
Some History of Functional Programming

Languages

(Invited Talk)

D.A. Turner

University of Kent & Middlesex University

Abstract. We study a series of milestones leading to the emergence of
lazy, higher order, polymorphically typed, purely functional program-
ming languages. An invited lecture given at TFP12, St Andrews Univer-
sity, 12 June 2012.

Introduction

A comprehensive history of functional programming languages covering all the
major streams of development would require a much longer treatment than falls
within the scope of a talk at TFP, it would probably need to be book length.
In what follows I have, firstly, focussed on the developments leading to lazy,
higher order, polymorphically typed, purely functional programming languages
of which Haskell is the best known current example. Secondly, rather than trying
to include every important contribution within this stream I focus on a series of
snapshots at significant stages.

We will examine a series of milestones:

1. Lambda Calculus (Church & Rosser 1936)
2. LISP (McCarthy 1960)
3. Algol 60 (Naur et al. 1963)
4. ISWIM (Landin 1966)
5. PAL (Evans 1968)
6. SASL (1973–83)
7. Edinburgh (1969–80) — NPL, early ML, HOPE
8. Miranda (1986)
9. Haskell (1992 . . .)

1 The Lambda Calculus

The lambda calculus (Church & Rosser 1936; Church 1941) is a typeless theory
of functions. In the brief account here we use lower case letters for variables:
a, b, c · · · and upper case letters for terms: A,B,C · · ·.

A term of the calculus is a variable, e.g. x, or an application AB, or an
abstraction λx.A for some variable x. In the last case λx. is a binder and free

H.-W. Loidl and R. Peña (Eds.): TFP 2012, LNCS 7829, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 D.A. Turner

occurrences of x in A become bound . A term in which all variables are bound is
said to be closed otherwise it is open. The motivating idea is that closed terms
represent functions.

In writing terms we freely use parentheses to remove ambiguity.
The calculus has three rules

(α) λx.A →α λy.[y/x]A

(β) (λx.A)B →β [B/x]A

(η) λx.Ax →η A if x not free in A

Here [B/x]A means substitute B for free occurrences of x in A1. Rule α permits
change of bound variable. Terms which are the same up to α-conversion, e.g.
λx.x and λy.y, are not usually distinguished.

The smallest reflexive, symmetric, transitive, substitutive relation on terms
including →α, →β and →η, written ⇔, is Church’s notion of λ−conversion. If
we omit symmetry from the definition we get an oriented relation, written ⇒,
called reduction.

An instance of the left hand side of rule β or η is called a redex . A term
containing no redexes is said to be in normal form. A term which is convertible
to one in normal form is said to be normalizing . There are non-normalizing
terms, for example (λx.xx)(λx.xx) which β-reduces to itself.

The three most important technical results are

Church-Rosser Theorem. If A ⇒ B and A ⇒ B′ there is a term C such that
B ⇒ C and B′ ⇒ C. An immediate corollary is that the normal form of a
normalizing term is unique (up to α-conversion).

Second Church-Rosser Theorem. The normal form of a normalizing term
can be found by repeatedly reducing its leftmost outermost redex , a process
called normal order reduction.

Böhm’s theorem. If A,B have distinct normal forms there is a context C[]
with C[A] ⇒ λx.(λy.x) and C[B] ⇒ λx.(λy.y).

This tells us that α, β, η-conversion is the strongest possible equational theory
on normalizing terms — if we add any equation between non-convertible
normalizing terms the theory becomes inconsistent , that is all terms are
now interconvertible, e.g. we will have x ⇔ y.

The lambda calculus originates from an endeavour by Church, Curry and
others to define an alternative foundation for mathematics based on functions
rather than sets. The attempt foundered in the late 1920’s on paradoxes analo-
gous to those which sank Cantor’s untyped set theory. What remained after the
propositional parts of the theory were removed is a consistent equational the-
ory of functions. Notwithstanding that it was devised before computers in the
modern sense existed, the lambda calculus makes a simple, powerful and elegant
programming language.

1 Substitution includes systematic change of bound variables where needed to avoid
variable capture — for details see any modern textbook, e.g. Hindley & Seldin (2008).

Some History of Functional Programming Languages 3

In the pure2 untyped lambda calculus everything is a function — a closed
term in normal form can only be an abstraction, λx.A. An applied lambda calcu-
lus adds constants representing various types of data and primitive functions on
them, for example natural numbers with plus, times etc. and appropriate addi-
tional reduction rules — Church (1941) calls these δ-rules — this can be done
while ensuring that Church-Rosser and other technical properties of the calcu-
lus are preserved. A type discipline can be imposed to prevent the formation of
meaningless terms. There is thus a richly structured family of applied lambda
calculi, typed and untyped, which continues to grow new members.

However, the pure untyped lambda calculus is already computationally com-
plete. There are functional representations of natural numbers, lists, and other
data. One of several possibilities for the former are the Church numerals

0 = λa.λb.b

1 = λa.λb.ab

2 = λa.λb.a(ab)

3 = λa.λb.a(a(ab)) etc. · · ·

Conditional branching can be implemented by taking

True ≡ λx.(λy.x)

False ≡ λx.(λy.y)

We then have

TrueAB ⇒ A

FalseAB ⇒ B

Recursion can be encoded using Y ≡ λf.(λx.f(xx))(λx.f(xx)) which has the
property, for any term A

Y A ⇒ A(Y A)

With this apparatus we can code all the recursive functions of type N → N
(using N for the set of natural numbers) but also those of type N → (N → N),
(N → N) → N , (N → N) → (N → N) and so on up.

