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Abstract. Pure, lazy functional languages like Haskell provide a sound
basis for formal reasoning about programs in an equational style. In prac-
tice, however, equational reasoning about correctness proofs is underuti-
lized. In the context of Haskell, we suggest that part of the reason for
this is the lack of accessible tools for machine-checked equational reason-
ing. This paper outlines the design of MProver, a proof checker which
fills just that niche. MProver features first-class support for reasoning
about potentially undefined computations (particularly important in a
lazy setting), and an extended notion of Haskell-like type classes, en-
abling a highly modular style of program verification that closely follows
familiar functional programming idioms.

1 Introduction

The grand promise of pure functional languages is a mathematically rigorous
style of programming—a style in which the meaning of a program is defined
precisely and compositionally, and program properties may be reasoned about
statically according to intuitive yet precise laws. The use of a lazy or non-strict
semantics, as exemplified by Haskell, enables a wide array of proof techniques
based on the simple unifying principle of equational reasoning: if it can be shown
that subterm t in a program always evaluates to the same thing as t′, we may
subsitute t with t′ without fear of changing the program’s meaning in subtle
ways.

The strong, static type system of Haskell is a highly successful example of
“lightweight formal methods”, capable of detecting and preventing many kinds
of programming errors. However, it does not have the power to express, let
alone enforce, many useful properties that can be proved via external equational
reasoning. Yet there is a gap when it comes to tools: while the Haskell type
checker automatically decides whether a program is well typed, few tools in
widespread use support automatic checking of equational reasoning proofs. We
believe that this lack is a serious obstacle to broader adoption of equational
reasoning, and that developing such a tool would make equational reasoning
accessible to a wider audience.
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This paper describes the design of a new system called MProver for proving
equational properties of programs in a pure, lazy, functional language. Our main
motivation in developing MProver is to support machine-checked equational rea-
soning proofs about programs using “pure” monads (i.e. monads other than IO)
– hence the M in MProver. The system is, however, useful for all kinds of func-
tional programming idioms; it is not limited, nor even specifically tailored, to
monadic programs.

In comparing MProver to related systems such as Coq [1], Agda [27], and
Sparkle [2], three design decisions stand out:

Type Classes Are Extended with Proof Obligations. Haskell’s type class
system enables programs to be written in terms of signatures, rather than partic-
uar type structures. Perhaps the most common example is that of monads, which
can be used to model a wide variety of “notions of computation”, such as I/O,
mutable state, and nondeterminism. Programs written to target the Monad type
class can then be reused in any computational setting, and new computational
settings may be added to the Monad class as long as operations for sequencing
(bind) and for injection of effect-free computations (return) are defined.

In general, a type class is associated not just with a set of type signatures,
but also with an implicit specification or contract governing how the operations
are supposed to behave; for example, Monad instances are, very loosely stated,
supposed to have the properties that sequential composition of computations
is associative and that return is a left- and right-unit with respect to sequen-
tial composition. Haskell’s type system does not check these properties; indeed,
it cannot even express them directly. MProver makes the contract explicit; it
augments the Monad class by adding proof obligations for the monad laws, as
pictured in Figure 1. This approach allows not just programs, but also proofs,
to be parameterized over all monadic notions of computation, enabling a mod-
ular style of proving that closely parallels the familiar vocabulary of functional
programming idioms.

“Bottom” as a First-Class Citizen. In a lazy language, undefinedness is an
ever-present concern, in that variables are not necessarily bound to well-defined
values. For this reason, MProver, like Sparkle, treats the undefined value (that
is, the value of diverging or erroring computations) as a “first-class citizen.” For
example, proofs by case analysis must consider as one case the possibility that
the expression being analyzed is undefined. By the same token, properties like
“f is strict in its third argument” can be expressed directly in the logic.

