Ruth Aylett

Brigitte Krenn

Catherine Pelachaud
Hiroshi Shimodaira (Eds.)

Intelligent
Virtual Agents

13th International Conference, IVA 2013
Edinburgh, UK, August 2013
Proceedings

LNAI 8108

@ Springer




Lecture Notes in Artificial Intelligence 8108

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel

University of Alberta, Edmonton, Canada
Yuzuru Tanaka

Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbriicken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbriicken, Germany



Ruth Aylett Brigitte Krenn
Catherine Pelachaud Hiroshi Shimodaira (Eds.)

Intelligent
Virtual Agents

13th International Conference, IVA 2013
Edinburgh, UK, August 29-31, 2013
Proceedings

@ Springer



Volume Editors

Ruth Aylett

Heriot-Watt University
Edinburgh, UK

E-mail: r.s.aylett@hw.ac.uk

Brigitte Krenn

Austrian Research Institute for Artificial Intelligence (OFAI)
Vienna, Austria

E-mail: brigitte.krenn @ofai.at

Catherine Pelachaud

CNRS-LTCI, Télécom-ParisTech

Paris, France

E-mail: catherine.pelachaud @telecom-paristech.fr

Hiroshi Shimodaira

The University of Edinburgh
Edinburgh, UK

E-mail: h.shimodaira@ed.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-40414-6 e-ISBN 978-3-642-40415-3
DOI 10.1007/978-3-642-40415-3

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013945590
CR Subject Classification (1998): 1.2.11, 1.2, H.5, H4, H.3, 1.6

LNCS Sublibrary: SL 7 — Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Welcome to the proceedings of the 13th International Conference on
Intelligent Virtual Agents. While this conference represents a field of specializa-
tion with in computer science and artificial intelligence, it celebrates an endeavor
that requires the integration of knowledge, methodologies, and theories from a
wide range of fields such as sociology, psychology, linguistic, cognitive science,
and interactive media.

Intelligent virtual agents are animated characters that not only move, but
also exhibit human-like competence when dealing with the world around them,
be it virtual or real. In particular these agents communicate with humans or with
each other using natural human modalities such as speech and gesture. They are
capable of real-time perception, cognition, and action that allows them to partic-
ipate autonomously in dynamic social environments. Intelligent virtual agents
are not built overnight or by lone practitioners. These are complex systems,
built layer by layer, integrating numerous components that address important
functions such as visual object tracking, speech recognition, perceptual memory,
language understanding, reactive behavior, reasoning, planning, action schedul-
ing, and articulation. Advances are made by sharing knowledge, components,
and techniques. Therefore the annual IVA conference is central to advancing the
state of the art. It is an interdisciplinary forum for presenting research on mod-
eling, developing, and evaluating IVAs with a focus on communicative abilities
and social behavior.

IVA was started in 1998 as a workshop at the European Conference on Artifi-
cial Intelligence on Intelligent Virtual Environments in Brighton, UK, which was
followed by a similar one in 1999 in Salford, Manchester. Then dedicated stand
alone IVA conferences took place in Madrid, Spain, in 2001, Irsee, Germany,in
2003, and Kos, Greece, in 2005. Since 2006, IVA has become a full-fledged an-
nual international event, which was first held in Marina del Rey, California,then
Paris, France, in 2007, Tokyo, Japan, in 2008, Amsterdam, The Netherlands,in
2009, Philadelphia, Pennsylvania, in 2010, Reykjavik, Iceland, in 2011 and Santa
Cruz, USA, in 2012. Since 2005, IVA has also hosted the Gathering of Animated
Lifelike Agents (GALA), a festival to showcase state-of-the-art agents created by
students, academic or industrial research groups. This year’s conference in Ed-
inburgh, Scotland, represented a range of expertise,from different scientific and
artistic disciplines, and highlighted the value of both theoretical and practical
work needed to bring intelligent virtual agents to life.

The special topic of IVA 2013 was cognitive modelling in virtual agents. This
topic touches on many aspects of intelligent virtual agent theory and applica-
tion such as models of personality; theory of mind; learning and adaptation;
motivation and goal-management; creativity; social and culturally specific be-
havior. Several papers deal directly with these topics. The remaining papers cover
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important themes linked to the design, modelling, and evaluation of IVAs as well
as system implementation and applications of IVAs.

IVA 2013 received 94 submissions. Out of the 61 long paper submissions,only
18 were accepted for the long papers track. Furthermore, therewere 18 short
papers presented in the single-track paper session, and 34 poster papers were on
display. Since IVA 2011, the proceedings are distributed only digitally.

This year’s IVA also included four workshops that focused on “Computers
as Social Actors,” “Cultural Characters In Games and Learning”, “Multimodal
Corpora: Beyond Audio and Video,” “Techniques Towards Companion Tech-
nologies.” There was also a Doctoral Consortium where PhD students receive
feedback from peers and established researchers.

IVA 2013 was locally organized by the Centre for Speech Technology Re-
search (CSTR) at the University of Edinburgh, with the generous support of the
School of Mathematical & Computer Sciences at Heriot-Watt University, UK;
the Interaction Technologies Austrian Research Institute for Artificial Intelli-
gence (OFAT), Austria; and CNRS — LTCI at Télécom-ParisTech, France.

We would like to wholeheartedly thank the scientific committees that helped
shape a quality conference program, the Senior Program Committee for taking
on great responsibility and the Program Committee for their time and genuine
effort. We also want to thank our keynote speakers Jacqueline Nadel, from the
Centre Emotion, La Salpétriere Hospital, Paris, France, Charles Sutton, Univer-
sity of Edinburgh, UK, Steve Holmes, vice president of the Mobile and Commu-
nications Group, Intel, USA, and Alessandro Vinciarelli, University of Glasgow,
UK, for crossing domains and sharing their insights with us. Furthermore, we
would like to express great appreciation for the work put in by Matthew Aylett
who oversaw the poster and demo session, by Jonas Beskow, who coordinated
the workshops, by Ana Paiva, who was responsible for the publicity of the confer-
ence, by Lynne Hall, who managed the Doctoral Consortium, by Magalie Ochs,
who organized GALA, and by our tireless student volunteers and their coordi-
nator David A. Braude, who kept everything running smoothly. We are grateful
to Peter Bell and Atef Ben-Youssef for website design and the timely conference
system support from Hiroshi Shimodaira. Atef Ben-Youssef helped to assemble
the proceedings book. Finally, we would like to express deep gratitude to Hiroshi
Shimodaira, Avril Heron, Samira Reuter, and Nicola Drago-Ferrante, who man-
aged everything from registration and financials to decoration and local travel
logistics.

Of course IVA 2013 would not have been possible without the valuable
contributionsof the authors, whose dedication extends beyond the creation of
intelligentvirtual agents to the creation and support of a vibrant research com-
munitythat nurtures our passion for the field.

September 2013 Ruth Aylett
Brigitte Krenn

Catherine Pelachaud

Hiroshi Shimodaira
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Using a Parameterized Memory Model
to Modulate NPC Al

Weizi (Philip) Li, Tim Balint, and Jan M. Allbeck

Laboratory for Games and Intelligent Animation
George Mason University
4400 University Drive, MSN 4A5
Fairfax, VA 22030
{wlia, jbalint2, jallbeck}@gmu.edu

Abstract. While there continues to be exciting developments in re-
search related to virtual characters, improvements are still needed to
create plausibly human-like behaviors. In this paper, we present a syn-
thetic parameterized memory model which includes sensory, working,
and long-term memories and mechanisms for acquiring and retrieving
memories. With the aid of this model, autonomous virtual humans are
able to perform more reasonable interactions with objects and agents
in their environment. The memory model also facilitates emergent be-
haviors, enhances behavioral animation, and assists in creating hetero-
geneous populations. To demonstrate the effectiveness of the memory
model, we also provide an example in a 3D game environment and have
conducted a user study in which we found general guidance in deter-
mining parameter values for the memory model, resulting in NPCs with
more human-like game playing performances.

Keywords: Virtual Humans, Memory Model, Behavioral Animation.

1 Introduction

Non-Player Characters (NPCs) have become vital assets in games and simula-
tions. They allow game authors to add depth to the world by providing valuable
enemies, allies, and neutral characters. Over the past three decades, there has
been a great deal of work on improving NPCs. However, while a majority of it
has gone into creating more visually appealing animated characters, development
of the underlying intelligence for these characters has remained fairly stagnant,
creating strange and undesirable phenomenon such as repetitive behaviors and
a lack of learning and knowledge understanding. A character may appear as a
photo-realistic knight in shining armor, but can only greet the player or fight
with the player monotonously. This lack of depth diminishes NPC believability
and creates a less enjoyable gaming experience for the player.

There are many different forms and functions that NPCs need to fulfill, and
these commonly correspond to their roles, relevance and importance to a player.
In many of these cases, when the purpose of agents is to stay transiently and

R. Aylett et al. (Eds.): IVA 2013, LNAI 8108, pp. 1-[[4] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Our agent (Carl) is trying to remeber objects in the environment

blend into the environment, it’s less likely a player would spend a great deal
of time examining each one of them. For example, if there is a squad of enemy
soldiers the player must fight, it is doubtful that the player will spend consider-
able time monitoring each individual soldier’s behaviors. In these contexts, there
is not a great need for strong Al techniques, and it is generally impractical to
implement and execute such techniques for a large group of agents. However, for
those agents meant to serve as companions or enemies that are central to the
game story and thus exist for longer periods of time, the player will most likely
spend a lot of time interacting with them and also observing their behaviors.
For these characters, techniques that create more believable agents are needed,
and these types of NPCs are the focus of this work.

While there are many ways of improving the believability of virtual agents,
in particular we see a human-like memory model helping to achieve this goal in
two ways. First, given that information storage is inevitably needed for agents
to reason and interact with their environments, a human-like memory model
that includes false memory and memory distortion can result in more human-
like performances. These human-level abilities (i.e. not sub-human nor super-
human) will provide more plausible interactions with the player, including more
reasonable competition and more engaging communication [26]. Secondly, an
event-independent memory model can make longer simulation more plausible
and allow agents to carry their knowledge to other scenarios without massive
editing. To realize such a system, certain aspects of human memory are necessary
such as learning, forgetting and false memories. While there are many techniques,
such as scripting and behavior trees, that can be used to simulate an agent’s
memory model and can create the illusion of false memories and forgetful agents,
these techniques usually require a great deal of crafting by a game play author in
order to create some form of believability. A memory model that causes an agent
to forget or create hazy memories provides the virtual character some variability
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in its understanding of the world and what has taken place. This variability is
inherent within a reasonable human-like memory model, and these differences
do not have to be enumerated and explicitly written by the game author, as they
would with prior techniques.

Toward this end, we have developed a memory model that includes compo-
nents for Sensory Memory, Working Memory and Long-term Memory and have
designed it to contain features such as forgetting and false memories. We also
provided multiple parameters related to various memory capabilities. These pa-
rameters can be set by level designers or game systems to vary the difficulty level
of games. To determine a reasonable range of values for these parameters, we
conducted a user study in a 3D game environment and carried out a performance
analysis. To summarize, our contributions include:

— A memory model that supports a variety of psychological activities such as
forgetting and false memories and aims to bring the memory model for NPCs
one step closer to a human-like memory system.

— A memory model that offers flexibility to users by providing several tunable
parameters. A user study has been conducted to further provide general
guidance and possible ranges for the model parameters.

— A memory model grounded in a 3D game environment, where agents are
capable of demonstrating complex, emergent, and social behaviors, making
longer duration simulations and games more believable.