It is the power to define functions of higher type, together with clean technical
properties — Church-Rosser etc. — that make lambda calculus, either pure or
applied, a natural choice as a basis for functional programming.

At first sight it seems a restriction that λ creates only functions of one argu-
ment, but in the presence of functions of higher type there is no loss of generality.
It is a standard result of set theory that for any sets A, B, the function spaces
(A×B) → C and A → (B → C) are isomorphic3.

2 By pure we here mean that variables are the only atomic symbols.
3 Replacing the first by the second is called Currying , after H.B.Curry.

4 D.A. Turner

1.1 Normal Order Graph Reduction

At this point we temporarily break from the sequence of language milestones to
trace an important implementation issue through to the present.

An implementation of λ-calculus on a sequential machine should use normal
order reduction, otherwise it may fail to find the normal form of a normalizing
term. Consider one reduction step, in applying rule β

(λx.A)B ⇒ [B/x]A

we substitute B into the function body unreduced4. In general this will produce
multiple copies of B, apparently requiring any redexes it contains to be reduced
multiple times. For normal order reduction to be practical it is necessary to have
an efficient way of handling this.

An alternative policy is to always reduce arguments before substituting into
the function body — this is applicative order reduction, also known as parameter
passing by value. Call-by-value is an unsafe reduction strategy for lambda cal-
culus, at least if the measure of correctness is conformity with Church’s theory
of conversion, but efficient because the actual parameter is reduced only once.

All practical implementations of functional languages for nearly two decades
from LISP in 1958 onwards used call-by-value.

The thesis of Wadsworth (1971, Ch 4) showed that the efficiency disadvan-
tage of normal order reduction can be overcome by normal graph reduction. In
Wadsworth’s scheme the λ-term is a directed acyclic graph, and the result of
β-reduction, which is performed by update-in-place of the application node, is
that a single copy of the argument is retained, with pointers to it from each
place in the function body where it is referred to. As a consequence any redexes
in the argument are reduced at most once.

Turner (1979a) applied normal graph reduction to S,K combinators (Curry
1958) allowing a much simpler abstract machine. In Turner’s scheme the graph
may be cyclic, permitting a more compact representation of recursion. The com-
binator code is compiled from a high level functional language using a variant of
Curry’s abstraction algorithm (Turner 1979b). Initially this was SASL (Turner
1975) and in later incarnations of the system, Miranda (Turner 1986).

For an interpreter, a fixed set of combinators, S,K,C,B, I etc., each with a
simple reduction rule, works well. But for compilation to native code on stock
hardware it is better to use λ-abstractions derived from the program source as
combinators with potentially bigger reduction steps. Extracting these requires a
program transformation, λ-lifting, (Hughes 1984; Johnsson 1985). This method
was used in a compiler for Lazy ML first implemented at Chalmers University
in 1984 by Augustsson & Johnsson (1989). Their model for mapping combi-
nator graph reduction onto von Neumann hardware, the G machine, has been
refined by Simon Peyton Jones (1992) to the Spineless Tagless G-machine which
underlies the Glasgow Haskell compiler, GHC.

4 The critical case, which shows why normal order reduction is needed, is when B is
non-normalizing but A contains no free occurrences of x.

Some History of Functional Programming Languages 5

Thus over an extended period of development normal order reduction has
been implemented with increasing efficiency.

2 LISP

The first functional programming language and the second oldest programming
language still in use (after FORTRAN), LISP began life in 1958 as a project led
by John McCarthy at MIT. The aim was to create a system for programming
computations over symbolic data, starting with an algorithm McCarthy had
drafted for symbolic differentiation. The first published account of the language
and theory of LISP is (McCarthy 1960).

The data on which LISP works is the S-language. This has a very simple
structure, it consists of atoms, which are words like X or TWO and a pairing
operation, written as a dot. Examples of S-expressions are

((X.Y).Z)

(ONE.(TWO.(THREE.NIL)))

S-expressions can represent lists, trees and so on — they are of variable size
and can outlive the procedure that creates them. A far sighted decision by Mc-
Carthy was to refuse to clutter his algorithms with storage claim and release
instructions. LISP therefore required, and had to invent, heap storage with a
garbage collector.

The M-language defines computations on S-expressions. It has

(a) S-expressions
(b) function application, written f [a; b; . . .] with primitive functions cons, car,

cdr, for creating and decomposing dotted pairs and atom, eq, which test for
atoms and equality between atoms

(c) conditional expressions written [test1 → result1; test → result2; . . .]
(d) the ability to define recursive functions — example, here is a function to

extract the leftmost atom from an S-expression:

first[x] = [atom[x] -> x; T -> first[car[x]]]

Note the use of atoms T, F as truth values. Function definitions introduce
variables, e.g. x, which are lower case to distinguish them from atoms. The
values to which the variables become bound are S-expressions. Function
names are also lower case but don’t get confused with variables because in
the M-language function names cannot appear as arguments.

This is computationally complete. McCarthy (1960, Sect. 6) showed that an
arbitrary flowchart can be coded as mutually recursive functions.

The M-language of McCarthy (1960) is first order, as there is no provision to
pass a function as argument or return a function as result5.

5 There has been much confusion about this because McCarthy (1960) uses λ-
abstraction — but in a completely different context from (Church 1941).

6 D.A. Turner

However, McCarthy shows that M-language expressions and functions can be
easily encoded as S-expressions and then defines in the M-language functions,
eval and apply, that correctly interpret these S-expressions.

Thus LISP allows meta-programming, that is treating program as data and
vice versa, by appropriate uses of eval and quote. The 1960 paper gives the
impression, quite strongly, that McCarthy saw this as removing any limitation
stemming from the M-Language itself being first order.

