
Call-by-Value Semantics for Mutually Recursive
First-Class Modules

Judith Rohloff and Florian Lorenzen

Technische Universität Berlin
Compiler Construction and Programming Languages

Ernst-Reuter-Platz 7, D-10587 Berlin
{judith.rohloff,florian.lorenzen}@tu-berlin.de

Abstract. We present a transformation based denotational semantics
for a call-by-value language with first-class, hierarchical and recursive
modules. We use the notion of modules as proposed in [1]. They merge
dynamic data structures with aspects of modularisation and name bind-
ing in functional programming languages. Modules are first-class values
which capture recursive definitions, lexical scoping, hierarchical structur-
ing of programs and dynamically typed data structures in a single con-
struction. We define a call-by-value language ModLang and explain what
problems occur in combining nested, recursive and first-class modules.
We then show how to solve these problems by defining a dependency
analysis to determine the evaluation order, enabling a transformation
into an intermediate representation. Finally, we present a denotational
call-by-value semantics.

1 Introduction

Modularisation in an essential tool for managing complexity in the design of
large scale software. To be effective, module systems must organise code into
fine grained hierarchies without impeding reusability. The competing nature of
these goals has given rise to several approaches for designing module systems.
With parametric modules, we obtain adaptable code that is easy to reuse at dif-
ferent parts of the architecture. First-class modules [2,3,4], i.e. modules that can
be arguments and results of functions, allow parametric modules to be defined
as normal functions, so no special construct is needed. Furthermore, first-class
modules enable runtime reconfiguration of the architecture. With nested modules
[5] a fine grained module hierarchy is possible. Disallowing mutually recursive
modules [6,7,8] often destroys the natural structure of a program.

Recent approaches [9,8,10] have attempted to combine all three features in
a call-by-value language, but none of them have achieved full support. In this
paper we describe a way to give a call-by-value semantics to a language with
higher-order functions and nested, first-class, mutually recursive modules.

We use the grouping concept proposed in [1] as modules and call the pro-
posed construct module. Pepper introduces the concept of modules as a unified
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construct for bindings and data structures. Modules are sets of definitions. As
first-class values, they can also be used as records. They distinguish from records
in that all definitions within a module can see each other. In [1] modules are
treated coalgebraically and regarded as objects implicitly defined by their
observers.

In contrast to this semantic approach, we focus here on an efficient implemen-
tation by defining formal semantics and analyses for modules. For this purpose
we define a small functional call-by-value language ModLang, which is similar
to an untyped λ-calculus extended by modules.

As modules are first-class values, have binding definitions and are allowed
to be mutually recursive, it is not possible to give a straightforward semantics.
In this paper we describe a way to give a transformation-based call-by-value
semantics to modules.

The paper starts with a short introduction of the module concept. In Sec. 3 we
describe why it is not possible to give a straightforward semantics and introduce
our solution. In a call-by-value semantics, an evaluation order is needed, as every
variable must be bound to a value before it is used. There are two possibilities
to obtain this order. Either the programmer has to state all definitions in depen-
dency order (e.g. ML), or the order is determined via dependency analysis (e.g.
Opal or Modula-3 [11]). As modules are sets of definitions, no order is given.
The dependency analysis for our language is described by an example in Sec. 4.
In Sec. 5 the result of the dependency analysis is used to transform the input
program into an intermediate representation with explicit dependency order. In
Sec. 6 we present a denotational semantics for our intermediate representation.
Sec. 7 discusses related work and Sec. 8 summarises our results and gives an
overview of current and future work.

2 The ModLang Language

ModLang is a functional language with modules. We describe the language Mod-
Lang by some examples. The syntax is given in Sec. 4.

2.1 Introductory Example: Lists

Abstractions, applications and conditionals have their usual meaning. We focus
on modules and selections.

Following [1] we define a module as a set of named definitions. Listing 1.1 shows
the well-known example of lists. The module List contains five definitions nil,
cons, head, tail and enum.1 In this example the module represents a module
encapsulating definitions. Since the order of the definitions is irrelevant, it can
be seen as a set — hence the surrounding curly braces.
1 A usable list implementation would require the discriminators isNil and isCons.

