Hans-Wolfgang Loidl
Ricardo Peiia (Eds.)

Trends
in Functional
Programming

13th International Symposium, TFP 2012
St. Andrews, UK, June 2012
Revised Selected Papers

LNCS 7829

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7829

Hans-Wolfgang Loidl Ricardo Pefia (Eds.)

Trends
1in Functional
Programming

13th International Symposium, TFP 2012

St. Andrews, UK, June 12-14, 2012
Revised Selected Papers

@ Springer

Volume Editors

Hans-Wolfgang Loidl

Heriot-Watt University

School of Mathematics and Computer Sciences
Edinburgh, EH14 4AS, UK

E-mail: h.w.loidl@hw.ac.uk

Ricardo Pefia

Universidad Complutense de Madrid
Facultad de Informatica

c/. Profesor José Garcia Santesmases s/n
28040 Madrid, Spain

E-mail: ricardo@sip.ucm.es

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-40446-7 e-ISBN 978-3-642-40447-4
DOI 10.1007/978-3-642-40447-4

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013945452
CR Subject Classification (1998): D.1.1,D.1.3, D.3, E3, F4, E.1

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

With the 13th Symposium on Trends in Functional Programming (TFP 2012),
held in St. Andrews, Scotland, the TFP series returned to its origins in Scot-
land. TFP is the heir of the successful series of Scottish Functional Programming
Workshops, which ran during 1999-2002, organized at several Scottish universi-
ties. Reflecting the increasingly international audience of these events, from 2003
onwards these became the Symposium on Trends in Functional Programming,
and were held in Edinburgh (2003), in Munich (2004), in Tallinn (2005), in Not-
tingham (2006), in New York (2007), in Nijmegen (2008), in Komarno (2009),
in Oklahoma (2010), and in Madrid (2011).

In June 2012 TFP was the main event of a week of functional programming
extravaganza at the University of St. Andrews, attended by more than 80 regis-
tered participants. Co-located events were the International Workshop on Trends
in Functional Programming in Education (TFPIE 2012), the Workshop on 70
Years of Lambda Calculus, an Erlang Factory Lite, and a technical workshop on
Patterns for Multicores (ParaPhrase/RELEASE projects).

In total, TFP 2012 received 49 submissions for the draft proceedings. After
a screening process, 41 of these papers were accepted for the draft proceedings
and for presentation at the symposium. The screening process was performed
by a subset of the Program Committee and aimed to ensure that all contribu-
tions are in scope and contain relevant information for the TFP audience. After
TFP 2012, all authors of presentations were invited to submit full papers to a
formal refereeing process, the result of which is presented in these proceedings.
The papers in these proceedings have been judged by members of the Program
Committee on their contribution to the research area with appropriate criteria
applied to each category of paper. For each paper at least three referee reports
were produced. Based on these reports, the international Program Committee
selected the papers presented in these proceedings. In total, 36 papers were sub-
mitted for the formal refereeing process and 18 papers were accepted.

Additionally to these refereed papers, these proceedings feature a paper by
a high-profile member of the research community, David A. Turner, Professor
Emeritus at Middlesex University and at the University of Kent. Prof. Turner
is the inventor of such influential functional languages as Miranda, KRC and
SASL. Prof. Turner presented an invited talk on “The History of Lazy Functional
Programming Languages” at the symposium and graciously agreed to summarize
his insights into the development of functional languages in the first paper in
these proceedings. We would like to thank Prof. Turner for his contribution to
TFP, which was most appreciated by the attendees.

TFP traditionally pays special attention to research students, acknowledging
that students are almost by definition part of new subject trends. A student
paper is one for which the authors state that the paper is mainly the work of

VI Preface

students, the students are listed as first authors, and a student would present
the paper. These papers also receive an extra round of feedback by the Program
Committee before they are submitted to the standard review process for formal
publication. In this way, students can improve their papers before they compete
within a full formal refereeing process. In 2012, 23 of the 49 papers submitted
for the draft proceedings were student papers. Acknowledging the contributions
by student papers, the TFP Program Committee awards a prize for the best
student paper each year. We are delighted to announce that for TFP 2012 the
TFP prize for the best student paper was awarded to:

Luminous Fennell and Peter Thiemann for the paper
“The Blame Theorem for a Linear Lambda Calculus with Type
Dynamic.”

We are proud to announce that this year, for the first time, an EAPLS Best Paper
Award elevates one of the papers in these proceedings as making an outstanding
contribution to the field. Based on a short-list of papers provided by the TFP
2012 Program Committee, the EAPLS board made the final selection for this
award. We are therefore proud to announce that the EAPLS prize for the best
paper of TFP 2012 was awarded to:

Josef Svenningsson and Emil Azxelsson for the paper
“Combining Deep and Shallow Embedding for EDSL.”

Finally, we are grateful for the sponsorship by Erlang Solutions Ltd. and the
Scottish Informatics and Computer Science Alliance (SICSA). The TFP Best
Student Paper award is funded by the TFP series. The EAPLS Best Paper
Award is funded by the European Association for Programming Languages and
Systems.

March 2013 Hans-Wolfgang Loidl
Ricardo Pena

Committees

Program Chair

Hans-Wolfgang Loidl

Symposium Chair

Ricardo Pena

General Chair

Kevin Hammond

Program Committee

Peter Achten

Jost Berthold
Edwin Brady
Matthias Blume
Clemens Grelck
Kevin Hammond
Graham Hutton
Patricia Johann
Hans-Wolfgang Loidl
(PC Chair)
Jay McCarthy
Rex Page
Ricardo Pena
Kostis Sagonas
Manuel Serrano
Mary Sheeran
Nikhil Swamy
Phil Trinder

Wim A. Vanderbauwhede

Marko van Eekelen

Organization

Heriot-Watt University, U.K.

Universidad Complutense de Madrid, Spain

University of St. Andrews, U.K.

Radboud University Nijmegen,
The Netherlands
University of Copenhagen, Denmark
University of St. Andrews, U.K.
Google, U.S.A.
University of Amsterdam, The Netherlands
University of St. Andrews, U.K.
University of Nottingham, U.K.
University of Strathclyde, U.K.

Heriot-Watt University, U.K.
Brigham Young University, Utah, U.S.A.
University of Oklahoma, U.S.A.
Complutense University of Madrid, Spain
Uppsala University, Sweden
INRIA Sophia Antipolis, France
Chalmers, Sweden
Microsoft Research, Redmond, U.S.A.
Heriot-Watt University, U.K.
University of Glasgow, U.K.
Radboud University Nijmegen,

The Netherlands

VIII Organization

David Van Horn
Malcolm Wallace
Viktoéria Zsok

Local Organization
Kevin Hammond

Edwin Brady
Vladimir Janjic

Northeastern University, U.S.A.
Standard Chartered, U.K.
Eotvos Lorand University, Hungary

Table of Contents

Invited Talk

Some History of Functional Programming Languages (Invited Talk) 1
D.A. Turner

Contributions

Combining Deep and Shallow Embedding for EDSL 21

Josef Svenningsson and Emil Azelsson

The Blame Theorem for a Linear Lambda Calculus with Type
Dynamic. 37
Luminous Fennell and Peter Thiemann

Higher-Order Size Checking without Subtyping 53
Attila Gobi, Olha Shkaravska, and Marko van Eekelen

Well-Typed Islands Parse Faster 69
Erik Silkensen and Jeremy Siek

Higher-Order Strictness Typing, 85
Sjaak Smetsers and Marko van Fekelen

Call-by-Value Semantics for Mutually Recursive First-Class Modules ... 101
Judith Rohloff and Florian Lorenzen

The Design of a Practical Proof Checker for a Lazy Functional
Language 117
Adam Procter, William L. Harrison, and Aaron Stump

Towards a Framework for Building Formally Verified Supercompilers

Dimitur Nikolaev Krustev

Matching Problem for Regular Expressions with Variables............. 149
Viadimir Komendantsky

OCaml-Java: OCaml on the JVM 167

Xavier Clerc

The Functional Programming Language R and the Paradigm

of Dynamic Scientific Programming (Position Paper) 182
Baltasar Trancon y Widemann, Carl Friedrich Bolz, and
Clemens Grelck

X Table of Contents

Lingua Franca of Functional Programming (FP) 198
Peter Kourzanov and Henk Sips

Haskell Gets Argumentative 215
Bas van Gijzel and Henrik Nilsson

Repeating History: Execution Replay for Parallel Haskell Programs 231
Henrique Ferreiro, Viadimir Janjic, Laura M. Castro, and
Kevin Hammond

Supervised Workpools for Reliable Massively Parallel Computing 247
Robert Stewart, Phil Trinder, and Patrick Maier

RELEASE: A High-Level Paradigm for Reliable Large-Scale Server
Software (Project Paper)......... ... i i 263
Olivier Boudeville, Francesco Cesarini, Natalia Chechina,

Kenneth Lundin, Nikolaos Papaspyrou, Konstantinos Sagonas,
Simon Thompson, Phil Trinder, and Ulf Wiger

Towards Heterogeneous Computing without Heterogeneous
Programming........ ... 279
Miguel Diogo and Clemens Grelck

On Using Erlang for Parallelization: Experience from Parallelizing
Dialyzer 295

Stavros Aronis and Konstantinos Sagonas

Author Index 311

Some History of Functional Programming
Languages
(Invited Talk)

D.A. Turner

University of Kent & Middlesex University

Abstract. We study a series of milestones leading to the emergence of
lazy, higher order, polymorphically typed, purely functional program-
ming languages. An invited lecture given at TFP12, St Andrews Univer-
sity, 12 June 2012.

