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Preface

With the 13th Symposium on Trends in Functional Programming (TFP 2012),
held in St. Andrews, Scotland, the TFP series returned to its origins in Scot-
land. TFP is the heir of the successful series of Scottish Functional Programming
Workshops, which ran during 1999–2002, organized at several Scottish universi-
ties. Reflecting the increasingly international audience of these events, from 2003
onwards these became the Symposium on Trends in Functional Programming,
and were held in Edinburgh (2003), in Munich (2004), in Tallinn (2005), in Not-
tingham (2006), in New York (2007), in Nijmegen (2008), in Komarno (2009),
in Oklahoma (2010), and in Madrid (2011).

In June 2012 TFP was the main event of a week of functional programming
extravaganza at the University of St. Andrews, attended by more than 80 regis-
tered participants. Co-located events were the International Workshop on Trends
in Functional Programming in Education (TFPIE 2012), the Workshop on 70
Years of Lambda Calculus, an Erlang Factory Lite, and a technical workshop on
Patterns for Multicores (ParaPhrase/RELEASE projects).

In total, TFP 2012 received 49 submissions for the draft proceedings. After
a screening process, 41 of these papers were accepted for the draft proceedings
and for presentation at the symposium. The screening process was performed
by a subset of the Program Committee and aimed to ensure that all contribu-
tions are in scope and contain relevant information for the TFP audience. After
TFP 2012, all authors of presentations were invited to submit full papers to a
formal refereeing process, the result of which is presented in these proceedings.
The papers in these proceedings have been judged by members of the Program
Committee on their contribution to the research area with appropriate criteria
applied to each category of paper. For each paper at least three referee reports
were produced. Based on these reports, the international Program Committee
selected the papers presented in these proceedings. In total, 36 papers were sub-
mitted for the formal refereeing process and 18 papers were accepted.

Additionally to these refereed papers, these proceedings feature a paper by
a high-profile member of the research community, David A. Turner, Professor
Emeritus at Middlesex University and at the University of Kent. Prof. Turner
is the inventor of such influential functional languages as Miranda, KRC and
SASL. Prof. Turner presented an invited talk on “The History of Lazy Functional
Programming Languages” at the symposium and graciously agreed to summarize
his insights into the development of functional languages in the first paper in
these proceedings. We would like to thank Prof. Turner for his contribution to
TFP, which was most appreciated by the attendees.

TFP traditionally pays special attention to research students, acknowledging
that students are almost by definition part of new subject trends. A student
paper is one for which the authors state that the paper is mainly the work of



VI Preface

students, the students are listed as first authors, and a student would present
the paper. These papers also receive an extra round of feedback by the Program
Committee before they are submitted to the standard review process for formal
publication. In this way, students can improve their papers before they compete
within a full formal refereeing process. In 2012, 23 of the 49 papers submitted
for the draft proceedings were student papers. Acknowledging the contributions
by student papers, the TFP Program Committee awards a prize for the best
student paper each year. We are delighted to announce that for TFP 2012 the
TFP prize for the best student paper was awarded to:

Luminous Fennell and Peter Thiemann for the paper
“The Blame Theorem for a Linear Lambda Calculus with Type
Dynamic.”

We are proud to announce that this year, for the first time, an EAPLS Best Paper
Award elevates one of the papers in these proceedings as making an outstanding
contribution to the field. Based on a short-list of papers provided by the TFP
2012 Program Committee, the EAPLS board made the final selection for this
award. We are therefore proud to announce that the EAPLS prize for the best
paper of TFP 2012 was awarded to:

Josef Svenningsson and Emil Axelsson for the paper
“Combining Deep and Shallow Embedding for EDSL.”

Finally, we are grateful for the sponsorship by Erlang Solutions Ltd. and the
Scottish Informatics and Computer Science Alliance (SICSA). The TFP Best
Student Paper award is funded by the TFP series. The EAPLS Best Paper
Award is funded by the European Association for Programming Languages and
Systems.

March 2013 Hans-Wolfgang Loidl
Ricardo Peña
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Some History of Functional Programming

Languages

(Invited Talk)

D.A. Turner

University of Kent & Middlesex University

Abstract. We study a series of milestones leading to the emergence of
lazy, higher order, polymorphically typed, purely functional program-
ming languages. An invited lecture given at TFP12, St Andrews Univer-
sity, 12 June 2012.

Introduction

A comprehensive history of functional programming languages covering all the
major streams of development would require a much longer treatment than falls
within the scope of a talk at TFP, it would probably need to be book length.
In what follows I have, firstly, focussed on the developments leading to lazy,
higher order, polymorphically typed, purely functional programming languages
of which Haskell is the best known current example. Secondly, rather than trying
to include every important contribution within this stream I focus on a series of
snapshots at significant stages.

We will examine a series of milestones:

1. Lambda Calculus (Church & Rosser 1936)
2. LISP (McCarthy 1960)
3. Algol 60 (Naur et al. 1963)
4. ISWIM (Landin 1966)
5. PAL (Evans 1968)
6. SASL (1973–83)
7. Edinburgh (1969–80) — NPL, early ML, HOPE
8. Miranda (1986)
9. Haskell (1992 . . . )

1 The Lambda Calculus

The lambda calculus (Church & Rosser 1936; Church 1941) is a typeless theory
of functions. In the brief account here we use lower case letters for variables:
a, b, c · · · and upper case letters for terms: A,B,C · · ·.

A term of the calculus is a variable, e.g. x, or an application AB, or an
abstraction λx.A for some variable x. In the last case λx. is a binder and free

H.-W. Loidl and R. Peña (Eds.): TFP 2012, LNCS 7829, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 D.A. Turner

occurrences of x in A become bound . A term in which all variables are bound is
said to be closed otherwise it is open. The motivating idea is that closed terms
represent functions.

In writing terms we freely use parentheses to remove ambiguity.
The calculus has three rules

(α) λx.A →α λy.[y/x]A

(β) (λx.A)B →β [B/x]A

(η) λx.Ax →η A if x not free in A

Here [B/x]A means substitute B for free occurrences of x in A1. Rule α permits
change of bound variable. Terms which are the same up to α-conversion, e.g.
λx.x and λy.y, are not usually distinguished.

The smallest reflexive, symmetric, transitive, substitutive relation on terms
including →α, →β and →η, written ⇔, is Church’s notion of λ−conversion. If
we omit symmetry from the definition we get an oriented relation, written ⇒,
called reduction.

An instance of the left hand side of rule β or η is called a redex . A term
containing no redexes is said to be in normal form. A term which is convertible
to one in normal form is said to be normalizing . There are non-normalizing
terms, for example (λx.xx)(λx.xx) which β-reduces to itself.

The three most important technical results are

Church-Rosser Theorem. If A⇒ B and A⇒ B′ there is a term C such that
B ⇒ C and B′ ⇒ C. An immediate corollary is that the normal form of a
normalizing term is unique (up to α-conversion).

Second Church-Rosser Theorem. The normal form of a normalizing term
can be found by repeatedly reducing its leftmost outermost redex , a process
called normal order reduction.

Böhm’s theorem. If A,B have distinct normal forms there is a context C[]
with C[A]⇒ λx.(λy.x) and C[B]⇒ λx.(λy.y).

This tells us that α, β, η-conversion is the strongest possible equational theory
on normalizing terms — if we add any equation between non-convertible
normalizing terms the theory becomes inconsistent , that is all terms are
now interconvertible, e.g. we will have x⇔ y.

The lambda calculus originates from an endeavour by Church, Curry and
others to define an alternative foundation for mathematics based on functions
rather than sets. The attempt foundered in the late 1920’s on paradoxes analo-
gous to those which sank Cantor’s untyped set theory. What remained after the
propositional parts of the theory were removed is a consistent equational the-
ory of functions. Notwithstanding that it was devised before computers in the
modern sense existed, the lambda calculus makes a simple, powerful and elegant
programming language.

1 Substitution includes systematic change of bound variables where needed to avoid
variable capture — for details see any modern textbook, e.g. Hindley & Seldin (2008).
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In the pure2 untyped lambda calculus everything is a function — a closed
term in normal form can only be an abstraction, λx.A. An applied lambda calcu-
lus adds constants representing various types of data and primitive functions on
them, for example natural numbers with plus, times etc. and appropriate addi-
tional reduction rules — Church (1941) calls these δ-rules — this can be done
while ensuring that Church-Rosser and other technical properties of the calcu-
lus are preserved. A type discipline can be imposed to prevent the formation of
meaningless terms. There is thus a richly structured family of applied lambda
calculi, typed and untyped, which continues to grow new members.

However, the pure untyped lambda calculus is already computationally com-
plete. There are functional representations of natural numbers, lists, and other
data. One of several possibilities for the former are the Church numerals

0 = λa.λb.b

1 = λa.λb.ab

2 = λa.λb.a(ab)

3 = λa.λb.a(a(ab)) etc. · · ·

Conditional branching can be implemented by taking

True ≡ λx.(λy.x)

False ≡ λx.(λy.y)

We then have

TrueAB ⇒ A

FalseAB ⇒ B

Recursion can be encoded using Y ≡ λf.(λx.f(xx))(λx.f(xx)) which has the
property, for any term A

Y A⇒ A(Y A)

With this apparatus we can code all the recursive functions of type N → N
(using N for the set of natural numbers) but also those of type N → (N → N),
(N → N)→ N , (N → N)→ (N → N) and so on up.

It is the power to define functions of higher type, together with clean technical
properties — Church-Rosser etc. — that make lambda calculus, either pure or
applied, a natural choice as a basis for functional programming.

At first sight it seems a restriction that λ creates only functions of one argu-
ment, but in the presence of functions of higher type there is no loss of generality.
It is a standard result of set theory that for any sets A, B, the function spaces
(A×B)→ C and A→ (B → C) are isomorphic3.

2 By pure we here mean that variables are the only atomic symbols.
3 Replacing the first by the second is called Currying , after H.B.Curry.
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1.1 Normal Order Graph Reduction

At this point we temporarily break from the sequence of language milestones to
trace an important implementation issue through to the present.

An implementation of λ-calculus on a sequential machine should use normal
order reduction, otherwise it may fail to find the normal form of a normalizing
term. Consider one reduction step, in applying rule β

(λx.A)B ⇒ [B/x]A

we substitute B into the function body unreduced4. In general this will produce
multiple copies of B, apparently requiring any redexes it contains to be reduced
multiple times. For normal order reduction to be practical it is necessary to have
an efficient way of handling this.

An alternative policy is to always reduce arguments before substituting into
the function body — this is applicative order reduction, also known as parameter
passing by value. Call-by-value is an unsafe reduction strategy for lambda cal-
culus, at least if the measure of correctness is conformity with Church’s theory
of conversion, but efficient because the actual parameter is reduced only once.

All practical implementations of functional languages for nearly two decades
from LISP in 1958 onwards used call-by-value.

The thesis of Wadsworth (1971, Ch 4) showed that the efficiency disadvan-
tage of normal order reduction can be overcome by normal graph reduction. In
Wadsworth’s scheme the λ-term is a directed acyclic graph, and the result of
β-reduction, which is performed by update-in-place of the application node, is
that a single copy of the argument is retained, with pointers to it from each
place in the function body where it is referred to. As a consequence any redexes
in the argument are reduced at most once.

Turner (1979a) applied normal graph reduction to S,K combinators (Curry
1958) allowing a much simpler abstract machine. In Turner’s scheme the graph
may be cyclic, permitting a more compact representation of recursion. The com-
binator code is compiled from a high level functional language using a variant of
Curry’s abstraction algorithm (Turner 1979b). Initially this was SASL (Turner
1975) and in later incarnations of the system, Miranda (Turner 1986).

For an interpreter, a fixed set of combinators, S,K,C,B, I etc., each with a
simple reduction rule, works well. But for compilation to native code on stock
hardware it is better to use λ-abstractions derived from the program source as
combinators with potentially bigger reduction steps. Extracting these requires a
program transformation, λ-lifting, (Hughes 1984; Johnsson 1985). This method
was used in a compiler for Lazy ML first implemented at Chalmers University
in 1984 by Augustsson & Johnsson (1989). Their model for mapping combi-
nator graph reduction onto von Neumann hardware, the G machine, has been
refined by Simon Peyton Jones (1992) to the Spineless Tagless G-machine which
underlies the Glasgow Haskell compiler, GHC.

4 The critical case, which shows why normal order reduction is needed, is when B is
non-normalizing but A contains no free occurrences of x.
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Thus over an extended period of development normal order reduction has
been implemented with increasing efficiency.

2 LISP

The first functional programming language and the second oldest programming
language still in use (after FORTRAN), LISP began life in 1958 as a project led
by John McCarthy at MIT. The aim was to create a system for programming
computations over symbolic data, starting with an algorithm McCarthy had
drafted for symbolic differentiation. The first published account of the language
and theory of LISP is (McCarthy 1960).

The data on which LISP works is the S-language. This has a very simple
structure, it consists of atoms, which are words like X or TWO and a pairing
operation, written as a dot. Examples of S-expressions are

((X.Y).Z)

(ONE.(TWO.(THREE.NIL)))

S-expressions can represent lists, trees and so on — they are of variable size
and can outlive the procedure that creates them. A far sighted decision by Mc-
Carthy was to refuse to clutter his algorithms with storage claim and release
instructions. LISP therefore required, and had to invent, heap storage with a
garbage collector.

The M-language defines computations on S-expressions. It has

(a) S-expressions
(b) function application, written f [a; b; . . .] with primitive functions cons, car,

cdr, for creating and decomposing dotted pairs and atom, eq, which test for
atoms and equality between atoms

(c) conditional expressions written [ test1 → result1; test → result2; . . . ]
(d) the ability to define recursive functions — example, here is a function to

extract the leftmost atom from an S-expression:

first[x] = [atom[x] -> x; T -> first[car[x]]]

Note the use of atoms T, F as truth values. Function definitions introduce
variables, e.g. x, which are lower case to distinguish them from atoms. The
values to which the variables become bound are S-expressions. Function
names are also lower case but don’t get confused with variables because in
the M-language function names cannot appear as arguments.

This is computationally complete. McCarthy (1960, Sect. 6) showed that an
arbitrary flowchart can be coded as mutually recursive functions.

The M-language of McCarthy (1960) is first order, as there is no provision to
pass a function as argument or return a function as result5.

5 There has been much confusion about this because McCarthy (1960) uses λ-
abstraction — but in a completely different context from (Church 1941).
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However, McCarthy shows that M-language expressions and functions can be
easily encoded as S-expressions and then defines in the M-language functions,
eval and apply, that correctly interpret these S-expressions.

Thus LISP allows meta-programming, that is treating program as data and
vice versa, by appropriate uses of eval and quote. The 1960 paper gives the
impression, quite strongly, that McCarthy saw this as removing any limitation
stemming from the M-Language itself being first order.

It was originally intended that people would write programs in the M-language,
in an Algol-like notation. In practice LISP programmers wrote their code directly
in the S-language form, and the M-language became a kind of ghost that hovered
in the background — theoretically important but nobody used it.

In LISP 1.5 (McCarthy et al. 1962) atoms acquired property lists , which serve
several puposes and numbers appeared, as another kind of atom, along with
basic arithmetic functions. This was the first version of LISP to gain a large user
community outside MIT and remained in use for many years6.

Many other versions and dialects of LISP were to follow.

Some Myths About LISP

Something called “Pure LISP” never existed — McCarthy (1978) records that
LISP had assignment and goto before it had conditional expressions and recur-
sion — it started as a version of FORTRAN I to which these latter were added.
LISP 1.5 programmers made frequent use of setq which updates a variable and
rplaca, rplacd which update the fields of a CONS cell.

LISP was not based on the lambda calculus, despite using the word
“LAMBDA” to denote functions. At the time he invented LISP, McCarthy was
aware of (Church 1941) but had not studied it. The theoretical model behind
LISP was Kleene’s theory of first order recursive functions7.

The M-language was first order, as already noted, but you could pass a func-
tion as a parameter by quotation, i.e. as the S-expression which encodes it.
Unfortunately, this gives the wrong binding rules for free variables (dynamic
instead of lexicographic).

To represent functions in closed form McCarthy uses λ[[x1; . . . ;xn]; e] and for
recursive functions he uses label[identifier;function].

However, these functional expressions can occur ONLY IN THE FUNCTION
POSITION of an application f [a; b; . . .]. This is clear in the formal syntax for the
M-language in the LISP manual (McCarthy at al. 1962, p9).

That is, McCarthy’s λ and label add no new functions to the M-language, which
remains first order. They are introduced solely to allow M-functions to be written
in closed form.

6 When I arrived at St Andrews in 1972 the LISP running on the computer laboratory’s
IBM 360 was LISP 1.5.

7 McCarthy made these statements, or very similar ones, in a contribution from the
floor at the 1982 ACM symposium on LISP and functional programming in Pitts-
burgh. No written version of this exists, as far as I know.
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If a function has a free variable, e.g y in

f = λx.x + y

y should be bound to the value in scope for y where f is defined, not where f is
called.

McCarthy (1978) reports that this problem (wrong binding for free variables)
showed up very early in a program of James Slagle. At first McCarthy assumed
it was a bug and expected it to be fixed, but it actually springs from something
fundamental — that meta-programming is not the same as higher order pro-
gramming. Various devices were invented to get round this FUNARG problem,
as it became known8.

Not until SCHEME (Sussman 1975) did versions of LISP with default static
binding appear. Today all versions of LISP are lambda calculus based.

3 Algol 60

Algol 60 is not normally thought of as a functional language but its rules for
procedures (the Algol equivalent of functions) and variable binding were closely
related to those of λ-calculus.

The Revised Report on Algol 60 (Naur 1963) is a model of precise technical
writing. It defines the effect of a procedure call by a copying rule with a require-
ment for systematic change of identifiers where needed to avoid variable capture
— exactly like β-reduction.

Although formal parameters could be declared value the default parameter
passing mode was call by name, which required the actual parameter to be copied
unevaluated into the procedure body at every occurrence of the formal parame-
ter. This amounts to normal order reduction (but not graph reduction, there is no
sharing). The use of call by name allowed an ingenious programming technique:
Jensen’s Device. See http://en.wikipedia.org/wiki/Jensen’s_Device

Algol 60 allowed textually nested procedures and passing procedures as pa-
rameters (but not returning procedures as results). The requirement in the copy-
ing rule for systematic change of identifiers has the effect of enforcing static (that
is lexicographic) binding of free variables.

In their book “Algol 60 Implementation”, Randell and Russell (1964, Sect. 2.2)
handle this by two sets of links between stack frames. The dynamic chain links
each stack frame, representing a procedure call, to the frame that called it. The
static chain links each stack frame to that of the textually containing procedure,
which might be much further away. Free variables are accessed via the static
chain.

8 When I started using LISP, at St Andrews in 1972–3, my programs failed in unex-
pected ways, because I expected λ-calculus like behaviour. Then I read the LISP
1.5 manual carefully — the penny dropped when I looked at the syntax of the M-
language (McCarthy et al. 1962, p9) and saw it was first order. This was one of the
main reasons for SASL coming into existence.
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This mechanism works well for Algol 60 but in a language in which functions
can be returned as results, a free variable might be held onto after the function
call in which it was created has returned, and will no longer be present on the
stack.

Landin (1964) solved this in his SECD machine. A function is represented by
a closure, consisting of code for the function plus the environment for its free
variables. The environment is a linked list of name-value pairs. Closures live in
the heap.

4 ISWIM

In early 60’s Peter Landin wrote a series of seminal papers on the relationship
between programming languages and lambda calculus. This includes (Landin
1964), already noted above, which describes a general mechanism for call-by-
value implementation of lambda calculus based languages.

In ”The next 700 programming languages”, Landin (1966) describes an ide-
alised language family, ISWIM, “If you See What I Mean”. The sets of constants
and primitive functions and operators of the language are left unspecified. By
choosing these you get a language specific to some particular domain. But they
all share the same design, which is described in layers.

There is an applicative core, which Landin describes as “Church without
lambda”. He shows that the expressive power of λ-calculus can be captured
by using where. let, rec and saying f(x) = ε instead of f = λ x . ε and so on.
Higher order functions are defined and used without difficulty.

In place of Algol’s begin . . . end the offside rule is introduced to allow a more
mathematical style of block structure by levels of indentation.

The imperative layer adds mutable variables and assignment.
In a related paper, Landin (1965) defines a control mechanism, the J operator,
which allows a program to capture its own continuation, permitting a powerful
generalization of labels and jumps. In short,

ISWIM = sugared lambda + assignment + control

The ISWIM paper also has the first appearance of algebraic type definitions
used to define structures. This is done in words, but the sum-of-products idea is
clearly there.

At end of paper there is an interesting discussion, in which Christopher Stra-
chey introduces the idea of a DL, that is a purely declarative or descriptive
language and wonders whether it would be possible to program exclusively in
one.

5 PAL

ISWIM inspired PAL (Evans 1968) at MIT and GEDANKEN (Reynolds 1970)
at Argonne National Laboratory. These were quite similar. I was given the PAL
tape from MIT when I started my PhD studies at Oxford in 1969.
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The development of PAL had been strongly influenced by Strachey who was
visiting MIT when Art Evans was designing it. The language was intended as a
vehicle for teaching programming linguistics, its aims were:

(i) completeness — all data to have the same rights,
(ii) to have a precisely defined semantics (denotational).

There were three concentric layers:

R-PAL: this was an applicative language with sugared λ (let, rec, where) and
conditional expressions: test → E1 ! E2.
One level of pattern matching, e.g. let x, y, z = expr

L-PAL: this had everything in R-PAL but adds mutable variables & assignment
J-PAL: adds first class labels and goto

PAL was call-by-value and typeless, that is, it had run time type checking.
The basic data types were: integer & float numbers, truthvalues, strings — with
the usual infixes: + − etc. and string handling functions: stem, stern, conc.

Data structures were built from tuples, e.g. (a, b, c) these were vectors, not
linked lists.

Functions & labels had the same rights as basic data types: to be named,
passed as parameters, returned as results, included as tuple elements.

First class labels are very powerful — they allow unusual control structures
— coroutines, backtracking and were easier to use than Landin’s J operator.

6 SASL

SASL stood for “St Andrews Static Language”. I left Oxford in October 1972
for a lectureship at St Andrews and gave a course on programming linguistics
in the Autumn term. During that course I introduced a simple DL based on
the applicative subset of PAL. This was at first intended only as a blackboard
notation but my colleague Tony Davie surprised me by implementing it in LISP
over the weekend! So then we had to give it a name.

Later in the academic year I was scheduled to teach a functional programming
course to second year undergraduates, hitherto given in LISP. In preparation I
started learning LISP 1.5 and was struck by its lack of relationship to λ-calculus,
unfriendly syntax and the complications of the eval/quote machinery. I decided
to teach the course using SASL, as it was now called, instead.

The implementation of SASL in LISP wasn’t really robust enough to use for
teaching. So over the Easter vacation in 1973 I wrote a compiler from SASL to
SECD machine code and an interpreter for the latter, all in BCPL. The code
of the first version was just over 300 lines — SASL was not a large language.
It ran under the RAX timesharing system on the department’s IBM 360/44, so
the students were able to run SASL programs interactively on monitors, which
they liked.

The language had let ...in ... and rec ...in ... for non-recursive
and recursive definitions. Defining and using factorial looked like this:
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rec fac n = n < 0 -> 1;

n * fac (n-1)

in fac 10

For mutual recursion you could say rec def1 and def2 and ... in ....
The data types were: integers, truthvalues, characters, lists and functions.

All data had same rights — a value of any of the five types could be named,
passed to a function as argument, returned as result, or made an element of a
list. Following LISP, lists were implemented as linked lists. The elements of a
list could be of mixed types, allowing the creation of trees of arbitrary shape.

SASL was implemented using call-by-value, with run time type checking.
It had two significant innovations compared with applicative PAL:

(i) strings, “. . . ”, were not a separate type, but an abbreviation for lists of
characters

(ii) I generalised PAL’s pattern matching to allow multi-level patterns, e.g.
let (a,(b,c),d) = stuff in ...

SASL was and remained purely applicative. The only method of iteration
was recursion — the interpreter recognised tail recursion and implemented it
efficiently. The compiler did constant folding — any expression that could be
evaluated at compile time, say (2 + 3), was replaced by its value. These two
simple optimizations were enough to make the SASL system quite usable, at
least for teaching.

As a medium for teaching functional programing, SASL worked better than
LISP because:

(a) it was a simple sugared λ-calculus with no imperative features and no
eval/quote complications

(b) following Church (1941), function application was denoted by juxtaposition
and was left associative, making curried functions easy to define and use

(c) it had correct scope rules for free variables (static binding)
(d) multi-level pattern-matching on list structure made for a big gain in read-

ability. For example the LISP expression9

cons(cons(car(car(x)),cons(car(car(cdr(x))),nil)),

cons(cons(car(cdr(car(x))),cons(car(cdr(car(cdr(x)))),

nil)),nil))

becomes in SASL

let ((a,b),(c,d)) = x in ((a,c),(b,d))

SASL proved popular with St Andrews students and, after I gave a talk at
the summer meeting of IUCC, “Inter-Universities Computing Colloqium”, in
Swansea in 1975, other universities began to show interest.

9 The example is slightly unfair in that LISP 1.5 had library functions for frequently
occurring compositions of car and cdr, with names like caar(x) for car(car(x))
and cadr(x) for car(cdr(x)). With these conventions our example could be written
cons(cons(caar(x), cons(caadr(x), nil)), cons(cons(cadar(x), cons(cadadr(x), nil)),
nil)) However this is still less transparent than the pattern matching version.
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6.1 Evolution of SASL 1974–84

The language continued in use at St Andrews for teaching fp and evolved as I
experimented with the syntax. Early versions of SASL had an explicit λ, written
lambda, so you could write e.g. f = λ x . stuff as an alternative to f x = stuff .
After a while I dropped λ, allowing only the sugared form. Another simplifica-
tion was dropping rec, making let definitions recursive by default. SASL’s list
notation acquired right associative infixes, “:” and “++”, for cons and append .

In 1976 SASL syntax underwent two major changes:

(i) a switch from let defs in exp to exp where defs with an offside
rule to indicate nested scope by indentation.

(ii) allowing multi-equation function definitions, thus extending the use of pat-
tern matching to case analysis. Examples:

length () = 0

length (a:x) = 1 + length x

ack 0 n = n+1

ack m 0 = ack (m-1) 1

ack m n = ack (m-1) (ack m (n-1))

I got this idea from John Darlington10 (see Section 7 below). The second
example above is Ackermann’s function.

At the same time SASL underwent a major change of semantics, becoming lazy.
For the implemention at St Andrews in 1976 I used a lazy version of Landin’s
SECDmachine, following (Burge 1975), who calls it a “procrastinating machine”.

On moving to the University of Kent in January 1977 I had two terms with
very little teaching which I used to try out an idea I had been mulling over for
several years — to apply the normal graph reduction of Wadsworth (1971) to
SK combinators. I reimplemented lazy SASL by translation to SK combinators
and combinator graph reduction (Turner 1979a, 1979b).

SASL continued to evolve gently, acquiring floating point numbers and list
comprehensions11 in 1983. The latter were inspired by Darlington’s “set expres-
sions” (see Section 7 below), but applied to lazy lists.

Burroughs Corporation adopted SASL for a major functional programming
project in Austin, Texas, running from 1979 to 1986, to which I was a consul-
tant. The team designed a hardware combinator reduction machine, NORMA
(Scheevel 1984), of which two were built in TTL logic. NORMA’s software, in-
cluding compiler, operating system and verification tools was written in SASL.

By the mid-1980’s lazy SASL had spread to a significant number of sites,
see Table 1. There were three implementations altogether — the version at

10 I didn’t follow Darlington in using (n + k) patterns because SASL’s number type
was integer rather than natural. I did later (1986) put (n+k) patterns into Miranda
because Richard Bird wanted them for a book he was writing with Phil Wadler.

11 I initially called these ZF expressions, a reference to Zermelo-Frankel set theory —
it was Phil Wadler who coined the better term list comprehension.
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St Andrews, using a lazy SECD machine, which was rewritten and improved
by Bill Cambell; my SK combinator version; and the implementation running
on NORMA at Burroughs Austin Research Centre.

6.2 Advantages of Laziness

Two other projects independently developed lazy functional programming sys-
tems in the same year as SASL — Friedman & Wise (1976), Henderson & Morris
(1976). Clearly laziness was an idea whose time had arrived.

My motives in changing to a lazy semantics in 1976 were

(i) on a sequential machine, consistency with the theory of (Church 1941)
requires normal order reduction

(ii) a non-strict semantics is better for equational reasoning
(iii) allows interactive I/O via lazy lists — call-by-value SASL was limited to

outputs that could be held in memory before printing.
(iv) I was coming round to the view that lazy data structures could replace

exotic control structures, like those of J-PAL.

(a) lazy lists replace coroutines (e.g. equal fringe problem)
(b) the list of successes12 method replaces backtracking

6.3 Dynamic Typing

Languages for computation over symbolic data, such as LISP, POP2 and SASL,
worked on lists, trees and graphs. This leads to a need for structural polymor-
phism — a function which reverses a list, or traverses a tree, doesn’t need to
know the type of the elements. Before the polymorphic type system of Milner
(1978), the only convenient way to avoid specifying the type of the elements of
a structure was to delay type checking until run time. SASL was dynamically
typed for this reason.

But languages with dynamic typing also have a flexibility which is hard to
emulate with a static type system. This example comes from SASL’s 1976 man-
ual. Let f be a curried function of some unknown number of Boolean arguments
— we want to test if f is a tautology (the predicate logical tests if its argument
is a truthvalue):

taut f = logical f -> f;

taut (f True) & taut (f False)

There are still active user communities of languages with run time typing
including LISP, which is far from disappearing and, a rising newcomer, Erlang
(Cesarini & Thompson 2009).

12 An example of list of successes method — for the 8 queens problem — is in the 1976
SASL manual, but the method didn’t have a name until (Wadler 1985).
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Table 1. Lazy SASL sites, circa 1986

California Institute of Technology, Pasadena
City University, London
Clemson University, South Carolina
Iowa State U. of Science & Technology
St Andrews University, UK
Texas A & M University
Université de Montréal, Canada
University College London
University of Adelaide, Australia
University of British Columbia, Canada
University of Colorado at Denver
University of Edinburgh, UK
University of Essex, UK
University of Groningen, Netherlands
University of Kent, UK
University of Nijmegen, Netherlands
University of Oregon, Eugene
University of Puerto Rico
University of Texas at Austin
University of Ulster, Coleraine
University of Warwick, UK
University of Western Ontario, Canada
University of Wisconsin-Milwaukee
University of Wollongong, Australia

Burroughs Corporation, Austin, Texas
MCC Corporation, Austin, Texas
Systems Development Corporation, PA
(24 educational + 3 commercial)

7 Developments in Edinburgh, 1969–1980

Burstall (1969), in an important early paper on structural induction, extended
ISWIM with algebraic type definitions — still defined in words — and case
expressions to analyse data structure.

John Darlington’s NPL, “New Programming Language”, developed with
Burstall in the period 1973-5, replaced case expressions with multi-equation
function definitions over algebraic types, including natural numbers, e.g.

fib (0) <= 1

fib (1) <= 1

fib (n+2) <= fib (n+1) + fib (n)

Darlington got this idea from Kleene’s recursion equations.
NPL was implemented in POP2 by Burstall and used for Darlington’s work

on program transformation (Burstall & Darlington 1977). The language was first
order, strongly (but not polymorphically) typed, purely functional, call-by-value.
It also had “set expressions” e.g.



14 D.A. Turner

setofeven (X) <= <:x : x in X & even(x):>

NPL evolved into HOPE (Burstall, MacQueen & Sannella, 1980), this was
higher order, strongly typed with explicit types and polymorphic type variables,
purely functional. It kept multi-equation pattern matching but dropped set ex-
pressions.

Also in Edinburgh during 1973-78 the programming language ML emerged
as the meta-language of Edinburgh LCF (Gordon et al 1979) a programmable
verification system for Scott’s logic for computable functions, PPLAMBDA.

This early version of ML had

λ, let and letrec
references and assignment
types built using +, × and type recursion.
type abstraction
polymorphic strong typing with type inference (NB!)
used * ** *** etc. as an alphabet of type variables

The language was higher order, call-by-value and allowed assignment and
mutable data. It lacked pattern matching — structures were analysed by condi-
tionals, tests e.g. isl, isr and projection functions.

Standard ML (Milner et al. 1990), which appeared later, in 1986, is the con-
fluence of the HOPE and ML streams, thus has both pattern matching and type
inference, but is not pure — it has references and exceptions.

8 Miranda

Developed in 1983-86, Miranda is essentially SASL plus algebraic types and the
polymorphic type discipline of Milner (1978). It retains SASL’s policies of no
explicit λ’s and, optional, use of an offside rule to allow nested program structure
by indentation (both ideas derived from Landin’s ISWIM). The syntax chosen
for algebraic type definitions resembles BNF:

tree * ::= Leaf * | Node (tree *) (tree *)

The use of * ** *** . . . as type variables followed the original ML (Gordon
et al. 1979) — standard ML had not yet appeared when I was designing Miranda.

For type specifications I used “::” because following SASL “:” was retained
as infix cons.

A lexical distinction between variables and constructors was introduced to
distinguish pattern matching from function definition. The decision is made on
the initial letter of an identifier — upper case for constructors, lower case for
variables. Thus

Node x y = stuff

is a pattern match, binding x, y to a, b if stuff = Node a b whereas
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node x y = stuff

defines a function, node, of two arguments.
Miranda is lazy, purely functional, has list comprehensions, polymorphic with

type inference and optional type specifications — see Turner (1986) for fuller
description — papers and downloads at www.miranda.org.uk

An important change from SASL — Miranda had, instead of conditional ex-
pressions, conditional equations with guards. Example:

sign x = 1, if x>0

= -1, if x<0

= 0, if x=0

Combining pattern matching with guards gives a significant gain in expressive
power. Guards of this kind first appeared in KRC, “Kent Recursive Calculator”
(Turner 1981, 1982), a miniaturised version of SASL which I designed in 1980–81
for teaching. Very simple, KRC had only top level equations (no where) with
pattern matching and guards; and a built in line editor — a functional alternative
to BASIC. KRC was also the testbed for list comprehensions, from where they
made their way into SASL and then Miranda.

Putting where into a language with guards raised a puzzle about scope rules,
forcing a rethink of part of the ISWIM tradition. The solution is that a where-
clause now governs a whole rhs, including guards, rather than an expression.
That is where becomes part of definition syntax, instead of being part of expres-
sion syntax (a decision that is retained in Haskell).

Miranda was a product of Research Software Ltd, with an initial release in
1985, and subsequent releases in 1987 and 1989. It was quite widely taken up
with over 200 universities and 40 companies taking out licenses.

Miranda was by no means the only project combining Milner’s polymorphic
type system with a lazy, purely functional language in this period (mid 1980’s).

Lazy ML, first implemented at Chalmers in 1984 was, as the name suggests,
a pure, lazy version of ML, used by Lennart Augustsson and Thomas Johnsson
as both source and implementation language for their work on compiled graph
reduction which we referred to in Section 1.1, see (Augustsson 1984; Augustsson
& Johnsson 1989).

At Oxford, Philip Wadler developed Orwell, a simple equational language
for teaching functional programming, along much the same lines as Miranda.
Orwell and Miranda were able to share a text book. Bird & Wadler (1988) used
a mathematical notation for functional programming — e.g. Greek letters for
type variables — that could be used with either Miranda or Orwell (or indeed
other functional languages).

Clean, a lazy language based on graph reduction, with uniqueness types to
handle I/O and mutable state. was developed at Nijmegen from 1987 by Rinus
Plasmeijer and his colleagues (Plameijer & van Eekelen 1993).
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9 Haskell

Designed by a committee which started work in 1987, version 1.2 of the Haskell
Report was published in SIGPLAN Notices (Hudak et al. 1992). The language
continued to evolve, reaching a declared standard for long term support in
Haskell 98 (Peyton Jones 2003).

Similar in many ways to Miranda, being lazy, higher order, polymorphically
typed with algebraic types, pattern matching and list comprehensions, the most
noticeable syntactic differences are:

Switched guards to left hand side of equations

sign x | x > 0 = 1

| x < 0 = -1

| x==0 = 0

Change of syntax for type declarations — Miranda

bool ::= True | False

string == [char]

becomes in Haskell

data Bool = False | True

type String = [Char]

Extension of Miranda’s var/constructor distinction by initial letter to types,
giving lower case type variables, upper case type consts — Miranda

map :: (*->**)->[*]->[**]

filter :: (*->bool)->[*]->[*]

zip3 :: [*]->[**]->[***]->[(*,**,***)]

becomes in Haskell

map :: (a->b)->[a]->[b]

filter :: (a->Bool)->[a]->[a]

zip3 :: [a]->[b]->[c]->[(a,b,c)]

Haskell has a richer and more redundant syntax. e.g. it provides conditional
expressions and guards, let-expressions and where-clauses, case-expressions
and pattern matching by equations, λ-expressions and function-form = rhs
etc. . . .

Almost everything in Miranda is also present in Haskell in one form or another,
but not vice versa — Haskell includes a system of type classes, monadic I/O
and a module system with two level names. Of these the first is particularly
noteworthy and the most innovative feature of the language. An account of the
historical relationship between Haskell and Miranda can be found in (Hudak et
al. 2007, s2.3 and s3.8).
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class Taut a where

taut :: a->Bool

instance Taut Bool where

taut b = b

instance Taut a => Taut (Bool->a) where -- problem here

taut f = taut (f True) && taut (f False)

Fig. 1. Class Taut

This is not the place for a detailed account of Haskell, for which many excellent
books and tutorials exist, but I would like to close the section with a simple
example of what can be done with type classes. Let us try to recover the variadic
tautology checker of Section 6.3.

Figure 1 introduces a class Taut with two instances to cover the two cases.
Unfortunately the second instance declaration is illegal in both Haskell 98 and
the current language standard, Haskell 2010. Instance types are required to be
generic, that is of the form (Ta1 . . . an). So (a → b) is allowed as an instance
type but not (Bool → a).

class Boolean b where

fromBool :: Bool->b

instance Boolean Bool where

fromBool t = t

class Taut a where

taut :: a->Bool

instance Taut Bool where

taut b = b

instance (Boolean a, Taut b) => Taut (a->b) where

taut f = taut (f (fromBool True))

&& taut (f (fromBool False))

Fig. 2. Variadic taut in Haskell 2010

GHC, the Glasgow Haskell compiler, supports numerous language extensions
and will accept the code in Figure 1 if language extension FlexibleInstances is
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enabled. To make the example work in standard Haskell is more trouble; we have
to introduce an auxilliary type class, see Figure 2. One could not claim that this
is as simple and transparent as the SASL code shown earlier.

When what was to become the Haskell committee had its first scheduled
meeting in January 1988 a list of goals for the language, which did not yet have
a name, was drawn up, see (Hudak et al. 2007, s2.4), including

It should be based on ideas which enjoy a wide consensus.

Type classes cannot be said to fall under that conservative principle: they are an
experimental feature, and one that pervades the language. They are surprisingly
powerful and have proved extremely fertile but also add greatly to the complexity
of Haskell, especially the type system.

Acknowledgements. I am grateful to the programme committee of TFP 2012
for inviting me to give a lecture on the history of functional programming at
TFP 2012 in St Andrews. This written version of the lecture has benefitted
from comments and suggestions I received from other participants in response
to the lecture. In particular I am indebted to Josef Svenningsson of Chalmers
University for showing me how to code the variadic taut function in Haskell
using type classes.

Section 1 draws on material from my essay on Church’s Thesis and Functional
Programming in (Olszewski et al. 2006, 518-544).
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Abstract. When compiling embedded languages it is natural to use an
abstract syntax tree to represent programs. This is known as a deep
embedding and it is a rather cumbersome technique compared to other
forms of embedding, typically leading to more code and being harder
to extend. In shallow embeddings, language constructs are mapped di-
rectly to their semantics which yields more flexible and succinct imple-
mentations. But shallow embeddings are not well-suited for compiling
embedded languages. We present a technique to combine deep and shal-
low embedding in the context of compiling embedded languages in order
to provide the benefits of both techniques. In particular it helps keeping
the deep embedding small and it makes extending the embedded lan-
guage much easier. Our technique also has some unexpected but welcome
knock-on effects. It provides fusion of functions to remove intermediate
results for free without any additional effort. It also helps to give the
embedded language a more natural programming interface.

1 Introduction

When compiling an embedded language it is natural to use an algebraic data type
to represent the abstract syntax tree (AST). This is known as a deep embedding.
Deep embeddings can be cumbersome: the AST can grow quite large in order to
represent all the language features, which can make it rather unwieldy to work
with. It is also laborious to add new language constructs as it requires changes
to the AST as well as all functions manipulating the AST.

In contrast, shallow embeddings don’t require an abstract syntax tree and
all the problems that come with it. Instead, language constructs are mapped
directly to their semantics. But if we wish to compile our embedded language we
have little choice but having some form of AST — in particular if we not only
want to compile it, but first transform the representation, or if we have another
type of backend, say, a verification framework.

In this paper we present a technique for combining deep and shallow embed-
dings in order to achieve many of the advantages of both styles. This combination
turns out to provide knock-on effects which we also explore. In particular, our
technique has the following advantages:

Simplicity: By moving functionality to shallow embeddings, our technique helps
keep the AST small without sacrificing expressiveness.
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Abstraction: The shallow embeddings are based on abstract data types leading
to better programming interfaces (more like ordinary APIs than constructs of a
language). This has important side-effects:

– The shallow interfaces can have properties not possessed by the deep em-
bedding. For example, our vector interface (Section 4.5) guarantees removal
of intermediate structures (see Section 5).

– The abstract types can sometimes be made instances of standard Haskell
type classes, such as Functor and Monad, even when the deep embedding
cannot (demonstrated in Section 4.4 and 4.5).

Extensibility: Our technique can be seen as a partial solution to the expres-
sion problem1 as it makes it easier to extend the embedded language with new
language constructs and functions.

Before giving an overview of our technique (Section 3) we will give an intro-
duction to shallow and deep embeddings in Section 2, including a comparison of
the two methods (Section 2.1).

Throughout this paper we will use Haskell [16] and some of the extensions pro-
vided by the Glasgow Haskell Compiler. While we will use many Haskell-specific
functions and constructs the general technique and its advantages translates
readily to other languages.

2 Shallow and Deep — Pros and Cons

To explain the meaning of “deep” and “shallow” we will use the following small
embedded domain specific language (EDSL) from [5] as an illustrating example.

inRegion : : Point → Region → Bool
c i r c l e : : Radius → Region
outside : : Region → Region
( ∩ ) : : Region → Region → Region
( ∪ ) : : Region → Region → Region

This piece of code defines a small language for regions, i.e. two-dimensional areas.
It only shows the interface; we will give two implementations, one deep and one
shallow.

The type Region defines the type of regions which is the domain we are con-
cerned with in this example. We can interpret regions by using inRegion , which
allows us to check whether a point is within a region or not. We will refer to
functions such as inRegion which interpret values in our domain as interpretation
functions. The function inRegion takes an argument of type Point and we will just
assume there is such a type together with the expected operations on points.

Regions can be constructed using circle which creates a region with a given ra-
dius (again, we assume a type Radius without giving its definition). The functions
outside , ( ∩ ) and ( ∪ ) take the complement, intersection and union of regions.
As an example of how to use the language, we define the function annulus which
can be used to construct donut-like regions given two radii:

1 http://www.daimi.au.dk/~madst/tool/papers/expression.txt

http://www.daimi.au.dk/~madst/tool/papers/expression.txt
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annulus : : Radius → Radius → Region

annulus r1 r2 = outside ( c i r c l e r1) ∩ ( c i r c l e r2)

The first implementation of our small region EDSL will use a shallow embed-
ding. The code is shown below.

type Region = Point → Bool

p ‘ inRegion ‘ r = r p
c i r c l e r = λp → magnitude p ≤ r
outside r = λp → not ( r p)
r1 ∩ r2 = λp → r1 p && r2 p
r1 ∪ r2 = λp → r1 p | | r2 p

Our concrete implementation of the type Region is the type Point → Bool. We will
refer to the type Point → Bool as the semantic domain of the shallow embedding.
It is no coincidence that the semantic domain is similar to the type of the function
inRegion . The essence of shallow embeddings is that the representation they use
directly encode the operations that can be performed on them. In our case Region

is represented exactly as a test whether a Point is within the region or not.
The implementation of the function inRegion becomes trivial; it simply uses

the function used to represent regions. This is common for shallow embeddings;
interpretation functions like inRegion , can make direct use of the operations used
in the representation. All the other functions encode what it means for a point
to be inside the respective region.

The characteristic of deep embeddings is that they use an abstract syntax tree
to represent the domain. Below is how we would represent our example language
using a deep embedding.

data Region = Circle Radius | Intersect Region Region
| Outside Region | Union Region Region

c i r c l e r = Circ le r
outside r = Outside r
r1 ∩ r2 = Intersect r1 r2
r1 ∪ r2 = Union r1 r2

p ‘ inRegion ‘ (Circle r ) = magnitude p ≤ r
p ‘ inRegion ‘ (Outside r ) = not (p ‘ inRegion ‘ r )
p ‘ inRegion ‘ ( Intersect r1 r2) = p ‘ inRegion ‘ r1 && p ‘ inRegion ‘ r2
p ‘ inRegion ‘ (Union r1 r2) = p ‘ inRegion ‘ r1 | | p ‘ inRegion ‘ r2

The type Region is here represented as a data type with one constructor for each
function that can be used to construct regions.

Writing the functions for constructing new regions becomes trivial. It is simply
a matter of returning the right constructor. The hard work is instead done in
the interpretation function inRegion which has to interpret the meaning of each
constructor.

2.1 Brief Comparison

As the above example EDSL illustrates, a shallow embedding makes it easier
to add new language constructs — as long as they can be represented in the
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semantic domain. For instance, it would be easy to add a function rectangle

to our region example. On the other hand, since the semantic domain is fixed,
adding a different form of interpretation, say, computing the area of a region,
would not be possible without a complete reimplementation.

In the deep embedding, we can easily add new interpretations (just add a
new function like inRegion ), but this comes at the price of having a fixed set
of language constructs. Adding a new construct to the deep implementation
requires updating the Region type as well as all existing interpretation functions.

This comparison shows that shallow and deep embeddings are dual in the sense
that the former is extensible with regards to adding language constructs while
the latter is extensible with regards to adding interpretations. The holy grail of
embedded language implementation is to be able to combine the advantages of
shallow and deep in a single implementation. This is commonly referred to as
the expression problem.

One way to work around the limitation of deep embeddings not being exten-
sible is to use “derived constructs”. An example of a derived construct is annulus ,
which we defined in terms of outside , circle and ( ∩ ). Derived constructs are shal-
low in the sense that they do not have a direct correspondence in the underlying
embedding. Shallow derived constructs of a deep embedding are particularly in-
teresting as they inherit most advantages of both shallow and deep embeddings.
They can be added with the same ease as constructs in a fully shallow em-
bedding. Yet, the interpretation functions only need to be aware of the deep
constructs, which means that we retain the freedom of interpretation available
in deep embeddings. There are, of course, limitations to how far these advan-
tages can be stretched. We will return to this point in the concluding discussion
(Section 6).

The use of shallow derived constructs is quite common in deeply embedded
DSLs. The technique presented in this paper goes beyond “simple” derived con-
structs to extensions with new interface types leading to drastically different
interfaces.

3 Overview of the Technique

We assume a setting where we want an EDSL which generates code. Code gen-
eration tends to require intensional analysis of the AST, which is not directly
possible with a shallow implementation (but see Reference [4] for how to gener-
ate code in the final tagless style). Hence, we need a deep embedding as a basis.
Our technique can be summarized in the following steps:

1. Implement a deeply embedded core language. The aim of the core language
is not to act as a convenient user interface, but rather to support efficient
generation of common code patterns in the target language. For this reason,
the core language should be kept as simple as possible.

2. Implement user-friendly interfaces as shallow embeddings on top of the core
language. Each interface is represented by a separate type and operations on
this type.
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3. Give each interface a precise meaning by giving a translation to and from
a corresponding core language program. In other words, make the deep em-
bedding the semantic domain of the shallow embedding. This is done by
means of type class instantiation. If such a translation is not possible, or not
efficient, extend the core language as necessary.

These ideas have been partly described in our paper on the implementation
of the Feldspar EDSL [1]. However, we feel that the ideas are important enough
to be presented as a general technique, not tied to a particular language imple-
mentation.

In the sections that follow we will demonstrate our technique through a se-
ries of examples. For the sake of concreteness we have made some superficial
choices which are orthogonal to our technique. In particular, we use a typed em-
bedded language and employ higher order abstract syntax to deal with binding
constructs. Neither of these choices matter for the applicability of our technique.

4 Examples

To demonstrate our technique we will use a small embedded language called
FunC as our running example. The data type describing the FunC abstract
syntax tree can be seen below.

data FunC a where
Li t I : : Int → FunC Int
LitB : : Bool → FunC Bool
I f : : FunC Bool → FunC a → FunC a → FunC a
While : : (FunC s → FunC Bool) → (FunC s → FunC s) → FunC s → FunC s
Pair : : FunC a → FunC b → FunC (a ,b)
Fst : : FunC (a ,b) → FunC a
Snd : : FunC (a ,b) → FunC b
Prim1 : : String → (a → b) → FunC a → FunC b
Prim2 : : String → (a → b → c) → FunC a → FunC b → FunC c
Value : : a → FunC a
Variable : : String → FunC a

FunC is a low level, pure functional language which has a straightforward trans-
lation to C. It is meant for embedding low level programs and is inspired by
the Core language used in the language Feldspar [2]. We use a GADT to give
precise types to the different constructors. We have also chosen Higher Order
Abstract Syntax [17] to represent constructs with variable binding. In the above
data type, the only higher-order construct is While. We will add another one in
Section 4.5.

FunC has constructs for integer and boolean literals and an if-expression for
testing booleans. The while expression models while loops. Since FunC is pure,
the body of the loop cannot perform side-effects, so instead the while loop passes
around a state. The third argument to the While constructor is the initial value
of the state. The state is then updated each iteration of the loop by the sec-
ond argument. In order to determine when to stop looping the first argument
is used, which performs a test on the state. Furthermore, FunC has pairs which
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are constructed with the Pair constructor and eliminated using Fst and Snd. The
constructs Prim1 and Prim2 are used to create primitive functions in FunC. The
string argument is the name of the primitive function which is used when gen-
erating code from FunC and the function argument is used during evaluation.
It is possible to simply have a single constructor for primitive functions of an
arbitrary number of arguments but that would complicate the presentation un-
necessarily for the purpose of this paper. The two last constructors, Value and
Variable , are not part of the language. They are used internally for evaluation
and printing respectively.

The exact semantics of the FunC language is given by the eval function.

eval : : FunC a → a
eval ( L i t I i ) = i
eval (LitB b) = b

eval (While c b i ) = head $ dropWhile (eval ◦ c ◦ Value) $
iterate ( eval ◦ b ◦ Value) $ eval i

eval ( I f c t e) = i f eval c then eval t else eval e
eval (Pair a b) = (eval a , eval b)
eval (Fst p) = f s t ( eval p)
eval (Snd p) = snd ( eval p)
eval (Prim1 f a) = f ( eval a)
eval (Prim2 f a b) = f ( eval a) ( eval b)
eval (Value a) = a

4.1 The Syntactic Class

So far our presentation of FunC has been a purely deep embedding. Our goal
is to be able to add shallow embeddings on top of the deep embedding and in
order to make that possible we will make our language extensible using a type
class. This type class will encompass all the types that can be compiled into our
FunC language. We call the type class Syntactic .

class Syntactic a where
type Internal a
toFunC : : a → FunC ( Internal a)
fromFunC : : FunC ( Internal a) → a

When making an instance of the class Syntactic for a type T one must specify how
T will represented internally, in the already existing deep embedding of FunC.
This is what the associated type Internal is for. The two functions toFunC and
fromFunC translates back and forth between the type T and its internal represen-
tation. The fromFunC method is needed when defining user interfaces based on
the Syntactic class. The first instance of Syntactic is simply FunC itself, and the
instance is completely straightforward.

instance Syntactic (FunC a) where
type Internal (FunC a) = a
toFunC ast = ast
fromFunC ast = ast
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4.2 User Interface

Now that we have the Syntactic class we can give FunC a nice extensible inter-
face which we can present to the programmer using FunC. This interface will
mirror the deep embedding and its constructor but will use the class Syntactic to
overload the functions to make them compatible with any type that we choose
to make an instance of Syntactic .

true , fa l se : : FunC Bool
true = LitB True
fa l se = LitB False

ifC : : Syntactic a ⇒ FunC Bool → a → a → a
ifC c t e = fromFunC ( I f c (toFunC t ) (toFunC e))

c ? (t , e) = i fC c t e

while : : Syntactic s ⇒ ( s → FunC Bool) → (s → s) → s → s
while c b i = fromFunC (While (c ◦ fromFunC)

(toFunC ◦ b ◦ fromFunC)
(toFunC i ))

When specifying the types in our new interface we note that base types
are not overloaded, they are still on the form FunC Bool. The big difference
is when we have polymorphic functions. The function ifC works for any a as
long as it is an instance of Syntactic . The advantage of the type Syntactic a ⇒
FunC Bool → a → a → a over FunC Bool → FunC a → FunC a → FunC a is two-fold:
First, it is closer to the type that an ordinary Haskell function would have and
so it gives the function a more native feel, like it is less of a library and more of
a language. Secondly, it makes the language extensible. These functions can now
be used with any type that is an instance of Syntactic . We are no longer tied to
working solely on the abstract syntax tree FunC.

We have not shown any interface for integers. One way to implement that
would be to provide a function equivalent to the LitI constructor. In Haskell there
is a nicer way: provide an instance of the type class Num. By instantiating Num

we get access to Haskell’s overloaded syntax for numeric literals so that we don’t
have to use a function for lifting numbers into FunC. Additionally, Num contains
arithmetic functions which we also gain access to. Similarly, we instantiate the
Integral class to get an interface for integral operations. The primive functions
of said type classes are implemented using the constructors Prim1 and Prim2. We
refrain from presenting the code as it is rather Haskell-specific and unrelated to
the main point of the paper.

We will also be using comparison operators in FunC. For tiresome reasons it
is not possible to overload the methods of the corresponding type classes Eq and
Ord: these methods return a Haskell Bool and there is no way we can change
that to fit the types of FunC. Instead we will simply assume that the standard
definitions of the comparison operators are hidden and we will use definitions
specific to FunC.
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4.3 Embedding Pairs

We have not yet given an interface for pairs. The reason for this is that they
provide an excellent opportunity to demonstrate our technique. We simply in-
stantiate the Syntactic class for Haskell pairs:

instance (Syntactic a , Syntactic b) ⇒ Syntactic (a ,b) where
type Internal (a ,b) = ( Internal a , Internal b)
toFunC (a ,b) = Pair (toFunC a) (toFunC b)
fromFunC p = (fromFunC (Fst p) , fromFunC (Snd p))

In this instance, toFunC constructs an embedded pair from a Haskell pair, and
fromFunC eliminates an embedded pair by selecting the first and second compo-
nent and returning these as a Haskell pair.2

The usefulness of pairs comes in when we need an existing function to operate
on a compound value rather than a single value. For example, the state of the
while loop is a single value. If we want the state to consist of, say, two integers, we
use a pair. Since functions such as ifC and while are overloaded using Syntactic ,
there is no need for the user to construct compound values explicitly; this is
done automatically by the overloaded interface.

As an example of this, here is a for loop defined using the while construct with
a compound state:

forLoop : : Syntactic s ⇒ FunC Int → s → (FunC Int → s → s) → s
forLoop len i n i t step = snd $ while (λ( i , s ) → i<len )

(λ( i , s ) → ( i+1, step i s ))
(0 , i n i t )

The first argument to forLoop is the number of iterations; the second argument is
the initial state; the third argument is the step function which, given the current
loop index and current state, computes the next state. We define forLoop using
a while loop whose state is a pair of an integer and a smaller state.

Note that the above definition only uses ordinary Haskell pairs: The continue
condition and step function of the while loop pattern match on the state using
ordinary pair syntax, and the initial state is constructed as a standard Haskell
pair.

4.4 Embedding Option

If we want to extend our language with optional values, one may be tempted to
make a Syntactic instance for Maybe. Unfortunately, there is no way to make this
work, because fromFunC would have to decide whether to return Just or Nothing

when the Haskell program is evaluated, which is one stage earlier than when the
FunC program is evaluated. Instead, we can use the following implementation:

2 Note that the argument p is duplicated in the definition of fromFunC. If both compo-
nents are later used in the program, this means that the syntax tree will contain two
copies of p. For this reason, having tuples in the language usually requires some way
of recovering sharing [7]. This issue is, however, orthogonal to the ideas presented in
this paper.
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data Option a = Option { isSome : : FunC Bool , fromSome : : a }

instance Syntactic a ⇒ Syntactic (Option a) where
type Internal (Option a) = (Bool , Internal a)
fromFunC m = Option (Fst m) (Snd m)
toFunC (Option b a) = Pair b a

We have borrowed the name Option from ML to avoid clashing with the name
of the Haskell type. The type Option is represented as a boolean and a value.3

The boolean indicates whether the value is valid or whether it should simply
be ignored, effectively interpreting it as not being there. The Syntactic instance
converts to and from the representation in FunC which is a pair of a boolean and
the value.

The definition of Option may seem very straight forward but when we try to
implement functions for creating values of type Option we run into problems.
Specifically it is hard to create an empty Option value, because we need some
value to put into the second component of the pair. FunC is simply not expressive
enough to encode this type as it stands. So we will have to extend FunC somehow
to accommodate the Option type. There are several ways of doing this and we
have chosen a very minimal extension. We add a notion of undefined values. To
begin with we add an extra constructor to the FunC type.

Undef : : FunC a

Next we give semantics to Undef ( undefined is part of the Haskell standard) and
provide an overloaded function undef for convenience.

eval Undef = undefined

undef : : Syntactic a ⇒ a
undef = fromFunC Undef

Armed with undefined values we can now easily provide functions for construct-
ing optional values:

some : : a → Option a
some a = Option true a

none : : Syntactic a ⇒ Option a
none = Option fa l se undef

option : : (Syntactic a , Syntactic b) ⇒ b → (a → b) → Option a → b
option noneCase someCase opt = i fC (isSome opt)

(someCase (fromSome opt))
noneCase

The some function creates an optional value which actually contains a value
whereas none defines an empty value. It is the function none which uses the undef

function we previously added to FunC. The function option acts as a case on
optional values, allowing the programmer to test an Option value to see whether
is contains something or not.

3 Larger unions can be encoded using an integer instead of a boolean.
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The function above provides a nice programmer interface but the real power
of the shallow embedding of the Option type comes from the fact that we can
make it an instance of standard Haskell classes. In particular we can make it an
instance of Functor and Monad.

instance Functor Option where
fmap f (Option b a) = Option b ( f a)

instance Monad Option where
return a = some a
opt >>= k = b { isSome = isSome opt ? (isSome b, fa l se ) }

where b = k (fromSome opt)

Being able to reuse standard Haskell functions is a great advantage as it helps
to decrease the cognitive load of the programmer when learning our new lan-
guage. We can map any Haskell function on the element of an optional value
because we chose to let the element of the Option type to be completely poly-
morphic, which is why these instances type check. The advantage of reusing
Haskell’s standard classes is particularly powerful in the case of the Monad class
because it has syntactic support in Haskell which means that it can be reused
for our embedded language. For example, suppose that we have a function
divO :: FunC Int → FunC Int → Option (FunC Int ) which returns nothing in the
case the divisor is zero. Then we can write functions such as the following:

divTest : : FunC Int → FunC Int → FunC Int → Option (FunC Int )
divTest a b c = do r1 ← divO a b

r2 ← divO a c
return (r1+r2)

4.5 Embedding Vector

Our language FunC is intended to target low level programming. In this domain
most programs deal with sequences of data, typically in the form of arrays. In
this section we will see how we can extend FunC to provide a nice interface to
array programming.

The first thing to note is that FunC doesn’t have any support for arrays at
the moment. We will therefore have to extend FunC to accommodate this. The
addition we have chosen is one constructor which computes an array plus two
constructors for accessing the length and indexing into the array respectively:

Arr : : FunC Int → (FunC Int → FunC a) → FunC (Array Int a)
ArrLen : : FunC (Array Int a) → FunC Int
ArrIx : : FunC (Array Int a) → FunC Int → FunC a

The first argument of the Arr constructor computes the length of the array. The
second argument is a function which given an index computes the element at that
index. By repeatedly calling the function for each index we can construct the
whole array this way. The meaning of ArrLen and ArrIx should require little expla-
nation. The exact semantics of these constructors is given by the corresponding
clauses in the eval function.
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eval (Arr l i x f ) = l i stArray (0 ,lm1) [ eval $ i x f $ value i | i ← [ 0 . . lm1 ] ]

where lm1 = eval l − 1
eval (ArrLen a) = (1 +) $ uncurry ( f l i p (−)) $ bounds $ eval a
eval (ArrIx a i ) = eval a ! eval i

We will use two convenience functions for dealing with length and indexing: len

which computes the length of the array and the infix operator (<!>) which is
used to index into the array. As usual we have overloaded (<!>) so that it can
be used with any type in the Syntactic class.

len : : FunC (Array Int a) → FunC Int
len arr = ArrLen arr

(<!>) : : Syntactic a ⇒ FunC (Array Int ( Internal a)) → FunC Int → a
arr <!> ix = fromFunC (ArrIx arr ix )

Having extended our deep embedding to support arrays we are now ready to
provide the shallow embedding. In order to avoid confusion between the two
embeddings we will refer to the shallow embedding as vector instead of array.

data Vector a where
Indexed : : FunC Int → (FunC Int → a) → Vector a

instance Syntactic a ⇒ Syntactic (Vector a) where
type Internal (Vector a) = Array Int ( Internal a)
toFunC (Indexed l i x f ) = Arr l (toFunC ◦ i x f )
fromFunC arr = Indexed ( len arr ) (λix → arr <!> ix )

The type Vector forms the shallow embedding and its constructor Indexed is strik-
ingly similar to the Arr construct. The only difference is that Indexed is completely
polymorphic in the element type. One of the advantages of a polymorphic el-
ement type is that we can have any type which is an instance of Syntactic in
vectors, not only values which are deeply embedded. Indeed we can even have
vectors of vectors which can be used as a simple (although not very efficient)
representation of matrices.

The Syntactic instance converts vectors into arrays and back. It is mostly
straightforward except that elements of vectors need not be deeply embedded so
they must in turn be converted using toFunC.

zipWithVec : : (Syntactic a , Syntactic b) ⇒
(a → b → c) → Vector a → Vector b → Vector c

zipWithVec f (Indexed l1 ix f1 ) (Indexed l2 ix f2 )
= Indexed (min l1 l2 ) (λix → f ( ix f1 ix ) ( ix f2 ix ))

sumVec : : (Syntactic a , Num a) ⇒ Vector a → a
sumVec (Indexed l i x f ) = forLoop l 0 (λix s → s + i x f ix )

instance Functor Vector where
fmap f ( Indexed l i x f ) = Indexed l ( f ◦ i x f )

The above code listing shows some examples of primitive functions for vectors.
The call zipWith f v1 v2 combines the two vectors v1 and v2 pointwise using the
function f. The sumVec function computes the sum of all the elements of a vector
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using the for loop defined in Section 4.3. Finally, just as with the Option type in
Section 4.4 we can define an instance of the class Functor .

Many more functions can be defined for our Vector type. In particular, any kind
of function where each vector element can be computed independently will work
particularly well with the representation we have chosen. However, functions
that require sharing of previously computed results (e.g. Haskell’s unfoldr ) will
yield poor code.

scalarProd : : (Syntax a , Num a) ⇒ Vector a → Vector a → a
scalarProd a b = sumVec (zipWithVec (∗) a b)

An example of using the functions presented above we define the function
scalarProd which computes the scalar product of two vectors. It works by first
multiplying the two vectors pointwise using zipWithVec . The resulting vector is
then summed to yield the final answer.

5 Fusion

Choosing to implement vectors as a shallow embedding has a very powerful
consequence: it provides a very lightweight implementation of fusion [12]. We will
demonstrate this using the function scalarProd defined in the previous section.
Upon a first glance it may seem as if this function computes an intermediate
vector, the vector zipWithVec (∗) a b which is then consumed by the sumVec. This
intermediate vector would be quite bad for performance and space reasons if we
ever wanted to use the scalarProd function as defined.

Luckily the intermediate vector is never computed. To see why this is the case
consider what happens when we generate code for the expression scalarProd v1 v2,
where v1 and v2 are defined as Indexed l1 ixf1 and Indexed l2 ixf2 respectively.
Before generating an abstract syntax tree the Haskell evaluation mechanism will
reduce the expression as follows:

scalarProd v1 v2
⇒ sumVec (zipWithVec (∗) v1 v2)
⇒ sumVec (zipWithVec (∗) (Indexed l1 ix f1 ) (Indexed l2 ix f2 ))
⇒ sumVec (Indexed (min l1 l2 ) (λix → ix f1 ix ∗ ix f2 ix )
⇒ forLoop (min l1 l2 ) 0 (λix s → s + ix f1 ix ∗ ix f2 ix )

The intermediate vector has disappeared and the only thing left is a for loop
which computes the scalar product directly from the two argument vectors.

In the above example, fusion happened because although zipWithVec constructs
a vector, it does not generate an array in the deep embedding. In fact, all stan-
dard vector operations (fmap, take , reverse , etc.) can be defined in a similar man-
ner, without using internal storage. Whenever two such functions are composed,
the intermediate vector is guaranteed to be eliminated. This guarantee by far
exceeds guarantees given by conventional optimizing compilers.

So far, we have only seen one example of a vector producing function that
uses internal storage: fromFunC. Thus intermediate vectors produced by fromFunC

(for example as the result of ifC or while ) will generally not be eliminated.
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There are some situations when fusion is not beneficial, for instance in a
function which access an element of a vector more than once. This will cause the
elements to be recomputed. It is therefore important that the programmer has
some way of backing out of using fusion and store the vector to memory. For
this purpose we can provide the following function:

memorize : : Syntactic a ⇒ Vector a → Vector a
memorize (Indexed l i x f ) = Indexed l (λn → Arr l (toFunC ◦ i x f ) <!> n)

The function memorize can be inserted between two functions to make sure that
the intermediate vector is stored to memory. For example, if we wish to store
the intermediate vector in our scalarProd function we can define it as follows:

scalarProd : : (Syntax a , Num a) ⇒ Vector a → Vector a → a
scalarProd a b = sumVec (memorize (zipWithVec (∗) a b))

Strong guarantees for fusion in combination with the function memorize gives the
programmer a very simple interface which still provides powerful optimizations
and fine grained control over memory usage.

The Vector type is not the only type which can benefit from fusion. In Feldspar
there is a library for streams which captures the notion of an infinite sequence
of values [2]. We use a shallow embedding of streams which also enjoys fusion
in the same way as the vector library we have presented here. In fact, fusion
is only one example of the kind of compile time transformations that can be
achieved. We have a shallow embedding of monads which provides normalization
of monadic expressions by applying the third monad law [15]. Common to all
of these transformations is that they come with very strong guarantees that the
transformations are actually performed.

6 Discussion

The technique described in this paper is a simple, yet powerful, method that gives
a partial solution to the expression problem. By having a deep core language,
we can add new interpretations without problem. And by means of the Syntactic

class, we can add new language types and constructs with minimal effort. There
is only one problem: Quite often, shallow language extensions are not efficiently
(or not at all) expressible in the underlying deep implementation. When this
happens, the deep implementation has to be extended. For example, when adding
the Vector type (Section 4.5), the core language had to be extended with the
constructors Arr, ArrLen and ArrIx . Note, however, that this is a quite modest
extension compared to the wealth of operations available in the vector library.
(This paper has only presented a small selection of the operations.)

Furthermore, it is probable that, once the deep implementation has reached
a certain level of completeness, new shallow extensions will not require any new
changes to the deep implementation. As an example, when adding the Option

type (Section 4.4), the only deep extension needed was the Undef constructor.
But this constructor does not have much to do with optional values; it could
easily have been in the language already for other reasons.
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In this paper we have shown a small but diverse selection of language ex-
tensions to demonstrate the idea of combining deep and shallow embeddings.
The technique has been used with great success by the Feldspar team during
the implementation of Feldspar. The extensions implemented include libraries
for finite and infinite streams, fixed-point numbers and bit vectors. Recently, we
have also used the technique to embed monadic computations in order to enrich
Feldspar with controlled side-effects [15].

7 Related Work

A practical example of the design pattern we have outlined here is the embedded
DSL Hydra which targets Functional Hybrid Modelling [13]. Hydra has a shallow
embedding of signal relations on top of a deep embedding of equations. However,
they do not have anything corresponding to our Syntactic class. Furthermore,
they don’t take advantage of any fusion-like properties of their embedding nor
do they make any instances of standard Haskell classes.

Our focus in this paper has been on deep and shallow embeddings. But these
are not the only techniques for embedding a language into a meta language.
Another popular technique is the Finally Tagless technique [4]. The essence of
Finally Tagless is to have an interface which abstracts over all interpretations
of the language. In Haskell this is realized by a typeclass where each method
corresponds to one language construct. Concrete interpretations are realized by
creating a data type and making it an instance of the type class. For example,
creating an abstract syntax tree would correspond to one interpretation and
would have its own data type, evaluation would be another one. Since new inter-
pretations and constructs can be added modularly (corresponds to adding new
interpretation types and new interface classes respectively), Finally Tagless can
be said to be a solution to the expression problem.

Our technique can be made to work with Finally Tagless as well. Creating a
new embedding on top of an existing embedding simply amounts to creating a
subclass of the type class capturing the existing embedding. However, care has
to be taken if one would like to emulate a shallow embedding on top of a deep
embedding and provide the kind of guarantees that we have shown in this pa-
per. This will require an interpretation which maps some types to their abstract
syntax tree representation and some types to their corresponding shallow em-
bedding. Also, it is not possible to define general instances for standard Haskell
classes for languages using the Finally Tagless technique. Instances can only be
provided by particular interpretations.

The implementation of Kansas Lava [10] uses a combination of shallow and
deep embedding. However, this implementation is quite different from what we
are proposing. In our case, we use a nested embedding, where the deep embedding
is used as the semantic domain of the shallow embedding. In Kansas Lava, the
two embeddings exist in parallel — the shallow embedding is used for evaluation
and the deep embedding for compilation. It appears that this design is not in-
tended for extensibility: adding new interpretations is difficult due to the shallow
embedding, and adding new constructs is difficult due to the deep embedding.
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At the same time, Kansas Lava contains a type class Pack [11] that has some
similarities to our Syntactic class. Indeed, using Pack, Kansas Lava implements
support for optional values by mapping them to a pair of a boolean and a value.
However, it is not clear from the publications to what extent Pack can be used
to develop high-level language extensions and optimizations.

While our work has focused on making shallow extensions of deep embeddings,
it is also possible to have the extensions as deep embeddings. This approach was
used by Claessen and Pace [6] to implement a simple language for behavioral
hardware description. The behavioral language is defined as a simple recursive
data type whose meaning is given as a function mapping these descriptions into
structural hardware descriptions in the EDSL Lava [3].

In their seminal work on compiling embedded languages, Elliott et al. use
a type class Syntactic whose name gave inspiration to our type class [9]. How-
ever, their class is only used for overloading if expressions, and not as a general
mechanism for extending the embedded language.

The way we provide fusion for vectors was first reported in [8] for the lan-
guage Feldspar. The same technique was used in the language Obsidian [18] but
it has never been documented that Obsidian actually supports fusion. The pro-
gramming interface is very closely related to that provided by the Repa library
[14], including the idea of guaranteeing fusion and providing programmer control
for avoiding fusion. Although similar, the ideas were developed completely in-
dependently. It should also be noted that our implementation of fusion is vastly
simpler than the one employed in Repa.

As in [9] we note that deeply embedded compilation relates strongly to partial
evaluation. The shallow embeddings we describe can be seen as a compositional
and predictable way to describe partial evaluation.
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Abstract. Scripting languages have renewed the interest in languages
with dynamic types. For various reasons, realistic programs comprise
dynamically typed components as well as statically typed ones. Safe and
seamless interaction between these components is achieved by equipping
the statically typed language with a type Dynamic and coercions that
map between ordinary types and Dynamic. In such a gradual type system,
coercions that map from Dynamic are checked at run time, throwing a
blame exception on failure.

This paper enlightens a new facet of this interaction by considering a
gradual type system for a linear lambda calculus with recursion and a
simple kind of subtyping. Our main result is that linearity is orthogonal
to gradual typing. The blame theorem, stating that the type coercions
always blame the dynamically typed components, holds in a version anal-
ogous to the one proposed by Wadler and Findler, also the operational
semantics of the calculus is given in a quite different way. The significance
of our result comes from the observation that similar results for other
calculi, e.g., affine lambda calculus, standard call-by-value and call-by-
name lambda calculus, are straightforward to obtain from our results,
either by simple modification of the proof for the affine case, or, for the
latter two, by encoding them in the linear calculus.

Keywords: linear typing, gradual typing, subtyping.

1 Introduction

Many of today’s computing systems contain multi-core processors or regularly
access distributed services. The behavior of such a concurrent system depends
on the interaction of its components, so it is important for its construction
and maintenance to specify and enforce communication protocols and security
policies.

Ideally, static analysis should guarantee the adherence of a system to protocols
and security policies, but such a comprehensive analysis is not always possible.
For example, there may be legacy components that were implemented before
a specification was established, or there may be components implemented in a
dynamic language that are impractical to analyze. These are situations, where
it is desirable to have the ability to combine static and dynamic enforcement of
specifications.
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Gradual typing is a specification method that satisfies these requirements.
Gradual type systems were developed to introduce typing into dynamic lan-
guages to improve the efficiency of their execution as well as their maintain-
ability. They are also useful to mediate accesses between statically typed and
dynamically typed program components [5,10,12,22,24]. A commonality of these
approaches is that they extend the statically typed language with a type Dynamic
along with type coercions that map into and out of the Dynamic type. The dy-
namically typed part is then modeled as a program where every result is coerced
to Dynamic and where every elimination form is preceded by a coercion from
Dynamic. Clearly, the mapping into the Dynamic type never fails whereas the
mapping from the Dynamic type to a, say, function type may fail if the actual
dynamic value happens to be an integer. The standard implementation of a dy-
namic value is a pair consisting of a value and an encoding of its run-time type.
The coercion from Dynamic to another type checks the run-time type against
the expected one and throws an exception if the types do not match.

As a first step towards gradual enforcement of communication policies as
embodied by work on session types [18], this paper considers the interaction
of the type Dynamic and blame assignment with linearity [9]. A linear calculus
formalizes single-use resources in the sense that each introduced value can and
must only be eliminated exactly once. Thus, linearity is an important property
in all type systems that are related to managing stateful resources, in particular
communication channels in a session calculus [7, 20].

A linear lambda calculus has two dimensions that the type Dynamic may ad-
dress: it may hide and dynamically check the type structure or the linearity
requirement (or both). In this paper, we let the type system enforce linearity
statically and have the type Dynamic mostly hide the type structure. The re-
sulting calculus extends Turner and Wadler’s linear lambda calculus [21] with
cast expressions inspired by Wadler and Findler’s blame calculus [22], as demon-
strated in the following example program. It first wraps a pair of a linear function
and a replicable function (the exponential in !λb. b − 1 introduces a replicable
value) into a dynamic value. Then it unwraps the components and demonstrates
their use as functions and replicable functions.

let p = 〈D ⇐ (int � int)⊗ !(int � int)〉((λa. a+ 2)⊗ (!λb. b− 1)) in

let f ⊗ g1 = 〈D ⊗D ⇐ D〉p in

let !g = 〈!(int � int)⇐ D〉g1 in

g (g (〈int � int ⇐ D〉f 0))

The next example illustrates a possible interaction of typed and untyped
code through a latently typed communication channel, which is modeled with
a linear, dynamic type. Initially, the channel is represented by a linear function
submit : int � D : it expects an integer and its remaining behavior is Dynamic.
To use it after sending the integer 5, we attempt to coerce the remaining behavior
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to a string � � channel. An exception will be raised if it turns out that the
run-time type of submit’ does not have this type.

let submit’ = 〈string � �⇐ D〉(submit 5) in submit’ “Hello”

Our calculus has a facility to hide part of a linearity requirement. To this end,
we extend the compatibility relation to admit casts that shortcut the elimination
of the exponential, effectively allowing dynamic replicable values to be treated
as linear. With this extension, the above example also executes correctly if the
run-time type of submit’ has a form like !(!string � �). In both cases, we show
that linearity and gradual typing are orthogonal. We first define a suitable linear
lambda calculus with a gradual type system and blame assignment in the manner
of Taha and Siek [14, 16] and Wadler and Findler [22], respectively. We prove
the soundness of this system and then follow Wadler and Findler in formulating
subtyping relations and proving a blame theorem.

Overview

Section 2 defines the static and dynamic semantics of a typed linear lambda
calculus with recursion.

Section 3 contains our first contribution, an extension of the calculus with
gradual types, which adds a type Dynamic and cast expressions to map between
ordinary types and Dynamic. We prove type soundness of this extended calculus.
Our gradual extension is more modular thanWadler and Findler’s blame calculus
[22] thus making our calculus easier to extend and making our approach easier
to apply to other calculi. Section 4 recalls the subtyping relation of the blame
calculus and adapts it to the linearly typed setting.

Section 5 contains our second contribution. We state and prove the blame
theorem for the linear blame calculus.

Section 6 contains our third contribution. We show how to exploit the
modularity by integrating shortcut casts in the system that enable direct casting
from a replicable value wrapped in the dynamic type to the underlying type.
Type soundness and the blame theorem still hold for this extension.

