P x, then x and y are comparable,
otherwise they are incomparable. P is a linear order if every pair of elements in
U are comparable. Furthermore, P is an interval order if each element x ∈ U
is assigned to an interval Ix on the real line such that x <P y if and only if Ix
lies completely to the left of Iy. One of the most fundamental notions on partial
orders is dimension. For any partial order P and any class P of partial orders
(e.g. linear order, interval order, semiorder, etc.), the P-dimension of P is the
smallest k such that P is the intersection of k orders from P . In particular, when
P is the class of linear orders, the P-dimension of P is known as the dimension
of P . Although in most cases we can efficiently recognize whether a partial order
belongs to a class P , this is not the case for higher dimensions. Due to a classical
result of Yannakakis [15], it is NP-complete to decide whether the dimension, or
the interval dimension, of a partial order is at most k, where k ≥ 3.

There is a natural correspondence between graphs and partial orders. For a
partial order P = (U,R), the comparability (resp. incomparability) graph G(P )
of P has elements of U as vertices and an edge between every pair of compa-
rable (resp. incomparable) elements. A graph G is a (co)comparability graph if
G is the (in)comparability graph of a partial order P . There has been a long

1 Benzer [1] earned the prestigious Lasker Award (1971) and Crafoord Prize (1993)
partly for showing that the set of intersections of a large number of fragments of
genetic material in a virus form an interval graph.
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line of research in order to establish the complexity of recognizing partial or-
ders of P-dimension at most 2 (e.g. where P is linear orders [14] or interval
orders [9]). In particular, since permutation (resp. trapezoid) graphs are the in-
comparability graphs of partial orders with dimension (resp. interval dimension)
at most 2 [5,14], permutation and trapezoid graphs can be recognized efficiently
by the corresponding partial order algorithms [9, 14].

In contrast, not much is known so far for the recognition of partial orders
P that are the intersection of orders from different classes P1 and P2. One of
the longstanding open problems in this area is the recognition of linear-interval
orders P , i.e. of partial orders P = P1∩P2, where P1 is a linear order and P2 is an
interval order. In terms of graphs, this problem is equivalent to the recognition of
simple-triangle (i.e. PI) graphs, since PI graphs are the incomparability graphs
of linear-interval orders; this problem is well known and remains open since the
introduction of PI graphs in 1987 [4] (cf. for instance the books [2, 14]).

Our Contribution. In this article we establish the complexity of recognizing
simple-triangle (PI) graphs, and therefore also the complexity of recognizing
linear-interval orders. Given a graph G with n vertices, such that its comple-
ment G has m edges, we provide an algorithm with running time O(n2m) that
either computes a PI representation of G, or it announces that G is not a PI
graph. Equivalently, given a partial order P = (U,R) with |U | = n and |R| = m,
our algorithm either computes in O(n2m) time a linear order P1 and an interval
order P2 such that P = P1 ∩ P2, or it announces that such orders P1, P2 do
not exist. Surprisingly, it turns out that the seemingly small difference in the
definition of simple-triangle (PI) graphs and triangle (PI∗) graphs results in a
very different behavior of their recognition problems; only recently it has been
proved that the recognition of triangle graphs is NP-complete [11]. In addition,
our polynomial time algorithm is in contrast to the recognition problems for
the related classes of bounded tolerance (i.e. parallelogram) graphs [12] and of
max-tolerance graphs [8], which have already been proved to be NP-complete.

As the main tool for our algorithm we introduce the notion of a linear-interval
cover of bipartite graphs. As a second tool we identify a new tractable sub-
class of 3SAT, called gradually mixed formulas, for which we provide a linear
time algorithm. The class of gradually mixed formulas is hybrid, i.e. it is charac-
terized by both relational and structural restrictions on the clauses. Then, using
the notion of a linear-interval cover, we are able to reduce our problem to the
satisfiability problem of gradually mixed formulas.

Our algorithm proceeds as follows. First, it computes from the given graph
G a bipartite graph G̃, such that G is a PI graph if and only if G̃ has a linear-
interval cover. Second, it computes a gradually mixed Boolean formula φ such
that φ is satisfiable if and only if G̃ has a linear-interval cover. This formula φ
can be written as φ = φ1 ∧ φ2, where every clause of φ1 has 3 literals and every
clause of φ2 has 2 literals. The construction of φ1 and φ2 is based on the fact that
a necessary condition for G̃ to admit a linear-interval cover is that its edges can
be colored with two different colors (according to some restrictions). Then the

edges of G̃ correspond to literals of φ, while the two edge colors encode the truth
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value of the corresponding variables. Furthermore every clause of φ1 corresponds
to the edges of an alternating cycle in G̃ (i.e. a closed walk that alternately visits
edges and non-edges) of length 6, while the clauses of φ2 correspond to specific

pairs of edges of G̃ that are not allowed to receive the same color. Finally, the
equivalence between the existence of a linear-interval cover of G̃ and a satisfying
truth assignment for φ allows us to use our linear algorithm to solve satisfiability
on gradually mixed formulas in order to complete our recognition algorithm.

Organization of the Paper. We present in Section 2 the class of gradually
mixed formulas and a linear time algorithm to solve satisfiability on this class.
In Section 3 we provide the necessary notation and preliminaries on alternating
cycles. Then in Section 4 we introduce the notion of a linear-interval cover of
bipartite graphs to characterize PI graphs, and in Section 5 we translate the
linear-interval cover problem to the satisfiability problem on a gradually mixed
formula. Finally, in Section 6 we present our PI graph recognition algorithm.

2 A Tractable Subclass of 3SAT

In this section we introduce the class of gradually mixed formulas and we provide
a linear time algorithm for solving satisfiability on this class. Any gradually
mixed formula φ is a mix of binary and ternary clauses. That is, there exist a 3-
CNF formula φ1 (i.e. a formula in conjunctive normal form with at most 3 literals
per clause) and a 2-CNF formula φ2 (i.e. with at most 2 literals per clause) such
that φ = φ1 ∧φ2, while φ satisfies some constraints among its clauses. Before we
define gradually mixed formulas (cf. Definition 2), we first define dual clauses.

Definition 1. Let φ1 be a 3-CNF formula. If α = (�1∨�2∨�3) is a clause of φ1,
then the α = (�1 ∨ �2 ∨ �3) is the dual clause of α.

Note by Definition 1 that, whenever α is a clause of a formula φ1, the dual
clause α of α may belong, or may not belong, to φ1.

Definition 2. Let φ1 and φ2 be CNF formulas with 3 literals and 2 literals in
each clause, respectively. The mixed formula φ = φ1 ∧ φ2 is gradually mixed if
the next two conditions are satisfied:

1. Let α and β be two clauses of φ1. Then α does not share exactly one literal
with either the clause β or the clause β.

2. Let α = (�1 ∨ �2 ∨ �3) be a clause of φ1. Then:

– if (�0 ∨ �1) is a clause of φ2, then φ2 contains also (at least) one of the
clauses {(�0 ∨ �2), (�0 ∨ �3)},

– if (�0 ∨ �1) is a clause of φ2, then φ2 contains also (at least) one of the
clauses {(�0 ∨ �2), (�0 ∨ �3)}.

As an example of a gradually mixed formula, consider the formula φ = φ1∧φ2,
where φ1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x5 ∨ x6 ∨ x7) and φ2 = (x8∨x3)∧
(x8 ∨ x1) ∧ (x8 ∨ x4) ∧ (x8 ∨ x9) ∧ (x5 ∨ x10) ∧ (x6 ∨ x10).
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Note by Definition 2 that the class of gradually mixed formulas contains 2SAT
as a proper subclass, since every 2-CNF formula φ2 can be written as a gradually
mixed formula φ = φ1 ∧ φ2 where φ1 = ∅. Furthermore the class of gradually
mixed formulas φ is a hybrid class, since the conditions of Definition 2 concern
simultaneously relational restrictions (i.e. where the clauses are restricted to
be of certain types) and structural restrictions (i.e. where there are restrictions
on how different clauses interact with each other). The intuition for the term
gradually mixed in Definition 2 is that, whenever the sub-formulas φ1 and φ2
share more variables, the number of clauses of φ2 that are imposed by condition 2
of Definition 2 increases. In the next theorem we use resolution to prove that
satisfiability can be solved in linear time on gradually mixed formulas.

Theorem 1. There exists a linear time algorithm which decides whether a given
gradually mixed formula φ is satisfiable and computes a satisfying truth assign-
ment of φ, if one exists.

The conditions of Definition 2 which guarantee the tractability of gradually
mixed formulas are minimal, in the sense that, if we remove any of these two
conditions, the resulting subclass of 3SAT is NP-complete.

3 Preliminaries

Notation. In this article we consider finite, simple, and undirected graphs. An
edge between two vertices u and v of a graph G = (V,E) is denoted by uv, and
in this case u and v are said to be adjacent. The neighborhood of a vertex u ∈ V
is the set N(u) = {v ∈ V | uv ∈ E} of its adjacent vertices. The complement of
G is denoted by G, i.e. G = (V,E), where uv ∈ E if and only if uv /∈ E. For any
subset E0 ⊆ E of the edges of G, we denote for simplicity G−E0 = (V,E \E0).
A subset S ⊆ V of its vertices induces an independent set in G if uv /∈ E for
every pair of vertices u, v ∈ S. Furthermore, S induces a clique in G if uv ∈ E for
every pair u, v ∈ S. A graph G is a split graph if its vertices can be partitioned
into a clique K and an independent set I.

The smallest k for which there exists a proper k-coloring of G is the chromatic
number of G, denoted by χ(G). If χ(G) = 2 then G is a bipartite graph, i.e. its
vertices are partitioned into two independent sets, the color classes. A bipartite
graph G is denoted by G = (U, V,E), where U and V are its color classes and
E is the set of edges between them. For a bipartite graph G = (U, V,E), its

bipartite complement is the graph Ĝ = (U, V, Ê), where for two vertices u ∈ U

and v ∈ V , uv ∈ Ê if and only if uv /∈ E. A bipartite graph G = (U, V,E) is
a chain graph if the vertices of each color class can be ordered by inclusion
of their neighborhoods, i.e. N(u) ⊆ N(v) or N(v) ⊆ N(u) for any two vertices
u, v in the same color class. Note that chain graphs are closed under bipartite
complementation, i.e. G is a chain graph if and only if Ĝ is a chain graph.

For two graphs G1 = (V,E1) and G2 = (V,E2), we denote G1 ⊆ G2 whenever
E1 ⊆ E2. Moreover, we denote for simplicity by G1 ∪ G2 and G1 ∩ G2 the
graphs (V,E1 ∪E2) and (V,E1 ∩E2), respectively. Similarly, for any two partial
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orders P1 = (U,R1) and P2 = (U,R2), we denote P1 ⊆ P2 whenever R1 ⊆ R2.
Moreover, we denote for simplicity P1 ∪ P2 and P1 ∩ P2 for the partial orders
(U,R1 ∪R2) and (U,R1 ∩R2), respectively.

Alternating Cycles in a Graph. The next definition of an alternating cycle
is crucial for our recognition algorithm for PI graphs.

Definition 3. Let G = (V,E) be a graph, Ẽ ⊆ E be an edge subset, and k ≥ 2.
A set of 2k (not necessarily distinct) vertices v1, v2, . . . , v2k ∈ V builds an al-

ternating cycle AC2k in Ẽ, if vivi+1 ∈ Ẽ whenever i is even and vivi+1 /∈ E
whenever i is odd (where indices are mod 2k). Furthermore, we say that G has

an alternating cycle AC2k, whenever G has an AC2k in the edge set Ẽ = E.

For instance, for k = 3, there exist two different possibilities for an AC6,
which are illustrated in Figures 1(a) and 1(b). These two types of an AC6 are
called an alternating path of length 5 or of length 6, respectively (AP5 and
AP6 for short, respectively). Furthermore, note that for k = 2, a set of four
vertices v1, v2, v3, v4 ∈ V builds an alternating cycle AC4 if v1v2, v3v4 /∈ E and
v2v3, v1v4 ∈ E. There are three possible graphs on four vertices that build an
alternating cycle, AC4 which are illustrated in Figures 1(c)-1(e).

v1 = v4

v2

v6

AP5

v3

v5

(a)

v1 v2

v3

v4v5

v6 AP6

(b)

v1 v2

v3v4

(c)

v1 v2

v3v4

(d)

v1 v2

v3v4

(e)

Fig. 1. The two possibilities for an AC6: (a) an alternating path AP5 of length 5 and
(b) an alternating path AP6 of length 6. Furthermore, the three possibilities for an
AC4: (c) a 2K2, (d) a P4, and (e) a C4. The solid lines denote edges of the graph and
the dashed lines denote non-edges of the graph.

Alternating cycles can be used to characterize chain graphs as the bipartite
graphs with no induced 2K2 [10]. We define now for any bipartite graph G the
associated split graph of G, which we use extensively throughout of the paper.

Definition 4. Let G = (U, V,E) be a bipartite graph. The associated split graph
of G is the split graph HG = (U ∪ V,E′), where E′ = E ∪ (V × V ), i.e. HG is
the split graph made by G by replacing the independent set V of G by a clique.

The next two definitions of a conflict between two edges and the conflict
graph are essential for our results.

Definition 5. Let G = (V,E) be a graph and e1, e2 ∈ E. If the vertices of e1
and e2 build an AC4 in G, then e1 and e2 are in conflict, and in this case we
denote e1||e2 in G. Furthermore, an edge e ∈ E is committed if there exists an
edge e′ ∈ E such that e||e′; otherwise e is uncommitted.
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Definition 6 ([13]). Let G = (V,E) be a graph. The conflict graph
G∗ = (V ∗, E∗) of G is defined by

– V ∗ = E and
– for every e1, e2 ∈ E, e1e2 ∈ E∗ if and only if e1||e2 in G.

4 Linear-Interval Covers of Bipartite Graphs

In this section we introduce the crucial notion of a linear-interval cover of bipar-
tite graphs (cf. Definition 9). Then we use linear-interval covers to provide a new
characterization of PI graphs (cf. Theorem 3), which is one of the main tools for
our PI graph recognition algorithm. First we provide in the next theorem the
characterization of PI graphs using linear orders and interval orders.

Theorem 2. Let G = (V,E) be a cocomparability graph and P be a partial order
of G. Then G is a PI graph if and only if P = P1 ∩ P2, where P1 is a linear
order and P2 is an interval order.

For every partial order P we define now the domination bipartite graph C(P ),
which has been used to characterize interval orders [9]. Here “C” stands for
“Comparable”, since the definition of C(P ) uses the comparable elements of P .

Definition 7 ([9]). Let P = (U,R) be a partial order, where
U = {u1, u2, . . . , un}. Furthermore let V = {v1, v2, . . . , vn}. The domina-
tion bipartite graph C(P ) = (U, V,E) is defined such that uivj ∈ E if and only
if ui <P uj.

Lemma 1 ([9]). Let P = (U,R) be a partial order. Then, P is an interval order
if and only if C(P ) is a chain graph.

Extending the notion of C(P ), we now introduce the bipartite graph NC(P )
to characterize linear orders (cf. Lemma 2). Here “NC” stands for “Non-strictly
Comparable”. Namely, this graph can be obtained by adding to the graph C(P )
the perfect matching {uivi | i = 1, 2, . . . , n} on the vertices of U and V .

Definition 8. Let P = (U,R) be a partial order, where U = {u1, u2, . . . , un}.
Furthermore let V = {v1, v2, . . . , vn}. Then, NC(P ) = (U, V,E) is the bipartite
graph, such that uivj ∈ E if and only if ui ≤P uj.

Lemma 2. Let P = (U,R) be a partial order. Then, P is a linear order if and
only if NC(P ) is a chain graph.

Now we introduce the notion of a linear-interval cover of a bipartite graph.
This notion is crucial for our main result of this section, cf. Theorem 3.

Definition 9. Let G = (U, V,E) be a bipartite graph, where U =
{u1, u2, . . . , un} and V = {v1, v2, . . . , vn}. Let E0 = {uivi | 1 ≤ i ≤ n} and
suppose that E0 ⊆ E. Then, G is linear-interval coverable if there exist two
chain graphs G1 = (U, V,E1) and G2 = (U, V,E2), such that G = G1 ∪G2 and
E0 ⊆ E2 \ E1. In this case, the sets {E1, E2} are a linear-interval cover of G.
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Theorem 3. Let P = (U,R) be a partial order. In the bipartite complement

Ĉ(P ) of the graph C(P ), denote E0 = {uivi | 1 ≤ i ≤ n}. The following three
statements are equivalent:

(a) P = P1 ∩ P2, where P1 is a linear order and P2 is an interval order.

(b) Ĉ(P ) = N̂C(P1) ∪ Ĉ(P2) for two partial orders P1 and P2 on V , where

N̂C(P1) and Ĉ(P2) are chain graphs.

(c) Ĉ(P ) is linear-interval coverable, i.e. Ĉ(P ) = G1 ∪G2 for two chain graphs
G1 = (U, V,E1) and G2 = (U, V,E2), where E0 ⊆ E2 \ E1.

Furthermore, a linear-interval cover of the bipartite graph Ĉ(P ) does not
only guarantee that the input graph G is a PI graph, but it can be also used to
efficiently compute a PI representation of G, as the next theorem states.

Theorem 4. Let G be a cocomparability graph with n vertices and P be the
partial order of G. Let {E1, E2} be a linear-interval cover of Ĉ(P ). Then we can
construct in O(n2) time a PI representation R of G.

5 Detecting Linear-Interval Covers Using Boolean
Satisfiability

The natural algorithmic question that arizes from the characterization of PI
graphs using linear-interval covers in Theorems 2 and 3, is the following: “Given
a cocomparability graph G and a partial order P of G, can we efficiently de-
cide whether the bipartite graph Ĉ(P ) has a linear-interval cover?” We will
answer this algorithmic question in the affirmative in Section 6. In this section
we translate every instance of this decision problem (i.e. whether the bipartite

graph Ĉ(P ) has a linear-interval cover) to a restricted instance of 3SAT (cf. The-

orem 5). That is, for every such a bipartite graph Ĉ(P ), we construct a Boolean
formula φ in conjunctive normal form (CNF), with size polynomial on the size

of Ĉ(P ) (and thus also on G), such that Ĉ(P ) has a linear-interval cover if and
only if φ is satisfiable. In particular, this formula φ can be written as φ = φ1∧φ2,
where φ1 has three literals in every clause and φ2 has two literals in every clause.
Moreover, as we will prove in Section 6, the satisfiability problem can be effi-
ciently decided on the formula φ, by exploiting an appropriate sub-formula of φ
which is gradually mixed (cf. Definition 2).

In the remainder of the paper, given a cocomparability graph G and a partial
ordering P of its complement G, we denote by G̃ = Ĉ(P ) the bipartite comple-
ment of the domination bipartite graph C(P ) of P . Furthermore we denote by H

the associated split graph of G̃ and by H∗ the conflict graph of H . Moreover, we
assume in the remainder of the paper without loss of generality that χ(H∗) ≤ 2,

i.e. that H∗ is bipartite. Indeed, as we can prove, if χ(H∗) > 2 then G̃ does
not have a linear-interval cover, i.e. G is not a PI graph. Note that every proper
2-coloring of the vertices of the conflict graph H∗ corresponds to exactly one
2-coloring of the edges of H that includes no monochromatic AC4. We assume
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in the following that a proper 2-coloring (with colors blue and red) of the vertices
of H∗ is given as input; note that χ0 can be computed in polynomial time.

Let C1, C2, . . . , Ck be the connected components of H∗. Some of these com-
ponents of H∗ may be isolated vertices, which correspond to uncommitted edges
in H . We assign to every component Ci, where 1 ≤ i ≤ k, the Boolean vari-
able xi. Since H∗ is bipartite by assumption, the vertices of each connected
component Ci of H∗ can be partitioned into two color classes Si,1 and Si,2.
Without loss of generality, we assume that Si,1 (resp. Si,2) contains the vertices
of Ci that are colored red (resp. blue) in χ0. Note that, since vertices of H

∗ cor-
respond to edges of H (cf. Definition 6), for every two edges e and e′ of H that
are in conflict (i.e. e||e′) there exists an index i ∈ {1, 2, . . . , k} such that one of
these edges belongs to Si,1 and the other belongs to Si,2. We now assign a literal
�e to every edge e of H as follows: if e ∈ Si,1 for some i ∈ {1, 2, . . . , k}, then
�e = xi; otherwise, if e ∈ Si,2, then �e = xi. Note that, by construction, when-
ever two edges are in conflict in H , their assigned literals are one the negation
of the other.

Observation 1. Every truth assignment τ of the variables x1, x2, . . . , xk cor-
responds bijectively to a proper 2-coloring χτ (with colors blue and red) of the
vertices of H∗, as follows: xi = 0 in τ (resp. xi = 1 in τ), if and only if all
vertices of the component Ci have in χτ the same color as in χ0 (resp. opposite
color than in χ0). In particular, τ = (0, 0, . . . , 0) corresponds to the coloring χ0.

Description of the 3-CNF Formula φ1: Consider an AC6 in the split graph
H , and let e, e′, e′′ be its three edges in H , such that no two literals among
{�e, �e′ , �e′′} are one the negation of the other. Then the Boolean formula φ1 has
for this triple {e, e′, e′′} of edges exactly the two clauses α = (�e ∨ �e′ ∨ �e′′) and
α′ = (�e ∨ �e′ ∨ �e′′). It is easy to check by the assignment of literals to edges
that the clause α (resp. the clause α′) of φ1 is false in a truth assignment τ of
the variables if and only if all edges {e, e′, e′′} are colored red (resp. blue) in the
2-edge-coloring χτ of H (cf. Observation 1).

Consider now another AC6 of H on the edges {e1, e2, e3}, in which at least
one literal among {�e1 , �e2 , �e3} is the negation of another literal, for example
�e1 = �e2 . Then, for any proper 2-coloring of the vertices of H∗, the edges e and
e′ of H receive different colors, and thus this AC6 is not monochromatic.

Observation 2. The formula φ1 is satisfied by a truth assignment τ if and
only if the corresponding 2-coloring χτ of the edges of H does not contain any
monochromatic AC6.

Description of the 2-CNF Formula φ2: Denote for simplicity H =
(U, V,EH), where U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}. Furthermore
denote E0 = {uivi | 1 ≤ i ≤ n}. Let E′ = EH \ E0 and H ′ = H − E0, i.e. H

′

is the split graph that we obtain if we remove from H all edges of E0. Consider
now a pair of edges e = uivt and e

′ = utvj of E′, such that uivj /∈ E′. Note that
i and j may be equal. However, since E′∩E0 = ∅, it follows that i 	= t and t 	= j.
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Moreover, since the edge utvt belongs to EH but not to E′, it follows that the
edges e and e′ are in conflict in H ′ but not in H (for both cases where i = j and
i 	= j). That is, although e and e′ are two non-adjacent vertices in the conflict
graph H∗ of H , they are adjacent vertices in the conflict graph of H ′. For both
cases where i = j and i 	= j, an example of such a pair of edges {e, e′} is illus-
trated in Figure 2. For every such pair {e, e′} of edges in H , the Boolean formula
φ2 has the clause (�e ∨ �e′). It is easy to check by the assignment of literals to
edges of H that this clause (�e ∨ �e′) of φ2 is false in the truth assignment τ if
and only if both e and e′ are colored red in the 2-edge coloring χτ of H .

L2

L1
ui

vt

ut

vj

e e′

(a)

L1
ui ut

e e′

vt vj
L2

(b)

Fig. 2. Two edges e = uivt and e′ = utvj of H , for which the formula φ2 has the clause
(�e ∨ �e′), in the case where (a) i �= j and (b) i = j

Now we provide the main result of this section, which relates the existence of
a linear-interval cover in G̃ = Ĉ(P ) with the satisfiability of the formula φ1∧φ2.

Theorem 5. G̃ = Ĉ(P ) is linear-interval colorable if and only if φ1 ∧ φ2 is sat-

isfiable. Given a satisfying assignment τ of φ1 ∧ φ2, a linear-interval cover of G̃
can be computed in O(n2) time.

6 The Recognition of Linear-Interval Orders and PI
Graphs

In this section we investigate the structure of the formula φ1 ∧ φ2 that we com-
puted in Section 5. In particular, we first prove some fundamental structural
properties of φ1∧φ2, which allow us to find an appropriate sub-formula of φ1∧φ2
which is gradually mixed (cf. Definition 2). Then we exploit this sub-formula of
φ1∧φ2 to provide an algorithm that solves the satisfiability problem on φ1∧φ2 in
time linear to its size, cf. Theorem 6. Finally, using this satisfiability algorithm,
we combine our results of Sections 4 and 5 to recognize efficiently PI graphs and
linear-interval orders.

The main structural properties of φ1 ∧φ2 are proved in Lemmas 3 and 4. The
proof of the next lemma is a based on the results of [13].

Lemma 3. Let α and β be two clauses of φ1. If α and β share at least one
variable, then {α, α} = {β, β}.
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Algorithm 1. Recognition of PI graphs

Input: A graph G = (V,E)
Output: A PI representation R of G, or the announcement that G is not a PI graph

1: if G is a trapezoid graph then
2: Compute a partial order P of the complement G
3: else return “G is not a PI graph”

4: Compute the domination bipartite graph C(P ) from P

5: G̃ ← Ĉ(P )

6: Compute the associated split graph H of G̃
7: Compute the conflict graph H∗ of H

8: if H∗ is bipartite then
9: Compute a 2-coloring χ0 of the vertices of H∗

10: Compute the formulas φ1 and φ2

11: if φ1 ∧ φ2 is satisfiable then
12: Compute a satisfying truth assignment τ of φ1 ∧ φ2 by Theorem 6
13: Compute from τ a linear-order cover of G̃ by Theorem 5
14: Compute a PI representation R of G by Theorem 4
15: else
16: return “G is not a PI graph”
17: else
18: return “G is not a PI graph”

19: return R

Definition 10. The clauses of φ2 are partitioned into the sub-formulas φ′2, φ
′′
2 ,

such that φ′2 contains all tautologies of φ2 and all clauses of φ2 in which at
least one literal corresponds to an uncommitted edge, while φ′′2 contains all the
remaining clauses of φ2.

Lemma 4. Let {e1, e2, e3} be the three edges of an AC6 in H, which has clauses
in φ1. Let e be an edge of H such that (�e ∨ �e1) is a clause in φ′′2 . Then φ′′2 has
also one of the clauses {(�e ∨ �e2), (�e ∨ �e3)}.

The next corollary, which follows easily by Definition 2 and by Lemmas 3
and 4, allows us to use the linear time algorithm for gradually mixed formulas
(cf. Theorem 1) in order to solve the satisfiability problem on φ1 ∧ φ′′2 .

Corollary 1. φ1 ∧ φ′′2 is a gradually mixed formula.

In the next theorem we use Corollary 1 to design an algorithm that decides
satisfiability on φ1 ∧ φ2 in time linear to its size. This will enable us to combine
the results of Sections 4 and 5 to recognize efficiently whether a given graph is
a PI graph, or equivalently, due to Theorem 2, whether a given partial order P
is the intersection of a linear order P1 and an interval order P2.

Theorem 6. φ1 ∧ φ2 is satisfiable if and only if φ1 ∧ φ′′2 is satisfiable. Given a
satisfying truth assignment of φ1 ∧φ′′2 we can compute a satisfying truth assign-
ment of φ1 ∧ φ2 in linear time.
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Now we are ready to present our recognition algorithm for PI graphs (Algo-
rithm 1). Its correctness and timing analysis is established in Theorem 7. Due
to characterization of PI graphs in Theorem 2 using partial orders, Theorem 8
follows also by Theorem 7.

Theorem 7. Let G = (V,E) be a graph and G = (V,E) be its complement,
where |V | = n and |E| = m. Then Algorithm 1 constructs in O(n2m) time a PI
representation of G, or it announces that G is not a PI graph.

Theorem 8. Let P = (U,R) be a partial order, where |U | = n and |R| = m.
Then we can decide in O(n2m) time whether P is a linear-interval order, and in
this case we can compute a linear order P1 and an interval order P2 such that
P = P1 ∩ P2.
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Abstract. ZDD (Zero-suppressed Binary Decision Diagram) is known
as an efficient data structure for representing and manipulating large-
scale sets of combinations. In this article, we propose a method of
using Z-Skip-Links to accelerate ZDD traversals for manipulating large-
scale sparse datasets. We discuss average case complexity analysis of our
method, and present the optimal parameter setting. Our method can be
easily implemented into the existing ZDD packages just by adding one
link per ZDD node. Experimental results show that we obtained dozens
of acceleration ratio for the instances of the large-scale sparse datasets
including thousands of items.

1 Introduction

A set of combinations is one of the most fundamental model of discrete struc-
ture for solving combinatorial problems in various applications. Binary Decision
Diagram (BDD) [2], a state-of-the-art data structure of Boolean function repre-
sentation, is sometimes used for solving combinatorial problems because n-input
Boolean functions have one-to-one correspondence to the sets of combinations
considering n items. Zero-suppressed BDD (ZDD) [5] is a variant of BDD, cus-
tomized for manipulating sets of combinations. ZDDs have been successfully
applied not only for VLSI design but also for various real-life applications, such
as data mining, system diagnosis, and network analysis.

Recently, processing of “Big Data” have attracted a great deal of attention,
and we often deal with a large-scale sparse dataset, which has more than thou-
sand or ten thousands of items as the columns of a dataset. If we represent such
data using a ZDD, the height of ZDD grows as large as the number of items,
and the depth of recursive operations also becomes very large. Thus, ZDD-based
manipulation is usually not very efficient for such large-scale sparse datasets.

In this paper, we propose an idea of attaching a “Z-Skip-Link” to each ZDD
node for accelerating the traversal of ZDDs of large-scale sparse datasets. It con-
sumes only a constant size of additional memory, and can easily be implemented
into a conventional BDD/ZDD package. We also show the average-case computa-
tion time of traversing ZDDs, in order to evaluate the effect of Z-Skip-Links and
their optimal setting of the skip length. In the practical case of sparse datasets
with thousands of items, our experiments show that the use of Z-Skip-Links

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 731–742, 2013.
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Fig. 1. Binary Decision Tree, BDD and ZDD

makes the membership operations 10 to 30 times faster than using conventional
ZDD operations.

In the rest of this paper, we first explain the basic properties of ZDDs and what
is the problem in manipulating large-scale sparse datasets. We then present an
idea of Z-Skip-Links and average-case complexity analysis. Finally we describe
the algorithm implementation and the experimental results.

2 Preliminary – Basic Properties of ZDDs

A Binary Decision Diagram (BDD) [2] is a graph representation for a Boolean
function. As illustrated in Fig. 1, it is derived by reducing a binary decision
tree, which represents a decision making process that depends on some input
variables. In this graph, we may find the following two types of decision nodes:

(a) Redundant node: A decision node whose two child nodes are identical.
(b) Equivalent nodes: Two or more decision nodes having the same variable and

the same pair of child nodes.

If we find such types of nodes, we can reduce the graph without changing the
semantics (in other words, we can compress the graph). If we fix the order of
input variables and apply the two reduction rules as much as possible, then we
obtain a canonical form for a given Boolean function [1]. Such a data structure
is called an Ordered BDD (OBDD), but in this article we will just call it a BDD.

The compression ratio of a BDD depends on the properties of Boolean function
to be represented, but it can be 10 to 100 times more compact in some practical
cases. In addition, we can systematically construct a BDD that is the result of a
binary logic operation (i.e., AND or OR) for a given pair of BDDs. This algorithm
is based on a recursive procedure with hash table techniques, and it is very efficient
when the BDDs have a good compression ratio. The computation time is bounded
by the product of the BDD sizes of the two operands, and in many practical cases,
it is linearly bounded by the sum of input and output BDD sizes [13].