It was originally intended that people would write programs in the M-language,
in an Algol-like notation. In practice LISP programmers wrote their code directly
in the S-language form, and the M-language became a kind of ghost that hovered
in the background — theoretically important but nobody used it.

In LISP 1.5 (McCarthy et al. 1962) atoms acquired property lists , which serve
several puposes and numbers appeared, as another kind of atom, along with
basic arithmetic functions. This was the first version of LISP to gain a large user
community outside MIT and remained in use for many years6.

Many other versions and dialects of LISP were to follow.

Some Myths About LISP

Something called “Pure LISP” never existed — McCarthy (1978) records that
LISP had assignment and goto before it had conditional expressions and recur-
sion — it started as a version of FORTRAN I to which these latter were added.
LISP 1.5 programmers made frequent use of setq which updates a variable and
rplaca, rplacd which update the fields of a CONS cell.

LISP was not based on the lambda calculus, despite using the word
“LAMBDA” to denote functions. At the time he invented LISP, McCarthy was
aware of (Church 1941) but had not studied it. The theoretical model behind
LISP was Kleene’s theory of first order recursive functions7.

The M-language was first order, as already noted, but you could pass a func-
tion as a parameter by quotation, i.e. as the S-expression which encodes it.
Unfortunately, this gives the wrong binding rules for free variables (dynamic
instead of lexicographic).

To represent functions in closed form McCarthy uses λ[[x1; . . . ;xn]; e] and for
recursive functions he uses label[identifier;function].

However, these functional expressions can occur ONLY IN THE FUNCTION
POSITION of an application f [a; b; . . .]. This is clear in the formal syntax for the
M-language in the LISP manual (McCarthy at al. 1962, p9).

That is, McCarthy’s λ and label add no new functions to the M-language, which
remains first order. They are introduced solely to allow M-functions to be written
in closed form.

6 When I arrived at St Andrews in 1972 the LISP running on the computer laboratory’s
IBM 360 was LISP 1.5.

7 McCarthy made these statements, or very similar ones, in a contribution from the
floor at the 1982 ACM symposium on LISP and functional programming in Pitts-
burgh. No written version of this exists, as far as I know.

Some History of Functional Programming Languages 7

If a function has a free variable, e.g y in

f = λx.x + y

y should be bound to the value in scope for y where f is defined, not where f is
called.

McCarthy (1978) reports that this problem (wrong binding for free variables)
showed up very early in a program of James Slagle. At first McCarthy assumed
it was a bug and expected it to be fixed, but it actually springs from something
fundamental — that meta-programming is not the same as higher order pro-
gramming. Various devices were invented to get round this FUNARG problem,
as it became known8.

Not until SCHEME (Sussman 1975) did versions of LISP with default static
binding appear. Today all versions of LISP are lambda calculus based.

3 Algol 60

Algol 60 is not normally thought of as a functional language but its rules for
procedures (the Algol equivalent of functions) and variable binding were closely
related to those of λ-calculus.

The Revised Report on Algol 60 (Naur 1963) is a model of precise technical
writing. It defines the effect of a procedure call by a copying rule with a require-
ment for systematic change of identifiers where needed to avoid variable capture
— exactly like β-reduction.

Although formal parameters could be declared value the default parameter
passing mode was call by name, which required the actual parameter to be copied
unevaluated into the procedure body at every occurrence of the formal parame-
ter. This amounts to normal order reduction (but not graph reduction, there is no
sharing). The use of call by name allowed an ingenious programming technique:
Jensen’s Device. See http://en.wikipedia.org/wiki/Jensen’s_Device

Algol 60 allowed textually nested procedures and passing procedures as pa-
rameters (but not returning procedures as results). The requirement in the copy-
ing rule for systematic change of identifiers has the effect of enforcing static (that
is lexicographic) binding of free variables.

In their book “Algol 60 Implementation”, Randell and Russell (1964, Sect. 2.2)
handle this by two sets of links between stack frames. The dynamic chain links
each stack frame, representing a procedure call, to the frame that called it. The
static chain links each stack frame to that of the textually containing procedure,
which might be much further away. Free variables are accessed via the static
chain.

8 When I started using LISP, at St Andrews in 1972–3, my programs failed in unex-
pected ways, because I expected λ-calculus like behaviour. Then I read the LISP
1.5 manual carefully — the penny dropped when I looked at the syntax of the M-
language (McCarthy et al. 1962, p9) and saw it was first order. This was one of the
main reasons for SASL coming into existence.

8 D.A. Turner

This mechanism works well for Algol 60 but in a language in which functions
can be returned as results, a free variable might be held onto after the function
call in which it was created has returned, and will no longer be present on the
stack.

Landin (1964) solved this in his SECD machine. A function is represented by
a closure, consisting of code for the function plus the environment for its free
variables. The environment is a linked list of name-value pairs. Closures live in
the heap.

4 ISWIM

In early 60’s Peter Landin wrote a series of seminal papers on the relationship
between programming languages and lambda calculus. This includes (Landin
1964), already noted above, which describes a general mechanism for call-by-
value implementation of lambda calculus based languages.

In ”The next 700 programming languages”, Landin (1966) describes an ide-
alised language family, ISWIM, “If you See What I Mean”. The sets of constants
and primitive functions and operators of the language are left unspecified. By
choosing these you get a language specific to some particular domain. But they
all share the same design, which is described in layers.

There is an applicative core, which Landin describes as “Church without
lambda”. He shows that the expressive power of λ-calculus can be captured
by using where. let, rec and saying f(x) = ε instead of f = λ x . ε and so on.
Higher order functions are defined and used without difficulty.