They can be implemented using the module discriminator DEFINES, which checks if
a given module defines exactly the given variables. As DEFINES is a dynamic check,
we do not consider it in this paper.
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1 List = {
2 nil = {}
3 cons = λx.λxs. { hd=x tl=xs }
4 head = λxs. xs.hd
5 tail = λxs. xs.tl
6 enum = λn. { enum = λi.
7 IF i==n THEN nil ELSE cons i (enum (i+1))
8 }.enum 0
9 }

Listing 1.1. Lists in ModLang

Both constructors, nil and cons, implement the list elements with modules as
well — nil is the empty module and cons returns a module containing the head
hd and the rest tl of the list. In this case modules are used as data structures,
which can be built up and changed at runtime.

The function head (tail) selects the first element (the rest) of the given
list via the selection operator “.”. In this manner these functions abstract the
selectors .hd and .tl.

The function enum forms a list of numbers between 0 and n. This definition
illustrates several aspects of our language design:

– All variables of the outer module can be used on the right hand side of a
definition. In this case these are nil and cons.

– Within the expression an anonymous module containing the definition enum
is defined. We call a module anonymous if it is not the top level node of the
syntax tree of a right-hand side of a definition.

– In the definition of enum of the anonymous module the variable enum is used.
Because of the lexical scoping, the innermost definition is addressed. Thus
it is enum of the anonymous module and not List.enum.

– On the right hand side of List.enum the selector .enum is called. The anony-
mous module and its selection are used as a local recursive “let-in” or “where”.

2.2 Functional-Object-Oriented Programming

Our second example shows, how we can use modules to program in an object
oriented manner. Listing 1.2 shows an eval-apply-interpreter with environments
for the untyped λ-calculus. A term is either a variable Var, an abstraction Abs or
an application App. These term constructors are quite similar to the “objects-as-
closures” implementation [12], but here they are evaluated to modules instead of
closures. Those modules contain an evaluation function eval, which uses an envi-
ronment to compute the value of the term. In doing so, the sub-terms’ evaluation
functions may also be used.

During the evaluation of a variable, its value is determined from the envi-
ronment Γ (line 2). To evaluate an abstraction, a closure (i.e. module) with the
abstract variable var, the function body body and the current environment env
must be built (line 3).



104 J. Rohloff and F. Lorenzen

1 Term = {
2 Var = λx. { eval = λΓ. Γ.lookup x }
3 Abs = λx.λt. { eval = λΓ. { var=x body=t env=Γ } }
4 App = λt1.λt2. { eval = λΓ. apply (t1.eval Γ) (t2.eval Γ)
5 apply = λf.λa.
6 f.body.eval (f.env.add f.var a) }
7 }

Listing 1.2. An eval-apply-interpreter in a functional-objekt-oriented style

The implementation of the environment is shown in Listing 1.3. An envi-
ronment is a list of records {var=x val=v} using the list implementation in
Listing 1.1. An environment has the functions add to add a new binding and
lookup to determine the value of a variable. The constructor Env creates an
environment containing all bindings of bdgs.

In contrast to terms new environments must be created during evaluation. In
add a new environment is created with Env which contains all previous bindings
as well as the new binding Bdg x v

1 Env = λbdgs. {
2 Bdg = λx.λv. { var=x val=v }
3 add = λx.λv. Env (List.cons (Bdg x v) bdgs)
4 lookup = ... // searching in list
5 }

Listing 1.3. Environment for eval-apply-interpreter

As demonstrated by this example:

– Objects can be realised as modules. Methods are definitions within a module.
– Constructors of object oriented programming languages can be seen as func-

tions returning modules.
– Variables, abstracted by λ within a constructor play the role of fields. It

is also possible to define them in definitions, making them accessible from
outside by selection.