2 Related Work

Memory systems, appearing to be an inevitable component in intelligent agent
architectures, have been studied and developed from a variety of points-of-view.
In animated, autonomous agents research, several groups have combined vision
and memory systems to allow virtual characters to perform navigation and path
planning tasks [2TI30]. Others have used memory to facilitate and enhance agent-
object interactions [I324], crowd simulations [23], believability and intelligence
in synthetic characters [4J16], and virtual actors in dramas [I8]. In these efforts,
memory was not the main focus. It was a part of larger agent architectures that
also included other components such as perceptual units, dialogue units, action
selection modules, and goal and plan generation systems. Given the overall com-
plexity, the memory model is often treated simply as permanent or temporary
information storage with relatively simple structures, and is not intended to be
scrutinizingly designed as a component to achieve human-like performances in
games and other applications.

More specifically, a great deal of work has explored using certain types of
memory found in psychology literature. Episodic and autobiographical memory
[31132] collect individual experiences that occurred at particular times and loca-
tions. Examples include, a pedagogical agent named Steve [25] who is equipped
with episodic memory and can explain its decision-making process for a short
time; Brom et al [3] exploited it to achieve longer duration storytelling activity in
a gaming environment; Gomes et al [I1] implemented an episodic memory model
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for emotion appraisal. Similar to episodic memory but with broader scope, au-
tobiographical memory has also been incorporated into many applications. To
name a few, Dias et al [7] has utilized it to enable synthetic agents reporting
their past experiences. Similarly to the previously mentioned figure Steve, actors
in [I2] can tell stories for limited time period based on their autobiographical
memory. While significant results were achieved, these efforts focused primarily
on retrieving episodic knowledge and had memory modules crafted for specific
tasks such as storytelling, communicating, and social companionship [17].

Another set of related work is in cognitive computing research. To list a few
task-dependent applications, a memory model has been implemented for cogni-
tive robots [§], and autonomous and virtual agents [6/I0J5]. In addition, a large
group of work has been associated with cognitive architectures such as SOAR
[14], ACT-R [I], and CLARION [29]. These architectures generally have rela-
tively comprehensive memory models in their large software infrastructures and
are capable of simulating many psychological activities. Additionally, a shared
goal of these architectures is to achieve task-independence including a standalone
memory fragment. For example, Nuxoll [22] has attempted to build an event-
independent episodic memory system integrated with SOAR. However, there are
some issues with these cognitive architectures. First of all, generality is pursued,
at the loss of some specific elements. Take, for example, SOAR, one of the virtual
and gaming environment friendly cognitive architectures [I5/14]. While its usage
has been demonstrated in several gaming applications, most of them are taken
place in simple environments where agents are capable of conducting a limited
number of behaviors and interactions with environmental objects. Secondly, us-
ing these architectures requires considerable effort and seasoned programming
skills. In contrast, a parameterized model with tunable values could be easily
adopted by users to endow virtual characters with heterogeneous features.

To summarize, while strides have been made, improvements are still needed.
In particular, animated, autonomous agents have limited memory model func-
tionality, storytelling agents rely mainly on episodic or autobiographical memory,
and general cognitive architectures are not yet mature enough for use in rich 3D
environments. The work presented in this paper attempts to fill in gaps in these
research efforts. Toward that end, we create a synthetic parameterized memory
model based on several theories of memory and lessons learned in the cogni-
tive computing and agents development research communities. The model is
grounded in a game world with autonomous virtual humans conducting life-like
interactions with objects and each other.

3 Memory System

In this section, we will first explain the memory representation and then detail
components of our memory model which includes Sensory Memory, Working
Memory and Long-term Memory, and most importantly why our design choices
could benefit NPCs in enhancing their believability and achieving human-like
performances.
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3.1 Memory Representation

For representing memory, we have chosen a directed graph with nodes represent-
ing concepts and edges enacting links between concepts. We chose a directed edge
following observation that humans generally archive memories in a certain order,
and this order does not necessarily work in reverse sequence. This representation
can benefit NPCs, such as in a scenario where a NPC has been given the formula
of a medicine which can be made only by adding its elements in a certain se-
quence. While some elements of this formula may be forgotten, the agent should
still be able to create and preserve a sense of sequence in order to facilitate re-
solving the missing elements. An example of this would be an agent thinking, ”1
remember that in order to make this medicine I need one more item after I use
the purple potion, but I forget which item that is. I should search in this ancient
book to determine what the item after the purple potion is”. Without directions
between concepts, this activity is harder to capture.

In addition, we have implemented a strength factor for both nodes and edges,
hereby denoted Nodestrengtn and Edgegtrength accordingly. Nodestrengtn indicates
how strongly a concept is encoded within the memory model while Edgesirengtn
denotes the degree of ease of going from one node to another. These strength fac-
tors add believability to characters. To be specific, while many objects afford many
different actions, an agent should select not a random object, but the most familiar
object for a particular task. For example, if a NPC is trying to build a birdhouse, it
is more believable that the NPC uses its frequently used hammer over a nail gun.
While both items can perform the same tasks, the NPC is more accustom to using
his hammer, and so should be more likely to do so. Currently, both Nodes¢rengtn
and Edgesirengtn share the same integer range, 1 to 10, and this range is further
divided into two stages, a strong and a weak stage. By creating this division, our
model is able to support memory distortion. The division between the two stages
is chosen by the user, who does so by choosing the threshold values Nodeipreshoid
and Edgeipreshoid- Therefore, if someone has chosen Nodegpreshoiq t0 be 5, then a
value of 1 to 4 would create a weak stage node and values between 5 to 10 would
be the node’s strong stage. While the threshold may be different, the same logic

applies to edge values. When nodes and edges are in weak stage, the phenomenon
Node/Edgestrength

Node/Edgetnreshotd *
So, if Nodeipresholda has been set as 5, then nodes in the weak stage with values

from 1 to 4 have corresponding probabilities from 80% to 20% to be forgotten.
This simple design allows us to simulate partial human fuzziness. Currently in-
stead of having a sophisticated mechanism for selecting an incorrect node and edge
to replace the correct ones during the course of false memory generation, the false
concept will be picked among neighboring concepts based on an object ontology
of the environment.

known as false memory can occurs with probability Prgise = 1—

3.2 Sensory Memory

One module of our memory model is called Sensory Memory. This component
maintains transient information captured by the sensory system. In our current
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work we only address vision. There are several reasons for us to design and
develop this component including psychology research studies that have shown
that information coming from environment does not contact memory directly.
Instead, these studies show that information will spend a short time in a system
that serves as an interface between the perception and memory [27/2]. This in-
terface is always present in real humans, and can be seen in simple phenomenon
such as the light curve observed by swinging an illuminating object swiftly in the
dark. We believe this module is also necessary due to the fact that, unlike elec-
tronic devices, humans never record complete events, as noted in [20]. Instead,
physical humans record key elements and later on with the aid of environmental
cues, use these elements to reconstruct past scenarios and events. In this work,
we use SMeapacity to indicate how many cues will be potentially maintained
in the sensory memory module. Inspired by findings in [I9], which states a hu-
man can process 5 to 9 items at once, and considering that design choice that
all elements from sensory memory will transit to working memory with various
strength factors, we have chosen the range of SM qpacity being 1 to 10. This
implementation helps preserve Sensory Honesty which it has been argued plays
a vital role in synthetic characters [4]. Essentially, we believe a player would not
want to compete with a NPC for a task in a place where a lot of objects exists
and the NPC can process everything while the player is bound by the human
limitation of only processing 5 to 9 items at a time.

3.3 Working Memory

We have also included a Working Memory module which is seen in many virtual
agent architectures. This is a module that stores information currently being
used by the agent for a variety of cognitive activities such as reasoning, thinking
and comprehending. Studies have shown that in order to use declarative long-
term memory elements, one has to extract the material into working memory
first. The working memory has been documented to have much smaller size and
information maintaining time compared to long-term memory [2]. From this,
we decide that only one graph structure can exist in the working memory at a
time. This feature has also been adopted by several other architectures, including
SOAR. In addition, while one graph could contain multiple nodes and edges, the
actual reinforcement rate on each node and edge depends on the total number

of nodes/edges and the information linger time. The equation for calculating the
Information linger time(secs) W Mcale
Total number of nodes/edges 10

where W Mjcqie shares the same range (i.e. 1 to 10) with the strength factor.
Therefore, if the working memory currently contains 4 nodes and 3 edges and
this information resides for 12 seconds when W M, 4. equals to 10, then each
node and edge will get its strength factor increased by 3 and 4 accordingly. This
procedure can be interpreted as: a few items lingering for a long time in working
memory would have their strength factor values higher than those of many items
lingering for a short time. This design decision is inspired by findings in [2§] in
which the author found that memory reactive time increases in a linear fashion

reinforcement rate is: Node/Edge,qte =
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when the number of items in the memory increases. Though here we don’t have a
reactive time associated with each node and edge, we believe the strength factor
can act as an indicator manifesting memory retrieving difficulties. Through this
approach, a user can control the amount of information being processed in the
working memory, achieving a similar effect to setting a working memory duration
and processing strategy without concerns about individual memory differences
and the graphical complexity of specific scenarios.

3.4 Long-term Memory

The final module is the Long-term Memory module. Intuitively, this module
maintains an extensive number of concepts and maintains them for a longer
duration. Unlike working memory, this component can contain multiple rather
than one graph structure. While both Nodegsirengtr and Edgesirengsn will only
get strengthened in the working memory, in long-term memory they will suffer
from decay. Currently, the decaying activity occurs every 5 minutes and the de-
caying percentage roughly follows the classic Ebbinghaus forgetting curve [9].
In addition, while there is a great debate within the scientific community on
whether memory elements are completely forgotten, from the engineering per-
spective, we have decided to remove any node and edge with Node/Edgesirength
below 1 and consider any element with Node/Edgesirengn, higher than 10 as a
permanent encoded concept. Last but not least, in developing memory models
for virtual agents, the distinction between two types of long-term memory: the
episodic memory and semantic memory, is not rare. However, in this work, we
will not differentiate them for two reasons: firstly, we are targeting more gen-
eral tasks in gaming environments rather than specific activities as discussed in
the related work section. Secondly, in psychology studies, there exist evidence
showing these two types of memories could transform into each other in certain
forms. However, the process and detailed relationship between them has yet been
resolved [2].

The general working pattern of above modules is as follows: firstly via per-
ception, certain environmental cues are passed into the sensory memory. If the
number of cues in a place are greater than SMcepacity, the cues will be ran-
dom selected. These cues are then sent to the working memory, where they are
formed into a strong connected graph with a minimum Node/Edgestrengtn- If a
concept has additional properties such as color and material, only the concept
and its properties would be linked together. Next, cues will be matched against
long-term memory and elements (i.e. nodes and edges) above Nodetpreshotd and
FEdgeinreshoia Will be retrieved correctly while elements below this threshold
would be subject to potential concept replacement. For example, if the correct
concept “Coin 0” has a strength factor below Nodeipreshoid, then it’s possible it
will be replaced by “Coin 1”7 under the meta-concept “Coin” (if “Coin 1”7 exists,
otherwise it might be forgotten). In other words, a different coin might be incor-
rectly remembered. Currently, we only consider replacing concepts that are at
the same level of the correct concept in our object ontology. This design decision
is supported by the data we collected through a user study in which we found
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that most false memories involved players picking an object from under the same
meta-concept instead of completely unrelated concepts. After successfully con-
structing a single graph structure in working memory, reinforcement will start
according to the total number of nodes/edges, information linger time, and the
value of W M¢qie- Finally, memory material will transition to long-term memory
with their various strength factors. The whole process is illustrated in Figure 2l

new
concept

matching
concept

existing
concept

. false

concept
strong
stage

weak
stage

Fig. 2. The general working pattern of sensory memory, working memory and long-
term memory. “C” stands for Cue and “N” stands for Node (not all nodes are labeled).

