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Preface

These proceedings contain all contributed papers presented at the 21st
Annual European Symposium on Algorithms (ESA 2013), held in Sophia An-
tipolis, France, during September 2—4, 2013. ESA 2013 was organized as part
of ALGO 2013, which also included the Workshop on Algorithms in Bioin-
formatics (WABI), the International Symposium on Parameterized and Exact
Computation (IPEC), the Workshop on Approximation and Online Algorithms
(WAOA), the International Symposium on Algorithms and Experiments for Sen-
sor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS),
the Workshop on Algorithmic Approaches for Transportation Modelling, Op-
timization, and Systems (ATMOS), and the Workshop on Massive Data Al-
gorithms (MASSIVE). The previous symposia were held in Ljubljana (2012),
Saarbriicken (2011), Liverpool (2010), Copenhagen (2009), Karlsruhe (2008),
Eilat (2007), Ziirich (2006), Palma de Mallorca (2005), Bergen (2004), Budapest
(2003), Rome (2002), Aarhus (2001), Saarbriicken (2000), Prague (1999), Venice
(1998), Graz (1997), Barcelona (1996), Corfu (1995), Utrecht (1994), and Bad
Honnef (1993).

The ESA symposia are devoted to fostering and disseminating the results
of high-quality research on the design and evaluation of algorithms and data
structures. The forum seeks original algorithmic contributions for problems with
relevant theoretical and/or practical applications and aims at bringing together
researchers in the computer science and operations research communities. Papers
were solicited in all areas of algorithmic research, both theoretical and experi-
mental, and were evaluated by two Program Committees (PC). The PC of Track
A (Design and Analysis) selected contributions with a strong emphasis on the
theoretical analysis of algorithms. The PC of Track B (Engineering and Appli-
cations) evaluated papers reporting on the results of experimental evaluations
and on algorithm engineering contributions for interesting applications.

In response to a call for papers, the PCs received 303 submissions from 46
countries, 229 for Track A and 74 for Track B. All submissions were reviewed by
at least three PC members and were carefully evaluated on quality, originality,
and relevance to the conference. Overall, the PCs wrote more than 900 reviews
with the help of more than 450 external reviewers, who also participated in
an extensive electronic discussion that led the committees of the two tracks to
select 69 papers (53 out of 229 in Track A and 16 out of 74 in Track B), yielding
an acceptance rate of about 23%. In addition to the accepted contributions,
the symposium featured two invited lectures by Hannah Bast (University of
Freiburg, Germany) and by Claire Mathieu (CNRS, Ecole Normale Supérieure,
France and Brown University, USA).

The European Association for Theoretical Computer Science (EATCS) spon-
sored a best paper award and a best student paper award. The former award was
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shared by two papers: one by Rajesh Chitnis, Laszlé Egri and Daniél Marx for
their contribution on “List H-Coloring a Graph by Removing Few Vertices” and
the other by Sander P.A. Alewijnse, Quirijn W. Bouts, Alex P. ten Brink and
Kevin Buchin for their contribution entitled “Computing the Greedy Spanner
in Linear Space.” The best student paper prize was awarded to Radu Curtica-
pean and Marvin Kiinnemann for their contribution entitled “A Quantization
Framework for Smoothed Analysis on Euclidean Optimization Problems.” Our
warmest congratulations to all of them for these achievements!

We wish to thank all the authors who submitted papers for consideration, the
invited speakers, the members of the PCs for their hard work, as well as the ex-
ternal reviewers who assisted the PCs in the evaluation process. We are indebted
to the Organizing Committee members, who helped with the local organization
of the conference. We hope that the readers will enjoy the papers published in
this volume, sparking their intellectual curiosity and providing inspiration for
their work.

June 2013 Hans L. Bodlaender
Giuseppe F. Italiano
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Abstract. We study a new robust path problem, the Online Replace-
ment Path problem (ORP). Consider the problem of routing a physical
package through a faulty network G = (V, E) from a source s € V to a
destination ¢t € V as quickly as possible. An adversary, whose objective
is to maximize the latter routing time, can choose to remove a single
edge in the network. In one setup, the identity of the edge is revealed
to the routing mechanism (RM) while the package is in s. In this setup
the best strategy is to route the package along the shortest path in the
remaining network. The payoff maximization problem for the adversary
becomes the Most Vital Arc problem (MVA), which amounts to choosing
the edge in the network whose removal results in a maximal increase
of the s-t distance. However, the assumption that the RM is informed
about the failed edge when standing at s is unrealistic in many applica-
tions, in which failures occur online, and, in particular, after the routing
has started. We therefore consider the setup in which the adversary can
reveal the identity of the failed edge just before the RM attempts to use
this edge, thus forcing it to use a different route to ¢, starting from the
current node. The problem of choosing the nominal path minimizing the
worst case arrival time at ¢ in this setup is ORP. We show that ORP
can be solved in polynomial time and study other models naturally pro-
viding middle grounds between MVA and ORP. Our results show that
ORP comprises a highly flexible and tractable framework for dealing
with robustness issues in the design of RM-s.

1 Introduction

Modeling the effects of limited reliability of networks in modern routing schemes
is important in many applications. It is often unrealistic to assume that the
nominal network known at the stage of decision making will be available in its
entirety at the stage of solution implementation. Several research directions have
emerged as a result. The main paradigm in most works is to obtain a certain
‘fault-tolerant’ or ‘redundant’ solution, which takes into account a certain set of
likely network realizations at the implementation phase.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 1-[[Z] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Shortest paths are often used in order to minimize routing time. In faulty
network, however, simply taking the shortest path might lead to very large delays
due to link failures. Two related problems that were extensively studied in the
literature are the Most Vital Arc problem (MVA) and the Replacement Path
problem (RP). MVA asks given a graph G = (V, E) and two nodes s,t € V to
find the edge e € E whose removal results in the maximal increase in the s-t
distance in G. The input to RP additionally includes a shortest path P, and
the goal is to find for every e € P a shortest s-t path P, avoiding e. In the
context, of robust network design both MVA and RP should be interpreted as
problems in which the RM is informed about the failed edge in advance, namely
when standing at s. This assumption is unrealistic in many situations, in which
failures occur online, and in particular, after the routing has started. Examples
of such situations range from accidents and traffic jams in road network to truly
adversarial setups, in which the adversary is motivated to conceal the failure for
as long as possible.

In this paper we study the Online Replacement Path problem (ORP), which
is motivated by such situations. We delay the formal definition of the problem
to Section [3] and instead give an intuitive description. The basic assumption in
ORP is that the materialized scenario is revealed to the RM ‘in the last minute’,
namely only when the package reaches one of the endpoints of the failed edge
and attempts to cross it. From this point on the package is routed through a
detour, namely a path from the current node to the destination that avoids the
failed edge. The robust length of a path is the maximum total travel time over
all possible failure scenarios, and the goal is to find a path with minimum robust
length.

ORP models online failure scenarios that occur in many situations, some of
which we described before. In other applications it is only necessary to route
a certain object within a certain time, called a deadline. As long as the object
reaches its destination before the deadline, no penalty is incurred. On the other
hand, if the deadline is not met, a large penalty is due. An example of such an
application is organ transportation for transplants (see e.g. Moreno, Valls and
Ribes [14]), in which it is critical to deliver a certain organ before the scheduled
time for the surgery. In this application it does not matter how early the organ
arrives at the destination, as long as it arrives in time. In such applications it
is often too risky to take an unreliable shortest path, which admits only long
detours in some scenarios, whereas a slightly longer path with reasonably short
detours meets the deadline in every scenario. Thus, this domain of applications
can also benefit from ORP.

Our first result is a polynomial algorithm for ORP. Concretely, we show that
optimal u-t path can be found in time O(m + nlogn) in undirected graphs and
O(nm +n?logn) in directed graphs for all sources « € V and a single destina-
tion t. We prove various properties of ORP on the way to the aforementioned
algorithms. In particular, we show the existence of a tree of optimal paths, and
that the robust length is monotonic with respect to taking subpaths of optimal
paths. These properties lead to a natural label-setting algorithm.
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In Section @l we study Bi-objective ORP, the optimization problem of finding
a shortest path in the graph with robust length at most a given bound B. We
show that this problem admits an algorithm with running time O(m+nlogn) in
undirected graphs (and O(mn+n?logn) in directed graphs). We also show that
the Pareto front of the latter bi-objective problem has linear size in the size of the
graph, and provide a simple algorithm to compute it in time O(m? + mnlogn),
for both directed and undirected graphs. This is of course extremely nice in
practical applications, as the decision maker can efficiently plot the tradeoff
between the nominal and the robust length of Pareto-efficient solutions.

In Section Bl and Section [ we study two models that provide a middle ground
between MVA and ORP. In Section B we study the k-Hop ORP problem. The
RM is now informed about the failed edge e as soon as it reaches a node that is
k hops away from e on the nominal path. While 0-Hop ORP is simply ORP, one
easily sees that (n — 1)-Hop ORP is equivalent to MVA. For k € {1,--- ,n — 2}
we obtain an interesting continuum of problems between ORP and MVA. We
show that some of the nice properties that hold for ORP no longer hold for k-
Hop ORP. In particular, while a tree of optimal paths always exists, the robust
length of a subpath in this tree can be larger than the robust length of the
original path. Nevertheless, we obtain a label-setting algorithm for this problem,
whose running time is identical to that of our algorithms for ORP for both the
directed and the undirected case (and so is independent from k). That is very
interesting because, to the contrary, this is not the case with the variant where
the RM is informed about the failed edge e as soon as it reaches a node that is
k hops away from e in the graph, and not just on the nominal path. While this
variant is equivalent to ORP for k£ = 0, we show that, already with £ = 1, it
is NP-hard to approximate within a factor of 3 — ¢ for undirected graphs (and
provide a simple algorithm meeting this factor), and it is strongly NP-hard to
decide if there exists a nominal path with finite robust length for directed graphs.

Finally, in Section [f] we study the ORP Game, a two players’ game related
to MVA and ORP. In this game a first player, the path builder, is interested in
arriving from s to t as quickly as possible. The second player, the interdictor,
tries to make the latter distance as long as possible by removing a single edge
from the graph. The strategies for the two players are the s-t paths, and the
edges e € F, respectively. One can see ORP and MVA as variants of the ORP
Game, in which strategies are not communicated simultaneously. We show that
the instances of the game which admit a pure Nash Equilibrium (NE) are exactly
those where the values of the optimal solutions to ORP and MVA are equal, and
build upon this fact to give an O(m + nlogn)-time algorithm that finds it in
undirected graphs (and in time O(mn + n?logn)-time in directed graphs), or
reports that no pure NE exists.

Finally, we developed a poly-time algorithm for the generalization of ORP
when some fixed number of edges can fail. However, even if more involved, the
algorithm goes along the same lines of that for the single-failure case, so we just
defer the details to the journal version of the paper, due to space considerations.

In the next section we review related work.
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2 Related Work

The Replacement Path (RP) problem was proposed by Nisan and Ronen [20]
in order to study a problem in auction theory, namely that of computing Vick-
rey prices. RP is also used as a subroutine for computing the k shortest paths
in a graph. The complexity of the RP problem for undirected graphs is well
understood. The first paper to study this problem is due to Malik, Mittal and
Gupta [13], who give a simple O(m+ nlogn) algorithm. A mistake in this paper
was later corrected by Bar-Noy, Khuller and Schieber [4]. As a bi-product, the
latter result implies an O(m + nlogn)-time algorithm for the Most Vital Arc
(MVA) problem. This running time is asymptotically the same as a single source
shortest path computation. Nardelli, Proietti and Widmayer [18] later extended
the result to account for node failures. In [15] the same authors gave an algorithm
that finds a detour-critical edge on a shortest path. The complexity for MVA was
later improved by Nardelli, Proietti and Widmayer [I7] to O(ma(m,n)), where
a(-,-) is the Inverse Ackermann function. The only general nontrivial algorithm
for RP in directed graphs is due to Gotthilf and Lewenstein [10] that gave an
O(mn + n?loglogn)-time algorithm. Faster algorithms for unweighted graphs
(Roditty and Zwick [23]) and planar graphs (Emek, Peleg and Roditty [8], Klein,
Mozes and Weimann [I2] and Wulff-Nilsen [26]) were developed. The problem
of approximating replacement paths was considered by Roditty [22] and Bern-
stein [6]. Results for bounded edge lengths were given by various authors. We
refer to the paper of Vassilevska Williams [25] and references therein for details.

Some related work was carried out in the context of routing policies (Papadim-
itriou and Yannakakis [21]), the most prominent example being the Canadian
Traveler Problem (Bar-Noy and Schieber [5], Nikolova and Karger [19]). In par-
ticular, in [5] the authors consider a problem that can be seen as a policy-based
variant of the problem we study in Section [Bl They first claim, without proof,
that their problem reduces indeed to the latter one, and then claim some results
that are close to those we present in Section Bl However, as we discuss later,
we believe that these results are not adequately supported in [5] by rigorous
arguments.

Another problem which bears resemblance to ORP is the Stochastic Shortest
Path with Recourse problem (SSPR), studied by Andreatta and Romeo [3]. This
problem can be seen as the stochastic analogue of ORP. Finally, we briefly re-
view some related work on robust counterparts of the shortest path problem. The
shortest path problem with cost uncertainty was studied by Yu and Yang [27],
who consider several models for the scenario set. These results were later ex-
tended by Aissi, Bazgan and Vanderpooten [2]. These works also considered a
two-stage min-max regret criterion. Dhamdhere, Goyal, Ravi and Singh [7] de-
veloped the demand-robust model and gave an approximation algorithm for the
shortest path problem. A two-stage feasibility counterpart of the shortest path
problem was addressed by Adjiashvili and Zenklusen [1].
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3 An Algorithm for ORP

In this section we develop an algorithm for ORP. Let us establish some notation
first. We are given an edge-weighted graph G = (V, E,{), a source s € V and
destination ¢ € V, and we always assume that the edge weights ¢ are nonneg-
ative. Unless otherwise specified, we assume that G is indifferently directed or
undirected. Let n and m be the number of nodes and edges of the input graph,
respectively. For two nodes u,v € V let P, , be the set of simple u-v paths in
G. Let N(u) be the set of neighbors of u in G. For a set of edges A C E let
L(A) = > .cal(e). For an edge e € E and a set of edges FF C F, let G — e
and G — F be the graph obtained by removing the edge e and the edges in F,
respectively. For a set of edges A C E let V(A) be the set of nodes incident
to edges in A. Paths are always represented as sets of edges, while walks are
represented as sequences of nodes. For two walks @1, Q2 with the property that
last node of Q is the first node of QY2 we let Q1 ® @2 be their concatenation.
For a path P containing nodes u and v let P[u,v] be the subpath of P from u
to v. For an edge e € E and u € V let ;¢ be some fixed shortest u-t path in
G —e and let ;¢ = £(Q,¢). We use the convention that Q¢ =0 and 7 ¢ = 0o
if w and t are in different connected components in G — e.

It is convenient to define the detour P~¢ of a path P € P, and an edge
e = uu' € E to be the walk Plv, u]®Q;"" if uu’ € P (where u is the node closer
to v on P), and P, otherwise. Note that we have ¢(P~¢) = ((P[v,u]) 4+ m **
and £(P~¢) = {(P) in the former and the latter case, respectively.

Definition 1. Given a node v € V, the robust length of the v-t path P is

Val(P) = rerleaE>(€(P ).
ORP is to find for every v € V an optimal nominal path, namely a path P
minimizing Val(P) over all paths P € Py .

Our algorithm uses a label-setting approach, analogous to reverse Dijkstra’s
algorithm for shortest paths. In every iteration, the algorithm updates certain
tentative labels for the nodes of the graph, and fixes a final label to a single
node u. This final label represents the connection cost of u by an optimal path
to t. For v € V we define the potential y(v) as the minimum of Val(P) over all
P € P, +. The robust length of a v-t path P is simply the maximal possible cost
incurred by following P until a certain node, and then taking the best possible
detour from that node to ¢t which avoids the next edge on the path. To avoid
confusion, we stress that in ORP we assume the existence of at most one failed
edge in the graph. Consider next a scenario in which an edge uu’ € P fails and
let w € V' be the node which is closer to v. Clearly, the best detour is a shortest
u-t path in the graph G — uu’. Note that both Val(P) and y(v) can attain the
value oo in case that the path P admits no detours in some scenario, and in
case all v-t paths are of this sort, respectively. Furthermore, nonnegativity of ¢
implies Val(P) > Val(P]v,t]), whenever v € V(P). We can prove the following
useful:
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Lemma 1. Let P, € P, and let v € N(u) be a node, not incident to P,. Then
Val(vu & P,) = max{{(vu) + Val(P,), m, ""}.

Our algorithm for ORP updates the potential on the nodes of the graph, using
the property established by the following lemma.

Lemma 2. Let U C V, with t € U, be the set of nodes for which the potential
1s known, and let vu be an edge such that:

vu € argmin  max{{(zw) + y(w), 7, **}. (1)
zweE:weU,z¢gU

Then Val(vu @ P,) = y(v) for any optimal nominal u-t path P,.

Lemma[2 provides the required equation for our label-setting algorithm, whose
statement is given as Algorithm [II The algorithm iteratively builds up a set
U, consisting of all nodes, for which the correct potential value was already
computed. The correctness of the algorithm is a direct consequence of Lemma 2l

Algorithm 1.

Compute 7, “? for each uv € E.
U=0; W=V; y#)=0; 3'(uy=o0oVueV -t
successor(u) = NIL Yu € V.
while U # V do
Find v = argmin,yy, y'(2).
U=U+u; W=W-u; yu)=y(u).
for all vu € E with v € W do
if 3/ (v) > max{l(vu) + y(u), 7, "} then
 (v) = max{€(vu) + y(u), 7 **).
successor(v) = u.

—_

We are ready to state the main result of this section. The running time is
obtained by a careful implementation that is presented in the proof. Our im-
plementation relies on an algorithm of Nardelli, Proietti and Widmayer [16] for
computing swap edges in graphs with respect to a shortest path tree. We note
that Bar-Noy and Schieber [5] sketch a similar algorithm with the same time
bound for a problem that can be seen as a policy-based variant of ORP. Their
result are stated without proof, and we are not aware of a proof that does not
build on the result of Nardelli, Proietti and Widmayer [I6], which appeared
afterwards.

Theorem 1. Given an instance of ORP the potential y and the corresponding
paths can be computed in time O(m+nlogn) in undirected graphs, and O(mn +
n?logn) in directed graphs.

We end this section with a simple graph-theoretical characterization of paths
with finite robust value. Let U? C V be the set of nodes in G that are 2-edge
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connected to ¢, i.e., all nodes u such that there are two edge-disjoint u-t paths
in G. Note that, following Theorem [2 if s and ¢ are in different components of
G[U?], there will be no path with finite robust value (and of course that happens
if and only if Algorithm [ returns y(s) = oo).

Theorem 2. A path P € Ps,; has finite robust value if and only if V(P) C U2.

4 Bi-objective ORP

We turn to a natural question linking ORP and the Shortest Path problem.
Consider an instance of s-t ORP for which the optimal nominal path is not
unique. While all optimal paths P have the same robust length, they might differ
in terms of their ordinary length ¢(P). We can thus be interested in obtaining a
path attaining the potential with minimum length. In general, one can consider
the following bi-objective problem for any bound B > y(s).
z(s,B) = min L(P).
PEP, ;, Val(P)<B

The latter problem asks to find a Pareto-optimal s-t path in G with objective
functions robust length and ordinary length. We call this problem Bi-objective
ORP. Bi-objective ORP bears resemblance to the Bi-objective Shortest Path
problem [II]. In the latter problem one seeks to obtain a Pareto-optimal s-t
path in the graph with objective functions corresponding to ordinary length
with respect to two different length functions. In this section we show that the
two problems differ significantly in terms of their complexity. Concretely, we
will show that a solution to bi-objective ORP and the entire Pareto front can
be found in polynomial time. This contrasts to the Bi-objective Shortest Path
problem, which is NP-hard, and its Pareto front can be of exponential size in
the size of the graph. Our first result is:

Theorem 3. Bi-objective ORP can be solved in time O(m + nlogn) in undi-
rected graphs and in time O(mn + n?logn) in directed graphs.

Theorem [l builds upon an algorithm that is similar to Algorithm [l Let us
turn to the problem of computing the Pareto front. Recall that a Pareto front
F of a bi-objective optimization problem with objective functions f and g is
a set of Pareto-optimal solutions to the problem with the property that, for
every other solution X, there exists a solution Y € F such that f(X) > f(Y)
and g(X) > ¢g(Y). A Pareto front F for an instance of Bi-objective ORP is a
set of paths, such that, for every Pareto-optimal path P, there exists a path
in F with not longer robust length and not longer ordinary length. In general,
having an entire Pareto front at hand is of course advantageous in practical
applications, as it gives the decision maker a complete list of efficient strategies.
The following theorem asserts that every Bi-objective ORP instance has a Pareto
front with a linear number of paths. The front can be found in polynomial time
using Algorithm [2] (note that, for undirected graphs, the algorithm is slightly
different).



8 D. Adjiashvili, G. Oriolo, and M. Senatore

Algorithm 2.
: H=G; F=0.
while s and ¢ are connected in H do
Find a shortest s-t path P in H and add it to F.
Find a critical edge e € E(H) (with Val(P) = ¢(P~°)) and remove it from H.
: Remove from F all dominated paths.
: Return F.

Theorem 4. FEvery instance of Bi-objective ORP admits a Pareto front F with
at most 2m paths (m paths in directed graphs). The Pareto front can be found
in time O(m? + mnlogn).

Finally, observe that Algorithm [ is also an algorithm for ORP, as for any
Pareto front F we have y(s) = minper Val(P). This algorithm can be particularly
interesting for solving ORP in sparse directed graphs, where the size of the Pareto
front might compare favorably with the number of nodes in the graph.

5 k-Hop ORP

In this section we study the k-Hop ORP problem. We assume that we are given
an integer k between 0 and n — 1 and that now the RM is informed about the
failure of edge e as soon as it reaches a node that is k (or fewer) hops away
from e on the nominal path P. In particular, if ¢ ¢ P, the RM won’t be aware
of the failure of e. It is easy to see that 0-Hop ORP is simply ORP and that
(n — 1)-Hop ORP is equivalent to MVA. For k& € {1,--- ,n — 2} we obtain an
interesting continuum of problems between ORP and MVA.

Apparently this new setting changes dramatically the problem. In fact, con-
sider a (nominal) s-¢ path P and an edge e which belongs to P. Denote by v(P, e)
the first node of P that ’sees’ the failure of e (note that v(P,e) = s if e is at
most k-hop away from s on P). Being aware of the failure of e already at v(P,e)
allows the RM to take a detour before getting to e, as for ORP. This justifies
the following redefenition of detours. The detour P~¢ associated with an edge
e € F is defined as P[s,v(P,e)] @ Q;(;’e) ifee P,and Pife¢ P.

The k-Hop ORP problem is defined as finding for every u € V —t the k-Hop
potential . .

yi(u) = poin Val (P),
where Valk(P) = max.cp {(P~°), as well as a corresponding path.

Our main result in this section is a label-setting algorithm for this problem.
Obtaining this algorithm is however a more challenging task than that of ob-
taining such an algorithm for ORP. In particular, we will see that while there
always exists a tree of optimal nominal paths, the k-hop potential needs not be
a monotonic function along the paths of this tree. This property contrasts with
the structure of optimal solutions to ORP. The key property of k-Hop ORP is
stated in the following lemma.
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Lemma 3. Let P, € P, be an optimal path from u, let v € V(P,) and let
P, € Py be an optimal path from v. Then the path P, = P,[u,v] & P, satisfies
Val®(P!) = Val®(P,), namely it is also optimal from w.

Lemma [3] and the property that we state hereafter allow us to prove the
correctness of a label-setting algorithm. The property follows from the fact that
for any u € V and e € E one has y*(u) > 7, .

Property 1. Let u € V and P € P, ; be such that Val*(P) = ¢ for some edge
e seen on P by u. Then P is an optimal path from wu.

Analogously to our algorithm for ORP, we proceed by incrementally comput-
ing the optimal path for every node in the graph starting from ¢. We maintain
a set U of nodes for which a robust path was already computed. For u € U we
denote this path by P. The update rule for U works as follows. First, we check
if for some edge vu € E such that v € V \ U and u € U it holds that the path
Q = vu @ P} satisfies the condition in Property [Il In other words, we check if
Valk(Q) = m, ¢ for some edge e € ) seen by v. If such an edge exists we set
Py :=@Q and U := U U {v}, an update that is valid due to Property [l Assume
next that no such edge exists. We call the set U in this situation clean. The
following lemma states an update rule for clean sets U.

Lemma 4. Let U be clean and let vu € argmingcp.,cy qev Val®(gr @ P).
Then y*(v) = Val*(vu @ P*).

Lemmas [3] and ] immediately imply a polynomial algorithm for k-Hop ORP.
Observe that one can adopt the implementation of our label-setting algorithm for
ORP to obtain the same time bounds as in Theorem[Il The details are identical,
and thus omitted.

Theorem 5. Given an instance of k-Hop ORP the potential y* and the corre-
sponding paths can be computed in time O(m+nlogn) in undirected graphs, and
O(mn + n?logn) in directed graphs.

Let us make two further remarks about extensions of ORP similar to k-Hop
ORP. In k-Hop ORP we assume that the RM is informed about the failed edge
when it is k hops away on the nominal path. An alternative definition takes the
lengths of edges on this path into account. In this problem, which we call Radius
ORP, the integer k < n — 1 is replaced by a value R < ¢(E) called the radius. In
this problem the RM is informed about the failed edge e on the nominal path
P at the first node that is at distance at most R from its closer endpoint. The
definition of v(P,e) and the robust value are adapted accordingly.

We claim without proof that our algorithm for k-Hop ORP solves Radius
ORP as well. Informally, this follows from fact that Lemma [ remains correct,
since it only relies on the following monotonicity property. The set of edges on
P that a node sees is an interval on this path, and furthermore, for every two
consecutive nodes uq,us € V(P), with us being the closer one to t, the set of
edges seen by uj in Plusg, t] is a subset of the set of edges seen by us. We defer
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the proof of this fact, as well as the careful treatment of Radius ORP to the
journal version of the paper, due to space considerations.

We end this section with another variant of k-Hop ORP. In this variant, whose
input is identical to that of k-Hop ORP, the information about the failed edge
travels through the edges of the entire graph, as opposed to only the edges of
the nominal path. Formally, the first node along the chosen nominal path that
is informed about the failure of some edge e € F is the one closest to s that is at
most k hops away from e in G. This problem, which we denote by Strong k-Hop
ORP turns out to be NP-hard to approximate even when k = 1. Note that, for
k = 0, Strong k-Hop ORP reduces to ORP, as for every path the robust value
is the same in the two different problems.

Theorem 6. for any ¢ > 0 it is NP-hard to approximate Strong 1-Hop ORP
within a factor of 3 — € in undirected graphs. In directed graphs it is strongly
NP-hard to decide if there exists a nominal path with finite robust length.

We note that in 2 s-t connected undirected graphs, every shortest path is a
3-approximation of the optimal solution to Strong 1-Hop ORP, thus the approx-
imability of this problem is settled. The proof of this simple fact if similar to the
proof of Lemma [B, and thus omitted.

6 A Two Players’ Game between MVA and ORP

Let us explore next a two players’ game that is the natural middle ground be-
tween the problems MVA and ORP. A first player, the path builder, is interested
in arriving from s to ¢ as quickly as possible. The second player, the interdictor,
tries to make the latter distance as long as possible by removing a single edge
from the graph. The strategies for the two players are the s-t paths, and the
edges e € E, respectively.

In one setup, the interdictor communicates her strategy first, i.e. which edge is
removed from G. The path builder chooses his strategy after: clearly he chooses a
shortest path s-t in the graph G — e. Therefore, the problem that the interdictor
faces in this setting is clearly the MVA problem, as she will remove the edge
e € F maximizing 7 ¢, the length of the shortest s-t path in the graph G —e.
In the following, we let z*(MV A) be the value of an optimal solution to MV A.

In the other extreme, the path builder communicates his strategy first, i.e.
an s-t path P. Then the interdictor moves, and clearly removes the edge e
maximizing ¢(P~¢). Note that we assume that, if e € P, the interdictor will
delay the failure of the edge to the point at which the path builder attempts
to cross it. Hence, the problem that the path builder faces is exactly ORP, i.e.
that of choosing an s-t path with the least robust value. In the following, we let
z*(ORP) be the value of an optimal solution to ORP.

The next lemma, whose simple proof we skip, shows that z*(ORP) > z*
(MV A).

Lemma 5. Let P and e be an s-t path and an edge of E, respectively. Then
Val(P) > z*(ORP) > z*(MV A) > n;°.
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In our two players’ game, that we call the ORP Game, both players commu-
nicate their strategies at the same time. In particular, for a given s-t path P
and edge e € E, the payoft for the interdictor is £(P~°¢). Lemma [l shows that in
general z*(ORP) > z*(MV A). The next theorem characterizes the instances of
the ORP Game admitting a pure NE as those for which z*(ORP) = z*(MV A).

Theorem 7. Let P and e be optimal solutions to the ORP and MVA instances
on G = (V,E). Then (P,e) is a pure NE of the ORP Game if and only if
Val(P) = w;¢. Moreover, in this case, Val(P) = z*(ORP) = z*(MV A) = w°.

Theorem [7 has also the following algorithmic implication. Recall that we
can compute z*(MVA) in time O(m + nlogn) [13], the same running time
we obtained for unidrected ORP (Theorem [I). This clearly implies that in time
O(m + nlogn) we can compute a pure NE of the ORP Game in undirected
graphs, if one exists, or certify that no pure NE exists. Indeed the aforemen-
tioned algorithms allow us to check the condition z*(ORP) = z*(MV A) and
compute corresponding optimal solutions, P* and e¢*, with the latter time com-
plexity. Theorem [ asserts that if the latter condition is satisfied, then (P*,e*)
is a pure NE, otherwise no pure NE exists. Theorems [I] and [] also imply a
O(mn + n?logn) algorithm for the same problem is directed graphs.

We close this section by shortly addressing the case where z*(ORP) #
z*(MVA). First, in this case, Theorem [7] shows that there are no pure NE.
However, the ORP Game will still admit a NE in mized strategies, as for both
players the sets of pure strategies is finite (s-t paths and edges). Whether it is
possible to find this mixed NE in polynomial time is an interesting open question.

We conclude by analyzing the ratio j: ((ﬁléi)). The next lemma shows that,

for undirected graphs, it is at most 3.

Lemma 6. Let G be undirected with s-t edge-connectivity of at least two. Then
2*(ORP) < 3z*(MV A).
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Abstract. Let T be a triangulation of a simple polygon. A flip in T
is the operation of removing one diagonal of T' and adding a different
one such that the resulting graph is again a triangulation. The flip dis-
tance between two triangulations is the smallest number of flips required
to transform one triangulation into the other. For the special case of
convex polygons, the problem of determining the shortest flip distance
between two triangulations is equivalent to determining the rotation dis-
tance between two binary trees, a central problem which is still open
after over 25 years of intensive study.

We show that computing the flip distance between two triangulations
of a simple polygon is NP-complete. This complements a recent result
that shows APX-hardness of determining the flip distance between two
triangulations of a planar point set.

1 Introduction

Let P be a simple polygon in the plane, that is, a closed region bounded by a
piece-wise linear, simple cycle. A triangulation T of P is a geometric (straight-
line) maximal outerplanar graph whose outer face is the complement of P and
whose vertex set consists of the vertices of P. The edges of T that are not on
the outer face are called diagonals. Let d be a diagonal whose removal creates a
convex quadrilateral f. Replacing d with the other diagonal of f yields another
triangulation of P. This operation is called a flip. The flip graph of P is the
abstract graph whose vertices are the triangulations of P and in which two
triangulations are adjacent if and only if they differ by a single flip. We study
the flip distance, i.e., the minimum number of flips required to transform a given
source triangulation into a target triangulation.

Edge flips became popular in the context of Delaunay triangulations. Law-
son [9] proved that any triangulation of a planar n-point set can be transformed
into any other by O(n?) flips. Hence, for every planar n-point set the flip graph
is connected with diameter O(n?). Later, he showed that in fact every triangula-
tion can be transformed to the Delaunay triangulation by O(n?) flips that locally
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fix the Delaunay property [10]. Hurtado, Noy, and Urrutia [7] gave an example
where the flip distance is £2(n?), and they showed that the same bounds hold
for triangulations of simple polygons. They also proved that if the polygon has k
reflex vertices, then the flip graph has diameter O(n + k?). In particular, the flip
graph of any planar polygon has diameter O(n?). Their result also generalizes
the well-known fact that the flip distance between any two triangulations of a
convex polygon is at most 2n — 10, for n > 12, as shown by Sleator, Tarjan,
and Thurston [I5] in their work on the flip distance in convex polygons. The
latter case is particularly interesting due to the correspondence between flips in
triangulations of convex polygons and rotations in binary trees: The dual graph
of such a triangulation is a binary tree, and a flip corresponds to a rotation in
that tree; also, for every binary tree, a triangulation can be constructed.

We mention two further remarkable results on flip graphs for point sets.
Hanke, Ottmann, and Schuierer [6] showed that the flip distance between two tri-
angulations is bounded by the number of crossings in their overlay. Eppstein [5]
gave a polynomial-time algorithm for calculating a lower bound on the flip dis-
tance. His bound is tight for point sets with no empty 5-gons; however, except
for small instances, such point sets are not in general position (i.e., they must
contain collinear triples) [I]. For a recent survey on flips see Bose and Hurtado [3].

Very recently, the problem of finding the flip distance between two triangu-
lations of a point set was shown to be NP-hard by Lubiw and Pathak [IT] and,
independently, by Pilz [12], and the latter proof was later improved to show
APX-hardness of the problem. Here, we show that the corresponding problem
remains NP-hard even for simple polygons. This can be seen as a further step
towards settling the complexity of deciding the flip distance between triangula-
tions of convex polygons or, equivalently, the rotation distance between binary
trees. This variant of the problem was probably first addressed by Culik and
Wood [] in 1982 (showing a flip distance of 2n — 6).

The formal problem definition is as follows: given a simple polygon P, two
triangulations 77 and T3 of P, and an integer [, decide whether T} can be trans-
formed into To by at most [ flips. We call this decision problem PoryFLIp.
To show NP-hardness, we give a polynomial-time reduction from RECTILIN-
EAR STEINER ARBORESCENCE to POLYFLIP. RECTILINEAR STEINER ARBORES-
CENCE was shown to be NP-hard by Shi and Su [I4]. In Section 2 we describe
the problem in detail. We present the well-known double chain (used by Hur-
tado, Noy, and Urrutia [7] for giving their lower bound), a major building block
in our reduction, in Section Bl Finally, in Section @] we describe our reduction
and prove that it is correct. An extended abstract of this work was presented at
the 29" EuroCG, 2013; for omitted proofs, see [2].

2 The Rectilinear Steiner Arborescence Problem

Let S be a set of N points in the plane whose coordinates are nonnegative
integers. The points in S are called sinks. A rectilinear tree T is a connected
acyclic collection of horizontal and vertical line segments that intersect only
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at their endpoints. The length of T is the total length of all segments in T
(cf. [8, p. 205]). The tree T is a rectilinear Steiner tree for S if each sink in
S appears as an endpoint of a segment in T. We call T a rectilinear Steiner
arborescence (RSA) for S if (i) T is rooted at the origin; (ii) each leaf of T lies at
a sink in S; and (iii) for each s = (z,y) € S, the length of the path in T from the
origin to s equals x + vy, i.e., all edges in T' point north or east, as seen from the
origin [I3]. In the RSA problem, we are given a set of sinks S and an integer k.
The question is whether there is an RSA for S of length at most k. Shi and Su
showed that the RSA problem is strongly NP-complete; in particular, it remains
NP-complete if S is contained in an n x n grid, with n polynomially bounded
in N, the number of points [14}

We recall an important structural property of the RSA. Let A be an RSA for
a set S of sinks. Let e be a vertical segment in A that does not contain a sink.
Suppose there is a horizontal segment f incident to the upper endpoint a of e.
Since A is an arborescence, a is the left endpoint of f. Suppose further that a is
not the lower endpoint of another vertical edge. Take a copy €’ of e and translate
it to the right until ¢’ hits a sink or another segment endpoint (this will certainly
happen at the right endpoint of f); see Fig. [l The segments e and ¢’ define a
rectangle R. The upper and left side of R are completely covered by e and (a
part of) f. Since a has only two incident segments, every sink-root path in A
that goes through e or f contains these two sides of R, entering the boundary
of R at the upper right corner d and leaving it at the lower left corner b. We
reroute every such path at d to continue clockwise along the boundary of R until
it meets A again (this certainly happens at b), and we delete e and the part of
f on R. In the resulting tree we subsequently remove all unnecessary segments
(this happens if there are no more root-sink paths through b) to obtain another
RSA A’ for S. Observe that A’ is not longer than A. This operation is called
sliding e to the right. If similar conditions apply to a horizontal edge, we can
slide it upwards. The Hanan grid for a point set P is the set of all vertical and
horizontal lines through the points in P. In essence, the following theorem can
be proved constructively by repeated segment slides in a shortest RSA.

Theorem 2.1 ([13]). Let S be a set of sinks. There is a minimum-length RSA
A for S such that all segments of A are on the Hanan grid for SU{(0,0)}. O

a tf .d

0 -0 50 -k

b

Fig. 1. The slide operation. The dots depict sinks; the rectangle R is drawn gray. The
dotted segments are deleted, since they do no longer lead to a sink.

! Note that a polynomial-time algorithm was claimed [I6] that later has been shown
to be incorrect [13].



16 O. Aichholzer, W. Mulzer, and A. Pilz

We use a restricted version of the RSA problem, called YRSA. An instance
(S, k) of the YRSA problem differs from an instance for the RSA problem in that
we require that no two sinks in S have the same y-coordinate. The NP-hardness
of YRSA follows by a simple perturbation argument; see the full version for all
omitted proofs.

Theorem 2.2. YRSA is strongly NP-complete.

3 Double Chains

Our definitions (and illustrations) follow [12]. A double chain D consists of
two chains, an upper chain and a lower chain. There are n vertices on each
chain, (u1,...,u,) on the upper chain and (l1,...,l,) on the lower chain, both
numbered from left to right. Any point on one chain sees every point on the
other chain, and any quadrilateral formed by three vertices of one chain and
one vertex of the other chain is non-convex. Let Pp be the polygon defined by
(I1y .o lnytn, . . ur); see Fig. 2l (left). We call the triangulation T, of Pp where
u1 has maximum degree the upper extreme triangulation; observe that this tri-
angulation is unique. The triangulation 1; of Pp where [; has maximum degree
is called the lower extreme triangulation. The two extreme triangulations are
used to show that the diameter of the flip graph is quadratic; see Fig. 2 (right).

Theorem 3.1 ([7]). The flip distance between T, and T is (n — 1)2. |

Through a slight modification of D, we can reduce the flip distance between
the upper and the lower extreme triangulation to linear. This will enable us in
our reduction to impose a certain structure on short flip sequences. To describe
this modification, we first define the flip-kernel of a double chain.

<ULy Up—1 Un, ..

Fig. 2. Left: The polygon and the hourglass (gray) of a double chain. The diamond-
shaped flip-kernel can be extended arbitrarily by flattening the chains. Right: The
upper extreme triangulation 7%, and the lower extreme triangulation 7;.

Let W7 be the wedge defined by the lines through u;us and I3l5 whose interior
contains no point from D but intersects the segment u;l;. Define W, analogously
by the lines through w,u,—1 and l,l,—1. We call W := W3y U W,, the hourglass
of D. The unbounded set W U Pp is defined by four rays and the two chains.
The flip-kernel of D is the intersection of the closed half-planes below the lines
through wius and uy,—q1uy,, as well as above the lines through /11> and ln_lln

2 The flip-kernel of D might not be completely inside the polygon Pp. This is in
contrast to the “visibility kernel” of a polygon.
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Fig. 3. The extra point p in the flip-kernel of D allows flipping one extreme triangula-
tion of PP to the other in 4n — 4 flips

Definition 3.2. Let D be a double chain whose flip-kernel contains a point p
to the right of the directed line lyu,. The polygon PP is given by the sequence
(Iiy. . lnyDytUn, ... u1). The upper and the lower extreme triangulation of PP
contain the edge u,l, and otherwise are defined in the same way as for Pp.

The flip distance between the two extreme triangulations for P}, is much
smaller than for Pp [I7]. Fig. Bl shows how to transform them into each other
with 4n — 4 flips. The next lemma shows that this is optimal, even for more
general polygons. The lemma is a slight generalization of a lemma by Lubiw and
Pathak [I1] on double chains of constant size.

Lemma 3.3. Let P be a polygon that contains Pp and has (l1,...,l,) and
(Uny ... u1) as part of its boundary. Further, let Ty and Ty be two triangulations
that contain the upper extreme triangulation and the lower extreme triangulation
of Pp as a sub-triangulation, respectively. Then Ty and Ty have flip distance at
least 4n — 4.

The following result can be seen as a special case of [12, Proposition 1].

Lemma 3.4. Let P be a polygon that contains Pp and has
(Uny .o oyur,liy ..oy ly) as part of its boundary. Let Ty and To be two tri-
angulations that contain the upper and the lower extreme triangulation of Pp
as a sub-triangulation, respectively. Consider any flip sequence o from Ty to Ts
and suppose there is no triangulation in o containing a triangle with one vertex
at the upper chain, the other vertex at the lower chain, and the third vertex at
a point in the interior of the hourglass of Pp. Then |o| > (n —1)2.

4 The Reduction

We reduce YRSA to PoLyFLIP. Let S be a set of IV sinks on an n x n grid
with root at (1,1) (recall that n is polynomial in N). We construct a polygon
Pj, and two triangulations 77, 7% in P}, such that a shortest flip sequence from
T1 to T corresponds to a shortest RSA for S. To this end, we will describe how
to interpret any triangulation of P}y as a chain path, a path in the integer grid
that starts at the origin and uses only edges that go north or east. It will turn
out that flips in P} essentially correspond to moving the endpoint of the chain
path along the grid. We choose Py, 11, and T5 in such a way that a shortest
flip sequence between T7 and T» moves the endpoint of the chain path according
to an Eulerian traversal of a shortest RSA for S. To force the chain path to
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visit all sites, we use the observations from Section B the polygon P}y contains
a double chain for each sink, so that only for certain triangulations of Pp it is
possible to flip the double chain quickly. These triangulations will be exactly the
triangulations that correspond to the chain path visiting the appropriate site.

4.1 The Construction

Our construction has two integral parameters, 8 and d. With foresight, we set
8 =2N and d = nN. We imagine that the sinks of S lie on a fn x fn grid, with
their coordinates multiplied by .

We take a double chain D with n vertices on each chain such that the flip-
kernel of D extends to the right of lg,ug,. We add a point z to that part of the
flip-kernel, and we let P}, be the polygon defined by (I1,...,lgn, 2, Ugn, - - -, U1)-
Next, we add double chains to PE in order to encode the sinks. For each sink
s = (x,y), we remove the edge lg,lg,+1, and we replace it by a (rotated) double
chain D, with d vertices on each chain, such that lg, and lgy41 correspond to
the last point on the lower and the upper chain of Dy, respectively. We orient Dy
in such a way that ug, is the only point inside the hourglass of D, and so that
ugy lies in the flip-kernel of Dy; see Fig. @l We refer to the added double chains
as sink gadgets, and we call the resulting polygon Pj,. For 3 large enough, the
sink gadgets do not overlap, and P}, is a simple polygon. Since the y-coordinates
in S are pairwise distinct, there is at most one sink gadget per edge of the lower
chain of PZ; . The precise placement of the sink gadgets is flexible, so we can
make all coordinates polynomial in n; see the full version for details.

Fig.4. The sink gadget for a site (z,y) is obtained by replacing the edge lgylgy+1 by
a double chain with d vertices on each chain. The double chain is oriented such that
ugy is the only point inside its hourglass and its flip-kernel. In our example, 8 = 1.

Next, we describe the source and target triangulation for Pj. In the source
triangulation 77, the interior of PZ; is triangulated such that all edges are incident
to z. The sink gadgets are all triangulated with the upper extreme triangulation.
The target triangulation T3 is similar, but now the sink gadgets are triangulated
with the lower extreme triangulation.

To get from T7 to T, we must go from one extreme triangulation to the other
for each sink gadget D,. By Lemma [3.4] this requires (d — 1)? flips, unless the
flip sequence creates a triangle that allows us to use the vertex in the flip-kernel
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of Ds. In this case, we say that the flip sequence wisits the sink s. For d large
enough, a shortest flip sequence must visit each sink, and we will show that this
induces an RSA for S of similar length. Conversely, we will show how to derive
a flip sequence from an RSA. The precise statement is given in the following
theorem.

Theorem 4.1. Let k > 1. The flip distance between Ty and Ty w.r.t. P}, is at
most 20k + (4d — 2)N if and only if S has an RSA of length at most k.

We will prove Theorem [£1] in the following sections. But first, let us show
how to use it for our NP-completeness result.

Theorem 4.2. POLYFLIP is NP-complete.

Proof. As mentioned in the introduction, the flip distance in polygons is polyno-
mially bounded, so POLYFLIP is in NP. We reduce from YRSA. Let (S, k) be an
instance of YRSA such that S lies on a grid of polynomial size. We construct Pj
and Ty, T as described above. This takes polynomial time (see the full version
for details). Set | = 28k + (4d — 2)N. By Theorem (1] there exists an RSA for
S of length at most & if and only if there exists a flip sequence between T and
T5 of length at most [. O

4.2 Chain Paths

Now we introduce the chain path, our main tool to establish a correspondence
between flip sequences and RSAs. Let T be a triangulation of PE (i.e., the
polygon Pjy without the sink gadgets, cf. Section E.Tl). A chain edge is an edge
of T between the upper and the lower chain of Pg . A chain triangle is a triangle
of T that contains two chain edges. Let eq,..., e, be the chain edges, sorted
from left to right according to their intersection with a line that separates the
upper from the lower chain. For ¢ = 1,...,m, write e¢; = (uy, 1) and set ¢; =
(v, w). In particular, ¢; = (1,1). Since T is a triangulation, any two consecutive
edges e;, e;4+1 share one endpoint, while the other endpoints are adjacent on the
corresponding chain. Thus, ¢;11 dominates ¢; and ||¢;41 — ¢||1 = 1. It follows
that cica... ¢ is an z- and y-monotone path in the fn x fn-grid, beginning
at the root. It is called the chain path for T. Each vertex of the chain path
corresponds to a chain edge, and each edge of the chain path corresponds to a
chain triangle. Conversely, every chain path induces a triangulation T" of PE ; see
Fig. Bl In the following, we let b denote the upper right endpoint of the chain
path.
The next lemma describes how the chain path is affected by flips; see Fig. Bl

Lemma 4.3. Any triangulation T of P uniquely determines a chain path, and
vice versa. A flip in T corresponds to one of the following operations on the
chain path: (i) move the endpoint b north or east; (i) shorten the path at b; (iii)
change an east-north bend to a north-east bend, or vice versa. a
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Fig. 5. A triangulation of P} and its chain path. Flipping edges to and from z moves
the endpoint b along the grid. A flip between chain triangles changes a bend.

4.3 From an RSA to a Short Flip Sequence
Using the notion of a chain path, we now prove the “if” direction of Theorem 41l

Lemma 4.4. Let k> 1 and A an RSA for S of length k. Then the flip distance
between Ty and T w.r.t. P} is at most 2Bk + (4d — 2)N.

Proof. The triangulations 7} and T both contain a triangulation of P;) whose
chain path has its endpoint b at the root. We use Lemma [£3] to generate flips
inside Pg so that b traverses A in a depth-first manner. This needs 28k flips.
Each time b reaches a sink s, we move b north. This creates a chain triangle
that allows the edges in the sink gadget Dy to be flipped to the auxiliary vertex
in the flip-kernel of D,. The triangulation of Dy can then be changed with 4d—4
flips; see Lemma B3 Next, we move b back south and continue the traversal.
Moving b at s needs two additional flips, so we take 4d — 2 flips per sink, for a
total of 28k + (4d — 2)N flips. O

4.4 From a Short Flip Sequence to an RSA

Finally, we consider the “only if” direction in Theorem [l Let o1 be a flip
sequence on Pg. We say that oy wisits a sink s = (z,y) if o1 has at least one
triangulation 7' that contains the chain triangle ugslgylgy+1. We call o1 a flip
traversal for S if (i) oy begins and ends in the triangulation whose corresponding
chain path has its endpoint b at the root and (ii) o7 visits every sink in S. The
following lemma shows that every short flip sequence in Pj, can be mapped to
a flip traversal.

Lemma 4.5. Let o be a flip sequence from Ty to Ty w.r.t. P}, with |o| < (d—1)2.
Then there is a flip traversal oy for S with |o1]| < |o| — (4d — 4)N.

Proof. We show how to obtain a flip traversal o1 for S from o. Let T* be a
triangulation of Pj. A triangle of T™ is an inner triangle if all its sides are
diagonals. It is an ear if two of its sides are polygon edges. By construction, every
inner triangle of T* must have (i) one vertex incident to z (the rightmost vertex
of P}}), or (ii) two vertices incident to a sink gadget (or both). In the latter case,
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there can be only one such triangle per sink gadget. The weak (graph theoretic)
dual of T™ is a tree in which ears correspond to leaves and inner triangles have
degree 3.

Let D be a sink gadget placed between the vertices [; and [.. Let us be the
vertex in the flip-kernel of D,;. We define a triangle A; for Dy. Consider the
bottommost edge e of D,, and let A be the triangle of T that is incident to e.
By construction, A is either an ear of 7™ or is the triangle defined by e and u,. In
the latter case, we set Ay = A. In the former case, we claim that 7™ has an inner
triangle A’ with two vertices on Dj: follow the path from A in the weak dual of
T*; while the path does not encounter an inner triangle, the next triangle must
have an edge of D, as a side. There is only a limited number of such edges, so
eventually we must meet an inner triangle A’. We then set Ay = A’; see Fig. [6l
Note that Ay might be [l us.

Fig. 6. Triangulations of D, in Pp with A; = A (left), and with A being an ear (red)
and A, an inner triangle (right). The fat tree indicates the dual.

For each sink s, let the polygon Pg‘: consist of the D, extended by the ver-
tex us (cf. Definition B2). Let T be a triangulation of Pj,. We show how to
map T* to a triangulation 7+ of P/ and to triangulations T} of Ppe, for each s.

We first describe TF. Tt contains every triangle of T* with all three vertices
in Pg . For each triangle A in T* with two vertices on PE and one vertex on the
left chain of a sink gadget Dy, we replace the vertex on Dy by ls. Similarly, if
the third vertex of A is on the right chain of D,, we replace it by I.. For every
sink s, the triangle A, has one vertex at a point u; of the upper chain. In T,
we replace A, by the triangle [l u;. No two triangles overlap, and they cover
all of PE. Thus, T is indeed a triangulation of Pg.

Now we describe how to obtain Ty, for a sink s € S. Each triangle of T* with
all vertices on Pg‘: is also in T§. Each triangle with two vertices on D and one
vertex not in PEZ is replaced in T by a triangle whose third vertex is moved to
us in Ty (note that this includes Ay); see Fig. [ Again, all triangles cover Pp°
and no two triangles overlap. '
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Ug

Fig. 7. Obtaining 7" and T from T*

Eventually, we show that a flip in T* corresponds to at most one flip either
in T or in precisely one Ty for some sink s. We do this by considering all the
possibilities for two triangles that share a common flippable edge. Note that by
construction no two triangles mapped to triangulations of different polygons Pg‘:
and Pp' can share an edge (with ¢ # s being another sink).

Case 1. We flip an edge between two triangles that are either both mapped
to Tt or to T, and are different from A,. This flip clearly happens in at most
one triangulation.

Case 2. We flip an edge between a triangle A; that is mapped to Ty and
a triangle As that is mapped to T, such that both A; and A; are different
from Ajg. This results in a triangle A} that is incident to the same edge of ng
as Aj(for each such triangle, the point not incident to that edge is called the
aper), and a triangle A} having the same vertices of PZ; as A,. Since the apex
of A; is a vertex of the upper chain or z (otherwise, it would not share an edge
with Ag), it is mapped to us, as is the apex of Af. Also, the apex of A} is on
the same chain of D, as the one of A,. Hence, the flip affects neither T+ nor 7.

Case 3. We flip the edge between a triangle A mapped to T+ and A,. By
construction, this can only happen if A, is an inner triangle. The flip affects
only T, because the new inner triangle A’ is mapped to the same triangle in
T, as Ag, since both apexes are moved to us.

Case 4. We flip the edge between a triangle A of Ts and Ag. Similar to
Case 3, this affects only T, because the new triangle A/, is mapped to the same
triangle in TF as A, since the two corners are always mapped to ls and 1.