All proofs may be found in a companion technical report.1

2 Linear Lambda Calculus

Turner and Wadler’s linear lambda calculus [21] is the basis of our investiga-
tion. Figure 1 contains the syntax of their original calculus extended to deal
with recursive exponentials. Types are unit types, pairs, linear functions, and
exponentials. The term syntax is based on two kinds of variables, linear ones
a and non-linear ones x. There are introduction and elimination forms for unit
values �, linear pairs e ⊗ e, and lambda abstractions. By default all expressions
are linear. Following the work on Lily [6] and in this respect generalizing Turner
and Wadler, replicable and recursive expressions can be constructed with the

1 http://proglang.informatik.uni-freiburg.de/projects/gradual/

http://proglang.informatik.uni-freiburg.de/projects/gradual/
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linear variables a, b ::= . . . non-linear variables x, y ::= . . .

types t ::= � | t⊗ t | t � t | !t
expressions e, f ::= � | let � = e in e | e⊗ e | let a⊗ a = e in e |

λa. e | e e | a | !(x = e) | let !x = e in e | x
storable values s ::= � | a⊗ a | λa. e | !x

Fig. 1. Original type and expression syntax

exponential !(x = e), where the non-linear variable x may appear in e. The
exponential can be seen as a suspended computation which, when forced, may
return some value. We may also write !e for !(x = e) when x does not occur
in e. The elimination forms, except function application, are expressed using
suitable let-forms. Our presentation is based on Turner and Wadler’s second,
heap-based semantics. For that reason, our evaluation rules always return linear
variables (heap pointers) that refer to storable values s. The latter only consist of
introduction forms applied to suitable variables. In particular, the storable value
for the exponential refers to a non-linear variable that keeps the real payload
that is repeatedly evaluated.

The corresponding original operational semantics is given in Figure 2. The
reduction rules are defined in terms of heap-expression configurations {H}e.
The heap contains two kinds of bindings. Linear variables are bound to linear
values, whereas standard variables are bound to expressions. The intention is
that a linear variable is used exactly once and removed after use, whereas a
standard variable can be used many times and its binding remains in the heap.
In the rules we use the notation a∗ to denote that a should be a fresh variable.
Figure 3 recalls the inference rules of the corresponding type system as presented
by Turner and Wadler [21]. There are two kinds of type environments, a linear
one, Γ , and a non-linear one, Θ. Linearity is enforced by splitting the linear type
environment in the inference rules in the usual way and by requiring the linear
environment to be empty in the usual places (constants, non-linear variables,
and the exponential). In addition to the expression typing, there is a heap typing
judgment of the form 
 H : Θ;Γ that relates a heap H to environments Θ and
Γ that provide bindings for non-linear and linear variables, respectively. The
judgment is defined in Figure 4 and is a minor modification of the corresponding
judgment of Turner and Wadler with the Closure rule adapted to accomodate
recursive bindings. It is needed for the type soundness proof.

The type of a heap is a pair of a linear and a non-linear type environment re-
flecting the respective variable bindings in the heap. Linear variables are defined
by linear values, non-linear variables are defined by expressions that have no free
linear variables. Note that the type system for expressions is syntax-directed and
that the heap typing rules are invertible as in Turner and Wadler’s original work.
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heaps H ::= · | H,x = e | H, a = s

evaluation contexts E ::=[ ]⊗ e | a⊗ [ ] | [ ] e | a [ ] |
let a⊗ b = [ ] in e | let !x = [ ] in e | let � = [ ] in e

{H}e→ {H}e′

�-I {H}� → {H, a∗ = �}a∗

�-E {H, a = �}let � = a in e → {H}e
⊗-I {H}a1 ⊗ a2 → {H, b∗ = a1 ⊗ a2}b∗
⊗-E {H, a′′ = a′ ⊗ b′}let a⊗ b = a′′

in e → {H}e[a/a′, b/b′]

� -I {H}λa. e → {H, b∗ = λa. e}b∗
� -E {H, b = λa. e}b a′ → {H}e[a/a′]

!-I {H}!(x = e) → {H, b∗ =!y∗, y∗ = e[x/y∗]}b∗
!-E {H, b =!y}let !x = b in e → {H}e[x/y]
Var {H,x = e}x → {H,x = e}e

{H}e→ {H ′}e′
{H}E[e]→ {H ′}E[e′]

Context

Fig. 2. Original operational semantics

3 Linear Lambda Calculus with Type Dynamic

To introduce dynamic and gradual typing into the calculus, we extend the
Turner-Wadler calculus with new constructs adapted from Wadler and Find-
ler’s work [22] as shown in Figure 5. There is a new kind of wrapper value Dc(a),
which denotes a dynamic value pointing to a variable a with type constructor
c, a new type D of dynamic values, and a cast expression 〈t′ ⇐ t〉p e. The cast
is supposed to transform the type of e from t to t′. Casts are annotated with
a blame label p to later identify the place that caused a run-time error result-
ing from the cast. A plain blame label p indicates positive blame whereas an
inverted label p̄ indicates negative blame. Inversion is involutory so that ¯̄p = p.
The wrapper values are needed by the casts to perform run-time type checking.
Unlike the wrapper values of Wadler and Findler’s blame calculus, they are only
defined for linear variables and occur exclusively as heap values.

The extensions to the type system are also inspired by the blame calculus.
The additional rules are given in Figure 6. The Cast rule changes the type t2
of an underlying expression to a compatible type t1. The compatibility relation
t ∼ t is also defined in Figure 6. It is analogous to the definition in the blame
calculus. However, as subset types are not considered here, the only possible
casts are either trivial or cast from or to D . The four value rules are only used
inside of heap typings.
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Linear type environments Γ ,Δ and non linear type environments Θ

Γ,Δ ::= - | Γ, a : t Θ ::= - | Θ, x : t

Θ;Γ � e : t

Θ, x : t; - � x : t
Var

Θ; a : t � a : t
LVar

Θ; - � � : �
�−I

Θ;Γ � e : � Θ;Δ � f : t

Θ;Γ,Δ � let � = e in f : t
�−E

Θ;Γ � e : te Θ;Δ � f : tf

Θ;Γ,Δ � e⊗ f : te ⊗ tf
⊗−I

Θ;Γ � e : ta ⊗ tb Θ;Δ, a : ta, b : tb � f : tf

Θ;Γ,Δ � let a⊗ b = e in f : tf
⊗−E

Θ;Γ, a : ta � e : te

Θ;Γ � λa. e : ta � te
� −I

Θ;Γ � e : tf � te Θ;Δ � f : tf

Θ;Γ,Δ � e f : te
� −E

Θ, x : t; - � e : t

Θ; - �!(x = e) :!t
!−I

Θ;Γ � e :!te Θ, x : te;Δ � f : tf

Θ;Γ,Δ � let !x = e in f : tf
!−E

Fig. 3. Original linear type system

� H : Θ;Γ

� · : - ; -
Empty

� H : Θ;Γ Θ, x : t; - � e : t

� H,x = e : Θ, x : t;Γ
Closure

� H : Θ;Γ,Δ Θ;Δ � s : t

� H, a = s : Θ;Γ, a : t
Value

Fig. 4. Heap typing

Figure 7 shows the reduction rules that perform run-time type checking by
manipulating casts and wrapper values. These rules are original to our system
and they implement casting in a different way than Wadler and Findler. The
first set of rules concerns casting into the dynamic type. It distinguishes casts
by checking the source type for groundness (a type constructor directly applied
to D). A cast from a ground type to D corresponds to a wrapper application
(second part of first group) whereas any other cast is decomposed into a wrapper
cast preceded by a cast into the ground type. It is not possible to merge these
two parts because a wrapper cannot be applied before its argument is properly
cast and evaluated.

The second group of rules specifies the functorial casts that descent struc-
turally in the type. For the types dynamic and unit, the casts do nothing. For
pairs, the casts are distributed to the components. For functions, the cast is
turned into a wrapper function, which casts the argument with types reversed
and the blame label “inverted” and which casts the result with the types in the
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types t ::= . . . | D expressions e ::= . . . | 〈t⇐ t〉p e

blame labels p, q ::= . . . storable values s ::= . . . | Dc(a)

constructors c ::= � | ⊗ | � | !

Fig. 5. Syntactic extensions

Θ;Γ � e : t , Θ;Γ � s : t

Θ;Γ � e : t2 t1 ∼ t2

Θ;Γ � 〈t1 ⇐ t2〉pe : t1 Cast

Θ; a : � � D�(a) : D
DynVal - �

Θ; a : D ⊗D � D⊗(a) : D
DynVal - ⊗

Θ; a : D � D � D�(a) : D
DynVal - �

Θ; a :!D � D!(a) : D
DynVal - !

Compatibility t ∼ t′

� ∼ � t ∼ D D ∼ t

t1 ∼ t′1 t2 ∼ t′2
t1 ⊗ t2 ∼ t′1 ⊗ t′2

t1 ∼ t′1 t2 ∼ t′2
t1 � t2 ∼ t′1 � t′2

t ∼ t′

!t ∼!t′

Fig. 6. Type system extensions and compatibility

original order. A cast between exponential types unfolds the exponential and
performs the cast on the underlying linear value.

The third group of rules concerns casting from type D . This group has a
simpler structure than the first group because top-level unwrapping can be done
in any case. The “remaining” cast is then applied to the unwrapped value of
ground type. It is put to work by the functorial rules.

The last group defines the failure rules. They apply to unwrapping casts that
are applied to dynamic values with the wrong top type constructor. These are
the only rules that generate blame.

The resulting linear blame calculus is still type safe. We can prove preservation
and progress lemmas extending the ones given by Turner and Wadler.

Lemma 1 (Type preservation). If {H}e → {H ′}e′ and 
 H : Θ;Γ and
Θ;Γ 
 e : t then there exist Θ′ and Γ ′ such that 
 H ′ : Θ,Θ′;Γ ′ and Θ,Θ′;Γ ′ 

e′ : t.

Lemma 2 (Progress). If 
 H : Θ;Γ and Θ;Γ 
 e : t then one of the following
alternatives holds: (i) there exist H ′ and e′ such that {H}e→ {H ′}e′, (ii) there
exists p such that {H}e→ ⇑p, or (iii) e is a linear variable.

The last case may be surprising, as the standard formulation of a progress lemma
states the outcome of a value at this point. However, in the present setting, all
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results r ::= {H}e | ⇑p
eval. contexts E ::= . . . | 〈t1 ⇐ t2〉p[ ]

{H}e→ r
{H}e→ ⇑p

{H}E[e]→ ⇑p ContextFail

Casting to D

CastDyn - ⊗ {H}〈D ⇐ t1 ⊗ t2〉pa → {H}〈D ⇐ D ⊗D〉p〈D ⊗D ⇐ t1 ⊗ t2〉pa
if t1 
= D ∨ t2 
= D

CastDyn - � {H}〈D ⇐ t1 � t2〉pa → {H}〈D ⇐ D � D〉p〈D � D ⇐ t1 � t2〉pa
if t1 
= D ∨ t2 
= D

CastDyn - ! {H}〈D ⇐!t〉pa → {H}〈D ⇐!D〉p〈!D ⇐!t〉pa
if t 
= D

WrapDyn - � {H}〈D ⇐ �〉pa → {H, b∗ = D�(a)}b∗
WrapDyn - ⊗ {H}〈D ⇐ D ⊗D〉pa → {H, b∗ = D⊗(a)}b∗

WrapDyn - � {H}〈D ⇐ D � D〉pa → {H, b∗ = D�(a)}b∗
WrapDyn - ! {H}〈D ⇐!D〉pa → {H, b∗ = D!(a)}b∗

Functorial casts

Cast - D {H}〈D ⇐ D〉pa → {H}a
Cast - � {H}〈�⇐ �〉pa → {H}a
Cast - ⊗ {H}〈t′1 ⊗ t′2 ⇐ t1 ⊗ t2〉pa → {H}let a1

∗ ⊗ a2
∗ = a in

〈t′1 ⇐ t1〉pa1
∗ ⊗ 〈t′2 ⇐ t2〉pa2

∗

Cast - � {H}〈t′1 � t′2 ⇐ t1 � t2〉pa → {H}λb∗. 〈t′2 ⇐ t2〉p(a (〈t1 ⇐ t′1〉p̄b∗))
Cast - ! {H}〈!t′ ⇐!t〉pa → {H}let !x∗ = a in !(y∗ = 〈t′ ⇐ t〉px∗)

Casting from D

FromDyn - � {H,a = D�(a
′)}〈�⇐ D〉pa → {H}a′

FromDyn - ⊗ {H,a = D⊗(a
′)}〈t1 ⊗ t2 ⇐ D〉pa → {H}〈t1 ⊗ t2 ⇐ D ⊗D〉pa′

FromDyn - � {H,a = D�(a′)}〈t1 � t2 ⇐ D〉pa → {H}〈t1 � t2 ⇐ D � D〉pa′

FromDyn - ! {H,a = D!(a
′)}〈!t⇐ D〉pa → {H}〈!t ⇐!D〉pa′

Failing casts from D

CastFail - � {H,a = D�(a
′)}〈t⇐ D〉pa → ⇑p if t 
= � and t 
= D

CastFail - ⊗ {H,a = D⊗(a
′)}〈t ⇐ D〉pa → ⇑p if t 
= t1 ⊗ t2 and t 
= D

CastFail - � {H,a = D�(a′)}〈t⇐ D〉pa → ⇑p if t 
= t1 � t2 and t 
= D

CastFail - ! {H,a = D!(a
′)}〈t⇐ D〉pa → ⇑p if t 
=!t′ and t 
= D

Fig. 7. Reduction rule extensions
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Ground types
g ::= � | D ⊗D | D � D |!D

Subtyping t <: t′

� <: � D <: D

t <: g

t <: D

t1 <: t′1 t2 <: t′2
t1 ⊗ t2 <: t′1 ⊗ t′2

t′1 <: t1 t2 <: t′2
t1 � t2 <: t′1 � t′2

t <: t′

!t <:!t′

Positive subtyping t <:+ t′

� <:+ � t <:+ D

t1 <:+ t′1 t2 <:+ t′2
t1 ⊗ t2 <:+ t′1 ⊗ t′2

t′1 <:− t1 t2 <:+ t′2
t1 � t2 <:+ t′1 � t′2

t <:+ t′

!t <:+!t′

Negative subtyping t <:− t′

� <:− � D <:− t

t <:− g

t <:− t′
t1 <:− t′1 t2 <:− t′2
t1 ⊗ t2 <:− t′1 ⊗ t′2

t′1 <:+ t1 t2 <:− t′2
t1 � t2 <:− t′1 � t′2

t <:− t′

!t <:−!t′

Fig. 8. Subtyping rules

values are represented by (linear) pointers to the heap. Thus, the presence of a
linear variable indicates that the evaluation returns the linear value pointed to
by the variable.

From these two lemmas, we can prove type soundness in the usual way [23].

Theorem 1 (Type soundness). If 
 H : Θ;Γ and Θ;Γ 
 e : t then either
(i) {H}e diverges, (ii) {H}e →∗ ⇑ p, for some p, or (iii) {H}e →∗ {H ′}a, for
some H ′ and a.

Wadler and Findler also define a transformation to embed untyped programs
into the blame calculus. For our system, an analogous transformation can be
defined for a version of the untyped linear lambda calculus [3]. For details we
refer to the technical report above mentioned in Section 1.

4 Subtyping

The subtyping relation, defined in Figure 8, holds between types that can be cast
without raising blame. Following the subtyping relation for the blame calculus, it
is split into three relations. Positive subtyping characterizes casts that never raise
positive blame, as we show in Section 5. Negative subtyping characterizes casts
that never raise negative blame and the plain subtyping relation characterizes
casts that never raise blame at all.

Ground types, also defined in Figure 8, play a special role in the definition of
subtyping because it turns out that casting into a ground type never raises blame
(viz. the definition of negative subtyping). Ground types increase the scope of
the subtyping relation based on this observation.
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e sf p , s sf p

t2 <:+ t1 e sf p

〈t1 ⇐ t2〉pe sf p

t2 <:− t1 e sf p

〈t1 ⇐ t2〉p̄e sf p

p 
= q p 
= q̄ e sf p

〈t1 ⇐ t2〉qe sf p

� sf p a sf p · · ·
e sf p

λa. e sf p · · ·

Fig. 9. Blame-safe expressions

The subtyping rules involving D , the base type �, and the linear function type
are identical to Wadler and Findler’s rules. The rules for pairs and exponentials
are new but analogous to the existing rules: both are covariant and immutable.
They do not give rise to new problems and similar results hold.

Lemma 3 (Factoring subtyping).
t1 <: t2 if and only if t1 <:+ t2 and t1 <:− t2.

The inference rules for t′ <:+ t are syntax-directed which enables the proof
of the following lemma.

Lemma 4. If D <:+ t then t = D.

We have not considered naive subtyping in this paper as it is not needed for
proving the blame theorem.

5 The Blame Theorem

The slogan of the blame theorem [22] is that “well typed programs can’t be
blamed”. In other words, if a program raises blame, a dynamically typed expres-
sion is responsible.

To prove this theorem, Wadler and Findler define the notion of safe expres-
sions. A safe expression for a specific blame label will never raise that blame
label. This notion of blame safety can only be violated through a cast expression
〈t′ ⇐ t〉pe and it can be derived from the particular subtyping relation which
holds between the types t′ and t. Therefore, given preservation and progress of
the reduction rules with respect to blame safety, the potential for raising blame
is defined by the types used in the individual cast expressions of a program.

We replicate this reasoning for the linear blame calculus by defining blame
safety and showing its preservation and progress for typed configurations. It
is not sufficient to define blame safety just for expressions like in the blame
calculus, because our operational semantics is defined in terms of heap-expression
configurations {H}e. As variables can refer to expressions in the heap, they are
only safe if the referred expressions are safe. A sufficient condition to ensure
safety is therefore to require the entire heap to contain safe expressions for a
particular blame label. The precise definition may be found in the technical
report.
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We also explored the idea of making variables safe depending on the expression
that they refer to in the heap. However, this idea turned out to require a lot
more formalism (e.g., formalizing reachability in the heap) because of recursive
bindings in the heap.

Some of the adapted rules for blame safety of expressions are shown in Fig-
ure 9. The complete definition is given in the technical report. The cast expres-
sions are the only places, where blame safety may be violated. The rules for cast
expressions are analogous to those of the blame calculus: a cast is safe for p if it
has label p and its types are related by positive subtyping, if it has label p̄ and its
types are related by negative subtyping, or if it has a label unrelated to p. The
remaining rules just propagate the safety requirement to their subexpressions.
Variables, wrapped variables, and the unit value are always safe.

The preservation lemma for blame safety establishes the following fact: The
reduction of a configuration which is safe for a blame label p results in a config-
uration which is again safe for p.

Lemma 5 (Safe configurations: preservation). Suppose that 
 H : Θ;Γ
and Θ;Γ 
 e : t and {H}e sf p and {H}e→ {H ′}e′ then {H ′}e′ sf p.

The proof is by induction on the reduction relation.
The next essential part to the blame theorem is the fact that blame-free

progress of safe configurations is guaranteed:

Lemma 6 (Progress of safe configurations).
If {H}e sf p then {H}e 
→ ⇑p.

Proof. We actually prove the contraposition “If {H}e → ⇑ p then not e sf p”
by induction on the reduction relation. This induction uses Lemma 4.

Like in Wadler and Findler’s blame calculus the blame theorem is a corollary
of Lemmas 5 and 6:

Corollary 1 (Well typed linear programs can’t be blamed). Let {H}e be
a well typed configuration and 〈t1 ⇐ t2〉pf a subexpression of e or a subexpression
in a binding in H containing the only occurrence of p in any expression reachable
by {H}e. If t2 <:+ t1 then {H}e 
→∗ ⇑ p. If t2 <:− t1 then {H}e 
→∗ ⇑ p̄. If
t2 <: t1 then {H}e 
→∗ ⇑p and {H}e 
→∗ ⇑ p̄.

6 Shortcut Casts

Consider the following simple example:

let f = 〈D ⇐!(int � int)〉!λa. a+ 1 in

let !f1 = 〈!D ⇐ D〉f in 〈int � int ⇐ D〉f1 0

The dynamically typed variable f is used exactly once, but an extra cast and
exponential elimination has to be inserted in the second line to satisfy the type
checker. The problem in this case is that the variable f “hides” a value of type
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!(int � int), but the single use of the function requires the unreplicated type
(int � int).

This mismatch can be addressed by extending our system with “subtyping”
of the form !t <: t where the conversion from the left side to the right side
must be made explicit via casting. This notion of subtyping is based on the
observation that each replicable value can serve as a linear value. In a first step,
we only address casting from a dynamic type that wraps a replicated type to
the underlying unreplicated type. To this end, we replace the CastFail-! rule by
a rule that directly dereferences the exponential and then retries the cast on the
unwrapped value (after evaluation of x):

FromDyn - !t {H, a = D!(a
′), a′ =!x}〈t⇐ D〉pa → {H}〈t⇐ D〉px if t 
=!t′

With this rule in place, the example above can be rewritten as follows without
explicitly casting f from D to !D :

let f = 〈D ⇐!(int � int)〉!λa. a+ 1 in

〈int � int ⇐ D〉f 0

The linear f , which wraps a value of exponential type, is directly converted to
a linear function. This use of f is more convenient than explicit unwrapping.

Our semantics also handles the unlikely case of a multiply wrapped type like
!!!�. Converting a value of this type into the dynamic type requires let s = 〈D ⇐
!!!�〉!!! � in . . . whereas using it (once) just requires casting with 〈�⇐ D〉s.

All the results we have so far, type soundness, properties of subtyping, and
the blame theorem, still hold without change.

A less satisfactory consequence is that some sequences of cast expressions
cannot be simplified, anymore. As an example, consider the expression

let f : int � int = . . . in f (〈int ⇐ D〉(〈D ⇐!int〉!42))

This expression is legal in the type system of Section 3 and it executes without
run-time errors in the extended semantics of the current section. In other sys-
tems, it is possible to optimize such a (non-failing) sequence of casts to just a
single cast as in:

f (〈int ⇐!int〉!42)

However, our present system does not permit this reduced cast. In fact, our
operational semantics cannot execute this cast because its left and right side
types are not compatible. This restriction is also enforced by the type system.

This problem can be amended by adding evaluation rules for the evaluation
of casts from an exponential type to a non-dynamic type. The strategy is the
same as for the FromDyn - !t rule: eliminate the exponential and retry the cast.

Cast−!− � {H, a =!x}〈�⇐!t〉pa → {H}〈�⇐ t〉px
Cast−!−⊗ {H, a =!x}〈t1 ⊗ t2 ⇐!t〉pa → {H}〈t1 ⊗ t2 ⇐ t〉px
Cast−!−� {H, a =!x}〈t1 � t2 ⇐!t〉pa → {H}〈t1 � t2 ⇐ t〉px
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t � t′

� � � t � D D � t

t1 � t′1 t2 � t′2
t1 ⊗ t2 � t′1 ⊗ t′2

t′1 � t1 t2 � t′2
t1 � t2 � t′1 � t′2

t � t′

!t �!t′

t � t1 � t2

!t � t1 � t2

t � t1 ⊗ t2

!t � t1 ⊗ t2

t � �

!t � �

Fig. 10. Compatibility with shortcut subtyping

For these casts to be admissible in a program, the compatibility relation needs
to be amended to reflect !t <: t subtyping. By including this subtyping rela-
tion, compatibility is no longer symmetric, but it turns into a reflexive, anti-
symmetric relation. Also the rule for two compatible function types is now con-
travariant in the argument type. Compatibility is not transitive to rule out casts
like 〈� ⇐ t1 ⊗ t2〉 that always fail. Compatibility ensures that casts only fail
when trying to unwrap a dynamic type. Figure 10 shows the updated defini-
tion of the compatibility relation. It strictly encompasses the original notion of
compatibility. The typing rule for casts must be updated accordingly.

Θ;Γ 
 e : t2 t2 � t1

Θ;Γ 
 〈t1 ⇐ t2〉pe : t1
Cast′

With this extended framework in place, we can include a simplification rule for
casts as follows:

〈t1 ⇐ t2〉p〈t2 ⇐ t3〉qe =⇒ 〈t1 ⇐ t3〉pqe if t3 � t1

The blame labels for the two casts have to be combined to cater for a sequence
of casts like

〈int ⊗ int ⇐ int ⊗D〉p〈int ⊗D ⇐ D ⊗D〉qe

where both steps involve an unwrapping of a dynamic type, each of which may
have to be attributed to a different part of the program, that is, either p or q.

Theorem 2. Type soundness holds for the extended calculus with the Cast ′ rule
and the modified operational semantics.

Proof. By extending the proofs of type preservation and progress with the cases
for the four modifications of the reduction rules.

Working towards a blame theorem, the subtyping relations of Figure 8 extend in
a similar way as the compatibility relation. It is sufficient to add the rules that
drop the exponential as long as the target type is neither dynamic nor another
exponential. This choice also keeps the subtyping relations deterministic. As
these rules are identical for all three relations, <:, <:+, and <:−, we only show
them for one relation.

t <:+ �

!t <:+ �

t <:+ t′1 � t′2
!t <:+ t′1 � t′2

t <:+ t′1 ⊗ t′2
!t <:+ t′1 ⊗ t′2
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The lemmas in Section 4 still hold for the extended subtyping relations. Also the
establishment of the blame theorem and its preliminaries carry over by extending
the proofs with the four cases of the modified reduction rules.

7 Related Work

We based our work on Turner and Wadler’s linear lambda calculus [21] and
extended it with recursion as in Lily [6]. We considered other versions of linear
lambda calculus as alternative starting points (for example [2–4]). However, we
chose Turner and Wadler’s because its formalization of linear values as heap
references makes linearity very explicit.

Affine types are closely related to linear types. An affine value must be elimi-
nated at most once, but it may also be discarded. The results of the paper extend
readily to affine systems. Again we refer to the technical report for details.

In the introduction, we refer to a number of papers on statically typed lan-
guages with type Dynamic. Actually, there are different flavors of such languages.
The first (earlier) flavor is the one treated by Abadi and coworkers [1]. It is not
concerned with type casts, but rather has a specific expression to create a dy-
namic value by pairing a standard value with its static type. The corresponding,
type-safe elimination form is a typecase construct that performs pattern match-
ing on the type component and extracts the value in case of a match. There is a
bulk of further work in this area, which we choose not to comment on, because
we do not consider typecase in this work. We conjecture —based on our results—
that linearity is also orthogonal to dynamics in a language with typecase.

The flavor that we are interested in starts with Henglein’s investigation of
dynamic typing [10], which pioneered the ideas of wrapped values and of safe
and unsafe casts in the context of a simply-typed lambda calculus. However,
Henglein does not introduce a subtyping relation that would have enabled him
to prove a blame theorem.

Taha and Siek [14,16] have proposed the use of subtyping to characterize the
potential failure of a cast expression. Their work has been extended by Wadler
and Findler with blame assignment, the marking of cast expressions with unique
labels to determine the program point that caused a cast failure. On this basis,
they proved the blame theorem, which states that errors in a gradually typed
program are always blamed on the untyped (dynamic) part of the program.

Henglein [10] introduces the idea of a coercion calculus in order to reduce
the number of times a type is tested at run time. This idea has been picked
up by a number of researches with different goals: eager reporting of cast errors
[15], improving the efficiency of gradual typing [11], providing streamlined data
structures and algorithms for representing and normalizing coercions [17]. We
only touch on this subject briefly in Section 6 to indicate that our approach is
compatible with coercion calculi.

We are not aware of any work that has explored the interaction of linearity
and gradual typing.
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8 Conclusion

We extended a linearly typed lambda calculus with recursion and type Dynamic,
proved type soundness for it, and established a blame theorem a la Wadler and
Findler. In comparison to Wadler and Findler’s work, our calculus is more mod-
ular thus making it easy to extend with additional type constructions or with
optimizations as shown in Section 6. As an extension, we integrated a notion
of subtyping that allows single uses of dynamic replicated values not to require
explicit unwrapping of the exponential, but rather just casting from the dynamic
type to the linear target type. Thus, we have shown that linear typing and grad-
ual typing with blame assignment are orthogonal aspects in a lambda calculus
setting. We have also demonstrated the robustness of the concepts established
with the blame theorem by extending the underlying calculus with a notion of
subtyping. Although we have considered a core calculus, adding datatypes and
conditionals would be straightforward.

There are a number of avenues for further work. It would be interesting to
consider the interaction of linearity, polymorphism, and gradual typing to see if
the orthogonality found in this work can be sustained. Because of the modularity
of our approach, we expect the orthogonality to carry over to the context of
session typing and probably also to more general process calculi. Last, instead of
having the dynamic type forget the type structure, it could also forget about the
linearity restriction. Similar ideas have been pursued by Pucella and Tov [19,20]
and they could also be considered for session typing and process calculi.
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The ultimate goal of the paper is to continue the series of work on size analysis
of first-order strict functional languages, in which annotation inference is based
on polynomial interpolation [1]. Checking of interpolated sizes can be done by
embedding into sized types. However, using sized types may lead to the need
of polymorphism in size variables, which eventually forces the use of subtyping
or higher-rank types and type functions. For example, consider the following
function written in a Haskell-like language.

f :: ([a] -> b) -> (b,b)

f g = (g [], g [1])

By extending the original type declaration of f with size variables, the result
would be (Ln(a) → b) → (b, b), where Ln(a) means a list of a with size n. The
variables in the type are implicitly quantified at the outermost level, resulting in
a typing error. The reason for this is that two different list types are applied to
the function g (i.e. L0(a) and L1(a)). A common solution is to use subtype poly-
morphism, where Ln(a) ≤ Lm(a) iff n ≤ m. This approach solves the problem of
type checking, but can lead to significant overestimation of the sizes.

Another solution would be to use parametric polymorphism, leading to higher-
rank types, like (∀n.Ln(a) → b) → (b, b). However, this type is still not generic
enough. For example, the result of the expression f (cons 1) would be a pair of
lists of different sizes, which is impossible, because the type of f suggested that
the two elements of the pair must have the same size (i.e. the type of the result
is (b, b)).

It is possible to generalize the idea further by using dependent types and by
introducing a type function to handle the return types, but for a complicated
function the type would be even more complicated. Such a complicated example
is t3 where the function takes two arguments and applies the first argument on
the second one three times.

t3 :: (a -> a) -> a -> a

t3 f x = f (f (f x))

The problem here is that arguments of different types may lead to different
kinds of polymorphism. The original type, for instance, can be used when the
arguments are not sized. On the other hand, if the first argument is of type
Ln(a)→ Ln+1(a), the size of t3 should be:

t3 :: (∀n.Ln(a)→ Ln+1(a))→ Ln(a)→ Ln+3(a)

With the use of type functions, we can give correct typing for all different kinds
of arguments, but it is troublesome to find a type which covers all the cases.

In this paper, size expressions make size checking fairly manageable and trans-
parent, and can be seen as a light-weight version of the mechanisms discussed
above.
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This paper is a revised version of our work presented at TFP’11, and pub-
lished as a non peer-reviewed technical report [2]. Since then, a proof-of-concept
implementation1 has been created, and most of the paper — including the size
checking rules — have been rewritten to reflect the implementation.

The rest of the paper is organized as follows. Section 2 describes the syntax
of our language, and introduces size expressions that are used to represent size
dependencies of functions. Section 3 formalizes verification condition generation.
Then, in Section 4, some examples of size checking are given. Section 5 reasons
about the termination of verification condition generation. Some details about
the current state of the implementation is given in Section 6. Section 7 summa-
rizes related work, while Section 8 concludes, and points out future directions of
work.

2 Language Syntax

Consider a higher-order functional language extended with size expressions. Its
syntax is given on Fig. 1. In this language, a program consists of top-level bind-
ings. All bindings are annotated with a type (τ) and a size expression (η). Size
expressions are discussed in Section 2.1. The underlying type system is supposed
to be a Hindley-Milner type system, and it is supposed to have two predefined
types: Int for integers and L(τ) for finite lists.

Program variables ∈ x, y, z, f, g, h
Integer literals ∈ m,n
Type variables ∈ α, β, γ
Types τ ::= Int | L(τ ) | α | τ1 → τ2
Data constructors K ::= nil | cons | n
Expressions e ::= x | K | e1 e2 | let x = e1 in e2

| match e1 with nil⇒ e2
cons hd tl⇒ e3

Programs prog ::= ε | f z1 . . . zk :: τ :: η = e; prog

Fig. 1. Syntax

Our language does not allow lambda abstraction and recursive let-expressions,
however, recursive functions can be defined as top-level bindings. It is easy to
extend the language with recursive let, if we annotate let bindings with size
expressions. Similarly, lambda abstraction can be enabled if it has an explicit
size annotation. However, this restriction does not affect the expressiveness of
the language, so they are omitted for simplicity.

In our examples, we do not use integer arithmetics, so operations of integers
are omitted for the sake of simplicity, but it is straightforward to add them.
Constructors nil and cons are, however, made explicit in the abstract syntax,
because they play an important role in this paper.

1 http://kp.elte.hu/sizechecking

http://kp.elte.hu/sizechecking
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2.1 Size Calculus

Size expressions represent size dependencies of functions. Their grammar is given
on Fig. 2. Size expression is a lambda calculus extended with integer arithmetic
and combinators to express the size dependencies of lists. Note that first order
size expressions are polynomials that may be non-linear and non-monotonic.

Now a few simple examples are considered to give an idea behind the formal-
ization. Let us begin with an integer literal, e.g. 42. We assume that it does not
have a size, so the expression Unsized is assigned to it.

For arguments of functions, abstractions over size expressions are used. The
following binding declares a function which maps everything to 42. Its size ex-
pression (λsx.Unsized) mirrors the fact that the size of the result of the function
is Unsized regardless of the size of the argument.

const x :: α→ Int :: λsx.Unsized = 42

The size of a list is expressed by the combinator List. For instance, the size of
the list “[2]” is given by List 1 (λi.Unsized). Here the first argument of List denotes
the length of the list while the second is a lambda abstraction expressing the
sizes of the elements of the list. As the only element of this list is 2, which is
unsized, one can say that all the elements of this list are unsized: λi.Unsized.

The λ-bound variable i corresponds to the position of the element in a list. For
instance, according to the expression Listn η, the expression η (n− 1) represents
the size of the head, the expression η (n − 2) represents the size of the second
element, while the expression η 0 represents the length of the last element2. It
means that the expression η can be seen as a finite map defined on 0, . . . , n− 1.
Some examples to clarify the List combinator:

[2] List 1 (λi.Unsized)
[[2]] List 1 (λi. List 1 (λj.Unsized))
[[2], []] List 2 (λi. List i (λj.Unsized))

Two lists are considered equal if their length are equal, and all of their elements
have the same size expression.

List s1 η1 = List s2 η2 ⇔ s1 = s2 ∧ ∀i ∈ {0, . . . , s1 − 1} : η1 i = η2 i

It also means that there are several ways to express the empty list, because
List 0 (λi.Unsized) = List 0 (λi. List 42 (λj.Unsized)). In this paper, we usually use
the symbol bottom for the size of an element of an empty list: List 0 (λi.⊥).

To express a size expression of a function, in terms of its argument, the ab-
straction λ̂s

p is used. In the following example function addone takes its argument

2 Note that this enumeration of list elements “opposes” the traditional one in func-
tional languages, where the head element has number 0, etc. The enumeration we
use is more convenient in our reasoning and, for instance, simplifies significantly the
match-rule defined later.
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l : L(Int) and returns the list (cons 1 l). The size expression of the function
tells us that the size of the list is incremented by one.

addone l :: L(Int)→ L(Int) :: λ̂s
p. List (s+ 1)(λi.Unsized) = cons 1 l

This abstraction is the dual of the List combinator as it can be seen on the
reduction rules (Fig. 3). During reductions capture-avoiding substitutions are
assumed, i.e. by alpha-renaming or other mechanism.

The combinator Shift is used to concatenate size functions. The expression
Shift e1 s e2 means the size function of the list obtained by inserting the last s
elements of e1 before e2. That is:

η1 = {0 �→ η01 , 1 �→ η11 , . . . , n �→ ηn1 }
η2 = {0 �→ η02 , 1 �→ η12 , . . . ,m �→ ηm2 }

Shift η1 s η2 = {0 �→ η01 , 1 �→ η11 , . . . , s− 1 �→ ηs−1
1 , s �→ η02 , s+ 1 �→ η12 , . . .}

Size variables ∈ s, p
Integer literals ∈ n,m
Binary operators ξ ::= + | − | ∗
Size expressions η ::= List | Unsized | Shift | ⊥ | s | n

| λs.η | λ̂s
p.η | η1η2 | η1 ξ η2

Fig. 2. Syntax of size expressions

(λp.η1)(η2)→β (η1[p := η2])

(λ̂s
p.e)(List η1 η2)→β (e[s := η1, p := η2])

Shift η1 s η2 i→β

{
η1i if i < s

η2(i− s) otherwise

Fig. 3. Reduction rules of the size calculus

Now, with the help of the constructs defined above, we can create the size
expressions for the predefined functions (Fig. 4).

As a more complicated example, the definition of the function concat is
shown. This function takes two lists as arguments and concatenates them.

concat x y :: L(α)→ L(α)→ L(α)

:: λ̂sx
px
.λ̂

sy
py . List (sx + sy) (Shift py sy px)

= match x with nil⇒ y
cons hd tl⇒ cons hd (concat tl y)
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nil :: L(α) :: List 0 (λi.⊥) 0 :: Int :: Unsized

cons :: α→ L(α)→ L(α) :: λsx. λ̂
sl
pl
. List (sl + 1) (Shift pl sl (λy.sx))

Fig. 4. Size expressions of the predefined functions

3 Size Analysis

In the language defined, top level bindings are annotated with size expressions.
In this section we formalize a way of checking the bodies of top level bindings
against their annotations. The verification process consists of two steps. The first
step is the verification condition generation, which is a syntax-driven procedure
to generate verification conditions. The second step is checking the generated
conditions. Checking the generated conditions is not covered in this paper, and
it is assumed that an external solver is used.

First of all, an assumption set is defined in Fig. 5. The assumption set is a
sequence of elements of the form D � η, where η is a size expression and D is a
set of conditions. A D � η means that the corresponding expression has size η
if all of the conditions in D hold. Note that comparison of two size expressions
is only possible if they can be reduced to integers.

Assumption set C ::= ε | C, D � η
Condition D ::= ε | D, η = 0 | D, η1 >= η2 | D, η1 < η2

Fig. 5. Syntax of the assumption set

Before introducing the size checking rules we need a function called mgs,
which generates the most generic size expressions containing fresh variables for
a given underlying type and a list of bound variables. The formal definition of
the function can be found in Fig. 6, and informally, the following examples show
what the function does.

mgs
(
L(Int); []

)
= List s1 (λi.Unsized)

mgs
(
L(α); []

)
= List s1 (λi. s2 i)

mgs
(
L(L(Int)); []

)
= List s1

(
λi. List (s2 i) (λj.Unsized)

)
mgs

(
L(L(α)); []

)
= List s1

(
λi. List (s2 i) (λj. s3 i j)

)
The resulting size expressions contain higher-order free variables, and all of

the variables bound internally by lambda abstrations are applied to them. The
second parameter is used to propagate an internal state (which contains the
variables bound during the traversal of the size expression), hence an empty list
is used when the function is called externally. All of the free variables are fresh.
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mgs :: τ × [η]→ η

mgs(Int; γ) = Unsized

mgs(τ1 → τ2; γ) = λβ.mgs(τ2; γ, β)

mgs(L(τ ); γ) = List mgs(β; γ)
(
λβ′.mgs(τ ; γ, β′)

)
mgs(α; η, γ) = mgs(α; γ) η

mgs(α; [ ]) = β

(Where β and β′ are fresh size variables.)

Fig. 6. Most generic size expression for a given type

The derivation rules for top level bindings are shown in Fig. 7. The judgement
Γ 
 e can be read as “in the size environment Γ the program e is well-sized”. The
size environment Γ is similar to a type environment, it is a map from program
variables to size expressions, so it is a sequence of elements of the form x : η.

The ruleEmpty ensures that there are no free variables in the size expressions.
Recall that it is assumed that function bindings are well-typed in the underlying
type system. Then the rule Bind creates fresh size expressions for each argument,
saves them in the environment to create an assumption set. In this rule the
type τ ′ cannot be function type. This does not restrict the expressiveness, as a
function can always be η converted to suit this. The generation of the assumption
set uses the judgement Γ 
 e : C, and it is detailed later in this section. The
judgement means ”in the type environment Γ we assume that expression e has
size C”. The assumed sizes are used to generate verification condition (D �
ηc = η′η̄), which is a set of conditional equations.

FV (Γ ) = ∅
Γ � ε

Empty

η̄ = mgs(τ̄ , ∅) Γ, f : {∅� η′}, z̄ : {∅� η̄} � e :C
∀D � ηc ∈ C : D � ηc = η′η̄

Γ, f : {∅� η′} � prog

Γ � f z1 . . . zk :: τ1 → . . .→ τk → τ ′ :: η′ = e, prog
Bind

Fig. 7. Verification condition generation for top level bindings

The rules to obtain the assumption set can be seen in Fig 8. Two of them,
namely Var and Let, are familiar from the rules in other type systems. Rules
Int, Nil and Cons should be clear as well, they are reformulations of Fig. 4.

The rule App uses the operation C1 � C2, which is defined as follows.

C1 � C2 = {D1 ∪D2 � η1η2 | D1 � η1 ∈ C1, D2 � η2 ∈ C2}
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The operation combines two assumption sets. Each element of the result of the
operation corresponds to one member of both of the two sets, applying the
element from the right hand side to the element from the left hand side. The
assumption set of the resulting element is the union of the assumption sets of
the original elements.

The last and most interesting rule is Match. The first step is to obtain the
assumption set for the pattern and for the nil branch. For each element of the
assumption set inferred for the pattern we infer an assumption set for the cons
branch, i.e. for the assumed size Di � ηi an assumed size Ci is obtained. The
reason for this is that the assumed size Ci is valid only when ηi is not nil. This
condition is expressed by the assumptions (λ̂s

p.s)ηi >= 1. The result is the union
of all cases.

Γ, a :C � a :C Var
Γ � m :{∅� Unsized} Int

Γ � nil :{∅� List 0 (λi.⊥)} Nil

Γ � cons :λsx. λ̂
sl
pl . List (sl + 1) (Shift pl sl (λy.sx))

Cons

Γ � e1 :C1 Γ � e2 :C2
Γ � e1e2 :C1�C2 App

Γ � e1 :C1
Γ, x : C1 � e2 :C2

Γ � let x = e1 in e2 :C2 Let

Γ � e1 :{D1 � η1, . . . , Dn � ηn} Γ � e2 :C′

∀i = 1 . . . n : Γ, hd : {∅� (λ̂s
p.p (s− 1))ηi},

tl : {∅� (λ̂s
p. List (s− 1) p)ηi} � e3 :Ci

C′′ = ∪n
i=1

((
Di, (λ̂

s
p.s)ηi >= 1� Ci

)
∪
(
Di, (λ̂

s
p.s)ηi = 0� C′

))
Γ � match e1 with nil⇒ e2

cons hd tl⇒ e3

:C′′ Match

Fig. 8. Rules for expressions

Separating the elements of the assumption set means we have to infer the cons
branch more than one time. Furthermore the length of the resulting assumption
set would be twice as much as the length of the assumption set of the pattern.
This exponential behaviour occurs only when match expressions are embedded
in patterns (like in the following example), which is fortunately an uncommon
construct in practice.

let x = match e1 with nil⇒ e2
cons hd tl⇒ e3

in match x with nil⇒ e2
cons hd tl⇒ e3
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4 Examples

concat

concat x y :: L(α)→ L(α)→ L(α)

:: λ̂sx
px
.λ̂

sy
py . List (sx + sy) (Shift py sy px)

= match x with nil⇒ y
cons hd tl⇒ cons hd (concat tl y)

Here x and y are of type L(α). According to the Bind rule, we are creating size
expressions for the arguments by using the function mgs. Assuming that the
generated size expressions are List sx (λi.px i) and List sy (λj.py j) for x and y,
respectively, we need to prove the following entailment:

Γ1 = {
concat : {∅� λ̂sx

px
.λ̂

sy
py . List (sx + sy) (Shift py sy px)},

x : {∅� List sx (λi.px i)}, y : {∅� List sy (λj.py j)}
}

Γ1 
 match x with nil⇒ y
cons hd tl⇒ cons hd (concat tl y)

: C′′

To do this, we can calculate the assumed size of the nil branch and the condition
using the Var rule:

Γ1 
 y :{∅� List sy (λj.py j)} Γ1 
 x :{∅� List sx (λi.px i)}

It is not necessary, but practical to β-reduce the size expressions during the
derivation. To save space we will do it so. With the help of the assumed size
of x, we can calculate the new elements of the size environment for the cons
branch:

hd : {∅� px (sx − 1)}, tl : {∅� List (sx − 1) (λi.px i)}

Using the App and Var rules multiple times, we can obtain the following en-
tailment for the cons branch.

{
concat : {∅� λ̂sx

px
.λ̂

sy
py . List (sx + sy) (Shift py sy px)},

x : {∅� List sx (λi.px i)}, y : {∅� List sy (λj.py j)}
hd : {∅� px (sx − 1)}, tl : {∅� List (sx − 1) (λi.px i)}

}

 cons hd (concat tl y) : {
∅� List (sx − 1 + sy + 1) (
Shift (Shift py sy px) (sx − 1 + sy) (λi. (px(s− 1)))

)
}
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The expression (λ̂s
p.s)η1 in the rule Match equals sx, so finally we can obtain

the following assumption set for the body of the function.

C′′ = {
{sx = 0}� List sy (λj.py j)
{sx >= 1}� List (sx − 1 + sy + 1)

(Shift (Shift py sy px) (sx − 1 + sy) (λi. (px(s− 1))))
}

To finish the Bind rule, our last step is to prove the following entailments.

sx = 0 � List sy (λj.py j) = List (sx + sy) (Shift py sy px)
sx >= 1 � List (sx − 1 + sy + 1)

(Shift (Shift py sy px) (sx − 1 + sy) (λi. (px(s− 1)))) =
List (sx + sy) (Shift py sy px)

The following verification conditions are obtained.

sx = 0 � sy = sx + sy (1)

sx = 0, si < sx − 1 + sy + 1 � py si = Shift py sy px si (2)

sx >= 1 � sx − 1 + sy + 1 = sx + sy (3)

sx >= 1, si < sx − 1 + sy + 1 �
Shift (Shift py sy px) (sx − 1 + sy) (λi. (px(s− 1)))

= Shift py sy px (4)

Here, (1) and (3) are both true, and (2) can be reduced as follows.

sx = 0, si < sx − 1 + sy + 1, si < sy � py si = py si (5)

sx = 0, si < sx − 1 + sy + 1, si >= sy � py si = px (si − sy) (6)

Note that (5) is obviously true and in conditions of (6) are not satisfiable. Equa-
tion (4) can be resolved similarly.

t3 In the introduction we considered the function t3. Now we show how to
express the size dependency of this function in our language. The size checking
is straightforward, so it is left for the reader.

t3 f x :: (α→ α)→ α→ α :: λs.λp.s(s(sp)) = f(f(f x))

The interesting case is, how this function behaves when applied to different kind
of arguments (i.e. a function on lists, a function on integers and a function on
functions). The following example demonstrates this.

t27addone x :: L(α)→ L(α) :: λ̂s
f . List(s+ 27)(λx.Unsized) = (t3 t3) addone x

Using the derivation rules, the assumed size for the application t3 t3 is

{∅�
(
λsf .λsx.sf (sf (sfsx))

)(
λsf .λsx.sf (sf (sfsx))

)
}
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which can be reduced to

{∅� λsf .λsx. sf (sf (sf . . . (sfsx) . . .)︸ ︷︷ ︸
27 applications of sf

}

To continue, we use the fact that the function addone has size {∅ � ηaddone}
where ηaddone = λ̂s

f . List (s + 1) (λx.Unsized). Assuming that the application of
the function mgs gives the size expression List a (λy.Unsized) for the argument
x, we can apply the App rule.

(λx. f1:(f1: . . . (f1:x) . . .)︸ ︷︷ ︸
27 applications of f1:

)(List a (λy.Unsized))→

→ f1:

(
f1: . . .

(
(λ̂s

f . List (l + 1) (λx.Unsized))(List a (λy.Unsized))
)
. . .

)
︸ ︷︷ ︸

27 applications of f1:

→

→ f1:

(
f1: . . .

(
List (a+ 1) (λx.Unsized)

)
. . .

)
︸ ︷︷ ︸

26 applications of f1:

→∗ List (a+ 27) (λx.Unsized)

The following two definitions can be checked similarly.

t9addone x :: L(α)→ L(α) :: λ̂s
f . List (s+ 9)λy.Unsized = t3 (t3 addone) x

add3 x :: Int→ Int :: λx.Unsized = t3 succ x

5 Normalizability

Being an extended lambda calculus, our size expressions are certainly Turing
complete. It means that, with the help of some tricky constructs, any function
of the language can be translated directly into size expression. The function t3
was an examples of that, as its size expressions and body were the same.

On one hand, it is good, because it proves that our language is able to express
the size dependencies of any function. On the other hand, it makes the size
analysis undecidable.

Size expressions can be seen as a simplification of the function capturing
only the necessary information. This is especially important for a recursive func-
tion, as checking recursive size expressions can lead to infinite reduction. In
size expressions, recursion can be expressed by using the fixed-point combinator
(Y = (λf.(λx.f(xx))(λx.f(xx))). With its help, the body of the function fix can
be translated directly to size expression.

fix f :: (α→ α)→ α :: λs.Y s = f (fix f)

Using the derivation rules, the assumed size of the function body and the
obtained verification condition is the following. In this entailment reduction leads
to infinite loop.

{∅� sf (λs.Y s)sf )} � Y sf = sf (Y sf )
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Another problem is to ensure that the assumption set (Fig. 5) contains com-
parisons only between integers. To overcome these problems, we restrict size
expressions to normalizable lambda expressions. We know that a typed lambda
calculus is normalizable, so to check normalizability, we use a type system.

Similarly to our language, we use a Hindley-Milner type system, extended
with the type constructor α × β, which creates the product of types α and β.
We also assume the usual Bool, Nat and Unit types, and selector functions for
pairs (π1 and π2) are defined.

5.1 Types of Size Operators

The Unsized can be easily represented by the Unit type:

Unsized = unit : Unit

List corresponds to the data constructor of a pair, which expresses the fact that
a size of a list is a pair of the length of the list and a map holding the sizes of
the elements of the list.

List = λsf. <s, f>
: Nat→ (Nat→ α)→ Nat× (Nat→ α)

The expression λ̂s
f .e can be rewritten to Unlist(λsf.e), where Unlist is defined as

follows.

Unlist = λft.f (π1t) (π2t)
: (Nat→ (Nat→ α)→ β)→ Nat× (Nat→ α)→ β

The last thing to do is to define the Shift function:

Shift = λf n g x. if x < n then f x else g (x− n)
: (Nat→ α)→ Nat→ (Nat→ α)→ Nat→ α

It is also possible to check the inferred type of the size expression against the
type of the function, which can be obtained by the following function.

ST(α→ β) = ST(α) → ST(β)

ST(L(α)) = Nat× (Nat→ α)

ST(α) = α

ST(Int) = Unit

6 Implementation

The algorithm described in the previous sections is partially implemented in
Haskell. Two embedded languages has been created – one to create size expres-
sions and one to define functions. The implementation focuses on the generation
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of the conditional equations, not on solving them and it is out of the scope of
this paper.

The first step is the syntax driven verification condition generation, described
in Section 3. The verification conditions are then preprocessed to eliminate
lambda expressions. The checker reduces the expressions (hence the size ex-
pression must be normalizable), then it eliminates most of the Shift and List
rules as it was shown in Section 4. The trivial equations are also dropped at this
stage.

The library SBV [3] is used to compile the constraints to Z3 [4], currently it is
used only to solve integer constraints. Unfortunately, it is not possible to create
higher-order uninterpreted functions in Z3, so the uncompilable expressions are
replaced by uninterpreted symbols. This further decreases the expressiveness of
the size checker. In practice the normalizability is a much stronger restriction,
so the current focus of work is to weaken the normalizability restriction before
implementing a better algorithm.

The implementation contains 29 test cases including some non-linear and
higher-order examples (e.g. map or zipWith). Running the whole test suite takes
less then 3 second on a computer equipped with a 2.66GHz Intel Core2 processor.

7 Related Work

Paper [5,6] are the closest to our approach. In the first one, Brady and Ham-
mond have created a dependently typed framework to express and check size
dependencies of source language functions. Size relations are not expressed in
the source language but in the dependently typed framework. There, the types
of the dependently typed functions are checked by the type system. In this way
they can express arbitrary size relations, but the source language function must
be rewritten in such a way that it proves the size relation within the dependently
typed framework. This rewriting is performed by translating a function from a
source language to the framework. This leads to the type inhabitation problem,
so they are using a theorem prover to create the translation.

This paper addressed the same problem, to express and check exact size re-
lations, but in a different way. We do not change the source language function
but express its size dependency separately without using dependent types. What
Brady and Hammond have created is a method to translate functions and size
relations to proofs, which are checked by the type checker of the dependently
typed framework. In contrast, our system is a way to check size relations. For
this purpose we use an SMT solver.

Sized types [7] were originally used to detect non-termination and deadlocks
in a reactive system. They were subsequently developed to ensure space bounds
in Embedded ML [8]. Chin and Khoo [9] introduced type inference for sized
types using Presburger arithmetics, which leads to linear approximations. Mini-
Agda [10] integrates sized types and dependent types. In this language, sized
types are used to prove termination of programs.
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In contrast to size expressions, sized types are utilized to express upper bounds
on data structures. Size expressions are, however, designed to describe exact size
relations of higher-order functions.

The structure of size expressions in our research is close to the approach of
A. Abel [11], who applied sized types for termination analysis of higher-order
functional programs. For instance, in his notation sized lists of type A of length ı
are defined as λ ıA.μı.1+A×X , and size expressions are higher-order arithmetic
expressions with λ-abstraction as well. The difference is that in that work one
uses linear arithmetic over ordinals, where ordinals represent zero-order sizes.
Moreover, in that research size information is not a stand-alone formalism, but
a part of a dependent type system.

Vasconcelos and Hammond [12] go beyond linear arithmetic. For a given
higher-order functional program, they obtain a set of first-order arithmetic con-
straints over unknown cost functions f . Solving these constraints w.r.t. f gives
the desired cost estimates of the program. The underlying arithmetic is the
arithmetic over naturals, extended with undefined ε and unbounded ω values,
equipped with a natural linear order. Size expressions admit addition +, multipli-
cation ∗ and subtraction of a constant −n, thus such expressions are monotonic.
Function types are annotated with natural numbers (latencies), e.g. α →l β, so
it may be conveniently interpreted as an increment in cost consumption, like l
clock ticks if the resource of interest is time. Our approach is different in the
sense that we aim at expressing size dependencies directly in terms of sizes of
inputs, bypassing latencies.

In paper [13] the authors approach complexity analysis of an imperative lan-
guage, which is a version of Gödel’s T. This is done via abstract interpretation
of programs in a semiring of matrices.

In a recent paper [14] the authors develop amortized cost analysis for a higher-
order functional language Schopenhauer. The analysis is generic, viz. it is ap-
plicable to different sorts of resources: heap usage, stack size and the number
of function calls. The type-derivation procedure generates linear constraints,
solving of which gives the desired upper bounds. The analysis always succeeds,
if bounds are linear. So far, the methodology does not support polymorphic
recursion.

The COSTA System [15] is able to infer upper bounds for object-oriented
bytecode. They infer linear size relations among program variables at different
program points.

In the first-order language Safe [16], the authors use region inference to predict
the upper bounds on heap and stack consumption. They assume that upper
bounds on sizes of all expressions of Safe functions are known. To obtain the
upper bounds, they use a term rewriting system [17].

In paper [18] the authors created an amortized analysis for the language Re-
source Aware ML, which is a first-order fragment of the OCAML language. They
can infer multivariate cost characteristics. A similarity of that paper to ours is
that they also cope with nested lists.
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8 Conclusion and Future Plans

We have presented a formalism that can be used to express size dependencies of
higher-order functions in a higher-order polymorphic language. The presented
size expressions do not use subtyping: they are to express exact size relations.
Size expressions are based upon the lambda-calculus extended with arithmetic
operations and special operators for finite maps representing sizes of the elements
of lists.

Syntax driven derivation rules are introduced which can be used to imple-
ment an algorithm to generate verification conditions. The size expressions are
generally not normalizable, but we have shown a sufficient condition to ensure
normalizability. Normalizability is required (but not sufficient) to ensure the ter-
mination of the verification condition solver. One of the most important future
work is to weaken this restriction, and improve the current solver.

A basic implementation has been created as an embedded language in Haskell,
which is able to check most of the normalizable expressions. A future direction is
to find a way to express the size of any algebraic data types. A possible solution
is to make the embedded language extensible, so programmers can define the
size relations of their own type.

While designing our size calculus, our aim was to make it easier to identify
normalisable fragments and decidable fragments in the size calculus. In this
paper we have laid the foundation for that. The actual identification of such
fragments is ongoing work. Moreover, future work will focus on providing size
inference for a higher-order functional language, where the inference is based on
polynomial interpolation. Size expressions are planned to be used to describe
the inferred size dependencies of the functions, and to check the inferred size
expressions. We believe that checking the verification conditions can be made
decidable by adding syntactical restrictions, similarly to [1].
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Abstract. This paper addresses the problem of specifying and pars-
ing the syntax of domain-specific languages (DSLs) in a modular, user-
friendly way. We want to enable the design of composable DSLs that
combine the natural syntax of external DSLs with the easy implemen-
tation of internal DSLs. The challenge in parsing these DSLs is that
the composition of several languages is likely to contain ambiguities. We
present the design of a system that uses a type-oriented variant of island
parsing to efficiently parse the syntax of composable DSLs. In particular,
we argue that the running time of type-oriented island parsing doesn’t
depend on the number of DSLs imported. We also show how to use our
tool to implement DSLs on top of a host language such as Typed Racket.

1 Introduction

Domain-specific languages (DSLs) provide high productivity for programmers
in many domains, such as computer systems, linear algebra, and other sciences.
However, a series of trade-offs face the prospective DSL designer today. On one
hand, many general-purpose languages include a host of tricks for implementing
internal, or embedded DSLs, e.g., templates in C++ [2], macros in Scheme [25],
and type classes in Haskell [11]. These features allow DSL designers to take
advantage of the underlying language and to enjoy an ease of implementation.
However, the resulting DSLs are often leaky abstractions, with a syntax that is
not quite right, compilation errors that expose the internals of the DSL, and a
lack of diagnostic tools that are aware of the DSL [21]. On the other hand, one
may choose to implement their language by hand or with parser generators à la
yacc. The resulting external DSLs achieve a natural syntax and often provide
more friendly diagnostics, but come at the cost of interoperability issues [3] and
an implementation that requires computer science expertise.

In this paper, we make progress towards combining the best of both worlds
into what we call composable DSLs. Since applications routinely use multiple
DSLs, our goal is to enable fine-grained mixing of languages with the natural
syntax of external DSLs and the interoperability of internal DSLs. At the core of
this effort is a parsing problem: although the grammar for each DSL in use may
be unambiguous, programs, such as the one in Figure 1, need to be parsed using
the union of their grammars, which is likely to contain ambiguities [14]. Instead
of relying on the grammar author to resolve them (as in the LALR tradition),
the parser for such an application must efficiently deal with ambiguities.
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c© Springer-Verlag Berlin Heidelberg 2013



70 E. Silkensen and J. Siek

Application

SQL

Regular
Expressions

Matrix 
Algebra

Sets

Yacc

HTML

Fig. 1. Our common case: an application using many DSLs

We should emphasize that our goal is to create a parsing system that pro-
vides much more syntactic flexibility than is currently offered through operator
overloading in languages such as C++ and Haskell. However, we are not trying
to build a general purpose parser; that is, we are willing to place restrictions on
the allowable grammars, so long as those restrictions are easy to understand (for
our users) and do not interfere with composability.

As a motivating example, we consider an application that imports DSLs for
matrix algebra, sets, and regular expressions. Suppose the grammars for these
languages are written in the traditional style, including the following rules, with
associativity specified separately.

Expr ::= Expr "+" Expr | Expr "-" Expr
(Matrix DSL)

Expr ::= Expr "+" Expr | Expr "-" Expr
(Set DSL)

Expr ::= Expr "+"
(Regexp DSL)

The union of these individually unambiguous grammars is greatly ambiguous,
so importing them can increase the parse time by orders of magnitude without
otherwise changing programs containing expressions such as A + B + C. An ob-
vious fix is to merge the grammars and refactor to remove ambiguity. However,
that would require coordination between the DSL authors which is not scalable.

1.1 Type-Oriented Grammars

To address the problem of parsing composed DSLs, we observe that different
DSLs typically define different types. We suggest an alternate style of grammar
organization inspired by Sandberg [20] that we call type-oriented grammars. In
this style, a DSL author creates one nonterminal for each type in the DSL and
uses the most specific nonterminal/type for each operand in a grammar rule. For
example, the above Expr rules would instead be written

Matrix ::= Matrix "+" Matrix | Matrix "-" Matrix

Set ::= Set "+" Set | Set "-" Set Regexp ::= Regexp "+"
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1.2 Type-Based Disambiguation

While we can rewrite the DSLs for matrix algebra, regular expressions, and sets
to be type oriented, programs such as A+ B+ C · · · are still highly ambiguous
if the variables A, B, and C can each be parsed as either Matrix, Regexp, or
Set. Many prior systems [17, 5] use chart parsing [15] or GLR [26] to produce a
parse forest and then type check to filter out the ill-typed trees. This solves the
ambiguity problem, but these parsers are still inefficient on ambiguous grammars
because of the large number of parse trees in the forest (see Section 4).

This is where our contribution comes in: island parsing with eager, type-based
disambiguation is able to efficiently parse programs that simultaneously use
many DSLs. We use a chart parsing strategy, called island parsing [23] (or bidi-
rectional bottom-up parsing [19]), that enables our algorithm to grow parse trees
outwards from what we call well-typed terminals. The statement

declare A:Matrix, B:Matrix, C:Matrix { . . . }

gives the variables A, B, and C the type Matrix and brings them into scope
for the region of code within the braces. We integrate type checking into the
parsing process to prune ill-typed parse trees before they have a chance to grow,
drawing inspiration from the field of natural language processing, where selection
restriction uses types to resolve ambiguity [13].

Our approach does not altogether prohibit grammar ambiguities; it strives to
remove ambiguities from the common case when composing DSLs so as to enable
efficient parsing.

1.3 Contributions

1. We present the first parsing algorithm, type-oriented island parsing (Sec-
tion 3), whose time complexity is constant with respect to (i.e., independent
of) the number of DSLs in use, so long as the nonterminals of each DSL are
largely disjoint (Section 4).

2. We present our extensible parsing system that adds several features to the
parsing algorithm to make it convenient to develop DSLs on top of a host
language such as Typed Racket [24] (Section 5).

3. We demonstrate the utility of our parsing system with examples (included
along with the implementation available on Racket’s PLaneT package repos-
itory) in which we embed syntax for DSLs in Typed Racket.

Section 2 introduces the basic definitions and notation used in the rest of
the paper. We discuss our contributions in relation to the prior literature and
conclude in Section 6.

2 Background

We review the definition of a grammar and parse tree and present a framework
for comparing parsing algorithms based on the parsing schemata of Sikkel [22].
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2.1 Grammars and Parse Trees

A context-free grammar (CFG) is a 4-tuple G = (Σ,Δ,P , S) where Σ is a finite
set of terminals, Δ is a finite set of nonterminals, P is finite set of grammar
rules, and S is the start symbol. We use a, b, c, and d to range over terminals
and A,B,C, and D to range over nonterminals. The variables X,Y, Z range over
symbols, that is, terminals and nonterminals, and α, β, γ, δ range over sequences
of symbols. Grammar rules have the form A → α. We write G ∪ (A → α) as an
abbreviation for (Σ,Δ,P ∪ (A→ α), S).

We are ultimately interested in parsing programs, that is, converting token
sequences into abstract syntax trees. So we are less concerned with the recogni-
tion problem and more concerned with determining the parse trees for a given
grammar and token sequence. The parse trees for a grammar G = (Σ,Δ,P , S),
written T (G), are trees built according to the following rules.

1. If a ∈ Σ, then a is a parse tree labeled with a.
2. If t1, . . . , tn are parse trees labeled X1, . . . , Xn respectively, A ∈ Δ, and

A→ X1 . . . Xn ∈ P , then the following is a parse tree labeled with A.

A

��
��
��
��

��
��

��
��

t1 · · · tn

We sometimes use a horizontal notation A → t1 . . . tn for parse trees and we
often subscript parse trees with their labels, so tA is parse tree t whose root is
labeled with A. We use an overline to represent a sequence: t = t1 . . . tn.

The yield of a parse tree is the concatenation of the labels on its leaves:

yield(a) = a

yield([A→ t1 . . . tn]) = yield(t1) . . . yield(tn)

Definition 2.1. The set of parse trees for a CFG G = (Σ,Δ,P , S) and input
w, written T (G, w), is defined as follows

T (G, w) = {tS | tS ∈ T (G) and yield(tS) = w}

2.2 Parsing Algorithms

We wish to compare the essential characteristics of several parsing algorithms
without getting distracted by implementation details. Sikkel [22] introduces a
high-level formalism for presenting and comparing parsing algorithms, called
parsing schemata, that presents each algorithm as a deductive system. We loosely
follow his approach, but make some minor changes to better suit our needs.

Each parsing algorithm corresponds to a deductive system with judgments of
the form H 
 ξ, where ξ is an item and H is a set of items. An item has the
form [p, i, j] where p is either a parse tree or a partial parse tree and the integers
i and j mark the left and right extents of what has been parsed so far.
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(BU)

(Fnsh)

(BU)

(Hyp)
[A, 0, 1] ∈ H

H � [A, 0, 1] E→ A ∈ P
H � [E→ .A., 0, 1]

H � [E→ A, 0, 1] E→ E+E ∈ P
H � [E→ .[E→ A]. + E, 0, 1]

Fig. 2. A partial (bottom-up Earley) derivation of the parse tree for "A + B", having
parsed "A " but not yet "+ B"

The set of partial parse trees is defined by the following rule: if A→ αβγ ∈ P ,
then A→ α.tβ.γ is a partial parse tree labeled with A, where markers surround
a sequence of parse trees for β, while α and γ remain to be parsed. We reserve
the variables s and t for parse trees, not partial parse trees. A complete parse of
an input w of length n is a derivation of H0(w) 
 [tS , 0, n], where H0(w) is the
initial set of items that represent the result of tokenizing the input w.

H0(w) = {[wi, i, i+ 1] | 0 ≤ i < |w|}

Definition 2.2. A bottom-up variation [22] of the Earley algorithm [8] applied
to a grammar G = (Σ,Δ,P , S) is defined by the following deductive rules.

(Hyp)
ξ ∈ H

H 
 ξ
(Fnsh)

H 
 [A→ .tα., i, j]

H 
 [A→ tα, i, j]

(BU)
H 
 [tX , i, j] A→ Xβ ∈ P

H 
 [A→ .tX .β, i, j]

(Compl)
H 
 [A→ .sα.Xβ, i, j] H 
 [tX , j, k]

H 
 [A→ .sαtX .β, i, k]}

Example 2.1. Figure 2 shows the beginning of the bottom-up Earley derivation
of a parse tree for A + B with the grammar:

E ::= E "+" E | "A" | "B"

3 Type-Oriented Island Parsing

The essential ingredients of our parsing algorithm are type-based disambiguation
and island parsing. In Section 4, we show that an algorithm based on these two
ideas parses with time complexity that is independent of the number of DSLs
in use, so long as the nonterminals of the DSLs are largely disjoint. (We also
make this claim more precise.) But first, in this section we introduce our type-
oriented island parsing algorithm (TIP) as an extension of the bottom-up Earley
algorithm (Definition 2.2).
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Island parsing [23] is a bidirectional, bottom-up parsing algorithm that was
developed in the context of speech recognition. In that domain, some tokens can
be identified with a higher confidence than others. The idea of island parsing is
to begin the parsing process at the high confidence tokens, the so-called islands,
and expand the parse trees outward from there.

Our main insight is that if our parser can be made aware of variable decla-
rations, and if a variable’s type corresponds to a nonterminal in the grammar,
then each occurrence of a variable can be treated as an island. We introduce the
following special form for declaring a variable a of type A that may be referred
to inside the curly brackets.

declare a : A {. . .}

Specifically, if tX ∈ T (G ∪ {A→ a}), then the following is a parse tree in T (G).

X → declare a : A {tX}

To enable temporarily extending the grammar during parsing, we augment the
judgments of our deductive system with an explicit parameter for the grammar.
So judgments now have the form

G;H 
 ξ

This adjustment also enables the import of grammars from different modules.
We define the parsing rule for the declare form as follows.

(Decl)
G ∪ (A→ a);H 
 [tX , i+ 5, j]

G;H 
 [X → declare a : A {tX}, i, j + 1]

Note the i + 5 accounts for “declare a : A {” and j + 1 for “}”.
Next we replace the bottom-up rule (BU) with the following (BU-Islnd)

rule. The (BU-Islnd) rule is no different than the (BU) rule when X ∈ Δ,
except that X can now appear anywhere on the right-hand side. When X ∈ Σ,
however, we require that α and β are both sequences of terminals.

(BU-Islnd)

G;H 
 [tX , i, j]
A→ αXβ ∈ P G = (Σ,Δ,P , S)
X ∈ Σ =⇒ ¬∃k. αk ∈ Δ ∨ βk ∈ Δ

G;H 
 [A→ α.tX .β, i, j]

This restriction ensures that when X ∈ Σ, the (BU-Islnd) rule only triggers
the formation of an island using grammar rules that arise from variable dec-
larations and literals (constants) defined in a DSL; by allowing α and β to be
nonempty, we support literals defined by more than one token. For example, the
(BU-Islnd) rule doesn’t apply when X = "+" in E ::= E "+" E. In this case,
the grammar rule is not defining a variable declaration or constant, and only the
E’s on either side of the "+" give type information, so we shouldn’t start parsing
from "+". We motivate and discuss this rule further in Section 4.



Well-Typed Islands Parse Faster 75

Finally, because islands appear in the middle of the input string, we need both
left and right-facing versions of the (Compl) rule.

(RCompl)
G;H 
 [A→ α.sβ.Xγ, i, j] G;H 
 [tX , j, k]

G;H 
 [A→ α.sβtX .γ, i, k]}

(LCompl)
G;H 
 [tX , i, j] G;H 
 [A→ αX.sβ.γ, j, k]

G;H 
 [A→ α.tXsβ.γ, i, k]}

Definition 3.1. The type-oriented island parsing algorithm is defined as the
deductive system comprised of the rules (Hyp), (Fnsh), (Decl), (BU-Islnd),
(RCompl), and (LCompl).

The TIP algorithm is correct in that it can derive a tree for an input string if
and only if there is a valid parse tree whose yield is the input string.

Theorem 3.1. For some i and j, G;H0(yield (tX)) 
 [tX , i, j] iff tX ∈ T (G).

Proof. By induction on derivations (soundness) and trees (completeness).

The implementation of our algorithm explores derivations in order of most
specific first, which enables parsing of languages with overloading (and parame-
terized rules, as in Section 5.2). For example, consider the following rules with
an overloaded + operator.

Float ::= Float "+" Float | Int Int ::= Int "+" Int

The program 1 + 2 can be parsed at least three different ways: with zero, one,
or two coercions from Int to Float. Our algorithm returns the parse with no
coercions, which we call most specific: Int→ [Int→ 1] + [Int→ 2]

Definition 3.2. If B → A ∈ P , then we say A is at least as specific as B,
written A ≥ B, where ≥ is the reflexive and transitive closure of this relation.
We extend this ordering to terminals and sequences by defining a ≥ b iff a = b,
α ≥ β iff |α| = |β|, and αi ≥ βi for i ∈ {1, . . . , |α|}. A parse tree A → sα is at
least as specific as another parse tree B → tβ iff A ≥ B and sα ≥ tβ .

We implement this strategy by comparing the parse trees for a part of the
input (e.g., from i to j) and pursuing only the most-specific tree. We save the
others on a stack, instead of discarding them as we would for associativity or
precedence conflicts (Section 5.1); if the current most-specific parse eventually
fails, we pop the stack and resume parsing one of the earlier attempts.

4 Experimental Evaluation

In this section we evaluate the performance of type-oriented island parsing.
Specifically, we are interested in the performance of the algorithm for programs
that are held constant while the size of the grammar increases.
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Chart parsing algorithms have a general worst-case running time of O(|G|n3)
for a grammar G and string of length n. In our setting, G is the union of the
grammars for the k DSLs that are in use within a given scope, that is G =⋃k

i=1 Gi, where Gi is the grammar for DSL i. We claim that the total size of the
grammar G is not a factor for type-oriented island parsing, and instead the time
complexity is O(mn3) where m = max{|Gi| | 1 ≤ i ≤ k}. This claim deserves
considerable explanation to be made precise.

Technically, we assume that G is sparse, which we define as follows.

Definition 4.1. Form a Boolean matrix with a row for each nonterminal and a
column for each production rule in a grammar G. A matrix element (i, j) is true
if the nonterminal i appears on the right-hand side of the rule j, and it is false
otherwise. We say that G is sparse if its corresponding matrix is sparse, that is,
if the number of nonzero elements is on the order of m+n for an m×n matrix.

We conjecture that, in the common case, the union of many type-oriented gram-
mars (or DSLs) is sparse.

To verify that both the type-oriented style of grammar and the island parsing
algorithm are necessary for this result, we show that removing either of these
ingredients results in parse times that are dependent on the size of the entire
grammar. We consider the performance of the top-down and bottom-up Earley
algorithms, in addition to island parsing, with respect to untyped, semi-typed,
and type-oriented grammars, which we explain in the following subsections.

We implemented all three algorithms using a chart parsing algorithm, which
efficiently memoizes duplicate items. The chart parser continues until it has
generated all items that can be derived from the input string. (It does not stop
at the first complete parse because it needs to continue to check whether the
input string is ambiguous, which means the input would be in error.1) Also, we
should note that our system currently employs a fixed tokenizer, but that we
plan to look into scannerless parsing.

To capture the essential, asymptotic behavior of the parsing algorithms, we
count the number of items generated during the parsing of a program with
untyped, semi-typed, and typed grammars. For this experiment, the program is
the expression --A.

4.1 Untyped Grammar Scaling

In the untyped scenario, all grammar rules are defined in terms of an expression
nonterminal (E), and variables are simply parsed as identifiers (Id).

E ::= "-" E | Id

The results for parsing --A after importing k copies of the grammar, for in-
creasing k, are shown in Figure 3(a). The y-axis is the number of items generated
by each parsing algorithm and the x-axis is the total number of grammar rules at

1 While ambiguous input is allowed if there is a single most-specific parse tree, there
may be more than one since the ≥ relation is not necessarily a total order.
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(b) Semi-typed Grammar

Fig. 3. Comparison of Earley and island parsing with two styles of grammars

each k. In the untyped scenario, the size of the grammar affects the performance
of each algorithm, with each generating O(k2) items.

We note that the two Earley algorithms generate about half as many items
as the island parser because they are unidirectional (left-to-right) instead of
bidirectional.

4.2 Semi-typed Grammar Scaling

In the semi-typed scenario, the grammars are nearly type-oriented: rules are
defined in terms of V (for vector) and M (for matrix); however, variables are
again parsed as identifiers. We call this scenario semi-typed because it doesn’t
use variable declarations to provide type-based disambiguation.

E ::= V | Mi V ::= "-" V | Id Mi ::= "-" Mi | Id

The results for parsing --A after importing the V rules followed by k copies of
the M rules (i.e., M1 ::= "-" M1, M2 ::= "-" M2, . . . ) are shown in Figure 3(b).
The lines for bottom-up Earley and island parsing coincide. Each algorithm gen-
erates O(k) items, so we see that type-oriented grammars are not, by themselves,
enough to achieve constant scaling with respect to grammar size.

We note that the top-down Earley algorithm generates almost twice as many
items as the bottom-up algorithms: the alternatives for the start symbol E grow
with the input length n, which affects the top-down strategy more than the
bottom-up strategy.

4.3 Typed Grammar Scaling

The typed scenario is identical to semi-typed except that it no longer includes
the Id nonterminal. Instead, programs must declare their own typed variables.

E ::= V | Mi V ::= "-" V Mi ::= "-" Mi
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Fig. 4. Comparison of Earley and island parsing with type-oriented grammars

In this scenario, the grammars are sparse and the terminal V is well-typed. The
results for parsing --A, after declaring A:V and importing the V rules followed
by k copies of the M rules, are shown in Figure 4. The island parsing algorithm
generates a constant number of items as the size of the grammar increases,
while the Earley algorithms remain linear. Thus, the combination of type-based
disambiguation, type-oriented grammars, and island parsing provides a scalable
approach to parsing programs that use many DSLs.

4.4 Discussion

The reason type-oriented island parsing scales is that it is more conservative
with respect to prediction than either top-down or bottom up, so grammar rules
from other DSLs that are irrelevant to the program fragment being parsed are
never used to generate items.

In top-down Earley parsing, any grammar rule that produces the nonterminal
B, regardless of which DSL it resides in, will be entered into the chart via a
top-down prediction rule. Such items have a zero-length extent which indicates
that the algorithm does not yet have a reason to believe that this item will be
able to complete.

Looking at the (BU) rule of bottom-up Earley parsing, we see that all it takes
for a rule (from any DSL) to be used is that it starts with a terminal that occurs
in the program. However, it is quite likely that different DSLs will have rules
with some terminals in common. Thus, the bottom-up algorithm also introduces
items from irrelevant DSLs.