Introduction

A comprehensive history of functional programming languages covering all the
major streams of development would require a much longer treatment than falls
within the scope of a talk at TFP, it would probably need to be book length.
In what follows I have, firstly, focussed on the developments leading to lazy,
higher order, polymorphically typed, purely functional programming languages
of which Haskell is the best known current example. Secondly, rather than trying
to include every important contribution within this stream I focus on a series of
snapshots at significant stages.
We will examine a series of milestones:

Lambda Calculus (Church & Rosser 1936)
LISP (McCarthy 1960)

Algol 60 (Naur et al. 1963)

ISWIM (Landin 1966)

PAL (Evans 1968)

SASL (1973-83)

Edinburgh (1969-80) — NPL, early ML, HOPE
Miranda (1986)

Haskell (1992 ...)

© XN DO W

1 The Lambda Calculus

The lambda calculus (Church & Rosser 1936; Church 1941) is a typeless theory
of functions. In the brief account here we use lower case letters for variables:
a,b,c--- and upper case letters for terms: A, B,C - - -.

A term of the calculus is a variable, e.g. x, or an application AB, or an
abstraction A\z.A for some variable x. In the last case Ax. is a binder and free

H.-W. Loidl and R. Pena (Eds.): TFP 2012, LNCS 7829, pp. 1-E0] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

2 D.A. Turner

occurrences of z in A become bound. A term in which all variables are bound is
said to be closed otherwise it is open. The motivating idea is that closed terms
represent functions.

In writing terms we freely use parentheses to remove ambiguity.
The calculus has three rules

(a) Az A = My.Jy/x]A
(8) (M\z.A)B —p [B/z]A
(n) Az Az —, A if x not free in A

Here [B/x]A means substitute B for free occurrences of = in Al Rule o permits
change of bound variable. Terms which are the same up to a-conversion, e.g.
Az.x and A\y.y, are not usually distinguished.

The smallest reflexive, symmetric, transitive, substitutive relation on terms
including —,, =3 and —,,, written <, is Church’s notion of A—conversion. If
we omit symmetry from the definition we get an oriented relation, written =,
called reduction.

An instance of the left hand side of rule g or n is called a redex. A term
containing no redexes is said to be in normal form. A term which is convertible
to one in normal form is said to be normalizing. There are non-normalizing
terms, for example (Az.zz)(Az.xx) which S-reduces to itself.

The three most important technical results are

Church-Rosser Theorem. If A = B and A = B’ there is a term C such that
B = C and B’ = C. An immediate corollary is that the normal form of a
normalizing term is unique (up to a-conversion).

Second Church-Rosser Theorem. The normal form of a normalizing term
can be found by repeatedly reducing its leftmost outermost redex, a process
called normal order reduction.

Bo6hm’s theorem. If A, B have distinct normal forms there is a context C|]

with C[A] = Az.(Ay.z) and C[B] = Az.(Ay.y).
This tells us that «, 8, n-conversion is the strongest possible equational theory
on normalizing terms — if we add any equation between non-convertible
normalizing terms the theory becomes inconsistent, that is all terms are
now interconvertible, e.g. we will have = < y.

The lambda calculus originates from an endeavour by Church, Curry and
others to define an alternative foundation for mathematics based on functions
rather than sets. The attempt foundered in the late 1920’s on paradoxes analo-
gous to those which sank Cantor’s untyped set theory. What remained after the
propositional parts of the theory were removed is a consistent equational the-
ory of functions. Notwithstanding that it was devised before computers in the
modern sense existed, the lambda calculus makes a simple, powerful and elegant
programming language.

! Substitution includes systematic change of bound variables where needed to avoid
variable capture — for details see any modern textbook, e.g. Hindley & Seldin (2008).

Some History of Functional Programming Languages 3

In the pureﬁ untyped lambda calculus everything is a function — a closed
term in normal form can only be an abstraction, Ax.A. An applied lambda calcu-
lus adds constants representing various types of data and primitive functions on
them, for example natural numbers with plus, times etc. and appropriate addi-
tional reduction rules — Church (1941) calls these d-rules — this can be done
while ensuring that Church-Rosser and other technical properties of the calcu-
lus are preserved. A type discipline can be imposed to prevent the formation of
meaningless terms. There is thus a richly structured family of applied lambda
calculi, typed and untyped, which continues to grow new members.

However, the pure untyped lambda calculus is already computationally com-
plete. There are functional representations of natural numbers, lists, and other
data. One of several possibilities for the former are the Church numerals

0 = Aa.\b.b

1 = Aa.Ab.ab

2 = da.Ab.a(ab)

3 = Aa.\b.a(a(ad)) etc. ---

Conditional branching can be implemented by taking

True = Az.(A\y.x)
False = Mx.(\y.y)

We then have

TrueAB = A
FalseAB = B

Recursion can be encoded using Y = Af.(Az.f(xz))(Ax.f(xz)) which has the
property, for any term A

YA = AY A)

With this apparatus we can code all the recursive functions of type N — N
(using N for the set of natural numbers) but also those of type N — (N — N),
(N—-N)—= N, (N—=N)— (N — N) and so on up.

It is the power to define functions of higher type, together with clean technical
properties — Church-Rosser etc. — that make lambda calculus, either pure or
applied, a natural choice as a basis for functional programming.

At first sight it seems a restriction that A\ creates only functions of one argu-
ment, but in the presence of functions of higher type there is no loss of generality.
It is a standard result of set theory that for any sets A, B, the function spaces
(AxB)—Cand A— (B— C) are isomorphid.

2 By pure we here mean that variables are the only atomic symbols.
3 Replacing the first by the second is called Currying, after H.B.Curry.

4 D.A. Turner

1.1 Normal Order Graph Reduction

At this point we temporarily break from the sequence of language milestones to
trace an important implementation issue through to the present.

An implementation of A-calculus on a sequential machine should use normal
order reduction, otherwise it may fail to find the normal form of a normalizing
term. Consider one reduction step, in applying rule 3

(\z.A)B = [B/z]A

we substitute B into the function body unreducedd. Tn general this will produce
multiple copies of B, apparently requiring any redexes it contains to be reduced
multiple times. For normal order reduction to be practical it is necessary to have
an efficient way of handling this.

An alternative policy is to always reduce arguments before substituting into
the function body — this is applicative order reduction, also known as parameter
passing by value. Call-by-value is an unsafe reduction strategy for lambda cal-
culus, at least if the measure of correctness is conformity with Church’s theory
of conversion, but efficient because the actual parameter is reduced only once.

All practical implementations of functional languages for nearly two decades
from LISP in 1958 onwards used call-by-value.

The thesis of Wadsworth (1971, Ch 4) showed that the efficiency disadvan-
tage of normal order reduction can be overcome by normal graph reduction. In
Wadsworth’s scheme the A-term is a directed acyclic graph, and the result of
[B-reduction, which is performed by update-in-place of the application node, is
that a single copy of the argument is retained, with pointers to it from each
place in the function body where it is referred to. As a consequence any redexes
in the argument are reduced at most once.

Turner (1979a) applied normal graph reduction to S, K combinators (Curry
1958) allowing a much simpler abstract machine. In Turner’s scheme the graph
may be cyclic, permitting a more compact representation of recursion. The com-
binator code is compiled from a high level functional language using a variant of
Curry’s abstraction algorithm (Turner 1979b). Initially this was SASL (Turner
1975) and in later incarnations of the system, Miranda (Turner 1986).

For an interpreter, a fixed set of combinators, S, K, C, B, I etc., each with a
simple reduction rule, works well. But for compilation to native code on stock
hardware it is better to use A-abstractions derived from the program source as
combinators with potentially bigger reduction steps. Extracting these requires a
program transformation, A-lifting, (Hughes 1984; Johnsson 1985). This method
was used in a compiler for Lazy ML first implemented at Chalmers University
in 1984 by Augustsson & Johnsson (1989). Their model for mapping combi-
nator graph reduction onto von Neumann hardware, the G machine, has been
refined by Simon Peyton Jones (1992) to the Spineless Tagless G-machine which
underlies the Glasgow Haskell compiler, GHC.