Thus, o induces a flip sequence o7 in Pg and flip sequences o in each Pg': SO
that |oy| + > g |os| < |o|. Furthermore, each flip sequence o transforms Pg‘:
from one extreme triangulation to the other. By the choice of d and Lemma [3.4]
the triangulations T have to be transformed so that Ay has a vertex at us at
some point, and |os| > 4d — 4. Thus, o7 is a flip traversal, and |o1| < |o| —
N(4d — 4), as claimed. O

In order to obtain a static RSA from a changing flip traversal, we use the
notion of a trace. A trace is a domain on the fn x Sn grid. It consists of edges
and bozes: an edge is a line segment of length 1 whose endpoints have positive
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integer coordinates; a box is a square of side length 1 whose corners have positive
integer coordinates. Similar to arborescences, we require that a trace R (i) is
(topologically) connected; (ii) contains the root (1,1); and (iii) from every grid
point contained in R there exists an z- and y-monotone path to the root that
lies completely in R. We say R is a covering trace for S (or, R covers S) if every
sink in S is part of R.

Let o1 be a flip traversal as in Lemma 5l By Lemma 3] each triangulation
in o1 corresponds to a chain path. This gives a covering trace R for S in the
following way. For every flip in o; that extends the chain path, we add the
corresponding edge to R. For every flip in oy that changes a bend, we add the
corresponding box to R. Afterwards, we remove from R all edges that coincide
with a side of a box in R. Clearly, R is (topologically) connected. Since oy is a
flip traversal for S, every sink is covered by R (i.e., incident to a box or edge
in R). Note that every grid point p in R is connected to the root by an a- and
y-monotone path on R, since at some point p belonged to a chain path in oy.
Hence, R is indeed a trace, the unique trace of 0.

Next, we define the cost of a trace R, cost(R), so that if R is the trace of a
flip traversal o1, then cost(R) gives a lower bound on |o1|. An edge has cost 2.
Let B be a box in R. A boundary side of B is a side that is not part of another
box. The cost of B is 1 plus the number of boundary sides of B. Then, cost(R)
is the total cost over all boxes and edges in R. For example, the cost of a tree is
twice the number of its edges, and the cost of an a x b rectangle is ab+ 2(a + b).
An edge can be interpreted as a degenerated box, having two boundary sides
and no interior. The following proposition is proved in the full version.

Proposition 4.6. Let o1 be a flip traversal and R the trace of o1. Then
cost(R) < |oq].

Now we relate the length of an RSA for S to the cost of a covering trace for S,
and thus to the length of a flip traversal. Since each sink (s, s,) is connected in
R to the root by a path of length s, + s, traces can be regarded as generalized
RSAs. In particular, we make the following observation.

Observation 4.7. Let R be a covering trace for S that contains no boxes, and
let Ay, be a shortest path tree in R from the root to all sinks in S. Then Ay, is
an RSA for S. O

If o1 contains no flips that change bends, the corresponding trace R has no boxes.
Then, R contains an RSA A,, with 2|A,,| < cost(R), by Observation 77l The
next lemma shows that, due to the size of 3, there is always a shortest covering
trace for S that does not contain any boxes. See the full version for the proof.

Lemma 4.8. Let o1 be a flip traversal of S. Then there exists a covering trace
R for S in the Bn x Bn grid such that R does not contain a box and such that
cost(R) < |oq].

Now we can finally complete the proof of Theorem EJ] by giving the second
direction of the correspondence.
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Lemma 4.9. Let kK > 1 and let o be a flip sequence on P}y from T1 to T with
|o| < 2Bk + (4d — 2)N. Then there exists an RSA for S of length at most k.

Proof. Trivially, there always exists an RSA on S of length less than 2nN, so
we may assume that k& < 2nN. Hence (recall that § = 2N and d = nN),

20k 4+ 4dN — 2N < 2 x 2N x 2nN + 4nN? — 2N < 12nN? < (d — 1)?,

for n > 14 and positive N. Thus, since o meets the requirements of Lemma [£.5]
we can obtain a flip traversal oy for S with |o1| < 28k + 2N. By Lemma [£.§
and Observation €7l we can conclude that there is an RSA A for S that has
length at most 8k + N. By Theorem 2] there is an RSA A’ for S that is not
longer than A and that lies on the Hanan grid for S. The length of A’ must be a
multiple of 8. Thus, since 8 > N, we get that A’ has length at most Sk, so the
corresponding arborescence for S on the n x n grid has length at most k. o
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Abstract. In this paper, we perform an empirical evaluation of the
Parallel External Memory (PEM) model in the context of geometric
problems. In particular, we implement the parallel distribution sweeping
framework of Ajwani, Sitchinava and Zeh to solve batched 1-dimensional
stabbing max problem. While modern processors consist of sophisti-
cated memory systems (multiple levels of caches, set associativity, TLB,
prefetching), we empirically show that algorithms designed in simple
models, that focus on minimizing the I/O transfers between shared mem-
ory and single level cache, can lead to efficient software on current multi-
core architectures. Our implementation exhibits significantly fewer
accesses to slow DRAM and, therefore, outperforms traditional
approaches based on plane sweep and two-way divide and conquer.

1 Introduction

Modern multicore architectures have complex memory systems involving multi-
ple levels of private and/or shared caches, set associativity, TLBs, and prefetch-
ing effects. It is considered challenging to design and even engineer algorithms to
directly optimize the running time on such architectures [I5]. Furthermore, algo-
rithms optimized for one architecture may not be optimal for another. To address
these issues, various computational models [BIOTOJT2IT3] have been proposed in
recent years. These computational models are simple (usually assuming only two
levels of memory hierarchy, out of which one is shared) as they abstract away
the messy architectural details. Also, the performance metric of these models
involve a single objective function such as minimizing shared memory accesses.
The simplicity of these models allows the design of practical algorithms that are
expected to work well on various multicore architectures. It also allows us to
compare the relative performance of algorithms theoretically.

The success of a computational model crucially depends on how well the
theoretical prediction of an algorithm in that model matches the actual running
time on real systems. Unfortunately so far, there has been little empirical work
(such as [20]) to evaluate the predictions of algorithmic performance using these
models on real multicore architectures. It is not even clear if these models can
lead to the design of algorithms that are faster on current multicore systems
(with 2 - 48 cores) than those designed in the traditional RAM model, external
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memory model and the PRAM model. In fact, many of the algorithms designed
in these models for multicores seem quite sophisticated and are likely to have high
constant factors that can pay off only for architectures with hundreds of cores.
This state of affairs is in sharp contrast with the sequential cache-efficient models,
where a considerable empirical work (e.g., [6J11]) evaluating the algorithms on
real systems exists.

At the core of the debate for the computational model is the choice of the
performance metric that an algorithm designer should optimize for the current
multicore systems. In the traditional RAM (and PRAM) model of computation,
the algorithms are designed to minimize the number of instructions (and parallel
instructions) executed by the algorithm. The external memory (EM) model [I]
when applied to cached memories (e.g., see [16]) aims at minimizing the cache
misses, ignoring the number of instructions. The parallel external memory (PEM)
model [5] aims at minimizing the number of parallel cache misses.

In this work, we demonstrate that algorithms designed in simple models, that
focus on minimizing the parallel I/O transfers between shared memory and a
single level cache, can lead to a software performing great in practice on real mul-
ticore systems. For this purpose, we consider the algorithms to solve the problem
of answering batched planar orthogonal stabbing-max queries. This problem is
a fundamental geometric primitive and together with its variants is used as
subroutines in solutions of many popular geometric problems such as point loca-
tion in an orthogonal subdivision of the plane, orthogonal ray shooting, batched
(offline) dynamic predecessor queries in 1-dimensional array and batched union-
find. Also, this problem has been well-studied in various computational models
and many different optimal solutions for it are known in these models. Thus,
it provides a test-bed for evaluating the efficacy of theoretical analysis in var-
ious models on real multicore architectures. Another reason for selecting this
non-HPC application is that the ratio of memory accesses to computation in
the solutions of this problem is similar to that of many data-intensive geomet-
ric applications. For instance, our engineered PEM solution for this problem is
based on the parallel distribution sweeping framework and this framework has
been used for designing a wide range of other geometric algorithms in the PEM
model [3/4] and a basis for PEM data structures [19].

We empirically compare the different solutions and show that a carefully en-
gineered solution based on an algorithm in the PEM model gives the best per-
formance on various multicore systems, outperforming traditional approaches
based on plane sweep, sequential distribution sweeping and two-way divide-and-
conquer. Using hardware profilers, we show that this solution exhibits signif-
icantly fewer number of accesses to slow DRAM which is correlated with the
improved running time.

Since the cache line on modern systems is typically 64 bytes, I/O-efficient so-
lutions also need to be work-efficient to compete with RAM algorithms. In other
words, the total number of instructions of a cache-efficient algorithm should
asymptotically match that of the best RAM solution. Therefore, we design an
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algorithm that is both I/O-optimal and work-efficient. To the best of our knowl-
edge, this is the first work-efficient I/O-optimal algorithm for this problem.

2 Computational Models

External Memory Model. The widely used external memory model or the
I/0 model by Aggarwal and Vitter [I] assumes a two level memory hierar-
chy. The internal memory has a limited size and can hold at most M objects
(points/line-segments) and the external memory has a conceptually unlimited
size. The computation can only use the data in the internal memory, while
the input and the output are stored in the external memory. The data trans-
fer between the two memories happens in blocks of B objects. The measure
of performance of an algorithm is the number of I/Os (cache misses) it per-
forms. The number of I/Os needed to read n contiguous items from the external
memory is scan(n) = ©@(n/B). The number of I/Os required to sort n items
is sort(n) = O((n/B)logy,p(n/B)). For all realistic values of n, B, and M,
scan(n) < sort(n) < nlog,n.

Parallel External Memory (PEM) Model. The parallel external memory
(PEM) model [5] is a simple parallelization of the EM model. It consists of P
processors, each with a private cache of size M (see Figure[ll). Processors commu-
nicate with each other through access to a shared memory of conceptually unlim-
ited size. Each processor can use only data in its private cache for computation.

The caches and the shared memory are

divided into blocks of size B. Data
[cPU 1]ii[cPU 2]! [[cPU P is transferred between the caches and
shared memory wusing parallel input-

output (I/O) operations. During each
TTTTTTTTTTTTT TITTTTTTTTTTT TITTTTTTTTTTT .
BI’ Cache ‘ ’ Cache ‘ ’ Cache ‘ such operation, each processor can trans-
L LI LI
fer one block between shared memory and
TITTTITTTT I T ITITITTTITTTITTTTT its private CaChe. The COSt Of an algo_
BI’HHHH HHH Shared memory HH‘ HHHH‘ rithm is the number of I/Os it performs.

Concurrent reading of the same block by

Fig. 1. The PEM model multiple processors is allowed but concur-

rent block writes are disallowed (similar

to a CREW PRAM). The cost of sorting

in this model is sortp(n) = O( 2 logar/ ) parallel I/Os, provided P < n/B?
and M = BOW [5].

The PEM model provides the simplest possible abstraction of current multi-
core chips, focusing on the fundamental I/O issues that need to be addressed
when designing algorithms for these architectures, similar to the I/O model [1]
in the sequential setting.
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3 1-D Stabbing Max Algorithms

In this section, we describe various algorithms that we implemented and used
for our experimental study. We begin with formally describing the problem.

Definition 1 (Batched 1-D Stabbing-Max Problem). Given a set of n
horizontal line segments and points on the plane, report for each point the closest
segment that lies directly below it.

RAM Algorithm. In the classical RAM model, this problem is solved using
the sweep line paradigm [I7U7]. We sweep a hypothetical vertical line across the
plane in increasing xz-coordinate and perform some computation at each segment
endpoint or query point. We maintain an ordered set A of active segments — all
segments which intersect the sweep line, ordered by the y-coordinates. A segment
is inserted into A when the sweep line encounters its left endpoint and removed
when it encounters the right endpoint. An answer to a query point ¢ is the
segment in A with the largest y-coordinate that is smaller than the y-coordinate
of g, i.e., the predecessor of ¢ in A according to the y-ordering.

For n line segments and query points, there are O(n) insertions, deletions
and predecessor searches in A. Since each of these operations can be performed
in O(logn) time by maintaining A as a balanced binary search tree, the total
complexity of this algorithm is O(nlogn) instructions.

Sequential I/0-optimal Solution. The sequential I/O-efficient solution for
this problem proceeds using the distribution sweeping framework of Goodrich et
al. [T14] as follows.

Let r4 be a variable associated with each query point ¢ which we will use to
store the answer. Initially r, is initialized to a virtual horizontal line y = —ooc.

We partition the space into K = min{M/B,n/M } vertical slabs o1, ..., 0k, so
that each slab contains equal number of points (endpoints of horizontal segments
or query points) and perform a sweep of the input by increasing y-coordinate.
During the sweep we maintain for each slab o; a segment s,, which is the highest
segment that spans o; encountered by the sweep. When the sweep line encounters
the query point g € o;, we update rq with s, iff y(ss,) > y(r,). During the sweep
we also generate slab lists Y;,. A copy of a query ¢ (resp., segment s) is added
to Yy, if g (resp., at least one of the endpoints of s) lies in slab ¢;. The sweep
is followed by a recursive processing of each slab, using Y,, as input for the
recursive call. The recursion terminates when each slab contains O(M) points
and the problem can be solved in internal memory, for example, by using the
plane sweep algorithm.

Note, that if the initial objects are sorted by y-coordinates, we can generate
the inputs Y, for the recursive calls sorted by y-coordinate during the sweep.
Thus, the sweep at each of O(1+logg (n/M)) recursive levels takes O(n/B) I/Os
and the total I/O complexity of distribution sweeping is O (g (14 logk n/M)) =
sort(n) I/0s.

Work-optimal Solution. Note that a naive implementation of the sweep in
internal memory might potentially result in updating K different variables s,
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whenever a segment is encountered during the sweep. This could lead to O(Kn)
instructions at each recursive level, resulting in total O(Kn logy n) instructions,
which is larger than O(nlog,n) instructions of the plane sweep algorithm. At
the same time, the plane sweep algorithm could result in up to O(nlog, n) I/Os,
which is larger than sort(n) I/Os of the above algorithm.

To achieve optimal internal computation time while maintaining the optimal
sort(n) I/O complexity we store segments s, in a segment tree T' over K inter-
vals defined by the slabs ;. Since, we are interested only in segments that fully
span the slabs, each segment is stored only in one node. Also, at each node we
store only the highest segment encountered up to that point in the sweep. Thus,
|T| = O(K), i.e. T fits in internal memory. Consider the nodes on the root to leaf
path which correspond to the intervals containing g. We update r, to the high-
est segment stored at these nodes. Thus, maintaining 7" and updating r, takes
O(log, K) instructions per update/query, and over O(1 + logyx N/M) recursive
levels of distribution sweeping adds up to at most O(n log, n) instructions, which
is optimal.

Parallel External Memory Solution. The PEM solution is based on the par-
allel distribution sweeping framework introduced by Ajwani et al. [3]. It differs
from the sequential distribution sweeping by recursively dividing the plane into
K := max{2, min{+/n/P, M/B, P}} vertical slabd] and performing the sweep in
parallel using all P processors. During recursion, the slabs are processed concur-
rently using sets of ©(P/K) distinct processors per slab. The parallel recursion
proceeds for O(logy P) rounds, until there are ©(P) slabs remaining, at which
point, each slab is processed concurrently using a single processor running the
sequential I/O-efficient solution.

To perform the sweep of a single recursive level in parallel using multiple
processors, each processor performs distribution sweeping on an equal fraction
of the input. Note, that such a sweep sets the values of r, correctly only if
both the query ¢ and the spanning segment s,, below it are processed by the
same processor. To correct the values r, across the boundaries of the parallel
sweeps we perform a round of parallel reduction on segments and queries using
MAX associative operator [§]. Finally, we compact the portions of slab lists Yy,
generated by different processors into contiguous slab lists to be used as input
for recursive calls. The details of the algorithm follow directly from [3] but can
also be found in the full version [2].

The parallel I/O complexity of the above algorithm is O(sortp(n)) I/Os.

Work-optimal Solution. Similar to the sequential I/O model, we can achieve
work optimality in the PEM model algorithm by maintaining a segment tree
T on the K child slabs. In this case, all processors keep their own copy of T
and the parallel reduction (using MAX operator) is performed over not only
the K leaves, but also the K — 1 internal nodes of T'. This does not affect the
asymptotic number of parallel I/Os, but makes the scheme work-optimal, i.e.
O( 7 logn) instructions per processor.

! The explanation for this choice of K can be found in [5].
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2-way Distribution Sweeping. As a PRAM solution, we consider a recursive
2-way distribution sweeping algorithm. This framework is akin to divide-and-
conquer paradigm, that is archetype for many PRAM algorithms. The 2-way
distribution is continued recursively till the slab size is smaller than a fixed
constant and at that stage, plane sweep algorithm is used as a base case. The
distribution step is a simplified version of the corresponding step in the PEM
algorithm, as the considerations of work-optimality no longer apply.

4 Implementation Detalils

We implemented our algorithms in C++, using OpenMP for parallelization. The
engineered implementation uses some simple techniques to improve the running
time of the theoretical algorithm, while trying to preserve its worst-case asymp-
totic guarantee on the number of shared cache accesses.

The parallel distribution sweeping calls for setting the branching parameter
at K = max{2, min{M/B,/n/P, P}}. The parameter M also defines the size
of the recursive base case. We experimentally determine the best choice of M.
In particular we found that setting M to be a large fraction (e.g., 1/3 or 1/4) of
the L3 cache results in best running times.

Having determined M, we observe that for computing K, in our compute sys-
tems the number of processors (up to 12) is far below the other two terms. Thus,
the first recursive level is always a single P-way parallel distribution sweeping
round, which results in P vertical slabs each of which can be processed indepen-
dently of others in the consequent phases. Thus, after the parallel distribution,
each of P resulting vertical slabs is assigned to a separate thread which processes
it using a sequential distribution sweeping algorithm.

To perform the parallel sweep, we divide the input based on the y-coordinate
among the P threads, conceptually, assigning a horizontal slab of objects to
each thread. The thread with the smaller ID gets the lower y values. This can be
viewed as a P x P matrix where the columns correspond to the different slabs
and the rows correspond to the different threads.

We perform the prefix sum on the P x P array sequentially as the overheads
associated with the synchronization barrier of OpenMP are too high to justify
this operation in parallel

We combine the second scan of the data (due to reduction) with the step of
compacting child slab lists into contiguous vectors. During the compaction, each
processor p; copies all partial chunks of child slab ¢; into the contiguous space.
Note, the propagation of the results of the prefix sums simply needs to update
the result of each query point that had been assigned the sentinel line y = —oo
with the result of the prefix sums value. Thus, the propagation of the prefix
sums values can be performed during this copying process.

Next, we process the P child slabs in parallel using sequential distribution
sweeping. This recursively subdivides the slabs till the pre-specified threshold

2 In our experiments, performing this step sequentially takes less than a millisecond,
while the overall running time is in dozens or hundreds of seconds.
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M is reached. When generating the input lists for the child slabs, we also store
the total number of segments and query points for the child slabs. If for any
slab, either the number of segments or query points is zero, we do not process
it or its child invocations any further.

Space Efficiency. We carefully engineered our algorithms to reduce the space
requirement of our implementations considerably. This is done while ensuring
that the running time of our implementations is not affected by the space reduc-
tion. We provide more details of this in the full version [2].

Randomized vs. Deterministic Computation of Slab Boundaries. De-
terministic identification of slab boundaries such that all the child slabs at each
level of recursion contain the same number of objects, requires sorting the input
based on the z-coordinate and storing O(n/M) equally spaced entries of the
sorted input in a separate array. We avoid the extra sort by instead determining
the slab boundaries by partitioning the space into uniform vertical slabs. This
optimization works well for random input, but in the worst case can result in
the recursion depth as large as O(log 0), where ¢ is the spread of the point set
— the ratio between the largest and the smallest (horizontal) distance between
a pair of points. In case of a large base case of the recursion and randomized
input, this is not an issue. But in the case of double precision coordinates, the
worse case analysis dictates that the depth of the recursion can be very large.

Constant Factors vs. EM Implementation. The I/O complexity of the se-
quential distribution sweeping framework is O(n/B(1 + log, n/M)), where K =
min{M/B,n/M?}. Since in our experimental settings K = n/M, there are only
2 recursive levels: one for distribution sweeping and one for the sweep line at the
base case. Thus, the implementation performs two sequential scans of the input.

In the parallel version, we have to perform two additional scans. Specifically,
we perform one extra recursive step — the parallel distribution. During this step,
each processor scans n/P items and writes them out into its private child slabs.
After the prefix sums, which takes negligible amount of time, we must (a) propa-
gate the result of the prefix sums to the queries that contain only sentinel values
as the result and (b) construct each child slab in contiguous space. As described
earlier, we combine these two tasks into a single scan.

Thus, combined with the two scans of the parallel recursive invocation of the
sequential distribution sweeping, the parallel implementation performs a total
of four scans of the input, i.e., twice as many as the sequential version. Since
all scans are performed in parallel and in expectation each child slab contains
equal number of items, the total I/Os performed by each processor is 2/ P times
the number of sequential I/Os, and (ignoring the speedup due to faster parallel
internal computation) we should expect the speed up of P/2 on P processors.

Sorting. To perform the initial sorting of the input by the y-coordinate, we
used the sorting implementation from the C+4 Multicore Standard Template
Library (MCSTL) [I8] that is now part of the GNU libstdc++ library. For the
base case of plane sweep algorithm, we use the C++ Standard Template Library
(STL) sorting implementation.
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5 Experiments

We performed extensive experimentation studying the performance of these al-
gorithms (i.e., plane sweep algorithm, work-optimal I/O-optimal solution, work-
optimal PEM algorithm and 2-way distribution sweeping) on various input types
and on many different multicore architectures. In addition to measuring the run-
ning time of these algorithms, we used papi library and the Linux perfctr kernel
module to read the hardware performance counters and measure cache misses,
DRAM accesses, TLB misses, branch mispredictions, number of instructions etc..
This section summarizes the key findings of our experiments.

Our query points were generated uniformly at random inside the grid of size
Grid Size x Grid Size. To elicit the asymptotic worst case cache performance
of point location algorithms, we focus on long segments, whose length is chosen
uniformly at random between Grid Size/4 and 3-Grid Size/4 and are at a random
y-coordinate. Full discussion of the effects of segment lengths on the behaviors
of various algorithms can be found in [2].

Configuration. We ran our implementation on the following multicore systems:

1. A system with a single 4-core 2.66 GHz Intel Core i7-920 processor and a
total of 12.3GB RAM. Each core can run 2 threads due to hyperthreading.
The processor has an L3 cache of size 8192 KB that is shared among all 4
cores. The L2 cache of 256 KB is only shared among pairs of cores.

2. A system with 4 x 12-core 1.9 GHz AMD Opteron 6168 processors and total
of 264 GB of RAM. Each core contains a private L2 cache of 512 KB and
groups of 6 cores share an L3 cache of 5118KB. Thus, each processor contains
two L3 caches of combined size of just over 10MB.

3. A system with 2 x 16-core 2.6 GHz AMD Opteron 6282 SE processors and
total of 96 GB RAM. Each core has its private L2 cache while the L3 cache
is shared between 16 cores. The L2 cache size is 2 MB and L3 cache size is
16 MB.

All configurations run Linux kernels and the codebase was compiled using
g++-2.4 compiler and -O3 flag.

Spatio-temporal Locality in Our Setting. The cache line size for all cache
levels on all 3 systems is 64 bytes. Since our objects take 32 bytes of space,
it appears that each cache line can hold only two objects. Therefore, at a first
glance it is not clear if I/O efficient algorithm can utilize the spatial locality for
any improvement in runtime. However, we observed that given an array that
is too large to fit in cache and which contains our 32-byte objects, it takes 4-
5 times faster to access the objects sequentially rather than performing access
in random locations. This observation can be explained by the fact that the
memory system prefetches 2-3 cache lines when performing a sequential scan.
Thus, during sequential scan the prefetcher amplifies the size of the cache line
by the number of lines being prefetchedﬁ

3 For this experiment, the array must contain the actual objects and not just pointers
to the objects, which could be allocated anywhere in memory.
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Fig. 2. Runtimes on the configuration 2] (left) and configuration [I] (right) per element.
The plots exclude the times to perform initial sorting of inputs by the y-coordinate for
distribution sweeping and z-coordinate for the plane sweep.

Another benefit of performing K-way distribution sweeping is that it allows
us to utilize temporal locality by reducing the number of recursive calls. In par-
ticular, K is chosen as K = min{n/M, M/B} and the number of recursive levels
is (1+logg (n/M)). Given limit of RAM size on our systems and the large size of
L3 cache, it appears from our experiments that K is set to n/M on configuration
1 and 2, resulting in a single recursive level dedicated to (sequential) distribution
(with the recursive base case performing plane sweep on chunks that fit in L3
cache). On configuration 3, it requires two recursive calls. The various trade-
offs involved in selecting the correct values of parameters K and M and the
effect of these parameters on the actual run-time of our PEM implementation
are described in the full version [2].

Random Access vs. I/O-efficient Algorithms. Figure 2shows the absolute
running times for the plane sweep and (parallel) distribution sweeping algo-
rithms. One can see improvements in runtimes with the increase in the number
of processors used. Also note the difference in the slopes in the graphs of the
plane sweep algorithm compared to distribution sweeping algorithms. This is
due to larger asymptotic number of cache misses of the plane sweep algorithm.

Figure Bl demonstrates this difference better. It shows the speedup of the
sequential and parallel distribution sweeping algorithms relative to the plane
sweep algorithm for long segments. In this figure one can see the effects of cache-
efficiency on runtimes. It clearly shows that the I/O-efficient algorithms outper-
form the plane sweep algorithm as the input sizes increase. Recall our discussion
that for the parameters of our systems K = n/M and the I/O complexity of the
distribution sweeping algorithm is O((n/B)(1 + logx n/M)) = O(n/B). This
explains the non-linear asymptotic speedup over plane sweep algorithm (with
I/0O complexity of O((n/B)logn/M)) as a function of the input size.

Figure M shows the speedup that parallel distribution sweeping algorithm
achieves relative to the sequential distribution sweeping algorithm.

PRAM vs. PEM Performance. Figure[H (left) shows the comparative perfor-
mance of the various algorithms on configuration Bl We observe that the PRAM
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Fig. 3. Speedup of the distribution sweeping algorithms relative to the plane sweep
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times to perform initial sorting of inputs by the y-coordinate for distribution sweeping
and z-coordinate for the plane sweep.
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Fig.4. Speedup of the parallel distribution sweeping algorithms relative to the se-
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implementation is significantly slower than the PEM algorithm. For instance,
with 51.2 million segments and the same number of queries, PRAM implemen-
tation takes 96 seconds with 16 cores, while the PEM implementation only re-
quires 30 seconds with the same number of cores (excluding the time for loading
the input and sorting it, which is 18 seconds for both implementations). This is
largely accounted for by the fact that the PRAM implementation makes poor
use of temporal locality and thus, has larger number of recursive levels. In each
recursive level, it scans all the segments and query points, increasing the DRAM
accesses significantly.

DRAM Accesses and Cache Misses. We could not find a reliable way to
measure only L3 cache misses: the papi library does not support measurement
of shared cache events, while the hardware counters for LLC (Last Level Cache)
counters returned suspiciously similar results to L2 cache misses. Instead we
measured the total traffic to DRAM using perf tool. Figure Bl (right) shows
a clear correlation between the total DRAM traffic and running times. It is
interesting to note that although our algorithms are designed in simple 2-level
cache model, they minimize the total traffic to DRAM, in spite of complex nature
of modern memory systems.

6 Conclusions and Future Work

In this work, we explored the effects of caches on actual run-times observed
on various multicore architectures in the context of the geometric stabbing-
max query problem. This is used to understand how accurately the PEM model
predicts the running time of combinatorial algorithms on current multicore ar-
chitectures. On single-socket multicore architectures, our results show a direct
correlation between traffic on DRAM memory controller and running times of
implementations. Thus, the algorithms designed I/O-efficiently via the (parallel)
distribution sweeping framework outperform the plane sweep algorithms which
do not address the I/O-efficiency.

We chose to perfom our experiments on single-socket architectures, because
the PEM model assumes uniform access latencies to shared memory. We con-
jecture that NUMA effects of DRAM access on multi-socket architectures might
be better modeled by distributed computational models, where each processor
copies data into “local” memory — DRAM address space associated with its
socket — before processing it. Once the data is in the “local” DRAM banks, one
can use the PEM algorithms to process it cache-efficiently. The experimental
evaluation and modeling NUMA effects of multi-socket architectures is left for
future investigations.

While we chose to implement an algorithm which was designed in the PEM
model, it would be interesting to see how the implementations in other cache-
conscious parallel models (for example, [9]) will fare in practice in similar setting.
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Abstract. The greedy spanner is a high-quality spanner: its total weight,
edge count and maximal degree are asymptotically optimal and in prac-
tice significantly better than for any other spanner with reasonable con-
struction time. Unfortunately, all known algorithms that compute the
greedy spanner of n points use £2(n?) space, which is impractical on large
instances. To the best of our knowledge, the largest instance for which
the greedy spanner was computed so far has about 13,000 vertices.

We present a O(n)-space algorithm that computes the same spanner
for points in R? running in O(n? log? n) time for any fixed stretch factor
and dimension. We discuss and evaluate a number of optimizations to
its running time, which allowed us to compute the greedy spanner on
a graph with a million vertices. To our knowledge, this is also the first
algorithm for the greedy spanner with a near-quadratic running time
guarantee that has actually been implemented.

1 Introduction

A t-spanner on a set of points, usually in the Euclidean plane, is a graph on
these points that is a ‘t-approximation’ of the complete graph, in the sense that
shortest routes in the graph are at most ¢ times longer than the direct geometric
distance. The spanners considered in literature have only O(n) edges as opposed
to the O(n?) edges in the complete graph, or other desirable properties such as
bounded diameter or bounded degree, which makes them a lot more pleasant to
work with than the complete graph.

Spanners are used in wireless network design [7]: for example, high-degree
routing points in such networks tend to have problems with interference, so
using a spanner with bounded degree as network avoids these problems while
maintaining connectivity. They are also used as a component in various other
geometric algorithms, and are used in distributed algorithms. Spanners were
introduced in network design [12] and geometry [5], and have since been subject
to a considerable amount of research [9}[11].

There exists a large number of constructions of ¢-spanners that can be pa-
rameterized with arbitrary ¢ > 1. They have different strengths and weaknesses:
some are fast to construct but of low quality (@-graph, which has no guarantees
on its total weight), others are slow to construct but of high quality (greedy span-
ner, which has low total weight and maximum degree), some have an extremely

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 3748 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. The left rendering shows the greedy spanner on the USA, zoomed in on Florida,
with ¢ = 2. The dataset has 115,475 vertices, so it was infeasible to compute this graph
before. The right rendering shows the @-graph on the USA, zoomed in on Florida, with
k = 6 for which it was recently proven it achieves a dilation of 2.

low diameter (various dumbbell based constructions) and some are fast to con-
struct in higher dimensions (well-separated pair decomposition spanners). See
for example [11] for detailed expositions of these spanners and their properties.

The greedy spanner is one of the first spanner algorithms that was consid-
ered, and it has been subject to a considerable amount of research regarding its
properties and more recently also regarding computing it efficiently. This line
of research resulted in a O(n?logn) algorithm [2] for metric spaces of bounded
doubling dimension (and therefore also for Euclidean spaces). There is also an
algorithm with O(n®logn) worst-case running time that works well in prac-
tice [6]. Tts running time tends to be near-quadratic in practical cases, but there
are examples on which its running time is ©(n3logn). Its space usage is O(n?).

Among the many spanner algorithms known, the greedy spanner is of spe-
cial interest because of its exceptional quality: its size, weight and degree are
asymptotically optimal, and also in practice are better than any other spanner
construction algorithms with reasonable running times. For example, it produces
spanners with about ten times as few edges, twenty times smaller total weight
and six times smaller maximum degree as its closest well-known competitor, the
O-graph, on uniform point sets. The contrast is clear in Fig. [[l Therefore, a
method of computing it more efficiently is of considerable interest.



Computing the Greedy Spanner in Linear Space 39

We present an algorithm whose space usage is ©(n) whereas existing algo-
rithms use ©(n?) space, while being only a logarithmic factor slower than the
fastest known algorithm, thus answering a question left open in [2]. Our algo-
rithm makes the greedy spanner practical to compute for much larger inputs
than before: this used to be infeasible on graphs of over 15,000 vertices. In con-
trast, we tested our algorithm on instances of up to 1,000,000 points, for which
previous algorithms would require multiple terabytes of memory. Furthermore,
with the help of several optimizations we will present, the algorithm is also fast
in practice, as our experiments show.

The method used to achieve this consists of two parts: a framework that uses
linear space and near-linear time, and a subroutine using linear space and near-
linear time, which is called a near-linear number of times by the framework.
The subroutine solves the bichromatic closest pair with dilation larger than t
problem. If there is an algorithm with a sublinear running time for this subprob-
lem (possibly tailored to our specific scenario), then our framework immediately
gives an asymptotically faster algorithm than is currently known. This situation
is reminiscent to that of the minimum spanning tree, for which it is known that
it is essentially equivalent to the bichromatic closest pair problem.

The rest of the paper is organized as follows. In Section 2] we review a number
of well-known definitions, algorithms and results. In Section [3] we give the prop-
erties of the WSPD and the greedy spanner on which our algorithm is based. In
Section ] we present our algorithm and analyse its running time and space usage.
In Section Bl we discuss our optimizations of the algorithm. Finally, in Section
we present our experimental results and compare it to other algorithms.

2 Notation and Preliminaries

Let V be a set of points in R%, and let ¢ € R be the intended dilation (1 < ¢). Let
G = (V,E) be a graph on V. For two points u,v € V, we denote the Euclidean
distance between « and v by |uv|, and the distance in G by d¢ (u, v). If the graph
G is clear from the context we will simply write §(u,v). The dilation of a pair
of points is ¢ if d(u,v) < t-|uv|. A graph G has dilation ¢ if ¢ is an upper bound
for the dilations of all pairs of points. In this case we say that G is a t-spanner.
To simplify the analysis, we assume without loss of generality that ¢ < 2.

We will often say that two points u,v € V' have a t-path if their dilation is ¢.
A pair of points is without t-path if its dilation is not ¢t. When we say a pair of
points (u,v) is the closest or shortest pair among some set of points, we mean
that |uv| is minimal among this set. We will talk about a Dijkstra computation
from a point v by which we mean a single execution of the single-source shortest
path algorithm known as Dijkstra’s algorithm from v.

Consider the following algorithm that was introduced by Keil [10]:
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Algorithm GreedySpannerOriginal(V,t)

1. E+0

2. for every pair of distinct points (u,v) in ascending order of |uv|
3. do if 5y, gy (u,v) >t - [uv]

4 then add (u,v) to E

5. return E

Obviously, the result of this algorithm is a t-spanner for V. The resulting
graph is called the greedy spanner for V', for which we shall present a more
efficient algorithm than the above.

We will make use of the Well-Separated Pair Decomposition, or WSPD for
short, as introduced by Callahan and Kosaraju in [B|4]. A WSPD is parameter-
ized with a separation constant s € R with s > 0. This decomposition is a set of
pairs of nonempty subsets of V. Let m be the number of pairs in a decomposition.
We can number the pairs, and denote every pair as {4;, B;} with 1 <i < m.
Let u and v be distinct points, then we say that (u,v) is ‘in’ a well-separated
pair {A;,B;} if u € A; and v € B; or v € A; and u € B;. A decomposition has
the property that for every pair of distinct points v and v, there is exactly one
¢ such that (u,v) is in {A;, B;}.

For two nonempty subsets Xj and X; of V, we define min(Xy, X;) to be
the shortest distance between the two circles around the bounding boxes of X}
and X; and max(Xy, X;) to be the longest distance between these two circles.
Let diam(X}) be the diameter of the circle around the bounding box of Xj. Let
£(Xy, X)) be the distance between the centers of these two circles, also named the
length of this pair. For a given separation constant s € R with s > 0 as parameter
for the WSPD, we require that all pairs in a WSPD are s-well-separated, that
is, min(A;, B;) > s - max(diam(A;), diam(B;)) for all ¢ with 1 <1 < m.

Tt is easy to see that max(Xy, X;) < min(Xg, X)) + diam(Xy) + diam(X;) <
(14 2/s)min(Xy, X;). As t < 2 and as we will pick s = ,* later on, we
have s > 4, and hence max(Xy, X;) < 3/2min(Xy, X;). Similarly, ¢(Xy, X;) <
min(Xg, X;) + diam(Xy)/2 + diam(X;)/2 < (1 4+ 1/s) min(Xg, X;) and hence
@(Xk,Xl) S 5/4min(Xk,Xl).

For any V and any s > 0, there exists a WSPD of size m = O(s%) that
can be computed in O(nlogn + s9n) time and can be represented in O(s%n)
space [3]. Note that the above four values (min, max, diam and ¢) can easily
be precomputed for all pairs with no additional asymptotic overhead during the
WSPD construction.

3 Properties of the Greedy Spanner and the WSPD

In this section we will give the idea behind the algorithm and present the proper-
ties of the greedy spanner and the WSPD that make it work. We assume we have
a set of points V' of size n, an intended dilation ¢ with 1 < ¢ < 2 and a WSPD
with separation factor s = tz_tl, for which the pairs are numbered {A;, B;} with

1 <i < m, where m = O(s%n) is the number of pairs in the WSPD.
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The idea behind the algorithm is to change the original greedy algorithm to
work on well-separated pairs rather than edges. We will end up adding the edges
in the same order as the greedy spanner. We maintain a set of ’candidate’ edges
for every well-separated pair such that the shortest of these candidates is the next
edge that needs be added. We then recompute a candidate for some of these well-
separated pairs. We use two requirements to decide on which pairs we perform a
recomputation, that together ensure that we do not do too many recomputations,
but also that we do not fail to update pairs which needed updating.

We now give the properties on which our algorithm is based. Omitted proofs
are given in [IJ.

Observation 1 (Bose et al. [2, Observation 1]). For everyi with 1 <i <m,
the greedy spanner includes at most one edge (u,v) with (u,v) in {4;, B;}.

v

Our definition of well-separatedness differs slightly from that in [2] but the
observation still holds (see [1I]). An immediate corollary is:

Observation 2 (Bose et al. |2, Corollary 1]). The greedy spanner contains
at most O ((t711)d n) edges.

Lemma 3. Let E be some edge set for V. For every i with 1 < i < m, we can
compute the closest pair of points (u,v) € A; X B; among the pairs of points with
dilation larger than t in G = (V, E) in O(min(|A4;],|B:|)(|V|log|V| + |E|)) time
and O(|V|) space.

Proof. Assume without loss of generality that |A;| < |B;|. We perform a Dijkstra
computation for every point @ € A;, maintaining the closest point in |B;| such
that its dilation with respect to a is larger than ¢ over all these computations. To
check whether a point that is considered by the Dijkstra computation is in |B;],
we precompute a boolean array of size |V/|, in which points in |B;| are marked
as true and the rest as false. This costs O(|V]) space, O(]V]) time and achieves
a constant lookup time. A Dijkstra computation takes O(|V|log |V |+ | E|) time
and O(|V]) space, but this space can be reused between computations. O

Fact 4 (Callahan [3, Chapter 4.5]). >.", min(|4;|,|B;|) = O(s%nlogn)

Observation 5. Let E be some edge set for V. Let (a,b) € E. Let c € V and
d € V be points such that |ac|,|ad|, |bc|,|bd| > t|cd|. Then any t-path between c
and d will not use the edge (a,b).

Proof. This directly follows from the fact that ¢ and d are so far away from a and
b that just getting to either a or b is already longer than allowed for a t-path. O

Fact 6. Let~ and £ be positive real numbers, and let { A;, B;} be a well-separated
pair in the WSPD with length £(A;, B;) = £. The number of well-separated pairs
{A}, B} such that the length of the pair is in the interval [£/2,2¢] and at least
one of R(A}) and R(BY) is within distance v¢ of either R(A;) or R(B;) is less
than or equal to csy = O (s%(1 4 7s)9).

This concludes the theoretical foundations of the algorithm. We will now
present the algorithm and analyze its running time.



42 S.P.A. Alewijnse et al.

4 Algorithm

We will now describe the algorithm in detail. The pseudocode can be found
in [1I]. Tt first computes the WSPD for V' with s = tzfl and sorts the resulting
pairs according to their smallest distance min(A4;, B;). It then alternates between
calling the FillQueue procedure that attempts to add well-separated pairs to a
priority queue (), and removing an element from ) and adding a corresponding
edge to E. If Q) is empty after a call to FillQueue, the algorithm terminates and
returns F.

We assume we have a procedure ClosestPair(i) that for the ith well-separated
pair computes the closest pair of points without ¢-path in the graph computed so
far, as presented in Lemma 3] and returns this pair, or returns nil if no such pair
exists. For the priority queue @, we let min(@) denote the value of the key of the
minimum of Q. Recall that m = O(s%n) denotes the number of well-separated
pairs in the WSPD that we compute in the algorithm.

We maintain an index ¢ into the sorted list of well-separated pairs. It points
to the smallest untreated well-separated pair — we treat the pairs in order of
min(A;, B;) in the FillQueue procedure. When we treat a pair {A;, B;}, we call
ClosestPair (i) on it, and if it returns a pair (u, v), we add it to @ with key |uv].
We link entries in the queue, its corresponding pair {4;, B;} and (u,v) together
so they can quickly be requested. We stop treating pairs and return from the
procedure if we have either treated all pairs, or if min(A4;, B;) is larger than the
key of the minimal entry in @ (if it exists).

After extracting a pair of points (u,v) from @, we add it to E. Then, we
update the information in Q: for every pair {4;, B;} having an entry in Q for
which either bounding box is at most t|uv| away from {A;, B;}, we recompute
ClosestPair(j) and updates its entry in @ as follows. If the recomputation returns
nil; we remove its entry from Q. If it returns a pair (u’,v"), we link the entry of
J in @ with this new pair and we increase the key of its entry to |u'v’|.

For the full proofs of the following theorems and lemma, see [IJ.

Theorem 7. Algorithm GreedySpanner computes the greedy spanner for dila-
tion t.

We will now analyze the running time and space usage of the algorithm. We
will use the observations in Section Bl to bound the amount of work done by the
algorithm.

Lemma 8. For any well-separated pair {A;, B;} (1 < i < m), the number of
times ClosestPair(i) is called is at most 1 + cst.

Proof Sketch: ClosestPair(1) is called once for every 4 in the FillQueue procedure.
ClosestPair (i) may also be called after an edge is added to the graph. If a well-
separated pair {A4;, B;} causes ClosestPair(i) to be called, then ¢(A;, B;) €
[¢(Ai, B;)/2,2¢(A;, B;)] [1]. Then, as we only perform ClosestPair(i) on pairs
that are close by, the collection of pairs that call ClosestPair(i) satisfy the re-
quirements of Fact [6] by setting v = t, so we can conclude this happens only ¢y
times. The lemma then follows. (]
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Theorem 9. Algorithm GreedySpanner computes the greedy spanner for dila-

1

tion t in O <n2 log? n(t_ll)gd +n? logn(t_ll)M) time and O <(t_1

ya™) space.

Proof Sketch: We can easily precompute which well-separated pairs are near and
of similar length to a given well-separated pair in O(m?) time using O ( ( t—ll) 4 n)
space. Other than the ClosestPair(i) calls, all operations performed by the al-
gorithm stay within the time bound of the theorem. By space reuse, the space
usage of all operations including the ClosestPair (i) calls stays within the bounds
of the theorem.

By Observation Pl Lemma [3] and Lemma [ the time taken by all Closes-

tPair (i) calls is O (Z:l1(1 + cst) min(|A;], | Bil) (n logn + (t—ll)dn>>' By Fact
@ the bound on ¢y and after simplification, the time bound in the theorem
follows. Correctness was already proven in Theorem [7 O

5 Making the Algorithm Practical

Experiments suggested that implementing the above algorithm as-is does not
yield a practical algorithm. With the four optimizations described in the follow-
ing sections, the algorithm attains running times that are a small constant slower
than the algorithm introduced in [6] called FG-greedy, which is considered the
best practical algorithm known in literature.

5.1 Finding Close-by Pairs

The algorithm at some point needs to know which pairs are ‘close’ to the pair for
which we are currently adding an edge. In our proof above, we suggested that
these pairs be precomputed in O(m?) time. Unfortunately, this precomputation
step turns out to take much longer than the rest of the algorithm. If n = 100,
then (on a uniform pointset) m a 2000 and m? ~ 4000000 while the number of
edges e in the greedy spanner is about 135. Our solution is to simply find them
using a linear search every time we need to know this information. This only
takes O(e - m) time, which is significantly faster.

5.2 Reducing the Number of Dijkstra Computations

After decreasing the time taken by preprocessing, the next part that takes the
most time are the Dijkstra computations, whose running time dwarfs the rest of
the operations. We would therefore like to optimize this part of the algorithm.
For every well-separated pair, we save the length of the shortest path found by
any Dijkstra computation performed on it, that is, its source s, target ¢ and
distance 0(s,t). Then, if we are about to perform a Dijkstra computation on a
vertex u, we first check if the saved path is already good enough to ‘cover’ all
nodes in B;. Let ¢ be the center of the circle around the bounding box of B; and
r its radius. We check if ¢ - |us| +d(s,t) +t- (Jtc| +7) < t- (Juc| —r) and mark it
as ‘irrelevant for the rest of the algorithm’. This optimization roughly improves
its running time by a factor three.
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5.3 Sharpening the Bound of Observation

The bound given in Observation [l can be improved. Let {4;, B;} be the well-
separated pair for which we just added an edge and let {A;, B;} be the well-
separated pair under consideration in our linear search. First, some notation:
let X, X; be sets belonging to some well-separated pair (not necessarily the
same pair), then min(Xy, X;) denotes the (shortest) distance between the two
circles around the bounding boxes of X and X; and max(Xy, X;) the longest
distance between these two circles. Let ¢ = ¢(A;, B;). We can then replace the
condition of Lemma [l by the sharper condition min(A4;, 4;) 4+ ¢+ min(B;, B;) <
t-max(A;, B;) Vmin(4,, B;) + ¢+ min(A;, B;) < t-max(Bj, A;) The converse
of the condition implies that the edge just added cannot be part of a ¢-path
between a node in {A;, B;}, so the correctness of the algorithm is maintained.
This leads to quite a speed increase.

5.4 Miscellaneous Optimizations

There are two further small optimizations we have added to our implementation.

Firstly, rather than using the implicit linear space representation of the WSPD,
we use the explicit representation where every node in the split tree stores the
points associated with that node. For point sets where the ratio of the longest and
the shortest distance is bounded by some polynomial in 7, this uses O(nlogn)
space rather than O(n) space. This is true for all practical cases, which is why
we used it in our implementation. For arbitrary point sets, this representation
uses O(n?) space. In practice, this extra space usage is hardly noticeable and it
speeds up access to the points significantly.

Secondly, rather than performing Dijkstra’s algorithm, we use the A* algo-
rithm. This algorithm uses geometric estimates to the target to guide the com-
putation to its goal, thus reducing the search space of the algorithm [g].

We have tried a number of additional optimizations, but none of them resulted
in a speed increase. We describe them here.

We have tried to replace A* by ALT, a shortest path algorithm that uses
landmarks — see [§] for details on ALT — which gives better lower bounds than the
geometric estimates used in A*. However, this did not speed up the computations
at all, while costing some amount of overhead.

We have also tried to further cut down on the number of Dijkstra computa-
tions. We again used that we store the lengths of the shortest paths found so
far per well-separated pair. Every time after calling ClosestPair(i) we checked if
the newly found path is ‘good enough’ for other well-separated pairs, that is, if
the path combined with ¢-paths from the endpoints of the well-separated pairs
would give t-paths for all pairs of points in the other well-separated pair. This
decreased the number of Dijkstra computations performed considerably, but the
overhead from doing this for all pairs was greater than its gain.

We tried to speed up finding close-by pairs using range trees. We also tried
performing the optimization of the previous paragraph only to well-separated
pairs ‘close by’ our current pair using range trees. Both optimizations sped up
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the core algorithm and in particular the optimization of the previous paragraph
retained most of its effectiveness. The overhead of creating the range trees was
greater than the gain however, in particular in terms of space usage.

6 Experimental Results

We have run our algorithm on point sets of size between 100 and 1,000,000. If the
set contained at most 10,000 points, we have also run the FG-greedy algorithm
to compare the two algorithms. We have recorded both space usage and running
time (wall clock time). We have also performed a number of tests with decreasing
values of ¢ on datasets of size 10,000 and 50,000. Finally, as this is the first time
we can compute the greedy spanner on large graphs, we have compared it to the
©-graph and WSPD-based spanners on large instances.

We have used three kinds of point distributions: a uniform distribution, a
gamma distribution with shape parameter 0.75, and a distribution consisting
of y/n uniformly distributed pointsets of y/n uniformly distributed points. The
results from the gamma distribution were nearly identical to those of the uniform
pointset, so we did not include them. All our pointsets are two-dimensional.

6.1 Experiment Environments

The algorithms have been implemented in C++. We have implemented all data
structures not already in the std. The random generator used was the Mersenne
Twister PRNG — we have used a C++ port by J. Bedaux of the C code by the
designers of the algorithm, M. Matsumoto and T. Nishimura.

We have used two servers for the experiments. Most experiments have been
run on the first server, which uses an Intel Core i5-3470 (3.20GHz) and 4GB (1600
MHz) RAM. It runs the Debian 6.0.7 OS and we compiled for 32 bits using G++
4.7.2 with the -O3 option. For some tests we needed more memory, so we have
used a second server. This server uses an Intel Core i7-3770k (3.50GHz) and 32
GB RAM. It runs Windows 8 Enterprise and we have compiled for 64 bits using
the Microsoft C++ compiler (17.00.51106.1) with optimizations turned on.

6.2 Dependence on Instance Size

Our first set of tests compared FG-greedy and our algorithm for different values
of n. The results are plotted in Fig. As FG-greedy could only be ran on
relatively small instances, its data points are difficult to see in the graph, so
we added a zoomed-in plot for the bottom-left part of the plot. We have used
standard fitting methods to our data points: the running time of all algorithms
involved fits a quadratic curve well, the memory usage of our algorithm is linear
and the memory usage of FG-greedy is quadratic. This nicely fits our theoretical
analysis. In fact, the constant factors seem to be much smaller than the bound
we gave in our proof. We do note a lack of ‘bumps’ that are often occur when
instance sizes start exceeding caches: this is probably due to the cache-unfriendly
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Fig. 2. The left plot shows the running time of our algorithm on uniform and clustered
data for variously sized instances. The right plot shows the memory usage of our
algorithm on the same data. The lines are fitted quadratic (right) and linear (left)
curves. The outlier at the right side was from an experiment performed on a different
server. Results for FG-greedy are also shown but were near-impossible to see, so a
zoomed-in view of the leftmost corner of both plots is included in the top-left of both
plots. The memory usage explosion of FG-greedy is visible in the right plot.

behavior of our algorithm and the still significant constant factor in our memory
usage that will fill up caches quite quickly.

Compared to FG-greedy it is clear that the memory usage of our algorithm is
vastly superior. The plot puts into perspective how much larger the instances are
that our new algorithm can deal with compared to old algorithms. Furthermore,
our algorithm is about twice as fast as FG-greedy on the clustered datasets, and
only about twice as slow on uniform datasets. On clustered datasets the number
of computed well-separated pairs is much smaller than on uniform datasets so
this difference is not surprising. These plots suggest that our aim — roughly equal
running times at vastly reduced space usage — is reached.

6.3 Dependence on t

We have tested our algorithms on datasets of 10,000 and 50,000 points, setting ¢
to 1.1, 1.2, 1.4, 1.6, 1.8 and 2.0 to test the effect of this parameter. The effects of
the parameter ended up being rather different between the uniform and clustered
datasets. See [I] for these plots.

On uniform pointsets, our algorithm is about as fast as FG-greedy when t = 2,
but its performance degrades quite rapidly as t decreases compared to FG-greedy.
A hint to this behavior is given by the memory usage of our algorithm: it starts
vastly better but as ¢t decreases it becomes only twice as good as FG-greedy. This
suggests that the number of well-separated pairs grows rapidly as t decreases,
which explains the running time decrease.
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On clustered pointsets, the algorithms compare very differently. FG-greedy
starts out twice as slow as our algorithm when ¢ = 2 and when ¢ = 1.1, our algo-
rithm is only slightly faster than FG-greedy. The memory usage of our algorithm
is much less dramatic than in the uniform point case: it hardly grows with ¢ and
therefore stays much smaller than FG-greedy. The memory usage of FG-greedy
only depends on the number of points and not on ¢ or the distribution of the
points, so its memory usage is the same.

6.4 Comparison with Other Spanners

We have computed the greedy spanner on the instance shown in Fig. [l which has
115,475 points. On this instance the greedy spanner for ¢ = 2 has 171,456 edges,
a maximum degree of 5 and a weight of 11,086,417. On the same instance, the
©-graph with k£ = 6 has 465,230 edges, a maximum degree of 62 and a weight of
53,341,205. The WSPD-based spanner has 16,636,489 edges, a maximum degree
of 1,271 and a weight of 20,330,194,426.

As shown in Fig. Bl we have computed the greedy spanner on 500,000 uni-
formly distributed points. On this instance the greedy spanner for ¢ = 2 has
720,850 edges, a maximum degree of 6 and a weight of 9,104,690. On the same
instance, the ©-graph with £ = 6 has 2,063,164 edges, a maximum degree of 22
and a weight of 39,153,380. We were unable to run the WSPD-based spanner
algorithm on this pointset due to its memory usage.