Finally, consider the (BU-Islnd) rule of our island parser. The difference
between this rule and (BU) is that it doesn’t apply to a terminal on the right-
hand side of a grammar rule when it could apply to some other nonterminal
(which corresponds to a type) instead. For example, by avoiding the "-" in the
above grammars, the (BU-Islnd) rule proceeds directly to the rule for V without
introducing items from DSLs with only Mi terms that could not complete.
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5 A System for Extensible Syntax

In this section we describe the parsing system that we have built as a front
end to the Racket programming language. In particular, we describe how we
implement four features that are needed in a practical extensible parsing system:
associativity and precedence, parameterized grammar rules, grammar rules with
variable binders and scope, and rule-action pairs, which combine the notions of
semantic actions, function definitions, and macros. We also extend type-oriented
grammars so that nonterminals can represent structural types.

Users may define DSLs by writing grammar rules inside a module block; the
input to our tool consists of programs written in the language of the DSLs that
they import. For example, one might write

module MatrixAlgebra {
Matrix ::= Matrix "+" Matrix

...
...

}
and then import MatrixAlgebra in a program using the matrix algebra DSL.

An implementation containing all the features described below is available on
Racket’s PLaneT package repository. To install, start the Racket interpreter and
enter (require (planet esilkensen/esc)).

5.1 Associativity and Precedence

Our treatment of associativity and precedence is largely based on that of Visser
[27], although we treat this as a semantic issue instead of an optimization issue.
From the user perspective, we extend rules (and similarly parse trees) to have
the form A →�,p α where � ∈ {left, right, non,⊥} indicates the associativity and
p ∈ N⊥ indicates the precedence. Concretely, we annotate rules with associativity
and precedence inside square brackets in the following way.

Matrix ::= Matrix "+" Matrix [left,1]

The change to the island parsing algorithm to handle precedence and associa-
tivity is straightforward. We simply make sure that a partial parse tree does not
violate an associativity or precedence rule before converting it into a (complete)
parse tree. We replace the (Fnsh) rule with the following.

(FnshP)
G;H 
 [A→�,p .tα., i, j] ¬conflict(A→�,p tα)

G;H 
 [A→�,p tα, i, j]

Definition 5.1. We say that a parse tree t has a root priority conflict, written
conflict(t), if one of the following holds.

1. It violates the right, left or non-associativity rules, that is, t has the form
– A→�,p (A→�,p tAα)sα where � = right or � = non; or
– A→�,p sα(A→�,p tαA) where � = left or � = non.

2. It violates the precedence rule, that is, t has the form:

t = A→�,p s(B →�′,p′ t)s′ where p′ < p.
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5.2 Parameterized Rules

With the move to type-oriented grammars, the need for parameterized rules
immediately arises. For example, consider how one might translate the following
grammar rule for conditional expressions into a type-oriented rule.

Expr ::= "if" Expr "then" Expr "else" Expr

By extending grammar rules to enable the parameterization of nonterminals, we
can write the following, where T stands for any type/nonterminal.

forall T. T ::= "if" Bool "then" T "else" T

Parameterized rules have the form ∀x.A→ α, where x is a sequence of vari-
ables (containing no duplicates). We wish to implicitly instantiate parameterized
rules, that is, automatically determine which nonterminals to substitute for the
parameters. Towards this end, we define a partial function named match that
compares two symbols with respect to a substitution σ and a sequence of vari-
ables and produces a new substitution σ′ (if the match is successful). We augment
partial parse trees with substitutions to incrementally accumulate the matches,
giving them the form ∀x.A→σ α.tβ.γ.

Using these definitions, we can implement parameterized rules with a few
changes to the base island parser, such as (PRCompl) below.

(PRCompl)

G;H 
 [∀x.A→σ1 α.sβ.X
′γ, i, j]

G;H 
 [tX , j, k] match(X ′, X, σ1, x) = σ2

G;H 
 [∀x.A→σ2 α.sβtX .γ, i, k]}

5.3 Grammar Rules with Variable Binders

Consider what would be needed to define a type-oriented grammar rule to parse a
let expression such as the following, with n in scope between the curly brackets.

let n = 7 { n * n }

We need a way for the rule to refer to the parse tree for Id and to say that the
identifier has type T1 inside the brackets. To facilitate such binding forms, we
add labeled symbols [12] and a scoping construct [7] to our system.

For example, the let rule below binds the variable x to the identifier with
x:Id; the unquoted brackets mark the scoping construct, and x:T1 says x should
have type T1 inside the brackets (any nonempty sequence of bindings may appear
before the semicolon):

forall T1 T2. T2 ::= "let" x:Id "=" T1 { x:T1; T2 }

We implement these rules by parsing in phases, where initially, all regions
enclosed in curly brackets are ignored. Once enough surrounding text has been
parsed, a region is “opened” and the next phase of parsing begins with an ex-
tended grammar. In the let example, the grammar is extended with the rule
T1→ x (with T1 instantiated and x replaced by its associated string).
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5.4 Rule-Action Pairs

Sandberg [20] introduces the notion of a rule-action pair, which pairs a grammar
rule with a semantic action that provides code to give semantics to the syntax.
In his paper, rule-action pairs behave like macros; we provide ones that behave
like functions as well (with call-by-value semantics). Thus users of our system
can embed their DSLs in Typed Racket with two kinds of rule-action pairs.

The ⇒ operator defines a rule-function: we compile these rules to functions
whose parameters are the variables bound on the right-hand side, and whose
body is the Typed Racket code after the arrow. Below is an example adapted
from Sandberg’s paper giving syntax for computing the absolute value of an
integer.

Integer ::= "|" i:Integer "|" ⇒ (abs i)

Similarly, the = operator defines a rule-macro: we simply compile a rule-macro
to a macro instead of a function. Macros are necessary in some situations. For
example, we need a macro to embed the let rule, which we can do as follows.

forall T1 T2. T2 ::= "let" x:Id "=" e1:T1 { x:T1; e2:T2 } =
(let: ([x : T1 e1]) e2)

We translate DSLs to Typed Racket by generating the appropriate function
or macro call for parsed instances of rule-action pairs.

5.5 Structural Nonterminals

We support representations of structural types in type-oriented grammars by
enabling the definition of structural nonterminals. In our system, the reserved
symbol Type gives the syntax of types/nonterminals, and the ≡ operator maps
parse trees to Typed Racket types.

Users may define structural nonterminals, as long as they are mapped to
Typed Racket types, by writing new rules for Type inside a types block. For
example, consider the following rule for a product type.

Type ::= T1:Type "×" T2:Type ≡ (Pairof T1 T2)

We can then use this syntax in any grammar rules inside the module; for example,
we could write the rule below for accessing the first element of a pair.

forall T1 T2. T1 ::= p:(T1× T2) "." "fst" ⇒ (car p)

5.6 Examples

Our implementation includes concrete examples of using the features from this
section to embed DSLs in the host language Typed Racket. We show how to
give ML-like syntax to several operators and forms of Typed Racket, and how
to combine this DSL with literal syntax for set and vector operations.2

2 To access the examples, enter raco docs at the command line and look under “Pars-
ing Libraries” for the documentation.
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6 Related Work and Conclusions

There have been numerous approaches to extensible syntax for programming
languages. In this section, we summarize the approaches and discuss how they
relate to our work. We organize this discussion in a roughly chronological order.

Aasa et al. [1] augments the ML language with extensible syntax for dealing
with algebraic data types. They develop a generalization of the Earley algorithm
that performs Hindley-Milner type inference during parsing. However, Petters-
son and Fritzson [18] report that the algorithm was too inefficient in practice.
Pettersson and Fritzson [18] build a more efficient system based on LR(1) pars-
ing. Of course, LR(1) parsing is not suitable for our purposes because LR(1) is
not closed under union, which we need to compose DSLs. Several later works also
integrate type inference into the Earley algorithm [16, 28]. It may be possible to
integrate these ideas with our approach to handle languages with type inference.

Several extensible parsing systems use Ford’s Parsing Expression Grammar
(PEG) formalism [9]. PEGs are stylistically similar to CFGs; however, PEGs
avoid ambiguity by introducing a prioritized choice operator for rule alternatives
and PEGs disallow left-recursive rules. We claim that these two restrictions are
not appropriate for composing DSLs. The order in which DSLs are imported
should not matter and DSL authors should be free to use left recursion if that
is the most natural way to express their grammar.

The MetaBorg [5] system provides extensible syntax in support of embed-
ding DSLs in general purpose languages. MetaBorg is built on the Stratego/XT
toolset which in turn used the syntax definition framework SDF [10]. SDF uses
scannerless GLR to parse arbitrary CFGs. The MetaBorg system performs type-
based disambiguation after parsing to prune ill-typed parse trees from the re-
sulting parse forest. Thus, the performance of MetaBorg degrades where there is
considerable ambiguity. Our treatment of precedence and associativity is based
on their notion of disambiguation filter [4]. We plan to explore the scannerless
approach in the future. Bravenboer and Visser [6] look into the problem of com-
posing DSLs and investigate methods for composing parse tables. We currently
do not create parse tables, but we may use these ideas in the future to further
optimize the efficiency of our algorithm.

In this paper we presented a new parsing algorithm, type-oriented island pars-
ing, that is the first parsing algorithm to be constant time with respect to the
size of the grammar under the assumption that the grammar is sparse. (Most
parsing algorithms are linear with respect to the size of the grammar.)

We have developed an extensible parsing system that provides a front-end
to Typed Racket, enabling the definition of macros and functions together with
grammar rules that provide syntactic sugar. Our implementation provides fea-
tures such as parameterized grammar rules and grammar rules with variable
binders and scope.

In the future we plan to both analytically evaluate the performance of our
algorithm and to continue testing our hypothesis about the sparsity of the
union of several type-oriented DSLs in practice, with larger and more real-world
grammars. In our implementation we plan to provide diagnostics for helping
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programmers resolve remaining ambiguities that are not addressed by typed-
based disambiguation.
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Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 74–94. Springer, Heidelberg
(2009)

7. Cardelli, L., Matthes, F., Abadi, M.: Extensible syntax with lexical scoping. Tech.
Rep. 121, DEC SRC (February 1994)

8. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13, 94–102
(1970)

9. Ford, B.: Parsing expression grammars: A recognition-based syntactic foundation.
In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL, pp. 111–122. ACM (2004)

10. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism
sdf—reference manual—. SIGPLAN Not. 24(11), 43–75 (1989)

11. Hudak, P.: Modular domain specific languages and tools. In: ICSR 1998: Proceed-
ings of the 5th International Conference on Software Reuse, p. 134. IEEE Computer
Society, Washington, DC (1998)

12. Jim, T., Mandelbaum, Y., Walker, D.: Semantics and algorithms for data-
dependent grammars. In: Proceedings of the 37th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2010,
pp. 417–430. ACM, New York (2010)

13. Jurafsky, D., Martin, J.: Speech and Language Processing. Pearson Prentice Hall
(2009)

14. Kats, L.C., Visser, E., Wachsmuth, G.: Pure and declarative syntax definition:
paradise lost and regained. In: Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA
2010, pp. 918–932. ACM, New York (2010)

15. Kay, M.: Algorithm schemata and data structures in syntactic processing,
pp. 35–70. Morgan Kaufmann Publishers Inc., San Francisco (1986)

16. Missura, S.: Higher-Order Mixfix Syntax for Representing Mathematical Notation
and its Parsing. Ph.D. thesis, ETH Zurich (1997)



84 E. Silkensen and J. Siek

17. Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer
(1994)

18. Pettersson, M., Fritzson, P.: A general and practical approach to concrete syntax
objects within ml. In: ACM SIGPLAN Workshop on ML and its Applications
(June 1992)

19. Quesada, J.F.: The scp parsing algorithm: computational framework and formal
properties. In: Procesamiento del lenguaje natural, vol. (23) (1998)

20. Sandberg, D.: Lithe: a language combining a flexible syntax and classes. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1982, pp. 142–145. ACM, New York (1982)

21. Siek, J.G.: General purpose languages should be metalanguages. In: Proceedings
of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and Program Ma-
nipulation, PEPM 2010, pp. 3–4. ACM, New York (2010),
http://doi.acm.org/10.1145/1706356.1706358

22. Sikkel, K.: Parsing schemata and correctness of parsing algorithms. Theoretical
Computer Science 199(1-2), 87–103 (1998)

23. Stock, O., Falcone, R., Insinnamo, P.: Island parsing and bidirectional charts. In:
Conference on Computational Linguistics, COLING, pp. 636–641. Association for
Computational Linguistics (1988)

24. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed
scheme. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2008, pp. 395–406. ACM,
New York (2008)

25. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Lan-
guages as libraries. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, pp. 132–141.
ACM, New York (2011), http://doi.acm.org/10.1145/1993498.1993514

26. Tomita, M.: An efficient context-free parsing algorithm for natural languages. In:
Proceedings of the 9th International Joint Conference on Artificial Intelligence,
vol. 2, pp. 756–764. Morgan Kaufmann Publishers Inc., San Francisco (1985)

27. Visser, E.: A case study in optimizing parsing schemata by disambiguation fil-
ters. In: International Workshop on Parsing Technology, IWPT 1997, pp. 210–224.
Massachusetts Institute of Technology, Boston (1997)

28. Wieland, J.: Parsing Mixfix Expressions. Ph.D. thesis, Technische Universitat
Berlin (2009)

http://doi.acm.org/10.1145/1706356.1706358
http://doi.acm.org/10.1145/1993498.1993514


Higher-Order Strictness Typing

Sjaak Smetsers1 and Marko van Eekelen1,2

{S.Smetsers,M.vanEekelen}@cs.ru.nl
1 Institute for Computing and Information Sciences, Radboud University Nijmegen

2 School of Computer Science, Open University of the Netherlands

Abstract. We extend an existing first-order typing system for strictness
analysis to the fully higher-order case. The resulting fully higher-order
strictness typing system has an expressivity beyond that of traditional
strictness analysis systems.

This extension is developed with the explicit aim to formally prove
that the higher-order strictness typing is sound with respect to a natural
operational semantics. A key aspect of our approach is that we introduce
the proof assistant in an early stage, namely during development of the
proof, and as such the language theoretic concepts are designed with the
aid of the theorem prover.

The combination of reporting on a new result together with its formal
proof, can be seen as a case study towards the achievement of the long
term PoplMark Challenge. The proof framework developed for this case
study can be used further in other typing systems case studies.

1 Introduction

In this paper we propose the use of proof assistants not only for the re-
construction of hand-written proofs, but also to introduce the tool during the de-
velopment of language theoretic concepts. By introducing the tool in this stage, the
consistency of technical concepts can be verified in the process of designing them.
This is accomplished by checking properties linking these concepts. This paper and
the accompanying proof files comprise examples of such concepts and properties.
Inaccuracies or mistakes made during the development were most often detected
in an early stage, avoiding time consuming and inevitably failing attempts to con-
struct correctness proof of the main properties. This approach was used for the
soundness proof of a non-standard typing system for a simple functional program-
ming language. We combine standard Hindley-Milner typing with strictness in-
formation, specifying termination properties of higher-order functions. Strictness
information can be used to change inefficient call-by-need evaluation into efficient
call-by-value evaluation. This gain in efficiency lies in the fact that construction of
unevaluated expressions (so-called closures) is circumvented.

Combining standard typing with some form of input/ouput analysis is quite
common. We mention a few examples. Substructural type systems ([1]) regulate
the order and number of uses of data by ensuring that some values be used at
most once, at least once, or exactly once. E.g., linear typing systems (such as
uniqueness typing) can be used to identify unique objects. These unique objects
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are suitable for compile-time garbage collection which is essential for incorporat-
ing destructive updates in functional languages (e.g., See [2,3]). Security-typed
languages ([4], for instance) track information flow within programs to enforce
security properties such as data confidentiality and integrity. This information
can be used to prevent unintentional information leaks. [5] describes a dedicated
typing system for predicting the heap space usage of first-order, strict functional
programs. This information can be used in several ways, most notably to ensure
that a program allocates sufficient free memory.

Another view on this paper is that it reports on a case study of computer
aided verification of theories about syntactic objects. Syntactic theories such as
operational semantics and type systems play an important role in the (static)
analysis of computer programs and the construction of reliable implementations
of programming languages. The usability and reliability of syntactic techniques
can undoubtly be improved by using automated proof assistants. This need is
recognized by many researchers. Most notably, the PoplMark Challenge [6]
calls for experiments on verifications of metatheory and semantics using proof
tools. The concrete proposal is to formalize existing proofs of properties of type
systems with different proof assistants. The long term goal is far more ambitious.
It envisions “... a future in which the papers in conferences such as Principles
of Programming Languages (POPL) and the International Conference on Func-
tional Programming (ICFP) are routinely accompanied by mechanically check-
able proofs of the theorems they claim.”

The contribution of our work is threefold. The first contribution is the for-
malization of a non-standard typing system for strictness analysis of functional
programs. A first-order version of this typing system was presented in [7]. Com-
pared to traditional strictness analyzers, it has two main advantages. Firstly,
it can be combined with ordinary typing: the compiler does not require an ad-
ditional analysis phase. Secondly, it avoids fixed point computations, resulting
in a much more efficient implementation. In this paper we augment first order
typing with function types, in effect making it fully higher-order. Compared to
common strictness analyses, the resulting system has an additional advantage:
it permits the specification and derivation of strictness properties between the
function arguments. We prove that our system is sound with respect to a given
natural operational semantics. Thereafter, we discuss the extension of the system
needed to deal with recursive data-types.

Secondly, it can be seen as a methodological experiment. We assess the us-
ability of theorem provers for formalizing complex semantical issues, not only
after the construction of the proofs by hand, but especially during the develop-
ment of basic theory. The complexity of the typing system in our case study is
of a similar level as that of the PoplMark challenge. However, the main proof
methods are not known on forehand, as is the case in the challenges, but are to
be developed during the proof process.

Finally, the PVS formalization can be used as a framework for developing
other metatheoretical concepts. The framework can be used as a basis for de-
veloping other type based analyses together with their formal soundness proof,
living up to the ambition of the long term PoplMark Challenge.
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(unit)� ⇓ � (abs)
λx.M ⇓ λx.M

M ⇓ λx.B B[x← N ] ⇓ V
(appl)

M N ⇓ V

M ⇓ 〈X,Y 〉 X ⇓ V
(fst)

fstM ⇓ V

M ⇓ 〈X,Y 〉 Y ⇓ V
(snd)

sndM ⇓ V

(pair)〈X,Y 〉 ⇓ 〈X,Y 〉
(inl)

inlL ⇓ inlL
(inr)

inrR ⇓ inrR

S ⇓ inlL GL ⇓ V
(case-L)

caseS of G orH ⇓ V

S ⇓ inrR H R ⇓ V
(case-R)

caseS of G orH ⇓ V

M [x← μx.M ] ⇓ V
(fix)

μx.M ⇓ V

Fig. 1. Evaluation rules

2 Extended Lambda Calculus

In this section we introduce the core functional language used throughout the
paper. This language captures essential aspects such as basic values, abstraction,
application, data constructors and destructors, and recursion.

Definition 1. Let V = {x, y, z, x0, x1, . . .} be an infinite set of term variables

– The set Λ of (lambda) expressions is defined by the following abstract syntax.

Λ ::= V | � | λV.Λ | ΛΛ | 〈Λ,Λ〉 | fstΛ | sndΛ |
inlΛ | inrΛ | caseΛ ofΛ orΛ | μV.Λ.

– The set of free variables of M is denoted by FV(M). Let �x = (x1, . . . , xn).
We write Λ�x for the set of λ-terms closed by �x, i.e., {M ∈ Λ|FV(M) ⊆ �x}.
We write Λo instead of Λ() (expressions with no free variables, so called
closed expressions).

The constructor � represents all basic values (integers, booleans, etc.). Pairs
are constructed using the expression 〈ex, ey〉, and destructed using projections
fst e and snd e. The constructors inl and inr are sum left and right injections of
the disjoint unions, whereas case is the destructor for these expressions.

Semantics The value V of a closed expressionM is defined via a standard natural
‘big step’ operational semantics expressed as judgements of the form M ⇓ V .
This evaluation will yield an (also closed) expression in head-normal form.

Definition 2. Let M ∈ Λo.
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– We write M ⇓ V , and say that M evaluates to V if this statement is derivable
using the rules in Fig. 1.

– M is defined or convergent (notation M ⇓) if M ⇓ V for some value V .
Otherwise M is undefined or divergent (notation M ⇑).

– The set of undefined (closed) expressions (i.e., {M ∈ Λo|M ⇑}) is denoted
by O.

Lemma 1. M ⇓ V and M ⇓W ⇒ V = W

O contains a canonical inhabitant μx.x, commonly denoted as ⊥, that will be
used to introduce finite unfoldings.

Definition 3. Let Fx ∈ Λx. The nth (finite) unfolding (notation Fn
x ) is defined

inductively by:
F 0
x = ⊥ Fn+1

x = Fx[x← Fn
x ]

The following property (the so-called syntactical continuity property, formally
proved in [8]) relates the evaluation of closed fix-expressions to the evaluation of
finite unfoldings, and vise versa.

Proposition 1. Let x, y ∈ V, and Cy ∈ Λy and Fx ∈ Λx.

Cy[y ← μx.Fx] ⇓ ⇔ ∃m ≥ 0 : Cy[y ← Fm
x ] ⇓

A disadvantage of a ‘big step approach’ is that reasoning about individual
evaluation steps can be awkward. To circumvent this problem the following
equivalence relation appears to be useful.

Definition 4. Two expressions M,N ∈ Λo are reduction equivalent (notation
M =β N) if for all H ∈ Λo

M ⇓ H ⇔ N ⇓ H

3 Strictness

Plain strictness is usually defined as follows.

Definition 5. Let �x = (x1, . . . , xn). An expression E ∈ Λ�x is strict in xi (1 ≤
i ≤ n) if for all �A ∈ (Λo)n

Ai ⇑ ⇒ E[�x← �A] ⇑

A drawback of this notion of strictness is the lack of compositionality: strict-
ness of a compound expression cannot always be determined by combining strict-
ness of its constituents. For example the expression fstx is strict in x and the
expression 〈x, y〉 not (and, of course, also not strict in y). However the compound
expression fst 〈x, y〉 is strict in x. Our aim is to refine this notion of strictness
in such a way that the evaluation properties of expressions are captured more
accurately. For instance, the function fst not only evaluates its argument to



Higher-Order Strictness Typing 89

head-normal form, but successively also evaluates the first component of the
resulting pair. Moreover, the expression 〈x, y〉 is strict in x if it appears in a
context that not only needs a pair but also the value of the first component of
that pair (or of the second component to become strict in y instead of x), as is
the case in our example. These evaluation contexts will be expressed as strictness
types.

Strictness Types

A strictness type is a standard type annotated with so-called strictness attributes.
The idea is to formulate strictness of E in x by a typing statement

x:σ! 
 E : τ !

The refinement mentioned is accomplished by admitting attributes to more than
only the outermost level of a type. For example,

1. x:(σ! × τ)! 
 fst x : σ!

2. x:σ! 
 〈x, x〉 : (σ! × σ)!

Typing (1) expresses that fst will evaluate its first argument as indicated above.
Typing (2) expresses that in a context in which the first component of a pair
is needed (which is indicated by the result type (σ! × σ)!) the expression itself
becomes strict in x. Observe that if the second component of the pair was needed,
a typing for (2) would be x:σ! 
 〈x, x〉 : (σ × σ!)!. To avoid confusion, we now
introduce an explicit notation for the absence of strictness information, namely
? (pronounced as lazy).

Definition 6. – Let Φ = {α, β, α0, α1, . . .} be an infinite set of type variables,
and A = {!, ?} the set of strictness attributes (ranged over by meta-variables
u, v), T = Σ∪Π denotes the set strictness types. Here Σ and Π are defined
by the following abstract syntax.

Σ ::= ΠA

Π ::= Φ | 1 | Σ → Σ | Σ ×Σ | Σ +Σ

The outermost attribute of S ∈ Σ is denoted by [S]. To avoid brackets, we

will write (. . .→ . . .)u as . . .
u→ . . ..

– Let |T | denote the ‘stripped’ version of T , i.e., T without any strictness
attributes. We consider two types T1, T2 as equivalent (notation T1 ∼ T2)
if |T1| ≡ |T2|. So, types are equivalent if their underlying standard types are
identical.

Definition 7. – Strictness attributes are ordered as follows: ! ≤ ?
– This ordering on attributes induces the following coercion relation on T.

u ≤ v and σ ≤ τ ⇒ σu ≤ τv

1 ≤ 1

α ≤ α
S1 ≤ S2 and T1 ≤ T2 ⇒ S2 → T1 ≤ S1 → T2 and

S1 × T1 ≤ S2 × T2 and
S1 + T1 ≤ S2 + T2
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Note the contravariance in the first argument of →.
– The infimum of two attributes u, v (notation u � v) if the miminum of u, v

w.r.t. ≤
– The predicate inf on (T,T,T) is defined by induction:

inf(σu, τv, ρw) = u = v � w and inf(σ, τ, ρ)
inf(α, α, α) = true
inf(1,1,1) = true

inf(S → T, S1 → T1, S2 → T2) = S = S1 = S2 and T = T1 = T2

inf(S × T, S1 × T1, S2 × T2) = inf(S, S1, S2) and inf(T, T1, T2)
inf(S + T, S1 + T1, S2 + T2) = inf(S, S1, S2) and inf(T, T1, T2)

inf(·, ·, ·) = false

The last rule should only be used if none of the othes rules applies, i.e. if
t1, t2 and t3 are not equivalent.

The inf predicate is used in our typing system to combine typing assumptions of
different occurrences of the same expression variable, commonly called contrac-
tion. Consider, for example the following function:

λx.+(fst x) (snd x)

If we assume that + is strict in both arguments (say of type N), then the
first occurrence of x will get type (N ! ×N?)!, and the second (N? ×N !)!. The
occurrences are combined by taking the infimum of their types, being (N !×N !)!.

The meaning of strictness types is formalized by interpreting each strictness
type S as a subset of Λo. We will need two interpretations: �·�? and �·�!. For a
strictness type S, �S�? denotes all expressions that inhabit type S, including O.
�S�! denotes the set of expressions that diverge when used in a context with type
S. For instance, �1!�? contains all expressions that either evaluate to� or diverge.
�1?�? is the same set. �1!�! is equal to O, whereas �1?�! is empty, since type 1?

used in the latter corresponds to a lazy context. Slightly more complicated is
the following example in which we take (1! + 1?)! as S. Now �S�? contains all
expressions that either diverge or evaluate to inl I or to inlR, with I ∈ �1!�?, R ∈
�1?�?. �S�!, however, contains besides all divergent expressions only expressions
evaluating to inl I, with I ∈ �1!�! = O. The case inlR is impossible since this
would require that R ∈ �1?�! = ∅.

Definition 8. – Let A,B ⊆ Λo.

1 = {M ∈ Λo | M ⇓ �}
A × B = {M ∈ Λo | ∃a ∈ A, b ∈ B : M ⇓ 〈a, b〉}
A + B = {M ∈ Λo | ∃a ∈ A : M ⇓ inl a or ∃b ∈ B : M ⇓ inr b}
A→ B = {M ∈ Λo | ∀a ∈ A : (M a) ∈ B}

– The interpretations �S�? and �S�! are defined by mutual induction in Fig. 2.

The following property (based on finite unfoldings, see Definition 3) provides
an induction scheme for proofs in which fixed point expressions are involved;
e.g., see Theorem 1.
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�σu�? = O ∪ �σ�?

�α�? = ∅
�1�? = 1

�S → T �? = �S�? → �T �? ∩ �S�! → �T �!

�S × T �? = �S�? × �T �?

�S + T �? = �S�? + �T �?

�σu�! = ∅, if u =?

= O ∪ �σ�!, if u =!

�α�! = ∅
�1�! = ∅

�S → T �! = �S�? → �T �!

�S × T �! = �S�! × �T �? ∪ �S�? × �T �!

�S + T �! = �S�! + �T �!

Fig. 2. Semantics of strictness types

Proposition 2. Let T ∈ T, and x ∈ V, Fx ∈ Λx. Then, for all s ∈ {!, ?}

(∀n ∈ N : Fn
x ∈ �T �s) ⇒ μx.Fx ∈ �T �s

The proof of this property in which Proposition 1 plays a crucial role, is quite
complex. In PVS it necessitates approximately 1000 proof steps in addition to
several non-trivial helper lemmas. The complexity is caused by the fact that our
purely syntactical approach requires tedious manipulations of various constructs.
In a formalization on paper this would have been barely feasible.

Both interpretations are closed under beta-equivalence.

Proposition 3. Let M =β N . Then, for all strictness types T , and s ∈ {!, ?}:

M ∈ �T �s ⇔ N ∈ �T �s

4 Strictness Typing

In this section we present a type system for deriving strictness information of
terms and formally prove that this system is sound. Soundness here means that if
a termM can be typed with strictness type S, then indeedM is a member of both
�S�? and �S�!. In essence, strictness typing can be characterized as a backwards
analysis (E.g., see [9]): strictness properties are determined by relating the effect
on demands on the arguments to the effect of demands on the result.

Definition 9. – A basis (or environment) is a finite set of declarations of the
form x : S, where x ∈ V, S ∈ T. For a given basis, all variables are assumed
to be distinct. We will sometimes use the ‘functional notation’ Γ (x) to obtain
the type assigned to x by Γ .

– By Γ ? we denote a lazy basis containing only declarations of the form x : σ?.
– Two bases Γ1, Γ2 are equivalent, denoted as Γ1 ∼ Γ2, if for each x one has

Γ1(x) ∼ Γ2(x).
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S ≤ S′
(var)

Γ ?, x:S′ � x : S
(unit)

Γ ? � � : 1u

Γ1 �M : S
[R]→ R Γ2 � N : S [R] ≤ [S] inf(Γ, Γ1, Γ2)

(app)
Γ �M N : R

Γ, x:S � B : R u ≤ [R]
(abs)

Γ � λx.B : S
u→ R

Γ1 � X : S Γ2 � Y : T u ≤ [S] � [T ] inf(Γ, Γ1, Γ2)
(pair)

Γ � 〈X,Y 〉 : (S × T )u

Γ � P : (S × T )[S] [T ] =?
(fst)

Γ � fstP : S

Γ � P : (S × T )[T ] [S] =?
(snd)

Γ � sndP : T

Γ � L : S u ≤ [S]
(inl)

Γ � inlL : (S + T )u
Γ � R : T u ≤ [T ]

(inr)
Γ � inrR : (S + T )u

Γ1 � I : (S + T )[U ] Γ2 � L : S
[U ]→ U

Γ2 � R : T
[U ]→ U

inf(Γ, Γ1, Γ2)

(case)
Γ � case I of L orR : U

Γ, x: ↑S � B : S
(fix)

Γ � μx.B : S

Fig. 3. Rules for strictness type assignment

– The inf predicate for types extends to (equivalent) bases in a straightforward
manner: Let Γ ∼ Γ1 ∼ Γ2. Then inf(Γ, Γ1, Γ2) if inf(Γ (x), Γ1(x), Γ2(x)) for
all x.

– The lazy variant of a type (notation ↑T ) is defined by:

↑(σu) = (↑σ)?

↑α = α
↑1 = 1

↑(S → T ) = S → T
↑(S × T ) = (↑S)× (↑T )
↑(S + T ) = (↑S) + (↑T )

Note that the removal of strict attributes stops at arrows.

Definition 10. A strictness typing statement is an expression of the form Γ 

M : S, where Γ is a basis. Such a statement is valid if it can be derived by using
the rules in Fig. 3.

We emphasize some significant rules. The rule for variables actually enforces
that each strictness assumption x:σ! in the environment should be ‘consumed’ by
a strict occurrence of x (otherwise, the premise of this rule cannot be valid). The
case-rule is subtle. Remember the evaluation of an expression case I of L orR
causes the evaluation of I first (explaining the attribute [U ] on the corresponding
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α! ≤ α!

(var)
x:α!, y:β? � x : α! ! ≤ [α!]

(abs)
x:α! � λy.x : β? !→ α! ! ≤ [β? !→ α!]

(abs)
� λx.λy.x : α! !→ β? !→ α!

Fig. 4. A derivation for � λx.λy.x : α! !→ β? !→ α!

sum type), followed by the evaluation of either L (applied to the left component
of the result of I) or R (applied to the right component), but not both. So
case I of L orR can only be strict in a variable x if either I is strict in x or
both L and R are strict in x. The latter is accomplished by supplying the type
derivations L and R with the same basis Γ2. To prepare for type inference, the
type assignment system is formulated in a fully syntax directed fashion. I.e.,
non-structural rules, such as contraction, subsumption and weakening (that are
usually defined separately), have been incorporated in the structural rules of the
system.

As an example, a strictness type derivation for the expression λx.λy.x is given
in Fig. 4. More examples can be found in Section 6.

5 Soundness

In this section we demonstrate that our typing system is sound. As previously
stated, plain strictness is formulated solely in terms of undefinedness of a function
argument as a consequence of undefinedness of the function result. However in
our system strictness properties of function arguments can influence each other.
Consider, for example, the function AP = λf.λx.f x. Then strictness of AP in x
depends on the strictness properties of the other argument f . If AP is applied
to a strict function then the result will be strict in x. This is expressed by the
following valid strictness typing for AP1

AP :: (α! → β!)→ α! → β!

At this point it is important to see that Definition 5 is no longer adequate:
whether APF ⊥ ⇑ also depends on F . More specifically, F should be a strict
function, and not just any arbitrary expression as in Definition 5. E.g., if we
take λx.� for F then APF ⊥ ⇓ �.

Definition 11. – An expression environment is a function ρ from V to Λo.
Such an environment can be lifted to Λ in the obvious way. The result of
applying ρ to an expression E is denoted by Eρ.

– Let Γ be a basis. An environment ρ is valid for Γ (notation ρ � Γ ), if
∀(x:S) ∈ Γ : ρ(x) ∈ �S�?.

1 For clarity, we have omitted the strictness attributes on the arrows. A full typing
can be found in Lemma 2.
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– Similarly, ρ satisfies Γ (notation ρ � Γ ) if ∃(x:S) ∈ Γ : ρ(x) ∈ �S�!.

Now the soundness of the type system (with respect to the semantics given
in Definition 8) can be formulated as follows:

Theorem 1.

Γ 
 E : S ⇒ ∀ρ : ρ � Γ ⇒
{

Eρ ∈ �S�? (1)
ρ � Γ ⇒ Eρ ∈ �S�! (2)

Observe that conclusion (2) is essentially a reformulation of Definition 5. The
problem about the strictness dependencies between arguments is solved by al-
lowing only valid environments. Take, for instance, the expression fx being the
body of the AP function in the above example. A possible strictness typing (in
which we have substituted 1 for both α and β) for this expression is:

f :1! !→ 1!, x:1! 
 f x : 1!

Soundness of this typing requires that any environment ρ for fx should be both

valid for and satisfying Γ = f :1! !→ 1!, x:1!. If such a ρ substitutes ⊥ for x it
indeed satisfies Γ , since ⊥ ∈ �1!�!. However, the validity of ρ prohibits λx.�
to be substituted for f , because λx.� is not a member of �1! !→ 1!�?, since
λx.� 
∈ �1!�! → �1!�!; see Definition 8.

6 The PVS Formalization

In this section we discuss the formalization of the strictness typing system and
its soundness proof in PVS.

We will not assume any preliminary knowledge about PVS and, as in the
previous sections, continue to use tool independent notations. The actual for-
malization is straightforward and barely uses PVS specific constructs. Therefore,
it should be relatively easy to convert our PVS specification to other proof as-
sistants like Coq or Isabelle.

Firstly, it must be determined how to represent the variable bindings occur-
ring in abstraction and fixed point expressions. We have chosen the De Bruijn
notation mainly because our previous work uses the same representation and the
system in this paper does not require significant fine-tuning. In the De Bruijn
notation variables are identified by indices : natural numbers indicating the num-
ber of abstractions which must be skipped in order to localize the corresponding
binder. If the variable number exceeds the number of surrounding abstractions,
the variable is considered free.

Definition 12. – The set ΛB of lambda terms with the De Bruijn indices is
defined by the following abstract syntax.

ΛB ::= N | � | λΛB | ΛB ΛB | 〈ΛB, ΛB〉 | fstΛB | sndΛB |
inlΛB | inrΛB | caseΛB ofΛB orΛB | μΛB
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– The predicate closedn(M) checks whether none of the free variables of M
exceeds n. The definition of this predicate is obvious.

With the De Bruijn notation one can avoid alpha-conversion during evalu-
ation. However, the substitution itself is more complicated because one has to
prevent that in M [x← N ] the free variables of a N get captured by the binders
of M . This mandates an adjustment of the free variables of M . Usually the
correction of N is performed by an auxiliary function, whereas M is adjusted
on-the-fly (e.g., see [10] for a formal definition of these operations).

The soundness property is formulated almost in exactly the same way as The-
orem 1. We have proved (1) and (2) in this theorem simultaneously by induction
on the derivation of Γ 
 E : S. The different cases require on average 200
proof steps each, which sums up to approximately 2200 steps all together. The
complete proof files can be downloaded from www.cs.ru.nl/~sjakie/papers/

strictnesstyping/.
One of the advantages of having a full formalization is that one can actually

prove that examples are indeed correct explaining why we have formulated them
as a lemma.

Lemma 2. 1. λx.λy.x : α! !→ β? !→ α!

2. λf.λx.f x : (α! !→ β!)
!→ α! !→ β!

3. μf.λn.casen ofλx.inl�orλx.f (inrx) : N ! !→ N !

4. μf.λx.λy.case xofλz.f (inr�) y orλz.f y (inr�) : N ! !→ N ! !→ N !

The proof of these typing statements can also be found in the PVS files. In
Example 3 and 4, N stands for the type 1+1 which we use to represent natural
numbers. The actual values of these numbers are not relevant: It suffices if we can
distinguish 0 (represented as inl�) from all other numbers (represented as inr�).
Example 3 resembles the factorial function (without the usual multiplication and
subtraction), and Example 4 (showing a recursive function that is strict in both
arguments) is taken from [11].

Conducting the Proof

Automated theorem proving is very time consuming. We estimate that the con-
struction of the entire proof (including the development of the necessary the-
oretic concepts) comprises about six man-months work, maybe even more. On
the other hand, it revealed mistakes which had been made in the previous (first-
order) version of the type system. Moreover, extending the language with higher-
order constructs made the system significantly more complex. For example, the
treatment of function types in Def. 7 showed to be non-intuitive. Various at-
tempts were made preceding the final version. The PVS formalization helped us
by enabling quick verification of modifications in definitions.

Our work can be considered as a contribution in the spirit of [6]. One of the
PoplMark challenges is the treatment of variable binding. Most of the solutions
that have been reported to this challenge are based on de Bruijn indices. Though
[6] argues that this representation introduces too much overhead in formal proofs,
and should therefore be avoided, this is not confirmed by our approach or by

www.cs.ru.nl/~sjakie/papers/
strictnesstyping/
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any of these solutions. The low-level variable representation does not lead to any
significant increase in the complexity of the proofs. With a few simple, and easy–
to–prove auxiliary lemmas, one can effectively hide all implementation details.
The main proof itself is not affected. In fact, the implicit bindings of De Bruijn’s
representation allow environments to be represented as simple lists rather than
lists of pairs.

We believe that, besides obtaining full confidence, one of the main advantages
of possessing a formal proof is the possibility to replay the proof in a tool. For
instance, if one cannot immediately follow the given explanations, in principle
one can fall back on the fully elaborated formal version.

7 Recursive Data Structures

Thus far we have only considered non-recursive data structures. In this section
we will describe an extension of the theory to lists. This extension can serve as
a bases for the treatment of other recursive data types.

Lists are built up from constructors nil (the empty list) and cons. We incorpo-
rate these constructs in our syntax together with a destructor called list leading
to the following extension of Definition 1

Λ ::= · · · | nil | consΛΛ | listΛΛΛ

By L(σ) we denote the (standard) type of lists of σ objects.
The evaluation rules for these construct are straightforward: hnf-evaluation

of list objects stops at the outermost constructor.

(nil)
nil ⇓ nil

(cons)
consH T ⇓ consH T

L ⇓ nil N ⇓ V
(list-N )

listLN C ⇓ V

L ⇓ consH T C H T ⇓ V
(list-C )

listLN C ⇓ V

Besides plain hnf-evaluation, it is useful to distinguish other evaluation forms.
The most common ones are spine evaluation and full evaluation. For instance, the
function length computing the size of the list will enforce the complete evaluation
of the list structure, but leave the elements unaffected. A function sum that sums
all the elements of a list will not only evaluate the spine completely, but also all
of its elements.

The evaluation contexts induced by these functions are again encoded in an
appropriate strictness type. This leads to the following extension of Definition 6:

Π ::= · · · | LA(Σ)

Only part of the types that can be constructed according to this syntax is well-
formed. This is due to the fact that for data structures, strictness ‘propagates
outwards’: in order to evaluate inner components of a data structure, the struc-
ture itself has to be evaluated before these components can be accessed.
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For example, for a list of 1 elements we have 4 different valid strictness vari-
ants: (L?(1?))?, (L?(1?))!, (L!(1?))!, and (L!(1!))!, corresponding to no, hnf, spine
and full evaluation, respectively.

The typing rules are extended according to our intended semantics.

(nil)
Γ ? 
 nil : 1u

Γ1 
 H : S Γ2 
 L : (Lv(S))v u ≤ v v ≤ [S] inf(Γ, Γ1, Γ2)
(cons)

Γ 
 consH L : (Lv(S))u

Γ1 
 L : (Lv(S))[T ]
Γ2 
 N : T

Γ2 
 C : S
[T ]→ (Lv(S))v

[T ]→ T
[T ] ≤ v inf(Γ, Γ1, Γ2)

(list)
Γ 
 listLN C : T

For a soundness proof, all definitions based on either expressions or on types
have to be adjusted in order to deal with list constructs. All of these adjustments
are reasonably straightforward, and can be found in the PVS formalization.
However, the formalization does not yet contain a completely formalized proof;
i.e., the list cases are still missing, mainly due to the increased complexity of the
proof.

Again, we formulate some examples as lemmas which enables us to formally
prove that the typing statements are indeed correct.

Lemma 3. 1. μl.λx.list x (inl�)λh.λt.l t : (L!(α?))!
!→ N !

2. μs.λx.list x (inl�)λh.λt.+ h (s t) : (L!(N !))!
!→ N !

3. ∀u, v, w ∈ A, v ≤ w,w ≤ u : μr.λx.λy.list x y λh.λt.r t (consh y) :

(Lv(αu))v
v→ (Lw(αu))w

v→ (Lw(αu))v

We use the same representation for natural numbers as in Example 2. The
operation + is simply represented by ⊥, because the only relevant aspect of +
is this example us that it is strict in both arguments, and ⊥ can be typed as a
strict binary operation. Example 1 is the length function (without addition), and
Example 2 the sum function. Example 3 is the well-known reverse function, that
transfers each element of the first list argument to the second argument. One will
usually call this function with an empty list as second argument. In that case, all
elements of the first list will appear in reverse order in the final result. By using
quantified attributes, we obtain a polymorphic strictness typing for reverse. In
this typing the difference between the first and the second argument becomes
apparent: Even simple hnf-evaluation of an application of reverse will result
in the complete evaluation of the spine of the first argument. For the second
argument this is not the case. This argument will only be evaluated when the
whole spine of the reverse’s result is needed.

8 Discussion

We compared several existing techniques for strictness analysis by giving a brief
outline of their main ideas.
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In [12,13] a non-standard type inference is introduced using conjunction types.
The main properties of the system are formulated and proved with respect to
a denotational semantics of their language. The difference with our approach is
that the strictness information is restricted to traditional head-normal form eval-
uation only, which, as we argued, hampers modularity. In [14] a typing framework
is presented focusing on algorithmic aspects, by providing a checking algorithm
for a variation of Jensen’s system.

The system described by [11] is most similar to ours. For a language resembling
the core functional language introduced in Section 2, the authors describe both
a strictness and a totality analysis using a non-standard type inference system.
The main difference with our approach is that conjunction types are used. In
our system the strictness properties of all function arguments are captured by a
single strictness type, whereas the system of [11] requires a conjunction of these
properties. The advantage of our approach is that it can be incorporated directly
in a standard Hindley-Milner type inference algorithm.

The system introduced by [15] is based on relevance typing. Similar to our sys-
tem, and the backwards strictness analysis used in the Glasgow Haskell Compiler
[16], the (evaluation) context in which variables are used determines whether
these variables are relevant if such a context is evaluated. In [15] the emphasis
is on exploiting strictness information by defining a transformation replacing
ordinary function applications by a more efficient eager applications.

Strictness analysis by abstract interpretation introduces a non-standard se-
mantics by translating functions into abstract versions over finite domains, no-
tably over finite lattices. The bottom elements of these domains play the role of
generic ‘undefined’ values. Recursive abstract functions are defined by a fixed-
point construction. The main property of this alternative interpretation is to
yield a decidable approximation of the (in general undecidable) strictness prop-
erty, even in the higher-order case. This abstraction inevitably leads to informa-
tion loss. The standard form of abstract interpretation uses the two-point lattice
as ground domain. See [17], [18] and [19] for more information. Due to the com-
plexity of finding fixed points in abstract domains, abstract interpretation is
not very useful for implementing strictness analysis in compilers for functional
languages.

Abstract reduction analyzes evaluation of expressions by mimicking reduction
on sets of concrete values extended with special elements for undefinedness. This
technique approximates ordinary computations closer than for instance abstract
interpretation or strictness typing. Rewriting semantics is adjusted by specify-
ing the behaviour of functions on non-standard elements. Abstract reduction
sequences may not terminate. A special technique called reduction path analysis
is used to cut off these sequences in a way that keeps most of the strictness
information intact; see [20], [21]. The main disadvantage of this approach is the
lack of modularity; it requires the implementations of the involved functions to
perform the analyses effectively.

Strictness typing is a purely syntactic (‘intentional’) way of deriving strict-
ness information. The resulting strictness information merely depends on the
structure of the expressions, particularly on the occurrences of case clauses, and
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(as in the case of abstract interpretation) not on the computational behaviour
on concrete values. The advantage of strictness typing over abstract interpreta-
tion is that the first method can be combined with standard typing. For more
information, the reader is referred to [22].

9 Conclusions and Future Work

In this paper we presented a strictness typing system which is fully higher-order.
Moreover, it enables to specify arbitrary evaluation contexts which is essential
for supporting modularity. Like many other meta-theoretical expositions we used
De Bruijn indices to represent term variables. Despite the objections that have
been raised against this low-level representation (e.g., See [6]), we encountered
no real issues that significantly hampered our proofs.

We have demonstrated that proof assistants are not only useful in formalizing
existing proofs but also to develop new language theoretic concepts. One major
concern, however, remains the fact that the construction of a formalized proof
remains very time consuming. Compared to a pen and paper version the differ-
ence in development time is probably (much) more than a factor of three. It is
difficult to determine whether this is worth the investment.

Furthermore, we have developed a prototype implementation of higher-order
strictness typing. This algorithm can be used to show that type assignment
has the principal typing property: if an expression E is typable, there exists a
principal typing for E, i.e., a ’schematic’ type of which all other typings can be
obtained via instantiation.

Future work. The formal proof does not yet cover soundness of the complete sys-
tem: the proof work on recursive data types is not fully completed yet. The proof
formalization of the property that principal types can be computed effectively,
is also part of future work.
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Abstract. We present a transformation based denotational semantics
for a call-by-value language with first-class, hierarchical and recursive
modules. We use the notion of modules as proposed in [1]. They merge
dynamic data structures with aspects of modularisation and name bind-
ing in functional programming languages. Modules are first-class values
which capture recursive definitions, lexical scoping, hierarchical structur-
ing of programs and dynamically typed data structures in a single con-
struction. We define a call-by-value language ModLang and explain what
problems occur in combining nested, recursive and first-class modules.
We then show how to solve these problems by defining a dependency
analysis to determine the evaluation order, enabling a transformation
into an intermediate representation. Finally, we present a denotational
call-by-value semantics.

1 Introduction

Modularisation in an essential tool for managing complexity in the design of
large scale software. To be effective, module systems must organise code into
fine grained hierarchies without impeding reusability. The competing nature of
these goals has given rise to several approaches for designing module systems.
With parametric modules, we obtain adaptable code that is easy to reuse at dif-
ferent parts of the architecture. First-class modules [2,3,4], i.e. modules that can
be arguments and results of functions, allow parametric modules to be defined
as normal functions, so no special construct is needed. Furthermore, first-class
modules enable runtime reconfiguration of the architecture. With nested modules
[5] a fine grained module hierarchy is possible. Disallowing mutually recursive
modules [6,7,8] often destroys the natural structure of a program.

Recent approaches [9,8,10] have attempted to combine all three features in
a call-by-value language, but none of them have achieved full support. In this
paper we describe a way to give a call-by-value semantics to a language with
higher-order functions and nested, first-class, mutually recursive modules.

We use the grouping concept proposed in [1] as modules and call the pro-
posed construct module. Pepper introduces the concept of modules as a unified
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construct for bindings and data structures. Modules are sets of definitions. As
first-class values, they can also be used as records. They distinguish from records
in that all definitions within a module can see each other. In [1] modules are
treated coalgebraically and regarded as objects implicitly defined by their
observers.

In contrast to this semantic approach, we focus here on an efficient implemen-
tation by defining formal semantics and analyses for modules. For this purpose
we define a small functional call-by-value language ModLang, which is similar
to an untyped λ-calculus extended by modules.

As modules are first-class values, have binding definitions and are allowed
to be mutually recursive, it is not possible to give a straightforward semantics.
In this paper we describe a way to give a transformation-based call-by-value
semantics to modules.

The paper starts with a short introduction of the module concept. In Sec. 3 we
describe why it is not possible to give a straightforward semantics and introduce
our solution. In a call-by-value semantics, an evaluation order is needed, as every
variable must be bound to a value before it is used. There are two possibilities
to obtain this order. Either the programmer has to state all definitions in depen-
dency order (e.g. ML), or the order is determined via dependency analysis (e.g.
Opal or Modula-3 [11]). As modules are sets of definitions, no order is given.
The dependency analysis for our language is described by an example in Sec. 4.
In Sec. 5 the result of the dependency analysis is used to transform the input
program into an intermediate representation with explicit dependency order. In
Sec. 6 we present a denotational semantics for our intermediate representation.
Sec. 7 discusses related work and Sec. 8 summarises our results and gives an
overview of current and future work.

2 The ModLang Language

ModLang is a functional language with modules. We describe the language Mod-
Lang by some examples. The syntax is given in Sec. 4.

2.1 Introductory Example: Lists

Abstractions, applications and conditionals have their usual meaning. We focus
on modules and selections.

Following [1] we define a module as a set of named definitions. Listing 1.1 shows
the well-known example of lists. The module List contains five definitions nil,
cons, head, tail and enum.1 In this example the module represents a module
encapsulating definitions. Since the order of the definitions is irrelevant, it can
be seen as a set — hence the surrounding curly braces.
1 A usable list implementation would require the discriminators isNil and isCons.

They can be implemented using the module discriminator DEFINES, which checks if
a given module defines exactly the given variables. As DEFINES is a dynamic check,
we do not consider it in this paper.



Call-by-Value Semantics for Mutually Recursive First-Class Modules 103

1 List = {
2 nil = {}
3 cons = λx.λxs. { hd=x tl=xs }
4 head = λxs. xs.hd
5 tail = λxs. xs.tl
6 enum = λn. { enum = λi.
7 IF i==n THEN nil ELSE cons i (enum (i+1))
8 }.enum 0
9 }

Listing 1.1. Lists in ModLang

Both constructors, nil and cons, implement the list elements with modules as
well — nil is the empty module and cons returns a module containing the head
hd and the rest tl of the list. In this case modules are used as data structures,
which can be built up and changed at runtime.

The function head (tail) selects the first element (the rest) of the given
list via the selection operator “.”. In this manner these functions abstract the
selectors .hd and .tl.

The function enum forms a list of numbers between 0 and n. This definition
illustrates several aspects of our language design:

– All variables of the outer module can be used on the right hand side of a
definition. In this case these are nil and cons.

– Within the expression an anonymous module containing the definition enum
is defined. We call a module anonymous if it is not the top level node of the
syntax tree of a right-hand side of a definition.

– In the definition of enum of the anonymous module the variable enum is used.
Because of the lexical scoping, the innermost definition is addressed. Thus
it is enum of the anonymous module and not List.enum.

– On the right hand side of List.enum the selector .enum is called. The anony-
mous module and its selection are used as a local recursive “let-in” or “where”.

2.2 Functional-Object-Oriented Programming

Our second example shows, how we can use modules to program in an object
oriented manner. Listing 1.2 shows an eval-apply-interpreter with environments
for the untyped λ-calculus. A term is either a variable Var, an abstraction Abs or
an application App. These term constructors are quite similar to the “objects-as-
closures” implementation [12], but here they are evaluated to modules instead of
closures. Those modules contain an evaluation function eval, which uses an envi-
ronment to compute the value of the term. In doing so, the sub-terms’ evaluation
functions may also be used.

During the evaluation of a variable, its value is determined from the envi-
ronment Γ (line 2). To evaluate an abstraction, a closure (i.e. module) with the
abstract variable var, the function body body and the current environment env
must be built (line 3).
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1 Term = {
2 Var = λx. { eval = λΓ. Γ.lookup x }
3 Abs = λx.λt. { eval = λΓ. { var=x body=t env=Γ } }
4 App = λt1.λt2. { eval = λΓ. apply (t1.eval Γ) (t2.eval Γ)
5 apply = λf.λa.
6 f.body.eval (f.env.add f.var a) }
7 }

Listing 1.2. An eval-apply-interpreter in a functional-objekt-oriented style

The implementation of the environment is shown in Listing 1.3. An envi-
ronment is a list of records {var=x val=v} using the list implementation in
Listing 1.1. An environment has the functions add to add a new binding and
lookup to determine the value of a variable. The constructor Env creates an
environment containing all bindings of bdgs.

In contrast to terms new environments must be created during evaluation. In
add a new environment is created with Env which contains all previous bindings
as well as the new binding Bdg x v

1 Env = λbdgs. {
2 Bdg = λx.λv. { var=x val=v }
3 add = λx.λv. Env (List.cons (Bdg x v) bdgs)
4 lookup = ... // searching in list
5 }

Listing 1.3. Environment for eval-apply-interpreter

As demonstrated by this example:

– Objects can be realised as modules. Methods are definitions within a module.
– Constructors of object oriented programming languages can be seen as func-

tions returning modules.
– Variables, abstracted by λ within a constructor play the role of fields. It

is also possible to define them in definitions, making them accessible from
outside by selection.

– The binding rules for modules enable methods to have access to the methods
and fields of its enclosing object. A special reference like this in Java or self
in Smalltalk does not exist.

2.3 Mutually Recursive Modules

The list example has already shown that definitions may be recursive. Mutually
recursive definitions are allowed as well, even across module borders. An example
for mutually recursive modules is given in Listing 1.4. This program will be used
as a running example throughout the rest of this paper. In this example the two
functions E.even and O.odd are defined. Jointly they decide whether a given
number is even or not. O.odd uses E.even and vice versa. Moreover these two
functions are used by E.is2even and O.is2odd.
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1 { E = { even = λn. IF n==0 THEN true ELSE O.odd (n-1)
2 is2even = even val
3 val = 2 }
4 O = { odd = λn. IF n==0 THEN false ELSE E.even (n-1)
5 is2odd = odd 2 }
6 }

Listing 1.4. Mutually recursive modules

3 Towards an Evaluation

In a call-by-name semantics no evaluation order is needed, as we can evaluate
all definitions on demand. Therefore, a call-by-name semantics to ModLang can
be readily given. Although it is a matter of taste which semantics one prefers,
call-by-value languages are easier to combine with parallel programming and
side effects. For these reasons, it is desirable to give a call-by-value semantics to
ModLang.

As previously mentioned, implementing call-by-value semantics for ModLang
requires a dependency analysis. As we combine all three features of our modules
it is not easy to find the evaluation order. We describe the difficulties involved
by starting with only nested modules and then adding mutual recursion. Finally
we make our modules first-class values.

3.1 Nested Modules

We start with nested modules, which enable building up a hierarchy of modules.
Modules are only allowed as top-level expression or as the right hand side of a
definition. Definitions are not allowed to be mutually recursive. It follows that
within every module, an order for all definitions can be found.

To obtain the evaluation order for the example in Listing 1.5 it is obvious that
we first have to evaluate the complete module B with both definitions. Then the
definition g can be evaluated, followed by the module A.

1 {A = {x = B.x + y y = g}
2 g = B.x + B.y
3 B = {x = 1 y = 3}
4 }

Listing 1.5. Example for evaluation order

For programs without first-class and mutually recursive modules, the order
could be determined by regarding only the free variables of all right hand sides
and computing a normal dependency graph. The dependency graph for this
example is given in Fig. 1(a).

As will be shown in the next section, this approach is insufficient when mu-
tually recursive modules are allowed.
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in Listing 1.5.
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Fig. 1. Dependency graphs using free variables

3.2 Mutually Recursive Modules

We now allow nested modules to be recursive. As before, they are still not allowed
to be defined within an expression. As recursion in a call-by-value semantics
only terminates if all definitions are functions we forbid cycles where at least
one definition is not a function, as typical in most call-by-value languages. Even
with this constraint it is still not easy to find the evaluation order.

To understand the problem with mutually recursive modules, we will again
consider the even-odd example in Listing 1.4.

In a call-by-value semantics recursion is only possible for λ-abstraction, since
those definitions evaluate to closures. Therefore, it is not possible to build up
a closure for the entire module. This would only be possible if the auxiliary
functions is2even and is2odd were not present. We have to find an order for
all definitions within the two modules E and O. For the given example, the call-
by-value semantics requires that even and odd must be evaluated before is2odd
and is2even. It is not possible to find this order by only regarding the free
variables. The dependency graph for this example with free variables is shown in
Fig. 1(b). There is a cycle between E and O, which is forbidden as both definitions
are modules and not functions. This contradicts the goal of allowing mutually
recursive modules.

To calculate the correct evaluation order we look at dependencies across mod-
ule borders and also consider selection chains (see definition in Sec. 4.2). In this
example, a possible evaluation order is: E.val, E.even, O.odd, E.is2even, E,
O.is2odd, O.

By using the complete selection chain for the dependency, the hierarchy is
broken up and the mutually recursive modules are handled simultaneously.

In [1] a flattening mechanism is proposed to find an evaluation order. Here the
hierarchy is broken up and all definitions occur at the same level. The result of the
flattening for example in Listing 1.4 is shown in Listing 1.6. Instead of just one
identifier, the name on the left-hand-side of all definitions is the complete path
with dot notation. Furthermore, all variables must be replaced by the complete
name within the module, e.g even in the definition is2even must be replaced
by E.even. Renaming is necessary, to ensure unique names after flattening as it
could be possible to have the same definition name in two modules.
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1 E.even = λn. IF n==0 THEN true ELSE O.odd (n-1)
2 E.is2even = E.even val
3 E.val = 2
4 O. odd = λn. IF n==0 THEN false ELSE E.even (n-1)
5 O.is2odd = O.odd 2

Listing 1.6. Example for flattening

After flattening, we can build up a dependency graph. But instead of just
using the free variables, we now use the complete selection chain.

Flattening is only possible for mutually recursive nested modules. The tech-
nique is not always applicable to first-class values, as shown by the example in
the next section.

3.3 An Undecidable Problem

Up to now modules were only allowed as top level expressions or as the right-
hand-side of a definition. If we allow modules to be first-class values, i.e. they are
allowed at any position in an expression, then flattening is not possible anymore.

In the previous section we regarded the complete selection chain for the depen-
dencies. This mechanism is quite similar to path resolution, which is undecidable
as proven in [9]. We will just give an informal explanation here.

In Listing 1.7 an artificial example is given. For flattening the expression
representing the complete selection chain s.a.b must be found. In this example
this name only exists if the input fulfils some predicate isValid. This is generally
not decidable.
1 λinput. {
2 s = IF isValid input THEN {a = 1}
3 ELSE {a = {b = 1}}
4 output = s.a.b
5 }

Listing 1.7. A problematic example (Using List of Listing 1.1)

In this case it is sufficient to recognise that output depends on s, so the
evaluation order is: s, output. In the case that s.a has no selector b, a runtime
error will occur, which is acceptable and common for failed selection.

Consequentially, there are some cases where we have to regard the selection
chain and some cases where parts of the chain should not be regarded. For every
selection chain we regard only the “static” part and ignore the “dynamic” part.
The static part of a selection chain is the variable and all selectors representing a
path within the current module hierarchy. In this example it is just the lexically
visible variable s, .a.b is the dynamic part, as these names only occur at runtime.
The proper way to calculate the dependencies is described in Sec. 4.

3.4 Solution

As previously mentioned, we start with a special dependency analysis to de-
termine the evaluation order. The result of the dependency analysis is used to



108 J. Rohloff and F. Lorenzen

E ::= M | T
T ::= [λ x . E ]� | [E E ]� | x � | [E . x ]�

M ::= { D* }�

D ::= x = M | x = T

Fig. 2. Syntax of labelled expressions

transform the whole input program into an intermediate representation with ex-
plicit ordering. This intermediate representation allows a simpler definition of
the semantics.

4 Dependency Analysis

In this section we illustrate our special dependency analysis by means of the
running example. We begin with the following definitions.

4.1 Labelled Expressions

The syntax of ModLang is given in Fig. 2. We distinguishes between modules
and other expressions by splitting E into modules M and terms T and we omit
conditionals and constants since they are not important for the rest of the paper.
Furthermore we annotate all expressions M ∪ T with a unique label of the set �
and use brackets to clarify which part of an expression is labelled. The inverse of
the labelling is the mapping EXP : � ↪→ M ∪ T . We use the labelling to attach
additional information to expressions.

4.2 Names

Selector / Name. A selector is an identifier with a prefix dot. A selector chain
is a sequence of selectors.

A name is a variable (identifier without a prefix dot) followed by a (possibly
empty) selector chain. The set of all names is denoted by N .

Free and Available Names. Every expression E of a program is mapped to
two sets using the labels �:

FN : � ↪→ PN set of free names
AVM : � ↪→ Px set of module-bound available variables

Free names extend the λ-calculus concept of free variables to names. Names
are free iff the leading variable is free. The function F of Fig. 3 maps every
expression to its free names.

Calculation of free variables and free names differs only in equation (∗) in
Fig. 3. Here, the whole name x1. · · · .xm is inserted instead of the variable x1.
The mapping FN is the composition FN = F ◦ EXP .
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F : M ∪ T → PN

F�λx.E� = F�E�� {x}
F�E1 E2� = F�E1� ∪ F�E2�
F�x1. · · · .xm� = {x1. · · · .xm} (∗)
F�E.x� = F�E�
F�x� = {x}
F�{xi =Ei

i∈1..m }� =
{
N | N = y1. · · · .yp ∧N ∈ ⋃

i∈1..m

F�Ei� ∧ y1 /∈ {xi
i∈1..m}

}

Fig. 3. Function calculating free names

Aα : α→ Px→ (� ↪→ Px) for α ∈ {E, T,M,D}
AE�T �Γ = AT �T �Γ
AE�M�Γ = AM �M�∅ (†)
AT �[λx.E]��Γ = {� �→ Γ} ∪ (AE�E�Γ \ {x})
AT �[E1 E2]

��Γ = {� �→ Γ} ∪ AE�E1�Γ ∪ AE�E2�Γ

AT �[E.x]��Γ = {� �→ Γ} ∪ AE�E�Γ

AM �{Di
i∈1..m }��Γ = {� �→ Γ} ∪

( ⋃
i∈1..m

AD�Di�(Γ ∪ {xi
i∈1..m})

)
where Di = xi =Ti or Di = xi =Mi

AD�x =T �Γ = AT �T �Γ
AD�x =M�Γ = AM �M�Γ (‡)

Fig. 4. Calculation of module-bound available variables

Available variables of an expression T are variables introduced by the outer
context of T . We are especially interested in variables introduced by a so called
uninterrupted module hierarchy. The syntax tree of an uninterrupted module
hierarchy only contains the non-terminals M and D of Fig. 2. This set of variables
is called module-bound available variables. It is stored in the mapping AVM which
is calculated by the family of functions AE , AT , AM , AD of Fig. 4 (one for each
nonterminal in the grammar of Fig. 2).

The second argument of function AE is the set of module-bound available vari-
ables of the outer context of an expression E. The mapping AVM of a program
E is defined as AVM = AE�E�∅, since the outer context is empty.

In equation (†) the set of module-bound available variables is cleared because
at that point a new hierarchy starts. In contrast, Γ in equation (‡) is not modi-
fied. The possibility to define the function Aα in this simple form was one of the
reasons to distinguish between modules and other expressions in the syntax.

4.3 Analysis

In Sec. 5, expressions E will be transformed into a new intermediate form with
an explicit evaluation order. This transformation needs the dependency order of
all expressions. In this section, we will describe the calculation of this ordering
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1

〈E, 2〉

〈E.val, 6〉 〈E.is2even, 5〉 〈E.even, 4〉

〈O, 3〉

〈O.odd, 7〉 〈O.is2odd, 8〉

Fig. 5. Module tree (without dashed edges) and dependency graph for the example in
Listing 1.4

Index FN AVM UNM

4 O.odd E, O, even, is2even, val O.odd
5 even,val E, O, even, is2even, val even,val
6 E, O, even, is2even, val
7 E.even E, O, odd, is2odd E.even
8 odd E, O, odd, is2odd odd

Fig. 6. Mapping label to module-bound used names

with the help of the running example. The complete function definitions can be
found in [13].

The evaluation order has to be calculated for every uninterrupted module
hierarchy. The analysis is split into the following three phases:

1. Build module tree
2. Calculate the dependency edges
3. Calculate the strongly connected components (e.g. Sharir’s algorithm [14])

We use our earlier example of recursive modules (see Listing 1.4) to illustrate
the analysis.

At the beginning a module tree for this uninterrupted module hierarchy is
built. The tree is shown in Fig. 5. Every node represents a definition. The left-
hand side is represented by the complete name within this module-hierarchy and
the right-hand side by its label. The root of each module tree is a special node.
It has no name, as the module is anonymous. The label is that of the outermost
module; in our running example it is 1. The children of a node are the definitions
of its associated module.

In phase two, all dependency edges have to be calculated. We have to consider
all leaves. In our example, these are all nodes with labels 4 – 8. First, the set of all
free names, where the variable is in the set of module-bound available variables
must be calculated. This set is called module-bound used names (UNM ). In Fig. 6
all three sets are calculated for each label. In this example, the set of module-
bound used names is identical to the set of free names. This is true in all cases,
as names from the outer context may be used.

For every name in the set UNM , the representing node has to be found.
The tree is searched upwards from the current node to find the variable that
corresponds to the name. For example, we consider the node with label 4 and
the module-bound used name O.odd.
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The parent node has no child with the definition O so we must look at the next
parent. That one has such a child — the node with label 3. Starting with this
node, the selector chain is considered. A suitable child must be found for every
selector in the chain. In this case, the next selector is .odd and the suitable child
is node 6. As there are no further selectors, node 6 is the desired node. Therefore,
a dependency edge is inserted from 4 to 6. If there is no suitable child, there are
two possibilities:

– The current node represents a module: this is an error, because the selector
will never exist.

– The current node represents another expression: this means the current node
is the one we have been searching for (e.g. this is the case for the example
in Sec. 3.32).

As all dependency edges are calculated for the module tree the recognised
static part is equal to the path in the tree.

Additional edges are added from the start node x to all ancestors of the found
node y, except for nodes which are also ancestors of x. In this example, an edge
from 4 to 3 must be added. These additional edges are necessary to properly
handle recursive modules, in this case of E and O. The complete dependency
graph is illustrated in Fig. 5.

Sharir’s algorithm [14] is used to calculate the strongly connected components
(scc) in dependency order for this graph. The result is a list of the sets of nodes.
As the top-level module is always the last component in the scc list and is never
recursive, we can ignore this component. In our example the nodes 2–8, except
6, are in one scc. The result is the following list:

{〈E.val, 6〉},
{〈E, 2〉 , 〈O, 3〉 , 〈E.even, 4〉 , 〈E.is2even, 5〉 , 〈O.odd, 7〉 , 〈O.is2odd, 8〉}

The result of the dependency analysis is used in the transformation described
in the next Sec. 5.

5 Transformation

In this section we describe the transformation based on the dependency order
of Sec. 4.3. Every abstract syntax tree (Fig. 2) is transformed into a tree with
explicit dependency order (Fig. 7).

In this syntax, modules are represented by a sequence Seq of definitions in
dependency order. Mutually recursive modules are combined in one Seq and
all their definitions are children of this node. Every definition is either recur-
sive (RecDef) or non-recursive (Def) or a module (Seq). All expressions T are
represented by S.

2 The module tree for the outer module does not contain a and therefore the de-
pendency edge for the free name s.a.b is the edge from output to s and so the
dependency analysis gives the order s, output.
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A ::= C | S
S ::= λ x . A | x | A . x | ...
C ::= Def N S | RecDef (N S)+ | Seq C*

Fig. 7. Abstract syntax with explicit dependency order

Only the transformation of modules is non-trivial. First, the strongly con-
nected components have to be calculated for the whole module as described
in the previous section. The result is used to transform the complete module
hierarchy into the syntax of Fig. 7. For lack of space we omit the concrete trans-
formation function, which can be found in [13].

The result of the transformation for the running example is given in List-
ing 1.8. The top level group is represented with the outer Seq, the mutually
recursive modules E and O are combined in the inner Seq. In the inner Seq all
definitions of both modules are given in dependency order.

1 Seq (Seq (Def E.val, 2)
2 (RecDef (E.even, λn. IF n==0 THEN true ELSE O.odd (n-1))
3 (O.odd, λn. IF n==0 THEN false ELSE E.even (n-1)))
4 (Def E.is2even, even val)
5 (Def O.is2odd, odd 2))

Listing 1.8. Transformed even-odd example.

During the transformation the definitions for mutual recursive modules are
ordered and so mutual recursion is allowed as long as all mutual recursive defi-
nitions are functions (see Sec. 3.2).

We will give a denotational semantics for the result of this transformation in
the next section.

6 Denotational Semantics

The result of the transformation is mapped to an interpretation by the evalu-
ation function E . We use the established techniques of denotational semantics
[15,16,17] without going into detail.

6.1 Semantic Domain and Auxiliary Functions

We map every expression A to a value V from the following semantic domains:
Values: V = N+ S+ B+ H+ F
Modules: H = x ↪→ V Functions: F = V → V

The set of all values consists of numbers N, strings S, booleans B, module
values H and function values F. Module values H are partial functions with finite
domain, mapping variables to values. Although the module value can be seen as
an evaluation context that maps free variables of an expression to a value, we
use a special evaluation context Γ in order to avoid confusion.
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E : A→ Γ → H→ V

E�Def N S�Γ H = N �⇒ (E�S�(Γ � (H|N )) ∅)
E�RecDef (Ni Si)

i∈1..n
�Γ H = v1 + · · ·+ vn

where Φ 〈Fi〉 i∈1..n
= 〈E�Si�(Γ � (H′|Ni)) ∅〉 i∈1..n

where v′i = Ni �⇒ Fi

H′ = H+ v′1 + · · ·+ v′n〈
Fi

i∈1..m
〉
= FIXΦ

vi = Ni �⇒ Fi

E�Seq Ci
i∈1..n

�Γ H = v1 + · · ·+ vn
where vi = E�Ci�Γ (Hi−1 + vi−1)

H0 = H

E�E.x�Γ H =

{
v, if x � v ∈ (E [E]Γ H)

ERROR, otherwise

. . .

Fig. 8. Evaluation function

The environment Γ maps all free variables to a value. The operator � com-
bines two environments Γ1 and Γ2 where the right mapping overrides definitions
of the left. For syntactical distinction between the mapping within a module
value and the environment, the environment mapping uses �→ and the module
value �. Furthermore, we define three auxiliary functions for module values:

– The operation �⇒ constructs a module value for a given name and value.

x1. · · · .xn �⇒ v =

{
x1 � (x2. · · · .xn �⇒ v), if n > 1

x1 � v, otherwise

– The operator + combines two module values.
H1 + H2 = {x � (v1 + v2) | x � v1 ∈ H1 ∧ x � v2 ∈ H2}

∪{x � v1 | x � v1 ∈ H1 ∧ x � v2 
∈ H2}
∪{x � v2 | x � v2 ∈ H2 ∧ x � v1 
∈ H1}

– The projection | creates the environment Γ for the given Name.

H|x1.···.xn =

⎧⎪⎨⎪⎩
Γ ′ � v|x2.···.xn , if x1 � v ∈ H

Γ ′ if n ≥ 1

∅, otherwise
where Γ ′ = {x �→ v | x � v ∈ H}

6.2 Evaluation Function

Figure 8 shows the evaluation function for modules and definitions. The eval-
uation function has three arguments: the expression to evaluate, a normal en-
vironment mapping variables to values and a module value H representing the
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current module hierarchy. All definitions are evaluated to a module value rep-
resenting the path within the current module hierarchy. The right-hand side of
each definition is evaluated within a fresh (empty) hierarchy and an environment
where the current scope is visible. Therefore the current environment is enriched
by the projection of the current hierarchy into the scope of the definition. The
projection adds all definitions of the current hierarchy that are visible for this
definition. Recursive definitions are evaluated, as usual, via a fixpoint operator.

Modules are evaluated to a module value containing all inner definitions. The
definitions are evaluated in evaluation order, i.e. in the order of the given list.
The values of the children are added to the hierarchy value and the next child
is evaluated. The result is the combination of all child values.

The result of a selection E.x is either the value v, if x maps to v in the result
of the evaluation of E or it is an error. There are two possible errors: the value
of E is not a module or it does not contain an x.

The rest of the evaluation function is omitted as it is the usual definition with
an environment and the hierarchy value is ignored.

7 Related Work

There are various approaches for flexible modularisation in statically and dy-
namically typed functional languages. We focus here on those combining nested
mutually recursive modules and some kind of abstraction for modules — either
special functors or first-class modules.

In [2] a module system for Haskell is proposed, where records and modules
are joined in one concept. These record-modules are, as in our approach, first-
class values with dot notation. As Haskell is typed, these records are typed as
well. The type of every record must be given and provides information about all
defined names of the module. Allowed selections are detectable by type infer-
ence for every expression. As Haskell is lazy it is not necessary to calculate the
dependency order.

In [10] a calculus is proposed for first-class modules that are allowed to be
mutually recursive. Their approach unifies classes and objects, so this construct
equates to our modules. In contrast, an undecidable type system is proposed and
no explicit semantics is given.

SML provides a special module language. The flexibility of ML modules is
given by module functions. Using these functions, one can create new modules
and change modules. Mutually recursive modules are not natively supported,
but some extensions do allow it.

One of the first approaches for recursive modules in ML was mixin modules
[18]. Mixins are, as all ML modules, not first-class values. The dependencies
to other modules must be declared within the module. Missing definitions are
assigned by gluing modules over the function sum. This approach differs from
ours, as all dependencies must be given and so the dependency order is explicit.

In [19] Owens and Flatt describe the concept of “units”. Units are first-class
nested modules and it is possible to define recursive units by a compound similar
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to mixins. When two or more mutual recursive units are combined a new unit is
created containing all definitions of the combined units in the given order and in
this order the units are evaluated. This suits well for mutual recursive functions
spread over module borders, but it does not allow all kinds of mutual recursive
modules. For instance, our even-odd example is not possible, since both modules
contain a definition that is not a function. In our approach these inner definitions
are sorted for a proper evaluation during the transformation.

In [8] Russo extends Mini-SML by recursive modules. As for all ML-languages,
the evaluation order must be given by the programmer. All forward referenced
structures must be introduced at the beginning of the recursive structure. During
evaluation, those forward references are assumed to be undefined. After evalua-
tion, they are updated in the heap. In this approach an exception is raised if the
forward reference is used. Therefore, all occurrences of forward references must
be under abstraction. Our running example is not possible in this approach. Al-
though it is type correct, the evaluation would raise an exception, as the tests
is2even and is2odd are not abstractions.

Garrigue and Nakata study in [7] applicative modules with polymorphic func-
tors and recursion based on paths. They use path resolution to find and handle
recursion. As they have proven in [9], path resolution is not decidable for flexible
systems such as ours.

In his PhD thesis [4], Claus Reinke developed a module system for functional
call-by-value languages. His modules are called frames and are quite similar to
our modules. In particular, they are dynamically typed first-class values. Frames
may contain a set of definitions and these definitions may be mutually recursive.
Recursion over frame boundaries is not allowed and all names of other frames
must be explicitly imported. These imports give the evaluation order for frames.
Mutually recursive modules can only be implemented via functions where the
relevant modules are parameters.

8 Conclusion and Future Work

The introduced concept of modules is a very flexible, expressive and homogeneous
mechanism for dynamic data structures, bindings and modularisation. Using
modules one can define hierarchical, mutually recursive first-class modules. Using
a special dependency analysis a transformation based call-by-value semantics is
given.

Finally, we have already extended the introduced language ModLang by mod-
ule morphisms. They allow modules to not only be created at runtime, but also
to be extended or restricted. This improves the flexibility and reuseability of
modules. Furthermore, we have a mechanism for imports based on a control flow
analysis and the ability to control visibility when using imports and exports.

At the moment, we are working on a translation into an untyped functional
language with “let”, “letrec” and dynamic records. In addition, we are develop-
ing a concept for separate compilation. Furthermore, we will study correctness
properties of our algorithms.
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Abstract. Pure, lazy functional languages like Haskell provide a sound
basis for formal reasoning about programs in an equational style. In prac-
tice, however, equational reasoning about correctness proofs is underuti-
lized. In the context of Haskell, we suggest that part of the reason for
this is the lack of accessible tools for machine-checked equational reason-
ing. This paper outlines the design of MProver, a proof checker which
fills just that niche. MProver features first-class support for reasoning
about potentially undefined computations (particularly important in a
lazy setting), and an extended notion of Haskell-like type classes, en-
abling a highly modular style of program verification that closely follows
familiar functional programming idioms.