– The binding rules for modules enable methods to have access to the methods
and fields of its enclosing object. A special reference like this in Java or self
in Smalltalk does not exist.

2.3 Mutually Recursive Modules

The list example has already shown that definitions may be recursive. Mutually
recursive definitions are allowed as well, even across module borders. An example
for mutually recursive modules is given in Listing 1.4. This program will be used
as a running example throughout the rest of this paper. In this example the two
functions E.even and O.odd are defined. Jointly they decide whether a given
number is even or not. O.odd uses E.even and vice versa. Moreover these two
functions are used by E.is2even and O.is2odd.
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1 { E = { even = λn. IF n==0 THEN true ELSE O.odd (n-1)
2 is2even = even val
3 val = 2 }
4 O = { odd = λn. IF n==0 THEN false ELSE E.even (n-1)
5 is2odd = odd 2 }
6 }

Listing 1.4. Mutually recursive modules

3 Towards an Evaluation

In a call-by-name semantics no evaluation order is needed, as we can evaluate
all definitions on demand. Therefore, a call-by-name semantics to ModLang can
be readily given. Although it is a matter of taste which semantics one prefers,
call-by-value languages are easier to combine with parallel programming and
side effects. For these reasons, it is desirable to give a call-by-value semantics to
ModLang.

As previously mentioned, implementing call-by-value semantics for ModLang
requires a dependency analysis. As we combine all three features of our modules
it is not easy to find the evaluation order. We describe the difficulties involved
by starting with only nested modules and then adding mutual recursion. Finally
we make our modules first-class values.

3.1 Nested Modules

We start with nested modules, which enable building up a hierarchy of modules.
Modules are only allowed as top-level expression or as the right hand side of a
definition. Definitions are not allowed to be mutually recursive. It follows that
within every module, an order for all definitions can be found.

To obtain the evaluation order for the example in Listing 1.5 it is obvious that
we first have to evaluate the complete module B with both definitions. Then the
definition g can be evaluated, followed by the module A.

1 {A = {x = B.x + y y = g}
2 g = B.x + B.y
3 B = {x = 1 y = 3}
4 }

Listing 1.5. Example for evaluation order

For programs without first-class and mutually recursive modules, the order
could be determined by regarding only the free variables of all right hand sides
and computing a normal dependency graph. The dependency graph for this
example is given in Fig. 1(a).

As will be shown in the next section, this approach is insufficient when mu-
tually recursive modules are allowed.
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Fig. 1. Dependency graphs using free variables

3.2 Mutually Recursive Modules

We now allow nested modules to be recursive. As before, they are still not allowed
to be defined within an expression. As recursion in a call-by-value semantics
only terminates if all definitions are functions we forbid cycles where at least
one definition is not a function, as typical in most call-by-value languages. Even
with this constraint it is still not easy to find the evaluation order.

To understand the problem with mutually recursive modules, we will again
consider the even-odd example in Listing 1.4.

In a call-by-value semantics recursion is only possible for λ-abstraction, since
those definitions evaluate to closures. Therefore, it is not possible to build up
a closure for the entire module. This would only be possible if the auxiliary
functions is2even and is2odd were not present. We have to find an order for
all definitions within the two modules E and O. For the given example, the call-
by-value semantics requires that even and odd must be evaluated before is2odd
and is2even. It is not possible to find this order by only regarding the free
variables. The dependency graph for this example with free variables is shown in
Fig. 1(b). There is a cycle between E and O, which is forbidden as both definitions
are modules and not functions. This contradicts the goal of allowing mutually
recursive modules.

To calculate the correct evaluation order we look at dependencies across mod-
ule borders and also consider selection chains (see definition in Sec. 4.2). In this
example, a possible evaluation order is: E.val, E.even, O.odd, E.is2even, E,
O.is2odd, O.

By using the complete selection chain for the dependency, the hierarchy is
broken up and the mutually recursive modules are handled simultaneously.