In place of Algol’s begin . . . end the offside rule is introduced to allow a more
mathematical style of block structure by levels of indentation.

The imperative layer adds mutable variables and assignment.
In a related paper, Landin (1965) defines a control mechanism, the J operator,
which allows a program to capture its own continuation, permitting a powerful
generalization of labels and jumps. In short,

ISWIM = sugared lambda + assignment + control

The ISWIM paper also has the first appearance of algebraic type definitions
used to define structures. This is done in words, but the sum-of-products idea is
clearly there.

At end of paper there is an interesting discussion, in which Christopher Stra-
chey introduces the idea of a DL, that is a purely declarative or descriptive
language and wonders whether it would be possible to program exclusively in
one.

5 PAL

ISWIM inspired PAL (Evans 1968) at MIT and GEDANKEN (Reynolds 1970)
at Argonne National Laboratory. These were quite similar. I was given the PAL
tape from MIT when I started my PhD studies at Oxford in 1969.

Some History of Functional Programming Languages 9

The development of PAL had been strongly influenced by Strachey who was
visiting MIT when Art Evans was designing it. The language was intended as a
vehicle for teaching programming linguistics, its aims were:

(i) completeness — all data to have the same rights,
(ii) to have a precisely defined semantics (denotational).

There were three concentric layers:

R-PAL: this was an applicative language with sugared λ (let, rec, where) and
conditional expressions: test → E1 ! E2.
One level of pattern matching, e.g. let x, y, z = expr

L-PAL: this had everything in R-PAL but adds mutable variables & assignment
J-PAL: adds first class labels and goto

PAL was call-by-value and typeless, that is, it had run time type checking.
The basic data types were: integer & float numbers, truthvalues, strings — with
the usual infixes: + − etc. and string handling functions: stem, stern, conc.

Data structures were built from tuples, e.g. (a, b, c) these were vectors, not
linked lists.

Functions & labels had the same rights as basic data types: to be named,
passed as parameters, returned as results, included as tuple elements.

First class labels are very powerful — they allow unusual control structures
— coroutines, backtracking and were easier to use than Landin’s J operator.

6 SASL

SASL stood for “St Andrews Static Language”. I left Oxford in October 1972
for a lectureship at St Andrews and gave a course on programming linguistics
in the Autumn term. During that course I introduced a simple DL based on
the applicative subset of PAL. This was at first intended only as a blackboard
notation but my colleague Tony Davie surprised me by implementing it in LISP
over the weekend! So then we had to give it a name.

Later in the academic year I was scheduled to teach a functional programming
course to second year undergraduates, hitherto given in LISP. In preparation I
started learning LISP 1.5 and was struck by its lack of relationship to λ-calculus,
unfriendly syntax and the complications of the eval/quote machinery. I decided
to teach the course using SASL, as it was now called, instead.

The implementation of SASL in LISP wasn’t really robust enough to use for
teaching. So over the Easter vacation in 1973 I wrote a compiler from SASL to
SECD machine code and an interpreter for the latter, all in BCPL. The code
of the first version was just over 300 lines — SASL was not a large language.
It ran under the RAX timesharing system on the department’s IBM 360/44, so
the students were able to run SASL programs interactively on monitors, which
they liked.

The language had let ...in ... and rec ...in ... for non-recursive
and recursive definitions. Defining and using factorial looked like this:

10 D.A. Turner

rec fac n = n < 0 -> 1;

n * fac (n-1)

in fac 10

For mutual recursion you could say rec def1 and def2 and ... in
The data types were: integers, truthvalues, characters, lists and functions.

All data had same rights — a value of any of the five types could be named,
passed to a function as argument, returned as result, or made an element of a
list. Following LISP, lists were implemented as linked lists. The elements of a
list could be of mixed types, allowing the creation of trees of arbitrary shape.

SASL was implemented using call-by-value, with run time type checking.
It had two significant innovations compared with applicative PAL:

(i) strings, “. . . ”, were not a separate type, but an abbreviation for lists of
characters

(ii) I generalised PAL’s pattern matching to allow multi-level patterns, e.g.
let (a,(b,c),d) = stuff in ...

SASL was and remained purely applicative. The only method of iteration
was recursion — the interpreter recognised tail recursion and implemented it
efficiently. The compiler did constant folding — any expression that could be
evaluated at compile time, say (2 + 3), was replaced by its value. These two
simple optimizations were enough to make the SASL system quite usable, at
least for teaching.

As a medium for teaching functional programing, SASL worked better than
LISP because:

(a) it was a simple sugared λ-calculus with no imperative features and no
eval/quote complications

(b) following Church (1941), function application was denoted by juxtaposition
and was left associative, making curried functions easy to define and use

(c) it had correct scope rules for free variables (static binding)
(d) multi-level pattern-matching on list structure made for a big gain in read-

ability. For example the LISP expression9

cons(cons(car(car(x)),cons(car(car(cdr(x))),nil)),

cons(cons(car(cdr(car(x))),cons(car(cdr(car(cdr(x)))),

nil)),nil))

becomes in SASL

let ((a,b),(c,d)) = x in ((a,c),(b,d))

SASL proved popular with St Andrews students and, after I gave a talk at
the summer meeting of IUCC, “Inter-Universities Computing Colloqium”, in
Swansea in 1975, other universities began to show interest.

9 The example is slightly unfair in that LISP 1.5 had library functions for frequently
occurring compositions of car and cdr, with names like caar(x) for car(car(x))
and cadr(x) for car(cdr(x)). With these conventions our example could be written
cons(cons(caar(x), cons(caadr(x), nil)), cons(cons(cadar(x), cons(cadadr(x), nil)),
nil)) However this is still less transparent than the pattern matching version.