More General Notion of Equality for Potentially Infinite Structures.
Systems like Coq have a rather restrictive notion of equality for coinductive
types. Equality in Coq is intensional: that is, two expressions of the same type
are equal if and only if they evaluate to the same normal form. Coq will generally
refuse to β-reduce applications of functions producing a coinductive type, since
this may result in nontermination and thus compromise logical soundness. Thus
when working with coinductive types, one generally must define a weaker notion
of bisimulation in lieu of equality per se. Because MProver separates the universes
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of programs and proofs—program terms are only an object of logical reasoning
and are not themselves treated as logical proofs—it is possible to define a notion
of equality over infinite structures that is much easier to deal with.

class Monad m where
(�=) :: m a → (a → m b) → m b
return :: a → m a
leftunit ::: ∀ (x :: a) (f :: a → m b), return x �= f = f x
rightunit ::: ∀ (x :: m a), x �= return = x
assoc ::: ∀ (x :: m a) (f :: a → m b) (g :: b → m c),

(x �= f ) �= g = x �= λy → f y �= g

instance Monad Maybe where
(Just x) �= f = f x
Nothing �= = Nothing
return = Just
leftunit = leftunitMaybe
rightunit = rightunitMaybe
assoc = assocMaybe

leftunitMaybe = Foralli (x :: a) (f :: a → Maybe b),
join ::: return x �= f = f x

rightunitMaybe = Foralli (x :: Maybe a), case x of
undefined → join ::: undefined �= return = undefined
Nothing → join ::: Nothing �= return = Nothing
Just v → join ::: Just v �= return = Just v

assocMaybe = Foralli (x :: Maybe a) (f :: a → Maybe b) (g :: b → Maybe c), case x of
undefined → join ::: (undefined �= f ) �= g = undefined �= (λy → f y �= g)
Nothing → join ::: (Nothing �= f ) �= g = Nothing �= (λy → f y �= g)
Just v → join ::: (Just v �= f ) �= g = Just v �= (λy → f y �= g)

Fig. 1. The Monad type class in MProver, and an example instance

The remainder of this paper proceeds as follows. Section 2 gives a definition
of the core language of programmatic expressions, logical formulas, proof terms,
and tactics, and concludes with a few simple examples. Section 3 sketches the
extension of the language of Section 2 with type classes, illustrated by a monadic
equational reasoning proof adapted from Gibbons and Hinze [3]. Section 4 dis-
cusses related work, and Section 5 concludes.

2 Expressions, Formulas, Proofs, and Tactics in MProver

In this section we describe the basic design of the MProver language. We shall
defer discussion of the type class system to Section 3. The language may be di-
vided into two parts: the programming fragment and the proving fragment. The
programming fragment is a pure, lazy functional language with type classes—
essentially a subset of Haskell 98 [4]. In the proving fragment, proofs are ex-
pressed as terms in a λ-calculus-like language, but this language is entirely dis-
tinct from the language of programs and is not intended for evaluation other
than possibly for metatheoretic purposes.
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At the outermost level, an MProver program is a script containing both def-
initions of type, type classes, and variables (just as in Haskell), and proofs of
properties of those definitions (written in an MProver-specific proof notation).
A script consists of one or more top-level declarations. A declaration may be
a datatype declaration, a program term declaration, or a theorem declaration.
The syntax for datatype and program term declarations is identical to (a subset
of) Haskell, while theorem declarations have the form:

var ::: formula
var = proof

Here the var is the name of the theorem, the formula is the definition of the
theorem, and the proof is a proof of the theorem. The symbol ::: should be read
as “proves the formula”, by analogy with the Haskell symbol :: which is read
“has type”. The languages of formulas and proofs, and the relationship between
them, are discussed in Section 2.3.

2.1 Expressions

As a matter of terminology, we will refer to programmatic terms as expressions
and proof terms as proofs. We will consider a subset of the full expression lan-
guage; the grammar of this subset is given in Figure 2. The full language is more
fully featured than this, but the simpler formulation of Figure 2 will suffice for
our discussion of the essential characteristics of the language.

expr ::= λ var → expr (abstraction)
| expr expr (application)
| var (variables)
| ctor (data constructors)
| let (var = expr)* in expr (let-binding)
| case expr of (pat → expr)+ (case)
| undefined (undefined value)

pat ::= var (variables)
| ctor pat* (constructed values)
| (wildcard)

Fig. 2. Grammar for MProver Expressions

The semantics of MProver expressions is a standard non-strict semantics. As
in Haskell, let bindings are recursive.