Zero-suppressed BDDs (ZDDs, or ZBDDs) [5] are a variant of BDDs, cus-
tomized to manipulate sets of combinations. An example is shown in Fig.1. ZDDs
are based on special reduction rules that differ from the ordinary ones. As shown
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Fig. 2. ZDD reduction rule

(a) Large-scale sparse dataset. (b) ZDD

Fig. 3. Large-scale sparse dataset and ZDD

in Fig. 2, we delete all nodes whose 1-edge directly points to the 0-terminal node,
but do not delete the nodes which would be deleted in an ordinary BDD. Sim-
ilarly to ordinary BDDs, ZDDs give compact canonical representations for sets
of combinations. We can construct ZDDs by applying algebraic set operations
such as union, intersection and difference, which correspond to logic operations
in BDDs.

The zero-suppressing reduction rule is extremely effective if we are handling
a set of sparse combinations. If the average appearance ratio of each item is 1%,
ZDDs are possibly up to 100 times more compact than ordinary BDDs. Such
situations often appear in real-life problems, for example, in a supermarket, the
number of items in a customer’s basket is usually much less than the number of
all the items displayed.

Recently, ZDD has become more widely known, since D. E. Knuth intensively
discussed ZDD-based algorithms in the latest volume of his famous series of
books [7]. The original BDD was invented and developed for VLSI logic design,
but ZDD is now recognized as the most important variant of BDD, and is widely
used in various kinds of problems in computer science [3,8,9,6].

3 Problem for Handling Large-Scale Sparse Datasets

Recently, some kinds of Big Data are regarded as a large-scale sparse dataset,
which is a set of many combinations each of which selects a few items out of
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Fig. 4. Example of very unbalanced ZDD Fig. 5. ZDD with Z-Skip-Links

thousands of ones, as illustrated in Fig. 3(a). There are so many practical exam-
ples, such as the basket data in a supermarket, the word-correlation dataset in a
natural language, the key word lists in document database, grouping of Internet
web pages, and SNPs (mutation points) of human gene data.

If we represent such a large-scale sparse dataset using a ZDD, each path
from the root node to the 1-terminal node corresponds to one combination in
the dataset, as shown in Fig. 3(b). Namely, the number of such paths in the
ZDD equals the number of combinations in the dataset, and the 1-edges on
each path represent the occurrence of items in a combination. Since the zero-
suppression rule automatically deletes the ZDD nodes corresponding to the items
not occurring in the combination, the ZDD size is bounded by the total number
of item occurrences in the datasets. If there are many partially similar patterns
of combinations, the paths in the ZDD are shared with each other, and in such
cases very large compression ratio is obtained. For example, LCM-ZDD method
[11] efficiently generates nearly a billion patterns of frequent itemsets by using
only thousands of ZDD nodes.

Such data compression is one of the big advantage of using ZDDs, however,
there is a hidden problem that the height of the ZDD must be n if the dataset
contains n relevant items. If we represent a large-scale and sparse dataset using
thousands of items, the ZDD becomes a very unbalanced form as shown in Fig. 4,
such that we need more than thousand hops for 0-edge traversal while only a few
hops needed for 1-edge side to reach a terminal node. Unfortunately, such type of
datasets often appear in real-life applications. In general, ZDD-based operations
require a computation time linear in the height of the ZDD. The membership
testing operation is especially inefficient in this case because thousands of steps
of ZDD traversal is needed to check the existence of the k-th item’s decision
node, even if the membership query has only a combination with a few items. It
means that the ZDD-based operation could be hundreds or more times slower
than a naive data structure based on arrays and linked lists.

In this paper, we propose a practical method for addressing this problem for
handling large-scale sparse datasets using ZDDs.
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Fig. 6. Basic Model with a Number Line

4 Z-Skip-Links

Basic Idea
Conventional ZDD operation linearly traverses the cascade of 0-edges, and it
requires O(n) steps in average to check the existence of a ZDD node with a
given item where n is the height of the very unbalanced ZDD. If we prepare
a table of pointers to the descendant ZDD nodes indexed by the item IDs, we
can directly jump to the destination node in O(1) steps. However, we have to
prepare such a pointer table for each ZDD nodes as the start point, so additional
memory requirement becomes O(n) words per ZDD nodes, and the total memory
requirement becomes O(nG), where G is ZDD size. This is an unacceptable
memory increase for large n as hundreds or thousands.

Our basic idea is to attach only one pointer to each ZDD node, as illustrated
in Fig. 5. The pointer, named Z-Skip-Link, indicates a descendant node reachable
by a cascade of 0-edges of a given length. When we want to search a ZDD node
with the t-th level, we first refer the Z-Skip-Link at the root node and check the
level of the pointed node s. If s is still higher than t, we execute the jump by the
Z-Skip-Link and continue the search from there. If s is exceedingly lower than
t, we cancel the jump and descend the 0-edges for one step, and then continue
the search at the next node.

Our method is quite simple, but the reachability is clearly guaranteed as
ordinary linear search. The search time can be reduced as much as the total jump
length of Z-Skip-Links. The additional memory requirement is just a constant
factor for the ZDD size. Since the Z-Skip-Links do not have any side-effect to the
ZDD operations, they can be easily implemented in a conventional BDD/ZDD
package without any significant modification to the basic data structure and
operation codes.

The key issue of this method is the design of the skip length of Z-Skip-Links.
The longer skip length gets the more saving time, but a too long skip length may
increase the probability of exceeding the target reducing the chance of speed up.
In this article, we discuss the average case analysis of time complexity and the
optimal skip length for a given n.

Basic Model and Average Search Cost
For analyzing average search cost, we consider the model of a number line as
shown in Fig. 6. There are n positions on the line from 1 to n, where the start
position is n, and the target position is t. We define a skip length function J(x)
to represent the skip length at the current position x (1 ≤ x ≤ n). The first skip
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Fig. 7. Two-Phase Model

length should be J(n) and the second length becomes J(n − J(n)). We repeat
the jumps until passing through the target t, and after that we execute a linear
search from the last position. In this model, we do not know t beforehand, thus
we assume that t has a discrete uniform distribution between 1 and n. Here, we
define C1(n) as the average number of jumps, and C2(n) as the average number
of moves in the linear search. Our objective is to design a good skip length
function J(x) to minimize the total average cost C(n) = C1(n) + C2(n). The
function J(x) cannot depend on t but may depend on n.

At first, we assume the simple skip length function with a constant α ≥ 1:

J(x) =

⌈
1

α
x

⌉
. (1)

For example, α = 4 means that we skip 1/4 distance of the remaining search
range. Then, we get the average search cost C(n) as follows. (Detailed calculation
is shown in Appendix of [10].)

C(n) = α+
n

2(2α− 1)
(2)

If we set α = 16, we get C(10000) ≈ 177.3, which is 28.2 times faster than
ordinary linear search.

Let us consider the optimal α for a given n. The derivative of C(n) with
respect to α can be written as:

d

dα
C(n) = 1− n

(2α− 1)2

and it becomes zero, thus:

αopt =
1

2

(√
n+ 1

)
, Copt(n) =

√
n+

1

2
(3)

are obtained. In other words, we can accelerate up to

√
n

2 times in average from
linear search. When n = 10000, we get αopt = 50.5 and Copt(10000) = 100.5,
about 50 times faster than linear search.
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Two-Phase Model
The above discussion assumed a uniform skip length function, but we may im-
prove the performance if we use different forms of skip length functions for
different positions. Figure 7 illustrates our idea of the two-phase model, using
the two types of skip length functions J1(x) and J2(x) for an even number x
and an odd number x, respectively. J1(x) provides long jumps and J2(x) pro-
vides middle length jumps. We first repeat long jumps with J1(x) until passing
through the target t, next we repeat middle jumps with J2(x), and after that
we execute a linear search. We set that both J1(x) and J2(x) return an even
number of skip length, and thus destination of J1 is always a position of J1, and
J2 also going to a J2 position.

We also analyzed the average case search cost in this two-phase model. We
assume the same skip length as 1/α of remaining search range for both J1(x)
and J2(x). Then C(n) is described as follows. (Detailed calculation is shown in
Appendix of [10].)

C(n) = 2α+
n

2(2α− 1)2
(4)

If we set α = 16, we get C(10000) ≈ 37.2, which is about 134 times faster than
ordinary linear search.

Similarly to the uniform model, we can calculate optimal α for a given n.

αopt =
1

2

(
3
√
n+ 1

)
, Copt(n) =

3

2
3
√
n+ 1 (5)

When n = 10000, we get αopt = 11.27 and Copt(10000) ≈ 33.3, about 150 times
faster than linear search.

In the above discussion, we ignored at most 2 steps which are required for
changing J1 and J2 positions, so we must add a small constant factor for exact
analysis. Anyway, we can significantly improve the performance only using two
different skip length functions without any additional memory requirement.

k-Phase Model
Extending the two-phase model, we can consider k types of skip length functions,
by classifying the position x into k groups by x modulo k. If we write C(k)(n)
for the average search cost for k-phase model, it can be described as:

C(k)(n) = kα+
n

2(2α− 1)k
(6)

and optimal α is obtained as:

αopt =
1

2

(
n

1
k+1 + 1

)
, C

(k)
opt(n) =

k + 1

2
n

1
k+1 +

k

2
(7)

For example, when k = 4, we get

αopt =
1

2

(
5
√
n+ 1

)
, C

(4)
opt(n) =

5

2
5
√
n+ 2. (8)
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Fig. 8. Computational Experiments

Fig. 9. An Example of Skip List [12]

Next, let us consider the optimal k for given n. The detailed calculation is
shown in Appendix of [10] and we can obtain the following result.

kopt =
lnn

ln c
− 1, C

(kopt)
opt (n) =

(
c+ 1

2 · ln c

)
lnn− 1

2
, (9)

where c is a constant nearby 3.6. Consequently, the average search cost of the
Z-Skip-Links is theoretically shown as O(log n), if we use optimal k.

In the case of n = 65536, we get kopt ≈ 8 and C
(kopt)
opt (65536) ≈ 19.4. However,

even for k = 4 we can achieve C
(4)
opt(65536) ≈ 24.97, which is more than 1300

times faster than ordinary linear search. We can conclude that, for up to n =
100000, 4-phase model is sufficiently effective for practical applications.

Computational Experiments
To confirm the above theoretical analysis, we conducted computational exper-
iments. For a given n, we counted the number of moves to t, and computed
average moves C(n) for all t from 1 to n. In this experiments we tested four
kinds of skip length functions as 1

16x, 2
√
x, the optimal 2-phase model, and

the optimal 4-phase model. Figure 8 shows the results. We can observe that the
results are very close to theoretical formulas up to n = 100000.

Related Work
Our method is related to Skip List proposed by Pugh [12] in 1990. Skip List is
a quick access technique used for sorted linear linked list. It equips probabilistic
distributed skip pointers as shown in Fig. 9. It is known that the average access
time is O(log n). From this viewpoint, Z-Skip-Links can be regarded as a kind of
Skip List technique deterministically attached to all ZDD nodes. However, our
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Table 1. Look-up Table for Skip Length Function

range of x J1(x) J2(x) J3(x) J4(x)
5− 15 4 − − −

16− 63 8 4 − −
64− 255 64 16 8 4

256− 511 128 32 8 4
512 − 1023 256 64 16 4

1, 024 − 2047 512 128 32 8
2, 048 − 4095 1,024 256 64 8
4, 096 − 8, 191 2,048 512 64 8

8, 192− 32, 767 4,096 512 64 8
32, 768− 65, 535 8,192 1,024 128 16

ZDescend(F, t)
{ while(F.top > t)
{ G ← cache(“ZSkip at F”) ;

if (G exists and G.top ≥ t)
F ← G ;

else F ← (0-Child of F ) ;
}
return F ;

}

Fig. 10. ZDD Traversal with Z-Skip-Links

SetZSkip(F )
{ if (F.top ≤ 4) return ;

if (cache(“ZSkip at F”) exists) return ;
SetZSkip(0-Child of F ) ;
t ← (F.top− J(F.top)) ;
G ← ZDescend(F, t) ;
cache(“ZSkip at F”) ← G ;
SetZSkip(1-Child of F ) ;

}

Fig. 11. Construction of Z-Skip-Links

method is not limited to a simple linear list but applicable to the complex ZDD
structure including a large number of paths shared with each other.

5 Algorithm Implementation

Implementation to Conventional BDD/ZDD Package
Most of conventional BDD/ZDD packages use short int (16 bit integer) for item
IDs, so we assumed n up to 65535. For this range, we know that 4-phase is
effective enough, so we adopted the 4-phase model. It is time consuming to
calculate 5

√
n many times, so we approximate it by table look-up. The table is

shown in Table. 1
Also, most of conventional BDD/ZDD Packages have an internal table called

“operation cache,” which stores the recent operations and their results by a hash-
key with the pointers to the operand ZDDs and operation IDs. Our Z-Skip-Links
can be easily implemented using the framework of the operation cache, and we
needed only 100 lines of additional C++ codes for processing Z-Skip-Links.

Here we explain the algorithm of fast ZDD traversal using Z-Skip-Links, and
the preprocessing algorithm for constructing Z-Skip-Links for all ZDD nodes.

ZDD Traversal Using Z-Skip-Links
Figure 10 shows pseudo code of ZDescend(F, t). For given root node of ZDD
F and the target item-ID t, this algorithm returns the pointer to a ZDD node
which is the first meet such that the item ID is equal or lower than t when
descending 0-edges starting from F . In this codes, cache(”ZSkip at F”) means
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to refer the operation cache. This algorithm enjoys the benefit of Z-Skip-Links,
however, even if Z-Skip-Lists are not prepared yet, it returns correct result by
linear search.

Construction of Z-Skip-Links
Figure 11 shows pseudo codes of SetZSkip(F ). This algorithm constructs Z-Skip-
Links for all internal nodes of ZDD F by using a recursive procedure. At first,
we check the operation cache and if a Z-Skip-Link is already constructed, the
procedure terminates. Otherwise, it recursively calls itself on the 0-child node
to construct Z-Skip-Links for all descendant nodes. After that, we compute the
skip length and find the destination node by using ZDescend procedure, and
then register it to the operation cache.

The number of recursive calls of SetZSkip is bounded by the number of F ’s
ZDD nodes if operation cache works well. SetZSkip also calls ZDescend proce-
dure, so we need several steps to reach the destination node. In the range of
n ≤ 65536, ZDescend procedure requires about 20 to 30 steps in average, there-
fore, the total computation time will be several ten times of the number of ZDD
nodes. This would be feasible overhead if we repeat the search process many
times for a large-scale sparse dataset.

6 Experimental Results

We implemented the algorithms and conducted experiments for performance
evaluation. The specification of our PC is as follows. Intel Core i7 2700K 3.5GHz,
32GB memory, OpenSuSE Linux 12.1 (64bit), GNU C++ 4.6.2. We used our
own BDD/ZDD package written in C and C++.

Membership Testing for Random-Generated Sparse Datasets
We applied our method to the randomly generated large-scale sparse datasets.
We generated a ZDD for the dataset D(n,m) including m combinations each of
which constructed randomly selecting two items out of n items. Next we also
randomly generated a two item pattern p and evaluated the computation time
for the membership testing if p is in D(n,m). We executed SetZSkip procedure
for the ZDD as preprocessing and then repeated the membership testing 10000
times with different p’s. We compared our method with conventional ZDD-based
membership operation as D(n,m) ∩ p(n).

The experimental results are shown in Table 2. Here “pre-prc.” means the time
for preprocessing, “old” means conventional method. “accel.” means the ratio
of acceleration, “net” means ignoring preprocessing time, and “gross” means
including preprocessing time. From the result, if we ignore the preprocessing
time, the acceleration ratio reaches more than 500 times when n = 50000. Even
including preprocessing time, we are more than 70 times faster than conven-
tional method. The experimental results show that our method is effective when
implementing on the practical BDD/ZDD package.
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Table 2. Results for Random-Generated Sparse Datasets

ZDD CPU time(sec) accel.
n m nodes pre- search old net gross

prc. x10000 x10000
1,000 10,000 10,011 0.004 0.012 0.158 13.2 9.9
2,000 20,000 20,181 0.005 0.013 0.390 30.0 21.7
5,000 50,000 50,683 0.007 0.018 1.025 56.9 41.0

10,000 100,000 101,521 0.026 0.021 2.055 97.9 43.7
20,000 200,000 203,272 0.058 0.029 4.499 155.1 51.7
50,000 500,000 508,335 0.170 0.028 14.393 514.0 72.7

Table 3. Results for Frequent Itemset Datasets

ZDD CPU time(sec) accel.
θ n m nodes pre- search old net gross

prc. x10000 x10000
100 932 11,928 2,298 0.001 0.009 0.094 10.4 9.4
50 1,597 70,713 6,059 0.001 0.011 0.169 15.4 14.1
20 2,434 63,4065 30,410 0.007 0.012 0.268 22.3 14.1
10 2,885 4,440,335 93,899 0.021 0.012 0.328 27.3 9.9
5 3,129 26,946,004 353,091 0.050 0.015 0.393 26.2 6.0

Membership Testing for Frequent Itemset Datasets
Next we applied our method to the frequent itemset data, which are dealt with in
the basic problem of data mining. We used a dataset “BMS-WebView2” chosen
from the KDD benchmark [4]. This data is known as the access log of web pages
at an Internet shopping site, This dataset has 3340 items and 77512 transactions
(combinations), but only 4.6 items appears in average per transaction, so it has
very sparse combinations. We applied LCM-ZDD method[11] to this dataset
and generated a ZDD Dθ including all frequent itemset patterns with a given
minimum support θ. For example, D5 includes 26946004 patterns and there are
3129 relevant items. The number of ZDD nodes are only 353091, so it has very
good compression rate.

Then, we also randomly generated a two item pattern p, and similarly evaluated
the computation time for the membership testing if p is inDθ. Table 2 shows that
our method is 10 to 27 times faster than conventional method without considering
preprocessing time, and 6 to 14 times faster considering preprocessing time.

7 Summary

We proposed Z-Skip-Links to accelerate the traversal of ZDDs of large-scale
sparse datasets. It consumes only a constant size of additional memory, and can
easily be implemented into a conventional BDD/ZDD package. We have ana-
lyzed the average-case computation time and clarified the optimal settings. Our
experiments show that the use of Z-Skip-Links makes the membership operations
much faster than using conventional ZDD operations when handling large-scale
sparse datasets. We expect that our method will widen the effective applications
of ZDDs in the era of Big Data.
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Abstract. Color (or categorical) range reporting is a variant of the or-
thogonal range reporting problem in which every point in the input is
assigned a color. While the answer to an orthogonal point reporting query
contains all points in the query range Q, the answer to a color reporting
query contains only distinct colors of points in Q. In this paper we de-
scribe an O(N)-space data structure that answers one-dimensional color
reporting queries in optimal O(k + 1) time, where k is the number of
colors in the answer and N is the number of points in the data structure.
Our result can be also dynamized and extended to the external memory
model.

1 Introduction

In the orthogonal range reporting problem, we store a set of points S in a data
structure so that for an arbitrary range Q = [a1, b1]× . . .× [ad, bd] all points from
S∩Q can be reported. Due to its importance, one- and multi-dimensional range
reporting was extensively studied in computational geometry and database com-
munities. The following situation frequently arises in different areas of computer
science: a set of d-dimensional objects { (t1, t2, . . . , td) } must be preprocessed
so that we can enumerate all objects satisfying ai ≤ ti ≤ bi for arbitrary ai, bi,
i = 1, . . . , d. This scenario can be modeled by the orthogonal range reporting
problem.

The objects in the input set can be distributed into categories. Instead of
enumerating all objects, we may want to report distinct categories of objects
in the given range. This situation can be modeled by the color (or categorical)
range reporting problem: every point in a set S is assigned a color (category);
we pre-process S, so that for any Q = [a1, b1]× . . .× [ad, bd] the distinct colors
of points in S ∩Q can be reported.

Color range reporting is usually considered to be a more complex problem
than point reporting. For one thing, we do not want to report the same color
multiple times. In this paper we show that complexity gap can be closed for one-
dimensional color range reporting. We describe color reporting data structures
with the same space usage and query time as the best known corresponding
structures for point reporting. Moreover we extend our result to the external
memory model.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 743–754, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Previous Work. We can easily report points in a one-dimensional rangeQ = [a, b]
by searching for the successor of a in S, succ(a, S) = min{ e ∈ S | e ≥ a }. If
a′ = succ(a, S) is known, we can traverse the sorted list of points in S start-
ing at a′ and report all elements in S ∩ [a, b]. We can find the successor of
a in S in O(

√
logN/ log logN) time [4]; if the universe size is U , i.e., if all

points are positive integers that do not exceed U , then the successor can be
found in O(log logU) time [22]. Thus we can report all points in S ∩ [a, b] in
O(tpred(N) + k) time for tpred(N) = min(

√
logN/ log logN, log logU). Hence-

forth k denotes the number of elements (points or colors) in the query answer. It
is not possible to find the successor in o(tpred(N)) time unless the universe size
U is very small or the space usage of the data structure is very high; see e.g., [4].
However, reporting points in a one-dimensional range takes less time than search-
ing for a successor. In their fundamental paper [14], Miltersen et al. showed that
one-dimensional point reporting queries can be answered in O(k) time using
an O(N logU) space data structure. Alstrup et al. [1] obtained another sur-
prising result: they presented an O(N)-space data structure that answers point
reporting queries in O(k) time and thus achieved both optimal query time and
optimal space usage for this problem. The data structure for one-dimensional
point reporting can be dynamized so that queries are supported in O(k) time
and updates are supported in O(logε U) time [16]; henceforth ε denotes an ar-
bitrarily small positive constant. We refer to [16] for further update-query time
trade-offs. Solutions of the one-dimensional point reporting problem are based
on finding an arbitrary element e in a query range [a, b]; once such e is found,
we can traverse the sorted list of points until all points in [a, b] are reported.
Therefore it is straightforward to extend point reporting results to the external
memory model.

Janardan and Lopez [10] and Gupta et al. [9] showed that one-dimensional
color reporting queries can be answered in O(logN + k) time, both in the static
and the dynamic scenarios. Muthukrishnan [17] described a static O(N) space
data structure that answers queries in O(k) time if all point coordinates are
bounded by N . We can obtain data structures that use O(N) space and answer
queries in O(log logU+k) or O(

√
logN/ log logN+k) time using the reduction-

to-rank-space technique. No data structure that answers one-dimensional color
reporting queries in o(tpred(N)) +O(k) time was previously known. A dynamic
data structure of Mortensen [15] supports queries and updates in O(log logN+k)
and O(log logN) time respectively if the values of all elements are bounded
by N .

Recently, the one- and two-dimensional color range reporting problems in the
external memory model were studied in several papers [11,18,12]. Larsen and
Pagh [11] described a data structure that uses linear space and answers one-
dimensional color reporting queries in O(k/B + 1) I/Os if values of all elements
are bounded by O(N). In the case when values of elements are unbounded the
best previously known data structure needs O(logB N + k/B) I/Os to answer a
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query; this result can be obtained by combining the data structure from [2] and
reduction of one-dimensional color reporting to three-sided1 point reporting [9].

In another recent paper [5], Chan et al. described a data structure that sup-
ports the following queries on a set of points whose values are bounded by O(N):
for any query point q and any integer k, we can report the first k colors that
occur after q. This data structure can be combined with the result from [1] to
answer queries in O(k+1) time. Unfortunately, the solution in [5] is based on the
hive graph data structure [6]. Therefore it cannot be used to solve the problem
in external memory or to obtain a dynamic solution.

Our Results. As can be seen from the above discussion and Table 1, there are
significant complexity gaps between color reporting and point reporting data
structures in one dimension. We show in this paper that it is possible to close
these gaps.

In this paper we show that one-dimensional color reporting queries can be
answered in constant time per reported color for an arbitrarily large size of
the universe. Our data structure uses O(N) space and supports color reporting
queries in O(k + 1) time. This data structure can be dynamized so that query
time and space usage remain unchanged; the updates are supported in O(logε U)
time where U is the size of the universe. The new results are listed at the bottom
of Table 1.

Our internal memory results are valid in the word RAMmodel of computation,
the same model that was used in e.g. [1,16,17]. In this model, we assume that
any standard arithmetic operation and the basic bit operations can be performed
in constant time. We also assume that each word of memory consists of w ≥
logU ≥ logN bits, where U is the size of the universe. That is, we make a rea-
sonable and realistic assumption that the value of any element fits into one word
of memory.

Furthermore, we also extend our data structures to the external memory
model. Our static data structure uses linear space and answers color report-
ing queries in O(1 + k/B) I/Os. Our dynamic external data structure also
has optimal space usage and query cost; updates are supported in O(logε U)
I/Os.

In Section 2 we describe a static data structure for color reporting in one
dimension. The key component of our solution is a data structure that supports
highest range ancestor queries. In Section 3 we show how our static data structure
can be adopted to the external memory model. We show how to dynamize our
data structure in Sections 4, 5, and 6. Details of our dynamic solution and its
modification for the external memory model are provided in the full version of
this paper [19].

1 A three-sided range query is a two-dimensional orthogonal range query that is open
on one side. For instance, queries [a, b] × [0, c] and [a, b] × [c,+∞] are three-sdied
queries.
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Table 1. Selected previous results and new results for one-dimensional color reporting.
The fifth and the sixth row can be obtained by applying the reduction to rank space
to the result from [17].

Ref. Query Space Query Universe Update
Type Usage Cost Cost

[1] Point Reporting O(N) O(k + 1) static
[16] Point Reporting O(N) O(k + 1) O(logε U)

[9,10] Color Reporting O(N) O(logN + k) O(logN)
[17] Color Reporting O(N) O(k + 1) N static
[17] Color Reporting O(N) O(log logU + k) U static

[17] Color Reporting O(N) O(
√

logN/ log logN + k) static
[15] Color Reporting O(N) O(log logN + k) N O(log logN)
[5]+[1] Color Reporting O(N) O(k + 1)

Our Color Reporting O(N) O(k + 1) static
Our Color Reporting O(N) O(k + 1) O(logε U)

2 Static Color Reporting in One Dimension

We start by describing a static data structure that uses O(N) space and answers
color reporting queries in O(k + 1) time.

All elements of a set S are stored in a balanced binary tree T . Every leaf
of T , except for the last one, contains logN elements, the last leaf contains at
most logN elements, and every internal node has two children. For any node
u ∈ T , S(u) denotes the set of all elements stored in the leaf descendants of
u. For every color z that occurs in S(u), the set Min(u) (Max(u)) contains
the minimal (maximal) element e ∈ S(u) of color z. The list L(u) contains the
logN smallest elements of Min(u) in increasing order. The list R(u) contains
the logN largest elements of Max(u) in decreasing order. For every internal
non-root node u we store the list L(u) if u is the right child of its parent; if u is
the left child of its parent, we store the list R(u) for u. All lists L(u) and R(u),
u ∈ T , contain O(N) elements in total since the tree has O(N/ logN) internal
nodes.

We define the middle value m(u) for an internal node u as the minimal value
stored in the right child of u, m(u) = min{ e | e ∈ S(ur) } where ur is the right
child of u. The following highest range ancestor query plays a crucial role in
the data structures of this and the following sections. The answer to the highest
range ancestor query (vl, a, b) for a leaf vl and values a < b is the highest ancestor
u of vl, such that a < m(u) ≤ b; if S ∩ [a, b] = ∅, the answer is undefined. The
following fact elucidates the meaning of the highest range ancestor.

Fact 1. Let va be the leaf that holds the smallest e ∈ S, such that e ≥ a;
let vb be the leaf that holds the largest e ∈ S, such that e ≤ b. Suppose that
S(vl) ∩ [a, b] 	= ∅ for some leaf vl and u is the answer to the highest range
ancestor query (vl, a, b). Then u is the lowest common ancestor of va and vb.
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Proof : Let w denote the lowest common ancestor of va and vb. Then va and vb
are in w’s left and right subtrees respectively. Hence, a < m(w) ≤ b and w is
not an ancestor of u. If w is a descendant of u and w is in the right subtree of
u, then m(u) ≤ a. If w is in the left subtree of u, then m(w) > b. �

We will show that we can find u without searching for va and vb and answer
highest range ancestor queries on a balanced tree in constant time.

For every leaf vl, we store two auxiliary data structures. All elements of S(vl)
are stored in a data structure D(vl) that uses O(|S(vl)|) space and answers color
reporting queries on S(vl) in O(k+1) time. We also store a data structure F (vl)
that uses O(logN) space; for any a < b, such that S(vl) ∩ [a, b] 	= ∅, F (vl)
answers the highest range ancestor query (vl, a, b) in O(1) time. Data structures
D(vl) and F (vl) will be described later in this section. Moreover, we store all
elements of S in the data structure described in [1] that supports one-reporting
queries: for any a < b, some element e ∈ S ∩ [a, b] can be found in O(1) time;
if S ∩ [a, b] = ∅, the data structure returns a dummy element ⊥. Finally, all
elements of S are stored in a slow data structure that uses O(N) space and
answers color reporting queries in O(log n + k) time. We can use e.g. the data
structure from [10] for this purpose.

Answering Queries. All colors in a query range [a, b] can be reported with the
following procedure. Using the one-reporting data structure from [1], we search
for some e ∈ S ∩ [a, b] if at least one such e exists. If no element e satisfying
a ≤ e ≤ b is found, then S ∩ [a, b] = ∅ and the query is answered. Otherwise,
let ve denote the leaf that contains e. Using F (ve), we search for the highest
ancestor u of ve such that a ≤ m(u) ≤ b. If no such u is found, then all e,
a ≤ e ≤ b, are in S(ve). We can report all colors in S(ve) ∩ [a, b] using D(ve).
If F (ve) returned some node u, we proceed as follows. Let ul and ur denote
the left and the right children of u. We traverse the list L(ur) until an element
e′ > b is found or the end of L(ur) is reached. We also traverse R(ul) until an
element e′ < a is found or the end of R(ul) is reached. If we reach neither the
end of L(ur) nor the end of R(ul), then the color of every encountered element
e ∈ L(ur), e ≤ b, and e ∈ R(ul), e ≥ a, is reported. Otherwise the range [a, b]
contains at least logN different colors. In the latter case we can use any data
structure for one-dimensional color range reporting [10,9] to identify all colors
from S ∩ [a, b] in O(log n+ k) = O(k + 1) time.

Leaf Data Structures. A data structure D(vl) answers color reporting queries on
S(vl) as follows. In [9], the authors show how a one-dimensional color reporting
query on a set of m one-dimensional elements can be answered by answering a
query [a, b] × [0, a] on a set of m uncolored two-dimensional points. A standard
priority search tree [13] enables us to answer queries of the form [a, b]× [0, a] onm
points in O(logm) time. Using a combination of fusion trees and priority search
trees, described byWillard [23], we can answer queries inO(logm/ log logN) time.
The data structure of Willard [23] uses O(m) space and a universal
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ul ur

u

R(ul)
L(ur)

a b

e

Fig. 1. Answering a color reporting query Q = [a, b]: e is an arbitrary element in
S ∩ [a, b], u is the highest range ancestor of the leaf that contains e, the path from
e to u is indicated by a dashed line. We assume log n = 5, therefore L(ur) contains
5 elements and the yellow point is not included in L(ur). To simplify the picture, we
assumed that each leaf contains only one point; only relevant parts of T are on the
picture.

look-up table of size O(logεN) for an arbitrarily small ε. Updates are also sup-
ported in O(logm/ log logN) time2.

Since S(vl) contains m = O(logN) elements, we can answer colored queries
on S(vl) in O(logm/ log logN) = O(1) time. Updates are also supported in O(1)
time; this fact will be used in Section 4.

Now we describe how F (vl) is implemented. Suppose that S(vl) ∩ [a, b] 	= ∅
for some leaf vl. Let π be the path from vl to the root of T . We say that a node
u ∈ π is a left parent if ul ∈ π for the left child ul of u; a node u ∈ π is a right
parent if ur ∈ π for the right child ur of u. If S(vl) contains at least one e ∈ [a, b],
then the following is true.

Fact 2. If u ∈ π is a left parent, then m(u) > a. If u ∈ π is a right parent, then
m(u) ≤ b.

