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Abstract. Three key requirements of realistic characters or agents in virtual
world can be identified as autonomy, interactivity, and personification. Working
towards these challenges, this paper proposes a brain inspired agent architecture
that integrates goal-directed autonomy, natural language interaction and human-
like personification. Based on self-organizing neural models, the agent architec-
ture maintains explicit mental representation of desires, intention, personalities,
self-awareness, situation awareness and user awareness. Autonomous behaviors
are generated via evaluating the current situation with active goals and learning
the most appropriate social or goal-directed rule from the available knowledge,
in accordance with the personality of each individual agent. We have built and
deployed realistic agents in an interactive 3D virtual environment. Through an
empirical user study, the results show that the agents are able to exhibit realistic
human-like behavior, in terms of actions and interaction with the users, and are
able to improve user experience in virtual environment.

Keywords: Cognitive models, Virtual agents, Self-Organizing neural networks,
Autonomy, Personality, Interactivity.

1 Introduction

Three key requirements of realistic characters or agents in virtual world can be identified
as autonomy, interactivity, and personification [8]. However, most virtual worlds tend
to constrain agents’ actions to a very coarse level, dictated by hard coded rules [18,10].
In recent years, there has been growing interest in creating intelligent agents in virtual
worlds that do not follow fixed scripts predefined by the developers, but instead react
accordingly to actions performed by the players during their interaction. In order to
achieve this objective, there have been approaches attempting to model the dynamic
environments and user’s immediate context [28,5,7]. However, they typically ignore a
significant component of making the virtual world experience more intense and per-
sonalized for players, namely the capability for the agents to adapt over time to the
environment and to the habits as well as eccentricity of a particular player.

Indeed, it has been a great challenge to develop intelligent learning agents that are
able to adapt in real time and improve the interactivity and playability in virtual worlds.
Learning in a virtual world, just like in the real world, poses many challenges for an
agent, not addressed by traditional machine learning algorithms. In particular, learning
in virtual world is typically unsupervised, without an explicit teacher to guide the agent
in learning. Furthermore, it requires an interplay of a myriad of learning paradigms.
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In this paper, we present a self-organizing neural model, named FALCON-X (Fusion
Architecture for Learning and Cognition - eXtension), for creating intelligent learning
agents in virtual worlds. By incorporating FALCON-X, an agent is able to learn from
sensory and evaluative feedback signals received from the virtual environment. In this
way, the agent needs neither an explicit teacher nor a perfect model to learn from.
Performing reinforcement learning in real time, it is also able to adapt itself to the
variations in the virtual environment and changes in the user behavior patterns.

The FALCON-X model is proposed based on an integration of the Adaptive Control
of Thought (ACT-R) architecture [1] and the fusion Adaptive Resonance Theory (fusion
ART) neural model [23]. Fusion ART is a generalization of self-organizing neural mod-
els known as Adaptive Resonance Theory (ART) [4]. By expanding the original ART
model consisting of a single pattern field into a multi-channel architecture, fusion ART
unifies a number of network designs supporting a myriad of learning paradigms, in-
cluding unsupervised learning, supervised learning and reinforcement learning. A spe-
cific instantiation of fusion ART known as Temporal Difference-Fusion Architecture
for Learning and Cognition (TD-FALCON) has shown to have competitive learning ca-
pabilities, compared with gradient descent based reinforcement learning systems [24].
While retaining the structure of the visual, manual, intentional and declarative modules
of ACT-R, FALCON-X replaces the symbolic production system with a fusion ART
neural network serving as the core inference area for fusing and updating the pattern
activities in the four memory buffers. In addition, a critic channel is incorporated to
regulate the attentional and learning processes of the core inference area.

FALCON-X may potentially be used to model a wide range of cognitive processes.
In this paper, we describe how behavior models can be learned as sensory-motor map-
pings through reinforcement learning. We have developed learning personal agents us-
ing FALCON-X in a 3D virtual world called Co-Space. In this application, the learning
personal agents are designed to befriend human users and proactively offer personal-
ized services. Our experiments show that the agents are able to learn player models that
evolve and adapt with player during run time. More importantly, the user study shows
that the use of intelligent agents can improve user experience in the virtual world.