2.2 Formulas and Proofs

The main design goal of MProver is to support equational reasoning. For this rea-
son, the language of program properties—called formulas—comprises just state-
ments of (in)equality between program terms, logical implication, and universal
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quantification over expressions. The grammar of formulas is given in Figure 3.
Note that the ∀ symbol in formulas is unrelated to the forall keyword used for
higher-rank polymorphism in Haskell.

formula ::= ∀ ( var :: type ), formula (universal quantification)
| formula → formula (implication)
| expr = expr (equality)
| expr �= expr (inequality)

Fig. 3. Grammar for MProver Formulas

Figure 4 gives the grammar of proof terms. In order: the Foralli and As-
sume forms are used to introduce variables ranging over expressions and proofs
of formulas, respectively. These variables may be referenced inside of a proof;
universally quantified proof terms may be instantiated by expressions; implica-
tion proofs may be applied to proofs of the antecedent (modus ponens); proof
expressions may be annotated with formulas as a hint to the proof checker; and
case-proofs allow casewise splitting on program terms. Of the remaining proof
forms, eval, clash, refl, trans, and symm may be viewed as directly reflecting
equational judgments that follow from the reduction semantics. The cong form
is used for congruence proofs (that is, substituting equals for equals).

proof ::= Foralli ( var :: type ), proof (forall-introduction)
| Assume ( var ::: formula ), proof (assumption)
| var (variables)
| proof expr (application 1)
| proof proof (application 2)
| proof ::: formula (annotation)
| case expr of (pat⊥ → proof )* (pattern matching)
| eval (evaluation)
| clash (constructor-clash)
| cong proof (congruence)
| refl (reflexivity)
| trans proof proof (transitivity)
| symm proof (symmetry)

pat⊥ ::= var (variables)
| ctor pat⊥* (constructed values)
| (wildcard)
| undefined (bottom)

Fig. 4. Grammar for MProver Proofs
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2.3 Classification Rules

The process of proof checking, that is determining that a proof proves a formula,
is called classification, and is akin to type checking. The classification rules are
given in Figure 5. Contexts Γ contain assumptions of three forms: (1) x ::: φ,
indicating that variable x ranges over proofs of formula φ; (2) x :: t, indicating
that variable x ranges over expressions of type t; and (3) x = e, indicating that
variable x is bound to expression e. The “initial” Γ used by the proof checker
introduces all assumptions of the third type by binding top-level symbols to their
definitions; there is no let-binding construct for proof terms.

The relation �Γ, used in the rule for eval, is a single-step, call-by-name re-
duction relation on open terms. We subscript the relation with Γ so that the
definitions of top-level expressions may be expanded on an as-needed basis.
When performing reduction inside a λ or let expression, any definitions that
are shadowed by the local bindings are dropped from Γ. Variables not bound in
Γ are simply left as is, rather than expanded. The relation contains special rules
for handling undefined: in particular, undefined e �Γ undefined, pattern-
match failure reduces to undefined, and if a case expression forces evaluation
of an undefined scrutinee, the entire case-expression reduces to undefined.

The rules in the left column are essentially standard rules for assumption, ab-
straction, and application. The rule for case proofs has a couple of important
features: first, pattern matching must be exhaustive, and the undefined case
must be considered. Second, the formula φ that is proven inside the case alterna-
tives is parameterized by the different cases: for example, if a proof of the formula
∀ (b :: Bool), not (not b) = b is done by case analysis of b, the body of the respec-
tive case alternatives must prove not (not True) = True, not (not False) = False,
and not (not undefined) = undefined. We assume, for the sake of brevity, that
all patterns are either a constructor applied to variable patterns, undefined, or
the wildcard pattern (i.e. that patterns are not nested).

With respect to cong, note that due to MProver’s lazy semantics, this one
rule enables us to do all kinds of substitutions. For example, if we know that
f = g and we want to use this to prove that map f xs = map g xs, we can just
make up a new λ-abstraction, with a fresh variable representing the substitution
sites, and use cong apply that to our proof that f = g. A few eval steps will
then give us the substitution we desire. The price we pay for this parsimony is
that it is a bit tedious if such proofs done by hand; however, the subst tactic
described below automates this process.

2.4 Recursive Data Structures

The presence of recursive data structures necessitates some kind of support for
coinduction. For this, we turn to Coq for inspiration. As an example, consider the
type of lazy lists: Figure 6 gives two definitions. The first is the definition of the
lazy list data type; the CoInductive keyword indicates that LLists may possi-
bly be infinite. The second definition is of a bisimulation – that is, a coinductively
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defined predicate that is weaker (i.e. identifies strictly more expressions) than
Coq’s definitional equality.