Some History of Functional Programming Languages 11

6.1 Evolution of SASL 1974–84

The language continued in use at St Andrews for teaching fp and evolved as I
experimented with the syntax. Early versions of SASL had an explicit λ, written
lambda, so you could write e.g. f = λ x . stuff as an alternative to f x = stuff .
After a while I dropped λ, allowing only the sugared form. Another simplifica-
tion was dropping rec, making let definitions recursive by default. SASL’s list
notation acquired right associative infixes, “:” and “++”, for cons and append .

In 1976 SASL syntax underwent two major changes:

(i) a switch from let defs in exp to exp where defs with an offside
rule to indicate nested scope by indentation.

(ii) allowing multi-equation function definitions, thus extending the use of pat-
tern matching to case analysis. Examples:

length () = 0

length (a:x) = 1 + length x

ack 0 n = n+1

ack m 0 = ack (m-1) 1

ack m n = ack (m-1) (ack m (n-1))

I got this idea from John Darlington10 (see Section 7 below). The second
example above is Ackermann’s function.

At the same time SASL underwent a major change of semantics, becoming lazy.
For the implemention at St Andrews in 1976 I used a lazy version of Landin’s
SECDmachine, following (Burge 1975), who calls it a “procrastinating machine”.

On moving to the University of Kent in January 1977 I had two terms with
very little teaching which I used to try out an idea I had been mulling over for
several years — to apply the normal graph reduction of Wadsworth (1971) to
SK combinators. I reimplemented lazy SASL by translation to SK combinators
and combinator graph reduction (Turner 1979a, 1979b).

SASL continued to evolve gently, acquiring floating point numbers and list
comprehensions11 in 1983. The latter were inspired by Darlington’s “set expres-
sions” (see Section 7 below), but applied to lazy lists.

Burroughs Corporation adopted SASL for a major functional programming
project in Austin, Texas, running from 1979 to 1986, to which I was a consul-
tant. The team designed a hardware combinator reduction machine, NORMA
(Scheevel 1984), of which two were built in TTL logic. NORMA’s software, in-
cluding compiler, operating system and verification tools was written in SASL.

By the mid-1980’s lazy SASL had spread to a significant number of sites,
see Table 1. There were three implementations altogether — the version at

10 I didn’t follow Darlington in using (n + k) patterns because SASL’s number type
was integer rather than natural. I did later (1986) put (n+k) patterns into Miranda
because Richard Bird wanted them for a book he was writing with Phil Wadler.

11 I initially called these ZF expressions, a reference to Zermelo-Frankel set theory —
it was Phil Wadler who coined the better term list comprehension.

12 D.A. Turner

St Andrews, using a lazy SECD machine, which was rewritten and improved
by Bill Cambell; my SK combinator version; and the implementation running
on NORMA at Burroughs Austin Research Centre.

6.2 Advantages of Laziness

Two other projects independently developed lazy functional programming sys-
tems in the same year as SASL — Friedman & Wise (1976), Henderson & Morris
(1976). Clearly laziness was an idea whose time had arrived.

My motives in changing to a lazy semantics in 1976 were

(i) on a sequential machine, consistency with the theory of (Church 1941)
requires normal order reduction

(ii) a non-strict semantics is better for equational reasoning
(iii) allows interactive I/O via lazy lists — call-by-value SASL was limited to

outputs that could be held in memory before printing.
(iv) I was coming round to the view that lazy data structures could replace

exotic control structures, like those of J-PAL.

(a) lazy lists replace coroutines (e.g. equal fringe problem)
(b) the list of successes12 method replaces backtracking

6.3 Dynamic Typing

Languages for computation over symbolic data, such as LISP, POP2 and SASL,
worked on lists, trees and graphs. This leads to a need for structural polymor-
phism — a function which reverses a list, or traverses a tree, doesn’t need to
know the type of the elements. Before the polymorphic type system of Milner
(1978), the only convenient way to avoid specifying the type of the elements of
a structure was to delay type checking until run time. SASL was dynamically
typed for this reason.

But languages with dynamic typing also have a flexibility which is hard to
emulate with a static type system. This example comes from SASL’s 1976 man-
ual. Let f be a curried function of some unknown number of Boolean arguments
— we want to test if f is a tautology (the predicate logical tests if its argument
is a truthvalue):

taut f = logical f -> f;

taut (f True) & taut (f False)

There are still active user communities of languages with run time typing
including LISP, which is far from disappearing and, a rising newcomer, Erlang
(Cesarini & Thompson 2009).

12 An example of list of successes method — for the 8 queens problem — is in the 1976
SASL manual, but the method didn’t have a name until (Wadler 1985).

Some History of Functional Programming Languages 13

Table 1. Lazy SASL sites, circa 1986

California Institute of Technology, Pasadena
City University, London
Clemson University, South Carolina
Iowa State U. of Science & Technology
St Andrews University, UK
Texas A & M University
Université de Montréal, Canada
University College London
University of Adelaide, Australia
University of British Columbia, Canada
University of Colorado at Denver
University of Edinburgh, UK
University of Essex, UK
University of Groningen, Netherlands
University of Kent, UK
University of Nijmegen, Netherlands
University of Oregon, Eugene
University of Puerto Rico
University of Texas at Austin
University of Ulster, Coleraine
University of Warwick, UK
University of Western Ontario, Canada
University of Wisconsin-Milwaukee
University of Wollongong, Australia

Burroughs Corporation, Austin, Texas
MCC Corporation, Austin, Texas
Systems Development Corporation, PA
(24 educational + 3 commercial)

7 Developments in Edinburgh, 1969–1980

Burstall (1969), in an important early paper on structural induction, extended
ISWIM with algebraic type definitions — still defined in words — and case
expressions to analyse data structure.