In [1] a flattening mechanism is proposed to find an evaluation order. Here the
hierarchy is broken up and all definitions occur at the same level. The result of the
flattening for example in Listing 1.4 is shown in Listing 1.6. Instead of just one
identifier, the name on the left-hand-side of all definitions is the complete path
with dot notation. Furthermore, all variables must be replaced by the complete
name within the module, e.g even in the definition is2even must be replaced
by E.even. Renaming is necessary, to ensure unique names after flattening as it
could be possible to have the same definition name in two modules.
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1 E.even = λn. IF n==0 THEN true ELSE O.odd (n-1)
2 E.is2even = E.even val
3 E.val = 2
4 O. odd = λn. IF n==0 THEN false ELSE E.even (n-1)
5 O.is2odd = O.odd 2

Listing 1.6. Example for flattening

After flattening, we can build up a dependency graph. But instead of just
using the free variables, we now use the complete selection chain.

Flattening is only possible for mutually recursive nested modules. The tech-
nique is not always applicable to first-class values, as shown by the example in
the next section.

3.3 An Undecidable Problem

Up to now modules were only allowed as top level expressions or as the right-
hand-side of a definition. If we allow modules to be first-class values, i.e. they are
allowed at any position in an expression, then flattening is not possible anymore.

In the previous section we regarded the complete selection chain for the depen-
dencies. This mechanism is quite similar to path resolution, which is undecidable
as proven in [9]. We will just give an informal explanation here.

In Listing 1.7 an artificial example is given. For flattening the expression
representing the complete selection chain s.a.b must be found. In this example
this name only exists if the input fulfils some predicate isValid. This is generally
not decidable.
1 λinput. {
2 s = IF isValid input THEN {a = 1}
3 ELSE {a = {b = 1}}
4 output = s.a.b
5 }

Listing 1.7. A problematic example (Using List of Listing 1.1)

In this case it is sufficient to recognise that output depends on s, so the
evaluation order is: s, output. In the case that s.a has no selector b, a runtime
error will occur, which is acceptable and common for failed selection.

Consequentially, there are some cases where we have to regard the selection
chain and some cases where parts of the chain should not be regarded. For every
selection chain we regard only the “static” part and ignore the “dynamic” part.
The static part of a selection chain is the variable and all selectors representing a
path within the current module hierarchy. In this example it is just the lexically
visible variable s, .a.b is the dynamic part, as these names only occur at runtime.
The proper way to calculate the dependencies is described in Sec. 4.

3.4 Solution

As previously mentioned, we start with a special dependency analysis to de-
termine the evaluation order. The result of the dependency analysis is used to
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E ::= M | T
T ::= [λ x . E ]� | [E E ]� | x � | [E . x ]�

M ::= { D* }�

D ::= x = M | x = T

Fig. 2. Syntax of labelled expressions

transform the whole input program into an intermediate representation with ex-
plicit ordering. This intermediate representation allows a simpler definition of
the semantics.

4 Dependency Analysis

In this section we illustrate our special dependency analysis by means of the
running example. We begin with the following definitions.

4.1 Labelled Expressions

The syntax of ModLang is given in Fig. 2. We distinguishes between modules
and other expressions by splitting E into modules M and terms T and we omit
conditionals and constants since they are not important for the rest of the paper.
Furthermore we annotate all expressions M ∪ T with a unique label of the set �
and use brackets to clarify which part of an expression is labelled. The inverse of
the labelling is the mapping EXP : � ↪→ M ∪ T . We use the labelling to attach
additional information to expressions.

4.2 Names

Selector / Name. A selector is an identifier with a prefix dot. A selector chain
is a sequence of selectors.

A name is a variable (identifier without a prefix dot) followed by a (possibly
empty) selector chain. The set of all names is denoted by N .

Free and Available Names. Every expression E of a program is mapped to
two sets using the labels �:

FN : � ↪→ PN set of free names
AVM : � ↪→ Px set of module-bound available variables

Free names extend the λ-calculus concept of free variables to names. Names
are free iff the leading variable is free. The function F of Fig. 3 maps every
expression to its free names.