1 Introduction

The grand promise of pure functional languages is a mathematically rigorous
style of programming—a style in which the meaning of a program is defined
precisely and compositionally, and program properties may be reasoned about
statically according to intuitive yet precise laws. The use of a lazy or non-strict
semantics, as exemplified by Haskell, enables a wide array of proof techniques
based on the simple unifying principle of equational reasoning: if it can be shown
that subterm t in a program always evaluates to the same thing as t′, we may
subsitute t with t′ without fear of changing the program’s meaning in subtle
ways.

The strong, static type system of Haskell is a highly successful example of
“lightweight formal methods”, capable of detecting and preventing many kinds
of programming errors. However, it does not have the power to express, let
alone enforce, many useful properties that can be proved via external equational
reasoning. Yet there is a gap when it comes to tools: while the Haskell type
checker automatically decides whether a program is well typed, few tools in
widespread use support automatic checking of equational reasoning proofs. We
believe that this lack is a serious obstacle to broader adoption of equational
reasoning, and that developing such a tool would make equational reasoning
accessible to a wider audience.

� Supported by the US Department of Education under grant number P200A100053.

H.-W. Loidl and R. Peña (Eds.): TFP 2012, LNCS 7829, pp. 117–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



118 A. Procter, W.L. Harrison, and A. Stump

This paper describes the design of a new system called MProver for proving
equational properties of programs in a pure, lazy, functional language. Our main
motivation in developing MProver is to support machine-checked equational rea-
soning proofs about programs using “pure” monads (i.e. monads other than IO)
– hence the M in MProver. The system is, however, useful for all kinds of func-
tional programming idioms; it is not limited, nor even specifically tailored, to
monadic programs.

In comparing MProver to related systems such as Coq [1], Agda [27], and
Sparkle [2], three design decisions stand out:

Type Classes Are Extended with Proof Obligations. Haskell’s type class
system enables programs to be written in terms of signatures, rather than partic-
uar type structures. Perhaps the most common example is that of monads, which
can be used to model a wide variety of “notions of computation”, such as I/O,
mutable state, and nondeterminism. Programs written to target the Monad type
class can then be reused in any computational setting, and new computational
settings may be added to the Monad class as long as operations for sequencing
(bind) and for injection of effect-free computations (return) are defined.

In general, a type class is associated not just with a set of type signatures,
but also with an implicit specification or contract governing how the operations
are supposed to behave; for example, Monad instances are, very loosely stated,
supposed to have the properties that sequential composition of computations
is associative and that return is a left- and right-unit with respect to sequen-
tial composition. Haskell’s type system does not check these properties; indeed,
it cannot even express them directly. MProver makes the contract explicit; it
augments the Monad class by adding proof obligations for the monad laws, as
pictured in Figure 1. This approach allows not just programs, but also proofs,
to be parameterized over all monadic notions of computation, enabling a mod-
ular style of proving that closely parallels the familiar vocabulary of functional
programming idioms.

“Bottom” as a First-Class Citizen. In a lazy language, undefinedness is an
ever-present concern, in that variables are not necessarily bound to well-defined
values. For this reason, MProver, like Sparkle, treats the undefined value (that
is, the value of diverging or erroring computations) as a “first-class citizen.” For
example, proofs by case analysis must consider as one case the possibility that
the expression being analyzed is undefined. By the same token, properties like
“f is strict in its third argument” can be expressed directly in the logic.

More General Notion of Equality for Potentially Infinite Structures.
Systems like Coq have a rather restrictive notion of equality for coinductive
types. Equality in Coq is intensional: that is, two expressions of the same type
are equal if and only if they evaluate to the same normal form. Coq will generally
refuse to β-reduce applications of functions producing a coinductive type, since
this may result in nontermination and thus compromise logical soundness. Thus
when working with coinductive types, one generally must define a weaker notion
of bisimulation in lieu of equality per se. Because MProver separates the universes
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of programs and proofs—program terms are only an object of logical reasoning
and are not themselves treated as logical proofs—it is possible to define a notion
of equality over infinite structures that is much easier to deal with.

class Monad m where
(�=) :: m a → (a → m b) → m b
return :: a → m a
leftunit ::: ∀ (x :: a) (f :: a → m b), return x �= f = f x
rightunit ::: ∀ (x :: m a), x �= return = x
assoc ::: ∀ (x :: m a) (f :: a → m b) (g :: b → m c),

(x �= f ) �= g = x �= λy → f y �= g

instance Monad Maybe where
(Just x) �= f = f x
Nothing �= = Nothing
return = Just
leftunit = leftunitMaybe
rightunit = rightunitMaybe
assoc = assocMaybe

leftunitMaybe = Foralli (x :: a) (f :: a → Maybe b),
join ::: return x �= f = f x

rightunitMaybe = Foralli (x :: Maybe a), case x of
undefined → join ::: undefined �= return = undefined
Nothing → join ::: Nothing �= return = Nothing
Just v → join ::: Just v �= return = Just v

assocMaybe = Foralli (x :: Maybe a) (f :: a → Maybe b) (g :: b → Maybe c), case x of
undefined → join ::: (undefined �= f ) �= g = undefined �= (λy → f y �= g)
Nothing → join ::: (Nothing �= f ) �= g = Nothing �= (λy → f y �= g)
Just v → join ::: (Just v �= f ) �= g = Just v �= (λy → f y �= g)

Fig. 1. The Monad type class in MProver, and an example instance

The remainder of this paper proceeds as follows. Section 2 gives a definition
of the core language of programmatic expressions, logical formulas, proof terms,
and tactics, and concludes with a few simple examples. Section 3 sketches the
extension of the language of Section 2 with type classes, illustrated by a monadic
equational reasoning proof adapted from Gibbons and Hinze [3]. Section 4 dis-
cusses related work, and Section 5 concludes.

2 Expressions, Formulas, Proofs, and Tactics in MProver

In this section we describe the basic design of the MProver language. We shall
defer discussion of the type class system to Section 3. The language may be di-
vided into two parts: the programming fragment and the proving fragment. The
programming fragment is a pure, lazy functional language with type classes—
essentially a subset of Haskell 98 [4]. In the proving fragment, proofs are ex-
pressed as terms in a λ-calculus-like language, but this language is entirely dis-
tinct from the language of programs and is not intended for evaluation other
than possibly for metatheoretic purposes.
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At the outermost level, an MProver program is a script containing both def-
initions of type, type classes, and variables (just as in Haskell), and proofs of
properties of those definitions (written in an MProver-specific proof notation).
A script consists of one or more top-level declarations. A declaration may be
a datatype declaration, a program term declaration, or a theorem declaration.
The syntax for datatype and program term declarations is identical to (a subset
of) Haskell, while theorem declarations have the form:

var ::: formula
var = proof

Here the var is the name of the theorem, the formula is the definition of the
theorem, and the proof is a proof of the theorem. The symbol ::: should be read
as “proves the formula”, by analogy with the Haskell symbol :: which is read
“has type”. The languages of formulas and proofs, and the relationship between
them, are discussed in Section 2.3.

2.1 Expressions

As a matter of terminology, we will refer to programmatic terms as expressions
and proof terms as proofs. We will consider a subset of the full expression lan-
guage; the grammar of this subset is given in Figure 2. The full language is more
fully featured than this, but the simpler formulation of Figure 2 will suffice for
our discussion of the essential characteristics of the language.

expr ::= λ var → expr (abstraction)
| expr expr (application)
| var (variables)
| ctor (data constructors)
| let (var = expr)* in expr (let-binding)
| case expr of (pat → expr)+ (case)
| undefined (undefined value)

pat ::= var (variables)
| ctor pat* (constructed values)
| (wildcard)

Fig. 2. Grammar for MProver Expressions

The semantics of MProver expressions is a standard non-strict semantics. As
in Haskell, let bindings are recursive.

2.2 Formulas and Proofs

The main design goal of MProver is to support equational reasoning. For this rea-
son, the language of program properties—called formulas—comprises just state-
ments of (in)equality between program terms, logical implication, and universal
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quantification over expressions. The grammar of formulas is given in Figure 3.
Note that the ∀ symbol in formulas is unrelated to the forall keyword used for
higher-rank polymorphism in Haskell.

formula ::= ∀ ( var :: type ), formula (universal quantification)
| formula → formula (implication)
| expr = expr (equality)
| expr 
= expr (inequality)

Fig. 3. Grammar for MProver Formulas

Figure 4 gives the grammar of proof terms. In order: the Foralli and As-
sume forms are used to introduce variables ranging over expressions and proofs
of formulas, respectively. These variables may be referenced inside of a proof;
universally quantified proof terms may be instantiated by expressions; implica-
tion proofs may be applied to proofs of the antecedent (modus ponens); proof
expressions may be annotated with formulas as a hint to the proof checker; and
case-proofs allow casewise splitting on program terms. Of the remaining proof
forms, eval, clash, refl, trans, and symm may be viewed as directly reflecting
equational judgments that follow from the reduction semantics. The cong form
is used for congruence proofs (that is, substituting equals for equals).

proof ::= Foralli ( var :: type ), proof (forall-introduction)
| Assume ( var ::: formula ), proof (assumption)
| var (variables)
| proof expr (application 1)
| proof proof (application 2)
| proof ::: formula (annotation)
| case expr of (pat⊥ → proof )* (pattern matching)
| eval (evaluation)
| clash (constructor-clash)
| cong proof (congruence)
| refl (reflexivity)
| trans proof proof (transitivity)
| symm proof (symmetry)

pat⊥ ::= var (variables)
| ctor pat⊥* (constructed values)
| (wildcard)
| undefined (bottom)

Fig. 4. Grammar for MProver Proofs
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2.3 Classification Rules

The process of proof checking, that is determining that a proof proves a formula,
is called classification, and is akin to type checking. The classification rules are
given in Figure 5. Contexts Γ contain assumptions of three forms: (1) x ::: φ,
indicating that variable x ranges over proofs of formula φ; (2) x :: t, indicating
that variable x ranges over expressions of type t; and (3) x = e, indicating that
variable x is bound to expression e. The “initial” Γ used by the proof checker
introduces all assumptions of the third type by binding top-level symbols to their
definitions; there is no let-binding construct for proof terms.

The relation �Γ, used in the rule for eval, is a single-step, call-by-name re-
duction relation on open terms. We subscript the relation with Γ so that the
definitions of top-level expressions may be expanded on an as-needed basis.
When performing reduction inside a λ or let expression, any definitions that
are shadowed by the local bindings are dropped from Γ. Variables not bound in
Γ are simply left as is, rather than expanded. The relation contains special rules
for handling undefined: in particular, undefined e �Γ undefined, pattern-
match failure reduces to undefined, and if a case expression forces evaluation
of an undefined scrutinee, the entire case-expression reduces to undefined.

The rules in the left column are essentially standard rules for assumption, ab-
straction, and application. The rule for case proofs has a couple of important
features: first, pattern matching must be exhaustive, and the undefined case
must be considered. Second, the formula φ that is proven inside the case alterna-
tives is parameterized by the different cases: for example, if a proof of the formula
∀ (b :: Bool), not (not b) = b is done by case analysis of b, the body of the respec-
tive case alternatives must prove not (not True) = True, not (not False) = False,
and not (not undefined) = undefined. We assume, for the sake of brevity, that
all patterns are either a constructor applied to variable patterns, undefined, or
the wildcard pattern (i.e. that patterns are not nested).

With respect to cong, note that due to MProver’s lazy semantics, this one
rule enables us to do all kinds of substitutions. For example, if we know that
f = g and we want to use this to prove that map f xs = map g xs, we can just
make up a new λ-abstraction, with a fresh variable representing the substitution
sites, and use cong apply that to our proof that f = g. A few eval steps will
then give us the substitution we desire. The price we pay for this parsimony is
that it is a bit tedious if such proofs done by hand; however, the subst tactic
described below automates this process.

2.4 Recursive Data Structures

The presence of recursive data structures necessitates some kind of support for
coinduction. For this, we turn to Coq for inspiration. As an example, consider the
type of lazy lists: Figure 6 gives two definitions. The first is the definition of the
lazy list data type; the CoInductive keyword indicates that LLists may possi-
bly be infinite. The second definition is of a bisimulation – that is, a coinductively
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defined predicate that is weaker (i.e. identifies strictly more expressions) than
Coq’s definitional equality.

To support reasoning about potentially infinite codata in MProver, each con-
structor in a data-declaration induces an analogous constructor form for equal-
ity proofs. In the example of Figure 7, the equality-proof forms for lazy lists
are given; notice that they have essentially the same form as the constructors
for the Coq bisimulation. In MProver, we simply overload the symbols Nil and
Cons as constructors for a coinductively-defined bisimulation on lazy lists. This
is the same bisimulation that we used in the Coq example: intuitively, if we have
a proof p that expressions e and e′ are equal, and a proof pl that lists l and l′

are equal, then just as we can “cons” e and e′ onto l and l′, so too can we cons
p onto pl, thus proving e : l = e′ : l′.

(x ::: φ) ∈ Γ

Γ � x ::: φ

Γ, (x :: t) � p ::: φ

Γ � Foralli(x :: t), p ::: ∀(x :: t), φ

Γ, (x ::: φ) � p ::: φ′

Γ � Assume(x ::: φ), p ::: φ→ φ′

Γ � p ::: ∀(x :: t), φ Γ � e :: t

Γ � p e ::: [x/e]φ

Γ � p ::: φ→ φ′ Γ � p′ ::: φ

Γ � p p′ ::: φ′

e1 �Γ e2
Γ � eval ::: e1 = e2

C 
= C′

Γ � clash ::: C e1 · · · en 
= C′ e′1 · · · e′m

Γ � p ::: e′ = e′′

Γ � cong p ::: e e′ = e e′′

Γ � refl ::: e = e

Γ � p1 ::: e1 = e2 Γ � p2 ::: e2 = e3

Γ � trans p1 p2 ::: e1 = e3

Γ � p ::: e1 = e2

Γ � symm p ::: e2 = e1

Γ, x11 :: p11 · · · x1m1 :: t1m1 � p1 ::: [x/(C1 x11 · · · x1m1)]φ
...

Γ, xn1 :: tn1 · · ·xnmn :: tnmn � pn ::: [x/(Cn xn1 · · · xnmn ]φ
Γ � p⊥ ::: [x/undefined]φ

Γ �

⎛
⎜⎜⎝

case e of (C1 x11 · · · x1m1) → p1
· · ·
(Cn xn1 · · · xnmn) → pn
undefined → p⊥

⎞
⎟⎟⎠ ::: [x/e]φ

(Note: The case rule assumes that C1 · · ·Cn are all the constructors for some data
type, that C1 · · ·Cn have arities m1 · · ·mn respectively, that no xij is free in φ, and
that x is not the same variable any xij .)

Fig. 5. Proof Classification Rules



124 A. Procter, W.L. Harrison, and A. Stump

CoInductive LList (A:Type) : Type :=

| LCons : A -> LList A -> LList A

| LNil : LList A.

CoInductive bisim (A:Type) : LList A -> LList A -> Prop :=

| bisim_LCons : forall (x:A) (l1 l2:LList A),

bisim l1 l2 -> bisim (LCons x l1) (LCons x l2)

| bisim_LNil :

bisim (LNil A) (LNil A).

Fig. 6. Lazy lists and bisimilarity in Coq

data List a = Nil | Cons a (List a)

Γ � Nil ::: Nil = Nil

Γ � p ::: x = x′ Γ � ps ::: xs = xs′

Γ � Cons p ps ::: Cons x xs = Cons x′ xs′

Fig. 7. Lazy lists and their coinduction rules in MProver

Guardedness. Coinductive proofs, then, are constructed as corecursive proof
terms—that is, they are defined in terms of themselves. As always, this raises
a red flag: unrestricted use of recursion would render MProver’s logic unsound,
allowing us to prove any theorem by appeal to itself. In order to mantain sound-
ness, we require that all recursive proof applications use guarded recursion. Here
again, guardedness is the same guardedness condition used by Coq [5]. In a nut-
shell, this means that any recursive application of a proof term must occur inside
an equality constructor application. The proof of Figure 8, to be discussed in
greater detail shortly, illustrates this: the recursive application of mapfusion is
an immediate argument to Cons, and thus the recursion is guarded.

2.5 Tactics and Syntactic Sugar

The core proof language of Figure 4, while quite expressive, is a bit inconvenient
when large numbers of evaluation steps must take place. Consider, for example,
the simple property id (id id) = (id id) id, where id is a global symbol defined as
id = λx → x. Probably the most obvious proof of this requires four eval steps
to reduce both sides of the equation to id id, and an application of symm to
link the two halves of the proof together. The result may not be intimidating
to the proof checker, but from a human’s point of view it is rather tedious and
unpleasant:

trans (eval ::: id (id id) = (\ x -> x) (id id))

(trans (eval ::: (\ x -> x) (id id) = id id)

(symm (trans (eval ::: (id id) id = ((\ x -> x) id) id)

(eval ::: ((\ x -> x) id) id = id id))))
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For this reason, we extend the core language with a tactic called join. Given
left- and right-hand side expressions e1 and e2, the join tactic works by repeat-
edly applying reduction steps to e1 and e2 until one of the following happens:

– e1 and e2 reach e′1 and e′2, respectively, where e′1 and e′2 are α-equivalent.
Then join succeeds.

– e1 and e2 reach C1 e11 · · · e1n and C2 e21 · · · e2m where C1 and C2 are
different constructors. Then join fails.

– e1 and e2 reach C1 e11 · · · e1n and C2 e21 · · · e2n where some e1i is not
α-equivalent to e2i. Then for each e1j and e2j such that e1j and e2j are not
α-equivalent, recursively attempt to join e1j with e2j . If all the recursive
calls succeed, then join succeeds. If any recursive call fails, then join fails.

This procedure, which happens during the proof-checking phase, produces a
proof term like the one given above; this reduces the burden on the user, who
would otherwise have to construct tedious step-by-step reduction proofs by hand.
At the same time, it does not complicate the underlying theory, since even if the
tactic succeeds the generated proof term will still be checked according to the
rules of Figure 2.3.

A second tactic, called subst, comes in handy when it is necessary to rewrite
underneath constructors or inside λ-abstractions; given a proof p that e1 = e2,
subst will construct a proof that e = e′ if e′ can be obtained by substituting all
occurrences of e1 with e2 in e. This tactic makes extensive use of the cong rule.

2.6 Syntactic Sugar for trans

The applicative syntax for constructing trans-proof terms is a little bit un-
wieldy in practice. This is unfortunate, considering that equational reasoning
proofs, often quite transitivity-heavy, are exactly what MProver is meant for!
To ameliorate this, we supply a little bit of syntactic sugar, vaguely inspired by
Haskell’s do-notation for monads. Any proof term of the form:

[ e1 = e2 { p1 } ... = en { pn-1 } ]

will be desugared to:

(trans (trans (trans ... (p1 ::: {e1 = e2}) (p2 ::: {e2 = e3}))

... (pn-1 ::: {en-1 = en})))

The result, illustrated in Figure 8 and in Figure 10, bears a reassuringly close
resemblance to a “textbook” equational reasoning proof.

2.7 Example: Map Fusion

Having built up the requisite machinery, we can now present a more involved
example of an MProver proof, given in Figure 8. The proof is of the familiar map
fusion property, over the lazy list type defined previously in Figure 7. Assume
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that map and the function composition operator . are defined in the standard
way. The proof then breaks down into three cases: one where the input list is
undefined, one where it is empty, and one where it is a cons cell. In the first two
cases, the desired property follows simply from evaluation (join). The third case
is slightly more complicated, requiring the use of coinduction. Here the first use
of (join) pulls the Cons constructor out front, and combines the applications of
g and f with function composition. We then appeal to the coinduction rule for
Cons to rewrite the tail of the list into the desired form. In the final step, simple
evaluation gives us the result we want.

mapfusion ::: Forall (f::a -> b) (g::b -> c) (l::List a),

map g (map f l) = map (g . f) l

mapfusion = Foralli (f::a -> b) (g::b -> c) (l::List a),

case l of

undefined -> join ::: map g (map f undefined) = map (g . f) undefined

Nil -> join ::: map g (map f []) = map (g . f) []

Cons x xs ->

[ map g (map f (Cons x xs))

= Cons ((g . f) x) (map g (map f xs)) { join }

= Cons ((g . f) x) (map (g . f) xs) { Cons refl

(mapfusion f g xs) }

= map (g . f) (Cons x xs) { join }

]

Fig. 8. Map fusion

3 Type Classes

Let us now turn our attention to MProver’s extended notion of type classes. Type
classes were introduced in Haskell to allow for ad-hoc polymorphism—that is,
overloading of functions and operators—in a natural, extensible way. Viewed
another way, type classes can be seen as supporting modularity and abstraction
through well-defined interfaces: the programmer may declare a type to be an
instance of any type class simply by supplying a set of functions or operators
with the right type signature; programs whose types are parameterized over
members of that class can then be reused on new instances.

The Haskell community has developed a rich vocabulary of functional pro-
gramming abstractions grounded in abstract algebra and category theory, and
type classes are the language in which these abstractions are expressed [6]. How-
ever, a type class is often associated not just with a set of type signatures, but
also with one or more laws. For example, any instance type a of the class Monoid
must be associated with operators mempty :: a and mappend :: a → a → a. 1

1 There is also a third operator mconcat :: [a]→ a, which has a default implementation
that may be overridden if desired for reasons of efficiency.
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This requirement is enforced by Haskell’s type system. It is also expected, how-
ever, that the operators follow certain laws: namely that mempty is a left and
right identity with respect to mappend, and mappend is associative. This re-
quirement is not checked mechanically by, nor even expressible in, Haskell’s type
system.

MProver supports richer specifications by extending type classes with asso-
ciated formulas expressing the laws that instances of the class must obey. Any
declared instance must contain not only definitions for the operators, but also
proofs that the operators follow the laws. Figure 1 illustrates a well-known exam-
ple of a type class in Haskell, that of monads2, extended with proof obligations
for the monad laws, along with a particular instance of that class (the Maybe
type familiar to Haskell programmers).

3.1 Monadic Equational Reasoning

Our approach to monadic equational reasoning shares much with that taken
by Gibbons and Hinze [3]. In particular, we program and prove in terms of
interfaces that axiomatize the behaviors of particular monadic effects, rather
than constructing a particular implementation of that interface (though this
can certainly be done). Figure 9 contains an MProver definition of Gibbons
and Hinze’s MonadFail and MonadExcept classes: that is, subclasses of Monad
supporting the throwing and handling of exceptions. In Figure 10, we use this to
prove the purity (meaning no uncaught exceptions) of a “fast product” function
which takes the product of a list, but first scans the list, throwing an exception
if a zero is found; this exception will be caught, and the function will return zero
in this case. Note that the fact that fastprod ’s codomain is in MonadFail makes
the proof instances for exceptLeftUnit and exceptPure available.

As it happens, there are a few stipulations having to do with definedness that
are not emphasized that strongly in the cited work, but must be made explicit
here (though proofs are omitted for space reasons). In particular, we require that
scanning the list for zero—that is, evaluating the expression 0 ‘elem‘ xs—
will terminate. Second, we must stipulate that the product function itself is
short-circuiting: the obvious definition foldr (*) 1 will not work, because it is
possible that this will diverge even when 0 ‘elem‘ xs = True. These sorts of
stipulations seem to come up sufficiently often in real-world equational proofs
that it might well make sense to extend the logic to make them explicit; this is
discussed further in Section 5.

4 Related Work

A major antecedent of this work is the Operational Type Theory implemented
in the Guru programming language [7]. The most salient feature of Opera-
tional Type Theory for our purposes is its treatment of undefined computations:

2 We omit fail from our definition since it is not really part of the mathematical notion
of a monad, though its inclusion would cause no problems.
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classMonad m ⇒ MonadFail m where
fail :: m a
failLeftZero ::: ∀ (x :: m a), fail � x = fail

classMonadFail m ⇒ MonadExcept m where
catch :: m a → m a → m a
exceptLeftUnit ::: ∀ (x :: m a), catch fail x = x
exceptRightUnit ::: ∀ (x :: m a), catch x fail = x
exceptAssoc ::: ∀ (x y z :: m a), catch x (catch y z ) = catch (catch x y) z
exceptPure ::: ∀ (x :: a) (y :: m a), catch (return x ) y = return x

Fig. 9. The MonadFail and MonadExcept classes

because OpTT directly encodes the (finite) sequences of reductions that are
required to establish equivalence of terms, the presence of nonterminating com-
putations does not compromise the soundness of its proving fragment. There is
much work on dealing with non-termination and infinite structures in existing
theorem proving systems. Coq [1] features support for coinductive types [5], en-
compassing both coinductive data structures and predicates. A similar design is
used for coinduction in Agda. Neither Coq nor Agda, however, supports direct
reasoning about undefined computations, as MProver and Guru do. Sparkle [2]
supports reasoning about undefined computations, as well as reasoning about
infinite structures via structural induction guarded by admissibility. Indirect ap-
proaches to dealing with undefined computations include the formalization of
domain theory within Coq [8], and extensions to Coq’s type theory [9, 10].

MProver is certainly not the first tool designed to support integrated devel-
opment and verification of functional programs. Particularly closely related to
MProver is the Sparkle prover for the Clean programming language [2]. Like
MProver, Sparkle has first-class support for reasoning about undefined compu-
tations: just as undefined is essentially treated as a constructor for all data
types in MProver, Sparkle introduces a special expression form, denoted ⊥, for
talking about undefined computations. Sparkle is built on a sophisticated system
of tactics and hints, which often results an automatic or near-automatic proving
process where typical properties of functional programs are concerned.

One difference between MProver and Sparkle lies in the semantic foundations.
Reasoning in Sparkle takes place internally in a simplified version of the Clean
language called Core Clean. MProver, by contrast, does not simplify programs to
a core language. The semantics of Core Clean is based on lazy graph rewriting,
whereas MProver uses what is essentially a call-by-name reduction semantics.
Considerable work has also been done on using type classes in Sparkle [11],
which should enable a type class-directed style of proving (one of “proving
to specifications” rather than proving to structures) very similar to MProver.
However, Sparkle does not extend type classes with logical specifications like
MProver does. Instead, it relies on a clever scheme of induction over the sets of
defined instances; this allows proofs to leverage the semantic relationships among
derived typeclass instances (e.g. if the Eq instance for type T is an equivalence
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ifredundant ::: Forall (b::Bool) (e::a),

Assuming b =/= undefined,

if b e e = e

productspec ::: Forall (xs::[Int]),

Assuming 0 ‘elem‘ xs = True,

0 = product xs

condlift ::: MonadExcept m =>

Forall (b::Bool) (m1 m2 m3::m a),

Assuming b =/= undefined,

catch (if b then m1 else m2) m3

= if b then catch m1 m3 else catch m2 m3

fastprodpure ::: Forall xs::[Int],

Assuming 0 ‘elem‘ xs =/= undefined,

fastprod xs = return (product xs)

fastprodpure =

Foralli xs::[Int],

Assume (zerodecidable:::0 ‘elem‘ xs =/= undefined),

[ fastprod xs

= catch (work xs) (return 0) { join }

= catch

(if 0 ‘elem‘ xs

then fail

else return (product xs))

(return 0) { subst by (workspec xs) }

= if 0 ‘elem‘ xs

then catch fail (return 0)

else catch

(return (product xs))

(return 0) { condlift

(0 ‘elem‘ xs) fail

(return (product xs)) (return 0)

zerodecidable }

= if 0 ‘elem‘ xs

then return 0

else catch

(return (product xs))

(return 0) { subst by (exceptLeftUnit (return 0)) }

= if 0 ‘elem‘ xs

then return 0

else return (product xs) { subst by (exceptPure (product xs)) }

= if 0 ‘elem‘ xs

then return (product xs)

else return (product xs) { subst by productspec }

= return (product xs) { ifredundant

(0 ‘elem‘ xs)

(product xs)

zerodecidable }

]

Fig. 10. MProver formalization of Gibbons and Hinze’s “fast product” function
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relation, so too is the instance for type [T ]). The advantage of this approach is
that reasoning in Sparkle can be viewed as “external” to an even greater degree
than in MProver; reasoning about type class-based programs is available even if
the original program is completely innocent to logical specifications. Finally, it
is worth noting that Sparkle has support for explicit strictness annotations [12].
This provides a very clean and reasonable alternative to the kind of “definedness
stipulations” that permeate the proof of Figure 10. In Section 5 we will briefly
sketch a similar approach to this problem that we are considering for MProver.

Type classes originated in Haskell [13] as a means of enabling ad-hoc polymor-
phism, and the idea has been reimplemented in Coq [14] and Isabelle/HOLCF [15].
The Haskell community has developed a number of theories and tools [16] for for-
mal (and semi-formal) reasoning about Haskell programs. Recent work on static
contract checking [17, 18] focuses on the automatic verification of pre- and post-
conditions for Haskell functions. SmallCheck [19] is a type-directed framework for
automated testing of program properties, similar to QuickCheck [20] but exhaus-
tively testing all values of a type up to a certain “depth”, rather than randomly
generating test cases. Other tools include the Haskell Equational Reasoning As-
sistant [21], an AJAX-based tool for rewriting Haskell expressions while preserv-
ing semantic equality. The HasCASL project [22] has developed an extension of
the algebraic specification language CASL with Haskell-like language constructs.
Further investigations of logical aspects of Haskell-like languages, especially with
regard to laziness, may be found in [23, 24].

5 Summary and Future Work

This paper has outlined the design of a proof-checking system for a lazy func-
tional language, called MProver. The work described here is still at an early
stage, but we expect that MProver will be a very useful tool for mechanized equa-
tional reasoning. As we develop our implementation further, we are interested in
adapting more examples of pen-and-paper proofs already in the literature and
mechanizing them with MProver.

A preliminary implementation of MProver is available from HackageDB, con-
taining a few examples that may be of interest to the reader. As of this writing,
we do not have a full development of MProver’s metatheory. However, we believe
that a soundness argument may be derived from Harrison and Kieburtz’s seman-
tics for Haskell, in a similar fashion to P-logic [23,24]. P-logic takes the view that
if P is a predicate over (possibly undefined) values of a type T , then P refines T :
that is, the denotation of P is a subset of the denotation of T . In adapting this to
MProver, we may say that Forall formulas quantified over expressions of type T
refine the type T . As it happens, the programming fragment of MProver as pre-
sented here does not contain such features as seq, ∼-patterns, and polymorphic
recursion, which are present in P-logic and add significantly to the complexity of
its semantics. Excluding these features means that the soundness argument for
MProver will be considerably simpler; at the same time, we believe that building
MProver’s semantics on top of this work shows that MProver could be extended
with these features without disturbing its semantic foundations.
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We also expect that an operational semantics, and a corresponding soundness
argument, can be derived from existing work on Operational Type Theory [7],
if it is suitably adapted to handle lazy evaluation and infinite data structures;
we intend to consider this in future work.

Extension: Termination Types. Haskell equational reasoning proofs very
often make assumptions about the finiteness or definedness of an expression.
There are two major reasons for this: (1) sometimes infinite or undefined values
are a pathological case that we don’t actually care about, and excluding them
may simplify reasoning (permitting in particular the use of structural induction);
and (2) sometimes the properties we want to prove for defined and/or finite
values aren’t actually true of undefined or infinite values. The design described
here does not have an adequate mechanism for handling this.

A possible solution to this problem is to further augment MProver’s type sys-
tem with a system of termination types. In this system, termination annotations
would refine types by attaching tags restricting types to the finite case, or to
the defined case (or to both). A proof quantified over, say, finite lists, could then
use structural induction (as opposed to coinduction). Standard techniques for
checking termination and productivity (e.g. structural/guarded recursion) could
be integrated into the type checker. This idea bears a close similarity to Howard’s
work on pointed types [25] and the termination types of Trellys [26].

Acknowledgments. The authors would like to thank the anonymous reviewers
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Towards a Framework for Building Formally
Verified Supercompilers in Coq
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Abstract. We present an on-going project for the development – in Coq
– of a language-agnostic framework for building verified supercompilers.
While existing supercompilers are not very big in size, they combine
many different program transformations in intricate ways, so checking
the correctness of their implementation presents challenges. We propose
to define the main supercompilation algorithm in terms of abstract oper-
ations, which hide the details of the object language. The verification of
the generic supercompiler relies then on properties of these operations,
which are easier to establish in isolation, for each specific language. While
we still need to try the approach on more supercompilers for specific lan-
guages, the framework in its current state appears a promising technique
for simplifying the formal verification of supercompilers.

Keywords: program transformation, supercompilation, partial evalua-
tion, deforestation, formal verification, Coq, dependent types.

1 Introduction

Supercompilation is a powerful program-transformation technique [19,18], related
to, and generalizing transformations like partial evaluation and deforestation [21].
Supercompilers have many interesting applications: program optimization [1,14];
checking program equivalence [9]; showing productivity of co-recursive definitions
[13] (to name just a few). Supercompilation combines some local transformations
of program sources, global techniques, such as function call unfolding/folding, and
specific heuristic for ensuring termination (on-line history-based termination
checks, generalization of recursive call arguments, etc.). The validity of the lo-
cal transformations usually follows easily from the semantics of the object lan-
guage, but the correctness and termination of the overall process are more subtle
to verify. General techniques for such verification have been developed [16,17], but
their manual application is still hard and error-prone. The recent advances (e.g.
[11]) in techniques for formal software verification, especially those based on au-
tomated proof assistants like Coq [12], suggest that it may be useful to automate
this effort in the context of supercompilation. This can be particularly important
if the supercompiler is itself used for proving program properties, or is a part of an
industrial-strength optimizing compiler. Such verifications have already been car-
ried out (to different extent) for particular supercompiler implementations [10,13].
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Performing similar formal proofs from scratch usually takes a lot of effort and is
costly. Besides, the quality of supercompilation results often relies crucially on
selecting a right combination of ingredients (termination check, folding and gen-
eralization strategy). Repeating the full verification for many variations of the su-
percompiler components is clearly not a scalable approach. As an alternative, we
propose an experimental framework, in Coq, whose goal is to verify the correct-
ness of a whole family of supercompilers, even ones processing different program-
ming languages. This framework is intended as a “supercompiler construction kit”,
where the user can:

– give definitions of a handful of basic supercompilation components for the
object language of choice;

– plug these components into the existing generic supercompilation algorithm,
to obtain a working supercompiler for the selected language;

– optionally, define the semantics of the object language in Coq, then prove
the semantics-preservation conditions for the basic components and obtain
automatically a semantics-preservation result for the whole supercompiler;

– optionally, prove the termination condition for one of the basic components
and obtain a guarantee that the whole supercompiler is terminating.

This paper describes the current state of the framework:

– a key contribution is the identification of a small number of correctness
conditions for a typical set of components of a classically organized super-
compiler in Sect. 2 (extended to cover completeness in Sect. 4.3). These
are the only conditions that must be verified for each particular object lan-
guage and component implementation. We conjecture that the sum of these
verifications will be simpler than the monolithic verification of the full su-
percompiler. We illustrate the basic components by defining them for a very
small functional language;

– we give a dependently-typed inductive representation of well-formed process
graphs in Sect. 3, and a formal semantics of process graphs – relative to the
abstract semantics of the object language – in Sect. 3.1;

– a generic, language-agnostic formulation of the supercompilation algorithm
in Coq is shown in Sect. 4.1. We prove that this algorithm is terminating
under the assumption of an almost-full relation used as “whistle” (dynamic
termination check). The proof is facilitated by the recent constructive for-
malization in Coq of the theory of almost-full relations [20]. We employ a
slight modification in the classical supercompilation algorithm, which sim-
plifies greatly our termination proof, compared to Sørensen’s technique [17];

– we give a high-level overview of the formal Coq proofs of preservation of
semantics for the generic supercompilation algorithm in Sect. 4.2 (soundness)
and Sect. 4.3 (completeness).
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Inductive DriveStepResult (Cfg CH Cnt : Set) : Set :=
| DSTransient: Cfg → DriveStepResult Cfg CH Cnt
| DSBranch: CH → list1Set (Cnt × Cfg) → DriveStepResult Cfg CH Cnt
| DSDecompose: (list Cfg → Cfg) → list Cfg → DriveStepResult Cfg CH Cnt.

Module Type ScpSig.
Parameters Prog Data: Set. Parameter Eval : Prog → relation Data.
Parameters Configuration Contraction ContractionHead : Set.
Parameter driveStep: Configuration →

option (DriveStepResult Configuration ContractionHead Contraction).
Parameters EvalEnv EvalEnvTransf : Set.
Parameter contrHeadValid : EvalEnv → ContractionHead → bool.
Parameter evalContr : EvalEnv → ContractionHead → Contraction → option EvalEnv.
Parameter foldConfs: Configuration → Configuration → option EvalEnvTransf.
Parameter HistEntry : Set. Parameter conf2histEntry : Configuration → HistEntry.
Parameter whistleRel : relation HistEntry.
Parameter whistleRel dec: ∀ x y, {whistleRel x y} + {¬whistleRel x y}.
Parameter generalize: Configuration → Configuration →
(list Configuration → Configuration) × list Configuration.

End ScpSig.

Fig. 1. Supercompiler basic building blocks

Inductive Val : Set := VNil | VCons (hd tl : Val).
Inductive Exp: Set := V: nat → Exp | F: FN.T → list Exp → Exp
| G: FN.T → Exp → list Exp → Exp | Nil: Exp | Cons: Exp → Exp → Exp.

Record Prog’: Set := MkProg {fdefs: list (FN.T × Exp); gdefs: list (FN.T × (Exp ×
Exp))}.
Definition Data := Val. Definition Prog := Prog’.
... Definition EvalExp (p: Prog) (e: Exp) (v : Val) : Prop :=
∃ e1, RedExp p e e1 ∧ expIsVal e1 = Some v.

Definition Eval prg v1 v2 := match fdefs prg with
| ( , e):: ⇒ EvalExp prg (substF (fun n ⇒ val2exp (valNth n v1 )) e) v2
| ⇒ False
end.

Fig. 2. Example: a small functional language

2 Object Language Assumptions
2.1 Basic Supercompiler Building Blocks

The described framework is based on a small list of basic components, which
cover the object-language-specific parts of the final supercompiler. Their signa-
tures are collected in a module type1 (Fig. 1). We proceed to briefly explain each
of these components, and in parallel illustrate how they can be defined for a tiny
1 Some hints about Coq notation: function, algebraic-data-type (Inductive ... Set :=

...), record, and module definitions are similar to those in functional languages like
Haskell and ML. Property statements use standard logic syntax. Inductively-defined
relations can be introduced by Inductive ... Prop := ... (using linear syntax).
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sample language. We also introduce along the way some supercompiler-specific
terminology2.

The language we consider as an example is a first-order functional one, with
call-by-name semantics (Fig. 2). We assume a set of function names FN.T with
decidable equality FN.eq dec. The language operates on finite binary trees. In-
stead of case-expressions it has function definitions, which can pattern-match
on their first argument. Functions with pattern-matching definitions are dubbed
g-functions as in [18], while the rest are called f-functions. We have different
constructors for f- and g-calls in the abstract syntax, as the latter always have
at least 1 argument. Another small twist in order to keep things simple: variable
references V n are overloaded with 2 meanings: inside function bodies they refer-
ence parameters by position, while in free-standing expressions they are treated
just as free variables, with an easy way to create fresh names. We have, corre-
spondingly, a generic substitution function substF (f : nat → Exp) (e: Exp) : Exp,
with 2 specific instances: bvSubst (es : list Exp) (e: Exp) : Exp for substituting
a list of arguments inside a function body, and fvSubst (env : list (nat × Exp))
(e: Exp) : Exp for substituting for free variables inside an open expression. We
omit the full formal definition of the language semantics. It can be found in the
Coq sources accompanying the paper3. We assume the first f-definition in the
program is the main one, with the program input being a list of values for the
main-function arguments. For example, we can define in our language a program
appending its 2 arguments as lists (notice than in the expression for the Cons x
y pattern argument positions are shifted by 2):
appPrg := let eNil := V 0 in let eCons := Cons (V 0) (G "append" (V 1) [V
2]) in MkProg [("main", G "append" (V 0) [V 1])] [("append", (eNil, eCons))]

and it will hold that:
let v1 := VCons VNil (VCons VNil VNil) in let v2 := VCons VNil VNil in
Eval appPrg (VCons v1 (VCons v2 VNil))

(VCons VNil (VCons VNil (VCons VNil VNil)))
The first key ingredient of supercompilation is driving – a form of symbolic

execution of programs with free variables. The driving process typically operates
not directly on programs, but on “configurations” – representations of the current
state of the driven program. In our example (Fig. 3) each configuration consists
of a copy of the original program, plus the expression currently being processed,
decomposed into a reduction context + redex. Because in our language reduction
is forced only at the top or at the first argument of a g-call, we represent the
(key part of the) redex with a type Exp’, which is just a copy of Exp lacking a
top-level G constructor, and the reduction context stores (in reverse order) all
top-level g-calls enclosing the topmost leftmost subexpression of type Exp’. We
have a function toRedex decomposing an expression into a context + redex, and
an inverse function expOfCtx.

In addition, when dealing with branching constructs, which cannot be decided
statically during driving, we pursue each alternative in parallel. The undecided

2 More complete introductions to supercompilation can be found, for example, in [18,7]
3 https://sites.google.com/site/dkrustev/Home/publications

https://sites.google.com/site/dkrustev/Home/publications
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Record Conf: Set := MkConf {prog: Prog; redCtx: list (FN.T × list Exp); subexp: Exp’}.
Definition Configuration := Conf.
Definition ContractionHead := nat. Definition Contraction := option (nat × nat).
Definition expOfConf cfg := expOfCtx (redCtx cfg) (subexp cfg).
Definition driveStep’ (prg : Prog) (ctx : list (FN.T × list Exp))

(e: Exp’) : option (DriveStepResult Conf ContractionHead Contraction) :=
match e, ctx with
| V’ x, nil ⇒ None
| V’ x, :: ⇒ let nilCtx := map (fun p ⇒ (fst p,

map (fvSubst ((x, Nil)::nil)) (snd p))) ctx in
let nilCfg := MkConf prg nilCtx Nil’ in
let cnt := expSuccMaxV (expOfCtx ctx e) in let x1 := cnt in
let x2 := (S cnt) in let consExp := Cons’ (V x1 ) (V x2 ) in
let consCtx := map (fun p ⇒ (fst p,

map (fvSubst ((x, exp’2exp consExp)::nil)) (snd p))) ctx in
let consCfg := MkConf prg consCtx consExp in
Some (DSBranch x ((Some (x1, x2), consCfg)::nil, (None, nilCfg)))

| Nil’, nil ⇒ None
| Nil’, (f , es)::ctx1 ⇒ optionBind (lookup FN.eq dec f (gdefs prg)) (fun gdef ⇒
let c e := toRedex (bvSubst es (fst gdef )) in
Some (DSTransient (MkConf prg (fst c e ++ ctx1 ) (snd c e))))

| Cons’ e1 e2, nil ⇒ let f cfgs := match cfgs with
| cfg1::cfg2:: ⇒ MkConf prg nil (Cons’ (expOfConf cfg1 ) (expOfConf cfg2 ))
| ⇒ MkConf prg nil e end in

let c e1 := toRedex e1 in let c e2 := toRedex e2 in
Some (DSDecompose f (MkConf prg (fst c e1 ) (snd c e1 )

:: MkConf prg (fst c e2 ) (snd c e2 ) :: nil))
| Cons’ e1 e2, (f , es)::ctx1 ⇒

optionBind (lookup FN.eq dec f (gdefs prg)) (fun gdef ⇒
let c e := toRedex (bvSubst (e1::e2::es) (snd gdef )) in
Some (DSTransient (MkConf prg (fst c e ++ ctx1 ) (snd c e))))

| F’ f es, ⇒ optionBind (lookup FN.eq dec f (fdefs prg)) (fun fdef ⇒
let c e := toRedex (bvSubst es fdef ) in
Some (DSTransient (MkConf prg (fst c e ++ ctx) (snd c e))))

end.
Definition driveStep conf := driveStep’ (prog conf ) (redCtx conf ) (subexp conf ).

Fig. 3. Example language: configurations, driving

conditions in such cases are represented by “contractions”. It is convenient to
factor out the common part of all contractions of a given branching construct
– represented by ContractionHead in Fig 1. In the case of the sample language,
the only kind of driving-time-undecidable branching construct is a g-call of the
form (G f (V n) ...). So contractions can be of 2 kinds: V n = Nil and V n =
Cons (V m) (V k), where m and k are fresh, and the common part is (V n =).
This explains the definitions for ContractionHead and Contraction in Fig 3.
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Definition EvalEnv := list (nat × Data).
Definition EvalEnvTransf := list (nat × nat).
Definition foldConfs cfg1 cfg2 := if Prog eq dec (prog cfg1 ) (prog cfg2 )
then renamingExists (expOfConf cfg1 ) (expOfConf cfg2 ) else None.
Definition HistEntry := Exp. Definition conf2histEntry := expOfConf.
Parameter maxExpCode: nat.
Definition whistleRel (e1 e2 : Exp) : Prop :=
let fin1 := nat2Finite maxExpCode (nat of N (expCode e1 )) in
let fin2 := nat2Finite maxExpCode (nat of N (expCode e2 )) in eq fin fin1 fin2.

Definition whistleRel dec: ∀ e1 e2, {whistleRel e1 e2} + {¬whistleRel e1 e2}.
... Defined.
Definition generalize (cfg1 cfg2 : Configuration)

: (list Configuration → Configuration) × list Configuration := (fun ⇒ cfg2, nil).

Fig. 4. Example language: remaining supercompiler components

In traditional formulations of supercompilation, driving produces a potentially
infinite process tree, which encodes each possible path that the execution of the
input program may take. In our framework we assume, that driving is performed
in steps, where each driving step takes a configuration as input and produces
one of four kinds of results (Fig. 1, Fig. 3):

– None: driving cannot proceed further at this configuration (for our example,
it can happen if we have Nil or a free variable in an empty context, and also
at a call of an undefined function);

– Some (DSTransient c): driving can perform some deterministic static com-
putation and produce a new configuration (in the case of the example: any
f-call, or a g-call, where the shape of the first argument (Nil/Cons) is known);

– Some (DSBranch ch alts): driving is stuck at a branching construct with a
statically-undecidable condition; in this case it produces a list of contraction
+ configuration pairs for each of the branches (as discussed in the previ-
ous paragraph, in our example this can only happen when driving reaches
a g-call with a free variable as the first argument). In this case – as seen in
the example implementation – information about the test outcome is propa-
gated inside each branch. This feature is crucial for achieving more powerful
optimizations (compared to deforestation, for example), but orthogonal to
our treatment of correctness.

– Some (DSDecompose f cs): driving cannot proceed directly with the current
configuration, but it can decompose it to a number of sub-configurations
with which to continue (for the sample language – when we reach a Cons in
an empty reduction context).

This formalization of driving is close to many existing formulations [18,7]. As a
technical detail, we simplify the treatment of the branching case by assuming
that there always is at least one branch, and that the last branch is taken by
default if the preceding ones fail.
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One way to produce a finite process graph from the infinite process tree is
through folding a leaf of the process tree into a sufficiently similar node on the
path to the root. For a functional language, this corresponds to introducing a
new recursive function definition. The formalization of folding (Fig. 1) relies on
the fact, that we introduce later an evaluation relation EvalConf directly for con-
figurations (Fig. 5). As configurations typically contain free variables, the input
for configuration evaluation takes the form of an evaluation environment EvalEnv
meant to assign values to these free variables. Thus the concrete definition of
EvalEnv for our example comes as no surprise (Fig. 4). We further assume an ab-
stract set of transformations EvalEnvTransf, which can be applied to evaluation
environments (Fig. 1, Fig. 5). In the case of the sample language, these trans-
formations are just renamings of free variables. Thus, folding is possible given a
renaming exists, transforming the first configuration into the second (Fig. 4).

In general, opportunities for folding are not guaranteed to always arise. Su-
percompilers typically ensure totality by performing on-line termination checks
during driving. These checks – traditionally called whistles – consider the com-
plete history of already driven program states along the path from the current
node to the root of the process tree. Well-quasi orders are usually used as whis-
tles. We assume instead that our whistle is an almost-full relation, following
a recent paper by Vytiniotis et al., which promotes almost-full relations as a
constructively-defined alternative to well-quasi orders, and provides a Coq li-
brary for working with those [20]. To keep the framework flexible, we assume
that the whistle operates on some history entries, which can be computed from
configurations. For our specific example, the history entry is just the expres-
sion corresponding to the given configuration. For the whistle itself, we take
some Goedel numbering of expressions (expCode), truncate it up to a threshold
(supplied as a parameter), and compare the 2 truncated codes for equality. The
truncated codes are always in {0, ..., maxExpCode-1}, which in the library from
[20] is represented by a type Finite maxExpCode. We can then directly estab-
lish, that our whistle is an almost-full relation, by using a library lemma about
equality at type Finite n. (Of course, in this simple case we could directly ap-
peal to the pigeonhole principle, but the Coq library from [20] supplies some
combinators for building more complicated and more interesting whistles.)

Finally, a supercompiler needs to decide what to do if a configuration is not
foldable to a previous one, but the whistle has blown that further driving risks
non-termination. The simplest strategy is to leave the configuration as it is, and
we indeed use this as a fall-back approach in the supercompiler definition below.
More interesting results can be achieved if the supercompiler is able to perform a
generalization, which produces a set of new configurations on which driving can
continue. Perhaps unsurprisingly, our formalization of generalization is very sim-
ilar to the DSDecompose case of driving. We do not pursue interesting definitions
of generalization for our sample language, though, showing that we can still obtain
a working supercompiler even with a trivial definition like the one in Fig. 4.



140 D.N. Krustev

Module Type ScpPropsSig.
Axiom decomposeConf correct: ∀ conf f confs,

driveStep conf = Some (DSDecompose f confs) → f confs = conf.
Parameter applyEET : EvalEnvTransf → EvalEnv → EvalEnv.
Parameter EvalConf : EvalEnv → Configuration → Data → Prop.
Axiom EvalConf deterministic: ∀ env conf d1,

EvalConf env conf d1 → ∀ d2, EvalConf env conf d2 → d1 = d2.
Parameter initConf : Prog → Configuration.
Parameter initEvalEnv : Prog → Data → EvalEnv.
Axiom EvalConf correct: ∀ prog d1 d2,

EvalConf (initEvalEnv prog d1 ) (initConf prog) d2 ↔ Eval prog d1 d2.
Axiom driveStep DSTransient correct: ∀ conf conf1,

driveStep conf = Some (DSTransient conf1 ) → ∀ env d,
EvalConf env conf d ↔ EvalConf env conf1 d.

Axiom driveStep DSBranch correct: ∀ conf ch alts,
driveStep conf = Some (DSBranch ch alts) → ∀ env d,
EvalConf env conf d ↔ contrHeadValid env ch = true ∧
let env conf := findAlt env ch alts in EvalConf (fst env conf ) (snd env conf ) d.

Parameter data2conf : Data → Configuration.
Axiom data2confEval : ∀ env d, EvalConf env (data2conf d) d.
Axiom driveStep DSDecompose correct: ∀ conf f confs,

driveStep conf = Some (DSDecompose f confs) → ∀ env d,
EvalConf env conf d ↔ ∃ ds, mapRelXsYs (EvalConf env) confs ds
∧ EvalConf env (f (map data2conf ds)) d.

Axiom whistleRel almostFull : almost full whistleRel.
Axiom foldConfs correct: ∀ conf1 conf2 eet, foldConfs conf1 conf2 = Some eet →
∀ env d, EvalConf env conf2 d ↔ EvalConf (applyEET eet env) conf1 d.

Axiom generalize correct: ∀ conf1 conf2 f confs, generalize conf1 conf2
= (f , confs) → ∀ env d, EvalConf env conf2 d ↔ ∃ ds, mapRelXsYs
(EvalConf env) confs ds ∧ EvalConf env (f (map data2conf ds)) d.

End ScpPropsSig.

Fig. 5. Supercompiler component properties

There are some auxiliary components in Fig. 1 – contrHeadValid and evalContr
– used only internally in defining the correctness conditions coming next, so we
omit their definitions.

2.2 Correctness Properties of Supercompiler Components

We have described all the external components our framework requires in order
to produce a working supercompiler. In order to also prove it correct, we need
the components to respect some properties, listed in Fig. 5. We have already
mentioned the introduction of an evaluation relation for configurations – Eval-
Conf – in terms of which most properties are formulated. Of course, evaluation of
configurations must be compatible with the original semantics of the language: if
we produce an initial configuration and evaluation environment from a program
and some input data, the evaluation of the configuration with this environment
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must give the same result as the evaluation of the program (EvalConf correct).
We further require 3 separate conditions for 3 of the possible driveStep results:

– driveStep DSTransient correct: evaluating the initial and the new configura-
tion must give the same result;

– driveStep DSBranch correct: evaluating the initial configuration must give
the same result as the evaluation of the first alternative, whose contrac-
tion matches (findAlt finds this alternative using evalContr). Notice that the
matching contraction may produce a new evaluation environment to be used
for the corresponding selected configuration;

– driveStep DSDecompose correct: here we assume that the result of evaluat-
ing each sub-configuration can be converted itself to a configuration (with
data2conf ). If we then plug these new sub-configurations in place of the orig-
inal ones, we must obtain the same evaluation result. (We use mapRelXsYs,
which is a binary-relation analog of the familiar map.)

Of the remaining correctness conditions, we have already discussed the one con-
cerning the whistle: whistleRel almostFull. This is the only condition needed
to prove the supercompiler terminating. Conversely, it has nothing to do with
preservation of semantics. When we fold to a configuration above in the process
tree, we require (foldConfs correct) that evaluating the upper configuration with
a transformed environment (akin to making a function call) is equivalent to the
evaluation of the lower configuration with the current environment. Finally the
condition for generalization – generalize correct – is completely analogous to the
condition for DSDecompose. Proofs of all these properties – for the components
defined for our example language (Fig. 3, 4) – can be found in the accompanying
Coq sources.

3 Process Graphs

From now on we assume present an arbitrary definition of a module with super-
compiler components (Fig. 1), together with proofs of their properties (Fig. 5).
As mentioned, driving produces potentially infinite process trees, which are con-
verted – with the help of folding and generalization – into finite process graphs.
The process graph resulting from supercompilation can be seen as an alternative
representation of the transformed input program. In practical supercompilers, a
post-processing phase converts the process graph into a new program in the cor-
responding language. As this last phase is too language-specific, we do not cover
it, and consider instead that the final result of supercompilation is the process
graph. These graphs have – besides the tree edges coming from the process tree
– also backward edges corresponding to folded configurations. We can use this
almost-tree nature of process graphs to make a simple inductive-type represen-
tation. To rule out “dangling” backward edges, however, we use a dependently-
typed encoding, similar to the now standard (de-Bruijn-index based) approach
for encoding only well-formed terms of languages with bindings (Fig. 6). A type
PGraph n in the inductive family PGraph corresponds thus to a subgraph at
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Inductive PGraph : nat → Set :=
| PGLeaf: ∀ {n}, Configuration → PGraph n
| PGTransient: ∀ {n}, Configuration → PGraph (S n) → PGraph n
| PGBranch: ∀ {n}, ContractionHead →

list1Set (Contraction × Configuration × PGraph (S n)) → PGraph n
| PGDecompDrv: ∀ {n}, (list Configuration → Configuration) →

list (Configuration × PGraph (S n)) → PGraph n
| PGDecompGen: ∀ {n}, (list Configuration → Configuration) →

list (Configuration × PGraph n) → PGraph n
| PGFold: ∀ {n}, Fin (S n) → EvalEnvTransf → PGraph (S n).

Fig. 6. Process graphs

depth n, and complete process graphs are represented by the type PGraph 0.
Notice that we treat slightly differently decomposition nodes arising from driving
as compared to ones arising from generalization. As we shall see, the latter are
not recorded in the history of visited configurations during supercompilation,
and thus are not considered as candidates for folding. For this reason they do
not count as separate levels in the graph.

3.1 Semantics of Process Graphs

To establish some semantics-preservation results, we need first to define the
semantics of process graphs. To give a semantics of folding nodes, we must keep
track of all nodes on the path from the root to the fold node itself. This list
contains graphs of strictly decreasing depth, represented as IndexedVect PGraph
n. The semantics of process graphs can be defined inductively (Fig. 7). Most cases
are straightforward, following our assumptions about the semantics of driving
step results. In the case of PGFold i fl, we move back i steps up the graph
(using a function ivNthWithTail, which returns both the i-th element and the
corresponding tail of an IndexedVect), assuming that the evaluation of the upper
node – in an environment modified by the fold label (fl) – gives the same result
as the evaluation of the fold node. The evaluation of PGBranch simply continues
with the selected sub-graph. For PGDecompDrv/PGDecompGen we first evaluate
each sub-graph. We can then reconstruct – using data2conf – a configuration
corresponding to the decomposition node itself, and use its evaluation result to
define the result of evaluating the decomposition node. The PGDecompGen case
differs from PGDecompDrv in that it does not push the current node onto the
stack of ancestor nodes before proceeding to evaluate sub-nodes.

4 Supercompilation

4.1 Provably-Terminating Supercompiler Definition

As already mentioned, we use the recent Coq formalization [20] of almost-full
relations to simplify the termination proof of our abstract supercompilation al-
gorithm. This Coq library provides some predefined almost-full relations plus
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Inductive PGEval: EvalEnv → ∀ n, IndexedVect PGraph n
→ PGraph n → Data → Prop :=
| PGEvalLeaf: ∀ env n pgs conf d,

EvalConf env conf d → PGEval env n pgs (PGLeaf conf ) d
| PGEvalTransient: ∀ env n pgs conf pg d,

PGEval env (IVCons (PGTransient conf pg) pgs) pg d
→ PGEval env n pgs (PGTransient conf pg) d

| PGEvalFold: ∀ env n (pgs: IndexedVect PGraph (S n)) (i : Fin (S n)) fl d,
PGEval (applyEET fl env) (snd (ivNthWithTail pgs i))

(fst (ivNthWithTail pgs i)) d → PGEval env (S n) pgs (PGFold i fl) d
| PGEvalBranch: ∀ env n pgs ch alts env pg d, contrHeadValid env ch = true →

env pg = findAlt env ch (list1map (fun cct ⇒ (fst (fst cct), snd cct)) alts)
→ PGEval (fst env pg) (IVCons (PGBranch ch alts) pgs) (snd env pg) d
→ PGEval env n pgs (PGBranch ch alts) d

| PGEvalDecompDrv: ∀ env n pgs f cgs d ds,
mapRelXsYs (PGEval env (IVCons (PGDecompDrv f cgs) pgs))

(map (@snd ) cgs) ds → EvalConf env (f (map data2conf ds)) d
→ PGEval env n pgs (PGDecompDrv f cgs) d

| PGEvalDecompGen: ∀ env n pgs f cgs d ds,
mapRelXsYs (PGEval env pgs) (map (@snd ) cgs) ds
→ EvalConf env (f (map data2conf ds)) d
→ PGEval env n pgs (PGDecompGen f cgs) d.

Fig. 7. Process graph semantics

combinators for building new out of existing ones. Perhaps more importantly,
it provides a way to build a well-founded relation out of an almost-full one.
We start by defining a transition relation scpTransRel: relation ScpArg (where
ScpArg := (list (Configuration × HistEntry) × Configuration)%type), which re-
lates the recursive-call arguments to the arguments of the original call in the
supercompiler definition below; we can then prove that this transition relation
is well-founded, based on our assumption that the whistle is almost-full. With
a suitable well-founded relation in place, we can proceed with the definition
of the main supercompilation algorithm (Fig. 8). It uses 2 (omitted) auxiliary
definitions: optionMatchWithEq matches option values with propagation of the
match result inside the branches (needed in the proofs that recursive calls to
supercompile respect the transition relation mentioned above); scpTryFold (hist :
list (Configuration × HistEntry)) (cfg: Configuration) : PGraph (length hist) →
PGraph (length hist) checks for possibilities to perform folding. The main super-
compilation function is then defined using the build-in Coq facilities for recursion
by a well-founded relation (the Fix combinator). The main definition is slightly
less readable than its Haskell or ML equivalent (which we can obtain through
extraction), because of the need to carry around extra hypothesis for the ter-
mination proof 4. We can note only one important variation with respect to

4 The termination proof is elided here, only the computationally-relevant part of the
definition is shown.
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Definition whistle he1 he2 := if whistleRel dec he1 he2 then true else false.
Definition supercompile (arg : ScpArg) : PGraph (length (fst arg)).

revert arg. apply (Fix ( scpTransRel wf) (fun arg ⇒ PGraph (length (fst arg)))).
refine (fun arg supercompile ⇒
let hist := fst arg in let cfg := snd arg in
let drive cfg1 (Heq : None =

find (fun h ⇒ whistle (snd h) (conf2histEntry cfg1 )) hist) :=
let newHist := (cfg1, conf2histEntry cfg1) :: hist in
match driveStep cfg1 with
| None ⇒ PGLeaf cfg1
| Some (DSTransient cfg2 )⇒ PGTransient cfg1 (supercompile (newHist, cfg2) )
| Some (DSBranch ch ccs) ⇒ let f cc := let pg1 : PGraph (S (length hist)) :=

supercompile (newHist, snd cc) in (fst cc, snd cc, pg1) in
PGBranch ch (list1map f ccs)

| Some (DSDecompose f cfgs) ⇒ let g cfg2 := let pg1 : PGraph (S (length hist))
:= supercompile (newHist, cfg2) in (cfg2, pg1) in

PGDecompDrv f (map g cfgs)
end in

match driveStep cfg with
| None ⇒ PGLeaf cfg
| Some ⇒ let pg := optionMatchWithEq

(find (fun h ⇒ whistle (snd h) (conf2histEntry cfg)) hist)
(fun p Heq0 ⇒ let oldCfg := fst p in

let f cs := generalize oldCfg cfg in
let f := fst f cs in let cs := snd f cs in
let scpSubCfg cfg1 := match driveStep cfg1 with
| None ⇒ PGLeaf cfg1
| Some ⇒ let pg : PGraph (length hist) := optionMatchWithEq

(find (fun h ⇒ whistle (snd h) (conf2histEntry cfg1 )) hist)
(fun p Heq1 ⇒ PGLeaf cfg1 )
(fun Heq1 ⇒ drive cfg1 Heq1 ) in

scpTryFold hist cfg1 pg
end in

let cgs: list (Configuration × PGraph ((length hist))) :=
map (fun cfg1 ⇒ (cfg1, scpSubCfg cfg1)) cs in PGDecompGen f cgs)

(fun Heq0 ⇒ drive cfg Heq0 )
in scpTryFold hist cfg pg

end).
... Defined.

Fig. 8. Generic supercompiler definition

classical formulations of supercompilation [18,17,7], concerning the treatment of
generalization. When we need to generalize, instead of immediately proceeding to
supercompile the new configurations generated by generalize, we check for each
of them if we can perform folding, and if a similar configuration is not already in
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Variable idEET : EvalEnvTransf.
Hypothesis idEET eq : ∀ env, applyEET idEET env = env.
Hypothesis driveStep def : ∀ conf, driveStep conf = Some (DSTransient conf ).
Hypothesis foldConfs eq : ∀ conf, foldConfs conf conf = Some idEET.
Lemma scpProg eq: ∀ c, supercompile (nil, c) = PGTransient c (PGFold Fz idEET ).
Lemma scpProgLoops: ∀ c env d, ¬PGEval env IVNil (supercompile (nil, c)) d.

Fig. 9. Example of a degenerate driving definition

the history. If both tests fail, we do not drive this particular sub-configuration
any further, but keep it as a leaf in the process graph. This modification greatly
simplifies our termination proof (compared to Sørensen [17] for example), and
avoids the need to impose any termination-related conditions on generalize.

4.2 Soundness of Supercompilation

Another important property – besides termination – is soundness of supercom-
pilation [6]: whenever the evaluation of a process graph (obtained through su-
percompilation) produces some result, the evaluation of the input configuration
gives the same result. We can prove soundness by induction on the derivation of
PGEval, and by using the properties from Fig. 5. The technical details – includ-
ing choosing a strong-enough induction hypothesis – can be found in the Coq
sources.
Theorem scp sound: ∀ conf env d, PGEval env IVNil

(supercompile (nil, conf )) d → EvalConf env conf d.

4.3 Completeness of Supercompilation

The other direction of semantics preservation is completeness: whenever the in-
put program produces some result, the evaluation of the supercompiled process
graph should terminate with the same result. Unfortunately completeness turns
out harder to establish. Our current assumptions about supercompiler ingredi-
ents do not rule out some degenerate definitions of driving, which do not preserve
termination in the supercompilation result (not to be confused with termination
of the supercompiler itself). The example in Fig. 9 shows an instance of the
problem (with supercompilation always producing an infinite loop).

Obviously we need some stronger assumptions about supercompiler compo-
nents in order to establish completeness. One possibility is to consider explicitly
the evaluation semantics induced by our generic supercompiler definition – in
the form of an inductive relation ScpEval. If we make the extra assumption, that
ScpEval is equivalent to EvalConf, we can prove a generic completeness result
by induction on the derivation of ScpEval.
Theorem scp complete: ∀ conf env d, EvalConf env conf d →

PGEval env IVNil (supercompile (nil, conf )) d.
Details about this proof can be found in the Coq sources. Further studies are

needed to see if this new proof obligation – needed only for proving completeness
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– is easy enough to establish in each instance, or it can be replaced by a weaker
condition. An evaluation relation for infinite process trees, coupled with an as-
sumption of equivalence to EvalConf, appears a good candidate for this purpose.

5 Related Work

Supercompilation has been developed by Turchin and his students, starting from
the early 1970s, originally only in the context of the language Refal [19]. Since the
1990s a number of other supercompilers have been developed, transferring the
technique to many different (mostly functional) languages. A non-exhaustive(!)
list includes [2,3,14,5,9,1,15,13]. Supercompilation is closely related to other
program-transformation and optimization techniques, such as partial evaluation
and deforestation [21].

A general approach for establishing semantics preservation in supercompil-
ers and similar transformers has been proposed by Sands [16]. While it works
for a variety of transformations, it makes strong assumptions about the object
language (a higher-order functional language with CBN semantics). In contrast,
we make fewer assumptions about the object language, but only treat a specific
kind of program transformation. Another general technique, often cited by su-
percompiler authors, concerns termination of the transformation process [17]. It
establishes sufficient conditions for transformer termination in a more general
form than the one considered here. This approach has not been formalized, how-
ever, and its application in an automated verification system such as Coq would
likely require additional work.

In contrast to the number of supercompiler implementations for specific lan-
guages, there are only a few proposed approaches for general treatment of su-
percompilation and similar program transformations [4,6,8]. Jones presents an
abstract formulation of driving [4], with only a small number of assumptions
about the object language – work similar in spirit to our current approach. Still,
some of the assumptions in Jones’ paper seem geared towards simple imperative
or first-order tail-recursive functional languages. Also, termination and general-
ization are not treated there.

The work of Klimov [6] covers the complete supercompilation process, and
proves a number of interesting high-level properties. To achieve these results,
Klimov assumes a specific object language (first-order functional) and data do-
main. It would be interesting to generalize this approach by abstracting from
the details of the object language.

The recent work on the MRSC toolkit [8] is probably closest in spirit to ours.
It also considers a language-agnostic formulation of supercompilation based on
a small set of basic operations. The focus of the MRSC toolkit is different,
however, with the main goal being a generalization of the traditional process
of supercompilation, which covers new techniques like non-deterministic and
multi-result supercompilation. On the other hand, the MRSC toolkit does not
currently cover the process of formally verifying the correctness of the different
supercompilers that can be built with it.
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6 Conclusions and Future Work

We have presented in some detail – including the key fragments of the Coq
source – the current state of a project to create a generic framework for build-
ing supercompilers for different programming languages. An important achieve-
ment so far has been the identification of a small set of independent properties,
which must be satisfied by the basic components of each supercompiler in or-
der to ensure and formally verify the soundness of supercompiled programs and
the termination of the supercompiler itself. The underlying hypothesis is, that
the independent proofs of these smaller properties will be much simpler than
a monolithic proof for the whole supercompiler. The proof of completeness of
supercompilation requires, however, some stronger assumptions about the super-
compiler components. We plan to study in the future if the conditions required
for proving completeness can be simplified and unified with those for soundness.

Another interesting point is, that we have managed to formulate the generic
supercompiler algorithm as a total function in Coq. This definition is facilitated
by the recent Coq formalization of almost-full relations [20]. Our approach can
be adapted to other algorithms, whose termination relies on similar invariants
(extending some computation history in each recursive call, while ensuring that
this history cannot grow unlimitedly).

Applying the framework to build more supercompilers – for sufficiently dif-
ferent languages – will likely suggest possibilities to refine the framework and
further simplify its use. Already the first supercompiler built with this frame-
work suggests an interesting improvement to study: move from call-by-value to
call-by-name semantics for decomposition nodes.

While the proposed framework is not tied to any specific programming lan-
guage, it only covers a specific organization of the supercompilation process. We
would not be able to apply it directly on some recent sophisticated modifications
of the supercompilation method, such as distillation [3] or multi-result supercom-
pilation [8]. Still the basic idea remains applicable: abstract the details of the
specific language into a set of basic operations, equipped with a set of specific
correctness properties. Consequently, we envision using modified versions of our
framework to cover similar extensions of the basic supercompilation algorithm.

Acknowledgments. The author would like to thank the three anonymous ref-
erees for the helpful suggestions on improving the presentation of this article.
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Abstract. The notion of a backreference in practical regular expres-
sions is formalised giving rise to a novel notion of a regular expression
with variables. So far the state-of-the-art in formal languages theory of
practical regular expressions with backreferences was represented by an
operational matching semantics of trees of valid matches. Since explicit
tree data structures are required only in procedural languages where
functional list combinators are not available, this provides an opportu-
nity for functional programming to step in with a computationally and
proof-theoretically more tangible definition of backreferences and their
matching semantics. An operational notion of (NP-complete) exhaustive
pattern matching is provided that relies on a fundamental construction
of partial derivatives of regular expressions. Matching is proved sound
and complete.

1 Introduction

Regular expressions [22,13] are a formalism ideally suited to specification and
implementation with formal methods. They are essential for text processing and
form the basis of most markup schema languages. Regular expressions are useful
in the production of syntax highlighting systems, data validation, speech pro-
cessing, optical character recognition, and in many other situations when we
attempt to recognise patterns in data.

Extended versions of regular expressions are used in search engines such as
Google Code Search. In fact, there is a difference between what is understood
by the term regular expression in programming and in theoretical computer
science. Different software based on regular expressions has in each case its own
“RegEx flavour”: ECMAScript, Perl-style, GNU RegEx, Microsoft Word, POSIX
Basic/Extended RegEx (with extensions), Vim, and many others.

In contrast, theoretical computer science uses a single formal definition for a
regular expression which defines it as consisting of constants and operators that
denote sets of strings and operations over these sets respectively. For example,
assuming a and b are symbols, a+b∗ denotes the set {ε, a, b, bb, bbb, . . .}, where ε
denotes the empty string; and (a+ b)∗ denotes the set of all strings composed of
a and b (including the empty string ε): {ε, a, b, aa, ab, ba, bb, aaa, . . .}. The formal
definition is purposely minimalist in that it avoids redundant operators that can
be expressed through application of existing ones. Regular expressions in the
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precise sense express the class of regular languages, which is exactly the class of
languages accepted by finite state automata. This definition has the maximum
degree of independence from any implementation.

In functional programming, the usual procedure is to enumerate words of
the languages denoted by regular expressions using finite automata [18]. Less
common but more efficient are partial derivatives of regular expressions [19,3].
They are purely functional [12].

Patterns. A pattern [7] is a description of a word at a meta-scale: instead of
considering the word as a sequence of individual symbols, one looks at the word
as a sequence of certain blocks. More formally, a pattern p is a word that contains
special symbols, called pattern variables ; p is a pattern of a word w if w is
obtained from p by uniformly replacing the variables with words (which may be
empty depending on the convention). The pattern language denoted by a pattern
p is the set of all words that match p. For example, the pattern xyx denotes the
set of all words in a language each of which has a prefix and a suffix that are
the same and have a word in between.

Many features found in modern pattern matching libraries, and in languages
such as Perl or Python, provide expressive power that far exceeds the capacities
of regular languages and requires pattern languages. In our opinion, the most
interesting of such extra capacities is backreferencing – the ability to group
subexpressions and recall the value they match later in the same expression.
Such a pattern can match strings of repeated words like “papa”, called squares
in formal language theory. The obvious Perl pattern for such strings is (.*)\1.
However, the language of squares is not regular, nor is it context-free. Regular
expression matching with an unbounded number of backreferences, as supported
by numerous modern tools, is NP-complete [1], and therefore requires practical
algorithms that maximally approximate non-deterministic complexity bounds.

Backreferences may be seen acting as variables in patterns. The language de-
noted by a pattern is obtained by substituting variables with arbitrary terminal
strings in the case on erasing patterns and non-empty terminal strings in the
case of non-erasing patterns.

Pattern languages are often accepted as the theoretical meaning of extended,
also called practical, regular expressions [6,20]. However, patterns are defined
with no recursion or choice and therefore require pre-processing of regular ex-
pressions in order to form a set of patterns from an expression with iteration
or non-deterministic choice. For that reason, in this particular paper, I do not
choose patterns as the meaning of backreferences.

Matching problem. The matching problem for regular expressions is the problem
to decide, for a given word over a finite alphabet of symbols and a given regular
expression, whether or not the word belongs to the language denoted by the
regular expression. There are quite efficient polynomial algorithms for deciding
this basic problem [19,3,8,12]. These algorithms are based on a simple fact that
the non-deterministic finite automaton recognising the language of the regular
expression is guaranteed to terminate on finite input words.
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Alternative existing definitions of regular expressions with backreferences, for
example, by means of match-trees [5] or ordered trees [6], are better than patterns
in terms of correspondence to the implementation of practical regular expressions
– since they refer to the operational matching semantics – but, on the other hand,
the tree semantics is quite specific to their matching problem and, moreover, to
the paradigm of intended implementation languages.

The solution to these odds that I propose in this paper is to adopt an approach
of mechanised meta-theory, namely, to view a matching problem as existence of
a mapping from variables to words in a sequent

x0 : e0, . . . , xk−1 : ek−1 
 w : e (1)

where w is a word to be matched, e is a regular expression whose variables occur
in the list of context variables x0, . . . , xk−1 such that each variable xi is bound
to match only those words that are matched by ei, and such that the variables of
ei occur in the list x0, . . . , xi−1. Such a context x0 : e0, . . . , xk−1 : ek−1 is said to
be telescopic. The consequent w : e does not introduce new variables, and so, all
the variables in e are bound. A valid solution for the matching problem (1) is a
simultaneous substitution, for 0 ≤ i < k, of a word wi for xi in ei+1, . . . , ek−1, e
such that ei matches wi and e matches w. There may be not one but many
different valid solutions. The algorithm introduced in this paper is exhaustive,
that is, it enumerates all the possible solutions. Using lazy evaluation, one can
extract a solution from the (lazy) list of all solutions, for example, by taking the
head of this list, as in the list of successes method ([4], §6.5).

Contributed programs and proofs. The Coq function definitions and proofs of
soundness and completeness theorems are available on my webpage [11]. The
computational content has been translated to Haskell essentially by hand. The
Coq source relies on ssreflect libraries [9], which is made because of the high
level of support that is offered to functional list combinators by the mentioned
libraries.

Outline. The main body of the paper starts, in Section 2, with an intuitive ex-
ample showing the use of the internals of the Haskell pattern matching library.
In Section 3 I recall a historic approach of match-trees for regular expressions
with backreferences. For the purposes of efficient formalisation, I introduce a
more transparent notion of regular expressions with variables in Section 4. Sec-
tions 5–7 contain the decision procedure for the matching problem programmed
in Haskell. In Section 8 there are proofs of soundness of vmatch. Completeness
is only stated, with the proofs available in the contributed Coq script.

2 A Haskell Example

The symbolic approach of this paper to matching with variables can be illus-
trated on the following example. There is a finite alphabet over which we define
regular expressions. From the finite structure, we also have a decidable equality
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and a countable structure. The finite alphabet contains four symbols that might,
for instance, denote the nucleotides of messenger RNA. In Haskell, we can define
the alphabet as a data type like this:

data RNA = A | C | G | U deriving (Eq, Enum, Show)
nMolecules = fromEnum U − fromEnum A + 1

where nMolecules is the number of different nucleotides computed by utilising the
countable Enum structure. Next we give names to regular expressions denoting
single symbols in our RNA alphabet and, moreover, introduce two symbolic
variables (details follow in Section 6):

a = Atom A ; c = Atom C ; g = Atom G ; u = Atom U ; x = Var 0 ; y = Var 1

A nucleotide is certainly not an atom in terms of physics, however, it is an Atom
of a formal language. A nucleotide is either of A, C, G or U. Rather than keeping
this information implicit in the data type, we devise a piece of abstract syntax
to capture it. The meaning of “or” will be attached to the constructor Alt (from
“alternate”). Moreover, we will also introduce the constructor Star (also known
as the Kleene star, or “iterate”) to denote any number of repetitions of a given
abstract expression. We can give Haskell definitions now:

nucleotide = Alt a (Alt c (Alt g u))
nucleotides = Star nucleotide

Coming to the main part of the example, suppose we are given the following
RNA sequence:

rnaSequence = [U, A, G, C, G, U, A, G, C, G, U, U, U]

against which we intend to match the following symbolic expression:

rnaExpression =
Conc nucleotides (Conc y (Conc x (Conc y (Conc nucleotides (Conc x nucleotides)))))

where the constructor Conc denotes the concatenation of words matched by its
arguments. When matching rnaExpression against rnaSequence, we are looking for
any possible matches in rnaSequence for symbolic variables x and y that follow the
pattern outlined in rnaExpression, namely, an arbitrary sequence followed by x, y
and x which are followed by another arbitrary sequence which is followed by x and
yet another sequence. Suppose also that the only matches for y that we accept are
the sequences UA or AG. This will reduce the search space dramatically. Hence
we require a mapping of variables to their acceptable matches. Since variables
are indexed with non-negative numbers, we will use a list of expressions. The
element with index 1 will denote the set of acceptable matches for Var 1, that
is, y, while Var 0 will be unconstrained:

rnaContext = [nucleotides, Alt (Conc u a) (Conc a g)]

At the last step, we apply the matching function vmatch from Section 6 to
compute all the matches under the context assumptions rnaContext:

rnaValuations = vmatch nMolecules rnaContext rnaExpression rnaSequence
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The result is a list of mappings of variables to sequences which, in this example,
contains duplicate matches:

[[[G,C,G],[U,A]], [[G,C,G],[U,A]], [[C,G,U],[A,G]], [[C,G,U],[A,G]],
[[G,C,G],[U,A]], [[G,C,G],[U,A]], [[C,G,U],[A,G]], [[C,G,U],[A,G]]]

Duplication occurs because the internal function that generates all possible can-
didate mappings of variables to sequences does not ensure that each mapping
occurs only once. Hence the computational effort is multiplied! However, on
such a small scale it turns out to be slower to find and remove duplicate can-
didates compared to using efficient Haskell memoisation for recalling results of
previously performed computations. The method of vmatch is especially efficient
when computing the first possible match, in which case the tail of the list will
not be computed.