Proof : If u ∈ π is a left parent, then S(vl) is in its left subtree. Hence, m(u) is
greater than any e ∈ S(vl) and m(u) > a. If u is the right parent, than S(vl) is
in its right subtree. Hence, m(u) is smaller than or equal to any e ∈ S(vl) and
m(u) ≤ b. �

Fact 3. If u1 ∈ π is a left parent and u1 is an ancestor of u2 ∈ π, then m(u1) >
m(u2). If u1 ∈ π is a right parent and u1 is an ancestor of u2 ∈ π, then m(u2) >
m(u1).

Proof : If u1 is a left parent, then u2 is in its left subtree. Hence, m(u1) > m(u2)
by definition of m(u). If u2 is a right parent, then u1 is in its right subtree.
Hence, m(u1) < m(u2) by definition of m(u). �
2 In [23], Willard only considered queries on N points, but extension to the case of
any m ≤ N is straightforward.
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Suppose that we want to find the highest range ancestor of vl for a range [a, b]
such that S(vl) ∩ [a, b] 	= ∅. Let K1(π) be the set of middle values m(u) for left
parents u ∈ π sorted by height; let K2(π) be the set of m(u) for right parents
u ∈ π sorted by height. By Fact 3, elements of K1 (K2) increase (decrease)
monotonously. By Fact 2, m(u) > a for any m(u) ∈ K1 and m(u) < b for any
m(u) ∈ K2. Using fusion trees [7], we can search in K1 and find the highest node
u1 ∈ π such that u1 is a left parent and m(u1) ≤ b. We can also search in K2

and find the highest node u2 ∈ π such that u2 is a right parent and m(u2) > a.
Let u denote the higher node among u1, u2. Then u is the highest ancestor of vl
such that m(u) ∈ [a+ 1, b].

Removing Duplicates. When a query is answered, our procedure returns a color
z two times if z occurs in both S ∩ [a,m(u) − 1] and S ∩ [m(u), b]. We can
easily produce a list without sorting in which each color occurs exactly once.
Let Col denote an array with one entry for every color that occurs in a data
structure. Initially Col[i] = 0 for all i. We traverse the list of colors L produced
by the above described procedure. Every time when we encounter a color z in
L such that Col[z] = 0, we set Col[z] = 1; when we encounter a color z such
that Col[z] = 1, we remove the corresponding entry from L. When the query is
answered, we traverse L once again and set Col[z] = 0 for all z ∈ L.

Theorem 1. There exists an O(N)-space data structure that supports one-
dimensional color range reporting queries in O(k + 1) time.

3 Color Reporting in External Memory

The static data structure of Section 2 can be used for answering queries in
external memory. We only need to increase the sizes of S(vl), R(u), and L(u)
to B logB N , and use an external memory variant of the slow data structure
for color reporting [2]. This approach enables us to achieve O(1 + k/B) query
cost, but one important issue should be addressed. As explained in Section 2,
the same color can be reported twice when a query is answered. However, we
cannot get rid of duplicates in O(1 + k/B) I/Os using the method of Section 2
because of its random access to the list of reported colors. Therefore we need to
make further changes in our internal memory solution. For an element e ∈ S, let
prev(e) denote the largest element e′ ≤ e of the same color. For every element e
in L(u) and any u ∈ T , we also store the value of prev(e).

We define each set S(vl) for a leaf vl to contain B logB N points. Lists L(v)
and R(v) for an internal node v contain B logB N leftmost points from Min(v)
(respectively, B logB N rightmost points from Max(v)). Data structures F (vl)
are implemented as in Section 2. A data structure D(vl) supports color reporting
queries on S(vl) and is implemented as follows. We can answer a one-dimensional
color reporting query by answering a three-sided point reporting query on a setΔ
of |S(vl)| two-dimensional points; see e.g., [9]. If B ≥ log2N , S(vl) andΔ contain
O(B2) points. In this case we can use the data structure from [2] that uses linear
space and answers three-sided queries in O(logB |S(vl)| + k/B) = O(1 + k/B)
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I/Os. If B < logN , S(vl) and Δ contain O(log2N) points. Using the data
structure from [7], we can find the predecessor of any value v in a set ofO(log2N)
points in O(1) I/Os. Therefore we can apply the rank-space technique [8] and
reduce three-sided point reporting queries on Δ to three-sided point reporting
queries on a grid of size |Δ| (i.e., to the case when coordinates of all points are
integers bounded by |Δ|) using a constant number of additional I/Os. Larsen
and Pagh [11] described a linear-space data structure that answers three-sided
point reporting queries for m points on an m × m grid in O(1 + k/B) I/Os.
Summing up, we can answer a three-sided query on a set of B logB N points in
O(1+ k/B) I/Os. Hence, we can also answer a color reporting query on S(vl) in
O(1 + k/B) I/Os using linear space.

A query Q = [a, b] is answered as follows. We find the highest range ancestor
u for any e ∈ S ∩ [a, b] exactly as in Section 2. If u is a leaf, we answer the query
using D(u). Otherwise the reporting procedure proceeds as follows. We traverse
the list R(ul) for the left child ul of u until some point p < a is found. If e ≥ a for
all e ∈ R(ul), then there are at least B logB N different colors in [a, b] and we can
use a slow data structure to answer a query in O(logB N + k

B ) = O(1+ k
B ) I/Os.

Otherwise we traverse L(ur) and report all elements e such that prev(e) < a.
If prev(e) ≥ a for e ∈ L(u), then an element of the same color was reported
when R(ul) was traversed. Traversal of L(ur) stops when an element e > b is
encountered or the end of L(ur) is reached. In the former case, we reported
all colors in [a, b]. In the latter case the number of colors in [a, b] is at least
B logB N . This is because every element in L(ur) corresponds to a distinct color
that occurs at least once in [a, b]. Hence, we can use the slow data structure and
answer the query in O(logB N + k

B ) = O( k
B + 1) I/Os.

Theorem 2. There exists a linear-space data structure that supports one-
dimensional color range reporting queries in O(k/B + 1) I/Os.

4 Base Tree for Dynamic Data Structure

In this section we show how the base tree and auxiliary data structures of the
static solution can be modified for usage in the dynamic scenario. To dynamize
the data structure of Section 2, we slightly change the balanced tree T and
secondary data structures: every leaf of T now contains Θ(log2N) elements of
S and each internal node has Θ(1) children. We store the lists L(u) and R(u)
in each internal non-root node of u. We associate several values mi(u) to each
node u: for every child ui of u, except the leftmost child u1, mi(u) = min{ e | e ∈
S(ui) }. The highest range ancestor of a leaf vl is the highest ancestor u of vl
such that a < mi(u) ≤ b for at least one i 	= 1. Data structures D(vl) and F (vl)
are defined as in Section 2. We also maintain a data structure of [16] that reports
an arbitrary element e ∈ S ∩ [a, b] if the range [a, b] is not empty.

We implement the base tree T as the weight-balanced B-tree [3] with the
leaf parameter log2N and the branching parameter 8. This means that every
internal node has between 2 and 32 children and each leaf contains between
2 log2N and log2N elements. Each internal non-root node on level � of T has
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between 2 · 8� log2N and (1/2) · 8� log2N elements in its subtree. If the number
of elements in some node u exceeds 2 · 8� log2N , we split u into two new nodes,
u′ and u′′. In this case we insert a new value mi(w) for the parent w of u. Hence,
we may have to update the data structures F (vl) for all leaf descendants of w.
A weight-balanced B-tree is engineered in such a way that a split occurs at most
once in a sequence of Ω(8� log2N) insertions (for our choice of parameters).
Since F (vl) can be updated in O(1) time, the total amortized cost incurred by
splitting nodes is O(1). When an element e is deleted, we delete it from the set
S(vl). If e = mi(u) for a deleted element e and some node u, we do not change
the value of mi(u). We also do not start re-balancing if some node contains
too few elements in its subtree. But we re-build the entire tree T if the total
number of deleted elements equals n0/2, where n0 is the number of elements that
were stored in T when it was built the last time. Updates can be de-amortized
without increasing the cost of update operations by scheduling the procedure of
re-building nodes (respectively, re-building the tree) [3].

Auxiliary Data Structures. We implement D(vl) in the same way as in Section 2.
Hence color queries on S(vl) are answered in O(log |S(vl)|/ log logN) = O(1)
time and updates are also supported in O(1) time [23].

We need to modify data structures F (vl), however, because T is not a binary
tree in the dynamic case. Let π denote a path from vl to the root for some leaf
vl. We say that a node u is an i-node if ui ∈ π for the i-th child ui of u.

Fact 4. Suppose that S(vl) ∩ [a, b] 	= ∅ and π is the path from vl to the root. If
u ∈ π is an i-node, then mj(u) < b for 1 ≤ j ≤ i and mj(u) > a for j > i.

We say that a value mj(u) for u ∈ π is a left value if j ≤ i and u is an i-node.
A value mj(u) for u ∈ π is a right value if j > i and u is an i-node.

Fact 5. If mj(u1) is a left value and u1 ∈ π is an ancestor of u2 ∈ π, then
mj(u1) ≤ mf (u2) for any f . If mj(u1) is a right value and u1 ∈ π is an ancestor
of u2 ∈ π, then mj(u1) > mf (u2) for any f .

It is easy to check Facts 4 and 5 using the same arguments as in Section 2.
We store all left values mj(u), u ∈ π, in a set K1; mj(u) in K1 are sorted by

the height of u. We store all right values mj(u), u ∈ π, in a set K2; mj(u) in
K2 are also sorted by the height of u. Using fusion trees on K1, we can find the
highest node u1, such that at least one left value mg(u1) > a. We can also find
the highest u2 such that at least one right value mf (u2) ≤ b. Since K1 and K2

contain O(logN) elements, we can support searching and updates in O(1) time;
see [7,21]. By Fact 4, a < mg(u1) ≤ b and a < mf (u2) ≤ b. If u is the higher
node among u1, u2, then u is an answer to the highest range ancestor query [a, b]
for a node vl.

5 Fast Queries, Slow Updates

In this section we describe a dynamic data structure with optimal query time.
Our improvement combines an idea from [15] with the highest range ancestor
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approach. We also use a new solution for a special case of two-dimensional point
reporting problem presented in the full version of this paper [19] in Section A.1.

Let height(u) denote the height of a node u. For an element e ∈ S let hmin(e) =
height(u′), where u′ is the highest ancestor of the leaf containing e, such that
e ∈ Min(u′). We define hmax(e) in the same way with respect to Max(u).
All colors in a range [a, b] can be reported as follows. We identify an arbitrary
e ∈ S ∩ [a, b]. Using the highest range ancestor data structure, we can find the
lowest common ancestor u of the leaves that contain the successor of a and the
predecessor of b. Let uf and ug be the children of u that contain the successor
of a and the predecessor of b. Let af = a, bg = b; let ai = mi(u) for f < i ≤ g
and bi = mi+1(u) − 1 for f ≤ i < g. We can identify unique colors of relevant
points stored in each node uj, f < j ≤ g, by finding all e ∈ [aj , bj] such that
e ∈ Min(uj). This condition is equivalent to reporting all e ∈ [aj , bj ] such that
hmin(e) ≥ height(uj). We can identify all colors of relevant points in uf by
reporting all e ∈ [af , bf ] such that hmax(e) ≥ height(uf). Queries of the form
e ∈ [a, b], hmin(e) ≥ c, (respectively e ∈ [a, b], hmax(e) ≥ c) can be supported
using Lemma 1 (see Section A.1 in [19]). While the same color can be reported
several times, we can get rid of duplicates as explained in Section 2.

When a new point is inserted into S or when a point is deleted from S, we
can update the values of hmin(e) and hmax(e) in O(log logU) time. We refer
to [15,20] for details.

While updates of data structures of Lemma 1 are fast, re-balancing the base
tree can be a problem. As described in Section 4, when the number of points in
a node u on level � exceeds 2 · 8� logN , we split it into two nodes, u′ and u′′. As
a result, the values hmin(e) for e stored in the leaves of u′′ can be incremented.
Hence, we would have to examine the leaf descendants of u′′ and recompute
their values for some of them. Since the height of T is logarithmic, the total
cost incurred by re-computing the values hmin(e) and hmax(e) is O(logN). The
problem of reducing the cost of re-building the tree nodes is solved as follows. In
Appendix A.2 in [19] we describe another data structure that supports fast up-
dates but answering queries takes polynomial time in the worst case. In Section 6
we show how the cost of splitting can be reduced by modifying the definition of
hmin(e), hmax(e) and using the slow data structure from [19] when the number
of reported colors is sufficiently large.

6 Fast Queries, Fast Updates

Let n(u) denote the number of leaves in the subtree of a node u. Let Left(u)
denote the set of (n(u))1/2 smallest elements in Min(u); let Right(u) denote
the set of (n(u))1/2 largest elements in Max(u). We maintain the values hmin(e)
and hmax(e) for e ∈ S, such that for any u ∈ T we have: hmin(e) = hmin(e) if
e ∈ Left(u) and hmin(e) ≤ hmin(e) if e ∈ S(u) \ Left(u); hmax(e) = hmax(e) if
e ∈ Right(u) and hmax(e) ≤ hmax(e) if e ∈ S(u) \ Right(u). We keep hmin(e)
and hmax(e) in data structures of Lemma 1. We also maintain the data structure
described in Section A.2 in [19]. This data structure is used to answer queries
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when the number of colors in the query range is large. It is also used to update
the values of hmin(e) and hmax(e) when a node is split.

To answer a query [a, b], we proceed in the same way as in Section 5. Let
u, uf , ug, and ai, bi, f ≤ i ≤ g be defined as in Section 5. Distinct colors in
each [ai, bi], f ≤ i ≤ g, can be reported using the data structure of Lemma 1.
If the answer to at least one of the queries contains at least (n(ui))

1/2 elements,
then there are at least (n(ui))

1/2 different colors in [a, b]. The total number of
elements in [a, b] ∩ S does not exceed n(u) = 16n(uj). Hence, we can employ
the data structure from Section A.2 in [19] to report all colors from [a, b] in
O(([a, b] ∩ S)1/2 + k) = O(k) time. If answers to all queries contain less than
(n(ui))

1/2 elements, then for every distinct color that occurs in [a, b] there is an
element e such that e ∈ Left(ui)∩ [ai, bi], f ≤ i < g, or e ∈ Right(ug)∩ [ag, bg].
By definition of hmin and hmax we can correctly report up to (n(ui))

1/2 leftmost
colors in Left(ui) or up to (n(ui))

1/2 rightmost colors in Right(ui).
When a new element e is inserted, we compute the values of hmin(e), hmax(e)

and update the values of hmin(en), hmax(en), where en is the element of the same
color as e that follows e. This can be done in the same way as in Section 5. When
a node u on level � is split into u′ and u′′, we update the values of hmin(e) and
hmax(e) for e ∈ S(u′)∪S(u′′). If � ≤ log logN , we examine all e ∈ S(u′)∪ S(u′′)
and re-compute the values of prev(e), hmin(e), and hmax(e). Amortized cost of re-
building nodes u on log logN lowest tree levels is O(log logN). If � > log logN ,
S(u) contains Ω(log5N) elements. We can find (n(u′))1/2 elements in Left(u′),
Left(u′′), Right(u′), and Right(u′′) using the data structure from Lemma 3
in [19]. This takes O((n(u)1/2) logN + logN log logN) = O(((n(u))7/10) time.
Since we split a node u one time after Θ(n(u)) insertions, the amortized cost
of splitting nodes on level � > log logN is O(1). Thus the total cost incurred
by splitting nodes after insertions is O(log logN). Deletions are processed in a
symmetric way. We obtain the following result

Theorem 3. There exists a linear-space data structure that supports one-
dimensional color range reporting queries in O(k + 1) time and updates in
O(logε U) amortized time.

In [19] we also show how the result of Theorem 3 can be extended to the external
memory model.
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Abstract. We present an unified approach to study online scheduling
problems in the resource augmentation/speed scaling models. Potential
function method is extensively used for analyzing algorithms in these
models; however, they yields little insight on how to construct poten-
tial functions and how to design algorithms for related problems. In the
paper, we generalize and strengthen the dual-fitting technique proposed
by Anand et al. [1]. The approach consists of considering a possibly
non-convex relaxation and its Lagrangian dual; then constructing dual
variables such that the Lagrangian dual has objective value within a de-
sired factor of the primal optimum. The competitive ratio follows by the
standard Lagrangian weak duality. This approach is simple yet powerful
and it is seemingly a right tool to study problems with resource augmen-
tation or speed scaling. We illustrate the approach through the following
results.

1. We revisit algorithms EQUI and LAPS in Non-clairvoyant Scheduling
to minimize total flow-time. We give simple analyses to prove known
facts on the competitiveness of such algorithms. Not only are the
analyses much simpler than the previous ones, they also explain why
LAPS is a natural extension of EQUI to design a scalable algorithm
for the problem.

2. We consider the online scheduling problem to minimize total weighted
flow-time plus energy where the energy power f(s) is a function of
speed s and is given by sα for α ≥ 1. For a single machine, we showed
an improved competitive ratio for a non-clairvoyant memoryless al-
gorithm. For unrelated machines, we give an O(α/ logα)-competitive
algorithm. The currently best algorithm for unrelated machines is
O(α2)-competitive.

3. We consider the online scheduling problem on unrelated machines
with the objective of minimizing

∑
i,j wijf(Fj) where Fj is the flow-

time of job j and f is an arbitrary non-decreasing cost function with
some nice properties. We present an algorithm which is 1

1−3ε
-speed,

2K(ε)
ε

-competitive where K(ε) is a function depending on f and ε.
The algorithm does not need to know the speed (1 + ε) a priori.
A corollary is a (1 + ε)-speed, k

ε1+1/k -competitive algorithm (which
does not know ε a priori) for the objective of minimizing the weighted
�k-norm of flow-time.
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1 Introduction

We consider online scheduling problems where jobs arrive at unrelated machines
over time. Each job j has release date rj and its processing time pij and weight
wij on machine i. At the arrival time rj , job j becomes known to the schedul-
ing algorithm. We distinguish two different models. At time rj , in the non-
clairvoyant model only the weights wij ’s becomes known to the scheduler while
in the clairvoyant model, all parameter of jobs j are available. A scheduler must
determine how to process jobs in order to optimize a quality of service without
the knowledge about future. In the paper, we study natural qualities of service
related to the flow-times of jobs. The flow-time of a job is the total amount of
time it spends in the system, i.e., the difference of its completion time and its
release time.

A popular measure for studying the performance of online algorithms is com-
petitive ratio. An algorithm is said to be c-competitive if for any instance its
objective is within factor c of the optimal offline algorithm’s objective. Unfor-
tunately, for many problems, any online algorithm has large competitive ratio
even that some heuristics have performance very close to the optimum in prac-
tice. To remedy the limitation of pathological instances in worst-case analysis,
a popular relaxation resource augmentation model was introduced in [22]. In
this relaxation, the online algorithm is given extra speed to process jobs and
compared to the optimal offline algorithm. This model has successfully provided
theoretical evidence for heuristics with good performance in practice. Besides,
algorithms could be classified according to their competitive ratios in the model
of resource augmentation for practical choices. We say an algorithm is s-speed
c-competitive if for any input instance the objective value of the algorithm while
running at speed s is at most c times the objective value of the optimal offline
scheduler while running at unit speed. Ideally, we would like algorithms to be
constant competitive when given (1+ ε) times a resource over the optimal offline
algorithm for any constant ε > 0. Such algorithms are called scalable.

The most successful tool until now to analyze online scheduling algorithms
with resource augmentation is the potential function method. Potential functions
has been designed and show that the corresponding algorithms behave well in
an amortized sense. Designing such potential functions is far from trivial and
often yields little insight about how to design such potential functions and al-
gorithms for related problems (a generalized variant with additional constraints
for example).

Recently, Anand et al. [1] gave a more direct and interesting approach for
analyzing online scheduling algorithms with resource augmentation based on
the technique of dual fitting for convex programming relaxation. Informally, the
technique could be described as follows. Consider a linear (convex) programming
relaxation of a given problem and the dual linear program (or Lagrangian dual).
Then construct a feasible solution for the dual (given an online algorithm) and
prove that its objective value is close to that of the online algorithm. The main
advantage of this technique is that the dual variables (which constitute the
desired dual solution) often have intuitive interpretations and their construction
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could be naturally deduced from the algorithm. Consequently, the procedures of
analyzing and designing algorithms are more interactive and could be done in a
principled manner.

Independently, Gupta et al. [18] gave a principled method to design online
algorithms for non-linear programs. Their approach could be seen as an extension
of the online primal-dual method for linear programming [9]. Roughly speaking,
in the method the dual variables are set in such a way that the increase rate
in the dual objective is proportional to the one in the primal objective. This
approach is particularly powerful while the primal objective function is convex.

1.1 Approach and Contributions

The main contribution of the paper is to show a principled approach to de-
sign/analyze online scheduling algorithms with resource augmentation (or speed
scaling) by strengthening the dual fitting technique in [1]. The approach is
sharply inspired by the one in [1]. First, consider a mathematical programming
relaxation (associated with a given problem) which is not necessarily convex and
its Lagrangian dual. Then construct dual variables such that the Lagrangian
dual has objective value within a desired factor of the primal one (due to some
algorithm). Then by the standard Lagrangian weak duality for mathematical
programming, the competitive ratio follows.

Lemma 1 (Weak duality). Consider a possibly non-convex optimization prob-
lem

p∗ := min
x
f0(x) : fi(x) ≤ 0, i = 1, . . . ,m.

where fi : Rn → R for 0 ≤ i ≤ m. Let X be the feasible set of x. Let L :
Rn × Rm → R be the Lagragian function

L(x, λ) = f0(x) +
m∑
i=1

λifi(x).

Define d∗ = maxλ≥0 minx∈X L(x, λ) where λ ≥ 0 means λ ∈ Rm
+ . Then p∗ ≥ d∗.

Weak duality is indeed a direct consequent of the minimax inequality

max
λ∈Y

min
x∈X

L(x, λ) ≤ min
x∈X

max
λ∈Y

L(x, λ)

where X and Y are feasible sets of x and λ. Intuitively, our approach could
be considered as a one-shot game between an algorithm and an adversary. The
algorithm chooses dual variables λ∗ in such a way that whatever the choice
of the adversary, the value minx∈X L(x, λ∗) is always within a desirable factor
c of the objective due to the algorithm. In the model, the adversary has less
resource than the algorithm. For example, if the algorithm processes jobs with
unit rate then the adversary can run only with rate (1− ε). We extensively use
that advantage in proving bounds for the dual objective.
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In high level, our approach is the same as the one in [1] except that the relax-
ation is possibly non-convex. However, the flexibility of our approach provides
many advantages. First, a problem could be more directly and naturally for-
mulated as a non-convex program. For example, the online scheduling problem
to minimize total weighted flow time plus energy could be naturally formulated
by a non-convex relaxation (Section 4) while it is unclear how to formalize the
problem by a convex program. Consequently, the analysis is usually simpler,
cleaner and the performance guarantee is improved. Inversely, the simplicity of
the analysis gives insights on the problems and so (simple) algorithms could be
designed. Second, as it is not constrained to be a convex optimization program,
additional constraints for generalized variants of a problem could be easily incor-
porated (for example, from a single machine to unrelated machines). Thereby an
algorithm for generalized variants could be derived based on the previous ones
for the basic problem and the ideas of the analyses remain essentially the same.

We illustrate the advantages of the approach through the following results.

1. In Section 3, we revisit algorithms EQUI and LAPSε in Non-clairvoyant
Scheduling to minimize total flow-time. We give simple analyses to prove
known facts that EQUI is 1

1/2−ε -speed,
1
ε -competitive [14] and LAPSε is 1

1−2ε -

speed, 2
ε2 -competitive [15]. Not only are the analyses much simpler than the

previous ones, they also explain why LAPSε is a natural extension of EQUI
to design a scalable algorithm for the problem.

2. In Section 4, we consider the online scheduling problem to minimize total
weighted flow-time plus energy where the energy power f(s) is a function of
speed s and is given by sα for α ≥ 1. For a single machine, we showed an im-
proved competitive ratio O(2α) for a non-clairvoyant memoryless algorithm
(its performance was previously known to be O(3α)). For unrelated ma-
chines, we give an O(α/ logα)-competitive algorithm. This bound matches
to the currently best algorithm for a single machine [5]. The currently best
algorithm for unrelated machines is O(α2)-competitive [1].

3. In Section 5, we consider the online scheduling problem on unrelated ma-
chines with the objective of minimizing

∑
i,j wijf(Fj) where Fj is the flow-

time of job j and f is an arbitrary non-decreasing cost function with some
nice properties (for example, f is in class C1 and f ′ is non-decreasing). We

derive an algorithm which is 1
1−3ε -speed,

2K(ε)
ε -competitive where K(ε) is

a function depending on f and ε. The algorithm does not need to know
the speed (1 + ε) a priori. A corollary is a (1 + ε)-speed, k

ε1+1/k -competitive
algorithm (which does not know ε a priori) for the objective of minimiz-
ing the weighted �k-norm of flow-time. That answers an open question in
[19] and marginally improves the currently best known algorithm which is
(1 + ε)-speed, k

ε2+1/k -competitive [1].

Besides, using the approach, related problems and direct generalizations of
the above problems could be proved.



Lagrangian Duality in Online Scheduling with Resource Augmentation 759

1.2 Related Work

The online problems of minimizing objectives related to (weighted) flow-times
of jobs have been extensively studying. For the basic problem of minimizing
total flow-time on single machine, it is well-known that Shortest Remaining
Processing Time (SRPT) is the optimal algorithm. However, that is the only
constant competitive algorithm. Bansal and Chan [3] showed that no algorithm
is constant competitive for the problem of minimizing total weighted flow-time on
single machine. In fact, no bounded competitive ratio holds for parallel machines
setting [13,17].

The strong lower bounds motivate the use of resource augmentation, origi-
nally introduced by Kalyanasundaram and Pruhs [22], which circumvents the
persimist worst-case paradigm. In the same paper, the authors gave an O(1/ε)-
competitive algorithm, called SETF, for the objective of minimizing flow-time on
a single machine in the non-clairvoyant setting. In this setting, without resource
augmentation the competitive ratios of every deterministic and randomized al-
gorithms are Ω(n1/3) and Ω(log n), respectively [26]. Edmonds [14] considered
algorithm EQUI and showed that it was (2 + ε)-speed, 2/ε-competitive. Later
on, Edmonds and Pruhs [15] proposed a generalized algorithm called LAPSε.
They proved that LAPSε is (1 + 2ε)-speed, 4/ε2-competitive for minimizing the
objective of total flow-time (even with sublinear non-decreasing speedup curves).

In the clairvoyant setting, Bansal and Pruhs [6] proved that the Highest Den-
sity First (HDF) algorithm is (1+ ε)-speed, O(1/ε)-competitive for the objective
of weighted �k-norm of flow-time on a single machine. Chadha et al. [10] gave
the first (1 + ε)-speed, O(1/ε2)-competitive algorithm for minimizing weighted
flow time on unrelated machines. Recently, using the approach based on lin-
ear programming and dual-fitting, Anand et al. [1] derived another simple algo-
rithm which is (1+ε)-speed,O(1/ε)-competitive. Moreover, the authors extended
this to an (1 + ε)-speed, O(k/ε2+1/k)-competitive algorithm for the objective of
weighted �k-norm of flow-time. Note that the latter needs to know the speed
(1 + ε) a priori.

For the objective of total flow-time plus energy on a single machine, Bansal et
al. [5] gave a (3 + ε)-competitive algorithm. Besides, they also proved a (2 + ε)-
competitive algorithm for minimizing total fractional weighted flow-time plus
energy. Their results hold for a general class of convex power functions. Those
results also imply an O(α/ logα)-competitive algorithm for weighted flow-time
plus energy when the energy function is sα. Again, always based on linear pro-
gramming and dual-fitting, Anand et al. [1] proved an O(α2)-competitive al-
gorithm for unrelated machines. The total (weighted) flow-time plus energy in
non-clairvoyant setting has been also considered [11,25]. Chan et al. [12] proved
that a memoryless non-clairvoyant algorithm, which a variant of algorithm EQUI
with a policy on speed, was O(3α) competitive.

The objective of minimizing
∑

i,j wijf(Fj) for general cost function f aims
to capture multiple standard objectives in literature (weighted �k-norm of flow-
time, weighted tardiness). A competitive algorithm for a general cost function
could be useful particularly in scheduling with multiple objectives or in setting
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where objectives may compete with each other [2,24]. For the offline version on a
single machine, Bansal and Pruhs [7] presented a polynomial time O(log logP )-
approximation algorithm [7,8] where P is the ratio of the maximum to minimum
job size. Im et al. [21] showed that the HDF algorithm is (2 + ε)-speed, O(1)-
competitive for arbitrary non-decreasing cost function f on a single machine.
They also gave a scalable algorithm when f is a concave and twice differentiable.

Almost all of competitive algorithms with resource augmentation are proved
by potential functions. Those clever functions are used to show that a particu-
lar algorithm is locally competitive in an amortized sense. Recently, a principle
approach to construct potential functions for online scheduling has been sys-
tematically formalized and given in [20] for many problems. However, it does
not apply to all, for example the problem we consider in Section 5. More impor-
tantly, that still yields little insight about how to design algorithms and construct
potential functions for related problems or for non-trivial generalized variants.

Anand et al. [1] was the first who proposed studying online scheduling with
resource augmentation by linear (convex) programming and dual fitting. By this
elegant approach, they gave simple algorithms and simple analysis with improved
performance for problems where the analyses based on potential functions are
complex or it is unclear how to design such functions. Our approach is greatly
inspired by the one in [1].

Independently, Gupta et al. [18] gave a principled method to design online
algorithms for non-linear programs. They showed the application of the method
to online speed-scaling problems. Subsequently, [23] have applied the method to
design an αα-competitive for the problem of minimizing the consumed energy
plus lost values.

2 Preliminaries

In unrelated machine environment, we are given a set of m machines and jobs
arrive over time. A job j is released at time rj and requires pij units of processing
time if it is scheduled on machine i. The machines are allowed to process jobs
preemptively. The flow-time of a job j is Fj = Cj − rj where Cj is its the
completion time. If a job j is assigned to machine i then its weighted flow-time
is wijFij . Consider a scheduling algorithm. A job j is pending at time t if it
is not completed by the algorithm, i.e., rj ≤ t < Cj . At time t, we denote
qij(t) the remaining processing time of job j on machine i. The total weight of
pending jobs assigned to machine i at time t is denoted as Wi(t). In case where
all jobs have unit weight, we use Ni(t) (number of pending jobs) instead of
Wi(t). The residual density of a pending job j assigned to machine i at time t is
δij(t) = wij/qij(t). The density of a job j on machine i is δij(rj). We distinguish
two different models: the non-clairvoyant model in which at the arrival of job
j, only the weights wij ’s becomes known to the scheduler; and the clairvoyant
model in which all parameter of jobs j are available at its release time. Note that
when only a single machine is considered, for simplicity the notations remain the
same except that the machine index (usually i) will be dropped.
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3 Non-clairvoyant Scheduling

The Problem. In this section, we study the non-clairvoyant online scheduling
problem with the objective of minimizing the total flow-time on a single machine.
Let xj(t) be the variable that represents the processing rate of the machine on
job j at time t for every job j. Let Cj be a variable representing the completion
time of j. The relaxation could be formulated as the following mathematical
program. We notice again that in our approach the programs do not need to be
convex.

min
∑
j

Cj − rj
pj

∫ Cj

rj

xj(t)dt

subject to

∫ Cj

rj

xj(t)dt = pj ∀j

n∑
j=1

xj(t) ≤ 1 ∀t

xj(t) ≥ 0 ∀j, t
xj(t) = 0 ∀j, ∀t /∈ [rj , Cj ]

Observe that the last constraints are redundant but they are kept in order to
make the relaxation clear. The dual of that program is maxλ,γ,μminx,C L(x,C, λ,
γ, μ) where L is the Lagrangian

∑
j

∫ Cj

rj

Cj − rj
pj

xj(t)dt +
∑
j

λj

(
pj −

∫ Cj

rj

xj(t)dt

)

+

∫ ∞

0

(
1−

∑
j

xj(t)

)
γ(t)dt−

∑
j

∫ ∞

0

xj(t)μj(t)dt

=
∑
j

λjpj −
∑
j

∫ ∞

0

xj(t) ·
(
λj + γ(t)− Cj − rj

pj

)
dt

+

∫ ∞

0

γ(t)dt−
∑
j

∫ ∞

0

xj(t)μj(t)dt

Remark that the weak duality holds also for functions instead of variables.
In the setting, one could see the dual maxλ,γ,μ minx,C L(x,C, λ, γ, μ) as an
optimization problem over functions xj(t) and others (calculus of variations);
or as an optimization over variables (x, t) and others (by a transformation
xj(t) �→ (xj , t)).