4 Example and Analysis

To further explore our memory model and its capabilities, we implemented a
game (Seen in Figure B]). In this game, our heroes are tasked with saving their
princess, who is locked away in a tower. The first person to find the magic gems to
unlock the door and free her will win her everlasting love. Players (both human
and a NPC we named Carl) begin by exploring the environment to find two
magic gems (one red, one blue). As they explore different areas, they find many
objects, but no magic gems. After a time, they encounter a villager NPC holding
a red gem. Interacting with the villager, they discover he would be willing to
trade the red gem for an iris. Players then have to try to remember where they
might have seen an iris. If they cannot remember, they start looking around
until they find it. While looking around, their memories of the environment are
reinforced. A similar procedure is followed for the blue gem.

While our NPC Carl can certainly successfully complete his task, we are
more interested in how his performance can approximate real human perfor-
mance and what memory model parameters would be appropriate for different
human player skill levels. In order to explore this, we conducted a user study.
In total 31 subjects (15 female, 16 male) participated. Before playing, subjects
took a simple memory test and completed a survey related to their experience
with video games. Then each subject was asked to play the game solo eight
times with different game level complexities. In the first four rounds, the game
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© )

Fig. 3. (a) The game environment. (b) Carl is exploring the environment, trying to
find the desired gems. (c) Carl talks to a civilian about trading his gem. (d) Carl uses
his memory successfully to find the item for trading.

world contained only eight objects for the players to remember. The number of
objects in a given area increased from a single object to four similar objects of
different colors. In later rounds, more object models were included as opposed
to differentiating by color. Results are shown in Figure E in which subjects are
classified as having good, medium, or bad memories. We found game worlds
containing more objects created more confusion, resulting in players forgetting
or incorrectly remember object locations more often.

In particular, we have set Carl’'s SMcqpacity = 7 and Node/Edge hreshold = 5.
With gathered data, we were able to tune the parameters of our memory model
to make our NPC achieve more human-like performances. By scaling W Mcqie,
which determines the reinforcement rate on nodes and edges in the working mem-
ory, we found when W Mg.q. > 8 Carl achieves similar performances to human
player’s with good memory; when 5 < W Mg.qe < 8 medium memory perfor-
mance is obtained and when W M4 < 5 performance of human player with
bad memory is reached. Furthermore, the data yielded some other interesting
findings:

— Using all different object models has no significant improvement over using
limited models with different colors (which was assumed to be more con-
fusing) in terms of recalling their locations. This implies that creating more
models in games may have limited function in helping players remember
their locations.
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— When the total number of objects in the environment was over 20, 90% of
players forgot the desired item’s location even when the item was among the
last 6 items seen. This indicates that reinforcement is not strictly distributed
to the latest concepts.

— People who play games more than 20 hours per week out-performed people
who play games between 5 to 20 hours per week and those who play games
less than 5 hours a week by 26% and 65% respectively, with no such increment
in their memory capabilities (based on their self-reporting memory abilities
and memory test results).

Besides the user study, in order to further provide users some guidance in
tuning the parameters of our memory model and also to evaluate the sensitivity
of these parameters, we conducted several analyses. In our first analysis, we
examine the impact changing the values of Nodeipreshoid and Edgeipreshoid; how

B Good M Medium Bad

10

visiting

Average number of wrong room

Round of playing

Fig. 4. Performance results of the user study: subjects are grouped as having good,
medium, or bad memories according to the memory test. The first four (i.e. 1 to 4)
rounds contain limited objects with different colors while the last four (i.e. 5 to 8)
contain more object models in which influence of the color factor was dropped.
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Fig.5. An experiment of influences of Nodetnreshoia and Edgetnreshoia 0n the total
number of strong nodes and strong edges retrieved from the long-term memory into
the working memory. (Quantity of nodes is 100, of edges is 2,500; SMcapacity = 5,
FEdgeinreshotd in (a) and Nodeihreshold I (b) are both 5).
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Fig. 6. An experiment of correlation between number of concepts and total number of
nodes and edges in working memory (SMcapacity = 5, Node/Edgeinreshoia = 5)

many nodes and edges in their strong stages will get retrieved from the long-term
memory into the working memory. These values play a vital role in determining
agent memory capability. To carry out the experiment, we have chosen 100 nodes
and random 2,500 edges with randomly assigned strength factors residing in the
long-term memory. The first result is shown in Figure Bla). In this case, the
Edgeinreshold and SMegpacity have been set to 5 while Nodeipresholda increases
from 1 to 10. As we can see, as Nodethreshold Erows which indicates the range
of node strong stage shrinks, the number of retrieved strong nodes and strong
edges decreases. The result shown in Figure Blb) has enlarged the difference
between the two values. In this setting, both the Nodeihreshora and SMeapacity
have been set to 5, while the Edgeipreshold increases from 1 to 10. This analysis
indicates, given that in our memory model, concepts are represented by nodes,
in terms of enhancing memory capability of the virtual characters, Nodespreshold
has more influence over Edgeinreshola €ven though the later value decides how
many possible links can be stretched out from a particular node during the
memory retrieving process.

Based on the results of our first analysis, a second one was run testing the
total number of retrieved strong nodes and edges in working memory when the
edges were increased from 500 to 2500. The result is shown in Figure [l In this
case, the Nodeinreshotds Edgeinreshold and SMeapacity have been all set to 5 for a
consistent experiment. When 500 edges exist in the graph and also with random
strength factors that could spread with value equal or higher than 5, we can see
basically only starting nodes and nearly no edges would be activated. After that,
the difference between the two values enlarges.

The final analysis focuses on SM apacity. While the number of starting nodes
controlled by SMcapacity is assumed to have an impact on the number of strong
nodes and strong edges retrieved into working memory, we found that increasing
the value of SMcapacity from 5 to 9 has a trivial effect. This is because while
SM_capacity is increasing from 5 to 9, making the starting nodes in the activation
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process increase, this ratio compared to overall nodes (i.e. 100 in this experiment)
is still quite small. In addition, the sparse nature of the graph limits the effects.

5 Conclusion and Future Work

We designed and developed a synthetic, parameterizable memory model with the
intent of creating more plausibly human NPCs. Our model embodies a sensory
system, working memory model, and long-term memory model, which supports
a variety of psychological activities such as forgetting concepts and creating false
memories. This allows our virtual characters to perform complex, emergent, and
believable behaviors. Additionally, our user study and analysis provides guidance
and insights into potential uses for our memory model and it’s effectiveness in
setting up NPCs with skill levels comparable to human users.

Of course, our model is not complete. We would like to add a more refined
perception model which includes modalities other than sight. Also, our future
agenda includes extending the implementation of memory distortions to more
than just a simple probability. This mechanism can potentially stimulate agent
creativity and enable more spontaneous, emergent behaviors. Given our current
detailed memory infrastructure, further development of an effective, plausible
mental control module is also worth exploration. Finally, with some optimization,
integration with an existing knowledge base could yield interesting results.
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Abstract. |Episodic Memory (EM )|abilities are important for many types
of intelligent virtual agents (IVAs). However, the few IVA-EM systems im-
plemented to date utilize indexed logs of events as the underlying memory
representation, which makes it hard to model some crucial facets of hu-
man memory, including hierarchical organization of episodes, reconstruc-
tive memory retrieval, and encoding of episodes with respect to previously
learnt schemata. Here, we present a new general framework for EM mod-
eling, DyBaNeM, which capitalizes on bayesian representation and, con-
sequently, enables modeling these (and other) features easily. By means of
a proof-of-concept implementation, we demonstrate that our approach to
EM modeling is promising, at least for domains of moderate complexity.

Keywords: Episodic Memory, Dynamic Bayes Networks, Dialog.

1 Introduction

FEpisodic memory (EM) [27] represents personal history of an entity. Episodic
memories are related to particular places and moments, and are connected to
subjective feelings and current goals. In the context of agent-based systems,
episodic memory has been studied as a tool enhancing an agent’s performance
in simulated environments [23|26/13]. [EM] abilities can also increase believability
of [intelligent virtual agents (IVAs)|in many applications, including role-playing
games, serious games, interactive storytelling systems, and tutoring applications.
Agents for a serious anti-bullying game were equipped by a simple [EM] for the
purpose of debriefing [9]. Virtual guide Max uses [EM] to modify museum tours
based on Max’s previous experience [1924]. Generic [EM] for virtual characters
was proposed in [6]. Similarly [EM| can be used in cognitive robots [10]. At the
same time, studies investigating how humans perceive [VAg with [EM] abilities
started to be conducted. For instance, several results suggest that humans tend to
prefer [VA] with imperfect memory [5I22]. Increased interest of users interacting
with an agent presenting background stories possibly stored in[EMlin first person

was shown in [3}

! Some authors prefer the term autobiographic memory. In cognitive psychology, the
meaning of the two terms differs but for the purpose of the present paper, we use
them as synonyms. For more detailed review of [EM] agents, see [21].

R. Aylett et al. (Eds.): IVA 2013, LNAI 8108, pp. 15-E8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Here we present a new modelling framework, DyBaNeM. It has been
created specifically with [VAS needs in mind, that is, with the needs to model
human[EMlin a more believable manner than in the past, for instance, to respect
fallibility of human memory. The framework brings several key innovations. First,
to our knowledge, none of the abovementioned systems enables reconstruction of
hierarchical episode structure (i.e., episode — subepisode relationship) in cases
where an observer [VA] let us call him Bob, equipped with the [EM] observes an-
other[[VA] say, Alice. Bob can see Alice’s atomic actions but he has to reconstruct
her high level goals if he wants to remember them. Only the model presented
in [6] makes it possible for Bob to remember his own hierarchy of episodes but
not that of Alice’s. Second, our framework enables probabilistic reconstructive
retrieval process that can result in reconstruction of events that have not hap-
pened at all, but they are sensible given the other stored memories. Third, the
model remembers only some of the most salient events as opposed to most of
the current models that use data structure resembling plain log of events such
as [619]. While some models use emotions as a measure of saliency, e.g. [824], we
use mathematically better rooted deviation from a statistical schema. Fourth,
current models cannot express degree of belief in the recalled memory, they usu-
ally either return an episode or nothing. Our framework removes this restriction,
recall in DyBaNeM results in multiple, more or less probable, possibilities. Fifth,
the framework uses [VAl's personal experience in encoding of the episodes. Two
[VAS may remember the same episode in differently.

From the psychological point of view the framework is inspired by the
[Fuzzy-Trace Theory (FTT)|[11].[FTTIhypothesizes two parallel mechanisms that
encode incoming information: verbatim and gist. While verbatim encodes the
surface-form of the information in detail, gist encodes the meaning in a coarse-
grained way [11]], capitalizing on previously learnt schemata [2] of episodes and
parts of episodes. From the computational point of view the framework uses
[Dynamic Bayesian Network (DBN)| [18] as the underlying probabilistic model.

We illustrate possible use-cases of the framework on the following example.
Imagine a MMORPG inhabited by hundreds or even thousands of
[non player characters (NPCs)|l Each[NP( can be interviewed by a human player
that may ask two basic types of questions: 1) “What were you doing yesterday?”;
2) “What was the player X doing yesterday?” The first question asks about the
[NPCFs recollection of its own actions, the second asks about the NPCl's memory
for actions of a human controlled avatar (or a different [NPC). It is clear that the
[NPC has to be equipped with an [EM] model to answer both of these questions.
However, the second question also requires the model to be able to interpret the
players’ (NPCk’) actions and infer his/her high level goal that are not directly
observable in the environment. Our framework can do that. In addition, the
model should be generic and applicable to different [NPCs with minimal effort.
In DyBaNeM, the model’s parameters can be automatically adjusted for each
type of[NP(Jin the game by means of learning schemata of episodes by standard
byesian methods.