To support reasoning about potentially infinite codata in MProver, each con-
structor in a data-declaration induces an analogous constructor form for equal-
ity proofs. In the example of Figure 7, the equality-proof forms for lazy lists
are given; notice that they have essentially the same form as the constructors
for the Coq bisimulation. In MProver, we simply overload the symbols Nil and
Cons as constructors for a coinductively-defined bisimulation on lazy lists. This
is the same bisimulation that we used in the Coq example: intuitively, if we have
a proof p that expressions e and e′ are equal, and a proof pl that lists l and l′

are equal, then just as we can “cons” e and e′ onto l and l′, so too can we cons
p onto pl, thus proving e : l = e′ : l′.

(x ::: φ) ∈ Γ

Γ � x ::: φ

Γ, (x :: t) � p ::: φ

Γ � Foralli(x :: t), p ::: ∀(x :: t), φ

Γ, (x ::: φ) � p ::: φ′

Γ � Assume(x ::: φ), p ::: φ → φ′

Γ � p ::: ∀(x :: t), φ Γ � e :: t

Γ � p e ::: [x/e]φ

Γ � p ::: φ → φ′ Γ � p′ ::: φ

Γ � p p′ ::: φ′

e1 �Γ e2
Γ � eval ::: e1 = e2

C �= C′

Γ � clash ::: C e1 · · · en �= C′ e′1 · · · e′m

Γ � p ::: e′ = e′′

Γ � cong p ::: e e′ = e e′′

Γ � refl ::: e = e

Γ � p1 ::: e1 = e2 Γ � p2 ::: e2 = e3

Γ � trans p1 p2 ::: e1 = e3

Γ � p ::: e1 = e2

Γ � symm p ::: e2 = e1

Γ, x11 :: p11 · · · x1m1 :: t1m1 � p1 ::: [x/(C1 x11 · · · x1m1)]φ
...

Γ, xn1 :: tn1 · · ·xnmn :: tnmn � pn ::: [x/(Cn xn1 · · · xnmn ]φ
Γ � p⊥ ::: [x/undefined]φ

Γ �

⎛
⎜⎜⎝

case e of (C1 x11 · · · x1m1) → p1
· · ·
(Cn xn1 · · · xnmn) → pn
undefined → p⊥

⎞
⎟⎟⎠ ::: [x/e]φ

(Note: The case rule assumes that C1 · · ·Cn are all the constructors for some data
type, that C1 · · ·Cn have arities m1 · · ·mn respectively, that no xij is free in φ, and
that x is not the same variable any xij .)

Fig. 5. Proof Classification Rules
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CoInductive LList (A:Type) : Type :=

| LCons : A -> LList A -> LList A

| LNil : LList A.

CoInductive bisim (A:Type) : LList A -> LList A -> Prop :=

| bisim_LCons : forall (x:A) (l1 l2:LList A),

bisim l1 l2 -> bisim (LCons x l1) (LCons x l2)

| bisim_LNil :

bisim (LNil A) (LNil A).

Fig. 6. Lazy lists and bisimilarity in Coq

data List a = Nil | Cons a (List a)

Γ � Nil ::: Nil = Nil

Γ � p ::: x = x′ Γ � ps ::: xs = xs′

Γ � Cons p ps ::: Cons x xs = Cons x′ xs′

Fig. 7. Lazy lists and their coinduction rules in MProver

Guardedness. Coinductive proofs, then, are constructed as corecursive proof
terms—that is, they are defined in terms of themselves. As always, this raises
a red flag: unrestricted use of recursion would render MProver’s logic unsound,
allowing us to prove any theorem by appeal to itself. In order to mantain sound-
ness, we require that all recursive proof applications use guarded recursion. Here
again, guardedness is the same guardedness condition used by Coq [5]. In a nut-
shell, this means that any recursive application of a proof term must occur inside
an equality constructor application. The proof of Figure 8, to be discussed in
greater detail shortly, illustrates this: the recursive application of mapfusion is
an immediate argument to Cons, and thus the recursion is guarded.