3 Historic Preliminaries: Language-Theoretic Definition
of Backreferences

This definition of regular expressions with backreferences (rewbs, for short) origi-
nates from [5]. A formal language theorist assumes that the opening parentheses
in a given formal expression e (with nullary constructors 0 and 1, unary con-
structors (for alphabetic symbols) and ∗ (iteration), and binary constructors +
and ×) are numbered from the left to the right, and the closing parentheses are
numbered in the correspondence with the opening parentheses. For example,

(
1
. . . (

2
. . . (

3
. . . )

3
. . . )

2
. . . (

4
. . . )

4
)
1

Definition 1 (Backreference). A backreference \m where m ≥ 1, matches
the contents of the m-th pair of numbered parentheses on the left of it.

For example, the regular expression (a∗)×b×\1 defines the language

{an · b · an | n ≥ 0}

Lemma 1 (Campeanu–Salomaa–Yu pumping lemma, [5]). Let e be a
rewb. Then there is a natural number n such that, for w ∈ L(e) and |w| > n,
there is an m ≥ 1 and a decomposition w = x0 · y · x1 · y · . . . · xm such that

1. |x0 · y| ≤ n,
2. |y| ≥ 1,
3. x0 · yj · x1 · yj · . . . · xm ∈ L(e), for all j > 0.

From [5] it is known that rewb languages are context-sensitive and incompara-
ble with the family of context-free languages. The latter is due to the observation
that the language {an · bn | n ≥ 0} is context-free but cannot be expressed by a
rewb (as a corollary of Lemma 1), and the language {an · b · an · b · an | n ≥ 1}
is a rewb language but not a context-free one.
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In [6], it was proved that rewb languages are not closed under intersection
and their emptiness of intersection problem is undecidable. Moreover, since [1]
we know that the matching problem for rewbs is NP-complete for arbitrary al-
phabets, and the paper [6] proves that NP-completeness holds even when the
target string is over a unary alphabet.

More specifically, to define a matching problem for rewbs we quote the defi-
nition of matching of a string with an rewb from [6]. An ordered tree t is a valid
match-tree for w and e if and only if the root of t is labelled by (w, e) and the
following conditions hold for every node u in the domain of t:

1. If t(u) = (w, a) for some a ∈ A then u is a leaf node and w = a.
2. If t(u) = (w,F1×F2) then u has two children labelled, respectively, by

(w1, F1) and (w2, F2), with w1 · w2 = w.
3. If t(u) = (w,F1 + F2) then u has one child labelled either by (w,F1) or by

(w,F2).
4. If t(u) = (w,F ∗) then either u is a leaf node and w = ε or u has k ≥ 1

children labelled by (w1, F ), . . . , (wk, F ), with w1 · wk = w.
5. If t(u) = (w, (

i

F )
i

) then it has one child labelled by (w,F ).

6. If t(u) = (w, \m) then u is a leaf node, (
m
F )

m
is a subexpression of e, and there

is a node v to the left of u such that t(v) = (w, (
m
F )

m
) and no node between

v and u has (
m
F )

m
in its label. In other words, w is the string previously

matched by (
m
F )

m
in the left-to-right pre-order of nodes.

The paper [5] features a slightly different definition where unassigned back-
references are set to match the empty string by default.

The language L(e) denoted by a rewb e over an alphabet Σ is the set of all
w ∈ Σ∗ such that (w, e) is the root label of a valid match-tree. The matching
problem has an operational definition in [6]:

Definition 2 (Matching problem for rewbs). For some w and e, is (w, e)
the root label of a valid match tree?

The straightforward deterministic exponential time algorithm suggested in
[1] uses backtracking and enumerates all the possible subwords of w that can be
assigned to the variables in e. The worst-case running time of that algorithm is
therefore O(|w|2k) where k is the number of variables in e. Once an assignment of
subwords to variables is defined, the matching problem reduces to variable-free
regular expression matching.

Definition 1 is not satisfactory already because it requires a notion of match-
ing, while matching is only defined in Definition 2 which in turn relies on Defi-
nition 1. The next section presents a way out of this awkward situation.

4 Regular Expressions with Variables

A suitable definition has to be only slightly more general. In the grammar con-
struction there need not be any reference to matching.
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Definition 3 (Revs). We define regular expressions with variables (revs) over
an alphabet Σ with variables from a set X by the following grammar:

e ::= 0 | 1 | a | x | e+ e | e×e | e∗

for any a ∈ Σ and any x ∈ X.

In practical regular expressions, the variables (i.e., backreferences) are assigned
values in regular expressions. Therefore we have to express this kind of assign-
ments. We can do that for a rev e by introducing a telescopic context Δ consisting
of pairs x0 : e0, . . . , xk−1 : ek−1, where x0, . . . , xk−1 are distinct variable names
and the variables of ei are contained in the set x0, . . . , xi−1. The latter is re-
quired to exclude circularity. We say that e is well-defined by Δ if Δ is telescopic
and variables of e are contained in the variables of Δ. (The standard for back-
references left-to-right ordering of the first occurrences of variables in e is not
important in this case). We will write e(x0, . . . , xn) for a regular expression e
whose variables occur among x0, . . . , xn. Let the telescopic context Δ be

x0 : e0, x1 : e1(x0), . . . , xk−1 : ek−1(x0, . . . , xk−2)

An improvised definition of the matching problem for revs can be the following.

Definition 4 (Matching problem for revs). The truth value of the below
statement is the answer to the question whether e which is well-defined by x0 :
e0, . . . , xk−1 : ek−1 matches w:
There is a subword u0 of w such that e0 matches u0 and
. . .
there is a subword ui of w such that ei(x0, . . . , xi−1) matches ui and
. . .
there is a subword uk−1 of w such that ek−1(x0, . . . , xi, . . . , xk−2) matches uk−1

and e(u0, . . . , ui, . . . , uk−1) matches w.

Now it is the right time to mention a decision procedure for matching. Due to
the NP-completeness of matching with backreferences (and hence, variables) the
standard partial derivative construction ([19], [3]) does not apply here. But we
can specify it to a given valuation, that is, a mapping from variables to words.
For a given valuation v and e whose variables are contained in the domain of
v, the set of non-trivial partial derivatives πv(e) of e is defined by induction as
follows (in the style of [2]):

πv(0) = ∅ πv(F +G) = πv(F ) ∪ πv(G)

πv(1) = ∅ πv(F×G) = (πv(F )×G) ∪ πv(G)

πv(a) = {ε} πv(F
∗) = πv(F )×(F ∗)

πv(x) = πv(v(x))

where ε is the empty word, concatenation × is appropriately extended to sets
of revs, and v(x) denotes a lifting of the word v(x) to a regular expression, that
is, a concatenation of successive symbols in v(x). From [19], we know that, for a
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variable-free regular expression e, the size of the set πv(e) equals the number of
distinct alphabetic symbols in e. For e with variables, the size of this set equals
the number of distinct symbols in e and v (assuming no redundant variables
in v) because the derivatives of a variable are essentially the derivatives of a
concatenation.

The formulation of the partial derivative transition matrix follows in Section 7.
That matrix and the set of all partial derivatives {e} ∪ πv(e) (called a prebase
vector of e) yield a non-deterministic finite automaton accepting the language of
e under v. The matching problem for revs is decided by the prebase construction.

5 Generation of Valuations

There are several functions that are essential for combinatorial generation of a
list of all subwords of a given word, as it is required by the exhaustive matching
algorithm that tries to check all the possible valuations for variables. The folklore
generator takes all suffixes of all prefixes of a given list. Dually, it can take all
prefixes of all suffixes. Left and right scans are used to construct prefixes and
suffixes respectively. There is a difference however with scans in the Haskell
prelude: the scans here do not append the seed value x to the list of results, which
is due to the fact that definitions by structural recursion are more straightforward
in that case. Below is the definition for the left scan:

scanlN :: (b → a → b) → b → [a] → [b]
scanlN f z (x : s) = y : scanlN f y s where y = f z x
scanlN f z [] = []

and the right scan:

rcons s x = s ++ [x]

scanrNr :: (a → b → b) → b → [a] → [b]
scanrNr f z (x : s) = scanrNr f y s ‘rcons‘ y where y = f x z
scanrNr f z [] = []

scanrN f z s = scanrNr f z (reverse s)

Non-empty prefixes, non-empty suffixes and the list of all non-empty subwords
are defined as follows:

initsN :: [a] → [[a]]
initsN = scanlN rcons []
tailsN :: [a] → [[a]]
tailsN = scanrN (:) []
segsN :: [a] → [[a]]
segsN = concat . map tailsN . initsN

Finally, the most important technical definition of this paper is the following.
In order to match in telescopic contexts, a function is required that generates all
k-element lists of values of type a where each i-th element satisfies a condition
that depends on the previous i−1 elements, that is, on the history of matches of
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the previous context variables. We call k-element lists of that kind k-sequences.
The computation is performed by kseqs:

kseqs :: [a] → ([a] → a →Bool) → Int → [a] → [[a]]
kseqs grnd px k z
| k == 0 = [z]
| k > 0 =

concat (map (r (k − 1) . rcons z) (filter (px z) grnd))
where r = kseqs grnd px

where z is a prefix to be either returned straight away in the trivial case where
k = 0, or appended to each of the k-sequences on the left, grnd is a given list
of ground values from which we take those that satisfy the boolean predicate
px z, append them at the right of z and construct all k − 1-sequences for all
these new prefixes. The “for all” functionality is delegated to map, the list of
satisfying values is constructed by filter, and concat performs the role of a
“reduce” operator that takes the output from map. Some more hints on how and
why this definition of k-sequences works are coming up in technical Lemmas 2
and 4.

6 Representation of Regular Expressions with Variables

Here are the design choices that are behind the definition of regular expressions
with variables:

– The type of regular expressions is polymorphic in the type of alphabet sym-
bols.

– Variables are indexed by natural numbers.
– In computations, the user is supposed to provide the size of the alphabet and

the number of variables in a regular expression, together with constraints on
these variables.

Revs form the type REV:

data REV a = Void | Eps | Atom a | Var Int
| Alt (REV a) (REV a) | Conc (REV a) (REV a) | Star (REV a)
deriving Eq

The constructors correspond, respectively, to 0, 1, a, x, +, × and ∗ from Sec-
tion 4. Since symbols are represented by numbers, words are represented by lists
of numbers, and valuations are represented by lists of words. The intended usage
of a valuation is to provide a one-to-one correspondence with a list of regular
expression constraints on context variables. Also, a suitable notion of a matrix
is required to represent the transition function of the NFA produced by the
construction detailed further in Section 7. Hence we have

type Valuation a = [[a]]
type Mat a = [[a]]

Given a valuation v for free variables in e, a ground match is a deterministic
test whether e matches w when every free variable is substituted with its value
according to the valuation. This test is defined as follows:
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gmatches :: (Eq a, Enum a) ⇒ Int →Valuation a →REV a → [a] →Bool
gmatches n v e w = g w 0 where
g = λw i →
case w of
[] → o !! i
a : u → any (λk → g u (1 + k)) (m !! i !! fromEnum a)

t = ptup v e
o = [has eps v e’ | e’ ∈ t]
m = pmat n v e

Here, t is the list of states of the NFA, o is the characteristic list of the output
states of the NFA, and m is the matrix of transitions of the NFA. The application
of any (an iterated disjunction) computes whether the ground match holds for
some partial derivative reachable by the transition a from the current state i.

The list of all successful matches for context variables can be constructed by
kseqs. It is a matter of using gmatches to filter the appropriate matches:

telematch :: (Eq a, Enum a) ⇒ Int → [REV a] → [a] → [Valuation a]
telematch n ctxt w =
kseqs ([] : segsN w)
(λv u → gmatches n v (ctxt !! (length v)) u)
(length ctxt)
[]

Lastly, the list of all valid matches for context variables is computed by our
main function of interest:

vmatch :: (Eq a, Enum a) ⇒ Int → [REV a] →REV a → [a] → [Valuation a]
vmatch n ctxt e w = filter (λv → gmatches n v e w) (telematch n ctxt w)

7 Non-deterministic Finite Automaton Construction

In this section I extend the construction of [12] to account for variables. Cor-
rectness of this construction is a separate issue and is a purpose of a theorem of
Mirkin [19] that was checked using Coq in [12].

A prebase of a regular expression consists of a prebase vector which corre-
sponds to the set of states of an NFA, and a prebase matrix which corresponds
to the transition function of that NFA. Moreover, the NFA defined by a prebase
of a regular expression e accepts the language denoted by e. Graphically, we can
picture a vector of states and a transition matrix of e as follows (the indexing
pattern is chosen on purpose):⎡⎢⎢⎢⎣

e
e0
...

em−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

c′0 . . . c′n−1

c0,0 . . . c0,n−1

... . . .
...

cm−1,0 . . . cm−1,n−1

⎤⎥⎥⎥⎦
In terms of automata, e is the initial state, and each regular expression in this
vector that matches the empty word is a final state. The elements of the transi-
tion matrix are sets of numbers i such that 0 ≤ i < m. Each number i in a cell
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refers to the regular expression ei and its corresponding row i in this matrix. The
width of the matrix is n which is the number of symbols in the alphabet of the
regular expression (which is always finite). Therefore columns are enumerated
by (the indices of) symbols. Each cell c′j , for 0 ≤ j < n, contains (references to)
the partial derivatives of e with respect to the symbol with number k. Likewise,
each cell ci,j , for 0 ≤ i < m and 0 ≤ j < n, contains (references to) the partial
derivatives of ei with respect to the symbol with number j. I mentioned that
the indexing is not arbitrary: The topmost row stands out because, with the
definitions that are given below in this section, there are no references to that
row anywhere in the matrix. Thus numbering of partial derivatives in fact starts
from the row below it.

The base cases of the recursive computation of the prebase vector and matrix
involve constructors Void, Eps and Atom. The first two cases are similar because,
except for the empty word, whatever word we choose to residuate these regular
expressions with, we obtain Void, with no derivatives. Therefore we still have to
provide one row of the prebase matrix in pmat void and pmat eps just to express
the fact that these regular expressions have no derivatives with respect to any
symbol, see Figure 1. The third base case is only slightly bigger. There is a new

ptup void :: [REV a]
ptup void = [Void]
pmat void :: Int →Mat [Int]
pmat void n = [replicate n []]

ptup eps :: [REV a]
ptup eps = [Eps]
pmat eps :: Int →Mat [Int]
pmat eps n = [replicate n []]

Fig. 1. Prebases of Void and Eps

derivative with respect to the given symbol with number i. The prebase matrix
must have two rows, with the first row containing the reference to the second
row in the column of the given symbol. This reference is denoted by 0. The
numbering schema in the cells does not refer to the matrix row 0, which means
that, when 0 occurs as an element of a cell in the matrix, it in fact refers to the
matrix row 1. Other columns are empty, and all the columns in the second row
are empty as well since Eps has no derivatives with respect to symbols:

ptup atom :: a → [REV a]
ptup atom i = [Atom i, Eps]
pmat atom :: Enum a ⇒ Int → a →Mat [Int]
pmat atom n a =
[if j == fromEnum a then [0] else [] | j ∈ [0 .. n − 1]] :
[replicate n []]

In the recursive cases that follow, the vectors are obtained from vectors of the
component regular expressions. Consider the case of Alt first. We construct a
vector of length 1 + (size t1 − 1) + (size t2 − 1). The vector of derivatives of
Alt e1 e2 consist of this expression itself (trivially), the non-trivial derivatives of
e1, and the non-trivial derivatives of e2:



160 V. Komendantsky

ptup alt :: [REV a] → [REV a] → [REV a]
ptup alt t1 t2 = Alt (head t1) (head t2) : tail t1 ++ tail t2

With the dimensions of the matrix known from the vector construction, we have
to fill in the first row of the matrix with disjoint unions of references to the
corresponding rows in the submatrices of non-trivial derivatives of the compo-
nent regular expressions. The disjoint union is implemented here (too simply
though) by list concatenation. The rows below the first one contain copies of the
corresponding rows from the component matrices, however, the rows from the
second matrix have been shifted by the size of the first matrix less the first row.
Therefore all the references to rows originating from the second matrix should be
shifted accordingly. Note, similar to the atomic case, the function (− 1) on inte-
gers has natural numbers as its image provided that correct matrices are given
as input, see Figure 2. The case of Conc is similar to the previous one. However,

pmat alt :: Int →Mat [Int] →Mat [Int] →Mat [Int]
pmat conc :: Int →Mat [Int] →Mat [Int] → [Bool] →Mat [Int]

pmat alt n m1 m2 =
[m1 !! 0 !! j ++

[k + nrows m1 − 1
| k ∈ m2 !! 0 !! j]
| j ∈ symbols] :
tail m1 ++

[[[k + nrows m1 − 1
| k ∈ m2 !! i !! j]
| j ∈ symbols]
| i ∈ [1 .. nrows m2 − 1]]
where
symbols = [0 .. n − 1]
nrows m1 = length m1
nrows m2 = length m2

pmat conc n m1 m2 output1 =
[[m1 !! i !! j ++

if output1 !! i
then [k + nrows m1 − 1 | k ∈ m2 !! 0 !! j]
else []
| j ∈ symbols]
| i ∈ [0 .. nrows m1 − 1]] ++

[[[k + nrows m1 − 1
| k ∈ m2 !! i !! j]
| j ∈ symbols]
| i ∈ [1 .. nrows m2 − 1]]
where
symbols = [0 .. n − 1]
nrows m1 = length m1
nrows m2 = length m2

Fig. 2. Prebase matrices for constructors Alt and Conc

the first length t1 elements are concatenations of a derivative of the first compo-
nent regular expression with the second component expression. The remaining
elements represent derivatives for the case when the first expression matches the
empty word. Concatenation behaves differently depending on whether or not the
first component regular expression matches []. So, we add an extra argument of
type [Bool] to the function constructing the concatenation matrix to represent
this characteristic of each of the derivatives of the first expression. In the matrix
of the compound expression, we shift the values of the references to the rows
belonging to the second component matrix, see Figure 2.
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ptup conc :: [REV a] → [REV a] → [REV a]
ptup conc t1 t2 = [Conc e (head t2) | e ∈ t1] ++ tail t2

The case of Star is similar to the case of Conc, which is intuitively clear and
even simpler because there is only one component regular expression that we
concatenate zero or more times with itself:

ptup star :: [REV a] → [REV a]
ptup star t = estar : [Conc e estar | e ∈ tail t]
where estar = Star (head t)

pmat star :: Int →Mat [Int] → [Bool] →Mat [Int]
pmat star n m output =
head m :
[[m !! i !! j ++ if output !! i then m !! 0 !! j else []
| j ∈ [0 .. n − 1]]
| i ∈ [1 .. nrows m − 1]]
where nrows m = length m

A novelty due to the appearance of variables is the dedicated functions com-
puting the prebase vector and the prebase matrix for a word. These functions
are used to compute automata for valuations:

ptup word :: [a] → [REV a]
ptup word = foldr (ptup conc . ptup atom) ptup eps

pmat word :: Enum a ⇒ Int → [a] →Mat [Int]
pmat word n = foldr (λa m → pmat conc n (pmat atom n a) m [False, True]) (pmat eps n)

Putting it all together, the vector of partial derivatives and the transition
matrix are computed by the following functions. First, the prebase tuple:

ptup :: Valuation a →REV a → [REV a]
ptup Void = ptup void
ptup Eps = ptup eps
ptup (Atom a) = ptup atom a
ptup v (Alt e1 e2) = ptup alt (ptup v e1) (ptup v e2)
ptup v (Conc e1 e2) = ptup conc (ptup v e1) (ptup v e2)
ptup v (Star e) = ptup star (ptup v e)
ptup v (Var i) = ptup word (v !! i)

The “matches []” characteristic needed for concatenation and iteration:

has eps :: Eq a ⇒Valuation a →REV a →Bool
has eps Void = False
has eps (Atom ) = False
has eps Eps = True
has eps (Star ) = True
has eps v (Alt e1 e2) = has eps v e1 || has eps v e2
has eps v (Conc e1 e2) = has eps v e1 && has eps v e2
has eps v (Var i) = v !! i == []
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At last, the prebase matrix:

pmat :: (Eq a, Enum a) ⇒ Int →Valuation a →REV a →Mat [Int]
pmat n Void = pmat void n
pmat n Eps = pmat eps n
pmat n (Atom a) = pmat atom n a
pmat n v (Alt e1 e2) = pmat alt n (pmat n v e1) (pmat n v e2)
pmat n v (Conc e1 e2) = pmat conc n (pmat n v e1) (pmat n v e2)

[has eps v e’ | e’ ∈ ptup v e1]
pmat n v (Star e) = pmat star n (pmat n v e)

[has eps v e’ | e’ ∈ ptup v e]
pmat n v (Var i) = pmat word n (v !! i)

Thus we introduced everything required to complete the definition of vmatch
that we started in Section 6.

8 Soundness and Completeness of Exhaustive Matching

In this section I prove, with a reference to the contributed Coq script, that reg-
ular expression matching with variables as defined by vmatch is sound, that is,
the list of results produced by vmatch contains only valid matches. For that, an
informal notion of soundness has to be agreed upon. Suppose we construct a list
of matches by applying vmatch to some arguments n (the number of symbols in
the alphabet), ctxt (regular expressions typing the free variables), e (the regular
expression) and w (the word to be matched). As a result, we expect to obtain
a list of valuations, v, for the free variables in e. It is sensible for the sound-
ness statement to be a property of the arguments of vmatch and a valuation.
The way we can express that an arbitrary variable v belongs in the list of re-
sults of vmatch is to use the standard list-based containment predicate. So, we
can assume (v ∈ vmatch n ctxt e w) = true. Note that containment is decidable
and therefore the clause is convertible with a boolean value. These are all the
premisses to the soundness statement. To capture the intended behaviour, the
conclusion should say that e does indeed match w under the valuation v, that
the size of v is equal to the size of ctxt, and that the value of each variable
according to v is matched by the regular expression type of this variable. The
whole statement can be written in Coq as follows:

Theorem vmatch sound n ctxt e w v :
v ∈ vmatch n ctxt e w = true →
gmatches n v e w ∧
size v = size ctxt ∧
∀ i d, i < size ctxt → gmatches n (take i v) (nth Void ctxt i) (nth d v i).

In terms of basic functions, the differences with Haskell are essentially that
length is replaced by size, and there is a different function, nth, to access the
elements of a list that has a default value, unlike !! in Haskell. This theorem is
stated below more descriptively and less technically. (We will fall back to Haskell
notation from now onward.)

Theorem 1 (Soundness of exhaustive matching). Let n be a natural num-
ber denoting the alphabet size, ctxt be a list of revs denoting the typing context, e
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be a rev, and v be a list of words denoting the valuation such that v is contained
in vmatch n ctxt e w. Then the following conditions are satisfied:

1. e matches w under the valuation v (if w contains symbol codes greater than
n, those codes are ignored).

2. The size of the valuation is the same as the size of the typing context.
3. For each index i within the bounds of the typing context, the i-th element of

the typing context matches the i-th value in v under the valuation defined by
the first i values in v.

The proof of Theorem 1 (deferred until the end of this section to get back-
ground results first) essentially relies on the corresponding soundness property
of kseqs. Its Coq statement is parametric in the choice of the default value d, in
the same way as the Coq statement of Theorem 1 above is. Due to this para-
metricity, we can suppress d altogether from our paper proofs. Default values can
be suppressed from Coq definitions and proofs as well at the expense of lifting
plain lists ctxt and v to dependently typed tuples.

Lemma 2 (Soundness of generation of k-sequences). Assume a type a
whose equality is decidable. Assume also a Bool-valued function (a decidable
binary relation) px of arguments of types [a] and a, a natural number k, lists
grnd, s and z of values of type a, such that s is contained in kseqs grnd px k z.
Then, for all indices i less then k, the relation px holds between the prefix of s of
size i + length z and the (i + length z)-th element of s.

Proof. We reason by induction on k. The base case k = 0 is proved vacuously
since there is no i less then 0. To understand the inductive step, consider Fig-
ure 3. The actual computation involves map and is tree-structured, which might

kseqs k z

kseqs k − 1 z ‘rcons‘ 0

...

kseqs 1 z ‘rcons‘ 0 ‘rcons‘ . . . ‘rcons‘ k−2

kseqs 0 z ‘rcons‘ 0 ‘rcons‘ . . . ‘rcons‘ k−2 ‘rcons‘ k−1

Fig. 3. Calculation of k-sequences, top-down

suggest reasoning on an explicit tree, however, here we focus on the logical prop-
erty of the values represented by the triangle of placeholders: The rightmost
placeholders in Figure 3 denote sets of filtered values that are appended at the
end of the sequences passed over by the corresponding recursive calls on the line
above. Thus, calculating top-down, as in Figure 3, we have the information that
the filtered values are related by px to the sequence calculated in the line above.
Induction on the parameter k, as opposed to calculation, proceeds bottom-up.
So, we can use this logical information in the proof of the inductive step when
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reasoning on k. Hence it suffices to proceed by induction over the structure of
the filtered list, filter (px z) grnd.

If the filtered list is empty, then so is the list of k+1-sequences, by the usual
properties of map, filter and function composition, leading to a contradiction
with containment of s in the list of k+1-sequences.

If the filtered list is y : ys then, unfolding the definition of concat in kseqs, we
have that either is s contained in kseqs grnd px (z ‘rcons‘ y) or in

concat (map (λx → kseqs m (z ‘rcons‘ x)) ys)}
The latter case is immediate from the inductive hypothesis on the filtered list.
To prove the former case, we start by assuming i = 0. Since the prefix of size z
is the list z itself, we have to prove that z and y are related by px, which follows
from the logical property of the filtered list. Assume 0 < i. Here we apply the
inductive hypothesis for k substituting z ‘rcons‘ y for the prefix and i− 1 for the
index. By doing so, we have successfully used the assumption 0 < i to shift the
indices by +1 in the inductive hypothesis to apply it on the inductive step. � 

Lemma 3 (Size of a k-sequence). As in Lemma 2, we assume a, px, k, grnd,
s and z. If s is contained in kseqs grnd px k z then the size of s equals the size of
z plus k.

Proof. Similar to the proof of Lemma 2, we perform induction on k, with the
proof of base case trivial because s = z when k = 0. The inductive step is also
proved by induction on the structure of filter (px z) grnd but simpler: there is no
need to refer to the logical property of the filtered values. We unfold the definition
of concat and prove the two resulting cases by the inductive hypothesis on the
list of filtered values and the inductive hypothesis on k respectively. � 

Now we can prove all the three properties in Theorem 1.

Proof (of Theorem 1). Let p denote the predicate λv → gmatches n v e w and
let s denote telematch n ctxt w. (1) Follows by equational reasoning since v ∈
filter p s if and only if p x and v ∈ s. (2) Follows from Lemma 3. (3) Follows
from Lemma 2. � 

The statements below testify that the matching procedure of vmatch is indeed
exhaustive, that is, complete. The proofs are found in the contributed code [11].

Lemma 4 (Completeness of generation of k-sequences). Assume a, grnd,
px, k, s and z as in Lemma 2. Assume that z is a prefix of s. For all indices i
less then k, if the relation px holds between the prefix of s of size i + length z
and the (i + length z)-th element of s, then s is contained in kseqs grnd px k z.

Theorem 2 (Completeness of matching with variables). Assume n, ctxt,
e, w and v as in Theorem 1. If the conclusions of the Theorem 1 are simultane-
ously satisfied then v is contained in vmatch n ctxt e w.
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9 Related Work

There is a diversity of regular expression libraries in Haskell, each with its own
features. The closest currently available regular expression Haskell library to
ours is XHaskell [21,16], released on Hackage under the name of regex-pderiv
[17]. The library computes partial derivatives of regular expressions. It does not
implement backreferences yet. Matching is purely functional and symbolic. The
library allows to decide equivalence of regular expressions thanks to the symbolic
approach. According to the experimental data in [16], this library performed
better on a few tests such as the US address, compared to the C wrapper library
regex-posix [14].

The author of [14] has also implemented Haskell backends for other C regular
expression libraries such as Tagged DFA Regular Expressions (TRE) [15] and
Perl-Compatible Regular Expressions (PCRE). These libraries are very efficient
but not yet stable. The author also re-implemented TRE in Haskell. Represen-
tative tests in [16] show that partial derivative matching is in most cases faster
than Haskell TRE matching, however, the former requires more space for com-
putations.

10 Conclusions

I introduced a notion of regular expression with variables (revs) as a solution
to unnecessary constraints in the historic definition of regular expressions with
backreferences (rewbs). Revs enjoy a simple yet efficient (and sound and com-
plete) matching decision procedure which I also outlined in the paper. The de-
cision procedure yields a list of successful matches for context variables in a
regular expression, which allows to extend [17] with backreferences, as a possi-
ble direction. Lazy evaluation allows to compute a single element from that list
thus alleviating the need for explicit backtracking. Nevertheless, there is a con-
siderable interest in a backtracking matching algorithm, e.g., for strict evaluation
or to be used in a monadic computation, which is a current work in progress.

Acknowledgements. I am grateful to the TFP referees whose judgement and
advice helped to make the paper better. The research was carried out in the Uni-
versity of St Andrews and was supported by the EU FP7 Marie Curie fellowship
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Abstract. This article presents the OCaml-Java project whose goal is
to allow compilation of OCaml sources into Java bytecodes. The ability
to run OCaml code on a Java virtual machine provides the developer
with means to leverage the strengths of the Java ecosystem lacking in
the OCaml world. Most notably, this includes access to a great number of
libraries, and foundations for shared-memory concurrent programming.
In order to achieve this, the OCaml-Java project does three contribu-
tions: (i) an optimized compiler and runtime support to achieve accept-
able performance, (ii) an extension of the classical OCaml typer to allow
manipulation of Java elements from the OCaml world, and (iii) a library
dedicated to concurrent programming.

Keywords: OCaml, Java, compiler, typer, concurrent programming,
shared memory, software transactional memory.

1 Introduction

We will start by examining in this section the necessity, or at least the interest, of
an OCaml-to-Java compiler for various programming tasks. Then, Section 2 will
present the main characteristics of the OCaml-Java project, and Section 3 will
present the compatibility with the official OCaml implementation. Section 4 will
introduce some extensions made to the original OCaml typer to allow the ma-
nipulation of Java classes from an OCaml program. Section 5 will give a glimpse
of the library designed to allow easy multicore programming in OCaml. Finally,
Sections 6 and 7 will respectively put forward information about performance
and future work.

Why Add a Java Backend to OCaml?

The official OCaml[1] distribution already ships with a compiler to OCaml byte-
code, as well as a bunch of native compilers for various architectures (mainly
amd64, ia32 and powerpc, but also ia64, and arm). It is thus legitimate to
question the need for a new backend: the official compilers seem to cover the
spectrum from portability (through dedicated bytecode and virtual machine) to
performance (through native compiler).

Our understanding is that a Java backend is nevertheless interesting for at
least three reasons:
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– access to Java libraries, frameworks, and infrastructure;
– access to a multicore facility;
– access to a secure environment (in the sense of the Java security manager).

Java Libraries: The Java language features a huge community that is able
to deliver a tremendous manpower, that in turn is able to develop libraries for
almost any need. This is perfectly shown by the availability of various GUI toolk-
its, bindings to almost all database systems, or support for 3D and visualization
tasks. Moreover, the Java ecosystem gives rise to genuine infrastructure elements
such as, for example, web services or industrial-strength implementations of the
map-reduce programming model.

Being able to access these various technology bits is of prime concern for a
developer. The best language in the world will be less than useless if its support
library is so small that she has to develop in-house every elements of her ap-
plication. This explains why binding technologies are so important in practice
even if of little theoretical interest. Our understanding of the current situation is
that by targeting the JVM and giving means to access its resources, we can pro-
vide OCaml programmers with libraries that are beyond the OCaml community
manpower.

Multicore Programming: The official OCaml implementation relies on the
existence of a global runtime lock that is mandatory for two reasons: the garbage
collector is neither parallel nor concurrent, and some core libraries are not reen-
trant. The latter point is quite easy to fix by rewriting some routines, but the for-
mer is a much bigger endeavor. Some courageous developers launched a project
to tackle the issue, and proposed a prototype for the x86 64 architecture [2]. This
is a first and huge step toward a parallel runtime for OCaml but will need a great
amount of work, and will have to be re-done on each supported architecture.

In the time being, due to the general availability of multicore computers,
some other developers have proposed libraries allowing to take profit of multiple
cores by using multiple processes rather than threads. The popular map-reduce
model now has several implementations in OCaml, ranging from simple libraries
[3] [4] to complete Hadoop-like implementations [5]. Last but not least, the Jo-
Caml dialect [6] provides language extensions for parallel, and even distributed
programming.

All these projects are interesting in their own rights. However, they come short
when one really needs to work in a shared-memory model. At best, the current
solution will allow to share only some memory parts through memory-file map-
ping but this will clearly badly interact with the garbage collector (in practice,
data shared among several processes cannot be reclaimed, as each processor uses
its very own garbage collector that is unaware of the other ones). At the oppo-
site, as soon as the OCaml source is compiled to run on the top of a JVM, it
enjoys the presence of a parallel garbage collector, and can rely on Java libraries
to implement shared-memory concurrent applications at the lowest development
cost.
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Secure Execution Environment: While clearly the less appealing reason,
it is not infrequent in industrial settings to use the capabilities from the Java
security manager to control the execution of an application. This proves useful
mainly because the rights given to applications can be far more fine-grained than
when relying on classical posix permissions for example.

Some Internet services and facilities can also use security managers in order
to safely allow the shared hosting of untrusted codes, in computation farms or
web services for example.

Why Add an OCaml Compiler to the Java Ecosystem?

If we focus on high-profile languages, we can state that the Java ecosystem
already features two languages that bring the benefits of functional programming
to the JVM: Clojure [7] and Scala [8].

Clojure is often described as a revival of the venerable LISP language, with
a particular emphasis on concurrent programming and efficient data structures.
The obvious consequence of the LISP filiation is that Clojure does not impose
any form of typing discipline. The question of whether typing discipline is a good
thing is a highly controversial issue but the developer should at least be able to
choose the tool that suits its need from the toolbox. As a consequence, it seems
desirable for the Java ecosystem to provide both dynamically- and statically-
typed functional languages.

Scala is perhaps the most used JVM language after Java. Scala can be re-
garded as quite similar to OCaml itself, by explicitly being a multi-paradigm
language with support for functional, imperative, and object-oriented program-
ming. Scala does a great way in blending with the Java typing model. However,
we consider that the typing possibilities of OCaml are quite superior:

– type inference, allowing shorter and uncluttered programs;
– pattern exhaustivity and redundancy checks, allowing greater software secu-

rity;
– functors, allowing powerful abstractions over modules;
– first-class modules (introduced in OCaml 3.12.0), allowing to cross the wall

between modules and values;
– GADTs (introduced in OCaml 4.0.0), allowing enhanced expressivity of data

type invariants.

As a consequence, even if Scala and OCaml share common principles such
as support for multiple paradigms and pragmatic handling of side-effects, we
think that the two languages are different enough to prove useful to different
communities.

Evolution of the JVM

The evolution of the JVM platform seems to indicate that the time has come
for serious functional programming inside the Java ecosystem. Indeed, the last
major version of the JVM (namely 1.7) has shown remarkable progress that
allows to easily get decent performance for functional code.
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The first element is the introduction of the so-called invokedynamic facility.
The ability to encode custom method dispatch besides the one actually used
by the Java language is quite appealing, and also had the consequence of the
implementation of method handles. For a compiler implementor, method handles
are gems because they provide a simple and very efficient way to encode function
pointers, and thus closures.

The second element is the new G1 garbage-collector that is far more suited
to functional languages than the previous ones, because its performance will not
plummet under heavy allocation of short-lived objects. Practically, this means
that the allocation/collection pattern often observed in functional programs can
be handled quite well by modern JVMs.

The third element is the fork/join framework. The newly introduced classes
related to concurrent programming are extremely important as they constitute
a second and far simpler way to program concurrent applications and drop the
classical mutex -based programming that is not only error-prone but also lacks
good properties such as scalability or composability.

And this is not the end of the story. Among the possible extensions envisioned
for Java 1.8, the following are often listed:

– introduction of lambdas [9], that would hugely reduce the semantic gap be-
tween the Java language and functional languages, thus allowing easier in-
tegration and library reuse;

– introduction of more concurrent programming patterns [10] (such as parallel
array operations, or streams), thus easing multicore programming;

– introduction of tail call optimizations (either only in the JIT compiler, or
through a new bytecode marking a method call as terminal), thus prevent-
ing the developer to encounter “porting issues”1 when using a functional
language on top of a JVM.

2 Overview of OCaml-Java

The OCaml-Java project consists of three parts:

– the actual compiler, acting as its central component;
– a runtime support comprising elements needed by compiled code to run (e. g.

representation of values), as well as a port of the standard library primitives
(that were originally written in C);

– a library that is specific to OCaml-Java (i. e. that cannot be used with the
original implementation), and provides support for concurrent programming.

The runtime support also includes a port of the ocamlrun program, that is the
virtual machine used to execute programs compiled to OCaml bytecode. It is
thus possible to run bytecode-compiled programs on a JVM with absolutely no
effort, at the only expense of a greater execution time.

1 The term may be controversial, but in practice some functions may be unable to run
due to memory exhaustion when tail call optimization is not available.
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The OCaml-Java compiler supports two modes of linking and three kinds of
applications. The modes of linking allow the developer to choose between static
and shared linking, defaulting to static. In static mode, a standalone jar file is
produced with all needed .class files, while in shared mode the produced jar
file contains references to other jar files (such as those from libraries).
The three kinds of applications supported by the compiler are:

– genuine applications, that are truly independent (except maybe regarding
jar files to be found in the classpath);

– applets, that are designed to be run inside a web browser to provide addi-
tional interactivity to web pages;

– servlets, that are designed to be run in containers serving web pages com-
puted on the server side.

Finally, OCaml-Java also provides support for the Java scripting framework
(as specified in the javax.scripting package). This means that it is possible
to evaluate OCaml code snippets from a Java application by just adding the
OCaml-Java scripting jar file to the classpath.

3 Compatibility with Original Implementation

The compatibility of OCaml-Java with respect to the original implementation is
high but not perfect. Of course, all language constructs are properly supported
by the compiler, and most differences can only be observed in libraries.

Indeed, although all primitives from the libraries shipped with the original
distribution have been ported, some are not 100% compatible. Most of the time,
this is due to the lack of support provided by the JVM for a given functionality
(e. g. the support for posix routines is only partial). Sometimes, the compatibil-
ity may only be partial due to the huge amount of work that would be required
for a relatively small pay-off: the support of Tk falls in this category. Anyway, a
developer deciding to use OCaml-Java would probably also want to switch to a
Java graphical toolkit.

Another point that is worth noting about compatibility is that the decision
to be highly compatible with the original implementation sometimes imposes a
burden regarding execution time. As an example, we have to use the very same
representation for closures because some core OCaml libraries are based on this
representation. Practically, this means that some optimization opportunities are
lost in order to keep compatibility.

Finally, some limitations over OCaml-Java also come from restrictions set on
us by the JVM itself. The two most striking examples are the limit to a method
size, and the lack of support for tail call optimization. Regarding the limit to a
method size (64 Kb), there seems to be no easy way for the compiler to find a
workaround. As a consequence, the developer may face a compiler error message
stating that a given function is too big and should be split2.

2 Sometimes, it is also sufficient to reduce inlining aggressiveness.



172 X. Clerc

Regarding the lack of tail call optimization, we made the same decision that
almost every language implementor also made. The reader may be aware of com-
pilation techniques that make it possible to overcome this limitation (e. g. by
using trampolines, or cps transformations). However, these workarounds tend
to cause other problems (mainly in code size, and execution speed). As a conse-
quence, the consensus among language implementors on the JVM is to support
tail call optimization only in the specific case of self recursion. In this very case,
a jump to the start of the method is sufficient3.

4 Typer Extensions

The Case for a Typer Extension

When facing the necessity to provide interoperability between languages, several
choices can made such as:

– using an exchange language (e. g. xml, json, etc.);
– using bridge generators (e. g. based on an idl4);
– embedding the typing of one language into the other one.

The first solution is quite simple but not always adequate for different reasons:
(i) the exchange language is often far less expressive than the two languages that
wish to communicate, (ii) it implies that the two languages do not share entities
in memory but only communicate in a message-passing style.

The second solution, which was used (through Nickel5) in the previous ver-
sions of OCaml-Java, is slightly better because it provides a tighter coupling.
However, it implies to be able to represent types and values of one language
into the other one. This is not always possible, and when it is, it may entail
cumbersome constructs that feel unnatural to the developer. We think that the
interoperability between OCaml and Java falls in this category because the ob-
ject systems are very different (nominal vs structural typing, single vs multiple
inheritance, presence vs absence of method overloading, etc.).

Moreover, one has to describe the list of elements to build bridges for (implying
the use of an idl), and this adds unnecessary burden on the build process.

The limitations of the two previous options led us to think that embedding
the typing of Java elements into the OCaml compiler would indeed provide the
simplest interface to the developer. Similar work has already been done inside the
Standard ML community [11] [12] and proved quite satisfactory. This approach
was not chosen in previous OCaml-Java versions because we felt uncomfortable
with two object models in the very same language. However, as said above,
constraining one model to fit into the other one was found to be very unpleasant
for the developer.

3 This technique cannot be generalized to arbitrary recursion because Java does not
allow to jump into another method.

4 interface description language
5 http://nickel.x9c.fr

http://nickel.x9c.fr
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Base Elements

In designing the extensions, we decided to grant the following properties:

– the extensions shall not modify the existing syntax of OCaml;
– the extensions shall compile to plain Java bytecode.

The former is important to us because we often rely on tools working at the
source level of an OCaml codebase, and do not want these tools to be impacted
by our support for Java. The later is important to keep the overhead due to
OCaml-Java to a bare minimum; we explicitly do not want to rely on mechanisms
such as reflection or, worse, bytecode generation at runtime.

Given those constraints, we first decided to represent Java instances with a
polymorphic abstract type that will enjoy special typing rules. This decision is
indeed quite important in its own right, because it clearly indicates that we will
not rely on the object system of OCaml to encode the Java class hierarchy. This
stems from the fact that the object models of the two languages are really differ-
ent, and attempts to encode one into another (such as Nickel, or O’Jacare6) lead
to awkward OCaml class definitions and difficult-to-understand error messages.

As a consequence we define a type ’a java instance that represent instances
of class ’a. As soon as we do so, we have to introduce a first modification in order
to designate, for example, instances of class java.lang.String. Indeed, it is not
possible to write the type java.lang.String java instance and we decided
that Java name classes should be written in OCaml types with simple quotes
rather than dots to separate their various parts, leading to java’lang’String

java instance which is a perfectly legitimate OCaml type. Of course, this im-
plies that the elements under the java instance constructor are not treated as
regular OCaml types, but as special elements designating Java classes.

Now that we can designate Java instances, we have to provide means to create
and manipulate them. In order to achieve this, we heavily rely on the reuse of
a hack already used by the OCaml typer to handle printf format strings. In
the remainder of this section, we will first briefly describe what the printf hack
consists in, and then explain how we devised a variant to call Java constructors.
The very same principle is applied in the OCaml-Java compiler to access fields,
and to call methods.

The printf Hack

As already stated, the printf hack is used in the OCaml compiler in order to
handle the format strings used by all the printf variants. The idea is brilliantly
simple:

– the format strings are given a special type, namely (’a, ’b, ’c) format;
– whenever an argument with such a type is waited, the compiler actually looks

for a literal string and parses it to determine the values actually waited by
the function and encodes it into the type parameters of type format;

6 http://www.pps.jussieu.fr/~henry/ojacare/

http://www.pps.jussieu.fr/~henry/ojacare/
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– at runtime, the printf function reparses the format string to determine the
number and types of parameters to actually access.

To illustrate this behavior, here is the type of the Printf.printf function:

val printf : (’a, out_channel, unit) format -> ’a

and the type of the expression Printf.printf "key: %s, value: %d", making
it clear that is should now be passed a string and an integer:

string -> int -> unit

Basically, the printf hack just short-circuited the normal behavior of the
typer in order to bind the ’a type variable to string -> int -> unit.

Example: Construction of Java Instances through OCaml Code

The OCaml-Java support library provides a function Java.make with signa-
ture (’a, ’b) java constructor -> ’a -> ’b. The java constructor type
is akin to the aforementioned format string, and its two type parameters have
the following semantics:

– ’a encodes the parameters to be passed to the constructor;
– ’b encodes the result of the constructor.

As an example, in order to create a button, a developer can write the call
Java.make "javax.swing.JButton(java.lang.String,javax.swing.Icon)"

where:

– ’a will be bound to (java’lang’String java instance * javax’swing’

Icon java instance) java parameters;
– ’b will be bound to javax’swing’JButton java instance.

The type named java parameters is handled specifically by the compiler,
and serves two purposes: first, the typer uses it to know that parameters passed
underneath are covariant; second, the code generator requires that a literal tuple
is passed in order to clearly disallow partial application of Java constructors.
The first purpose is of course the most important one from a user’s perspective:
without it the second parameter of our example should be exactly an instance
of javax.swing.Icon7, with it the second parameter can be an instance of any
class being a child of javax.swing.Icon.

Finally, the actual compilation differs from the printf hack. The format
string is erased, as it is not needed at runtime. Moreover, no call is made to the
surrogate Java.make function. This call is replaced by the following bytecode
sequence:

new javax.swing.JButton

dup

# loading of first parameter on stack

# loading of second parameter on stack

invokespecial javax.swing.JButton.<init>(java.lang.String,

javax.swing.Icon):void

7 Which is not even possible as javax.swing.Icon is an interface.
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Advanced Example: Proxies

Leveraging the full power of Java libraries cannot usually be done by solely con-
structing instances and accessing their fields and methods. It is often necessary,
to program GUI or XML handling for example, to be able to register callbacks
responding to given events.

Currently, the OCaml-Java compiler allows the developer to implement an
interface using OCaml code. Here “implement” should be understood in its Java
keyword sense, that is the possibility to give the code of a class respecting the
signature imposed on it by an interface.

The implementation of an interface is done by using Java proxies, and the
typing of OCaml code with a Java interface is once again done by using the
printf hack. The Java.proxy function takes a string that should represent the
fully qualified name of a Java interface, and the extended typer imposes the
second parameter to be an OCaml object providing the methods required by
the interface. As a result, the function returns a Java instance implementing
the interface. The following source code shows how an instance implementing an
action listener can be programmed in OCaml8:

let action_handler =

proxy "java.awt.event.ActionListener"

(object

method actionPerformed event =

let desc =

Java.call

"java.lang.Object.toString():java.lang.String"

event in

Printf.printf "event: %S\n" desc

end)

This method of embedding Java typing into OCaml through printf-like hacks,
albeit somewhat close to FFI9, differs from most FFI mechanisms by being type
safe. Indeed, the compiler do not take for granted that passed strings are correct
with respect to Java classes, it will actually check that each referenced entity is
defined and correctly used.

5 Concurrent Library

As stated in the introduction, one of our major objectives in developing the
OCaml-Java project is to allow shared-memory concurrent programming in the
OCaml world. By making the OCaml-Java runtime fully reentrant, and by using
the garbage collector of the JVM, we lift the first two obstacles on our road to
concurrency.

8 The event parameter of the actionPerformed method from interface
java.awt.event.ActionListener has type java.awt.event.ActionEvent

9 Foreign Function Interface.



176 X. Clerc

Now comes what is probably the trickiest part: designing a support library
to make concurrency as easy as can be. Hopefully, even if things are not set-
tled yet in the concurrency world, there is quite a lot of expertise on this mat-
ter. Developers start to grasp that traditional mutex-programming is way too
error-prone, and explore alternative ways of structuring concurrent programs.
Moreover, there is a raising perception that side-effects are particularly evil in a
concurrent setting.

Favoring Implicit Concurrency

The official OCaml distribution ships with some means for concurrent program-
ming. The foundations are provided by the well-known thread/mutex/condition
triad from posix filiation. Furthermore, the Event module provides higher ab-
stractions inspired by the Concurrent ML system [13].

The first addition from OCaml-Java is made through a bunch of atomic mod-
ules (e. g. AtomicInt, AtomicFloat, etc.). These modules are the direct coun-
terparts of the classes from the java.util.concurrent.atomic Java package.
Their goal is to provide atomic accesses without explicitly resorting to a mu-
tex. Moreover, they provide more complex operations such as updates through
predefined operations, and compare-and-swap.

The second addition from OCaml-Java is the ability to leverage the power
of the fork/join framework. We decided to provide less generality than the Java
fork/join library, allowing easier use. As an example, we define a function named
split that separates the fork/join logic into two functions. The signature of
split is (’a -> (’a * ’a) option) -> (’b -> ’b -> ’b) -> (’a -> ’b)

-> (’a -> ’b) where:

– the first parameter is the fork function, that for a given input value decides
whether the computation should be split (returning Some (x, y)) or not
(returning None);

– the second parameter is the join function, that combines the output values
of two sub-computations;

– the third parameter is the original function whose computations can be done
in parallel (it is obviously the developer’s duty to ensure such a property).

When applied, split fork join f will thus return a new function f’ with the
same signature as f but that is able to compute its result using several cores. As
an example, the infamous10 Fibonacci example can be coded this way:

let fork x =

if x <= threshold then

None

else

Some (x - 1, x - 2)

10 Infamous because it is by no mean optimal, and is only used to exhibit the typical
skeleton of a parallelized function.
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let join x y = x + y

let rec fibo x =

if x <= 1 then

1

else

(fibo (x - 1)) + (fibo (x - 2))

let parallel_fibo = split fork join fibo

Atomicity through Transactions

Rather than relying on some mutex discipline, the use of software transactional
memory is becoming increasingly popular over the years. In the OCaml world, a
successful experiment has been done through AtomCaml [14]. We reused almost
the same idea, albeit using a totally different implementation.

What differs from AtomCaml (and other full software transactional memory
systems) on the surface is that the developer has to explicitly label the elements
that should be protected by transactions. This may be seen as unnecessary bur-
den, but is in fact quite coherent with the OCaml language itself: the developer is
already required to explicitly state that a variable is actually holding a reference
to a value rather than a bare value (by using the ref function).

The same applies here: the developer has to indicate that a variable is used
as a reference to a value that should be protected by transactions. In order to
do so, she has to use the STM.ref function. Transactions are then executed by
calling the STM.run function as in the following example based on the canonical
bank example:

let account_a = STM.ref 1000

let account_b = STM.ref 2000

let transfer ammount =

STM.run (fun get set ->

let a, b = get account_a, get account_b in

set account_a (a + ammount)

set account_b (b - ammount))

As shown by the code sample above, the higher-order function STM.run calls its
parameter with two functions (namely get and set) that act as bare accessors
to values created through the STM.ref function.

Lists Considered Harmful

Any functional programmer is well-versed into list processing, and consequently
tends to favor this data structure for many kinds of computations. However,
it is well known that lists are not well-suited to parallel computation. At the
opposite, arrays are frequently used for parallel computation because they are
easy to scatter and gather (following the terminology set by the MPI library).
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For this very reason, we extended the OCaml-Java library with a module
named ParallelArray providing easy parallel computations. The
ParallelArray module has a signature that is compatible with the one of the
Array module from the standard library of the original OCaml distribution.
Practically, this means that any code using the Array module without making
any assumption on the order in which elements are treated can be parallelized
by just replacing a module by another one. This may even be done by shadowing
the original Array module at the beginning of a source file through the following
binding:

module Array = ParallelArray.

We want to stress the fact that the functions from ParallelArray are guar-
anteed to have a signature that is compatible with their counterpart from Array,
but not the exact same signature. Indeed, to allow a proper use of parallel op-
erations, we have added some optional parameters to some functions, in order
to be able to specify the number of chunks in the array as well as how worker
threads should be created. If one really needs to have the very same signature as
the Array module, this can be achieved by applying the ParallelArray.Make

functor to a module that barely provides fixed values for the optional parameters.

6 Performance

Settings

We present in this section the benchmarks conducted to assess the ability of
the OCaml-Java compiler to be used in performance-critical applications. As
of today, we applied only several benchmarks from the Computer Language
Benchmarks Game11, namely:

– binarytrees, exercising recursive functions over trees;
– fannkuch, exercising integer computations over arrays;
– mandelbrot, exercising float computations;
– meteor, exercising integer computations over arrays;
– nbody, exercising float computations;
– revcomp, exercising string computations and i/o;
– spectralnorm, exercising heavy float computations over arrays;
– threadring, exercising threads and mutexes.

All comparisons have been performed on the amd64 architecture, using the
following compilers:

– the native OCaml native compiler (version 3.12.1), because it will tell how
our backend competes;

– the Scala (version 2.9.1-1) and Clojure (version 1.3.0) compilers, because
they are comparable languages available on the JVM;

– Java itself, because in some sense it gives the baseline corresponding to
maximum performance.

11 http://shootout.alioth.debian.org/

http://shootout.alioth.debian.org/


OCaml-Java: OCaml on the JVM 179

Numbers

All tests are performed using Java version 1.7.0 02 and executed with the
-server, -XX:+TieredCompilation, and -XX:+AggressiveOpts options. For
each compiled version, five runs are successively launched, the best and worse
times are removed, and the mean of the three other values is kept. Table 1
presents both raw numbers, as well as ratios to reference compilers.

Table 1. Some benchmarks from the Computer Language Benchmarks Game, using
various compilers

benchmark javac ocamlopt ocamljava scalac clojure

binarytrees (absolute) 12.06 29.18 50.54 12.56 27.84
... (ratio to javac) - 2.42 4.19 1.25 2.31
... (ratio to ocamlopt) 0.41 - 1.73 0.43 0.95
fannkuch (absolute) 24.88 58.42 194.80 25.95 96.44
... (ratio to javac) - 2.35 7.83 1.04 3.88
... (ratio to ocamlopt) 0.43 - 3.33 0.44 1.65
mandelbrot (absolute) 11.09 40.98 60.67 21.29 53.47
... (ratio to javac) - 3.70 5.47 1.92 4.82
... (ratio to ocamlopt) 0.27 - 1.48 0.52 1.30
meteor (absolute) 0.31 0.74 5.28 5.10 10.35
... (ratio to javac) - 2.39 17.03 16.45 33.39
... (ratio to ocamlopt) 0.42 - 7.14 6.89 13.99
nbody (absolute) 11.11 13.43 12.93 11.84 19.96
... (ratio to javac) - 1.21 1.16 1.07 1.80
... (ratio to ocamlopt) 0.83 - 0.96 0.88 1.49
revcomp (absolute) 2.89 11.11 21.89 5.58 17.90
... (ratio to javac) - 3.84 7.57 1.93 6.19
... (ratio to ocamlopt) 0.26 - 1.97 0.50 1.61
spectralnorm (absolute) 6.88 10.92 28.98 7.21 14.32
... (ratio to javac) - 1.59 4.21 1.05 2.08
... (ratio to ocamlopt) 0.63 - 2.65 0.66 1.31
threadring (absolute) 35.85 34.87 38.98 1.90 9.62
... (ratio to javac) - 0.97 1.09 0.05 0.27
... (ratio to ocamlopt) 1.03 - 1.12 0.05 0.28

Even if we have not yet performed a great number of benchmarks, some pre-
liminary conclusions can already be drawn. The ratio of ocamljava to ocamlopt
varies from 0.96 to 7.14, and is below 3 in six benchmarks among eight. When
looking at the benchmarks producing the worse results, it becomes clear that
ocamljava is less competitive when computation is done over int values. This
is not surprising, as such values are always unboxed in ocamlopt (using a bit
to distinguish them from pointer values) while other values are boxed. Due to
the lack of support for tagged values in the JVM, ocamljava boxes all values.
Other benchmarks perform intensive computations on values that are boxed in
both ocamlopt and ocamljava, allowing the latter to be on average less than
two times slower than the former.

7 Future Work

In the short term, the most important issue to address is still related to per-
formance. Even if the previous section showed that performance is in fact quite
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acceptable, there is still room for improvement. As an example, we have not
yet conducted any inquiry regarding how different garbage collector parameters
could affect performance; given that default parameters for these values are tai-
lored for average Java programs, it seems quite plausible to be able to get better
performance by tweaking them.

Then, besides compiler and runtime optimizations, there are mainly four ma-
jor areas of possible enhancement:

– access to OCaml code from the Java side;
– support for Java generics;
– typing extensions related to parallel programming;
– miscellaneous helpers.

Java-to-OCaml Accesses

The objective is to provide means to call OCaml code from Java. Currently,
it is already possible through scripting but, as the name suggests, this implies
that the OCaml code will have to be compiled at runtime. It would be a great
improvement to be able to compile Java classes against OCaml code produced
by the OCaml-Java compiler.

Support for Java Generics

The typing extensions to OCaml presented in this paper do not handle Java
generics. This means that the type of a list will always be java.util.List,
independently of the elements actually stored in the list. Since version 1.5, Java
supports so-called generics which are broadly akin to type parameter in ML-like
languages. As a consequence, a list of strings can be given the more precise type
java.util.List<String>. Moreover, it is possible (through super and extends

keywords) to indicate to the Java compiler that the type parameter is covariant
or contravariant. The OCaml-Java compiler should be enhanced to support this
finer-grained typing of Java instances.

Types for Concurrent Programming

In this paper, we presented some elements of a library designed to allow easy
concurrent programming. The library currently recycles well-known concurrent
ideas such as fork/join patterns, parallel array primitives, or software transac-
tional memory. Those ideas are barely translated into OCaml. We are interested
by the study of typing extensions that could be developed in order to gain better
control and/or understanding over the concurrent computations. As an example,
we could imagine to devise a typing extension (or a syntax extension) to ensure
that the developer uses the accessor functions related to the current transaction,
and not those from another one.
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Miscellaneous

Although it is possible to fully manipulate Java elements from OCaml programs,
some helpers may be provided to make such manipulation less verbose. In the
current version, the developer has to use fully qualified names. It should be
possible to provide a construct akin to Java import in order to allow the use of
short class names.

Furthermore, it could be possible to shorten constructor or method signatures
when there is no ambiguity. As an example, if there is only one method with the
requested name, the developer should not have to give its signature but only its
name (or, say, its name and arity if it is sufficient to lift the ambiguity).

Such enhancements entail no change from a theoretical point of view, but may
prove of great value from a practical standpoint.
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Abstract. R is an environment and functional programming language
for statistical data analysis and visualization. Largely unknown to the
functional programming community, it is popular and influential in many
empirical sciences. Due to its integrated combination of dynamic and re-
flective scripting on one hand, and array-based numerical computation
on the other, R poses unique and challenging implementation problems,
at odds with the conservative language technology employed by its de-
velopers. We discuss the background of R in historical context, highlight
some of the more problematic language features, and discuss the po-
tential for the effective use of state-of-the-art language technology in a
future, safe and efficient implementation.

1 Introduction

It seems ironic that the functional programming language that is likely to be the
only one of its kind for decades featured in the New York Times [26], to account
for the most computing hours in scientific labs all over the world, and to have the
largest group of academic users outside computer science proper, has a relation-
ship to the functional programming community at large that is best summarized
as mutual ignorance. The R system and language [23] is a dynamic functional
environment for data analysis and visualization and is widely considered the
de-facto standard platform for development of statistical algorithms.

In this paper, we argue that R is a showcase application where functional pro-
gramming can really shine and be brought to the awareness of a vast scientific
and industrial community. We explain why the use of R has outgrown its de-
sign, and why more intense contact with the functional programming community
could be beneficial to guide future development (Sections 2 and 3). We outline
which issues in the implementation of R defeat traditional compilation and op-
timization schemes (Section 4), and how modern language technology could be
used in novel and interesting ways to tame the beast (Section 5).
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2 A Brief History of R

The R system is a free open-source reimplementation of the S system, with
minor changes in the language. S was conceived from the late 1970s on by the
statistician Chambers [10–13] from Bell Labs and won the 1998 ACM Software
System Award [28]. The design of the S system can be understood by analogy to
two other systems that were created at approximately the same time: the Emacs
text editor and the TEX typesetting system.

The three systems have a variety of properties in common: They provide
a framework for automation of complex tasks on top of some basic function-
ality; text file editing in the case of Emacs, typesetting in the case of TEX,
and statistical algorithms given as FORTRAN routines in the case of S. The
chosen method of automation is explicit high-level programming rather than
pre-packaged scripts collected in menus of a graphical user interface, the dom-
inant theme of rival products such as early WYSIWYG word processors, and
statistical packages such as SAS [2] and SPSS [21]. The conscious choice for
a programming approach to extensibility has been made in each case because
the authors foresaw the active role of users in the development process. Conse-
quently, self-documentation and packaging play major roles in the coding styles.

The respective programming languages S/R, TEX and ELisp are more or less
declarative, extremely dynamic and mildly domain-specific, and emphasize user-
friendliness in terms of safe memory management and robust error handling.
Software engineering concerns, in particular provisions for programming in the
large such as formalized interface descriptions and means for encapsulation, are
not reflected in the basic designs. The disregard for software engineering by
the designers does not imply that the systems are ill-designed. To the contrary,
the quickness and ease with which they could be employed for practical tasks
has contributed significantly to their broad success. But, because of that suc-
cess, nowadays all of the systems have by far exceeded the lifetime, variety of
platforms, number of contributors and complexity of programming layers their
inventors could possibly have foreseen, with literally thousands of contributed
packages available from central repositories. It is therefore no surprise that is-
sues of versioning, scalability, packaging and feature interaction have become a
continual nuisance to the developer communities.

S ran on the obscure Honeywell GCOS platform and on top of FORTRAN
routines at first, but major technologies such as Unix and C had been adopted
before development activity ceased around 1990. R is a fairly faithful reimple-
mentation of the C flavour of S, begun in 1993 by Ihaka and Gentleman from
the University of Auckland, adding aspects of the GNU philosophy to the sys-
tem, most notably “copyleft” licensing and an open-source community-driven
development process. It is administered by the non-profit R Foundation. From
the theoretical point of view, the only significant change in the language is the
switch from dynamic to lexical scoping of variables [15], although the concept is
somewhat compromised (see Section 4.2 below). While R was the “illegitimate”
rival of the officially licensed commercial S offspring S-PLUS at first, it has been
endorsed by Chambers by his joining the development core team.
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3 Using R

The basic R system supports both interaction via a command-line interpreter
loop, and offline processing via numerous batch commands and options. Diverse
window-based user interfaces and integrated environments for all major plat-
forms exist. Graphical output in high quality and a variety of formats, both
interactively and file-based, is supported by basic libraries. The R interpreter
can also be embedded in applications written in many mainstream languages.

The functionality of R comprises a base library of statistical and I/O code,
and a huge user-contributed repository [25] of currently about 5 000 packages
for virtually all conceivable sorts of data analysis. R packages typically come
with extensive documentation of function signatures and usage examples. Docu-
mentation quality varies; especially structured data objects returned by complex
analyses (containing, for instance, the parameters, fitted values, residuals and
goodness-of-fit scores of a statistical model) are often under-specified and require
a fair deal of trial-and-error and reverse-engineering of encodings to be practi-
cally usable. Not one but two concepts of object-orientation exist in R to address
these issues, but they are used inconsistently, and the expressiveness of the type
system for object attributes is rather poor: For instance, the only homogeneous
aggregate types are arrays, of a fixed small set of base types, with unspecified
dimension; lists are always heterogeneous, while both primitive scalar types and
proper records are nonexistent.

The current state and interaction history of a running R system can be stored
and retrieved, in order to make sessions persistent and accountable. R code units
come in two flavours: scripts containing arbitrary sequences of commands, and
packages containing definitions in a certain namespace. Note that there is no
special declaration level of the R language: a definition is merely the assignment
of an anonymous function expression to a variable. Consequently, local defini-
tions, let-bindings and function literals have the same expressive power as global
definitions.

The function abstraction mechanism of R is very powerful indeed, featur-
ing named and positional parameters, lexical scoping, variadic functions, im-
plicit laziness, and mutually recursive default values for every lambda term (see
Section 4.3 below). While this mechanism is adequate for complex and highly
customizable interface functions of packages, the interpretative overhead for a
massively recursive programming style is prohibitively high, easily reaching three
orders of magnitude relative to efficient compiled code. Functional programming
idioms in R include a limited range of higher-order functions, most notably a
family of map/reduce operations on multi-dimensional arrays, unhelpfully all
called apply with an optional initial consonant. Additionally there is a tendency
to avoid FORTRAN-style loops in favour of point-free operations (see Section 4.4
below). Besides concerns for elegance, the main reason is that the R interpreter
has no special notion of index variables, increment operations and single-point
array access. Consequently, the interpretative overhead of treating them as dy-
namic degenerate cases of high-level operations is enormous with respect to the
use of dedicated machine registers and instructions in compiled code.
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From the academic viewpoint, R is a valuable addition to any curriculum
in empirical sciences. The language is easy and fun to teach and to learn, and
particularly suitable for students without a computer science background. Even
though advanced functional programming skills are rare among R programmers,
the fundamentals are well supported by the language and the corpus of exam-
ple programs. Everything from ad-hoc data exploration and manipulation to
publication-quality statistic analyses and diagrams can be achieved in the form
of a short R script, often incrementally derived from freely available code. R
scripts are also a useful, executable complement to term papers and theses in
data-oriented courses. Program source code and results can be spliced into doc-
uments by means of the Knuth-style literate programming tool SWeave.

4 Under the Hood of R

The R system is a classical command-line interpreter with a core written in
C. A major part of the higher-level functionality is written in the R language
itself. Code is represented for interpretation and meta-programming purposes
as an abstract syntax tree. An experimental bytecode format is supported since
version 2.13, released in 2011. Native code is not generated, but foreign function
interfaces for various languages such as FORTRAN, C and C++ exist. Many
computationally expensive tasks are currently solved using these, because pure
R is known to be quite slow and unsuited for tight loops or deep recursion.

Memory management is automatic by a generational garbage collector with
additional reference counting for arrays, enabling the dynamic scheduling of de-
structive updates that is absolutely necessary for efficient, referentially transpar-
ent array programming. The system is extremely reflective: code objects, envi-
ronments and the call stack can be inspected and manipulated freely at runtime.
Persistence is a major topic: array data in various formats, command histories
and complete snapshots of system state can be read and written. Graphical
output, both online and in diverse file formats, is supported natively as well.

The type system is completely dynamic and rather complicated due to the
multitude of historically accumulated, incongruent layers. Some type informa-
tion, such as syntactic categories and array types, is encoded as magic numbers in
memory cell headers. Array base types include three-valued logicals, integers, real
and complex floating point numbers and strings (but not single characters). Two
kinds of generic lists, with array- and pair-based structure, respectively, exist.
Other datatypes are characterized by particular values of predefined metadata
attributes, most notably class: two generic rivalling object/class mechanisms,
domain-specific types such as factors (arrays of finite enumerated base type, op-
tionally ordered), data frames (rectangular tables with heterogeneous columns)
and time series, etc. The type system is further confounded by a collection of
four dynamic type identification functions, namely typeof, mode, storage.mode
and class with redundant but subtly different results.

Atomic data such as a single integer or truth value are not supported directly,
but only in boxed form as singleton arrays; even in places where nothing but
a single value makes sense, such as if-then-else conditions. Despite the ubiquity
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of function parameters that are expected to contain a single number or truth
value switch, neither documentation nor semantics are consistent throughout
the R base system: Attempts to pass vectors of length other than unity as such
parameters variously cause the additional elements to be ignored silently, or one
of a variety of warnings and errors to be raised.

4.1 Fundamental Pragmatism

R inherits from S the fundamental design focus on immediate practical domain-
specific usability. Chambers describes the position retrospectively [9]:

There was also interest in different approaches or theories of computing,
and much more so in later versions. However, there seemed always to
be an unquestioned assumption that the essential criterion was a system
that people would use and in particular one that provided the techniques
considered essential. Much of the early discussion was therefore about
which techniques we most needed to supply, and how to do it. [. . . ]

From a general computing view, the philosophy tries to combine as-
pects of functional and object-oriented (i.e., method-centered) approaches.
But as in previous stages of the evolution of S, adherence to a formal
approach tended to be compromised when it conflicted with what we saw
users as needing.

A formally trained programming language expert might contend that mere
interest in theory is not nearly enough to guarantee any benefits from novel
language aspects, and that the pragmatic blessing may well become a semantic
curse, when interferences of compromised aspects get out of control. As a first
hint at the kind of problems to be expected, consider the following quote from
the official R language definition [23], emphasis added:

Whether attributes should be copied when an object is altered is a com-
plex area, but there are some general rules [. . . ]: Scalar functions (those
which operate element-by-element on a vector and whose output is sim-
ilar to the input) should preserve attributes (except perhaps class).
Binary operations normally copy most attributes from the longer ar-
gument (and if they are of the same length from both, preferring the
values on the first). Here ‘most’ means all except the names, dim and
dimnames which are set appropriately by the code for the operator.
[. . . ]

We have highlighted words that are unexpected in a language definition, which
is the definitive source of semantics after all.

4.2 Variable Scoping and Evaluation Strategy

Somewhat bizarrely, R’s data model is almost purely functional: even large arrays
are persistent, and efficient updates rely on reference-counting to detect singleton
references and switch to destructive updates dynamically and transparently. The
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only mutable data structures, however, are those that have the greatest impact
on semantics, namely environments. Variable bindings and even references to
parent environments can be overwritten ad libitum, and bizarre applications
have been found and posted on R mailing lists. Thus variable scoping in R has,
possibly uniquely, the properties of being lexical and generally lazy but late
and not referentially transparent. The following example illustrates the peculiar
effects.

foo ← funct ion ( x = y + 1) {y ← 2 ; x}
This statement binds the variable foo to a function of a formal parameter x with
a default expression. The default, to be used whenever no actual parameter is
given, is a lazy promise or closure, to be evaluated in the environment of the
function body. The function body binds the variable y, then returns x. Evaluating
the pair of statements

y ← 1 ; c ( foo ( ) , y )
in the same environment where foo has been defined, assuming c has its prede-
fined meaning as the free array constructor, yields the array (3, 1). The assign-
ment to y in the function body is local and has no effect on the outer binding,
but shadows it before the promise bound to x is forced. If the function body is
changed to {x; y ← 2; x}, then the result becomes (2, 1), because the promise
is forced earlier and the reference to y falls through to the outer binding.

In theory, the mutable environments of R can make static analysis arbitrarily
hard. The fact has been realized by R developers, and used to rationalize poor
performance under the motto “too flexible to be fast” [22]. But fortunately, and
quite understandably, destructive updates to environments are used only in very
controlled ways in practice. The apparently dominant usage pattern in typical,
reasonable user code is repeated assignment to the same local variable, as in
loop counter increments or array updates. We propose that a clever combination
of static analysis and dynamic guards should be able to wring enough meaning
from variable bindings to improve both performance and safety significantly.

The following two example topics illustrate costly dynamic problems faced
by an execution engine for R. Cheaper, wholly or partly static solutions rely on
estimates of the call graph, and hence on some knowledge about the bindings of
function variables, since there are no static function calls in R.

4.3 Function Call Rules

The rules depicted in Fig. 1 are a succinct paraphrase of the specification of
function application in the R language definition. Since the details are quite
complex, the rules depicted in Fig. 2 summarize the well-formed parametrizations
from the caller’s perspective.

The parameter-matching steps 2–9 are required for all function calls, except
when the function expression evaluates to either of two kinds of builtins: for prim-
itive functions the parameters are evaluated eagerly, sidestepping the promise
mechanism, and passed in textual order; whereas for special forms the parame-
ters are passed unevaluated in textual order.
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1. In an expression of the form A(B) the function part A is evaluated first.
– It is an error if the result is neither a builtin nor a lambda abstraction.

2. From B a list of actual parameters is formed: pairs of name literal (optional,
followed by = if present) and value expression (optional).

3. From the function head a list of formal parameters is formed: pairs of name
literal (mandatory) and default expression (optional, preceded by = if present).

4. Named actual parameters are matched with their eponymous formal counterparts.
5. Remaining named actual parameters are matched with formal parameters if the

name extends uniquely.
– It is an error if an actual name is not exact and has no unique formal extension.

6. Unnamed actual parameters are matched to yet unmatched formal parameters in
textual order.

7. Valueless formal parameters (unmatched or matched by an actual parameter with-
out value) are matched with their defaults.
– Valueless formal parameters without defaults are matched implicitly with miss-

ing value expressions.
8. Remaining actual parameters are matched with the formal catch-all parameter

‘ ... ’, which may occur at any position and declares the function variadic.
9. An environment with the formal parameters bound to promises of the matching

expressions is created.
– Its parent is the lexical environment of the function definition.
– Missing values are implemented as promises of an error.

10. The function body is evaluated in the environment.
– Evaluating a reference to a formal parameters forces the matching promise,

except for a few special primitive operations (substitute).
– Assignments within the function body modify the environment.

11. The environment is discarded.
12. The value of the last body statement becomes the function result.

Fig. 1. Function evaluation, operational rules

†1. A function call is well-formed if each formal parameter has a corresponding actual
parameter, explicitly named and in the same textual order.

†2. From a call well-formed by †1, an actual parameter name may be omitted, except
if its formal counterpart is declared after ‘ ... ’.

†3. From a call well-formed by †1–2, a pair of adjacent actual parameters may be
transposed, if one of the pair is named.

†4. From a call well-formed by †1–4,
(a) an actual parameter name may be shortened to a unique prefix,
(b) an actual parameter value may be omitted, if the formal parameter has a

default, is not used, or explicitly allows omission,
(c) an actual parameter may be omitted altogether, if the formal parameter has

a default and no unnamed actual parameters follow,
(d) a named actual parameter may be added at any position, if the name does not

match any formal parameter, not even as a prefix, and the function is variadic,
(e) an unnamed actual parameter may be added at any position, if all formal

parameters are matched and the function is variadic.

Fig. 2. Function parameter matching, well-formedness rules



The Functional Programming Language R 189

With the information readily available to the R interpreter, the function to
be called is predictable only in rare cases, namely for function literals (explicitly
named primitive or lambda term). Function variables, on the other hand, can
be bound to functions of any kind and signature. Hence matching of parameters
and even the well-formedness of a call are conceptually dynamic problems.

Formal parameter names in a lambda abstraction double in the roles of local
variables and actual parameter keywords. Since the caller is entirely free to
choose whether to address a parameter by position or by name, alpha equivalence
does not hold for any R function expressions.

Missing parameter values (no default and no matching actual parameter or
value omitted) are implemented as promises that raise an error when, and only
when, forced. Hence it is not generally an error to call a function with too
few parameter values, but only if the current function call attempts to use the
parameter in a forcing way. Non-forcing uses such as substitute (see below) or
the missing check do not raise errors.

The operation substitute is part of the R reflection toolkit. It is able to ex-
tract the actual syntax tree and environment from a promise. It is used in some R
analyses to record queries in the result objects, and in visualizations to generate
titles and axis labels automatically. Apart from these apparently innocuous uses,
however, it has the semantically unpleasant property of violating the Church–
Rosser principle: reduction of function arguments does not commute with their
substitution into the function body. As a consequence, all program optimization
by expansion or reduction, most notably common subexpression elimination and
partial evaluation, respectively, in nested expressions (every operator is a func-
tion call too) becomes unsound and requires nontrivial safeguards in the presence
of reflection.

4.4 High-Level Array Operations
The R language, in marked contrast to low-level languages such as C and FOR-
TRAN, and more stringently than its more imperative competitor MATLAB,
supports and encourages a point-free style of array programming. Again, the
design is extremely pragmatic. Rather than providing an explicit, semantically
well-understood basis of higher-order operations such as map and reduce, or even
APL hieroglyphs, individual standard operations are vectorized: their global be-
haviour on arrays is defined in terms of local rules for individual elements, in an
ad-hoc fashion governed by the most frequent usage patterns. Hence the result-
ing coding style is often operationally imprecise, but it can be read and written
very effectively and with little room for nontrivial errors.

The following code fragment, excerpted from a package developed by one of
the authors, illustrates some of the typical techniques.

x ← x [ x != 0L ]
f ← funct ion ( p ) −sum( p ∗ log ( p , base = 2) )
f ( x / sum( x ) )

Here the binary entropy of an integer array x, assumed to contain absolute
frequencies of a population of items, is computed.
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The first line removes zero entries from the array: x is compared with an
array containing a single (integer) zero. Like most binary operations, inequality
is vectorized to act simultaneously pointwise on its arguments (zip in standard
functional programming jargon). The arguments do not have the same length.
This causes the shorter, second argument to be recycled, resulting effectively in
an array of zeroes of the same length as x. The result of the comparison is an
array of just as many truth values, with TRUE in positions where x is nonzero.
Indexing x with this array is vectorized to act as a filter, retaining only the
elements flagged as TRUE.

The second line binds the familiar entropy formula to the variable f, except
that the probability distribution p need not subscripted with a loop variable, by
virtue of vectorization.

The third line scales down from absolute to relative frequencies. The division
operator is again vectorized to zip its arguments, where the latter is a single
integer and recycled accordingly. Ordinary division also implies coercion from
integers to floating-point numbers. The function bound to f is applied to the
resulting array. It inherits vectorization from its constituent operations: Loga-
rithm acts as map on its first argument, multiplication as zip. Unary minus acts
trivially vectorized, negating the single element of the array resulting from sum.