The rest of this paper is organized as follows: After a brief review of related work
in section 2, we present the FALCON-X architecture in section 3. Section 4 describes
the generic FALCON-X dynamics, followed by how it may be used to learn procedural
knowledge and behaviour model in section 5. Section 6 presents the embodiment of
FALCON-X in an integrated agent architecture. The evaluative experiments on the Co-
Space simulated domain is reported in section 7. The final section concludes with a
highlight of our future direction.

2 Related Work

2.1 Intelligent Virtual Agents

Intelligent agents have been popularly used for improving the interactivity and playabil-
ity of virtual environment and games. However, most such agents are based on scripts
or predefined rules. For example, in the Virtual Theater project, synthetic actors who
portray fictive characters are provided by improvising their behaviors. The agents are
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based on a scripted social-psychological model which can define personality traits that
depend on the values of moods and attitudes [18]. Agents in Metaverse, which was built
using Active Worlds, are capable of taking tickets for rides, acting as shopkeepers or
other tasks typically associated with humans. However, these agents are basically reac-
tive agents which work in a hard-wired stimulus-response manner. Virtual psychothera-
pist ELIZA [26], although not even trying to understand its ’patients’, often managed to
make them feel taken care of, thus demonstrating the effects achievable with rule-based,
adeptly modelled small talk. A conversational virtual agents Max has been developed
as a guide to the HNF computer museum, where he interacts with visitors and provides
them with information daily [10]. However, the design remains rule-based.

In view of the limitations of static agents, some researchers have adopted learning
methods into agents in virtual environment. For example, Yoon et.al. present a Crea-
ture Kernel framework to build interactive synthetic characters in the project Sydney
K9.0 [28]. Their agents can reflect the characters’ past experience and allow individ-
ual personalization. But all the capabilities of the agents rely on past knowledge and
couldn’t adapt to user gradually during run time. To name the most elaborated one, AL-
ICE [25] utilizes a knowledge base containing 40000 input response rules concerning
general categories, augmented with knowledge modules for special domains like Ar-
tificial Intelligence. This approach has also been employed in other domains, e.g., to
simulate co-present agents in a virtual gallery [5]. More recently, an embodied conver-
sational agent that serves as a virtual tour guide in Second Life has been implemented
by Jan [7]. Although it learns from past experience, it does not adapt over time accord-
ing to the habits of a particular player or the changes in the environment.

All the work described above have developed a wide range of agents in virtual world
with specific motivations. However, to the best of our knowledge, there have been very
few, if any, agents that perform reinforcement learning in real time and can adapt their
actions and behaviour during their interaction with the user and environment in virtual
world. Our work is motivated by these considerations.

2.2 Cognitive Models

In the fields of artificial intelligence and cognitive science, there has been a debate
over symbolic and sub-symbolic (connectionist) representation of human cognition [9],
motivating two parallel streams of research directions. The symbolic field holds the
view that, the human cognitive system uses symbols as a representation of knowledge
and intelligence is through the processing of symbols and their respective constituents.
Soar [11], ACT-R [1], and ICARUS [12], for example, are representative systems taking
the symbolic approach.

On the other hand, the sub-symbolic camp argues that the human cognitive sys-
tem uses a distributed representation of knowledge and is capable of processing this
distributed representation of knowledge in a complex and meaningful way [6]. Sub-
symbolic or connectionist systems are most generally associated with the metaphor of
neural models, composing of neural circuits that operate in parallel. The key strengths
of sub-symbolic systems lie in their learning abilities and allowance for massively par-
allel processing.