2.5 Tactics and Syntactic Sugar

The core proof language of Figure 4, while quite expressive, is a bit inconvenient
when large numbers of evaluation steps must take place. Consider, for example,
the simple property id (id id) = (id id) id, where id is a global symbol defined as
id = λx → x. Probably the most obvious proof of this requires four eval steps
to reduce both sides of the equation to id id, and an application of symm to
link the two halves of the proof together. The result may not be intimidating
to the proof checker, but from a human’s point of view it is rather tedious and
unpleasant:

trans (eval ::: id (id id) = (\ x -> x) (id id))

(trans (eval ::: (\ x -> x) (id id) = id id)

(symm (trans (eval ::: (id id) id = ((\ x -> x) id) id)

(eval ::: ((\ x -> x) id) id = id id))))
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For this reason, we extend the core language with a tactic called join. Given
left- and right-hand side expressions e1 and e2, the join tactic works by repeat-
edly applying reduction steps to e1 and e2 until one of the following happens:

– e1 and e2 reach e′1 and e′2, respectively, where e′1 and e′2 are α-equivalent.
Then join succeeds.

– e1 and e2 reach C1 e11 · · · e1n and C2 e21 · · · e2m where C1 and C2 are
different constructors. Then join fails.

– e1 and e2 reach C1 e11 · · · e1n and C2 e21 · · · e2n where some e1i is not
α-equivalent to e2i. Then for each e1j and e2j such that e1j and e2j are not
α-equivalent, recursively attempt to join e1j with e2j . If all the recursive
calls succeed, then join succeeds. If any recursive call fails, then join fails.

This procedure, which happens during the proof-checking phase, produces a
proof term like the one given above; this reduces the burden on the user, who
would otherwise have to construct tedious step-by-step reduction proofs by hand.
At the same time, it does not complicate the underlying theory, since even if the
tactic succeeds the generated proof term will still be checked according to the
rules of Figure 2.3.

A second tactic, called subst, comes in handy when it is necessary to rewrite
underneath constructors or inside λ-abstractions; given a proof p that e1 = e2,
subst will construct a proof that e = e′ if e′ can be obtained by substituting all
occurrences of e1 with e2 in e. This tactic makes extensive use of the cong rule.

2.6 Syntactic Sugar for trans

The applicative syntax for constructing trans-proof terms is a little bit un-
wieldy in practice. This is unfortunate, considering that equational reasoning
proofs, often quite transitivity-heavy, are exactly what MProver is meant for!
To ameliorate this, we supply a little bit of syntactic sugar, vaguely inspired by
Haskell’s do-notation for monads. Any proof term of the form:

[ e1 = e2 { p1 } ... = en { pn-1 } ]

will be desugared to:

(trans (trans (trans ... (p1 ::: {e1 = e2}) (p2 ::: {e2 = e3}))

... (pn-1 ::: {en-1 = en})))

The result, illustrated in Figure 8 and in Figure 10, bears a reassuringly close
resemblance to a “textbook” equational reasoning proof.

2.7 Example: Map Fusion

Having built up the requisite machinery, we can now present a more involved
example of an MProver proof, given in Figure 8. The proof is of the familiar map
fusion property, over the lazy list type defined previously in Figure 7. Assume
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that map and the function composition operator . are defined in the standard
way. The proof then breaks down into three cases: one where the input list is
undefined, one where it is empty, and one where it is a cons cell. In the first two
cases, the desired property follows simply from evaluation (join). The third case
is slightly more complicated, requiring the use of coinduction. Here the first use
of (join) pulls the Cons constructor out front, and combines the applications of
g and f with function composition. We then appeal to the coinduction rule for
Cons to rewrite the tail of the list into the desired form. In the final step, simple
evaluation gives us the result we want.

mapfusion ::: Forall (f::a -> b) (g::b -> c) (l::List a),

map g (map f l) = map (g . f) l

mapfusion = Foralli (f::a -> b) (g::b -> c) (l::List a),

case l of

undefined -> join ::: map g (map f undefined) = map (g . f) undefined

Nil -> join ::: map g (map f []) = map (g . f) []

Cons x xs ->

[ map g (map f (Cons x xs))

= Cons ((g . f) x) (map g (map f xs)) { join }

= Cons ((g . f) x) (map (g . f) xs) { Cons refl

(mapfusion f g xs) }

= map (g . f) (Cons x xs) { join }

]

Fig. 8. Map fusion

3 Type Classes

Let us now turn our attention to MProver’s extended notion of type classes. Type
classes were introduced in Haskell to allow for ad-hoc polymorphism—that is,
overloading of functions and operators—in a natural, extensible way. Viewed
another way, type classes can be seen as supporting modularity and abstraction
through well-defined interfaces: the programmer may declare a type to be an
instance of any type class simply by supplying a set of functions or operators
with the right type signature; programs whose types are parameterized over
members of that class can then be reused on new instances.