4 The critical case, which shows why normal order reduction is needed, is when B is
non-normalizing but A contains no free occurrences of x.

Some History of Functional Programming Languages 5

Thus over an extended period of development normal order reduction has
been implemented with increasing efficiency.

2 LISP

The first functional programming language and the second oldest programming
language still in use (after FORTRAN), LISP began life in 1958 as a project led
by John McCarthy at MIT. The aim was to create a system for programming
computations over symbolic data, starting with an algorithm McCarthy had
drafted for symbolic differentiation. The first published account of the language
and theory of LISP is (McCarthy 1960).

The data on which LISP works is the S-language. This has a very simple
structure, it consists of atoms, which are words like X or TWO and a pairing
operation, written as a dot. Examples of S-expressions are

((X.Y).2)
(ONE. (TWO. (THREE.NIL)))

S-expressions can represent lists, trees and so on — they are of variable size
and can outlive the procedure that creates them. A far sighted decision by Mc-
Carthy was to refuse to clutter his algorithms with storage claim and release
instructions. LISP therefore required, and had to invent, heap storage with a
garbage collector.

The M-language defines computations on S-expressions. It has

(a) S-expressions

(b) function application, written f[a;b;...] with primitive functions cons, car,
cdr, for creating and decomposing dotted pairs and atom, eq, which test for
atoms and equality between atoms

(c) conditional expressions written [test; — resulty; test — resulty; .. .]

(d) the ability to define recursive functions — example, here is a function to
extract the leftmost atom from an S-expression:

first[x] = [atom[x] -> x; T -> first[car[x]]]

Note the use of atoms T, F as truth values. Function definitions introduce
variables, e.g. x, which are lower case to distinguish them from atoms. The
values to which the variables become bound are S-expressions. Function
names are also lower case but don’t get confused with variables because in
the M-language function names cannot appear as arguments.

This is computationally complete. McCarthy (1960, Sect. 6) showed that an
arbitrary flowchart can be coded as mutually recursive functions.

The M-language of McCarthy (1960) is first order, as there is no provision to
pass a function as argument or return a function as result?.

® There has been much confusion about this because McCarthy (1960) uses M-
abstraction — but in a completely different context from (Church 1941).

6 D.A. Turner

However, McCarthy shows that M-language expressions and functions can be
easily encoded as S-expressions and then defines in the M-language functions,
eval and apply, that correctly interpret these S-expressions.

Thus LISP allows meta-programming, that is treating program as data and
vice versa, by appropriate uses of eval and quote. The 1960 paper gives the
impression, quite strongly, that McCarthy saw this as removing any limitation
stemming from the M-Language itself being first order.

It was originally intended that people would write programs in the M-language,
in an Algol-like notation. In practice LISP programmers wrote their code directly
in the S-language form, and the M-language became a kind of ghost that hovered
in the background — theoretically important but nobody used it.

In LISP 1.5 (McCarthy et al. 1962) atoms acquired property lists, which serve
several puposes and numbers appeared, as another kind of atom, along with
basic arithmetic functions. This was the first version of LISP to gain a large user
community outside MIT and remained in use for many years’.

Many other versions and dialects of LISP were to follow.

Some Myths About LISP

Something called “Pure LISP” never existed — McCarthy (1978) records that
LISP had assignment and goto before it had conditional expressions and recur-
sion — it started as a version of FORTRAN I to which these latter were added.
LISP 1.5 programmers made frequent use of setq which updates a variable and
rplaca, rplacd which update the fields of a CONS cell.

LISP was not based on the lambda calculus, despite using the word
“LAMBDA” to denote functions. At the time he invented LISP, McCarthy was
aware of (Church 1941) but had not studied it. The theoretical model behind
LISP was Kleene’s theory of first order recursive functiondT.

The M-language was first order, as already noted, but you could pass a func-
tion as a parameter by quotation, i.e. as the S-expression which encodes it.
Unfortunately, this gives the wrong binding rules for free variables (dynamic
instead of lexicographic).

To represent functions in closed form McCarthy uses A[[z1;...;zx];€] and for
recursive functions he uses label[identifier;function).

However, these functional expressions can occur ONLY IN THE FUNCTION
POSITION of an application f[a;b;...]. This is clear in the formal syntax for the
M-language in the LISP manual (McCarthy at al. 1962, p9).

That is, McCarthy’s A and label add no new functions to the M-language, which
remains first order. They are introduced solely to allow M-functions to be written
in closed form.

5 When I arrived at St Andrews in 1972 the LISP running on the computer laboratory’s
IBM 360 was LISP 1.5.

7 McCarthy made these statements, or very similar ones, in a contribution from the
floor at the 1982 ACM symposium on LISP and functional programming in Pitts-
burgh. No written version of this exists, as far as I know.

Some History of Functional Programming Languages 7

If a function has a free variable, e.g y in
f=Xrx+y

y should be bound to the value in scope for y where f is defined, not where f is
called.

McCarthy (1978) reports that this problem (wrong binding for free variables)
showed up very early in a program of James Slagle. At first McCarthy assumed
it was a bug and expected it to be fixed, but it actually springs from something
fundamental — that meta-programming is not the same as higher order pro-
gramming. Various devices were invented to get round this FUNARG problem,
as it became known.

Not until SCHEME (Sussman 1975) did versions of LISP with default static
binding appear. Today all versions of LISP are lambda calculus based.

3 Algol 60

Algol 60 is not normally thought of as a functional language but its rules for
procedures (the Algol equivalent of functions) and variable binding were closely
related to those of A-calculus.

The Revised Report on Algol 60 (Naur 1963) is a model of precise technical
writing. It defines the effect of a procedure call by a copying rule with a require-
ment for systematic change of identifiers where needed to avoid variable capture
— exactly like S-reduction.

Although formal parameters could be declared value the default parameter
passing mode was call by name, which required the actual parameter to be copied
unevaluated into the procedure body at every occurrence of the formal parame-
ter. This amounts to normal order reduction (but not graph reduction, there is no
sharing). The use of call by name allowed an ingenious programming technique:
Jensen’s Device. See http://en.wikipedia.org/wiki/Jensen’s_Device

Algol 60 allowed textually nested procedures and passing procedures as pa-
rameters (but not returning procedures as results). The requirement in the copy-
ing rule for systematic change of identifiers has the effect of enforcing static (that
is lexicographic) binding of free variables.

In their book “Algol 60 Implementation”, Randell and Russell (1964, Sect. 2.2)
handle this by two sets of links between stack frames. The dynamic chain links
each stack frame, representing a procedure call, to the frame that called it. The
static chain links each stack frame to that of the textually containing procedure,
which might be much further away. Free variables are accessed via the static
chain.

8 When I started using LISP, at St Andrews in 1972-3, my programs failed in unex-
pected ways, because I expected A-calculus like behaviour. Then I read the LISP
1.5 manual carefully — the penny dropped when I looked at the syntax of the M-
language (McCarthy et al. 1962, p9) and saw it was first order. This was one of the
main reasons for SASL coming into existence.

8 D.A. Turner

This mechanism works well for Algol 60 but in a language in which functions
can be returned as results, a free variable might be held onto after the function
call in which it was created has returned, and will no longer be present on the
stack.

Landin (1964) solved this in his SECD machine. A function is represented by
a closure, consisting of code for the function plus the environment for its free
variables. The environment is a linked list of name-value pairs. Closures live in
the heap.

4 ISWIM

In early 60’s Peter Landin wrote a series of seminal papers on the relationship
between programming languages and lambda calculus. This includes (Landin
1964), already noted above, which describes a general mechanism for call-by-
value implementation of lambda calculus based languages.

In ”The next 700 programming languages”, Landin (1966) describes an ide-
alised language family, ISWIM, “If you See What I Mean”. The sets of constants
and primitive functions and operators of the language are left unspecified. By
choosing these you get a language specific to some particular domain. But they
all share the same design, which is described in layers.

There is an applicative core, which Landin describes as “Church without
lambda”. He shows that the expressive power of A-calculus can be captured
by using where. let, rec and saying f(x) = € instead of f = A z . € and so on.
Higher order functions are defined and used without difficulty.

In place of Algol’s begin ... end the offside rule is introduced to allow a more
mathematical style of block structure by levels of indentation.

The imperative layer adds mutable variables and assignment.

In a related paper, Landin (1965) defines a control mechanism, the J operator,
which allows a program to capture its own continuation, permitting a powerful
generalization of labels and jumps. In short,

ISWIM = sugared lambda + assignment + control

The ISWIM paper also has the first appearance of algebraic type definitions
used to define structures. This is done in words, but the sum-of-products idea is
clearly there.