32 Y. Kang and A.-H. Tan

Environment

Perceptual module

Perceptual buffer

Motor module
(Motor/Cerebellum)

Motor buffer
(Motor)

Goal buffer 
(DLPFC)

Intentional module

Conceptual buffer
(VLPFC)

Declarative module
(Temporal/Hippocampus)

Critic
(Dopamine)

Core Inference Area

(Basal Ganglia)

Cognitive field

Stimuli activation 
(Striatum)

Selection 
(GP/STN/SNr)

Relay (Thalamus)

Fig. 1. The FALCON-X architecture

In view of their complementary strengths, there have been great interests in hy-
brid architectures that integrate high level symbolic systems with sub-symbolic mas-
sively parallel processes. Some examples are CLARION [20] and ACT-R with sequence
learning [13]. Among the hybrid systems, temporal difference learning using gradient
descent based function approximator has been commonly used. However, gradient de-
scent methods typically learn by making small error corrections iteratively. In addi-
tion, instability may arise as learning of new patterns may erode the previously learned
knowledge.

3 The FALCON-X Architecture

The FALCON-X architecture is presented herein, based on an integration of the ACT-R
cognitive architecture and the fusion ART neural model (Figure 1). While retaining the
structure of the visual, manual, intentional and declarative modules of ACT-R as the pe-
ripheral memory modules, the proposed architecture replaces the symbolic production
system with a fusion ART neural network serving as the core inference area for fusing
and regulating the pattern activities in the four memory buffers. Furthermore, the visual
and manual modules are renamed as the perceptual and motor modules respectively, for
the purpose of generality. As a key departure from ACT-R, an explicit critic module is
also incorporated, which provides reward signals to the core inference area.

The roles and functions of the various peripheral modules are briefly elaborated as
follows.
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– The Perceptual Module receives input signals from the external environment. In
actual applications, some preprocessing of the input signals may be necessary. The
input signals are typically represented as a set of vectors of values in the perceptual
buffer, taken from the sensors.

– The Motor Module receives and executes the actions, produced by a readout ac-
tion from the core inference area. The actions are typically represented as a set
of discrete values in the motor buffer, each of which denotes one of the possible
actions.

– The Intentional Module consists of the task-relevant goals serving as the context.
Each goal is represented as a target state vector in the goal buffer, representing the
active goals of the agent.

– The Declarative Module consists of middle-term and long-term memories, rele-
vant to the tasks. The memory can be represented in many ways. For example, it
can be a look-up table or a neural network.

– The Critic Module computes reward signals that indicate the goodness of the ac-
tions taken. Generally, there can be two type of critics, namely, reward signals re-
ceived from the external environment; and estimated payoff computed based on the
current states and the target states.

– The Core Inference Area receives activations from the five memory modules and
acts as a key driver of the inference process. In ACT-R, the production system op-
erates in three processing steps: matching, selection and execution. In FALCON-X,
the inference mechanism is realized via a five-step bottom-up and top-down neu-
ral processes, namely code activation, code competition, activity readout, template
matching and template learning, described in the next section.

The design of FALCON-X is motivated by the neural anatomy of human brains.
The core inference area of FALCON-X can be related to basal ganglia [16], which are
a group of nuclei in the brain interconnected with the cerebral cortex and brainstem.
Basal ganglia are important as they have been found to be associated with a variety
of cognitive functions, including motor control, cognition, emotions and learning. The
main components of basal ganglia includes striatum, globus pallidus (GP), subthalamic
nucleus (STN), substantia nigra pars reticulata (SNr) and dopaminergic (DA) neurons.

The cognitive field in FALCON-X, employed for code selection, corresponds to the
combined functionality of GP, STN and SNr, as supported in the literatures [17,3].
While ACT-R relates the pattern matching function of the production system to stria-
tum, FALCON-X identifies striatum as the memory fields for stimuli presentation and
pattern matching. While ACT-R associates thalamus to the execution function, thala-
mus is deemed to serve as a relay for motor commands in FALCON-X. Each pattern
field of the FALCON is thus considered as a functional combination of striatum and
thalamus. The neural substrates of the perceptual, motor, intentional and declarative
modules have been discussed extensively in the context of ACT-R [1]. The new critic
module in FALCON-X mirrors the dopamine neurons, whose phasic responses are ob-
served when an unexpected reward is presented and depressed when expected reward is
omitted [19].
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4 The FALCON-X Dynamics