The Haskell community has developed a rich vocabulary of functional pro-
gramming abstractions grounded in abstract algebra and category theory, and
type classes are the language in which these abstractions are expressed [6]. How-
ever, a type class is often associated not just with a set of type signatures, but
also with one or more laws. For example, any instance type a of the class Monoid
must be associated with operators mempty :: a and mappend :: a → a → a. 1

1 There is also a third operator mconcat :: [a] → a, which has a default implementation
that may be overridden if desired for reasons of efficiency.
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This requirement is enforced by Haskell’s type system. It is also expected, how-
ever, that the operators follow certain laws: namely that mempty is a left and
right identity with respect to mappend, and mappend is associative. This re-
quirement is not checked mechanically by, nor even expressible in, Haskell’s type
system.

MProver supports richer specifications by extending type classes with asso-
ciated formulas expressing the laws that instances of the class must obey. Any
declared instance must contain not only definitions for the operators, but also
proofs that the operators follow the laws. Figure 1 illustrates a well-known exam-
ple of a type class in Haskell, that of monads2, extended with proof obligations
for the monad laws, along with a particular instance of that class (the Maybe
type familiar to Haskell programmers).

3.1 Monadic Equational Reasoning

Our approach to monadic equational reasoning shares much with that taken
by Gibbons and Hinze [3]. In particular, we program and prove in terms of
interfaces that axiomatize the behaviors of particular monadic effects, rather
than constructing a particular implementation of that interface (though this
can certainly be done). Figure 9 contains an MProver definition of Gibbons
and Hinze’s MonadFail and MonadExcept classes: that is, subclasses of Monad
supporting the throwing and handling of exceptions. In Figure 10, we use this to
prove the purity (meaning no uncaught exceptions) of a “fast product” function
which takes the product of a list, but first scans the list, throwing an exception
if a zero is found; this exception will be caught, and the function will return zero
in this case. Note that the fact that fastprod ’s codomain is in MonadFail makes
the proof instances for exceptLeftUnit and exceptPure available.

As it happens, there are a few stipulations having to do with definedness that
are not emphasized that strongly in the cited work, but must be made explicit
here (though proofs are omitted for space reasons). In particular, we require that
scanning the list for zero—that is, evaluating the expression 0 ‘elem‘ xs—
will terminate. Second, we must stipulate that the product function itself is
short-circuiting: the obvious definition foldr (*) 1 will not work, because it is
possible that this will diverge even when 0 ‘elem‘ xs = True. These sorts of
stipulations seem to come up sufficiently often in real-world equational proofs
that it might well make sense to extend the logic to make them explicit; this is
discussed further in Section 5.

4 Related Work

A major antecedent of this work is the Operational Type Theory implemented
in the Guru programming language [7]. The most salient feature of Opera-
tional Type Theory for our purposes is its treatment of undefined computations:

2 We omit fail from our definition since it is not really part of the mathematical notion
of a monad, though its inclusion would cause no problems.
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classMonad m ⇒ MonadFail m where
fail :: m a
failLeftZero ::: ∀ (x :: m a), fail � x = fail

classMonadFail m ⇒ MonadExcept m where
catch :: m a → m a → m a
exceptLeftUnit ::: ∀ (x :: m a), catch fail x = x
exceptRightUnit ::: ∀ (x :: m a), catch x fail = x
exceptAssoc ::: ∀ (x y z :: m a), catch x (catch y z ) = catch (catch x y) z
exceptPure ::: ∀ (x :: a) (y :: m a), catch (return x ) y = return x

Fig. 9. The MonadFail and MonadExcept classes

because OpTT directly encodes the (finite) sequences of reductions that are
required to establish equivalence of terms, the presence of nonterminating com-
putations does not compromise the soundness of its proving fragment. There is
much work on dealing with non-termination and infinite structures in existing
theorem proving systems. Coq [1] features support for coinductive types [5], en-
compassing both coinductive data structures and predicates. A similar design is
used for coinduction in Agda. Neither Coq nor Agda, however, supports direct
reasoning about undefined computations, as MProver and Guru do. Sparkle [2]
supports reasoning about undefined computations, as well as reasoning about
infinite structures via structural induction guarded by admissibility. Indirect ap-
proaches to dealing with undefined computations include the formalization of
domain theory within Coq [8], and extensions to Coq’s type theory [9, 10].