Even though point-free style is used to great effect for the human reader and
writer, its potential for optimized execution is not currently leveraged in R. Sev-
eral intermediate arrays are created by this expression, namely as the results
of the operations !=, [ ] , log, ∗ and /, respectively, as well as degenerate ar-
rays that box a single number each, namely the results of the literal 0L and the
operations sum (bis) and −. Neither loop-fusion techniques that would reduce
the amount of intermediate data, nor parallelization of map- or zip-vectorized
operations can be applied in the default R system, because each of the involved
operations could be redefined dynamically, altering the algebraic and vectoriza-
tion properties that underly such optimizations.

5 Technological Suggestions

We suggest a three-pronged strategy to make the execution of R programs more
efficient. Firstly, standard optimization techniques require a lot of information
that is not declared explicitly in R and hence needs to be inferred, preferably by
static analysis. The usual suspects are: type and shape analysis for arrays to elide
runtime type and bound checks and coercions, strictness analysis to support the
unboxing of function parameters, and static binding analysis to enable algebraic
laws and inlining of known functions.

Secondly, we address the strict isolation of low-level, statically compiled core
functionality on the one hand, and inefficient, dynamically interpreted scripting
on the other hand, at the granularity level of individual function bodies and with
no exchange of information except function calls proper. We feel it needs to be
lifted in favour of an integrated, flexible, code generator-centric approach. This
probably requires a radical departure from the existing implementation, since the
distinction is deeply ingrained in the employed methodologies and technologies.



The Functional Programming Language R 191

No obvious candidate for a backend platform exists that supports the dy-
namic and number crunching aspects of R equally. But fortunately, even though
their unification in the R language is most desirable from the user and software
engineering perspectives, the separation of scripting and numerics layer in R pro-
grams appears feasible. Hence we propose the liberal solution to target not one
but two platforms, specializing on either aspect, and to guide the choice and/or
combination by user preference and analysis results.

5.1 Static Analysis and Beyond

In a language where programs are short and run typically for a long time on
huge amounts of data, static analysis and transformation easily pays off. Unfor-
tunately, virtually all ahead-of-time transformation of R code is either impos-
sible or semantically unsafe, unless strong assumptions about the program can
be made and verified: The dynamic, intransparent behaviour of environments
makes prediction of variable values theoretically difficult, and foils optimiza-
tions such as constant propagation and algebraic simplifications. The powerful
reflection mechanism allows the behaviour of code to depend on its literal form,
and foils optimizations such as common subexpression elimination, function in-
lining, lambda lifting and substitutive optimizations in general, most notably
specializations relying on “the trick” of partial evaluation. The lack of explicit
type and shape information for arrays poses the same problems regarding loop
organization and bounds checking as in other dynamic languages.

The last, type-related category of issues can also be handled with local specu-
lative techniques such as quickening, even when retaining an interpreter [8], and
does not necessarily call for static analysis. But the former two involve long-
range dependencies that are not easily dealt with, unless it can be assumed that
the problematic features are not actually used. An empirical survey [20] (see
Section 6.1 below) of a corpus of R code indicates that the majority of practical
program fragments is actually reasonably safe. Hence we expect that a static
approximation, even if a little coarse, should be able to leverage many well-
understood and effective optimization techniques. It may even be worthwhile
to investigate whether potentially unsafe transformations actually break a given
package, relying on R regression testing for heuristic validation.

For the sake of modularity, as well as to allow the user to stand in where
static analysis fails, a general annotation format for static information in R code
would be useful to communicate properties at interfaces. In this aspect, the re-
flective power of R can be turned to advantage: Program terms are ordinary
data structures with an extensive query and manipulation interface, and arbi-
trary structured metadata can be attached to any data via attributes. Hence
annotations can be added simply by establishing a metadata format, with no
need for any invasive extensions of the language proper.

It remains to see whether users of R can be convinced to use the mechanism
and add declarations to their programs. We expect that ideological arguments
from semantic theory or software engineering methodology would not be well-
received. But practical annotation-based tools, for instance providing diagnosis
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of inconsistencies, automatic instrumentation with assertions, automatic docu-
mentation of interfaces and/or automatic generation of test cases, might well
gain some recognition in the community and increase awareness for the issues.

5.2 Dynamic Compilation

A recent line of techniques that have been successfully used for implementing
other complex dynamic languages without too much effort are tracing JIT com-
pilers [14]. Those are JIT compilers that take as their compilation unit not a
function but a commonly executed code path (trace) within the program. Quite
often these traces correspond to loops within the original program, ending with
a jump to their beginning.

Tracing JITs have been used successfully for dynamic imperative program-
ming languages [14], but also some first experiments for declarative programming
languages have been done, for example for Prolog [7].

The traces in a tracing JIT are formed by observing the execution paths
through the program as it executes after some profiling. Thus all the traces
correspond to control flow paths that have been taken a few times already.

This approach has many advantages. On the one hand it makes many compo-
nents of the JIT compiler much simpler to write. Both the optimizers [4] and the
backends can be very simple, because they only need to deal with linear pieces
of code. This also allows the optimizer to perform aggressive type specialization
and optimize away the potential for dynamic behaviour that is not used in the
current code path. This can lead to very efficient machine code which removes
most of the overhead of dynamic typing.

Dynamic compilation and trace compilation in particular is extremely effective
in optimizing the overhead of dynamic typing on the local level. However, due to
the limited scope of compilation no global information can be exploited. This is
why we think that a combination with a static analysis phase which feeds back
some globally established properties of the program into the runtime compiler
could improve the efficiency of dynamic compilation even more.

Most tracing JIT compilers have been written for one specific VM and thus for
one specific language. A few projects have emerged that tried to write reusable
tracing JIT compilers. This approach is called “meta-tracing”, because the trac-
ers do not operate on the level of the program, but on the level of the interpreter
for the program. Examples are the SPUR project [3] and the PyPy/RPython
project [6].

RPython [1] (“Restricted Python”, there is no relationship to R) was de-
veloped for the PyPy project [24]. It is a programming language designed for
implementing interpreters for dynamic programming languages. The RPython
subset of Python is restricted in such a way as to make compilation of the inter-
preter to C possible. The interpreter written in RPython can thus be translated
into a VM in C. During this process, various aspects of the final VM are woven
into the interpreter. Examples for this are garbage collection and a tracing JIT
compiler [6].
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This weaving of low-level aspects into the final VM means that the language
implementation in RPython stays independent of low-level details. The meta-
tracing JIT is one such orthogonal aspect. It is woven into the final VM, guided
by a few hints that the interpreter author inserts into the interpreter [5].

We plan to utilize the RPython framework for the implementation of our
R system, specifically the execution of R code. We feel that a meta-approach
to tracing JIT construction is the only sensible way to efficiently implement a
language as complex as R efficiently as a whole. We hope to be able to integrate
with this jitting implementation the results from our static analyses to make the
JIT generate even better code.

5.3 High-Performance Functional Backends

It hardly requires visionary power to understand that fairly small compute-
intensive numerical kernels, as shown in Section 4.4, are the kind of R code
that dominates the execution times of entire programs while at the same time
the performance difference between R and low-level compiled languages, say
C or Fortran, is the greatest. Consequently, such definitions also provide the
most attractive opportunities to speed up the execution of R code, potentially
by orders of magnitude. The on-going trend in commodity hardware towards
multi-core designs and the proliferation of many-core graphics accelerators in
the mass market are both a blessing and a curse for languages like R: a curse as
they will widen the performance gap between R and more low-level approaches; a
potential blessing if R could implicitly utilise parallel computing power without
the notorious hassle incurred by low-level parallel programming.

Compilation of R array kernels into efficient code, not to mention decent
support for a variety of multi- and many-core architectures, is a major research
and engineering challenge. Therefore, it is attractive not to go all the way from
R down to C or Fortran, but to leverage a language whose design is somewhat
half way between R and C as an intermediate compilation target and to leverage
existing compilation technology.

Such a language is SaC (Single Assignment C, [17]). SaC is a compiled array
programming language with a syntax that, as the name suggests, resembles that
of C proper, but that at the same time comes with a purely functional seman-
tics. SaC features stateless multi-dimensional arrays similar to APL or MatLab,
call-by-value parameter passing for arrays, automatic memory management, etc.
Such features of SaC considerably reduce the semantic gap in compiling R.

We illustrate this in Fig. 3 by means of a SaC code fragment implement-
ing the example introduced in Section 4.4. Apart from the C-style syntax of
function definitions and applications, fragments of the code are almost identi-
cal to R. Some issues are minor: for example, prior to the division in function
g we need to explicitly convert integers into floating point numbers. Other is-
sues are more relevant: SaC is monomorphic with respect to scalar types. A big
plus on the other side is SaC’s support for rank-generic programming: the type
int[*] refers to integer arrays of any number of dimensions and any extent along
these dimensions. One aspect we cannot directly mimic from the R code is the
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double [ ∗ ] log2 ( double [ ∗ ] p )
{

r e tu rn { i v → p [ i v ] == 0.0 ? 0 .0 : log2 ( p [ i v ] ) } ;
}

double f ( double [ ∗ ] p )
{

r e tu rn −sum( p ∗ log2 ( p ) ) ;
}

double g ( i n t [ ∗ ] x )
{

r e tu rn f ( tod ( x ) / tod (sum( x ) ) ) ;
}

Fig. 3. Computing entropy in SaC

elimination of zero elements in the argument array. Apart from reducing the size
of the array and, thus, reducing the computational effort of subsequent compu-
tations, the main reason is to avoid computing the logarithm of zero. We achieve
at least the latter by overloading the log2 function for arrays such that it yields
zero in case, which does not affect the rest of the computation.

Despite a fairly similar programming style, the semantics of SaC code is
much more stringently defined than that of R. This supports a highly optimising
compiler technology that achieves competitive runtime performance for compute-
intensive applications [27] and fully compiler-directed parallelisation for multi-
core multi-processor systems [16] and for CUDA-enabled graphics cards [18].

6 Related Work

6.1 Evaluation of the Design of R

In a paper to appear at ECOOP 2012, Morandat et. al. [20] comprehensively
analyze the properties of the R language as well, albeit from an object-oriented
rather than functional perspective, reaching similar conclusion as this paper.
They offer several interesting contributions, among them a formal semantics for
some core parts of the language as well as a careful analysis of which features
are used in practice by R programmers. The latter is done by collecting, running
and analyzing a large corpus of R programs. One of the results of running bench-
marks of R programs compared to equivalent programs written in Python is that
R is significantly slower even than other dynamic programming languages like
Python. Another result of the corpus analysis of R programs is that the older of
the two competing R object systems is still much more widely used.
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6.2 The Ra Extension

Ra [19] is an extension to the R system that interprets a proprietary bytecode
format rather than R syntax trees. The bytecode is produced by a companion
JIT library that specializes on arithmetic loops, using runtime type and shape
information for arrays, and thus eliminating many dynamic type case distinc-
tions, allocation and variable lookup operations. The label “JIT compiler” on
the approach is not consistent with the conventional use of the term for dynamic
languages, because no machine code is produced at runtime.

Unfortunately, there are severe additional caveats: Firstly, function calls and
local control flow other than for loops are not processed in any way. Secondly,
the transformation is not semantically conservative; more dynamic uses of array
variables than supported by the compilation scheme, even such as resizing, will
not just revert to the slow original, but raise an error. Lastly, the loop-oriented
programming pattern that is sped up by Ra is deprecated in R in favour of
vectorized operations anyway. In summary, despite good ideas, Ra cannot be
considered a significantly more efficient implementation of R.

7 Conclusion

Scientific computing is nowadays more than just number crunching. The increas-
ing logical complexity of data processing methods, as opposed to their computa-
tional complexity, requires other approaches than the extreme high-performance
low-elegance style offered by the classics, most notoriously FORTRAN.

Scientists have reacted by adding high-level scripting layers, written in dy-
namic languages such as Python, to their software. A unified approach such as
the one offered by R has numerous advantages:

Scientists, often without proper formal training in programming skills, are
required to master only one language and one environment that apply to all
levels of their data processing software. The R language is, semantic peculiari-
ties aside, well-documented and forgiving, and encourages abstract, elegant and
reusable functional style. The R environment is highly interactive and comes
with extremely powerful tools for data exploration and visualization.

The functional structure of R programs makes them theoretically amenable
to automatic optimization and parallelization of array processing code, thus
compensating for a significant part of the efficiency loss with respect to low-
level high-performance code, without sacrificing the gains in flexibility, both
with respect to application parameters and hardware capabilities, and ease of
development and maintenance.

On the practical side, the existing R system has deficiencies with respect to
diagnostics and performance of pure R code. The problem is currently being side-
stepped by R developers by recommending the use of foreign function interfaces
for performance-critical code fragments, thus compromising many benefits of the
high-level approach, most notably datatype dynamicity, platform independence,
memory safety and interactive responsiveness.
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The concentration of the dynamic and numeric perspectives in a single lan-
guage is a unique and challenging situation. We believe that the traditional
language technology underlying the current R implementation is fundamentally
ill-suited for the problem, but that modern technologies developed for other dy-
namic languages on the one hand, and for other functional languages on the
other hand, can be used to great effect. The seemingly active hostility of R to-
wards optimization should be understood as a motivating challenge to compiler
constructors, and may well serve as a realistic test case to evaluate the techniques
applied to it. R has already gained considerable recognition from academic users
for being usable and flexible. If fast and safe could be added to the list, it would
make a very convincing case for functional programming.
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Abstract. Scheme is a minimalist language that brings its ancestor,
LISP, on par with modern languages such as *ML and Haskell. Although
it has very different tools in its repertoire (e.g., homoiconicity), many of
the same techniques applied in other languages are also quite usable in
Scheme. Some of them (e.g., pattern-matching, monadic and multi-stage
programming, a notation for laziness) tend to be associated with other
languages (primarily: Haskell and OCaml), and hence many program-
mers liking these constructs are drawn away from Scheme.

The concrete reason for this in FP community is the perceived ver-
bosity of Scheme, while others (in particular, from the embedded com-
munity) have troubles adopting the more difficult concepts of FP in
general. It is clear that there are approaches developed with FP that do
help for productivity in hardware and software design. Transfer of this
knowledge, however, is made difficult by an intellectual gap between the
communities. In this paper we attempt to reconcile these two points of
view by showing that (1) Scheme’s minimalistic but flexible approach
can bring concrete benefits to the embedded community, and (2) none
of these “advanced” features is particularly hard to replicate in a lan-
guage such as Scheme. If one is willing to leverage Scheme’s hygienic
macros, all of these features can be implemented separately as libraries
and freely used together. No advanced compiler or interpreter modifica-
tions to implement such extensions are required for creating embedded
DSLs in it.

To really see what Scheme (and homoiconicity) can bring to the do-
main of automated program construction, and to apply these ideas in
practice to Software-Defined Radio (SDR) stacks, we have re-implemented
a multi-staged, monadic FFT generator. In this paper we supplement
it with a straightforward implementation of the C code-generation and
Graphviz visualization back-ends and argue for a homoiconic, pure and
total language to combine the best features of Scheme, Haskell and *ML.

1 Introduction

I got an extremely large error (∼ 5000 lines) when loading
”OCamlTutorial.hs”. When I’ve parsed through it, I’ll post back.

Aditya Siram on Haskell-cafe

Functional programming is on the rise. More and more developers coming
from C{,++,�}, Python/Ruby/Perl, as well as Javascript trades are becoming
aware of techniques originally developed for languages such as LISP, Scheme,
Haskell, and the languages from the *ML family (SML, OCaml and F�).

H.-W. Loidl and R. Peña (Eds.): TFP 2012, LNCS 7829, pp. 198–214, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Lingua Franca of Functional Programming (FP) 199

The nature of how languages come into being influences their development.
For instance, C and C++ were conceived driven by engineering principles, while
the whole family of functional languages (with perhaps the exception of Erlang)
is the result of a desire to explore the nature of computation & logic. For quite
awhile, this has largely contributed to the intellectual gap between the engineer-
ing and the academic communities, where on one side is the deep knowledge of
the application domain and on the other side is the inner knowledge of how to
best structure the development of software and reason about its behaviour. With
the complexities of the software-defined systems increasing rapidly, especially for
those found in SDR domain, it becomes more and more important to automate
its creation process and aim for “correct-by-construction” implementations.

For both Haskell and Meta Language (ML), typing programs statically and
understanding Hindley-Milner (HM) inference with let-polymorphism, as well
as the associated value and monomorphism restrictions (letting alone all the
type- and kind extensions proposed for these languages), presents significant
hurdles to developers found in the embedded industry. One of the more advanced
features of C++ (templates) is also shunned in this community because of the
complexities in understanding e.g., the error messages [2]. Although the benefits
of both are well-appreciated in some circles, practical usage proves otherwise.
With no resolution to static-types vs. dynamic-types dichotomy, and no inclusion
of concepts [26] in C++ in sight [25], one is forced to make compromises.

The Revised5 Report on the Algorithmic Language Scheme (R5RS) [1] offers
a good venue for making compromises. Being a strongly-typed and a high-order
language, it enjoys some of the same face values as Haskell and ML: the ability to
describe the behaviour of complex systems using rather simple building blocks:
closures, tuples, and scoping. Being syntactically malleable, it allows easy embed-
ding of a Domain-Specific Language (DSL) via safe, hygienic syntax-rules, as
is elucidated by e.g., [15]. Other macro mechanisms such as low-level macros,
reader-macros (and, most notably, syntax-case) trade-off safety for expres-
sive power. Application of syntactic extensions facilitates separation of concerns,
where a domain expert designs the embedded DSL for use by application experts.

Such a DSL must address concerns of both the domain experts (i.e., embed-
ded architects) and of the application experts (i.e., embedded developers) equally
well. On one hand, it must provide domain constructs that allow concise speci-
fication and implementation of the algorithms, in a way that is understandable
and straightforward for application experts. On the other hand, it must be pos-
sible to implement both platform-specific and generic optimizations for concrete
implementations. Finally, a DSL must ensure “correct-by-construction” way of
working by enforcing the boundary between the two layers.

The paper is organised as follows. In Subsection 1.2 (to remind the reader
what the distinguishing features of Scheme are) we look at an archetypal tech-
nique of functional programming: expressing recursion using simpler basic build-
ing blocks. We avoid a pitfall in using fixed-point combinators (the need for
currying) by slightly modifying the classical definition of Y and conclude by
showing a natural extension towards memoization. In Sections 2 and 3 we
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review the syntactic extensions that we implemented on top of Scheme (and
verified to work with the Bigloo system [22] and Stalin [24]) in order to translate
the Fast Fourier Transform (FFT) generator to Scheme. In Section 4 we show
our implementation of the C code generator and illustrate the Graphviz back-
end operating on the result of the FFT generator in Decimation in Time (DIT)
and Decimation in Frequency (DIF) modes. We conclude and review future work
in Section 5.

1.1 Related Work

The idea of representing computation by monads has been in the wild for quite
awhile [18,30]. Especially interesting and rewarding are the uses of monads in
automated program construction, e.g., for combinatorial circuits [14], dynamic
programming [27], high-performance computing [6] and linear algebra [5]. In
[21], a Scala approach to automate construction of e.g., FFT networks has been
described. All of this work heavily relies either on unconventional infrastructure
(e.g., traits) or on extensive modifications to a compiler (e.g., Meta-OCaml).

1.2 Fixed-Point Combinators in Scheme

It is well known that the simply-typed λ-calculus can not express the ω, an
essential ingredient of fixed-point combinators (see the first line in the body of
Fig. 1).1 Although statically-typed encodings using iso-recursive types also exist
(e.g., see [17]), they are much less clear than the Scheme’s version.

How a fixed-point combinator
1 ( define (Y step )
2 ( (λ ( x ) ( x x ) ) ; ω combinator
3 (λ ( g ) (λ data ; varargs
4 (apply step ( g g ) data ) ) )
5 ) )

Fig. 1. X/Y combinator in Scheme

works is also well-known: see e.g.,
[12]. Effectively, the ω serves as
a “reflector” that initializes the
binding of g to refer to the func-
tion of g itself. This binding is
threaded throughout the recursion

via self-application (g g). In a Call-by-Value (CBV) language such as Scheme,
this self-application must be η-expanded, so that (g g) and step functions are
applied only when the thunk (result of the previous self-application) receives an
argument (the data list).

It is lesser known that applying a fixed-point combinator in practice does not
require the use of currying in the step function. Because the length of the data
that the thunk expects is variable, and because the application uses Scheme’s
built-in apply procedure, any number of arguments (beyond the required “self”
parameter) can be given to the step function. The higher-orderness of this fixed-
point combinator can be rectified this way as well (see Fig. 2, lines 4-6). For
example, the generalised fib function (from Fig. 3) can be called using Y simply
by prefixing the call and supplying the arguments as they would have been
supplied normally (i.e., uncurried), as in (Y fib 1 200), for example.

1 keywords/free bindings are typeset in bold, top-level bindings in small caps,
monadic primitives sans-serif, Bigloo primitives underlined, and comments slanted.
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Note that the η-expansion is floated: (λ data ...) contains (apply step

...) as a sub-expression, not vice-versa. While being equivalent to the tradi-
tional Y combinator, this version does allow the implementor of the combinator
to obtain the arguments to the “next” recursive call before calling the user-
supplied step function. In lines 8-11 of Fig. 2, this is crucially used to implement
the “benign” effect of memoization, completely transparently to the user.

1(define (Y step . args )
2( l e t ( [ tab ’ ( ) ] )
3( (λ ( x ) ; ω combinator
4( l e t ( [ r ( x x ) ] ) ; thunk
5( i f [ null ? args ] r ; i f no args
6(apply r args ) ) ) ) ; args g i ven
7(λ ( g ) (λ data ; s e l f => varargs
8(cond ( [ assoc data tab ] => cdr )
9( else ( l e t ( [ r e s (apply step ( g g ) data ) ] )
10( set ! tab ‘ ( ( , data . , r e s ) . , tab ) )
11r e s ) ) ) ) )
12) ) )

Fig. 2. Streamlined X/Y combinator, with memoization

2 Pattern Matching

Scheme’s minimalism and the
1(def fib ( fn s [ < 2 ] ⇒ s
2r ec s n ⇒ (+ ( rec s (− n 2) )
3( r ec s (− n 1) ) )
4) ) ; a ” r e l a t i o n a l ” pattern

Fig. 3. Generalised Fibonacci

resulting simplicity in the lan-
guage design of course comes
at a price: the user has to bring
applications that are written
directly using the core language
to the same conceptual level as required by Scheme’s minimalistic approach. As
a result, the examples of the previous section not only show the power of Scheme,
but also its verbosity. This is often aggravated by the need to represent complex
data-structures as pairs - which in Scheme is a conflation of tuples & lists. Lack
of built-in syntactic sugar often leads to abundance of parentheses, which is a
frequently cited complaint about languages rooted in List Processing (LISP).

Although this problem has been recognised for quite awhile [31,19], many im-
plementations still include pattern-matching as a non-standard extension. And
of course, each implementation does it in a different way.2 Although there were
attempts to implement a portable matcher [11,3,23,28], none did address the
compatibility to other languages.

This defeats the purpose of having a standard as well as having a large number
of different (competing) implementations. In this paper, we propose a particular
style of pattern-matching that - on purpose - brings Scheme closer to other

2 So for example, the Wright/PLT matcher has a non-intuitive predicate & structure
case syntax, the Queinnec/Bigloo matcher [20] has verbose variable binder syntax.
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languages in this respect. In the examples starting from this section, we shall
use the following notational conventions:
def : immutable global variable binding (i.e., a define sans set! mutator)
cases : backwards-compatible pattern-matching extension of Scheme’s case.
fn/fn’, fun/fun’ : anonymous function constructor, desugaring into λ and

cases for argument list destructuring. fun and fun’ variants return #F on
match failure. fn’ and fun’ implicitly add quasiquote around each pattern
case.

lets : destructuring binding form, also utilising cases as the back-end.
⇒ : delineates the pattern(s) on the Left-Hand Side (LHS) and the expression(s)

on the Right-Hand Side (RHS). The expressions are wrapped by an implicit
sequencing form (begin), which returns the value of the last expression.

→ : delineates the pattern(s) on the LHS and the data (a single expression
of static shape) on the RHS. The data can be quasi-static, as the RHS is
implicitly quasiquoted (see lines 3-4 in Fig. 12 for an example).

In addition to n+k patterns (line 1 of Fig. 4), we support relational patterns,
which compare favorably to predicate patterns (cf. line 2 to 3 of Fig. 4) and
also make some uses of when-guards redundant (e.g., line 1 of Fig. 3). Active
patterns (as introduced in [7] and applied in F�) are utilized in our complex
number library (which is not shown in this paper because of space limitations).

The primary novelty
1 (def A ( fn 0 [ n+1- 1 ] ⇒ n+1 ; ”n+k” pattern
2 [m > 0 ] [ n > 0 ]⇒(A (− m 1) (A m (− n 1) ) )
3 [ positive? value −: m] 0 ⇒ (A (− m 1) 1)
4 ) ) ; ” p r ed i c a t e ” pattern above

Fig. 4. Ackermann’s function

of our pattern-
matcher is not in its
set of features, many
of which have
appeared in prior art

(possibly, in another form), but in the way they are applied together with
monadic and lazy computations. In fact, we deliver the matcher as a single
portable package based on syntax-rules supporting several Scheme implemen-
tations, and the following features:

wildcards, literals, pairs/lists, vectors are standard for all pattern-
matchers.

quasiquotation patterns are useful for match-by-example programming,
where the pattern is quasi-static. We support any number of quasiquota-
tion levels.

static & polymorphic records provide the ability to match records syntac-
tically, using the following syntax: (tag : flds ...) On the RHS, this
syntax expands to code that is compliant to SRFI-9: (tag flds ...).3

predicate patterns generalise records to procedural interface, where a predi-
cate guards a list of functional sub-patterns using either fun-:pat or pat:=
fun syntax. Active patterns bundle a set of record-types via transformers.

lazy patterns concealing the force operator4 behind the pattern-matching in-
terface. This complements to the {}-notation for delay and lazy forms.

3 Scheme Request for Implementation (SRFI) extend R5RS to provide records etc.
4 A common complaint of lazy programming in Scheme or ML.
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ellipsis (. . .) allows matching against repeating sub-patterns, binding corre-
sponding pattern variables to lists of sub-matches.

catamorphisms & views is a feature derived from matcher found in [11]. It
allows the matcher to be recursive (the [~(pat)] catamorphism syntax) or
call out to another matching procedure (the [~ fun -> pat] view syntax).

non-linear patterns allow to pattern-bind the same name multiple times. The
consistency is checked with Scheme’s standard equal? procedure by default.
Other ways of checking equality are supported too via predicates.

conjunctive, disjunctive and negation patterns generalise the as-patterns
found in Haskell and some extensions of ML’s pattern matcher, e.g., [32].

start �� 1

form on the right

��
|| �� 2

form on the left

��
⇒/→ �� 3

form on the left

��

⇒/→
��

no more forms �� Match

Fig. 5. Finite State Machine (FSM) for the cases form

The cases form is implemented as a R5RS macro that functions as a Term-
Rewriting System (TRS). Although syntax-rules macros tend to be entirely
straightforward (see for example, Fig. 9), we do not include the full implemen-
tation of cases because of space limitations. To highlight the principle of op-
eration, we include only a rough FSM depicted in Fig. 5. Matching proceeds in
stages: (1) collection of the arguments to be matched and their packaging in a
list (left-to-right), (2) collection of expression(s) on the RHS (right-to-left) and
(3) collection of sub-patterns and pattern alternatives on the LHS (right-to-left).
The final result of this process is given to lower-level pattern-matchmacro that
is no longer concerned with high-level syntax of cases-expressions, but with the
actual handling of all types of sub-patterns. As a bonus, the cases form also
supports SRFI-87’s version of the Scheme’s standard case form.

Note that we have attempted to design our pattern matcher to be bidirectional
where possible. That is, we make the syntax of the pattern on the LHS resemble
the syntax of the match result expression on the RHS. Because vectors, like lists,
are not self-quoting in the Scheme standard [1], we ensure that both the pattern
and the expression are quasiquoted. Combining auto-quoting for both pattern
(fun’, fn’ and cases’ forms) and match results (→ delineation), we actually
achieve bidirectionality if the pattern only uses literals, pairs/lists, vectors, (both
static and polymorphic) records , non-linear, lazy patterns and quasiquotation.5

See intr resp. deintr functions from Figures 10 resp. 11.

3 Monadic Programming

Monads, as shown in [16] are promiscuous, and several sources already confirm
their usefulness in languages other than Haskell (see [9,13]). It is easy to use

5 “n+k” patterns and views are also possible as long as used functionals are bijections.
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High-Order Function (HOF) patterns to encode monads.6 Basic sequencing is
enforced via the requirement that the continuation at each statement separator
in the sequence expects preceding statement(s) to have produced values, and per-
formed all effects. The “semi-colon” is invisible in Scheme, see monadic program
in Fig. 10. Moreover, the Input-Output (IO) monad is the implicit default.
A known shortcoming of the

1(def listM ( i n s t a n t i a t e : : l i st−monad
2(∅ ’ ( ) )
3( append )
4( u n i t l i s t )
5( b ind ( fn xs fu ⇒ (apply append
6( filter−map fu xs ) ) ) )
7) ) ; d e r iv ed from MonadPlus

Fig. 6. List monad instance

monadic style of programming
in statically typed languages
other than Haskell (that is:
*ML, Scala) is its verbosity
[6]. To address this issue we
apply a number of methods
facilitated by R5RS Scheme:

1. Generalised comprehensions, using the Zermelo-Fraenkel (ZF) set-builder-
like notation (for which we provide syntactic sugar via a reader-macro)

2. Overloading of standard operators to “lifted” versions (via R5RS macros)
3. Encapsulation of bind and unit as methods inside an object of a certain class,

as shown on Fig. 6 (this is specific to Bigloo’s object system, but otherwise
easily replicable with other Scheme implementations)

4. Provision of an assignment syntax that is familiar to embedded developers

3.1 Comprehensions

Comprehensions are an impor-
1 (def qs ( with−access : : l i st−monad
2 listM ( b ind u n i t ∅  )
3 ( fn ( ) ⇒ ∅
4 p (h . t l ) ⇒ ( 
5 (qs p [ x x← t l where (p x h) ] )
6 [ h ]
7 (qs p [ x x← t l except (p x h) ] ) )
8 ) ) )

Fig. 7. Monadic quicksort

tant syntactic device that helps
in expressing some algorithms
in their purest form. For exam-
ple, the QS (Quick Sort) can
be implemented directly
according to its specification,
as seen in Fig. 7. Note that with
Scheme we can rely on dynamic
return-types for the fu

functional from the List monad instance from the previous subsection. By using
filter-map instead of a conventional map, predicates can simply return #F and
computation can proceed without vacuous flattening of empty lists. Hence, we
simply rewrite �where (p args ...)� into �#T← (p args ...)�, and similarly
�except (p args ...)� into �#F← (p args ...)�; we let the match-failure
procedure always return #F.

In conjunction with the Bigloo reader extension that converts all occurrences
of [forms ...] into either monadic comprehensions (�[expr generators ...

]� variant as in the figure above) or monadic computations

6 Just as it is easy to use delimited continuations [8] for the same, as they are functional
representation of the control stack.



Lingua Franca of Functional Programming (FP) 205

(�[forms ... ]� variant as in the FFT figures below), this paves a way to
mathematically straightforward programming with monads in Scheme.

4 Applications: FFT

In this section we bring together the techniques highlighted above and apply
them to an important component of virtually all SDR stacks. Such systems are
characterized by the flexibility in Media Access Control (MAC) protocols, For-
ward Error Correction (FEC) encodings and physical transmission parameters
such as the modulation. Because most of the innovation in radio algorithms is
based in mathematics of information theory, it is important to maintain a strong
link between the SDR implementation and its algebraic specification, which is
usually prototyped using Matlab. The inherent complexity of SDR can be thus
partially addressed by “correct-by-construction” Software (SW) code-generation.

Pushing the limits of automated program construction is one of the more
interesting developments in both SW and Hardware (HW) generation nowadays.
Although it has been accepted more in the former, with the advent of high-level
synthesis tools such as Forte Cynthesizer [10] and Calypto Catapult [4], the
pragmatics of creation of SW-defined systems have been shifted to HW. It is,
in fact, apparent that describing hardware using C/C++ (languages that have
grown together with the growth of SW) can bring to the level of hardware the
same sort of problems that were previously observed only in the software world.
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Fig. 8. FFT-4 in complex domain: DIT (left) & DIF (right)

Therefore, it is important to inherit not only problems, but also their partial
solutions such as the “correct-by-construction” code-generation techniques for
making Intellectual Property (IP) blocks using higher-level synthesis tools.

FFT is one example of such a block, found in most applications of embedded
signal processing. We build on the prior-art and contribute insights into the SDR
application domain from Scheme perspective by executing the following plan:
(1) take the application expert’s hat and provide two alternative versions of the
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FFT algorithm, mimicking the process of adaptation of IP blocks, (2) show the
ease with which such algorithms can be algebraically specified, and subsequently
algebraically modified, without the need to understand the mechanics of monads
and monadic interpreters, and (3) automatically process the IP blocks by a
separate (fixed) layer in the stack (the monadic interpreter, and then a code
generator). This last layer is written and verified only once by domain experts,
the rôle which we assume in Subsection 4.3.
Unlike prior art, our work

1(define−syntax−rule [ algo form . body ]
2(def form ( with−access : : monad
3scontM ( u n i t b ind )
4. body )
5) )
6#lang−monads
7(define−syntax + add u a )
8(define−syntax - sub u a )
9(define−syntax * mult u a )
10<<FFT DIT>> ; s e e Figure 10 .
11<<FFT DIF>> ; s e e Figure 11 .
12#lang−std

Fig. 9. FFT network generator top-level

did not require extensions
to the language inter-
preter and compiler itself
(cf. implementation of the
Meta-OCaml compiler).
Leveraging Scheme’s syn-
tactic extensions, we
present a DSL for describ-
ing such algorithms. The
DSL hides most of the
monadic constructs by
utilising the following tech-
niques. First, the [] notation that delineates the block-generating expression(s)
is implemented as an unsafe (but small) set-read-syntax! handler that desug-
ars into a safe syntax - rules back-end macro to handle monadic computa-
tions. This is triggered by the #lang - monads “pragma” in Fig. 9. Second, the
expensive: annotation (used in e.g., line 3 of Fig. 10) that triggers sharing of
functional unit outputs for optimization, is implemented as an add-on to the
same back-end macro. Third, the algo form that declares a multi-staged com-
putation and encapsulates the annotation for working in a particular monad is
implemented as a syntax-rule in Fig. 9.

4.1 DIT

The FFT algorithm can be defined by the following recursive equations. An
illustration of the computation that the equations specify can be found on the
left of Fig. 8, where rectangular blocks represent memory locations or register
cells, and circular blocks represent functional units.

FFT1(l) = l, ∀k ∈ N

{
k ≡ 1 (mod 2)
k ≡ 0 (mod 2)

0 ≤ i <
n

2
(1)

FFTn
i (l) = FFT

n
2

i {lk|k ≡ 0}+ ei
−2πj

n FFT
n
2

i {lk|k ≡ 1} (2)

FFTn
i+n

2
(l) = FFT

n
2

i {lk|k ≡ 0} − ei
−2πj

n FFT
n
2

i {lk|k ≡ 1} (3)

The radix-2 DIT FFT algorithm proceeds by deinterleaving the list of (com-
plex) samples of length ≥ 2 (singleton lists are returned “as-is”). The two sub-
lists are processed by recursively applying the algorithm to each half, and then
merging via application of the butterfly in the forward mode. Both results of
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the butterfly merge (halves of the input list by construction) are flattened us-
ing the Scheme’s standard append procedure. Fig. 10 literally transcribes this
algorithm.

1 ( algo ( fft d i t d i r ) ; Eq . 1
2 ( fn ( ( ) as l s ) ⇒ [ l s ]
3 s e l f l s ⇒
4 [ ( e o ) := ( deintr l s )
5 y0 :=: ( s e l f e )
6 y1 :=: ( s e l f o )
7 ( merge dit d i r y0 y1 ) ] ) )

1 (def deintr ( fn ’ ( )→ ( ( ) ( ) )
2 ( , x , y .
3 , [ ˜ deintr −> ‘ ( , a ,b ) ] )→
4 ( ( , x . , a ) ( , y . ,b ) ) ) )

1( algo ( merge dit d e o )
2( letrec ( (mg( fn j ( x . xs ) (y . ys )⇒
3[ ( expensive : X := x and Y := y
4z := (* (w a d (∗ 2 ( lengthe) ) j )Y) )
5S := (+ X z ) ; Eq . 2 below
6D := (- X z ) ; Eq . 3 below
7( a b) := : (mg (+ j 1) xs ys )
8return ‘ ( ( , S . , a ) ( ,D . , b ) ) ]
9else ⇒ [ ’ ( ( ) ( ) ) ] ) ) )
10[ ( a b) :=: (mg 0 e o )
11return (append a b) ]
12) )

Fig. 10. DIT FFT

The forward butterfly operation (merge dit on the right of the figure) es-
sentially implements the recursive equations 1, 2 and 3. The algebraic operators
are overloaded in the DSL to use the complex arithmetic. Although native com-
plex numbers support is optional in Scheme (and Bigloo does not have complex
numbers) we have, nevertheless, managed to implement both cartesian (simpli-
fying addition) and polar (simplifying multiplication) complex numbers, lever-
aging active patterns and hygienic macros for extending the standard arithmetic
operators like +, * etc. to complex operands.

4.2 DIF

The DIF FFT algorithm proceeds in the reverse direction. Essentially, every op-
eration of the DIT version is reversed: deinterleaving �→ interleaving, the forward
butterfly (i.e., merging) �→ backwards butterfly (i.e., splitting), append �→ split
(deterministic due to halving property of both deintr and split, as well as
functoriality of the FFT operation), while the overall sequencing is reversed.

FFT1(l) = l, 0 ≤ i <
n

2
, 0 ≤ k <

n

2
(4)

FFTn
2i(l) = FFT

n
2

i {lk}+ FFT
n
2

i {lk+n
2
} (5)

FFTn
2i+1(l) = ei

−2πj
n (FFT

n
2
i {lk} − FFT

n
2
i {lk+n

2
}) (6)

This is apparent from Fig. 11, which depicts an algorithm that is structured
exactly like the one from the previous subsection (modulo direction). The back-
wards butterfly (split dif on the right of the figure) essentially implements the
recursive equations 4, 5 and 6, which are obtained by calculating Eq.2 + Eq.3
and Eq.2 − Eq.3.

Note that some unnecessary sharing (introduced by the first expensive: block
from the figure) was visible in the DIF network from Fig. 8. It was of course
removed by an extra post-processing step, which we can not highlight here,
along with the implementation of split (an inverse of append), due to space
limitations. Reversibility of both variants of the FFT should be apparent.
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1 ( algo ( fft d i f d) ; Eq . 4
2 ( fn ( ( ) as l s ) ⇒ [ l s ]
3 s e l f l s ⇒
4 [ ( h1 h2 ) := : ( s p l i t d i f d l s )
5 y0 := : ( s e l f h1 )
6 y1 := : ( s e l f h2 )
7 return ( intr y0 y1 ) ]
8 ) )

1 (def intr ( fn ’ ( ) ( )→ ( )
2 ( , x . , xs ) ( , y . , ys )→ ( , x , y
3 . , ( apply intr ‘ ( , xs , ys ) ) )
4 ) )

1( algo ( s p l i t d i f d l s )
2( l e t s ( ( ( h1 h2 ) ( sp l i t l s ) ) )
3( letrec ( ( sp ( fn j ( x . xs ) (y . ys )
4⇒ [ ( expensive : X := x and Y := y )
5S := (+ X Y) ; Eq . 5 above
6D := (- X Y) ; Eq . 6 above
7( expensive :
8Z := (* (w a d ( length l s ) j )D) )
9( a b) :=: ( sp (+ j 1) xs ys )
10return ‘ ( ( , S . , a ) ( ,Z . ,b ) ) ]
11else ⇒ [ ’ ( ( ) ( ) ) ] ) ) )
12( sp 0 h1 h2 ) )
13) )

Fig. 11. DIF FFT

4.3 Let-coalescing by Inflation of Administrative Redexes

The Scheme code that is generated by the monadic interpreter for FFTs contains
a long chain of nested applications of 2-argument functions. Each application cor-
responds to a complex operation. Therefore, some post-processing of the results
is required in order to generate C code that can be efficiently mapped on Digital
Signal Processor (DSP) cores and in HW. In addition, it is also useful to generate
visualization that is directly recognizable by SDR application experts.

1 (def ( coalesce a u)
2 ( fn ’ ; unapp l i ed a b s t r a c t i o n
3 (lambda ( , var ) , [ ˜ ( body) ] ) →
4 ( lambda ( , var ) , body )
5 ; a p p l i e d lambda w i th one or more a r g s
6 ( ( lambda ( , var . , vars ) , body ) , ex . , exps ) ⇒
7 ( i f [ any ( occurs ? ex ) a ] ; i s r i g h t− cu r r y
8 ‘ ( ( lambda , a
9 , ( ( coalesce ’ ( ) ’ ( ) )

10 ‘ ( ( lambda ( , var . , vars ) , body)
11 , ex . , exps ) ) ) . ,u )
12 ( ( coalesce ( cons var a ) ( cons ex u) )
13 ( i f [ or ( null? exps ) ( null? vars ) ] body
14 ‘ ( ( lambda , vars , body) . , exps ) ) ) )
15 ; no more a b s t r a c t i o n s
16 , body → ( ( lambda , a , body) . ,u )
17 ) )

Fig. 12. Coalescing by inflation of administrative redexes

To accomplish this, we took a domain expert’s hat and applied a simple trans-
formation on the structure of the generated Scheme vector code that coalesces
all such 2-argument functions. We accumulate bindings and their values as we
recurse on the structure of the code. As soon as a dependency of a value on any
of the already accumulated bindings is detected, a redex is emitted. This redex
thus contains all independent bindings (and their values) that were accumulated
so far. Fig. 12 depicts the full implementation of this post-processing step.

The net effect of this post-processing is that the administrative redexes -
corresponding to static scopes in C with no shallow dependencies inside - are
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inflated as much as possible. Because all operations in each stage are independent
of each other, they can be performed in parallel. In addition, this transformation
has allowed Graphviz to align maximal number of independent bindings (register
cells) in vertical columns and thereby accentuate the number of stages in a FFT
network. One can now clearly see the butterflies from the layout as well as the
difference between the DIT and DIF modes of the FFT.
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Fig. 13. FFT-8 in complex domain: DIT (left) & DIF (right)

Summarizing, the 2-level η-expansion of the results obtained by running the
monadic interpreter, their subsequent post-processing, conversion to Graphviz
format and final visualization given a network returned by FFT4 and FFT8 is
depicted in Figures 8 and 13, respectively. Note that the first-stage register loads
have been elided for FFT8 to simplify the visuals. We have verified that the ap-
proach scales to practical FFTs with sizes up-to 8192 (complex samples), and
that the generated code correctly operates in both PC and DSP SW environ-
ments as well as passed it through the Forte Cynthesizer HW flow. We elide the
results on the number of register cells, multipliers and adders for this paper.

The actual C generation back-end was straightforward to implement (once our
pattern-match implementation was ready) and is included in Fig. 14. Thanks to
Scheme’s homoiconicity, simplicity and syntactic flexibility, both tasks turned
out to be feasible to perform directly from an interactive Read-Eval-Print-Loop
(REPL) session. All of the components presented in this paper were implemented
as a regular user-level application/library (no expensive compiler bootstrapping
or interpreter hacking was involved), which allowed for rapid experimentation
and debugging.
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1 (def (cprog n)
2 ( letrec
3 ( (cexpr ( fn ; handle s imple exp r e s s i on s
4 ( ’quote [ ˜ ( n ) ] ) ⇒ n
5 (symbol? $ −: n ) ⇒ n ; $ i s symbol−>s t r i n g
6 (number? % −: n ) ⇒ n ; % i s number−>s t r i n g
7 ‘ ( vector−ref , d , [ ˜ ( i ) ] ) ⇒
8 ( cat ($ d) "[" i "]" )
9 ‘(+ , [ ˜ ( x ) ] , [ ˜ ( y ) ] ) ⇒

10 ( cat "(" x "+" y ")" )
11 ‘(− , [ ˜ ( x ) ] , [ ˜ ( y ) ] ) ⇒
12 ( cat "(" x "-" y ")" )
13 ‘ (∗ , [ ˜ ( x ) ] , [ ˜ ( y ) ] ) ⇒
14 ( cat "(" x "*" y ")" )
15 ) )
16 (cstmt ( fn ; handle s imple statements
17 ‘ ( vector−set ! , d , ( ’quote i ) , [ ˜ cexpr −> val ] ) ⇒
18 ( cat ($ d) "[" (% i ) "]=" val ";" )
19 ‘ ( begin . , [ ˜ ( s s ) ] ) ⇒
20 ( cat s s )
21 ( ) → ""

22 ‘ ( , [ ˜ ( s1 ) ] . , [ ˜ ( s s ) ] ) ⇒
23 ( cat nl s1 s s )
24 [ ˜ cexpr −> val ] ⇒
25 ( cat "return " val ";" nl )
26 ) ) )
27 ( fn ; unapp l ied ab s t r a c t i on
28 ‘ ( lambda ( , var ) , [ ˜ ( body ) ] ) ⇒
29 ( cat "sample_t* fft_" (% n) "("

30 "sample_t " ($ var ) "[" (% (∗ 2 n) ) "])"

31 nl "{" body "}" )
32 ; app l i ed lambda − redex
33 ‘ ( ( lambda , vars , [ ˜ ( body ) ] ) . , exps ) ⇒
34 ( cat nl
35 "{"

36 ( fold− left ( fn r v e ⇒
37 ( cat r nl "sample_t " ($ v) "=" [ cexpr e ] ";" )

)
38 ""

39 vars exps )
40 body
41 "}" )
42 ; no more ab s t r a c t i on s
43 [ ˜ cstmt −> body ] ⇒ body
44 ) ) )

Fig. 14. Domain-specific Scheme�→C generator
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5 Conclusion

Wikipedia: Lingua franca is a language systematically used to make
communication possible between people not sharing a mother tongue,

in particular when it is a 3rd language, distinct from both . . .

It is good to see the “semantic” gap between the academic and engineering
communities closing. “Syntactic” gap, however, still remains. In this paper, we
focus on Scheme as a promising common language (i.e., a “Lingua franca”) from
both language (academic) and the application domain (engineering) point of
view. We contribute a number of syntactic extensions that implement pattern-
matching, monadic computations and comprehensions we well as provide a con-
venient DSL for multi-stage programming.

By complementing Scheme’s minimalism with extensible syntax, one can cope
with the inevitable verbosity in a manner that suits specific development commu-
nities, or conflicting developer preferences. We have applied syntactic extensions
to address a specific problem in the embedded community - the need to apply
modern “correct-by-construction” IP block generation methods in the context
of SDR signal processing. We focused on a common block found in this domain
and applied the proposed techniques to a FFT generator, first assuming the rôle
of an application expert in modifying the algorithm to work in reverse, and then
taking the hat of a domain expert in post-processing the generated vector code
to improve the resource usage and provide automated tuning to the generated
C code and generated Graphviz output.

We hope to have illustrated in this paper that using such advanced program
construction methods does not need advanced compiler work. With Scheme, in
fact, one can build the needed blocks incrementally, as we have shown in imple-
menting pattern-matching and monads. We did this by leveraging the hygienic
syntax-rules, sequencing with HOFs, and basic data-types: the first stage only
uses lists, while the second stage of our FFT implementation uses vectors. Fol-
lowing in the spirit of the [29], we present a number of libraries that implement
these constructs in a synergistic way.7 We suggest that Scheme can indeed be-
come the sought Lingua franca, usable by both embedded application & domain
experts when communicating with the FP community.

5.1 Future Work

Note that some of our FFT block-generating functions, as well as some miscella-
neous functions are bidirectional. Most notably, intr from Fig. 11 and deintr

7 All of the examples shown in the paper are extracted from operational code. Minor
modifications to Bigloo included an implementation of the SRFI-10 reader-macro
support and set-read-syntax! (as well as set-sharp-read-syntax!, both non-
standard as of now). None of these were made specific to our application. Integration
of Bigloo with the SRFI-46 compliant expander for syntax-rules (alexpander) was
transparent and rather painless, thanks to the ability of adding user-defined passes.
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from Fig. 10 are inter-derivable if one swaps the LHS and the RHS of the pattern-
match rules, exchanging [~ fun -> terms] for (apply fun terms). We con-
sider it future work to extend the matcher to handle ellipsis (. . .) patterns on
the RHS and provide an automated inverse generator.

Particularly interesting is the prospect of addressing the embedded commu-
nity’s language requirements by bringing our proposed extensions of Scheme
closer to languages such as Matlab. This is visible, for example, in the seemingly
imperative assignment “statement” and destructuring operations on the values
returned by block-generating functions in FFT figures.
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A Acronyms

CBV Call-by-Value
DIF Decimation in Frequency
DIT Decimation in Time
DSL Domain-Specific Language
DSP Digital Signal Processor
FEC Forward Error Correction
FFT Fast Fourier Transform
FP Functional Programming
FSM Finite State Machine
HM Hindley-Milner
HOF High-Order Function
HW Hardware
IO Input-Output
IP Intellectual Property
LHS Left-Hand Side
LISP List Processing
MAC Media Access Control
ML Meta Language
OCaml Objective Caml
PC Personal Computer
R5RS Revised5 Report on the Algorithmic Language Scheme
R7RS Revised7 Report on the Algorithmic Language Scheme
REPL Read-Eval-Print-Loop
RHS Right-Hand Side
SDR Software-Defined Radio
SML Standard ML
SRFI Scheme Request for Implementation
SW Software
TRS Term-Rewriting System
ZF Zermelo-Fraenkel
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Abstract. Argumentation theory is an interdisciplinary field studying
how conclusions can be reached through logical reasoning. The notion of
argument is completely general, including for example legal arguments,
scientific arguments, and political arguments. Computational argumen-
tation theory is studied in the context of artificial intelligence, and a num-
ber of computational argumentation frameworks have been put forward
to date. However, there is a lack of concrete, high level realisations of
these frameworks, which hampers research and applications at a number
of levels. We hypothesise that the lack of suitable domain-specific lan-
guages in which to formalise argumentation frameworks is a contributing
factor. In this paper, we present a formalisation of a particular computa-
tional argumentation framework, Carneades, as a case study with a view
to investigate the extent to which functional languages are useful as a
means to realising computational argumentation frameworks and reason
about them.

Keywords: computational argumentation theory, domain-specific lan-
guages, functional programming.

1 Introduction

Argumentation theory is an interdisciplinary field studying how conclusions can
be reached through logical reasoning. Argumentation should here be understood
in a general sense, including for example political debates along with more rig-
orous settings such as a legal or a scientific argument. A central aspect is that
there is usually not going to be any clear-cut truth, but rather arguments and
counter-arguments, possibly carrying different weights, and possibly relative to
to the understanding of a specific audience and what is known at a specific point
in time. The question, then, is what it means to systematically evaluate such a
set of arguments to reach a rational conclusion, which in turn leads to the no-
tion of proof standards, such as “beyond reasonable doubt”. Fields that intersect
with argumentation theory thus include philosophy (notably epistemology and
the philosophy of science and mathematics), logic, rhetoric, and psychology.

Argumentation theory has also been studied from a computational perspective
in the field of artificial intelligence, with the dual aim of studying argumenta-
tion theory as such [1,2] and of more direct applications such as verification

H.-W. Loidl and R. Peña (Eds.): TFP 2012, LNCS 7829, pp. 215–230, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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of arguments [3] or for programming autonomous agents capable of argumen-
tation [4]. Dung’s abstract argumentation framework [5] has been particularly
influential, as it attempts to capture only the essence of arguments, thus making
it generally applicable across different argumentation domains.

Since Dung’s seminal work, a number of other computational argumentation
frameworks have been proposed, and the study of their relative merits and exact,
mathematical relationships is now an active sub-field in its own right [6,7,8,9,10].
However, a problem here is the lack of concrete realisations of many of these
frameworks, in particular realisations that are sufficiently close to the mathe-
matical definitions to serve as specifications in their own right. This hampers
communication between argumentation theorists, impedes formal verification of
frameworks and their relationships as well as investigation of their computational
complexity, and raises the barrier of entry for people interested in developing
practical applications of computational argumentation.

We believe that a contributing factor to this state of affairs is the lack of
a language for expressing such frameworks that on the one hand is sufficiently
high-level to be attractive to argumentation theorists, and on the other is rig-
orous and facilitates formal (preferably machine-checked) reasoning. We further
hypothesise that a functional, domain-specific language (DSL) would be a good
way to address this problem, in particular if realised in close connection with a
proof assistant.

The work presented in this paper is a first step towards such a language. In
order to learn how to best capture argumentation theory in a functional setting,
we have undertaken a case study of casting a particular computational argu-
mentation framework, Carneades [11,12], into Haskell1. We ultimately hope to
generalise this into an embedded DSL for argumentation theory, possibly within
the dependently typed language Agda with a view to facilitate machine checking
of proofs about arguments and the relationships between argumentation frame-
works. While we are still a long way away from this goal, the initial experience
from our case study has been positive: our formalisation in Haskell was deemed
to be intuitive and readable as a specification on its own by Tom Gordon, an
argumentation theorist and one of the authors of the Carneades argumentation
framework [13]. Furthermore, our case study is a contribution in its own right
in that it:

– already constitutes a helpful tool for argumentation theorists;
– demonstrates the usefulness of a language like Haskell itself as a tool for

argumentation theorists, albeit assuming a certain proficiency in functional
programming;

– is a novel application of Haskell that should be of interest for example to
researchers interested in using Haskell for AI research and applications.

This is not to say that there are no implementations of specific argumenta-
tion theory frameworks around; see Sect. 4 for an overview. However, the goals
and structure of those systems are rather different from what we are concerned

1 Cabal package on Hackage: http://hackage.haskell.org/package/CarneadesDSL

http://hackage.haskell.org/package/CarneadesDSL
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with in our case study. In particular, a close and manifest connection between
argumentation theory and its realisation in software appears not to be a main
objective of existing work. For us, on the other hand, maintaining such a con-
nection is central, as this is the key to our ultimate goal of a successful generic
DSL suitable for realising any argumentation framework.

The rest of this paper is structured as follows. In Sect. 2, we give an intuitive
introduction to Carneades, both to provide a concrete and easy to grasp exam-
ple of what argumentation frameworks are and how they work, and to provide a
grounding for the technical account of Carneades and our implementation of it
that follows. We then continue in Sect. 3 by giving the formal definition of the
central parts of Carneades juxtapositioned with our realisation in Haskell. The
section covers central notions such as the argumentation graph that captures the
relationships between arguments and counter arguments, the exact characterisa-
tion of proof standards (including “beyond reasonable doubt”), and the notion
of an audience with respect to which arguments are assigned weights. Related
work is discussed in Sect. 4, and we conclude in Sect. 5 with a discussion of what
we have learnt from this case study, its relevance to argumentation theorists,
and various avenues for future work.

2 Background: The Carneades Argumentation Model

The main of purpose of the Carneades argumentation model is to formalise
argumentation problems in a legal context. Carneades contains mathematical
structures to represent arguments placed in favour of or against atomic propo-
sitions; i.e., an argument in Carneades is a single inference step from a set of
premises and exceptions to a conclusion, where all propositions in the premises,
exceptions and conclusion are literals in the language of propositional logic. For
example, Fig. 1 gives an argument in favour of the propositionmurder mimicking
an argument that might be put forward in a court case.

kill

arg1

intent

murder

 0.8

Fig. 1. Carneades argument for murder
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For ease of reference, we name the argument (arg1 ). However, arguments are
not formally named in Carneades, but instead identified by their logical content.
An argument is only to be taken into account if it is applicable in a technical sense
defined in Carneades. In this case, arg1 is applicable given that its two premises
kill and intent are acceptable, also in a technical sense defined in Carneades. (We
will come back to exceptions below.) In other words, we are able to derive that
there was a murder, given that we know (with sufficient certainty) that someone
was killed and that this was done with intent.

In Carneades, a set of arguments is evaluated relative to a specific audience
(jury). The audience determines two things: a set of assumptions, and the weight
of each argument, ranging from 0 to 1. The assumptions are the premises and
exceptions that are taken for granted by the audience, while the weights reflect
the subjective merit of the arguments. In our example, the weight of arg1 is 0.8,
and it is applicable if kill and intent are either assumptions of the audience, or
have been derived by some other arguments, relative to the same audience.

Things get more interesting when there are arguments both for and against the
same proposition. The conclusion of an argument against an atomic proposition
is the propositional negation of that proposition, while an argument against a
negated atomic proposition is just the (positive) proposition itself. Depending
on the type of proposition, and even the type of case (criminal or civil), there
are certain requirements the arguments should fulfil to tip the balance in either
direction. These requirements are called proof standards. Carneades specifies a
range of proof standards, and to model opposing arguments we need to assign a
specific proof standard, such as clear and convincing evidence, to a proposition.

witness

arg2

unreliable

intent

 0.3

(a) Pro intent

witness2

arg3

unreliable2

-intent

 0.8

(b) Con intent

Fig. 2. Arguments pro and con intent

Consider the two arguments in Fig. 2, where the arrows with circular heads
indicate exceptions. Fig. 2(a) represents an argument in favour of intent . It
is applicable given that the premise witness is acceptable and the exception
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unreliable does not hold. Fig. 2(b) represents an argument against intent . It
involves a second witness, witness2 , who claims the opposite of the first witness.
Let us assume that the required proof standard for intent indeed is clear and
convincing evidence, which Carneades formally defines as follows:

Definition 1 (Clear and convincing evidence). Given two globally prede-
fined positive constants α and β; clear and convincing evidence holds for a specific
proposition p iff

– There is at least one applicable argument for proposition p that has at least
a weight of α.

– The maximal weight of the applicable arguments in favour of p are at least
β stronger than the maximal weight of the applicable arguments against p.

Taking α = 0.2, β = 0.3, and given an audience that determines the argument
weights to be as per the figure and that assumes {witness ,witness2}, we have
that−intent is acceptable, because arg3 and arg2 are applicable, weight(arg3 ) >
α, and weight(arg3 ) > weight(arg2 ) + β.

For another example, had unreliable2 been assumed as well, or found to be
acceptable through other (applicable) arguments, that would have made arg3
inapplicable. That in turn would make intent acceptable, as the weight 0.3 of
arg2 satisfies the conditions for clear and convincing evidence given that there
now are no applicable counter arguments, and we could then proceed to establish
murder by arg1 had it been established that someone indeed was killed.

3 Towards a DSL for Carneades in Haskell

3.1 Arguments

As our ultimate goal is a DSL for argumentation theory, we strive for a reali-
sation in Haskell that mirrors the mathematical model of Carneades argumen-
tation framework as closely as possible. Ideally, there would be little more to a
realisation than a transliteration. We will thus proceed by stating the central
definitions of Carneades along with our realisation of them in Haskell.

Definition 2 (Arguments). Let L be a propositional language. An argument
is a tuple 〈P,E, c〉 where P ⊂ L are its premises, E ⊂ L with P ∩E = ∅ are its
exceptions and c ∈ L is its conclusion. For simplicity, all members of L must
be literals, i.e. either an atomic proposition or a negated atomic proposition. An
argument is said to be pro its conclusion c (which may be a negative atomic
proposition) and con the negation of c.

In Carneades all logical formulae are literals in propositional logic; i.e., all
propositions are either positive or negative atoms. Taking atoms to be strings
suffice in the following, and propositional literals can then be formed by pairing
this atom with a Boolean to denote whether it is negated or not:

type PropLiteral = (Bool , String)
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We write p for the negation of a literal p. The realisation is immediate:

negate :: PropLiteral → PropLiteral
negate (b, x ) = (¬ b, x )

We chose to realise an argument as a newtype (to allow a manual Eq instance)
containing a tuple of two lists of propositions, its premises and its exceptions,
and a proposition that denotes the conclusion:

newtype Argument = Arg ([PropLiteral ], [PropLiteral ],PropLiteral )

Arguments are considered equal if their premises, exceptions and conclusion
are equal; thus arguments are identified by their logical content. The equality
instance for Argument (omitted for brevity) takes this into account by comparing
the lists as sets.

A set of arguments determines how propositions depend on each other.
Carneades requires that there are no cycles among these dependencies. Following
Brewka and Gordon [6], we use a dependency graph to determine acyclicity of a
set of arguments.

Definition 3 (Acyclic set of arguments). A set of arguments is acyclic
iff its corresponding dependency graph is acyclic. The corresponding dependency
graph has a node for every literal appearing in the set of arguments. A node p has
a link to node q whenever p depends on q in the sense that there is an argument
pro or con p that has q or q in its set of premises or exceptions.

Our realisation of a set of arguments is considered abstract for DSL purposes,
only providing a check for acyclicity and a function to retrieve arguments pro
a proposition. We use FGL [14] to implement the dependency graph, forming
nodes for propositions and edges for the dependencies. For simplicity, we opt to
keep the graph also as the representation of a set of arguments.

type ArgSet = . . .

getArgs :: PropLiteral → ArgSet → [Argument ]
checkCycle :: ArgSet → Bool

3.2 Carneades Argument Evaluation Structure

The main structure of the argumentation model is called a Carneades Argument
Evaluation Structure (CAES):

Definition 4 (Carneades Argument Evaluation Structure (CAES)). A
Carneades Argument Evaluation Structure (CAES) is a triple

〈arguments, audience, standard〉

where arguments is an acyclic set of arguments, audience is an audience as
defined below (Def. 5), and standard is a total function mapping each proposition
to to its specific proof standard.
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Note that propositions may be associated with different proof standards. This is
considered a particular strength of the Carneades framework. The transliteration
into Haskell is almost immediate2:

newtype CAES = CAES (ArgSet ,Audience,PropStandard)

Definition 5 (Audience). Let L be a propositional language. An audience is
a tuple 〈assumptions, weight〉, where assumptions ⊂ L is a propositionally con-
sistent set of literals (i.e., not containing both a literal and its negation) assumed
to be acceptable by the audience and weight is a function mapping arguments to
a real-valued weight in the range [0, 1].

This definition is captured by the following Haskell definitions:

type Audience = (Assumptions ,ArgWeight)
type Assumptions = [PropLiteral ]
type ArgWeight = Argument →Weight
type Weight = Double

Further, as each proposition is associated with a specific proof standard, we
need a mapping from propositions to proof standards:

type PropStandard = PropLiteral → ProofStandard

A proof standard is a function that given a proposition p, aggregates arguments
pro and con p and decides whether it is acceptable or not:

type ProofStandard = PropLiteral → CAES → Bool

This aggregation process will be defined in detail in the next section, but note
that it is done relative to a specific CAES, and note the cyclic dependence at
the type level between CAES and ProofStandard .

The above definition of proof standard also demonstrates that implementation
in a typed language such as Haskell is a useful way of verifying definitions from
argumentation theoretic models. Our implementation effort revealed that the
original definition as given in [11] could not be realised as stated, because proof
standards in general not only depend on a set of arguments and the audience,
but may need the whole CAES.

3.3 Evaluation

Two concepts central to the evaluation of a CAES are applicability of arguments,
which arguments should be taken into account, and acceptability of propositions,
which conclusions can be reached under the relevant proof standards, given the
beliefs of a specific audience.

2 Note that we use a newtype to prevent a cycle in the type definitions.
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Definition 6 (Applicability of arguments). Given a set of arguments and
a set of assumptions (in an audience) in a CAES C, then an argument a =
〈P,E, c〉 is applicable iff

– p ∈ P implies p is an assumption or [ p is not an assumption and p is
acceptable in C ] and

– e ∈ E implies e is not an assumption and [ e is an assumption or e is not
acceptable in C ].

Definition 7 (Acceptability of propositions). Given a CAES C, a propo-
sition p is acceptable in C iff (s p C) is true, where s is the proof standard
for p.

Note that these two definitions in general are mutually dependent because
acceptability depends on proof standards, and most sensible proof standards
depend on the applicability of arguments. This is the reason that Carneades
restricts the set of arguments to be acyclic. (Specific proof standards are con-
sidered in the next section.) The realisation of applicability and acceptability in
Haskell is straightforward:

applicable ::Argument → CAES → Bool
applicable (Arg (prems , excns, )) caes@(CAES ( , (assumptions , ), ))

= and $ [(p ∈ assumptions) ∨ (p ‘acceptable ‘ caes) | p ← prems ]
++
[(e ∈ assumptions) ↓ (e ‘acceptable ‘ caes) | e ← excns ]

where
x ↓ y = ¬ (x ∨ y)

acceptable :: PropLiteral → CAES → Bool
acceptable c caes@(CAES ( , , standard))

= c ‘s ‘ caes
where s = standard c

3.4 Proof Standards

Carneades predefines five proof standards, originating from the work of Freeman
and Farley [15,16]: scintilla of evidence, preponderance of the evidence, clear
and convincing evidence, beyond reasonable doubt and dialectical validity. Some
proof standards depend on constants such as α, β, γ; these are assumed to be
defined once and globally. This time, we proceed to give the definitions directly
in Haskell, as they really only are translitarations of the original definitions.

For a proposition p to satisfy the weakest proof standard, scintilla of evidence,
there should be at least one applicable argument pro p in the CAES:

scintilla :: ProofStandard
scintilla p caes@(CAES (g, , ))
= any (‘applicable ‘caes) (getArgs p g)
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Preponderance of the evidence additionally requires the maximum weight of
the applicable arguments pro p to be greater than the maximum weight of the
applicable arguments con p. The weight of zero arguments is taken to be 0. As
the maximal weight of applicable arguments pro and con is a recurring theme
in the definitions of several of the proof standards, we start by defining those
notions:

maxWeightApplicable :: [Argument ]→ CAES →Weight
maxWeightApplicable as caes@(CAES ( , ( , argWeight), ))
= foldl max 0 [argWeight a | a ← as , a ‘applicable ‘ caes ]

maxWeightPro :: PropLiteral → CAES →Weight
maxWeightPro p caes@(CAES (g, , ))
= maxWeightApplicable (getArgs p g) caes

maxWeightCon :: PropLiteral → CAES →Weight
maxWeightCon p caes@(CAES (g, , ))
= maxWeightApplicable (getArgs (negate p) g) caes

We can then define the proof standard preponderance:

preponderance :: ProofStandard
preponderance p caes = maxWeightPro p caes >maxWeightCon p caes

Clear and convincing evidence strengthen the preponderance constraints by
insisting that the difference between the maximal weights of the pro and con
arguments must be greater than a given positive constant β, and there should
furthermore be at least one applicable argument pro p that is stronger than a
given positive constant α:

clear and convincing :: ProofStandard
clear and convincing p caes
= (mwp > α) ∧ (mwp −mwc > β)
where
mwp = maxWeightPro p caes
mwc = maxWeightCon p caes

Beyond reasonable doubt has one further requirement: the maximal strength
of an argument con p must be less than a given positive constant γ; i.e., there
must be no reasonable doubt:

beyond reasonable doubt :: ProofStandard
beyond reasonable doubt p caes
= clear and convincing p caes ∧ (maxWeightCon p caes < γ)

Finally dialectical validity requires at least one applicable argument pro p and
no applicable arguments con p:

dialectical validity :: ProofStandard
dialectical validity p caes

= scintilla p caes ∧ ¬ (scintilla (negate p) caes)
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3.5 Convenience Functions

We provide a set of functions to facilitate construction of propositions, argu-
ments, argument sets and sets of assumptions. Together with the definitions
covered so far, this constitute our DSL for constructing Carneades argumenta-
tion models.

mkProp :: String → PropLiteral
mkArg :: [String ]→ [String ]→ String → Argument
mkArgSet :: [Argument ]→ ArgSet
mkAssumptions :: [String ]→ [PropLiteral ]

A string starting with a ’-’ is taken to denote a negative atomic proposition.
To construct an audience, native Haskell tupling is used to combine a set of

assumptions and a weight function, exactly as it would be done in the Carneades
model:

audience ::Audience
audience = (assumptions ,weight)

Carneades Argument Evaluation Structures and weight functions are defined in
a similar way, as will be shown in the next subsection.

Finally, we provide a function for retrieving the arguments for a specific propo-
sition from an argument set, a couple of functions to retrieve all arguments and
propositions respectively from an argument set, and functions to retrieve the
(not) applicable arguments or (not) acceptable propositions from a CAES:

getArgs :: PropLiteral → ArgSet → [Argument ]
getAllArgs ::ArgSet → [Argument ]
getProps ::ArgSet → [PropLiteral ]
applicableArgs :: CAES → [Argument ]
nonApplicableArgs :: CAES → [Argument ]
acceptableProps :: CAES → [PropLiteral ]
nonAcceptableProps :: CAES → [PropLiteral ]

3.6 Implementing a CAES

This subsection shows how an argumentation theorist given the Carneades DSL
developed in this section quickly and at a high level of abstraction can implement
a Carneades argument evaluation structure and evaluate it as well. We revisit
the arguments from Section 2 and assume the following:

arguments = {arg1 , arg2 , arg3},
assumptions = {kill ,witness,witness2 , unreliable2},

standard(intent) = beyond-reasonable-doubt ,

standard(x ) = scintilla , for any other proposition x,

α = 0.4, β = 0.3, γ = 0.2.
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Arguments and the argument graph are constructed by calling mkArg and
mkArgSet respectively:

arg1 , arg2 , arg3 :: Argument
arg1 = mkArg ["kill", "intent"] [ ] "murder"
arg2 = mkArg ["witness"] ["unreliable"] "intent"
arg3 = mkArg ["witness2"] ["unreliable2"] "-intent"

argSet :: ArgSet
argSet = mkArgSet [arg1 , arg2 , arg3 ]

The audience is implemented by defining the weight function and calling
mkAssumptions on the propositions which are to be assumed. The audience
is just a pair of these:

weight :: ArgWeight
weight arg | arg ≡ arg1 = 0.8
weight arg | arg ≡ arg2 = 0.3
weight arg | arg ≡ arg3 = 0.8
weight = error "no weight assigned"

assumptions :: [PropLiteral ]
assumptions = mkAssumptions ["kill", "witness",

"witness2", "unreliable2"]

audience ::Audience
audience = (assumptions ,weight)

Finally, after assigning proof standards in the standard function, we form the
CAES from the argument graph, audience and function standard :

standard :: PropStandard
standard ( , "intent") = beyond reasonable doubt
standard = scintilla

caes :: CAES
caes = CAES (argSet , audience, standard)

We can now try out the argumentation structure. Arguments are pretty
printed in the format premises ∼ exceptions ⇒ conclusion :

getAllArgs argSet
> [ ["witness2"] ∼["unreliable2"]⇒ "-intent",

["witness"] ∼["unreliable"] ⇒ "intent",
["kill", "intent"]∼[ ] ⇒ "murder"]

As expected, there are no applicable arguments for −intent , since unreliable2
is an exception, but there is an applicable argument for intent , namely arg2 :

filter (‘applicable ‘caes) $ getArgs (mkProp "-intent") argSet
> [ ]
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filter (‘applicable ‘caes) $ getArgs (mkProp "intent") argSet
> [ ["witness"]⇒ "intent"]

However, despite the applicable argument arg2 for intent , murder should not
be acceptable, because the weight of arg2 < α. Interestingly, note that we can’t
reach the opposite conclusion either:

acceptable (mkProp "murder") caes
> False
acceptable (mkProp "-murder") caes
> False

As a further extension, one could for example imagine giving an argumentation
theorist the means to see a trace of the derivation of acceptability. It would
be straightforward to add further primitives to the DSL and keeping track of
intermediate results for acceptability and applicability to achieve this.

4 Related Work

In this section we consider related work of direct relevance to our interests in
DSLs for argumentation theory, specifically efforts in the field of computational
argumentation theory to implement argumentation frameworks, and DSLs in
closely related areas with similar design goals to ours.

For a general overview of implementations and a discussion of limitations re-
garding experimental testing, see Bryant and Krause [17]. Most closely related to
the work presented in this paper is likely the well-developed implementation [18]
of Carneades in Clojure3. However, the main aim of that implementation is to
provide efficient tools, GUIs, and so on for non-specialists, not to express the im-
plementation in a way that directly relates it to the formal model. Consequently,
the connection between the implementation and the model is not immediate.
This means that the implementation, while great for argumentation theorists
only interested in modelling argumentation problems, is not directly useful to a
computational argumentation theorist interested in relating models and imple-
mentations, or in verifying definitions. The Clojure implementation is thus in
sharp contrast to our work, and reinforces our belief in the value of a high-level,
principled approach to formalising argumentation theory frameworks.

One of the main attempts to unify work in argumentation theory, encompass-
ing arguments from the computational, philosophical and the linguistic domains,
is the Argument Interchange Format (AIF) [19,20]. The AIF aims to capture ar-
guments stated in the above mentioned domains, while providing a common core
ontology for expressing argumentative information and relations. Very recent
work has given a logical specification of AIF [21], providing foundations for in-
terrelating argumentation semantics of computational models of argumentation,
thereby remedying a previous weaknesses of AIF. Our implementation tackles

3 http://carneades.berlios.de/

http://carneades.berlios.de/
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the problem from another direction, starting with a formal and computationally
oriented language instead.

Walkingshaw and Erwig [22,23] have developed an EDSL for neuron dia-
grams [24], a formalism in philosophy that can model complex causal relation-
ships between events, similar to how premises and exceptions determine a con-
clusion in an argument. Walkingshaw and Erwig extend this model to work
on non-Boolean values, while at the same time providing an implementation,
thereby unifying formal description and actual implementation. This particular
goal is very similar to ours. Furthermore, the actual formalisms of neuron dia-
grams and the Carneades argumentation model are technically related: while an
argument on its own is a simple graph, the dependency graph corresponding to
the whole Carneades argument evaluation structure is much more complex and
has a structure similar to a full neuron diagram. Arguments in Carneades could
thus be seen as an easy notation for a specific kind of complex neuron diagrams
for which manual encoding would be unfeasible in practice. However, due to the
complexity of the resulting encoding, this also means that for an argumentation
theorist, neuron diagrams do not offer directly relevant abstractions. That said,
Walkingshaw’s and Erwig’s EDSL itself could offer valuable input on the design
for a DSL for argumentation.

Similarly, causal diagrams are a special case of Bayesian networks [25] with
additional constraints on the semantics, restricting the relations between nodes
to a causal relation (causal diagrams are a graphic and restricted version of
Bayesian networks). Building on the already existing relation between Carneades
and Bayesian networks [26], we can view the neuron diagrams generalised to non-
Boolean values in Carneades by generalising the negation relation and proof
standards to non-Boolean values in the obvious way, and picking scintilla of
evidence as the proof standard for all propositions. So, in a way, neuron diagrams
are a specific case of arguments, using scintilla of evidence as the proof standard.
Finally, to compute an output for every combination of inputs, as is done for
neuron diagrams, we can vary the set of assumptions accordingly.

However, formal connections between Bayesian networks and (dialectical) ar-
gumentation are still in its infancy; most of the work such as Grabmair [26],
Keppens [27] and Vreeswijk [28] are high level relations or comparisons, contain-
ing no formal proofs.

5 Conclusions and Future Work

In this paper we have discussed the Carneades argumentation model and an
implementation of it in Haskell. This paper should be seen as a case study and
a step towards a generic DSL for argumentation theory, providing a unifying
framework in which various argumentation models can be implemented and their
relationships studied. We have seen that the original mathematical definitions
can be captured at a similar level of abstraction by Haskell code, thereby allowing
for greater understanding of the implementation. At the same time we obtained a
domain specific language for the Carneades argumentation framework, allowing
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argumentation theorists to realise arguments essentially only using a vocabulary
with which they are already familiar.

The initial experience from our work has been largely positive. Comments
from Tom Gordon [13], one of the authors and implementers of the Carneades
argumentation model, suggest that our implementation is intuitive and would
even work as an executable specification, which is an innovative approach in
argumentation theory as a field. However, our implementation was not seen as
usable to non-argumentation theorists, because of the lack of additional tools.
We do not perceive this as a worrying conclusion; our framework’s focus is on
computational argumentation theorists. We rather envision our implementation
being used as a testing framework for computational argumentation theorists
and as an intermediate language between implementations, providing a much
more formal alternative to the existing Argument Interchange Format [20].

One avenue of future work is the generalisation of our DSL to other related
argumentation models. It is relatively common in argumentation theory to define
an entirely new model to realise a small extension. However, this hurts the meta-
theory as lots of results will have to be re-established from scratch. By reducing
such an extension to an existing implementation/DSL such as ours, for instance
by providing an implementation of an existing formal translation such as [8,10],
we effectively formalise a translation between both models, while gaining an
implementation of this generalisation at the same time.

This could be taken even further by transferring the functional definitions of
an argumentation model into an interactive theorem prover, such as Agda. First
of all, the formalisation of the model itself would be more precise. While the
Haskell model might seem exact, note that properties such as the acyclicity of
arguments, or that premises and exceptions must not overlap, are not inherently
part of this model. Second, this would enable formal,machine-checked, reasoning
about the model, such as establishing desirable properties like consistency of the
set of derivable conclusions.

Then, if multiple argumentation models were to be realised in a theorem
prover, relations between those models, such as translations, could be formalised.
As mentioned in the introduction, there has recently been much work on for-
malisation of translations between conceptually very different argumentation
models [7,8,10,9]. But such a translation can be very difficult to verify if done
by hand. Using a theorem prover, the complex proofs could be machine-checked,
guaranteeing that the translations preserve key properties of the models. An
argumentation theorist might also make use of this connection by inputting an
argumentation case into one model and, through the formal translation, retrieve
a specification in another argumentation model, allowing the use of established
properties (such as rationality postulates [29]) of the latter model.