John Darlington’s NPL, “New Programming Language”, developed with
Burstall in the period 1973-5, replaced case expressions with multi-equation
function definitions over algebraic types, including natural numbers, e.g.

fib (0) <= 1

fib (1) <= 1

fib (n+2) <= fib (n+1) + fib (n)

Darlington got this idea from Kleene’s recursion equations.
NPL was implemented in POP2 by Burstall and used for Darlington’s work

on program transformation (Burstall & Darlington 1977). The language was first
order, strongly (but not polymorphically) typed, purely functional, call-by-value.
It also had “set expressions” e.g.

14 D.A. Turner

setofeven (X) <= <:x : x in X & even(x):>

NPL evolved into HOPE (Burstall, MacQueen & Sannella, 1980), this was
higher order, strongly typed with explicit types and polymorphic type variables,
purely functional. It kept multi-equation pattern matching but dropped set ex-
pressions.

Also in Edinburgh during 1973-78 the programming language ML emerged
as the meta-language of Edinburgh LCF (Gordon et al 1979) a programmable
verification system for Scott’s logic for computable functions, PPLAMBDA.

This early version of ML had

λ, let and letrec
references and assignment
types built using +, × and type recursion.
type abstraction
polymorphic strong typing with type inference (NB!)
used * ** *** etc. as an alphabet of type variables

The language was higher order, call-by-value and allowed assignment and
mutable data. It lacked pattern matching — structures were analysed by condi-
tionals, tests e.g. isl, isr and projection functions.

Standard ML (Milner et al. 1990), which appeared later, in 1986, is the con-
fluence of the HOPE and ML streams, thus has both pattern matching and type
inference, but is not pure — it has references and exceptions.

8 Miranda

Developed in 1983-86, Miranda is essentially SASL plus algebraic types and the
polymorphic type discipline of Milner (1978). It retains SASL’s policies of no
explicit λ’s and, optional, use of an offside rule to allow nested program structure
by indentation (both ideas derived from Landin’s ISWIM). The syntax chosen
for algebraic type definitions resembles BNF:

tree * ::= Leaf * | Node (tree *) (tree *)

The use of * ** *** . . . as type variables followed the original ML (Gordon
et al. 1979) — standard ML had not yet appeared when I was designing Miranda.

For type specifications I used “::” because following SASL “:” was retained
as infix cons.

A lexical distinction between variables and constructors was introduced to
distinguish pattern matching from function definition. The decision is made on
the initial letter of an identifier — upper case for constructors, lower case for
variables. Thus

Node x y = stuff

is a pattern match, binding x, y to a, b if stuff = Node a b whereas

Some History of Functional Programming Languages 15

node x y = stuff

defines a function, node, of two arguments.
Miranda is lazy, purely functional, has list comprehensions, polymorphic with

type inference and optional type specifications — see Turner (1986) for fuller
description — papers and downloads at www.miranda.org.uk

An important change from SASL — Miranda had, instead of conditional ex-
pressions, conditional equations with guards. Example:

sign x = 1, if x>0

= -1, if x<0

= 0, if x=0

Combining pattern matching with guards gives a significant gain in expressive
power. Guards of this kind first appeared in KRC, “Kent Recursive Calculator”
(Turner 1981, 1982), a miniaturised version of SASL which I designed in 1980–81
for teaching. Very simple, KRC had only top level equations (no where) with
pattern matching and guards; and a built in line editor — a functional alternative
to BASIC. KRC was also the testbed for list comprehensions, from where they
made their way into SASL and then Miranda.

Putting where into a language with guards raised a puzzle about scope rules,
forcing a rethink of part of the ISWIM tradition. The solution is that a where-
clause now governs a whole rhs, including guards, rather than an expression.
That is where becomes part of definition syntax, instead of being part of expres-
sion syntax (a decision that is retained in Haskell).

Miranda was a product of Research Software Ltd, with an initial release in
1985, and subsequent releases in 1987 and 1989. It was quite widely taken up
with over 200 universities and 40 companies taking out licenses.

Miranda was by no means the only project combining Milner’s polymorphic
type system with a lazy, purely functional language in this period (mid 1980’s).

Lazy ML, first implemented at Chalmers in 1984 was, as the name suggests,
a pure, lazy version of ML, used by Lennart Augustsson and Thomas Johnsson
as both source and implementation language for their work on compiled graph
reduction which we referred to in Section 1.1, see (Augustsson 1984; Augustsson
& Johnsson 1989).

At Oxford, Philip Wadler developed Orwell, a simple equational language
for teaching functional programming, along much the same lines as Miranda.
Orwell and Miranda were able to share a text book. Bird & Wadler (1988) used
a mathematical notation for functional programming — e.g. Greek letters for
type variables — that could be used with either Miranda or Orwell (or indeed
other functional languages).

Clean, a lazy language based on graph reduction, with uniqueness types to
handle I/O and mutable state. was developed at Nijmegen from 1987 by Rinus
Plasmeijer and his colleagues (Plameijer & van Eekelen 1993).

16 D.A. Turner

9 Haskell

Designed by a committee which started work in 1987, version 1.2 of the Haskell
Report was published in SIGPLAN Notices (Hudak et al. 1992). The language
continued to evolve, reaching a declared standard for long term support in
Haskell 98 (Peyton Jones 2003).