MProver is certainly not the first tool designed to support integrated devel-
opment and verification of functional programs. Particularly closely related to
MProver is the Sparkle prover for the Clean programming language [2]. Like
MProver, Sparkle has first-class support for reasoning about undefined compu-
tations: just as undefined is essentially treated as a constructor for all data
types in MProver, Sparkle introduces a special expression form, denoted ⊥, for
talking about undefined computations. Sparkle is built on a sophisticated system
of tactics and hints, which often results an automatic or near-automatic proving
process where typical properties of functional programs are concerned.

One difference between MProver and Sparkle lies in the semantic foundations.
Reasoning in Sparkle takes place internally in a simplified version of the Clean
language called Core Clean. MProver, by contrast, does not simplify programs to
a core language. The semantics of Core Clean is based on lazy graph rewriting,
whereas MProver uses what is essentially a call-by-name reduction semantics.
Considerable work has also been done on using type classes in Sparkle [11],
which should enable a type class-directed style of proving (one of “proving
to specifications” rather than proving to structures) very similar to MProver.
However, Sparkle does not extend type classes with logical specifications like
MProver does. Instead, it relies on a clever scheme of induction over the sets of
defined instances; this allows proofs to leverage the semantic relationships among
derived typeclass instances (e.g. if the Eq instance for type T is an equivalence
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ifredundant ::: Forall (b::Bool) (e::a),

Assuming b =/= undefined,

if b e e = e

productspec ::: Forall (xs::[Int]),

Assuming 0 ‘elem‘ xs = True,

0 = product xs

condlift ::: MonadExcept m =>

Forall (b::Bool) (m1 m2 m3::m a),

Assuming b =/= undefined,

catch (if b then m1 else m2) m3

= if b then catch m1 m3 else catch m2 m3

fastprodpure ::: Forall xs::[Int],

Assuming 0 ‘elem‘ xs =/= undefined,

fastprod xs = return (product xs)

fastprodpure =

Foralli xs::[Int],

Assume (zerodecidable:::0 ‘elem‘ xs =/= undefined),

[ fastprod xs

= catch (work xs) (return 0) { join }

= catch

(if 0 ‘elem‘ xs

then fail

else return (product xs))

(return 0) { subst by (workspec xs) }

= if 0 ‘elem‘ xs

then catch fail (return 0)

else catch

(return (product xs))

(return 0) { condlift

(0 ‘elem‘ xs) fail

(return (product xs)) (return 0)

zerodecidable }

= if 0 ‘elem‘ xs

then return 0

else catch

(return (product xs))

(return 0) { subst by (exceptLeftUnit (return 0)) }

= if 0 ‘elem‘ xs

then return 0

else return (product xs) { subst by (exceptPure (product xs)) }

= if 0 ‘elem‘ xs

then return (product xs)

else return (product xs) { subst by productspec }

= return (product xs) { ifredundant

(0 ‘elem‘ xs)

(product xs)

zerodecidable }

]

Fig. 10. MProver formalization of Gibbons and Hinze’s “fast product” function
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relation, so too is the instance for type [T ]). The advantage of this approach is
that reasoning in Sparkle can be viewed as “external” to an even greater degree
than in MProver; reasoning about type class-based programs is available even if
the original program is completely innocent to logical specifications. Finally, it
is worth noting that Sparkle has support for explicit strictness annotations [12].
This provides a very clean and reasonable alternative to the kind of “definedness
stipulations” that permeate the proof of Figure 10. In Section 5 we will briefly
sketch a similar approach to this problem that we are considering for MProver.

Type classes originated in Haskell [13] as a means of enabling ad-hoc polymor-
phism, and the idea has been reimplemented in Coq [14] and Isabelle/HOLCF [15].
The Haskell community has developed a number of theories and tools [16] for for-
mal (and semi-formal) reasoning about Haskell programs. Recent work on static
contract checking [17, 18] focuses on the automatic verification of pre- and post-
conditions for Haskell functions. SmallCheck [19] is a type-directed framework for
automated testing of program properties, similar to QuickCheck [20] but exhaus-
tively testing all values of a type up to a certain “depth”, rather than randomly
generating test cases. Other tools include the Haskell Equational Reasoning As-
sistant [21], an AJAX-based tool for rewriting Haskell expressions while preserv-
ing semantic equality. The HasCASL project [22] has developed an extension of
the algebraic specification language CASL with Haskell-like language constructs.
Further investigations of logical aspects of Haskell-like languages, especially with
regard to laziness, may be found in [23, 24].