As shown in Fig. 2] we have computed the greedy spanner on 1,000,000 clus-
tered points. On this instance the greedy spanner for ¢ = 2 has 1,409,946 edges,
a maximum degree of 6 and a weight of 4,236,016. On the same instance, the
O-graph with k& = 6 has 4,157,016 edges, a maximum degree of 135 and a weight
of 59,643,264. We were unable to run the WSPD-based spanner algorithm on
this pointset due to its memory usage.

We have computed the greedy spanner on 50,000 uniformly distributed points
with ¢ = 1.1. On this instance the greedy spanner has 225,705 edges, a maximum
degree of 18 and a weight of 15,862,195. On the same instance, the ©-graph with
k = 73 (which is the smallest &k for which a guarantee of ¢ = 1.1 has been proven
to our knowledge) has 2,396,361 edges, a maximum degree of 146 and a weight
of 495,332,746. We were unable to run the WSPD-based spanner algorithm on
this pointset with ¢ = 1.1 due to its memory usage.

These results show that the greedy spanner really is an excellent spanner,
even on large instances and for low ¢, as predicted by its theoretical properties.

7 Conclusion

We have presented an algorithm that computes the greedy spanner in Euclidean
space in O(n? log? n) time and O(n) space for any fixed stretch factor and dimen-
sion. Our algorithm avoids computing all distances by considering well-separated
pairs instead. It consists of a framework that computes the greedy spanner given
a subroutine for a bichromatic closest pair problem. We have presented several
optimizations to the algorithm. Our experimental results show that the resulting
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running time is close to that of the fastest known algorithm, while massively de-
creasing space usage. It allowed us to compute the greedy spanner on instances
of a million points, while previous algorithms were limited to at most 13,000
points. Given that our algorithm is the first algorithm with a near-quadratic
running time guarantee that has been implemented, that it has linear space us-
age and that its running time is comparable to the best known algorithms, we
think our algorithm is the method of choice to compute greedy spanners.

We leave open the problem of providing a faster subroutine for solving the
bichromatic closest pair with dilation larger than t problem in our framework,
which may allow the greedy spanner to be computed in subquadratic time. Par-
ticularly the case of the Euclidean plane seems interesting, as the closely related
‘ordinary’ bichromatic closest pair problem can be solved quickly in this setting.
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Abstract. We study stable matching problems in networks where play-
ers are embedded in a social context, and may incorporate friendship
relations or altruism into their decisions. Each player is a node in a so-
cial network and strives to form a good match with a neighboring player.
We consider the existence, computation, and inefficiency of stable match-
ings from which no pair of players wants to deviate. When the benefits
from a match are the same for both players, we show that incorporating
the well-being of other players into their matching decisions significantly
decreases the price of stability, while the price of anarchy remains un-
affected. Furthermore, a good stable matching achieving the price of
stability bound always exists and can be reached in polynomial time.
We extend these results to more general matching rewards, when players
matched to each other may receive different utilities from the match.
For this more general case, we show that incorporating social context
(i.e., “caring about your friends”) can make an even larger difference,
and greatly reduce the price of anarchy. We show a variety of existence
results, and present upper and lower bounds on the prices of anarchy
and stability for various matching utility structures.

1 Introduction

Stable matching problems capture the essence of many important assignment
and allocation tasks in economics and computer science. The central approach
to analyzing such scenarios is two-sided matching, which has been studied in-
tensively since the 1970s in both the algorithms and economics literature. An
important variant of stable matching is matching with cardinal utilities, when
each match can be given numerical values expressing the quality or reward that
the match yields for each of the incident players [B]. Cardinal utilities specify
the quality of each match instead of just a preference ordering, and they allow
the comparison of different matchings using measures such as social welfare. A
particularly appealing special case of cardinal utilities is known as correlated
stable matching, where both players who are matched together obtain the same
reward. In addition to the wide-spread applications of correlated stable match-
ing in, e.g., market sharing [16], social networks [I7], and distributed computer
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networks [27], this model also has favorable theoretical properties such as the ex-
istence of a potential function. It guarantees existence of a stable matching even
in the non-bipartite case, where every pair of players is allowed to match [2L27].

When matching individuals in a social environment, it is often unreasonable
to assume that each player cares only about their own match quality. Instead,
players incorporate the well-being of their friends/neighbors as well, or that of
friends-of-friends. Players may even be altruistic to some degree, and consider
the welfare of all players in the network. Caring about friends and altruistic
behavior is commonly observed in practice and has been documented in labora-
tory experiments [14}25]. In addition, in economics there exist recent approaches
towards modeling and analyzing other-regarding preferences [15]. Given that
other-regarding preferences are widely observed in practice, it is a fundamental
question to model and characterize their influence in classic game-theoretic en-
vironments. Recently, the impact of social influence on congestion and potential
games has been characterized prominently in [8,TOH12,[I8-20].

We consider a natural approach to incorporate social effects into partner selec-
tion and matching scenarios by studying how social context influences stability
and efficiency in matching games. Our model of social context is similar to recent
approaches in algorithmic game theory and uses dyadic influence values tied to
the hop distance in the graph. In this way, every player may consider the well-
being of every other player to some degree, with the degree of this regardfulness
possibly decaying with hop distance. The perceived utility of a player is then
composed of a weighted average of player utilities. Players who only care about
their neighbors or fully altruistic players are special cases of this model.

For matching in social environments, the standard model of correlated sta-
ble matching may be too constraining compared to general cardinal utilities,
because matched players receive exactly the same reward. Such an equal shar-
ing property is intuitive and bears a simple beauty, but other reward sharing
methods might be more natural in different contexts. For instance, in theoret-
ical computer science it is common practice to list authors alphabetically, but
in other disciplines the author sequence is carefully designed to ensure a proper
allocation of credit to the authors of a joint paper. The credit is often supposed
to be allocated in terms of input, i.e., the first author is the one that contributed
most to the project. Such input-based or proportional sharing is then sometimes
overruled with sharing based on intrinsic or acquired social status, e.g., when a
distinguished expert in a field is easily recognized and subconsciously credited
most with authorship of an article. We are interested in how such unequal re-
ward sharing rules affect stable matching scenarios. We consider a large class
of local reward sharing rules and characterize the impact of unequal sharing on
existence and inefficiency of stable matchings, both in cases when players are
embedded in a social context and when they are not.

1.1 Stable Matching within a Social Context

Correlated stable matching is a prominent subclass of general ordinary stable
matching. We are given a (non-bipartite) graph G = (V, FE) with edge weights
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re. In a matching M, if node u is matched to node v, the reward of node u
is defined to be exactly r.. This can be interpreted as both u and v getting
an identical reward from being matched together. We will also consider unequal
reward sharing, where u obtains reward r and v obtains reward r{ with r¥+ry =
re. Therefore, the preference ordering of each node over its possible matches is
implied by the rewards that this node obtains from different edges. A pair of
nodes (u, v) is called a blocking pair in matching M if u and v are not matched to
each other in M, but can both strictly increase their rewards by being matched to
each other instead. A matching with no blocking pairs is called a stable matching.

While the matching model above has been well-studied, we are interested
in stable matchings that arise in the presence of social context. Denote the
reward obtained by a node v in a matching M as R,(M). When it is clear which
matching we are referring to, we will simply denote this reward by R,. We now
consider the case when node v not only cares about its own reward, but also
about the rewards of its friends. Specifically, the perceived or friendship utility
of node v in matching M is defined as

diam(G)

U, =R, + Z Qg Z Rua
d=1

uEN4(v)

where Ng(v) is the set of nodes with shortest distance exactly d from v, and
1>a1 >as > ... >0 (we use o to denote the vector of «; values). In other
words, for a node w that is distance d away from v, the utility of v increases
by an «g factor of the reward received by w. Thus, if ag = 0 for all d > 2, this
means that nodes only care about their neighbors, while if all ag > 0, this means
that nodes are altruistic and care about the rewards of everyone in the graph.
The perceived utility is the quantity that the nodes are trying to maximize, and
thus, in the presence of friendship, a blocking pair is a pair of nodes such that
each node can increase its perceived utility by matching to each other. Given
this definition of blocking pair, a stable matching is again defined as a matching
without such a blocking pair. Note that while our definition includes ag for all
d, it is easy to see that only the values of a7 and ao matter to the stability of
a matching, since a deviation of a blocking pair only changes the R, values of
adjacent nodes.

Centralized Optimum and the Price of Anarchy. We study the social welfare of
equilibrium solutions and compare them to an optimal centralized solution. The
social welfare is the sum of rewards, i.e., a social optimum is a matching that
maximizes ), R,. Notice that, while this is equivalent to maximizing the sum of
player utilities when a = 0, this is no longer true with social context (i.e., when
a # 0). Nevertheless, as in e.g. [I1,28], we believe this is a well-motivated and
important measure of solution quality, as it captures the overall performance of
the system, while ignoring the perceived “good-will” effects of friendship and
altruism. For example, when considering projects done in pairs, the reward of
an edge can represent actual productivity, while the perceived utility may not.
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To compare stable solutions with a social optimum, we will often consider the
price of anarchy and the price of stability. When considering stable matchings,
by the price of anarchy (resp. stability) we will mean the ratio of social welfare
of the social optimum and the social welfare of the worst (resp. best) stable
matching.

1.2 New Results and Related Work

Our Results. In Section 2l we consider stable matching with friendship utilities
and equal reward sharing. In this case, a stable matching exists and the price of
anarchy (ratio of the maximum-weight matching with the worst stable matching)
is at most 2, the same as in the case without friendship. The price of stability,
on the other hand, improves significantly in the presence of friendship — we
show a tight bound of , f;(; 2111&2. Intuitively, the bound depends only on oy, s
because a deviation by a blocking pair (u,v) only affects rewards R,, for nodes w
neighboring u or v. Thus, the stability of a matching depends only on the graph
and aq, ag; changing «; with ¢ > 3 does not change the stability of a matching.
In addition to providing a tight bound on the price of stability, we present a
dynamic process that converges to a stable matching of at least this quality in
polynomial time, if initiated from the maximum-weight matching. Our results
imply that for socially aware players, the price of stability can greatly improve:
eg.,if a; = ap = é, then the price of stability is at most g, and a solution of
this quality can be obtained efficiently.

In Section[Bwe instead study general reward sharing schemes. When two nodes
matched together may receive different rewards, an integral stable matching
may not exist. Thus, we focus on fractional stable matchings which we show to
always exist, even with friendship utilities. Fractional matching is well-motivated
in a social context, since the fractional amount of an edge in the matching
corresponds to the strength of the link/relationship between this pair of nodes.
The total relationships of any single node should add up to at most 1, modeling
the fact that a single person cannot be involved in an unlimited amount of
relationships. We show that for arbitrary reward sharing, prices of anarchy and
stability depend on the level of inequality among reward shares. Specifically, if
R is the maximum ratio over all edges (u,v) € E of the reward shares of node
u and v, then the price of anarchy is at most (1+1I?é11;a1). Thus, compared to
the equal reward sharing case, if sharing is extremely unfair (R is unbounded),
then friendship becomes even more important: changing o from 0 to é reduces
the price of anarchy from unbounded to at most 3. In addition, for several
particularly natural local reward sharing rules, we show that an integral stable
matching exists, give improved price of anarchy guarantees, and show tight lower
bounds.

Related Work. Stable matching problems have been studied intensively over
the last few decades. On the algorithmic side, existence, efficient algorithms,
and improvement dynamics for two-sided stable matchings have been of interest
(for references, see standard textbooks, e.g., [29]). In this paper we address the
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more general stable roommates problem, in which every player can be matched
to every other player. For general preference lists, there have been numerous
works characterizing and algorithmically deciding existence of stable match-
ings [I3/B0,3T]. In contrast, fractional stable matchings are always guaranteed
to exist and exhibit various interesting polyhedral properties [IL31]. For the cor-
related stable roommates problem, existence of (integral) stable matchings is
guaranteed by a potential function argument [2,27], and convergence time of
random improvement dynamics is polynomial [3]. In [6], price of anarchy and
stability bounds for approzimate correlated stable matchings were provided. In
contrast, we study friendship, altruism, and unequal reward sharing in stable
roommates problems with cardinal utilities.

Another line of research closely connected to some of our results involves
game-theoretic models for contribution. In 7] we consider a contribution game
tied closely to matching problems. Here players have a budget of effort and
contribute parts of this effort towards specific projects and relationships. For
more related work on the contribution game, see [7]. All previous results for this
model concern equal sharing and do not address the impact of the player’s social
context. As we discuss in the full version of this paper in [4], most of our results
for friendship utilities can also be extended to such contribution games.

Analytical aspects of reward sharing have been a central theme in game theory
since its beginning, especially in cooperative games. Recently, there have been
prominent algorithmic results also for network bargaining [21123] and credit
allocation problems [22]. A recent line of work [32[33] treats extensions of coop-
erative games, where players invest into different coalitional projects. The main
focus of this work is global design of reward sharing schemes to guarantee coop-
erative stability criteria. Our focus here is closer to, e.g., recent work on profit
sharing games [9,26]. We are interested in existence, computational complexity,
and inefficiency of stable states under different reward sharing rules, with an aim
to examine the impact of social context on stable matchings.

Our notion of a player’s social context is based on numerical influence param-
eters that determine the impact of player rewards on the (perceived) utilities of
other players. A recently popular model of altruism is inspired by Ledyard [24]
and has generated much interest in algorithmic game theory [TIL[12,[19]. In this
model, each player optimizes a perceived utility that is a weighted linear com-
bination of his own utility and the utilitarian welfare function. Similarly, for
surplus collaboration [§] perceived utility of a player consists of the sum of play-
ers utilities in his neighborhood within a social network. Our model is similar
to [L0,20] and smoothly interpolates between these global and local approaches.

2 Matching with Equal Reward Sharing

We begin by considering correlated stable matching in the presence of friendship
utilities. In this section, the reward received by both nodes of an edge in a
matching is the same, i.e., we use equal reward sharing, where every edge e has
an inherent value r. and both endpoints receive this value if edge e is in the
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u v
(both u and v were
matched before) z

(v was unmatched (both u and v were unmatched
before the deviation) before the deviation)

Fig.1. (Left) Biswivel deviation (Right,Middle) Swivel deviation

matching. We consider more general reward sharing schemes in Section Bl Recall
that the friendship utility of a node v increases by ayR, for every node u, where
d is the shortest distance between v and u. We abuse notation slightly, and let
iy denote ayg, so if u and v are neighbors, then a,, = a;.

Given a matching M, let us classify the following types of improving deviations
that a blocking pair can undergo.

Definition 1. We call an improving deviation a biswivel whenever two neigh-
bors uw and v switch to match to each other, such that both u and v were matched
to some other nodes before the deviation in M.

See Figure [l for explanation. For such a biswivel to exist in a matching, the
following necessary and sufficient conditions must hold.

(]- + al)ruv > (]- + CVl)Tuw + (al + auz) Tvz (1)
I+ a1)ruw > (14 a1)ryz + (1 + @pw) Tuw (2)

Intuitively, the left side of Inequality (Il) quantifies the utility gained by u because
of getting matched to v and the right side quantifies the utility lost by u because
of v and v breaking their present matchings with w and z respectively. Hence,
Inequality (J) implies that u gains more utility by getting matched with v than
it loses because of u and v breaking their matchings with v and z. Inequality (2])
can similarly be explained in the context of node v.

Definition 2. We call an improving deviation a swivel whenever two neighbors
get matched such that at least one node among the two neighbors was not matched
before the deviation.

See Figure [l for explanation. For a swivel to occur, it is easy to see that the
reward 1, of the new edge added to the matching must be strictly larger than
the rewards of edges that u or v were matched to before (if any).

2.1 Existence and Social Welfare

Theorem 1. A stable matching exists in stable matching games with friendship
utilities. Moreover, the set of stable matchings without friendship (i.e., when
a =0) is a subset of the set of stable matchings with friendship utilities on the
same graph.

Theorem 2. The price of anarchy in stable matching games with friendship
utilities is at most 2, and this bound is tight.
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2.2 Price of Stability and Convergence

The main result in this section bounds the price of stability in stable match-
ing games with friendship utilities to | f;(; 210_‘:%, and this bound is tight (see
Theorem M below). This bound has some interesting implications. It is decreas-
ing in each a1 and as, hence having friendship utilities always yields a lower
price of stability than without friendship utilities. Also, note that values of
a3, Q4, .; Agiam(c) have no influence. This is not surprising: after a deviation
by a blocking pair (u,v), the rewards R,, remain the same for all w except those
neighboring u or v. Thus, caring about players more than distance 2 away does
not improve the price of stability in any way. Also, if a3 = ay = 1, then PoS = 1,
i.e., there will exist a stable matching which will also be a social optimum. Thus
loving thy neighbor and thy neighbor’s neighbor but nobody beyond is sufficient to
guarantee that there exists at least one socially optimal stable matching. In fact,
due to the shape of the curve, even small values of friendship quickly decrease
the price of stability; e.g., setting ar; = ag = 0.1 already decreases the price of
stability from 2 to ~ 1.7.

We will establish the price of stability bound by defining an algorithm that
creates a good stable matching in polynomial time. One possible idea to create
a stable matching that is close to optimum is to use a BEST-BLOCKING-PAIR
algorithm: start with the best possible matching, i.e., a social optimum, which
may or may not be stable. Now choose the “best” blocking pair (u,v): the one
with maximum edge reward r,,,. Allow this blocking pair to get matched to each
other instead of their current partners. Check if the resulting matching is stable.
If it is not stable then allow the best blocking pair for this matching to get
matched. Repeat the procedure until there are no more blocking pairs, thereby
obtaining a stable matching.

This algorithm gives the desired price of stability and running time bounds
for the case of “altruism” when all «; are the same, see Corollary [l below. To
provide the desired bound with general friendship utilities, we must alter this
algorithm slightly using the concept of relaxed blocking pair.

Definition 3. Given a matching M, we call a pair of nodes (u,v) a relazed
blocking pair if either (u,v) form an improving swivel, or u and v are matched
to w and z respectively, with the following inequalities being true:

T+ a1)ruw > (14 a1)ruw + (@1 + @2) 702 (3)
I+ a1)ruw > (14 a1)re: + (1 + a2) Tyw (4)

In other words, a relaxed blocking pair ignores the possible edges between
nodes u and z, and has «s in the place of v, (similarly, as in the place of qyy).
It is clear from this definition that a blocking pair is also a relaxed blocking pair,
since the conditions above are less constraining than Inequalities () and ().
Thus a matching with no relaxed blocking pairs is also a stable matching. We
will call a relaxed blocking pair satisfying Inequalities (@) and @) a relazed
biswivel, which may or may not correspond to an improving deviation, since a
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relaxed blocking pair is not necessarily a blocking pair. We define the BEST-
RELAXED-BLOCKING-PAIR Algorithm to be the same as the BEST-BLOCKING-
PAIR algorithm, except at each step it chooses the best relazed blocking pair.

Dynamics: To establish the efficient running time of BEST-RELAXED-BLOCKING-
PAIR and the price of stability bound of the resulting stable matching, we first
analyze the dynamics of this algorithm and prove some helpful lemmas. We can
interpret the algorithm as a sequence of swivel and relaxed biswivel deviations,
each inserting one edge into M, and removing up to two edges. Note that it is not
guaranteed that the inserted edge will stay forever in M, as a subsequent devi-
ation can remove this edge from M. Let O1, 02, O3, - -- denote this sequence of
deviations, and e(i) denote the edge which got inserted into M because of O;. We
analyze the dynamics of the algorithm by using the following key lemma.

Lemma 1. Let O; be a relazed biswivel that takes place during the execution
of the best relazed blocking pair algorithm. Suppose a deviation Oy takes place
before O;. Then we have roy > Tejy. Furthermore, if Oy is a relaved biswivel
then e(k) # e(j) (thus at most |E(QG)| relazed biswivels can take place during the
execution of the algorithm).

It is important to note that this lemma does not say that r.; > re(;) for
i < j. We are only guaranteed that r.;) > e for i < j if O; is a relaved
biswivel. Between two successive relaxed biswivels O, and O;, the sequence of
Te(;) for consecutive swivels can and does increase as well as decrease, and the
same edge may be added to the matching multiple times. All that is guaranteed
is that 7(;y for a biswivel O; will have a lower value than all the preceding re;)’s.
Thus, this lemma suggests a nice representation of BEST-RELAXED-BLOCKING-
PAIR in terms of phases, where we define a phase as a subsequence of deviations
that begins with a relaxed biswivel and ends with the next relaxed biswivel.
Lemma [I] guarantees that at the start of each phase, the r.(;) value is smaller
than the values in all previous phases, and that there is only a polynomial number
of phases.

Theorem 3. BEST-RELAXED-BLOCKING-PAIR outputs a stable matching after
O(m?) iterations, where m is the number of edges in the graph.

Notice that in each phase, the value of the matching only increases, since
swivels only remove an edge if they add a better one. Below, we use the fact
that only relaxed biswivel operations reduce the cost of the matching to bound
the cost of the stable matching this algorithm produces. We do this by tracing
what an edge of M* “gets mapped to” as swivel and biswivel operations “change”
this edge into another one, and showing that the image of an edge can experience
at most one relaxed biswivel. The proof appears in the full version [4] of this

paper.

Theorem 4. The price of stability in stable matching games with friendship

utilities is at most | f;gi‘ilaz, and this bound is tight.
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From Theorems [3 and @] we immediately get the following corollary about
the behavior of best blocking pair dynamics. This corollary applies in particular
to the model of altruism when o; = a for all i =1, ..., diam(G).

Corollary 1. If a; = as and we start from the social optimum matching, BEST-
BLOCKING-PAIR converges in O(m?) time to a stable matching that is at most

a factor of figgi worse than the optimum.

3 Matching with Friendship and General Reward Sharing

In the previous section we assumed that for (u,v) € M both u and v get the
same reward T.,. Let us now treat the more general case where u and v receive
different rewards for (u,v) € M. We define 77, as the reward of z from edge
(z,y) € M. We interpret our model in a reward sharing context, where z and
y share a total reward of ryy = 77, + r%, . The correlated matching model of
Section [2] can equivalently be formulated as equal sharing with nodes u and v
receiving a reward of 7, /2.

Without friendship utilities, our stable matching game reduces to the stable
roommates problem (i.e., non-bipartite stable matching), since reward shares
can be arbitrary and thus induce arbitrary preference lists for each node. It
is well known that a stable matching may not exist in instances of the stable
roommates problem. While we are able to prove existence of integral stable
matching for several interesting special cases (see Section B.Ibelow), the addition
of friendship further complicates matters. In Section 2.Ilwe showed that for equal
sharing, a stable matching without friendship utilities (i.e., & = 0) is also a stable
matching when we have friendship utilities. This is no longer true for unequal
reward sharing: adding a social context can completely change the set of stable
matchings. In the full version [4] of this paper we give such examples, including
an example where adding a social context (i.e., increasing a above zero) destroys
all stable matchings that exist when o = 0.

Although stable matchings may not exist in general non-bipartite graphs,
fractional stable matchings are guaranteed to exist [I]. Fortunately, as we prove
below, this holds even in the presence of friendship utilities with general re-
ward sharing: A fractional stable matching always exists. By a “fractional stable
matching” we simply mean a fractional matching (where the total fractional
matches for a node v add up to at most 1) with no blocking pairs.

Theorem 5. A fractional stable matching always exists, even in the case of
friendship utilities and general reward sharing.

Since an integral stable matching may not exist, we instead consider fractional
matching; by price of anarchy here we mean the ratio of the total reward in a
socially optimum fractional matching with the worst fractional stable matching.
The corresponding ratio between the integral versions is trivially upper bounded
by this amount as well. We define R = max(, ,\er(q) :3’ . Note that R > 1. With
this notation, we have the following theorem: -
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Theorem 6. The (fractional) price of anarchy for general reward sharing with

friendship utilities is at most 1 + Q, where Q = 1}?;;01‘}%, and this bound is tight.

Let us quickly consider the implications of the bound in Theorem[Gl If R = 1,
the bound is 2. This result implies Theorem [, since when we have R = 1, then
both v and v get the same reward from an edge (u,v) € M. If a; = 0, the bound
is 1+ R. The tightness of this bound implies that as sharing becomes more unfair,
i.e., as R — oo, we can find instances where the price of anarchy is unbounded.
Unequal sharing can make things much worse for the stable matching game.
Notice, however, that 1}?;;?}% is a decreasing function of a1. As a1 goes from
0 to 1, the bound goes from 1+ R to 2. Without friendship utilities (a = 0),
we have a tight upper bound of 1 + R, which is extremely bad for large R. As
a1 tends to 1, however, the price of anarchy drops to 2, independent of R. For
example, for oy = 1/2 it is only 3. Thus, social context can drastically improve
the outcome for the society, especially in the case of unfair and unequal reward
sharing.

For price of stability of general reward sharing with friendship utilities, we
have a lower bound within an additive factor of 1 of optimum. Specifically, define

Q = (113125%13), then we have the following theorem for the price of stability:

Theorem 7. The price of stability of stable matching games with friendship and
general reward sharing is in [Q',Q + 1], with Q < Q' < Q + 1.

3.1 Specific Reward Sharing Rules

In this section we consider some particularly natural reward sharing rules and
show that games with such rules have nice properties. Specifically, while for gen-
eral reward sharing an (integral) stable matching may not exist, for the reward
sharing rules below we show they always exist (although only if there is no social
context involved) and how to compute them efficiently. We also give improved
bounds on prices of anarchy for these special cases. Specifically, we consider the
following sharing rules:

— Matthew Effect sharing: In sociology, “Matthew Effect” is a term coined by
Robert Merton to describe the phenomenon which says that, when doing
similar work, the more famous person tends to get more credit than other
less-known collaborators. We model such phenomena for our network by
associating brand values A, with each node u, and defining the reward that
node u gets by getting matched with node v as ryy, = )\u’\Jr“Av Ty~ Thus nodes
u and v split the edge reward in the ratio of A, : A\, and a node with high
A, value gets a disproportionate amount of reward.

— Trust sharing: Often people collaborate based on not only the quality of a
project but also how much they trust each other. We model such a situation
by associating a value (8, with each node u, which represents the trust value
of player u, or how pleasant they are to work with. Each edge (u,v) also
has an inherent quality h.,. Then, the reward obtained by node u from
partnering with node v is 7, = Ay + Bo-
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With friendship utilities, even these intuitive special cases of reward sharing
do not guarantee the existence of an integral stable matching [4]. Without friend-
ship, however, integral stable matching exists and can be efficiently computed for
Matthew Effect sharing and Trust sharing, unlike in the case of general reward
sharing.

Theorem 8. An integral stable matching always exists in stable matching games
with Matthew Effect sharing and Trust sharing if o = 0 (i.e., if there is no
friendship). Furthermore, this matching can be found in O(|V'||E|) time.

The price of anarchy of Matthew effect sharing can be as high as the guarantee
of Theorem [6, with R = mMax(yy) :\\“: For Trust sharing, however:

Theorem 9. The price of anarchy for (fractional) stable matching games with
Trust sharing and friendship utilities is at most max{2 + 2aq,3}.
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Abstract. In many scientific applications it is required to reconstruct
a raster dataset many times, each time using a different resolution. This
leads to the following problem; let G be a raster of VN x /N cells.
We want to compute for every integer 2 < u < +/N a raster G, of
[VN/u] x [V'N/u] cells where each cell of G, stores the average of the
values of u X u cells of G. Here we consider the case where G is so large
that it does not fit in the main memory of the computer.

We present a novel algorithm that solves this problem in O(scan(NV))
data block transfers from/to the external memory, and in ©(N) CPU
operations; here scan(N) is the number of block transfers that are needed
to read the entire dataset from the external memory. Unlike previous
results on this problem, our algorithm achieves this optimal performance
without making any assumptions on the size of the main memory of the
computer. Moreover, this algorithm is cache-oblivious; its performance
does not depend on the data block size and the main memory size.

We have implemented the new algorithm and we evaluate its perfor-
mance on datasets of various sizes; we show that it clearly outperforms
previous approaches on this problem. In this way, we provide solid evi-
dence that non-trivial cache-oblivious algorithms can be implemented so
that they perform efficiently in practice.

1 Introduction

Rasters are one of the most common formats for modelling spatial data. A raster
is a 2-dimensional grid of square cells where each cell is assigned a real value.
Among other applications, rasters are used to represent real-world terrains; in
this case each cell corresponds to a region of a terrain, and the value of the cell
indicates the average height of the terrain in this region. Today, it is possible to
acquire massive rasters that represent terrains with very fine resolution; the size
of each cell in such a raster can be less than one square meter. Yet, studying a
terrain in such a small scale might lead to wrong conclusions. This happens for
example when we want to identify landforms on terrains; when we study a terrain
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at a scale of a few meters, we might identify many small peaks concentrated
within a small area. Yet, when looking on a larger scale, these peaks may be a
part of another landform; for instance a rough ridge, or a valley.

To tackle this problem, we need to have a method that can analyze the same
raster in many different scales. Fisher et al. [4] use such a method in their
landform classification algorithm; their algorithm constructs multiple rasters G,,,
where a cell ¢ of G,, covers the same region as u x p cells of the original fine-
resolution raster. The value assigned to ¢ is equal to the average of the values of
the original u x p cells. Given the constructed rasters G,,, it is then possible to
search for landforms at different scales.

Reconstructing a raster in different resolutions is an important tool for many
other scientific applications; in remote sensing, Woodcock and Strahler [9] intro-
duced an algorithm to extract the average size of tree canopies in grayscale images
of forests. Here, an image is represented by a raster of square pixels, where each
pixel is assigned a grayscale value. Their algorithm reconstructs many instances of
a given image raster, in exactly the same way as the algorithm of Fisher et al. con-
structs different instances of a terrain raster. For their application, it is critical to
construct one instance of the image for every pixel size which is an integer multiple
of the pixel size in the original image, until a single pixel covers almost the entire
image. This approach has been also used in other image processing algorithms [3].

Therefore, all of the different applications that we described above lead to
the same algorithmic problem; let G be a raster that consists of VN x VN
cells. For every integer u € {2,3,...,V/ N} we want to compute a raster G, of
[VN/u] x [V/N/u] cells where each cell of G, stores the average of the values
of the p x pu cells of G that cover the same region.

External Memory Algorithms. As already mentioned, today many available
raster datasets are massive, and may consist of terabytes of data. A raster of this
size cannot fit entirely in the main memory of a normal computer; thus, it can
only be stored entirely in the hard disk. When we want to process the dataset,
we have to transfer blocks of data from the disk to the main memory. We call
such a block transfer an I/O-operation, or an I/O for short. Unfortunately, an
I/0 can take the same time as a million CPU operations. Thus, when designing
an algorithm that may process such a large dataset, we want to minimise the
number of block transfers that are required to process the full dataset.

For this reason, Aggarwal and Vitter [I] introduced a computational model
that takes into account the number of block transfers between the disk and the
main memory. This model considers two important parameters: the size of the
internal memory M, and the maximum size B of a block of data that we can
transfer from/to the disk. The efficiency of an algorithm in this model is equal
to the number of I/Os that the algorithm requires during its execution. We call
this concept of efficiency the I/O-efficiency of the algorithm. The I/O-efficiency
of an algorithm is expressed as a function of the input size N, but also of the
block size B and memory size M. To scan a set of N records stored in the disk
we need O(scan(N)) I/Os, where scan(N) = N/B. To sort a set of N records
we need O(sort(V)) I/Os, where sort(N) = N/Blogy 5 N/B.
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Today computers contain several layers of memory; these include layers of
cache used between the main memory of the computer and the processor. In this
context, the values of parameters M and B differ for every pair of consecutive
layers of cache that we consider. Then, to minimise the number of block transfers
between all layers, the algorithm must be designed so that it achieves an optimal
I/O-performance without knowing the parameters M and B. The algorithms
that have this property are known as cache-oblivious algorithms [5].

Previous Results. For the problem of computing multiple resolution instances of
a given raster, we study the case where the raster does not fit in the main memory
of the computer. We want to design an external memory algorithm for this
problem that has optimal performance both in terms of I/Os and in terms of CPU
operations. In a previous paper, Arge et al. [2] proposed two external memory
algorithms for this problem; the first algorithm requires O(sort(/N)) I/Os and
O(Nlog N) CPU time, and is easy to implement. Their second algorithm requires
O(scan(N)) I/Os and O(N) CPU time, which is obviously optimal. Yet, this
algorithm assumes that M is at least ©(B*¢) for some selected € > 0. This
algorithm is cache-aware, which means that M and B should be known to the
algorithm to achieve this performance. Moreover, this algorithm has a strong
limitation when it comes to its implementation; it requires that ©(B) files are
open simultaneously during its execution. Nowadays, B can be as large as a few
million units, while most operating systems can maintain only a relatively small
number of files open at the same time (usually around a thousand).

Our Results. In this paper we present a new, cache-oblivious algorithm that
achieves the optimal performance of O(scan(N)) I/Os and O(N) CPU time,
without making any assumptions on the size of the main memory; that is it
performs O(scan(N)) I/Os even when M = O(B). The new algorithm is very
easy to implement; we have developed a purely cache-oblivious implementation
of the algorithm, and we have tested its performance against an implementation
of the algorithm of Arge et al. that requires O(sort(IN)) I/Os. Recall that the
O(scan(N)) algorithm of Arge et al. is not practically implementable due to
limitations of today’s operating systems. The new algorithm performs extremely
well and, as expected, clearly outperforms the older approach. We consider this to
be a solid proof that non-trivial cache-oblivious algorithms can be implemented
to perform efficiently in practice, and be used in real-world applications in the
place of standard cache-aware implementations.

2 Description of the Algorithm

Preliminaries. For a raster G we denote by GJ[i, j| the cell that appears in the
i-th row and j-th column of G. We use v(%, j) to denote the value that is assigned
to this cell. We use |G| to indicate the number of cells of this raster. We assume
that G is a square; it consists of v/ N rows and v/ N columns of cells. Yet, it is easy
to show that our analysis holds also for rasters that do not have an equal number
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of rows and columns. Given a cell G[i, j] of G, consider the set of cells G[k, ] for
which it holds that 1 <k <iand 1 <[ < j. We denote the sum of the values of
these cells by psum(i, j), that is:

psum(i, j) = Z v(k, 1) .
1<k<i
120<5

The value psum(i, j) is the so-called prefix sum of cell G[i, j].

Let G be a raster of dimensions v/ N x /N, and let i be an integer such that
1 < < V/N. We define G,, as the raster of dimensions [v/N/u] x [v/N/u] such
that for any cell G,,[4, j] the value v,[i, j] associated with this cell is equal to the
average value of all cells G[k, ] for which we have that (i — 1)p+1 < k < iu and
(J—Dpu+1 <1< jp. We say that G, is the scale instance of G at p, and we
call ¢4 the scale of this instance. Considering the size of a scale instance G,,, we
observe that as we increase p the number of cells of G,, decreases quadratically.
In fact, Arge et al. showed that the total size of all scale instances G, is O(NV).
We retrieve the following lemma from their paper.

Lemma 1. Given a raster G of VN x /N cells, the total number of cells for
all rasters G, with 2 < p < V/'N s less than 0.65- N.

Proof. The total number of cells for all rasters G,, is:

VN 0o
S LN L =N,

pn=2 K pn=1

where ((z) is the so-called Riemann zeta function [6]. The value of this function
is a constant for every x > 1. For x = 2 we have that {(2) < 1.65. O

Let M be a 2D matrix whose entries are real numbers. We denote by M (i, j) the
value of the entry that appears in the i-th row and j-th column of this matrix.
We denote the number of entries of this matrix by |M].

2.1 A Solution Based on Prefix Sums

In the rest of this section we describe our new cache-oblivious approach for
computing all scale instances of a raster G. To describe this new approach, we
first present some concepts used by Arge et al. [2]. For any scale instance G,, of

a raster G, Arge et al. observed that we can express the value of a cell G,[i, j]
Sum(i,j,m)

w2 where:

using the prefix sums of the cells of G as v,,[i, j] =

Sum(i, j, p) = psum(ip, jp) — psum(ip, (j — 1)p)
—psum((i — 1)p, jpu) + psum((i — L), (j — p)
Hence, to compute G,, we only need to extract the prefix sums from all cells G[i’, 5]

of G such that both ¢’ and j’ are integer multiples of p. It is easy to compute
all rasters G, if G fits in the main memory; first we compute a matrix that has
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VN x VN entries, and which stores the prefix sums for all cells in G. Then we
can compute the value of each cell of G, in constant time, with only four ran-
dom accesses to the entries of this matrix. Since the total number of cells of all
rasters G, is ©(N), this approach leads to an internal memory algorithm that
runs in ©(N) CPU operations. However, it is not straightforward how to com-
pute the rasters G, if G does not fit in the main memory. To solve this problem
we provide the following definitions.

Let M; denote the 2-dimensional matrix of v/N x v/ N entries, such that for
every entry M (i, ) of this matrix we have that M (i, j) = psum(s, j). For any
we€{2,3,...,vV/N}, let M, be the matrix that has [v/N/u] x [v/N/u] entries,
where M, (i, j) = M1(ip, jp). Thus, M, stores all the prefix sums that are needed
for constructing G,,; the value of each cell G,,(4, j) is equal to v,[i, j] = S“mé(i’j) ,
where: Sum,,(4,5) = My[i, 5] — My[i,j — 1) — Myi — 1,51+ Muli — 1,5 —1] .
Therefore, assume that we already had an efficient algorithm for computing all
matrices M. Then, we can extract from these matrices all scale instances G,
I/O-efficiently, in only O(scan(N)) I/Os and ©(N) CPU operations by simply
scanning each matrix M, and maintaining four pointers to access the prefix
sums needed for computing each value v, (1, 7).

Hence, we now focus on designing an efficient algorithm for computing matri-
ces M, for every p € {2,3,..., \/N} It is easy to compute M7; we can do this by
scanning G, starting from G[1, 1] and visiting all cells in increasing order of their
row and column indices. To compute a matrix M, with ¢ > 1, we could scan
M, and extract each entry Mi(4,7) such that both i and j are multiples of p.
However, in this manner we spend O(scan(N)) I/Os to extract each matrix M),
leading to O(v/N -scan(N)) I/Os for extracting all of these matrices.

To speed up the computation of the matrices M,,, we can exploit the following
property; consider two distinct integers p and A such that p, A € {2,3,...,VN},
and p = vA, for some v € N, v > 1. Then it holds that M,(i,7) = M (iv, jv)
for every entry M, (i, j) of matrix M,. In other words, the entries of matrix M,
are a subset of the entries of M, if p is divisible by A. Thus, we can construct
M, by processing a matrix that can be much smaller than M;. To construct M,
faster, we want to use the smallest matrix M) for which p is a multiple of ;
we must find the largest A < p which is a divisor of p. We call this number the
largest distinct divisor of p, and we denote it by ldd(p). Consider two matrices
M, and M, such that p,A € {1,2,...,v/N}, and p = 1dd()\). We say that
matrix M, derives from matrix My, and that M, is a derived matriz of My. In
a similar manner, we say that scale instance G, derives from instance Gy. For
a matrix M,, we denote the set of matrices that derive from M, by D,, that is
D, ={M,:pec{23,...,v/N}and p = 1dd()} . To compute matrices M,,
we first scan G to construct matrix M; that stores all prefix sums. Then, we
extract all matrices Dy that derive from M;; these are the matrices M, such
that p is a prime < v/N. To do this, we use a function ExtractDerived(M,,);
the input of this function is a prefix sum matrix M, and the output is the set
of the matrices that derive from M,,. We describe later in more detail how this
function works. After constructing matrices M, € D;, we apply again function
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EztractDerived on these matrices to extract all sets of matrices D,,. We continue
this process recursively, until we have computed all matrices M,, for the values
uwe{2,3,..., \/N} We call the algorithm that we just described for computing
all the scale instances of G as MultirasterSpeedUp.

It is easy to prove that MultirasterSpeedUp computes the scale instances of G
correctly, assuming that function ExtractDerived(M,) computes correctly the
derived matrices of any given M,,. By Lemma [l excluding the performance of
EztractDerived, the rest of the algorithm requires only O(scan(N)) I/Os and
O(N) CPU operations. Next we show how we design function EztractDerived.

2.2 Extracting the Derived Matrices

To compute the matrices D,, that derive from a given matrix M,,, we first have
to compute all scale values p such that M, is a matrix that derives from M,,.
We call these values the derived indices of p. We denote the set of these values
by S,. Given p, we can calculate all derived scales S, using the following ob-
servation; let u, p be two natural numbers such that p = 1dd(p). Then it holds
that © = p/spd(p), where spd(p) is the smallest prime divisor of p. Since p is
the largest distinct divisor of p we also have that spd(p) < spd(u). Based on
the above, to compute S,, we first compute spd(u); we go through all integers
k€ {2,...,[\/un]} in increasing order, and we stop when we find the first x
that divides p. Then we compute all prime numbers in the range [2,spd(u)] by
trivially trying all possible pairs of integers within this range, and checking if
the largest of the two is divided by the smallest. For the special case p = 1 the
smallest prime divisor is undefined, and we consider that S,, consists of all prime
numbers smaller than v/ N. Thus, for 1 > 1 we can compute scale values S, in
O(p) CPU operations. We need at most O(scan(u)) I/Os to store these values.
For p =1 this process requires O(N) CPU operations and O(scan(N)) I/Os.

To extract the derived matrices D, we will use M, to construct an inter-
mediate file F}, that contains altogether the entries of all matrices in D,,. We
will then process this file to extract each derived matrix I/O-efficiently. More
specifically, file F}, is organised as follows; for every prime p € S, and for every
entry M,(i,j) € M, , F,, contains a record of the form: < ip, jp, p,v.(ip,jp) > .
The two first fields of the record indicate which is the entry in M, that has the
same value as M,(¢,7). The third field indicates the scale of M, and the last
field carries the value M,(i,j). Most importantly, the records in F), appear in
lexicographical order of their three first fields.

Thus, F), stores a record for each entry of the matrices in D,,, including multi-
ples. The number of records in F), is O(|M,,|); the number of entries of M, is |G|,
and due to Lemma/[Il the total number of cells of all the scale instances of a raster
G,, cannot exceed |G, |. To construct F,, we create an individual file F}, ,, for
each matrix M,, € D,,. File F), ., contains only records of the form {ix, jx, x, ®},
where ® is a symbolic “no-data” value. Then we merge all those files into F),
in a bottom-up manner; first we generate F, by merging the two files F}, ,, and
F, , that correspond to the two smallest matrices M, and M, in D,; that is
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p, k are the two largest values in S,,. We go on merging F), each time with the
smallest remaining file F), », until all files are merged into F),.

Next we fill in the prefix sum values at the last field of each record in F}, with
a single simultaneous scan of F), and M,. To extract matrices D,, from F), we
scan F), once per matrix in D,,. The matrices are extracted in order of decreasing
size; in the first scan of F), we extract the largest matrix M, € D,,, and so on and
so forth. To extract M, we pick the records in F), whose third field is equal to p.
We then throw away these records from F),, creating a new smaller instance of
F,,. When F}, becomes empty we will have extracted all derived matrices in D,,.
The correctness of the algorithm follows from how we handle the prefix sum
values in the records of file F},. Next we prove the efficiency of this algorithm.

Lemma 2. Function EztractDerived computes the set of matrices D,, that de-
rive from M, in O(scan(|M,|+ pn)) 1/Os and O(|M,| + ) CPU operations.

Proof. We showed that for p > 1 computing the scales S, takes O(scan(u))
I/Os and O(p) CPU time. Recall that for the case p = 1, we can compute
S, in O(scan(N)) I/Os and O(N) CPU operations. Now we prove that for any
p > 1 we can construct all matrices D,, in O(scan(|M,,|)) I/Os and O(|M,,|) CPU
operations. To construct file F),, we merge several smaller files F), ,, one merge
at a time. As soon as file F, , gets merged with F), the records of F}, , become
a part of F,; from this point and on, these records are scanned once each time
we merge F,, with another file F}, .. Hence, each record that initially belonged
to file F, , gets scanned as many times as the number of primes that are smaller
or equal to p; this is because S, contains all primes in the range [2,spd(u)],
and because we merge files F), .. in decreasing order of . In the mathematical
literature, the number of primes that are smaller or equal to p is denoted by 7(p).
As each record of F), , is scanned 7(p) times, and as F), , has |M,,,| records, the
total number of records scanned when constructing F, is:

S w0 Ml = S T W
[ p

,DESH ,DESH

1.26p

np - Combining this

The following upper bound is known for 7(p) [7]: 7(p) <
with () we get:

N N 1 1.26 N 1
2 Z W(g) <126 , Z Inp  loge 12 log p ’ (2)
2 pES,, p peSMp p ge pES“p gp
where e is the base of the natural logarithm. We have that:
1 > 1 > 1
S liy oy Loy oy Lo
pPES, plng i=0 p is prime plng i=0 p is prime 2 p
22 <p<2? ™! 22 <p<2? ™!
From the mathematical literature we know that [7]:
1
Z = O(loglogz) . (4)

p is prime
p<z
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Applying this on @] we get:

= 1 =i+ 1

Z Z %ip (Z 9i >:O(1)'
1=0 p is prime 3

R

Combining (@) and @) we get that the total number of records that we need
to scan in order to construct F), is O(|M,,|). This requires O(scan(|M,,|)) I/Os.
During the merging we do one comparison for every record that we scan, which
implies that we do O(|M,|) operations in the CPU in total.

It remains now to show that extracting all matrices of D, from F), requires
O(scan(|M,|)) I/Os and O(|M,,|) time in the CPU. Recall that we extract the
matrices M, in increasing order of p, hence, the records of M,,, will get scanned
as many as 7(o) times each. Therefore the records scanned in this part of the
algorithm are as many as the records scanned for constructing Fj,. We showed
that this number is equal to O(|M,,|), implying O(scan(|M,|)) I/Os and O(|M,])
CPU operations for extracting the matrices for F),, and the lemma follows. O

By construction our algorithm does not require knowledge of M and B, hence it
is cache-oblivious. Also, its performance does not depend on a lower bound on
the size of M. We obtain the following theorem.

Theorem 1. Given a raster G of VN x V/N cells, we can compute all scale
instances of G cache-obliviously in O(scan(N)) I/Os and O(N) CPU operations.

Proof. Function FztractDerived is called only once for each matrix M, so, ac-
cording to Lemma 2] the total number of I/Os and CPU operations required
by the entire algorithm is O(scan(}_,(|M,| + p))) and O3, (|M| + u)) re-
spectively. Since M,, has the same size as G, then according to Lemma [I] and
because ) [M,| = O(N), the theorem follows. O

2.3 Ordering the Prefix Sum Matrices

So far, we have described an algorithm that computes efficiently all scale in-
stances of a given raster G. However, this algorithm does not output the scale
instances of G in the right order. More specifically, from the description of algo-
rithm MultirasterSpeedUp we can see that there can be pairs of scale instances G,,
and G, with p < p such that G, appears in the output before G,. Yet, for most
practical applications, it makes sense to have those instances sorted in the output
in order of increasing scale value. Fortunately, we can solve this problem while
achieving the same performance as with the algorithm MultirasterSpeedUp. The
proof of the next theorem appears in the full version of the paper.
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Theorem 2. Given a raster G of VN x VN cells, we can compute cache-
obliviously all scale instances of G, and output these instances in order of in-
creasing scale using O(scan(N)) I/Os and O(N) CPU operations.

2.4 Improving the Practical Performance of the Algorithm

Earlier in this section, we described how we can extract the prefix sum matrices
D,, from a matrix M,, by building an intermediate file F},. This approach requires
merging several smaller files, and needs only O(scan(|M,])) I/Os. Yet we can
evade this merging process, and thus improve the I/O-performance of the algo-
rithm by a constant factor; to build F),, we scan M, and stream the records that
correspond to the entries of matrices in D,, in the form of queries to M. After
extracting the prefix sum value of a queried record, we append this record in Fj,.
To do this, the records are streamed to M, in lexico-

graphical order of their three first fields. To produce

the stream of the ordered records we build a min-heap My,

structure. Each leaf node v[p] of the heap corresponds Mg,

to a derived matrix M,, € D, and stores the next

record of M,,, that has to be streamed. The root of ©>3\©

the heap stores the next record to be queried to M,,. M. M
spd(p)—1p spd ()

Figure [l illustrates the structure of the heap; we can
see that the heap is as skewed as it can get in favour Fig.1. The structure of
of the larger derived matrices. The heap contains one  the skewed heap that we
leaf node for each derived matrix of M, so the size yse to stream the records.
of the heap is O(spd(u)). Although we do not know Each node is indicated by
M, we can build the heap so that at any point the its corresponding derived
nodes of the O(M) topmost levels appear in memory. matrix.

For the rest of the levels, a record will have to pay one I/O for every B levels
that it goes up in the heap. Although this method is oblivious of M, we show
that we can stream all records to M, so that the number of I/Os decreases as
M increases. The proof of the following lemma is provided in the full version of
the paper.

Lemma 3. Let M, be a prefix sum matriz. We can stream all the records that
correspond to the entries of the derived matrices of D, in lexicographical order
in O(scan(|M,|/log M)) I/Os and O(|M,|) CPU operations.

3 Implementation and Benchmarks

We implemented MultirasterSpeedUp and evaluated its efficiency on datasets of
various sizes. In the experiments that we conducted, we tried several alternatives
for implementing the most important routines of the algorithm, and we assessed
the efficiency of the implementation for each of these alternatives. We also com-
pared the performance of our implementation with an older implementation of
the O(sort(NN)) algorithm of Arge et al. . Recall that it is not currently pos-
sible to implement the O(scan(N)) algorithm of Arge et al. due to restrictions
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in standard operating systems; this algorithm requires that B files are open si-
multaneously, and while B today is in the order of millions of units, standard
operating systems allow for about a thousand files open at the same time.

To measure the performance of our algorithm we used massive raster datasets
of many sizes. The datasets that we used originate from a massive raster that
consists of roughly 26 billion cells, arranged in 146974 rows and 176121 columns.
This raster models the terrain surface over the entire region of Denmark. Each
cell of the raster represents a square region on the terrain that has dimension of
2 meters. The elevation of each cell is stored as a 4-byte floating point number,
and the entire dataset is stored in a geotif file that has 97 gigabytes size. From
this dataset, we constructed all scale instances G,, for u < 146974, and we used
the largest of these instances as input for the algorithm; we did this to evaluate
the performance of the algorithm for a large range of different input sizes.

As already mentioned, we tried different options for implementing the key rou-
tines of the algorithm. These are the routines that involve merging or extracting
a sequence of files from/to another larger file. For those routines we evaluated
how the performance of the algorithm is affected when trying to merge/extract
several files simultaneously. The routines that we tweaked are the following:

— The part of ExtractDerived where, given a prefix sum matrix M, we merge
several files to construct an intermediate file F}, which contains the records
that correspond to all the entries of the derived matrices D,,.

— The part of ExtractDerived where we extract the derived matrices D, from
the intermediate F),.

For the above routines we measured how the performance of the algorithm
changes if we change the number of files that are merged or extracted together.
For the first routine we use f; to denote the number of files that we merged
simultaneously at each point for constructing F),. For the second routine we
use fa to denote the number of derived matrices that we extracted together each
time that we performed a scan of F),. In the description of the algorithm, we
convey that the value of each of these two parameters is equal to two. We also
implemented a version of the routine that constructs the intermediate file F),
based on the mechanism of the skewed heap described in Section 224l Recall
that this method does not merge any files in order to construct Fj,. All versions
of our implementation work in a purely cache-oblivious manner.

The algorithms were implemented in C++ using the software library TPIE
(the Templated Portable I/O Environment) [8]. This library offers I/O-efficient
algorithms for scanning and sorting large files in external memory. Our exper-
iments where run on a machine with a 3.2GHz four-core Xeon CPU (W3565).
The main memory of the computer is 12GB. This workstation has 20 disks that
have a btrfs (raid 0) file system configuration. The operating system on this
computer was Linux version 2.6.38. During our experiments, 8GB of memory
was managed by our software, and the rest was left to the operating system
for disk cache. For each of the versions of our implementation, the maximum
amount of disk space used at any time during the execution was 672 GB.
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In our first experiment, we ran . 25_' Skewed Heap ——— ]
our implementation of the algo- T Cachoerge =~ o
rithm on the 97GB dataset for A Naive e R
all possible combinations of val- 3 s _%2 smmar o |
ues of the two parameters f1, fo € R Y ‘
{2,3,10,20,35,50}. We also ran § 1+ x"\\ ; ’ -
the implementation of the algo- o —~
rithm using the skewed heap ap- e T \\”‘m /_
proach for all values of parameter 0B L ol ol
10 100 1000 10000

f2 € {2,3,10,20,40,50}. From
all the possible versions that we Fig.2. The performance of the two best ver-
tried, the best running time was gjons of our implementation, together with the
achieved by the version that uses implementation of the O(sort(N)) algorithm of
the skewed heap approach, and Arge et al. , and the naive internal memory algo-
parameter value fo = 50; the run- rithm. The z-axis shows the input sizes using a
ning time in this case was 2 hours logarithmic scale with base 10. The y—axis shows
and 15 minutes. The best running running times divided by input size.

time that we got without using the skewed heap approach was for the version
with parameter values f; = fo = 50. In this case, the running time was 2 hours
and 28 minutes. The worst running time that we got among all versions was
from the version that has parameter values f; = 2, and f> = 2; the running time
for this version was 3 hours and 35 minutes. In general, the running time of each
version that behaved like a decreasing function on the values of paramaters f;
and f. Running the implementation of the O(sort(NV)) algorithm of Arge et al.
on the largest dataset yielded a running time of 13 hours and 14 minutes. This
running time is a bit less than four times larger than the worst running time
that we got for any version of our implementation.