Calculation of free variables and free names differs only in equation (∗) in
Fig. 3. Here, the whole name x1. · · · .xm is inserted instead of the variable x1.
The mapping FN is the composition FN = F ◦ EXP .
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F : M ∪ T → PN

F�λx.E� = F�E� � {x}
F�E1 E2� = F�E1� ∪ F�E2�
F�x1. · · · .xm� = {x1. · · · .xm} (∗)
F�E.x� = F�E�
F�x� = {x}
F�{xi =Ei

i∈1..m }� =
{
N | N = y1. · · · .yp ∧N ∈ ⋃

i∈1..m

F�Ei� ∧ y1 /∈ {xi
i∈1..m}

}

Fig. 3. Function calculating free names

Aα : α → Px → (� ↪→ Px) for α ∈ {E, T,M,D}
AE�T �Γ = AT �T �Γ
AE�M�Γ = AM �M�∅ (†)
AT �[λx.E]��Γ = {� 	→ Γ} ∪ (AE�E�Γ \ {x})
AT �[E1 E2]

��Γ = {� 	→ Γ} ∪ AE�E1�Γ ∪ AE�E2�Γ

AT �[E.x]��Γ = {� 	→ Γ} ∪ AE�E�Γ

AM �{Di
i∈1..m }��Γ = {� 	→ Γ} ∪

( ⋃
i∈1..m

AD�Di�(Γ ∪ {xi
i∈1..m})

)

where Di = xi =Ti or Di = xi =Mi

AD�x =T �Γ = AT �T �Γ
AD�x =M�Γ = AM �M�Γ (‡)

Fig. 4. Calculation of module-bound available variables

Available variables of an expression T are variables introduced by the outer
context of T . We are especially interested in variables introduced by a so called
uninterrupted module hierarchy. The syntax tree of an uninterrupted module
hierarchy only contains the non-terminals M and D of Fig. 2. This set of variables
is called module-bound available variables. It is stored in the mapping AVM which
is calculated by the family of functions AE , AT , AM , AD of Fig. 4 (one for each
nonterminal in the grammar of Fig. 2).

The second argument of function AE is the set of module-bound available vari-
ables of the outer context of an expression E. The mapping AVM of a program
E is defined as AVM = AE�E�∅, since the outer context is empty.

In equation (†) the set of module-bound available variables is cleared because
at that point a new hierarchy starts. In contrast, Γ in equation (‡) is not modi-
fied. The possibility to define the function Aα in this simple form was one of the
reasons to distinguish between modules and other expressions in the syntax.

4.3 Analysis

In Sec. 5, expressions E will be transformed into a new intermediate form with
an explicit evaluation order. This transformation needs the dependency order of
all expressions. In this section, we will describe the calculation of this ordering
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1

〈E, 2〉

〈E.val, 6〉 〈E.is2even, 5〉 〈E.even, 4〉

〈O, 3〉

〈O.odd, 7〉 〈O.is2odd, 8〉

Fig. 5. Module tree (without dashed edges) and dependency graph for the example in
Listing 1.4

Index FN AVM UNM

4 O.odd E, O, even, is2even, val O.odd
5 even,val E, O, even, is2even, val even,val
6 E, O, even, is2even, val
7 E.even E, O, odd, is2odd E.even
8 odd E, O, odd, is2odd odd

Fig. 6. Mapping label to module-bound used names

with the help of the running example. The complete function definitions can be
found in [13].

The evaluation order has to be calculated for every uninterrupted module
hierarchy. The analysis is split into the following three phases:

1. Build module tree
2. Calculate the dependency edges
3. Calculate the strongly connected components (e.g. Sharir’s algorithm [14])

We use our earlier example of recursive modules (see Listing 1.4) to illustrate
the analysis.

At the beginning a module tree for this uninterrupted module hierarchy is
built. The tree is shown in Fig. 5. Every node represents a definition. The left-
hand side is represented by the complete name within this module-hierarchy and
the right-hand side by its label. The root of each module tree is a special node.
It has no name, as the module is anonymous. The label is that of the outermost
module; in our running example it is 1. The children of a node are the definitions
of its associated module.