DyBaNeM: Bayesian Episodic Memory Framework for IVAs 17

Finally, while our [VAd are not equipped with a dialog generating system, our
framework enables, in principle, the following features in the dialog between the

player and a[NPC]:

1. The[NPClcan provide a high level summarization of an activity. For instance,
when the player (P) asks: “What were you doing yesterday?”, the NPC (N)
equipped with our model can answer: “After getting up I went to work, in
the afternoon, I visited my friends and then I returned home.” instead of
inadequately detailed “I got up, then I did my morning hygiene. I had a
breakfast, I get dressed and ...”

2. The player can ask further clarifying questions. E.g., P: “How did you get
to your friends?”; N: “I walked there.”

3. The can express degree of certainty for each recalled event. E.g., N:
“Maybe I went there by a car. I'm not sure.”

4. The [NPCl can make mistakes that are believable given the context. E.g., N:
“T went to work by public transport.” (Even though the [NPClused a car.)

5. The memory weights interestingness of the events, thus it can highlight
the most unusual memories. P: “What were you doing yesterday?”; N: “I
saw a foreign army marching through the town, the rest of the day was as
usual.”

6. Personal experience can influence interpretation of others’ activity. A worker
may think that the observed player is just visiting a museum, whereas
a thief NPCl may reveal that the player is preparing a theft.

We now detail these six above mentioned use cases and we sketch how Dy-
BaNeM can be used to implement them. Then we describe DyBaNeM’s core. In
the end we present a prototype [[VAl simulated in a 3D environment equipped
with DyBaNeM and experiments demonstrating applicability of the model.

2 How DyBaNeM Supports Rich Dialog with IVAs

First we will briefly summarize functions and processes of DyBaNeM [EM] then
we will detail how these can support the user’s interaction with the [VAL
DyBaNeM uses episodic schemata learnt a priori to segment sequences of ob-
servations into meaningful episodes that can have hierarchical structure. Episodic
schemata are parameters of the underlying probabilistic model used in several
stages of DyBaNeM’s working cycle. The probabilistic model is implemented by
a First the schemata has to be specified by hand or learnt from labeled
data. This happens “offline” before the model is deployed to the [VAl Later, in
encoding, the model is presented with a sequence of observations to be stored.
DyBaNeM deduces hierarchy of episodes represented by the observations and
picks the most interesting facts called mems that will be stored (persisted in
a long term store). These mems will become the internal representation of the
observations, e.g. one day of the agent’s activity. Interestingness is measured
with the use of the episodic schemata. During storage some of the mems may be
forgotten. In retrieval the mems, that is the exact memory of fragments of the
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past events, together with episodic schemata, are used to reconstruct the whole
original episodes. This process may be imperfect, the more mems remain stored
the better will be the match between the original and the recalled episodes. We
may perceive this process as a lossy compression of the episodes.

Now we will show how the functions listed in Introduction are enabled by
DyBaNeM. We will use an example dialog where a human user interviews [VA]
Bob about his observation of [[VA] Alice. Technical details of these six functions
will be discussed later.

1. High level summarization is enabled by hierarchical nature of Dy-
BaNeM. The recalled sequences contain not only atomic actions but also high
level episodes that can be used as summarization of the sequence of actions. Thus
if Bob has DyBaNeM with two levels of abstraction, the values reconstructed by
the bayesian inference on the highest level can be used to provide a summary of
the day. Fig. [l shows an example of such situation.

High level summary

(%]
(0]
3 yooooommmmmEEAmAAAARAASCIOTOTT TP PP PP e
?’; ’ Morning routine H Work H Dinner ‘
g [ Hygiene || reakast || commute |[“office ]| GetTo |[ Restaurant ]| Gettiome | g
[72]
i & [ofofllo] e gL

Fig.1l. Summarization example. Bob is a detective who monitors Alice. First, let Bob
observe Alice’s atomic actions og.r. Second, Bob can deduce the higher level episodes
from this observation. Third, Bob encodes the whole day by the most salient events
— these are the mems computed in the encoding algorithm. Mems are marked as the
shaded boxes. When Bob is asked to summarize what Alice did yesterday he recalls
the mems and reconstructs the rest with the use of the episodic schemata. In the end
he responds by episodes in the highest level: “Morning routine, work and dinner.”

2. Possibility of further clarifying questions is another useful feature
of the hierarchical memory organization. When the user asks for details of an
episode, Bob can reply by its sub-episodes as illustrated on Fig. 2.

3. Expressing degree of certainty for recalled events is enabled by
probabilistic nature of the framework. Each action/episode is represented by at
least one random variable in the During reconstructive recall we obtain
a probability mass function (PME]) for each variable that encodes probability
of every action/episode at this point in time. When the probability of the most
probable outcome dominates the other outcomes, we can say that the [[VAl is
sure. However if there are two competing alternatives, the [[VA] can reflect this
in the dialog. See Fig. [Zb for an example.

4. Believable mistakes in recall can emerge as interplay of forgetting and
reconstructive retrieval. When only a few mems remain stored then during the
recall the forgotten events are reconstructed from the episodic schema. It can
happen that the schema predicts an event that had not actually happen but it fits
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Fig. 2. a) When Bob is asked to say more about Alice’s dinner, he will reply: “She
left from work and went to the restaurant, she ate there and then she went back
home.” Shaded boxes represent mems, white represent reconstructed events. b) Further
question can be: “How did she get to the restaurant?” which asks about recall of
atomic actions represented by observations os and o7. In case of og the associated
[PMTE] computed in recall assigns similar probability to both Walk and Car. Thus Bob
is not sure and he can reflect this in his answer: “She went by car or she just walked,
I am not sure, sorry.”

well to the way the episode usually unfolds. Different approach to this so called
false memories phenomenon is discussed in our previous work [28]. Continuing
in the example from Fig. 2 it may be the case that Alice used Public transport
that day, but Bob does not remember this in a mem and his schema favors other
options.

5. Measuring interestingness of events can be achieved by comparing the
actual events to prediction from the schema. Imagine that 95 percents of days
start by a sequence: Get up, Brush teeth, Have a shower, Have a breakfast. If the
schema is expressive enough to capture this sequence, those events will become
completely uninteresting. They are predictable, thus they do not distinguish one
day from other. However meeting foreign soldiers marching through one’s home
town is much less probable. Thus it is the event that deserves more attention
in the dialog than brushing teeth every morning again and again. The general
notion is the lower the probability of an observed event given schemata the
higher the surprise of observing it. We use [Kullback-Leibler (KL)|divergence [20]
to measure how each observed event “diverges” from the prior prediction given
solely by the schemata.

6. Influence of personal experience on interpretation of behavior of
others is possible through a personalized set of episodic schemata for every [VAL
Episodic schemata are parameters of the probabilistic model used in DyBaNeM,
thus if Bob has a schema theft preparation, he may reveal that Alice was not
visiting the gallery because of her interest in the new exhibition. Instead, he may
conclude, she was examining the safety devices near the Da Vinci’s painting. If
the player asks [[VA] Cloe who does not have such schema, she would not know
what Alice was planning.
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3 DyBalNeM: Probabilistic EM Framework

We now describe DyBaNeM’s computational core. We start with auxiliary defi-
nitions needed for description of the framework. Then we show how [DBNg can
be used for activity/episode recognition and how the episodic schemata are rep-
resented. We present the algorithms of encoding, storage and retrieval. Finally,
we show how features 1-6 from Sec. 2] can be implemented in DyBaNeM. Ad-
ditional details of DyBaNeM that are out of scope of this paper are available
in [I5J16]. DyBaNeM is available for download on its homepage?.

Notation. Uppercase letters denote discrete random variables (e.g. X,Y)
whereas lowercase letters denote their values (e.g. z,y). PMFE of random vari-
able X is denoted by P(X). Domain of X is denoted as D(X). Notation X;.;
is a shorthand for sequence of variables X;, X;+1...X;; analogically, z;.; is a
sequence of values of those variables, the subscript denotes time. M will be a
probabilistic model and V is a set of all random variables in the model.

Now we formalize representation of episodes and world state assumed by
DyBaNeM.

Episode is a sequence (possibly of length 1) of observations or more fine-
grained episodes (sub-episodes) that has a clear beginning and an end. Note
that episodes may be hierarchically organized.

Episodic schema is a general pattern specifying how instances of episodes of
the same class look like. For instance, an episodic schema (cf. the notion of script
or memory organization packet [25]) might require every episode derivable from
this schema to start by event a, then go either to event b or ¢ and end by d.

Episodic trace )" is a tuple (e?,e;...el') representing a hierarchy of

episodes at time t; €Y is the currently active lowest level episode, e} is its
direct parent episode and e} is the root episode in the hierarchy of depth
n. Example of an episodic trace can be e§" = (WALK,COMMUTE) and
)" = (GO BY BUS,COMMUTE). The notation of episodic trace reflects
hierarchical nature of agent behavior.

Our framework uses probabilistic representation, hence even if there is only
one objectively valid episodic trace at each time step, input of the model will
be a probability distribution. Let E! denotes a random variable representing a
belief about an episode on level i at time ¢. While the true value of E} is, say, e!,
the [PMFE] enables us to cope with possible uncertainty in perception and recall.

Probabilistic episodic trace EY*" is a tuple of random variables (EY ... E")
representing an agent’s belief about what happened at time t. Analogically EQ:
denotes probabilistic episodic trace over multiple time steps. The following data
structure represents an agent’s true perception of the environment state. Let p;
denotes observable environmental properties at time t.

For instance, p can hold atomic actions executed by an observed agent (and
possibly other things too), e.g. po = STAND STILL, p1 = GET TO BUS.
Analogically to E¥™ and €)', O, is a random variable representing belief about
observation p;.

2 DyBaNeM'’s homepage: https://code.google.com/p/dybanem/
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Fig.3. An example of a[DBNIs structure called [CHMM] [4] together with our notation

Fig. Bl shows how these definitions translate to an example [DBN| structure
used in this paper called |Cascading Hidden Markov Model (CHMM)| [4].

Surprise. In encoding, the framework works with quantity measuring difference
between the expected real state of a random variable and its expected state given
the remembered facts. We call this quantity surprise. In Bayesian framework
surprise can be defined as “difference” between prior and posterior probability
distributions. We adopt approach of [14] who propose to use [KI] divergence [20]
to measure surprise. [KIl divergence of two [PMFd P(X) and P(Y), where
D(X) = D(Y) is defined as:

KL(P(X) = P(Y)) = ¥, pix) P(X = 2)ln 32,

We use notation with — to stress directionality of [KI] divergence; note that
it is not symmetrical.

Learning Schemata. Episodic schemata are represented by parameters 6 of a
[DBNl Expressiveness of schemata depends on the structure of a model at hand.
We suppose that the [DBNPs topology is fixed. Thus learning schemata will re-
duce to well known parameter learning methods. Topologies without unobserved
nodes including are learnt by counting the sufficient statistics [I8]. In
our case examples of episodes that we want to use for schemata learning will
be denoted by D = {d;,ds...d,} where each d; is one day of an agent’s life; d;
itself is a sequence of examples ¢, that is, d; = {c}, ci . .. c’T} Each ¢! is a tuple
(€9 py), it contains an episodic trace and observable state of the environment.