3.1 EQUI

Algorithm EQUI. The processor shares its resource equally to the pending jobs.
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Let q1 ≤ . . . ≤ qn be remaining processing times of pending jobs at some time
t. Assume that no new job is released after t, then the remaining time before
completion for the first job is nq1, that for the second job is nq1+(n−1)(q2−q1).
By recurrence, the remaining time before completion for job j is q1+ . . .+qj−1+
(n− j)qj for 1 ≤ j ≤ n.

Suppose that at time t, a new job arrives with processing time q such that
qk ≤ q < qk+1 for some index k. Then the flow time of the new job, assuming
that no new job is released after t, is q1 + . . .+ qk−1 + (n + 1 − k)q. Moreover,
due to the arrival of the new job, the completion time of job k′ is increased by
qk′ for k′ ≤ k; and by q for k′ > k. Hence, the marginal increase of the total flow
time due to the arrival of the new job is bounded by twice the flow time of that
job.

Dual Variables. Choose γ(t) = 0, μj(t) = 0 for every j, t and λj = λEj such that

λEj pj equals the flow time of j (due to the algorithm) assuming that no new job
arrives after rj . By the observation on the flow time of jobs in EQUI, we have
that

∑
j λ

E
j pj ≤ FE ≤ 2

∑
j λ

E
j pj where FE is the total flow-time due to EQUI.

Lemma 2. It holds that 1
pj

(
λEj pj − (t− rj)

)
≤ NE(t) for t ≥ rj where NE(t)

is the number of pending jobs at time t by algorithm EQUI.

Proof. Observe that if some request arrives between time rj and t, the left-hand
side remains unchanged while the right hand-side is non-decreasing. Therefore,
it is sufficient to prove the inequality assuming that no job is released after rj .
Consider t ≤ CE

j (since otherwise the inequality trivially holds since the left-
hand side is negative). Rename jobs in non-decreasing order of the remaining
processing times at rj , i.e., q1(rj) ≤ . . . ≤ qn(rj). Note that pj = qj(rj). Suppose
that k is the pending job with smallest index at time t, i.e., jobs 1, . . . , k − 1
have been completed. We have that

1

pj

(
λEj pj − (t− rj)

)
=

1

pj

(
qk(t) + . . .+ qj−1(t) + (n− j)qj(t)

)
≤ NE(t)

where the last inequality follows since qk(t) ≤ . . . ≤ qj−1(t) ≤ qj(t) ≤ pj. �


Theorem 1 ([14]). Algorithm EQUI is 1
1/2−ε -speed, 1

ε -competitive for the prob-

lem of minimizing total flow time.

Proof. As the adversary has only the speed (1/2− ε), the processing rate of ad-
versary

∑
j xj(t) ≤ 1/2−ε for all t. By the choice of dual variables corresponding

to EQUI, we have

min
x,C

L ≥ FE

2
−

∫ ∞

0

∑
j

xj(t)N
E(t) ≥ FE

2
−

(
1

2
− ε

)∫ ∞

0

NE(t) = εFE

where the first inequality is due to Lemma 2; the second inequality follows by∑
j xj(t) ≤ 1/2− ε. Hence, the competitive ratio of EQUI is at most 1/ε. �
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3.2 LAPSβ

Inspecting the analysis of EQUI, one realizes that in order to get a scalable
algorithm, the machine should share its power only to a small fraction of pending
jobs instead of all such jobs. This observation naturally leads to algorithm LAPS
introduced in [15].

Algorithm LAPSβ Let 0 < β ≤ 1. The processor shares its resource equally to the
βNL(t) jobs with the latest arrival times where NL(t) is the number of pending
jobs at time t.

Note that in the definition of the algorithm, βNL(t) is not necessarily an
integer. However, that algorithm is equivalent to the following procedure. First,
choose the �βNL(t)� most recent jobs. Then among such jobs, the machine
shares its power to the �βNL(t) most recent ones proportional to 1 and to the
last job proportional to (βNL(t)−�βNL(t) ). For the ease and simplicity of the
exposition, we consider the version described in the definition.

Theorem 2 ([15]). Algorithm LAPSε is 1
1−2ε -speed, 2

ε2 -competitive for the prob-
lem of minimizing total flow time.

4 Weighted Flowtime Plus Energy

The Problem. In this section, we study the online scheduling with the objective of
minimizing the total weighted flow-time plus energy. The energy power function
is given by sα where s is the speed of the machine and α ≥ 1 is a constant.
In Section 4.1, we consider non-clairvoyant algorithms on a single machine and
Section 4.2, we consider algorithms on unrelated machines.

4.1 Non-clairvoyant Scheduling on Single Machine

Algorithm. At time t, the machine maintains a speed s(t) = βW (t)1/α where
W (t) is the total weight of pending jobs and β is a constant to be defined later.
At any time, the machine shares its resource to pending jobs proportional to
their weights.

Theorem 3. The algorithm is 2α-competitive for β = 2.

4.2 Clairvoyant Scheduling on Unrelated Machines

Scheduling Policy. At any time t, every machine i sets its speed si(t) = βWi(t)
1/α

where Wi(t) is the total (integral) weight of pending jobs assigned to machine
i; and β > 0 is a constant to be chosen later. At any time, every machine i
processes the highest residual density job among the pending ones assigned to i.
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Assignment Policy. At the arrival of a job j, assign j to machine i that minimizes
the marginal increase (due to the scheduling policy) of the total weighted flow-
time.

Theorem 4. The algorithm is 8(1+ α
lnα )-competitive for β = 1

α−1 (α−1+ln(α−
1))

α−1
α .

5 Arbitrary Cost Functions of Flow-Time

The Problem. In this section, we study the online scheduling on unrelated ma-
chines to minimize a general objective

∑
i,j wijf(Fj) where f is a function with

certain properties (described below). At the arrival time of a job, the scheduler
has to immediately assign it to a machine. Jobs will be entirely processed on
their machines and the migration of jobs across machines is not allowed. (In
practice, it is not desirable to migrate jobs from a machine to others.)

Properties f(0) = f ′(0) = 0 and for any ε > 0 arbitrarily small,

(P1) there exists a function K1(ε) such that f(z1+z2) ≤ 1
1−εf(z1)+K1(ε)f(z2)

∀z1, z2 ≥ 0;
(P2) f ′(z) is non-decreasing. By this property, we can deduce that

k∑
�=1

a�f
′(A�−1) ≤ f(Ak) ≤

k∑
i=�

a�f
′(A�)

where A� = a1 + . . .+ a� and a� ≥ 0 for every 1 ≤ � ≤ k.
(P3) there exists a functionK2(ε) such that f ′(z1+z2) ≤ 1

1−εf
′(z1)+K2(ε)f

′(z2)
∀z1, z2 ≥ 0;

(P4) there exists a function K3(ε) such that f ′(z + z
K3(ε)

) ≤ 1
1−εf

′(z) ∀z ≥ 0;

(P5) there exists a function K4 ≥ 1 such that zf ′(z) ≤ K4f(z) ∀z ≥ 0.

Scheduling Policy. At time t, every machine i schedules the highest residual
density job among the ones assigned to i.

Assignment Policy. For a job j, recall that qij(t) is the remaining processing
time of j on machine i. Let Qj(t) be the remaining time of job j from t to
its completion time by the algorithm. Let Ui(t) be the set of jobs assigned to
machine i and are still pending at t. At the arrival time rj , job j is assigned to

the machine i that minimize λ̃ij , which is defined as

δijf

( ∑
u∈Ui(rj)

δu(rj)≥δij

qu(rj) + pij

)
+

∑
u∈Ui(rj)

δu(rj)<δij

wiu

pij

(
f(Qu(rj) + pij)− f(Qu(rj))

)

where δij is the density of job j on machine i, i.e., δij = δij(rj). Note that λ̃ijpij
is the marginal increase of the objective function if job j is assigned to machine i.
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Theorem 5. The algorithm is 1
1−3ε -speed and 2K(ε)

ε -competitive where K(ε) =
max{K1(ε), 3K2(ε)K3(ε)K4}.

Corollary 1. The algorithm is 1
1−3ε -speed O( k

ε1+1/k )-competitive for the objec-
tive of weighted �k-norm of flow-time.

6 Conclusion and Further Directions

In the paper, we have proved competitive algorithms in the resource augmen-
tation/speed scaling models for different online scheduling problems using an
unified approach. The approach is simple yet powerful in designing and analyz-
ing algorithms. It seems to be a right tool to study problems in the resource
augmentation/speed scaling models. Besides the extensions mentioned in previ-
ous sections, a future direction is to study online scheduling problems with the
objectives of different nature, for example throughput-related objective. More-
over, different constraints might be incorporated, for example the bounded-speed
model [4,25] or the capacitated machine model [16].

An interesting future direction is to investigate different online problems
with resource augmentation using the approach. Moreover, the min max game
between algorithms and adversaries may give insights not only for designing
algorithms but also for constructing counter-examples.
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Abstract. Greedy embedding (or drawing) is a simple and efficient
strategy to route messages in wireless sensor networks. For each source-
destination pair of nodes s, t in a greedy embedding there is always a
neighbor u of s that is closer to t according to some distance metric. The
existence of Euclidean greedy embeddings in R

2 is known for certain
graph classes such as 3-connected planar graphs. We completely charac-
terize the trees that admit a greedy embedding in R

2. This answers a
question by Angelini et al. (Graph Drawing 2009) and is a further step
in characterizing the graphs that admit Euclidean greedy embeddings.

1 Introduction

Message routing in wireless ad-hoc and sensor networks cannot apply the same
established global hierarchical routing schemes that are used, e.g., in the Internet
Protocol. A family of alternative routing strategies in wireless networks known as
geographic routing uses node locations as addresses instead. The greedy routing
protocol simply passes a message at each node to a neighbor that is closer to the
destination. Two problems with this approach are (i) that sensor nodes typically
are not equipped with GPS receivers due to their cost and energy consumption
and (ii) that even if nodes know their positions messages can get stuck at voids,
where no node closer to the destination exists.

An elegant strategy to tackle these issues was proposed by Rao et al [12]. It
maps nodes to virtual rather than geographic coordinates, on which the standard
greedy routing is then performed. A mapping that always guarantees successful
delivery is called a greedy embedding or greedy drawing.

The question about the existence of greedy embeddings for various met-
ric spaces and classes of graphs has attracted a lot of interest. Papadimitriou
and Ratajczak [11] conjectured that every 3-connected planar graph admits a
greedy embedding into the Euclidean plane. Dhandapani [4] proved that every
3-connected planar triangulation has a greedy drawing. The conjecture by Pa-
padimitriou and Ratajczak itself has been proved independently by Leighton
and Moitra [9] and Angelini et al. [3]. Kleinberg [8] showed that every connected
graph has a greedy embedding in the hyperbolic plane.

Since efficient use of storage and bandwidth are crucial in wireless sensor net-
works, virtual coordinates should require only few, i.e., O(log n), bits in order to
keep message headers small. Greedy drawings with this property are called suc-
cinct. Eppstein and Goodrich proved the existence of succinct greedy drawings
for 3-connected planar graphs in R2 [6], and Goodrich and Strash [7] showed
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it for any connected graph in the hyperbolic plane. Wang and He [14] used a
custom distance metric and constructed convex, planar and succinct drawings
for 3-connected planar graphs using Schnyder realizers [13].

It has been known that not all graphs admit a Euclidean greedy drawing in
the plane, e.g.,Kk,5k+1 (k ≥ 1) has no such drawing [11], including the tree K1,6.
Leighton and Moitra [9] showed that a graph containing at least six pairwise in-
dependent irreducible triples (e.g., the complete binary tree containing 31 nodes)
cannot have a greedy embedding. They used this fact to present a planar graph
that admits a greedy embedding, although none of its spanning trees does. We
show that there are trees with no greedy drawing that contain at most five such
triples [10]. Further, some greedy-drawable trees have no succinct Euclidean
greedy drawing [2].

Self-approaching drawings [1] are a subclass of greedy drawings with the ad-
ditional constraint that for any pair of nodes there is a path ρ that is distance
decreasing not just for the node sequence of ρ but for any triple of intermediate
points on the edges of ρ. Alamdari et al. [1] gave a complete characterization of
trees admitting self-approaching drawings. Since self-approaching drawings are
greedy, all trees with a self-approaching drawing are greedy-drawable. However,
there exist numerous trees that admit a greedy drawing, but no self-approaching
one, and the characterization of those trees turns out to be quite complex.

Contributions. We give the first complete characterization of all trees that
admit a greedy embedding in R2 with the Euclidean distance metric. This solves
the corresponding open problem stated by Angelini et al. [2] and is a further
step in characterizing the graphs that have greedy embeddings. We show that
deciding whether T has a greedy drawing is equivalent to deciding whether
there exists a valid angle assignment in a certain wheel polygon. This includes
a non-linear constraint known as the wheel condition [5]. For most cases (all
trees with maximum degree 4 and most trees with maximum degree 5) we are
able to give an explicit solution to this problem, which provides a linear-time
recognition algorithm. For trees with maximum degree 3 we give an alternative
characterization by forbidden subtrees in the full version of this paper [10]. For
some trees with one degree 5 node we resort to using non-linear solvers. For trees
with nodes of degree ≥ 6 no greedy drawings exist.

Our proofs are constructive, however, we ignore the possibly exponential area
requirements for our constructions. This is justified by the aforementioned re-
sult that some trees require exponential-size greedy drawings [2]. Due to space
constraints several proofs are omitted; for details we refer to the full paper [10].

2 Preliminaries

In this section, we introduce the concept of the opening angle of a rooted sub-
tree and present relations between opening angles that will be crucial for the
characterization of greedy-drawable trees.
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Let T = (V,E) be a tree. A straight-line drawing Γ of T maps every node
v ∈ V to a point in the plane R2 and every edge uv ∈ E to the line segment
between its endpoints. We say that Γ is greedy if for every pair of nodes s, t
there is a neighbor u of s with |ut| < |st|, where |st| is the Euclidean distance
between points s and t. To ease notation we identify nodes with points and edges
with line segments. Furthermore we assume that all drawings are straight-line
drawings.

It is known that for a greedy drawing Γ of T any subtree of T is represented
in Γ by a greedy subdrawing [2]. We define the axis of an edge uv as its perpen-
dicular bisector. Let huuv denote the open half-plane bounded by the axis of uv
and containing u. Let T u

uv be the subtree of T containing u obtained from T
by removing uv. Angelini et al. [2] showed that in a greedy drawing of T every
subtree T u

uv is contained in huuv. The converse is also true.

Lemma 1. Let Γ be a drawing of T with T u
uv ⊆ huuv ∀uv ∈ E. Then, Γ is greedy.

Angelini et al. [2] further showed that greedy tree drawings are always planar
and that in any greedy drawing of T the angle between two adjacent edges must
be strictly greater than 60◦. Thus T cannot have a node of degree ≥ 6.

Let ray(u, !uv) denote the ray with origin u and direction !uv. For u, v ∈ V , let

dT (u, v) be the length of the u-v path in T . For vectors !ab, !cd, let ∠ccw( !ab, !cd)

denote the counterclockwise turn (or turning angle) from !ab to !cd.

Lemma 2 (Lemma 7 in [2]). Consider two edges uv and wz in a greedy
drawing of T , such that the path from u to w does not contain v and z. Then,
the rays ray(u, !uv) and ray(w, !wz) diverge; see Fig. 1a.

Lemma 3. Let Γ be a greedy drawing of T , v ∈ V , deg(v) = 2, N(v) = {u,w}
the only two neighbors of v, and T ′ = T − {uv, vw} + {uw}. The drawing Γ ′

induced by replacing segments uv, vw by uw in Γ is also greedy.

Next we generalize some concepts from Leighton and Moitra [9]. For k =
3, 4, 5, we define an irreducible k-tuple as a k-tuple of nodes (b1, . . . , bk) in a
graph G = (V,E), such that deg(b1) = k, b1b2, b1b3, . . . , b1bk ∈ E (we call these
k − 1 edges branches of the k-tuple) and removing any branch b1bj disconnects
the graph. A k-tuple (b1, . . . , bk) and an l-tuple (x1, . . . , xl) are independent, if
{b1, . . . , bk} ∩ {x1, . . . , xl} = ∅, and deleting all the branches keeps b1 and x1
connected.

Let Γ be a greedy drawing of T . We shall consider subtrees Ti = (Vi, Ei) of
T , such that Ti has root ri, deg(ri) = 1 in Ti and vi is the neighbor of ri in Ti.
We define the polytope of a rooted subtree Ti as polytope(Ti) =

⋂
{hwuw | uw ∈

Ei, uw 	= rivi, dT (w, ri) < dT (u, ri)}.

Definition 1 (Extremal edges). For j = 1, 2, let ajbj 	= viri be an edge

of Ti, dT (aj , ri) < dT (bj , ri), such that ∠ccw( !viri, !ajbj) is maximum for j = 1
and minimum for j = 2. We call edges ajbj extremal.

Note that by Lemma 2, ray(aj , !ajbj) and ray(vi, !viri) diverge. In the following
two definitions, let ej = ajbj, j = 1, 2 be the extremal edges of Ti.
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Fig. 1. (a) Sketch of Lemma 2. (b) Subtree Ti with opening angle ∠Ti (orange), ex-
tremal edges a1b1, a2b2 (blue) and apex xi (red). The subtree T ri

viri (gray triangle)
must be contained in the half-plane hri

viri and the cone ∠Ti. (c) Subtree Tj with closed
angle ∠Tj and boundary segment p1p2. (d) Open angles of independent subtrees must
contain apices of each other.

Definition 2 (Open angle). Let ∠ccw( !a1b1, !a2b2) > 180◦. Then, polytope(Ti)
is unbounded, and we say that Ti is drawn with an open angle.
(a) If a1b1 	⊆ hb2a2b2

and a2b2 	⊆ hb1a1b1
, define ∠Ti = ha1

a1b1
∩ ha2

a2b2
. Let xi be

the intersection of axis(a1b1) and axis(a2b2). We set apex(∠Ti) = xi; see
Fig. 1b.

(b) If ajbj ⊆ hbkakbk
for j = 1, k = 2 or j = 2, k = 1, let ∠Ti be the cone defined by

moving the boundaries of ha1

a1b1
, ha2

a2b2
to bj (bk ∈ ∠Ti), and apex(∠Ti) = bj.

We call ∠Ti the opening angle of Ti in Γ (orange in Fig. 1b). We write |∠Ti| =
α, where α is the angle between the two rays of ∠Ti.

Obviously, polytope(Ti) ⊆ ∠Ti in (a). This is also true in (b) by Observation 1.

Observation 1 Let h be an open half-plane and p /∈ h. Let h′ be the half-plane
created by a parallel translation of the boundary of h′ to p. Then, h ⊆ h′.

Definition 3 (Closed and zero angle). Let ∠ccw( !a1b1, !a2b2) < 180◦ (or =
180◦). Let Ci = ha1

a1b1
∩ ha2

a2b2
, and let pj be the midpoint of ej. We denote the

part of Ci bounded by segment p1p2 containing r by ∠Ti and say that Ti is drawn
with a closed (or zero) angle; see Fig. 1c. We write |∠Ti| < 0 (or = 0).

We say that two subtrees T1, T2 are independent, if T2 \ {r2} ⊆ T r1
v1r1 and T1 \

{r1} ⊆ T r2
v2r2 . If T1 and T2 are independent, then T2\{r2} ⊆ hr1v1r1 and T1\{r1} ⊆

hr2v2r2 in Γ . Also, if r2 /∈ T r1
v1r1 , then r2 = v1.

Lemma 4. Let Ti and Tj be independent, |∠Ti|, |∠Tj | > 0 in Γ . Then,
apex(∠Ti) ∈ ∠Tj and apex(∠Tj) ∈ ∠Ti.

Lemma 5 (generalization of Claim 4 in [9]). Let Ti, Tj be two independent
subtrees. Then, either |∠Ti| > 0 or |∠Tj| > 0.

We shall use the following lemma to provide a certificate of non-existence of a
greedy drawing.
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Fig. 2. Illustration of Lemma 8. (a) Greedy drawing Γ . Edges a1b1, a2b2 are extremal.
Dotted blue: bounding cone of T ′. (b) Greedy drawing Γ ′. Subtree T v

rv has been moved
to a new point p /∈ V and drawn infinitesimally small. (c) Drawings Γ and Γ ′ for the
case when a1,b1 lie on the r-b2-path. Here, p = b2 ∈ V .

Lemma 6. Let Ti, i = 1, . . . , d be pairwise independent subtrees, and αi = |∠Ti|.
Then,

∑
i=1,...,d,αi>0 αi > (d− 2)180◦.

Let T contain a set of nk irreducible k-tuples, k = 3, 4, 5, that are all pairwise
independent. Leighton and Moitra [9] showed that for n3 ≥ 6 no greedy drawing
of T exists. We generalize this result slightly:

Lemma 7. No greedy drawing of T exists if n3 + 2n4 + 3n5 ≥ 6.

2.1 Shrinking Lemma

We now present a lemma which is crucial for later proofs. Let the bounding cone
of a subtree T v

rv + rv defined for an edge rv in a greedy drawing Γ of T be the

cone with apex v and boundary rays ray(v, !a1b1) and ray(v, !a2b2) for extremal
edges a1b1, a2b2 of T v

rv + rv that contains the drawing of T v
rv.

Lemma 8. Let T = (V,E) be a tree and T ′ = T v
rv + rv, rv ∈ E, a subtree of T .

Let Γ be a greedy drawing of T , such that |∠T ′| > 0. Then, there exists a point p
in the bounding cone of T v

rv, such that shrinking T v
rv infinitesimally and moving

it to p keeps the drawing greedy, and |∠T ′| remains the same.

Proof. Let ei = aibi, i = 1, 2, be the two extremal edges of T ′ in Γ , ρi the
r-bi-path, and ai ∈ ρi; see Fig. 2 for a sketch. We distinguish two cases:

(1) Edge e1 is not on ρ2 and edge e2 is not on ρ1. Then, {a1, b1} ⊆ ha2

a2b2
,

and {a2, b2} ⊆ ha1

a1b1
. Let �i be the line parallel to axis(ei) through bi and p the

intersection of �1 and �2; see Fig. 2a. Let v0 ∈ V be the last common node of ρ1
and ρ2, and let ηi be the v0-bi-path in T , i = 1, 2.

We now define three intermediate drawings. Let Γ1 be the drawing gained by
replacing T ′ in Γ by the edge rv0 and the two paths η1 and η2, and let Γ2 =
Γ1− η1− η2+ {v0b1, v0b2}; see Fig. 3a. By Lemma 3, both Γ1 and Γ2 are greedy.
Let Γ3 = Γ2 − {v0b1, v0b2}+ {v0p}. Let V1 be the node set of T r

vr with addition
of v0. Note that the nodes in V1 have the same coordinates in Γ , Γ1, Γ2 and Γ3.
Further, since v0 ∈ hai

aibi
for i = 1, 2, p lies inside the angle ∠b1v0b2 < 180◦.
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Fig. 3. Proof of Lemma 8. (a): Intermediate drawings Γ1 (black and red), Γ2 (black and
green) and Γ3 (black and blue). (b): For an edge xy /∈ T v

rv, its axis doesn’t cross v0b1,
v0b2. It also doesn’t cross v0p due to Lemma 2. (c): It is Λ ⊆ hv0

v0p.

We have to prove the greediness of Γ3. Since p /∈ V , it doesn’t follow directly
from Lemma 3. We first show that for an edge xy in Γ3, xy 	= v0p, where x is
closer to v0 in T than y, it holds p ∈ hxxy. Edge xy is also contained in Γ1. Nodes x,
v0 and ai lie on the y-bi-path in T , i = 1, 2. Hence, {v0, a1, a2, b1, b2} ⊆ η1∪η2 ⊆
hxxy, therefore, axis(xy) doesn’t cross edges v0b1, v0b2. Now assume p /∈ hxxy.
Then, axis(xy) must cross v0p, b1p and b2p (but not v0bi); see Fig. 3b. This is

only possible if for some i ∈ {1, 2}, rays ray(x, !xy) and ray(ai, !aibi) are parallel
or converge, which is a contradiction to Lemma 2.

Next, we show that V1 ⊆ hv0pv0 . Without loss of generality, let v0b1 be directed
upwards to the left and v0b2 upwards to the right. Note that a1 lies to the right
of v0b1 and a2 to the left of v0b2 (otherwise, the edge aibi would not be extremal
in T ′). Hence, ∠v0bip ≥ 90◦. Let Λ be the opening angle of the subtree induced
by edges {rv0, v0b1, v0b2} with root r in Γ2 (blue in Fig. 3c). It is Λ ⊆ hv0pv0
(see [10]). Hence, V1 ⊆ Λ ⊆ hv0pv0 . This proves the greediness of Γ3. Due to the
extremality of a1b1, a2b2, p lies in the bounding cone of T ′.

Removing v0 and connecting r to p keeps the drawing greedy. Finally, we ac-
quire Γ ′ by drawing the subtree T v

rv of T infinitesimally small at p. Let C1 be the
cone∠T ′ in the original drawingΓ , andC2 the cone bounded by �1 and �2, ai ∈ C2.
By Observation 1, C1 ⊆ C2. Consider an edge e in T v

rv, e /∈ {e1, e2} in Γ . Let � be
the line parallel to axis(e) through p.

Due to the extremality of e1, e2, cone C2 lies on one side of �. Therefore,
since V1 ⊆ C2, the drawing Γ ′ is greedy, and it is ∠T ′ = C2. Since �i is parallel
to axis(aibi), |∠T ′| in Γ ′ is as big as in Γ .

(2) Now assume a1b1 lies on ρ2. Let Γ4 be the drawing obtained by replacing T ′

in Γ by edge rb2. By Lemma 3, Γ4 is greedy. It is b2 ∈ hb1a1b1
. Similar to (1),

we acquire Γ ′ by drawing the subtree T v
rv of T infinitesimally small at p = b2.

Then, |∠T ′| remains the same as in Γ , see Fig. 2c. �


3 Opening Angles of Rooted Trees

The main idea of our decision algorithm is to process the nodes of T bottom-up
while calculating tight upper bounds on the maximum possible opening angles



Euclidean Greedy Drawings of Trees 773

r r0

T ′

v

⎧ ⎪ ⎨ ⎪ ⎩

(a) case I

am
T ′

⎧ ⎪ ⎨ ⎪ ⎩

r r0v

a1

(b) case II

am
T ′

⎧ ⎪ ⎨ ⎪ ⎩

r r0v

a1

bk
b1

(c) case III

r0

T1

r

T2

v1

v2⎧ ⎪⎨ ⎪⎩

⎧⎪⎨⎪⎩

(d) case IV

r0

T1

r

T2

v1

v2

⎧ ⎪⎨ ⎪⎩

⎧⎪⎨⎪⎩

am

a1

(e) case V

r0

T1

r
T2

v1

v2

⎧⎪⎨⎪⎩
v3

T3

(f) case VII

Fig. 4. (a)–(e): Possible cases when combining subtrees to maintain an open angle.
Subtrees T1, T2 have opening angles ∈ (90◦, 120◦). In case VII ((f)) or in case VI
(|∠Ti| ≤ 90◦ in IV or V for one i ∈ {1, 2}) no open angle is possible.

of the considered subtrees. If T contains a node of degree 5, it cannot be drawn
with an open angle, since each pair of consecutive edges forms an angle strictly
greater than 60◦. In this section, we consider trees with maximum degree 4.

If a subtree T ′ can be drawn with an open angle ϕ−ε for any ε > 0, but not ϕ,
we say that it has opening angle ϕ− and write |∠T ′| = ϕ−. For example, a triple
has opening angle 120− and a quadruple 60−. We call a subtree non-trivial if
it is not a single node or a simple path. Figure 4 shows possibilities to combine
or extend non-trivial subtrees T ′, T1, T2. We shall now prove tight bounds on
the possible opening angles for each construction. As we shall show later, only
cases I–V are feasible for the resulting subtree to have an open angle. To compute
the maximum opening angle of the combined subtree T in cases I–V, we use the
following strategy. We show that applying Lemma 8 to T ′ does not decrease the
opening angle of T in a drawing. Hence, it suffices to consider only drawings in
which T ′v

rv is shrunk to a point. We then obtain an upper bound by solving a
linear maximization problem. Finally, we construct a drawing with an almost-
optimal opening angle for T inductively using an almost-optimal construction
for T ′. We give a proof for case II, see [10] for the remaining cases.

Lemma 9. Let T ′ be a subtree with ∠T ′ = ϕ−, and consider the subtree T =
T ′ + rr0 + ra1 + a1a2 + . . . + am−1am in Fig. 4b. Then |∠T | = (45◦ + ϕ

2 )
− if

ϕ > 90◦ (case (i)), and |∠T | = ϕ− if ϕ ≤ 90◦ (case (ii)).

Proof. First, let m = 1. (i) Consider a greedy drawing Γ of T . Let a1r be drawn
horizontally and v above it and to the left of axis(ra1); see Fig. 5a,b,d. Due to
Lemma 2, the right boundary of ∠T is formed by axis(ra1). The left boundary
is either formed by (1) the left boundary of ∠T ′ (see Fig. 5a), or (2) by axis(rv)

α a1

ϕ

r

v

(a)

α a1

ϕ

r

v

(b)

r

v p

r

(c)

α a1
r

< α

> 90◦ − α

(d)

ϕ− ε

v

r a1
(e)

Fig. 5. Optimal construction and tight upper bound for case II
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Table 1. Computing maximum opening angle of the combined subtree T . Let |∠Ti| =
ϕ−

i , ϕi ≥ ϕi+1, and |∠Ti| = ϕi = 180◦ if Ti is a path.

case ϕ1 ϕ2 ϕ3 maximum |∠T |
I (0◦, 180◦] - - ϕ1

−

II.i 180◦ (90◦, 120◦] - (ϕ2
2

+ 45◦)− ∈ (90◦, 120◦)
II.ii 180◦ (0◦, 60◦] - ϕ2

− ∈ (0◦, 60◦)
III 180◦ 180◦ (0◦, 120◦] ϕ3

2
− ∈ (0◦, 60◦)

IV (90◦, 120◦] (90◦, 120◦] - (ϕ1 + ϕ2 − 180◦)− ∈ (0◦, 60◦)

V 180◦ (90◦, 120◦] (90◦, 120◦] ( 3
4
ϕ2 +

1
2
ϕ3 − 112.5◦)

− ∈ (0◦, 60◦)
VI (0◦, 120◦] (0◦, 90◦] - < 0◦

VII (0◦, 120◦] (0◦, 120◦] (0◦, 120◦] < 0◦

(Fig. 5b). We apply Lemma 8 to T ′v
rv in Γ and acquire Γ ′, in which T ′v

rv is
drawn infinitesimally small. In Γ ′, axis(ra1) remains the right boundary of ∠T .
In case (1), the left boundary of ∠T is again formed by the left boundary of ∠T ′,
and |∠T | remains the same. In case (2), the subtree T ′v

rv must lie to the right
of !rv in Γ (since each edge in it is oriented clockwise relative to !rv), and so does
the point p from Lemma 8. Thus, the edge rv is turned clockwise in Γ ′, and |∠T |
increases; see Fig. 5c. Thus, to acquire an upper bound for |∠T | it suffices to only
consider drawings in which T ′v

rv is drawn infinitesimally small. Let α = ∠a1rv.
Then, for ϕ = |∠T | it holds: ϕ ≤ 180◦ − α, ϕ < ϕ − 90◦ + α; see the blue and
green angles in Fig. 5d. Thus, ϕ lies on the graph f(α) = 180◦ − α or below
it and strictly below the graph g(α) = ϕ − 90◦ + α. Maximizing over α gives
ϕ < 45◦+ ϕ

2 . We can achieve ϕ = (45◦+ ϕ
2 )

− by choosing α = 135◦− ϕ
2 + ε′ and

drawing T ′v
rv sufficiently small with |∠T ′| = ϕ− ε for sufficiently small ε, ε′ > 0.