At end of paper there is an interesting discussion, in which Christopher Stra-
chey introduces the idea of a DL, that is a purely declarative or descriptive
language and wonders whether it would be possible to program exclusively in
one.

5 PAL

ISWIM inspired PAL (Evans 1968) at MIT and GEDANKEN (Reynolds 1970)
at Argonne National Laboratory. These were quite similar. I was given the PAL
tape from MIT when I started my PhD studies at Oxford in 1969.

Some History of Functional Programming Languages 9

The development of PAL had been strongly influenced by Strachey who was
visiting MIT when Art Evans was designing it. The language was intended as a
vehicle for teaching programming linguistics, its aims were:

(i) completeness — all data to have the same rights,
(ii) to have a precisely defined semantics (denotational).

There were three concentric layers:

R-PAL: this was an applicative language with sugared A (let, rec, where) and
conditional expressions: test — E1 ! Es.
One level of pattern matching, e.g. let z, y, z = expr
L-PAL: this had everything in R-PAL but adds mutable variables & assignment
J-PAL: adds first class labels and goto

PAL was call-by-value and typeless, that is, it had run time type checking.
The basic data types were: integer & float numbers, truthvalues, strings — with
the usual infixes: + — etc. and string handling functions: stem, stern, conc.

Data structures were built from tuples, e.g. (a,b,c) these were vectors, not
linked lists.

Functions & labels had the same rights as basic data types: to be named,
passed as parameters, returned as results, included as tuple elements.

First class labels are very powerful — they allow unusual control structures
— coroutines, backtracking and were easier to use than Landin’s J operator.

6 SASL

SASL stood for “St Andrews Static Language”. I left Oxford in October 1972
for a lectureship at St Andrews and gave a course on programming linguistics
in the Autumn term. During that course I introduced a simple DL based on
the applicative subset of PAL. This was at first intended only as a blackboard
notation but my colleague Tony Davie surprised me by implementing it in LISP
over the weekend! So then we had to give it a name.

Later in the academic year I was scheduled to teach a functional programming
course to second year undergraduates, hitherto given in LISP. In preparation I
started learning LISP 1.5 and was struck by its lack of relationship to A-calculus,
unfriendly syntax and the complications of the eval/quote machinery. I decided
to teach the course using SASL, as it was now called, instead.

The implementation of SASL in LISP wasn’t really robust enough to use for
teaching. So over the Easter vacation in 1973 I wrote a compiler from SASL to
SECD machine code and an interpreter for the latter, all in BCPL. The code
of the first version was just over 300 lines — SASL was not a large language.
It ran under the RAX timesharing system on the department’s IBM 360/44, so
the students were able to run SASL programs interactively on monitors, which
they liked.

The language had let ...in ... and rec ...in ... for non-recursive
and recursive definitions. Defining and using factorial looked like this:

10 D.A. Turner

rec facn =n <0 > 1;
n * fac (n-1)
in fac 10

For mutual recursion you could say rec defl and def2 and ... in ..

The data types were: integers, truthvalues, characters, lists and functlons
All data had same rights — a value of any of the five types could be named,
passed to a function as argument, returned as result, or made an element of a
list. Following LISP, lists were implemented as linked lists. The elements of a
list could be of mixed types, allowing the creation of trees of arbitrary shape.

SASL was implemented using call-by-value, with run time type checking.

It had two significant innovations compared with applicative PAL:

“ b2

i) strings, , were not a separate type, but an abbreviation for lists o

i) stri t te t b bbreviati for lists of
characters

(ii) T generalised PAL’s pattern matching to allow multi-level patterns, e.g.

let (a,(b,c),d) = stuff in ...

SASL was and remained purely applicative. The only method of iteration
was recursion — the interpreter recognised tail recursion and implemented it
efficiently. The compiler did constant folding — any expression that could be
evaluated at compile time, say (2 + 3), was replaced by its value. These two
simple optimizations were enough to make the SASL system quite usable, at
least for teaching.

As a medium for teaching functional programing, SASL worked better than
LISP because:

(a) it was a simple sugared A-calculus with no imperative features and no
eval/quote complications

(b) following Church (1941), function application was denoted by juxtaposition
and was left associative, making curried functions easy to define and use

(c) it had correct scope rules for free variables (static binding)

(d) multi-level pattern-matching on list structure made for a big gain in read-
ability. For example the LISP expressiorﬁ

cons (cons(car(car(x)),cons(car(car(cdr(x))),nil)),
cons (cons (car (cdr(car(x))),cons(car(cdr(car(cdr(x)))),
nil)),nil))

becomes in SASL
let ((a,b),(c,d)) = x in ((a,c),(b,d))

SASL proved popular with St Andrews students and, after I gave a talk at
the summer meeting of TUCC, “Inter-Universities Computing Collogium”, in
Swansea in 1975, other universities began to show interest.

9 The example is slightly unfair in that LISP 1.5 had library functions for frequently
occurring compositions of car and cdr, with names like caar(z) for car(car(z))
and cadr(z) for car(cdr(z)). With these conventions our example could be written
cons(cons(caar(x), cons(caadr(x),nil)), cons(cons(cadar(x), cons(cadadr(z), nil)),
nil)) However this is still less transparent than the pattern matching version.

Some History of Functional Programming Languages 11

6.1 Evolution of SASL 1974-84

The language continued in use at St Andrews for teaching fp and evolved as 1

experimented with the syntax. Early versions of SASL had an explicit A, written

lambda, so you could write e.g. f = A z . stuff as an alternative to fxz = stuff.

After a while I dropped A, allowing only the sugared form. Another simplifica-

tion was dropping rec, making let definitions recursive by default. SASL’s list

notation acquired right associative infixes, “:” and “++7”, for cons and append.
In 1976 SASL syntax underwent two major changes:

(i) a switch from let defs in ezp to ezp where defs with an offside
rule to indicate nested scope by indentation.

(ii) allowing multi-equation function definitions, thus extending the use of pat-
tern matching to case analysis. Examples:

length () =0
length (a:x) = 1 + length x

ack 0 n = n+1
ack m 0 = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))

I got this idea from John Darlingtor@ (see Section 7 below). The second
example above is Ackermann’s function.

At the same time SASL underwent a major change of semantics, becoming lazy.
For the implemention at St Andrews in 1976 I used a lazy version of Landin’s
SECD machine, following (Burge 1975), who calls it a “procrastinating machine”.

On moving to the University of Kent in January 1977 I had two terms with
very little teaching which I used to try out an idea I had been mulling over for
several years — to apply the normal graph reduction of Wadsworth (1971) to
SK combinators. I reimplemented lazy SASL by translation to SK combinators
and combinator graph reduction (Turner 1979a, 1979b).

SASL continued to evolve gently, acquiring floating point numbers and list
comprehension in 1983. The latter were inspired by Darlington’s “set expres-
sions” (see Section 7 below), but applied to lazy lists.

Burroughs Corporation adopted SASL for a major functional programming
project in Austin, Texas, running from 1979 to 1986, to which I was a consul-
tant. The team designed a hardware combinator reduction machine, NORMA
(Scheevel 1984), of which two were built in TTL logic. NORMA'’s software, in-
cluding compiler, operating system and verification tools was written in SASL.

By the mid-1980’s lazy SASL had spread to a significant number of sites,
see Table 1. There were three implementations altogether — the version at

101 didn’t follow Darlington in using (n + k) patterns because SASL’s number type
was integer rather than natural. I did later (1986) put (n+k) patterns into Miranda
because Richard Bird wanted them for a book he was writing with Phil Wadler.

1 T initially called these ZF expressions, a reference to Zermelo-Frankel set theory —
it was Phil Wadler who coined the better term list comprehension.

12 D.A. Turner

St Andrews, using a lazy SECD machine, which was rewritten and improved
by Bill Cambell; my SK combinator version; and the implementation running
on NORMA at Burroughs Austin Research Centre.

6.2 Advantages of Laziness

Two other projects independently developed lazy functional programming sys-
tems in the same year as SASL — Friedman & Wise (1976), Henderson & Morris
(1976). Clearly laziness was an idea whose time had arrived.

My motives in changing to a lazy semantics in 1976 were

(i) on a sequential machine, consistency with the theory of (Church 1941)
requires normal order reduction
(ii) a non-strict semantics is better for equational reasoning
(iii) allows interactive I/O via lazy lists — call-by-value SASL was limited to
outputs that could be held in memory before printing.
(iv) T was coming round to the view that lazy data structures could replace
exotic control structures, like those of J-PAL.

(a) lazy lists replace coroutines (e.g. equal fringe problem)
(b) the list of successed method replaces backtracking

6.3 Dynamic Typing

Languages for computation over symbolic data, such as LISP, POP2 and SASL,
worked on lists, trees and graphs. This leads to a need for structural polymor-
phism — a function which reverses a list, or traverses a tree, doesn’t need to
know the type of the elements. Before the polymorphic type system of Milner
(1978), the only convenient way to avoid specifying the type of the elements of
a structure was to delay type checking until run time. SASL was dynamically
typed for this reason.