DBN Architecture. For computing probabilities, our framework makes it possi-
ble to use various[DBNlarchitectures. In this paper we use a[CHMMI[4] architecture
which is a hierarchical extensions of a well known[Midden Markov Model (HMM)|
(see Fig. B]). However more complex models, better suited for activity represen-
tation, like|Abstract Hidden Markov Memory Model (AHMEM)|[7], can be used.
Downside of the AHMEM]is its higher computational cost, thus we use simpler,
but still sufficient Experiments comparing AAMEM] with [CHMM]in Dy-
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BaNeM are presented in [I5]. The schemata are represented by parameter é, that
is, by alllconditional probability mass functions (CPMFs)|of the[DBNJ's nodes. Ex-
pressiveness of the schemata depends on the structure of[DBNI In[CHMMIepisodic
schemata encode probability of an episode given previous episode on the same level
in the hierarchy and also given its parent episode (P(E!|E}_,, Ei™)).

Encoding. The encoding algorithm computes a list of mems on the basis of the
agent’s perception, Perg., of the situation to be remembered. Perg.r is a tuple
of PMFS such that Pero.r = {fx : X € Observable}, where fx is[PMFE for each
variable X of interest. In a case when Bob is going to encode Alice’s activity
(see Fig. ), Observable = Og.r. Alice’s eAlice is hidden to Bob, nevertheless
Bob perceives Alice’s atomic actions that are contained in pAtice.

Algorithm [I] is a skeleton of the encoding procedure. The input of the algo-
rithm is Perg.p, where the time window 0 : T is arbitrary. In our work we use
time window of one day. The output is a list of mems encoding this interval.

Algorithm 1 General schema of encoding algorithm
Require: Perg.r — [PMES representing the agent’s perception of the situation (i.e.
smoothed observations)
Require: M — probabilistic model representing learned schemata
1: procedure ENCODING(Pero.7, M)
2: mems — empty > List of mems is empty
while EncodinglsNotGoodEnough do
X + GetMem(M, Pero.r, mems)
Tmaz < MLOPM (X|’ITL€’ITLS)
mems.add(X = Tmaz)
end while
return mems
end procedure

The algorithm terminates once the EncodinglsN otGood Enough function is
false. We use stopping criterion |mems| < K because this models limited mem-
ory for each day. In each cycle, the GetMem function returns the variable X}
that will be remembered. The M LO function (most likely outcome) is defined as:
MLOp,, (X |evidence) = argmax,¢p(x) P(X = zlevidence). We get the most
probable value for X and add this assignment to the list of mems. The GetMem
function is implemented in the following way. The idea is to look for a variable
whose observed [PME] and [PMFE]in the constructed memory differs the most. This
variable has the highest surprise and hence it should be useful to remember it.
This memory creation strategy is retrospective, it assumes that the agent has all
observations in a short term memory, and, e.g., at the end of the day, he retrospec-
tively encodes the whole experience. The strategy memorizes the value of variable
X such that: X < argmaxy cyo; KL (Pu(Y|Pero.r) = Pyp(Y|mems)), where
P(Y|Pergr) = P(Y|X = fx : fx € Perg.r); we condition the probability on all
observations. VOI C V is a set of random wvariables of interest whose value can
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be remembered by the model. In our implementation VOI = EJ* U Og.r. Note
that we remember only the most probable value, including the time index.

Storage and Forgetting. During storage, the mems can undergo optional time
decayed forgetting. The following equation shows relation between age t of the
mem 1, its initial strength S and its retention R: R(m) = e~ s [I]. The initial
strength S of mem m can be derived from the value of [KT] divergence computed
in GetMem. Once R(m) decreases under the threshold Sforget, m will be deleted
from the list of mems and will not contribute to recall any more.

Retrieval. Retrieval is a simple process of combining the schemata with mems.
We obtain the list of mems for search cue k, which can be, e.g., a given day. Then
we use assignments in the mems list as an evidence for the probabilistic model.
The resulting [PMFH for all variables of interest are returned as a reconstructed
memory for the cue k. Retrieval can be formalized as computing Py (Y |mems)
for each Y € VOI.

Now we show how DyBaNeM’s dialog supporting features are implemented.

1. High level summarization and 2. Further clarifying questions are
possible because of the hierarchical structure of[DBN|used in both encoding and
retrieval. Values of variables Ef.;» (see Fig.[3]) can be used for summarization. If
the user asks for details of time interval (¢1,t2), values of Et”fti can be used to
construct the answer (or Oy, .+, when n = 0).

3. Expressing degree of certainty of recall is implemented by computing
entropy of random variable corresponding to the action/episode. Entropy H(X)
of random variable X is defined as H(X) = =3 px) P(2)log2P(z). The
higher the entropy is, the more uniform the over X is. Thus there is more
uncertainty since all outcomes of X seem similarly probable. On the other hand
when entropy is close to zero there is only a little uncertainty about X'’s value.

4. Believable mistakes in recall result from forgetting and the inference
process in retrieval. It can happen that there was an action a at time ¢’ and during
storage the mem for ¢’ was forgotten. Later in retrieval, that is when computing
[PME] fir = Pp(Ow|mems), the value had to be deduced from remembered mems
and the probabilistic model M that includes the episodic schemata. If action b
is more probable under this assumption (Pap(Op = blmems) > Py (Op =
almems)), b will be recalled instead of a. There is no specific process for this
feature, it is DyBaNeM’s emergent property.

5. Interestingness of events is measured by [KIl divergence in the same
way it is done by the encoding algorithm. The more different is a [PME] pre-
dicted by the schemata from the recalled PMH the higher is the value of [KTl
divergence. The first mem picked by the encoding algorithm is the one that de-
viates most from the prediction from schema. Subsequent mems contain less and
less information. Thus if an [VA] wants to communicate the interesting events
first it can start with the first mem followed by the second and so on. If both the
[VA] and the human player have the same episodic schemata they will be able to
reconstruct the same episodes. This is similar to function of lossy compression
algorithms. DyBaNeM gets observed episode on the input, then it transforms
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the episode into a list of mems that is shorter than the original episode. With the
use of the episodic schemata the mems can be used to reconstruct the episode.
However some details of the episode might be changed due to forgetting and
imperfect schemata. The difficulty in interpreting DBNEM as a compression al-
gorithm is that not only mems but also the episodic schemata 6 has to be stored
(or transmitted). Since storage of 6 requires far more space than storage of one
mem this approach is feasible only if large number of episodes will have to be
stored. On the other hand 6 does not have to be transmitted if both parties, i.e.
Bob and Alice, have already the same schemata.

6. Influence of personal experience follows from a different set of episodic
schemata of each [VAl When Bob’s schemata are trained on a different corpus
of examples than Cloe’s, the resulting probabilistic models will be also different.
Thus inferences from these models may give different mems.

4 Prototype DyBalNeM Connection to an IVA

To demonstrate DyBaNeM’s applicability to the domain of [VAg we connected it
to an [[VAl whose behavior resembles a background character from a MMORPG.
We show 1) that DyBaNeM can learn the schemata, store and recall one day of
[[VATs activity and 2) that it can support the dialog enhancing features discussed
in Sec. 2l We also show 3) that the method has reasonable computational time
requirements given domains of moderate complexity, even though the problem of
exact inference in Bayesian Network is exponential in the network’s treewidth.

Activity Dataset. As input for the model, we generated hierarchical ac-
tivity dataset simulating 23 “days” of an [[VATs life. The [VA]l was controlled
by hierarchical [decision making system (DMS)|based on AND-OR trees formal-
ism. An AND-OR tree describes decomposition of [VA] behavior into goals and
subgoals with possible alternatives of accomplishing each goal. The [VAl's nonde-
terministic scheduling algorithm together with nondeterminism originating from
the 3D simulation result in irregularities of stream of actions produced for each
day. In our previous work we compared various statistical properties of the gen-
erated behavior to datasets of human behavior with reasonable match [I7]. Our
[[VAlis connected to a 3D virtual environment of Unreal Tournament 20043. The
agent was implemented in Java and the Pogamut platform [I2] was used as a
middleware for interfacing the [VAl with the environment.

Every simulated day has a similar structure, the [VA] gets up at home, he
brushes teeth, washes face, goes to the toilet; then he usually goes to work;
in the evening he may go to a theater or to a pub. He may also do shopping,
clean the house and other activities resembling a normal life. In total the sim-
ulation contains 37 different types of atomic actions and 19 types of first level
episodes. The generated stream of actions contains more levels of episodes but
for this evaluation we use only the first level of episodes which is sufficient for

3 Epic Games, 2004, [7.4.2013], http://web.archive.org/web/20060615184746/
http://www.unrealtournament2003. com/
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Fig. 4. Recall of the stored day when three mems are used for reconstruction. The
mems are atomic actions (subfig. b), in ellipses). Subfig. a) shows selected high level
episodes recalled for the day of interest. Level of gray indicates probability of each
atomic action/episode at that time step. The darker the color is the more probable the
action/episode is. This corresponds to the feature 1. Entropy shows how certain the
[[VAlis about his memory for those events (feature 3). The more alternative memories
are there the higher the entropy is. Subfig. b) shows probability and entropy of selected
atomic actions. This is the second level of hierarchy that allows for clarifying questions
(feature 2). Subfig. ¢) shows KL divergence of all episodes (first line) and actions
(second line) in the day compared to the prior episodic schema (feature 5). The most
interesting actions are marked by a cross (gray coding as in the case of probability).
Most of the interesting actions/events become mems. Feature 4 is demonstrated by
“fuzzy” transition around time 10: the model is not sure when exactly happened the
switch from household duties to a gallery visit.



26 R. Kadlec and C. Brom

demonstrating all the features. There are different plans for working days and
for weekends, that increases variability of the the [VAls episodic schemata. Not
all days contained the same number of the atomic actions, the longest one has 33
actions. To make all days equal in size we added a sufficient number of padding
actions DAY END to the end of each day. Details of [VATs are provided
in [I7] (sec 3.2).

Method. Twenty-two days were used for learning episodic schemata. The under-
lying probabilistic model was learned by counting the sufficient statis-
tics [I8]. The 23rd day was stored in DyBaNeM to demonstrate its abilities.
The model was presented with the atomic actions from that day and it had to
deduce high level episodes and store the observations. The result of the encod-
ing process were 3 mems. This way we model Bob’s[EM] for Alice’s activity. For
belief propagation in DyBaNeM'’s[DBNs] SMILH reasoning engine for graphical
probabilistic models was used.

Results. When using only one mem to reconstruct the whole day, 52% of atomic
actions were correctly recalled, with two mems it was 64%, and with three mems
73%. This means that when all three mems were used the most probable action
in 73% of time steps matched the real action previously encoded. Recall of the
stored day when all three mems were used is shown on Fig. @l Learning the
episodic schemata took 2 seconds, computing the first 3 mems for the stored day
took 1.3 second on one core of P8600 2.4GHz, 1.5GB RAM.

Discussion. The evaluation indicates that computational cost is reasonable.
Learning the schemata is done only once off-line and time necessary for encoding
(1.3s) is also acceptable, though the domain is of moderate complexity only.
Fig. @ illustrates all the features 1-5. To demonstrate feature 6 we would need a
second [[VA] with a different lifestyle that could be used to learn another set of
episodic schemata. This extension is trivial but we omit it for space restrictions.
The 73% recall accuracy is a reasonable starting point: it can be increased with
more mems stored, and a user study, a future work, will indicate what accuracy
is most welcomed by users.

Extending the IVA with ByDaNeM is a simple task that requires a developer
only to: a) get logs of IVA’s behavior that were used for episodic schemata
learning, b) decide when to store episodes (e.g. at the end of the day) and c)
decide when to recall the episode. Thus no advanced knowledge of DyBaNeM’s
internals is needed by the IVA developer.