As a natural extension of ART, FALCON-X responds to incoming patterns in a contin-
uous manner. In each inference cycle, the core inference area of FALCON-X receives
input signals from the perceptual, intentional and declarative modules, and selects a
cognitive node based on a bottom-up code activation and competition process. Whereas
the intentional buffer maintains the active goals, the declarative module provides the
relevant conceptual memory for code selection. The inference engine may also receive
reward signals from the critic module. It is important to note that at any point in time,
FALCON-X does not require input to be present in all the pattern channels. For those
channels not receiving input, the input vectors are initialized to all 1s.

Upon activity readout, a template matching process takes place to ensure that the
matched patterns in the four memory modules satisfy their respective criterion. If so, a
state of resonance is obtained and the template learning process encodes the matched
patterns using the selected cognitive node. Otherwise, a memory reset occurs, following
which a search for another cognitive node begins. During prediction or action selection,
the readout patterns typically include the actions to be executed in the motor module.
In other cases, the conceptual memory buffer is updated and the goals may change as a
result of inference.

The detailed dynamics of the inference cycle, consisting of the five key stages,
namely code activation, code competition, activity readout, template matching, and tem-
plate learning, are presented as follows.

Input vectors: Let Ick = (Ick1 , Ick2 , ..., Ickn ) denote the input vector, where Icki ∈ [0, 1]
indicates the input i to channel ck. With complement coding, the input vector Ick is

augmented with a complement vector I
ck

such that I
ck

i = 1− Icki .

Activity vectors: Let xck denote the F ck
1 activity vector for k = 1, ...,K . Let y denote

the F2 activity vector.

Weight vectors: Let wck
j denote the weight vector associated with the jth node in F2

for learning the input patterns in F ck
1 for k = 1, ...,K . Initially, F2 contains only one

uncommitted node and its weight vectors contain all 1’s.

Parameters: The fusion ART’s dynamics is determined by choice parameters contri-
bution parameters γck ∈ [0, 1] and vigilance parameters ρck ∈ [0, 1] for k = 1, ...,K .

Code activation: Given the activity vectors Ic1, ..., IcKfor each F2 node j, the choice
function Tj is computed as follows:

Tj =
K∑

k=1

γck
|Ick ∧wck

j |
αck + |wck

j | , (1)

where the fuzzy AND operator ∧ is defined by (p ∧ q)i ≡ min(pi, qi), and the norm |.|
is defined by |p| ≡ ∑

i pi for vectors p and q.
Code competition: A code competition process follows under which the F2 node with
the highest choice function value is identified. The winner is indexed at J where

TJ = max{Tj : for all F2 node j}. (2)
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When a category choice is made at node J , yJ = 1; and yj = 0 for all j �= J . This
indicates a winner-take-all strategy.

Activity readout: The chosen F2 node J performs a readout of its weight vectors to the
input fields F ck

1 such that
xck = Ick ∧wck

J . (3)

Template matching: Before the activity readout is stabilized and node J can be used
for learning, a template matching process checks that the weight templates of node J
are sufficiently close to their respective input patterns. Specifically, resonance occurs if
for each channel k, the match function mck

J of the chosen node J meets its vigilance
criterion:

mck
J =

|Ick ∧wck
J |

|Ick| ≥ ρck. (4)

If any of the vigilance constraints is violated, mismatch reset occurs in which the search
process selects another F2 node J until a resonance is achieved.

Template learning: Once a resonance occurs, for each channel ck, the weight vector
wck

J is modified by the following learning rule:

w
ck(new)
J = (1− βck)w

ck(old)
J + βck(Ick ∧w

ck(old)
J ). (5)

When an uncommitted node is selected for learning, it becomes committed and a new
uncommitted node is added to the F2 field. FALCON thus expands its network archi-
tecture dynamically in response to the input patterns.