5 Summary and Future Work

This paper has outlined the design of a proof-checking system for a lazy func-
tional language, called MProver. The work described here is still at an early
stage, but we expect that MProver will be a very useful tool for mechanized equa-
tional reasoning. As we develop our implementation further, we are interested in
adapting more examples of pen-and-paper proofs already in the literature and
mechanizing them with MProver.

A preliminary implementation of MProver is available from HackageDB, con-
taining a few examples that may be of interest to the reader. As of this writing,
we do not have a full development of MProver’s metatheory. However, we believe
that a soundness argument may be derived from Harrison and Kieburtz’s seman-
tics for Haskell, in a similar fashion to P-logic [23,24]. P-logic takes the view that
if P is a predicate over (possibly undefined) values of a type T , then P refines T :
that is, the denotation of P is a subset of the denotation of T . In adapting this to
MProver, we may say that Forall formulas quantified over expressions of type T
refine the type T . As it happens, the programming fragment of MProver as pre-
sented here does not contain such features as seq, ∼-patterns, and polymorphic
recursion, which are present in P-logic and add significantly to the complexity of
its semantics. Excluding these features means that the soundness argument for
MProver will be considerably simpler; at the same time, we believe that building
MProver’s semantics on top of this work shows that MProver could be extended
with these features without disturbing its semantic foundations.
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We also expect that an operational semantics, and a corresponding soundness
argument, can be derived from existing work on Operational Type Theory [7],
if it is suitably adapted to handle lazy evaluation and infinite data structures;
we intend to consider this in future work.

Extension: Termination Types. Haskell equational reasoning proofs very
often make assumptions about the finiteness or definedness of an expression.
There are two major reasons for this: (1) sometimes infinite or undefined values
are a pathological case that we don’t actually care about, and excluding them
may simplify reasoning (permitting in particular the use of structural induction);
and (2) sometimes the properties we want to prove for defined and/or finite
values aren’t actually true of undefined or infinite values. The design described
here does not have an adequate mechanism for handling this.

A possible solution to this problem is to further augment MProver’s type sys-
tem with a system of termination types. In this system, termination annotations
would refine types by attaching tags restricting types to the finite case, or to
the defined case (or to both). A proof quantified over, say, finite lists, could then
use structural induction (as opposed to coinduction). Standard techniques for
checking termination and productivity (e.g. structural/guarded recursion) could
be integrated into the type checker. This idea bears a close similarity to Howard’s
work on pointed types [25] and the termination types of Trellys [26].

Acknowledgments. The authors would like to thank the anonymous reviewers
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22. Schröder, L., Mossakowski, T.: HasCasl: Integrated higher-order specification and

program development. Theor. Comput. Sci. 410, 1217–1260 (2009)
23. Kieburtz, R.B.: P-logic: property verification for Haskell programs (2002)
24. Harrison, W.L., Kieburtz, R.B.: The Logic of Demand in Haskell. J. Funct. Pro-

gram. 15, 837–891 (2005)
25. Howard, B.T.: Inductive, coinductive, and pointed types. In: ICFP 1996: Proceed-

ings of the First ACM SIGPLAN International Conference on Functional Program-
ming, pp. 102–109. ACM, New York (1996)

26. Casinghino III, C., Eades, H.D., Kimmell, G., Sjoberg, V., Sheard, T., Stump, A.,
Weirich, S.: The preliminary design of the Trellys core language Talk and discussion
session at PLPV 2011 (2011)

27. Norell, U.: Towards a practical programming language based on dependent type
theory. Department of Computer Science and Engineering, Chalmers University of
Technology (September 2007)


	The Design of a Practical Proof Checkerfor a Lazy Functional Language
	1 Introduction
	2 Expressions, Formulas, Proofs, and Tactics in MProver
	2.1 Expressions
	2.2 Formulas and Proofs
	2.3 Classification Rules
	2.4 Recursive Data Structures
	2.5 Tactics and Syntactic Sugar
	2.6 Syntactic Sugar for Trans
	2.7 Example: Map Fusion

	3 Type Classes
	3.1 Monadic Equational Reasoning

	4 Related Work
	5 Summary and Future Work
	References