5 Conclusion

We have demonstrated that bayesian approach to IVA—EM modeling, exempli-
fied on our new DyBaNeM framework, is promising and it can be considered by
developers of IVAs with EM abilities as a possible development method. To in-
vestigate scalability of this approach, we are presently experimenting also with

4 SMILE was developed by the Decision Systems Laboratory of the University of
Pittsburgh and is available at http://genie.sis.pitt.edu/.
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larger domains, including human corpora, and different underlying DB repre-
sentations. Our most recent evaluation data actually must be omitted for space
limitations. A key future step is a user evaluation of the framework.

Acknowledgments. This research was partially supported by SVV project
number 267 314 and by grant GACR P103/10/1287. We thank to xked.org for
drawings of Alice and Bob.
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Abstract. Three key requirements of realistic characters or agents in virtual
world can be identified as autonomy, interactivity, and personification. Working
towards these challenges, this paper proposes a brain inspired agent architecture
that integrates goal-directed autonomy, natural language interaction and human-
like personification. Based on self-organizing neural models, the agent architec-
ture maintains explicit mental representation of desires, intention, personalities,
self-awareness, situation awareness and user awareness. Autonomous behaviors
are generated via evaluating the current situation with active goals and learning
the most appropriate social or goal-directed rule from the available knowledge,
in accordance with the personality of each individual agent. We have built and
deployed realistic agents in an interactive 3D virtual environment. Through an
empirical user study, the results show that the agents are able to exhibit realistic
human-like behavior, in terms of actions and interaction with the users, and are
able to improve user experience in virtual environment.

Keywords: Cognitive models, Virtual agents, Self-Organizing neural networks,
Autonomy, Personality, Interactivity.

1 Introduction

Three key requirements of realistic characters or agents in virtual world can be identified
as autonomy, interactivity, and personification [8]]. However, most virtual worlds tend
to constrain agents’ actions to a very coarse level, dictated by hard coded rules [18110].
In recent years, there has been growing interest in creating intelligent agents in virtual
worlds that do not follow fixed scripts predefined by the developers, but instead react
accordingly to actions performed by the players during their interaction. In order to
achieve this objective, there have been approaches attempting to model the dynamic
environments and user’s immediate context [28,517]. However, they typically ignore a
significant component of making the virtual world experience more intense and per-
sonalized for players, namely the capability for the agents to adapt over time to the
environment and to the habits as well as eccentricity of a particular player.

Indeed, it has been a great challenge to develop intelligent learning agents that are
able to adapt in real time and improve the interactivity and playability in virtual worlds.
Learning in a virtual world, just like in the real world, poses many challenges for an
agent, not addressed by traditional machine learning algorithms. In particular, learning
in virtual world is typically unsupervised, without an explicit teacher to guide the agent
in learning. Furthermore, it requires an interplay of a myriad of learning paradigms.

R. Aylett et al. (Eds.): IVA 2013, LNAI 8108, pp. 29-3] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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In this paper, we present a self-organizing neural model, named FALCON-X (Fusion
Architecture for Learning and Cognition - eXtension), for creating intelligent learning
agents in virtual worlds. By incorporating FALCON-X, an agent is able to learn from
sensory and evaluative feedback signals received from the virtual environment. In this
way, the agent needs neither an explicit teacher nor a perfect model to learn from.
Performing reinforcement learning in real time, it is also able to adapt itself to the
variations in the virtual environment and changes in the user behavior patterns.

The FALCON-X model is proposed based on an integration of the Adaptive Control
of Thought (ACT-R) architecture 1] and the fusion Adaptive Resonance Theory (fusion
ART) neural model [23]]. Fusion ART is a generalization of self-organizing neural mod-
els known as Adaptive Resonance Theory (ART) [4]. By expanding the original ART
model consisting of a single pattern field into a multi-channel architecture, fusion ART
unifies a number of network designs supporting a myriad of learning paradigms, in-
cluding unsupervised learning, supervised learning and reinforcement learning. A spe-
cific instantiation of fusion ART known as Temporal Difference-Fusion Architecture
for Learning and Cognition (TD-FALCON) has shown to have competitive learning ca-
pabilities, compared with gradient descent based reinforcement learning systems [24].
While retaining the structure of the visual, manual, intentional and declarative modules
of ACT-R, FALCON-X replaces the symbolic production system with a fusion ART
neural network serving as the core inference area for fusing and updating the pattern
activities in the four memory buffers. In addition, a critic channel is incorporated to
regulate the attentional and learning processes of the core inference area.

FALCON-X may potentially be used to model a wide range of cognitive processes.
In this paper, we describe how behavior models can be learned as sensory-motor map-
pings through reinforcement learning. We have developed learning personal agents us-
ing FALCON-X in a 3D virtual world called Co-Space. In this application, the learning
personal agents are designed to befriend human users and proactively offer personal-
ized services. Our experiments show that the agents are able to learn player models that
evolve and adapt with player during run time. More importantly, the user study shows
that the use of intelligent agents can improve user experience in the virtual world.

The rest of this paper is organized as follows: After a brief review of related work
in section 2, we present the FALCON-X architecture in section 3. Section 4 describes
the generic FALCON-X dynamics, followed by how it may be used to learn procedural
knowledge and behaviour model in section 5. Section 6 presents the embodiment of
FALCON-X in an integrated agent architecture. The evaluative experiments on the Co-
Space simulated domain is reported in section 7. The final section concludes with a
highlight of our future direction.

2 Related Work

2.1 Intelligent Virtual Agents

Intelligent agents have been popularly used for improving the interactivity and playabil-
ity of virtual environment and games. However, most such agents are based on scripts
or predefined rules. For example, in the Virtual Theater project, synthetic actors who
portray fictive characters are provided by improvising their behaviors. The agents are
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based on a scripted social-psychological model which can define personality traits that
depend on the values of moods and attitudes [[18]. Agents in Metaverse, which was built
using Active Worlds, are capable of taking tickets for rides, acting as shopkeepers or
other tasks typically associated with humans. However, these agents are basically reac-
tive agents which work in a hard-wired stimulus-response manner. Virtual psychothera-
pist ELIZA [26]], although not even trying to understand its *patients’, often managed to
make them feel taken care of, thus demonstrating the effects achievable with rule-based,
adeptly modelled small talk. A conversational virtual agents Max has been developed
as a guide to the HNF computer museum, where he interacts with visitors and provides
them with information daily [10]. However, the design remains rule-based.

In view of the limitations of static agents, some researchers have adopted learning
methods into agents in virtual environment. For example, Yoon et.al. present a Crea-
ture Kernel framework to build interactive synthetic characters in the project Sydney
K9.0 [28]. Their agents can reflect the characters’ past experience and allow individ-
ual personalization. But all the capabilities of the agents rely on past knowledge and
couldn’t adapt to user gradually during run time. To name the most elaborated one, AL-
ICE [235]) utilizes a knowledge base containing 40000 input response rules concerning
general categories, augmented with knowledge modules for special domains like Ar-
tificial Intelligence. This approach has also been employed in other domains, e.g., to
simulate co-present agents in a virtual gallery [5]. More recently, an embodied conver-
sational agent that serves as a virtual tour guide in Second Life has been implemented
by Jan [7]. Although it learns from past experience, it does not adapt over time accord-
ing to the habits of a particular player or the changes in the environment.

All the work described above have developed a wide range of agents in virtual world
with specific motivations. However, to the best of our knowledge, there have been very
few, if any, agents that perform reinforcement learning in real time and can adapt their
actions and behaviour during their interaction with the user and environment in virtual
world. Our work is motivated by these considerations.

2.2 Cognitive Models

In the fields of artificial intelligence and cognitive science, there has been a debate
over symbolic and sub-symbolic (connectionist) representation of human cognition [9],
motivating two parallel streams of research directions. The symbolic field holds the
view that, the human cognitive system uses symbols as a representation of knowledge
and intelligence is through the processing of symbols and their respective constituents.
Soar [[1L1]], ACT-R [1]], and ICARUS [12]], for example, are representative systems taking
the symbolic approach.

On the other hand, the sub-symbolic camp argues that the human cognitive sys-
tem uses a distributed representation of knowledge and is capable of processing this
distributed representation of knowledge in a complex and meaningful way [6]. Sub-
symbolic or connectionist systems are most generally associated with the metaphor of
neural models, composing of neural circuits that operate in parallel. The key strengths
of sub-symbolic systems lie in their learning abilities and allowance for massively par-
allel processing.
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Fig. 1. The FALCON-X architecture

In view of their complementary strengths, there have been great interests in hy-
brid architectures that integrate high level symbolic systems with sub-symbolic mas-
sively parallel processes. Some examples are CLARION [20] and ACT-R with sequence
learning [13]. Among the hybrid systems, temporal difference learning using gradient
descent based function approximator has been commonly used. However, gradient de-
scent methods typically learn by making small error corrections iteratively. In addi-
tion, instability may arise as learning of new patterns may erode the previously learned
knowledge.

3 The FALCON-X Architecture

The FALCON-X architecture is presented herein, based on an integration of the ACT-R
cognitive architecture and the fusion ART neural model (Figure[I). While retaining the
structure of the visual, manual, intentional and declarative modules of ACT-R as the pe-
ripheral memory modules, the proposed architecture replaces the symbolic production
system with a fusion ART neural network serving as the core inference area for fusing
and regulating the pattern activities in the four memory buffers. Furthermore, the visual
and manual modules are renamed as the perceptual and motor modules respectively, for
the purpose of generality. As a key departure from ACT-R, an explicit critic module is
also incorporated, which provides reward signals to the core inference area.

The roles and functions of the various peripheral modules are briefly elaborated as
follows.
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— The Perceptual Module receives input signals from the external environment. In
actual applications, some preprocessing of the input signals may be necessary. The
input signals are typically represented as a set of vectors of values in the perceptual
buffer, taken from the sensors.

— The Motor Module receives and executes the actions, produced by a readout ac-
tion from the core inference area. The actions are typically represented as a set
of discrete values in the motor buffer, each of which denotes one of the possible
actions.

— The Intentional Module consists of the task-relevant goals serving as the context.
Each goal is represented as a target state vector in the goal buffer, representing the
active goals of the agent.

— The Declarative Module consists of middle-term and long-term memories, rele-
vant to the tasks. The memory can be represented in many ways. For example, it
can be a look-up table or a neural network.

— The Critic Module computes reward signals that indicate the goodness of the ac-
tions taken. Generally, there can be two type of critics, namely, reward signals re-
ceived from the external environment; and estimated payoff computed based on the
current states and the target states.

— The Core Inference Area receives activations from the five memory modules and
acts as a key driver of the inference process. In ACT-R, the production system op-
erates in three processing steps: matching, selection and execution. In FALCON-X,
the inference mechanism is realized via a five-step bottom-up and top-down neu-
ral processes, namely code activation, code competition, activity readout, template
matching and template learning, described in the next section.

The design of FALCON-X is motivated by the neural anatomy of human brains.
The core inference area of FALCON-X can be related to basal ganglia [16], which are
a group of nuclei in the brain interconnected with the cerebral cortex and brainstem.
Basal ganglia are important as they have been found to be associated with a variety
of cognitive functions, including motor control, cognition, emotions and learning. The
main components of basal ganglia includes striatum, globus pallidus (GP), subthalamic
nucleus (STN), substantia nigra pars reticulata (SNr) and dopaminergic (DA) neurons.