Finally, we are interested in the possibility of mechanised argumentation as
such; e.g., as a component of autonomous agents. We thus intend to look into
realising various argumentation models efficiently by considering suitable ways
to implement the underlying graph structure and exploiting sharing to avoid un-
necessarily duplicated work. Ultimately we hope this would allow us to establish
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results regarding the asymptotic time and space complexity inherent in various
argumentation models, while providing a framework for empirical evaluations
and testing problems sets at the same time. Especially the latter is an area that
has only recently received attention [17,7], due to the lack of implementations
and automated conversion of problem sets.
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Abstract. Parallel profiling tools, such as ThreadScope for Parallel
Haskell, allow programmers to obtain information about the performance
of their parallel programs. However, the information they provide is not
always sufficiently detailed to precisely pinpoint the cause of some per-
formance problems. Often, this is because the cost of obtaining that in-
formation would be prohibitive for a complete program execution. In this
paper, we adapt the well-known technique of execution replay to make
it possible to simulate a previous run of a program. We ensure that the
non-deterministic parallel behaviour of the Parallel Haskell application
is properly emulated while its deterministic functionality is unmodified.
In this way, we can gather additional data about the behaviour of a par-
allel program by replaying some parts of it with more detailed profiling
information. We exploit this ability to identify performance bottlenecks
in a quicksort implementation, and to derive a version that achieves an
82% speedup over a naive parallelisation.

1 Introduction

Writing correct parallel programs in pure functional languages, such as Glasgow
Parallel Haskell (GpH [10,15]), is relatively simple. The absence of side-effects
means that it is not necessary to worry about some situations such as race condi-
tions or deadlocks that can seriously complicate parallel programs written using
more traditional techniques. However, writing good parallel programs, which will
give good speedups on a wide variety of parallel architectures, is much harder.
Understanding why a seemingly “perfect” parallel program does not perform
the way the programmer expects can be difficult, especially in a lazy language
like Haskell. Profiling can help in understanding the performance of parallel
programs. Current profiling tools, such as ThreadScope [6] and cost centre pro-
filing [3], allow the programmer to obtain some information about the behaviour
of a parallel program. However, the information that they give is often too low-
level to pinpoint performance problems (e.g. in the case of ThreadScope), or
their use can even change the runtime behaviour of the original program (e.g. in
the case of cost centre profiling).

In this paper, we describe how to adapt the well-known technique of execu-
tion replay [14] to allow us to use performance debugging for parallel functional
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programs. Traditionally, execution replay has been used to debug imperative
programs, and, as its name suggests, it aims to replay the execution of a pro-
gram in order to reproduce the same state of the memory and registers as in the
original execution. To the best of our knowledge, this paper represents both the
first attempt to use this technique in the context of a lazy functional language,
and its first adaptation to parallel performance debugging. With our implemen-
tation, the repeated execution of a program is simulated in a way that allows us
to i) reproduce the conditions that led to the original poor parallel performance
and ii) make changes to the program execution in order to collect additional
information about its runtime behaviour. In this way, we can dynamically tune
the amount and type of profiling that we do during the replay in order to obtain
high-level profiling information without changing the runtime behaviour of the
original program.

In particular, this paper presents the following novel research contributions:

– We describe the implementation of execution replay for the parallel pro-
grams written in the pure lazy functional language Haskell. In particular, we
describe the smallest set of events from a program execution that needs to
be recorded in order to reproduce the parallel behaviour of these programs.

– We present a novel simulator that was built to replay the program execution
using these events.

– We discuss how this technique can be used for performance debugging of
Parallel Haskell programs.

– We present a use case, where execution replay is used to discover the per-
formance bottleneck of the list-sorting algorithm quicksort.

2 Why Is Parallel Functional Programming Hard?

The lack of explicit program flow, and the fact that a lot of things happen im-
plicitly during the program execution, is both a blessing and a curse for parallel
functional programmers, especially in a lazy language like Haskell. While it is ar-
guably easier to write parallel programs in Haskell than in imperative languages
(the programmer “just” needs to insert simple parallel annotations in the appro-
priate places in his code), discovering performance bottlenecks of such programs
can be daunting. There is a large number of things that can go wrong, and for
which the programmer does not have explicit control. Consider, for example, a
simple parallel implementation of the quicksort algorithm:

psort :: Int → [Int ] → [Int ]
psort [ ] = [ ]
psort parLevel (x : xs)

| parLevel > 0 = hiSorted ‘par ‘ loSorted ‘pseq‘ (loSorted ++ x : hiSorted)
| otherwise = seqSort (x : xs)
where (lo, hi) = partition (<x) xs

loSorted = psort (parLevel − 1) lo
hiSorted = force (psort (parLevel − 1) hi)
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Fig. 1. ThreadScope profile of psort

The rationale behind this attempt at parallelising quicksort is simple: after
dividing the initial list l into its lower and higher parts (lo and hi) by using x
as a pivot, we try to sort these two parts in parallel using the par combinator.
Because of how laziness works, we use the function force1 to make sure that
each parallel thread completely evaluates its sublist. In addition, by using the
parLevel parameter, we control the amount of parallelism generated, so that after
a certain point is reached in the recursion depth, the higher and lower parts of
the list are sorted sequentially. In this way, we can tune the parallelism to get a
small number of coarse-grained parallel threads. However, no matter what value
for parLevel we choose, the speedups of psort that we obtain are very poor, not
even achieving a speedup of 2 in up to 8 cores.

In order to understand why this program gives a bad speedup, we can try
to use ThreadScope to visualise what happens during its execution. Figure 1
shows an execution profile of the program. This shows a high-level overview of
the thread activity on both cores. The solid rectangles indicate that a thread
is running, the little marks in between and the rectangles that produce gaps in
the activity area indicate garbage collection. Blank space indicates that the core
is idle. We can zoom in on specific parts of the execution and obtain low-level
information such as individual thread identifiers, some information about thread
blockage, or garbage collection requests.

From the profile above, we can observe that the program behaves reasonably
well most of the execution. Then, towards the end, there is some serialisation
where only one thread at a time is doing evaluation. However, ThreadScope does
not provide us any hints about where do these problems come from, e.g. what
part of the program is responsible for the final sequential phase. Based on the
knowledge of the runtime behaviour of the language, we can speculate that the
serialisation comes from the linear behaviour of the ++ operator, which traverses
both lists sequentially. However, we cannot know for sure.

As we can see from this example, even though the information that we
obtain using ThreadScope is valuable, it is too low-level to allow for proper
1 force ::NFData a ⇒ a → a returns its argument after forcing its evaluation to normal

form.
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understanding of the parallel performance of the program. What is really needed
is much more detailed, high-level information about the runtime behaviour, ide-
ally linking the parallel events from the ThreadScope profile to the source ex-
presions they are related to. In the example above, knowing which expressions
are being evaluated in the final sequential phase would be a first step into fixing
the performance problems of this program. We come back to this problem in
Section 5.

Obtaining the information required for performance debugging using exist-
ing infrastructure and tools would require either recording a huge amount of
additional information, which could then be processed offline, or rerunning the
program multiple times with different profiling options enabled. In both cases,
the runtime behaviour (such as scheduling and communication between threads)
of the original program might change, making the profiling data useless and mak-
ing it very hard to reproduce the problem that is being debugged. Our solution
to the problem is to reproduce the original execution of the program without
changing its runtime behaviour while, at the same time, dynamically adjust the
level and type of profiling information that is gathered during the execution. We
achieved this by using execution replay.

3 Execution Replay for Parallel Haskell

Execution replay [14,2] is a debugging technique in which a programmer records
the execution trace of a program and then uses that trace to replay it step by
step. The trace of the program encapsulates the whole state of the system as
it changes throughout the execution. When replaying, the programmer is able
to inspect the state of the program (e.g. variables, registers, stack) as it was at
each step of the original execution.

Execution replay consists of two distinct phases (see Figure 2):

– a logging phase where, during the original program execution, enough infor-
mation is logged so that the execution can be replayed and

– a replaying phase where the original program execution is replayed, using
the logged information.

Our main goal is to use this technique to investigate performance bottlenecks
of parallel programs, written in purely functional programming languages. This
has an important consequence in that we do not have to be concerned with
replaying exactly the same execution as the original one. It will suffice if the
replayed execution is “similar enough” to the original one, such that both have
the same parallel behaviour. We can, therefore, see a replay as a simulation of
the execution where the threads created and the interactions between them are
the same as in the original execution, and where other details of the execution
may differ. This flexibility allows us to introduce changes in the program which
will enable us to gather data needed for debugging its parallel performance. It
also means that the amount of information that we need to record is significantly
smaller than if we want to do a full replay. In the next section, we discuss exactly
what events we need to record in the logging phase.



Repeating History: Execution Replay for Parallel Haskell Programs 235

Fig. 2. Execution replay in Parallel Haskell

We have built a prototype implementation of this modified execution re-
play in the Glasgow Haskell Compiler (GHC) and runtime system for Parallel
Haskell [13]2. Currently, logging of the events works by running a program un-
der GHC with event logging support3. For replaying, we use the same compiled
executable, with the --replay command line flag. This runs the simulator in-
side the GHC runtime system, which reads the events recorded in the logging
phase and sequentially simulates the program execution. In Section 4 we provide
additional details of our implementation.

3.1 Events Needed for Replay

Execution replay relies on the amount of recorded information in the logging
phase being tractable. Usually, most of the program execution consists in running
code with a deterministic runtime behaviour, which can be replayed just by re-
running it. With the introduction of mutation, parallelism and non-deterministic
data sources (e.g. random numbers, I/O, signals), the execution path (and,
hence, the ordering of certain events in the program execution) can change.
If the program execution is to be reproduced, all the events that introduce non-
determinism in the program execution need to be recorded. In imperative lan-
guages, the biggest problem is to track the mutation of data, which may be
shared between different threads at any time, and this may require every access
to shared memory to be logged. Current mechanisms for doing this efficiently
rely on very elaborated protocols of page ownership tracking at the operating
system level [7].

2 Its development can be followed on http://github.com/hferreiro/ghc
3 Using the flag -eventlog to compile and the runtime system flag -ls when executing

the program.

http://github.com/hferreiro/ghc
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In a pure and lazy functional language, on the other hand, the situation is
much simpler. The interactions between threads (which are the main reason for
the existence of different execution paths in parallel programs) are greatly sim-
plified. Data dependencies between threads are handled transparently, without
the use of locks and other synchronising mechanisms. Once a computation has
been evaluated to normal form, then the runtime system enforces read-only ac-
cess. Furthermore, due to laziness, any unevaluated data will be updated by at
most one thread.

For simplicity, we consider only pure computations (i.e. those that do not use
any side-effects, such as I/O and concurrent data mutation). Also, as mentioned
earlier, we are focusing on parallel profiling, which means that we are only in-
terested in each thread’s progress and the coordination between threads. Given
this, for Parallel Haskell programs there is only a small number of events that
needs to be recorded:

– thread interactions: thread run, thread stop, thread block (when a thread is
blocked on some data being evaluated by some other thread);

– scheduling events: thread migrate (when threads are migrated between cores),
new spark (for creation of parallelism), steal spark (load balancing event),
run spark (when a parallel expression is picked by its owner thread);

– task related: acquire capability, release capability (to track ownership of ca-
pabilities).

Besides these, there are also some additional events very specific to the internal
details of the GHC runtime system. In Section 4, we give more details about the
implementation of the recording of events in GHC.

3.2 Usage of Execution Replay

The key observation for our work is that we are simulating the previous execution
of the same program, rather than rerunning it. The replay is deterministic in
its runtime behaviour, and only depends on the events that were recorded in
the original run of the program. This makes it ideal for performance debugging
of functional programs, since gathering more profiling data does not have any
impact on the ordering of the events in the replay. It might only increase the
time the replay may take, which is not of great importance in debugging.

Our ultimate goal is to integrate execution replay with the ThreadScope vi-
sualisation tool. In that way, we would have a GUI tool that would enable us
to pause the replay at the points where the parallel performance starts to de-
grade, and then turn on the appropriate kind of profiling that would enable us
to get a better insight into the problems encountered. In Section 5, we show a
worked example of using execution replay to debug a non-trivial parallel program
(quicksort). We now discuss a few hypothetical use cases of such a tool:

– For parallel programs that perform badly due to a large amount of unevalu-
ated data shared between threads, which is reflected in frequent blocking of
threads, we can replay the program execution without any profiling data up
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to the point where blocking starts to occur, then turn on profiling to inves-
tigate what data are the threads blocking on. At this point, we could take
advantage of cost centre profiling to link the heap data to the expressions in
the source code to which they relate, so that we can find out where exactly in
the program source do these data hotspots come from. We may then rewrite
the original program to avoid sharing at these particular points.

– In large parallel programs, we might be interested in different profiling data
during different stages of the execution. In some stages, we might be only
interested in the granularity of the threads created from sparks, in others,
we might be interested in discovering what data is being garbage collected.
The possibility of dynamically adjusting the type and level of profiling detail
during replay is one of the main motivations for using execution replay.

– For some parallel programs, there may be very subtle bugs which produce one
bad execution out of many. It is not very useful to have to rerun your program
many times until you reproduce a pathological behaviour. By using execution
replay, the only requirement is to have a trace of the target execution. Then,
it can be replayed as many times as needed with the confidence that the
same wrong behaviour is being analysed as in the original run.

4 GHC Implementation Details

Although the result of a Parallel Haskell program is deterministic, its runtime
behaviour might not be. In this section, we describe some of the internals of
the GHC runtime system, focusing on the parts that contribute to the non-
deterministic behaviour of application execution4. We then describe in more
detail how we implemented the logging and replaying phases of execution replay
in GHC.

4.1 The GHC Runtime System

The Glasgow Haskell Compiler is a state-of-the-art compiler and parallel runtime
system for the pure lazy functional language Haskell [10]. It achieves great flexi-
bility by using a lightweight thread model, where multiple logical Haskell threads
are mapped into one single OS thread which runs concurrently with others (see
Figure 3). The whole runtime system is organised in three layers of abstraction:
capabilities, tasks and threads. A capability is a virtual core in which Haskell
code is run. Each time a new thread is created at the Haskell level, it will be
appended to the run queue of its capability. To run the code of these threads,
real OS threads are needed. This is the mission of tasks: each task corresponds to
an OS thread which tries to become the owner of a capability. Once a capability
has been acquired, the task will run a scheduler cycling through the capability’s
run queue and assigning a time slice to each Haskell thread.

Besides finishing its time slice there are other mechanisms by which a thread
can lose control of the CPU: blocking on the evaluation of a shared value, a
4 A much more complete description of GHC can be found in [11].
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Fig. 3. Overview of the GHC Runtime System

stack or heap overflow, or exceptions. Additionally, threads can migrate to idle
capabilities to increase parallelism.

The basic primitives for parallel programming are par a b and pseq a b5.
par denotes that it would be useful to evaluate its first parameter in parallel to
the second which is returned as result [15]. pseq makes it possible to order the
evaluation of two expressions by ensuring that its first parameter is evaluated
to weak head normal form before returning its second parameter [11]. When a
thread evaluates the expression p ‘par ‘ q, a spark for p is created, and the thread
continues with the evaluation of q. Sparks are just pointers to the part of the
graph that represents the source expression. They are kept in spark pools, with
one spark pool per capability. Each spark is eventually converted into a thread,
or discarded if the expression it points to is already under evaluation, or not
needed at all. Load balancing across capabilities is done using a combination of
work stealing and work pushing. Idle capabilities attempt to steal sparks from
the busy ones, and the capabilites that have enough active threads push them
to idle capabilities.

4.2 Logging Phase

From the discussion above, we identified the set of events related to the pos-
sible non-determinism in the execution of parallel programs under GHC that
we need to record. A mechanism for event logging already exists in GHC [6],
5 Not to be confused with seq which is strict in both of its arguments but does not

enforce an ordering in its evaluation [11].
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and it supports logging of some basic events that are used for visualisation with
ThreadScope. We have significantly enhanced the logging mechanism, adding
several new events and changing some of the existing ones. We can group the
needed events by the parts of the runtime system they are related to:

Thread scheduling. Logical Haskell threads executed on the same capability are
scheduled in a round-robin fashion. Each thread runs in a capability until one
of three things occur:

– the thread runs out of heap or stack space (in the first case garbage collection
needs to be performed before any thread can continue evaluation);

– the thread blocks on some expression being evaluated; or
– the predefined time slice expires.

In all of the above cases, the thread is preempted and the next thread in the
queue is selected for evaluation. If we want to replay how threads are interleaved,
we need to be able to tell how much evaluation a thread has done in a given
time slice. This amount of work changes in different executions because of how
modern CPUs work. Thankfully, GHC preempts threads only when they make a
heap check. The already existing thread run event already provides us with the
data to identify which thread began running in a capability. We then modified
the thread stop event to additionally store the amount of allocation the thread
did in its time slice. For the case in which a thread blocks on an expression
being evaluated by another thread, we enhanced the thread block event by adding
information about the threads involved. A thread wakeup event is recorded when
its execution can be resumed.

Load balancing. As a consequence of the previous discussion, the number of
sparks created in the same time period in different program executions can be
different, and also the times at which capabilities become idle (and, therefore, the
need to perform spark stealing or thread pushing) can be different. This means
that we need to record the events related to spark creation and migration, and
also events related to threads being pushed to capabilities. We, therefore, need
new spark (that occurs when a new spark is created), spark steal (that occurs
when a capability steals a spark) and thread migrate (that occurs when a thread
is migrated between capabilities) events to be logged. For these events, we need
to record exactly which capability became idle, which spark it stole from which
capability, or which thread was pushed to it.

Capability ownership. The task-related events that were described before, acquire
capability and release capability, are new events we added so that we could track
which task was responsible for the execution of threads in a capability.

An excerpt from the trace of the quicksort implementation described in
Section 2 is shown below:
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...
4177926000: cap 1: stopping thread 4 (stack overflow) (96 words allocated)
4177940000: cap 1: running thread 4
4180949000: cap 1: stopping thread 4 (heap overflow) (65024 words
/ allocated)

4180979000: cap 0: stopping thread 3 (blocked on blackhole owned by
/ thread 4) (25253 words alloced)

4181027000: cap 0: task 1 releasing
4181146000: cap 1: running thread 4
...

4.3 Replay Phase

The replaying phase works by spawning an independent scheduler thread at the
beginning of the program execution. This thread initialises the runtime system
and makes sure that all tasks stop after being created. Then, in a loop, it reads
the recorded events ordered by time. If the event is thread run or thread wakeup,
the scheduler thread checks the capability responsible for the event, and allows
the corresponding thread to progress until it is stopped (once it has done the
same amount of work as in the recorded execution) or blocked. The rest of
the events are needed to preserve the ordering between the threads that emit
conflicting events (the same spark trying to be stolen by different threads, etc.).
Respecting this ordering will allow the execution to be replayed without trouble.

5 Use Case: Why Is Parallel Quicksort so Slow?

In order to show how execution replay can be used for performance debugging
of non-trivial parallel programs, we come back to the quicksort example we
presented in Section 2. Quicksort has gathered a lot of attention recently in
teaching parallel functional programming at several universities [4], since it is an
example of a program which “seems” rather trivial to parallelise, yet for which
obtaining good speedups (especially using lazy languages) is quite challenging.

A high-level, integrated profiling tool, designed with the use cases detailed in
Section 3.2 in mind, is still work in progress, so for this example we show how to
use execution replay in conjuction with a custom low-level tool for annotating
the source code.

We saw in Section 2 that the obvious method of parallelising this program
does not work as expected. In order to come up with a better parallel program,
we first made some optimisations to the sequential version. We implemented our
own strict version of the partition function so that we could avoid the overhead of
lazy evaluation caused by computing the sublists on demand. Next, we got rid of
the append operator ++, which requires multiple traversals of the same lists when
it is applied left-recursively, as in our case. For this, we used an accumulator in
which the resulting list is being constructed. First, we start with the whole list
to be sorted and an empty accumulator. Then, at each recursive step, the pivot
is accumulated into the sorted higher sublist. When there are no more elements
to sort, the accumulator is returned as the fully sorted list.
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No. cores Speedup
2 1.49
4 0.78
8 0.60

Fig. 4. Speedups of psort1

qsort :: [Int ] → [Int ]
qsort xs = seqSort xs [ ]

where seqSort [ ] zs = zs
seqSort (x : xs) zs = seqSort lo (x : seqSort hi zs)

where (lo, hi) = partition x xs
partition :: Int → [Int ] → ([Int ], [Int ])
partition x xs = go xs [ ] [ ]

where go [ ] ts fs = (ts, fs)
go (y : ys) ts fs

| y < x = go ys (y : ts) fs
| otherwise = go ys ts (y : fs)

Similarly to the first time, we tried to naively parallelise this code in the same
way as we did in Section 2. Given the changes mentioned above, we expected to
avoid the sequential phase that occurs at the end of the execution.

psort1 :: Int → [Int ] → [Int ]
psort1 n xs = go n xs [ ]

where go [ ] zs = zs
go n (x : xs) zs

| n > 0 = r ‘par ‘ go (n − 1) lo (x : r)
| otherwise = seqSort (x : xs) zs
where r = force (go (n − 1) hi zs)

(lo, hi) = partition x xs

We measured the speedups of this program on a machine with two Intel Xeon
2.93GHz CPUs, each of them having four cores. Each CPU had 8MB of L2 cache,
that was shared between all of its cores. The total amount of RAM was 64GB. In
the speedups figure above, we took the mean time over five runs of each program
with the same input, a list consisting of 10 million elements.

Figure 4 shows the speedups against the sequential version of the algorithm,
measured by using from two up to eight cores. From the figure, we can observe
that we are actually getting significant slowdowns as we use more cores.

In order to debug the performance of this program, we used again Thread-
Scope to get an overview of the thread activity. Figure 5 shows the profile from
ThreadScope after running our program using two cores.



242 H. Ferreiro et al.

Fig. 5. ThreadScope profile of psort1

We can see that we still have the same serialisation problem that we had in
the initial parallel version in Section 2, and that getting rid of the ++ operator
did not help at all. Additionally, there is a pause in the execution corresponding
to a major garbage collection phase. The big amount of input data, coupled
with the fact that we set up a large allocation area, is responsible for this be-
haviour. psort does not present this gap because, due to its inefficient sequential
implementation, we had to provide a much smaller input list.

We now used execution replay to discover which part of the program is re-
sponsible for the sequential phase at the end of the execution. We developed
some custom tools to be able to register timestamps when the evaluation of an
annotated expression is finished and to analyse the output produced. By using
execution replay, we were sure that the same execution was reproduced and so
that the output data matched the original ThreadScope profile. To focus on the
interesting parts of the program, we added two checkpoints: start, which is the
point after reading the input list, and end which marks the end of the program
(see Figure 5). We then replayed the program and processed its output to obtain
the following report:

188.020 ( 93.914) cap 0: partition [10.837.539]
1.240.278 (1.052.258) cap 0: seqSort [11.889.797]
1.747.763 ( 507.485) cap 0: seqSort [12.397.282]
1.747.766 ( 3) cap 0: force [12.397.285]
1.828.627 ( 80.861) cap 0: force [12.478.146]

0 ( 0) cap 1: start [10.649.519]
94.106 ( 94.106) cap 1: partition [10.743.625]

170.970 ( 76.864) cap 1: partition [10.820.489]
732.638 ( 561.668) cap 1: seqSort [11.382.157]

1.621.573 ( 888.935) cap 1: seqSort [12.271.092]
1.996.394 ( 374.821) cap 1: force [12.645.913]
2.225.849 ( 229.455) cap 1: force [12.875.368]
2.225.852 ( 3) cap 1: end [12.875.371]

Each line shows the timestamps for the completion of each annotated function
in the program. First, the relative time against start is presented. Next, the rel-
ative time against the previous function timestamp and the absolute timestamp
are shown in brackets. Each event is classified according to its capability.
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The relevant aspect of this data is that the sorting process has finished by
the time the sequential phase begins. We can see this because the timestamp of
the finish time of the last call to the seqSort function on capability 0 is 12.397s
(checkpoint s in Figure 5) and, from the ThreadScope profile, we can observe that
the sequential phase starts at a timestamp around 12.3s. After the checkpoint
s, only the timestamps of the force functions are left. So, the sequential phase
at the end must correspond to the execution of these functions.

The conclusion is that the program execution is almost perfectly balanced
between the two cores while the parallel threads are sorting their parts of the
list (the timestamps for the completions of the calls to seqSort are similar in each
capability). But then, because of the force call, each thread needs to traverse the
sublist that is passed in the accumulator zs. This sublist is sorted by another
thread, so the thread evaluating the force call becomes blocked immediately,
waiting until zs has been evaluated. Only then can it finish traversing it. When
finished, this thread returns the sorted list and allows its parent thread to also
finish evaluating its force call. This linear process gets worse as more threads are
involved in it. This is the reason why the speedups get worse as we add more
cores.

In the end, the same behaviour that we tried to prevent by avoiding the ++
operator, i.e. sequential traversal of the sorted list, is reproduced by evaluating
to normal form each of the sublists!

This analysis suggests that the way to fix this behaviour is to replace the
function force with a function that would immediately return when the tail of
the list being forced is already in normal form. To this end, we implemented
a custom version of quicksort which operates on a datatype List a (instead
of a regular list) as its input. This new type has the same Nil/[ ] and Cons/:
constructors as regular lists, and also an additional constructor Done. The Done
constructor has a list of elements as argument, and is used to mark the list as fully
evaluated. Together with this new type, we introduced a toList :: List a → [a ]
function which takes a List a as input and returns its corresponding regular list
in normal form. Its behaviour is similar to our usage of force, with the exception
that it terminates if a Done xs element is found:

data List a = Nil | Cons a (List a) | Done [a ]
toList :: List a → [a ]
toList Nil = [ ]
toList (Cons x xs) = let xs′ = toList xs

in x ‘seq‘ xs′ ‘seq‘ x : xs′

toList (Done xs) = xs

Now, by making use of the former definitions, we can implement a version of
psort1 in which the threads evaluating the higher half of the list, hi, will mark it
as already evaluated, so that the ones sorting the other half will find a Done xs
value and directly return xs instead of traversing it again:
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No. cores psort psort1 psort2

2 1.69 1.49 1.90
4 1.71 0.78 2.35
8 1.51 0.60 2.75

Fig. 6. Speedups of the different parallel versions of quicksort

psort2 :: Int → [Int ] → [Int ]
psort2 n xs = toList (go n xs Nil)

where go [ ] zs = zs
go n (x : xs) zs

| n > 0 = r ‘par ‘ go (n − 1) lo (Cons x r)
| otherwise = seqSort (x : xs) zs
where r = Done $! toList (go (n − 1) hi zs)

(lo, hi) = partition x xs

The speedups for psort2 are shown in Figure 6. We can observe much better
speedups than for psort1 . For two cores, the speedup is almost linear. When
we add more cores, speedup is further increased, but the relative performance
is decreased. This can be attributed to the fact that each thread is created only
after the list has been partitioned. The same thing will happen to the next
threads once the generated sublist are partitioned again. So, if we need to use
more threads, it will take longer to create them, increasing the initial sequential
phase.

6 Related Work

Previous approaches to performance profiling of Parallel Haskell programs in-
volve the use of simulators such as GranSim [9] or parallel cost centre profiling [3].
GranSim was developed as an instrumentation of the GHC runtime system that
allowed the programmer to gather statistics of the program which was simulated
to run in a distributed machine with a customizable environment (e.g. network
delay). Events could be visualised in a similar way to ThreadScope. The same
event log format was used by the parallel profiler for the GUM parallel imple-
mentation [16]. Similar techniques are used by the more recent ThreadScope [6]
and EdenTV [1] visualisers.

Our approach enhances profiling by using a kind of simulated environment,
which, in contrast to GranSim, does not emulate any real hardware but replays
a previous run. This technique is known as execution replay [14]. So far, it has
been used almost exclusively for debugging instead of performance profiling.
Most execution replay systems allow any program to be replayed without re-
compilation [7]. The most difficult problem these systems have to solve is that
of shared memory interactions, something we can completely ignore because our
source code is purely functional. In addition, some of these systems also try to
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replay the scheduling of threads (a requirement in our case), but they do so
by using hardware counters [5,8], which makes them hardware dependent and
subject to inaccurate measurements [12,17].

7 Conclusions and Future Work

In this paper, we described a prototype implementation of the execution replay
mechanism in the GHC compiler for Parallel Haskell. We also described how
this mechanism can be used to obtain a better insight of the parallel behaviour
of functional programs, which makes it very useful for performance debugging
of such programs. We have presented a use case of execution replay for parallel
debugging, using a parallelisation of the well-known quicksort algorithm as an
example. Whe showed that, despite quicksort being a program which seems easy
to parallelise, it contains a number of hidden caveats that make obtaining good
speedups quite challenging. Hence, being able to obtain better profiling informa-
tion is vital in order to understand its behaviour and discover the bottlenecks.

This paper presents the first implementation of the execution replay mecha-
nism in the context of a lazy functional language. In addition, this is the first
time execution replay is used for performance debugging. Our focus on pure func-
tional languages and on parallel performance debugging significantly relaxed the
assumptions that we need to make about the replay. We are not restricted to
having to reproduce exactly the same execution as the original one. The replayed
execution can differ from the original one, as long as they both have the same
parallel behaviour. This significantly reduces the amount of logging information
that is required for replay, making it much less expensive that when used in
imperative languages for replaying the exact state of the program at each point
of its execution. It also allows dynamic enabling and disabling of data gathering
modules during the replay.

With execution replay as a foundation, we are able to build better profiling
tools which will allow functional programmers to better understand and fix many
parallel programs for which there were no tools to deal with. In the future,
we plan to implement these tools by integrating already existing profiling and
visualisation approaches (such as ThreadScope and cost centre profiling) with
execution replay. We are also in the process of extending execution replay for
programs with side-effects. Finally, we plan to demonstrate the effectiveness of
replay-driven performance debugging on a larger set of parallel programs.
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Abstract. The manycore revolution is steadily increasing the perfor-
mance and size of massively parallel systems, to the point where sys-
tem reliability becomes a pressing concern. Therefore, massively parallel
compute jobs must be able to tolerate failures. For example, in the HPC-
GAP project we aim to coordinate symbolic computations in architec-
tures with 106 cores. At that scale, failures are a real issue. Functional
languages are well known for advantages both for parallelism and for
reliability, e.g. stateless computations can be scheduled and replicated
freely.

This paper presents a software level reliability mechanism, namely su-
pervised fault tolerant workpools implemented in a Haskell DSL for par-
allel programming on distributed memory architectures. The workpool
hides task scheduling, failure detection and task replication from the
programmer. To the best of our knowledge, this is a novel construct. We
demonstrate how to abstract over supervised workpools by providing
fault tolerant instances of existing algorithmic skeletons. We evaluate
the runtime performance of these skeletons both in the presence and
absence of faults, and report low supervision overheads.

Keywords: Fault tolerance, workpools, parallel computing, Haskell.

1 Introduction

Changes in chip manufacturing technology is leading to architectures where the
number of cores grow exponentially, following Moore’s law. Many predict the
proliferation of massively parallel systems currently exemplified by the large
commodity off-the-shelf (COTS) clusters used in commercial data centres, or
the high performance computing (HPC) platforms used in scientific computing.
For example, over the last 4 years, the performance (measured in FLOPS) of the
world’s fastest supercomputer has risen 16-fold, according to TOP5001. This
has been accompanied by a 13-fold increase in the total number of cores, and by
power consumption more than tripling (from 2.3 to 7.9 MW). The latter trend
in particular points to an ever increasing size of these systems, not only in terms
1 http://www.top500.org
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of total number of cores, but also in the number of networked components (i.e.
compute nodes and network switches).

Even with failure rates of individual components appearing negligible, the
exponential growth in the number of components makes system reliability a
growing concern [21]. Thus, massively parallel compute jobs either must complete
quickly, or be able to tolerate component failures.

Depending on the problem domain, there may be several ways to react to fail-
ures. For instance, stochastic simulations can trade precision for reliability by
simply discarding computations on failed nodes. Similarly, grid-based continuous
simulations can recover information lost due to a node failure by “smoothing”
information from its neighbours. However, there are problem domains, e.g. opti-
misation or symbolic computation, where trading precision is impossible because
solutions are necessarily exact. In these domains, fault tolerance is more costly,
as it can only be achieved by replicating the computations of failed nodes, which
incurs overheads and requires book keeping. Nonetheless, replication-based fault
tolerance is widely used, e.g. in MapReduce frameworks like Hadoop [2].

Functional languages have long been advocated as particularly suitable for
parallel programming because they encourage a stateless coding style which
simplifies the scheduling of parallelism. Furthermore statelessness also simplifies
task replication, making functional languages even more attractive for massively
parallel programming, where replication-based fault tolerance is indispensable.

This paper presents the design and implementation of a fault tolerant work-
pool in a functional language. A workpool is a well-known parallel programming
construct that guarantees the parallel execution of independent tasks, relieving
the programmer of concerns about task scheduling (and sometimes load balanc-
ing). A fault tolerant workpool additionally guarantees completion of all tasks
(under some proviso), thus relieving the programmer of concerns about detect-
ing node failures, replicating tasks, and the associated book keeping. We note
that our workpool is able to recover from the failure of any number of nodes bar
a single distinguished one, the node hosting the supervised workpool. There-
fore, the workpool is not high-availability, setting it apart from high-availability
behaviours in Erlang. However, our workpool is able to guarantee that system
reliability matches the reliability of a single node, which is good enough for most
massively parallel applications.

The workpool is implemented on top of HdpH [17], a Haskell domain specific
language (DSL) for distributed-memory parallel programming. HdpH and the
workpool are being developed within the HPC-GAP project2. The project aims
to solve large computer algebra problems on massively parallel platforms like
HECToR, the UK national supercomputing service with currently 90,000 cores,
by coupling the GAP computer algebra system [11] with the SymGridParII
coordination middleware [16].

We start by surveying fault tolerant approaches, languages and frameworks
(Section 2), before making the following contributions:

2 http://www-circa.mcs.st-andrews.ac.uk/hpcgap.php

http://www-circa.mcs.st-andrews.ac.uk/hpcgap.php
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1. We present the design and implementation of a novel fault-tolerant workpool
in Haskell (Sections 3.1 and 3.3), hiding task scheduling, failure detection and
task replication from the programmer. Moreover, workpools can be nested to
form fault-tolerant hierarchies, which is essential for scaling up to massively
parallel platforms like HECToR.

2. The implementation of high-level fault tolerant abstractions on top of the
workpool: generic fault tolerant skeletons for task parallelism and nested
parallelism, respectively (Section 4).

3. We evaluate the fault tolerant skeletons on two benchmarks. These bench-
marks demonstrate fault tolerance: computations do complete even in the
presence of node failures. We also measure the overheads of the fault tolerant
skeletons, both in terms of the cost of book keeping, and in terms of the time
to recover from failure (Section 5).

2 Related Work

Most existing fault tolerant approaches in distributed architectures follow a
rollback-recovery approach, and new opportunities are being explored as alter-
native and more scalable possibilities. This section outlines non-language and
language based approaches to fault tolerance.

2.1 Non Language-Based Approaches to Fault Tolerance

At the highest level, algorithmic methods have been proposed, with the injection
of fault oblivious algorithms and self stabilising algorithms [5]. Various tech-
niques have been used at the application level, such as reflective object-oriented
programming [9].

The Message Passing Interface [13] is a predominant and efficient commu-
nication layer in HPC platforms. Thorough comparisons of fault tolerant MPI
approaches and implementations have been made [12]. These include checkpoint-
ing the state of computation [4], extending or modifying the semantics of the
MPI standard [10], and runtime resilience to overcome node failure [7], though
the onus is on the user to handle faults programmatically.

On COTS platforms, computational frameworks such as MapReduce realise
fault tolerance through replication, as implementations such as Hadoop [2] have
shown. They are optimised for high throughput, but limit the programmer to one
parallel pattern. In contrast, our supervised workpool is a fault tolerant construct
that can be used for multiple parallel patterns, as described in Section 4.

2.2 Fault Tolerance in Erlang

Erlang [1] is a dynamically typed functional language designed for program-
ming concurrent, real-time, distributed fault tolerant programs. Erlang provides
a process-based model of concurrency with asynchronous message passing. Er-
lang processes do not shared memory, and all interaction is done through message
passing.
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Erlang has three mechanisms that provide fault tolerance in the face of failures
[14]: monitoring the evaluation of expressions; monitoring the behaviour of other
processes; and trapping evaluation errors of undefined functions. Additionally,
Erlang provides primitives for creating and deleting links between processes.
Process linking is symmetrical, and exit signals can be propagated up hierarchical
supervision trees.

On top of these primitives, Erlang provides the Open Telecom Platform (OTP)
which separates the Erlang framework from the application, and includes a set
of fault tolerant behaviours. The Erlang/OTP generic supervisor behaviour pro-
vides fault tolerance for Erlang programs executing on multiple compute nodes.
Processes residing in the Erlang VM inherit either the role of supervisor, or
alternatively, a child. Supervisors receive exit signals from children, taking the
appropriate action. They are responsible for starting, stopping, and monitoring
child processes, and keep child processes alive by restarting them if necessary.
Supervisors can be nested, creating hierarchical supervision trees.

In contrast to Erlang behaviours, which are designed for distributed com-
puting, our supervised workpool is designed for distributed-memory parallel
programming. Additionally, statically typed polymorphic skeletons can be con-
structed on top of the workpool.

2.3 Fault Tolerance in Distributed Haskell Extensions

Cloud Haskell. Cloud Haskell [8] is a domain specific language for distributed-
memory computing platforms. It is implemented as a shallow embedding in
Haskell, and provides a message communication model that is inspired by Erlang.
It emulates the Erlang approaches (Section 2.2) of isolated process memory and
explicit message passing, and provides process linking. Cloud Haskell inherits
the language features of Haskell, including purity, types, and monads, as well as
the multi-paradigm concurrency models in Haskell. A significant contribution of
Cloud Haskell is a mechanism for serialising function closures, enabling higher
order functions to be used in distributed computing environments. As Cloud
Haskell tightly emulates Erlang, it is once again more designed for distributed
rather than parallel computing.

HdpH. Haskell distributed parallel Haskell (HdpH) [17] is a distributed-memory
parallel DSL for Haskell that supports high-level semi-explicit parallelism, and
is designed for fault tolerance. HdpH is an amalgamation of two recent contri-
butions to the Haskell community. Its closure serialisation and transmission over
networks is inspired by Cloud Haskell (Section 2.3), and it uses the Par Monad
[19], as a shallowly embedded DSL for parallelism. The write-once semantics of
the original Par Monad are relaxed in HdpH slightly to support fault tolerance:
we ignore successive writes rather than failing, which is described in Section 3.3.

HdpH extends the ParMonad for distributed-memory parallelism, rather than
distributed systems as in Erlang or Cloud Haskell. Parallelism in the ParMonad
is achieved with a fork primitive, and an IVar is a communication abstraction to
communicate results of parallel tasks (referred to in other languages, as futures
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[20] or promises [15]). HdpH extends CloudHaskell’s closure representation, by
supporting polymorphic closure transformations in order to implement high-
level coordination abstractions. This extension is crucial for the implementation
of generic fault tolerant skeletons as described in Section 4.

3 The Design and Implementation of a Supervised
Workpool

3.1 Design

A workpool is an abstract control structure that takes units of work as input,
returning values as output. The scheduling of the work units is coordinated by the
workpool implementation. Workpools are a very common pattern, and are often
used for performance, rather than fault tolerance. For example workpools can
be used for limiting concurrent connections to resources, to manage heavy load
on compute nodes, and to schedule critical application tasks in favour of non-
critical monitoring tasks [26]. The supervised workpool presented in this paper
extends the workpool pattern by adding fault tolerance to support the fault
tolerant execution of HdpH applications. The fault tolerant design is inspired by
the supervision behaviour and node monitoring aspects of Erlang (Section 2.2),
and combines this with Haskell’s polymorphic, static typing.

Most workpools schedule work units dynamically, e.g. an idle worker selects
a task from the pool and executes it. For simplicity our current HdpH workpool
uses static scheduling: each worker is given a fixed set of work units. The su-
pervised workpool performs well for applications exhibiting regular parallelism,
and also for limited irregular parallel programs, as shown in Section 5. A fault
tolerant work stealing scheduler is left to future work (Section 6).

The Haskell implementation is made possible by the loosely coupled design
in HdpH. Before describing the workpool in detail, we introduce terminology for
HdpH and the workpool in Table 1.

Table 1. HdpH and workpool terminology

IVar A write-once mutable mutable reference.
GIVar A global reference to an IVar, which is used to remotely write values to

the IVar.
Task Consists of an expression and a GIVar. The expression is evaluated, and

its value is written to the associated GIVar.
Completed task When the associated GIVar in a task contains the value of the task ex-

pression.
Closure A serializable expression or value. Tasks and values are serialized as clo-

sures, allow them to be shipped to other nodes.
Supervisor thread The Haskell thread that has initialized the workpool.

Process An OS process executing the GHC runtime system.
Supervising process The process hosting the supervisor thread.
Supervising node The node hosting the supervising process.

Worker node Every node that has been statically assigned a task from a given workpool.

A fundamental principle in the HdpH supervised workpool is that there is a
one-to-one correspondence between a task and an IVar— each task evaluates an
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expression to return a result which is written to its associated IVar. The tasks
are distributed as closures to worker nodes. The supervisor thread is responsible
for creating and globalising IVars, in addition to creating the associated tasks
and distributing them as closures. Here are the workpool types and the function
for using it:

type SupervisedTasks a = [(Closure (IO ()), IVar a)]
supervisedWorkpoolEval :: SupervisedTasks a -> [NodeId] -> IO [a]

The supervisedWorkpoolEval function takes as input a list of tuples, pairing
tasks with their associated IVars, and a list of NodeIds. The closured tasks are
distributed to worker nodes in a round robin fashion to the specified worker
NodeIds, and the workpool waits until all tasks are complete i.e. all IVars are
full. If a node failure is identified before tasks complete, the unevaluated tasks
sent to the failed node are reallocated to the remaining available nodes. Detailed
descriptions of the scheduling, node failure detection, and failure recovery is in
Section 3.3.

The supervised workpool guarantees that given a list of tasks, it will fully
evaluate their result provided that:

1. The supervising node is alive throughout the evaluation of all tasks in the
workpool.

2. All expressions are computable. For example, evaluating an expression should
not throw uncaught exceptions, such as a division by 0; all programming ex-
ceptions such as non-exhaustive case statements must be handled within the
expression; and so on.

Our supervised workpool is non-deterministic, and hence is monadic. This is
useful in some cases such as racing the evaluation of the same task on separate
nodes, and also for fault tolerance — the write semantics of IVars are described
in Section 3.3. To recover determinism in the supervised workpool, expressions
must be idempotent. An idempotent expression may be executed more than
once which entails the same side effect as executing only once. E.g inserting a
given key/value pair to a mutable map - consecutive inserts have no effect. Pure
computations, because of their lack of side effects, are of course idempotent.

Workpools are functions and may be freely nested and composed. There is no
restriction to the number of workpools hosted on a node, and Section 5.2 will
present a divide-and-conquer abstraction that uses this flexibility.

3.2 Use Case Scenario

Figure 1 shows a workpool scenario where six closures are created, along with
six associated IVars. The closures are allocated to three worker nodes: Node2,
Node3 and Node4 from the supervising node, Node1. Whilst these closures are
being evaluated, Node3 fails, having completed only one of its two tasks. As IVar
i5 had not been filled, closure c5 is reallocated to Node4. No further node failures
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Fig. 1. Reallocating closures scenario

-- |HdpH primitives
type IVar a = TMVar a -- type synonym for IVar
data GIVar a -- global handles to IVars
data Closure a -- explicit, serialisable closures
pushTo :: Closure (IO ()) -> NodeId -> IO () -- explicit task placement
rput :: GIVar (Closure a) -> Closure a -> IO () -- write a value to a remote IVar
get :: IVar a -> IO a -- blocking get on an IVar
probe :: IVar a -> STM Bool -- check if IVar is full or empty

Fig. 2. Type signatures of HdpH primitives

occur, and once all six IVars are full, the supervised workpool terminates. The
mechanisms for detecting node failure, for identifying completed tasks, and the
reallocation of closures are described in Section 3.3.

3.3 Implementation

The types of the relevant HdpH primitives are shown in Figure 2. The com-
plete fault tolerant workpool implementation is available [23], and the most
important functions are shown in Figure 3. All line numbers refer to this Figure.
Two independent phases take place in the workpool:

1. Line 5 shows the supervisedWorkpoolEval function which creates the
workpool, distributes tasks, and then uses the STM termination check de-
scribed in item 2. The distributeTasks function on line 9 uses pushTo (from
Figure 2) to ship tasks to the worker nodes and creates taskLocations, an
instance of TaskLookup a (line 3). This is a mutable map from NodeIds to
SupervisedTasks a on line 2, which is used for the book keeping of task
locations. The monitorNodes function on lines 22 - 30 then monitors worker
node availability. Should a worker node fail, blockWhileNodeHealthy (line
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29) exits, and reallocateIncompleteTasks on line 30 is used to identify
incomplete tasks shipped to the failed node, using probe (from Figure 2).
These tasks are distributed to the remaining available nodes.

2. Haskell’s STM [22] is used as a termination check. For every task, an IVar is
created. A TVar is created in the workpool to store a list of values returned
to these IVars from each task execution. The getResult function on line 34
runs a blocking get on each IVar, which then writes this value as an element
to the list in the TVar. The waitForResults function on line 42 is used to
keep phase 1 of the supervised workpool active until the length of the list in
the TVar equals the number of tasks added to the workpool.

1 -- |Workpool types
2 type SupervisedTasks a = [(Closure (IO ()), IVar a)]
3 type TaskLookup a = MVar (Map NodeId (SupervisedTasks a))
4
5 supervisedWorkpoolEval :: SupervisedTasks a -> [NodeId] -> IO [a]
6 supervisedWorkpoolEval tasks nodes = do
7 -- PHASE 1
8 -- Ship the work, and create an instance of ’TaskLookup a’.
9 taskLocations <- distributeTasks tasks nodes

10 -- Monitor utilized nodes; reallocate incomplete tasks when worker nodes fail
11 monitorNodes taskLocations
12
13 -- PHASE 2
14 -- Use STM as a termination check. Until all tasks are evaluated, phase 1 remains active.
15 fullIvars <- newTVarIO []
16 mapM_ (forkIO . atomically . getResult fullIvars . snd) tasks
17 results <- atomically $ waitForResults fullIvars (length tasks)
18
19 -- Finally, return the results of the tasks
20 return results
21
22 monitorNodes :: TaskLookup a -> IO ()
23 monitorNodes taskLookup = do
24 nodes <- fmap Map.keys $ readMVar taskLookup
25 mapM_ (forkIO . monitorNode) nodes
26 where
27 monitorNode :: NodeId -> IO ()
28 monitorNode node = do
29 blockWhileNodeHealthy node -- Blocks while node is healthy (Used in Figure 4)
30 reallocateIncompleteTasks node taskLookup -- reallocate incomplete tasks shipped to ’node’
31
32 -- |Takes an IVar, runs a blocking ’get’ call, and writes
33 -- the value to the list of values in a TVar
34 getResult :: TVar [a] -> IVar a -> STM ()
35 getResult values ivar = do
36 v <- get ivar
37 vs <- readTVar values
38 writeTVar results (vs ++ [v])
39

40 -- |After each write to the TVar in ’evalTask’, the length of the list
41 -- is checked. If it matches the number of tasks, STM releases the block.
42 waitForResults :: TVar [a] -> Int -> STM [a]
43 waitForResults values i = do
44 vs <- readTVar values
45 if length vs == i then return vs else retry

Fig. 3. Workpool implementation & Use of STM as a termination check

The restriction to idempotent tasks in the workpool (Section 3.1) enables the
workpool to freely duplicate and re-distribute tasks. Idempotence is permitted by
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the write semantics of IVars. The first write to an IVar succeeds, and subsequent
writes are ignored — successive rput attempts to the same IVar are non-fatal. To
support this, the write-once semantics of IVars in the ParMonad [19] are relaxed
slightly in HdpH, to support fault tolerance. This enables identical closures to
be raced on separate nodes. Should one of the nodes fail, the other evaluates
the closure and rputs the value to the associated IVar. Should the node failure
be intermittent, and a successive rput be attempted, it is silently ignored. It
also enables replication of closures residing on overloaded nodes to be raced on
healthy nodes.

It would be unnecessary and costly to reallocate tasks if they had been fully
evaluated prior to the failure of the worker node it was assigned to. For this
purpose, a probe primitive (Figure 2) is used to identify which IVars are full,
indicating the evaluation status of its associated task. As such, all IVars that
correspond to tasks allocated to the failed worker node are probed. Only tasks
associated with empty IVars are reallocated as closures.

Node Failure Detection. A new transport layer for distributed Haskells [6]
underlies the fault tolerant workpool. The main advantage of adopting this li-
brary is the typed error messages at the Haskell language level.

1 -- connection attempt
2 attempt <- connect myEndPoint remoteEndPointAddress <default args>
3 case attempt of
4 (Left (TransportError ConnectFailed)) -> -- unblocks ’blockWhileNodeHealthy’, Figure 3 line 29
5 (Right connection) -> -- carry on

Fig. 4. Detecting node failure in the blockWhileNodeHealthy function

The connect function from the transport layer is shown in Figure 4. It is
used by the workpool to detect node failure in the blockWhileNodeHealthy
function on line 29 of Figure 3. Each node creates an endpoint, and endpoints
are connected to send and receive messages between the nodes. Node availability
is determined by the outcome of connection attempts using connect between the
node hosting the supervised workpool, and each worker node utilized by that
workpool. The transport layer ensures lightweight communications by reusing
the underlying TCP connection. One logical connection attempt between the
supervising node and worker nodes is made each second. If Right Connection
is returned, then the worker node is healthy and no action is taken. However,
if Left (TransportError ConnectFailed) is returned then the worker node
is deemed to have failed, and reallocateIncompleteTasks (Figure 3, line 30)
re-distributes incomplete tasks originally shipped to this node. Concurrency for
monitoring node availability is achieved by Haskell IO threads on line 25 in
Figure 3.

An alternative to this design for node failure detection was considered - with
periodic heartbeat messages sent from the worker nodes to the process hosting
the supervised workpool. However the bottleneck of message delivery would be
the same i.e. involving the endpoint of the process hosting the workpool. More-
over, there are dangers with timeout values for expecting heartbeat messages in
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asynchronous messaging systems such as the one employed by HdpH. Remote
nodes may be wrongly judged to have failed e.g. when the message queue on
the workpool process is flooded, and heartbeat messages are not popped from
the message queue within the timeout period. Our design avoids this danger by
synchronously checking each connection.

It is necessary that each workpool hosted on a node monitors the availability of
worker nodes. With nested or composed supervised workpools there is a risk that
the network will be saturated with connect requests to monitor node availability.
Our architecture avoids this by creating just one Haskell thread per node that
monitors availability of all other nodes, irrespective of the number of workpools
hosted on a node. Each supervisor thread communicates with these monitoring
threads to identify node failure. See the complete implementation [23] for details.

4 High Level Fault Tolerant Abstractions

The HdpH paper [17] describes the implementation of algorithmic skeletons in
HdpH. This present work extends these by adding resilience to the execution of
two generic parallel algorithmic skeletons.

HdpH provides high level coordination abstractions: evaluation strategies and
algorithmic skeletons. The advantages of these skeletons are that they provide a
higher level of abstraction [25] that capture common parallel patterns, and that
the HdpH primitives for work distribution and operations on IVars are hidden
away from the programmer.

We show here how to use fault tolerant workpools to add resilience to algo-
rithmic skeletons. Figure 5 shows the type signatures of fault tolerant versions
of the following two generic algorithmic skeletons.

pushMap is a parallel skeleton to provide a parallel map operation, applying
a function closure to the input list.

pushDivideAndConquer is another parallel skeleton that allows a problem
to be decomposed into sub-problems until they are sufficiently small, and
then reassembled with a combining function.

IVars are globalised and closures are created from tasks in the skeleton code,
and supervisedWorkpoolEval is used at a lower level to distribute closures, and
to provide the guarantees described in Section 3.3. The tasks in the workpool
are eagerly scheduled into the threadpool of remote nodes.

The two algorithmic skeletons have different scheduling strategies — pushMap
schedules tasks in a round-robin fashion; pushDivideAndConquer schedules tasks
randomly (but statically at the beginning, not on-demand).

5 Evaluation

This section demonstrates the use of the fault tolerant mechanisms, and specif-
ically the two fault tolerant algorithmic skeletons from Section 4. Implementa-
tions of two symbolic programs are presented: Summatory Liouville which is
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pushMap
:: [NodeId] -- available nodes
-> Closure (a -> b) -- function closure
-> [a] -- input list
-> IO [b] -- output list

pushDivideAndConquer
:: [NodeId] -- available nodes
-> Closure (Closure a -> Bool) -- trivial
-> Closure (Closure a -> IO (Closure b)) -- simplySolve
-> Closure (Closure a -> [Closure a]) -- decompose
-> Closure (Closure a -> [Closure b] -> Closure b) -- combine
-> Closure a -- problem
-> IO (Closure b) -- output

Fig. 5. Fault tolerant algorithmic parallel skeletons used in Appendix A and B of [24]

task parallel; and Fibonacci which is a canonical divide-and-conquer problem.
The implementations of these can be found in the technical report for this paper
[24].

The equivalent non-fault tolerant pushMap and pushDivideAndConquer skele-
tons are used for comparing the supervised workpool overheads in the presence
and absence of faults, which are described in Section 5.4. These do not make use
of the supervised workpool, and therefore do not protect against node failure.

5.1 Data Parallel Benchmark

To demonstrate the pushMap data parallel skeleton (Figure 5), Summatory Liou-
ville [3] has been implemented in HdpH, adapted from existing Haskell code [27].
The Liouville function λ(n) is the completely multiplicative function defined by
λ(p) = −1 for each prime p. L(n) denotes the sum of the values of the Liouville
function λ(n) up to n, where L(n) :=

∑n
k=1 λ(k). The scale-up runtime results

measure Summatory Liouville L(n) for n = [108, 2 · 108, 3 · 108..109]. Each ex-
periment is run on 20 nodes with closures distributed in a round robin fashion,
and the chunk size per closure is 106. For example, calculating L(108) will gen-
erate 100 tasks, allocating 5 to each node. On each node, a partial Summatory
Liouville value is further divided and evaluated in parallel, utilising multicore
support in the Haskell runtime [18].

5.2 Control Parallel Benchmark Using Nested Workpools

The pushDivideAndConquer skeleton (Figure 5) is demonstrated with the imple-
mentation of Fibonacci. This example illustrates the flexibility of the supervised
workpool, which can be nested hierarchically in divide-and-conquer trees. At
the point when a closure is deemed too computationally expensive, the problem
is decomposed into sub-problems, turned into closures themselves, and pushed
to other nodes. In the case of Fibonacci, costly tasks are decomposed into 2
smaller tasks, though the pushDivideAndConquer skeleton permits any number
of decomposed tasks to be supervised.

The runtime results measure Fibonacci Fib(n) for n = [45..55], and the se-
quential threshold for each n is 40. Unlike the pushMap skeleton, closures are
distributed to random nodes from the set of available nodes to achieve fairer
load balancing.
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5.3 Benchmark Platform

The two applications were benchmarked on a Beowulf cluster. Each Beowulf node
comprises two Intel quad-core CPUs (Xeon E5504) at 2GHz, sharing 12GB of
RAM. Nodes are connected via Gigabit Ethernet and run Linux (CentOS 5.7
x86_64). HdpH version 0.3.2 was used and the benchmarks were built with GHC
7.2.1. Benchmarks were run on 20 cluster nodes; to limit variability we used only
6 cores per node. Reported runtime is median wall clock time over 20 executions,
and reported error is the range of runtimes.

5.4 Performance

No Failure The runtimes for Summatory Liouville are shown in Figure 6(a).
The chunk size is fixed, increasing the number of supervised closures as n is
increased in L(n). The overheads of the supervised workpool for Summatory
Liouville are shown in Figure 6(b). The runtime for Fibonacci are shown in
Figure 7.
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Fig. 6. Runtime performance and supervision overheads with no failures for Summa-
tory Lioville 108 to 109

The supervision overheads for Summatory Liouville range between 2.5% at
L(108) and 7% at L(5 · 108). As the problem size grows to L(109), the number
of generated closures increases with the chunk size fixed at 106. Despite this
increase in supervised closures, near constant overheads of between 6.7 and 8.4
seconds are observed between L(5 · 108) and L(109).

Overheads are not measurable for Fibonacci, as they are lower than system
variability (owing probably to random work distribution).

The runtime for calculating L(5 · 108) is used to verify the scalability of the
HdpH implementation of Summatory Liouville. The median runtime on 20 nodes
(each using 6 cores) is 95.69 seconds, and on 1 node using 6 cores is 1711.51
seconds, giving a speed up of 17.9 on 20 nodes.
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Recovery From Failure. To demonstrate the fault tolerance and to assess
the efficacy of the supervised workpool, recovery times have been measured
when one node dies during the computation of Summatory Liouville. Nested
workpools used by pushDivideAndConquer also tolerate faults. Due to the size
of the divide-and-conquer graph for large problems, they are harder to analyse
in any meaningful way.

To measure the recovery time, a number of parameters are fixed. The com-
putation is L(3 · 108) with a chunk size of 106, which is initially deployed on 10
nodes, with one hosting the supervising task. The pushMap skeleton is used to
distribute closures in a round robin fashion, so that 30 closures are sent to each
node. An expected runtime utilising 10 nodes is calculated from 5 failure-free
executions. From this, approximate timings are calculated for injecting node fail-
ure. The Linux kill command is used to forcibly terminate one running Haskell
process prematurely.

The results in Figure 8 show the runtime of the Summatory Liouville calcu-
lation when node failure occurs at approximately [10%,20%..90%] of expected
execution time. 5 runtimes are observed at each timing point. Figure 8 also re-
ports the average number of closures that are reallocated relative to when node
failure occurs. As described in Section 3.3, only non-evaluated closures are redis-
tributed. The expectation is that the longer the injected node failure is delayed,
the fewer closures will need reallocating elsewhere. Lastly, Figure 8 shows 5 run-
times using 10 nodes when no failures occur, and additionally 5 runtimes using
9 nodes, again with no failures.

The data shows that at least for the first 30% of the execution, no tasks are
complete on the node, which can be attributed to the time taken to distribute
300 closures and for each node to begin evaluation. Fully evaluated closure values
are seen at 40%, where only 16 (of 30) are reallocated. This continues to fall until
the 90% mark, when 0 closures are reallocated, indicating that all closures had
already been fully evaluated on the responsible node.



260 R. Stewart, P. Trinder, and P. Maier

 90

 95

 100

 105

 110

 115

 120

0 % 20 % 40 % 60 % 80 % 100 %

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

 33

R
u

n
tim

e
 (

S
e

co
n

d
s)

N
u

m
b

e
r 

o
f 

re
a

llo
ca

te
d

 c
lo

su
re

s

Time of Node Failure w.r.t. Estimated Runtime

Summatory Liouville Runtimes with 1 Node Failure

Mean closure reallocation
Mean of failure free runtimes

Runtimes with failure
Using 9 nodes no failures

Using 10 nodes no failures

Fig. 8. Recovery time with 1 node failure

The motivation for observing failure-free runtimes using 9 and also 10 nodes
is to evaluate the overheads of recovery time when node failure occurs. Figure 8
shows that when a node dies early on (in the first 30% of estimated total run-
time), the performance of the remaining 9 nodes is comparable with that of a
failure-free run on 9 nodes. Moreover, node failure occurring near the end of a
run (e.g. at 90% of estimated runtime) does not impact runtime performance,
i.e. is similar to that of a 10 node cluster that experiences no failures at all.

6 Conclusions and Future Work

As COTS and HPC platforms grow in size, faults will become more frequent,
rather than failures being exceptional events as in existing architectures. Failures
may be caused by hardware malfunction, intermittent network transmission, or
software errors. Future dependability of such platforms should therefore rely on
a multitude of fault tolerant approaches at all levels of the computational stack.

In this paper, we have presented a language based approach to fault tolerant
distributed-memory parallel computation in Haskell: a fault tolerant workpool
that hides task scheduling, failure detection and task replication from the pro-
grammer. On top of this, we have developed fault tolerant versions of two algo-
rithmic skeletons. They provide high level abstractions for fault tolerant parallel
computation on distributed-memory architectures. To the best of our knowledge
the supervised workpool is a novel construct.

The supervised workpool and fault tolerant parallel skeleton implementations
exploit recent advances in distributed-memory Haskell implementations, primar-
ily HdpH [17] . The workpool and the skeletons guarantee the completion of tasks
even in the presence of multiple node failures, withstanding the failure of all but
the supervising node. The work is targeting fault tolerant symbolic computation
on 106 cores within the HPC-GAP project.
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The supervised workpool has acceptable runtime overheads — between 2.5%
and 7% using a data parallel skeleton. Moreover when a node fails, the recovery
costs are negligible.

Future Work. The full HdpH language affords both explicit and implicit closure
placement. In contrast, the current supervised workpool implementation permits
only static explicit closure distribution. We are adapting the supervised workpool
approach to provide fault tolerance to the work stealing scheduler in HdpH.
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Abstract. Erlang is a functional language with a much-emulated model
for building reliable distributed systems. This paper outlines the RE-
LEASE project, and describes the progress in the first six months. The
project aim is to scale the Erlang’s radical concurrency-oriented pro-
gramming paradigm to build reliable general-purpose software, such as
server-based systems, on massively parallel machines.

Currently Erlang has inherently scalable computation and reliabil-
ity models, but in practice scalability is constrained by aspects of the
language and virtual machine. We are working at three levels to ad-
dress these challenges: evolving the Erlang virtual machine so that it
can work effectively on large scale multicore systems; evolving the lan-
guage to Scalable Distributed (SD) Erlang; developing a scalable Erlang
infrastructure to integrate multiple, heterogeneous clusters. We are also
developing state of the art tools that allow programmers to understand
the behaviour of massively parallel SD Erlang programs. We will demon-
strate the effectiveness of the RELEASE approach using demonstrators
and two large case studies on a Blue Gene.

Keywords: Erlang, scalability, multicore systems, massive parallelism.

1 Introduction

There is a widening gap between state of the art in hardware and software. Ar-
chitectures are inexorably becoming manycore, with the numbers of cores per
chip following Moore’s Law. Software written using conventional programming
languages, on the other hand, is still essentially sequential: with a substantial ef-
fort, some degree of concurrency may be possible, but this approach just doesn’t
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scale to 100s or 1000s of cores. However, manycore programming is not only
about concurrency. We expect 100,000 core platforms to become commonplace,
and the predictions are that core failures on such an architecture will become
relatively common, perhaps one hour mean time between core failures [1]. So
manycore systems need to be both scalable and robust.

The RELEASE project aim is to scale the radical concurrency-oriented
programming paradigm to build reliable general-purpose software, such as server-
based systems, on massively parallel machines. The trend-setting concurrency-
oriented programming model we will use is Erlang/OTP (Open Telecom
Platform) – designed in the telecoms sector, is based on highly-scalable lightweight
processes which share nothing, and used in strategic Ericsson products such as
the AXD301 telecoms switch [2]. Erlang/OTP provides high-level coordination
with concurrency and robustness built-in: it can readily support 10,000 processes
per core, and transparent distribution of processes across multiple machines, us-
ing message passing for communication. The robustness of the Erlang distribu-
tion model is provided by hierarchies of supervision processes which manage re-
covery from software or hardware errors. Erlang is an Actor-based programming
language where actions are performed by concurrent processes named actors [3].
Actors communicate with each other via asynchronous message passing, and each
actor has an address and amailbox. An actor also has a behaviour thatmay change
in a response to a received message. Actors may create and kill other actors [4].

The Erlang/OTP has inherently scalable computation and reliability models,
but in practice scalability is constrained by the transitive sharing of connections
between all nodes and by explicit process placement. Moreover programmers
need support to engineer applications at this scale and existing profiling and de-
bugging tools do not scale, primarily due to the volumes of trace data generated.
In the RELEASE we tackle these challenges working at three levels (Figure 1):

1. evolving the Erlang Virtual Machine (VM) so that it can work effectively on
large scale multicore systems (Section 3.1);

2. evolving the language to Scalable Distributed (SD) Erlang, and adapting
the OTP framework to provide both constructs like locality control, and
reusable coordination patterns to allow SD Erlang to effectively describe
computations on large platforms, while preserving performance portability
(Section 3.2);

3. developing a scalable Erlang infrastructure to integrate multiple, heteroge-
neous clusters (Section 3.3).

These developments will be supported by state of the art tools to allow pro-
grammers to understand the behaviour of large scale SD Erlang programs, and
to refactor standard Erlang programs into SD Erlang (Section 3.4). We will
demonstrate the effectiveness of the RELEASE approach through building two
significant demonstrators: a simulation based on a port of SD Erlang to the Blue
Gene architecture [5] and a large-scale continuous integration service – and by
investigating how to apply the model to an Actor framework [6] for a mainstream
language (Section 4).
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Fig. 1. RELEASE Project Research Areas

The Erlang community is growing exponentially, moreover it has defined a
widely accepted concurrency-oriented programming and become a beacon lan-
guage for reliable distributed computing. As such it influences the design and
implementation of numerous Actor programming languages, libraries and frame-
works like Cloud Haskell [7], Scala and its Akka framework [8], F# [9], and
Kilim [10]. Hence, we expect that RELEASE will have a similar impact on the
design and implementation of a range of languages, libraries and frameworks,
and thus deliver significant results beyond the Erlang community.

2 Progress beyond the State-of-the-Art

The RELEASE project targets reliable scalable general purpose computing on
heterogeneous platforms. Our application area is that of general server-side com-
putation, e.g. a web or messaging server. This form of computation is ubiquitous,
in contrast to more specialised forms such as traditional High Performance Com-
puting (HPC). Moreover, this is computation on stock platforms, with standard
hardware, operating systems and middleware. We aim for 105 cores, for exam-
ple, the Blue Gene/Q that will be exploited during the project has 65,000 cores.
Our focus on commodity hardware implies that we do not aim to exploit the
experimental many-core architectures like the Intel Tera-scale [11].

The project makes advances in a number of areas, primarily in Virtual Ma-
chine (VM) support for high-level concurrency (Section 2.1), in scalable high-
level distributed languages (Section 2.2), in tools for concurrent software
engineering (Section 2.3), in cloud hosting infrastructure (Section 2.4), and in
massive scale simulation (Section 2.5).

2.1 VM Support for High-Level Concurrency

Due to the development of multicore architectures and the distributed nature
of modern computer systems, the quantity and variance of processors on which
software is executed has increased by orders of magnitude in recent years and is
expected to increase even further. In this setting the role of high-level concurrent
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programming models is very important. Such models must abstract from vari-
ations introduced by differences between multicore architectures and uniformly
treat different hardware architectures, number of cores and memory access char-
acteristics. Currently, the implementation of such models in the form of high-level
languages and libraries is not sufficient; these two must be complemented with
efficient and reliable VMs that provide inherent support for high-level concur-
rency [12].

Historically the efficient implementation of VMs for single core processor sys-
tems has presented a number of challenges, largely unrelated to concurrency. For
example, in order to optimally use the hardware, a VM has to exploit deep hier-
archies of cache memory by reorganizing data layouts, and to support e.g. out-of-
order execution, the hardware’s prefetching heuristics, branch prediction. With
multicore processors, concurrency and the inherent shared memory model in-
troduce new challenges for VMs, as it is not only arbitrary thread interleavings
but parallel execution on limited shared resources which has to be taken into
account. On top of the implementation considerations mentioned before, cache
coherence becomes a critical issue, memory barriers become a necessity and com-
piler optimisations, e.g. instruction reordering, must often be more conservative
to be semantics-preserving. Furthermore, multicore machines currently rely on
Non-Uniform Memory Access (NUMA) architectures, where the cost of accessing
a specific memory location can be different from core to core and data locality
plays a crucial role for achieving good performance.

In the past few years, there has been sustained research on the development of
VMs for software distributed shared memory. Some recent research aims to effec-
tively employ powerful dedicated and specialized co-processors like graphic cards.
Notable VM designs in this direction are the CellVM [13] for the Cell Broad-
band Engine, a VM with a distributed Java heap on a homogeneous TILE-64
system [14]; an extension of the JikesVM to detect and offload loops on CUDA
devices [15]; and VMs for Intel’s Larrabee GPGPU architecture [16]. Most of
these designs are specific to VMs for Java-like languages which are based on
a shared-memory concurrent programming model. Despite much research, the
implementation of shared memory concurrency still requires extensive synchro-
nisation and for this reason is inherently non-scalable. For example, in languages
with automatic memory management, the presence of a garbage collector for a
heap which is shared among all processes/threads imposes a point of synchroni-
sation between processes and thus becomes a major bottleneck.

Although a language based on the Actor concurrency model is in principle
better in this respect, its VM implementation on top of on shared memory
hardware in an efficient and scalable way presents many challenges [17]. In the
case of the implementation of Erlang, various runtime system architectures have
been explored by the High Performance Erlang (HiPE) group in Uppsala, based
either on process-local memory areas, on a communal heap which is shared
among all threads, or following some hybrid scheme. However, the performance
evaluation [18] was conducted on relatively small multiprocessor machines (up
to 4 CPUs) in 2006 and cannot be considered conclusive as far as scalability
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on the machines that the RELEASE project is aiming at. More generally, the
technology required to reach the scalability target of the current project requires
significant extensions to the state of the art in the design of VMs for message
passing concurrency and will stretch the limits of data structures and algorithms
for distributed memory management.

2.2 Scalable Reliable Programming Models

Shared memory concurrent programming models like OpenMP [19] or Java
Threads are generally simple and high level, but do not scale well beyond 102

cores. Moreover reliability mechanisms are greatly hampered by the shared state,
for example, a lock becomes permanently unavailable if the thread holding it
fails. In the HPC environment the distributed memory model provided by the
MPI communication library [20] dominates. Unfortunately MPI is not suitable
for producing general purpose concurrent software as it is too low level with
explicit, synchronous message passing. Moreover the most widely used MPI im-
plementations offer no fault recovery1: if any part of the computation fails, the
entire computation fails.

For scalable high-level general purpose concurrent programming a more flex-
ible model is required. Actors [6] are a widely used model and are built into
languages like Scala [22], Ptolemy [23], and Erlang [3]. There are also Actor
frameworks and libraries for many languages, for example, Termite Scheme [24],
PARLEY for Python [25], and Kilim [10] for Java. The Erlang style concurrency
has the following key aspects [26]: fast process creation/destruction; scalability
to support more than 104 concurrent processes; fast asynchronous message pass-
ing; copying message-passing semantics, i.e. share-nothing concurrency; process
monitoring; selective message reception.

Fig. 2. Conceptual View of Erlang’s Concurrency, Multicore Support and Distribution

1 Some fault tolerance is provided in less widely used MPI implementations like [21].
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Figure 2 illustrates Erlang’s support for concurrency, multicores and distri-
bution. A rectangle represents a host with an IP address, and an arc represents
a connection between nodes. Multiple Erlang processes may execute in a node,
and a node can exploit multiple processors, each having multiple cores. Erlang
supports single core concurrency where a core may support as many as 108

lightweight processes [2]. In the Erlang distribution model a node may be on a
remote host, and this is almost entirely transparent to the processes. Hosts need
not be identical, nor do they need to run the same operating system.

Erlang currently delivers reliable medium scale distribution, supporting up to
102 cores, or 102 distributed memory processors. However, the scalability of a dis-
tributed system in Erlang is constrained by the transitive sharing of connections
between all nodes and by explicit process placement. The transitive sharing of
connections between nodes means that the underlying implementation needs to
maintain data structures that are quadratic in the number of processes, rather
than considering the communication locality of the processes. While it is possible
to explicitly place large numbers of processes in a regular, static way, explicitly
placing the irregular or dynamic processes required by many servers and other
applications is far more challenging. The project addresses these limitations.

2.3 Tools for Concurrency and Erlang

From the inception of parallel programming, the availability of tools that ease the
effective deployment of programs on parallel platforms has been a crucial crite-
rion for success. The Intel Trace Analyzer and Collector [27] is a typical modern
tool, which supports the analysis, optimisation and deployment of applications
on Intel-based clusters with MPI communication.

The Erlang VM is equipped with a comprehensive, low-level tracing infras-
tructure provided by the trace built-in functions [3]. There is a number of higher-
level facilities built upon this, including the debugger and the Trace-Tool Builder
(TTB) [28]. The later provides facilities for managing tracing across a set of dis-
tributed Erlang nodes. TTB is designed to be extensible to provide different
types of tracing tuned to different applications and environments. While these
tools support monitoring Erlang programs across distributed nodes, there is a
problem in dealing with the volume of data generated; on a multicore chip, or
highly parallel system, it will be impossible to ship all the data off the chip
without swamping communication entirely [29]. So, we will ensure that local
monitoring and analysis can be performed within the system, leveraging the
locality supported by SD Erlang to support a hierarchical ’tracing architecture’.

In building analyses we will be able to leverage work coming from the FP7
ProTest project [30] including the on-line monitoring tool Inviso, which has
recently been integrated into TTB, and the off-line monitoring tool Exago.
Higher-level analysis can be provided independently [31], and building on this
it is also possible to analyse the process structure of Erlang applications, par-
ticularly those structured to use the OTP standard behaviours [32, Chapter 6].
These existing systems need to be extended to integrate monitoring with process
discovery.
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Building on the Erlang syntax tools package and the standard Erlang compiler
tool chain, Wrangler is a tool for refactoring Erlang programs [33]. In the RE-
LEASE project we will develop and implement refactorings from Erlang to SD
Erlang within Wrangler. To give users guidance about which refactorings could
be applied we will develop a refactoring assistant, that will suggest refactorings
of a given system on the basis of the system behaviour.

Traditional breakpoint debuggers are of little use for Reliable Massively Par-
allel (RMP) software; there are too many processes and breakpoints conflict with
the frequent timeouts in Erlang’s communication. The RELEASE project will
build a debugger for massively parallel systems that retains a recent history of
the current computation state, as well as saving fault-related information, so
that this can be retraced and explored for debugging purposes.

2.4 Cloud Hosting

The cloud hosting area is moving rapidly, and progress is driven mainly by
entrepreneurs and competing cloud infrastructure providers. While users can
already choose between many hosting providers offering price/performance al-
ternatives, provisioning is typically manual and time consuming, making it un-
necessarily difficult to switch providers.

With increased competition comes specialisation, which in its turn introduces
an integration challenge for users. This calls for a broker layer between users and
cloud providers [34], but creating such a broker layer, especially a dynamic one, is
no easy task, not least because Cloud Provision APIs currently do not support
ad-hoc, capability-based provisioning and coordination of cloud resources. A
problem is that basic cloud APIs must primarily serve mainstream languages,
not least REST (stateless) clients, where management of dynamic and complex
state is considered extremely difficult [35].

We intend to advance the concept of a capability-based dynamic cloud bro-
ker layer, building on the cloud broker component of Erlang Solutions’ recently
launched Hosted Continuous Integration tool SWARM. SWARM is capable of
allocating a mix of cloud and physical resources on demand and running com-
plex tests in parallel, and draws on the ease with which Erlang can spawn and
coordinate parallel activities, as well as its considerable strengths as a test au-
tomation and load testing environment. We intend to use SWARM itself as a
testbed for the concepts in the RELEASE project, aiming to increase both the
capabilities of SWARM and its cost-effectiveness.

At a basic level, this broker would be useful for any kind of cloud application
(even non-Erlang) making it easier for users to switch provider, and create on-
demand, capability-driven mashups of specialised clusters. For more dynamic
capabilities, we will lead by providing a Cloud Broker API customised for the
Erlang programming model.
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2.5 Scalable Simulation

Many business and scientific fields would benefit from larger-scale simulations
as the need for intrinsically risky extrapolation can be removed if we are able
to simulate a complex system as a whole. Moreover, some important behaviours
only appear in detailed simulations. Distributed memory clusters are cost ef-
fective scalable platforms. However, simulations are typically initially developed
using sequential, imperative technologies and these are ill suited for distributed
execution. Additionally parallelism poses a number of challenges for simula-
tion. We believe that declarative programming is an appropriate tool to harness
parallel platforms.

Sim-Diasca is a distributed engine for large scale discrete simulations imple-
mented in Erlang. It is among the most scalable discrete simulation engines
and currently is able to handle more than one million relatively complex model
instances using only hundreds of cores. However, more accurate models are re-
quired – ideally we would like 50-200 million model instances. We would also
like to introduce reliability. The achievement of these goals requires scalable re-
liability improvements across the software stack, i.e. VM, language, and engine.

3 Developing a Scalable Programming Model

This section gives an overview of the technical and research components of the
project covering the following areas: scaling the Erlang VM (Section 3.1), scal-
ing the Erlang programming model (Section 3.2), scalable virtualisation infras-
tructure (Section 3.3), and tool support for the development of RMP software
(Section 3.4).

3.1 Scaling the Erlang VM

The Erlang VM was initially designed as a machine to support cooperative con-
current execution of processes (“green threads”) on physical machines with a
single CPU. Since 2006, the Erlang VM has been extended to support Symmet-
ric MultiProcessing (SMP) in the form that is commonly found these days in
multicore machines. The goal has been to focus on stability while giving incre-
mental performance improvements in each release. This approach has worked
well for the important class of high-availability server software running on ma-
chines with up to 16 cores, but needs significant extensions to achieve scalability
on bigger multicore machines.

In the RELEASE project we aim to re-design and improve some core as-
pects of Erlang’s VM so that it becomes possible for applications to achieve
highly scalable performance on high-end multicore machines of the future with
minimal refactoring of existing applications. Our goal is to push a big part of
the responsibility for achieving scalability from the application programmer to
the VM. In particular, we will investigate architectural changes and alternative
implementations of key components of Erlang’s VM that currently hinder scal-
ability of applications on large multicore machines. A key consideration is to
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design scalable components without sacrificing crucial aspects of the existing ar-
chitecture such as process isolation, high-reliability, robustness and soft real-time
properties.