In phase two, all dependency edges have to be calculated. We have to consider
all leaves. In our example, these are all nodes with labels 4 – 8. First, the set of all
free names, where the variable is in the set of module-bound available variables
must be calculated. This set is called module-bound used names (UNM ). In Fig. 6
all three sets are calculated for each label. In this example, the set of module-
bound used names is identical to the set of free names. This is true in all cases,
as names from the outer context may be used.

For every name in the set UNM , the representing node has to be found.
The tree is searched upwards from the current node to find the variable that
corresponds to the name. For example, we consider the node with label 4 and
the module-bound used name O.odd.
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The parent node has no child with the definition O so we must look at the next
parent. That one has such a child — the node with label 3. Starting with this
node, the selector chain is considered. A suitable child must be found for every
selector in the chain. In this case, the next selector is .odd and the suitable child
is node 6. As there are no further selectors, node 6 is the desired node. Therefore,
a dependency edge is inserted from 4 to 6. If there is no suitable child, there are
two possibilities:

– The current node represents a module: this is an error, because the selector
will never exist.

– The current node represents another expression: this means the current node
is the one we have been searching for (e.g. this is the case for the example
in Sec. 3.32).

As all dependency edges are calculated for the module tree the recognised
static part is equal to the path in the tree.

Additional edges are added from the start node x to all ancestors of the found
node y, except for nodes which are also ancestors of x. In this example, an edge
from 4 to 3 must be added. These additional edges are necessary to properly
handle recursive modules, in this case of E and O. The complete dependency
graph is illustrated in Fig. 5.

Sharir’s algorithm [14] is used to calculate the strongly connected components
(scc) in dependency order for this graph. The result is a list of the sets of nodes.
As the top-level module is always the last component in the scc list and is never
recursive, we can ignore this component. In our example the nodes 2–8, except
6, are in one scc. The result is the following list:

{〈E.val, 6〉},
{〈E, 2〉 , 〈O, 3〉 , 〈E.even, 4〉 , 〈E.is2even, 5〉 , 〈O.odd, 7〉 , 〈O.is2odd, 8〉}

The result of the dependency analysis is used in the transformation described
in the next Sec. 5.

5 Transformation

In this section we describe the transformation based on the dependency order
of Sec. 4.3. Every abstract syntax tree (Fig. 2) is transformed into a tree with
explicit dependency order (Fig. 7).

In this syntax, modules are represented by a sequence Seq of definitions in
dependency order. Mutually recursive modules are combined in one Seq and
all their definitions are children of this node. Every definition is either recur-
sive (RecDef) or non-recursive (Def) or a module (Seq). All expressions T are
represented by S.

2 The module tree for the outer module does not contain a and therefore the de-
pendency edge for the free name s.a.b is the edge from output to s and so the
dependency analysis gives the order s, output.
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A ::= C | S
S ::= λ x . A | x | A . x | ...
C ::= Def N S | RecDef (N S)+ | Seq C*

Fig. 7. Abstract syntax with explicit dependency order

Only the transformation of modules is non-trivial. First, the strongly con-
nected components have to be calculated for the whole module as described
in the previous section. The result is used to transform the complete module
hierarchy into the syntax of Fig. 7. For lack of space we omit the concrete trans-
formation function, which can be found in [13].

The result of the transformation for the running example is given in List-
ing 1.8. The top level group is represented with the outer Seq, the mutually
recursive modules E and O are combined in the inner Seq. In the inner Seq all
definitions of both modules are given in dependency order.

1 Seq (Seq (Def E.val, 2)
2 (RecDef (E.even, λn. IF n==0 THEN true ELSE O.odd (n-1))
3 (O.odd, λn. IF n==0 THEN false ELSE E.even (n-1)))
4 (Def E.is2even, even val)
5 (Def O.is2odd, odd 2))

Listing 1.8. Transformed even-odd example.