The cognitive field in FALCON-X, employed for code selection, corresponds to the
combined functionality of GP, STN and SNr, as supported in the literatures [17.3].
While ACT-R relates the pattern matching function of the production system to stria-
tum, FALCON-X identifies striatum as the memory fields for stimuli presentation and
pattern matching. While ACT-R associates thalamus to the execution function, thala-
mus is deemed to serve as a relay for motor commands in FALCON-X. Each pattern
field of the FALCON is thus considered as a functional combination of striatum and
thalamus. The neural substrates of the perceptual, motor, intentional and declarative
modules have been discussed extensively in the context of ACT-R [1]. The new critic
module in FALCON-X mirrors the dopamine neurons, whose phasic responses are ob-
served when an unexpected reward is presented and depressed when expected reward is
omitted [[19].
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4 The FALCON-X Dynamics

As a natural extension of ART, FALCON-X responds to incoming patterns in a contin-
uous manner. In each inference cycle, the core inference area of FALCON-X receives
input signals from the perceptual, intentional and declarative modules, and selects a
cognitive node based on a bottom-up code activation and competition process. Whereas
the intentional buffer maintains the active goals, the declarative module provides the
relevant conceptual memory for code selection. The inference engine may also receive
reward signals from the critic module. It is important to note that at any point in time,
FALCON-X does not require input to be present in all the pattern channels. For those
channels not receiving input, the input vectors are initialized to all 1s.

Upon activity readout, a template matching process takes place to ensure that the
matched patterns in the four memory modules satisfy their respective criterion. If so, a
state of resonance is obtained and the template learning process encodes the matched
patterns using the selected cognitive node. Otherwise, a memory reset occurs, following
which a search for another cognitive node begins. During prediction or action selection,
the readout patterns typically include the actions to be executed in the motor module.
In other cases, the conceptual memory buffer is updated and the goals may change as a
result of inference.

The detailed dynamics of the inference cycle, consisting of the five key stages,
namely code activation, code competition, activity readout, template matching, and tem-
plate learning, are presented as follows.

Input vectors: Let I¢* = (IF 15 ... I¢*) denote the input vector, where I € [0, 1]

indicates the input ¢ to channel ck. With complement coding, the input vector I°* is

. k -k
augmented with a complement vector I" such that I ZL =1-1I¢.

Activity vectors: Let x°* denote the F£* activity vector for k = 1, ..., K. Let y denote
the F; activity vector.

Weight vectors: Let wjk denote the weight vector associated with the jth node in F5
for learning the input patterns in FF for k = 1,..., K. Initially, F, contains only one
uncommitted node and its weight vectors contain all 1’s.

Parameters: The fusion ART’s dynamics is determined by choice parameters contri-
bution parameters v°* € [0, 1] and vigilance parameters p* € [0,1] for k = 1,..., K.

Code activation: Given the activity vectors I¢!, ..., I°® for each F, node j, the choice
function T} is computed as follows:

K .
o T AWk

Ti=> % (1)

where the fuzzy AND operator A is defined by (p A ¢); = min(p;, ¢;), and the norm |.|
is defined by |p| = ), p; for vectors p and q.

Code competition: A code competition process follows under which the F5 node with
the highest choice function value is identified. The winner is indexed at J where

T; =max{T} : for all F; node j}. )
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When a category choice is made at node J, y; = 1; and y; = 0 for all j # J. This
indicates a winner-take-all strategy.

Activity readout: The chosen F; node J performs a readout of its weight vectors to the
input fields F'?* such that
xH =T A we. 3)

Template matching: Before the activity readout is stabilized and node J can be used
for learning, a template matching process checks that the weight templates of node J
are sufficiently close to their respective input patterns. Specifically, resonance occurs if
for each channel k, the match function chk of the chosen node J meets its vigilance
criterion: . .

ck_‘IL’/\W3| ck

F= g 2o 4)
If any of the vigilance constraints is violated, mismatch reset occurs in which the search
process selects another F» node J until a resonance is achieved.

Template learning: Once a resonance occurs, for each channel ck, the weight vector
w<F is modified by the following learning rule:

W;k(new) _ (1 . 6ck)ch]k(old) + Bck(lck /\WLc]kr(old)). (5)

When an uncommitted node is selected for learning, it becomes committed and a new
uncommitted node is added to the F5 field. FALCON thus expands its network archi-
tecture dynamically in response to the input patterns.

S Learning Procedural Knowledge

In this section, we illustrate how FALCON-X, specifically the core inference area to-
gether with the perceptual, motor and critic modules, can acquire procedural knowledge
through reinforcement learning in a dynamic and real-time environment.

FALCON-X learns mappings simultaneously across multi-modal input patterns, in-
volving states, actions, and rewards, in an online and incremental manner. Various
strategies are available for learning in FALCON-like architectures. We highlight two
specific methods, namely reactive learning and temporal difference learning as follows.

5.1 Reactive Learning

A reactive learning strategy, as used in the R-FALCON (Reactive FALCON) model
[21], performs fast association between states and actions, based on reward signals.
Given a reward signal (positive feedback) in the critic buffer, FALCON associates the
current state in the perceptual buffer with the selected action represented in the motor
buffer. If a penalty is received, it learns the mapping among current state, the comple-
ment pattern of the action taken and the complement value of the given reward.
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Table 1. The TD-FALCON algorithm with direct code access

1. Initialize the FALCON network.

2. Sense the environment and formulate a state vector S based on the current state s.

3. Following an action selection policy, first make a choice between exploration and exploitation.
If exploring, take a random action.
If exploiting, identify the action a with the maximal Q(s, a) value by presenting the state vec-
tor S, the action vector A=(1,...1), and the reward vector R=(1,0) to FALCON.

4. Perform the action a, observe the next state s’, and receive a reward r (if any) from the envir-
onment.

5. Estimate the revised value function Q(s, a) following a Temporal Difference formula such as
AQ(s,a) = a(r + ymax, Q(s',a’) — Q(s,a)).

6. Formulate action vector A based on action a and reward vector R based on Q(s, a).

7. Present the corresponding state, action, and reward vectors S, A, and R to FALCON for learn-
ing.

8. Update the current state by s=s’.

9. Repeat from Step 2 until s is a terminal state.

5.2 Temporal Difference Learning

A key limitation of reactive learning is the reliance on the availability of immediate
reward signals. TD-FALCON [24/22] is a variant of FALCON that incorporates Tem-
poral Difference (TD) methods to estimate and learn value functions of action-state
pairs Q(s, a) that indicates the goodness for a learning system to take a certain action a
in a given state s. Such value functions are then used in the action selection mechanism,
also known as the policy, to select an action with the maximal payoff. The temporal
difference learning algorithm is summarized in Table[dl

Given the current state s, TD-FALCON first decides between exploration and ex-
ploitation by following an action selection policy. For exploration, a random action is
picked. For exploitation, TD-FALCON performs instantaneous searches for cognitive
nodes that match with the current states and at the same time provide the highest reward
values using a direct access procedure. Upon receiving a feedback from the environment
after performing the action, a TD formula is used to compute a new estimate of the Q
value of performing the chosen action in the current state. The new Q value is then used
as the teaching signal for TD-FALCON to learn the association of the current state and
the chosen action to the estimated Q value.

6 The Integrated Cognitive Agent Architecture

For modelling intelligent virtual agents, FALCON-X needs to be integrated with the
necessary peripheral modules for interaction with the environment. As shown in Fig-
ure 2] the integrated agent architecture consists of a Perception Module receiving sit-
uational signals from the environment through a set of sensory APIs and an Action
Module for performing actions through the various actuator APIs. If the sensory signals
involve a text input, the Chat Understanding Module interprets the text for the player’s
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intention. The outputs of Situational Assessment and Chat Understanding Modules then
serve as part of the working memory content providing conditional attributes to the In-
ference Engine. The Inference Engine based on the FALCON-X model then identifies
the most appropriate action, by tapping a diverse pool of knowledge, in accordance
to the desire, intention and personality of the virtual agent. The knowledge learned
and used by the Inference Engine include declarative knowledge of self, players, and
environment, as well as procedural knowledge of goal-oriented rules, which guide an
agent in fulfilling goals, and social rules, for generating socially appropriate behavior.
The decision of the Inference Engine again forms part of the Working Memory, which
throughout maintains the context of the interaction. For actions involving a verbal re-
sponse, the Natural Language Generation Module translates the chosen response into
natural text for presentation.

Consistent with the view in the state of the art [8], we outline three key charac-
teristics of realistic characters in virtual worlds, namely autonomy, interactivity, and
personification, described as follows.

Autonomy. Based on a family of self-organizing neural models known as fusion Adap-
tive Resonance Theory (ART) [23], the Inference Engine of the proposed agent archi-
tecture performs a myriad of cognitive functions, including recognition, prediction and
learning, in response to a continual stream of input signals received from multiple pattern
channels. As a result, an agent makes decisions not only based on the situational factors
perceived from the environment but also her mental states characterized by desire, in-
tention and personality. By modelling the internal states of individual agents explicitly,
the virtual humans can live a more complete and realistic life in the virtual world.

O
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Fig. 2. A schematic of the integrated agent model

Interactivity. For interaction between the agents and the players, an intuitive user inter-
face is provided, through which a player may ask typical questions and provide quick
responses by button clicks. The player may also enter free-text sentences via the chat
box. The dual communication mode provides the players both ease of use and flexibil-
ity. While interacting with player, the agent builds an internal model of the player, with
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his/her profile, interests and preferences. The player model in turns allows the agent to
make intelligent conversation on topics relevant to the player.

Personification. For improving the believability of virtual humans, our agents adopt
the Five Factor Model (FFM) [[14], which characterizes personality in five trait dimen-
sions. By giving a weighage to each dimension, a unique personality can be formed by a
combination of the traits. Comparing with traditional pattern-matching-based conversa-
tional agents, our agents with strong openness and extroversion personality are warmer
and friendlier as they do not stay idle and wait for input queries. Acting pro-actively,
they approach the players, offer help, and make conversation.

7 Evaluative Experiments

7.1 Research Methodology

We developed three versions of NTU Co-Space, each with a distinct type of virtual
agents in the form of Non-Player Characters (NPCs). The first environment (E1) pro-
vides the baseline control condition, wherein the NPCs are only able to display static
messages but do not have the capability to interact with the users. The second envi-
ronment (E2) is the first treatment condition, wherein the virtual humans are designed
as embodied conversational agents using the Artificial Intelligence Mark-Up Language
(AIML) [25]]. AIML is an XML-compliant language that was developed by the Alice-
bot free software community. It is considered as a rule based repository of knowledge
where the engine performs pattern matching to select the most appropriate output based
on the input utterance. We have encoded as many AIML patterns as possible to enhance
the conversational abilities of the agents. The third environment (E3) is the second
treatment condition, wherein autonomous agents using our proposed fusion ART-based
agent model are populated. Although the agents we described in the previous sections
have different personalities, for the purpose of this study, we remove the variation in
personality by deploying only friendly agents.

The subjects were recruited from an Introduction to Management Information Sys-
tems class at a large US university. The scenario given to the subjects is that they were
looking for an overseas university for an exchange program and were visiting NTU
Co-Space to help them in making the decision. Each subject was asked to complete a
quest in the form of a mini-game, where they would experience the key places of the
NTU campus through the quest. The quest involves finding five check-points on campus
where the clue to each check-point was given at the previous check-point.

The objectives of the experiment are two-fold. First, we observe whether deploying
virtual humans in the virtual world will benefit the player’s experience. Second, we
assess how virtual humans with different levels of intelligence may affect the player’s
experience, especially in terms of the following constructs, namely Telepresence (TP),
Social Presence (SP), Perceived Interactivity (PI), Perceived Usefulness (PU), Flow
(FLW), Enjoyment (ENJ) and Behavioral Intention (to return to NTU Co-Space) (BI).