5 Learning Procedural Knowledge

In this section, we illustrate how FALCON-X, specifically the core inference area to-
gether with the perceptual, motor and critic modules, can acquire procedural knowledge
through reinforcement learning in a dynamic and real-time environment.

FALCON-X learns mappings simultaneously across multi-modal input patterns, in-
volving states, actions, and rewards, in an online and incremental manner. Various
strategies are available for learning in FALCON-like architectures. We highlight two
specific methods, namely reactive learning and temporal difference learning as follows.

5.1 Reactive Learning

A reactive learning strategy, as used in the R-FALCON (Reactive FALCON) model
[21], performs fast association between states and actions, based on reward signals.
Given a reward signal (positive feedback) in the critic buffer, FALCON associates the
current state in the perceptual buffer with the selected action represented in the motor
buffer. If a penalty is received, it learns the mapping among current state, the comple-
ment pattern of the action taken and the complement value of the given reward.
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Table 1. The TD-FALCON algorithm with direct code access

1. Initialize the FALCON network.
2. Sense the environment and formulate a state vector S based on the current state s.
3. Following an action selection policy, first make a choice between exploration and exploitation.

If exploring, take a random action.
If exploiting, identify the action a with the maximal Q(s, a) value by presenting the state vec-
tor S, the action vector A=(1,...1), and the reward vector R=(1,0) to FALCON.

4. Perform the action a, observe the next state s′, and receive a reward r (if any) from the envir-
onment.

5. Estimate the revised value function Q(s, a) following a Temporal Difference formula such as
ΔQ(s, a) = α(r + γmaxa′ Q(s′, a′)−Q(s, a)).

6. Formulate action vector A based on action a and reward vector R based on Q(s, a).
7. Present the corresponding state, action, and reward vectors S, A, and R to FALCON for learn-

ing.
8. Update the current state by s=s’.
9. Repeat from Step 2 until s is a terminal state.

5.2 Temporal Difference Learning

A key limitation of reactive learning is the reliance on the availability of immediate
reward signals. TD-FALCON [24,22] is a variant of FALCON that incorporates Tem-
poral Difference (TD) methods to estimate and learn value functions of action-state
pairs Q(s, a) that indicates the goodness for a learning system to take a certain action a
in a given state s. Such value functions are then used in the action selection mechanism,
also known as the policy, to select an action with the maximal payoff. The temporal
difference learning algorithm is summarized in Table 1.

Given the current state s, TD-FALCON first decides between exploration and ex-
ploitation by following an action selection policy. For exploration, a random action is
picked. For exploitation, TD-FALCON performs instantaneous searches for cognitive
nodes that match with the current states and at the same time provide the highest reward
values using a direct access procedure. Upon receiving a feedback from the environment
after performing the action, a TD formula is used to compute a new estimate of the Q
value of performing the chosen action in the current state. The new Q value is then used
as the teaching signal for TD-FALCON to learn the association of the current state and
the chosen action to the estimated Q value.

6 The Integrated Cognitive Agent Architecture

For modelling intelligent virtual agents, FALCON-X needs to be integrated with the
necessary peripheral modules for interaction with the environment. As shown in Fig-
ure 2, the integrated agent architecture consists of a Perception Module receiving sit-
uational signals from the environment through a set of sensory APIs and an Action
Module for performing actions through the various actuator APIs. If the sensory signals
involve a text input, the Chat Understanding Module interprets the text for the player’s
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intention. The outputs of Situational Assessment and Chat Understanding Modules then
serve as part of the working memory content providing conditional attributes to the In-
ference Engine. The Inference Engine based on the FALCON-X model then identifies
the most appropriate action, by tapping a diverse pool of knowledge, in accordance
to the desire, intention and personality of the virtual agent. The knowledge learned
and used by the Inference Engine include declarative knowledge of self, players, and
environment, as well as procedural knowledge of goal-oriented rules, which guide an
agent in fulfilling goals, and social rules, for generating socially appropriate behavior.
The decision of the Inference Engine again forms part of the Working Memory, which
throughout maintains the context of the interaction. For actions involving a verbal re-
sponse, the Natural Language Generation Module translates the chosen response into
natural text for presentation.