During the transformation the definitions for mutual recursive modules are
ordered and so mutual recursion is allowed as long as all mutual recursive defi-
nitions are functions (see Sec. 3.2).

We will give a denotational semantics for the result of this transformation in
the next section.

6 Denotational Semantics

The result of the transformation is mapped to an interpretation by the evalu-
ation function E . We use the established techniques of denotational semantics
[15,16,17] without going into detail.

6.1 Semantic Domain and Auxiliary Functions

We map every expression A to a value V from the following semantic domains:
Values: V = N+ S+ B+ H+ F
Modules: H = x ↪→ V Functions: F = V → V

The set of all values consists of numbers N, strings S, booleans B, module
values H and function values F. Module values H are partial functions with finite
domain, mapping variables to values. Although the module value can be seen as
an evaluation context that maps free variables of an expression to a value, we
use a special evaluation context Γ in order to avoid confusion.
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E : A → Γ → H → V

E�Def N S�Γ H = N �⇒ (E�S�(Γ � (H|N )) ∅)
E�RecDef (Ni Si)

i∈1..n
�Γ H = v1 + · · ·+ vn

where Φ 〈Fi〉 i∈1..n
= 〈E�Si�(Γ � (H′|Ni)) ∅〉 i∈1..n

where v′i = Ni �⇒ Fi

H′ = H+ v′1 + · · ·+ v′n〈
Fi

i∈1..m
〉
= FIXΦ

vi = Ni �⇒ Fi

E�Seq Ci
i∈1..n

�Γ H = v1 + · · ·+ vn
where vi = E�Ci�Γ (Hi−1 + vi−1)

H0 = H

E�E.x�Γ H =

{
v, if x � v ∈ (E [E]Γ H)

ERROR, otherwise

. . .

Fig. 8. Evaluation function

The environment Γ maps all free variables to a value. The operator � com-
bines two environments Γ1 and Γ2 where the right mapping overrides definitions
of the left. For syntactical distinction between the mapping within a module
value and the environment, the environment mapping uses 	→ and the module
value �. Furthermore, we define three auxiliary functions for module values:

– The operation �⇒ constructs a module value for a given name and value.

x1. · · · .xn �⇒ v =

{
x1 � (x2. · · · .xn �⇒ v), if n > 1

x1 � v, otherwise

– The operator + combines two module values.
H1 + H2 = {x � (v1 + v2) | x � v1 ∈ H1 ∧ x � v2 ∈ H2}

∪{x � v1 | x � v1 ∈ H1 ∧ x � v2 ∈ H2}
∪{x � v2 | x � v2 ∈ H2 ∧ x � v1 ∈ H1}

– The projection | creates the environment Γ for the given Name.

H|x1.···.xn =

⎧⎪⎨
⎪⎩
Γ ′ � v|x2.···.xn , if x1 � v ∈ H

Γ ′ if n ≥ 1

∅, otherwise
where Γ ′ = {x 	→ v | x � v ∈ H}

6.2 Evaluation Function

Figure 8 shows the evaluation function for modules and definitions. The eval-
uation function has three arguments: the expression to evaluate, a normal en-
vironment mapping variables to values and a module value H representing the
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current module hierarchy. All definitions are evaluated to a module value rep-
resenting the path within the current module hierarchy. The right-hand side of
each definition is evaluated within a fresh (empty) hierarchy and an environment
where the current scope is visible. Therefore the current environment is enriched
by the projection of the current hierarchy into the scope of the definition. The
projection adds all definitions of the current hierarchy that are visible for this
definition. Recursive definitions are evaluated, as usual, via a fixpoint operator.

Modules are evaluated to a module value containing all inner definitions. The
definitions are evaluated in evaluation order, i.e. in the order of the given list.
The values of the children are added to the hierarchy value and the next child
is evaluated. The result is the combination of all child values.

The result of a selection E.x is either the value v, if x maps to v in the result
of the evaluation of E or it is an error. There are two possible errors: the value
of E is not a module or it does not contain an x.