(ii) Obviously, |∠T ′| ≥ |∠T |. For the second part, see Fig. 5e. We choose
∠a1rv = 90◦− ε

2 and draw ra1long enough, such that its axis doesn’t cross T ′v
rv.

We rotate T ′v
rv such that the right side of the opening angle ∠T ′ and rv form an

angle 3ε
2 . Then, the opening angle ϕ′ of the drawing is defined by the left side

of ∠T ′ and the axis of ra1 and is ϕ− ε.
For m ≥ 2, draw a2, . . . , am collinear with ra1 and infinitesimally close to a1.

�


Tight upper bounds on opening angles of the combined subtree T for all possible
cases are listed in Table 1. Note that no bounds in (120◦, 180◦) and (60◦, 90◦]
appear. See [10] for the proofs of cases III–VII.

4 Arranging Rooted Subtrees with Open Angles

In this section, we consider the task of constructing a greedy drawing Γ of T
by combining independent rooted subtrees with a common root. The following
problem (restricted to n ∈ {3, 4, 5}) turns out to be fundamental in this context.

Problem 1. Given n angles ϕ0, . . . , ϕn−1 > 0◦, is there a convex n-gon P
with corners v0, . . . , vn−1 (in arbitrary order) with interior angles ψi < ϕi for
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maximize ε under:
ε, αi, βi, γi ∈ [0, 180],
i = 0, . . . , n− 1;
βi + ε ≤ αi, γi + ε ≤ αi,
βi + γi+1 + ε ≤ ϕi

αi + βi + γi = 180,
α0 + . . .+ αn−1 = 360,∏n−1

i=0 sinβi =
∏n−1

i=0 sin γi

(a) optimization problem (*)

α0α1
α2
α3
α4

β1

β2 β3

β4

γ0

γ1

γ2

γ3

ϕ0

γ4

v0

v1

v2 v3

v4

β0

(b)

v0

v1

v2 v3

v4

(c)

Fig. 6. (a) Optimization problem (*); (b) sketch for (*). (c) Solving (*) lets us construct
greedy drawings by placing sufficiently small drawings of subtrees at n-gon corners.

i = 0, . . . , n− 1, such that the star K1,n has a greedy drawing with root r inside
P and leaves v0, . . . , vn−1?

If Problem 1 has a solution we write {ϕ0, . . . , ϕn−1} ∈ Pn. It can be solved using
a series of optimization problems as in Fig. 6a (one for each fixed cyclic ordering
of (ϕ1, . . . , ϕn)). The last constraint in (*) follows from applying the law of sines
and is known as the wheel condition in the work of di Battista and Vismara [5].

Lemma 10. It is {ϕ0, . . . , ϕn−1} ∈ Pn if and only if there exists a solution
of (*) with ε > 0 for an ordering (ϕ0, . . . , ϕn−1).

Deciding whether a solution of (*) with ε > 0 exists is in fact equivalent to
deciding whether the wheel condition can be satisfied in the interior of a 2n− 1-
dimensional simplex; see [10] for more details.

Theorem 1. For n = 3, 4, 5, consider trees Ti, i = 0, . . . , n − 1 with root r,
edge rvi in Ti, deg(r) = 1 in Ti, Ti ∩ Tj = {r} for i 	= j, such that each Ti has
a drawing with opening angle at least 0 < ϕi − ε < 180◦ for any ε > 0. Then,
tree T =

⋃n−1
i=0 Ti has a greedy drawing with |∠Ti| < ϕi for all i = 0, . . . , n− 1 if

and only if {ϕ0, . . . , ϕn−1} ∈ Pn.

Proof. First, consider a drawing ofK1,n with edges rvi that solves Pn, and, with-
out loss of generality, let the angles be ordered such that ψi := ∠vi−1vivi+1 < ϕi.
We create a greedy drawing Γ of T by drawing (Ti)

vi
rvi infinitesimally small at vi

with opening angle ϕi − ε > ψi for a sufficiently small ε > 0 and orienting it
such that vj ∈ ∠Ti for all j 	= i; see Fig. 6c.

Now assume a greedy drawing Γ0 of T with |∠Ti| < ϕi, i = 0, . . . , n − 1
exists. For one i, it might be |∠Ti| < 0 in Γ0. Then, there also exists a greedy
drawing Γ , in which 0 < |∠Tj| < ϕj , j = 0, . . . , n− 1. By Lemma 5, the subtree
T = {rvi}+

⋃
j �=i Tj must have an open angle in Γ0. We then obtain Γ by making

the edge rvi sufficiently long inside ∠T and drawing Ti with |∠Ti| > 0, such that
T ⊆ ∠Ti and Ti ⊆ ∠T .

We apply Lemma 8 to T0, then to T1, . . . , Tn−1 and obtain a greedy drawing Γ ′

of T with opening angles ∠Ti of same size, such that each subtree (Ti)
vi
rvi is
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Table 2. Solving non-linear problem Pn explicitly. Let ϕi ≥ ϕi+1, ϕi ∈ (0◦, 60◦] ∪
(90◦, 120◦] ∪ {180◦},

∑n−1
i=0 ϕi > (n− 2)180◦. See the full version for the proofs.

n case {ϕ0, . . . , ϕn−1} ∈ Pn iff

3, 4 always
5 ϕ0 = . . . = ϕ3 = 180◦ always
5 ϕ0 ≤ 120◦ always
5 ϕ0 = . . . = ϕ2 = 180◦ ϕ3 + ϕ4 > 120◦

5 ϕ0 = ϕ1 = 180◦ ϕ2 + ϕ3 + ϕ4 > 240◦

5 ϕ0 = 180◦, ϕ1, ϕ2, ϕ3 ∈ (90◦, 120◦], ϕ4 ≤ 60◦ ?
5 ϕ0 = 180◦, ϕ1, . . . , ϕ4 ∈ (90◦, 120◦] ?

drawn infinitesimally small at vi. For n = 4, 5, for each pair of consecutive
edges rvi, rvj in Γ ′ the turn from rvi to rvj is less than 180◦, so r lies inside
the convex polygon with corners v0, . . . , vn−1. Therefore, Γ

′ directly provides a
solution of Pn. For n = 3, v1 might lie inside angle ∠v0rv2 ≤ 180◦. However,
since ϕ0 + ϕ1 + ϕ2 > 180◦, it is {ϕ0, ϕ1, ϕ2} ∈ P3; see Table 2. �


Although Problem (*) is non-linear, we are almost always able to give tight
conditions for the existence of the solution; see Table 2, which summarizes all
possible cases. The last two cases for n = 5 are the only remaining ones to con-
sider (for ϕ3+ϕ4 > 120◦, ϕ2+ . . .+ϕ4 > 240◦, ϕ1+ . . .+ϕ4 > 360◦). In practice,
it is possible to either strictly prove {ϕ0, . . . , ϕ4} /∈ P5 or numerically construct a
solution for many such sets of angles. If we drop the last constraint in (*), we ac-
quire a linear program which has a constant number of variables and constraints
and can be solved in O(1) time. If it has no solution for any cyclic order of ϕi,
neither has P5. For example, this is the case for {180◦, 105◦, 105◦, 105◦, 60◦}.
If this linear program has a solution, we can try to solve (*) using nonlinear
programming solvers. However, if the non-linear solver finds no solution, we ob-
viously have no guarantee that none exists. In [10], we present examples of trees
for which we could prove the existence of a greedy drawing by solving P5 using
MATLAB. Further, we formulate a sufficient condition for the first of the two
above cases.

5 Recognition Algorithm

Maximum Degree 4. In this section we formulate Algorithm 1, which decides
for a tree T with maximum degree 4 whether T has a greedy drawing. First, we
describe a procedure to determine the tight upper bound for the opening angle
of a given rooted subtree. Let N(v) denote the neighbors of v ∈ V in T . After
processing a node v, we set a flag p(v) = true. Let Np(v) = {u | uv ∈ E, p(u) =
true}, and ∠optimal the new tight upper bound calculated according to Table 1.

Lemma 11. Procedure getOpenAngle is correct and requires time O(|V |).

Proof. The algorithm processes tree nodes bottom-up. For v ∈ V , let πv be the
parent of v, deg(v) = dv, Tv = T v

πvv + πvv with root πv. For a subtree with one
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Procedure getOpenAngle(T ,r)

Input : tree T = (V,E),
root r ∈ V , dr = 1

Result: tight upper bound on |∠T |,
0 if no open angle possible.

p(r) ← false
for v ∈ V \ {r} do

if dv = 5 then return 0
else if dv = 1 then

p(v) ← true
∠(v) ← 180

else p(v) ← false
while ∃v ∈ V : ¬ p(v)
& |Np(v)| = dv − 1

if ∀u ∈ Np(v) : ∠(u) = 180 then
∠(v) ← 180− (dv − 2) · 60

else if case I,. . . ,V applicable
then ∠(v) ← ∠optimal(Np(v))
else return 0
p(v) ← true

return ∠(v) for {v} = N(r)

Algorithm 1. hasGreedyDrawing(T )

Input : tree T = (V, E), max deg 4
Result: whether T has a greedy drawing
for v ∈ V do

if dv = 1 then
p(v) ← true; ∠(v) ← 180

else p(v) ← false
while ∃v ∈ V : ¬ p(v) & |Np(v)| ≥ dv − 1

if |Np(v)| = dv then
return

∑
u,uv∈E ∠(u) > (dv −2)180

else if ∀u ∈ Np(v) : ∠(u) = 180 then
∠(v) ← 180 − (dv − 2) · 60

else if case I,. . . ,V applicable then
∠(v) ← ∠optimal(Np(v))

else
w ← N(v)− Np(v)
∠(w) ← getOpenAngle(Tw

vw + vw, v)
return ∠(w) > 0
&
∑

u,uv∈E ∠(u) > (dv − 2)180

p(v) ← true

or two nodes, define its opening angle as 180◦. We prove the following invariant
for the while loop: For each v ∈ V with p(v) = true, ∠(v) > 0 stores a tight
upper bound for the opening angle in a greedy drawing of Tv.

The invariant holds for all leaves of T after the initialization. The first if -
statement inside the while body ensures that if all nodes in Tv except v have
degree 1 or 2, then ∠(v) = 180 if dv = 1, 2 in T , ∠(v) = 120 if dv = 3 and
∠(v) = 60 if dv = 4. Now consider the first else clause inside the while loop.
Assume p(v) = false, |Np(v)| = dv−1 and the invariant holds for all subtrees Tu,
u ∈ Np(v). If one of the cases I–V can be applied to v and subtrees Tu, then,
after the current loop, ∠(v) > 0 stores the tight upper bound for the opening
angle in a greedy drawing of Tv; see Table 1. Otherwise, we have case VI or VII,
and Tv cannot be drawn with an open angle. Each node v is processed in O(dv),
and if for u ∈ N(v) − Np(v), it holds |Np(u)| ≥ du − 1 after processing v, we
put u in a queue. Hence the running time is O(|V |). �


Algorithm 1 also requires O(|V |) time and is similar to Procedure getOpenAngle,
except that T now does not have a distinguished root. We proceed from the leaves
of T inwards, until we reach some “central” node v with neighbors {u1, . . . , udv},
such that a greedy drawing of T exists only if all tight upper bounds ϕi on
|∠(T ui

vui
+ vui)| are positive. Then, we report true if and only if

∑dv

i=1 ϕi >
(dv − 2)180◦. See [10] for the formal correctness proof.

Maximum Degree 5 and Above. If T contains a node v with deg(v) ≥ 6, no
greedy drawing exists. Also, a greedy-drawable tree can have at most one node
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of degree 5 by Lemma 7, otherwise, there are two independent 5-tuples. For
unique r ∈ V , deg(r) = 5, consider the five rooted subtrees T0, . . . , T4 attached

to it and the tight upper bounds ϕi on |∠Ti|. If σ =
∑4

i=0 ϕi ≤ 540◦, T cannot be
drawn greedily. The converse, however, does not hold. By Theorem 1, a greedy
drawing exists if and only if {ϕ0, . . . , ϕ4} ∈ P5. To decide whether {ϕ0, . . . , ϕ4} ∈
P5, we apply the conditions from Table 2. If in the remaining case ϕ0 = 180◦,
ϕ1, . . . , ϕ4 ≤ 120◦ (i) the sufficient condition does not apply, (ii) the linear
relaxation of Problem (*) has a solution, but (iii) the non-linear solver finds
none, we report uncertain. The full formulation of this algorithm as well as
uncertain examples can be found in [10].
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Abstract. A fault-tolerant structure for a network is required to con-
tinue functioning following the failure of some of the network’s edges or
vertices. This paper considers breadth-first search (BFS) spanning trees,
and addresses the problem of designing a sparse fault-tolerant BFS tree,
or FT-BFS tree for short, namely, a sparse subgraph T of the given net-
work G such that subsequent to the failure of a single edge or vertex,
the surviving part T ′ of T still contains a BFS spanning tree for (the
surviving part of) G. For a source node s, a target node t and an edge
e ∈ G, the shortest s− t path Ps,t,e that does not go through e is known
as a replacement path. Thus, our FT-BFS tree contains the collection of
all replacement paths Ps,t,e for every t ∈ V (G) and every failed edge
e ∈ E(G). Our main results are as follows. We present an algorithm that
for every n-vertex graph G and source node s constructs a (single edge
failure) FT-BFS tree rooted at s with O(n · min{Depth(s),

√
n}) edges,

where Depth(s) is the depth of the BFS tree rooted at s. This result is
complemented by a matching lower bound, showing that there exist n-
vertex graphs with a source node s for which any edge (or vertex) FT-BFS
tree rooted at s has Ω(n3/2) edges. We then consider fault-tolerant multi-
source BFS trees, or FT-MBFS trees for short, aiming to provide (following
a failure) a BFS tree rooted at each source s ∈ S for some subset of
sources S ⊆ V . Again, tight bounds are provided, showing that there
exists a poly-time algorithm that for every n-vertex graph and source
set S ⊆ V of size σ constructs a (single failure) FT-MBFS tree T ∗(S)
from each source si ∈ S, with O(

√
σ · n3/2) edges, and on the other

hand there exist n-vertex graphs with source sets S ⊆ V of cardinality
σ, on which any FT-MBFS tree from S has Ω(

√
σ · n3/2) edges. Finally,

we propose an O(log n) approximation algorithm for constructing FT-BFS
and FT-MBFS structures. The latter is complemented by a hardness result
stating that there exists no Ω(log n) approximation algorithm for these
problems under standard complexity assumptions. In comparison with
previous constructions our algorithm is deterministic and may improve
the number of edges by a factor of up to

√
n for some instances. All our

algorithms can be extended to deal with one vertex failure as well, with
the same performance.

� Supported in part by the Israel Science Foundation (grant 894/09), the I-CORE
program of the Israel PBC and ISF (grant 4/11), the United States-Israel Binational
Science Foundation (grant 2008348), the Israel Ministry of Science and Technology
(infrastructures grant), and the Citi Foundation.

�� Recipient of the Google European Fellowship in distributed computing; research is
supported in part by this Fellowship.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 779–790, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



780 M. Parter and D. Peleg

1 Introduction

Background and Motivation. Modern day communication networks support
a variety of logical structures and services, and depend on their undisrupted
operation. As the vertices and edges of the network may occasionally fail or
malfunction, it is desirable to make those structures robust against failures.
Indeed, the problem of designing fault-tolerant constructions for various network
structures and services has received considerable attention over the years.

Fault-resilience can be introduced into the network in several different ways.
This paper focuses on a notion of fault-tolerance whereby the structure at hand
is augmented or “reinforced” (by adding to it various components) so that sub-
sequent to the failure of some of the network’s vertices or edges, the surviving
part of the structure is still operational. As this reinforcement carries certain
costs, it is desirable to minimize the number of added components. To illustrate
this type of fault tolerance, let us consider the structure of graph k-spanners (cf.
[19,20,21]). A graph spanner H can be thought of as a skeleton structure that
generalizes the concept of spanning trees and allows us to faithfully represent
the underlying network using few edges, in the sense that for any two vertices
of the network, the distance in the spanner is stretched by only a small fac-
tor. More formally, consider a weighted graph G and let k ≥ 1 be an integer.
Let dist(u, v,G) denote the (weighted) distance between u and v in G. Then
a k-spanner H satisfies that dist(u, v,H) ≤ k · dist(u, v,G) for every u, v ∈ V .
Introducing fault tolerance, we say that a subgraph H is an f -edge fault-tolerant
k-spanner of G if dist(u, v,H \ F ) ≤ k · dist(u, v,G \ F ) for any set F ⊆ E of
size at most f , and any pair of vertices u, v ∈ V . A similar definition applies to
f -vertex fault-tolerant k-spanners. Sparse fault-tolerant spanner constructions
were presented in [6,10]. This paper considers breadth-first search (BFS) span-
ning trees, and addresses the problem of designing fault-tolerant BFS trees, or
FT-BFS trees for short. By this we mean a subgraph T of the given network G,
such that subsequent to the failure of some of the vertices or edges, the surviving
part T ′ of T still contains a BFS spanning tree for the surviving part of G. We
also consider a generalized structure referred to as a fault-tolerant multi-source
BFS tree, or FT-MBFS tree for short, aiming to provide a BFS tree rooted at each
source s ∈ S for some subset of sources S ⊆ V .

The notion of FT-BFS trees is closely related to the problem of constructing
replacement paths and in particular to its single source variant, studied in [13].
That problem requires to compute the collection Ps of all s − t replacement
paths Ps,t,e for every t ∈ V and every failed edge e that appears on the s − t
shortest-path in G. The vast literature on replacement paths (cf. [4,13,24,26,28])
focuses on time-efficient computation of the these paths as well as their effi-
cient maintenance in data structures (a.k.a distance oracles). In contrast, the
main concern in the current paper is with optimizing the size of the result-
ing fault tolerant structure that contains the collection Ps of all replacement
paths given a source node s. A typical motivation for such a setting is where
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the graph edges represent the channels of a communication network, and the
system designer would like to purchase or lease a minimal collection of channels
(i.e., a subgraph G′ ⊆ G) that maintains its functionality as a “BFS tree” with
respect to the source s upon any single edge or vertex failure in G. In such a
context, the cost of computation at the preprocessing stage may often be negli-
gible compared to the purchasing/leasing cost of the resulting structure. Hence,
our key cost measure in this paper is the size of the fault tolerant structure, and
our main goal is to achieve sparse (or compact) structures. Most previous work
on sparse / compact fault-tolerant structures and services concerned structures
that are distance-preserving (i.e., dealing with distances, shortest paths or short-
est routes), global (i.e., centered on “all-pairs” variants), and approximate (i.e.,
settling for near optimal distances), such as spanners, distance oracles and com-
pact routing schemes. The problem considered here, namely, the construction of
FT-BFS trees, still concerns a distance preserving structure. However, it deviates
from tradition with respect to the two other features, namely, it concerns a “sin-
gle source” variant, and it insists on exact shortest paths. Hence our problem is
on the one hand easier, yet on the other hand harder, than previously studied
ones. Noting that in previous studies, the “cost” of adding fault-tolerance (in the
relevant complexity measure) was often low (e.g., merely polylogarithmic in the
graph size n), one might be tempted to conjecture that a similar phenomenon
may reveal itself in our problem as well. Perhaps surprisingly, it turns out that
our insistence on exact distances plays a dominant role and makes the problem
significantly harder, outweighing our willingness to settle for a “single source”
solution.

Contributions. We obtain the following results. In Sec. 2, we define the Mini-
mum FT-BFS and Minimum FT-MBFS problems, aiming at finding the minimum
such structures tolerant against a single edge or vertex fault. We show that these
problems are NP-hard and moreover, cannot be approximated (under standard
complexity assumptions) to within a factor of Ω(logn), where n is the number of
vertices of the input graph G. Section 3 presents lower bound constructions for
these problems. For the single source case, we present a lower bound stating that
for every n there exists an n-vertex graph and a source node s ⊆ V for which
any FT-MBFS tree from s requires Ω(n3/2) edges. We then show that there exist
n-vertex graphs with source sets S ⊆ V of size σ, on which any FT-MBFS tree
from the source set S has Ω(

√
σ ·n3/2) edges. These results are complemented by

matching upper bounds. In Sec. 4, we present a simple algorithm that for every
n-vertex graph G and source node s, constructs a (single edge failure) FT-BFS
tree rooted at s with O(n ·min{Depth(s),

√
n}) edges. A similar algorithm yields

an FT-BFS tree tolerant to one vertex failure, with the same size bound. In ad-
dition, for the multi source case, we show that there exists a polynomial time
algorithm that for every n-vertex graph and source set S ⊆ V of size |S| = σ
constructs a (single failure) FT-MBFS tree T ∗(S) from each source si ∈ S, with
O(

√
σ · n3/2) edges.
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Note that while those algorithms match the worst-case lower bounds, they
might still be far from optimal for certain instances, see [18]. Consequently, in
Sec. 5, we complete the upper bound analysis by presenting an O(log n) ap-
proximation algorithm for the Minimum FT-MBFS problem. This approximation
algorithm is superior in instances where the graph enjoys a sparse FT-MBFS tree,
hence paying O(n3/2) edges is wasteful. In light of the hardness result for these
problems (in Sec. 2), the approximability result is tight (up to constants). All
our results hold for directed graphs as well.

Related Work. To the best of our knowledge, this paper is the first to study the
sparsity of fault-tolerant BFS structures for graphs. The question of whether it is
possible to construct a sparse fault tolerant spanner for an arbitrary undirected
weighted graph, raised in [8], was answered in the affirmative in [6], present-
ing algorithms for constructing an f -vertex fault tolerant (2k − 1)-spanner of

size O(f2kf+1 · n1+1/k log1−1/k n) and an f -edge fault tolerant 2k − 1 span-
ner of size O(f · n1+1/k) for a graph of size n. A randomized construction
attaining an improved tradeoff for vertex fault-tolerant spanners was shortly
afterwards presented in [10], yielding (with high probability) for every graph
G = (V,E), odd integer s and integer f , an f -vertex fault-tolerant s-spanner with

O
(
f2− 2

s+1n1+ 2
s+1 logn

)
edges. This should be contrasted with the best stretch-

size tradeoff currently known for non-fault-tolerant spanners [25], namely, 2k−1
stretch with Õ(n1+1/k) edges. Fault tolerant spanners for the d-dimensional Eu-
clidean case were studied in [8,16,17].

A related network service is the distance oracle [3,23,26], which is a succinct
data structure capable of supporting efficient responses to distance queries on
a weighted graph G. A distance query (s, t) requires finding, for a given pair
of vertices s and t in V , the distance (namely, the length of the shortest path)
between u and v in G. The query protocol of an oracle S correctly answers
distance queries on G. In a fault tolerant distance oracle, the query may include
also a set F of failed edges or vertices (or both), and the oracle S must return,
in response to a query (s, t, F ), the distance between s and t in G′ = G\F . Such
a structure is sometimes called an F -sensitivity distance oracle. The focus is on
both fast preprocessing time, fast query time and low space. It has been shown
in [9] that given a directed weighted graph G of size n, it is possible to construct
in time Õ(mn2) a 1-sensitivity fault tolerant distance oracle of size O(n2 logn)
capable of answering distance queries in O(1) time in the presence of a single
failed edge or vertex. The preprocessing time was recently improved to Õ(mn),
with unchanged size and query time [4]. A 2-sensitivity fault tolerant distance
oracle of size O(n2 log3 n), capable of answering 2-sensitivity queries in O(log n)
time, was presented in [11].

Recently, distance sensitivity oracles have been considered for weighted and
directed graphs in the single source setting [13]. Specifically, Grandoni and
Williams considered the problem of single-source replacement paths where one
aims to compute the collection of all replacement paths for a given source node s,
and proposed an efficient randomized algorithm that does so in Õ(APSP (n,M))
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where APSP (n,M) is the time required to compute all-pairs-shortest-paths in
a weighted graph with integer weights [−M,M ].

A relaxed variant of distance oracles, in which distance queries are answered
by approximate distance estimates instead of exact ones, was introduced in [26],
where it was shown how to construct, for a given weighted undirected n-vertex
graph G, an approximate distance oracle of size O(n1+1/k) capable of answering
distance queries in O(k) time, where the stretch (multiplicative approximation
factor) of the returned distances is at most 2k− 1. An f -sensitivity approximate
distance oracle S was presented in [5]. For an integer parameter k ≥ 1, the

size of S is O(kn1+ 8(f+1)
k+2(f+1) log (nW )), where W is the weight of the heaviest

edge in G, the stretch of the returned distance is 2k − 1, and the query time is
O(|F | · log2 n · log logn · log log d), where d is the distance between s and t in
G \ F . A fault-tolerant label-based (1 + ε)-approximate distance oracle for the
family of graphs with doubling dimension bounded by α is presented in [2]. Our
final example concerns fault tolerant routing schemes. A fault-tolerant routing
protocol is a distributed algorithm that, for any set of failed edges F , enables any
source vertex ŝ to route a message to any destination vertex d̂ along a shortest
or near-shortest path in the surviving network G\F in an efficient manner (and
without knowing F in advance). Compact routing schemes are considered in
[1,7,19,22,25]. Fault-tolerant routing schemes are considered in [5].

2 Preliminaries

Notation. Given a graph G = (V,E) and a source node s, let T0(s) ⊆ G be
a shortest paths (or BFS) tree rooted at s. For a source node set S ⊆ V , let
T0(S) =

⋃
s∈S T0(s) be a union of the single source BFS trees. Let π(s, v, T )

be the s − v shortest-path in tree T , when the tree T = T0(s), we may omit
it and simply write π(s, v). Let Γ (v,G) be the set of v neighbors in G. Let
E(v,G) = {(u, v) ∈ E(G)} be the set of edges incident to v in the graph G
and let deg(v,G) = |E(v,G)| denote the degree of node v in G. When the
graph G is clear from the context, we may omit it and simply write deg(v). Let
depth(s, v) = dist(s, v,G) denote the depth of v in the BFS tree T0(s). When
the source node s is clear from the context, we may omit it and simply write
depth(v). Let Depth(s) = maxu∈V {depth(s, u)} be the depth of T0(s). For a
subgraph G′ = (V ′, E′) ⊆ G (where V ′ ⊆ V and E′ ⊆ E) and a pair of nodes
u, v ∈ V , let dist(u, v,G′) denote the shortest-path distance in edges between
u and v in G′. For a path P = [v1, . . . , vk], let LastE(P ) be the last edge of
path P . Let |P | denote the length of the path and P [vi, vj ] be the subpath of
P from vi to vj . For paths P1 and P2, P1 ◦ P2 denote the path obtained by
concatenating P2 to P1. Assuming an edge weight function W : E(G) → R+, let
SP (s, vi, G,W ) be the set of s − vi shortest-paths in G according to the edge
weights ofW . Throughout, the edges of these paths are considered to be directed
away from the source node s. Given an s− v path P and an edge e = (x, y) ∈ P ,
let dist(s, e, P ) be the distance (in edges) between s and e on P . In addition,



784 M. Parter and D. Peleg

for an edge e = (x, y) ∈ T0(s), define dist(s, e) = i if depth(x) = i − 1 and
depth(y) = i.

Definition 1. A graph T ∗ is an edge (resp., vertex) FT-BFS tree for G with
respect to a source node s ∈ V , iff for every edge f ∈ E(G) (resp., vertex f ∈ V )
and for every v ∈ V , dist(s, v, T ∗ \ {f}) = dist(s, v,G \ {f}).

A graph T ∗ is an edge (resp., vertex) FT-MBFS tree for G with respect to source
set S ⊆ V , iff for every edge f ∈ E(G) (resp., vertex f ∈ V ) and for every s ∈ S
and v ∈ V , dist(s, v, T ∗ \ {f}) = dist(s, v,G \ {f}).

For simplicity, we refer to edge FT-BFS (resp., edge FT-MBFS) trees simply by
FT-BFS (resp., FT-MBFS) trees. Throughout, we focus on edge fault, yet the entire
analysis extends trivially to the case of vertex fault as well.

Like other papers in this field [14,4], throughout, we assume without loss of
generality that the shortest paths are unique since we can always add small
perturbations to break any ties. Let W be a weight assignment that captures
these symbolic perturbations.

The Minimum FT-BFS Problem. Denote the set of solutions for the instance
(G, s) by T (s,G) = {T̂ ⊆ G | T̂ is an FT-BFS tree w.r.t. s}. Let Cost∗(s,G) =

min{|E(T̂ )| | T̂ ∈ T (s,G)} be the minimum number of edges in any FT-BFS

subgraph of G. These definitions naturally extend to the multi-source case where
we are given a source set S ⊆ V of size σ. Then
T (S,G) = {T̂ ⊆ G | T̂ is a FT-MBFS with respect to S} and Cost∗(S,G) =

min{|E(T̂ )| | T̂ ∈ T (S,G)}.
In the Minimum FT-BFS problem we are given a graph G and a source node

s and the goal is to compute an FT-BFS T̂ ∈ T (s,G) of minimum size, i.e., such

that |E(T̂ )| = Cost∗(s,G). Similarly, in the Minimum FT-MBFS problem we are
given a graph G and a source node set S and the goal is to compute an FT-MBFS

T̂ ∈ T (S,G) of minimum size i.e., such that |E(T̂ )| = Cost∗(S,G). We begin by
establishing hardness (for missing proofs see full version [18]).

Theorem 1. The Minimum FT-BFS problem is NP-complete and cannot be ap-
proximated to within a factor c logn for some constant c > 0 unless NP ⊆
T IME(npoly log(n)).

3 Lower Bounds

We now present a lower bound for the case of a single source.

Theorem 2. There exists an n-vertex graph G(V,E) and a source node s ∈ V
such that any FT-BFS tree rooted at s has Ω(n3/2) edges, i.e., Cost∗(s,G) =
Ω(n3/2).

Proof: Let us first describe the structure of G = (V,E). Set d = �
√
n/2 .
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The graph consists of four main
components. The first is a path
π = [s = v1, . . . , vd+1 = v∗]
of length d. The second compo-
nent consists of a node set Z =
{z1, . . . , zd} and a collection of
d disjoint paths of deceasing
length, P1, . . . , Pd, where Pj =

[vj = pj1, . . . , zj = pjtj ] con-
nects vj with zj and its length
is tj = |Pj | = 6 + 2(d − j), for
every j ∈ 1, · · · , d. Altogether,
the set of nodes in these paths,
Q =

⋃d
j=1 V (Pj), is of size |Q| =

d2 + 7d.

X 

Z 

xi 

zj 

ej 
vj 

Pj 

v* 

jj
B 

S

z1 

vd 

zd 

The third component is a set of nodes X of size n− (d2 + 7d), all connected
to the terminal node v∗. The last component is a complete bipartite graph B =
(X,Z, Ê) connectingX to Z. Overall, V = X∪Q and E = Ê∪E(π)∪

⋃d
j=1 E(Pj).