But languages with dynamic typing also have a flexibility which is hard to
emulate with a static type system. This example comes from SASIL’s 1976 man-
ual. Let f be a curried function of some unknown number of Boolean arguments
— we want to test if f is a tautology (the predicate logical tests if its argument
is a truthvalue):

taut f = logical £ -> f;
taut (f True) & taut (f False)

There are still active user communities of languages with run time typing
including LISP, which is far from disappearing and, a rising newcomer, Erlang
(Cesarini & Thompson 2009).

12° An example of list of successes method — for the 8 queens problem — is in the 1976
SASL manual, but the method didn’t have a name until (Wadler 1985).

Some History of Functional Programming Languages 13

Table 1. Lazy SASL sites, circa 1986

California Institute of Technology, Pasadena
City University, London

Clemson University, South Carolina
Towa State U. of Science & Technology
St Andrews University, UK

Texas A & M University

Université de Montréal, Canada
University College London

University of Adelaide, Australia
University of British Columbia, Canada
University of Colorado at Denver
University of Edinburgh, UK
University of Essex, UK

University of Groningen, Netherlands
University of Kent, UK

University of Nijmegen, Netherlands
University of Oregon, Eugene
University of Puerto Rico

University of Texas at Austin
University of Ulster, Coleraine
University of Warwick, UK

University of Western Ontario, Canada
University of Wisconsin-Milwaukee
University of Wollongong, Australia
Burroughs Corporation, Austin, Texas
MCC Corporation, Austin, Texas
Systems Development Corporation, PA
(24 educational + 3 commercial)

7 Developments in Edinburgh, 1969-1980

Burstall (1969), in an important early paper on structural induction, extended
ISWIM with algebraic type definitions — still defined in words — and case
expressions to analyse data structure.

John Darlington’s NPL, “New Programming Language”, developed with
Burstall in the period 1973-5, replaced case expressions with multi-equation
function definitions over algebraic types, including natural numbers, e.g.

fib (0) <=
fib (1) <=
fib (n+2) <=

1
1
fib (n+1) + fib (n)

Darlington got this idea from Kleene’s recursion equations.

NPL was implemented in POP2 by Burstall and used for Darlington’s work
on program transformation (Burstall & Darlington 1977). The language was first
order, strongly (but not polymorphically) typed, purely functional, call-by-value.
It also had “set expressions” e.g.

14 D.A. Turner

setofeven (X) <= <:x : x in X & even(x):>

NPL evolved into HOPE (Burstall, MacQueen & Sannella, 1980), this was
higher order, strongly typed with explicit types and polymorphic type variables,
purely functional. It kept multi-equation pattern matching but dropped set ex-
pressions.

Also in Edinburgh during 1973-78 the programming language ML emerged
as the meta-language of Edinburgh LCF (Gordon et al 1979) a programmable
verification system for Scott’s logic for computable functions, PPLAMBDA.

This early version of ML had

A, let and letrec

references and assignment

types built using 4+, x and type recursion.

type abstraction

polymorphic strong typing with type inference (NB!)
used * ** *x*x efc. as an alphabet of type variables

The language was higher order, call-by-value and allowed assignment and
mutable data. It lacked pattern matching — structures were analysed by condi-
tionals, tests e.g. isl, isr and projection functions.

Standard ML (Milner et al. 1990), which appeared later, in 1986, is the con-
fluence of the HOPE and ML streams, thus has both pattern matching and type
inference, but is not pure — it has references and exceptions.

8 Miranda

Developed in 1983-86, Miranda is essentially SASL plus algebraic types and the
polymorphic type discipline of Milner (1978). It retains SASL’s policies of no
explicit A’s and, optional, use of an offside rule to allow nested program structure
by indentation (both ideas derived from Landin’s ISWIM). The syntax chosen
for algebraic type definitions resembles BNF:

tree * ::= Leaf * | Node (tree *) (tree *)

The use of * ** **x*x ... as type variables followed the original ML (Gordon
et al. 1979) — standard ML had not yet appeared when I was designing Miranda.

For type specifications I used “::” because following SASL “” was retained
as infix cons.

A lexical distinction between variables and constructors was introduced to
distinguish pattern matching from function definition. The decision is made on
the initial letter of an identifier — upper case for constructors, lower case for
variables. Thus

Node x y = stuff

is a pattern match, binding z, y to a, b if stuff = Node a b whereas

Some History of Functional Programming Languages 15

node x y = stuff

defines a function, node, of two arguments.

Miranda is lazy, purely functional, has list comprehensions, polymorphic with
type inference and optional type specifications — see Turner (1986) for fuller
description — papers and downloads at www.miranda.org.uk

An important change from SASL — Miranda had, instead of conditional ex-
pressions, conditional equations with guards. Example:

sign x =1, if x>0
= -1, if %<0
=0, if x=0

Combining pattern matching with guards gives a significant gain in expressive
power. Guards of this kind first appeared in KRC, “Kent Recursive Calculator”
(Turner 1981, 1982), a miniaturised version of SASL which I designed in 198081
for teaching. Very simple, KRC had only top level equations (no where) with
pattern matching and guards; and a built in line editor — a functional alternative
to BASIC. KRC was also the testbed for list comprehensions, from where they
made their way into SASL and then Miranda.

Putting where into a language with guards raised a puzzle about scope rules,
forcing a rethink of part of the ISWIM tradition. The solution is that a where-
clause now governs a whole rhs, including guards, rather than an expression.
That is where becomes part of definition syntax, instead of being part of expres-
sion syntax (a decision that is retained in Haskell).

Miranda was a product of Research Software Ltd, with an initial release in
1985, and subsequent releases in 1987 and 1989. It was quite widely taken up
with over 200 universities and 40 companies taking out licenses.

Miranda was by no means the only project combining Milner’s polymorphic
type system with a lazy, purely functional language in this period (mid 1980’s).

Lazy ML, first implemented at Chalmers in 1984 was, as the name suggests,
a pure, lazy version of ML, used by Lennart Augustsson and Thomas Johnsson
as both source and implementation language for their work on compiled graph
reduction which we referred to in Section 1.1, see (Augustsson 1984; Augustsson
& Johnsson 1989).

At Oxford, Philip Wadler developed Orwell, a simple equational language
for teaching functional programming, along much the same lines as Miranda.
Orwell and Miranda were able to share a text book. Bird & Wadler (1988) used
a mathematical notation for functional programming — e.g. Greek letters for
type variables — that could be used with either Miranda or Orwell (or indeed
other functional languages).

Clean, a lazy language based on graph reduction, with uniqueness types to
handle I/O and mutable state. was developed at Nijmegen from 1987 by Rinus
Plasmeijer and his colleagues (Plameijer & van Eekelen 1993).

16 D.A. Turner

9 Haskell

Designed by a committee which started work in 1987, version 1.2 of the Haskell
Report was published in SIGPLAN Notices (Hudak et al. 1992). The language
continued to evolve, reaching a declared standard for long term support in
Haskell 98 (Peyton Jones 2003).

Similar in many ways to Miranda, being lazy, higher order, polymorphically
typed with algebraic types, pattern matching and list comprehensions, the most
noticeable syntactic differences are:

Switched guards to left hand side of equations

signx | x>0= 1
| x <0 =-1
| x==0 = 0

Change of syntax for type declarations — Miranda

bool ::= True | False
string == [char]

becomes in Haskell

data Bool = False | True
type String = [Char]

Extension of Miranda’s var/constructor distinction by initial letter to types,
giving lower case type variables, upper case type consts — Miranda

map :: (k=>%%) => [*] => [*x]
filter :: (*->bool)->[*]->[*]
zip3 i [k]=>[#x]=> [kkx] => [(k%% kkx)]

becomes in Haskell

map :: (a->b)->[al->[b]
filter :: (a->Bool)->[al->[a]
zip3 :: [a]l->[b]l->[c]->[(a,b,c)]

Haskell has a richer and more redundant syntax. e.g. it provides conditional
expressions and guards, let-expressions and where-clauses, case-expressions
and pattern matching by equations, A-expressions and function-form = rhs
ete. ...

Almost everything in Miranda is also present in Haskell in one form or another,
but not vice versa — Haskell includes a system of type classes, monadic 1/0O
and a module system with two level names. Of these the first is particularly
noteworthy and the most innovative feature of the language. An account of the
historical relationship between Haskell and Miranda can be found in (Hudak et
al. 2007, s2.3 and s3.8).