For our next experiment, we ran the two best versions of our implementation
on the datasets that we got from extracting the 100 largest scale instances of
the 97GB raster, including the initial raster itself. We also ran on these datasets
the implementation of the O(sort(N)) algorithm of Arge et al., and the naive
internal-memory algorithm that uses prefix sums. Figure[2illustrates the perfor-
mance of the four implementations. There, we get a good impression on how the
performance of our implementation scales with the size of the input. This is a
strong indication that the theoretical bounds that we proved for the performance
of the algorithm can be reflected in practice. The results of both experiments
show evidently the practical efficiency of our algorithm, when also compared to
the implementation of the algorithm of Arge et al.. Of course, it could be argued
here that this result is hardly surprising; in theory, an O(sort(N)) algorithm has
obviously worse asymptotical behaviour than an O(scan(N)) algorithm. How-
ever, in practice, the performance of an O(sort(N)) algorithm scales linearly in
terms of I/Os. Figure 2] provides some evidence on this argument for the algo-
rithm of Arge et al., at least for the range of input sizes that we considered. The
explanation behind this phenomenon is that the ratio M/B in most comput-
ers has a value close to one thousand, and therefore the term log,,,5(NN/B) in

Number of cells in millions
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sort(NV) is not larger than two in all practical cases. Thus, it is not unrealistic to
observe O(sort(NV)) algorithms performing better in practice than O(scan(N))
algorithms. More than that, in our case, we compare a cache-aware implemen-
tation with a cache-oblivious one, and we could expect that this is an advantage
for the performance of the cache-aware implementation. Yet, as we see from our
experiments, this is clearly not the case; the cache-oblivious algorithm performs
much better in practice. This result shows that purely cache-oblivious software
can be developed to perform efficiently in real-world applications. It is interesting
to see if we can get similar results also for other external memory problems.

In our last experiment, we

038 — T T T 650
ran the best version of our 07 St\/\ CPU 60 _
implementation on the largest = ;oL 10 i 288 g
of our datasets, and at ev- é 05 \/\Vf\A 7] 338 <
ery minute of the execution & ,,| H 30 £
we measured the rate of the 2 ;L JW ggg 2
CPU utilisation and the I/0O- “ 02 200 O
throughput of this implementa- 01 [T N N A B R }gg
tion. FigureBlillustrates the re- 0 20 40 60 80 100 120 140
sults of this experiment. We see Time [m]

that both the I/O-throughput Fig.3. The CPU utilisation and I/O-throughput
and CPU utilisation were fairly of the best version of our implementation
constant during the run. Also,

for the largest part of the execution of the algorithm, the CPU utilisation re-
mained above or close to 40%; hence, the running time of the algorithm was
almost equally distributed between the CPU and the I/O-operations.
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Abstract. Logit dynamics are a family of randomized best response
dynamics based on the logit choice function [2I] that is used to model
players with limited rationality and knowledge. In this paper we study
the all-logit dynamics, where at each time step all players concurrently
update their strategies according to the logit choice function. In the well
studied one-logit dynamics [7] instead at each step only one randomly
chosen player is allowed to update.

We study properties of the all-logit dynamics in the context of local
interaction games, a class of games that has been used to model complex
social phenomena [723l26] and physical systems [19]. In a local inter-
action game, players are the vertices of a social graph whose edges are
two-player potential games. Each player picks one strategy to be played
for all the games she is involved in and the payoff of the player is the
(weighted) sum of the payoffs from each of the games.

We prove that local interaction games characterize the class of games
for which the all-logit dynamics are reversible. We then compare the
stationary behavior of one-logit and all-logit dynamics. Specifically, we
look at the expected value of a notable class of observables, that we call
decomposable observables.

1 Introduction

In the last decade, we have observed an increasing interest in understanding
phenomena occurring in complex systems consisting of a large number of simple
networked components that operate autonomously guided by their own objec-
tives and influenced by the behavior of the neighbors. Even though (online)
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social networks are a primary example of such systems, other remarkable typical
instances can be found in Economics (e.g., markets), Physics (e.g., Ising model
and spin systems) and Biology (e.g., evolution of life). A common feature of
these systems is that the behavior of each component depends only on the in-
teractions with a limited number of other components (its neighbors) and these
interactions are usually very simple.

Game Theory is the main tool used to model the behavior of agents that are
guided by their own objective in contexts where their gains depend also on the
choices made by neighbors. Game theoretic approaches have been often proposed
for modeling phenomena in a complex social network, such as the formation of
the social network itself [BI5I8I16], the formation of opinions [61T] and the spread
of innovation [23/26] in the social network. Many of these models are based on
local interaction games, where agents are represented as vertices on a social graph
and the relationship between two agents is represented by a simple two-player
game played on the edge joining the corresponding vertices.

We are interested in the dynamics that govern such phenomena. Several dy-
namics have been studied in the literature like, for example, the best response
dynamics [I3], the logit dynamics [7], fictitious play [I2] and no-regret dynamics
[15]. Any such dynamics can be seen as made of two components: (i) Selection
rule: by which the set of players that update their state (strategy) is determined;
(ii) Update rule: by which the selected players update their strategy. For exam-
ple, the classical best response dynamics compose the best response update rule
with a selection rule that selects one player at the time. In the best response up-
date rule, the selected player picks the strategy that, given the current strategies
of the other players, guarantees the highest utility. The Cournot dynamics [9]
instead combine the best response update rule with the selection rule that se-
lects all players. Other dynamics in which all players concurrently update their
strategy are fictitious play [I2] and the no-regret dynamics [I5].

In this paper, we study a specific class of randomized update rules called the
logit choice function [1I21] which is a type of noisy best response that models
in a clean and tractable way the limited knowledge (or bounded rationality) of
the players in terms of a parameter § called inverse noise. In similar models
studied in Physics, 8 is the inverse of the temperature. Intuitively, a low value
of B (that is, high temperature) models a noisy scenario in which players choose
their strategies “nearly at random”; a high value of 5 (that is, low temperature)
models a scenario with little noise in which players pick the strategies yielding
higher payoffs with higher probability.

The logit choice function can be coupled with different selection rules so to
give different dynamics. For example, in the logit dynamics [7] at every time step
a single player is selected uniformly at random and the selected player updates
her strategy according to the logit choice function. The remaining players are
not allowed to revise their strategies in this time step.

While the logit choice function is a very natural behavioral model for approx-
imately rational agents, the specific selection rule that selects one single player
per time step avoids any form of concurrency. Therefore a natural question arises:
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What happens if concurrent updates are allowed?

For example, it is easy to construct games for which the best response converges
to a Nash equilibrium when only one player is selected at each step and does
not converge to any state when more players are chosen to concurrently update
their strategies.

In this paper we study how the logit choice function behaves in an extremal
case of concurrency. Specifically, we couple this update rule with a selection
rule by which all players update their strategies at every time step. We call such
dynamics all-logit, as opposed to the classical (one-)logit dynamics in which only
one player at a time is allowed to move. Roughly speaking, the all-logit are to
the one-logit what the Cournot dynamics are to the best response dynamics.

Our Contribution. We study the all-logit dynamics for local interaction games
[10/23]. Here players are vertices of a graph, called the social graph, and each edge
is a two-player (exact) potential game. We remark that games played on different
edges by a player may be different but, nonetheless, they have the same strategy
set for the player. Each player picks one strategy that is used for all of her edges and
the payoftf is a (weighted) sum of the payoffs obtained from each game. This class
of games includes coordination games on a network [I0] used to model the spread
of innovation in social networks [26], and the Ising model [20] for magnetism. In
particular, we study the all-logit dynamics for local interaction games at every pos-
sible value of the inverse noise 8 and we are interested in properties of the original
one-logit dynamics that are preserved by the all-logit.

We first consider reversibility, an important property of stochastic processes
that is useful also to obtain explicit formulas for the stationary distribution. We
characterize the class of games for which the all-logit dynamics (specifically, the
Markov chains resulting from the all-logit dynamics) are reversible and it turns
out that this class coincides with the class of local interaction games. This is
to be compared with the well-known result saying that the one-logit dynamics
are reversible for every potential game [7]. We find remarkable that a non-trivial
property, as reversibility is, of Markov chains modeling the one-logit for potential
games holds even for Markov chains modeling all-logit for a large and widely-used
subclass of potential games.

Then, we focus on the observables of local interaction games. An observable
is a function of the strategy profile (that is, the set of strategies adopted by the
players) and we are interested in its expected values at stationarity for both the
one-logit and the all-logit dynamics. A prominent example of observable is the
difference Diff between the number of players adopting two given strategies in a
game. In a local interaction game modeling the spread of innovation on a social
network this observable counts the difference between the number of adopters
of the new and old technology whereas in the Ising model it corresponds to the
magnetic field of a magnet.

We show that there exists a class of observables whose expectation at sta-
tionarity of the all-logit is the same as the expectation at stationarity of the
one-logit as long as the social network underlying the local interaction game
is bipartite. Note that in many of these cases the stationary distributions of
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one- and all-logit dynamics are completely different. We highlight that the class
of observables for which our result holds includes the Diff observable. It is inter-
esting to note that the Ising game has been mainly studied for bipartite graphs
(e.g., the two-dimensional and the three-dimensional lattice). This implies that,
for the Ising model, the all-logit are dynamics that are compatible with the ob-
servations and it are arguably more natural than the one-logit dynamics (that
postulate that at any given time step only one particle updates its status and
then the updated strategy is instantaneously propagated). We extend this result
by showing that for general graphs, the extent at which the expectations of these
observables differ can be upper and lower bounded by a function of # and of the
distance of the social graph from a bipartite graph.

In the full version of the paper [4] we also give preliminary bounds on the
convergence time of the all-logit dynamics to their stationary distribution.

Related Works. There is a substantial body of work on the logit dynamics (see
e.g. [24] and references therein). Specifically, the all-logit dynamics for strate-
gic games have been studied in [I], where the authors consider the logit-choice
function combined with general selection rules (including the selection rule of
the all-logit) and investigate conditions for which a state is stochastically stable.
A stochastically stable state is a state that has non-zero probability as S goes
to infinity. We focus instead on a specific selection rule that is used by several
remarkable dynamics (Cournot, fictitious play, and no-regret) and consider the
whole range of values of (.

The one-logit dynamics have been actively studied starting from the work of
Blume [7] that showed that for 2 x 2 coordination games, the risk dominant
equilibria (see [I4]) are stochastically stable. The one-logit for local interaction
games have been analyzed in several papers with the aim of modeling and un-
derstanding the spread of innovations in a social network, see e.g. [10/26].

Remark. For readability sake, in Sections [B] and B most of the lemmas and
theorems have “proof ideas” instead of full proofs. For full proofs and more
detailed descriptions we refer the reader to the full version of the paper [4].

2 Definitions

In this section we formally define the local interaction games and the Markov
chain induced by the all-logit dynamics.

Strategic Games. Let G = ([n],S1,...,Sn,u1,...,u,) be a finite normal-
form strategic game. The set [n] = {1,...,n} is the player set, S; is the set of
strategies for player ¢ € [n], S = 51 x Sg X -+ x S, is the set of strategy profiles
and u;: S — R is the utility function of player i € [n]. We adopt the standard
game-theoretic notation and for x = (x1,...,2z,) € S and s € S;, we denote by
(x_i, s) the strategy profile (x1,...,2;-1,8,Tit1,...,Tn) € S.

Potential games [22] are an important class of games. We say that function
&: S — Ris an ezact potential (or simply a potential) for game G if for every
i € [n] and every x € S it holds that u;(x_;, s)—ui(x_;, 2) = P(x_;, 2)—DP(X_;, 5)
for all s,z € 5;. A game G that admits a potential is called a potential game.
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Local Interaction Games. In a local interaction game G, each player i, with
strategy set S;, is represented by a vertex of a graph G = (V, E) (called social
graph). For every edge e = (i, j) € E there is a two-player game G, with potential
function @, in which the set of strategies of endpoints are exactly S; and S;.
We denote with u§ the utility function of player ¢ in the game G.. Given a
strategy profile x, the utility function of player i in the local interaction game G
is ui(x) = Y ._; j) i (i, ;). It is easy to check that the function @ =3 & is
a potential function for the local interaction game G.

Logit Choice Function. We study the interaction of n players of a strategic
game G that update their strategy according to the logit choice function [21U[7]
described as follows: from profile x € S player ¢ € [n] updates her strategy to

s € S; with probability o;(s | x) = > ::ue(;f(xiz) In other words, the logit
choice function leans towards strategies promising higher utility. The parameter

B > 0 is a measure of how much the utility influences the choice of the player.

All-Logit. In this paper we consider the all-logit dynamics, where all players
concurrently update their strategy using the logit choice function. Most of the
previous works have focused on dynamics where at each step one player is chosen
uniformly at random and she updates her strategy by following the logit choice
function. We call these dynamics one-logit, to distinguish them from the all-logit.

The all-logit dynamics induce a Markov chain over the set of strategy profiles
whose transition probability P(x,y) from profile x = (x1,...,2,) to profile

y:(yla"'ayn) is

eB iy wi(x—isyi)

n
Pixy) = [[oityi %) = o (1)
i];[l o Hi:l Zzesi ePui(x—i,z)

Sometimes it is useful to write the transition probability from x to y in terms of
the cumulative utility of x with respect to y defined as U(x,y) = >, ui(X—i, ys)
[1]. Indeed, by observing that [[;_, > g ePuilx—iz) = 57 i ePuibe-izi),
we can rewrite (Il as

eBU(x:y)

P(Xa y) = D(X) ) (2)

where D(x) = 3,5 e?U(%?) For a potential game G with potential &, we can
define the cumulative potential of x with respect to y as ¥(x,y) = >, P(X—i, ¥i)-

Simple algebraic manipulations show that, for a potential game, we can rewrite
the transition probabilities in [@]) as P(x,y) = engW(:;,y)
hand for }°, ¢ e~ A¥(x2),

It is easy to see that a Markov chain with transition matrix () is ergodic.
Indeed, for example, ergodicity follows from the fact that all entries of the tran-

sition matrix are strictly positive.

, where T'(x) is a short-

Reversibility & Observables. In this work we focus on two features of the
all-logit dynamics, that we formally define here: A Markov chain M with tran-
sition matrix P and state set S is reversible with respect to a distribution 7 if,
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for every pair of states x,y € S, the following detailed balance condition holds
m(z)P(z,y) = 7(y)P(y,x). An observable O is a function O: S — R, i.e. it is a
function that assigns a value to each strategy profile of the game.

3 Reversibility and Stationary Distribution

It is easy to see that the one-logit dynamics for a game G are reversible if and
only if G is a potential game. This does not hold for the all-logit dynamics.
However, we will prove that the class of games for which the all-logit dynamics
are reversible is exactly the class of local interaction games.

Reversibility Criteria. As previously stated, a Markov chain M is reversible
if there exists a distribution 7 such that the detailed balance condition is satis-
fied. The following Kolmogorov reversibility criterion allows us to establish the
reversibility of a process directly from the transition probabilities. Before stating
the criterion, we introduce the following notation. A directed path I" from state
x € S to state y € S is a sequence of states (zg,x1, ..., 2s) such that o = z and
2¢ = y. The probability P (I") of path I" is defined as P (I") = Hle P(xj_1,xj).
The inverse of path I' = (wg,x1,...,x,) is the path I'™! = (zy,20_1,...,70).
Finally, a cycle C' is simply a path from a state z to itself. We are now ready to
state the Kolmogorov reversibility criterion (see, for example, [I7]).

Theorem 1. An irreducible Markov chain M with state space S and transition
matriz P is reversible if and only if for every cycle C it holds that P (C) =
P(C).

The following lemma will be useful for proving reversibility conditions for the all-
logit dynamics and for stating a closed expression for its stationary distribution.

Lemma 1. Let M be an irreducible Markov chain with transition probability P
and state space S. M is reversible if and only if for every pair of states x,y € S,
there exists a constant cy, such that for all paths I' from x to y, it holds that
P(I'

P(I(“—)l) = Cay-

Proof (idea). One direction follows directly from the Kolmogorov reversibility
criterion, since each cycle can be seen as a concatenation of two paths from x to
y (actually, a path and the inverse of another path). As for the other direction,
fix z and check that the distribution 7#(z) = ¢, »/Z, where Z is the normalizing
constant, satisfies the detailed balance equation. a

All-Logit Reversibility Implies Potential Games. Now we prove that if
the all-logit dynamics for a game G are reversible then G is a potential game.

The following lemma shows a condition on the cumulative utility of a game
G that is necessary and sufficient for the reversibility of the all-logit for G.

Lemma 2. The all-logit dynamics for game G are reversible if and only if the

following property holds for every x,y,z € S: U(x,y) — U(y,x) = (U(x7 z) +
U(z,y)) — (U(y.2) + Ulzx)).
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Proof (idea). One direction follows from Lemma [Il As for the other direction,

the hypothesis implies that, for any fixed z, 7(x) = Z{DI(DZ(;:()Z) satisfies the detailed
balance equation, where Z is the normalizing constant. a

We are now ready to prove that the all-logit dynamics are reversible only for
potential games.

Proposition 1. If the all-logit dynamics for game G are reversible then G is a
potential game.

Proof (idea). We show that if the all-logit dynamics are reversible then the utility
improvement over any cycle of length 4 is 0. The thesis then follows by a known
characterization of potential games (Theorem 2.8 of [22]). a

A Necessary and Sufficient Condition for All-Logit Reversibility. Pre-
viously we established that the all-logit dynamics are reversible only for potential
games and therefore, from now on, we only consider potential games G with po-
tential function @. Now we present in Proposition 2] a necessary and sufficient
condition for reversibility that involves the potential and the cumulative poten-
tial. The condition will then be used to prove that local interaction games are
exactly the games whose all-logit dynamics are reversible.

Proposition 2. The all-logit dynamics for a game G with potential @ and cu-
mulative potential ¥ are reversible if and only if, for all strategy profiles x,y € S,

¥(x,y) —¥(y,x) = (n—2)(2(x) - 2(y)). 3)
Proof (idea). We rewrite Lemma [2lin terms of cumulative potential as ¥ (x,y) —
U(y,x) = (y'/(x, z) + Q/(z,y)) - (!P(y, z) + W(z,x)). Simple algebraic manipu-
lations shows that ([B)) implies the above equation. As for the other direction, we
proceed by induction on the Hamming distance between x and y. O

Reversibility and Local Interaction Games. Here we prove that the games
for which all-logit dynamics are reversible are exactly the local interaction games.

A potential @ : S; x --- x S, = R is a two-player potential if there exist
u,v € [n] such that, for any x,y € S with z, = y, and =, = y, we have
&(x) = P(y). In other words, @ is a function of only its u-th and v-th argument.
It is easy to see that any two-player potential satisfies (3]).

We say that a potential @ is the sum of two-player potentials if there exist
N two-player potentials @q,...,®y such that & = ¢ 4+ --- + &y. It is easy
to see that generality is not lost by further requiring that 1 < 1 # I’ < N
implies (u;,v;) # (wy,vp), where u; and v; are the two players defining potential
@;. At every game G whose potential is the sum of two-player potentials, i.e.,
@ =P+ -+ Dy, we can associate a social graph G that has a vertex for each
player of G and has edge (u,v) iff there exists [ such that potential @; depends
on players v and v. In other words, each game whose potential is the sum of
two-player potentials is a local interaction game.

Observe that if two potentials satisfy (3]), then such is also their sum. Hence
we have the following proposition.
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Proposition 3. The all-logit dynamics for local interaction games are reversible.
Next we prove that also the reverse implication holds.

Proposition 4. If an n-player potential ¢ satisfies @) then it can be written
as the sum of at most N = (g) two-player potentials, ®1,...,Pxn and thus it
represents a local interaction game.

Proof (idea). Let zF denote the first strategy in each player’s strategy set and
let z* be the strategy profile (27, ..., z). Moreover, we fix an arbitrary ordering
(u1,v1),...,(un,vn) of the N unordered pairs of players. For a potential @
we define the sequence ¥y, ...,y of potentials as follows: Y9 = & and, for
i=1,...,N, set 9; = ¥,_1 — ®; where, for x € S, P;(x) is defined as P;(x) =
Vie1(Xuy s To;, 2%, .. ). Observe that, for i = 1,..., N, @; is a two-player potential
and its players are u; and v;. Moreover, Zf\;l 9; = Zﬁgl 9; — Zf\;l ®;. Thus
D — Iy = Zfil ®;. We show that, if ¢ satisfies ([B]), then ¥ is identically zero.
This implies that @ is the sum of at most N non-zero two-player potentials and
thus a local interaction game. a

—uiv;

We can thus conclude that if the all-logit dynamics for a potential game G are
reversible then G is a local interaction game. By combining this result with
Proposition [l and Proposition B we obtain

Theorem 2. The all-logit dynamics for game G are reversible if and only if G
1s a local interaction game.

Stationary Distribution of the All-Logit for Local Interaction Games.

Theorem 3 (Stationary Distribution). Let G be a local interaction game
with potential function ®@. Then the stationary distribution of the all-logit for G
is w(x) oc e(*=2B2X) T (x), where T(x) = > zes e B¥(x2),

Proof (idea). Fix any profile y. The detailed balance equation and Proposition 2]
give m(x) = e(=20LH) . T(x) (ew—?)ggg%T(y))’ for every x € S. Since the term
in parenthesis does not depend on x the theorem follows. O

For a local interaction game G with potential function @ we write 71 (x),
the stationary distribution of the one-logit for G, as m1(x) = 71(x)/Z1 where
71(x) = e PP™) (also termed Boltzmann factor) and Z; = > vi(x) is the
partition function. From Theorem[B] we derive that 74(x), the stationary distri-

bution of the all-logit for G, can be written in similar way, i.e., 74 (x) = 'y%(Ax),

where ya(x) = > cs e Ay =(=22)] and Z4 = 3, gva(x) is the par-
tition function of the all-logit. Simple algebraic manipulations show that, by
setting K (x,y) = 2-P(X) + > e (n) dxy (1) - (P(x—i, yi) — P(x)) where dxy is the
characteristic vector of positions ¢ in which x and y differ (i.e., dyx,y(¢) = 1 if
x; # y; and 0 otherwise), we can write y4(x) and Z4 as

’YA(X) _ Z e PE&Y)  and Za = Ze—,@K(x,y). (4)
yeSs X,y
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4 Observables of Local Information Games

In this section we study observables of local interaction games and we focus
on the relation between the expected value (O, ;) of an observable O at the
stationarity of the one-logit and its expected value (O, 74) at the stationarity
of the all-logit dynamics. In Theorem [ we give a sufficient condition for an
observable to be invariant, that is for having the two expected values to coincide.
The sufficient condition is related to the existence of a decomposition of the
set S x S that decomposes the quantity K appearing in the expression for the
stationary distribution of the all-logit for the local interaction game G (see Eq.H)
into a sum of two potentials. In Theorem [B we show that if G admits such a
decomposition p and in addition observable O is also decomposed by u (see
Definition [2)) then O has the same expected value at the stationarity of the one-
logit and of the all-logit dynamics. We then show that all local interaction games
on bipartite social graphs admit a decomposition permutation (see Theorem [))
and give an example of invariant observable.

The above finding follows from a relation between the partition functions of
the one-logit and of the all-logit dynamics that might be of independent interest.
More precisely, in Theorem llwe show that if the game G admits a decomposition
then the partition function of the all-logit is the square of the partition function
of the one-logit dynamics. The partition function of the one-logit is easily seen
to be equal to the partition function of the canonical ensemble used in Statistical
Mechanics (see for example [I8]). It is well known that a partition function of
a canonical ensemble that is the union of two independent canonical ensembles
is the product of the two partition functions. Thus Theorem [ can be seen as
a further evidence that the all-logit can be decomposed into two independent
one-logit dynamics.

Throughout this section we assume, for the sake of ease of presentation, that
each player has just two strategies available. Extending our results to any number
of strategies is straightforward.

We start by introducing the concept of a decomposition and then we define
the concept of a decomposable observable.

Definition 1. A permutation pu: (x,y) — (p1(x,y), u2(x,¥)) of S x S is a de-
composition for a local interaction game G with potential @ if, for all (x,y),
we have that K(x,y) = ®(u1(x,)) + B(a(x,¥)), p(x.y) = paly.x) and
MZ(X’ Y) = H1 (y,X).

Theorem 4. If a decomposition u for a local interaction game G exists, then
Za=Z%

Proof. From (@) we have Z4 = 3 v e BE(xY) — Sy v e Bl2(n1(x,y))+P(u2(x,y))]
Since p is a permutation of S x S, we have Z4 =" y e~ AleE+e = 72, O

Definition 2. An observable O is decomposable if there exists a decomposition
w such that, for all (x,y), it holds that O(x)+O(y) = O(u1(%,¥))+O0(p2(x,y)).
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We next prove that a decomposable observable has the same expectation at
stationarity of the one-logit and the all-logit dynamics.

Theorem 5. If observable O is decomposable then (O, m1) = (O, 74).

Proof (idea). Suppose that O is decomposed by p. Then we have that, for all
x €8, va(x) =2, n(p(x,y)) - 1 (p2(x,y)) and thus

11

(0,ma) =, Za

D 10() + O(y)] 71 (pa (%, y))n (12(x,¥)),

xy

where we used the property that p1(x,y) = pa(y,x) and pa(x,y) = pa(y, x).
The theorem follows since O is decomposable. O

We next prove that for all local interaction games on a bipartite social graph
there exists a decomposition. We start with the following sufficient condition for
a permutation to be a decomposition.

Lemma 3. Let G be a social interaction game on social graph G with potential
@ and let p be a permutation of S X S such that, for all x,y € S, we have
p1(x,y) = pa(y,x), pa(x,y) = p1(y,x) and for all edges e = (u,v) of G and
for all x,y € S either (Zu,ZTv,Ju,Jv) = (Tu, Yo, Yu, Tu) 07 (Tu, Ty Gu, Go) =
(Yus Ty Ty Yo ), where X = p1(x,y) and y = pa(x,y). Then p is a decomposition
of G.

Proof (idea). We prove by simple case analysis that the contribution of each edge
e = (u,v) to K(x,y) is Pc(Zw,Zv) + Pe(Ju, Jv). The lemma is then obtained by
summing over all edges e. O

Theorem 6. Let G be a social interaction game on a bipartite graph G. Then
G admits a decomposition.

Proof (idea). Let (L, R) be the set of vertices in which G is bipartite. For each
(x,¥) € S xS we define x = p1(x,y) and y = po(x,y) as follows: for every
vertex u of G, (i) if w € L then we set T, = z,, and §, = yy; (ii) if v € R then
we set T, = Yy, and gy, = Ty.

First of all, observe that the mapping is an involution and thus it is also a
permutation and that u1(x,y) = pa(y,x) and p2(x,y) = p1(y,x). From the
bipartiteness of G it follows that for each edge one of the conditions of Lemma [3]
is satisfied. Then we can conclude that the mapping is a decomposition. a

We now give an example of decomposable observable. Consider the observable
Diff that returns the (signed) difference between the number of vertices adopting
strategy 0 and the number of vertices adopting strategy 1. That is, Diff(x) =
n—23%, .. Inlocal interaction games used to model the diffusion of innovations
in social networks and the spread of new technology (see, for example, [26]), this
observable is a measure of how wide is the adoption of the innovation. The Diff
observable is also meaningful in the Ising model for ferromagnetism (see, for
example, [20]) as it is the measured magnetism.
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To prove that Diff is decomposable we consider the mapping used in the proof
of Theorem [6] and observe that, for every vertex u and for every (x,y) € S x S,
we have 2, +Yy = Ty +7u. Whence we conclude that O(x)+0(y) = O(X)+0O(y).

Decomposable Observables for General Graphs. We can show that for
local interaction games G on general social graphs G the expected values of a
decomposable observable O with respect to the stationary distributions of the
one-logit and of the all-logit dynamics differ by a quantity that depends on 3
and on how far away the social graph G is from being bipartite (which in turn
is related to the smallest eigenvalue of G [25]). Due to lack of space we omit the
details of that result and refer the interested reader to the full version of this

paper [].

5 Future Directions

In this paper we considered the selection rule where all players play concurrently.
A natural extension of this selection rule assigns a different probability to each
subset of players. What is the impact of such a probabilistic selection rule on
reversibility and on observables? Some interesting results along that direction
have been obtained in [IJ2]. Notice that if we consider the selection rule that
selects player ¢ with probability p; > 0 (the one-logit dynamics set p; = 1/n for
all ) then the stationary distribution is the same as the stationary distribution
of the one-logit. Therefore, all observables have the same expected value and all
potential games are reversible.

It is a classical result that the Gibbs distribution, that is the stationary dis-
tribution of the one-logit dynamics (the micro-canonical ensemble, in Statistical
Mechanics parlance), is the distribution that maximizes the entropy among all
the distributions with a fixed average potential. Can we say something similar
for the stationary distribution of the all-logit? A promising direction along this
line of research is suggested by the results in Section[dt at least in some cases the
stationary distribution of the all-logit dynamics can be seen as a composition of
simpler distributions.
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Abstract. We introduce and investigate a new notion of resilience in
graph spanners. Let S be a spanner of a graph G. Roughly speaking,
we say that a spanner S is resilient if all its point-to-point distances are
resilient to edge failures. Namely, whenever any edge in G fails, then as a
consequence of this failure all distances do not degrade in S substantially
more than in G (i.e., the relative distance increases in S are very close
to those in the underlying graph G). In this paper we show that sparse
resilient spanners exist, and that they can be computed efficiently.

1 Introduction

Spanners are fundamental graph structures that have been extensively studied
in the last three decades. Given a graph G, a spanner is a (sparse) subgraph of G
that preserves the approximate distance between each pair of vertices. More pre-
cisely, for & > 1 and 8 > 0, an («, §)-spanner of a graph G = (V, E) is a subgraph
S = (V,Eg), Es C E, that distorts distances in G up to a multiplicative factor
a and an additive term f: i.e., for all vertices z,y, ds(z,y) < o - dg(x,y) + B,
where dg denotes the distance in graph G. We refer to («, 8) as the distorsion
of the spanner. As a special case, (o, 0)-spanners are known as multiplicative
spanners (also denoted as t-spanners, for t = a: dg(z,y) < t-dg(z,y)), and
(1, B)-spanners are known as additive spanners (ds(x,y) < dg(z,y) + ). Note
that an («, 8)-spanner is trivially a multiplicative (« 4 3)-spanner. It is known
how to compute in O(m+n) time a multiplicative (2k—1)-spanner, with O(n'* ; )
edges [2/17] (which is conjectured to be optimal for any k), in O(n?®) time addi-
tive 2-spanners with O(n?) edges [16] and in O(mn?/3) time additive 6-spanners
with O(n3) edges [7], where m and n are respectively the number of edges and
vertices in the original graph G. Multiplicative t-spanners are only considered
for t > 3, as multiplicative 2-spanners can have as many as ©(n?) edges: this
implies that («, 8)-spanners are considered for a 4+ 3 > 3.

Spanners have been investigated also in the fully dynamic setting, where edges
may be added to or deleted from the original graph. In [4], a (2,1)-spanner and

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 85-P6] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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a (3,2)-spanner of an unweighted graph are maintained under an intermixed
sequence of 2(n) edge insertions and deletions in O(A) amortized time per op-
eration, where A is the maximum vertex degree of the original graph. The (2,1)-
spanner has O(n®/?) edges, while the (3,2)-spanner has O(n*/?) edges. A faster
randomized dynamic algorithm for general multiplicative spanners has been later
proposed by Baswana [0]: given an unweighted graph, a (2k — 1,0)-spanner of
expected size O(k -n'T1/*) can be maintained in O( ait1/x - Polylogn) amortized
expected time for each edge insertion/deletion, where m is the current number of
edges in the graph. For k = 2,3 (multiplicative 3- and 5-spanners), the amortized
expected time of the randomized algorithm becomes constant. The algorithm by
Elkin [I5] maintains a (2k — 1,0)-spanner with expected O(kn'*/*) edges in
expected constant time per edge insertion and expected O(n’l’}k) time per edge
deletion. More recently, Baswana et al. [§] proposed two faster fully dynamic ran-
domized algorithms for maintaining (2k — 1, 0)-spanners of unweighted graphs:
the expected amortized time per insertion/deletion is O(7%/2) for the first algo-
rithm and O(k? log? n) for the second algorithm, and in both cases the spanner
expected size is optimal up to a polylogaritmic factor.

As observed in [I], this traditional fully dynamic model may be too pes-
simistic in several application scenarios, where the possible changes to the un-
derlying graph are rather limited. Indeed, there are cases where there can be only
temporary network failures: namely, graph edges may occasionally fail, but only
for a short period of time, and it is possible to recover quickly from such failures.
In those scenarios, rather than maintaining a fully dynamic spanner, which has
to be updated after each change, one may be more interested in working with a
static spanner capable of retaining much of its properties during edge deletions,
i.e., capable of being resilient to transient failures.

Being inherently sparse, a spanner is not necessarily resilient to edge deletions
and it may indeed lose some of its important properties during a transient failure.
Indeed, let S be an («a, §)-spanner of G: if an edge e fails in G, then the distortion
of the spanner may substantially degrade, i.e., S'\ e may no longer be an («, f3)-
spanner or even a valid spanner of G\ e, where G \ e denotes the graph obtained
after removing edge e from G. In their pioneering work, Chechik et al. [11]
addressed this problem by introducing the notion of fault-tolerant spanners, i.e.,
spanners that are resilient to edge (or vertex) failures. Given an integer f > 1, a
spanner is said to be f-edge (resp. vertex) fault-tolerant if it preserves its original
distortion under the failure of any set of at most f edges (resp. vertices). More
formally, an f-edge (resp. vertex) fault-tolerant (o, 8)-spanner of G = (V, E) is a
subgraph S = (V, Eg), Es C E, such that for any subset F' C F (resp. FF C V),
with |F| < f, and for any pair of vertices z,y € V (resp. ,y € V\ F) we
have dg\p(z,y) < a - dg\p(x,y) + B, where G\ F' denotes the subgraph of G
obtained after deleting the edges (resp. vertices) in F. Algorithms for computing
efficiently fault-tolerant spanners can be found in [BITOJTTIT4].

The distortion is not the only property of a spanner that may degrade because
of edge failures. Indeed, even when the removal of an edge cannot change the
overall distortion of a spanner (such as in the case of a fault-tolerant spanner),
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it may still cause a sharp increase in some of its distances. Note that while the
distortion is a global property, distance increases are local properties, as they are
defined for pairs of vertices. To address this problem, one would like to work with
spanners that are not only globally resilient (such as fault-tolerant spanners) but
also locally resilient. In other terms, we would like to make the distances between
any pair of vertices in a spanner resilient to edge failures, i.e., whenever an edge
fails, then the increases in distances in the spanner must be very close to the
increases in distances in the underlying graph. More formally, given a graph G
and an edge e in G, we define the fragility of edge e as the maximum relative
increase in distance between any two vertices when e is removed from G:

(0 = g {2007

Our definition of fragility of an edge is somewhat reminiscent of the notion of
shortcut value, as contained in [20], where the distance increase is alternatively
measured by the difference, instead of the ratio, between distances in G \ e and
in G. Note that for unweighted graphs, frag(e) > 2 for any edge e. The fragility
of edge e can be seen as a measure of how much e is crucial for the distances in
@, as it provides an upper bound to the increase in distance in G between any
pair of vertices when edge e fails: the higher the fragility of e, the higher is the
relative increase in some distance when e is deleted.

Our Contribution. To obtain spanners whose distances are resilient to tran-
sient edge failures, the fragility of each edge in the spanner must be as close as
possible to its fragility in the original graph. In this perspective, we say that
a spanner S of G is o-resilient if fragg(e) < max{o,frags(e)} for each edge
e € S, where o is a positive integer. Note that in case of unweighted graphs, for
o = 2 this is equivalent to fragg(e) = frags(e). We remark that finding sparse
2-resilient spanners may be an overly ambitious goal, as we prove that there
exists a family of dense graphs for which the only 2-resilient spanner coincides
with the graph itself. It can be easily seen that in general (o, 8)-spanners are
not o-resilient. Furthermore, it can be shown that even edge fault-tolerant mul-
tiplicative t-spanners are not o-resilient, since they can only guarantee that the
fragility of a spanner edge is at most t times its fragility in the graph. In fact, we
exhibit 1-edge fault tolerant t-spanners, for any ¢t > 3, with edges whose fragility
in the spanner is at least ¢/2 times their fragility in G.

It seems quite natural to ask whether sparse o-resilient spanners exist, and
how efficiently they can be computed. We show that it is possible to compute o-
resilient (1,2)-spanners, (2,1)-spanners and (3,0)-spanners of optimal asymptotic
size (i.e., containing O(n®/?) edges). The total time required to compute our
spanners is O(mn) in the worst case. To compute our o-resilient spanners, we
start from a non-resilient spanner, and then add to it O(n%/2) edges from a
carefully chosen set of short cycles in the original graph. The algorithm is simple
and thus amenable to practical implementation, while the upper bound on the
number of added edges is derived from non-trivial combinatorial arguments.
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The same approach can be used for turning a given (o, 8)-spanner into a
o-resilient (c, 3)-spanner, for any o > a + 3 > 3, by adding O(n?/?) edges.
Note that this result is quite general, as («, 3)-spanners contain as special cases
all (k,k — 1)-spanners, all multiplicative (2k — 1)-spanners, for k > 2, and all
additive spanners, including additive 2-spanners and 6-spanners.

All our bounds hold for undirected unweighted graphs and can be extended
to the case of graphs with positive edge weights. Our results forc = a+ =3
seem to be the most significant ones, both from the theoretical and the practical
point of view. From a theoretical perspective, our o-resilient («, )-spanners,
with a+ 8 = 3, have the same asymptotic size as their non-resilient counterparts.
From a practical perspective, there is empirical evidence [3] that small stretch
spanners provide the best performance in terms of stretch/size trade-offs, and
that spanners of larger stretch are not likely to be of practical value.

Table [Il summarizes previous considerations and compares our results with
the fragility and size of previously known spanners.

Table 1. Fragility and size of spanners

Spanner S ds(z,y) fragg(e) Size Ref.
multiplicative 141
(2k — 1)-spanner, k > 2 <(2k-1)-da(z,y) unbounded o (n k) 2]
additive 2-spanner <dag(z,y)+2 unbounded 0 (ng) o
additive 6-spanner <da(z,y)+6 unbounded o (ng

1-edge fault-tolerant
(2k — 1)-spanner, k > 2
o-resilient («, §)-spanner,
c>a+p2>3

< (2k —1) - da(w,y) < (2k — 1) - fragg(e) O (nlm) 1]
thi
<oa-dg(z,y) + 5 < max{o,frag;(e)} O (ng) papl)ser
Due to space limitations, some proofs are omitted. They will be given in the
full paper.

2 Preliminaries

Let G = (V, E) be an undirected unweighted graph, with m edges and n vertices.
The girth of G, denoted by girth(G), is the length of a shortest cycle in G.
A bridge is an edge e € E whose deletion increases the number of connected
components of G. Note that an edge is a bridge if and only if it is not contained in
any cycle of G. Graph G is 2-edge-connected if it does not have any bridges. The
2-edge-connected components of G are its maximal 2-edge-connected subgraphs.
Let e € F, and denote by C. the set of all the cycles containing edge e: if G is
2-edge-connected, then C. is non-empty for each e € E. A shortest cycle among
all cycles in C, is referred to as a short cycle for edge e. If G is 2-edge-connected
short cycles always exist for any edge. Short cycles are not necessarily unique:
for each e € E, we denote by I, the set of short cycles for e. Similarly, we



On Resilient Graph Spanners 89

denote by Pe(z,y) the set of all paths between z and y containing edge e, and
by P.(x,y) the set of all paths between = and y avoiding edge e. We further
denote by IT.(x,y) (respectively IT.(x,y)) the set of shortest paths in P.(z,y)
(respectively Pe(z,y)).

Recall that we defined the fragility of an edge e = (u,v) in graph G as

frag(e) = max, yev {dgc\(;wyg) } The following lemma shows that in this def-

inition the maximum is obtained for {z,y} = {u,v}, i.e., exactly at the two
endpoints of edge (u,v).

Lemma 1. Let G = (V, E) be a connected graph with positive edge weights, and
d \e(usv)
dGc(u,v) :

let e = (u,v) be any edge in G. Then fragq(e) =

Note that for unweighted graphs, Lemma[lcan be stated as frags(e) = dene(u, v).

The fragility of all edges in a graph G = (V, E) with positive edge weights
can be trivially computed in a total of O(m?n + mn?logn) worst-case time
by simply computing all-pairs shortest paths in all graphs G\ e, for each edge
e € E. A faster bound of O(mn + n?logn) can be achieved by using either a
careful modification of algorithm fast-exclude in [I3] or by applying n times
a modified version of Dijkstra’s algorithm, as described in [18]. For unweighted
graphs, the above bound reduces to O(mn).

3 Computing o-Resilient Subgraphs

We first show that finding sparse 2-resilient spanners may be an ambitious goal,
as there are dense graphs for which the only 2-resilient spanner is the graph
itself.

Theorem 1. There is an infinite family F of graphs such that for each graph
G € F the following properties hold:

(1) G has O(n?) edges, with 6 > 1.72598, where n is the number of vertices
of G.

(2) No proper subgraph of G is a 2-resilient spanner of G.

(8) There exists a 2-spanner S of G such that O(n®) edges of G\ S, with
6 > 1.72598, need to be added back to S in order to make it 2-resilient.

Edge fault-tolerant spanners provide a simple way to bound distance increases
under edge faults. Unfortunately, they are not o-resilient, as the next lemma
shows.

Lemma 2. Let G = (V, E) be a graph.

(a) Let Sy be any I-edge fault tolerant t-spanner of G. Then fragg, (e) <
t-fragg(e) for each e € Sy.

(b) There exist 1-edge fault-tolerant t-spanners that are not o-resilient, for
any o < t/2.
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To compute a o-resilient spanner R of graph G, without any guarantees on the
number of edges in R, we may start from any («, 8)-spanner of G, with a+8 < o,
and add a suitable set of backup paths for edges with high fragility:

1. Let S be any (a, 8)-spanner of G, with o + 8 < o initialize R to S.
2. For each edge e = (u,v) € S such that fragg(e) > o, select a shortest path
between u and v in G \ e and add it to R.

The correctness of our approach hinges on the following theorem.

Theorem 2. Let S be an («, 8)-spanner of a graph G, and let R be computed
by adding to S a backup path for each edge e with fragg(e) > 0. Then R is a
o-resilient («, 8)-spanner of G.

Proof. R is trivially an («, 3)-spanner, since it contains an (a, 3)-spanner S.
It remains to show that R is o-resilient. Let e = (u,v) be any edge in R. We
distinguish two cases, depending on whether e was in the initial («, 5)-spanner
S or not:
— e € S:iffragg(e) < o then also fragp(e) < 0. If fragg(e) > o, a shortest path
in G \ e joining u and v has been added to S, yielding fragg(e) = frags(e);
— e € R\ S: since S is an (o, 8)-spanner of G, it must also contain a path
between v and v of length at most o + . This implies that fraggp(e) <
fragg(e) <a+ B <o. a

Note that any o-resilient spanner R, computed by adding backup paths for
high fragility edges, inherits the properties of the underlying («, 5)-spanner S,
i.e., if S is fault-tolerant then R is fault-tolerant too. Let T'(m,n) and S(n) be
respectively the time required to compute an («, §)-spanner S and the number
of edges in S. A trivial implementation of the above algorithm requires a total of
O(T'(m,n)+S(n)- (m-+n)) time for unweighted graphs and produces o-resilient
spanners with O(n-S(n)) edges. In the next section we will show how to improve
the time complexity and how to limit the number of added edges.

3.1 Main Results: Improving Size and Running Time

Theorem [ does not depend on how backup paths are selected. In order to
bound the number of added edges, we first show that in an unweighted graph
the number of edges with high fragility is small (Theorem (), and then we show
how to carefully select shortest paths to be added as backup paths, so that the
total number of additional edges required is small (Theorem [). By combining
the two bounds above, we obtain o-resilient («, 3)-spanners with O(ng) edges in
the worst case (Theorem [B). We start by bounding the number of high fragility
edges in any graph. For lack of space, the following theorem is proved only for
unweighted graphs. However, it holds for graphs with positive edge weights as
well.

Theorem 3. Let G = (V, E) be a graph, an let o be any positive integer. Then,
the number of edges of G having fragility greater than o is O(n'T1/Le+1)/2]y,
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Proof. Let L be the subgraph of G containing only edges whose fragility is greater
than o. If L contains no cycle, then L has at most (n— 1) edges and the theorem
trivially follows. Otherwise, let C' be a cycle in L, let ¢ be the number of edges in
C, and let e be any edge in C'. Note that frag; (¢) < £—1. Since L is a subgraph of
G, we have frag(e) < frag; (e). Thus, £ > frag.(e) + 1. This holds for any cycle
in L, and hence girth(L) = min.er{frag; (e)}+1 > mineer {frags(e)}+1 > o+1.
As proved by Bondy and Simonovits [9], a graph with girth greater than o + 1
contains O(n't1/Le+1)/2]) edges. O

We now tackle the problem of selecting the shortest paths to be added as
backup paths, so that the total number of additional edges is small. Without
loss of generality, we assume that G is 2-edge-connected: if it is not, all bridges
in G will necessarily be included in any spanner and our algorithm can be sep-
arately applied to each 2-edge-connected component of G. Let e = (u,v) be an
edge of high fragility in the initial («, 8)-spanner. Note that, in order to iden-
tify a backup path for edge e, we can either refer to a shortest path between u
and v in G\ e or, equivalently, to a short cycle for e in G (i.e., the short cycle
defined by the shortest path in G \ e and the edge e itself). In the following,
we will use short cycles in G rather than shortest paths in G \ e. Recall from
Section [ that we denote by I the set of short cycles for e, and by II.(x,y) (re-
spectively IT.(x,y)) the set of shortest paths in P.(x,y) (respectively P.(z,y)).
The following property is immediate:

Property 1. Let e be any edge of G, let C' € I, be a short cycle for e, and let
x,y be any two vertices in C'. Then = and y split C into two paths C, and C,,
with C. € II.(z,y) and C. € II.(z,y).

Property [l allows us to prove the following lemma;:

Lemma 3. Let e and f be any two edges in G. If two short cycles A € I, and
B € I'y share two common vertices, say x and y, then either By UA. or By U A,
is a short cycle for edge f, where {Ac, Ac} and {By, Bf} are the decompositions
of A and B with respect to x and y defined in Property [

Proof. Since A is a short cycle in I, edge f cannot belong to both A, and A..
We distinguish two cases:

— f & Ac: in this case, A, € Hf(x,y) and replacing B by A, yields a short
cycle in I'y.

— f € A, which implies that f ¢ A.. In this case, A, € Hf(x, y) and replacing
B, by A. yields a short cycle in 7. O

Lemma, [J] can be intuitively read as follows. Given two edges e and f, let C,
be a short cycle for e and let C; be a short cycle for f. If C. and Cy cross
in two vertices, then we can compute an alternative short cycle for f, say C’,
which has a larger intersection with C, (i.e., such that C. U C’} has fewer edges
than C. U Cy). This property allows us to select backup paths in such a way
that the total number of additional edges required is relatively small. To do
that efficiently, we apply a modified version of algorithm fast-exclude in [13].
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For lack of space, we only sketch here the main modifications needed and refer to
the full paper for the low-level details of the method. Algorithm fast-exclude
is based on Dijkstra’s algorithm and computes shortest paths avoiding a set
of independent paths, from a source vertex u to any other vertex. In order to
find short cycles for the set F, of high fragility edges incident to vertex u, we
would like to apply algorithm fast-exclude so that it avoids all edges in F,.
Unfortunately, F,, is not a proper set of independent paths (as defined in [13]),
and so algorithm fast-exclude cannot be applied directly. We circumvent this
problem by splitting each edge (u,v) € F, into two edges (u,v’), (v',v) with
the help of an extra vertex v/, and by letting algorithm fast-exclude avoid
all edges of the form (v’,v), since they form a set of independent paths. A
second modification of algorithm fast-exclude consists of giving higher priority,
during the Dijkstra-like visits, to the edges that have been already used, so that
whenever a short cycle for an edge e has to be output, the algorithm selects
a short cycle containing fewer new edges (i.e., edges not already contained in
previously output short cycles), as suggested by Lemma Bl This allows us to
prove the following theorem.

Theorem 4. Given ¢ > 0 edges ej,es2,...,eq in a 2-edge-connected graph G,
there always exist short cycles C1,Cy,...,Cq in G, with C; € Iy, for 1 <1 <gq,
such that the graph Ul_,C; has O(min{q\/n + n,n\/q + q}) edges.

Proof. Let Cy,Cs,...,C, be the cycles in the order in which they are found by
the modified version of algorithm fast-exclude, and let V; and E; be respec-
tively the vertex set and the edge set of C;, for 1 < i < g. We partition each FE;
into the following three disjoint sets:

— EP4: edges in E; N (U;:ll Ej), i.e., edges already in some E;, j < 4.

— EP°V: edges with at least one endpoint not contained in U;;ll V.

— E§*5s: edges not contained in E9'Y and with both endpoints in Uz;ll V.
To prove the theorem, we have to bound the number of edges in (J;_, £;. We
only need to count the total number of edges in U;}:l E7Y and Ule Lgross)
since each edge in E;’ld, for any 1 < i < ¢, has been already accounted for
in some E7Y or Ef™%, with j < 4. Since each edge in E}°Y can be amortized
against a new vertex, and at most two new edges are incident to each new vertex,
|UL, Erev| < 2-n.

To bound the size of sets E{"*%, we proceed as follows. For each cycle C;
we choose an arbitrary orientation a , in one of the two possible directions and
direct its edges accordingly. For directed edge e = (z,y) we denote vertex x as
tail(e). We build a bipartite graph B in which one vertex class represents the n
vertices vy, ve,. .., v, in G, and the other vertex class represents the ¢ directed
short cycles C1, Ca, ..., Cy. There is an edge in B joining cycle C; and vertex v if
and only if v is the tail of an edge in E{™%. It is possible to see that the degree
of C; in B is the size of E$™%, since each edge in B corresponds to an edge in

7, B¢ and vice versa.

We claim that two vertices x and y cannot be tails of two pairs of directed
edges in E§"* and B (see Figure[ll). We prove this claim by contradiction.
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g

Fig. 1. On the proof of Theorem @l If cycle C; is detected after cycle Cj, then either
edge f or g is not in E;"°*°. In fact, one among 7; or w2 should have been included in
C; in place of 7.

Assume without loss of generality ¢ > j (i.e., short cycle C; has been output
before short cycle C;). Since whenever a short cycle has to be output, our algo-
rithm selects a short cycle containing fewer new edges (i.e., edges not contained
already in previously output short cycles), either the path 71 or 72 of C; should
have been replaced by portion 7 or portion 7 of C; (as in Lemma [3]). Let f
and g be the two directed edges in E{*°% with tail(f) = z and tail(g) = y: by
the above argument, one among f and g should be in E¢d instead of ES™%,
yielding a contradiction.

The previous claim implies that the bipartite graph B does not contain Ks o
as a (not necessarily induced) subgraph. Determining the maximum number of
edges in B is a special case of Zarankiewicz’s problem [23]. This problem has
been solved by Kévéri, S6s, Turdn [19] (see also [2I], p. 65), who proved that
any bipartite graph G with vertex classes of size m and n containing no subgraph
K, s, with the r vertices in the class of size m and the s vertices in the class
of size n, has O (min {mnlfl/r +n,m o0 + m}) edges, where the constant
of proportionality depends on r and s. Since in our case the bipartite graph B
has vertex classes of size n and ¢, and r = s = 2, it follows that B contains
O(min{gy/n 4+ n,n./q + q}) edges.

In summary, the total number of edges in the graph U;'J=1 C; is bounded by

q
U (EZQld U Ezpew U E;:roSS) S 2n + 0] (mln {Q\/n + n, n\/q + q})

i=1
and thus the theorem holds. ]

We observe that Theorem Ml is closely related to a result of Coppersmith
and Elkin [I2] on distance preservers. Given a graph G and p pairs of vertices
{(vi,w1),...(vp,wp)}, a pairwise distance preserver is a subgraph S of G such
that dg(vi,w;) = dg(vi,w;), for 1 < ¢ < p. In particular, Coppersmith and
Elkin [12] showed that it is always possible to compute a pairwise distance pre-
server containing O(min{py/n+n,n,/p+p}) edges. Theorem @ can be extended
to weighted and directed graphs and provides an alternative (and simpler) proof
of the result in [12].
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We are now ready to bound the size and the time required to compute a
o-resilient («, §)-spanner.

Theorem 5. Let G be a graph with m edges and n vertices. Let S be any (a, 3)-
spanner of G, and denote by T'(m,n) and S(n) respectively the time required to
compute S and the number of edges in S. Then a o-resilient (a, §)-spanner R
of G, with o > ac+ B, can be computed in O(T (m,n) + mn) time. Furthermore,
R 2 S and R has O (S(n) +n%?) edges.

Proof. As explained above, a o-resilient (o, 3)-spanner R can be computed by
adding a set C of short cycles to S, one for each edge e € S with fragg(e) > o.
Let C, be the cycle in I, computed by our algorithm.