The rest of the evaluation function is omitted as it is the usual definition with
an environment and the hierarchy value is ignored.

7 Related Work

There are various approaches for flexible modularisation in statically and dy-
namically typed functional languages. We focus here on those combining nested
mutually recursive modules and some kind of abstraction for modules — either
special functors or first-class modules.

In [2] a module system for Haskell is proposed, where records and modules
are joined in one concept. These record-modules are, as in our approach, first-
class values with dot notation. As Haskell is typed, these records are typed as
well. The type of every record must be given and provides information about all
defined names of the module. Allowed selections are detectable by type infer-
ence for every expression. As Haskell is lazy it is not necessary to calculate the
dependency order.

In [10] a calculus is proposed for first-class modules that are allowed to be
mutually recursive. Their approach unifies classes and objects, so this construct
equates to our modules. In contrast, an undecidable type system is proposed and
no explicit semantics is given.

SML provides a special module language. The flexibility of ML modules is
given by module functions. Using these functions, one can create new modules
and change modules. Mutually recursive modules are not natively supported,
but some extensions do allow it.

One of the first approaches for recursive modules in ML was mixin modules
[18]. Mixins are, as all ML modules, not first-class values. The dependencies
to other modules must be declared within the module. Missing definitions are
assigned by gluing modules over the function sum. This approach differs from
ours, as all dependencies must be given and so the dependency order is explicit.

In [19] Owens and Flatt describe the concept of “units”. Units are first-class
nested modules and it is possible to define recursive units by a compound similar
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to mixins. When two or more mutual recursive units are combined a new unit is
created containing all definitions of the combined units in the given order and in
this order the units are evaluated. This suits well for mutual recursive functions
spread over module borders, but it does not allow all kinds of mutual recursive
modules. For instance, our even-odd example is not possible, since both modules
contain a definition that is not a function. In our approach these inner definitions
are sorted for a proper evaluation during the transformation.

In [8] Russo extends Mini-SML by recursive modules. As for all ML-languages,
the evaluation order must be given by the programmer. All forward referenced
structures must be introduced at the beginning of the recursive structure. During
evaluation, those forward references are assumed to be undefined. After evalua-
tion, they are updated in the heap. In this approach an exception is raised if the
forward reference is used. Therefore, all occurrences of forward references must
be under abstraction. Our running example is not possible in this approach. Al-
though it is type correct, the evaluation would raise an exception, as the tests
is2even and is2odd are not abstractions.

Garrigue and Nakata study in [7] applicative modules with polymorphic func-
tors and recursion based on paths. They use path resolution to find and handle
recursion. As they have proven in [9], path resolution is not decidable for flexible
systems such as ours.

In his PhD thesis [4], Claus Reinke developed a module system for functional
call-by-value languages. His modules are called frames and are quite similar to
our modules. In particular, they are dynamically typed first-class values. Frames
may contain a set of definitions and these definitions may be mutually recursive.
Recursion over frame boundaries is not allowed and all names of other frames
must be explicitly imported. These imports give the evaluation order for frames.
Mutually recursive modules can only be implemented via functions where the
relevant modules are parameters.

8 Conclusion and Future Work

The introduced concept of modules is a very flexible, expressive and homogeneous
mechanism for dynamic data structures, bindings and modularisation. Using
modules one can define hierarchical, mutually recursive first-class modules. Using
a special dependency analysis a transformation based call-by-value semantics is
given.

Finally, we have already extended the introduced language ModLang by mod-
ule morphisms. They allow modules to not only be created at runtime, but also
to be extended or restricted. This improves the flexibility and reuseability of
modules. Furthermore, we have a mechanism for imports based on a control flow
analysis and the ability to control visibility when using imports and exports.

At the moment, we are working on a translation into an untyped functional
language with “let”, “letrec” and dynamic records. In addition, we are develop-
ing a concept for separate compilation. Furthermore, we will study correctness
properties of our algorithms.
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