Some History of Functional Programming Languages 17

class Taut a where
taut :: a->Bool

instance Taut Bool where
taut b = b

instance Taut a => Taut (Bool->a) where -- problem here
taut f = taut (f True) && taut (f False)

Fig. 1. Class Taut

This is not the place for a detailed account of Haskell, for which many excellent
books and tutorials exist, but I would like to close the section with a simple
example of what can be done with type classes. Let us try to recover the variadic
tautology checker of Section 6.3.

Figure [Il introduces a class Taut with two instances to cover the two cases.
Unfortunately the second instance declaration is illegal in both Haskell 98 and
the current language standard, Haskell 2010. Instance types are required to be
generic, that is of the form (Taj...a,). So (a — b) is allowed as an instance
type but not (Bool — a).

class Boolean b where
fromBool :: Bool->b

instance Boolean Bool where
fromBool t = t

class Taut a where
taut :: a->Bool

instance Taut Bool where
taut b = b

instance (Boolean a, Taut b) => Taut (a->b) where

taut £ = taut (f (fromBool True))
&& taut (f (fromBool False))

Fig. 2. Variadic taut in Haskell 2010

GHC, the Glasgow Haskell compiler, supports numerous language extensions
and will accept the code in Figure [I] if language extension FlexibleInstances is

18 D.A. Turner

enabled. To make the example work in standard Haskell is more trouble; we have
to introduce an auxilliary type class, see Figure2l One could not claim that this
is as simple and transparent as the SASL code shown earlier.

When what was to become the Haskell committee had its first scheduled
meeting in January 1988 a list of goals for the language, which did not yet have
a name, was drawn up, see (Hudak et al. 2007, s2.4), including

It should be based on ideas which enjoy a wide consensus.

Type classes cannot be said to fall under that conservative principle: they are an
experimental feature, and one that pervades the language. They are surprisingly
powerful and have proved extremely fertile but also add greatly to the complexity
of Haskell, especially the type system.

Acknowledgements. 1 am grateful to the programme committee of TFP 2012
for inviting me to give a lecture on the history of functional programming at
TFP 2012 in St Andrews. This written version of the lecture has benefitted
from comments and suggestions I received from other participants in response
to the lecture. In particular I am indebted to Josef Svenningsson of Chalmers
University for showing me how to code the variadic taut function in Haskell
using type classes.

Section 1 draws on material from my essay on Church’s Thesis and Functional
Programming in (Olszewski et al. 2006, 518-544).

References

Augustsson, L.: A compiler for Lazy ML. In: Proceedings 1984 ACM Symposium on
LISP and Functional Programming, pp. 218-227. ACM (1984)

Augustsson, L., Johnsson, T.: The Chalmers Lazy-ML Compiler. The Computer Jour-
nal 32(2), 127-141 (1989)

Bird, R.S., Wadler, P.: Introduction to Functional Programming, 293 pages. Prentice
Hall (1988)

Burge, W.: Recursive Programming Techniques, 277 pages. Addison Wesley (1975)

Burstall, R.M.: Proving properties of programs by structural induction. Computer
Journal 12(1), 41-48 (1969)

Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive Pro-
grams. JACM 24(1), 44-67 (1977); Revised and extended version of paper originally
presented at Conference on Reliable Software, Los Angeles (1975)

Burstall, R.M., MacQueen, D., Sanella, D.T.:. HOPE: An experimental applicative
language. In: Proceedings 1980 LISP Conference, Stanford, California, pp. 136-143
(August 1980)

Cesarini, F., Thompson, S.: Erlang Programming, 498 pages. O’Reilly (June 2009)

Church, A., Rosser, J.B.: Some Properties of conversion. Transactions of the American
Mathematical Society 39, 472-482 (1936)

Church, A.: The calculi of lambda conversion. Princeton University Press (1941)

Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland, Amsterdam (1958)

Evans, A.: PAL - a language designed for teaching programming linguistics. In: Pro-
ceedings ACM National Conference (1968)

Some History of Functional Programming Languages 19

Friedman, D.P.; Wise, D.S.: CONS should not evaluate its arguments. In: Proceedings
3rd Intl. Coll. on Automata Languages and Programming, pp. 256-284. Edinburgh
University Press (1976)

Gordon, M., Wadsworth, C.P., Milner, R.: Edinburgh LCF. LNCS, vol. 78. Springer
(1979)

Henderson, P., Morris, J.M.: A lazy evaluator. In: Proceedings 3rd POPL Conference,
Atlanta, Georgia (1976)

Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction, 2nd
edn., 360 pages. Cambridge University Press (August 2008)

Hudak, P., et al.: Report on the Programming Language Haskell. SIGPLAN No-
tices 27(5), 164 pages (1992)

Hudak, P., Hughes, J., Peyton Jones, S., Wadler, P.: A History of Haskell: Being Lazy
with Class. In: Proceedings 3rd ACM SIGPLAN History of Programming Languages
Conference, San Diego, California, pp. 1-55 (June 2007)

Hughes, J.: The Design and Implementation of Programming Languages, Oxford Uni-
versity D. Phil. Thesis (1983); (Published by Oxford University Computing Labora-
tory Programming Research Group, as Technical Monograph PRG 40 (September
1984)

Johnsson, T.: Lambda Lifting: Transforming Programs to Recursive Equations. In:
Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, Springer, Heidelberg (1985)
Landin, P.J.: The Mechanical Evaluation of Expressions. Computer Journal 6(4),

308-320 (1964)

Landin, P.J.: A generalization of jumps and labels. Report, UNIVAC Systems Pro-
gramming Research (August 1965); Reprinted in Higher Order and Symbolic Com-
putation 11(2), 125-143 (1998)

Landin, P.J.: The Next 700 Programming Languages. CACM 9(3), 157-165 (1966)

McCarthy, J.: Recursive Functions of Symbolic Expressions and their Computation by
Machine, Part I. CACM 3(4), 184-195 (1960)

McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, M.I.: LISP 1.5 Pro-
grammer’s Manual, 106 pages. MIT Press (1962); 2nd edn. 15th printing (1985)
McCarthy, J.: History of LISP. In: Proceedings ACM Conference on History of Pro-

gramming Languages I, pp. 173-185 (June 1978),
www-formal.stanford.edu/jmc/history/lisp/lisp.html

Milner, R.: A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences 17(3), 348-375 (1978)

Milner, R., Harper, R., MacQueen, D., Tofte, M.: The Definition of Standard ML. MIT
Press (1990) (revised 1997)

Naur, N.: Revised Report on the Algorithmic Language Algol 60. CACM 6(1), 1-17
(1963)

Olszewski, A., et al. (eds.): Church’s Thesis after 70 years, 551 pages. Ontos Verlag,
Berlin (2006)

Peyton Jones, S.L.: Implementing lazy functional languages on stock hardware: the
Spineless Tagless G-machine. Journal of Functional Programming 2(2), 127-202
(1992)

Peyton Jones, S.L.: Haskell 98 language and libraries: the Revised Report. JFP 13(1)
(January 2003)

Plasmeijer, R., Van Eekelen, M.: Functional Programming and Parallel Graph Rewrit-
ing, 571 pages. Addison-Wesley (1993)

Randell, B., Russell, L.J.: The Implementation of Algol 60. Academic Press (1964)

Reynolds, J.C.: GEDANKEN a simple typeless language based on the principle of
completeness and the reference concept. CACM 13(5), 308-319 (1970)

www-formal.stanford.edu/jmc/history/lisp/lisp.html

20 D.A. Turner

Scheevel, M.: NORMA': a graph reduction processor. In: Proceedings ACM Conference
on LISP and Functional Programming, pp. 212-219 (August 1986)

Sussman, G.J., Steele Jr., G.L.: Scheme: An interpreter for extended lambda calculus,
MEMO 349, MIT AI LAB (1975)

Turner, D.A.: SASL Language Manual, St. Andrews University, Department of Compu-
tational Science Technical Report CS/75/1 (January 1975); revised December 1976;
revised at University of Kent, August 1979, November 1983

Turner, D.A.: A New Implementation Technique for Applicative Languages. Software-
Practice and Experience 9(1), 31-49 (1979a)

Turner, D.A.: Another Algorithm for Bracket Abstraction. Journal of Symbolic
Logic 44(2), 267-270 (1979b)

Turner, D.A.: The Semantic Elegance of Applicative Languages. In: Proceedings
MIT/ACM conference on Functional Languages and Architectures, Portsmouth,
New Hampshire, pp. 85-92 (October 1981)

Turner, D.A.: Recursion Equations as a Programming Language. In: Darlington, Hen-
derson, Turner (eds.) Functional Programming and its Applications, pp. 1-28. Cam-
bridge University Press (January 1982)

Turner, D.A.: An Overview of Miranda. SIGPLAN Notices 21(12), 158-166 (1986)

Wadler, P.: Replacing a failure by a list of successes. In: Jouannaud, J.-P. (ed.) FPCA
1985. LNCS, vol. 201, pp. 113-128. Springer, Heidelberg (1985)

Wadsworth, C.P.: The Semantics and Pragmatics of the Lambda Calculus. D.Phil.
Thesis, Oxford University Programming Research Group (1971)

Combining Deep and Shallow Embedding
for EDSL

Josef Svenningsson and Emil Axelsson

Chalmers University of Technology
{josefs,emax}@chalmers.se

Abstract. When compiling embedded languages it is natural to use an
abstract syntax tree to represent programs. This is known as a deep
embedding and it is a rather cumbersome technique compared to other
forms of embedding, typically leading to more code and being harder
to extend. In shallow embeddings, language constructs are mapped di-
rectly to their semantics which yields more flexible and succinct imple-
mentations. But shallow embeddings are not well-suited for compiling
embedded languages. We present a technique to combine deep and shal-
low embedding in the context of compiling embedded languages in order
to provide the benefits of both techniques. In particular it helps keeping
the deep embedding small and it makes extending the embedded lan-
guage much easier. Our technique also has some unexpected but welcome
knock-on effects. It provides fusion of functions to remove intermediate
results for free without any additional effort. It also helps to give the
embedded language a more natural programming interface.