Similar in many ways to Miranda, being lazy, higher order, polymorphically
typed with algebraic types, pattern matching and list comprehensions, the most
noticeable syntactic differences are:

Switched guards to left hand side of equations

sign x | x > 0 = 1

| x < 0 = -1

| x==0 = 0

Change of syntax for type declarations — Miranda

bool ::= True | False

string == [char]

becomes in Haskell

data Bool = False | True

type String = [Char]

Extension of Miranda’s var/constructor distinction by initial letter to types,
giving lower case type variables, upper case type consts — Miranda

map :: (*->**)->[*]->[**]

filter :: (*->bool)->[*]->[*]

zip3 :: [*]->[**]->[***]->[(*,**,***)]

becomes in Haskell

map :: (a->b)->[a]->[b]

filter :: (a->Bool)->[a]->[a]

zip3 :: [a]->[b]->[c]->[(a,b,c)]

Haskell has a richer and more redundant syntax. e.g. it provides conditional
expressions and guards, let-expressions and where-clauses, case-expressions
and pattern matching by equations, λ-expressions and function-form = rhs
etc. . . .

Almost everything in Miranda is also present in Haskell in one form or another,
but not vice versa — Haskell includes a system of type classes, monadic I/O
and a module system with two level names. Of these the first is particularly
noteworthy and the most innovative feature of the language. An account of the
historical relationship between Haskell and Miranda can be found in (Hudak et
al. 2007, s2.3 and s3.8).

Some History of Functional Programming Languages 17

class Taut a where

taut :: a->Bool

instance Taut Bool where

taut b = b

instance Taut a => Taut (Bool->a) where -- problem here

taut f = taut (f True) && taut (f False)

Fig. 1. Class Taut

This is not the place for a detailed account of Haskell, for which many excellent
books and tutorials exist, but I would like to close the section with a simple
example of what can be done with type classes. Let us try to recover the variadic
tautology checker of Section 6.3.

Figure 1 introduces a class Taut with two instances to cover the two cases.
Unfortunately the second instance declaration is illegal in both Haskell 98 and
the current language standard, Haskell 2010. Instance types are required to be
generic, that is of the form (Ta1 . . . an). So (a → b) is allowed as an instance
type but not (Bool → a).

class Boolean b where

fromBool :: Bool->b

instance Boolean Bool where

fromBool t = t

class Taut a where

taut :: a->Bool

instance Taut Bool where

taut b = b

instance (Boolean a, Taut b) => Taut (a->b) where

taut f = taut (f (fromBool True))

&& taut (f (fromBool False))

Fig. 2. Variadic taut in Haskell 2010

GHC, the Glasgow Haskell compiler, supports numerous language extensions
and will accept the code in Figure 1 if language extension FlexibleInstances is

18 D.A. Turner

enabled. To make the example work in standard Haskell is more trouble; we have
to introduce an auxilliary type class, see Figure 2. One could not claim that this
is as simple and transparent as the SASL code shown earlier.

When what was to become the Haskell committee had its first scheduled
meeting in January 1988 a list of goals for the language, which did not yet have
a name, was drawn up, see (Hudak et al. 2007, s2.4), including

It should be based on ideas which enjoy a wide consensus.

Type classes cannot be said to fall under that conservative principle: they are an
experimental feature, and one that pervades the language. They are surprisingly
powerful and have proved extremely fertile but also add greatly to the complexity
of Haskell, especially the type system.

Acknowledgements. I am grateful to the programme committee of TFP 2012
for inviting me to give a lecture on the history of functional programming at
TFP 2012 in St Andrews. This written version of the lecture has benefitted
from comments and suggestions I received from other participants in response
to the lecture. In particular I am indebted to Josef Svenningsson of Chalmers
University for showing me how to code the variadic taut function in Haskell
using type classes.

Section 1 draws on material from my essay on Church’s Thesis and Functional
Programming in (Olszewski et al. 2006, 518-544).

References

Augustsson, L.: A compiler for Lazy ML. In: Proceedings 1984 ACM Symposium on
LISP and Functional Programming, pp. 218–227. ACM (1984)

Augustsson, L., Johnsson, T.: The Chalmers Lazy-ML Compiler. The Computer Jour-
nal 32(2), 127–141 (1989)

Bird, R.S., Wadler, P.: Introduction to Functional Programming, 293 pages. Prentice
Hall (1988)

Burge, W.: Recursive Programming Techniques, 277 pages. Addison Wesley (1975)
Burstall, R.M.: Proving properties of programs by structural induction. Computer

Journal 12(1), 41–48 (1969)
Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive Pro-

grams. JACM 24(1), 44–67 (1977); Revised and extended version of paper originally
presented at Conference on Reliable Software, Los Angeles (1975)

Burstall, R.M., MacQueen, D., Sanella, D.T.: HOPE: An experimental applicative
language. In: Proceedings 1980 LISP Conference, Stanford, California, pp. 136–143
(August 1980)

Cesarini, F., Thompson, S.: Erlang Programming, 498 pages. O’Reilly (June 2009)
Church, A., Rosser, J.B.: Some Properties of conversion. Transactions of the American

Mathematical Society 39, 472–482 (1936)
Church, A.: The calculi of lambda conversion. Princeton University Press (1941)
Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland, Amsterdam (1958)
Evans, A.: PAL - a language designed for teaching programming linguistics. In: Pro-

ceedings ACM National Conference (1968)

Some History of Functional Programming Languages 19

Friedman, D.P., Wise, D.S.: CONS should not evaluate its arguments. In: Proceedings
3rd Intl. Coll. on Automata Languages and Programming, pp. 256–284. Edinburgh
University Press (1976)