We partition egdes e € S with frag.(e) > o into three subsets E;, E,, and
E}, according to their fragility in G. For each subset we separately bound the
number of edges in the union of cycles in C.

low fragility edges: E, = {e€ S | o <frags(e) < 5}. Obviously, we have
|E¢| < S(n), and since each cycle C., e € Ey, contains at most 5 edges, we

have |J Ce| = O (S(n)).

ecE,

medium fragility edges: E,, = {e€ S | max{c,6} < frag,(e) <logn}. By
Theorem [B] since the fragility of each edge in E,, is greater than 5, |E,,| =
O(n*/3). Since each cycle C,, e € E,,, contains at most logn edges, we have

’UEEEW C’e’ =0 <n§ ~logn).

high fragility edges: E, = {e € S | frags(e) > logn}. By Theoremfl |Ep| =
0 (nHlogn) = O(n), and by Theorem [ we have

’UeeEh Ce| =0 (n \/\Eh|) =0 <ng)

Hence the total number of edges in R is

U c

ee Ey,UE,,,UE},

=0 <S(n) —I—ng)

To bound the running time, we observe that we find the fragility of each edge
in S and then we compute a set of short cycles as suggested by Lemma [l The
fragility of each edge and the set of short cycles can be computed by a proper
modification of algorithm fast-exclude in [I3] in a total of O(mn) worst-case
time. a

Theorem [l allows us to compute o-resilient versions of several categories of
spanners, including multiplicative (2k — 1)-spanners and (k, k — 1)-spanners for
k > 2, (1, 2)-spanners and (1, 6)-spanners. Since the time required to compute all
those underlying spanners is O(mn), in all those cases the time required to build
a o-resilient spanner is O(mn). Theorem Bl can also be applied to build o-resilient
f-spanners, where f is a general distortion function as defined in [22], provided
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that o > f(1). Furthermore, if we wish to compute a o-resilient («, §)-spanner
with 0 < a+f, the same algorithm can still be applied starting from a o-spanner
instead of an («, 8)-spanner, yielding the same bounds given in Theorem
Our results can be extended to weighted graphs, since Theorems Bl and [l also
hold for graphs with positive edge weights. Let winer and wypn be respectively
the weights of the heaviest and lightest edge in the graph, and let W = ™= . For

min

either 0 > logn or o0 > 5 and W = O ((n57 Lo+1)/2] ) /logn>, we can compute

a o-resilient t-spanner with O(n?) edges in O(mn) time. In the remaining cases
(either ¢ > 5 and larger W or o = 3,4), the total number of edges becomes
ow - ns ). For lack of space, the details are deferred to the full paper.

4 Conclusions and Further Work

In this paper, we have investigated a new notion of resilience in graph spanners by
introducing the concept of o-resilient spanners. In particular, we have shown that
it is possible to compute small stretch o-resilient spanners of optimal size. The
techniques introduced for small stretch o-resilient spanners can be used to turn
any generic (o, f)-spanner into a o-resilient («, 8)-spanner, for o > a+ 8 > 3,
by adding a suitably chosen set of at most O(n3/ 2) edges. The same approach is
also valid for graphs with positive edge weights.

We expect that in practice our o-resilient spanners, for ¢ > a+ 5 > 3, will be
substantially sparser than what it is implied by the bounds given in Theorem [l
and thus of higher value in applicative scenarios. Towards this aim, we plan to
perform a thorough experimental study. Another intriguing question is whether
our theoretical analysis on the number of edges that need to be added to an
(c, B)-spanner in order to make it o-resilient provides tight bounds, or whether
it can be further improved.
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Abstract. Sensor networks are ubiquitously used for detection and
tracking and as a result covering is one of the main tasks of such networks.
We study the problem of maximizing the coverage lifetime of a barrier by
mobile sensors with limited battery powers, where the coverage lifetime
is the time until there is a breakdown in coverage due to the death of a
sensor. Sensors are first deployed and then coverage commences. Energy
is consumed in proportion to the distance traveled for mobility, while
for coverage, energy is consumed in direct proportion to the radius of
the sensor raised to a constant exponent. We study two variants which
are distinguished by whether the sensing radii are given as part of the
input or can be optimized, the fixed radii problem and the variable radii
problem. We design parametric search algorithms for both problems for
the case where the final order of the sensors is predetermined and for the
case where sensors are initially located at barrier endpoints. In contrast,
we show that the variable radii problem is strongly NP-hard and provide
hardness of approximation results for fixed radii for the case where all
the sensors are initially co-located at an internal point of the barrier.

1 Introduction

One important application of Wireless Sensor Networks is monitoring a barrier
for some phenomenon. By covering the barrier, the sensors protect the interior of
the region from exogenous elements more efficiently than if they were to cover the
interior area. In this paper we focus on a model in which sensors are battery-
powered and both moving and sensing drain energy. A sensor can maintain
coverage until its battery is completely depleted. The network of sensors cover
the barrier until the death of the first sensor, whereby a gap in coverage is created
and the life of the network expires.

More formally, there are n sensors denoted by {1,...,n}. Each sensor i has
a battery of size b; and initial position x;. The coverage task is accomplished in
two phases. In the deployment phase, sensors move from their initial positions
to new positions, and in the covering phase the sensors set their sensing radii to
fully cover the barrier. A sensor which moves a distance d drains a - d amount
of battery on movement for some constant a > 0. In the coverage phase, sensing

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 97-[I08] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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with a radius of r drains energy per time unit in direct proportion to r*, for some
constant « > 1 (see e.g., [III1]). The lifetime of a sensor i traveling a distance
d; and sensing with a radius r; is given by L; = % __Sdi. The coverage lifetime of
the barrier is the minimum lifetime of any sensor, rr{ini L;. We seek to determine
a destination y; and a radius r;, for each sensor ¢, that maximizes the barrier
coverage lifetime of the network.

Many parameters govern the length of coverage lifetime, and optimizing them
is hard even for simple variants. Thus, most of the past research adopted natural
strategies that try to optimize the lifetime indirectly. For example, the duty cycle
strategy partitions the sensors into disjoint groups that take turns in covering
the barrier. The idea is that a good partition would result in a longer lifetime.
Another example is the objective of minimizing the maximum distance traveled
by any of the sensors. This strategy would maximize the coverage lifetime for
sensors with homogeneous batteries and radii, but would fail to do so if sensors
have non-uniform batteries or radii. See a discussion in the related work section.

In this paper we address the lifetime maximization problem directly. We focus
on the set-up and sense model in which the sensors are given one chance to set
their positions and sensing radii before the coverage starts. We leave the more
general model in which sensors may adjust their positions and sensing radii
during the coverage to future research.

Related Work. There has been previous research on barrier coverage focused
on minimizing a parameter which is proportional to the energy sensors expend on
movement, but not directly modeling sensor lifetimes with batteries. Czyzowicz
et al. [8] assume that sensors are located at initial positions on a line barrier
and that the sensors have fixed and identical sensing radii. The goal is to find a
deployment that covers the barrier and that minimizes the maximum distance
traveled by any sensor. Czyzowicz et al. provide a polynomial time algorithm
for this problem. Chen et al. [7] extended the result to the more general case in
which the sensing radii are non-uniform (but still fixed).

Crzyzowicz et al.[9] considered covering a line barrier with sensors with the
goal of minimizing the sum of the distances traveled by all sensors. Mehrandish
et al. [12] considered the same model with the objective of minimizing the num-
ber of sensors which must move to cover the barrier. Tan and Wu [14] presented
improved algorithms for minimizing the max distance traveled and minimizing
the sum of distances traveled when sensors must be positioned on a circle in
regular n-gon position. The problems were initially considered by Bhattacharya
et al. [5]. Several works have considered the problem of covering a straight-line
boundary by stationary sensors. Li et al. [IT] look to choose radii for sensors for
coverage which minimize the sum of the power spent. Agnetis et al. [1] seek to
choose radii for coverage to minimize the sum of a quadratic cost function. Max-
imizing the network lifetime of battery-powered sensors that cover a barrier was
previously considered for static sensors from a scheduling point of view. Buchs-
baum et al. [6] and Gibson and Varadarajan [L0] considered the RESTRICTED
STRIP COVERING in which sensors are static and radii are fixed, but sensors
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may start covering at any time. Bar Noy et al. [2J3l4] considered the variant of
this problem in which the radii are adjustable.

The only previous result we are aware of that considered a battery model with
movement and transmission on a line is by Phelan et al. [I3] who considered the
problem of maximizing the transmission lifetime of a sender to a receiver on a
line using mobile relays.

Our Contribution. We introduce two problems in the model in which sensors
are battery-powered and both moving and sensing drain energy. In the BARRIER
COVERAGE WITH VARIABLE RADII problem (abbreviated BCVR) we are given
initial locations and battery powers, and the goal is to find a deployment and
radii that maximizes the lifetime. In the BARRIER COVERAGE WITH FIXED
Rap1 problem (BCFR) we are also given a radii vector p, and the goal is to
find a deployment and a radii assignment r, such that r; € {0, p;}, for every 1,
that maximizes the lifetime.

In the full version we show that the static (¢ = o) and fully dynamic (a =
0) cases are solvable in polynomial time for both BCFR and BCVR. On the
negative side, we show in Section [ that it is NP-hard to approximate BCFR
(i) within any multiplicative approximation factor, or (ii) within an additive
factor g, for some € > 0, in polynomial time unless P=NP, for any a € (0, 00)
and a > 1, even if x = p™, where p € (0, 1). We also show that BCVR is strongly
NP-hard for any a € (0,00) and o > 1.

In Section [3] we consider constrained versions of BCFR and BCVR in which
the input contains a total order on the sensors that the solution is required
to satisfy. We design a polynomial-time algorithm for the decision problem of
BCFR in which the goal is to determine whether a given lifetime ¢ is achievable
and to compute a solution with lifetime ¢, if ¢ is achievable. We design a similar
algorithm for BCVR that, given ¢ and € > 0, determines whether ¢ — € is achiev-
able. Using these decision algorithms we present parametric search algorithms
for constrained BCFR and BCVR. We consider the case where the sensors are
initially located on the edges of the barrier (i.e., z € {0,1}") in Section @ For
both BCFR and BCVR, we show that, for every candidate lifetime ¢, we may
assume a final ordering of the sensors. (The ordering depends only on the bat-
tery powers in the BCVR case, and it can be computed in polynomial time in
the BCFR case.) Using our decision algorithms, we obtain parametric search
algorithms for this special case.

Finally, we note that several proofs were omitted for lack of space.

2 Preliminaries

Model. We consider a setting in which n mobile sensors with finite batteries
are located on a barrier represented by the interval [0, 1]. The initial position
and battery power of sensor i is denoted by x; and b;, respectively. We denote
z=(z1,...,2,) and b = (b1,...,b,). The sensors are used to cover the barrier,
and they can achieve this goal by moving and sensing. In our model the sensors
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first move, and afterwards each sensor covers an interval that is determined by
its sensing radius. In motion, energy is consumed in proportion to the distance
traveled, namely a sensor consumes a-d units of energy by traveling a distance d,
where a is a constant. A sensor ¢ consumes r{* energy per time unit for sensing,
where 7; is the sensor’s radius and « > 1 is a constant.

More formally, the system works n' Ti

in two phases. In the deployment —t—
1

Py
@

phase sensors move from the ini- (I) Ti— sy 1
tial positions x to new positions .
This phase is said to occur at time
0. In this phase, sensor ¢ consumes
aly; — x;| energy. Notice that sensor ¢ may be moved to y; only if aly; — ;| < b;.
In the covering phase sensor i is assigned a sensing radius r; and covers the
interval [y; — 7i,y; + r;]. (An example is given in Figure[ll) A pair (y,r), where
y is a deployment vector and r is a sensing radii vector, is called feasible if
(i) aly; — ;| < by, for every sensor 7, and (ii) [0,1] C >°.[y; — ri, y; +74]. Namely,
(y,r) is feasible, if the sensors have enough power to reach y and each point in
[0, 1] is covered by some sensor.

Given a feasible pair (y,r), the lifetime of a sensor 4, denoted L;(y,r), is the
time that transpires until its battery is depleted. If r; > 0, L;(y,r) = bi_alrsz_xi‘ )
and if r; = 0, we define L;(y, r) = co. Given initial locations x and battery ﬁowers
b, the barrier coverage lifetime of a feasible pair (y,r), where y is a deployment
vector and r is a sensing radii vector is defined as L(y,r) = min; L;(y,r). We
say that a t is achievable if there exists a feasible pair such that L;(y,r) = t.

Fig. 1. Sensor ¢ moves from z; to y; and cov-
ers the interval [y; — 74, y; + 73]

Problems. We consider two problems which are distinguished by whether the
radii are given as part of the input. In the BARRIER COVERAGE WITH VARIABLE
Rap1 problem (BCVR) we are given initial locations z and battery powers b,
and the goal is to find a feasible pair (y,r) of locations and radii that maximizes
L(y,r). In the BARRIER COVERAGE WITH FIXED RADII problem (BCFR) we
are also given a radii vector p, and the goal is to find a feasible pair (y,r), such
that r; € {0,p;} for every 4, that maximizes L(y,r). Notice that a necessary
condition for achieving non-zero lifetime is ), 2p; > 1.

Given a total order < on the sensors, we consider the constrained variants of
BCVR and BCFR, in which the deployment y must satisfy the following: i < j
if and only if y; < y;. That is, we are asked to maximize barrier coverage lifetime
subject to the condition that the sensors are ordered by < (this includes sensors
that do not participate in the cover). Without loss of generality, we assume that
the sensors are numbered according to the total order.

3 Constrained Problems and Parametric Search

In this section we present polynomial time algorithm that, given ¢ > 0, decides
whether ¢ is achievable for constrained BCFR. In addition, we give a similar
algorithm that, given ¢ > 0 and any accuracy parameter € > 0, decides whether
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t — ¢ is achievable for constrained BCVR. If the answer is in the affirmative, a
corresponding solution is computed by both algorithms. We use these algorithms
to design parametric search algorithms for both problems.

We use the following definitions for both BCFR and BCVR. Given an order
requirement <, we define:

(i) 4 max {max;<; {x; —b;/a},0} (i) 4 min {min;>; {z; +b;/a},1}

() and (i) are the leftmost and rightmost points reachable by i.

Observation 1. Let (y,r) be a feasible solution that satisfies an order require-
ment <. Then I(i) < u(i) and y; € [I(3), u(i)], for every i.

Proof. If there exists ¢ such that u(i) < (), then there are two sensors j and k,
such that where k < j and z; + b;/a < x — bi/a. Hence, no deployment that
satisfies the total order exists. O

3.1 Fixed Radii

We start with an algorithm that solves the constrained BCFR decision problem.
Given a BCFR instance and a lifetime ¢, we define

s(i) ¥ max {z; — (b — tp*)/a, (i)} e(i) < min {z; + (b — tp®)/a, u(i)}

If tp¢ < b;, then s(i) < e(i). Moreover s(i) and e(i) are the leftmost and right-
most points that are reachable by 4, if ¢ participates in the cover for ¢ time. (I(7)

and u(i) can be replaced by (i — 1) and u(i — 1) in the above definitions.)

Observation 2. Let (y,r) be a feasible pair with lifetime t that satisfies an
order <. For every i, if r; = p;, it must be that tp® < b; and y; € [s(7), e(3)].

Algorithm Fixed is our decision algorithm for constrained BCFR. It first
computes [, u, s, and e. If there is a sensor ¢ such that [(i) > u(i), it outputs
NO. Otherwise it deploys the sensors one by one according to <. Iteration i
starts with checking whether ¢ can extend the current covered interval [0, z]. If it
cannot, ¢ is moved to the left as much as possible (power is used only for moving),
and it is powered down (r; is set to 0). If i can extend the current covered interval,
it is assigned radius p;, and it is moved to the rightmost possible position, while
maximizing the right endpoint of the currently covered interval (i.e., [0, z]). If ¢
is located to the left of a sensor j, where j < i, then j is moved to y;.

As for the running time, [, u, s and e can be computed in O(n) time. There are
n iterations, each takes O(n) time. Hence, the running time of Algorithm Fixed
is O(n?). It remains to prove the correctness of the algorithm.

Theorem 1. Given a constrained BCFR instance and t, Algorithm Fixzed de-
cides whether t is achievable.
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Algorithm 1. Fixed (z,b, p, )

1: Compute [, u, s, and e

2: if there exists ¢ such that u(¢) < [(¢) then return NO
3 z+0

4: fori=1—n do

5: if tp§ > b; or z & [s(i) — ps, e(t) + pi) then

6: yi < max {l(i),yi—1} and r; < 0 >yo=0
7 else

8: yi < min{z + p;,e(d)} and r; < p;

9: S+ {k:k<iyi <uyw}
10: yi < y; and 1, « 0, for every k € S
11: Z4—yi + 74
12: end if
13: end for

14: if z < 1 then return NO
15: else return YES

Proof. If u(i) < I(i) for some i, then no deployment that satisfies the order <
exists by Observation [l Hence, the algorithm responds correctly.

We show that if the algorithm outputs YES, then the computed solution is
feasible. First, notice that y;_1 < y;, for every 4, by construction. We prove by
induction on ¢, that y; € [I(j), u(j)] and that y; € [s(j), e(4)], if r; = p;, for every
j < i. Consider the ith iteration. If tp¢ > b; or z & [s(i) — p;, e(i) + p;), then
yi € [1(2),u(4)], since max {I(i), y;—1} < max{u(i),u(i — 1)} < u(i). Otherwise,
y; = min{z + p;,e(i)} > s(i), since z > s(i) — p;. Hence, if r; = p;, we have that
yi € [s(4),e(i)]. Furthermore, if j < 4 is moved to the left to 4, then y; = y; >
s(i) > (i) > I(j). Finally, let z; denote the value of z after the ith iteration.
(Initially, zo = 0.) We proof by induction on ¢ that [0, z;] is covered. Consider
iteration 4. If 7; = 0, then we are done. Otherwise, z;—1 € [y; — pi, y; + pi] and
zi = y; + p;. Furthermore, the sensors in S can be powered down and moved,
since [y; — rj,y; + 7] C [yi — pi,yi + pil, for every j € S.

Finally, we show that if the algorithm outputs NO, there is no feasible solution.
We prove by induction that [0, ;] is the longest interval that can be covered by
sensors 1, ..., 4. In the base case, observe that zy = 0 is optimal. For the induction
step, let ¥’ be a deployment of 1,. .., 4 that covers the interval [0, z]. Let [0, z/_,]
be the interval that 3’ covers by 1,...,i—1. By the inductive hypothesis, z;_; <
zi—1. I tpY > b; or zi—1 < s(i) — p;, it follows that z; = 2/ _; < z,_1 = 2.
Otherwise, observe that y, < y; and therefore 2z < z;. a

3.2 Variable Radii

We present an algorithm that solves the constrained BCVR decision problem.
Before presenting our algorithm, we need a few definitions. Given a BCVR

instance (x,b) and t > 0, if sensor 4 moves from z; to p € [I(7), u(7)], then we may

assume without loss of generality that its radius is as large as possible, namely

that 7;(p, t) = $/(b; — alp — z:])/t.
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Similarly to Algorithm Fixed, our algorithm tries to cover [0,1] by de-
ploying sensors one by one, such that the length of the covered prefix [0, z]
is maximized. This motivates the following definitions. Let d € [, %] de-
note the distance traveled by sensor i, where d > 0 means traveling right,
and d < 0 means traveling left. If a sensor travels a distance d, then its

lifetime ¢ sustaining radius is given by 3/(b; — ald|)/t. Given t, we define:
gt(d) ¥ d+ {/(b; — ald|)/t. gt(d) is the right reach of sensor i at distance

7
d from z;, i.e., the rightmost point that i covers when it has traveled a dis-

tance of d and the required lifetime is ¢. Similarly define hf(d) e gi(—d) is
the left reach of sensor i at distance d from x;. See depiction in Figure 2l We

explore these functions in the next lemma whose proof is given in the full version.

Lemma 3. Lett > 0. For any 1, the dis-
tance di mazimizes gt(d), where

i 1 o— a
T a {/ozt a>1

2 &

di = l; a=1la<t
0 a=1a>t
d
bi 1 a— a
t(dt) _)oa + (17 a) {/at a>1
9i\a;) = bi a=1
min{a,t}

— /bt
Ifa>1ora##t, gt is increasing for d < 1 hf(\{df/)
dt, and decreasing for d > dt. If « =1 and

a =1, gt is constant, for d > 0, and it is

. ; d Fig. 2. Depiction of the functions
increasing for d < 0. g(d) and hi(d) for @ = 2, a = 2,
b; = 1, and t = 4. The top curve corre-

Given a point z € [0,1], the attaching sponds to g (d), and the bottom curve

position Of s'ensor ttoz Flenoted by pi(z1), corresponds to h!(d). The dashed line
is the position p for which p —7i(p,t) = 2 corresponds to the location of sensor
such that p+r;(p,t) is maximized, if such & ; hile the vertical interval between
position exist. If such a point does not ex- the curves is the interval that is cov-
ist we define p;(z,t) = co. Observe that by ered by i at distance d from ;.
Lemma [3] there may be at most two points
that satisfy the equation p — r;(p,t) = z. Such a position can either be found
explicitly or numerically as it involves solving an equation of degree a. We ig-
nore calculation inaccuracies for ease of presentation. These inaccuracies are
subsumed by the additive factor. We omit the details.

Algorithm Variable is our decision algorithm for BCVR. It first computes
u and [. If there is a sensor ¢, such that (i) > wu(é), it outputs NO. Then, it
deploys the sensors one by one according to < with the goal of extending the
coverage interval [0, z]. If ¢ cannot increase the covering interval it is placed at
max{l(¢),y;—1} so as not to block sensor i + 1. If i can increase coverage, it is
placed in [I(u), u(4)] such that z is covered and coverage to the right is maximized.
It may be the case that the best place for 7 is to the left of previously positioned
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Algorithm 2. Variable (z,b,t)

1: Compute [ and u

2: if there exists ¢ such that u(¢) < [(¢) then return NO

3: 240

4: fori=1—ndo

5: qr(i) + min {max {x; — d,1(i)} ,u(i)}

6: qr(i) + max {min {z; + dj, u(i)}, (i)}

T it 2 & lau () — ra(as (D), 1), ar(0) + ri(ar(i), 1)) then

8: yi < max {l(i),yi—1} and r; < 0 >yo=0
9: else
10: Yi < max {mln {pl z,t),u(i), z; + db } (i } and r; < (s, t)
11: S—{k:k<iy <uyw}
12: yr < y; and 1, < 0, for every k € S
13: 24— Y+
14: end if
15: end for

16: if z < 1 then return NO
17: else return YES

sensors. In this case the algorithm moves the sensors such that coverage and
order are maintained. Finally, if z < 1 after placing sensor n, the algorithm
outputs NO, and otherwise it outputs YES.

I and u can be computed in O(n) time. There are n iterations of the main
loop, each taking O(n) time (assuming that computing p;(z,t) takes O(1) time),
thus the running time of the algorithm is O(n?).

In order to analyze Algorithm Variable we define

P(i) =A{p:p e [l(i),u(@)] and z € [p = ri(p,t),p + ri(p, D]} -

P(3) is the set of points from which sensor ¢ can cover z. Observe that P(i) is
an interval due to Lemma [Bl Hence, we write P (i) = [pr(¢), pr(7)].

In the next two lemmas it is shown that when the algorithm checks
whether z & [q1 (i) — ri(qr(2),1),qr(?) + 7:(qr (), t)] it actually checks whether

P(i) = 0, and that y} def max {min {p;(z,t),u(i),z; + dt},1(i)} is equal to
argmax,c p {p + ri(p,t)}. Hence, in each iteration we check whether [0, z] can
be extended and if it can, we take the best possible extension.

Lemma 4. [pr(3),pr(:)] C [qr(7),qr(7)]. Moreover, P(i) = 0 if and only if
z & lqu(i) —riqr (i), 1), qr (@) + ri(qr (i), 1)].

Proof. By Lemma [3] g1, (7) is the location that maximized coverage to the left,
and qg(i) is the location that maximized coverage to the right. O

Lemma 5. If P(i) # 0, then y; = argmax,c p;y {p +1i(p, 1)}
Proof. By Lemma [3] there are three cases:

— If 2; 4 d} € P(i), then argmax,c p;) {p +ri(p,t)} = z; + dj.
yF = x; + df, since p;(z,t) > z; + dL.
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— If 2 + df > pr(i), then argmax,c p;) {p +7i(p,t)} = pr(i).
yr = min {p;(z,1),u(?)}, since pr(i) = min {p;(z,t), u(i)} > ().
— If @; 4 d} < pr(i), then argmax,c ;) {p + ri(p,t)} = pr(7).
y¥ =1(i), since qr,(i) = 1(¢) > z; + di > min{p;(2,t),u(i),x; + di}. o

We proof of the next theorem is somewhat similar to the proof of Theorem [Il

Theorem 2. Let € > 0. Given a constrained BCVR instance and t, Algo-
rithm Variable decides whether t — € is achievable.

3.3 Parametric Search Algorithms

Since we have algorithm thats, given ¢ and an order <, decides whether there
exists a solution that satisfies < with lifetime ¢ (or t—¢), we can perform a binary
search on ¢. The maximum lifetime of a given instance is bounded by the lifetime
of this instance in the case where a = 0. In the full version we show that, for
a = 0, the network lifetime in the fixed case is at most max; {b;/p%}, and that
itis (23 ; %/ b;)® in the variable radii case. These expression serve as upper
bounds for the case where a > 0. Hence, the running time of the parametric
search in polynomial in the input size and in the log i, where ¢ is the accuracy
parameter.

4 Sensors Are Located on the Edges of the Barrier

Consider the case where the initial locations are on either edge of the barrier,
namely, z € {0,1}". For both BCVR and BCFR we show that, given an achiev-
able lifetime ¢, there exists a solution with lifetime ¢ in which the sensors satisfy
a certain ordering. In the case of BCVR, the ordering depends only on the bat-
tery sizes, and hence we may use the parametric search algorithm for constrained
BCVR from Section [l In the case of BCFR, the ordering depends on ¢, and
therefore may change. Even so, we may use parametric search for this special
case of BCFR since, given t, the ordering can be computed in polynomial time.

Fixed Radii. We start by considering the special case of BCFR in which all
sensors are located at x = 0. The case where x = 1 is symmetric. Given a BCFR
instance (0, b, p) and a lifetime ¢, the mazimum reach of sensor 7 is defined as the
farthest point from its initial position that sensors ¢ can cover while maintaining
lifetime ¢, and is given by: fi(i) = }(bi — tp%) + pi, if tp% < by, and fi(i) = 0,
otherwise. We assume without loss of generality that the sensors are ordered
according to reach ordering, namely that ¢ < j if and only if fi(i) < fi(y).
Also, we ignore sensors with zero reach, since they must power down. Hence, if
f+(7) = 0, we place i at 0 and set its radius to 0. Let ¢t be an achievable lifetime,
we show that there exists a solution (y,r) with lifetime ¢ such that sensors are
deployed according to reach ordering.

Lemma 6. Let (0,b,p) be a BCFR instance and let p € (0,1]. Suppose that
there exists a solution that covers [0,p] for t time. Then, there exists a solution
that covers [0, p] lifetime for t time that satisfies reach ordering.
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Variable Radii. We now consider BCVR with x = 0. As before, the case of
x = 1 is symmetric. Given a BCVR instance (0, b) and a lifetime ¢, the mazimum
reach of sensor i is gf(d!). Note that if the sensors are ordered by battery size,
namely that ¢ < j if and only if b; < b;, they are also ordered by reach. Thus,
we assume in the following that sensors are ordered by battery size. Let ¢ be
an achievable lifetime. We show that there exists a deployment y with lifetime ¢
such that sensors are deployed according to the battery ordering, namely b; < b;
if and only if y; < y;.
We need the following technical lemma.

Lemma 7. Let ¢1,cq,d1,de > 0 such that (i) dy < 1 < ¢a < dz, and (ii) c1 +
co > dy +dy. Also let o > 1. Then, {/c1 + {/ca > dy + Yds

Lemma 8. Let (0,b) be « BCVR instance and let p € (0,1]. Suppose that there
exists a deployment that covers [0,p] for t time. Then, there exists a deployment
that covers [0, p] lifetime for t time that satisfies battery ordering.

Proof. Given a solution that covers [0, p] with lifetime ¢, a pair of sensors is said
to violate battery ordering if b; < b; and y; > y;. Let y be a solution with
lifetime ¢ for (0,b) that minimizes battery ordering violations. If there are no
violations, then we are done. Otherwise, we show that the number of violations
can be decreased. If y has ordering violations, then there must exist at least
one violation due to a pair of adjacent sensors. Let ¢ and j be such sensors. We
assume, without loss of generality, that the batteries of both ¢ and j are depleted
at t, namely that 7, = {/(bx — alyx — 2x|)/t, for k =i, ;.

If the barrier is covered without ¢, then ¢ is moved to y;. (Namely y;, = ys, for
every k # 4, and y} = y;.) y’ is feasible, since ¢ moves to the left. Otherwise, if
the barrier is covered without j, then j is moved to y; and j’s radius is decreased
accordingly. Otherwise, both sensors actively participate in covering the barrier,
which means that the interval [y;—r;, y;+7;] is covered by ¢ and j. In this case, we
place i at y; with radii 7, such that y; —r; = y; —r;. We place j at the rightmost
location g such that y; < y; and y; —r} < y; + 7. If yi = y; then we are done,
as sensor j has more battery power at y; than ¢ does at y;. Otherwise, we may
assume that y; —r; = y; + r;. We show that it must be that y; + 1} > y; + r;.
We have that y; < y; and y; < y;. It follows that B; + 8} > B; + j3;, where
Bi = bi — ay;. Also, notice that 8; < 8 < 8 and B; < B; < B;. It follows that
Tt = Q/ﬁg/t—&— ‘{/ﬁé—/t > ‘{/Bi/t—&— Vﬁj/t = r;+r;, where the inequality is due
to Lemmal7l Hence, y; +77 = (y; —7;) +2r+21% > (y; —7r5) +2ri+2r; > yi+7i.

Since i moves to the left, it may bypass several sensors. In this case we move
all sensors with smaller batteries that were bypassed by ¢, to y.. This can be
done since these sensors are not needed for covering to the right of y, — 7.
Similarly, since j moves to the right, it may bypass several sensors. As long as
there is a sensor with larger reach that was bypassed by j, let k£ be the rightmost
such sensor. Notice that & is not needed for covering to the left of y; Hence, if
Yk + 1K > Y + 75, we move j to yy. Otherwise, we move k to y/.

In all cases, we get a deployment y’ that covers [0, p] with lifetime ¢ with a
smaller number of violations than y. A contradiction. O
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Separation. We are now ready to tackle the case where z € {0,1}". We start
with the fixed radii case. Given a BCFR instance (x,b,r) and a lifetime ¢,
we assume without loss of generality that the sensors are ordered according to
the following bi-directional reach order: first the sensors that are located at 0
according to reach order, and then the sensors that are located at 1 according to
reverse reach order. We show that we may assume that the sensors are deployed
using the bi-directional reach order. The first step is to show that the sensors
that are located at 0 are deployed to the left of the sensors that are placed at 1.

Lemma 9. Let (z,b,p) be a BCFR instance, where x € {0,1}", and let t be
an achievable lifetime. Then, there exists a feasible solution (y,r) with lifetime
t such that y; < y;, for every i < j.

Next we show that we may assume that the sensors are deployed using the
bi-directional reach order.

Theorem 3. Let (z,b,p) be a BCFR instance, and let t be an achievable life-
time. Then there exists a feasible solution (y,r) with lifetime t such that the
sensors are deployed using bi-directional reach order.

We treat the variable radii case similarly. Given a BCVR instance (z,b), we
assume without loss of generality that the sensors are ordered according to a
bi-directional battery order: first the sensors that are located at 0 according to
battery order, and then the sensors that are located at 1 according to reverse
battery order.

Lemma 10. Let (z,b) be a BCVR instance, where z € {0,1}", and let t be
an achievable lifetime. Then, there exists a feasible solution (y,r) with lifetime
t such that y; < y;, for everyi < j.

Theorem 4. Let (z,b) be a BCVR instance, and let t be an achievable lifetime.
Then there exists a feasible solution (y,r) with lifetime t such that the sensors
are deployed using bi-directional battery order.

5 Hardness Results

Theorem 5. It is NP-hard to approzimate BCFR in polynomial time (i) within
any multiplicative factor, or (it) within an additive factor e, for some € > 0,
unless P=NP, for any a € (0,00) and a > 1, even if x = p"™, where p € (0,1).

Theorem 6. BCVR is strongly NP-hard, for every a € (0,00) and o > 1.
6 Discussion and Open Problems
We briefly discuss some research directions and open questions. We showed that

BCVR is strongly NP-Hard. Finding an approximation algorithm or showing
hardness of approximation remains open. In a natural extension model, sensors
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could be located anywhere in the plane and asked to cover a boundary or a circu-
lar boundary. In a more general model the sensors need to cover the plane or part
of the plane where their initial locations could be anywhere. Another model which
can be considered is the duty cycling model in which sensors are partitioned into
shifts that cover the barrier. Bar-Noy et al. [3] considered this model for station-
ary sensors and o = 1. Extending it to moving sensors and e > 1 is an interesting
research direction. Finally, in the most general covering problem with the goal of
maximizing the coverage lifetime, sensors could change their locations and sensing
ranges at any time. Coverage terminates when all the batteries are drained.
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Abstract. We introduce a new online algorithm for the multiselection
problem which performs a sequence of selection queries on a given un-
sorted array. We show that our online algorithm is 1-competitive in terms
of data comparisons. In particular, we match the bounds (up to lower
order terms) from the optimal offline algorithm proposed by Kaligosi et
al.[ICALP 2005].

We provide experimental results comparing online and offline algo-
rithms. These experiments show that our online algorithms require fewer
comparisons than the best-known offline algorithms. Interestingly, our
experiments suggest that our optimal online algorithm (when used to sort
the array) requires fewer comparisons than both quicksort and mergesort.

1 Introduction

Let A be an unsorted array of n elements drawn from an ordered universe. The
multiselection problem asks for elements of rank r; from the sequence R =
T1,T2,...,7q on A. We define B(S,) as the information-theoretic lower bound
on the number of comparisons required in the comparison model to answer ¢
unique queries, where S, = {s;} denotes the queries ordered by rank. We define
AZS = 8;4+1 — 8, where s = 0 and s441 = n. Then,

q q
B(S,) =logn! = log (AF1) =" Aflog A”S —om)[
=0 ¢

=0

As mentioned by Kaligosi et al. [10], intuitively B(S,) follows from the fact that
any comparison-based multiselection algorithm identifies the A7 smallest ele-
ments, A5 next smallest elements, and so on. Hence, one could sort the original
array A using >, A% log A7 + O(n) additional comparisons.
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The online multiselection problem asks for elements of rank ri,72,...,7q,
where the sequence R is given one element at a time (in any order).

Motivation. Online multiselection is equivalent to generalized partial sorting [9].
Variants of this problem have been studied under the names partial quicksort,
multiple quickselect, interval sort, and chunksort. Several applications, such as
computing optimal prefix-free codes [3] and convex hulls [11], repeatedly com-
pute medians over different ranges within an array. Online multiselection (where
queries arrive one at a time) may be a key ingredient to improved results for
these types of problems, whereas offline algorithms will not suffice. Most recently,
Cardinal et al. [5] generalized the problem to partial order production, and they
use multiselection as a subroutine after an initial preprocessing phase.

Previous Work. Several papers [6[12J9] have analyzed the offline multiselection
problem, but these approaches must all know the queries in advance. Kaligosi et
al. [10] described an algorithm performing B(S;)+o0(B(S4))+O(n) comparisons.

Our Results. For the multiselection problem in internal memory, we describe
the first online algorithm that supports a sequence R of ¢ selection queries using
B(Sq) + 0o(B(S4)) comparisons. Our algorithm is 1-competitive in the number of
comparisons performed. We match the bounds above while supporting search,
insert, and delete operations, achieve similar results in the external memory
model [I]. We invite readers to see [2] (or the upcoming journal version) for
more details on these results.

Preliminaries. Given an unsorted array A of length n, the median of A is the ele-
ment = such that [n/2] elements in A are at least z. The median can be computed
in O(n) comparisons [SET3|7], in particular, less than 3n comparisons [7].

Outline. In the next section, we present a simple algorithm for the online mul-
tiselection problem, and introduce some terminology to describe its analysis. In
Section 2221 we show that the simple algorithm has a constant competitive ratio.
Section [3] describes modifications to the simple algorithm, and shows that the
modified algorithm is optimal up to lower order terms. We describe the experi-
mental results in Section [l

2 A Simple Online Algorithm

Let A be an input array of n unsorted items. We describe a simple version of our
algorithm for handling selection queries on array A. We call an element A[i] at
position 7 in array A a pivot if A[l...i — 1] < A[{] < A[i+1...n].

Bitvector. We maintain a bitvector V of length n where V[i] = 1 if and only if
Afi] is a pivot. During preprocessing, we create V and set each bit to 0. We find
the minimum and maximum elements in array A, swap them into A[1] and A[n]
respectively, and set V[1] = V[n] = 1.
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Selection. The operation A.select(s) returns the sth smallest element of A (i.e.,
Als] if A were sorted). To compute this result, if V[s] = 1 then return A[s] and
we are done. If V[s] = 0, find a < s and b > s, such that V[a] = V[b] = 1 but
Vla+ 1...b—1] are all 0. Perform quickselect [8] on Ala + 1...b — 1], marking
pivots found along the way in V. This gives us A[s], with V[s] = 1, as desired.

As queries arrive, our algorithm performs the same steps that quicksort would
perform, although not necessarily in the same order. As a result, our recursive
subproblems mimic those from quicksort. We can show that comparisons needed
to perform ¢ select queries on an array of n items is O(n log ¢). We can improve
this result to O(B(Sq))E We do not prove this bound directly, since our main
result is an improvement over this bound. Now, we define terminology for this
improved analysis.

2.1 Terminology

Query and Pivot Sets. Let R denote a sequence of ¢ selection queries, ordered
by time of arrival. Let S; = {s1,82,...,5:} denote the first ¢ queries from R,
sorted by position. We also include sg =1 and s;+1 = n in S; for convenience of
notation, since the minimum and maximum are found during preprocessing. Let
P, = {p;} denote the set of k pivots found by the algorithm when processing S,
sorted by position. Note that p; = 1, pr, = n, V[p;] = 1 for all 4, and S; C P;.

Pivot Tree and Recursion Depth. The pivots chosen by the algorithm form a
binary tree structure, defined as the pivot tree T of the algorithm over time [
Pivot p; is the parent of pivot p; if, after p; was used to partition an interval, p;
was the pivot used to partition either the right or left half of that interval. The
root pivot is the pivot used to partition A[2..n — 1] due to preprocessing. The
recursion depth, d(p;), of a pivot p; is the length of the path in the pivot tree
from p; to the root pivot. All leaves in the pivot tree are also selection queries,
but it may be the case that a query is not a leaf.

Intervals. Each pivot was used to partition an interval in A. Let I(p;) denote the
interval partitioned by pivot p; (which may be empty), and let |I(p;)| denote its
length. Intervals form a binary tree induced by their pivots. If p; is an ancestor
of pivot p; then I(p;) C I(p;). The recursion depth of an array element is the
recursion depth of the smallest interval containing that element, which in turn
is the recursion depth of its pivot.

Gaps. Define the query gap Af* = $;+1 — S; and similarly the pivot gap Aft =
Pi+1 — Pi- By telescoping we have . Ais‘ = Zj Af‘ =n-—1.

Fact 1. For all € > 0, there exists a constant c. such that for all x > 4,
logloglogz < elogx + c..

2 B(S,) = nlogq when the g queries are evenly spaced over the input array A.
3 Intuitively, a pivot tree corresponds to a recursion tree, since each node represents
one recursive call made during the quickselect algorithm [§].
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Proof. Since lim,_, « (logloglogz)/(logx) = 0, there exists a k. such that for all
x > k¢, we know that (logloglogz)/(logx) < e. Also, in the interval [4, k], the
continuous function logloglog x — elog x is bounded. Let ¢, = logloglog k. — 2e,
which is a constant. O

2.2 Analysis of the Simple Algorithm

In this section we analyze the simple online multiselect algorithm of Section

We call a pivot selection method c-balanced for some constant ¢ with 1/2 <
¢ < 1 if, for all pairs (p;,p;) where p; is an ancestor of p; in the pivot tree,
then |I(p;)| < |[I(p;)] - c¥Ps)=dPi)+OM) If the median is always chosen as the
pivot, we have ¢ = 1/2 and the O(1) term is zero. The pivot selection method
of Kaligosi et al. [10, Lemma 8] is c-balanced with ¢ = 15/16.

Lemma 1 (Entropy Lemma). If the pivot selection method is c-balanced, then

B(P,) = B(S:) + O(n).

Proof. We sketch the proof and defer the full details to the journal version
of the paper. (Those results also appear in [2].) Consider any two consecutive
selection queries s and s’, and let A = s’ — s be the gap between them. Let
Pa = (pi, pi+1, - - -, pr) be the pivots in this gap, where p; = s and p, = s’. The
lemma follows from the claim that B(Pa) = O(A), since

k t
B(P) - B(S;) = [ nlogn— Y Al*log AT | — <n logn — > APtlog Aft)
j=0 i=0

t k t
= Allog AT =Y Altlog AT =3 " B(P,s) = O(n).
i=0 =0 i=0 ’

We now sketch the proof of our claim, which proves the lemma. There must
be a unique pivot p,, in Pa of minimal recursion depth. We split the gap A
at p.,,. Since we use a c-balanced pivot selection method, we can bound the total
information content of the left-hand side by O(Zﬁfl A;) and the right-hand

side by O(X7=1 A;), leading to the claim. The result follows. O

i=m

3 Optimal Online Multiselection

In this section we prove the main result of our paper, Theorem [II

Theorem 1 (Optimal Online Multiselection). Given an unsorted array A
of n elements, we provide an algorithm that supports a sequence R of q online
selection queries using B(Sq)(1 + o(1)) + O(n) comparisons.
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Our bounds match those of the offline algorithm of Kaligosi et al. [I0]. In
other words, our solution is 1-competitive. We explain our proof in three main
steps. In Section 3], we explain our algorithm and describe how it is different
from Kaligosi et al. [I0]. We then bound the number of comparisons resulting
from merging by B(S,)(1+0(1))+O(n) in Section B2 In Section 33 we bound
the complexity of pivot finding and partitioning by o(B(S,)) + O(n).

3.1 Algorithm Description

We briefly describe the deterministic algorithm from Kaligosi et al. [10]. Their
result is based on tying the number of comparisons required for merging two
sorted sequences to the information content of those sequences. This simple
observation drives their underlying approach that both finds pivots that are
“good enough” and partitions using near-optimal comparisons.

In particular, they create runs, which are sorted sequences from A of length
roughly ¢ = log(B/n). Then, they compute the median p of the medians of these
sequences, and partition the runs based on u. After partitioning, they recurse
on the two sets of runs, sending select queries to the appropriate side of the
recursion. To maintain the invariant on run length on the recursions, they merge
short runs of the same size optimally until all but ¢ of the runs are again of
length between £ and 2/.

We make the following modifications to the algorithm of Kaligosi et al. [10]:

— Since the value of B(S;) is not known in advance (because R is provided
online), we cannot preset a value for ¢, as done in Kaligosi et al. [I0]. Instead,
we locally set ¢ =14 [log(d(p) + 1)] in the interval I(p). Since we use only
balanced pivots, d(p) = O(logn). We keep track of the recursion depth of
pivots, from which it is easy to compute the recursion depth of an interval.

— We use a bitvector W to identify the endpoints of runs within each interval.

— The queries from R are processed online. We support online queries using
the bitvector V from Section 2l Recall that a search query incurs O(logn)
additional comparisons to find its corresponding interval.

To perform the operation A.select(s), we first use bitvector V to identify the in-
terval I containing s. If |I| < 4¢2, we sort the interval I (making all elements of [
pivots) and answer the query s. The cost for this case is bounded by Lemma [Bl
Otherwise, we compute the value of ¢ for the current interval, and proceed as in
Kaligosi et al. [I0] to answer the query s.

We can borrow much of the analysis done in [I0], but it depends heavily on
the use of ¢, which we do not know in advance. In the rest of Section B we
modify their techniques to handle this complication.

3.2 Merging

Kaligosi et al. [10, Lemmas 5—10] count the comparisons resulting from merging.
Lemmas 5, 6, and 7 do not depend on the value of ¢ and so we can use them
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in our analysis. Lemma 8 shows that the median-of-medians built on runs is a
good pivot selection method. Although its proof uses the value of ¢, its validity
does not depend the size of . The proof merely requires that there are at least
4/? items in each interval, which also holds for our algorithm. Lemmas 9 and
10 (from Kaligosi et al. [10]) together will bound the number of comparisons by
B(S,)(1+0(1)) + O(n) if we can prove Lemma [2] which bounds the information
content of runs in intervals that are not yet partitioned.

Lemma 2. Let a run r be a sorted sequence of elements from A in a gap Aft,
where |r| is its length. Then, Zf:() > rear: [Tllog|r] = o(B(S:)) + O(n).

Proof. In a gap of size A, { = O(logd) where d the recursion depth of the
elements in the gap. This gives ) . [r[log|r| < Alog(2l) = O(Aloglogd),
since each run has size at most 2¢. Because we use a good pivot selection method,
we know that the recursion depth of every element in the gap is O(log(n/A)).
Thus, Z?:o > orenr ITllog|r] < 37 Ajlogloglog(n/A;). Recall that B(S:) =
B(P;) +O(n) = Zz A;log(n/A;) + O(n). Fact [l completes the proof. O

3.3 Pivot Finding and Partitioning

Now we prove that the cost of computing medians and performing partitions
requires at most o(B(Sy)) +O(n) comparisons. The algorithm computes the me-
dian m of medians of each run at a node v in the pivot tree T'. Then, it partitions
each run based on m. We bound the number of comparisons at each node v with
more than 4¢? elements in Lemmas [ and @ We bound the comparison cost for
all nodes with fewer elements in Lemma [5l

Let d be the current depth of the pivot tree T' (defined in Section 2], and
let the root of T have depth d = 0. Each node v in T is associated with some
interval I(p,) corresponding to some pivot p,. We define A, = |I(p,)| as the
number of elements at node v.

Recall that £ = 1+ [log(d + 1)|, and a run is a sorted sequence of elements
in A. We define a short run as a run of length less than £. Let 8n be the number
of comparisons required to compute the exact median for n elements, where
is a constant less than three [7]. Let r be the number of short runs at node v,
and let 7 be the number of long runs (runs of length at least ¢).

Lemma 3. The number of comparisons required to find the median m of me-
dians and partition all runs at m for any node v in the pivot tree T is at most
B —1)+Llogl+ B(A,/0) + (Ay/0)log(20).

Proof. We compute the cost (in comparisons) for computing the median of me-
dians. For the r§ < ¢ — 1 short runs, we need at most 5(¢ — 1) comparisons per
node. For the r} < A, /¢ long runs, we need at most 3(A, /f).

Now we compute the cost for partitioning each run based on m. We perform
binary search in each run. For short runs, this requires at most Zf;ll logi <
Llog¢ comparisons per node. For long runs, we need at most (A, /¢)log(2¢)
comparisons per node. O
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Since our value of ¢ changes at each level of the recursion tree, we will sum
the costs from Lemma [3] by level. The overall cost at level d is at most 2¢5¢ +
2401og ¢ + (n/l)B + (n/f)log(2¢) comparisons. Summing over all the levels, we
can bound the total cost of all such nodes in the pivot tree to obtain the following
lemma.

Lemma 4. The number of comparisons required to find the median of medians
and partition over all nodes v in the pivot tree T with at least 402 elements is
within o(B(St)) + O(n).

Proof. For all levels of the pivot tree up to level ¢ < log(B(P;)/n), the cost is

at most
log(B(P)/n)

> 2%(B +1logl) + (n/0)(B + log(20)).

d=1
Since ¢ = [log(d 4+ 1)] + 1, we can easily bound the first term of the summa-
tion by (B(P:)/n)loglog(B(P;)/n) = o(B(P;)). The second term can be easily
upper-bounded by n log(B(P;)/n)(logloglog(B(P;)/n)/ loglog(B(P;)/n)), which
is o(B(P;)). Using Lemma Il the above two bounds are o(B(St)) + O(n).

For each level ¢ with log(B(P;)/n) < ¢ < loglogn + O(1), we bound the
remaining cost. It is easy to bound each node v’s cost by o(A,), but this is
not sufficient—though we have shown that the total number of comparisons for
merging is B(S;) + O(n), the number of elements in nodes with A, > 44 could
be w(B(St)).

We bound the overall cost as follows, using the result of Lemma [3l Since
node v has A, > 4¢% elements, we can rewrite the bounds as O(A, /¢log(2()).
Recall that £ = logd + O(1) = log(O(log(n/A))) = loglog(n/A,) + O(1),
since we use a good pivot selection method. Summing over all nodes, we get
Yo, (Ay/0)log(20) < > Ay log(2¢) = o (B(P;)) + O(n), using Fact [[l and recall-
ing that B(P;) = Y, Ay log(n/A,). Finally, using Lemma [I, we arrive at the
claimed bound for queries. a

We now bound the comparison cost for all nodes v where A, < 4¢2.

Lemma 5. For nodes v in the pivot tree T where A, < 462, the total cost in
comparisons for all operations is at most o(B(St)) + O(n).

Proof. Nodes with no more than 4¢? elements do not incur any cost in compar-
isons for median finding and partitioning, unless there is (at least) one associated
query within the node. Hence, we focus on nodes with at least one query.

Let 2 be such that z = (loglogn)? log loglogn+O(1). We sort the elements of
any node v with A, < 4¢2 elements using O(z) comparisons, since £ < loglogn+
O(1). We set each element as a pivot. The total comparison cost over all such
nodes is no more than O(tz), where ¢ is the number of queries we have answered
so far. If t < n/z, then the above cost is O(n).

Otherwise, t > n/z. Using Jensen’s inequality, we have B(P;) > (n/z) log(n/z),
which represents the cost of sorting n/z adjacent queries. Thus, tz = o(B(F;)).
Using Lemma [l we know that B(P;) = B(S;) + O(n), which proves the lemma.

O
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4 Experimental Results

In this section, we present the experimental evaluation of the online and offline
multiselection algorithms. Section 1] describes the experimental setup. Our re-
sults are described in Section

4.1 Experimental Setup

Our input array consists of a random permutation of the (distinct) elements from
[1,28]. (We also ran some experiments for larger n up to 220, and results were
similar.) Our queries are generated using the indicated distribution for each ex-
periment. We allow repetitions of queries, except in the evenly-spaced case. We
only report comparisons with elements of the input array, averaged over 10 ran-
dom experiments. In particular, we do not count comparisons between indices in
the input array. Finally, we compute the Entropy of a query sequence S, (defined
in Section []) by Uog nl =37 log (Af ')J using double precision arithmetic on
a 64-bit machine.

Now, we briefly describe the algorithms we considered for choosing the pivot
in an unsorted interval I. The First Element and Random methods choose the
corresponding element as the pivot. The Medof3 method uses the median of the
first, middle, and last elements of I as the pivot. The Median (using MedofMed)
uses Blum et al.’s linear-time algorithm [4] as the pivot. The MedofMed method
is the first step of Blum et al.’s algorithm [4] that computes the median of every
five elements, and then uses the median of those medians as the pivot.

Pivot Selection Methods

0 Py
2 / / B T

/ . /‘ Randnm
20

—=Medof3
15 B -

—#=Median (using
MedofMed alg)

Number of Comparisons
(in millions)

32 128 512 2048 8192 32768 131072 524288
Number of Queries

Fig. 1. Performance of various pivot selection methods on random input sequences

We compared the performance of these pivoting methods for random arrays
in Figure[l for our simple online algorithm described in Section[2l We performed
similar experiments for different algorithms. The results from Figure[l are repre-
sentative of all of our findings. One can clearly see that Medof3 uses the fewest
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comparisons and Median requires significantly more comparisons. The perfor-
mance of other pivoting methods fall in between these two extremes. For the
rest of the paper, we show results only for the Medof$ pivoting method.

4.2 Results

Now, we briefly describe the algorithms we considered for multiselection. All
algorithms use Medof3 as the pivoting strategy (where applicable). The Quick-
sort algorithm is the standard quicksort, augmented by ¢ array lookups (which
require no comparisons). The Mergesort algorithm is the standard recursive
mergesort, augmented by ¢ array lookups (which require no comparisons). The
Simple Online algorithm is described in Section 2 The Optimal Online algo-
rithm is described in Section Bl where we set £ based on the recursion depth
of the corresponding interval. The performance of the online algorithms is inde-
pendent of the order of the queries. (We defer the experiments supporting this
claim until the journal version of this paper.)

The Dobkin-Munro algorithm is described in [6]. The Kaligosi (sorted) algo-
rithm is described in [10], which assumes that queries are given in sorted order.
The Kaligosi (unsorted) algorithm first sorts the unsorted queries, and then
performs the Kaligosi (sorted) algorithm. In some cases, sorting queries is tanta-
mount to sorting the array. Since this algorithm is offline, one can assume that
the algorithm will detect this case and revert to Quicksort or Mergesort instead.