Note that n/4 ≤ |Q| ≤ n/2 for sufficiently large n. Consequently, |X | = n−|Q| ≥
n/2, and |Ê| = |Q|·|X | ≥ n3/2/4. A BFS tree T0 rooted at s for thisG (illustrated
by the solid edges in the figure) is given by

E(T0) = {(xi, zi) | i ∈ {1, . . . , d}} ∪
d⋃

j=1

E(Pj) \ {(pj�j , p
j
�j−1)},

where �j = tj − (d − j) for every j ∈ {1, . . . , d}. We now show that every
FT-BFS tree T ′ ∈ T (s,G) must contain all the edges of B, namely, the edges
ei,j = (xi, zj) for every i ∈ {1, . . . , |X |} and j ∈ {1, . . . , d} (the dashed edges
in the figure). Assume, towards contradiction, that there exists a T ′ ∈ T (s,G)
that does not contain ei,j (the bold dashed edge (xi, zj) in the figure). Note
that upon the failure of the edge ej = (vj , vj+1) ∈ π, the unique s− xi shortest
path connecting s and xi in G \ {ej} is P ′

j = π[v1, vj ] ◦ Pj ◦ [zj , xi], and all
other alternatives are strictly longer. Since ei,j /∈ T ′, also P ′

j � T ′, and therefore
dist(s, xi, G \ {ej}) < dist(s, xi, T

′ \ {ej}), in contradiction to the fact that T ′

is an FT-BFS tree. It follows that every FT-BFS tree T ′ must contain at least
|Ê| = Ω(n3/2) edges. The theorem follows.

We next consider an intermediate setting where it is necessary to construct a
fault-tolerant subgraph FT-MBFS containing several FT-BFS trees in parallel, one
for each source s ∈ S, for some S ⊆ V . In the full version [18], we establish the
following.

Theorem 3. There exists an n-vertex graph G(V,E) and a source set S ⊆ V of
cardinality σ, such that any FT-MBFS tree from the source set S has Ω(

√
σ ·n3/2)

edges, i.e., Cost∗(S,G) = Ω(
√
σ · n3/2).
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4 Upper Bounds

Single Source. In this section we consider the case of FT-BFS trees and establish
the following.

Theorem 4. There exists a polynomial time algorithm that for every n-vertex
graph G and source node s constructs an FT-BFS tree rooted at s with O(n ·
min{Depth(s),√n}) edges.

To prove the theorem, we first describe a simple algorithm for the problem
and then prove its correctness and analyze the size of the resulting FT-BFS

tree. Using the sparsity lemma of [24] and the tools of [13], one can provide a
randomized construction for an FT-BFS tree with O(n3/2 logn) edges with high
probability. In contrast, the simple algorithm presented here is deterministic and
achieves an FT-BFS tree with O(n3/2) edges, matching exactly the lower bound
established in Sec. 3. We note that known time-efficient (and rather involved)
algorithms for constructing replacement paths and distance sensitivity oracles
(cf., [14,24,4,28,13]) can be modified to construct sparse FT-BFS and FT-MBFS

trees by breaking shortest path ties properly and maintaining the successors
of the computed replacement paths. Since our focus here is on the size of the
resulting FT-BFS trees, and not on optimizing the running time, we introduce
the construction using a simple but slow (O(nm + n2 logn) round) algorithm.
In the analysis section we then show that as long as the collection of the single-
source replacement paths are computed in a way that breaks shortest path ties
properly, the total number of edges in this collection is bounded by O(n3/2).

The Algorithm. Recall that W is a weight assignment that guarantees the
uniqueness of the shortest paths, by introducing some symbolic perturbation
to the edge lengths. Let T0 = BFS(s,G) be the BFS tree rooted at s in G,
computed according to the weight assignment W . For every ej ∈ T0, let T0(ej)
be the BFS tree rooted at s in G \ {ej}. Then the final FT-BFS tree is given by
T ∗(s) = T0 ∪

⋃
ej∈T0

T0(ej). The correctness is immediate by construction.

Observation 5. T ∗(s) is an FT-BFS tree.

It remains to bound the size of T ∗(s).

Size Analysis. We first provide some notation. For a path P , let Cost(P ) =∑
e∈P W (e) be the weighted cost of P , i.e., the sum of its edge weights. An

edge e ∈ G is defined as new if e /∈ E(T0). For every vi ∈ V and ej ∈ T0, let
P ∗
i,j = π(s, vi, T0(ej)) ∈ SP (s, vi, G \ {ej},W ) be the optimal replacement path

of s and vi upon the failure of ej ∈ T0. Let New(P ) = E(P ) \ E(T0) and

New(vi) = {LastE(P ∗
i,j) | ej ∈ T0} \ E(T0)

be the set of vi new edges appearing as the last edge in the replacement paths
P ∗
i,j of vi and ej ∈ T0. It is convenient to view the edges of T0(ej) as directed

away from s. We then have that

T ∗(s) = T0 ∪
⋃

vi∈V \{s}
New(vi).
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I.e., the set of new edges that participate in the final FT-BFS tree T ∗(s) are those
that appear as a last edge in some replacement path.

We now upper bound the size of the FT-BFS tree T ∗(s). Our goal is to prove
that New(vi) contains at most O(

√
n) edges for every vi ∈ V . The following

observation is crucial in this context.

Observation 6. If LastE(P ∗
i,j) /∈ E(T0), then ej ∈ π(s, vi).

Obs. 6 also yields the following.

Corollary 1. (1) New(vi) = {LastE(P ∗
i,j) | ej ∈ π(s, vi)} \ E(T0) and

(2) |New(vi)| ≤ min{depth(vi), deg(vi)}.
This holds since the edges of New(vi) are coming from at most depth(vi) replace-
ment paths P ∗

i,j (one for every ej ∈ π(s, vi)), and each such path contributes at
most one edge incident to vi.

For the reminder of the analysis, let us focus on one specific node u = vi
and let π = π(s, u), N = |New(u)|. For every edge ek ∈ New(u), we define the
following parameters. Let f(ek) ∈ π be the failed edge such that ek ∈ T0(f(ek))
appears in the replacement path Pk = π(s, u, T ′) for T ′ = T0(f(ek)). (Note that
ek might appear as the last edge on the path π(s, u, T0(e

′)) for several edges
e′ ∈ π; in this case, one such e′ is chosen arbitrarily).

Let bk be the last divergence point of Pk and π, i.e., the last vertex on the
replacement path Pk that belongs to V (π) \ {u}. Since LastE(Pk) /∈ E(T0), it
holds that bk is not the neighbor of u in Pk.

Let New(u) = {e1, . . . , eN} be sorted in non-decreasing order of the distance
between bk and u, dist(bk, u, π) = |π(bk, u)|. I.e.,

dist(b1, u, π) ≤ dist(b2, u, π) . . . ≤ dist(bN , u, π). (1)

We consider the set of truncated paths P ′
k = Pk[bk, u] and show that these paths

are vertex-disjoint except for the last common endpoint u. We then use this fact
to bound the number of these paths, hence bound the number N of new edges.
The following observation follows immediately by the definition of bk.

Observation 7. (V (P ′
k) ∩ V (π)) \ {bk, u} = ∅.

Lemma 1.
(
V (P ′

i ) ∩ V (P ′
j)
)
\ {u} = ∅ for every i, j ∈ {1, . . . , N}, i 	= j.

Proof: Assume towards contradiction that there exist i 	= j, and a node

u′ ∈
(
V (P ′

i ) ∩ V (P ′
j)
)
\ {u}

in the intersection. Since LastE(P ′
i ) 	= LastE(P ′

j), by Obs. 7 we have that
P ′
i , P

′
j ⊆ G\E(π). The faulty edges f(ei), f(ej) belong to E(π). Hence there are

two distinct u′ − u shortest paths in G \ {f(ei), f(ej)}. By the optimality of P ′
i

in T0(f(ei)), (i.e., Pi ∈ SP (s, u,G\{f(ei)},W )), we have that Cost(P ′
i [u

′, u]) <
Cost(P ′

j [u
′, u]). In addition, by the optimality of P ′

j in T0(f(ej)), (i.e., Pj ∈
SP (s, u,G \ {f(ej)},W )), we have that Cost(P ′

j [u
′, u]) < Cost(P ′

i [u
′, u]). Con-

tradiction.

We are now ready to prove our key lemma.
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Lemma 2. |New(u)| = O(n1/2) for every u ∈ V .

Proof: Assume towards contradiction that N = |New(u)| >
√
2n. By Lemma

1, we have that b1, . . . , bN are distinct and by definition they all appear on the
path π. Therefore, by the ordering of the P ′

k, we have that the inequalities of
Eq. (1) are strict, i.e., dist(b1, u, π) < dist(b2, u, π) < . . . < dist(bN , u, π). Since
b1 	= u (by definition), we also have that dist(b1, u, π) ≥ 1. We Conclude that

dist(bk, u, π) = |π(bk, u)| ≥ k . (2)

Next, note that each P ′
k is a replacement bk − u path and hence it cannot be

shorter than π(bk, u), implying that |P ′
k| ≥ |π(bk, u)|. Combining with Eq. (2),

we have that
|P ′

k| ≥ k for every k ∈ {1, . . . , N} . (3)

Since by Lemma 1, the paths P ′
k are vertex disjoint (except for the common

vertex u), we have that∣∣∣∣∣
N⋃

k=1

(V (P ′
k) \ {u})

∣∣∣∣∣ =
N∑

k=1

|V (P ′
k) \ {u}| ≥

N∑
k=1

(k − 1) > n,

where the first inequality follows by Eq. (3) and the last by the assumption that
N >

√
2n. Since there are n nodes in G, we end with contradiction.

Multiple Sources. For the case of multiple sources, in the full version [18], we
establish the following upper bound.

Theorem 8. There exists a polynomial time algorithm that for every n-vertex
graph G = (V,E) and source set S ⊆ V of size |S| = σ constructs an FT-MBFS

tree T ∗(S) from each source si ∈ S, with a total number of
n ·min{

∑
si∈S depth(si), O(

√
σn)} edges.

We note that both our lower and upper bound analysis naturally extend to the
case of directed and edge weighted graphs with integer weights in the range
[−M,M ] by paying an extra factor of O(

√
M) in the size of the FT-MBFS trees.

5 O(logn)-Approximation for FT-MBFS Trees

In Sec. 4, we presented an algorithm that for every graph G and source s con-
structs an FT-BFS tree T̂ ∈ T (s,G) with O(n3/2) edges. In Sec. 3, we showed
that there exist graphs G and s ∈ V (G) for which Cost∗(s,G) = Ω(n3/2), es-
tablishing tightness of our algorithm in the worst-case. Yet, there are also inputs
(G′, s′) for which the algorithm of Sec. 4, as well as algorithms based on the

analysis of [13] and [24], might still produce an FT-BFS T̂ ∈ T (s′, G′) which
is denser by a factor of Ω(

√
n) than the size of the optimal FT-BFS tree, i.e.,

such that |E(T̂ )| ≥ Ω(
√
n) · Cost∗(s′, G′). For an illustration of such a case see

[18]. Clearly, a universally optimal algorithm is unlikely given the hardness of
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approximation result of Thm. 1. Yet the gap can be narrowed down. The goal of
this section is to present an O(log n) approximation algorithm for the Minimum
FT-BFS Problem (hence also to its special case, the Minimum FT-BFS Problem,
where |S| = 1).

Theorem 9. There exists a polynomial time algorithm that for every n-vertex
graph G and source node set S ⊆ V constructs an FT-MBFS tree T̂ ∈ T (S,G)

such that |E(T̂ )| ≤ O(log n) · Cost∗(S,G).

To prove the theorem, we first describe the algorithm and then bound the number
of edges. Let ApproxSetCover(F, U) be an O(log n) approximation algorithm for
the Set-Cover problem, which given a collection of sets F = {S1, . . . , SM} that
covers a universe U = {u1, . . . , uN} of size N , returns a cover F′ ⊆ F that is
larger by at most O(logN) than any other F′′ ⊆ F that covers U (cf. [27]).

The Algorithm. Starting with T̂ = ∅, the algorithm adds edges to T̂ until it
becomes an FT-MBFS tree.

Set an arbitrary order on the vertices V (G) = {v1, . . . , vn} and on the edges
E+ = E(G) ∪ {e0} = {e0, . . . , em} where e0 is a new fictitious edge whose role
will be explained later on. For every node vi ∈ V , define

Ui = {〈sk, ej〉 | sk ∈ S \ {vi}, ej ∈ E+}.

The algorithm consists of n rounds, where in round i it considers vi. Let Γ (vi, G)=
{u1, . . . , udi} be the set of neighbors of vi in some arbitrary order, where di =
deg(vi, G). For every neighbor uj, define a set Si,j ⊆ Ui containing certain
source-edge pairs 〈sk, e�〉 ∈ Ui. Informally, a set Si,j contains the pair 〈sk, e�〉 iff
there exists an sk − vi shortest path in G \ {e�} that goes through the neigh-
bor uj of vi. Note that Si,j contains the pair 〈sk, e0〉 iff there exists an sk − vi
shortest-path in G \ {e0} = G that goes through uj . I.e., the fictitious edge e0 is
meant to capture the case where no fault occurs, and thus we take care of true
shortest-paths in G. Formally, every pair 〈sk, e�〉 ∈ Ui is included in every set
Si,j satisfying that

dist(sk, uj, G \ {e�}) = dist(sk, vi, G \ {e�})− 1. (4)

Let Fi = {Si,1, . . . , Si,di}. The edges of vi that are added to T̂ in round i are
now selected by using algorithm ApproxSetCover to generate an approximate
solution for the set cover problem on the collection F = {Si,j | uj ∈ Γ (vi, G)}.
Let F′

i = ApproxSetCover(Fi, Ui). For every Si,j ∈ F′
i, add the edge (uj, vi) to

T̂ . In [18], we prove the correctness of this algorithm and establish Thm. 9.
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On the Most Likely Convex Hull

of Uncertain Points�

Subhash Suri, Kevin Verbeek, and Hakan Yıldız
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Abstract. Consider a set of points in d dimensions where the existence
or the location of each point is determined by a probability distribution.
The convex hull of this set is a random variable distributed over exponen-
tially many choices. We are interested in finding the most likely convex
hull, namely, the one with the maximum probability of occurrence. We
investigate this problem under two natural models of uncertainty: the
point (also called the tuple) model where each point (site) has a fixed
position si but only exists with some probability πi, for 0 < πi ≤ 1, and
the multipoint model where each point has multiple possible locations
or it may not appear at all. We show that the most likely hull under
the point model can be computed in O(n3) time for n points in d = 2
dimensions, but it is NP–hard for d ≥ 3 dimensions. On the other hand,
we show that the problem is NP–hard under the multipoint model even
for d = 2 dimensions. We also present hardness results for approximating
the probability of the most likely hull. While we focus on the most likely
hull for concreteness, our results hold for other natural definitions of a
probabilistic hull.

1 Introduction

We study the problem of computing the most likely convex hull of n uncer-
tain points. The problem is fundamental in its own right, extending the notion
of minimal convex enclosure to probabilistic input, but is also motivated by a
number of applications dealing with noisy data. Before formalizing the prob-
lem, let us mention some motivating scenarios for our problem. In movement
ecology [12, 13], scientists track the movements of a group of animals using sen-
sors with the goal of inferring their natural “home range”. The ecologists have
long known that the smallest convex polygon containing all possible locations
visited by the animals is a gross overestimation of the home range, due to the
outlier problem, and instead have begun to consider probability-based isopleths.
The most likely hull is one possible tool in this analysis: use a discrete set of
landmarks (points), assign probability to each based on the frequency of the
animals’ visits to the landmarks, and compute the most likely convex hull of
this probabilistic set of points as the most probable home range. As another
example, consider monitoring of a large geographic area for physical activity
(e.g., earthquake tremors). After collecting data over a period of time, we want

� This research was partially supported by the National Science Foundation grants
CCF-1161495 and CNS-1035917.
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to estimate the most likely region of activity. Since the value of a prediction de-
creases sharply with the rate of false positives, we want to find the tightest region
for expected activity, and the most likely hull is a natural candidate. Finally, as
a growing number of applications rely on machine learning and data mining for
classification, we are inevitably forced to work with data whose attributes are
inherently probabilistic. Computing meaningful geometric structures over these
data is an interesting, and challenging, algorithmic problem. The most likely
hull is a convenient vehicle to investigate these types of problems, although our
methods and results are applicable more broadly, as discussed later.

In the point model of uncertain data,1 the input is a pair (S,Π), where S =
{s1, s2, . . . , sn} is a set of n points (sites) in d-dimensional real Euclidean space,
and Π = {π1, π2, . . . , πn} is a probability vector with the interpretation that
site si is active (namely, present) with probability πi. The probabilities πi are
mutually independent. Thus, a random instance of (S,Π) includes each point
si with an independent probability πi. The convex hull of (S,Π) is a random
variable, which assumes values over the convex hulls of the (at most) 2n possible
subsets. We are interested in computing the most likely convex hull for (S,Π).

The multipoint model generalizes the point model to incorporate locational

uncertainty. The ith point of the input is described as
(
{s1i , π1

i }, . . . , {ski

i , π
ki

i }
)
,

with the interpretation that the point appears at the position sji with probability

πj
i , for j = 1, 2, . . . , ki. Different points can have a different number of possible

locations ki, but for simplicity we assume that the total number of locations is
linear. Finally, we allow

∑ki

j=1 π
j
i < 1 to include the possibility that the ith point

does not exist at all, thus achieving a strict generalization of the point model.
Our first result shows that the most likely hull of points in 2 dimensions in

the point model can be found in O(n3) time. We then show that the problem
becomes NP-hard for dimensions d ≥ 3. We also show that approximating the
probability of the most likely hull is provably hard. In particular, computing a
hull whose likelihood is within factor 2−O(n1−ε) of the optimal is NP–hard. This
is nearly tight because a factor-(2−n) approximate hull is easily computed by a
simple greedy algorithm. Under the multipoint model, we show that the most
likely hull problem is NP-hard even in two dimensions, and also inapproximable
to a factor better than 2−O(n1−ε) unless P=NP. Note that in both models the
problem is clearly in P for d = 1, since the number of distinct convex hulls
in one dimension is only polynomial. While we focus on the most likely hull
as a natural and concrete example, our algorithms and techniques apply more
broadly to other possible ways of defining a probabilistic convex hull. Omitted
proofs can be found in the full version of the paper.

Related Work. Uncertainty in geometric computing has been studied in a few
different ways. In [16, 17], Löffler and van Kreveld have considered problems on
“imprecise” objects: each object, such as a point, can be anywhere inside a simple

1 The point model is also called the tuple model in database research,and has been used
for studying clustering, ranking etc. of uncertain multi-attribute objects, modeled
as points in d-space.
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geometric region. For instance, given a set of imprecise points, one can ask for the
maximum possible area of the convex hull of these points. However, this line of
research looks at the worst-case behavior, and not the stochastic behavior, which
is the main focus of our work. In a more closely related and interesting work [14],
Jørgensen, Löffler and Phillips, develop a general framework for geometric shape-
fitting problems and describe how the solutions to these problems vary with
respect to the uncertainty in the points. Another line of research has focused on
uncertainty caused by the finite machine precision [15, 18, 19]. The goal there is
to achieve robustness under bounded precision, and not to compute structures
that are most representative under a probability distribution. There also has
been extensive research in the database community on clustering and ranking of
uncertain data [4, 5, 10] and on range searching and indexing [1–3].

2 Two-Dimensional Most Likely Hull in the Point Model

In this section, we describe a dynamic programming algorithm for computing the
most likely hull of n points in the plane under the point model of uncertainty. For
simplicity, we assume that no three points are collinear, but the algorithm is eas-
ily modified to handle such degeneracies. We begin with some general technical
facts related to convex hulls of uncertain points in the point model.

Let (S,Π) denote the input to the uncertain convex hull problem in d-space. A
subset AßS occurs as an outcome of a probabilistic experiment with probability
π(A) given by

π(A) =
∏
si∈A

πi ×
∏
si /∈A

πi

where we use the notation πi = (1 − πi). Given an outcome A, its convex hull
is denoted as CH(A). For a convex polytope C, we define its likelihood, denoted
L(C), as the probability that C is the convex hull of the random outcome of a
probabilistic experiment on (S,Π). In other words,

L(C) = Pr
[
CH(A) ≡ C

]
=

∑
AßS

CH(A)≡C

π(A)

The most likely hull of (S,Π) is the polytope C with the maximum value of
L(C). Our first lemma shows that L(C) can be written as a product of two
factors where the first factor involves only the vertices of C, and not all the sites
that fall inside C.

Lemma 1. Let C be a convex polytope, V ßS be its vertex set, and SoutßS the
set of sites lying outside C. Then, we have the following:

L(C) =
∏
si∈V

πi ×
∏

si∈Sout

πi,
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s1(sm)

sisj

Rj
i

si

sj

(a)

s1(sm)

Rm
i

si

Ri
1

(b)

sα(2)sα(3)

sα(1)

sα(4)

s1(sm)

(c)

sisj

sisj

s1

(d)

Fig. 1. Illustrations for the two-dimensional most likely hull in the point model

Likelihood Contributions of Edges. We now describe how to find the most
likely hull for a 2-dimensional input under the point model. Our algorithm com-
putes, for each site si, the most likely hull with si as its lowest (minimum y-
coordinate) vertex, and then outputs the best hull over all choices of si. For ease
of reference, let us call a convex polygon with si as its lowest vertex, a hull rooted
at si. We decompose the likelihood of a convex hull into several components, each
associated with an edge of the hull. The key to the computational efficiency is
to ensure that the component associated with an edge does not depend on the
hull in which the edge participates. Geometrically, we associate a wedge shaped
region with each edge, depending only on the choice of the lowest vertex, and
define the contribution based only on the sites contained in this wedge. We now
discuss this in more details.

Suppose we want to compute the most likely hull rooted at s1. Without loss
of generality, let s2, . . . , sm−1 be the sequence of sites (all lying above s1) in the
counter-clockwise order around s1, for (m− 1) ≤ n. Any hull rooted at s1 has a
subsequence of s1, . . . , sm−1 as its vertex set. Finally, for notational convenience,
we add an artificial site sm = s1 (a copy of the root point) with probability zero.

Given two sites si and sj , with 1 ≤ i < j ≤ m, we use sisj to denote the
directed edge drawn from si to sj . To each directed edge sisj , we associate a

region of space Rj
i . For an edge not involving s1 or its copy sm, namely sisj ,

for 1 < i < j < m, Rj
i is the region bounded by the segment sisj and the rays

−−→s1si and −−→s1sj . See Figure 1a for illustration. For edges with the first endpoint
at s1, namely s1si, for 1 < i < m, Ri

1 is the region bounded (on its left) by the
downward ray extending from s1 and the ray −−→s1si. The complementary region
of Ri

1 is also important, and we call it Rm
i , associated with the edge sism, which

is the reverse edge of s1si. See Figure 1b.
We now define the contribution of the directed edge sisj , denoted C(sisj), as

πi times the probability that none of the sites in the region Rj
i (except si and

sj) are present, including the sites that may lie below s1. That is,

C(sisj) = πi ×
∏

sk∈Rj
i

πk
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The following lemma shows how these edge contributions help us compute the
likelihood of a convex hull C.

Lemma 2. Let C be a hull rooted at s1, with vertices s1, sα(1), . . . , sα(�) in the
counter-clockwise order. Then,

L(C) = C(s1sα(1))× C(sα(1)sα(2))× · · · × C(sα(�−1)sα(�))× C(sα(�)sm)

Proof. Partition the space outside C into the regions
R

α(1)
1 , R

α(2)

α(1), . . . , R
α(�)

α(�−1), R
m
α(�) by drawing a downward ray from s1 and

drawing rays −−−−→s1sα(j) for each 1 ≤ j ≤ �. (See Figure 1c for an example.) Then,
by Lemma 1, it is easy to see that the L(C) is the product of the contributions
of the edges of C.

The contribution of each edge can be computed in constant time after an O(n2)-
time preprocessing, using a modified version of a triangle query data structure
of [11]. We give the details of this structure in the full version of the paper.

The Dynamic Programming Algorithm. Our dynamic programming al-
gorithm computes, for each edge sisj , the convex chain whose edges yield the
maximum product of contributions under the following constraints:

1. The sequence of vertices in the chain is a subsequence of s1, . . . , sm.
2. The first vertex of the chain is s1.
3. The last edge of the chain is sisj . (See Figure 1d for an example.)

We denote this maximum chain by T (sisj). With a slight abuse of notation, we
also use T (sisj) to denote the product of the edge contributions of this chain.
Clearly, all chains of the form T (sism) correspond to polygons rooted at s1,
and the one with the maximum contribution is the most likely hull we want.
Our dynamic programming formulation is fairly standard, and similar style of
algorithms have been used in the past for computing largest convex subsets [6, 9]
and monochromatic islands [7].

We now describe an optimal substructure property crucial for our dynamic
programming algorithm. Consider a chain T (sisj). This, by definition, has the
maximum likelihood of all chains terminating with the edge sisj. If we remove
the last vertex sj of T (sisj), and the corresponding edge sisj , then the remaining
chain should be the optimal chain terminating at si that can be extended to sj
without violating convexity. In other words, the remaining chain is the maximum
among all chains T (sksi) (where 1 ≤ k < i) such that the path sk → si → sj is
a left turn. This implies the following recurrence:

T (sisj) =

⎧⎪⎪⎨⎪⎪⎩
C(s1sj) if i = 1

C(sisj) × max
1≤k<i

sk→si→sj is a left turn

(
T (sksi)

)
otherwise

We use this recurrence to compute all the chains T (sisj) as follows. We begin
by setting T (s1si) to C(s1si) for all 1 < i ≤ m. Then, we process all sites si in
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increasing order of i. When we process a site si, we compute all chains T (sisj) by
using the previously computed chains. This can be done in O(n) time as follows.
Let Sprec be the set of sites {s1, . . . , si−1} and Ssucc be the set {si+1, . . . , sm}.
Let sβ(1), . . . , sβ(�) be the sites in Sprec in counter-clockwise order around si,
starting with s1.

2 For each site sβ(u) in Sprec, we define s∗u to be the site sk
among the sequence sβ(1), . . . , sβ(u) that maximizes T (sksi). The site s∗u can be
computed for all sites sβ(u) with a linear sweep of the sites in Sprec in order.

SprecSsucc

si

sβ(u+1)

sβ(u)

s1

Fig. 2. Wedge for T (sisj)

For each site sβ(u) in Sprec, we set the value
T (sisj) to C(sisj)× T (s∗usi) for all sites sj in Ssucc

inside the wedge bounded by the lines ←−−−→sβ(u)si and
←−−−−→sβ(u+1)si.

3 (See Figure 2.) Note that the sites in this
wedge are the sites that form a left turn when con-
nected to sβ(1), . . . , sβ(u) through si (the condition
in the recurrence relation). By considering the sites
sβ(u) in radial order around si, we can locate each
site in the wedge of interest in constant time.

The processing of a single point si takes O(n)
time, and thus we can find the most likely hull rooted at s1 in O(n2) time,
and the global most likely hull of P in O(n3) time. The algorithm needs O(n2)
space, dominated by the storage of the T (·) values.

Theorem 1. The most likely convex hull of an uncertain point set defined by n
sites in the point model can be computed in O(n3) time and in O(n2) space.

3 Hardness of the 3-Dimensional Most Likely Hull

We now show that computing the most likely hull in 3 or more dimensions is
NP-hard in the point model. In particular, we give a reduction from the vertex
cover problem in penny graphs to the 3-dimensional most likely hull problem.

A penny graph is a graph G = (V,E) along with an embedding ρ : V → R2

such that ‖ρ(u) − ρ(v)‖2 = 2 if (u, v) ∈ E, and ‖ρ(u) − ρ(v)‖2 > 2 if (u, v) /∈
E, where ‖.‖2 denotes the L2 norm. In other words, a penny graph admits a
planar drawing where vertices are represented as unit disks with pairwise disjoint

1

√
3

pij pjpi

pk

Fig. 3. Lemma 3

interiors, and two disks make contact if and only if there
is an edge between the two corresponding vertices. We de-
note the centers of the unit disks by the points p1, . . . , pn,
and the point of contact between two adjacent disks with
centers pi and pj by pij . The following simple observation
about the penny graph embedding will be critical in our
reduction. See Figure 3 for an illustration.

Lemma 3. ‖pk − pij‖2 ≥
√
3, for all k 	= i, j.

2 This counter-clockwise order for all sites si can be precomputed in O(n2 log n) time.
3 We also remember how T (sisj) is computed, so the corresponding chain can be
constructed later.
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The vertex cover problem for penny graphs is to find the smallest subset U ⊆ V
of vertices such that every edge of the graph has an endpoint in U . This problem
was shown to be NP-hard in [8]. Our reduction relies on the following simple
but important property of the most likely hull in the point model.

Lemma 4. Any point (si, πi) with πi ≥ 1/2 is in the most likely hull.

The Reduction. Consider an instance of the vertex cover problem for a penny
graph G, with p1, . . . , pn being the disk centers of the embedding of G. We create
an instance of the most likely hull problem in three dimensions, as follows. All the
sites lie on one of the two paraboloids, P1 : z = x2+y2 or P2 : z = x2+y2−2. In
particular, for each disk center pi, we create a site ui by vertically lifting pi onto
the paraboloid P2. All these points are assigned a fixed probability πi = α < 1

2 .
The sites on P1 are associated with the contact points pij but are not a

direct lifting of the contact points themselves. Instead, for each contact point
pij = (xij , yij), we define four new points pNij = (xij , yij + δ), pEij = (xij + δ, yij),

pSij = (xij , yij − δ), and pWij = (xij − δ, yij), for some δ > 0. (We set the value
of δ later.) Next, we add a set Xij of m arbitrary points inside the quadrilateral
formed by peij (e ∈ {N,E, S,W}). We lift each of the peij onto P1 to obtain a
site ueij , for e ∈ {N,E, S,W}, and each of these points is assigned a probability
of 1. Finally, the subsets Xij are lifted onto P1 to get subsets Yij , and each of
these points are assigned a fixed probability β > 1

2 . All these points, lying on
the paraboloids P1 and P2, along with their associated probabilities form the
input for our most likely hull problem.

The main idea of the reduction is that we want to “cover” each set Yij by
putting either ui or uj on the most likely hull. In the penny graph, this corre-
sponds to covering the edge associated with the contact point pij by the vertex
associated with pi or pj . We now describe this relation in more depth, starting
with a well-known lemma about the lifting transform.

Lemma 5. Consider a point p ∈ R2, and let u(p) be its vertical projection
(lifting) onto the paraboloid P1, and H(p) the hyperplane tangent to P1 at u(p).
Then, the vertical projections u(p′) of all points p′ ∈ R2 at distance r from p lie
on a hyperplane parallel to H(p) whose vertical distance from H(P ) is r2.

1

√
3

2

uij

pij

P1

P2

Fig. 4. Lift to P1 and P2 (ver-
tically scaled)

The points ui’s (liftings of pi’s) lie on P2, which
is a vertical downward shift of P1. Now, if uij is
the point obtained by lifting pij to P1, then by
Lemma 5 the points ui and uj are vertically 1
unit below the tangent plane of P1 at uij , while
the points uk (k 	= i, j) are at least vertically 1
unit above this plane by Lemma 3 (see Figure 4).
If we treat P1 as an “obstacle”, then ui and uj can
“see” uij from below, while the points uk (k 	= i, j)
cannot. Thus there exists a small enough δ > 0
such that Yij is contained in the convex hull of
ueij (e ∈ {N,E, S,W}) with either of ui and uj ,
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but not with uk (k 	= i, j). The following lemma describes a sufficient upper-
bound on δ.

Lemma 6. If δ <
√
3−

√
2, then the points ui and uj can see the entire quadri-

lateral on P1 formed by ueij (e ∈ {N,E, S,W}) from below, but no uk (k 	= i, j)
can see any part of the quadrilateral from below.

Theorem 2. Computing the most likely hull in three dimensions is NP-hard.