1 Introduction

When compiling an embedded language it is natural to use an algebraic data type
to represent the abstract syntax tree (AST). This is known as a deep embedding.
Deep embeddings can be cumbersome: the AST can grow quite large in order to
represent all the language features, which can make it rather unwieldy to work
with. It is also laborious to add new language constructs as it requires changes
to the AST as well as all functions manipulating the AST.

In contrast, shallow embeddings don’t require an abstract syntax tree and
all the problems that come with it. Instead, language constructs are mapped
directly to their semantics. But if we wish to compile our embedded language we
have little choice but having some form of AST — in particular if we not only
want to compile it, but first transform the representation, or if we have another
type of backend, say, a verification framework.

In this paper we present a technique for combining deep and shallow embed-
dings in order to achieve many of the advantages of both styles. This combination
turns out to provide knock-on effects which we also explore. In particular, our
technique has the following advantages:

Simplicity: By moving functionality to shallow embeddings, our technique helps
keep the AST small without sacrificing expressiveness.

H.-W. Loidl and R. Pena (Eds.): TFP 2012, LNCS 7829, pp. 21-B6] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

22 J. Svenningsson and E. Axelsson

Abstraction: The shallow embeddings are based on abstract data types leading
to better programming interfaces (more like ordinary APIs than constructs of a
language). This has important side-effects:

— The shallow interfaces can have properties not possessed by the deep em-
bedding. For example, our vector interface (Section [40]) guarantees removal
of intermediate structures (see Section [Hl).

— The abstract types can sometimes be made instances of standard Haskell
type classes, such as Functor and Monad, even when the deep embedding
cannot (demonstrated in Section 4] and E3)).

Extensibility: Our technique can be seen as a partial solution to the expres-
sion proble as it makes it easier to extend the embedded language with new
language constructs and functions.

Before giving an overview of our technique (Section Bl) we will give an intro-
duction to shallow and deep embeddings in Section 2] including a comparison of
the two methods (Section 2]).

Throughout this paper we will use Haskell [16] and some of the extensions pro-
vided by the Glasgow Haskell Compiler. While we will use many Haskell-specific
functions and constructs the general technique and its advantages translates
readily to other languages.

2 Shallow and Deep — Pros and Cons

To explain the meaning of “deep” and “shallow” we will use the following small
embedded domain specific language (EDSL) from [5] as an illustrating example.

inRegion :: Point — Region — Bool
circle :: Radius — Region

outside :: Region — Region

(n) :: Region — Region — Region
(V) :: Region — Region — Region

This piece of code defines a small language for regions, i.e. two-dimensional areas.
It only shows the interface; we will give two implementations, one deep and one
shallow.

The type Region defines the type of regions which is the domain we are con-
cerned with in this example. We can interpret regions by using inRegion, which
allows us to check whether a point is within a region or not. We will refer to
functions such as inRegion which interpret values in our domain as interpretation
functions. The function inRegion takes an argument of type Point and we will just
assume there is such a type together with the expected operations on points.

Regions can be constructed using circle which creates a region with a given ra-
dius (again, we assume a type Radius without giving its definition). The functions
outside , (N) and (u) take the complement, intersection and union of regions.
As an example of how to use the language, we define the function annulus which
can be used to construct donut-like regions given two radii:

!http://www.daimi.au.dk/~madst/tool/papers/expression.txt

http://www.daimi.au.dk/~madst/tool/papers/expression.txt

Combining Deep and Shallow Embedding for EDSL 23

annulus :: Radius — Radius — Region
annulus rl r2 = outside (circle rl) N (circle r2)

The first implementation of our small region EDSL will use a shallow embed-
ding. The code is shown below.

type Region = Point — Bool

p ‘inRegion’ r=r p

circle r = Ap — magnitude p < r
outside r =Ap — not (r p)

rl N r2 =Ap > rl p&&r2 p

rl U r2 =X —>rlp]|| r2p

Our concrete implementation of the type Region is the type Point — Bool. We will
refer to the type Point — Bool as the semantic domain of the shallow embedding.
It is no coincidence that the semantic domain is similar to the type of the function
inRegion . The essence of shallow embeddings is that the representation they use
directly encode the operations that can be performed on them. In our case Region
is represented exactly as a test whether a Point is within the region or not.

The implementation of the function inRegion becomes trivial; it simply uses
the function used to represent regions. This is common for shallow embeddings;
interpretation functions like inRegion , can make direct use of the operations used
in the representation. All the other functions encode what it means for a point
to be inside the respective region.

The characteristic of deep embeddings is that they use an abstract syntax tree
to represent the domain. Below is how we would represent our example language
using a deep embedding.

data Region = Circle Radius | Intersect Region Region
| Outside Region | Union Region Region
circle r = Circle r
outside r = Outside r
rl N r2 = Intersect rl r2
rl U r2 = Union rl r2
p ‘inRegion’ (Circle r) = magnitude p < r
p ‘inRegion’ (Outside r) = not (p ‘inRegion’ r)
p ‘inRegion’ (Intersect rl r2) = p ‘inRegion’ rl && p ‘inRegion’ r2
p ‘inRegion’ (Union rl r2) = p ‘inRegion’ rl || p ‘inRegion’ r2

The type Region is here represented as a data type with one constructor for each
function that can be used to construct regions.

Writing the functions for constructing new regions becomes trivial. It is simply
a matter of returning the right constructor. The hard work is instead done in
the interpretation function inRegion which has to interpret the meaning of each
constructor.

2.1 Brief Comparison

As the above example EDSL illustrates, a shallow embedding makes it easier
to add new language constructs — as long as they can be represented in the

24 J. Svenningsson and E. Axelsson

semantic domain. For instance, it would be easy to add a function rectangle
to our region example. On the other hand, since the semantic domain is fixed,
adding a different form of interpretation, say, computing the area of a region,
would not be possible without a complete reimplementation.

In the deep embedding, we can easily add new interpretations (just add a
new function like inRegion), but this comes at the price of having a fixed set
of language constructs. Adding a new construct to the deep implementation
requires updating the Region type as well as all existing interpretation functions.

This comparison shows that shallow and deep embeddings are dual in the sense
that the former is extensible with regards to adding language constructs while
the latter is extensible with regards to adding interpretations. The holy grail of
embedded language implementation is to be able to combine the advantages of
shallow and deep in a single implementation. This is commonly referred to as
the expression problem.

One way to work around the limitation of deep embeddings not being exten-
sible is to use “derived constructs”. An example of a derived construct is annulus,
which we defined in terms of outside , circle and (). Derived constructs are shal-
low in the sense that they do not have a direct correspondence in the underlying
embedding. Shallow derived constructs of a deep embedding are particularly in-
teresting as they inherit most advantages of both shallow and deep embeddings.
They can be added with the same ease as constructs in a fully shallow em-
bedding. Yet, the interpretation functions only need to be aware of the deep
constructs, which means that we retain the freedom of interpretation available
in deep embeddings. There are, of course, limitations to how far these advan-
tages can be stretched. We will return to this point in the concluding discussion
(Section [6).

The use of shallow derived constructs is quite common in deeply embedded
DSLs. The technique presented in this paper goes beyond “simple” derived con-
structs to extensions with new interface types leading to drastically different
interfaces.

3 Overview of the Technique

We assume a setting where we want an EDSL which generates code. Code gen-
eration tends to require intensional analysis of the AST, which is not directly
possible with a shallow implementation (but see Reference [4] for how to gener-
ate code in the final tagless style). Hence, we need a deep embedding as a basis.
Our technique can be summarized in the following steps:

1. Implement a deeply embedded core language. The aim of the core language
is not to act as a convenient user interface, but rather to support efficient
generation of common code patterns in the target language. For this reason,
the core language should be kept as simple as possible.