We show our results in Figures [ and Bl For Figure 2] the queries (in the first
graph) are evenly distributed across the input array. This query distribution
results in a worst-case entropy, and hence is a difficult case for multiselection
algorithms. The second graph in Figure 2l has uniformly distributed queries. For
Figure 3l we display results for a normal query distribution with mean y = n/2
and standard deviation o = n/8. The second graph in Figure Blis an exponential
query distribution with A = 16/n.

For all query distributions, our online algorithms (Simple Online and Opti-
mal Online) outperform their offline counterparts (respectively, Quicksort and
Kaligosi). The Dobkin-Munro algorithm requires more comparisons than Quick-
sort for any reasonably large number of queries (based on query distribution). In
other words, it is usually better to sort than to use Dobkin-Munro. The Kaligosi
algorithm performs quite well in terms of comparisons, but is relatively slow.
The Simple Online algorithm converges to Quicksort as queries increases, high-
lighting that the online algorithm performs the same work as the Quicksort, as
intuition (and the analysis) suggests.

The Optimal Online algorithm outperforms Mergesort, Quicksort, and Kaligosi
(sorted and unsorted), and is even better than Entropy when the number of
queries is large. Having an algorithm perform fewer comparisons than FEntropy
isn’t a contradiction, since Entropy is a worst-case lower bound for an arbitrary
input. Hence, the number of comparisons for an algorithm could be less than
Entropy for a given (specific) input. Even though our algorithm is similar to
Kaligosi, we can clearly see the value of online computation when comparing
these two results. The primary reason for our improved results is due to the fact
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Fig. 2. Performance of multiselection algorithms on random input sequences using
median of three pivot selection method, when the queries are distributed as indicated

that Kaligosi will pre-process runs, even for intervals that do not contain any
queries. For the Optimal Online algorithm, since run lengths are based on the
recursion depth, the algorithm will not spend comparisons generating long runs
unless queries are in those intervals.

In fact, these results suggest that using the Optimal Online algorithm with
n/2 queries (e.g., each odd position) can sort an array in fewer comparisons than
Mergesort. The reason for this is that the runs computed at the beginning of the
algorithm save a lot of comparisons in future recursive rounds. We are currently
running experiments on tuning the length ¢ of the run to see if we can further
improve this performance.

Finally, we provide similar results for a decreasing input array, since this is a
best-case scenario for Mergesort. Notice that both Mergesort, Optimal Online,
and Kaligosi are better than Entropy as queries increase. However, both mul-
tiselection algorithms outperform Mergesort. The sudden dip in the curve cor-
responding to the Kaligosi (sorted) algorithm after 65,536 queries corresponds
to a discrete increase in the calculated value of £ (from 4 to 5). This sort of
stair-stepping behavior is expected to continue as n increases.
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Fig. 3. Performance of multiselection algorithms on random input sequences using
median of three pivot selection method, when the queries are distributed as indicated
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Fig. 4. Performance of multiselection algorithms on a decreasing input sequence using
median of three pivot selection method, when the queries are distributed as indicated
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Abstract. In the past a number of I/O-efficient algorithms were de-
signed to solve a problem on a static data set. However, many data
sets like social networks or web graphs change their shape frequently.
We provide experimental results of the first external-memory dynamic
breadth-first search (BFS) implementation based on earlier theoretical
work [I3] that crucially relies on a randomized clustering. We refine this
approach using a new I/O-efficient deterministic clustering, which groups
vertices in a level-aligned hierarchy and facilitates easy access to clusters
of changing sizes during the BFS updates. In most cases the new external-
memory dynamic BFS implementation is significantly faster than recom-
puting the BFS levels after an edge insertion from scratch.

1 Introduction

Breadth first search (BFS) is a fundamental graph traversal strategy. It can be
viewed as computing single source shortest paths on unweighted graphs. BFS
decomposes the input graph G = (V, E) of n = |V| nodes and m = |E| edges
into at most n levels where level 4 comprises all nodes that can be reached from
a designated source s via a path of ¢ edges, but cannot be reached using less
than i edges.

The objective of a dynamic graph algorithm is to efficiently process an online
sequence of update and query operations; see [IIJI5] for overviews of classic
and recent results. In this paper we consider dynamic BFS for the incremental
setting where additional edges are inserted one-by-one. After each edge insertion
the updated BF'S level decomposition has to be output.

At first sight, dynamic BFS on sparse graphs might not seem interesting since
certain edge insertions could require §2(n) updates on the resulting BFS levels,
implying that the time needed to report the changes is in the same order of
magnitude as recomputing the BFS levels from scratch using the standard lin-
ear time BFS algorithm. The situation, however, is completely different in the

* Partially supported by the DFG grant ME 3250/1-3, and by MADALGO — Center for
Massive Data Algorithmics, a Center of the Danish National Research Foundation.
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external-memory setting, where the currently best static BFS implementations
take much more time to compute the BFS levels as compared to reporting them,
i.e. writing them to disk. Thus, providing a fast dynamic alternative is an im-
portant step towards a toolbox for external-memory graph computing. In this
paper we report on the engineering of an external-memory dynamic BFS im-
plementation (based on earlier theoretical work [13]). To this end a modified
external-memory clustering method tuned to our needs has been developed, too.

2 I/0-Model and Related Work

Computation model. Theoretical results on out-of-core algorithms typically
rely on the commonly accepted external-memory (EM) model by Aggarwal and
Vitter [1]. It assumes a two level memory hierarchy with fast internal memory
having a capacity to store M data items (e.g., vertices or edges of a graph) and a
slow disk of infinite size. In an I/O operation, one block of data, which can store B
consecutive items, is transferred between disk and internal memory. The measure
of performance of an algorithm is the number of I/Os it performs. The number
of I/Os needed to read N contiguous items from disk is scan(N) = @(N/B). The
number of I/Os required to sort N items is sort(N) = O((N/B)logy 5(N/B)).
For all realistic values of N, B, and M, scan(N) < sort(N) < N.

Review of Static and Dynamic EM BFS Algorithms. There has been
a significant number of publications on external-memory graph algorithms; see
[3I16] for recent overviews. In the following we shortly review the external mem-
ory MM BFS algorithm by Mehlhorn and Meyer [12] and its dynamic exten-
sion [I3]. In order to keep the description simple, we concentrate on edge in-

sertions on already connected undirected sparse graphs with n=|V| vertices and
m = |E| = O(|]V]) edges.

MM BFS. The MM BFS algorithm consists of two phases — a preprocessing
phase and a BFS phase. In the preprocessing phase, the algorithm has to pro-
duce a clustering. This can be done with an Euler Tour technique based on an
arbitrary spanning tree T' of the graph G. In case T is not part of the input, it
can be obtained using O((1 + loglog (B - n/m)) - sort(n +m)) I/Os [0]. Initially,
each undirected edge of T is replaced by two oppositely directed edges. Then, in
order to construct the Euler tour around this bi-directed tree, each node chooses
a cyclic order [7] of its neighbors. The successor of an incoming edge is defined to
be the outgoing edge to the next node in the cyclic order. The tour is then broken
at a special node (say the root of the tree) and the elements of the resulting list
are then stored in consecutive order using an external memory list-ranking algo-
rithm; Chiang et al. [8] showed how to do this in sorting complexity. Thereafter,
the Euler tour is chopped into clusters of p nodes and duplicates are removed
such that each node only remains in the first cluster it originally occurs; again
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this requires a couple of sorting steps. By construction, the distance in G be-
tween any two vertices belonging to the same cluster is bounded by p — 1 and
there are O(n/p) clusters.

For the BFS phase, the key idea is to load whole preprocessed clusters into
some efficient data structure (hot pool) at the expense of few I/Os, since the
clusters are stored contiguously on disk and contain vertices in neighboring BFS
levels. This way, the neighboring nodes N(I) of some BFS level [ can be com-
puted by scanning only the hot pool. The next BFS level is obtained by re-
moving those nodes visited in levels I — 1 and [ from N(1); see [14]. However,
as the algorithm proceeds, newly discovered neighbor nodes may belong to so
far unvisited clusters. Unstructured I/Os are required to import those clusters
into the hot pool, from where they are gradually evicted again once they have
been used to create the respective BFS levels. Maintaining the hot pool itself
requires O(scan(n+m)- u) I/Os, whereas importing the clusters into it accounts
for O(n/u + sort(n +m)) 1/Os. Choosing 1 = v/B yields an I/O-complexity of
O(n/v/B + sort(n)) for the BFS-phase on sparse graphs.

Dynamic BFS. In the following we review the high-level ideas to computing
BF'S on general undirected sparse graphs in an incremental setting. Let us con-
sider the insertion of the ith edge (u,v) and refer to the graph (and the shortest
path distances from the source in the graph) before and after the insertion of
this edge as G;—1 (d;—1) and G; (d;), respectively.

We run the BFS phase of MM BF'S, with the difference that the adjacency list
for v is added to the hot pool H when creating BFS level max{0, d;_1(v) — o} of
G, for a certain advance o > 1. By keeping the adjacency lists sorted according
to node distances in G;_; this can be done I/O-efficiently for all nodes v featuring
di—1(v) — d;(v) < a. For nodes with d;—1(v) — d;(v) > «, we import whole
clusters containing their adjacency lists into H using unstructured I/Os. Each
such cluster must comprise the adjacency lists of 2(«) nodes whose mutual
distances in G;_1 are bounded by p = ©(«a), each vertex belongs to exactly one
cluster. If the BFS phase for the currently used value of a@ would require more
than «-n/B random cluster accesses, we increase a by a factor of two, compute
a new clustering for G;_; with larger chunk size p and start a new attempt by
repeating the whole approach with the increased parameters.

Meyer [13] proved an amortized high-probability bound of O(n/B?/3+sort(n)-
log B) I/0s per update under a sequence of @(n) edge insertions. The analysis
relies on the fact that there can be only be very few updates in which the BFS
levels change significantly for a large number of nodes. If it can be guaranteed
that each cluster loaded into the pool actually carries £2(«) vertices, most of the
updates will require few cluster fetches in early attempts with small advance.

Unfortunately, the standard Euler tour based clustering method described
above might produce very unbalanced clusters: in fact £2(n/p) clusters may
contain only a single vertex each. A randomized clustering approach [I3] repairs
this deficiency as follows:
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Each vertex v in the spanning tree Ty is assigned an independent binary
random number r(v) with Pr(v) = 0] = P[r(v) = 1] = 1/2. When removing
duplicates from the Euler tour, instead of storing v in the cluster related to
the chunk with the first occurrence of a vertex v, now we only stick to its first
occurrence iff r(v) = 0 and otherwise (r(v) = 1) store v in the cluster that
corresponds to the last chunk of the Euler tour v appears in. For chunk size
@ > 1 and each but the last chunk, the expected number of kept vertices is at
least 1 /8.

3 Challenges and New Results

The dynamic BFS approach in [13] applies several clusterings of different values
for p (say p = 21,22,23, ..., VB) for the same input graph. In fact, for incre-
mental dynamic BFS on already connected graphs, these clusterings could be
re-used for all subsequent edge insertions. Unfortunately, while the theoretical
EM model assume external space to be of unlimited size, this is not true in real-
ity. In fact, due to disk space limitations it may often be impossible to keep even
a few different clusterings at the same time. On the other hand, even though it
will not harm the theoretical worst-case bounds, re-computing the same cluster-
ings over and over again could actually become the dominating part of the I/0
numbers we see in practice: for example in improved static BFS implementations
of [4I12], the preprocessing for graph clustering often takes more time than the
actual BFS phase, although the latter comes with a significantly higher asymp-
totic I/O-bound than the preprocessing in the worst case. In addition, the old
clustering method described above crucially relies on randomization. Thus, the
improved deterministic clustering we propose in Section [ features both practical
and theoretical advantages.

As already mentioned in Section 2] the theoretical I/O bounds for the dy-
namic EM BFS algorithm in [I3] are amortized over sequences of ©(n) edge
insertions. Hence, single updates could theoretically become as costly as with
the static EM-BFS approach, and the hidden constants might be even worse.
On the other hand, edge insertions with little effect on the resulting BFS lev-
els should hopefully be manageable with significantly less I/O. In our practical
experiments we consider such extreme cases on several graph classes. While our
dynamic BFS implementation was never slower than a factor of 1.25 compared
to static BFS, we have also experienced cases where dynamic BFS outperformes
the static re-computation by more than a factor of 70.

4 Level-Aligned Hierarchical Clustering

The high level idea for our hierarchical clustering is rather easy: we renumber
each vertex with a new bit representation (b,,...,bg+1,bq,...,b1) that is inter-
preted as a combination of prefix (b,,...,bs11) and suffix (by,...,b1). Different
prefixes denote different clusters, and for a concrete prefix (cluster) its suffixes
denote vertices within this cluster. Depending on the choice of ¢ we get the whole
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spectrum between few larger clusters (¢ big) or many small clusters (¢ small).
In particular we would like the following to hold:

For any 1 < p = 27 < v/B, (1) there are [n/u] clusters, (2) each cluster
comprises 1 vertices (one cluster may have less vertices), and (3) for any two
vertices u and v belonging to the same cluster, their distance in G is O(u).
In order to make this work the new vertex numbers will have to be carefully
chosen. Additionally, a look-up table is built that allows to find the sequence of
disk blocks for adjacency lists of the vertices associated with a concrete cluster

using O(1) I/Os.

Fig. 1. Sibling-Merge Fig. 2. Parent-Merge Fig. 3. Complex merge example

In order to group close-by vertices into clusters (such that an appropriate
renumbering can take place) we start with an arbitrary spanning tree T rooted

at source vertex s. Then we work in p = [log Vv B—‘ phases, each of which trans-

forms the current tree 77 into a new tree T7+! having [|T7]/2] vertices. (The
external-memory BFS algorithms considered here only use clusters up to a size
of v/B vertices so this construction is stopped after p phases. The hierarchical
clustering approach imposes no limitations and can be applied for up to [logn]
phases for other applications.) The tree shrinking is done using time-forward
processing [BI8] from the leaves toward the root (for example by using negated
BFS numbers for the vertices T7). Consider the remaining leaves vy, ..., vy with
highest BF'S numbers and common parent vertex u in T7. If k is even then v;
and vg will form a cluster (and hence a vertex in T9F1); v3 and v, will be com-
bined, vs and wvg, etc. (sibling-merge, see Figure[ll). In case k is odd, vy will be
combined with u (parent-merge, Figure ) and (if & > 3) vy with vs, vq with vs,
etc. Merged vertices are removed from 77 and therefore any vertex is a leaf at
the time it is reached by TFP, e.g. node w; shown in Figure Bl was already con-
sumed by vertex ws, so it is no longer available at the time vy, vy get processed.
Thus, each vertex of 771 is created out of exactly two vertices from 77, except
for the root which may only consist of the root from T7. Note that the original
graph vertices kept in a cluster are not necessarily direct neighbors but they do
have short paths connecting them in the original graph. The following lemma
makes this more formal:
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Lemma 1. The vertices of T, J form clusters in the original graph having size
sizel) = 24 (excluding the root vertex which may be smaller), maximum depth

depth(j) =29 — 1, and mazimum diameter diam" = 27+1 _ 9,

Proof. By induction (obvious for size). The clusters defined by T? consist of

exactly one vertex each and satisfy diam(o) = 0 and depth(o) = 0. For j > 0,
three ways of merging a vertex v; have to be considered (with a sibling ({v1,v2}),
the parent ({vi,u}) or not merged at all ({v1})), resulting in

. depth”’ ({v1,v2}),
depth”’ = max depth(]_) ({v1,u}),
depth(J) ({v1})

max depth(jil) (v1), depth(jil) (v2) } ,

= max depth(j_l)(vl) +1+ depth(j_l)(u),
depth(J_l)(vl)
=2.depth’ V p1=2. 2 1) 41=2 1

_ diam(j) ({v1,v2}),
diam" = max diam"’ ({v1,u}),
diam"’ ({v1})

depth(jil)(vl) +1+ diam(jil)(u) +1+ depth(jil)(vg),
= max depth(kl)(vl) +1+ diam(]il)(u),

(J’*l)(

diam v1)

-1) —1)

=2 -depth’ ™ 4 diam" " 4 2=2. (2" — 1) + diamV "V 4 2

=2 fdiam" "V =2/ 29 —2 =2t 9

Note that while diam(]) and depth(]) denote the mazimum diameter and depth
possible for a cluster with 27 vertices the actual values may be much smaller. 0O

The hierarchical approach produces a clustering with (1) ©(n/u) clusters each
having (2) size ©(u) (excluding the root cluster) and (3) diameter O(u) for each
1<pu=21<VB.

Details on the construction of T?T1. Two types of messages (connect(id) and
merged(id)) are sent during the time-forward processing. When vertices are com-
bined, the vertex visited first sends the ID of the new vertex in 777! to the other
one in a merged() message. The connect() messages are used to generate edges
of TJ*1 using the new IDs. The merged() message (if any) of a vertex is sorted
before the connect() messages of that vertex, so checking whether the current
minimal entry in the priority queue has received such a message can be done in

o(1).
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Renumbering the vertices. The p phases of contracting the spanning tree each
contribute one bit of the new vertex number (b, ..., bpt1,bp,...,b1). The con-
struction of 771! defines the bit b1 for the vertices from T7 to be 0 for the left
and 1 for the right child in case of a sibling-merge, to be 0 for the parent and 1
for the child in case of a parent-merge, and to be 1 for the root vertex (unless
it was already merged with another vertex). After p contraction phases TP with
¢ = [n/2P] vertices/clusters remain. The remaining (r — p) bits are assigned by
computing BFS numbers (starting with (2/1°82 ¢l —¢) at the root) for the vertices
of TP. These BFS numbers are inserted (in their binary representation) as the
bits (br,...,bp+1) of the new labels for the vertices of TP.

To efficiently combine the label bits from different phases and propagate them
to the vertices of G again time-forward processing can be applied. The trees
TP, ..., T2 will be revisited in that order and vertices of T can be processed
e.g. in BFS order and each vertex v of T? will combine the label bits received from
TJ+! with the bit assigned during the construction phase and then send messages
with its partial label to the vertices in 77~! it comprises. The resulting new
vertex numbering of G will cover the integers from [n'—n,n') where n/ = 218271,
There will be a single gap [0,n' —n) (unless n is a power of two) that can be
easily excluded from storage by applying appropriate offsets when allocating and
accessing arrays. Thereafter the new labeling has to be propagated to adjacency
lists of G and the adjacency lists have to be reordered (O(sort(n +m)) I/O0s).

Assuming the adjacency lists are stored as an adjacency array sorted by vertex
numbers (two arrays, the first with vertex information, e.g. offsets into the edge
information; the second with edge information, e.g. destination vertices), there
is no need for an extra index structure to retrieve any cluster in O(1 + %)
1/0s where x is the number of edges in that particular cluster. This is possible
because all vertices of a cluster are numbered contiguously (for all values of
1<pu=21< \/B) and the numbers of the first and last vertex in a cluster can
be computed directly from the cluster number (and cluster size p).

Lemma 2. For an undirected connected graph G with n vertices, m edges, and
given spanning tree T the Hierarchical Bottom-Up Clustering for all cluster sizes
1 < pu=2%<mn can be computed using O(sort(n)) I/Os for constructing the new
vertex labeling and O(sort(n +m)) I/Os for the rearrangement of the adjacency
lists of G.

5 Implementation Details of Dynamic BFS

In the theoretical design of dynamic BFS the single parameter o was used to
control the following quantities: the size of the clusters, the timer threshold (to
avoid that elements are kept in the hot pool during the whole computation after
a previous cluster fetch of the same element) and the number of levels that are
prefetched into the hot pool. In our implementation we used two parameters
a1 and as instead. The number of levels that are fetched into the hot pool is
denoted by «; whereas the size of the clusters is controlled by as. The timer
values are given by a simple approximation of the cluster diameter.
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We split the original hot pool into two hot pools — one for the fetched levels
(denoted as H) and one for the loaded clusters (denoted as HC'). The elements
in the two hot pools have different properties (for example the cluster id and
the timer are needed in HC but not in H) and we were able to measure random
I/Os from cluster fetches and sequential I/Os from feeding H with new levels
and removing consumed or outdated entries separately.

For the insertion of an edge (v1,v2) into the graph we made the following
observation. Let {1 be the level of the vertex v; and I the level of vertex vy and
w.l.o.g be I3 < Il3. The first level f; with possible improvements for the BFS
levels is given by f1 =11 + Lb;llj + 1. Hence, we do not need to recompute the
level of any vertex in a level I < f1. The distance lo —I; might be arbitrarily huge.
The a; levels that could be fetched into H will never be required if I1 + oy < [o.
Therefore we start prefetching levels into H from level f; instead of [;. HC will
load clusters in the local neighborhood of v to assign new BFS levels to adjacent
vertices.

In Section @] we argued for simplicity that the hierarchical clustering can be
implemented using the time-forward processing technique and a priority queue.
Since we are operating on a tree we can actually omit the priority queue in
order to achieve better constant factors: we build triples (vertez, level, parent)
for each vertex in our tree and sort them by level and furthermore by parent.
Now we scan the triples and merge two adjacent elements if they have the same
parent. If there is no such adjacent element it is merged with its parent which is
considered in the next level. Hence, we store a message that its parent is already
clustered and then the parent is omitted later. For small levels these messages
fit in internal memory, for larger levels an external sorted vector is used.

6 Experiments

Configuration. Our external-memory dynamic BFS implementation relies on
the STXXL library [10]. For our static EM-BFS results we used the STXXL
code from Ajwani et al. [4]. We performed our experiments on a machine with
an Intel dual core E6750 processor @ 2.66 GHz, 4GB main memory (3.5 GB
free), 3 hard disks with 500 GB each as external memory for STXXL, and a
separate disk for the operating system, graph data, log files etc. The operating
system was Debian GNU/Linux amd64 'wheezy’ (testing) with kernel 3.2. We
compiled with GCC 4.7.2 in C++11 mode using optimization level 3.

Graph Classes. For our experiments we used four different graph classes: one
real-world graph with logarithmic diameter, two synthetic graph classes with
diameters ©(y/n) and ©(n) and a tree graph class that was designed to elicit poor
performance for the static BFS approach with standard Euler-tour clustering.
The real-world graph sk-2005 has around 50 million vertices, about 1.8 billion
edges and is based on a web-crawl. It was also used by Crescenzi et al. [9] and has
a known diameter of 40. The synthetic z-level graphs are similar to the B-level
random graphs in [2]. They consist of x levels, each having ! vertices (except
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Fig. 4. Our cl n2 29 graph has the same shape as the graph in this picture but with
1048576 lists of length 511 each. In this picture the result of an Euler tour based
clustering with p = 6 is shown as it is used in MM BFS.

the level 0 containing only one vertex). The edges are randomly distributed
between consecutive levels. The y/n-level graph graph features n = 22® nodes and
m = 1.1-10° edges, for the O(n)-level graph we have n = 22® and m = 0.9 - 10°.
The fourth graph class represents trees whose special shape are tuned to yield an
Euler tour clustering that forces the static MM BFS algorithm into £2(n/v/B)
unstructured I/Os: whenever a new BFS level is reached, many new clusters are
encountered for the first time. A schematic depiction is presented in Figure [l
In our concrete case the resulting cl n2 29 graph features about 22° nodes and
220 Jists. The parameters were chosen in a way that prefetching heuristics will
not help MM BFS caching adjacency lists in main memory.

6.1 Results

In our experiment we inserted new edges (v1,v2) into the graph, where we set
v1 = s (the source of the BFS tree) and select the other vertex vy from BFS levels
0.1-d,0.2-d, ..., d where d denotes the height of the BFS tree. The experiments
were executed independently. For each inserted edge the initial BFS tree / graph
was the same. The source of the BFS tree was chosen to make the experiments
more difficult: two vertices far away from the source might have a small distance
to each other and then usually only a small fraction of the whole graph data has
to be reassigned to new BFS levels in our graph data. We measured the time for
dynamic BFS plus the time to write the result and the number of vertices that
have been updated. Experiments during the implementation showed that for a
small cluster size aw, e.g. as = 64, its value is algorithmically never increased.
This leads to a high number of random I/Os. Thus we set oy = 1024 which
causes a small amount of random cluster fetches. For smaller as our results were
slightly better for each graph class on our test machine but not for the /n-
level graph. The number of elements in the hot pool H is given by the value
of ay. For large a3 a huge hot pool H has to be scanned for each BFS level
computation. We set the initial oy = 4 to avoid too many sequential I/Os.
Table [l contains the time for computing static EM-BFS for each graph divided
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into the preprocessing and the BFS computation. The cl n2 29 graph stands
out with a slow BFS computation while the preprocessing is almost as fast as
the preprocessing for the other graph classes. Table 2] contains the time for the
hierarchical clustering and the time that is needed to reorganize the adjacency
lists (add cluster information to edges, sort them, ...). The clustering is slower
than the preprocessing of the static BFS because logarithmically many phases
e. g. containing Euler Tour and list-ranking computation have to be done instead
of one. Nevertheless, the computation time is still independent from the graph
class and the computation time only depends on the input size. The gain of
the hierarchical clustering is obtained in the dynamic BFS computation of the
cl n2 29 graph (details at the end of this section).

Table 1. Running time (in hours) of static EM-BFS with source 0

sk-2005 /n-level graph ©(n)-level graph cl n2 29 graph
Time Preprocessing 0.91 1.35 1.19 1.29
Time BFS-level computation 2.41 3.26 1.36 > 17

Table 2. Running time (in hours) of level-aligned hierarchical clustering

sk-2005 +/n-level graph ©(n)-level graph cl n2 29 graph

Compute hierarchical  0.39 1.64 1.35 3.01
level-aligned clustering
Reorganization of 1.38 0.94 0.84 0.54

adjacency lists

Figure B contains the results of our dynamic BFS computing the updated
BF'S levels. Because one vertex of the newly inserted edge is always the source,
the results mirror the local hot spots in the graph in which the update of a few
BES levels is expensive. For example, the web graph sk-2005 has many vertices
in the levels close to the source 0. Vertices with a larger distance to the source
seem to have a list-like path to the source. Hence, an update of the BFS-levels
was very fast from vertices with large distance to the source. In our experiments
the worst scenario is the y/n-level graph. It is the only case in which our current
implementation loses against EM-BF'S for large distance between the two vertices
of the new edge.

Results of experiments with cl n2 29 graph: as expected the hot pool of static
BF'S had to go external and reads/writes Terabytes of data (input data set size:
8 GB). Therefore, static MM BFS needs more than 17 hours. Each update during
the dynamic BFS computation needed at most 0.23 hours.

Our results using hard disks were viable due to comparatively large as. In
experiments on a similar machine using solid state drives we were able to improve
our results. We beat the static BFS for each graph class in each test scenario by
using a smaller oy = 256. For our y/n-level graph we were able to beat static
BFS by a factor of 1.14 in our worst case. This is explained by the fact that for
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[time in hours] [vertices changed in %]
100% — 0— sk-2005

a&— /n-level graph

o— O(n)-level graph

»— cl n2 29 graph
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Fig. 5. Results of dynamic BFS. The time of each static BFS is plotted in as a dashed
line in the left plot for sk-2005 (2.41h), y/n-level graph (3.26 h) and ©(n)-level graph
(1.36 h). The static BFS time of ¢l n2 29 graph was not drawn because it is too huge
with 17 hours to suit into the plot.

smaller oz the work on CPU is much smaller but the I/O-time increases. It seems
that with SSDs the I/O time increases slower than the CPU-time decreases. We
plan to present more details in a full version.

7 Conclusion

We have given initial results of the first external-memory dynamic BFS imple-
mentation using a new deterministic level-aligned hierarchical clustering. Even
though we applied rather hard edge insertion scenarios our implementation was
usually faster, and for some graph classes much faster, than the static BFS im-
plementation. We investigated the interaction of the different parameters that
influence the performance of our dynamic BFS in more detail.

Acknowledgements. We want to thank Asmaa Edres for her work on the
implementation of the time-forward processing hierarchical clustering using a
priority queue in her master’s thesis.
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Abstract. We describe succinct and compact representations of the
bidirectional BWT of a string s € X* which provide increasing navigation
power and a number of space-time tradeoffs. One such representation
allows to extend a substring of s by one character from the left and
from the right in constant time, taking O(|s|log|X|) bits of space. We
then match the functions supported by each representation to a number
of algorithms that traverse the nodes of the suffix tree of s, exploiting
connections between the BWT and the suffix-link tree. This results in
near-linear time algorithms for many sequence analysis problems (e.g.
maximal unique matches), for the first time in succinct space.

1 Introduction

Suffix trees are versatile data structures on which myriads of sequence analy-
sis tasks can be solved optimally |1, [L1]. Recent progress in compressed data
structures has provided alternatives that replace suffix trees verbatim with more
space-efficient constructions [3, [10, 22-24]. Such black-box replacements do not
always achieve optimal space-time tradeoffs, thus substantial effort has been de-
voted to designing the best possible setup of data structures for specific sequence
analysis problems [6, (13, 15, (19, 127, 28]. In this paper we recognize recurrent pat-
terns in the way many classical sequence analysis algorithms traverse the suffix
tree of a string, and provide a corresponding set of minimal data structures that
can be used to implement all such algorithms at once. The key observation is
that a number of algorithms iterate over the nodes of a suffix tree either in no
particular order, or explicitly in the order induced by suffix links: this allows to
implement navigation using the bidirectional Burrows-Wheeler transform (BWT)
[16,[18,127, 128], often without even the need of compressed longest common prefix
(LcP) arrays or range minimum query (RMQ) data structures.

Let occs(w) be a constant size representation of the occurrences of a string
w in a string s over an alphabet X (we assume occs(w) = @ if w does not occur
in s). For example, occg(w) could be the locus of w in the suffix tree of s, or the
lexicographical range of the suffixes of s that begin with w. In the bidirectional
BWT, occ,(w) consists of two lexicographical ranges of suffixes, one representing

* This work was partially supported by Academy of Finland under grants 250345
(CoECGR) and 118653 (ALGODAN).

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 133-{[24] 2013.
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Table 1. Representations of the bidirectional BWT: summary of space, time, navi-
gation power, and applications, for the implementations described in Section @l Time
complexities for enumerateLeft and enumerateRight are per element of output. SUS:
shortest unique substrings; MR: maximal repeats; LB: longest border; QP: quasiperiod;
IPS: inner product of substrings; IPK: inner product of k-mers; (N)SR: (near) super-
maximal repeats; MAW: minimal absent words; BBB: bidirectional b&b (supported
also by Implementation 2a).

Representation 1 2 3
Implementation la 1b 2a [27] 2b 3
Space (bits) |s|log | Z|+ |s|log|X|+ 2|s|log|X|+ 2|s|log|X|+ O(|s|log|X])
sl + oflsl) +o(Js|log [Z1)  +o(lsl)  +o(ls|log | =)
isLeftMaximal O(log | X) O(1) O(log | X]) O(1) O(1)
isRightMaximal O(1) O(1) O(log | X]) O(1) O(1)
enumerateLeft O(log | X|) O(1) O(log | X]) O(1) O(1)
enumerateRight O(log | X)) O(1) O(1)
extendLeft O(log | X|) o(lx]) O(log | X]) o(x)) O(1)
extendRight O(log | X]) o(|x)) O(1)
Applications MUM, SUS, MR, LB, MUM, SUS, MEM, SR, BBB
QP, IPS, IPK NSR, MAW, IPS, IPK

the occurrences of w in s and the other representing the occurrences of the
reverse of w in the reverse of s. We want to support the following operations:

— extendLeft(a € X, occs(w)) = occs(aw)

— extendRight(occs(w),a € X) = occs(wa)

— enumerateLeft(occs(w)) = {occs(aw) : a € X, occs(w) # 0}

— enumerateRight(occs(w)) = {o ccs(wa) ta € X occg(w) # 0}

— isLeftMaximal(occs(w)) = true iff |enumerateLeft(occS w))| > 1
— isRightMaximal(occy(w)) = true iff |enumerateRight(occs(w))| > 1

where enumeratelLeft and enumerateRight produce their output in lexico-
graphical order of a. We describe three representations of the bidirectional BWT
with increasing sets of supported operations, tailored for the navigation patterns
of corresponding classes of algorithms. Each representation is realized by corre-
sponding succinct implementations, whose space-time tradeoffs are summarized
in Table [l In turn, such implementations expose a number of new tradeoffs for
many problems, they achieve the first succinct-space solution for others (namely,
longest border and surprising substrings), and they allow to compute maximal
unique matches in succinct space and near-linear time. Our main technical contri-
bution is to show that the O(log | X|)-time bidirectional backward step operation
supported by wavelet trees [27] can be performed in constant time.

2 Definitions and Notation

We use the example in Fig. [[l to introduce and illustrate the formalism of the
following sections. Let X' be a finite alphabet, let § ¢ X be a symbol lexico-
graphically smaller than any other symbol, and let s € X+. The suffir array
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Fig. 1. Main constructs and formalisms applied to string s = agagcgagagcgege (see
Sections [Tl and for more details). (a) The suffix tree T with extended nodes. Gray
lines are implicit and explicit Weiner links. To improve clarity, the children of a node
are not drawn in lexicographical order. (b) The suffix-link tree L, and its supertree
L}.(c) Suffix array and BWT of s and of its reverse 5. Moving from the ranges of
gecg to the ranges of ageg (respectively, of cgeg) corresponds to navigating an explicit
(respectively, implicit) Weiner link (see Panel b).

SA 0, ]s|] of s$ is the vector of indices such that s[SA[i],|s| — 1]$ is the i-th
smallest suffix of s$ in lexicographical order. The Burrows-Wheeler transform of
s$ is the string BWT;0, |s|] satisfying BWT;[i] = s[SAg[i] — 1] if SAs[i] > 0,
and BWT;i] = $ otherwise. We use § to indicate the reverse of a string s, and
count(a,i,j) to represent the number of occurrences of symbols lexicographi-
cally smaller than a € X' in s[i, j]. We define the suffiz array range, or identically
the BWT range, of a substring w, as the maximal range (i, jw)s such that the
suffixes s[SAs[i], |s| — 1], i € [iw, jw], are prefixed by w. The range (ig, ju)s of
@ is defined analogously with suffixes 5[SAs[i], |s| — 1], ¢ € [iw, jw], prefixed by
w. Fig. [k shows the ranges of gcg, agcg, cgcg, and their reverses.

The suffiz tree Ts = (Us U Vs, E) of s is a rooted tree with leaves Uy and
internal nodes V;. The edge labels £(e) € Xt for e € E, induce the node labels
L(v) = Lleg) - L(e1) - L(ex—1) for v € Us U Vs, where eg,eq,...,ex—1 is the
path from the root to v. Each internal node v € V; has at least two children,
the labels of the edges to the children have different first symbols, and the
children are ordered by that symbol. Then all node labels are distinct and their
lexicographical order corresponds to the pre-order of the nodes. The set of leaf
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labels is exactly the set of suffixes of s. White squares, black circles and black
lines in Fig. [Ih represent U,, V; and Ej, respectively. We denote with W, =
{(u,v) | u,v € Vi, £(v) = a-€(u),a € X} the set of explicit Weiner links of Ts.
A Weiner link (u,v) has a label £(u,v) € X such that £(v) = ¢(u,v) - £(u). The
suffiz-link tree Ls = (Vs, W) of s is the trie induced by W, on V (black circles
and solid lines in Fig. [Ib). If w = £(v) for a node v € Us U Vs, we say that v is
the locus of w, locuss(w) = v. For any substring w of s, let x be the shortest
string such that locus,(wz) = v exists. Then v is the the extended locus of w,
elocus,(w) = v. We indicate the parent of a node v in a tree with parent(v),
and with 1ca(u,v) the least common ancestor of two nodes u, v.

For a string w, let Ls(w) = {40, 1, ...,%m—1} be the set of all starting positions
of w in s. Consider the string sets S = {{(v) | v € Vi}, §' = {al(v) | a €
Yv e Vi, Ls(al(v)) # 0} and S” = {f(v)a | a € X,v € Vi, Ls(l(v)a) # 0}.
We introduce new nodes to represent the strings in S’ and S” when necessary:
Vi={v:l(v)=we S \Stand V) = {v: L(v) =w € §"\ (SUS’)}. The suffix
tree T, the suffix-link tree Lg, and the suffix-link tree L% extended with nodes
in V! (white circles) and in V (white triangles), are illustrated in Fig. [l The
edges W! = {(u,v) | u € Vs,v € V], l(v) = a-L(u),a € X} are called implicit
Weiner links and are represented as dashed lines in Fig. [Ib.

3 Synchronizing the Bidirectional BWT in Constant
Time

For anodew € Vj, let (iy, j,)s and (i, jz)s be shorthand notations for (is(y), je(v))s
and (’l:g(v),jg(v))g, respectively. Assume that we know (i,, j,)s and (iz,jz)s, and
that we want to derive (ige(y), Jar(v))s and (ii(v)a’ji(v)a)g for some a € Y. For
example, we may know the BWT ranges of node u with £(u) = gcg in Fig.
la, and we may want to derive the ranges for string agcg (Fig. [Ik). Belaz-
zougui and Navarro recently showed that the map (iv, ju)s = (fas(v), Jat(v))s
can be implemented in constant time, independent of | ¥|, using O(|s|loglog |X|)
bits of space [5]. Deriving (if(v)a’jf(v)a)g from (i, jz)s and (iy,jy)s reduces to
computing countpwr,(a, iy, j,), which is typically implemented by subtracting
countpwr, (a,0,4,—1) from count pwr, (a,0, j,) (see e.g. [16,128]). We prove that
the running time of this approach has an intrinsic lower bound imposed by space:

Theorem 1. Let s € X7 be a string and let k be a constant number. In the cell
probe model with word size O(log |s|), no data structure that uses O(|s|log" |s|)
bits of space can compute counts(a,0,7) in o((log | X])/(loglog |s|)) time, for any
a€X and 0 <i<]s|.

The proof reduces two-dimensional orthogonal range counting on an n X n
grid to computing countg(a,0,4) for a string s of length n on any alphabet size:
we omit it due to lack of space. To compute (i[(v)a,jav)a)g, however, we are
only interested in computing countgwr, (a,iy,j,) for intervals of BWTy that
correspond to nodes v of the suffiz tree of s. Here we show that countg(a, iy, j,)
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for v € V; can be computed in constant time and O(|s|log|X]) bits of space,
independent of |X|, by applying the data structures introduced in |5]. To make
the paper self-contained, we first sketch the original construction.

Theorem 2 ([5]). There is an index of size O(|s|loglog|X]) bits that imple-
ments map (iv,jv)s = (las(v), Jae(v))s i constant time for any node v € Vi in
the suffiz tree of s.

Proof sketch. We use the O(|s|) representation of T described in |26] to commute
in constant time between ranges in BW T, and corresponding nodes in Vj, and
vice versa. Assign to every v € V; a unique identifier id(v) € [1,2|s| — 1] by
enumerating V5 in depth-first order. Note that explicit Weiner links preserve
depth-first order: if e = (u1,v1) and es = (ug,v2) are explicit Weiner links
with £(e1) = £(ez), then id(u;) < id(uz) = id(v1) < id(v2). The same holds
for implicit Weiner links if we give depth-first identifiers to their destinations.
For each character a € X, consider set V, = {id(u) : u € Vi,e = (u,v) €
WsUW!, £(e) = a}, and let explicit, be a bit vector of size |V,| that marks
with a one (respectively, with a zero) the explicit (respectively, implicit) Weiner
links in V,. Clearly the number of ones in explicit, is the number of nodes
in Vi whose label starts with a. Let f, : V, — [1,|V,|] be a monotone minimal
perfect hash function [4]. It’s easy to see that the overall space used by f, for
all a € X' is O(|s|loglog| X)) bits (see [5] for additional details). The destination
of an explicit Weiner link e = (u,v) with label a can be obtained by first using
fa to map u to a number z € [1,|V,]] in constant time. Then, explicit,[z] =1
implies that e is explicit, and computing id(v) reduces to computing Cla] and the
number of ones in explicit,[l,z — 1], where Cla] =3 . ., counts(c, 0, |s]).
Note that the value of Cla] for all a € X' can be precomputed and stored in
overall o(nlog o) bits. An implicit Weiner link has explicit,[z] = 0, and the
identifier of the extended locus of its destination is also the number of ones in
explicit,[l,z — 1]. Finally, since f, returns a number in [1,|V,|] even when
there is no Weiner link from u labelled by a, we need to check the existence of
an a in (iy, ju)s. In order to do so, we first convert id(u) into (iy, ju)s and id(v)
into (iy,ju)s, and then check whether i, < select(a,i, — Cla] + 1) < j,. O

The proof of Theorem [2] extends naturally to countgwr, (¢, iy, ju)-

Theorem 3. There is an index of size O(|s|log|X|) bits that implements map
(i, Jv)s — countpwr, (¢, iy, Jv) in constant time for any node v € Vy in the
suffix tree of s.

Proof. As above, we assume the O(|s|) representation of Ts described in [26].
Let Ve ={u € Vs :e = (u,v) € WegUW/ £(e) = ¢}, and let T. = (V,, E.) be
a tree induced on V, by the set of edges E. defined as follows: F. contains all
pairs (u,v), u,v € Vg, such that u is an ancestor of v in T, and there is no
w € V., w # v, in the path that connects u to v in Ts. We use a monotone
minimal perfect hash function f. to map the nodes in V. to identifiers in the
depth-first order of 7.. Let diff. be a bit vector of size |V.| where position k
corresponds to the kth node in the depth-first order of V.. Let u be the kth
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node in the depth-first order of V.: we set diff.[k] = countpwr, (¢, %uy, Ju,) —
2 (up e B, COUntBwr, (¢ du, ju). Clearly 32 |y, diffc[k] € O(|s), so diff.
can be encoded in O(|V;|log(|X|/|V.|)) bits using a prefix-sum data structure
[21]. As in the proof of Theorem [2] it follows that the total space taken by diff.
for all ¢ € X' is O(|s|log|X|) bits. Let v be the node of V, that corresponds to
interval (i, j,) in BWTs. To compute countgwr, (¢, %y, Jv), it suffices to retrieve
the range (i, j.) of depth-first identifiers of nodes in the subtree of 7. rooted

at v (including v itself), and to compute Z%’:i, diff.[k]: both such operations
can be implemented in constant time using the data structure in [26] and the
prefix-sum data structure in [21].

4 Succinct Representations of the Bidirectional BWT

We detail here the hierarchy of representations in Table . Representation 1
supports just enumeratelLeft, isLeftMaximal and isRightMaximal, and can
be implemented as follows. Along the lines of [17], let runs, € {0,1}/*/ be a
bit vector such that runs,[i] = 1 iff ¢ > 0 and BWT;[i] # BWTs[i — 1]. We
encode runs; as an array of |s| 4+ o(]s|) bits, and we implement enumeratelLeft
and synchronize BWT, and BWT5 by representing BW Ty as a wavelet tree in
|s| log | X|+o(|s|) bits of space. Given (i, jw)s, the wavelet tree allows to enumer-
ate all distinct characters a € X in (iy, Juw)s, to obtain countpwr, (@, v, j), and
to compute the number of occurrences of @ in BWT;[1,i—1] and in BWTs[iy, juw],
in O(log |¥|) time per character [, [28]. These values suffice to compute all the
corresponding (iqw, jaw)s and (iga, jwa)s from (iy, juw)s and (ig, jg)s in batch.
Note that this implementation supports also extendLeft in O(log|X|) time.
Operation isRightMaximal for string w consists in checking whether the range
(i@, jw)s contains at least two distinct characters, i.e. in counting the number of
ones in runs;[ig+1, jz]. Operation isLeftMaximal consists in checking whether
the range (i, jw)s contains at least two distinct characters: this can be clearly
implemented in O(log | X|) time using the wavelet tree representation of BWTs.
We call Implementation 1a this setup of data structures that supports the func-
tions of Representation 1.

Alternatively, we can implement enumerateLeft and synchronize BW Ty and
BWTs by representing BW T, in |s|log | X| bits as a plain sequence of characters,
and by building a range minimum query data structure (RMQ, see [9]). An RMQ
allows to enumerate all the distinct characters in a BWT interval in constant time
per character, using 2|s| + o(|s|) bits of space [25]. Such characters, however, are
not necessarily listed in sorted order: to put them in sorted order, we use a
monotone minimal perfect hash function that stores the distinct characters for

! For brevity, we omit the space-time tradeoffs that would result from using com-
pressed, rather than succinct, data structures. Some implementations described in
this section can be augmented with data structures that take space within their lower
order terms, and that support (albeit sometimes inefficiently) additional operations
that are not required by their corresponding representations.
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every interval in BWT,. The rank of each character is thus given by the hash
function in constant time per character. Finally, we build the O(]s|loglog|X|)-
space data structures of Theorem [} since we know that aw exists for each a € X
detected above, we can obtain (g, jaw)s for each such a in constant time. As a
byproduct, we also get the number of occurrences of aw: using this information
we can synchronize the corresponding intervals in BWT5 in batch, in constant
time per interval. We call Implementation 1b this way of supporting the functions
of Representation 1.

Representation 1 suffices for applications that need to traverse the whole L
top-down, or that just need to iterate over every node of T exactly once. Our
second representation of the bidirectional BWT supports enumerateRight in ad-
dition to all operations of Representation 1, providing access to all the children
of a node in the suffix tree of s. We implement Representation 2 with the same
data structures as in Implementations 1a and 1b, but replicating them for BWTs
and removing runsz. Thus, Implementation 2a supports also extendRight in
O(log|X|) time, and Implementation 2b duplicates Implementation 1b, but with-
out removing runsz. Implementation 2a was originally described in [27], and it
can easily support isLeftMaximal and isRightMaximal in constant time using
2|s] 4+ o(|s|) additional bits to encode runs, and runss.

The third level in our hierarchy, called Representation 3, supports extendLeft
and extendRight in addition to all operations of Representation 2, allowing se-
lective extension by a single character in both directions. We implement Repre-
sentation 3 by augmenting Implementation 2b with the data structures described
in Theorem [3

5 Applications

A number of algorithms can be expressed as iterations over the nodes of the suffix
tree T of a string s, either in no particular order or explicitly in the order induced
by a top-down navigation on the suffix-link tree L. In this section we implement
a subset of such algorithms using the representations of the bidirectional BWT
described in Section Bl and we show that the corresponding implementations
allow to reach favorable regions in the space-time plane. For brevity, we waive
details related to index construction time.

To warm up, consider the bidirectional branch-and-bound search used by pop-
ular read alignment tools to perform approximate string matching [16-18]: the
state of the art is based on Implementation 2a or slower alternatives, thus using
Representation 3 yields a speedup by a ©(log |X|) factor.

5.1 Maximal Repeats and Maximal Matches

We say that w is left-mazimal (respectively, right-mazimal) in s if Li(w) #
Ls(aw) (respectively, Ls(w) # Ls(wa)) for all a € X. We say that w is a maz-
imal repeat of s if w is left- and right-maximal |11] (for example, string gag
in Fig. [[lis a maximal repeat). A variety of algorithms have been proposed for
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discovering all the maximal repeats of s, and recently very space-efficient so-
lutions have been achieved (see e.g. |G, [L5] and references therein). Most such
algorithms build an LCP array, whose construction takes O(|s|log® |s|) time when
using O( ! |s|log | X|) bits of space [24]. Recently it has been shown that LCP con-
struction is not required to solve the problem in succinct space [6]. We give here
a different algorithm that also avoids LCP construction, which we later extend
to other problems not considered in [6].

Lemma 1. Assume that Implementation 1a (respectively, 1b) has already been
built for a string s € XT. We can discover all the T mazimal repeats of s € X+
in O(|s|log |X|) time and |s|log|X| + 2|s| + o(|s]) + O(7log|s|) bits of space
(respectively, in O(|s|) time and |s|log|X| + o(|s|log |X]) + O(7 log|s|) bits of
space).

Proof. We navigate Ls top-down by iteratively taking all Weiner links and test-
ing whether the string corresponding to the destination node is right-maximal: in
the negative case, we stop iteration. In the positive case, we test left-maximality.
To navigate Ls we keep a stack S7 of pointers and labels of the children of each
node, and to print maximal repeats to the output we keep a stack of charac-
ters So. Traversing Ls top-down could potentially make [S1]| € O(AX|log|s|)
bits, where A is the depth of L,. In the worst case A € O(]s|), thus it could
be that |Si| € O(|%] - |s|log|s|). We keep |Si| € O(|X|log”|s|) by using the
strategy of always visiting the child of a node with the largest subtree last (see
e.g. |12]): this limits the depth of the navigation stack to O(log|s|). Clearly
|S2] € O(Alog|X|) = O(|s|log|X]|). Reporting the positions in s of all maximal
repeats would be trivial if we had the suffix array of s. In our case, we build the
set of all occurrences of all maximal repeats in BWTj, we sort them in O(]s|)
time using radix sort, and then we invert BWT. During inversion, we scan the
list of occurrences and we replace each value by the corresponding position in s.
This process takes overall O(|s|log|X|) time.

Note that Implementation la can be built in O(|s|log |X|) time and space [14],
thus we can discover all maximal repeats of a string s € X+ in O(|s|log | X|) time
and bits of space — the same bound as in |6]. Both algorithms extend easily to
supermaximal and near-supermaximal repeats.

Let s and t be two strings on alphabet Y. Substring w is a mazimal unique
match (MUM) between s and ¢ iff L;(w) = {i}, Le(w) = {j}, 0 < @ < [s],
0 <j<|t],and if s[i —1] # t[j — 1] and s[i +|w]|] # ¢[j + |w]|]. Current algorithms
to detect maximal unique matches rely on LCP arrays (see e.g. |[13] for the most
space-efficient solution to date): using a bidirectional BWT implementation allows
to reduce space.

Lemma 2. Let s and t be two strings in X7, and assume that Implementation
la (respectively, 1b) has already been built for s$t. We can discover all the T
mazimal unique matches between s and t in O((|s| + |t|) log|X|) time and (|s| +
[t]) log | X+ 3(|s| + [t]) + o|s| + |¢]) + O(7 log(|s| + |t])) bits of space (respectively,
in O(|s| + |t]) time and (|s|+ [¢]) log || + o{(Is| + [¢]) log | £]) + O(r log(|s| +|¢]))
bits of space).
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Proof. Let u = s$t. The MUMs between s and t are precisely the nodes v of T},
with the following properties: (1) they have exactly two children; (2) one child
correspond to a suffix that starts before $ in u; the other child corresponds to a
suffix that starts after $ in u; (3) af(v) occurs in s, bl(v) occurs in ¢, a,b € X,
and a # b. To determine MUMs it thus suffices to build a bit vector which of
size |u| such that which[i] = 1 iff the i¢th suffix of u in lexicographic order starts
at position |s| + 2 or larger in u. We follow Lemma [Tl to keep the depth of the
navigation stack bounded by O(log |u|) and to report the positions of all MUMs
in s.

This algorithm can be easily adapted to discover the shortest unique sub-
strings of a single string s. As mentioned above, Implementation la is easy to
construct: the following corollary ensues.

Corollary 1. We can discover all the T mazimal unique matches between s €
Xt andt € YT in O((|s| +t|) log |X]) time and O((|s| + |t]) log | 2|+ 7 log(|s| +
[t])) bits of space.

If we have already indexed two strings s and t separately, we can compute
maximal unique matches by traversing Ls and L; synchronously:

Lemma 3. Let s and t be two strings in X1, and assume that Implementation
2a (respectively, 2b) has already been computed for s and t. We can discover
all the T mazimal unique matches between s and t in O((|s| + [t])log |X|) time
and 2(|s| + [t]) log | Z| + (|s| + |t]) + o(|s| + [t]) + O(7 log(|s| + |t|)) bits of space
(respectively, in O(|s| + |t|) time and 2(|s| + |¢|) log|X| + o((|s| + |t]) log |X]) +
O(7log(|s| + |t])) bits of space).

Proof. Again, let u = s$t. Traversing L, can be simulated by synchronizing the
top-down traversal of L and Ly, as follows. Assume to be at node us in Lg and
at node u; in Ly, and let (us,vs) € Wy UW! and (ug, v:) € Wiy UW/ be (explicit
or implicit) Weiner links with label a in L, and L, respectively. If v, € V; or
vt € V4, then £(vs) corresponds to a node in L,,. Otherwise, £(vs) is a node in L,
iff substrings £(vs)a of s and £(vs)b of ¢, a,b € X, are such that a # b. To detect
maximal unique matches, it suffices to check that ¢(vs) occurs once in s and once
in £, and to retrieve the symbols that precede it in s and t. Both operations take
constant time in Representation 2. To bound the depth of the navigation stack
by O(log(|s| + [t])) it suffices to ensure that the largest subtree in L, or L is
always explored last.

Note that in this application we need enumerateRight just for intervals of
BWT;s that do not correspond to nodes of Ts: we could thus use Implementation
la or 1b with runs; replaced by a plain encoding of BWT5 as a string of |s| log | X
bits. The proof of Lemma [Bl immediately generalizes to a set of m strings:

Corollary 2. Let S = {s9,51,...,8m—1} C X7 be a set of strings, and let
[|S]| = Z;’;Bl |si|. Assume that Implementation 2a (respectively, 2b) has al-
ready been computed for all strings in S. We can discover all the T mazi-
mal unique matches in S in O(m||S||log|X|) time and 2||S]||1log|X| + ||S]|| +



142 D. Belazzougui et al.

o(||S]]) + O(mrlog||S||) bits of space (respectively, in O(m]||S||) time and
2|15 1og | Z| + o(||S|| log | X|) + O(m7log ||S||) bits of space).