Consistent with the view in the state of the art [8], we outline three key charac-
teristics of realistic characters in virtual worlds, namely autonomy, interactivity, and
personification, described as follows.

Autonomy. Based on a family of self-organizing neural models known as fusion Adap-
tive Resonance Theory (ART) [23], the Inference Engine of the proposed agent archi-
tecture performs a myriad of cognitive functions, including recognition, prediction and
learning, in response to a continual stream of input signals received from multiple pattern
channels. As a result, an agent makes decisions not only based on the situational factors
perceived from the environment but also her mental states characterized by desire, in-
tention and personality. By modelling the internal states of individual agents explicitly,
the virtual humans can live a more complete and realistic life in the virtual world.

Fig. 2. A schematic of the integrated agent model

Interactivity. For interaction between the agents and the players, an intuitive user inter-
face is provided, through which a player may ask typical questions and provide quick
responses by button clicks. The player may also enter free-text sentences via the chat
box. The dual communication mode provides the players both ease of use and flexibil-
ity. While interacting with player, the agent builds an internal model of the player, with
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his/her profile, interests and preferences. The player model in turns allows the agent to
make intelligent conversation on topics relevant to the player.

Personification. For improving the believability of virtual humans, our agents adopt
the Five Factor Model (FFM) [14], which characterizes personality in five trait dimen-
sions. By giving a weighage to each dimension, a unique personality can be formed by a
combination of the traits. Comparing with traditional pattern-matching-based conversa-
tional agents, our agents with strong openness and extroversion personality are warmer
and friendlier as they do not stay idle and wait for input queries. Acting pro-actively,
they approach the players, offer help, and make conversation.

7 Evaluative Experiments

7.1 Research Methodology

We developed three versions of NTU Co-Space, each with a distinct type of virtual
agents in the form of Non-Player Characters (NPCs). The first environment (E1) pro-
vides the baseline control condition, wherein the NPCs are only able to display static
messages but do not have the capability to interact with the users. The second envi-
ronment (E2) is the first treatment condition, wherein the virtual humans are designed
as embodied conversational agents using the Artificial Intelligence Mark-Up Language
(AIML) [25]. AIML is an XML-compliant language that was developed by the Alice-
bot free software community. It is considered as a rule based repository of knowledge
where the engine performs pattern matching to select the most appropriate output based
on the input utterance. We have encoded as many AIML patterns as possible to enhance
the conversational abilities of the agents. The third environment (E3) is the second
treatment condition, wherein autonomous agents using our proposed fusion ART-based
agent model are populated. Although the agents we described in the previous sections
have different personalities, for the purpose of this study, we remove the variation in
personality by deploying only friendly agents.

The subjects were recruited from an Introduction to Management Information Sys-
tems class at a large US university. The scenario given to the subjects is that they were
looking for an overseas university for an exchange program and were visiting NTU
Co-Space to help them in making the decision. Each subject was asked to complete a
quest in the form of a mini-game, where they would experience the key places of the
NTU campus through the quest. The quest involves finding five check-points on campus
where the clue to each check-point was given at the previous check-point.

The objectives of the experiment are two-fold. First, we observe whether deploying
virtual humans in the virtual world will benefit the player’s experience. Second, we
assess how virtual humans with different levels of intelligence may affect the player’s
experience, especially in terms of the following constructs, namely Telepresence (TP),
Social Presence (SP), Perceived Interactivity (PI), Perceived Usefulness (PU), Flow
(FLW), Enjoyment (ENJ) and Behavioral Intention (to return to NTU Co-Space) (BI).