Proof. We show that computing the likelihood of the most likely hull is NP-hard.
Given an instance of the vertex cover problem for penny graphs, we construct an
instance of the most likely hull problem in three dimensions as described above
(e.g., with δ = 0.25). We choosem, α, and β such that βm < α, and α < 0.5 < β;
e.g., m = 3, α = 0.25, and β = 0.6. By Lemma 4 all points on P1 must be on
or inside the most likely hull, and so we only need to choose which points ui
(1 ≤ i ≤ n) are on the most likely hull. No point from a set Yij can be on the
most likely hull because then we could add either ui or uj to the hull and increase
the likelihood of the hull, since βm(1−α) < α. Thus, the likelihood of the most
likely hull is determined by the number κ of points ui (1 ≤ i ≤ n) that are on
the most likely hull, and its likelihood is ακ(1 − α)n−κ. Every point ui on the
most likely hull corresponds to a vertex of the penny graph, and by construction
and Lemma 6, these vertices form a vertex cover of the penny graph. Thus the
penny graph has a vertex cover of size κ if and only if the likelihood of the most
likely hull is at least ακ(1−α)n−κ. Finally, it is easy to see that the construction
can be performed in polynomial time.

The proof above directly implies that there exists no polynomial-time ( α
1−α )-

approximation algorithm to compute the likelihood of the most likely hull unless
P = NP . Although we can change the value of α to obtain a stronger bound,
we give a more general argument below.

Inapproximability. The likelihood of a hull is a product of terms. We show
that, under mild conditions, NP-hard optimization problems of this form cannot
be approximated well by a multiplicative factor, unless P = NP .

Let O = (I,F , f) be an optimization problem where I is the set of instances,
F is a function over I such that F(I) describes the set of feasible solutions for
instance I, and f is an optimization function over all feasible solutions. For an
instance I ∈ I, let |I| denote the size of I. We say that O is product composable
if, given any collection of problem instances I1, . . . , Ik ∈ I, we can construct a
new instance I∗ ∈ I in polynomial time (w.r.t. |I∗|) satisfying the following:

1. |I∗| =
∑k

i=1 |Ii|.
2. There is a bijection between F(I∗) and F(I1) × . . . × F(Ik) such that for

each solution S ∈ F(I∗) with the matching tuple (S1, . . . , Sk), f(S) =∏
1≤i≤k f(Si).

3. Given a solution S ∈ F(I∗), one can construct the solutions in its matching
tuple in polynomial time.



On the Most Likely Convex Hull of Uncertain Points 799

In other words, we can form a new instance I∗ by combining the instances
I1, . . . , Ik in an independent way.

Lemma 7. If a maximization problem O is product composable and cannot be
approximated within a constant c < 1 in polynomial time, then there exists no
polynomial-time 2−O(n1−ε)-approximation algorithm for O, where n is the size
of the instance and ε > 0.

Although the most likely hull problem is not product composable itself, this
property only needs to hold for a subproblem. The subproblem formed by the
instances used in our NP-hardness reduction is product composable, which easily
follows from the construction. We defer a detailed explanation of this property
to the full version of the paper.

Corollary 1. For any ε > 0, there exists no polynomial-time 2−O(n1−ε)-approxi-
mation algorithm for the most likely hull problem in three dimensions, unless
P=NP.

Finally we observe that one can trivially achieve a 2−n-approximation of the
most likely hull problem as follows: simply take the convex hull of all sites with
probability at least 1

2 . If πi <
1
2 for all i, then the convex hull is empty.

4 Most Likely Hull in the Multipoint Model

In this section, we show that computing the most likely hull in the multipoint
model is NP–hard even for two dimensions. (The technical definition of the most
likely hull under the multipoint model differs slightly from that of the point
model, but the following abridged description should be accessible without a
need for those details. A more complete formal description can be found in the
full version of the paper.) Our proof uses a reduction from 3-SAT.

Consider a 3-SAT instance (V, U) where V is the set of the variables and U
is the set of clauses. We first construct 6|U | points on the unit circle. We call
these points the anchors and use them as permanent points (i.e., points with
probability 1) in our hull problem instance. Between each pair of consecutive
anchors, we place a single point on the unit circle that we call a spike. (See
Figure 5a.) We assign an independent existence probability of 1

2 to each spike.
As we will explain shortly, the main idea of our construction is that the most
likely hull includes all spikes in its interior if and only if the 3-SAT instance is
satisfiable.

For each variable v, we construct two additional sets of points, one correspond-
ing to the case that v is true and one corresponding to the case that v is false.
In particular, for each clause u that v appears in positive form, we construct a
point puv covering a single spike, at the intersection of the lines tangent to the
unit circle at the two anchors next to the spike. We assign each puv a probability
of 1

2 but this probability is dependent, as we will put pvu in the same tuple with
another point in the rest of the construction. We construct all points pvu for a
single variable v over a consecutive sequence of spikes, and then put a single
point tv covering the constructed points. (See Figure 5b.)
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Fig. 5. (a) Anchors (black squares) and spikes (gray circles) on the unit circle. (b)
Construction of tv. (c) The three points constructed for clause u.

We apply the same construction for all clauses that v appears in negated form.
This creates an additional set of points pvu, all of which we cover with a single
point fv as we did for tv. We put tv and fv to the same probabilistic tuple and
assign each a probability of 1

2 . That is, in a probabilistic experiment, either tv
or fv is present (with equal probability), but not both. Existence of tv is meant
to imply that v is assigned true, whereas the existence of fv is meant to imply
that v is assigned false.

Finally, for each clause u, we construct three additional points covering a single
spike. These points are constructed in such a way that: (1) they do not cover any
other spike, and (2) they are in convex position with respect to each other and
the two anchors next to the covered spike. Each of these points corresponds to
a distinct variable v that appears in the clause. We denote the point associated
with variable v by quv . (See Figure 5c.) We put each quv to the same probability
tuple as the previously constructed point puv and assign it probability 1

2 . That is,
in an experiment, either quv or puv exists (with equal probability), but not both.

Lemma 8. The most likely hull has likelihood (1/2)3|U|+|V | if and only if it con-
tains all spikes in its interior. Otherwise, its likelihood is at most (1/2)3|U|+|V |+1.

We now describe how the satisfiability of the 3-SAT instance relates to our
construction. Consider a variable v. Notice that, if the most likely hull covers
all spikes below tv, then either tv or all points puv below tv appears in the hull
as a vertex. If tv appears in the hull, then the hull can pass through the points
quv (which are in the same probabilistic tuples with points puv ), and cover spikes
representing the clauses that v appears in positive form. This corresponds to the
case that v is assigned true and all corresponding clauses are satisfied. Similar
notion also applies to fv and the clauses that v appears in negated form. If all
spikes are covered, then all clauses are satisfied and so is the 3-SAT instance.
Combining this idea with Lemma 8, we deduce the following lemma.

Lemma 9. The 3-SAT instance is satisfiable if and only if the most likely hull
has likelihood (1/2)3|U|+|V |.

Theorem 3. Computing the most likely hull in the multipoint model is NP-hard.
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Lemma 8 in fact implies a stronger result: It is NP-hard to compute the likelihood
of the most likely hull within any factor c > 1

2 . By construction, the problem
instances that we create are product composable. Then, by Lemma 7, we can
state the following theorem.

Theorem 4. For any ε > 0, there exists no polynomial-time 2−O(n1−ε)-approxi-
mation algorithm for the most likely hull problem in the multipoint model unless
P=NP.

5 Extensions and Concluding Remarks

Making sense of probabilistic (uncertain) data is a complex and challenging task.
Even for simple numerical data, elementary statistics such as mean, median, or
mode serve a useful first order approximation. For multi-dimensional spatial
data, however, there are no universally agreed upon summaries of similar gener-
ality. Our work is an attempt to explore some natural geometric structures, and
their complexity, over probabilistic data. For “convexity” of uncertain data, one
possibility is to compute the distribution over the entire space: for each point of
the space, compute the probability that it is inside the convex hull. In a different
work, we are also exploring that direction but (i) a full distribution is inevitably

quite expensive to compute (requiring a worst-case space complexity Ω(nd2

)),
and (ii) the distribution still does not lend itself to a simple and “intuitive”
description of a convex hull.

Therefore, algorithms for computing or estimating succinct summary hulls are
a useful tool in the analysis of uncertain geometric data. While we focused ex-
clusively on the Most Likely Hull, our techniques are applicable to several other
ways of defining the “best” hull. Any useful definition of the likely hull must
include a penalty function for misclassifying points, both false positives and false
negatives. If only false negatives (points outside the hull) are penalized, then
the convex hull of all the points has the best score. Our dynamic programming
algorithm for the point model in 2 dimensions can be extended for several nat-
ural scoring functions. Although entries may need to be computed differently,
the subproblem structure utilized by the dynamic programming algorithm also
applies to these other settings.

For instance, one simple scoring function measures the agreement on the “in”
and ”out” classification. A convex hull C splits the point set into two parts:
inside and outside. We can measure the “quality” Q(C) of a hull C by its ex-
pected agreement with a random hull’s classification: the number of points of S
whose classification (in or out) is the same for both C and the hull of a random
outcome. Both our dynamic programming algorithm for computing the hull in 2
dimensions, and the hardness in 3 dimensions, under the point model carry over
to this “Symmetric Difference Hull” definition. Similarly, another scoring func-
tion for measuring the fraction of points correctly classified counts the number
of points in the random outcome that lie in C plus the number of non-sample
points that lie outside C. All our results hold for this model as well.



802 S. Suri, K. Verbeek, and H. Yıldız

In summary, we believe that the study of geometric structures over probabilis-
tic data is a fundamental problem, and our results are only a first, but promising,
step.
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Abstract. Let D be a given set of (string) documents of total length
n. The top-k document retrieval problem is to index D such that when
a pattern P of length p, and a parameter k come as a query, the index
returns those k documents which are most relevant to P . We present
the first non-trivial external memory index supporting top-k document
retrieval queries in optimal O(p/B+ logB n+ k/B) I/Os, where B is the
block size. The index space is almost linear O(n log∗ n) words.

1 Introduction and Related Work

The inverted index is the most fundamental data structure in the field of infor-
mation retrieval [43]. It is the backbone of every known search engine today. For
each word in any document collection, the inverted index maintains a list of all
documents in that collection which contain the word. Despite its power to an-
swer various types of queries, the inverted index becomes inefficient, for example,
when queries are phrases instead of words. This inefficiency results from inade-
quate use of word orderings in query phrases [37]. Similar problems also occur in
applications when word boundaries do not exist or cannot be identified determin-
istically in the documents, like genome sequences in bioinformatics and text in
many East-Asian languages. These applications call for data structures to answer
queries in a more general form, that is, (string) pattern matching. Specifically,
they demand the ability to identify efficiently all the documents that contain a
specific pattern as a substring. The usual inverted-index approach might require
the maintenance of document lists for all possible substrings of the documents.
This can take quadratic space and hence is neither theoretically interesting nor
sensible from a practical viewpoint.

The first frameworks for answering document retrieval queries were proposed
by Matias et al. [30] and Muthukrishnan [31]. Their data structures solve the doc-
ument listing problem, where the task is to index a collection D of D documents,
such that whenever a pattern P of length p comes as a query, report all those
documents containing P exactly once. Muthukrishnan also initiated the study
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of relevance metric-based document retrieval [31], which was then formalized by
Hon et al. [22] as follows:

Problem 1 (Top-k document retrieval problem). Let w(P, d) be the score
function capturing the relevance of a pattern P with respect to a document d.
Given a document collection D= {d1, d2, .., dD} of D documents, build an index
answering the following query: given P and k, find k documents with the highest
w(P, .) values in its sorted (or unsorted) order.

Here, instead of reporting all the documents that match a query pattern, the
problem is to output the k documents most relevant to the query in sorted order
of relevance score. Relevance metrics considered in the problem can be either
pattern-independent (e.g., PageRank) or -dependent. In the latter case one can
take into account information like the frequency of the pattern occurrences (or
term-frequency of popular tf-idf measure, which takes the number of occurrences
of P in a document d as w(P, d)) and even the locations of the occurrences
(e.g.,min-dist [22] which takes proximity of two closest occurrences of pattern as
the score). In general, we assume that other than a static weight which is fixed
for each document d, w(P, d) is dependent only on the set of occurrences of P
in d. The framework of Hon et al. [22] takes linear space and answers the query
in O(p + k log k) time. This was then improved by Navarro and Nekrich [33] to
achieve O(p + k) query cost. Both [22] and [33] reduced this problem to a 4-
sided orthogonal range query in 3d, which is defined as follows: the data consists
of a set S of 3-dimensional points and the query consists of four parameters
x′, x′′, y′ and z′, and output is the set of all those points (xi, yi, zi) ∈ S such
that xi ∈ [x′, x′′], yi ≤ y′ and zi ≥ z′. While general 4-sided orthogonal range
searching is proved hard [9], the desired bounds can nevertheless be achieved by
identifying a special property that one dimension of the reduced subproblem can
only have p distinct values. Even though there has been series of work on top-k
string, including in theory as well as practical IR [5, 10, 11, 13, 15, 17–25, 33–
35, 37, 38, 42] communities, most implementations (as well as theoretical results)
have focused on RAM based compressed and/or efficient indexes (See [32] for
an excellent survey). We introduce an alternative framework for solving this
problem and obtain the first non-trivial external memory [3] solution as follows:

Theorem 1. In the external memory model, there exists an O(nh)-word struc-
ture that solves the top-k (unsorted) document retrieval problem in O(p/B +

logB n+log(h) n+k/B) I/Os for any h ≤ log∗ n, where log(h) n = log log(h−1) n,

log(1) n = logn and B is the block size.

For h = log∗ n, log(h) n is a constant, and hence we have the following result.

Corollary 1. There exists an O(n log∗ n)-word structure for answering top-k
(unsorted) document retrieval problem in optimal O(p/B+ logB n+ k/B) I/Os.

Our framework can also be used for improving the existing internal memory
results [22, 33] (see Theorem 2). In situations where the locus node can be
computed in o(p) time, our new index support faster queries. For example in
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cross-document pattern matching [26], the locus can be computed in O(log log p)
time. Another application is autocompletion search (like in Google InstantTM ),
where multiple loci are searched with amortized constant time for each locus
(see [27, 41] for other examples).

Theorem 2. There exists an O(n) word space data structure in word RAM
model for solving (sorted) top-k document retrieval problem in O(k) time, once
the locus of the pattern match is given.

A related but somewhat orthogonal line of research has been to get top-k
queries on general array based ranges. In this, we are given array A of colors
with each color is assigned a score, and for a range query (i, j), we have to
output k highest scored colors in this range (with each color reported at most
once). If the scoring criteria is based on frequency, for example say score of a
color is its number of occurrences in A[i..j], then lower-bounds on range-mode
problem [8, 16] would imply no efficient (linear space and polylog time) data
structures can exist. There are variants considered where each entry in the array
has a fixed score or each color (document) has a fixed score, independent of
number of occurrences. Recent [29] surprising result of achieving optimal I/Os
with O(n log∗ n) space has been for 3-sided categorical range reporting where
each entry has another attribute called score, and the query specifies range as
well as score threshold. We are supposed to output all colors whose at least one
entry within the range satisfies the score criteria. There are easier variants where
each entry of the same color gets the same score attribute like PageRank which
have been shown to have efficient external memory results [36]. There are even
simpler variants, where only top-k scores are to be reported [2, 28, 39] without
considering colors or unique colors are to be reported without considering scores
(as in document listing). Both these variants lead to 3-sided queries which are
easier to solve in external memory. In internal memory, there exists optimal space
and time data structures for outputting these scores in the sorted order [7].

2 Preliminary: Top-k Framework

This section briefly explains the linear space framework for top-k document
retrieval based on the work of Hon et al. [22], and Navarro and Nekrich [33]. The
generalized suffix tree (GST) of a document collection D= {d1, d2, d3, . . . , dD} is
the combined compact trie (a.k.a. Patricia trie) of all the non-empty suffixes of
all the documents. Use n to denote the total length of all the documents, which
is also the number of the leaves in GST. For each node u in GST, consider the
path from the root node to u. Let depth(u) be the number of nodes on the path,
and prefix(u) be the string obtained by concatenating all the edge labels of
the path. For a pattern P that appears in at least one document, the locus of
P , denoted as uP , is the node closest to the root satisfying that P is a prefix
of prefix(uP ). By numbering all the nodes in GST in the pre-order traversal
manner, the part of GST relevant to P (i.e., the subtree rooted at uP ) can be
represented as a range.
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Nodes are marked with documents. A leaf node � is marked with a docu-
ment d ∈ D if the suffix represented by � belongs to d. An internal node u
is marked with d if it is the lowest common ancestor of two leaves marked
with d. Notice that a node can be marked with multiple documents. For each
node u and each of its marked documents d, define a link to be a quadruple
(origin, target, doc, score), where origin = u, target is the lowest proper ances-
tor1 of u marked with d, doc = d and score = w

(
prefix(u), d

)
. Two crucial

properties of the links identified in [22] are listed below.

Lemma 1. For each document d that contains a pattern P , there is a unique
link whose origin is in the subtree of uP and whose target is a proper ancestor
of uP . The score of the link is exactly the score of d with respect to P .

Lemma 2. The total number of links is O(n).

Based on Lemma 1, the top-k document retrieval problem can be reduced to
the problem of finding the top-k links (according to its score) stabbed by uP ,
where link stabbing is defined as follows:

Definition 1 (Link Stabbing). We say that a link is stabbed by node u if it
is originated in the subtree of u and targets at a proper ancestor of u.

If we order the nodes in GST as per the pre-order traversal order, these
constraints translate into finding all the links (i) the numbers of whose origins
fall in the number range of the subtree of uP , and (ii) the numbers of whose
targets are less than the number of uP . Regarding constraint (i) as a two-sided
range constraint on x-dimension, and regarding constraint (ii) as a one-sided
range constraint on y-dimension, the problem asks for the top-k weighted points
that fall in a three-sided window in 2d space, where weight of a point is the score
of the corresponding link [33].

3 External Memory Structures

This section is dedicated for proving Theorem 1. The initial phase of pattern
search can be performed in O(p/B + logB n) I/O’s using a string B-tree [12].
Once the suffix range of P is identified, we take the lowest common ancestor of
the left-most and right-most leaves in the suffix range of GST to identify the
locus node uP . Hence, the first phase (i.e., finding the locus node uP of P ) takes
optimal I/O’s and now we focus only on the second phase (i.e., reporting the
top-k links stabbed by uP ). Instead of solving the top-k version, we first solve a
threshold version in Sec 3.1 where the objective is to retrieve those links stabbed
by uP with score at least a given threshold τ . Then in Sec 3.2, we propose a
separate structure that converts the original top-k-form query into a threshold-
form query so that the structure in Sec 3.1 can now be used to answer the
original problem. Finally, we obtain Theorem 1 via bootstrapping on a special
structure for handling top-k queries in lesser number of I/Os for small values of
k. We shall assume all scores are distinct and are within [1, O(n)]. Otherwise,
the ties can be broken arbitrarily and reduce the values into rank-space.

1 Define a dummy node as the parent of the root node, marked with all the documents.
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3.1 Breaking Down into Sub-Problems

Instead of solving the top-k version, we first solve a threshold version, where
the objective is to retrieve those links stabbed by uP with score at least a
given threshold τ . We show that the problem can be decomposed into simpler
subproblems, which consists of a 3d dominance reporting and O(log(n/B)) 3-
sided range reporting in 2d, both can be solved efficiently using known structures.
The main result is captured in Lemma 3 defined below. From now onwards, the
origin, target and score of a link Li are represented by oi, ti and wi respectively.
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Fig. 1. Rank Components

Lemma 3. There exists an O(n) space
data structure for answering the fol-
lowing query: given a query node uP
and a threshold τ , all links stabbed by
uP with score ≥ τ can be reported in
O(log2(n/B) + z/B) I/Os, where z is the
number of outputs.

Rank and Components. For any node u in
GST, we use u to denote its pre-order rank
as well. Let size(u) denotes the number of
leaves in the subtree of u, then we define
its rank as:

rank(u) = �log�size(u)
B

� 

Note that rank(.) ∈ [0, �log� n
B � ]. A contiguous subtree consisting of nodes

with the same rank is defined as a component, and the rank of a component is
same as the rank of nodes within it (see figure 1). Therefore, a component with
rank = 0 is a bottom level subtree of size (number of leaves) at most B. From
the definition, it can be seen that a node and at most one of its children can
have the same rank. Therefore, a component with rank ≥ 1 consists of nodes in
a path which goes top-down in the tree.

The number of links originating within the subtree of any node u is at most
2size(u) − 1. Therefore, the number of links originating within a component
with rank = 0 is O(B). These O(B) links corresponding to each component
with rank = 0 can be maintained separately as a list, taking total O(n) words
space. Now, given a locus node uP , if rank(uP ) = 0, the number of links origi-
nating within the subtree of uP is also O(B) and all of them can be processed
in O(1) I/O’s by simply scanning the list of links corresponding to the compo-
nent to which uP belongs to. The query processing is more sophisticated when
rank(uP ) ≥ 1. For handling this case, we classify the links into the following 2
types based on the rank of its target with respect to the rank of query node uP :

1. equi-ranked links : links with rank(target) = rank(uP )
2. high-ranked links : links with rank(target) > rank(uP )
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Fig. 2. Pseudo Origin

Next we show that the problem of retriev-
ing outputs among equi-ranked links can be
reduced to a 3d dominance query, and the
problem of retrieving outputs among high-
ranked links can be reduced to at most
�log� n

B � 3-sided range queries in 2d.

Processing Equi-Ranked Links. Let C be
a component and SC be set of all links Li,
such that its target ti is a node in C. Also,
for any link Li ∈ SC , let pseudo origin si be
the (pre-order rank of) lowest ancestor of its
origin oi within C (see Figure 2). Then a link
Li ∈ SC originates in the subtree of any node
u within C if and only if si ≥ u. Now if the
locus uP is a node in C, then among all equi-
ranked links, we need to consider only those
links Li ∈ SC , because the origin oj of any
other equi-ranked link Lj /∈ SC , will not be in the subtree of uP . Based on
the above observations, all equi-ranked output links are those Li ∈ SC with
ti < uP ≤ si and wi ≥ τ . To solve this in external memory, we treat each link
Li ∈ SC as a 3d point (ti, si, wi) and maintain a 3d dominance query structure
over it. Now the outputs with respect to uP and τ are those links corresponding
to the points within (−∞, uP ) × [uP ,∞)× [τ,∞). Such a structure for SC can
be maintained in linear O(|SC |) words of space and can answer the query in
O(logB |SC | + zeq/B) I/O’s using the result by Afshani [1], where |SC | is the
number of points (corresponding to links in SC) and zeq be the output size.
Thus overall these structures occupies O(n)-word space.

Lemma 4. Given a query node uP and a threshold τ , all the equi-ranked links
stabbed by uP with score ≥ τ can be retrieved in O(logB n+ zeq/B) I/Os using
an O(n) word space data structure, where zeq is the output size. �


Processing High-Ranked Links. The following is an important observation.

Observation 1. Any link Li with its origin oi within the subtree of a node u is
stabbed by u if rank(ti) > rank(u), where ti is the target of Li.

This implies, while looking for the outputs among the high-ranked links, the
condition of ti being a proper ancestor of uP can be ignored as it is taken care
of automatically if oi ∈

[
uP , u

′
P

]
, where u′P be the (pre-order rank of) right-

most leaf in the subtree rooted at uP . Let Gr be the set of all links with rank
equals r for 1 ≤ r ≤ �log� n

B � . Since there are only O(log(n/B)) sets, we shall
maintain separate structures for links in each Gr by considering only origin and
score values. We treat each link Li ∈ Gr as a 2d point (oi, wi), and maintain
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a 3-sided range query structure over them for r = 1, 2, .., �log� n
B � . All high-

ranked output links can be obtained by retrieving those links in Li ∈ Gr with the
corresponding point (oi, wi) ∈ [uP , u

′
P ]×[τ,∞] for r = rank(uP )+1, .., �log� n

B � .
By using the linear space data structure in [4], the space and I/O bounds for
a particular r is given by O(|Gr |) words and O(logB |Gr| + zr/B), where zr is
the number of output links in Gr. Since a link can be a part of at most one
Gr, the total space consumption is O(n) words and the total query I/Os is
O(logB n log(n/B) + zhi/B) = O(log2(n/B) + zhi/B), where zhi represents the
number of high-ranked output links.

Lemma 5. Given a query node uP and a threshold τ , all the high-ranked links
stabbed by uP with score ≥ τ can be retrieved in O(log2(n/B) + zhi/B) I/Os
using an O(n) word space data structure, where zhi is the output size. �


By combining Lemma 4 and Lemma 5, we obtain Lemma 3.

3.2 Converting Top-k to Threshold via Logarithmic Sketch

Here we derive a linear space data structure, such that given a query node u
and a parameter k, a threshold τ can be computed in constant I/Os, such that
the number of links z stabbed by u with score ≥ τ is bounded by, k ≤ z ≤
2k+O(logn). Hence query I/Os in Lemma 3 can be modified as O(log2(n/B)+
z/B) = O(log2(n/B) + k/B). From the retrieved z outputs, the actual top-k
answers can be computed by selection [6, 40] and filtering in another O(z/B) =
O(k/B + logB n) I/O’s. We summarize our result in the following lemma.

Lemma 6. There exist an O(n) word data structure for answering the following
query in O(log2(n/B) + k/B) I/O’s: given a query point u and an integer k,
report the top-k links stabbed by u. �


The details of top-k to threshold conversion are given below.

Marked Nodes and Prime Nodes in GST. We identify certain nodes in the
GST as marked nodes and prime nodes with respect to a parameter g called the
grouping factor. The procedure starts by combining every g consecutive leaves
(from left to right) together as a group, and marking the lowest common ancestor
(LCA) of first and last leaf in each group. Further, we mark the LCA of all pairs
of marked nodes recursively. Additionally, we ensure that the root is always
marked. At the end of this procedure, the number of marked nodes in GST will
be O(n/g) [22]. Prime nodes are those which are the children of marked nodes 2.
Corresponding to any marked node u∗ (except root), there is a unique prime
node u′, which is its closest prime ancestor. In case u∗’s parent is marked then
u′ = u∗. For every prime node u′ with atleast one marked node in its subtree,
the corresponding closest marked descendant u∗ is unique. If u′ is marked then
the closest marked descendant u∗ is same as u′.

2 Note that the number of prime nodes can be Θ(n) in the worst case.
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Hon et al. [22] showed that, given any node u with u∗ being its highest marked
descendent (if it exists), the number of leaves in the subtree of u, but not in
the subtree of u∗ (which we call as fringe leaves) is at most 2g. This means
for a given threshold τ , if z is the number of outputs corresponding to u∗ as
the locus node, then the number of outputs corresponding to u as the locus is
within z ± 2g. This is because of the fact that the number of documents d with
w
(
prefix(u), d

)
	= w

(
prefix(u∗), d

)
cannot be more than the number of fringe

leaves. Therefore, we maintain the following information at every marked node
u∗: the score of q−th highest scored link stabbed by u∗ for q = 1, 2, 4, 8, ... By
choosing g = logn, the total space can be bounded by O((n/g) logn) = O(n)
words, and can retrieve any particular entry in O(1) time.

Using the above values, the threshold τ corresponding to any given u and k
can be computed as follows: first find the highest marked node u∗ in the subtree
of u (u∗ = u if u is marked). Now identify i such that 2i−1 < k + 2g ≤ 2i and
choose τ as the score of 2i-th highest scored link stabbed by u∗. This ensures
that k ≤ z < 2k +O(g) = 2k +O(log n).

3.3 Special Structures for Bounded k

In this section, we derive a faster data structures for the case when k is upper
bounded by a parameter g. The main idea is to identify smaller sets of O(g)
links, such that top-g links stabbed by any node u are contained in one of such
sets. Thus by constructing the structure described in Lemma 6 over the links in
each such sets, the top-k queries for any k ≤ g can be answered faster as follows:

Lemma 7. There exists a O(n) word data structure for answering top-k queries
for k ≤ g in O(log2(g/B) + k/B) I/O’s.

Recall the definitions of marked nodes and prime nodes from Sec 3.2. Let u′

be a prime node and u∗ (if it exists) be the unique highest marked descendent
of u′ by choosing a grouping factor g (which will be fixed later). All the links
originated from the subtree of u′ are categorized into the following (Figure 3).

– near-links: The links which are stabbed by u∗, but not by u′.
– far-link: The links which are stabbed by both u∗ and u′.
– small-link: The links which are stabbed neither by u∗, nor by u′.
– fringe-links: The links originated not from the subtree of u∗.

Lemma 8. The number of fringe-links and the number of near-links of any
prime node u′ is O(g).

Proof. The number of leaves in subtree(u′)\subtree(u∗) is at most 2g [22]. There-
fore, the number of fringe-links can be bounded by O(g). For every document d
whose link originates from subtree(u∗) going out of it ends up as a near-link if
and only if d exists at one of the leaves of subtree(u′)\subtree(u∗). Thus, this
can also be bounded by O(g). In the case where u∗ does not exist for u′, only
fringe-links exist. More over the subtree size of u′ is O(g) there can be no more
than O(g) of these links. �
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Fig. 3. Categorization of Links

Consider the following set, consisting of
O(g) links with respect to u′: all fringe-links,
near-links and g highest scored far-links. We
maintain these links at u′ (as a data struc-
ture to be explained later). For any node u,
whose closest prime ancestor (including it-
self) is u′, the above mentioned set is called
candidate links of u. From each u, we main-
tain the pointer to its closest prime ancestor
where the set of candidate links is stored.

Lemma 9. The candidate links of any node
u contains top-g highest scored links stabbed
by u.

Proof. Let u′ be the closest prime ancestor of u. If no marked descendant of u′

exist, then all the links are stored as candidate links. Otherwise, small-links can
never be candidates as they never cross u. Now, if u lies on the path from u′ to
u∗ then all far-links will satisfy both origin and target conditions. Else, far-links
do not qualify. Hence, any link which is not among top-g (highest scored) of
these far-links, can never be the candidate. �


Taking a clue from Lemma 8 and 9, for every prime node u′, we shall maintain
a data structure as in Lemma 6 by considering only the links stored at u′, and
top-k queries can be answered faster when k ≤ g. For this we shall define a
candidate tree CT (u′) of node u′ (except the root) to be a modified version of
subtree of u′ in GST augmented with candidate links stored at u′. Firstly, for
every candidate link which is targeted above u′, we change the target to v, which
will be a dummy parent of u′ in CT (u′). Now CT (u′) consists of those nodes
which are either origin or target (after modification) of some candidate link
of u′. Moreover, all the nodes in subtree(u′)\subtree(u∗) are included as well.
Since only the subset of nodes is selected from subtree(u′), our tree is basically
a Steiner tree connecting these nodes. Moreover, the tree is edge-compacted so
that no degree-1 node remains. Thus, the size of the tree as well as the number
of associated links is O(g). Next we do a rank-space reduction of pre-order rank
(w.r.t to GST) of the nodes in CT (u′) as well as the scores of candidate links.

The candidate tree (no degree-1 nodes) as well as the associated candidate
links satisfies all the properties which we have exploited while deriving the
structure in Lemma 6. Hence such a structure for CT (u′) can be maintained
in O(min(g, size(u′)) words space and the top-k links in CT (u′) stabbed by any
node u, with u′ being its lowest prime ancestor can be retrieved in O(log2(g/B)+
k/B) I/O’s. The total space consumption of structures corresponding all prime
nodes can be bounded by O(n) words as follows: the number of prime nodes with
at least a marked node in its subtree is O(n/g), as each such prime node can
be associated with a unique marked node. Thus the associated structures takes
O(n/g × g) = O(n) words space. The candidate set of a prime node u′ with
no marked nodes in its subtree consists of O(size(u′)) links, moreover a link
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cannot be in the candidate set of two such prime nodes. Thus the total space
is O(n) words in this case as well. Note that for g = O(B), we need not store
any structure on CT (u′), because such a candidate tree fits entirely in constant
number of blocks which can be processed in O(1) I/Os. This completes the proof
of Lemma 7.