A maximal exact match between strings s and ¢ (MEM, called also mazimal pair
if s = t) is a quadruple (i, js, i+, jt) such that s[is, js| = t[it, je], s[is—1] # t[ir—1]
and s[js + 1] # t[j: + 1] |11, [19]. The computation of MEMs maps naturally to a
navigation of the suffix-link tree of s$¢, and can thus be implemented with the
bidirectional BWT:

Lemma 4. Let s and t be strings on alphabet X', and assume that Implemen-
tation 2a or 2b has already been built for s and t. We can compute all the T
mazimal exact matches between s and t in O((|s| + [t])log|X| + 7) time and
O((|s] + |t]) log | X| + T log(|s| + |t])) space.

Proof. Again, we traverse L, top-down, where v = s$t. Assume we are at a
node v of L, with label £(v). Build sets Ps(v) = {(iat(v)ps Jat(v)p)s : @b €
X, Ls(al(v)b) # 0} and Pi(v) = {(ice()ds Jeewyd)e = ¢ d € X, Li(cl(v)d) # 0}
Note that > .y |Ps(v)] + |P:(v)] € O(|s| + [t]), where V,, is the set of nodes
in L,: indeed, finding Ps(v) and P;(v) coincides with exploring all explicit and
implicit Weiner links e = (v, w) in L, that start from v, and then exploring the
children of w in Ty, if e is explicit. Linearity ensues from the folk theorem that the
total number of implicit and explicit Weiner links in 73, is O(|u|), and that each
destination of an explicit Weiner link is explored exactly once during the traversal
of L,. We then compute Ps(v) ® P(v) = {((iaf(v)bajai(v)b)sa (ici(v)dajci(v)d)t) :
a # ¢,b # d} in time linear in | Ps(v)|+|P;(v)| and in the size of the output, using
a simple algorithm based on pairs of symbols that differ in both components (we
omit details due to lack of space). Finally, we need to map every quadruple
(i,7,4',j") € Ps(v) ® Py(v) into (j —i+1)(j' —4' + 1) pairs of positions in s and
t, for every v € Lg. To do so, we build all pairs (x,y) : « € [i,j],y € [¢/,]] of
corresponding positions in BW Ty and BWT; for all nodes of Ly, and we proceed
as in Lemma [T} this takes O((|s| + |¢|) log|X| + 7) time overall.

String w = axb is a minimal absent word of a string s, where a,b € X' and
x € X*, if both az and zb occur in s, but azb does not occur in s |20]. For
example, agaga is a minimal absent word in Fig. [ Clearly only a maximal
repeat of s can be the infix = of a minimal absent word axb, thus the navigation
of Ly described in Lemma Ml allows to compute all the 7 minimal absent words
of s in O(]s|log|X| + 7) time and 2|s|log |X| + O(7 log|s|) + o(|s|) space, or in
O(]s| + 7) time and 2|s|log |X| 4+ O(7 log|s|) + o(]s| log | ) space.

5.2 Borders and Surprising Substrings

Let B(s) C X* be the set of nonempty borders of a string s € X, and let
bord(s) be its longest border. We consider the problem of computing |bord(w)|
for all w in SU S”, where S = {{(v) | v € V;} and 8" = {{(v)a | a € X,v €
Vs, Ls(€(v)a) # 0}. In Fig. [Ib, gray lines are pointers from strings in S U S” to
their longest border. Due to space constraints we omit the details of computing
borders, and we just summarize the main result:
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Lemma 5. Assume that Implementation 1b has already been built for a string
s € Xt. We can compute |bord(w)| for allw € SUS” in overall O(|X|\1og |s|)+
[s|log | X| 4+ o(|s|log | X|) bits of space and in O(|s|) time, independent of |X|,
where A = max{|w| : w € §"}.

Similar lemmas hold for computing the quasiperiod of all strings in S [7], as
well as the inner product and norm of the composition vectors of all substrings
(or k-mers) of two strings s and t. Determining [bord(w)| for all w € SU S”
is not just a combinatorial exercise. Consider a measure of statistical surprise
f(w) that scores a substring w of s with a function of |£,(w)|, E(w) and V(w)
— respectively the expectation and variance of |£,(w)| for a random string r of
length |s| generated by a known IID source. We call f-cover a set of substrings
of s with the following property: for every substring v not in the cover, there
is a substring w in the cover with Ls(w) = L4(v), |w| > |v|, and f(w) > f(v)
(respectively, |w| < |v] and f(w) < f(v)). A large class of measures of statistical
surprise is monotonic inside edges of T, making S (respectively, S”) an f-cover
[2]. Moreover, E(w) and V(w) for all w € S U S” can be computed in constant
time per node v of T using a depth-first traversal of Ly, and keeping just pointer
bord, and a constant amount of numerical variables in each v |3]. The following
corollary is thus immediate:

Corollary 3. Assume that Implementation 1b has already been computed for a
string s € X, and assume that E(w) and V(w) can be represented in O(log |s|)
bits for any substring w of s. We can compute an f-cover of s in overall
O(|X|Alog |s|) + |s| log|X| + o(|s|log | X|) bits of space and in O(|s|) time, inde-
pendent of | X|, where A\ = max{|w| : w € Bs}.
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Abstract. An assignment of colours to the vertices of a graph is stable
if any two vertices of the same colour have identically coloured neigh-
bourhoods. The goal of colour refinement is to find a stable colouring
that uses a minimum number of colours. This is a widely used subrou-
tine for graph isomorphism testing algorithms, since any automorphism
needs to be colour preserving. We give an O((m +n)logn) algorithm for
finding a canonical version of such a stable colouring, on graphs with n
vertices and m edges. We show that no faster algorithm is possible, under
some modest assumptions about the type of algorithm, which captures
all known colour refinement algorithms.

1 Introduction

Colour refinement (also known as naive vertex classification) is a very simple, yet
extremely useful algorithmic routine for graph isomorphism testing. It classifies
the vertices by iteratively refining a colouring of the vertices as follows. Initially,
all vertices have the same colour. Then in each step of the iteration, two vertices
that currently have the same colour get different colours if for some colour ¢ they
have a different number of neighbours of colour ¢. The process stops if no further
refinement is achieved, resulting in a stable colouring of the graph. To use colour
refinement as an isomorphism test, we can run it on the disjoint union of two
graphs. Any isomorphism needs to map vertices to vertices of the same colour.
So, if the stable colouring differs on the two graphs, that is, if for some colour c,
the graphs have a different number of vertices of colour ¢, then we know they are
nonisomorphic, and we say that colour refinement distinguishes the two graphs.
Babai, Erdés, and Selkow [2] showed that colour refinement distinguishes almost
all graphs (in the G(n,1/2) model). In fact, they proved the stronger statement
that the stable colouring is discrete on almost all graphs, that is, every vertex
gets its own colour. On the other hand, colour refinement fails to distinguish any
two regular graphs with the same number of vertices, such as a 6-cycle and the
disjoint union of two triangles.

Colour refinement is not only useful as a simple isomorphism test in itself, but
also as a subroutine for more sophisticated algorithms, both in theory and prac-
tice. For example, Babai and Luks’s [13] O(2V"1°¢™)-algorithm — this is still

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 145-[I56] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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the best known worst-case running time for isomorphism testing — uses colour
refinement as a subroutine, and most practical graph isomorphism tools (for
example, [O6I8IT2]), starting with McKay’s “Nauty” [OI0], are based on the
individualisation refinement paradigm. The basic idea of these algorithms is to
recursively compute a canonical labelling of a given graph, which may already
have an initial colouring of its vertices, as follows. We run colour refinement
starting from the initial colouring until a stable colouring is reached. If the sta-
ble colouring is discrete, then this already gives us a canonical labelling (provided
the colours assigned by colour refinement are canonical, see below). If not, we
pick some colour ¢ with more than one vertex. Then for each vertex v of colour ¢,
we modify the stable colouring by assigning a fresh colour to v (that is, we “indi-
vidualise” v) and recursively call the algorithm on the resulting vertex-coloured
graph. Then for each v we get a canonically labelled version of our graph, and we
return the lexicographically smallest among these. (More precisely, each canon-
ical labelling of a graph yields a canonical string encoding, and we compare
these strings lexicographically.) To turn this simple procedure into a practically
useful algorithm, various heuristics are applied to prune the search tree. They
exploit automorphisms of the graph found during the search. However, crucial
for any implementation of such an algorithm is a very efficient colour refinement
procedure, because colour refinement is called at every node of the search tree.

Colour refinement can be implemented to run in time O((n+m)logn), where
n is the number of vertices and m the number of edges of the input graph. To our
knowledge, this was first been proved by Cardon and Crochemore [5]. Later Paige
and Tarjan [11] p.982] sketched a simpler algorithm. Both algorithms are based
on the partitioning techniques introduced by Hopcroft [7] for minimising finite
automata. However, an issue that is completely neglected in the literature is that,
at least for individualisation refinement, we need a version of colour refinement
that produces a canonical colouring. That is, if f is an isomorphism from a graph
G to a graph H, then for all vertices v of G, v and f(v) should get the same colour
in the respective stable colourings of G and H. However, neither of the algorithms
analysed in the literature seem to produce canonical colourings. Very briefly, the
reason is that these algorithms use bucketing techniques for indexing vectors
with an initial segment of the natural numbers that make sure that different
vectors get different indices, but do not assign indices in the lexicographical
or any other canonical order. This issue can be resolved by sorting the vectors
lexicographically, but this causes a logarithmic overhead in the running time. We
resolve the issue differently and avoid the logarithmic overhead, thus obtaining an
implementation of colour refinement that computes a canonical stable colouring
in time O((n+m)logn). Ignoring the canonical part, our algorithmic techniques
are similar to known results: like [I1] and various other papers, we use Hopcroft’s
strategy of ‘ignoring the largest new cell’, after splitting a cell [7]. Our data
structures are similar to those described by Junttila and Kaski [§]. Nevertheless,
since [8] contains no complexity analysis, and [11] omits various (nontrivial)
implementation details, it seems that the current paper gives the first detailed
description of an O((m 4 n)logn) algorithm that uses this strategy. On a high
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level, our algorithm is also quite similar to McKay’s canonical colour refinement
algorithm [9 Alg. 2.5], but with a few key differences which enable an O((n +
m)logn) implementation. McKay [9] gave an O(n?logn) implementation using
adjacency matrices.

Now the question arises whether colour refinement can be implemented in
linear time. After various attempts, we started to believe that it cannot. Of course
with currently known techniques one cannot expect to disprove the existence of a
linear time algorithm for the standard (RAM) computation model, or for similar
general computation models. Instead, we prove the complexity lower bound for
a broad class of partition-refinement based algorithms, which captures all known
colour refinement algorithms, and actually every reasonable algorithmic strategy
we could think of. This model can alternatively be viewed as a “proof system”.
We use the following assumptions. (See Sections 2] and [l for precise definitions.)
Colour refinement algorithms start with a unit partition (which has one cell
V(G)), and iteratively refine this until a stable colouring is obtained. This is done
using refining operations: choose a union of current partition cells as refining set
R, and choose another (possibly overlapping) union of partition cells S. Cells in
S are split up if their neighbourhoods in R provide a reason for this. (That is, two
vertices in a cell in S remain in the same cell only if they have the same number
of neighbours in every cell in R.) This operation requires considering all edges
between R and S, so the number of such edges is a very reasonable and modest
lower bound for the complexity of such a refining step; we call this the cost of the
operation. We note that a naive algorithm might choose R = S = V(G) in every
iteration. This then requires time £2(mn) on graphs that require a linear number
of refining operations, such as paths. Therefore, all fast algorithms are based on
choosing R and S smartly (and on implementing refining steps efficiently).

For our main lower bound result, we construct a class of instances such that
any possible sequence of refining operations that yields the stable partition has
total cost at least £2((m + n)logn). Note that it is surprising that a tight lower
bound can be obtained in this model. Indeed, cost upper bounds in this model
would not necessarily yield corresponding algorithms, since firstly we allow the
sets R and S to be chosen nondeterministically, and secondly, it is not even clear
how to refine S using R in time proportional to the number of edges between
these classes. However, as we prove a lower bound, this makes our result only
stronger. We formulate the lower bound result for undirected graphs and non-
canonical colour refinement, so that it also holds for digraphs, and canonical
colour refinement. Our proof also implies a corresponding lower bound for the
coarsest relational partitioning problem considered by Paige and Tarjan [11].
Because of space constraints, some details have been omitted.

2 Preliminaries

For an undirected (simple) graph G, N(v) denotes the set of neighbours of
v € V(G), and d(v) = |N(v)] its degree. For a digraph, N*(v) and N~ (v) denote
the out- and in-neighbourhoods, and d*(v) = |N*(v)| resp. d~(v) = |[N~(v)]
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the out- and in-degree, respectively. A partition 7 of a set V' is a set {S1,..., Sk}
of pairwise disjoint nonempty subsets of V, such that UF_;S; = V. The sets S;
are called cells of m. The order of  is the number of cells |7|. A partition 7
is discrete if every cell has size 1, and wunit if it has exactly one cell. Given a
partition 7 of V| and two elements u,v € V, we write u =, v if and only if
there exists a cell S € m with u,v € S. We say that a set V' C V is w-closed if
it is the union of a number of cells of 7. In other words, if u ~, v and v € V'
then v € V', For any subset V' C V|, 7 induces a partition 7[V'] on V', which is
defined by u =~y v if and only if u ~ v, for all u,v € V.

Let G = (V,E) be a graph. A partition 7w of V is stable for G if for every
pair of vertices u,v € V with u =, v and R € 7, it holds that |[N(u) N R| =
|N(v) N R|. If G is a digraph, then |[N*(u) N R| = |N*(v) N R| should hold. For
readability, all further definitions and propositions in this section are formulated
for (undirected) graphs, but the corresponding statements also hold for digraphs
(replace degrees/neighbourhoods by out-degrees/out-neighbourhoods). One can
see that if 7 is stable and d(u) # d(v), then u %, v, which we will use throughout.

A partition p of V' refines a partition 7 of a subset S of V' if for every u,v € S,
u ~, v implies u =~ v. (Usually we take S = V.) If p refines 7, we write m < p.
If in addition p # 7, then we also write m < p. Note that < is a partial order on
all partitions of V.

Definition 1. Let G be a graph, and let m and 7' be partitions of V(G). For
vertex sets R, S C V(G) that are w-closed, we say that 7' is obtained from m by
a refining operation (R, S) if

— for every S’ € m with S’ NS = 0, it holds that S’ € 7', and
— for every u,v € S: u = v if and only if u = v and for all R € 7 with
R' C R, IN(u) N R'| =|N(v) N R'| holds.

Note that if 7’ is obtained from 7 by a refining operation (R, S), then © < 7’.
We say that the operation (R,S) is effective if # < 7’. In this case, at least
one cell C' € 7 is split, which means that C' & ©’. Note that an effective refining
operation exists for 7 if and only if 7 is unstable. In addition, the next proposition
says that if the goal is to obtain a (coarsest) stable partition, then applying any
refining operation is safe.

Proposition 2 (*). 1 Let @’ be obtained from m by a refining operation (R,S).
If p is a stable partition with ™ =< p, then # < 7’ < p.

A partition 7 is a coarsest partition for a property P if 7 satisfies P, and there
is no partition p with p < 7 that also satisfies property P.

Proposition 3 (*). Let G = (V, E) be a graph. For every partition © of V,
there is a unique coarsest stable partition p that refines .

! In the full version, (detailed) proofs are given for statements marked with a star.
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3 A Fast Canonical Color Refinement Algorithm

Consider a method for obtaining a sequence S&, ..., SIS*EG) of subsets of V(G),
for any (di)graph G. This method is called canonical if for any two isomor-
phic (di)graphs G and G’, and any isomorphism h : V(G) — V(G’), it holds
that k(G) = k(G'), and u € S implies h(u) € SE, for any u € V(@) and
1 € {1,...,k(G)}. In a slight abuse of terminology, we also call the sequence
canonical, if the method for obtaining it is clear from the context. For instance,
for simple undirected graphs G, if we define Dy to be the set of vertices of degree
d, ford € {0,...,n—1}, n =|V(G)|, then Dy, ..., D,_1 is a canonical sequence,
because every isomorphism maps vertices to vertices of the same degree. (In
other words: degrees are isomorphism invariant.) In this section we give a fast
algorithm for obtaining a canonical coarsest stable partition of V(G), for any di-
graph G. This is an ordered partition of V', which is a sequence of sets C1, ..., Cg
such that {C1,...,Cy} is a partition of V. To obtain the most general result, we
formulate the algorithm for digraphs.

High-level Description and Correctness Proofs The input to our algorithm
is a digraph G = (V,E), with V = {1,...,n}. For every vertex v € V, the
sets of out-neighbours N*(v) and in-neighbours N~ (v) are given. Throughout,
the algorithm maintains an ordered partition 7 = C4,...,Cy of V, starting
with the unit partition. This partition is iteratively refined using operations of
the form (R,V), where R = C, for some r € {1,...,k}. We will show that
when the algorithm terminates, no effective refining operations are possible on
the resulting partition. So the resulting partition is the unique coarsest stable
partition of G.

We now explain how to maintain a canonical order for the partition 7 =
C4,...,Cy. To this end, indices i € {1,...,k} are called colours, and the cells C;
are also called colour classes of the current partition. The partition 7 is then also
viewed as a colouring of the vertices with colours 1, ..., k. To canonically choose
the next refining colour r, we maintain a canonical sequence (stack) Spofine Of
colours that should still be used as refining colour. When a new refining colour
r should be chosen, we select 7 to be the last colour added to Spefine (i-€. 7
is popped from the stack). For a given refining colour class R = C,. and any
x € V, call df(z) := |[N*(z) N R| the colour degree of x. Then every colour
s € {1,...,k} will be split up according to colour degrees. More precisely, for
a given refining colour r, we partition every cell C into new cells C,,...,Cs,,
such that for z € Cy, and y € Cy,: (i) @ = j if and only if d;f (z) = d;f (y), and
(ii) if 4 < j then d}(z) < d}(y). In other words, the new colours are ordered
canonically according to their colour degrees. Since we wish to have nonempty
sets in our partition, we choose 01 = s, and 0; = k+1i— 1 for all 2 < i < p, and
then update the number of colours k. To obtain a canonical colouring, it is also
important to split up the colours s € {1,...,k} in increasing order.

It remains to explain how newly introduced colours are added to the stack
Stefine i @ canonical way. Initially, S,efine contains colour 1, and whenever new
colours are introduced during the splitting of a colour class C, these are pushed
onto the stack Spefine, int increasing order. There is however one exception: if we
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have already used the vertex set S = Cy as refining colour class before, and this
set is split up into new colours Cy,,...,Cs,, then it is not necessary to use all
of these new colours as refining colours later. Indeed, for every i € {1,...,p}
and every z,y € V(G), if [INt(z) N S| = [NT(y) N S| and |[N*(z) N Cj| =
INT(y) N Cj| holds for every j # i, then it also holds that [Nt (z) N C;i| =
IN*(y) Ny, since {Cyy,...,Co,} is a partition of S. Hence we may select an
i€ {1,...,p}, and only add the colours {1,...,p} \ {7} to the stack Siefipe- TO
obtain a good complexity, we choose i such that |Cy,| is maximised, in order to
minimise the sizes of the refining colour sets used later during the computation.
(This is Hopcroft’s trick [7].) To be precise, for a given s, we canonically choose
b to be the minimum colour degree that maximises |{z € Cs | d; () = b}|, and
add all newly introduced colours to the stack, in increasing order, except the
new colour that corresponds to b. On the other hand, if s was already on the
stack Spefines then this argument does not apply, so we have to add every new
colour to the stack. The algorithm terminates when the stack S..fpe is empty,
and returns the final ordered partition Cy, ..., Ck.

Lemma 4. For any digraph G, the above algorithm computes a canonical se-
quence C1,...,Cy, such that {Cy,...,Cy} is the coarsest stable partition of G.

Proof sketch: The resulting partition 7 = {C1, ..., Ck} is refined by the coars-
est stable partition w of G because it is obtained from the unit partition by
using refining operations (Proposition ). It is then equal to w since it is sta-
ble. This follows since using the argument given above, one can verify that the
following invariant is maintained: if there exist colour classes C; and Cy such
that the refining operation (C,,Cs) is effective, then the stack S, contains
a colour r’ such that the refining operation (C,, C;) is effective. Since the stack
Stefine is empty when the algorithm terminates, stability follows. The final se-
quence is canonical since at every point during the computation, both the stack
Siefine and the current ordered partition Ci,...,C) are canonical sequences.
This holds because informally, the new colours that we assign to vertices, and
the order in which new colours are added to the stack, are completely determined
by isomorphism-invariant values such as colour degrees with respect to sets from
a canonical sequence. |

Implementation and Complexity Bound. We now describe a fast implemen-
tation of the aforementioned algorithm. The main idea of the complexity proof
is the following: one iteration consists of popping a refining colour r from the
stack Spefine; and applying the refining operation (R,V), with R = C,.. Below
we show that one such iteration takes time O(|R| + D~ (R) + k; log k;), where
D™ (R) = > ,cpd (v) and k; is the number of new colours that are intro-
duced during iteration i. Next, we observe that for every vertex v € V(G), if

1s-.., %y are the refining colour classes € with v € C, that are considered
throughout the computation, in chronological order, then for alli € {1,...,q—1},
|RY| > 2|Ry, | holds. This holds because whenever a set S = C; is split up into
Csy,...,Cs,, where S has been considered earlier as a refining colour (so it is
not in Syefpe anymore), then for all new colours o; that are added to the stack
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Srefines |Coi| < 315 holds (since the largest colour class is not added to Syafine)-
Note that if a colour class Cy, is subsequently split up before it is considered as
refining colour, the bound of course also holds. It follows that every v € V(Q)
appears at most log, n times in a refining colour class. Then we can write

SR +D(R) < 3 (1+d (v))logyn = (n+m)logyn,
R VeV (G)

with m = |E(G)|, where the first summation is over all refining colour classes
R = C, considered during the computation. In addition, the total number of
new colours that is introduced is at most n, since every colour class, after it is
introduced, remains nonempty throughout the computation. So we may write
Zi kilogk; < ZZ k;logn < nlogn. Combining these facts shows that the total
complexity of the algorithm can be bounded by O((n +m)logn)+ O(nlogn) =
O((n +m)logn).

It remains to describe an implementation such that the complexity of one
iteration ¢ of the while-loop, where refining colour class R = C,. is considered, can
be bounded by O(|R|+ D~ (R) + ki log k;). The colour classes C; are represented
by doubly linked lists. For all lists, we maintain the length.

The first challenge is how to compute the colour degrees d}(v) efficiently
for every v € V(G), with respect to the refining colour r. For this we use an
array cdeg[v], indexed by v € {1,...,n}. We use the following invariant: at the
beginning of every iteration, cdegv] = 0 for all v. Then we can compute these
colour degrees by looping over all in-neighbours w of all vertices v € R, and
increasing cdeglw]. At the same time, we compute a list Cyqj of colours i that
contain at least one vertex w € C; with cdeg[w] > 1, and for every such colour
i, we compute a list A; of all vertices w with cdeg[w] > 1. None of these lists
contain duplicates. This can all be done in time O(|R|+ D~ (R)), assuming that
at the beginning of every iteration, every A; is an empty list, Cadj is an empty
list, and flags are maintained for colours to keep track of membership in Cadj-
With the same complexity, we can reset all of these data structures at the end
of every iteration.

Next, we address how we can consider all colours that split up in one itera-
tion, in canonical (increasing) order. To this end, we compute a new list Csplita
which represents the subset of Cadj containing all colours that actually split up.
By ensuring that all colours in Csplit split up, we have that ‘Csplit‘ < k;, and
therefore we can afford to sort this list. This can be done using any list sorting al-
gorithm of complexity O(k; log k;), such as merge sort. To compute which colours
split up, we compute for every colour in i € Cadj the maximum colour degree
maxcdeg[i] and minimum colour degree mincdeg[i]. The value maxcdeg[i] can
easily be computed while computing the colour degrees. We have mincdeg[i] = 0
if |A;| < |C;|. Otherwise, we can afford to compute mincdeg[i] by iterating over
A; =C.

Finally, we need to show how a single colour class S = C; can be split up, and
how the appropriate new colours can be added to the stack S;efipe it the proper
order, all in time O(D%(9)). Here R = C, denotes the refining colour class, and
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DE(S) =3 ,csINT(v) N R|. Note that when summing over all s € Csplit» this
indeed gives a total complexity of at most O(D~(R)). Firstly, for every relevant
d, we compute how many vertices in Cs have colour degree d. These values are
stored in an array numecdeg[d], indexed by d € {0,..., maxcdeg[s]}. (Note that
maxcdeg[s] < D%(S), so we can afford to initialise an array of this size.) Using
this array numcdeg, we can easily compute the (minimum) colour degree b that
occurs most often in S, which corresponds to the new colour that is possibly not
added to Siefine- Using numcdeg, we can also easily construct an array fiewcols
indexed by d € {0,..., maxcdeg[s]}, which represents the mapping from colour
degrees that occur in S to newly introduced colours, or to the current colour s.
Finally, we can loop over A, in time O(D%(S)), and move all vertices v € A,
from Cs to C;, where i = f oweollcdeg[v]] is the new colour that corresponds to
the colour degree of v. With a proper implementation using doubly linked lists,
this can be done in constant time for a single vertex. Note that looping over Ag
suffices, because if there are vertices in Cs with colour degree 0, then these keep
the same colour, and thus do not need to be addressed. This fact is essential
since the number of such vertices may not be bounded by O(D%(S)).

This shows how the algorithm can be implemented such that one iteration
takes time O(|R| + D~ (R) + k;log k;). Combined with the above analysis, this
shows that the algorithm terminates in time O((n+m)logn). So with Lemma[4]
we obtain:

Theorem 5. For any digraph G on n vertices with m edges, in time O((n +
m)logn) a canonical coarsest stable partition can be computed.

In individualisation refinement algorithms, one branch is as follows [QI6ISIT2T0]:
whenever a stable but non-discrete colouring is obtained, some new vertex v is
‘individualised’” by assigning it a new unique colour, v is added to Spqfpe, and
the process continues. Observe that the O((n 4+ m)logn) bound holds for this
entire process.

4 Complexity Lower Bound

The cost of a refining operation (R, S) is cost(R, S) := [{(u,v) | u € R,v € S}|.
This is basically the number of edges between R and S, except that edges with
both ends in RN S are counted twice.

Definition 6. Let G = (V, E) be a graph, and w be a partition of V.

— If w is stable, then cost(w) := 0.

— Otherwise, cost(m) := ming, g cost(m(R, S))+ cost(R, S), where the minimum
is taken over all effective refining operations (R, S) that can be applied to T,
and where (R, S) denotes the partition resulting from the operation (R, S).

A refining operation (R,S) on 7 is elementary if both R € w and S € 7. The
following observation is useful: since non-elementary refining steps can be split
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up into elementary refining steps with the same total cost, we may also take the
minimum over all effective elementary refining operations.
We can now formulate the main result of this section.

Theorem 7. For every integer k > 2, there is a graph Gy with n € O(2%k)
vertices and m € O(2%k?) edges, such that cost(a) € 2((m + n)logn), where o
is the unit partition of V(Gy).

Note that this theorem implies a complexity lower bound for all partition-
refinement based algorithms for colour refinement, as discussed in the introduc-
tion. We use the following key observation to prove the theorem. For a partition
m of V', denote by 7, the coarsest stable partition of V' that refines .

Proposition 8 (*). Let w and p be partitions of V such that m < p X mo,. Then
cost(m) > cost(p).

We say that a partition 7 of V' distinguishes two sets V3 C V and Vo C V if
there is a set R € m with |[R N V4| # |R N Va|. This is used often for the case
where Vi = N(u) and Vo = N(v) for two vertices u and v, to conclude that if
m is stable, then u %, v. If Vi = {z} and Vi = {y}, then we also say that =
distinguishes x from y.

AND3

Fig. 1. The Graph G3

Construction of the Graph For k € N, denote By = {0,...,2¥ — 1}. For
0e€{0,...,k}and ¢ € {0,...,2°~1}, the subset Bf; ={q2F ... (¢g+1)2Ft—1}
is called the g-th binary block of level £. Analogously, for any set of vertices with
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indices in By, we also consider binary blocks. For instance, if X = {z; | i € By},

then X! = {z; | i € B.} is called a binary block of X. For such a set X, a

partition 7 of X into binary blocks is a partition where every S € 7 is a binary

block. A key fact for binary blocks that we will often use is that for any ¢ and
0 _ pr{+1 (41

q, B, =By, UBy, -

For every integer k > 2, we will construct a graph Gjy. In its core this graph
consists of the vertex sets X = {z; | i € By}, X = {a} | i € Bi,j € [k]},
Y={y/ |ieBjec[k]} and Y = {y; | i € By}. Every vertex x; is adjacent to
xf for all j € [k] and every y; is adjacent to all yf . Furthermore, for all 7, j1, jo
there is an edge between xfl and yfz (For X, binary blocks are subsets of the
form Xq@ ={al |ie Bg,j € [k]}, and for Y the definition is analogous.)

We add gadgets to the graph to ensure that any sequence of refining operations
behaves as follows. After the first step, which distinguishes vertices according to
their degrees, X and Y are cells of the resulting partition. Next, X splits up into
two binary blocks X} and X{ of equal size. This causes X to split up accordingly
into Xol and Xf. One of these cells will be used to halve ) in the same way. This
refining operation (R, S) is expensive because [R, S] contains half of the edges
between X and ). Next, Y can be split up into Yy and Y;'. Once this happens,
there is a gadget AND; that causes the two cells X}, X{ to split up into the
four cells qu, for ¢ =0,...,3. Again, this causes cells in X', and Y to split up
in the same way and to achieve this, half of the edges between X and ) have to
be considered. The next gadget ANDs ensures that if both cells of Y are split,
then the four cells of X can be halved again, etc. In general, we design a gadget
ANDy of level ¢ that ensures that if Y is partitioned into 2! binary blocks of
equal size, then X can be partitioned into 22 binary blocks of equal size. By
halving all the cells classes of X and Y k = O(logn) times (with n = [V (Gy)]),
this refinement process ends up with a discrete colouring of these vertices. Since
every iteration uses half of the edges between X and Y (which are ©(m)), we
get the cost lower bound of 2(mlogn) (with m = |E(Gy)|).

We now define these gadgets in more detail. For every integer ¢ > 1, we define
a gadget ANDy, which consists of a graph G together with two out-terminals
ag, a1, and an ordered sequence of p = 2¢ in-terminals b, .. ., bp—1. For £ =1,
the graph G has V(G) = {ao, a1, bo, b1}, and E(G) = {aobo, a1b1}. For £ = 2, the
graph G is identical to the construction of Cai, Fiirer and Immerman [4], but
with an edge aga; added (see Figurel[Il). The out-terminals ag, a1 and in-terminals
bo, ..., bs are indicated. For £ > 3, AND, is obtained by taking one copy G* of
an ANDs-gadget, and two copies G’ and G” of an AND,_;-gadget, and adding
four edges to connect the two pairs of in-terminals of G* with the pairs of out-
terminals of G’ and G”, respectively. As out-terminals of the resulting gadget
we choose the out-terminals of G*. The in-terminal sequence is obtained by
concatenating the sequences of in-terminals of G’ and G”. For any AND,-gadget
G with in-terminals b, ..., bse_1, the in-terminal pairs are pairs b, and bopy1,
for all p € {0,...,2"" —1}. We now state the key property for AN D,-gadgets,
which can be verified for ¢ = 2, and then follows inductively for £ > 3. We say
that p agrees with ¥ if p[S] = 1.
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Lemma 9 (*). Let G be an ANDy-gadget with in-terminals B = {bg, ..., bye_1}
and out-terminals ag, a1. For any partition ¥ of B into binary blocks, the coarsest
stable partition p of V(G) that refines ¢ agrees with 1. Furthermore, p distin-
quishes ag from ay if and only if Y distinguishes all in-terminal pairs.

The graph Gy is now constructed as follows. Start with vertex sets X, X', )
and Y, and edges between them, as defined above. For every ¢ € {1,...,k—1}, we
add a copy G of an ANDy-gadget to the graph. Denote the in- and out-terminals
of G by ag,a; and by, ..., bye_;, respectively.

— For i = 0,1 and all relevant ¢: we add edges from a; to every vertex in Xﬁ;ﬁi.

— For every i, we add edges from b; to every vertex in Y;‘.

Finally, we add a starting gadget to the graph, consisting of three vertices
V0,1, V2, the edge viva, and edges {voz; | i € B} U {viz; | i € Bi}. See Fig-
ure [[ for an example of this construction. (In the figure, we have expanded the
terminals of ANDs into edges, for readability. This does not affect the behavior
of the graph.)

Cost Lower Bound Proof Intuitively, at level £ of the refinement process, the
current partition contains all blocks quﬂ of level £+ 1 and for all 0 < ¢ < 2°,
either yg or the two blocks y;’;;l and y;’;;jl. In this situation one can split
up the blocks )Jf into blocks yg’;jl and yg’;jjl using either refinement oper-
ation (Xf;l,yf) or (Xf;;ll,yf). These operations both have cost 2k~ (41 [2,
and refining all the yg cells in this way costs 2¥71k2. Once ) is partitioned
into binary blocks of level £ + 1, we can partition X into blocks of level ¢ + 2
(using the AND,-gadget), and proceed the same way. Since there are k such
refinement levels, we can lower bound the total cost of refining the graph by
2F=1k3 = (2(mlogn) and are done. What remains to show is that applying the
refinement operations in this specific way is the only way to obtain a stable
partition. To formalise this, we introduce a number of partitions of V(G},) that
are stable with respect to the (spanning) subgraph G}, = Gy, — [X, )], and that
partition X and Y into binary blocks. (For disjoint vertex sets S,T, we denote
[S,T] = {uv € E(G) | u € S,v € T}.) So on Gy, these partitions can only be
refined using operations (R, S), where R is a binary block of X and S is a binary
block of V.

Definition 10. For any ¢ € {0,...,k — 1}, and nonempty set Q C By, by 704
we denote the partition of X UY that contains cells

— X for all g € By,
— yg for all g € Q, and both yﬁ;l and yg’;jjl for all g € B, \ Q.

Q¢ denotes the coarsest stable partition for G, = Gy — [X, )] that refines 1q .

Since mq ¢ is stable on G}, any effective refining operation (with respect to Gx,)
should involve the edges between X’ and ). Using Lemma[d it can be shown that
mQ,¢e agrees with 7¢g ¢, and therefore any effective elementary refining operation
has the following form:
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Lemma 11 (*). Let (R,S) be an effective elementary refining operation on
mQ,e. Then for someq€ Q, R = ijl or R = XQK(#D and S = yg. The cost of
this operation is k22k—(+1)

This motivates the following definition: for ¢ € @, by r4(7g,¢) we denote the
partition of V(G}) that results from (either of) the above refining operation(s).

Proof sketch of Theorem [Tt Let Gy, be the graph described above and 7g ¢ be
the partitions of V(Gy) from Definition [[0l First, we note that using Lemma/[d
it can be shown that a partition is not stable until it is discrete on X UY . So the
coarsest stable partition w of G refines all partitions 7 ¢. For ease of notation,
we define mj ¢ := 75, ¢11. By Lemma [[Il any effective elementary refinement
operation on a partition g has cost 2F~(+1DE2 and results in r4(mg.e) for
some ¢ € Q. Denote Q" = @ \ {¢q}. Note that rq(mg ) agrees with 7o/ ¢ on
X UY. It can actually be shown that r,(7Q, ¢) < 7/ ¢. So we may now apply
Proposition Bl to conclude that cost(mg,¢) > 2¥~FDE? + mingeq cost(moy (q1,¢)-
By induction on |Q| it then follows that cost(rg,,r) > 2¥"1k? + cost(mg,, , r+1)
for all 0 < ¢ < k — 1. Hence, by induction on ¢, cost(mg, 0) > 2~ 1k3, which
lower bounds cost(a). It can be verified that n € O(2%k) and m € O(2%k?), so
logn € O(k). This shows that cost(a) € £2((m + n)logn). O
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Abstract. We consider a 2-edge connected, non-negatively weighted
graph G, with n nodes and m edges, and a single-source shortest paths
tree (SPT) of G rooted at an arbitrary node. If an edge of the SPT
is temporarily removed, a widely recognized approach to reconnect the
nodes disconnected from the root consists of joining the two resulting
subtrees by means of a single non-tree edge, called a swap edge. This
allows to reduce consistently the set-up and computational costs which
are incurred if we instead rebuild a new optimal SPT from scratch. In
the past, several optimality criteria have been considered to select a best
possible swap edge, and here we restrict our attention to arguably the
two most significant measures: the minimization of either the mazimum
or the average distance between the root and the disconnected nodes.
For the former criteria, we present an O(mloga(m,n)) time algorithm
to find a best swap edge for every edge of the SPT, thus improving onto
the previous O(mlogn) time algorithm (B. Gfeller, ESA’08). Concern-
ing the latter criteria, we provide an O(m + nlogn) time algorithm for
the special but important case where G is unweighted, which compares
favorably with the O(m + na(n,n)log®n) time bound that one would
get by using the fastest algorithm known for the weighted case — once
this is suitably adapted to the unweighted case.

1 Introduction

In communication networking, broadcasting a message from a source node to
every other node of the network is one of the most common operations. Since
this should be done by making use of a logical communication topology as sparser
and faster as possible, then it is quite natural to resort to a single-source shortest-
paths tree (SPT) rooted at the source node. However, despite its popularity, the
SPT is highly susceptible to link malfunctioning, as any tree-based network
topology: the smaller is the number of links, the higher is the average traffic for
each link, and the bigger is the risk of a link overloading. Even worse, the failure
of a single link may cause the disconnection of a large part of the network.

* This work was partially supported by the Research Grant PRIN 2010 “ARS Tech-
noMedia”, funded by the Italian Ministry of Education, University, and Research.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 157-[I68] 2013.
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In principle, two different approaches can be adopted to solve the problem
of a link failure: either we rebuild a new SPT from scratch (which can be very
expensive in terms of computational and set-up costs), or we quickly reconnect
the two subtrees induced by the link failure by swapping it with a single non-tree
edge (see [LOJI5] for some practical motivations supporting this latter approach).
Quite obviously, swapping requires that the swap edge is wisely selected so that
the resulting swap tree is as much efficient as possible in terms of some given post-
swap distance measure from the root to the just reconnected nodes. Moreover,
to be prepared to any possible failure event, it makes sense to study the problem
of dealing with the failure of each and every single link in the network. This
defines a so-called all-best-swap edges (ABSE) problem on the SPT [L1].

Related work. The problem of swapping in spanning trees has received a sig-
nificant attention from the algorithmic community. There is indeed a line of
papers which address ABSE problems starting from different types of spanning
trees. Just to mention a few, we recall here the minimum spanning tree (MST),
the minimum diameter spanning tree (MDST), and the minimum routing-cost
spanning tree (MRCST). For the MST, a best swap is simply a swap edge min-
imizing the weight of the swap tree, i.e., is a swap edge of minimum weight.
This problem is also known as the MST sensitivity analysis problem. Concerning
the MDST, a best swap is instead an edge minimizing the diameter of the swap
tree [912]. Finally, for the MRCST, a best swap is naturally an edge minimiz-
ing the all-to-all routing cost of the swap tree [16]. Denoting by n (resp., m) the
number of nodes (resp., edges) of the given graph, the fastest solutions for solving
the corresponding ABSE problems have a running time of O(mlog a(m,n)) [14],
O(mlogn) [, and O (m20(a(2m.2m)) log? n) [2], respectively, where « is the in-
verse of the Ackermann function originally defined in [IJ.

Getting back to the SPT, the appropriate definition of a best swap seems
however more ambiguous, since an SPT is actually the union of all the short-
est paths emanating from a root node, and so there is not a univocal global
optimization measure we have to aim at when swapping. Thus, in [13], where
the corresponding ABSE problem was initially studied, several different criteria
expressing desirable features of the swap tree of an SPT were introduced in or-
der to characterize a best possible swap edge. In particular, among all of them,
two can be viewed as the most prominent ones: the mazrimum and the average
distance from the root to the disconnected nodes. These two measures reflect
a classic egalitarian versus utilitarian viewpoint as far as the efficiency of the
swap is concerned. From the algorithmic side, the fastest known solutions for the
two problems amount to O(mlogn) (as a by-product of the result in [§]) and to
O(ma(m,m)log®n) time (see [4}), respectively.

It is worth noticing that swapping in an SPT can be reviewed as fast and
good at the same time: in fact, recomputing every new optimal SPT from scratch

! Notice that a swap MST is actually a MST of the graph deprived of the failed edge.
2 Actually, in [4] the authors claim an O(mlog?n) time bound, but this must be
augmented by an O(a(m,m)) factor, as pointed out in [2].
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would require as much as O(mnloga(m,n)) time [5] (no faster dynamic algo-
rithm is indeed known). Moreover, it has been shown that in the swap tree the
maximum (resp., average) distance of the disconnected nodes from the root is
at most twice (resp., triple) that of the new optimal SPT, and this is tight [13].

Our Results. In this paper we focus exactly on the ABSE problem on an SPT
w.r.t. these two measures. To this respect, for the former criteria we present an
O(mloga(m,n)) time algorithm. As we will see, our result generalizes to the
ABSE problem on an MDST, and thus, for both problems we improve the time
complexity of O(mlogn) given in [8]. It is worth noticing that in this way we
beat the O(mlogn) time barrier needed to sort the non-tree edges w.r.t. their
weight, and we meet the time complexity of the best-known algorithm for the
MST sensitivity analysis problem. In our opinion, this is particularly remarkable
since this latter problem can be reduced in linear time to our problemE Thus,
improving the time complexity of our algorithm would provide a faster algorithm
for performing a sensitivity analysis of an MST, which is one of the main open
problems in the area of MST related computations.

As far as the second criteria is concerned, we focus on the special but impor-
tant case where G is unweighted. In this case we are indeed able to first exhibit a
sparsification technique on non-tree edges which would immediately allow to use
the O(m a(m,m)log? n) time algorithm known for the weighted case (see [4]) so
as to obtain a faster O(m + na(n,n) log? n) time solution. However, we go be-
yond this improvement, by building on this sparser graph a new approach which
makes use of sophisticated data structures, so as to eventually get an efficient
O(m + nlogn) time algorithm. Unfortunately, the extension of our machinery
to weighted graphs sounds hard, and so we regard this as a challenging problem
left open.

The paper is organized as follows: in Section 2] we describe a preprocessing
step which will be used to guarantee the efficiency of our algorithms, while in
Section Bl and Ml we present our algorithms for the maximum and the average
distance criteria, respectively. Due to space limitations, some of the proofs are
omitted and will be given in the full version of the paper.

2 A Preprocessing Step

In this section we present our notation, and we describe a useful preprocessing
step which allows us to simplify the solution of the ABSE problems we address
in this paper.

We start by defining our notation. Let G = (V, E,w) be a non-negatively
edge-weighted, undirected and 2-edge-connected graph, and let 7' be an SPT of

3 Indeed, we can perform a sensitivity analysis of an MST as follows: (i) we first root
the MST at any arbitrary vertex, (ii) we set the weight of every tree-edge to 0, and
then (iii) we solve the ABSE problem w.r.t. the maximum distance from the root.
Clearly, for every tree edge e, the best swap edge computed by the algorithm is a
non-tree edge of minimum weight cycling with e.
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G rooted at an arbitrary node r. Thus, T contains a shortest path from r to
every other node of G. For a vertex v # r, we denote by v the parent of v in
the tree (in particular, ¥ denotes the parent of ©). The least common ancestor
of a given pair of nodes v,v’ in T is the node of T farthest from r that is an
ancestor of both v and v'; we will indicate it by 1ca(v,v’). Let e = (Z, ) be any
tree edge. We denote by T, the subtree of T rooted at x and containing all the
descendants in T of z and by V(T,) the set of vertices in T,. We indicate with

={(w,y) e E\E(T) : (ue VA\V(Ty)) A (y € V(T))} the set of swap edges
for e, i.e., the edges that may be used to replace e for reconnecting T'. Since
G is 2-edge connected, we have that C. # 0, Ve € E(T). Let in the following
T./s denote the swap tree obtained from T" by swapping e with f € C.. For any
two vertices v,v" € V, we finally denote by d(v,v’) and d./¢(v,v’) the distance
between v and v" in 7" and Ty, respectively.

Depending on the goal that we pursue in swapping, some swap edge may be
preferable to some other one. We here focus on the following problems:

1. max-ABSE: for every e = (Z,z) € E(T), find an edge f. € C, s.t.:

focorgpuin { g oy

2. sum-ABSE: for every e = (z,2) € E(T), find an edge f. € C. s.t.4]

feeargmln{ Z de/frv}

veV(Ty)

To solve efficiently our ABSE problems, we transform in a standard way (see
for instance [I7]) each non-tree edge f = (u,y) into two wvertical edges, i.e.,
f' = (Qca(u,y),y) and f” = (lca(u,y),u), each of them with an appropriate
weight, namely w(f’) = d(r,u) + w(f) — d(r, Lca(u,y)) and w(f") = d(r,y) +
w(f) — d(r,1ca(u,y)), respectively. Basically, w(f’) (resp., w(f")) once added
by d(r,1ca(u,y)), is the length of the path in Ti,; starting from r, passing
through f, and ending in y (resp., u), after that f has swapped with an edge e
along the path from y (resp., u) to 1ca(u,y). In this way, we obtain an auxiliary
(multi)graph G’ with at most twice the number of non-tree edges of G, and
which is perfectly equivalent to G as far as the study of our ABSE problems
is concerned. Notice that this transformation can be performed for all non-tree
edges in O(m) time [6], once that the SPT is given, since essentially it only
requires the computation of the least common ancestors of non-tree edges. In
the rest of the paper, we will therefore assume to be working on G’, unless
differently stated, and that for a swap edge f = (u,y), node y € V(T,), and so
u = lca(u,y).

3 A Faster Algorithm for max-ABSE

In this section we provide the description of an algorithm solving the max-ABSE
problem in O(mloga(m,n)) time and O(m) space. As we will see, our result

4 By definition, f. minimizes the average distance from r to the disconnected nodes.
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generalizes to the ABSE problem on an MDST. Thus, for both problems we
improve the time complexity of O(mlogn) given in [g].

We need to introduce some further notation before providing the algorithm
description. We denote by P(v,v’) the (unique) path in 7" between v and v’
and by w(P(v,v")) := d(v,v’) the length of P(v,v"). A diametral path P of T is
one of the longest simple paths in T and a center of T is a vertex ¢ such that
maxy,ey d(c,v) < maxyey d(v',v), for every v’ € V. It is well known that a tree
has either one center or two centers and, if a tree has two centers, then they
are adjacent. Furthermore, any diametral path of a tree passes through the tree
center(s). In the rest of the paper, w.l.o.g., for every v € V and every v’ € V(T,),
we will assume that there is only one longest path in T, having v" as one of its
endvertices[d Let v be an inner vertex of T and let P be the longest path starting
at the center c of T}, and entirely contained in T,,. We denote by ¢, the endvertex
of the unique edge of P incident to ¢ which is farthest from r (possibly ¢, = ¢).
For a leaf vertex v of T', we define ¢, := v. Finally, we denote by U, the vertices
of the path P(v,¢,) and by U, = U, \ {cy}-

The following lemma shows a useful property satisfied by the vertices ¢, ’s.

Lemma 1. Let v and v’ be two distinct vertices of T such that v’ is an ancestor
of v in T. Then either ¢,y € U, or ¢,y € V\V(T,).

Our algorithm traverses the tree edges in a suitable preorder and, for each
tree edge e = (Z,x), it computes a best swap edge f. of e in four steps with a
clever implementation of the approach used in [§]. More precisely, for each tree
edge e = (Z,x), our algorithm does the following:

Step 1: for every vertex v € V(T},), it computes a best swap edge fv of e among
the set of edges in C, which are also incident to v

Step 2: it partitions the vertices of Ty, into |U,| groups, where each vertex z of
U, defines the group G(z, z) := {v € V(T}) | 1ca(v,c,) = 2}

Step 3: for every vertex z € U,, it computes a group candidate, i.e., best swap
edge f. of e chosen among the set F, of the best swap edges computed
during Step 1 and associated to vertices of the same group z belongs to, i.e.,
F,:={f,|veG(z,2)};

Step 4: it selects a best swap edge f. of e among the group candidates computed
in Step 3.

Let f = (u,y) € C. be a non-tree edge and let 1ca(y,c,) = z. Observe that
z € Ug. Let k1(f) :=d(r,u) +w(f) +d(r,y) be the primary key associated with
f, and let ka(f,e) := k1(f) — 2d(r, z) be the secondary key associated with the
pair f and e. The primary key of f is independent of the failing tree edge and is
used to compare two competing swap edges of the same set F.. The secondary

5 This property can be achieved by modifying the tree via the addition of dummy
leaves, each connected with a leaf of T' by a suitable cheap edge.

5 If no such edge exists, then we assume that ﬂ, is an imaginary edge of weight 4oc0.

" Observe that, if z = ¢, then G(x,2) = V(T.,); if 2 # cu, then G(z,2) = V(T:) \
V(T,), where v is the child of z such that ¢, € V(7).
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key is used to compare two competing swap edges among the group candidates
f>’s with z # ¢,. The following lemmas provide useful properties suitable for
an efficient implementation of Step 1, Step 3, and Step 4 of our algorithm,
respectively.

Lemma 2. Let e = (Z,x) be a tree edge with T # r, let v be a vertex of T, and
let ' be a best swap edge of € = (T,ZT) among the set of non-tree edges in Cs
which are incident to v. If (z,v) & C,, then f, = f', otherwise f, is the edge of
minimum primary key between [’ and (Z,v).

Lemma 3. Let e = (Z,x) be a tree edge and let z € U,. We have that f, €
argmin{x,(f) | f € F,}.

Lemma 4. Let e = (Z,z) be a tree edge and let f € argmin{rs(f.,e) | z € Uy}
Then, f., or f is a best swap edge of e.

The following Corollary of Lemma [ shows that, thanks to the preorder pro-
cessing of the tree edges, we can compute the new groups G(z,z), and thus
solve Step 2, by suitably splitting some groups G(Z, z’) which have already been
computed.

Corollary 1. Let {z1,...,2r} = U, \ Uz such that z; is the parent of z;y1, for
every i = 1,...,k — 1 (if x = r, then {z1,...,2x} = Uy \ {r}) and let z, be
the parent of z. We have that (a) G(%,2) = G(x,z) for every z € Uz N U, (b)
G(Z,c5) = G(x,¢q) iff cz = ca, and (¢) G(z, z) C G(T, 20) for every z € Uy \ Uz.

Therefore, rather than implementing our algorithm using brute force search,
we make use of split-findmin data structures which are suitable for finding
minimum-key elements of sets that can only be split. A split-findmin is a data
structure that has been successfully used in [I4] to solve the sensitivity analy-
sis of an MST in O(mloga(m,n)) time. A split-findmin S maintains a set of
sequences of elements each associated with a key and supports the following
operations:

init(o1,...,0n): initializes the sequence S := {(01,...,0n)} of N elements
with key k(0;) := 400 for all ¢;
split(S,0;): let s = (05,...,0i—1,04,...,0r) be the sequence in S containing o;;

the call of split(S,o;) returns S := (S\ {s}) U{(0j,...,0i-1),(0s,...,08)};
findmin(S,0;): let s be the sequence in S containing o;; the call of £indmin(S, ;)
returns an element of minimum key in s;
decreasekey(S, 0, k) ¢ if K(0;) > k, then decreasekey(S, 0;, k) sets k(0;) = k.

As proven in [14], a split-findmin data structure of N elements requires O(N)
space, can be initialized in ©(N) time, and supports M split, findmin, and
decreasekey operations in time O(M log a(M, N)). The following easy-to-prove
lemma is another key ingredient for the correctness of our algorithm.
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Lemma 5. Let T’ be a tree rooted at r’, let s be the sequence of nodes as obtained
from a right-to-left preorder visit of T', and let S be a split-findmin initialized
with the sequence s. Let v be the leftmost child of v'. The execution of split(S,v)
splits s into two sequences s’ and s such that, w.l.o.g., V(T')\ V(T)) contains
the vertices of s' and V(T contains the vertices of s”

Our algorithm uses two split-findmin data structures S and S’ both containing
all the vertices of T' as elements. During the visit of the tree edge e = (Z, x), the
first split-findmin data structure S is updated so as:

(Z1): the key associated with v in S is 1 (f,);
(Z3): for every vertex z € Uy, all the vertices in G(z, z) form a sequence in S.

Thus, thanks to Lemma [B] we can compute f,, for every z € U,, using a
findmin(S, z) query. The second split-findmin data structure S’ is used to rep-
resent the group candidates f, of all the groups G(z,z) with z € U,. More
precisely, during the visit of the tree edge e = (Z,x), &’ is updated so as the
following invariants are maintained:

(Z7): V(Iy) forms a sequence in S';
(Z%): for every v € V(Ty), the key associated with v in S’ is equal to (a) ka2 (fy, €),
if v € U, and (b) +oo, if v € U,.

Because of both invariants Z] and Z} and thanks to Lemma [ we can compute
fearg min{ka(f.,e) | z € ﬁm} by performing a findmin(S’, z) query.