2. Implement user-friendly interfaces as shallow embeddings on top of the core
language. Each interface is represented by a separate type and operations on
this type.

Combining Deep and Shallow Embedding for EDSL 25

3. Give each interface a precise meaning by giving a translation to and from
a corresponding core language program. In other words, make the deep em-
bedding the semantic domain of the shallow embedding. This is done by
means of type class instantiation. If such a translation is not possible, or not
efficient, extend the core language as necessary.

These ideas have been partly described in our paper on the implementation
of the Feldspar EDSL [I]. However, we feel that the ideas are important enough
to be presented as a general technique, not tied to a particular language imple-
mentation.

In the sections that follow we will demonstrate our technique through a se-
ries of examples. For the sake of concreteness we have made some superficial
choices which are orthogonal to our technique. In particular, we use a typed em-
bedded language and employ higher order abstract syntax to deal with binding
constructs. Neither of these choices matter for the applicability of our technique.

4 Examples

To demonstrate our technique we will use a small embedded language called
FunC as our running example. The data type describing the FunC abstract
syntax tree can be seen below.

data FunC a where

Litl it Int — FunC Int

LitB :: Bool — FunC Bool

If :: FunC Bool — FunC a — FunC a — FunC a

While :: (FunC s — FunC Bool) — (FunC's — FunC s) — FunC s — FunC s
Pair it FunC a — FunC b — FunC (a,b)

Fst :: FunC (a,b) — FunC a

Snd :: FunC (a,b) — FunC b

Prim1 :: String — (a = b) — FunC a — FunC b

Prim2 :: String - (@ - b - c¢c) - FunCa — FunC b — FunC ¢

Value :t a = FunC a

Variable :: String — FunC a

FunC is a low level, pure functional language which has a straightforward trans-
lation to C. It is meant for embedding low level programs and is inspired by
the Core language used in the language Feldspar [2]. We use a GADT to give
precise types to the different constructors. We have also chosen Higher Order
Abstract Syntax [L7] to represent constructs with variable binding. In the above
data type, the only higher-order construct is While. We will add another one in
Section

FunC has constructs for integer and boolean literals and an if-expression for
testing booleans. The while expression models while loops. Since FunC is pure,
the body of the loop cannot perform side-effects, so instead the while loop passes
around a state. The third argument to the While constructor is the initial value
of the state. The state is then updated each iteration of the loop by the sec-
ond argument. In order to determine when to stop looping the first argument
is used, which performs a test on the state. Furthermore, FunC has pairs which

26 J. Svenningsson and E. Axelsson

are constructed with the Pair constructor and eliminated using Fst and Snd. The
constructs Prim1 and Prim2 are used to create primitive functions in FunC. The
string argument is the name of the primitive function which is used when gen-
erating code from FunC and the function argument is used during evaluation.
It is possible to simply have a single constructor for primitive functions of an
arbitrary number of arguments but that would complicate the presentation un-
necessarily for the purpose of this paper. The two last constructors, Value and
Variable , are not part of the language. They are used internally for evaluation
and printing respectively.
The exact semantics of the FunC language is given by the eval function.

eval :: FunC a — a

eval (Litl i) =i

eval (LitB b) =b

eval (While ¢ b i) = head $ dropWhile (eval o co Value) $
iterate (eval obo Value) $ eval i

eval (If c t e) = if eval c then eval t else eval e

eval (Pair a b) = (eval a, eval b)

eval (Fst p) = fst (eval p)

eval (Snd p) = snd (eval p)

eval (Priml f a) =f (eval a)

eval (Prim2 f a b) = f (eval a) (eval b)

eval (Value a) =a

4.1 The Syntactic Class

So far our presentation of FunC has been a purely deep embedding. Our goal
is to be able to add shallow embeddings on top of the deep embedding and in
order to make that possible we will make our language extensible using a type
class. This type class will encompass all the types that can be compiled into our
FunC language. We call the type class Syntactic .

class Syntactic a where
type Internal a
toFunC :: a — FunC (Internal a)
fromFunC :: FunC (Internal a) — a

When making an instance of the class Syntactic for a type T one must specify how
T will represented internally, in the already existing deep embedding of FunC.
This is what the associated type Internal is for. The two functions toFunC and
fromFunC translates back and forth between the type T and its internal represen-
tation. The fromFunC method is needed when defining user interfaces based on
the Syntactic class. The first instance of Syntactic is simply FunC itself, and the
instance is completely straightforward.

instance Syntactic (FunC a) where
type Internal (FunC a) = a
toFunC ast = ast
fromFunC ast = ast

Combining Deep and Shallow Embedding for EDSL 27

4.2 User Interface

Now that we have the Syntactic class we can give FunC a nice extensible inter-
face which we can present to the programmer using FunC. This interface will
mirror the deep embedding and its constructor but will use the class Syntactic to
overload the functions to make them compatible with any type that we choose
to make an instance of Syntactic .

true, false :: FunC Bool
true = LitB True
false = LitB False
ifC :: Syntactic a = FunC Bool — a — a — a

ifC ¢ t e = fromFunC (If ¢ (toFunC t) (toFunC e))
c?(t,e)=ifCcte

while :: Syntactic s = (s — FunC Bool) — (s — s) — s — s
while ¢ b i = fromFunC (While (c o fromFunC)

(toFunC o b o fromFunC)

(toFunC i))

When specifying the types in our new interface we note that base types
are not overloaded, they are still on the form FunC Bool. The big difference
is when we have polymorphic functions. The function ifC works for any a as
long as it is an instance of Syntactic . The advantage of the type Syntactic a =
FunC Bool — a — a — a over FunC Bool — FunC a — FunC a — FunC a is two-fold:
First, it is closer to the type that an ordinary Haskell function would have and
so it gives the function a more native feel, like it is less of a library and more of
a language. Secondly, it makes the language extensible. These functions can now
be used with any type that is an instance of Syntactic . We are no longer tied to
working solely on the abstract syntax tree FunC.

We have not shown any interface for integers. One way to implement that
would be to provide a function equivalent to the Litl constructor. In Haskell there
is a nicer way: provide an instance of the type class Num. By instantiating Num
we get access to Haskell’s overloaded syntax for numeric literals so that we don’t
have to use a function for lifting numbers into FunC. Additionally, Num contains
arithmetic functions which we also gain access to. Similarly, we instantiate the

Integral class to get an interface for integral operations. The primive functions
of said type classes are implemented using the constructors Prim1 and Prim2. We
refrain from presenting the code as it is rather Haskell-specific and unrelated to
the main point of the paper.

We will also be using comparison operators in FunC. For tiresome reasons it
is not possible to overload the methods of the corresponding type classes Eq and
Ord: these methods return a Haskell Bool and there is no way we can change
that to fit the types of FunC. Instead we will simply assume that the standard
definitions of the comparison operators are hidden and we will use definitions
specific to FunC.

28 J. Svenningsson and E. Axelsson

4.3 Embedding Pairs

We have not yet given an interface for pairs. The reason for this is that they
provide an excellent opportunity to demonstrate our technique. We simply in-
stantiate the Syntactic class for Haskell pairs:

instance (Syntactic a, Syntactic b) = Syntactic (a,b) where
type Internal (a,b) = (Internal a, Internal b)
toFunC (a,b) = Pair (toFunC a) (toFunC b)
fromFunC p (fromFunC (Fst p), fromFunC (Snd p))

In this instance, toFunC constructs an embedded pair from a Haskell pair, and
fromFunC eliminates an embedded pair by selecting the first and second compo-
nent and returning these as a Haskell pairE

The usefulness of pairs comes in when we need an existing function to operate
on a compound value rather than a single value. For example, the state of the
while loop is a single value. If we want the state to consist of, say, two integers, we
use a pair. Since functions such as ifC and while are overloaded using Syntactic ,
there is no need for the user to construct compound values explicitly; this is
done automatically by the overloaded interface.

As an example of this, here is a for loop defined using the while construct with
a compound state:

forLoop :: Syntactic s = FunC Int - s — (FunC Int - s — s) — s
forLoop len init step = snd $ while (A(i,s) — i<len)
(A(i,s) — (i+1l, step i s))
(0,init)

The first argument to forLoop is the number of iterations; the second argument is
the initial state; the third argument is the step function which, given the current
loop index and current state, computes the next state. We define forLoop using
a while loop whose state is a pair of an integer and a smaller state.

Note that the above definition only uses ordinary Haskell pairs: The continue
condition and step function of the while loop pattern match on the state using
ordinary pair syntax, and the initial state is constructed as a standard Haskell
pair.

4.4 Embedding Option

If we want to extend our language with optional values, one may be tempted to
make a Syntactic instance for Maybe. Unfortunately, there is no way to make this
work, because fromFunC would have to decide whethe