3.4 I/O-Optimal Data Structure via Bootstrapping

The bounds in Theorem 1 can be achieved by maintaining multiple structures as
in Lemma 7. Clearly the structure in Lemma 6 is optimal for k ≥ B log2(n/B).
However, for handling the case when k < B log2(n/B), we shall choose the

grouping factor gi = B(log(i)(n/B))2, for i = 1, 2, 3, .., h ≤ log∗ n and maintain
h separate structures as in Lemma 7, occupying O(nh) space. Thus top-k query
for any k ≥ gh can be answered by querying on the structure corresponding to the
grouping factor gj, where gj ≥ k > gj+1 in O(log2(gj/B)+ k/B) = O(gj+1/B+
k/B) = O(k/B) I/Os. For k < gh, we shall query on the structure corresponding
to the grouping factor gh, and the I/Os are bounded by O(log2(gh/B)+k/B) =

O(log(h) n+ k/B). This completes the proof of Theorem 1.

4 Adapting to Internal Memory

Our external memory framework can be adapted to internal memory by choosing
B = Θ(1), and by replacing the external memory substructures by the corre-
sponding internal memory counterparts. Retrieving the outputs among high-
ranked links is reduced to O(log n) 3-sided range reporting queries. By using
an interval tree like approach, the problem of retrieving outputs among equi-
ranked links also can be reduced to O(log n) 3-sided range reporting queries.
By using the linear-space sorted range reporting structure by Brodal et al. [7]
for 3-sided range reporting, the outputs can be obtained in the sorted order of
score. Further, these sorted outputs from O(log n) different places can be merged
using an atomic heap [14], which is capable of performing all heap operations

in O(1) time, provided the number of elements in the heap is O(logO(1) n) as
in our case. At the beginning of each of these O(log n) queries, we may need
to perform a binary search for finding the boundaries, thus resulting in a total
query time of O(log2 n + k), which is O(k) for k ≥ log2 n. The space can be
bounded by O(n) words. For the case when k < log2 n, we obtain a linear space
and O(log2 logn+ k) query time structure by using the ideas from Sec 3.3 (here
we choose grouping factor g = log2 n). Again, this structure can answer queries
in O(k) time for k ≥ log2 logn. We do not continue this bootstrapping further.
Instead, we make use of the following observation: the candidate set of a node
consists of only O(g) links, hence a pointer to any particular link within the can-
didate set of any node can be maintained in O(log g) = O(log logn) bits. Thus,
at every node u in GST, we shall maintain the top-(log2 logn) links stabbed by u
in the decreasing order of score as a pointer to its location within the candidate
set of u. This occupies O(n log3 logn) bits or o(n) words and top-k queries for
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any k ≤ log2 logn can be answered in O(k) time by chasing the first k point-
ers and retrieving the documents associated with the corresponding links. This
completes the proof of Theorem 2.
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Abstract. Shared memory many-core processors such as GPUs have been exten-
sively used in accelerating computation-intensive algorithms and applications. 3D
curve traversal is a fundamental process in many applications, and is commonly
accelerated by spatial decomposition schemes captured in hierarchical data struc-
tures (e.g., kd-trees). However, using hierarchical structures requires repeated
hierarchical searches, which are time-consuming on shared memory many-core
architectures. In this paper, we propose a novel spatial decomposition based data
structure, called Shell, which completely avoids hierarchical search for 3D curve
traversal. In Shell, a structure is built on the boundary of each region in the de-
composed space, which allows any curve traversing in a region to find the next
neighboring region to traverse using table lookup schemes. While our approach
works for other spatial decomposition paradigms and many-core processors, we
illustrate it using kd-tree on GPU and compare with the fastest known kd-tree ray
traversal algorithms. Experimental results show that our approach accelerates ray
traversal considerably over the kd-tree approaches.

Keywords: Many-core architecture, GPU, data structure, spatial decomposition,
3D curve traversal.

1 Introduction

3D Curve traversal is a fundamental process in many applications, including graphics
ray tracing [4], volume rendering [2], and radiation dose calculation [12]. Since ap-
plications using curve traversal often involve large numbers of curves and repeatedly
conduct the traversal process, the execution speed of curve traversal is critical. Spatial
decomposition based data structures have been developed on shared memory many-core
architecture (e.g., general purpose graphics processing units (GPGPUs)) for accelerat-
ing curve traversal solutions. In this paper, a new efficient spatial decomposition based
data structure for 3D curve traversal is proposed, which better exploits the character-
istics of shared memory many-core architectures and avoids hierarchical searches that
are commonly performed in known spatial decomposition data structures. We use ray
traversal to illustrate the problem and our solution, but it can be easily extended to other
curves, such as line segments or general algebraic curves.
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Shared memory many-core processors present great opportunities to speed up com-
putation intensive applications. Recent advances on GPGPUs leverage massively par-
allel architectures based on single-instruction multiple-data (SIMD) processor cores to
achieve high performance. However, the memory efficiency and execution divergence
is often the major performance bottleneck for applications running on this architec-
ture [1]. Typically, memory operations are much more expensive than computations in
GPU. For example, in the NVIDIA GPU, the latency of an off-chip memory transaction
is 400-600 times longer than the fastest computational instructions [9].

A number of data structures have been developed to partition and organize geomet-
ric objects in 3D scenes to improve the efficiency of ray traversal. One important class
of such data structures is based on spatial decomposition (e.g., grids [8], octrees and
kd-trees [4]), which partitions a geometric scene into a set of regions, each containing a
small number of objects. The subdivided regions are normally organized by a hierarchi-
cal structure which represents the geometric relationship among those regions. Kd-tree
is a commonly used hierarchical structure due to its ability of matching the subdivided
regions with the distribution of geometric objects in the scene. It is also considered to
be the data structure that provides the fastest known ray traversal speed in static scenes
because of its efficient hierarchical search mechanism [13].

Quite a few algorithms have been developed for 3D ray traversal using kd-tree struc-
tures, in which repeated hierarchical searches in the tree are needed to find the neigh-
boring regions for traversal [11]. For kd-tree based ray traversal on a traditional CPU
architecture, a stack is normally used to store the tree nodes along a search path. On
GPU, due to the lack of stack support and limited capacity of on-chip memory, a stack
based approach typically allocates stacks to off-chip memory (e.g., global memory).
The long access latency of the off-chip memory can easily become a performance bot-
tleneck for ray traversal on GPUs [7]. To address this challenge, Foley et al. [3] and
Horn et al. [6] proposed a restart traversal scheme on kd-trees which starts the tree
search from the root, and uses a push-down method to move the “root” down to the
minimum subtree to be searched. Horn et al. [6] also developed a short-stack approach
which builds a small circular stack in the on-chip memory of GPU, and combines it
with the push-down method (PD-SS). Popov et al. [10] proposed a kd-rope algorithm
[5] using the concept of neighbor links, where each leaf node in the kd-tree contains not
only the region R it represents but also a set of pointers, each pointing to a minimum
subtree that contains all neighboring regions touching each of the boundaries (or faces)
of R. Santos et al. [11] improved the kd-rope implementation, making it the fastest
known kd-tree searching ray traversal approach on GPU (called kd-rope++).

Although these algorithms considerably improved the kd-tree searching based 3D
ray traversal performance on GPU, all of them still rely on hierarchical search to find
the next traversal region when a ray crosses a region boundary (i.e., a ray exits from
a region). Each search operation incurs reading a tree node, and search for the next
neighboring traversal region can visit O(H) nodes in a kd-tree, where H is the height
of the tree. Note that each reading of a visited tree node may take multiple memory
transactions to obtain the entire information package for the node, because each GPU
memory transaction has a limited size. Also, the threads for different rays may follow
different sequences of visited tree nodes which can result in execution divergence.
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We propose a new spatial decomposition based data structure, called Shell, which
completely eliminates hierarchical search, hence leading to an efficient solution for 3D
curve traversal on GPU. Shell provides a neighboring region locating mechanism based
on table lookup techniques to replace hierarchical search and find the next region for
any traversing ray, allowing the ray to directly access the next region.

Generally speaking, given the set of decomposed 3D regions in a hierarchical struc-
ture (say, a kd-tree), Shell focuses on the neighboring relationship among the regions
for all leaf tree nodes (i.e., leaf regions). For each leaf region R, the information of its
neighboring leaf regions is captured in Shell by a geometric structure called arrange-
ments, with one arrangement per boundary face of R. An arrangement partitions a face
F of R into a set of 2D regions called cells, such that each cell C covers an area of
F touching a neighboring leaf region R′ of R and contains information of R′. When a
ray exits R by crossing F in C, it acquires the neighboring region information of R′ by
accessing C. The table lookup scheme in Shell is crucial for quickly finding C without
tree searches and other performance bottlenecks.

There are two key factors in designing the table lookup schemes: the efficiency of cell
locating mechanism (for performance) and the size of lookup table (for memory usage).
Both factors are affected by the partition schemes for generating the arrangements. We
seek to balance the ray traversal performance with good memory usage in Shell, and
present a set of partition schemes, including (from simple to sophisticated) uniform
grids, multi-level uniform grids, and compressed non-uniform grids, to deal with dif-
ferent neighboring region settings. Each such scheme can be viewed as an extension
of the simpler ones for obtaining a good trade-off between ray traversal performance
and memory usage for a more complicated neighboring region setting. In many appli-
cations, uniform grids are provided in the scenes, such as the CT images in radiation
dose calculation and the data volumes of smog animation in volume rendering.

Given a geometric scene with N objects, suppose a kd-tree decomposition partitions
it into M leaf regions with a tree height of O(logM) using O(M +N) memory. A ray
traversal in such a kd-tree takes O(logM) search steps (i.e., the number of visited tree
nodes or memory transactions involved) each time a ray crosses a region boundary. In
comparison, using Shell, only one step (or O(1) memory transactions) is needed. The
Shell memory usage is O(M + N + U), where U is the total number of cells in the
arrangements for all leaf regions. Using judicious partition and compression schemes,
the O(M + N + U) memory bound of Shell can be made in practice comparable to
the O(M + N) memory bound of the kd-tree. Since many applications use massive
numbers of traversing rays each of which can cross many regions in the scenes, reducing
the memory transactions from O(logM) to O(1) per region crossing for each ray on
GPU can be significant.

We implemented our Shell data structure based on kd-tree decomposition with all
our arrangement schemes. Our experiments were conducted on ray traversals in several
benchmark geometric scenes used in graphics rendering. The results show that our Shell
approach outperforms the fastest known kd-tree searching ray traversal approaches on
GPU by over 2X to 5X. Although ray traversals, kd-tree, and GPU are used to illus-
trate our method in this paper, our solutions can be easily extended for traversing other
curves, using different spatial decompositions, and on other many-core architectures.
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2 Ray Traversal Using Kd-tree Decomposition

Given a spatially decomposed scene, we can use a dual graph G to represent all leaf
regions, as follows: Each vertex in G corresponds to exactly one leaf region, and two
vertices are connected by an edge in G if and only if the two corresponding regions
share any common boundary portion. With this graph model, the ray traversal problem
for a ray r is to find a path (i.e., a sequence of vertices) inG determined by the trajectory
of r (i.e., the sequence of regions intersected by r in the order of the corresponding
vertices on the path). To obtain such a path in G, a key issue, which we call the next-
region issue, is, at each vertex v (for a region Rv) of the path, to find the next vertex v′

(for a regionRv′ ) on the path, i.e., after regionRv , the ray r enters the next region Rv′ .
This issue can be resolved by using the geometric location information of r traversing
in Rv and the neighboring leaf regions of Rv. In implementation, resolving this issue
means to map a point on a boundary face of Rv (from which r exits Rv) to a memory
address (which stores the information of the neighboring region Rv′ traversed next by
r). The efficiency of resolving the next-region issue is an essential task for ray traversal.

Since a kd-tree organizes the leaf regions in a tree structure, hierarchical search is the
basic process for solving the next-region issue. However, the internal nodes accessed
in the hierarchical search impacts ray traversal performance by incurring considerable
memory transactions and divergent branches. Although considered as the most efficient
kd-tree searching ray traversal algorithms on GPU, PD-SS and kd-rope inherit the hi-
erarchical search mechanism from the kd-tree structure to find neighboring regions. In
the worst case, both algorithms still visit O(H) nodes to find a neighboring region,
where H is the height of the kd-tree. Further, accessing each node takes multiple mem-
ory transactions, which is a considerable overhead. Moreover, the numbers of accessed
nodes between different rays can be quite different, which provides the rays with dif-
ferent workloads. In parallel execution on GPU, the workload variance of the rays can
cause execution divergence and hence deteriorate the ray traversal performance.

3 The Shell Data Structure

We propose the Shell data structure for directly finding the next neighboring regions
without any tree search. By avoiding hierarchical search, Shell reduces both memory
transactions and execution divergence. Given a kd-tree decomposed scene, based on
our dual graph model, Shell builds on the leaf regions by putting a geometric structure
(i.e., the arrangement) on the boundary of each leaf region R (intuitively, the “Shell”
of region R), in order to capture the information of all neighboring leaf regions of R.
When a ray r hits a boundary face F of R to exit fromR, the arrangement for F allows
r to find quickly the neighboring region of R to traverse next.

The arrangements are the key components of Shell, which essentially provide table
lookup schemes for mapping the geometric information of a ray r traversing in a re-
gion R and the neighboring regions R′s of R to a GPU memory address storing the
information of the R′ to be traversed next by r. For each face F of every leaf region
R, an arrangement A(F ) partitions F into a set of 2D areas (i.e., the cells), such that
each cell touches only one neighboring region of R on F . All cells of A(F ) are orga-
nized by a specific data structure such that given any point p on F , the cell of A(F )
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Fig. 1. (a) A 2D scene with 8 regions. (b) A uniform-grid based Shell structure for the scene in
(a). (c) The Shell-Region for region B and one of its cells. (d) The memory layout of Shell.

containing p can be found quickly. As a table lookup scheme, the cells of A(F ) form a
data table, and each cell gives a pointer to its corresponding neighboring region of R.
Ideally, the following features are desired from good arrangements: (1) An arbitrary ray
r can quickly find the cell C containing its hit point on a face of R (say, with only few
memory transactions), and (2) the memory requirement for storing all cells is not too
high. There is a trade-off between these two features. Depending on different settings of
neighboring regions, we propose a set of partition and compression schemes for build-
ing arrangements to achieve good performance with respect to ray traversal speed and
memory usage of Shell. Since the GPU memory architecture prefers simple memory
layout for efficient addressing, we choose arrays as the main data structure in GPU for
storing arrangements based on all our partition schemes.

Figure 1(b) illustrates the Shell structure based on the spatial decomposition in Fig-
ure 1(a). Here, to illustrate the idea of a partition scheme for arrangements of neighbor-
ing regions, we use a simple uniform grid as example to partition all region boundaries
in the scene. Each leaf region is represented by a Shell-Region (SR) (e.g., see a Shell-
Region in Figure 1(c)). Every Shell-Region uses an arrangement to partition each of
its boundary faces into a set of cells (e.g., the shaded small boxes around the bound-
ary of the Shell-Region in Figure 1(c)). Each cell covers an area on its boundary face
and contains a pointer to a neighboring Shell-Region touching that cell on the face. The
memory layout of Shell, shown in Figure 1(d), consists of an array of all Shell-Regions
and an array of all cells stored in the GPU main memory. The cells of the same boundary
face of a Shell-Region are all allocated as a group in consecutive memory space, and the
memory address of the first cell in the group is stored in the corresponding Shell-Region
structure. Thus, any cell can be addressed by computing its memory offset from the first
cell in the group. When a ray r leaves a region through a face F , the neighboring region
entered next by r is found by accessing the cell in which r crosses F .

3.1 The Structure of an Individual Shell-Region

A Shell-Region contains information of a 3D leaf region and the arrangements of its six
2D boundary faces. To ensure that a Shell-Region can be quickly loaded, its memory
requirement should ideally be no bigger than the size of a single memory transaction
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in the hardware architecture (e.g., 128 consecutive bytes on NVIDIA GTX570 GPU).
Essentially, the leaf region information of a Shell-RegionR is reserved from the spatial
decomposition, which consists of its geometric location and size, as well as a pointer to
its associated scene objects. An arrangement consists of a geometric partition scheme
subdividing a region face into a set of cells, and a data structure mapping the loca-
tions to the memory addresses of the cells. The partition scheme determines the speed
and memory usage of a ray traversal algorithm using Shell. To achieve a good balance
between these two factors, we propose a series of partition schemes, including (from
simple to sophisticated) uniform grid, non-uniform grid, and grid compression. Each
scheme is built on top of the simpler ones and reduces memory usage by using slightly
more computational operations for locating cells (but not more memory transactions),
to handle a more complicated neighboring region setting.

Uniform Grid Scheme. A uniform grid partitions each region face into a matrix of
cells of the same size. This arrangement easily maps the geometric locations to the
memory addresses of the cells. Each cell contains a pointer to the neighboring region
touching this cell. Using a uniform grid for all region boundaries is the simplest ap-
proach to build a Shell structure (see Figure 1(b)). In many applications (e.g., radiation
dose calculation and volume rendering), the uniform grid partition is provided with
scenes, such as CT images and smog volumes. The uniform grid scheme provides a fast
cell-accessing mechanism, but it can use a large amount of memory. Therefore, it is
good when each region’s face has a simple distribution of neighboring regions (say, for
scenes containing well-shaped objects with a relatively regular distribution). However,
for a complicated scene, the region faces often have a large number of neighbors with
non-regular distributions. The uniform grid has to choose the finest resolution of the
neighbors on all region faces as the cell size, and significantly increases the grid size.

To address this issue, we can use multiple uniform grids with different levels of res-
olutions to partition each region faces regarding with its neighboring region settings.
This is called the multi-level uniform grid scheme, which provides some flexibility to
the region faces with simple neighbor distributions so that they can use coarse grid
resolutions and thus store fewer cells. For the region faces with complicated neighbor
distributions, we still must use uniform cells of sufficiently fine resolutions. The resolu-
tion of each grid used in the multi-level uniform grid scheme needs to be stored for each
face of every Shell-Region, which is used to calculate the cell hit by a ray on the face
and the memory address of the corresponding cell. Comparing with the single uniform
grid, the multi-level grid scheme can reduce the number of cells on the region faces and
hence save memory space, with a very small time overhead.

Non-uniform Grid Scheme. The memory space requirement of the uniform grid often
prevents its usage for complicated neighboring region settings. Observe that multiple
cells in a uniform grid of a boundary face often touch the same neighboring region
and hence store multiple copies of the same corresponding Shell-Region. We propose
a non-uniform grid scheme which aims to merge cells of a uniform size on each face
sharing the same neighboring region into a larger cell to save memory space.

For a boundary face F , a non-uniform grid is built on the partition of a uniform
grid. Figure 2(a) shows a boundary face (for a 3D scene) with 16 neighboring regions
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Fig. 2. (a) A non-uniform grid for a boundary face F with 16 neighboring regions. (b) The de-
coding procedure for converting the cell indices from a uniform grid to a non-uniform grid.

(marked by heavy lines) and originally partitioned into a 21× 14 uniform grid. We use
the set of vertical or horizontal lines along the projected boundaries of the neighboring
regions on F (e.g., the solid bold red boxes in Figure 2(a)) to partition F . Note that only
a subset of the lines for the uniform grid (e.g., the solid green lines in Figure 2(a)) is
actually aligned with such projected region boundaries on F . A non-uniform grid uses
those aligned lines to form a new 8 × 7 grid partition, whose cells (the boxes bounded
by solid green lines in Figure 2(a)) may cover multiple cells from the uniform grid.

A decoding mechanism is needed to transit the indices from the uniform grid to
the non-uniform grid, so that any cell of the non-uniform grid (hit by a ray) can be
located. To support this mechanism, the partition lines in each axis of the uniform grid
are indexed by a bit sequence, where each bit is set as 1 if the corresponding line is used
in the non-uniform grid partition and 0 otherwise. Every bit sequence is then stored in
the integer format, called a coordinate integer, in the Shell-Region (e.g., Coord.x in
Figure 2(a)). During ray traversal, suppose a ray r exits the Shell-Region through a
cell C(i, j) in the uniform grid for a face F . Then the following is done: (1) The two
coordinate integersCoord.x andCoord.y forF are obtained; (2) usingCoord.x (resp.,
Coord.y), find the number of 1’s in the bit sequence of Coord.x (resp., Coord.y) from
its left end up to position i (resp., j), denoted by i′ (resp., j′). Then cell C′(i′, j′) is the
one in the non-uniform grid of F hit by the ray r. To avoid using any branch operations
(which may cause execution divergence), we design a short procedure to accomplish
Step (2) (see Figure 2(b)). Note that given the two coordinate integers, the decoding
process uses no memory transaction.

Grid Compression Scheme. Even with a non-uniform grid scheme, the Shell structure
still tends to use more memory than a kd-tree structure. A grid is commonly represented
as a matrix, each its element storing a value. On a face F with K neighboring regions
partitioned into a grid of size m×n, its matrix representation stores m×n copies of K
pointers (each for a neighboring region of F ). To reduce such duplication, we employ a
grid compression scheme similar to the sparse matrix compression which improves the
memory usage for F from O(m× n+K) to O(m+ n+K) = O(m+ n).
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Fig. 3. (a) A compressed non-uniform grid for the boundary face F in Figure 2(a). (b) The de-
coding procedure for obtaining the pointer to the neighboring Shell-Region touching a given cell.

Note that for any boundary face F , the projected shape of each neighboring region
on F is an axis-parallel rectangle. Consider a non-uniform grid Gn on F . The cells in
each row or column of Gn contain pointers to a set of neighboring regions touching
F . Observe that for any row Ri and any column Cj of Gn, the neighboring region
R′ pointed to by the cell C(i, j) in Gn appears in both the set of neighboring regions
pointed to by the cells of Ri and the set of neighboring regions pointed to by the cells
of Cj ; further, R′ is the only neighboring region appearing in both these two sets (this
follows from the rectangular shapes of the projected neighboring regions on F ). Based
on this observation, we use the following grid compression scheme. (1) Store pointers
to all neighboring Shell-Regions of F in an indexed array AF . (2) For each row (or
column) of Gn, build a bit sequence as follows: the sequence has K bits, one for each
neighboring Shell-Region of F , in their order as stored in the array AF ; each bit is
set as 1 if and only if the corresponding neighboring Shell-Region appears in that row
(or column) of Gn. Every such bit sequence is stored as an integer, called a neighbor
integer. Thus, we have an array of pointers to the set of K neighboring Shell-Regions
of F , and two sequences of neighbor integers (one for the rows and one for the columns
of Gn). Since there are K neighboring Shell-Regions touching F and Gn has m rows
and n columns on F , the memory usage of the above grid compression scheme for F
is clearly O(m+ n+K). (Here, we assume that the number K of neighboring regions
touching F is not too big, which is usually the case in practice.)

For a ray r hitting a point on F to exit, we use the following decoding process to find
the next Shell-Region traversed by r: (1) Compute the cell indices in the uniform grid
for the hit point of r on F ; (2) find the indices (for a row Ri and a column Cj ) in the
non-uniform grid Gn; (3) take the neighbor integers for Ri and Cj , and perform a logic
AND operation on them to identify the unique neighboring Shell-Region pointed to by
the cells in both Ri and Cj . Note that both the uniform grid and non-uniform grid of F
involved in our decoding process above are only used conceptually, i.e., they are only
concepts for helping our computation but are not actual structures explicitly maintained
in Shell. Figure 3 illustrates the grid compression scheme and decoding process.
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3.2 GPU Memory Layout and Memory Bound of Shell

Since the GPU memory architecture prefers simple memory layout schemes in order to
implement easy and efficient addressing, we use arrays to store the Shell data structure.
The Shell memory layout consists of an array of Shell-Regions and an array of cells,
addressed by their indices (e.g., see Figure 1(d)). Essentially, each Shell-Region is a
128 bytes aligned memory block and each cell stores a pointer point to a Shell-Region.

Suppose for a 3D scene with N objects (for specific applications) represented by
Shell, we need to store M Shell-Regions and U cells besides the N objects, where
M is the number of leaf regions in the spatially decomposed scene and U is the total
number of cells. Then clearly Shell uses O(M + N + U) memory. Note that in the
non-uniform grid compression scheme, the number of cells on each boundary face is
equal to the number of its neighboring regions, and the total size of the three arrays
(for neighbor integers of the rows and columns of a non-uniform grid and for pointers
to the neighboring Shell-Regions) is proportional to the total size of these neighboring
regions. Thus, U is proportional to the number of neighboring leaf region pairs in the
spatial decomposition (i.e., the number of edges in the dual graph G).

4 Ray Traversal Based on Shell

In this section, we show how to use the Shell data structure effectively in ray traversal,
which is to efficiently decode the information of Shell so as to obtain the memory
address of the neighboring region R′ of R, when a ray r is exiting region R.

In the Shell data structure, the cell containing the hit point of a ray r on a boundary
face F of a region R stores a pointer to (i.e., the memory address of) the neighboring
region of R touching that cell. We call this cell a target cell and denote it by cellt. Thus,
locating the next region entered by r can be accomplished in three steps:

(I) Find the hit point p of r on F ;
(II) determine the memory location of the target cell cellt containing p;
(III) access cellt to obtain the address of the Shell-Region for the next traversing re-

gion of r. Step (I) is taken by all ray traversal algorithms regardless of the data structure
used and Step (III) is trivial. Below, we elaborate how Step (II) is done.

The cells of a boundary face F , which we call a cell group, are stored consecutively
in the memory as part of an array. Hence, the memory location of cellt can be computed
based on the memory address of the cell group for face F (denoted as Mbase) and the
offset of cellt from the first element in the cell group. Since Mbase has already been
read into the on-chip memory upon r entering the current region, the main hurdle is
to determine the offset. The process of computing the offset is equivalent to decoding
the Shell structure associated with the arrangement on F . The actual decoding method
depends on the specific partition and compression schemes used for F . Our decoding
solutions for two cases (the uncompressed uniform grid scheme and compressed non-
uniform grid scheme) are given in Algorithm 1 and 2. Decoding methods for other cases
can be easily derived from these two algorithms.

In an ideal case, locating the next traversing region using the Shell data structure
takes only two memory transactions: one for accessing a Shell-Region and one for a
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Algorithm 1. Locating the next traversing region using a uniform grid
1: Input: ray R, boundary face F , Shell-Region SR.
2: Output: target cell cellt.
3: compute the point P where R intersects F and exits from SR;
4: obtain the uniform grid G for F ;
5: Mbase = the address of the cell group for F ;
6: compute the location index (i, j) of the cell in G containing P ;
7: Moff = i× (row size of G) + j;
8: Maddr = Mbase +Moff ; /* Compute the memory address Maddr for the target cell. */
9: cellt = cell array[Maddr]; /* Load and return the target cell*/

Algorithm 2. Locating the next traversing region using a compressed non-uniform grid
1: same as Line 1-4 in Algorithm 1.
2: compute the location index (i, j) of the cell in G containing P ;
3: obtain the non-uniform grid Gn for F , with Coord.x and Coord.y;
4: compute index (i′, j′) by calling Procedure 1 in Figure 2(b); /* Decode non-uniform grid. */

5: compute cellt by calling Procedure 2 in Figure 3(b); /* Decode compressed grid. */

cell (Line 9 of Algorithm 1, or Line 5 of Procedure 2 (see Figure 2(b))). But, the de-
coding for the more sophisticate schemes may need more than two memory requests.
For example, the compressed non-uniform grid scheme incurs three additional memory
requests: one access to the grid coordinates (Line 7 of Algorithm 2) and two accesses
for decoding the target cell (Lines 1–2 of Procedure 2 (see Figure 2(b)) ). By properly
aligning the memory layout of the Shell-Region structure and the coordinate integers
for the non-uniform grid or the neighbor integers for a compressed grid, we can fulfill
the five sequentially issued memory accesses by two memory transactions with cache.

The combined effort above guarantees that only two memory transactions are used
for locating the next traversing region. For comparison, consider a geometric scene
decomposed into M regions and a ray traversing through K leaf regions. A kd-tree ray
traversal algorithm accesses O(K × logM) tree nodes; each access takes 2–4 memory
transactions depending on the implementation. With the Shell ray traversal algorithm,
the ray accesses K Shell-Regions; each access needs only two memory transactions.

5 Evaluation

To evaluate the proposed Shell approach for ray traversal on GPU, we implemented
our Shell data structure and Shell based ray traversal algorithm. We also implemented
two state-of-the-art kd-tree searching ray traversal algorithms: PD-SS and kd-rope++.
For PD-SS, although its performance is slightly lower comparing with kd-rope, it takes
much less memory space. To ensure the quality of our PD-SS and kd-rope implementa-
tions, we tested them on graphics ray tracing applications and achieved statistics match-
ing with those published in related works (e.g., [4,11]). The hardware platform used
in our evaluation is an NVIDIA GTX570 graphics card (480 cores, 1.6GHz core fre-
quency). Two different Shell data structures are built on the kd-tree decomposition of
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Fig. 4. The ray traversal performance evaluation for the PD-SS, kd-rope, and Shell based algo-
rithms on the scenes. (a) Execution time. (b) The total numbers of nodes accessed by all rays. (c)
The number of divergent branches.

each scene. Shell-1 aims to minimize the memory usage by adopting sophisticated ar-
rangements if they can save memory space. Shell-2 tends to achieve a good balance
between memory usage and ray traversal performance, which uses the sophisticated
schemes only if they reduce a certain portion of memory usage (e.g., more than 20%).

Figure 4 shows the statistics of the ray traversal execution using PD-SS, kd-rope,
and our Shell based algorithms. All data are obtained by traversing a set of rays in the
process of rendering a 1024 × 1024 image for the scenes. Figure 4(a) shows that a
speedup between 2.6X–5.1X can be achieved by using Shell comparing to PD-SS and
2.2X–4.3X to kd-rope. Furthermore, comparing the performance of Shell-1 and Shell-2,
we see that a larger Shell data structure tends to lead to a faster ray traversal speed.

The Shell based ray traversal algorithm gains its performance advantage through
removing many expensive memory accesses to internal nodes in the kd-tree searching
methods. As demonstrated in Figure 4(b), Shell based ray traversal accesses on average
4.2X and 3.5X fewer nodes than PD-SS and kd-rope, respectively. Although the kd-rope
approach uses neighbor links to reduce accessing internal nodes, it still needs to visit a
number of internal nodes when a boundary face has multiple neighboring regions.

Another factor contributing to the performance improvement of the Shell based ray
traversal is that Shell reduces a significant amount of execution divergence. Figure 4(c)
summarizes the number of divergent branches for each algorithm, which shows Shell
based ray traversal incurs on average 70% less divergent branches. But, Shell base ray
traversal cannot completely eliminate execution divergence due to the different parti-
tion schemes involved. The more sophisticated schemes a Shell structure uses (e.g.,
compressed non-uniform grid), the more divergent branches it may have. This is shown
by comparing the Shell-1 and Shell-2 results in Figure 4(c).

6 Extending Shell for Other Applications

Besides graphics ray tracing implemented in our experiments, the Shell data structure
can also be applied to many other applications such as radiation dose calculation in
radiation cancer treatment, where a uniform grid is “naturally” available and efficient
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traversal algorithms for computing the trajectories of huge numbers of radiation rays
are needed. With some simple modifications, our Shell data structure and Shell based
ray traversal algorithm as presented in this paper can be extended to tracing other types
of 3D curves, such as line segments or general algebraic curves. Besides the GPU ar-
chitecture discussed in this paper, the Shell based approach can also be applied to other
types of shared memory many-core processors such as those using MIMD architecture,
for reducing off-chip memory transactions in 3D curve traversal.1
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Gillé, Marc 481
Golovach, Petr A. 493
Grandoni, Fabrizio 361
Grohe, Martin 145
Grossi, Roberto 553
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