The algorithm first arranges T in such a way that, for each non-leaf node v, the
subtree rooted at the leftmost child of v contains ¢,. Then, it initializes S and S’
with the sequence of vertices as obtained from a right-to-left preorder visit of T’
and finally visits all the tree edges according to the left-to-right preorder visit of
T. Let e = (Z, x) be the tree edge that is visited by the algorithm. The algorithm
follows the four-step approach described above to compute a best swap edge f.
of e by updating the two split-findmin data structures S and S’. For the base
case x = r, the algorithm performs only Step 2 (i.e., calls split(S, z) for every
z € Uy \ {r}) to initialize S properly.

Step 1 of the algorithm is implemented by calling decreasekey(S, v, m(f))
for every vertex v € V(T) such that f = (u,y) is a swap edge of e with u = &
and v = y. Indeed, if T # r and f’ is a best swap edge of € = (Q:C, 9?) among the
set of non-tree edges in Cz which are also incident to v, then, from Lemma [2]
maintaining invariant 7; is equivalent to comparing x1(f) with k1 (f’) which, by
induction, is the key associated to vertex v in S at the beginning of Step 1.

Let {z1,...,2r} = U, \ Uz such that z; is the parent of z;41, for every ¢ =
1,...,k =1 (if x = r, then {z1,...,2,} = U, \ {r}) and let zy be the parent
of z1. Step 2 of the algorithm is implemented by simply calling split(S, z;) for
every i = 1,..., k. In what follows, we sketch that invariant Z, is maintained

8 Notice that, from a topological point of view, the split(g, v) operation can be
viewed as the removal of edge (r’,v) in T".
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at the end of Step 2. By induction, & contains the sequence of the vertices in
G(Z, z) for every z € Uz. From Corollary [[I we have that G(Z,z) = G(z,2)
for every z € Uz N U,. Furthermore, G(Z,cz) = G(z,¢;) iff ¢z = ¢;. Finally,
G(x,z) C G(&,z0) for every z € U, \ Uz. Using induction, we can prove that S
contains the sequence s of all vertices in G(Z, z9) and 2z is the lefmost child of the
subtree induced by s. Furthermore, Lemma [ implies that z;,1 is the leftmost
child of z; for every i = 1,...,k — 1. Therefore, thanks to repeated applications
of Lemma [ after the execution of all split(S, z;), S contains the sequence of
all the vertices in G(z, z;), for every j =0,...,k.

Step 3 of the algorithm can be implemented by performing the following set
of operations whenever a group creation or a group modification (i.e., a split or
decreasekey operation on S) occurs during Step 1 or Step 2. Let G(x,v) be a
group that has been created or modified. From Lemmas [l and B updating S’ is
equivalent to first calling findmin(S, v), which returns a non-tree edge f, and, if
lca(v, ;) # ¢y, to calling decreasekey(S’, 1ca(v, ¢z ), k2(f, €)). Proceeding this
way, we are guaranteed that at the end of Step 3 the invariant Z} holds. Observe
that a decreasekey operation on & modifies one group while a split operation on
S splits one group into two groups, i.e., it creates two new groups.

Step 4 of the algorithm consists of (a) computing f (the explanation of how to
compute f is below), (b) calling findmin(S, ¢,) to compute f,,, and (c) selecting
a best swap edge of e between f and f., via the explicit computation of the
objective function values when e is replaced with f and with f._, respectivelyE To
compute f , the algorithm first performs split(S’,z) which — thanks to the left-
to-right preorder processing of the tree vertices and to the right-to-left preorder
arrangement of the tree vertices in 8’ — maintains the invariant Z;, and then
calls findmin(S’, z).

We can prove the following.

Theorem 1. The max-ABSE problem can be solved in O(mloga(m,n)) time
and O(m) space.

Corollary 2. The ABSE problem for a MDST can be solved in O(m log a(m, n))
time and O(m) space.

4 A Faster Algorithm for sun-ABSE on Unweighted
Graphs

In this section we solve efficiently the ABSE problem w.r.t. the criteria of mini-
mizing the average distance from the root on unweighted graphs. Thus, instead
of talking about an SPT, we better will refer to a rooted breadth-first tree (BFT)
T of G.

We start by refining the “verticalization” of non-tree edges described in Sec-
tion @l Let f = (lca(u,y),y) be a vertical edge associated with a non-tree

9 1In [8] it is explained how the value of the objective function can be computed in
O(1) time for every e € E(T') and every f € C. after a linear time preprocessing.
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edge f = (u,y). Since G is unweighted and T is a BFT of G, we have that
either of the three following cases apply for edge f: (i) d(r,u) = d(r,y), or (ii)
d(r,u) = d(r,y) — 1, or finally (iii) d(r,u) = d(r,y) + 1. Depending on which
of the three cases apply, we have that f’ is either of type (i), (ii) or (iii), re-
spectively. Clearly, a symmetric argument applies to the other vertical edge
f" = (Lca(u,y), u) associated with f (if any), and notice that if f’ is of type (i),
then the same holds for f”, while if f’ is of type (ii), then f” is of type (iii), and
vice versa. Then, for any given a node v € V| we can select a representative for
any of these three types of vertical non-tree edges incident to v as follows: For
each type, select a non-tree edge which swaps with a largest number of edges
along the tree path from v to r. Notice that a representative edge is clearly
preferable w.r.t. any other swap edge it was selected out of, since it allows for
the same quality when swapping, while being usable longer. Thus, at most three
vertical non-tree edges will remain associated with v, and all the other non-tree
edges will be discarded. Observe that once again this refined preprocessing phase
can be performed for all non-tree edges in O(m) time, since it only requires to
further classify vertical non-tree edges depending on their type, which is clearly
doable in linear time. Notice that after the preprocessing, we have reduced to
O(n) the number of non-tree edges, and this immediately allows to solve the
sum-ABSE problem in linear space and O(m + na(n,n)log? n) time, by just
using the fastest algorithm known for the weighted case [4]. We will show in the
following how to improve this running time to O(m + nlogn).

To solve sum-ABSE, our algorithm will run in three phases, where at each
phase we will only consider representative edges of either of the three types
above. Indeed, for efficiency reasons, representative edges of different type need
to be treated separately. This means, at each phase every node will have at most
a single vertical edge associated, and at the end of a phase every tree edge will
remain associated with a best swap edge of the current type. Finally, a best
swap edge for a given tree edge will be selected as the best among those found
in the three phases. Hence, in the following we assume that all non-tree edges
are of the same type. We define the level of a node v as £(v) := d(r,v), and the
level of a (vertical) non-tree edge (u,y) as the level of its lowest endvertex y.
Furthermore, we define the height of v as h(v) := max{{(v') | v € V(T,)}.

For efficiency reasons that will be clearer later, our algorithm associates two
keys with each non-tree edge f, and each of these keys will be separately managed
by a suitable priority queue. The first key, say x1(f), is a (constant) value which
depends only on f, and that can be used to compare two competing swap edges
of the same level. Concerning the second key, this is instead a (non-constant)
value which can be used to compare two competing swap edges of different levels.
More precisely, such a key is a linear function of the form xo(f,t) := at+b, where
a and b are constant values depending only on f, while ¢ is a variable (called
virtual time) that properly encodes the position in T of the failing edge e for
which f must be evaluated.

The two keys of f = (u,y) are defined as follows: x1(f) := >, ¢y d(y, v), while
ko(f,t) = 20(y)t + k1(f) — £(y)n. We can prove the following.
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Lemma 6. Let f and f' be two swap edges for a tree edge e = (Z,x). If
k(s [V (L)) < Rl f [V T)))s then Sy dess () < Sy r,) degr(r0).

Furthermore, Lemma [6l immediately implies the following.

Corollary 3. Let f and f' be two non-tree edges of the same level which are also
swap edges for a tree edge e = (Z,x). If k1(f) < k1 (f'), then ZveV(Tm) deyp(r,v)
< ZUEV(Tm) desyr(1,0).

Thus, the main idea of our algorithm is to maintain efficiently a best swap
edge for each of the levels below the failing edge. This will be done through the
use of two types of priority queues, one for each type of key, according to their
nature: Fibonacci heap (F-heap) [7] to manage constant keys of the first type,
and a kinetic heap (K-heap) [3] to manage variable keys of the second type.
Indeed kinetic heaps allow to perform findmin operations parameterized with
respect to a given parameter t, i.e., the virtual time. Moreover, these operations
must satisfy a monotoniticy condition, i.e., successive findmin operations must
be performed with respect to non-decreasing values of ¢.

Let us now see how these heaps are built and maintained. At the beginning,
for each vertex v different from r, we create an F-heap, say Fy(,)(v), and if v has
a non-tree edge f incident to it, we insert v in Fy(,)(v) with key s1(f). Then,
for each leaf v, we create a K-heap, say K(v), and if v has a non-tree edge f
incident to it, we insert ¢(v) in K (v) with key ko(f,t) (by also maintaining a
pointer to f).

We consider the tree edges in a bottom-up fashion, by visiting the vertices of
T in any post-order. When we visit node z (i.e., we consider the removal of edge
e = (Z,z) from T'), we maintain the following invariants:

(Z1): for each level ¢(z) < j < h(x), we have an F-heap F;(z) containing every
node in T, of level j having an incident non-tree edge f which can swap with
e (with the corresponding key x1(f));

(Zz): there is a K-heap K(z) containing a subset of levels in the interval
[¢(x), h(x)], with the property that a level ¢(x) < j < h(z) is in K(z) with
key ro(f,t) iff f is a best swap edge for e of level j.

Notice that from Corollary[3] (Z;) allows to compute a best swap edge f = (u,y)
for e with £(y) = j. Furthermore, from Lemma [6] (Z5) allows to compute a best
swap edge for e by extracting the minimum from K (x) with current virtual time
|V (Ty)|. As will see, K-heaps are built on top of F-heaps whose use, in turn, will
be only instrumental to keep the number of more expensive operations performed
in the K-heaps low.

Our algorithm proceeds as follows. If x is a leaf, to get a best swap edge
for e we simply perform a findmin operation on K (z) with current virtual time
|V (Ty)| = 1. Otherwise, let q1,...,qs be the children of  in T’; then we do the
following (notice that Steps 1-4 are performed to maintain the invariants):

1. We set K(z) := K(q;), where g; is a child of = such that Tj, is a highest
subtree rooted at a child of x.
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2. If  has an incident non-tree edge f such that f € C., we insert ¢(z) in K (z)
with key ka(f,t).

3. For each non-tree edge f = (u,y) with « = z and £(y) = j, we first delete y
from the F-heap to which y currently belongs to, say Fj(g.). Next we check
whether the key of level j in K(x) is associated with f. If this is the case,
then (i) we delete j from K(z), (ii) we perform an additional findmin on
F;(q.) to get a new best swap edge f’ of level j, if any, and if this is the case
(iil) we re-insert j into K (x) with key ra(f’,t).

4. If s = 1, then for each level J%ﬂt) < j < h(g1) = h(x), the F-heap F;(z) is
simply inherited from F;(q1)11Y otherwise, let g, be the child of x such that
Ty, is a highest subtree besides Ty, . For each level £(x) < j < h(gp), we merge
all F-heaps Fj(qr),k =1,..., s, and we call the resulting F-heap F}j(x); then,
we perform a findmin operation on Fj(z) to compute a best swap edge f
of level j, if any. If this is the case, we first check if K(z) contains j, and
if so we remove it; afterwards, we re-insert j into K(z), with key ra(f,t).
Notice that for the remaining levels h(g,) +1 < j < h(g;), the corresponding
F-heaps are simply inherited from F}(g;).

5. Finally, we perform a findmin operation on K (x) with current virtual time
|V (T,)| to compute a best swap edge for e = (Z, x).

Theorem 2. The sum-ABSE problem can be solved in O(m+nlogn) time and
O(m) space.

Proof. First of all, recall that the preprocessing step of the algorithm takes
O(m) time and space. Moreover, in order to compute the values of the two keys
efficiently, we can pre-compute the value ), d(v,v") for every v € V. This
can be done in O(n) time [].

To derive the time complexity of the algorithm, we have to bound the number
of operations performed on our data structures in each phase. Let k be the total
number of merge operations on F-heaps. Notice that & < n since the number of
merges is bounded by the initial number of F-heaps, namely n — 1 (no new F-
heaps are created, since inheriting a heap is just a renaming of the heap itself).
The number of insertions and deletions on K-heaps is also O(n), since this is
upper bounded by the number of leaves of T plus the number of merge and
delete operations on F-heaps, which is O(n). Concerning the findmin operations
on F-heaps, it is easy to see that we have at most one such operation for each
merging of F-heaps and each deletion on K-heaps, which implies that they are
O(n). Clearly, we perform a single findmin on a K-heap for each edge of T'. From
this, and from the fact that in an F-heap insert, merge and findmin operations
takes each O(1) time, and a delete operation takes O(logn) amortized time,
while in a K-heap the amortized time for insert and delete operations is O(logn),
while for findmin operations is O(1) [3], and finally observing that F-heaps and
K-heaps use O(n) space, the claim follows. O

10 Notice that all these heaps can be inherited in O(1) time by simply changing their
reference from ¢1 to x.
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From the above discussion, it should be clear that the use of F-heaps is instru-
mental to reduce to O(n) the number of (more expensive) operations on K-heaps,
and this is exactly the key ingredient for the efficiency of our algorithm. Finally,
the sparsification of non-tree edges can be used to solve the max-ABSE problem
on unweighted graphs in O(m + nloga(n, n)) time.
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Abstract. We discuss how string sorting algorithms can be parallelized
on modern multi-core shared memory machines. As a synthesis of the
best sequential string sorting algorithms and successful parallel sorting
algorithms for atomic objects, we propose string sample sort. The algo-
rithm makes effective use of the memory hierarchy, uses additional word
level parallelism, and largely avoids branch mispredictions. Additionally,
we parallelize variants of multikey quicksort and radix sort that are also
useful in certain situations.

1 Introduction

Sorting is perhaps the most studied algorithmic problem in computer science.
While the most simple model for sorting assumes atomic keys, an important class
of keys are strings to be sorted lexicographically. Here, it is important to exploit
the structure of the keys to avoid costly repeated comparisons of entire strings.
String sorting is for example needed in database index construction, some suffix
sorting algorithms, or MapReduce tools. Although there is a correspondingly
large volume of work on sequential string sorting, there is very little work on
parallel string sorting. This is surprising since parallelism is now the only way to
get performance out of Moore’s law so that any performance critical algorithm
needs to be parallelized. We therefore started to look for practical parallel string
sorting algorithms for modern multi-core shared memory machines. Our focus
is on large inputs. This means that besides parallelization we have to take the
high cost of branch mispredictions and the memory hierarchy into account. For
most multi-core systems, this hierarchy exhibits many processor-local caches but
disproportionately few shared memory channels to RAM.

After introducing notation and previous approaches in Section 2] Section [3]
explains our parallel string sorting algorithms, in particular super scalar string
sample sort (S°) but also multikey quicksort and radix sort. These algorithms
are evaluated experimentally in Section [l
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2 Preliminaries

Our input is a set S = {s1,...,8,} of n strings with total length N. A string
is a zero-based array of |s| characters from the alphabet ¥ = {1,...,0}. For
the implementation, we require that strings are zero-terminated, i.e., s[|s| —1] =
0 ¢ X. Let D denote the distinguishing prefiz size of S, i.e., the total number
of characters that need to be inspected in order to establish the lexicographic
ordering of S. D is a natural lower bound for the execution time of sequential
string sorting. If, moreover, sorting is based on character comparisons, we get a
lower bound of 2(D + nlogn).

Sets of strings are usually represented as arrays of pointers to the beginning
of each string. Note that this indirection means that, in general, every access to
a string incurs a cache fault even if we are scanning an array of strings. This
is a major difference to atomic sorting algorithms where scanning is very cache
efficient. Let lcp(s,t) denote the length of the longest common prefiz (LCP)
of s and t¢. In a sequence or array of strings = let lcp, (i) denote lep(zi—1, z;).
Our target machine is a shared memory system supporting p hardware threads
(processing elements — PEs) on ©(p) cores.

2.1 Basic Sequential String Sorting Algorithms

Multikey quicksort [2] is a simple but effective adaptation of quicksort to strings.
When all strings in S have a common prefix of length ¢, the algorithm uses
character ¢ = s[f] of a pivot string s € S (e.g. a pseudo-median) as a splitter
character. S is then partitioned into S, S—, and S~ depending on comparisons
of the ¢-th character with c. Recursion is done on all three subproblems. The
key observation is that the strings in S— have common prefix length ¢+ 1 which
means that compared characters found to be equal with ¢ never need to be
considered again. Insertion sort is used as a base case for constant size inputs.
This leads to a total execution time of O(D + nlogn). Multikey quicksort works
well in practice in particular for inputs which fit into the cache.

MSD radiz sort [QIT0J7] with common prefix length ¢ looks at the ¢-th char-
acter producing o subproblems which are then sorted recursively with common
prefix £+ 1. This is a good algorithm for large inputs and small alphabets since
it uses the maximum amount of information within a single character. For in-
put sizes o(o) MSD radix sort is no longer efficient and one has to switch to a
different algorithm for the base case. The running time is O(D) plus the time
for solving the base cases. Using multikey quicksort for the base case yields an
algorithm with running time O(D + nlogo). A problem with large alphabets is
that one will get many cache faults if the cache cannot support ¢ concurrent
output streams (see [9] for details).

Burstsort dynamically builds a trie data structure for the input strings. In
order to reduce the involved work and to become cache efficient, the trie is built
lazily — only when the number of strings referenced in a particular subtree of
the trie exceeds a threshold, this part is expanded. Once all strings are inserted,
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the relatively small sets of strings stored at the leaves of the trie are sorted
recursively (for more details refer to [I6/I7/15] and the references therein).

LCP-Mergesort is an adaptation of mergesort to strings that saves and reuses
the LCPs of consecutive strings in the sorted subproblems [11].

2.2 Architecture Specific Enhancements

Caching of characters is very important for modern memory hierarchies as it
reduces the number of cache misses due to random access on strings. When
performing character lookups, a caching algorithm copies successive characters
of the string into a more convenient memory area. Subsequent sorting steps can
then avoid random access, until the cache needs to be refilled. This technique
has successfully been applied to radix sort [10], multikey quicksort [12], and in
its extreme to burstsort [I7].

Super-Alphabets can be used to accelerate string sorting algorithms which
originally look only at single characters. Instead, multiple characters are grouped
as one and sorted together. However, most algorithms are very sensitive to large
alphabets, thus the group size must be chosen carefully. This approach results in
16-bit MSD radix sort and fast sorters for DNA strings. If the grouping is done
to fit many characters into a machine word, this is also called word parallelism.

Unrolling, fission and vectorization of loops are methods to exploit out-of-
order execution and super scalar parallelism now standard in modern CPUs.
However, only specific, simple data in-dependencies can be detected and thus
inner loops must be designed with care (e.g. for radix sort [7]).

2.3 (Parallel) Atomic Sample Sort

There is a huge amount of work on parallel sorting so that we can only dis-
cuss the most relevant results. Besides (multiway)-mergesort, perhaps the most
practical parallel sorting algorithms are parallelizations of radix sort (e.g. [19])
and quicksort [I8] as well as sample sort [4]. Sample sort is a generalization of
quicksort working with k& — 1 pivots at the same time. For small inputs sample
sort uses some sequential base case sorter. Larger inputs are split into k buckets
b1,...,br by determining k — 1 splitter keys z1 < --- < xx_1 and then classi-
fying the input elements — element s goes to bucket b; if ;1 < s < x; (where
zo and xj are defined as sentinel elements — xg being smaller than all possible
input elements and x, being larger). Splitters can be determined by drawing a
random sample of size ak — 1 from the input, sorting it, and then taking every
a-th element as a splitter. Parameter « is the oversampling factor. The buckets
are then sorted recursively and concatenated. “Traditional” parallel sample sort
chooses k = p and uses a sample big enough to assure that all buckets have ap-
proximately equal size. Sample sort is also attractive as a sequential algorithm
since it is more cache efficient than quicksort and since it is particularly easy to
avoid branch mispredictions (super scalar sample sort — S*) [13]. In this case, k
is chosen in such a way that classification and data distribution can be done in
a cache efficient way.
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2.4 More Related Work

There is some work on PRAM algorithms for string sorting (e.g. [5]). By com-
bining pairs of adjacent characters into single characters, one obtains algorithms
with work O(N log N) and time O(log N/ loglog N). Compared to the sequential
algorithms this is suboptimal unless D = O(N) = O(n) and with this approach
it is unclear how to avoid work on characters outside distinguishing prefixes.
We found no publications on practical parallel string sorting. However, Ta-
kuya Akiba has implemented a parallel radix sort [I], Tommi Rantala’s library
[12] contains multiple parallel mergesorts and a parallel SIMD variant of mul-
tikey quicksort, and Nagaraja Shamsundar [I4] also parallelized Waihong Ng’s
LCP-mergesort [L1]. Of all these implementations, only the radix sort by Akiba
scales fairly well to many-core architectures. For this paper, we exclude the other
implementations and discuss their scalability issues in our technical report [3].

3 Shared Memory Parallel String Sorting

Already in a sequential setting, theoretical considerations and experiments [3]
indicate that the best string string sorting algorithm does not exist. Rather,
it depends at least on n, D, o, and the hardware. Therefore we decided to
parallelize several algorithms taking care that components like data distribution,
load balancing or base case sorter can be reused. Remarkably, most algorithms in
Section 2] can be parallelized rather easily and we will discuss parallel versions
in Sections B.2H3.4l However, none of these parallelizations make use of the
striking new feature of modern many-core systems: many multi-core processors
with individual cache levels but relatively few and slow memory channels to
shared RAM. Therefore we decided to design a new string sorting algorithm
based on sample sort, which exploits these properties. Preliminary result on
string sample sort have been reported in the bachelor thesis of Knépfle [6].

3.1 String Sample Sort

In order to adapt the atomic sample sort from Section 23] to strings, we have to
devise an efficient classification algorithm. Also, in order to approach total work
O(D + nlogn) we have to use the information gained during classification into
buckets b; in the recursive calls. This can be done by observing that

V1<i<k:Vsteb;:lep(s,t) > lep,(i) . (1)

Another issue is that we have to reconcile the parallelization and load balancing
perspective from traditional parallel sample sort with the cache efficiency per-
spective of super scalar sample sort. We do this by using dynamic load balancing
which includes parallel execution of recursive calls as in parallel quicksort.

In our technical report [3] we outline a variant of string sample sort that uses
a trie data structure and a number of further tricks to enable good asymptotic
performance. However, we view this approach as somewhat risky for a first rea-
sonable implementation. Hence, in the following, we present a more pragmatic
implementation.
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Fig. 1. Ternary search tree for v = 3 splitters

Super Scalar String Sample Sort (S%) — A Pragmatic Solution. We
adapt the implicit binary search tree approach used in S* [T13] to strings. Rather
than using arbitrarily long splitters as in trie sample sort [3], or all characters
of the alphabet as in radix sort, we design the splitter keys to consist of as
many characters as fit into a machine word. In the following let w denote the
number of characters fitting into one machine word (for 8-bit characters and
64-bit machine words we would have w = 8). We choose v = 2¢ — 1 splitters
Zo,...,Ty—1 from a sorted sample to construct a perfect binary search tree,
which is used to classify a set of strings based on the next w characters at
common prefix £. The main disadvantage of this approach is that there may be
many input strings whose next w characters are identical. For these strings, the
classification does not reveal much information. We make the best out of such
inputs by explicitly defining equality buckets for strings whose next w characters
exactly match z;. For equality buckets, we can increase the common prefix length
by w in the recursive calls, i.e., these characters will never be inspected again.
In total, we have k = 2v + 1 different buckets by, ..., bs, for a ternary search
tree (see Figure [I)). Testing for equality can either be implemented by explicit
equality tests at each node of the search tree (which saves time when most
elements end up in a few large equality buckets) or by going down the search
tree all the way to a bucket b; (i even) doing only <-comparisons, followed by a
single equality test with Ti, unless ¢ = 2v. This allows us to completely unroll
the loop descending the search tree. We can then also unroll the loop over the
elements, interleaving independent tree descents. Like in [I3], this is an important
optimization since it allows the instruction scheduler in a super scalar processor
to parallelize the operations by drawing data dependencies apart. The strings in
buckets by and bs,, keep common prefix length {. For other even buckets b; the
common prefix length is increased by lcp, (). An analysis similar to the one of
multikey quicksort yields the following asymptotic running time bound.

Lemma 1. String sample sort with implicit binary trees and word parallelism
can be implemented to run in time (9(8 logv + nlog n)

Implementation Details. Goal of S® is to have a common classification data
structure that fits into the cache of all cores. Using this data structure, all PEs
can independently classify a subset of the strings into buckets in parallel. As
most commonly done in radix sort, we first classify strings, counting how many
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fall into each bucket, then calculate a prefix sum and redistribute the string
pointers accordingly. To avoid traversing the tree twice, the bucket index of each
string is stored in an oracle. Additionally, to make higher use of super scalar
parallelism, we even separate the classification loop from the counting loop [7].

Like in S*, the binary tree of splitters is stored in level-order as an array,
allowing efficient traversal using i := 2i + {0, 1}, without branch mispredictions.
To perform the equality check after traversal without extra indirections, the
splitters are additionally stored in order. Another idea is to keep track of the last
<-branch during traversal; this however was slower and requires an extra register.
A third variant is to check for equality after each comparison, which requires only
an additional JE instruction and no extra CMP. The branch misprediction cost is
counter-balanced by skipping the rest of the tree. An interesting observation is
that, when breaking the tree traversal at array index ¢, then the corresponding
equality bucket b; can be calculated from ¢ using only bit operations (note that
¢ is an index in level-order, while j is in-order). Thus in this third variant, no
additional in-order splitter array is needed.

The sample is drawn pseudo-randomly with an oversampling factor a = 2
to keep it in cache when sorting with STL’s introsort and building the search
tree. Instead of using the straight-forward equidistant method to draw splitters
from the sample, we use a simple recursive scheme that tries to avoid using the
same splitter multiple times: Select the middle sample m of a range a..b (initially
the whole sample) as the middle splitter Z. Find new boundaries ' and a’ by
scanning left and right from m skipping samples equal to Z. Recurse on a..b’ and
a'..b.

For current 64-bit machines with 256 KiB L2 cache, we use v = 8191. Note
that the limiting data structure which must fit into L2 cache is not the splitter
tree, which is only 64 KiB for this v, but is the bucket counter array containing
2v 4+ 1 counters, each 8 bytes long. We did not look into methods to reduce this
array’s size, because the search tree must also be stored both in level-order and
in in-order.

Parallelization of S°. Parallel S° (pS®) is composed of four sub-algorithms for
differently sized subsets of strings. For string sets S with |S| > Z, a fully parallel

version of S® is run, for large sizes Z

> |S| > t,, a sequential version of S° is
used, for sizes t,, > |S| > t; the fastest sequential algorithm for medium-size
inputs (caching multikey quicksort from Section B3)) is called, which internally
uses insertion sort when |S| < t;. The thresholds ¢; and ¢,, depend on hardware
specifics, see Section [ for empirically determined values.

The fully parallel version of S® uses p’ = [l‘gw threads for a subset S. It
consists of four stages: selecting samples and generating a splitter tree, parallel
classification and counting, global prefix sum, and redistribution into buckets.
Selecting the sample and constructing the search tree are done sequentially,
as these steps have negligible run time. Classification is done independently,
dividing the string set evenly among the p’ threads. The prefix sum is done
sequentially once all threads finish counting.
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In the sequential version of S° we permute the string pointer array in-place
by walking cycles of the permutation [8]. Compared to out-of-place redistribu-
tion into buckets, the in-place algorithm uses fewer input/output streams and
requires no extra space. The more complex instruction set seems to have only
little negative impact, as today, memory access is the main bottleneck. However,
for fully parallel S®, an in-place permutation cannot be done in this manner. We
therefore resort to out-of-place redistribution, using an extra string pointer array
of size n. The string pointers are not copied back immediately. Instead, the role
of the extra array and original array are swapped for the recursion.

All work in parallel S° is dynamically load balanced via a central job queue.
Dynamic load balancing is very important and probably unavoidable for par-
allel string sorting, because any algorithm must adapt to the input string set’s
characteristics. We use the lock-free queue implementation from Intel’s Thread
Building Blocks (TBB) and threads initiated by OpenMP to create a light-weight
thread pool.

To make work balancing most efficient, we modified all sequential sub-algo-
rithms of parallel S® to use an explicit recursion stack. The traditional way to
implement dynamic load balancing would be to use work stealing among the
sequentially working threads. This would require the operations on the local re-
cursion stacks to be synchronized or atomic. However, for our application fast
stack operations are crucial for performance as they are very frequent. We there-
fore choose a different method: voluntary work sharing. If the global job queue
is empty and a thread is idle, then a global atomic boolean flag is set to indicate
that other threads should share their work. These then free the bottom level of
their local recursion stack (containing the largest subproblems) and enqueue this
level as separate, independent jobs. This method avoids costly atomic operations
on the local stack, replacing it by a faster (not necessarily synchronized) boolean
flag check. The short wait of an idle thread for new work does not occur often,
because the largest recursive subproblems are shared. Furthermore, the global
job queue never gets large because most subproblems are kept on local stacks.

3.2 Parallel Radix Sort

Radix sort is very similar to sample sort, except that classification is much
faster and easier. Hence, we can use the same parallelization toolkit as with
S5. Again, we use three sub-algorithms for differently sized subproblems: fully
parallel radix sort for the original string set and large subsets, a sequential radix
sort for medium-sized subsets and insertion sort for base cases. Fully parallel
radix sort consists of a counting phase, global prefix sum and a redistribution
step. Like in S%, the redistribution is done out-of-place by copying pointers into a
shadow array. We experimented with 8-bit and 16-bit radixes for the full parallel
step. Smaller recursive subproblems are processed independently by sequential
radix sort (with in-place permuting), and here we found 8-bit radixes to be faster
than 16-bit sorting. Our parallel radix sort implementation uses the same work
balancing method as parallel S°.
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3.3 Parallel Caching Multikey Quicksort

Our preliminary experiments with sequential string sorting algorithms [3] showed
a surprise winner: an enhanced variant of multikey quicksort by Tommi Rantala
[12] often outperformed more complex algorithms. This variant employs both
caching of characters and uses a super-alphabet of w = 8 characters, exactly as
many as fit into a machine word. The string pointer array is augmented with w
cache bytes for each string, and a string subset is partitioned by a whole machine
word as splitter. Key to the algorithm’s good performance, is that the cached
characters are reused for the recursive subproblems S. and Ss, which greatly
reduces the number of string accesses to at most [ 27 + n in total.

In light of this variant’s good performance, we designed a parallelized ver-
sion. We use three sub-algorithms: fully parallel caching multikey quicksort, the
original sequential caching variant (with explicit recursion stack) for medium
and small subproblems, and insertion sort as base case. For the fully parallel
sub-algorithm, we generalized a block-wise processing technique from (two-way)
parallel atomic quicksort [I8] to three-way partitioning. The input array is viewed
as a sequence of blocks containing B string pointers together with their w cache
characters. Each thread holds exactly three blocks and performs ternary parti-
tioning by a globally selected pivot. When all items in a block are classified as <,
= or >, then the block is added to the corresponding output set S, S—, or Ss.
This continues as long as unpartitioned blocks are available. If no more input
blocks are available, an extra empty memory block is allocated and a second
phase starts. The second partitioning phase ends with fully classified blocks,
which might be only partially filled. Per fully parallel partitioning step there
can be at most 3p’ partially filled blocks. The output sets S, S—, and S~ are
processed recursively with threads divided as evenly among them as possible.
The cached characters are updated only for the S— set.

In our implementation we use atomic compare-and-swap operations for block-
wise processing of the initial string pointer array and Intel TBB’s lock-free queue
for sets of blocks, both as output sets and input sets for recursive steps. When a
partition reaches the threshold for sequential processing, then a continuous array
of string pointers plus cache characters is allocated and the block set is copied
into it. On this continuous array, the usual ternary partitioning scheme of mul-
tikey quicksort is applied sequentially. Like in the other parallelized algorithms,
we use dynamic load balancing and free the bottom level when re-balancing is
required. We empirically determined B = 128 Ki as a good block size.

3.4 Burstsort and LCP-Mergesort

Burstsort is one of the fastest string sorting algorithms and cache-efficient for
many inputs, but it looks difficult to parallelize. Keeping a common burst trie
would require prohibitively many synchronized operations, while building inde-
pendent burst tries on each PE would lead to the question how to merge multiple
tries of different structure.
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One would like to generalize LCP-mergesort to a parallel p-way LCP-aware merg-
ing algorithm. This looks promising in general but we leave this for future work
since LCP-mergesort is not really the best sequential algorithm in our experiments.

4 Experimental Results

We implemented parallel S°, multikey quicksort and radixsort in C++ and com-
pare them with Akiba’s radix sort [I]. We also integrated many sequential imple-
mentations into our test framework, and compiled all programs using gcc 4.6.3
with optimizations -03 -march=native. In our report [3] we discuss the perfor-
mance of sequential string sorters. Our implementations and test framework are
available from http://tbingmann.de/2013/parallel-string-sorting,

Experimental results we report in this paper stem from two platforms. The
larger machine, IntelE5, has four 8-core Intel Xeon E5-4640 processors contain-
ing a total of 32 cores and supporting p = 64 hardware threads. The second
platform is a consumer-grade Intel i7 920 with four cores and p = 8 hardware
threads. Turbo-mode was disabled on IntelE5. Our technical report [3] contains
further details of these machines and experimental results from three additional
platforms. We selected the following datasets, all with 8-bit alphabets. More
characteristics of these instances are shown in Table [I1

URLs contains all URLSs on a set of web pages which were crawled breadth-
first from the authors’ institute website. They include the protocol name.

Random from [I6] are strings of length [0,20) over the ASCII alphabet
[33,127), with both lengths and characters chosen uniform at random.

GOV2 is a TREC test collection consisting of 25 million HTML pages, PDF
and Word documents retrieved from websites under the .gov top-level domain.
We consider the whole concatenated corpus for line-based string sorting.

Wikipedia is an XML dump of the most recent version of all pages in the
English Wikipedia, which was obtained from http://dumps.wikimedia.org/;
our dump is dated enwiki-20120601. Since the XML data is not line-based, we
perform suffiz sorting on this input.

We also include the three largest inputs Ranjan Sinha [16] tested burstsort
on: a set of URLs excluding the protocol name, a sequence of genomic strings of
length 9 over a DNA alphabet, and a list of non-duplicate English words called
NoDup. The “largest” among these is NoDup with only 382 MiB, which is why
we consider these inputs more as reference datasets than as our target.

The test framework sets up a separate run environment for each test run. The
program’s memory is locked into RAM, and to isolate heap fragmentation, it
was very important to fork() a child process for each run. We use the largest
prefix [0,2%) of our inputs which can be processed with the available RAM. We
determined t,, = 64 Ki and ¢; = 64 as good thresholds to switch sub-algorithms.

Figure [2] shows a selection of the detailed parallel measurements from our
report [3]. For large instances we show results on IntelE5 (median of 1-3 repeti-
tions) and for small instances on Inteli7 (of ten repetitions). The plots show the
speedup of our implementations and Akiba’s radix sort over the best sequential
algorithm [3]. We included pS®-Unroll, which interleaves three unrolled descents
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Table 1. Characteristics of the selected input instances

Name n N 2 (D) o avg. |s|
URLs 111G 70.7 Gi 935% 84 68.4
Random 00 0o — 94 10.5
GOV2 11.3G 425 Gi 84.7% 255 40.3
Wikipedia 833G in(n+1) (7956 T) 213  1(n+1)
Sinha URLs 10M 304 Mi 97.5% 114 31.9
Sinha DNA  31.6M 302 Mi 100 % 4 10.0
Sinha NoDup  31.6 M 382 Mi 734% 62 12.7

of the search tree, pS®-Equal, which unrolls a single descent testing equality at
each node, our parallel multikey quicksort (pMKQS), and radix sort with 8-bit
and 16-bit fully parallel steps. On all platforms, our parallel implementations
yield good speedups, limited by memory bandwidth, not processing power. On
IntelE5 for all four test instances, pMKQS is fastest for small numbers of threads.
But for higher numbers, pS® becomes more efficient than pMKQS, because it
utilizes memory bandwidth better. On all instances, except Random, pS® yields
the highest speedup for both the number of physical cores and hardware threads.
On Random, our 16-bit parallel radix sort achieves a slightly higher speedup.
Akiba’s radix sort does not parallelize recursive sorting steps (only the top-level
is parallelized) and only performs simple load balancing. This can be seen most
pronounced on URLs and GOV2. On Inteli7, pS® is consistently faster than
pMKQS for Sinha’s smaller datasets, achieving speedups of 3.8-4.5, which is
higher than the three memory channels on this platform. On IntelE5, the high-
est speedup of 19.2 is gained with pS® for suffix sorting Wikipedia, again higher
than the 4 x 4 memory channels. For all test instances, except URLs, the fully
parallel sub-algorithm of pS® was run only 1-4 times, thus most of the speedup
is gained in the sequential S® steps. The pS®-Equal variant handles URL in-
stances better, as many equal matches occur here. However, for all other inputs,
interleaving tree descents fares better. Overall, pS®>-Unroll is currently the best
parallel string sorting implementation on these platforms.

5 Conclusions and Future Work

We have demonstrated that string sorting can be parallelized successfully on
modern multi-core shared memory machines. In particular, our new string sam-
ple sort algorithm combines favorable features of some of the best sequential
algorithms — robust multiway divide-and-conquer from burstsort, efficient data
distribution from radix sort, asymptotic guarantees similar to multikey quick-
sort, and word parallelism from cached multikey quicksort.

Implementing some of the refinements discussed in our report [3] are likely to
yield further improvements for pS®. To improve scalability on large machines,
we may also have to look at NUMA (non uniform memory access) effects more
explicitly. Developing a parallel multiway LCP-aware mergesort might then be-
come interesting.



180 T. Bingmann and P. Sanders
References
1. Akiba, T.: Parallel string radix sort in C++ (2011), http://github.com/iwiwi/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

parallel-string-radix-sort (git repository accessed November 2012)

Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
ACM 8th Symposium on Discrete Algorithms, pp. 360-369 (1997)

Bingmann, T., Sanders, P.: Parallel string sample sort. Tech. rep. (May 2013), see
ArXiv e-print arXiv:1305.1157

Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha,
M.: A comparison of sorting algorithms for the connection machine CM-2. In: 3rd
Symposium on Parallel Algorithms and Architectures. pp. 3-16 (1991)

Hagerup, T.: Optimal parallel string algorithms: sorting, merging and computing
the minimum. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, STOC 1994, pp. 382-391. ACM, New York (1994)
Knoépfle, S.D.: String samplesort, bachelor Thesis, Karlsruhe Institute of Technol-
ogy (November 2012) (in German)

Karkkéinen, J., Rantala, T.: Engineering radix sort for strings. In: Amir, A.,
Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 3-14. Springer,
Heidelberg (2008)

Mecllroy, P.M., Bostic, K., Mcllroy, M.D.: Engineering radix sort. Computing Sys-
tems 6(1), 5-27 (1993)

Mehlhorn, K., Sanders, P.: Scanning multiple sequences via cache memory. Algo-
rithmica 35(1), 75-93 (2003)

Ng, W., Kakehi, K.: Cache efficient radix sort for string sorting. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences E90-
A(2), 457-466 (2007)

Ng, W., Kakehi, K.: Merging string sequences by longest common prefixes. IPSJ
Digital Courier 4, 69-78 (2008)

Rantala, T.: Library of string sorting algorithms in C++ (2007), http://github.
com/rantala/string-sorting (git repository accessed November 2012)

Sanders, P., Winkel, S.: Super scalar sample sort. In: Albers, S., Radzik, T. (eds.)
ESA 2004. LNCS, vol. 3221, pp. 784-796. Springer, Heidelberg (2004)
Shamsundar, N.: A fast, stable implementation of mergesort for sorting text files
(May 2009), http://code.google.com/p/lcp-merge-string-sort (source down-
loaded November 2012)

Sinha, R., Wirth, A.: Engineering Burstsort: Toward fast in-place string sorting.
J. Exp. Algorithmics 15(2.5), 1-24 (2010)

Sinha, R., Zobel, J.: Cache-conscious sorting of large sets of strings with dynamic
tries. J. Exp. Algorithmics 9(1.5), 1-31 (2004)

Sinha, R., Zobel, J., Ring, D.: Cache-efficient string sorting using copying. J. Exp.
Algorithmics 11(1.2), 1-32 (2007)

Tsigas, P., Zhang, Y.: A simple, fast parallel implementation of quicksort and its
performance evaluation on SUN enterprise 10000. In: PDP, pp. 372-381. IEEE
Computer Society (2003)

Wassenberg, J., Sanders, P.: Engineering a multi-core radix sort. In: Jeannot,
E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part II. LNCS, vol. 6853,
pp. 160-169. Springer, Heidelberg (2011)


http://github.com/iwiwi/parallel-string-radix-sort
http://github.com/iwiwi/parallel-string-radix-sort
http://github.com/rantala/string-sorting
http://github.com/rantala/string-sorting
http://code.google.com/p/lcp-merge-string-sort

Exclusive Graph Searching

Lélia Blin', Janna Burman?, and Nicolas Nisse?

! Université d’Evry Val d’Essonne and LIP6-CNRS, France
lelia.blin@lip6.fr
2 LRI (CNRS/UPSud), Orsay, France
janna.burman@lri.fr
3 COATI, Inria, I3S (CNRS/UNS), Sophia Antipolis, France

nicolas.nisse@inria.fr

Abstract. This paper tackles the well known graph searching prob-
lem, where a team of searchers aims at capturing an intruder in a net-
work, modeled as a graph. All variants of this problem assume that any
node can be simultaneously occupied by several searchers. This assump-
tion may be unrealistic, e.g., in the case of searchers modeling physical
searchers, or may require each individual node to provide additional re-
sources, e.g., in the case of searchers modeling software agents. We thus
investigate exclusive graph searching, in which no two or more searchers
can occupy the same node at the same time, and, as for the classical vari-
ants of graph searching, we study the minimum number of searchers re-
quired to capture the intruder. This number is called the exclusive search
number of the considered graph. Exclusive graph searching appears to
be considerably more complex than classical graph searching, for at least
two reasons: (1) it does not satisfy the monotonicity property, and (2) it
is not closed under minor. Nevertheless, we design a polynomial-time al-
gorithm which, given any tree 7', computes the exclusive search number
of T'. Moreover, for any integer k, we provide a characterization of the
trees T" with exclusive search number at most k. This characterization
allows us to describe a special type of exclusive search strategies, that
can be executed in a distributed environment, i.e., in a framework in
which the searchers are limited to cooperate in a distributed manner.

1 Introduction

Graph Searching was first introduced by Breisch [9, [L0] in the context of speleol-
ogy, for solving the problem of rescuing a lost speleologist in a network of caves.
Alternatively, graph searching can be defined as a particular type of cops-and-
robber game, as follows. Given a graph GG, modeling any kind of network, design
a strategy for a team of searchers moving in G resulting in capturing an intruder.
There are no limitations on the capabilities of the intruder, who may be arbi-
trary fast, be aware of the whole structure of the network, and be perpetually
aware of the current positions of the searchers. The objective is to compute the
minimum number of searchers required to capture the intruder in G.

To be more formal regarding the behavior of the intruder, it is more convenient
to rephrase the problem in terms of clearing a network of pipes contaminated by

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 181-[[92] 2013.
© Springer-Verlag Berlin Heidelberg 2013
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some gas [22]. In this framework, a team of searchers aims at clearing the edges
of a graph, which are initially contaminated. Searchers stand on the nodes of the
graph, and can slide along its edges. Moreover, a searcher can be removed from
one node and then placed to any other node, i.e., a searcher can “jump” from node
to another. Sliding of a searcher along an edge, as well as positioning one searcher
at each extremity of an edge, results in clearing that edge. Nevertheless, if there
is a path free of searchers between a clear edge and a contaminated edge, then the
former is instantaneously recontaminated. Thus, to actually keep an edge clear,
searchers must occupy appropriate nodes for avoiding recontamination to occur.

Informally, a search strategy is a sequence of movements executed by the
searchers, resulting in all edges being eventually clear. The main question tack-
led in the context of graph searching is, given a graph G, compute a search
strategy minimizing the number of searchers required for clearing G. This num-
ber, denoted by s(G), is called the search number of the graph G. For instance,
one searcher is sufficient to clear a line, while two searchers are necessary in a
ring: the search number of any line is 1, while the search number of any ring is 2.

The above variant of graph searching is actually called mized-search [4]. Other
classical variants of graph searching are node-search [3], edge-search |21,122], con-
nected-search |2], etc. All these variants suffer from two serious limitations as far
as practical applications are concerned.

— First, they all assume that any node can be simultaneously occupied by sev-
eral searchers. This assumption may be unrealistic in several contexts. Typically,
placing several searchers at the same node may simply be impossible in a physical
environment in which, e.g., the searchers are modeling physical robots moving
in a network of pipes. In the case of software agents deployed in a computer
network, maintaining several searchers at the same node may consume local re-
sources (e.g., memory, computation cycles, etc.). We investigate exzclusive graph
searching, i.e., graph searching bounded to satisfy the exclusivity constraint stat-
ing that no two or more searchers can occupy the same node at the same time.
— Second, most variants of graph searching also suffer from another unrealistic
assumption: searcher are enabled to “jump” from one node of the graph, to
another, potentially far away, node (e.g., see the classical mixed-search, defined
above). We restrict ourselves to the more realistic internal search strategies 2],
in which searchers are limited to move along the edges of the graph, that is,
restricted to satisfy the internality constraint.

To sum up, we define exclusive-search as mixed-search with the additional ex-
clusivity and internality constraints. As for all classical variants of graph search-
ing, we study the minimum number of searchers required to clear all edges of a
graph G. This number is called the exclusive search number, denoted by xs(G).

We show that exclusive graph searching behaves very differently from clas-
sical graph searching, for at least two reasons. First, it does not satisfy the
monotonicity property That is, there are graphs (even trees) in which every ex-
clusive search strategy using the minimum number of searchers requires to let
recontamination occurring at some step of the strategy. Second, exclusive graph
searching is not closed under minor taking (not even under subgraph). That is,
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there are graphs G and H such that H is a subgraph of G, and xs(H) > xs(G).
The absence of these two properties (which will be formally established in the
paper) makes exclusive-search considerably different from classical search, and
its analysis requires introducing new techniques.

Our Results. First, in Sec. 2l we formally define exclusive graph searching and
present basic properties for general graphs. Motivated by certain positive results
for trees and inspired by the pioneering work of Parson [22] and Megiddo et
al. [21], we are then essentially focussing on trees. We observe that the exclusive
search number of a graph can differ exponentially from the values of classical
search numbers: in a tree, the former can be linear in the number of nodes n,
while all classical search numbers of trees are at most O(logn). Our main result
(Sec. @) is a polynomial-time algorithm which, given any tree T, computes the
exclusive search number xs(7T') of T', as well as an exclusive search strategy using
xs(T') searchers for clearing T'. Our algorithm is based on a characterization of
the trees with exclusive search number at most k, for any given k < n.

The above characterization allows us to describe an important type of exclu-
sive search strategies, that can be executed in a distributed environment, i.e., in
a framework in which the searchers are restricted to cooperate in a distributed
manner (Sec. ). More specifically, we consider the classical (discrete) CORDA[
(a.k.a. Look-Compute-Move) model [16, 24] for autonomous searchers moving in
a network. We prove that, for any anonymous asymmetric tree T', as well as for
any tree whose nodes are labeled with unique IDs, and for any n > k > xs(T),
there exists a distributed protocol enabling k searchers to clear T

Hence, an interesting outcome of this paper is that the minimum number of
searchers needed to clear an (anonymous asymmetric or uniquely labeled) tree
in a distributed manner is not larger than the one required when the searchers
are coordinated and scheduled by a central entity. This is particularly surpris-
ing, especially when having in mind that, in the distributed setting, symmetry
breaking becomes much more harder (even in an asymmetric network), and the
scheduling of the searchers (i.e., which searchers are activated at any point in
time) is under the full control of an adversary. Due to the lack of space, most of
the proofs are omitted or sketched. All complete proofs can be found in [6].

Related Work. Graph searching has mainly been studied in the centralized
setting for its relationship with the treewidth and pathwidth of graphs |4, [18]. The
problem of computing the search number of a graph is NP-hard |21]. However,
this problem is polynomial in various graph classes [17, 19, 26]. In particular, it
has been widely studied in the class of trees [14, 2123, [25].

An important property of mixed-graph searching is the monotonicity prop-
erty. A strategy is monotone if no edges are recontaminated once they have been
cleared. For any graph G, there is an optimal winning monotone (mixed-search)
strategy [4]. This enables to prove that the number of steps of an optimal strat-
egy is polynomially bounded by the number of edges. Hence, the problem to
decide the mixed-search number of a graph belongs to NP. Instead, connected

! COordination of Robots in a Distributed and Asynchronous environment.
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graph searching, in which the set of clear edges must always induce a connected
subgraph, is not monotone in general [27] and it is not known if connected search
is in NP. Connected search is monotone in trees |2]. The connectivity constraint
may increase the search number of any graph by a factor up to 2 [13].

Graph searching has been intensively studied in various distributed settings
(see, e.g., |1,111],115,120]). Graph searching in the CORDA model has recently been
studied for rings [12]. The exclusivity constraint has been already considered in
the context of various coordination tasks for mobile entities in enhanced versions
of the CORDA model (see, e.g., [1, 8, [12]). In the context of graph searching,
the exclusivity constraint has been considered for the first time in our brief
announcement [5]. Here, we present and improve some results announced in [5].

2 Exclusive Search

In this section, we provide the formal definition of exclusive graph searching,
and present some basic general properties.

Given a connected graph G, an ezclusive search strategy in G, using k < n
searchers consists in (1) placing the k searchers at k different nodes of G, and
(2) performing a sequence of moves. A move consists in sliding one searcher from
one extremity u of an edge e = {u, v} to its other extremity v. Such a move can
be performed only if v is free of searchers. That is, exclusive-search limits the
strategy to place at most 1 searcher at each node, at any point in time. The
edges of graph G are supposed to be initially contaminated. An edge becomes
clear whenever either a searcher slides along it, or one searcher is placed at each
of its extremities. An edge becomes recontaminated whenever there is a path
free of searchers from that edge to a contaminated edge. A search strategy is
winning if its execution results in all edges of the graph G being simultaneously
clear. The exclusive-search number of G, denoted by xs(G) is the smallest k for
which there exists a winning search strategy in G.

Now, we state and explain the main differences between exclusive search and
all classical variants of graph searching. These differences are mainly due to the
combination of the two restrictions introduced in exclusive search: two searchers
cannot occupy the same node (exclusivity) and a searcher cannot “jump” (in-
ternality). Intuitively, the difficulty occurs when a searcher has to go from one
node u to a far away node v, and all paths from u to v contain an occupied node.

Consider a simple example of a star with central node ¢ and n leaves. In the
classical graph searching, one searcher can occupy ¢, while a second searcher
will sequentially clear all leaves, either by jumping from one leaf to another, or
by sliding from one leaf to another, and therefore occupying several times the
already occupied node c. In exclusive graph searching, such strategies are not
allowed. Intuitively, if a searcher r; has to cross a node v that is already occupied
by another searcher ro, the latter should step aside for letting r; pass. However,
ro may occupy v to preserve the graph from recontamination, and moving away
from v could lead to recontaminate the whole graph. To avoid this, it may be
necessary to use extra searchers (compared to the classical graph searching)
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that will guard several neighbors of v to prevent from recontamination when
ro gives way to r1. It follows that, as opposed to all classical search numbers,
which differ by at most some constant multiplicative factor, the exclusive search
number may be arbitrary large compared to the mixed-search number, even in
trees. For instance, it is easy to check that xs(S,) = n — 2 for any n-node star
Sn, n > 3. More generally (see [6]):

Claim 1. For any tree T with maximum degree A > 2, xs(T) > A —2 .

This result shows an exponential increase in the number of searchers used
to clear a graph since the mixed-search number of n-node trees is at most
O(logn) |22]. On the positive side, we show that, for any graph G with maximum
degree A, s(G) < xs(G) < (A —1)s(G) [6]. To prove it, we consider a classical
strategy S for G using s(G) searchers. To build an exclusive strategy S, for G,
we mimic S using a team of A — 1 searchers to “simulate” each searcher in S.

We now turn our attention to the monotonicity property. Indeed, another im-
portant difference of exclusive search compared to classical graph searching is
that it is not monotone. As explained in the example of a star, when a searcher
needs to cross another one, letting the former searcher pass may lead to recon-
taminate some edges. In spite of that, the goal of the winning strategy is to
prevent an “uncontrolled” recontamination. In [6], we prove that:

Claim 2. FEzxclusive graph searching is not monotone, even in trees.

Last, but not least, contrary to classical graph searching, exclusive graph
searching is not closed under minor. Indeed, even taking a subgraph can decrease
the connectivity which, surprisingly, may not help the searchers (due to the
exclusivity constraint). That is, there exist a graph G and a subgraph H of
G such that xs(H) > xs(G) [6]. Nevertheless, exclusive-search is closed under
subgraph in trees (see [6]):

Lemma 1. For any tree T and any subtree T' 