Subjects participated in the experiment in a computer lab. They were asked to fill out
a pre-questionnaire (used to assess the players’ profile, covering demographics infor-
mation and 3D virtual world skills) and then carry out the experiment by completing the
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quest given to them. For subjects in the E1 (control) condition, they completed the quest
by using the map in the system to navigate the virtual world, check up information on
different parts of campus and teleport to the respective checkpoints without receiving
any help from NPCs. For subjects in the E2 (i.e., first treatment) condition, they were
not only provided with the interactive map in the E1 condition, but they could also talk
to the embodied conversational agents to ask for assistance before teleporting through
the interactive map. For subjects in the E3 (i.e., second treatment) condition, in addi-
tion to being provided with the interactive map, they were also offered the assistance
of fusion ART-based NPCs that have the ability of performing autonomous behaviors
both in proactive and responsive ways; moreover, since these NPCs are embedded with
a Natural Language Processing module, they can understand input sentences in a flexi-
ble way. Hence, subjects were able to interact with the intelligent autonomous NPCs to
request for and obtain the information they needed. Because the NPCs are autonomous,
they could even offer teleport service to the specific locations requested. After the sub-
jects have completed the quest, they filled out a post-questionnaire which assessed their
experience. The subjects were first asked for the acronym followed by the full name
of the university to assess their level of recall. The main part of the questionnaire then
captured the subjects’ assessment of the seven constructs (as described earlier) related
to NPC functions. In addition, 3D virtual world skills were also captured to examine
their perceived improvement of skills after experiencing NTU Co-Space.

Among the various constructs, Perceived Usefulness could be objectively assessed
through the time taken to complete the Amazing Quest. The less time spent to complete
the Amazing Quest, the more useful the agents are. Flow was captured through provid-
ing the description of Flow, and then asking subjects to rate the degree of Flow they
experienced and the frequency in which they experienced Flow. The other constructs
were captured using measurement items. At least five items were used to measure each
construct. The items used to measure Telepresence, Enjoyment and Behavioral Intention
were derived from Nah [15]. The scale for measuring Social Presence and Interactivity
were adopted from Animesh et al [2]. Given the limited space, we present a sample set
of these items in Table 2.

Table 2. A sample set of Post-Questionnaire

Item Measurement

TP 1 I forgot about my immediate surroundings when I was navigating in the virtual world.
SP 1 During the virtual tour, the interaction with the virtual humans were warm.
ENJ 1 I found the virtual tour to be fulfilling.
BI 1 I would consider visiting this virtual world site again.

7.2 Data Analysis

Overall Performance: Table 3 shows the overall performance in the three environ-
ments. We observe that subjects in all the three environments were able to complete
the quest successfully. However, subjects in E3 spent the least amount of time and the
percentage of subjects who could correctly recall the acronym of the campus is higher
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than those of the other two environments. This indicates that the autonomous agents
deployed in E3 are more useful in helping the subjects than those of the other two
environments.

Table 3. overall performance

Evaluation Measures E1 E2 E3

% of players complete the quest 100% 100% 100%
Time to complete the quest 20m 31s 25m 32s 16m 56s
% of Players recall the acronym of the campus 44% 25% 45%

Descriptive Statistics: Table 4 shows the means, standard deviations (SD), and con-
fidence intervals (CI, with a confidence level of 95%) of ratings in E1, E2, and E3
in terms of Telepresence (TP), Social Presence (SP), Perceived Interactivity (PI), En-
joyment (ENJ), Flow (FLW) and Behavior Intention (BI). All of the constructs were
measured using the seven point Likert scale. From the table, we observe that for E3,
the rating of Telepresence, Social Presence, Perceived Interactivity, Flow and Behavior
Intention have better results than E1 and E2. This means by employing autonomous
agents, these factors are perceived to be stronger than those in the environment with
dummy and AIML based agents. However, we note that for enjoyment, the rating in E2
is the best of the three environments. Referring to the 3D virtual world skills assessed
in the pre-questionnaire, subjects in E2 appear to have the best 3D virtual world skills
compared to the other two. As prior work have shown that a higher level of skill is likely
to enhance the feeling of enjoyment [27], we believe the rating obtained in E2 could be
affected by the higher level of 3D virtual world skills.