Gordon, M., Wadsworth, C.P., Milner, R.: Edinburgh LCF. LNCS, vol. 78. Springer
(1979)

Henderson, P., Morris, J.M.: A lazy evaluator. In: Proceedings 3rd POPL Conference,
Atlanta, Georgia (1976)

Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction, 2nd
edn., 360 pages. Cambridge University Press (August 2008)

Hudak, P., et al.: Report on the Programming Language Haskell. SIGPLAN No-
tices 27(5), 164 pages (1992)

Hudak, P., Hughes, J., Peyton Jones, S., Wadler, P.: A History of Haskell: Being Lazy
with Class. In: Proceedings 3rd ACM SIGPLAN History of Programming Languages
Conference, San Diego, California, pp. 1–55 (June 2007)

Hughes, J.: The Design and Implementation of Programming Languages, Oxford Uni-
versity D. Phil. Thesis (1983); (Published by Oxford University Computing Labora-
tory Programming Research Group, as Technical Monograph PRG 40 (September
1984)

Johnsson, T.: Lambda Lifting: Transforming Programs to Recursive Equations. In:
Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, Springer, Heidelberg (1985)

Landin, P.J.: The Mechanical Evaluation of Expressions. Computer Journal 6(4),
308–320 (1964)

Landin, P.J.: A generalization of jumps and labels. Report, UNIVAC Systems Pro-
gramming Research (August 1965); Reprinted in Higher Order and Symbolic Com-
putation 11(2), 125–143 (1998)

Landin, P.J.: The Next 700 Programming Languages. CACM 9(3), 157–165 (1966)
McCarthy, J.: Recursive Functions of Symbolic Expressions and their Computation by

Machine, Part I. CACM 3(4), 184–195 (1960)
McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, M.I.: LISP 1.5 Pro-

grammer’s Manual, 106 pages. MIT Press (1962); 2nd edn. 15th printing (1985)
McCarthy, J.: History of LISP. In: Proceedings ACM Conference on History of Pro-

gramming Languages I, pp. 173–185 (June 1978),
www-formal.stanford.edu/jmc/history/lisp/lisp.html

Milner, R.: A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences 17(3), 348–375 (1978)

Milner, R., Harper, R., MacQueen, D., Tofte, M.: The Definition of Standard ML. MIT
Press (1990) (revised 1997)

Naur, N.: Revised Report on the Algorithmic Language Algol 60. CACM 6(1), 1–17
(1963)

Olszewski, A., et al. (eds.): Church’s Thesis after 70 years, 551 pages. Ontos Verlag,
Berlin (2006)

Peyton Jones, S.L.: Implementing lazy functional languages on stock hardware: the
Spineless Tagless G-machine. Journal of Functional Programming 2(2), 127–202
(1992)

Peyton Jones, S.L.: Haskell 98 language and libraries: the Revised Report. JFP 13(1)
(January 2003)

Plasmeijer, R., Van Eekelen, M.: Functional Programming and Parallel Graph Rewrit-
ing, 571 pages. Addison-Wesley (1993)

Randell, B., Russell, L.J.: The Implementation of Algol 60. Academic Press (1964)
Reynolds, J.C.: GEDANKEN a simple typeless language based on the principle of

completeness and the reference concept. CACM 13(5), 308–319 (1970)

www-formal.stanford.edu/jmc/history/lisp/lisp.html

20 D.A. Turner

Scheevel, M.: NORMA: a graph reduction processor. In: Proceedings ACM Conference
on LISP and Functional Programming, pp. 212–219 (August 1986)

Sussman, G.J., Steele Jr., G.L.: Scheme: An interpreter for extended lambda calculus,
MEMO 349, MIT AI LAB (1975)

Turner, D.A.: SASL Language Manual, St. Andrews University, Department of Compu-
tational Science Technical Report CS/75/1 (January 1975); revised December 1976;
revised at University of Kent, August 1979, November 1983

Turner, D.A.: A New Implementation Technique for Applicative Languages. Software-
Practice and Experience 9(1), 31–49 (1979a)

Turner, D.A.: Another Algorithm for Bracket Abstraction. Journal of Symbolic
Logic 44(2), 267–270 (1979b)

Turner, D.A.: The Semantic Elegance of Applicative Languages. In: Proceedings
MIT/ACM conference on Functional Languages and Architectures, Portsmouth,
New Hampshire, pp. 85–92 (October 1981)

Turner, D.A.: Recursion Equations as a Programming Language. In: Darlington, Hen-
derson, Turner (eds.) Functional Programming and its Applications, pp. 1–28. Cam-
bridge University Press (January 1982)

Turner, D.A.: An Overview of Miranda. SIGPLAN Notices 21(12), 158–166 (1986)
Wadler, P.: Replacing a failure by a list of successes. In: Jouannaud, J.-P. (ed.) FPCA

1985. LNCS, vol. 201, pp. 113–128. Springer, Heidelberg (1985)
Wadsworth, C.P.: The Semantics and Pragmatics of the Lambda Calculus. D.Phil.

Thesis, Oxford University Programming Research Group (1971)

	Some History of Functional Programming
Languages
	1 The Lambda Calculus
	1.1 Normal Order Graph Reduction

	2 LISP
	3 Algol 60
	4 ISWIM
	5 PAL
	6 SASL
	6.1 Evolution of SASL 1974–84
	6.2 Advantages of Laziness
	6.3 Dynamic Typing

	7 Developments in Edinburgh, 1969–1980
	8 Miranda
	9 Haskell
	References