To achieve these goals, we will begin our work by a detailed study of the
performance and scalability characteristics of a representative set of existing
Erlang applications running on the current VM. This will help us both to identify
the major scalability bottlenecks and to prioritize changes and extensions of the
runtime system and of key VM components. Independently of the results of
this study however, there are parts of the VM which could definitely benefit
from extensions or redesign. One of them is the Erlang Term Storage (ETS)
mechanism.

Although Erlang processes do not share any memory at the language level,
at the implementation level, the Erlang VM provides built-ins that allow pro-
cesses to store terms in shared global data structures, called ETS tables, and to
destructively modify their contents. Currently, many Erlang applications make
extensive use of this mechanism, either directly in their code or indirectly via
using in-memory databases such as Mnesia [3]. With the current implementation
of ETS, when the number of processes gets big, an access to these tables becomes
serialisation points for applications and hinder their scalability. Moreover, due
to the nature of the garbage collector currently employed by the Erlang VM, an
access to terms in ETS tables requires a physical copy of the term from the table
to the heap of the process. We will investigate scalable designs of ETS tables
that avoid these performance bottlenecks. In addition we will experiment with
runtime system organisations and design language built-ins that avoid the need
for copying data from ETS tables to the process-local memory areas when it is
provably safe to do so.

In the current Erlang VM processes allocate the majority of their data in
process-local memory areas. Whenever processes need to communicate, they
must explicitly copy their data from the heap of the sender to that of the re-
ceiver. The processes also need to wait to get rescheduled when execution reaches
a receive statement with no appropriate messages in the process mailbox. We will
design and investigate scalable runtime system architectures that allow groups
of processes to communicate without the need for explicit copying. We will also
develop the runtime support for processes to temporarily yield to their appro-
priate senders when reaching a receive statement that would otherwise block.
One possible such architecture is a clustered shared heap aided by the presence
of language constructs such as fibers available in languages like C++.

To identify “frequently-communicating processes” and to guide the VM sched-
ulers a scalable design of the Erlang VM needs to be supported both by language
extensions and by static and dynamic analysis. A significant effort in this task
is not only to design and implement the analysis, but also to integrate it in the
development environment in a smooth and seamless way. No matter how scal-
able the underlying VM will get, large scale applications will need tool support
to identify bottlenecks (Section 3.4). Finally, to test the scalability of our imple-
mentation and to enable a case study we will port the Erlang VM to a massively
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parallel platform. Our current plan is to use a Blue Gene/Q machine. This plan
may change, or be extended to include more platforms, if we gain access to more
powerful such machines during the duration of the project.

3.2 Scaling the Erlang Programming Model

We will extend both Erlang, to produce Scalable Distributed (SD) Erlang, and
the associated OTP library. The SD Erlang name is used only as a convenient
means of identifying the language and VM extensions as we expect them to
become standard Erlang in future Erlang/OTP releases.

Controlling Connections. The scalability of a distributed Erlang system is
constrained by the transitive sharing of connections between all nodes and by
explicit process placement. SD Erlang will regain scalability using layering, and
by controlling connection locality by grouping nodes and by controlling process
placement affinity.

Process Placement. Currently the Erlang distribution model permits explicit
process placement: a process is spawned on a named node. Such a static, di-
rective mechanism is hard for programmers to manage for anything other than
small scale, or very regular process networks. We propose to add an abstraction
layer that maintains a tree of node groups, abstractly modelling the underlying
architecture. We will provide mechanisms for controlling affinity, i.e. how close
process must be located, e.g. two rapidly communicating processes may need to
be located in the same node. We will also provide mechanisms for controlling
distribution, i.e. how far the process must be from the spawning process. For
example, two large computations, such as simulation components, may need to
be placed on separate clusters.

Scaling Reliability. Erlang/OTP has world leading language level reliability.
The challenge is to maintain this reliability at massive scale. For example, any
node with a massive number of connections should be placed in a different node
group from its supervisor. A new OTP principle could be to structure systems
with the supervision tree preserving this property.

Performance Portability. The abstract computational control mechanisms are
not strongly related to a specific architecture. As far as possible we intend to
construct performance portable programs, and computational patterns, by com-
puting distance metrics for the affinity and distribution metrics. Moreover, lo-
cality control enables us to use layering as a principle to structure systems: for
example, the control processes for a layer appearing in a different group from
the controlled processes. This facilitates performance portability as the top lay-
ers can be refactored for the new architecture while preserving the lower layers
unchanged.

Scalable and Portable OTP. Some OTP principles and behaviours will need to
be extended with new scalable principles, and perhaps to some extent redesigned
and refactored to control locality and support layering. The supervisor group
discussed above and the control layering are examples of new scalable principles.
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3.3 Scalable Virtualisation Infrastructure

Given the aim of the RELEASE project to develop a model of participating clus-
ters, it is logical to also explore the possibility of creating super-clusters of on-
demand clusters provisioned from competing Cloud providers. This would make
it possible to cost-optimise large clusters by matching capability profiles against
the requested work, and combining groups of instance types, possibly from dif-
ferent providers, into a larger grid. The complexities of running a computing
task across such a cluster generally fall into the categories addressed within the
RELEASE project: providing a layer of distribution transparency across coop-
erating clusters; monitoring neighbouring clusters and recovering from partial
failures; and tolerance to latency variations across different network links.

A possible small-scale use for a Cloud cluster broker could be to act as a
“Pricerunner” for on-demand computing resources. For Erlang Solutions, it is
a natural extension of their Hosted Continuous Integration and Testing as a
Service offerings (SWARM), where the system can match the computing needs of
different build-and-test batches against availability and pricing of virtual images
from different providers. In the context of Hosted Continuous Integration, this
capability can also be used to simulate both server- and client-side, using different
capabilities, and possibly different providers, for each. It needs to be easy to
configure and automate.

The infrastructure that we construct will be novel as few cloud computing
providers today offer a powerful enough API for this task. For this reason, we
will build our own virtualisation environment, e.g. based on the Eucalyptus
Cloud software, which is API-compatible with Amazon EC2, but available as
open source.

3.4 Tool Support for Developing Reliable Parallel Software

The Erlang programming model provides abundant concurrency, with no theo-
retical limit to the number of concurrent processes existing – and communicating
– at any particular time. In practice, however, there can be problems in the ex-
ecution of highly concurrent systems on a heterogeneous multicore framework.
Two particular difficulties are, first, balancing of computational load between
cores. Each Erlang process will run on a single core, and a desirable property of
the system is that each core is utilised to a similar extent. Secondly, there may be
bottlenecks due to communication. Each process executes on a single core, but a
typical process will communicate with other processes which are placed on other
cores, and in a large system this can itself become a bottleneck. Using more cores
can ease load balancing, but communication bottlenecks may be alleviated by
keeping related processes close together, potentially on the same core, but these
two are in tension.

We will supply tools that can measure and visualise performance in a number
of different ways. The Erlang VM is equipped with a comprehensive, low-level
tracing infrastructure on which other tools can be built. DTrace also provides
dynamic tracing support at the operating system level on a number of Unix
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platforms, complementing the built-in facilities. Because of the volume of data
generated, we will need to ensure that local monitoring and analysis are per-
formed, leveraging the locality properties of the running system. The tools will
be built in sequence. First we will develop textual reports and graphical visuali-
sations for off-line monitoring, secondly, these will be generated as snapshots of
a running system, and finally we will build tools to support interactive, real-time
on-line system monitoring.

For SD Erlang to be taken up in practice, it will be essential to provide users
with a migration path from Erlang: using the Wrangler refactoring platform
we will provide the infrastructure for users to migrate their programs to SD
Erlang, and moreover provide decision-support tools suggesting migration routes
for particular code. Finally, we will supply tools to debug concurrency bugs (or
Heisenbugs) in SD Erlang programs, and to develop an intelligent debugger based
on saving partial histories of computations.

4 Case Studies

The case studies will demonstrate and validate the new reliable massively paral-
lel tools and methodologies in practice. The major studies using SD Erlang and
the scalable infrastructure are large-scale discrete simulations for EDF, i.e. 107

model instances, and dynamically scalable continuous integration service for Er-
lang Solutions. Key issues include performance portability, scalability and relia-
bility for large-scale software. We will also investigate the feasibility of impacting
dominant programming models by adding our scalable reliability technologies to
an Actor framework for a mainstream programming language, such as Java.

EDF Simulation. The goals of this first case study are to enhance the relia-
bility and scalability of an existing open-source simulation engine, Sim-Diasca
that stands for “Simulation of Discrete Systems of All Scales”. Sim-Diasca is a
general-purpose engine dedicated to all kinds of distributed discrete simulations,
and currently used as the corner stone for a few simulators of smart metering
systems. The increased scalability will enable Sim-Diasca to execute simulations
at an unprecedented scale by exploiting large-scale HPC resources, clusters or
Blue Gene supercomputer that in total provide 105 cores.

Currently, Sim-Diasca is designed to halt if any node fails during a simu-
lation. The goal is to make the engine able to resist to the crash of up to a
pre-determined number of computing nodes, e.g. 3 nodes. This is a twofold task:

– The main part of the task is to add application-level fault tolerance to the
engine, so that the engine is able to store its state based on triggers, e.g. wall
clock durations elapsed, simulation intermediate milestone met, in such a way
that state is spread over all the computed nodes involved. Thus, a distributed
snapshot is to be created, and the state of a given node must be duplicated
to k other nodes depending on the targeted k-reliability class, either in RAM
or on a non-volatile memory, e.g. local files, a distributed file system, or a
replicated database. This check-pointing is meant to allow for a later restart
on a possibly different resource configuration.
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– The second part of the task is to integrate the lower-level mechanisms for
reliability provided by SD Erlang. Some mechanisms will be transparent,
whereas others will be used as building blocks for the first part of the task.

The distributed snapshot/restart feature will be implemented using a trigger,
e.g. every N simulation ticks all the attributes of all the simulation instances are
replicated on k other nodes. This requires that simulation agents like the time
managers and data-loggers have means of serialising their state for future re-use.
The main difficulty is to do the action for all model instances.

Tolerating the common case of losing a “slave” node at the leaf of the simula-
tion tree is the basic requirement. More advanced challenges to be investigated
include the following:

– Tolerating the loss of intermediate nodes, or even the root node. For the
latter case consensus and leader election are required, and may be generic
reliability mechanisms for Sim-Diasca.

– The dynamic addition of nodes that naturally follows from tolerating the
loss of nodes.

– Supporting instance migration, for example, for planned down-time or load
balancing.

Target platforms include both large clusters such as the Blue Genes and mul-
ticore cards like Tilera. The advantages of the latter are ready access and local
administration.

Continuous Integration Service. The second case study will be to integrate the
support for on-demand, capability-driven heterogeneous super clouds into Erlang
Solutions’ Continuous Integration framework, SWARM. We envisage integrating
up to 4 Amazon EC2 clusters ranging from small, e.g. four 1GHz cores, to
large, e.g. hundreds of 3GHz cores. To meet client requirements we will also
include in-house clusters, such as bespoke embedded device clusters, e.g. 20 ARM
cores, or clusters of dedicated machines currently not available in virtualised
environments.

Erlang Solutions has a dynamic stream of customer projects and the exact con-
figurations will depend on the clients’ use cases, but already, prospective clients
of SWARM include massively scalable NoSQL databases, multisite instant mes-
saging systems and middleware for nation-wide trading infrastructures. Erlang
Solutions is also currently developing ad-hoc networking solutions for mobile
devices. We plan to explore the potential of Hosted Continuous Integration in
all these areas, and derive from that experience what a common provisioning
framework for heterogeneous clusters should look like.

Scalable Reliability for a Mainstream Actor Framework. The goal of this study
is to evaluate how the scalable reliable concurrency oriented paradigm we will
develop can be effectively applied to mainstream software development. We
will investigate the feasibility and limitations of adding SD Erlang scalability
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constructs to a popular Actor framework for a dominant language. The inves-
tigation will focus on an open source framework with an active user base. One
such framework that meets the requirements is Kilim for Java [10].

5 Progress So Far

In the first six months of the RELEASE project we have made the following
progress [36].

We have started to design SD Erlang by making an overview of architecture
trends, possible failures, and Erlang modules that might impinge on Erlang
scalability [37]. We have formulated the main design principles, and analysed
in-memory and persistent data storage mechanisms. We also have developed an
initial SD Erlang design that includes implicit process placement and scalable
groups to reduce node connections.

We have started to benchmark and trace multicore systems using both the
built-in Erlang tracing and DTrace for Unix systems. We are also compiling
a set of programs for Erlang and in particular Distributed Erlang, so that we
can benchmark the performance of multicore SD Erlang on a set of practical
problems [38].

We have produced a survey of the state-of-the-art cloud providers and man-
agement infrastructures. The survey is a foundation for the initial work on pro-
viding access to cloud infrastructure for different tasks, such as system building,
testing and deployment. We have added a few useful features to Sim-Diasca to
ease troubleshooting, e.g. a distributed instance tracker. We are also working on
a scalable simulation case that can be used for benchmarking purposes.

6 Conclusion

The RELEASE project intends to scale Erlang’s concurrency-oriented program-
ming paradigm to build reliable general-purpose software, such as server-based
systems, on massively parallel commodity hardware. We outline the state of the
art (Section 2), and then explain how we plan to tackle the challenge at the
following three levels. We are evolving the Erlang VM for large scale multicore
systems (Section 3.1). We are evolving the language to Scalable Distributed (SD)
Erlang, and adapting the OTP framework to provide both constructs like locality
control, and reusable coordination patterns (Section 3.2). We are developing a
scalable Erlang infrastructure to integrate multiple, heterogeneous clusters (Sec-
tion 3.3). To support these activities we are developing tools to enable program-
mers to understand the behaviour of large scale Erlang systems, and to refactor
standard Erlang programs into SD Erlang (Section 3.4). We have outlined how
case studies will be used to investigate and validate the new reliable massively
parallel tools and methodologies in practice (Section 4). Finally, we have briefly
outlined our initial progress (Section 5). We look forward to reporting on the
progress of the project in the years to come.
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Abstract. From laptops to supercomputer nodes hardware architec-
tures become increasingly heterogeneous, combining at least multiple
general-purpose cores with one or even multiple GPU accelerators. Tak-
ing effective advantage of such systems’ capabilities becomes increasingly
important, but is even more challenging.

SaC is a functional array programming language with support for
fully automatic parallelization following a data-parallel approach. Typ-
ical SaC programs are good matches for both conventional multi-core
processors as well as many-core accelerators. Indeed, SaC supports both
architectures in an entirely compiler-directed way, but so far a choice
must be made at compile time: either the compiled code utilizes mul-
tiple cores and ignores a potentially available accelerator, or it uses a
single GPU while ignoring all but one core of the host system.

We present a compilation scheme and corresponding runtime system
support that combine both code generation alternatives to harness the
computational forces of multiple general-purpose cores and multiple GPU
accelerators to collaboratively execute SaC programs without explicit
encoding in the programs themselves and thus without going through
the hassle of heterogeneous programming.

1 Introduction

Single Assignment C (SaC)[1] is a purely functional array programming language
for compute-intensive and performance-sensitive applications. SaC has a syntax
that very much resembles C, yet it is a fully-fledged programming language in its
own right with context-free substitution of expressions as the driving principle
of program execution. SaC features truly multidimensional arrays as the main
data aggregation principle as well as shape- and dimension-invariant definitions
of array operations. Arrays are truly stateless and, thus, functions (conceptually)
consume their array arguments and produce new array values. The focus of
the SaC project is on compiler technology that transforms high-level functional
specifications into executable code that competes well with C or Fortran through
aggressive compiler optimization and fully compiler-directed parallelization[2].

Heterogeneous computing receives increased attention due to the rise of pow-
erful and affordable accelerator hardware, such as general purpose GPUs, the

H.-W. Loidl and R. Peña (Eds.): TFP 2012, LNCS 7829, pp. 279–294, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



280 M. Diogo and C. Grelck

IBM Cell processor, and FPGAs [3, 4]. These accelerators can provide speedups
of one or two orders of magnitude depending on the problem [5, 6, 7]. Most
available heterogeneous programming environments [8, 9, 10] provide a way to
offload computations to one of many types of accelerators. These approaches
mainly solve portability issues, but leave programmers alone with low-level,
architecture-specific coding of applications, and thus very much limit produc-
tivity the more heterogeneous the target architectures become.

With all the above approaches, a selected accelerator does the heavy work
while the host CPU is typically idle, as well as any other available accelerators.
Making effective use of heterogeneous computing environments may well provide
additional performance gains, as shown by the MAGMA project [11] in the area
of algebraic computations. Further studies demonstrate performance gains by
sharing computations between multiple GPUs and CPU cores [11, 12, 13].

Our approach taken for SaC is more ambitious than the ones above: from
the very same declarative and architecture-agnostic program we fully automat-
ically generate efficient parallel code for multi-core CPUs [14] and many-core
GPUs [15]. However, for now a choice needs to be made at compile time to
either utilize one or multiple multi-core CPUs or a single CUDA-enabled GPU.

In this paper we propose the necessary compilation and runtime system tech-
nology to realize additional performance gains by simultaneously using one or
more multicore CPUs and one or more GPUs to cooperatively execute array
operations without sacrificing our declarative, compiler-directed approach. This
requires the integration of the currently separate multicore and CUDA compila-
tion paths within the SaC compiler. Various issues need to be addressed from
high-level program transformations over code generation to dealing with explicit
memory transfers between the various memories involved.

The CUDA backend of the SaC compiler generates CUDA-kernels from SaC
array operations. Only such kernels can run on CUDA-enabled devices. They
are subject to several constraints imposed by the underlying hardware. For ex-
ample, the absence of a stack on GPUs rules out function calls, and branches are
costly as they result in parts of the GPU being masked out during execution.
Consequently, CUDA kernels must follow relatively simple patterns of nested
loops, and complex array operations must often be split into several consecutive
kernels. In contrast, the SaC multicore backed puts a lot of effort into improving
data locality in cache-based systems [20], which often results in fairly complex
codes that would be impossible or at least inefficient to run on GPUs. This ex-
ample shows that the choice of target architecture does not only affect the final
compilation stages of target code generation, but already needs to be taken into
account in central parts of the compilation process.

GPUs have their own memory, which makes heterogeneous computing sys-
tems also distributed memory systems. Explicit data transfers between the host
memory and the various GPU device memories must be introduced into the gen-
erated code. For good performance it is crucial to avoid redundant data transfers.
The SaC CUDA backend schedules entire array computations on the (single)
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GPU. With this trivial static scheduling, the compiler can make all data move-
ment decisions statically, and only entire arrays are transferred between host
and device memories. If multiple GPUs and host cores are to collaborate in a
single array operation, we must dispense with this static model. Instead (concep-
tual) arrays must be distributed across the various memories of a heterogeneous
computing system. Consequently, as such an array becomes the argument of a
subsequent array operation, parts of this array are likely not to be present in
the memory of the host or device that needs the data. Heterogeneity naturally
limits the applicability of static scheduling in such a context, and we expect dy-
namic approaches to be more effective in the long run [16, 17, 13]. Therefore, the
runtime system needs to keep track of where which parts of an array are stored
and initiate the necessary data transfers to make the data available where it is
needed. In light of these problems, we specifically aim to:

– track location of computed array slices dynamically;
– perform as few copies from/to device memory as possible;
– avoid redundant copying between different memories;
– generate two code versions for each array operation, one optimized for CUDA

and the other for multicore execution.

The remainder of the paper is organized as follows. In Section 2 we provide
some background information on SaC and in Section 3 on relevant existing work
in the SaC compiler. Section 4 describes how to concert the CUDA and multicore
compilation paths. In Section 5 we introduce the notion of distributed arrays.
Section 6 shows how this proposed scheme integrates with existing SaC dy-
namic scheduling facilities. In Section 7 we present and analyze preliminary
experimental results. Eventually, we discuss some related work in Section 8 and
draw conclusions in Section 9.

2 Single Assignment C

As the name suggests, SaC leaves the beaten track of functional languages and
adopts a C-like syntax to ease adoption by imperative programmers. Core SaC
is a functional, side-effect free variant of C: we interpret assignment sequences as
nested let-expressions, branches as conditional expressions and loops as syntactic
sugar for tail-end recursive functions [1, 18]. Despite the radically different un-
derlying execution model (context-free substitution of expressions vs. step-wise
manipulation of global state), all language constructs show exactly the opera-
tional behaviour expected by imperative programmers. This allows programmers
to choose their favourite interpretation while the compiler exploits the side-effect
free semantics for advanced optimization and automatic parallelization.

On top of this language kernel SaC provides genuine support for processing
truly multidimensional and truly stateless/functional arrays advocating a rank-
and shape-generic programming style. Array types include arrays of fixed shape,
e.g. int[3,7] for a 3x7-matrix of integers, arrays of fixed rank, e.g. float[.,.]
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for a float matrix of any size and arrays of any rank, e.g. double[*] for a
double array of any rank, which could be a vector, a matrix, etc. SaC only
provides a small set of built-in array operations, essentially to retrieve the rank
(dim(array)) or shape (shape(array)) of an array and to select elements or
subarrays (array[idxvec]). All aggregate array operations are specified using
with-loop expressions, a SaC-specific array comprehension:

with {
( lower_bound <= idxvec < upper_bound) : expr;
...

( lower_bound <= idxvec < upper_bound) : expr;
}: genarray( shape, default)

The key word genarray makes this with-loop define an array whose shape is
given by the shape expression and whose elements default to the value of the
default expression. The body consists of multiple (disjoint) partitions. Here,
lower_bound and upper_bound denote expressions that must evaluate to integer
vectors of equal length. They define a rectangular (generally multidimensional)
index set. The identifier idxvec represents elements of this set, similar to in-
duction variables in for-loops. We call the specification of such an index set a
generator and associate it with some potentially complex SaC expression. Thus,
we define a mapping between index vectors and values, in other words an array.
We deliberately use index sets, which make any with-loop expose fine-grained
concurrency and thus the ideal basis for our parallelization efforts.

...
foo = with {

(. <= iv <= .): 20;
}: genarray ([1000 , 1000]);

y = foo[[1,20]] + 1;

bar = with {
([0 ,10] <= iv <= .): foo[iv] + y;

}: modarray (foo);

bar[[1 ,2]] = 10;
...

Fig. 1. Example SaC code, consisting of a genarray, a modarray, and a few array
operations in between

We illustrate SaC code in general and the with-loop in particular by the (ar-
tificial) code fragment of Fig. 1. This code creates a 1000x1000 matrix where
each element is set to 20 using the genarray with-loop. The dots in the lower
and upper bound expression positions are syntactical sugar for the least and
the greatest legal index vector of the defined array. So, the generator covers
the entire index space, thus making an explicit default expression obsolete. We
then access this new array at some index and name the result y. Next, we define a
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new matrix bar based on the existing matrix foo using a modarray with-loop,
a variant of the genarray-with-loop introduced above. Matrix bar has the same
rank and shape as matrix foo. Likewise the values of the leftmost 10 columns
are taken from the corresponding values of foo. The remaining columns covered
by the generator are also taken from foo, but incremented by the value of y.
Finally, we change element [1,2] of the new matrix to 10. More precisely, we
create a third matrix also named bar that is identical to the previously existing
matrix bar except for the value at row 1, column 2.

3 Existing Work in the SAC Compiler

3.1 Generating Multi-threaded Code

The SaC-compiler takes considerable effort to condense multiple (often compu-
tationally light-weight) with-loops into fewer, more heavy-weight ones by means
of high-level code transformations [19]. This typically results in complex multi-
generator with-loops. Subsequently, such with-loops undergo a transformation
into what is called the canonical order [20]. This canonical order is an internal
representation of with-loops as a single, fairly complex (imperfect) nesting of
loops, whose execution follows the way elements are stored in memory, rather
than as a sequence of simple, perfect loop nests that would arise from the individ-
ual compilation of generators. This technique considerably improves performance
on conventional architectures through increased cache utilization.

The multicore code generator then selects individual with-loops for multi-
threaded execution based on a simple cost model and creates parallel sections
with the necessary communication and synchronization facilities. At runtime,
the main thread executes any sequential code as normal, while worker threads
remain inactive. Before starting one of the parallel sections and waking up the
worker threads, the main thread sets up a memory area, known as task frame,
where it inserts any variables the worker threads require. On a shared memory
system arrays are not copied to the task frame, only their references. For with-
loops in parallel sections, a scheduler assigns disjoint regions of the array index
space to each thread for computing. Threads repeat the with-loop computation
with different regions until the whole iteration space is assigned by the sched-
uler. The default strategy is block scheduling, but programmers can assign other
static and dynamic ones to each with-loop.

3.2 Generating CUDA Kernels

The first step towards generating CUDA kernels lies in selecting those with-
loops that can actually run on the GPU, e.g. it is impossible to call functions
within kernels. With-loops with function calls in the body (after optimizations
like inlining) thus take the standard compilation route, while selected with-loops
go through CUDA-specific transformations.



284 M. Diogo and C. Grelck

The SaC CUDA backend [21, 15] maps individual with-loops to CUDA ker-
nels. The canonical order, however, is not suitable for CUDA as the correspond-
ing loop structure becomes too complicated and the GPUs can much less benefit
from this form of data locality. Hence, each generator is individually compiled
into one kernel instead.

In order to statically distinguish between host-allocated and device-allocated
arrays in a sound way, the CUDA backend employs a simple type system where
every array type is tagged as either host type or device type. Relatively free
array variables inside CUDA with-loops are converted from a host type to the
corresponding device type by means of the primitive function host2device. Con-
versely, arrays computed by a CUDA with-loop (thus having a device type) can
be converted to a host type by the corresponding primitive function device2host.
At runtime these type conversion functions take care of the necessary memory
transfers. It is noteworthy that the SaC CUDA backend takes considerable effort
to avoid unnecessary memory transfers through high-level code transformations.

Consider the code from the example in Fig. 1. As both with-loops are CUDA-
compatible, the code is transformed to look like in Fig. 2. Note that to compute
bar_cuda there is no need to transfer foo back to device memory as foo_cuda
already resides there and as a functional data structure remains unchanged.

...
foo_cuda = with_cuda {...}: genarray ([1000 , 1000]);

foo_host = device2host(foo_cuda );
y = foo_host [[1 ,20]] + 1;

bar_cuda = with_cuda {...}: modarray (foo_cuda );
...

Fig. 2. Excerpt from the code of Fig. 1, both with-loops selected for CUDA

4 Compiling With-Loops for Multiple Targets

The same with-loop will produce very different code whether it is compiled for
CUDA or for multicore execution. To solve this incompatibility, we generate both
versions side-by-side. The first step is to allow existing compiler procedures to
mark all with-loops capable of running on CUDA. Then, these with-loops are
duplicated, and the copy is deselected for CUDA execution. This way, one of
the with-loops can go through the CUDA-specific transformations while the
other goes through the multicore-specific transformations and among others is
transformed into canonical order.

The resulting code for our running example is shown in Fig. 3. To simul-
taneously represent the two with-loop variants, these are encapsulated in a
conditional. For illustration we use the keywords with_cuda and with_host.
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The conditional will later be moved to parallel sections executed by multiple
threads in SPMD-style, and the predicate will be evaluated by each thread indi-
vidually. One host thread per GPU will launch the CUDA kernels. The remaining
worker threads will run multithread code on the host directly.

...
y = foo_host [[1 ,20]] + 1;

if(cudaBranch) {
bar_cuda = with_cuda {...}: modarray (foo_cuda );

} else {
bar_host = with_host {...}: modarray (foo_host );

}

bar_host [[1 ,2]] = 10;
...

Fig. 3. Excerpt from the SaC code in Fig. 1 after with-loop duplication

5 Managing Multiple Memories

The existing CUDA backend only transfers arrays in their entirety between host
and (one) device memory. This is not viable if we are to execute with-loops
simultaneously on multiple devices or on device and host. To keep track of dis-
tributed arrays scattered across multiple memories, we introduce a third type:
distributed variables. To access the array, it first needs to be converted from
distributed type to a concrete type through explicit conversion. Whenever these
arrays are written to, however, they again must be converted to the distributed
type to make the runtime system aware of any changes. To represent these con-
versions we introduce dedicated primitive functions: dist2host and host2dist
for the host, dist2device and device2dist for CUDA devices.

5.1 Distributed Variables

To keep track of distributed arrays scattered over different memories we intro-
duce a control structure inside distributed variables. This structure has refer-
ences to the concrete array addresses on the host and on the GPUs as well as a
table recording which parts of an array are present where. Currently, we restrict
ourselves to dividing arrays into blocks along the outermost axis.

To avoid unnecessary copying, the dynamic tracking scheme should also be
able to detect cases where data is available in several memories simultaneously.
The proposed scheme addresses this using techniques derived from cache co-
herency protocols [22]. The idea is to keep a table in host memory tracking the
state of each block on each device. The possible states are (M)odified, (S)hared
and (I)nvalid, mimicking the simple MSI cache coherence protocol [23], as illus-
trated in Fig. 4.
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Blocks ⇒
Host S M I I ...
CUDA 1 S I M I ...
CUDA 2 S I I M ...
...

Fig. 4. Dynamic tracking
control structure

This proposed control structure allows for some
scaling, as it is possible to track more devices sim-
ply by adding another row to the control structure
table. Each block currently corresponds to a posi-
tion along the outermost dimension. For a matrix,
for example, each block would correspond to a row.
We find this to be reasonable in most situations,
and it simplifies implementation.

5.2 Dedicated Conversion Functions

The primitive functions to convert from a dis-
tributed to a concrete type or vice-versa make use of the control structure in
distributed variables to copy only the required parts to the memory system that
needs them. These functions can be thought of as extensions to the device2host
and host2device primitive functions introduced by the SaC CUDA backend.
Instead of explicitly copying the whole array from one memory to another, the
new primitive functions transparently perform the copying of only those data
blocks needed but not present in some memory. This is possible because the
compiler always knows which parts of an array will be accessed, even if just in a
symbolic manner. We can thus pass a range of elements as an argument to the
conversion functions.

int_dist [*] host2dist(int_dist [*] dist_array , int[*] host_array , int[*] range)
{

foreach (block i in range) {
mark_block(i, host , Modified )
mark_block(i, cuda , Invalid )

}
return dist_array;

}

int[*] dist2host(int_dist [*] dist_array , int[*] host_array , int[*] range){
foreach (block i in range) {

if( get_block_mark(i, host) == Invalid ) {
copy_block(i, cuda , host)
mark_block(i, cuda , Shared)
mark_block(i, host , Shared)

}
}
return host_array;

}

Fig. 5. Pseudo-code for the host2dist and dist2host primitive functions

Pseudo code implementations of host2dist and dist2host are shown in
Fig. 5. For each block that falls into the specified range, host2dist sets the
corresponding entry in the distributed variable table to Modified on the host
and to Invalid on the CUDA devices. For each block that falls into the specified
range, dist2host checks the corresponding entry in the distributed variable
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table for whether or not the host line is set to Invalid. If not, it is done with the
block; otherwise, the data is copied from a CUDA device, and both host and
device entries are set to Shared. The CUDA device functions device2dist and
dist2device are very similar. Note that the distribution control data structures
always resides in host memory.

5.3 Making Use of the Type Extensions

Continuing the example of Fig. 3, a new code transformation creates the dis-
tributed variables and inserts the required conversion functions. This transfor-
mation makes the code look like in Fig. 6. With-loops now operate only on
a certain range, as the conversion functions need this information. This range
information will eventually come from the scheduler, but for now we use a place-
holder function. Note that unlike in the CUDA-only example of Fig. 2, it is now
necessary to explicitly convert bar_dist to bar_host. Also note that distributed
variables have to be initialized before the concrete arrays, so that we can update
the control structure afterwards.

...
y = foo_host [[1 ,20]] + 1;

bar_dist = initialize_dist_var(...);
range = rangeOracle();
if (cudaBranch) {

foo_cuda = dist2device(foo_dist , foo_cuda , range);
bar_cuda = with_cuda { ... | range}: modarray (foo_cuda );
bar_dist = device2dist(bar_dist , bar_cuda , range);

} else {
... /* same as above , using host code */
}

bar_host = dist2host(bar_dist , bar_host , [1 ,2]);
bar_host [[1 ,2]] = 10;
bar_dist = host2dist(bar_dist , bar_host , [1 ,2]);
...

Fig. 6. Excerpt of the SaC code from Fig. 3 after insertion of distributed variables
and primitive conversion functions

6 Code Generation

During code generation both with-loop versions and the corresponding type con-
versions must be integrated with the multicore parallel sections and scheduler.
Our approach is to create a parallel section around the conditionals with both
with-loop code variants, rather than single with-loops. The predicate becomes a
check for a specific kind of threads, which either launch CUDA kernel or execute
sections of a with-loop directly on the host.

Continuing the example from Fig. 6, the above transformation yields the code
in Fig. 7. For brevity, we again only consider the bar with-loop; effects on the
foo with-loop are very similar. First, in the master thread, we start a parallel
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section, so that the worker threads wake up and run the worker function. We
pass the function and its arguments through the task frame to the worker threads
before the master thread joins parallel execution as worker #0.

...
y = foo_host [[1 ,20]] + 1;

bar_dist = initialize_dist_var(...);
_start_parallel_section(&_spmd_bar , bar_dist , foo_dist , foo_cuda , foo_host );
_spmd_bar(0, bar_dist , foo_dist , foo_cuda , foo_host );

bar = dist2host(bar_dist , bar_host , [1 ,2]);
...

void _spmd_bar( thread_id , bar_dist , foo_dist , foo_cuda , foo_host )
{

if( _isCUDAthread( thread_id) ) {
do {

range , continue = _getSubset( thread_id , ...);

foo_cuda = dist2device(foo_dist , foo_cuda , range);
bar_cuda = with_cuda {... | range }:modarray (foo_cuda );
bar_dist = device2dist(bar_dist , bar_cuda , range);

} while (continue );
} else {

do {
range , continue = _getSubset( thread_id , ...);

foo_host = dist2device(foo_dist , foo_host , range);
bar_host = with_host {... | range }:modarray (foo_host );
bar_dist = device2dist(bar_dist , bar_host , range);

} while (continue );
}

_sync_barrier( thread_id)
}

Fig. 7. The bar with-loop of Fig. 6, after creating worker thread functions: original
with-loop context (top) and lifted SPMD-style worker function (bottom)

In the parallel section we have the conditional with the two with-loop vari-
ants. Both branches are very similar, the only differences are that one uses the
CUDA conversion functions and the CUDA with-loop code while the other uses
the host conversion functions and the multicore with-loop code. The predicate
_isCUDAthread uses the thread id to choose the correct branch for each thread.

All threads then enter a loop. Each thread obtains some subset of the elements
to compute from the scheduler (represented here as the _getSubset() function).
The next step is converting the with-loop dependencies from a distributed type
to the appropriate concrete type. We do not convert the whole array though,
only the parts we need for computing the specific iteration space the scheduler
assigned to this thread. The conversion functions will take care of copying any
required missing data from the assigned area. Then, we can perform the com-
putation on this partial concrete array, generating a partial concrete result. The
last step in the loop is to update the distributed variable. As long as there are
sections of the array to compute, the scheduler sets the output flag continue
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to true, so threads will continue to query the scheduler for a new subset of the
array to compute. Once the whole array has been assigned, threads will start to
exit the loop and hit a synchronization barrier (_sync_barrier()). When all
threads are done, the program resumes sequential execution.

7 Preliminary Results

7.1 Benchmark Code

To test the viability of the system described in the previous section, we decided
to implement it manually based on a relatively simple but nonetheless represen-
tative program. We chose a prototypic stencil computation where over a number
of iterations each element in a matrix is set to the arithmetic mean of its four di-
rect neighbours in the previous iteration. There are many ways to write this code
in SaC (for examples see [18]), but in one way or another high-level program
transformations lead to code similar to the program fragment in Fig. 8. Note
that even though the computation itself is rather simple, communication and
synchronization are inevitable between iterations of the for-loop, which makes
this a clearly non-trivial scenario.

for (k=0; k<LOOP; k++) {
A = with {

( . < x < . ) : 0.25f*( A[x+[1 ,0]] +A[x-[1 ,0]] +A[x+[0 ,1]] +A[x-[0,1]]);
} : modarray ( A );

}

Fig. 8. Computational kernel of 2-d convolution example

We compiled this program with both the multicore and the CUDA backend to
obtain original intermediate C codes. We then manually combined these codes
implementing the concepts presented so far. Instead of fully dynamic scheduling,
however, we divided arrays statically into two parts: one part is divided equally
among the CPU cores, the other among the GPUs. Nonetheless, locations of
array slices are indeed tracked “dynamically”, following the scheme presented
in Section 5. The distributed memory control structure is consulted on every
iteration, even though the mapping remains the same throughout execution.

7.2 Experiment 1: Host Plus 2 GPUs

We use the Distributed ASCI Supercomputer (DAS-4) [24] for evaluation. Our
first experiment runs on a dual hexa-core 2.67 GHz Intel Xeon node equipped
with two NVidia GTX480 GPUs. We run our benchmark for 2000 iterations on
a double precision floating point matrix of 9000x9000 elements with different
SaC backends: sequential, multicore, CUDA and our proposed hybrid scheme.
We use gcc with optimization level -O3 as binary code generator and report the
shortest time out of 3 runs. We experiment with different work division schemes
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Fig. 9. Comparison of the runtimes between different work division percentages; results
for the CUDA and multicore backends are shown as vertical lines

and compare the performance we achieve using the hybrid scheme with that of
the existing CUDA and multicore backends. Results are shown in Fig. 9.

In Fig. 9, we see that while the CUDA backend provides a reasonable speedup
of about 12, the multicore backend performs very poorly, with a speedup of just
over 3 for 12 threads. The bottleneck is most likely the host memory system.
There is so little computing that much CPU time is spent waiting for memory
load instructions to complete. In previous experiments we did achieve almost
linear speedups for the same kind of code on smaller matrices.

Comparing the performance of our implementation with the others, we see
that using the GPU(s) with less than 25% of the iteration space introduces so
much overhead that it is better to just use the CPUs. To actually outperform the
CUDA-only implementation, one has to use the GPU(s) for at least 80% of the
workload. Assigning the whole array to the CPUs with our implementation is
slower than the existing multicore backend. The other way around, assigning the
whole array to one GPU, achieves practically the same run time as the existing
CUDA backend. We believe this is due to the fact that the CUDA-bound threads
can perform the bookkeeping while its assigned GPU is computing the result,
thus overlapping overhead with computing. In contrast, CPU-bound threads
must do both computation and bookkeeping on the CPU.
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With one GPU, our solution achieves the best results with 15% of the workload
assigned to the host and 85% assigned to the one GPU. The added benefit from
using the CPUs is small, but still significant. Using only the two GPUs, we
practically double the performance compared with the existing CUDA backend.
The best results are achieved with 95% of the workload assigned to the GPUs
and 5% assigned to the CPUs. This, however, results in a marginal benefit only.
Although these results show that it is not worthwhile to use the CPUs when
more than one GPU is available for this particular problem, other problems,
containing sections that cannot be parallelized for the GPU, for example, can
still benefit from being able to use all the available CPU cores, rather than
running sequentially as is happening today.

7.3 Experiment 2: Up to 8 GPUs

To explore the scalability of simultaneously using multiple GPUs we run ex-
periments on another node of the DAS-4 system equipped with two quad-core
2.4 GHz Intel Xeon CPUs and 8 NVidia GTX580 GPUs. In this experiment we
increase the problem size to 10000 iterations and 13000x13000 elements. Given
the results of the first experiment we leave out the host and focus on increasing
numbers of GPUs instead.
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Fig. 10. Speedups over the CUDA backend obtained with our hybrid approach for a
varying number of GPUs, without CPU assistance

Considering the results shown in Fig. 10, we see that while using two GPUs
provides a nearly two-fold speedup, using 3 or more GPUs provides significantly
less improvements. This can be attributed to an increase in communication while
the problem size remains constant. As the iteration space is block-wise divided
between the different GPUs, two GPUs have only one communication partner
while any additional GPU has two. We try to minimize the impact of communi-
cation by not communicating redundant data. We believe it does a good job, as
the speedup obtained with 8 GPUs over the single GPU version is on par with
that obtained with the multicore version over the sequential one.
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8 Related Work

We are not aware of other functional approaches to programming heterogeneous
systems such as the one we presented in this paper. Recent projects such as
Accelerate [25] for Haskell or Microsoft’s Accelerator for F# [26] facilitate using
one GPU, but lack support for using the CPU simultaneously or for multiple
GPUs. This work also differs from our’s in general spirit: while Accelerate offers
a form of high-level CUDA programming with skeletons in Haskell, with SaC
we strive for a completely compiler-directed solution.

On the imperative programming side, a number of heterogeneous computing
environments have recently been developed. The approach has mostly been to
define and implement APIs. One such heterogeneous environment is Qilin[27].
Qilin is built on top of the Intel Threading Building Blocks (TBB) and the Nvidia
CUDA libraries to support both multicore CPUs and Nvidia GPUs. Compilation
is done dynamically, Qilin generates the machine code at runtime using static
scheduling of operations between the CPU and GPU. This static scheduling
however is adaptive. The Qilin system keeps track of operation runtimes in a
database, and uses this information to generate a better static schedule on each
program run. Qilin was shown to adapt well to varying input sizes, but the
amount of offline training required is unclear.

StarPU[22, 28] defines codelets as non-preemptible offloadable tasks. Program-
mers must provide the corresponding kernel functions themselves though. They
also have to specify the data dependencies of the codelets, which then allows
the StarPU runtime system to efficiently schedule tasks to each of the available
computation resources. The runtime system also provides a data management
facility. Data is divided into disjoint subsets using filters, which can be applied
recursively. Memory consistency uses a write-back model and a directory-based
protocol so that each piece of data has a state associated with it: modified,
shared, or invalid. Additionally, it is possible to define custom schedulers and
codelet drivers for different architectures. With our work in SaC, we intend to in-
troduce a similar system, yet simpler. One significant difference is that we intend
to make existing SaC code readily able to make use of heterogeneous computing
environments. Specifically, we do not want the programmer to specify codelets
or data dependencies, rather should the SaC-compiler infer them automatically.

Song et al. [29] developed a new methodology for matrix computations using
multi-core CPUs and multiple GPUs. In this work, a new tiling algorithm is
introduced as well as corresponding partition and load balancing schemes. From
a SaC perspective, the tiling schemes of Song et al. are rather specific, and out
of scope of current research. The work on minimizing communication would be
interesting to apply on a SaC scheduler, however.

Ravi et al. [13] describe a heterogeneous computing system for map-reduce
applications. Programmers only need to annotate the reduction processing struc-
ture, the compiler then generates code for multi-core CPUs and GPUs. At run-
time, the work is distributed dynamically. Support for reduction operations is
an integral part of SaC. Some results from their scheduling scheme may prove
useful for further work in a SaC scheduler.
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9 Conclusion

Nowadays, a typical computer contains at least one multicore CPU and one
GPU. Together these resources provide significant computing power, but their
heterogeneity requires a heroic programming effort to effectively harness it. In
this paper we presented compiler and runtime systems extensions for SaC to
effectively exploit heterogeneous hardware resources by concerting the existing
separate compilation paths for multicore CPUs and single GPUs and adding
support for arrays dynamically distributed across multiple memories. Thus, we
create support for systems with multiple multicore CPUs and multiple GPUs
without requiring programmers to explicitly code for such systems. Preliminary
experiments based on a hand-coded prototype show encouraging results.

We are currently implementing the proposed techniques in the SaC-compiler.
Once completed, we will investigate a larger range of existing SaC benchmarks
and applications. Future work beyond this will be in two directions. Firstly, we
aim at completing fully dynamic scheduling between CPU and GPUs. Secondly,
we would like to generalize the proposed techniques from host/device memo-
ries to network-connected cluster nodes, potentially each equipped with GPU
accelerators.
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Abstract. Erlang is a functional language that allows programmers to employ
shared nothing processes and asynchronous message passing for parts of applica-
tions which can naturally execute concurrently. This paper reports on a non-trivial
effort to use these concurrency features to parallelize a widely used application
written in Erlang. More specifically, we present how Dialyzer, consisting of about
30,000 lines of quite complex and sequential Erlang code, has been parallelized
using the language primitives and report on the challenges that were involved and
lessons learned from engaging in this feat. In addition, we evaluate the perfor-
mance improvements that were achieved on a variety of modern hardware. On
a 32-core AMD “Bulldozer” machine, the parallel version of Dialyzer can now
complete the analysis of Erlang/OTP’s code base, consisting of about two million
lines of Erlang code, in about six minutes compared to more than one hour twenty
minutes that the sequential version (still) requires.

1 Introduction
In recent years more and more developers realize that the use of functional languages
allows for faster development, both during rapid prototyping and for deployment. Code
written in such languages is usually more succinct and can be organized and maintained
more easily than in imperative languages. The productivity of developers is therefore
enhanced and applications are also easier to maintain. On the other hand, the major ar-
guments against using functional languages focus on performance compared with im-
perative code. No matter how many optimizations the compiler implements, no matter
how the runtime system is structured, imperative programs are, in most cases, faster.

In the modern multicore architectures, however, functional languages found an unex-
pected ally. As developers need to take advantage of the multiple processors to improve
the performance of their applications, techniques for parallelization came into the pic-
ture. Code can be parallelized more easily if written in languages with characteristics
similar to those of functional languages. Function purity, for example, can ensure that if
we need to apply the same function on different data we can simply allocate each com-
putation on a different process and then collect the results. Process creation however, is
in itself not a pure operation and requires some special constructs in the language.

In Erlang one can simply use the spawn primitive with a function closure as its ar-
gument to have a new process that will evaluate the closure on the first free scheduler
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of the runtime system1. Together with the send and receive operations for message
passing, this can lead to very simple and efficient parallelization, either when develop-
ing an application from scratch or when modifying an existing one. Nevertheless, very
few attempts have been made to parallelize existing applications in Erlang.

In this paper we present our experiences from such an attempt, focusing on how
using Erlang made this effort easier in some cases and trickier in others. We also iden-
tify parallelization approaches that perform well on the main implementation on Erlang
(the Erlang/OTP distribution). Finally, given that the application we are parallelizing
(Dialyzer) is a tool that is widely used by the Erlang community, we measure the per-
formance improvements we obtained on real use cases.

In the next section we describe briefly the features of Erlang that are relevant to this
paper followed by a description of Dialyzer in Section 3. In Sections 4–6 we describe
the main design decisions we took, explaining why they were preferred over alterna-
tives, evaluating them and comparing them with relevant previous work. We end with a
performance evaluation section, followed by a section with concluding remarks.

2 Erlang: A Concurrent Functional Language

Erlang is a strict, dynamically typed functional programming language with support for
concurrency, communication, distribution, fault-tolerance, on-the-fly code reloading,
automatic memory management and support for multiple platforms [1]. Its main imple-
mentation, the Erlang/OTP (Open Telecom Platform) system, is open source and used
by companies around the world to develop software for large commercial applications.
Erlang/OTP is a set of libraries and design principles providing middleware to develop
systems in Erlang. Nowadays, Erlang applications are significant both in number and
in code size, making Erlang one of the most industrially relevant functional languages.
Dialyzer analyzes Erlang code and the parallel version uses some of the language’s
main features; some familiarity with them is thus required to follow this paper.

Erlang code is organized in modules that export some of their functions and keep
others private. Each source file defines a single module. Functions in a module may
call local functions of the same module and functions from other modules only when
these are exported. In Fig. 1 we show part of the callgraph that is formed by the func-
tions in the lists module. In the graph, functions that have mutual calls to each other
form strongly connected components (SCCs), that have been grouped in one node. The
highlighted SCCs contain functions that are exported.

Erlang functions can create new processes using the built-in function spawn, which
accepts a function as an argument (this will be the function that the created process
will evaluate). The return value of spawn is the process identifier (PID) of the newly
spawned process. Processes can use these PIDs to send messages to each other. Message
passing is asynchronous and a call to the send operation returns immediately. Processes
can receive messages using a receive statement, which has a structure identical to that
of a case statement: it blocks until the process mailbox has messages and then uses
pattern matching to selectively remove one of them and continue execution.

1 Erlang’s runtime system uses threads from the operating system to run a number of schedulers,
which manage Erlang’s processes as green threads that do not share state.
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[{lists,max,1}]

[{lists ,max,2}]

[{l is ts ,merge,1}]
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[{l is ts ,merge,2}]
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[{lists,split_1_1,6},{lists,split_1,5}] [{lists,split_2_1,6},{lists,split_2,5}]

Fig. 1. Part of the callgraph of the lists module

1 parent() ->

2 ParentPID = self(),

3 ChildPid = spawn(fun() -> child(ParentPID) end),

4 receive {ChildPid, Result} -> Result end.

5

6 child(ParentPID) ->

7 ParentPID ! {self(), do_something()}.

Listing 1. Trivial code illustrating Erlang’s concurrency primitives

An example is given in Listing 1, where an Erlang process executing the parent

function spawns a new process that will evaluate the child function and send a mes-
sage to the waiting parent process. The built-in function self is used to get the PID
of the process evaluating it. This is the simplest form of process interaction. In Erlang,
processes may also monitor other processes, associate and register a PID with a sym-
bolic atom that can then be used in the place of the PID or perform other advanced
operations which were not used in our parallelization attempt.

3 Dialyzer’s Overview

Dialyzer [6] is a static analysis tool included in the Erlang/OTP distribution since 2007.
It can detect a wide variety of discrepancies (e.g. type errors, software defects such
as exception-raising code, hidden failures, unsatisfiable conditions, redundancies such
as unreachable code, race conditions, etc.) in single modules or entire applications.
Dialyzer is totally automatic, easy to use and particularly successful in identifying soft-
ware defects which may be hidden in Erlang code, especially in program paths which
are not exercised by testing. It is widely used within the Erlang community.

In the heart of Dialyzer lies a soft typing system. Its purpose is essentially to cap-
ture the biggest set of terms for which it can be proven that type clashes will occur.
The type signatures that Dialyzer infers, called success typings [4], are the complement
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1 dialyzer(Input) ->

2 InitialState = initialize_state(Input)

3 FinalState = fixpoint(InitialState)

4 case should_generate_warnings(Input) of

5 true -> generate_warnings(FinalState)

6 false -> store_success_typings_in_plt(FinalState)

7 end.

8

9 fixpoint(State) ->

10 State1 = find_types(State),

11 State2 = refine_types(State1),

12 case are_states_equal(State, State2) of

13 true -> State2;

14 false -> fixpoint(State2)

15 end.

Listing 2. Dialyzer’s algorithm in a nutshell

of that set of terms. To infer success typings, Dialyzer uses an iterative approach con-
sisting of two separate phases: the first is based on constraint solving and the second
on dataflow analysis. In this paper we will refer to the constraint-solving phase using
a routine named find types and to the dataflow phase as refine types. Initially all func-
tions are assumed to have a success typing of (any(), any(), . . . , any()) → any(),
meaning that they accept all terms as arguments and return an arbitrary term as a result.
After the find types phase, any functions that have a tighter success typing than before,
together with any functions that call them, are given as input to the refine types phase
and vice-versa until all success typings reach a fixed point. If Dialyzer is checking for
discrepancies, it makes one last pass over the code of all modules to produce warnings.
This pass’ inner mechanics are identical to the refine types phase, only this time, instead
of merely tightening the success typings, warnings are also emitted when a discrepancy
is detected. Alternatively, Dialyzer can also save the success typings for all the exported
functions in order to use them when analyzing other code. In this case the success typ-
ings are stored in an external persistent lookup table (PLT) file. A high-level view of
the algorithm used by Dialyzer is given in Listing 2.

Within each of the find types and refine types phases the “unit of work” is the SCC.
In find types Dialyzer uses the SCCs of functions, analyzing one at a time, while in
refine types it converts those into module SCCs and analyzes all the functions in those
modules together. For simplicity, in the rest of this paper we will use the term SCC to
refer to both (function and module) cases.

A Note about Amdahl’s Law. In every parallelization attempt, the best possible result,
regardless of language and implementation, is to maximize the part of the program
which runs in parallel and thus hit the inherent speedup limit imposed by Amdahl’s Law.
Our initial goal was therefore to organize the parallel version of Dialyzer to minimize
its sequential parts and push this limit as far as possible.

In Listing 2 we see four different phases: initialize state, find types, refine types
and generate warnings. Drawing from previous experience [7] and performing
measurements of our own we found that find types is the most time consuming phase,
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followed by refine types, then generate warnings and finally initialize state (storing suc-
cess typings in the PLT has negligible cost). Not wanting to perform major changes in
the structure of the application, we decided that we will keep the synchronization points
between these distinct phases and focus on how we could parallelize their inner workings.

4 Distributing Work

We will now describe how the tasks within each phase are distributed into workers. As
an example we will try to parallelize an excerpt of the find types phase using Erlang’s
primitives. The sequential find types phase processes a list of SCCs in the way shown
in Listing 3 to find the success typings for the functions in them. For each SCC the code
of the functions is retrieved from the state and analyzed.

1 sequential_find_types(SCCs, State) ->

2 FoldFun = fun (SCC, Acc) -> find_type(SCC, Acc, State) end,

3 Results = lists:foldl(FoldFun, [], SCCs),

4 NewState = update_types(Results, State).

5

6 find_type(SCC, Acc, State) ->

7 Code = retrieve_code(SCC, State),

8 Type = analyze_code(Code, State),

9 [{SCC, Type}|Acc].

Listing 3. Sequential find types

We will initially ignore any dependencies and assume that all the elements in the
SCCs list can be analyzed at the same time. In that case, the parallelization could look
like the one shown in Listing 4, where a separate worker is used to find the success
typings of each SCC.

1 parallel_find_types(SCCs, State) ->

2 ParentPID = self(),

3 FoldFun = fun (SCC, Counter) ->

4 spawn(fun () -> find_type(SCC, ParentPID, State) end),

5 Counter + 1

6 end,

7 Workers = lists:foldl(FoldFun, 0, SCCs),

8 Results = receive_results(Workers, []),

9 NewState = update_types(Results, State).

10

11 find_type(SCC, ParentPID, State) ->

12 Code = retrieve_code(SCC, State),

13 Type = analyze_code(Code, State),

14 ParentPID ! {SCC, Type}.

15

16 receive_results(0, Acc) -> Acc;

17 receive_results(N, Acc) ->

18 receive Result -> receive_results(N-1, [Result|Acc]) end.

Listing 4. Parallel find types
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The problem with such a scheme is that each process has its own memory area in
Erlang; the heap is not shared. This design decision was made, among other reasons,
to enable independent garbage collection, allowing processes to continue their execu-
tion, while others reclaim unused memory on their heaps without “stopping the world”.
This design decision, however, implies that all data that will be used by a process
must be copied to its heap, both at process spawning (this includes all the arguments
that are being passed to the initial function) and during message passing. Therefore,
passing a large data structure as argument leads to a new copy of that structure in the
new process.

Returning to Listing 4, we can notice that in this way each worker will receive a
copy of the original State which contains the code of all the functions, as the se-
quential version of Dialyzer stores all the code in a dictionary, which is just a regular
Erlang term. There are two different approaches that can be used to fix this: the first is
to “wrap” the original dictionary in a separate process and convert the retrieve code

function to send a message with a request to that process and retrieve the code. How-
ever with many processes sending such requests at the same time, the dictionary server
process would become a bottleneck, as the requests would necessarily be serialized. Us-
ing multiple such processes would be a possible workaround, but would complicate the
dictionary’s operations (as distribution and/or replication of the keys should be taken
into account).

The second approach is to use Erlang Term Storage (ETS) tables, which are data
structures for associating keys with values, but in essence are just collections of Erlang
tuples. The most common operations they support are insertions and lookups. Their
implementation is highly efficient – they can store colossal amounts of data (if enough
memory is available) and perform lookups in constant (or in some cases logarithmic)
time. The reason behind this is that although ETS tables look as if they were imple-
mented in Erlang, they are in fact implemented in the underlying runtime system and
have different performance characteristics than ordinary Erlang objects.

When parallelism enters the picture, however, ETS tables are used for a different rea-
son: they provide shared memory. Depending on the table’s access restrictions2, many
processes may read and write on a table using a table identifier (TID), returned upon
table creation. This design does not eliminate copying though: currently when a tuple is
inserted into an ETS table, all the data structures representing the tuple are copied from
the process’ heap into the ETS table. When a lookup operation is performed on a table,
the tuples are copied back from the ETS table to the heap of the process. On the other
hand, the TID itself is small in size so each process can take it as an argument and use
it to retrieve from the table only the information that it needs.

ETS tables support special optimizations, which are enabled using a set of flags on
table creation. The flags we used for Dialyzer’s tables are the following3:

2 A table is always owned by a process and access rights might allow: only the owner to read
and write to it (private), read operations to be performed also by other processes (protected),
or both read and write operations to be performed by any process (public).

3 More details can be found in the official documentation [3].
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compressed: The table data is stored in a more compact format to consume less mem-
ory. The downside is that it will make table operations slower. Compression is a
significant feature, as it can reduce the size of data up to an order of magnitude,
depending on the size of an individual entry.

read concurrency: This option makes read operations much cheaper; especially on
multicore systems with multiple physical processors. However, switching between
read and write operations becomes more expensive.

Effect on Dialyzer. The find types phase is not the only one to use this worker-oriented
approach; workers are in fact used in all phases. During initialization, for example,
Dialyzer determines which files will be analyzed, what kind of code discrepancies the
user is interested in, whether user annotations in the source code will be taken into
account and other parameters for the analysis. The code from each file is then stored
in a codeserver, the full callgraph is generated and the contents of any existing PLT
file are loaded into the application’s working PLT (which will also be used to store the
success typings for the code under analysis). As no order needs to be preserved, we can
parallelize the initial storing of the code by letting all the files be processed in parallel.
Moreover, in the generate warnings phase (after the success typings have reached a
fixed point), we can again assign a worker to each module to find discrepancies.

The codeserver, callgraph and PLT are all the state structures that are interesting
for the parallelization and we now briefly explain their role in the application. We also
describe some conversions performed in order to make them more suitable for use in
the parallel version.

Codeserver: Dialyzer works on the Core Erlang [2] representation. During initializa-
tion, all the modules that are given as input need to be transformed into Core Erlang
and stored in a dictionary-like data structure in such a way that it is easy to retrieve
the code of either a specific function or all the functions in a module. This phase is
also referred as ‘compilation’ of the code under analysis.
The sequential version of Dialyzer implements the codeserver’s dictionary using
Erlang’s dict library [3]. As a lot of modules can be given as input to be analyzed
together, the code is stored in compressed binary format to reduce its size. The keys
of the dictionary are the module names, making the retrieval of a specific function
a two-step process: first the code of all the functions of the module that contained
the requested function is retrieved and decompressed and subsequently a traver-
sal selects the requested function. The motivation behind this organization is that
compressing larger terms yields better overall compression. (When Dialyzer was
initially developed memory consumption was a significant concern.) To improve
performance, a caching mechanism is used; all the phases that require retrieval of
code from the codeserver are organized so that they bundle together as many re-
quests for functions from a single module as possible before moving to another.
In the parallel version it makes little sense to use this caching mechanism, as we
want to be able to analyze functions from different modules at the same time. For
this reason, the organization of the dictionary was changed, making a separate entry
for each function. This makes the retrieval of a single function easy but in turn
makes the retrieval of all the functions in a module a multi-step process, as each
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function must be looked up separately. This was not a major issue, however, as the
retrieval of all the functions is used only in refine types and generate warnings.
These phases, even combined, consume significantly less time that the find types
phase which retrieves the code for specific functions each time.
Finally, as discussed in the previous section, the dict was substituted with an ETS
table. This table has both the read concurrency (as the input data can still be large
in size) and compression features enabled (as after the initial write only concurrent
read operations will be performed). In combination, the changes in the structure of
the codeserver and the conversion to ETS table showed no changes in performance
of the sequential version as the faster lookup for particular functions was countered
by the need to copy the actual code out of the ETS table.

Callgraph: Having loaded all the code to be analyzed, Dialyzer can generate the call-
graph. Erlang/OTP has libraries for working with graphs, which even provide func-
tions for condensation (to form the SCCs) and topological sorting (digraph and
digraph utils [3]). However for reasons that will become clear later we need to
be able to find the dependencies between different SCCs in a concurrent way. We
could assign the whole callgraph in a dedicated server process, but as we explained
earlier this would create a bottleneck. Instead we chose to store each SCC together
with all the SCCs that have calls to it and all SCCs that the SCC itself calls in an
ETS table, with read concurrency.

PLT: Dialyzer contains in a hard-coded library the success typings of all the Erlang
functions that are not written in Erlang but have implementations in C. However,
all other functions, including those in libraries written in Erlang and included in
Erlang/OTP, are susceptible to change and hard-coding information about them
would be problematic. Analyzing them from scratch every time an analysis on some
application code is performed would also be impractical. Instead Dialyzer uses
a Persistent Look-up Table (PLT) to store the success typings for code that has
already been analyzed.
Dialyzer has an internal PLT data structure which is initialized with the contents
of the PLT file and extended with the information that is inferred about the code
under analysis. This data structure was also a dictionary, therefore we were able to
directly convert it into an ETS table. As this PLT is used to store success typings
throughout the analysis, we did not enable the read concurrency optimization, as
reads and writes will be interleaved.

5 Coordination

The workers in the initialization and warning generation phases do not require any spe-
cial coordination, as each module is processed only once. In find types and refine types
phases, on the contrary, the order of the analysis of the SCCs is important, as it affects
the number of iterations to reach the fixed point. This imposes coordination require-
ments to the workers used in these phases which will be explained and addressed in this
section. First, however we will explain the need for a fixed point computation and the
techniques that the sequential version uses to reach the fixed point faster4.

4 More information about the algorithms used in the two analysis phases are beyond the scope
of this paper. The reader is directed to the relevant publication [6].
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5.1 Fixed Point Computation

For the first find types phase of the analysis Dialyzer has to form SCCs out of all the
functions and traverse those in reverse topological order to perform the analysis in a
bottom-up manner. In that way, functions appearing later in the order can use the re-
sults that the analysis has produced. After this first find types phase, all functions with
success typings tighter than the initial one advance to the refine types phase.

For the refine types phases Dialyzer generates a module callgraph and uses a similar
approach, with module-SCCs. Again, functions with tighter success typings, together
with any callers they have advance to another find types phase. In general, functions
that have calls to any functions that are advancing to a next phase should also advance,
as possible tighter success typings for the callees can result in tighter success typings
for the callers. This continues for as long as there exist functions that have not reached
a fixed point. Experience shows that for typical Erlang code this requires three to four
iterations. Within each find types and refine types phase the sequential analysis uses the
following algorithm:

1. From the whole callgraph, obtain the subgraph that is induced by the set of the
functions currently in our worklist.

2. If this is a refine types analysis, convert the induced callgraph into the relevant
module callgraph.

3. Condense the callgraph into SCCs.
4. Process the SCCs in reverse topological order, to make sure that SCCs with depen-

dencies are analyzed after all their dependencies have been analyzed.

5.2 Coordinating the Workers Efficiently

Step 4 in the previous list introduces a serialization which is not required. A simple
example is the case of all the functions which have no calls: all these can be analyzed
immediately in the beginning of the find types phase. In a similar way, the analysis of
a function-SCC with calls to a set of other function-SCCs can start as soon as all the
members of the set have been analyzed. The same arguments apply to module-SCCs in
the refine types phase.

In order to have many workers running in parallel, Dialyzer could use a coordinator
process that would keep track of these dependencies using a dictionary, with each key
being an SCC and the two values associated with it being the sets of all the SCCs that are
called by it and call it. Initially the coordinator process could spawn worker processes
for all the SCCs which had no calls to other SCCs. The coordinator could then wait for
all the spawned workers to finish before spawning the next “level” of SCCs without de-
pendencies. Notice however that with the callgraph being a tree-like data structure it is
expected to be narrower on the higher levels and might also be significantly imbalanced.
Therefore this approach would not perform well enough.

Instead as soon as a worker process finishes the analysis of an SCC, the coordinator
should be notified to check all the SCCs that have calls to it and remove the SCC that
was just analyzed from the respective sets. For each set that becomes empty due to this
operation, the coordinator should then immediately spawn a new worker to analyze the
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corresponding SCC. The algorithm is correct, but one can argue that in this way the
coordinator becomes a bottleneck, as the notifications will be serialized at it. Both these
coordinator-based approaches were used in a previous attempt to parallelize Dialyzer
but the performance results were unsatisfactory [7] and that code was never integrated
in Dialyzer’s code base.

With Erlang being a language that can support a significant number of concurrently
running processes, we instead opted to start by spawning all the worker processes and
have each one keep track of its own dependencies. In this scheme, each process needs
to know which processes are waiting for its results and notify them directly after it
produces them. This algorithm is summarized below:

1. The coordinator spawns all workers, storing a mapping between each SCC and the
worker process that will analyze it. This mapping, which should also be stored in
an ETS table in order to be accessible by the workers independently, will be used
to determine the workers that must be notified after a worker has finished.

2. Each worker initially checks which SCCs it is waiting for:
(a) If it has no dependencies it can start working on its own SCC.
(b) Otherwise it waits until it receives a confirmation message from each worker it

depends on.
3. After a worker has finished processing its SCC it uses the SCC-to-process mapping

to notify all the workers that are waiting for its results. It can also determine whether
any of the functions it analyzed had a different success typing, therefore needing
to be analyzed again and send this information to the coordinator, which is also
keeping track of the workers that have not yet finished.

The initial memory requirements of each worker must be small, as Dialyzer might
spawn lots of them (in the order of thousands) in the beginning. However, Erlang/OTP’s
runtime system creates processes with very small initial memory requirements. For our
particular use, each worker initially needs to have the description of the SCC it will
analyze, the PID of the coordinator in order to report back the functions that need to
advance to a next phase and some way to access information in the callgraph, codeserver
and PLT. From the callgraph it figures whether it needs to wait for other workers to
finish and when all its dependencies have been satisfied it uses the codeserver and PLT
to perform its analysis.

Were we to keep the original dict-based representations of the callgraph, code-
server and PLT we would have to send a copy of each to every worker and therefore
immediately run out of memory. However, as we described in Section 4, the compact
representation of ETS tables keeps these initial memory requirements minimal.

Notice that workers do not have to lookup the PIDs of the workers they are waiting
for, as we can allow them to accept any incoming message labeled with the SCC or
module of a worker they are waiting for. This can be simplified even further by having
the worker just wait for a specific number of “done” messages, each sent by one of the
workers that are responsible for one of their dependencies. Information about success
typings is exchanged only via the PLT (so each worker will write the new success
typings in the PLT before notifying that it has finished).

Another detail concerns the order of spawning. In the sequential version of Dialyzer,
SCCs or modules are processed in the reverse topological order produced by the
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condensed callgraph. For the parallel version we instead need to spawn the modules
in the normal topological order, to ensure that each SCC has a registered PID at the
time when another wants to notify it that it has finished. Experimental measurements
showed, however, that the condensation function provided by the library consumes a
significant amount of time in cases where the callgraph has nodes with many dependen-
cies. A simpler data structure was therefore used to keep the dependencies and Dialyzer
spawns the workers in a random order as it can no longer use the topological ordering
function. Should the lookup for a particular SCC yield no result (as the coordinator has
not yet spawned or registered it in the publicly accessible data structure) the worker that
has to notify it will try again after a short pause.

Finally, as the main process of Dialyzer cannot continue until all the workers have
finished, it can play the role of the coordinator, spawning all the workers and waiting for
them to finish. A simple counter is sufficient to know if there are still workers running.
After finishing, each worker can directly report which functions did not reach a fixed
point to prepare the next phase.

6 Fine Tuning the Parallelization

In this section we describe some more advanced issues that we encountered during the
parallelization of Dialyzer. Nevertheless, the conclusions apply to any parallel applica-
tion that uses many workers.

6.1 Granularity of Parallelization: Big SCCs

The previous parallelization attempt [7] had already identified that the parallelization
might be too coarse grained to allow for maximum benefits. This is particularly evident
in the case of modules containing automatically generated code. Such code forms SCCs
consisting of hundreds of functions and the solving algorithm is slow in such cases as a
local fixed point is sought for all the functions of the SCC. We were able to detect this
as an issue by noticing that sometimes during find types, Dialyzer had just one active
worker before resuming with many workers again. For that reason, we decided to split
such big SCCs into child workers, each taking a portion of the original SCC’s functions
and exchanging information on those through the use of a local PLT. Experimentation
showed that a threshold of 40 functions before splitting an SCC gave the best results.

6.2 Throttling the Number of Active Workers

For the phases of compilation and warning generation the tasks performed in parallel
do not have any dependencies and could all be allowed to run simultaneously. This
unregulated approach, however, showed reduced performance.

– Compilation: During compilation we have a lot of I/O requests for the filesystem
in order to load the code that will be analyzed. At the same time, each compila-
tion worker writes information to the codeserver and the callgraph. This write con-
tention on the shared data structures and read contention on the filesystem degrades
performance.
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– Warning collection: In the warnings pass we have the same data requests as we
had during refine types analysis, meaning that we need all the code in each module
as well as the success typings of local and external functions. This causes read
contention on all the shared data structures.

To amend this reduced performance, a simple ticket-based throttling mechanism was
introduced. When each worker process is spawned, it immediately blocks on a receive
statement, waiting for an activation message. The coordinator starts with an initial num-
ber of “tickets” and as long as these are not exhausted, after spawning each job it sends
an activation message to it. After the tickets are exhausted it keeps the rest of the job
PIDs in a queue and activates the next one every time another has finished. In both cases
the ticket mechanism reduced the simultaneous access requests on the data structures
and improved performance. This encouraged us to try the same regulation mechanism
on the other two phases as well. The only difference was that these workers should wait
until all the dependencies have been satisfied before asking for “permission to run”.

Experimenting with the initial number of tickets we found that the best choice was
to have as many tickets as the number of logical cores on the running platform. This
leads to a number of active workers equal to the number of schedulers of the system.5

In this scheme, the scheduling component is able to handle the big number of inactive
processes efficiently. Moreover, having only as many workers as schedulers running
would ensure that each worker finishes its work completely. Without the regulation,
the Erlang/OTP runtime system switches out active workers before they finish, lead-
ing to many partially-finished workers that reserve memory space for their heaps. This
increases memory consumption and degrades performance. More importantly, it runs
the risk that, on machines with little memory, the analysis would fail due to excessive
amount of simultaneously used memory.

6.3 Idle Workers: Data Prefetching

As we described in Section 5 both the find types and refine types analyses are implic-
itly regulated by the callgraph dependencies. However not all the information that the
analysis requires depends on the constraints imposed by the callgraph. The informa-
tion coming from the codeserver (source code and user specifications) can be retrieved,
processed and be ready when the PLT-related dependencies have been fulfilled.

We therefore tried to implement a prefetching mechanism which retrieves this in-
formation for any worker that waits for just one more SCC, as it would be “imminent
to run”. This did not work well in practice, as the retrieval and preprocessing requires
only little time compared with the generation and solving of constraints (which re-
quires the success typings of any dependencies). Moreover, workers waiting for their
final dependency now consume more memory while being idle, as their heaps contain
the preprocessed information. This can lead to a big number of processes which are
parts of a simply linked chain to retrieve data and keep them for an indefinite amount
of time, reducing the memory available to the rest of the system.

5 If one excludes the coordinator and a few processes supporting the runtime system.
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More elaborate schemes could potentially work, but they would need either to in-
crease the amount of work done before the dependencies need to be satisfied or to
predict better when the prefetching can happen without delays before the data is used.

7 Evaluation

7.1 Impact on the Code

Dialyzer consists of about 19,000 lines of code plus another 9,500 lines shared with the
HiPE compiler [5], the latter containing the hard-coded type information for Erlang’s
built-ins (5,000 lines) and the functions that are used to manipulate the type represen-
tations (4,500 lines). A plain diffstat of our patches for the parallel version reports that
1,800 lines were inserted and another 1,000 lines deleted. The total number of code
changes is therefore in the order of 10%. The bulk of the changes was on the files con-
taining the representation and interfaces of the codeserver, callgraph and PLT, which
were converted to ETS tables.

7.2 Benchmarks

In order to evaluate the parallelization, we used two benchmarks which correspond to
the most typical use cases of Dialyzer. These are building a PLT with the Erlang/OTP
distribution and analysis of a big application. We run the benchmarks on two differ-
ent platforms: the first one is a desktop with an i7-2600 CPU (3.40 GHz) and 16GB
of RAM running Debian Linux 2.6.32-5-amd64 (a total of eight logical cores but only
four physical). The second is a server with two AMD Opteron(TM) 6274 CPUs (2.20
GHz) and 128GB of RAM running Scientific Linux 2.6.32-220-x86 64 (a total of 32
cores). In the diagrams we have omitted the sequential phases of the computation (e.g.
the condensation of the callgraph before each find types and refine types phase).

As mentioned in Section 4, the changes in the tool’s core data structures (especially
the codeserver) were applied before attempting any parallelization, with no observable
differences in performance. Together with the fine-tuning that was described in Sec-
tion 6, the overall effect was a final parallel version which had the same performance as
the old sequential version if only one core was used. This enables us to use the parallel
version running on just one core as the baseline for our comparisons.

Building a Standard PLT. As explained in Section 4, creating a PLT is a necessary first
step before using Dialyzer. The contents of the PLT, however, depend on the particular
application that we want to analyze. Key Erlang/OTP applications like erts, kernel
and stdlib are used in almost all applications, while others are not so common. To
benchmark the benefits of parallelization in the generation of a PLT, we picked the
most common Erlang/OTP applications6. This benchmark does not include a warnings
pass, as no warnings are reported when generating a PLT. The results are shown in
Fig. 2 and 3. Dialyzer requires three rounds of find types and refine types to reach a
fixed point for these applications.

6 Applications included: asn1 edoc erts compiler crypto dialyzer inets hipe gs

kernel mnesia public key runtime tools ssl stdlib syntax tools wx xmerl
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Analysis of the Whole Erlang/OTP. The second benchmark is the analysis of all ap-
plications that are included in the Erlang/OTP R15B01 distribution. These applications
have a big diversity, including long chains of dependencies both in function-SCC and
module levels, small and big function SCCs, hand-written and automatically generated
code, as well as a significant use of all the language’s features. The results are shown
in Table 1 and Fig. 4, 5, 6 and 7. Dialyzer requires five rounds of find types and re-
fine types to reach the fixed point, but we are only showing the three of them as the last
two include very few SCCs and the amount of work does not allow for any speedups.
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Table 1. Comparing the duration of each phase while Dialyzing OTP, 1 vs. 32 cores

1-core
compile : 114.67s
prepare : 4.83s
order : 11.16s
find_types 1 : 1408.07s
order : 9.93s
refine_types 1: 240.22s
order : 15.14s
find_types 2 : 2443.59s
order : 6.35s
refine_types 2: 247.81s
order : 0.28s
find_types 3 : 95.45s
order : 0.12s
refine_types 3: 28.99s
[round 4 & 5] : < 0.50s
warning : 308.26s

done in 82m29.87s

32-cores
compile : 23.41s
prepare : 5.59s
order : 11.47s
find_types 1 : 78.61s
order : 8.86s
refine_types 1: 22.39s
order : 15.23s
find_types 2 : 110.74s
order : 5.81s
refine_types 2: 21.09s
order : 0.27s
find_types 3 : 15.38s
order : 0.11s
refine_types 3: 3.15s
[round 4 & 5] : < 0.50s
warning : 23.58s

done in 6m0.80s

( 1493 modules)

(97347 SCCs)

( 1493 modules)

(80323 SCCs)

( 1414 modules)

( 2429 SCCs)

( 203 modules)

( 1493 modules)

7.3 Evaluation of the Results

It is easy to observe that the parallelization results vary both between the different
phases as well as between the different platforms. For example, the i7-based machine
shows linear speedups up to the amount of physical cores and reduced speedups from
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that point on, which is a typical observation. This is not observed on the 32-core archi-
tecture, where all cores are physical. Comparing how these two particular architectures
perform, however, is beyond the scope of this paper. The point we wish to make by their
choice is that our implementation both has benefits for a user of the tool with a desktop
machine, while at the same time being interesting from an scientific point of view as a
study of the capabilities of Erlang in parallel programming.

The differences between the phases are more interesting and we will comment on
them using Fig. 6 and 7 as a reference. It is evident that different phases have different
speedups but the best overall speedup is about 12 times and is reached at 20 cores. The
overall implementation clearly outperforms the one in previous work [7], which peaked
at a speedup of around 2.5 times on four cores and remained stable up to sixteen cores.

The parallelization of the find types phase has the best results, getting more and
more speedup with the addition of every single core up to 32. For the analysis of the
OTP function SCCs the first find types pass has 97,347 workers, the second 80,323, the
third 2,429 and the fourth and fifth (which are included in the table only) seven and five
workers respectively. The reason why the second find types pass takes more time than
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the first is that even though fewer workers are running, the information about the func-
tions is more rich (due to the intermediate refine types pass) and therefore the analysis
has more work to do. This work however is spread among the workers and a greater
speedup is achieved as the proportional cost from initialization and communication is
smaller. The third find types pass shows reduced speedup as only few SCCs have not
reached a fixed point after the second refine types pass.

The refine types passes have fewer workers: 1,493 for the first pass, 1,414 for the
second and 203 for the third (in the fourth and fifth pass only two modules have not
reached a fixed point). This explains the overall smaller speedups. The performance
of the warning-collection pass is similar, as its algorithm is similar to that of the re-
fine types pass.

Finally, the phase that has the worst scalability is the compilation. Here, however,
we are bound by the hardware limits on the filesystem and we cannot expect significant
speedups. It is fortunate that this phase consumes only a small part of the total time.

8 Concluding Remarks

We presented our efforts to parallelize Dialyzer using Erlang’s concurrency primitives.
We believe that the techniques we used can be applied to other parallel applications,
both when developing from scratch and when evolving them from their sequential coun-
terparts. In particular, we have demonstrated how the Erlang/OTP implementation can
efficiently support thousands of processes running concurrently, sharing data via ETS
tables and communicating freely with each other for coordination purposes, possibly
with some throttling. The final parallel version of Dialyzer has already been included
in the R15B02 release of Erlang/OTP.
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