Table 4. Descriptive Statistics

E1 E2 E3
Constructs Mean SD CI Mean SD CI Mean SD CI

TP 3.86 0.34 3.64-4.08 4.08 0.49 3.76-4.40 4.41 0.42 4.14-4.68
SP 3.63 0.44 3.28-3.98 3.82 0.43 3.47-4.16 3.84 0.65 3.32-4.36
PI 4.66 0.67 4.13-5.19 4.37 0.58 3.90-4.83 5.02 0.66 4.49-5.54
ENJ 4.42 0.44 4.04-4.81 4.50 0.33 4.11-4.90 4.31 0.72 3.68-4.94
FLW 4.47 0.54 4.00-4.94 4.21 0.28 3.96-4.46 4.58 0.68 3.98-5.18
BI 4.23 0.71 3.61-4.56 4.51 0.30 4.24-4.78 4.58 0.40 4.23-4.93

Furthermore, a one-way analysis of variance (ANOVA) is used to analyze the results.
Specifically, the F-test is used to evaluate the hypothesis of whether there are significant
differences among the statistic data means for those constructs. The F values are calcu-
lated by the variances between conditions divided by the variance within the conditions.
The p values, on the other hand, represent the probability of test statistic being different
from the expected values and are directly derived from the F test. A small p value thus
indicates a high confidence that the values of those constructs are different. A summary
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Table 5. F-test result

E1, E2 & E3 E1 & E3 E2 & E3
Constructs F p F p F p

TP 5.47 0.004 11.22 0.001 4.55 0.034
SP 0.58 0.561 1.10 0.295 0.01 0.903
PI 5.71 0.004 4.00 0.047 12.12 0.001
ENJ 0.15 0.862 0.33 0.566 0.17 0.68
FLW 1.62 0.199 0.28 0.595 3.12 0.079
BI 1.23 0.294 2.40 0.120 0.10 0.751

of the F values and p values among E1, E2 and E3, between E1 and E3, and between
E2 and E3 are given in Table 5.

This data analysis revealed the significant effects of the three kinds of virtual humans
in virtual worlds on Telepresence and Perceived Interactivity: F (2, 519) = 5.47, p
< 0.01 for Telepresence and F (2, 345) = 5.71, p < 0.01 for Perceived Interactiv-
ity, where the two parameters enclosed in parentheses after F indicate the degrees of
freedom of the variances between and within conditions respectively. Consistent with
the statistics in Table 4, the fusion ART-based virtual human generates higher levels
of Telepresence and Perceived Interactivity than the other two types of virtual humans,
with a mean of 4.41 for E3 (versus 3.86 for E1 and 4.08 for E2) for Telepresence, and
a mean of 5.02 for E3 (versus 4.66 for E1 and 4.37 for E2) for Perceived Interactivity.
Although the effect of E1, E2 and E3 on Flow is smaller than that of Telepresence and
Perceived Interactivity, the difference in Flow is perceived to be marginally significant
between E2 and E3, with F (1, 198) = 3.12, p < 0.1, and a mean of 4.58 for E3 (versus
4.21 for E2). This means the Flow experience perceived by subjects who interacted with
the fusion ART-based virtual human is stronger than those interacting with the AIML
based virtual humans. No significant difference was found for the rest of the constructs.

8 Conclusion

For creating realistic agents in virtual world, this paper has proposed a cognitive agent
architecture that integrates goal-directed autonomy, natural language interaction and
human-like personality. Extending from a family of self-organizing neural models, the
agent architecture maintains explicit mental representation of desires, personalities,
self-awareness, situation awareness and user awareness.

We have built and deployed realistic agents in an interactive 3D virtual environment.
We have also carried out systematic empirical work on user study to assess whether
the use of intelligent agents can improve user experience in the virtual world. Our user
study has so far supported the validity of our agent systems. With the virtual characters
befriending and providing personalized context-aware services, players generally found
virtual world more fun and appealing. To the best of our knowledge, this is perhaps
one of the few in-depth works on building and evaluating complete realistic agents
in virtual worlds with autonomous behavior, natural interactivity and personification.
Moving forward, we wish to extend our study by completing the agent architectures
with more functionalities, such as emotion and facial expressions.
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