Subjects participated in the experiment in a computer lab. They were asked to fill out
a pre-questionnaire (used to assess the players’ profile, covering demographics infor-
mation and 3D virtual world skills) and then carry out the experiment by completing the
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quest given to them. For subjects in the E1 (control) condition, they completed the quest
by using the map in the system to navigate the virtual world, check up information on
different parts of campus and teleport to the respective checkpoints without receiving
any help from NPCs. For subjects in the E2 (i.e., first treatment) condition, they were
not only provided with the interactive map in the E1 condition, but they could also talk
to the embodied conversational agents to ask for assistance before teleporting through
the interactive map. For subjects in the E3 (i.e., second treatment) condition, in addi-
tion to being provided with the interactive map, they were also offered the assistance
of fusion ART-based NPCs that have the ability of performing autonomous behaviors
both in proactive and responsive ways; moreover, since these NPCs are embedded with
a Natural Language Processing module, they can understand input sentences in a flexi-
ble way. Hence, subjects were able to interact with the intelligent autonomous NPCs to
request for and obtain the information they needed. Because the NPCs are autonomous,
they could even offer teleport service to the specific locations requested. After the sub-
jects have completed the quest, they filled out a post-questionnaire which assessed their
experience. The subjects were first asked for the acronym followed by the full name
of the university to assess their level of recall. The main part of the questionnaire then
captured the subjects’ assessment of the seven constructs (as described earlier) related
to NPC functions. In addition, 3D virtual world skills were also captured to examine
their perceived improvement of skills after experiencing NTU Co-Space.

Among the various constructs, Perceived Usefulness could be objectively assessed
through the time taken to complete the Amazing Quest. The less time spent to complete
the Amazing Quest, the more useful the agents are. Flow was captured through provid-
ing the description of Flow, and then asking subjects to rate the degree of Flow they
experienced and the frequency in which they experienced Flow. The other constructs
were captured using measurement items. At least five items were used to measure each
construct. The items used to measure Telepresence, Enjoyment and Behavioral Intention
were derived from Nah [[15]]. The scale for measuring Social Presence and Interactivity
were adopted from Animesh et al [2]. Given the limited space, we present a sample set
of these items in Table 2l

Table 2. A sample set of Post-Questionnaire

Item Measurement

TP 1 I forgot about my immediate surroundings when I was navigating in the virtual world.
SP 1 During the virtual tour, the interaction with the virtual humans were warm.

ENJ 1 I found the virtual tour to be fulfilling.

BI1 I would consider visiting this virtual world site again.

7.2 Data Analysis

Overall Performance: Table [3] shows the overall performance in the three environ-
ments. We observe that subjects in all the three environments were able to complete
the quest successfully. However, subjects in E3 spent the least amount of time and the
percentage of subjects who could correctly recall the acronym of the campus is higher
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than those of the other two environments. This indicates that the autonomous agents
deployed in E3 are more useful in helping the subjects than those of the other two
environments.

Table 3. overall performance

Evaluation Measures El E2 E3
% of players complete the quest 100% 100%  100%
Time to complete the quest 20m 31s 25m 32s 16m 56s

% of Players recall the acronym of the campus 44% 25% 45%

Descriptive Statistics: Table [ shows the means, standard deviations (SD), and con-
fidence intervals (CI, with a confidence level of 95%) of ratings in E1, E2, and E3
in terms of Telepresence (TP), Social Presence (SP), Perceived Interactivity (PI), En-
joyment (ENJ), Flow (FLW) and Behavior Intention (BI). All of the constructs were
measured using the seven point Likert scale. From the table, we observe that for E3,
the rating of Telepresence, Social Presence, Perceived Interactivity, Flow and Behavior
Intention have better results than E1 and E2. This means by employing autonomous
agents, these factors are perceived to be stronger than those in the environment with
dummy and AIML based agents. However, we note that for enjoyment, the rating in E2
is the best of the three environments. Referring to the 3D virtual world skills assessed
in the pre-questionnaire, subjects in E2 appear to have the best 3D virtual world skills
compared to the other two. As prior work have shown that a higher level of skill is likely
to enhance the feeling of enjoyment [27]], we believe the rating obtained in E2 could be
affected by the higher level of 3D virtual world skills.

Table 4. Descriptive Statistics

El E2 E3

Constructs Mean SD CI Mean SD CI Mean SD CI

TP 3.86 0.34 3.64-4.08 4.08 0.49 3.76-4.40 4.41 0.42 4.14-4.68
SP 3.63 0.44 3.28-3.98 3.82 0.43 3.47-4.16 3.84 0.65 3.32-4.36
PI 4.66 0.67 4.13-5.19 4.37 0.58 3.90-4.83 5.02 0.66 4.49-5.54
ENJ 442 0.44 4.04-4.81 450 0.33 4.11-4.90 4.31 0.72 3.68-4.94
FLW 4.47 0.54 4.00-4.94 4.21 0.28 3.96-4.46 4.58 0.68 3.98-5.18
BI 423 0.71 3.61-4.56 4.51 0.30 4.24-4.78 4.58 0.40 4.23-4.93

Furthermore, a one-way analysis of variance (ANOVA) is used to analyze the results.
Specifically, the F-test is used to evaluate the hypothesis of whether there are significant
differences among the statistic data means for those constructs. The F values are calcu-
lated by the variances between conditions divided by the variance within the conditions.
The p values, on the other hand, represent the probability of test statistic being different
from the expected values and are directly derived from the F test. A small p value thus
indicates a high confidence that the values of those constructs are different. A summary
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Table 5. F-test result

El,E2&E3 El&E3 E2&E3
Constructs F P F p F P

TP 5.47 0.004 11.22 0.001 4.55 0.034
Sp 0.58 0.561 1.10 0.295 0.01 0.903
PI 5.71 0.004 4.00 0.047 12.12 0.001
ENJ 0.15 0.862 0.33 0.566 0.17 0.68
FLW 1.62 0.199 0.28 0.595 3.12 0.079
BI 1.23 0.294 2.40 0.120 0.10 0.751

of the F values and p values among E1, E2 and E3, between E1 and E3, and between
E2 and E3 are given in Table[3

This data analysis revealed the significant effects of the three kinds of virtual humans
in virtual worlds on Telepresence and Perceived Interactivity: F(2,519) = 5.47,p
< 0.01 for Telepresence and F'(2,345) = 5.71,p < 0.01 for Perceived Interactiv-
ity, where the two parameters enclosed in parentheses after F indicate the degrees of
freedom of the variances between and within conditions respectively. Consistent with
the statistics in Table ] the fusion ART-based virtual human generates higher levels
of Telepresence and Perceived Interactivity than the other two types of virtual humans,
with a mean of 4.41 for E3 (versus 3.86 for E1 and 4.08 for E2) for Telepresence, and
a mean of 5.02 for E3 (versus 4.66 for E1 and 4.37 for E2) for Perceived Interactivity.
Although the effect of E1, E2 and E3 on Flow is smaller than that of Telepresence and
Perceived Interactivity, the difference in Flow is perceived to be marginally significant
between E2 and E3, with F'(1,198) = 3.12, p < 0.1, and a mean of 4.58 for E3 (versus
4.21 for E2). This means the Flow experience perceived by subjects who interacted with
the fusion ART-based virtual human is stronger than those interacting with the AIML
based virtual humans. No significant difference was found for the rest of the constructs.

8 Conclusion

For creating realistic agents in virtual world, this paper has proposed a cognitive agent
architecture that integrates goal-directed autonomy, natural language interaction and
human-like personality. Extending from a family of self-organizing neural models, the
agent architecture maintains explicit mental representation of desires, personalities,
self-awareness, situation awareness and user awareness.

We have built and deployed realistic agents in an interactive 3D virtual environment.
We have also carried out systematic empirical work on user study to assess whether
the use of intelligent agents can improve user experience in the virtual world. Our user
study has so far supported the validity of our agent systems. With the virtual characters
befriending and providing personalized context-aware services, players generally found
virtual world more fun and appealing. To the best of our knowledge, this is perhaps
one of the few in-depth works on building and evaluating complete realistic agents
in virtual worlds with autonomous behavior, natural interactivity and personification.
Moving forward, we wish to extend our study by completing the agent architectures
with more functionalities, such as emotion and facial expressions.
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Abstract. We examine the effectiveness of an agent’s approximate the-
ory of mind when interacting with human players in a wartime negotia-
tion game. We first measure how accurately the agent’s theory of mind
captured the players’ actual behavior. We observe significant overlap be-
tween the players’ behavior and the agents’ idealized expectations, but
we also observe significant deviations. Forming an incorrect expectation
about a person is not inherently damaging, so we then analyzed how
different deviations affected the game outcomes. We observe that many
classes of inaccuracy in the agent’s theory of mind did not hurt the
agent’s performance and, in fact, some of them played to the agent’s
benefit. The results suggest potential advantages to giving an agent a
computational model of theory of mind that is overly simplified, espe-
cially as a first step when investigating a domain with as much uncer-
tainty as wartime negotiation.

Keywords: theory of mind, cognitive models, wartime negotiation,
evaluation of formal models.

1 Introduction

Theory of mind is critical for success in social interaction [20]. Without it, people
would not be able to understand each other’s perspectives and desires. With it,
people can form expectations of the others’ behavior and choose their own be-
haviors informed by those expectations. Consequently, intelligent virtual agents
(IVAs) also need theory of mind to successfully interact with people [5/9].

Researchers have used a variety of cognitive models to provide agents with
this capability. A common approach for realizing theory of mind is for the agent
to use its own reasoning mechanism as a model for the reasoning of others, after
substituting the others’ beliefs, goals, capabilities, etc. for its own. For example,
an agent that uses partially observable Markov decision problems (POMDPs)
[6] for its own decision-making can model other agents and people as using
POMDPs of their own [14UT0/T4].

One of the challenges in implementing theory of mind within an IVA is its
unavoidable uncertainty about the mental states of the others. For instance, even

R. Aylett et al. (Eds.): IVA 2013, LNAI 8108, pp. 44-p7] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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when playing a simple game like the Prisoner’s Dilemma, an agent can never be
sure what goals a human player is pursuing. An agent with a completely accurate
theory of mind would have to capture whether players care about maximizing
only their own payoff, or social welfare, fairness, and many other payoffs as
well, not to mention the possible expectations they have about the agent’s own
behavior. In reality, a agent rarely has an accurate method for assessing the
probability of all of these alternate hypotheses, so it is likely to make errors when
making decisions based on these inaccurate assessments. Furthermore, there are
computational costs associated with maintaining a richer, more accurate model,
costs that can be hard to justify if the accuracy does not benefit the agent’s own
utility [15]. An IVA has to carefully balance this trade-off between complexity
and accuracy when deciding how rich a theory of mind to use.

In this paper, we examine the effectiveness of an agent’s theory of mind when
interacting with people in a wartime negotiation game [I6]. The game pits human
players against agents implemented in PsychSim, a computational architecture
for theory of mind that has been used to build IVAs in other negotiation domains
[819/11]. The models use asymmetry of information to provide only one side (e.g.,
an agent) with complete information about the game’s underlying likelihoods and
costs, while leaving the other side (e.g., a human player) in uncertainty about
those parameters. While the agent has the advantage of complete information,
its performance is highly dependent on its ability to perform effective theory-of-
mind reasoning about the human player’s uncertainty. In our study, the agent’s
simplifying assumption that the player had no such uncertainty helped to achieve
the initial goal of evaluating the coarse game-theoretic predictions of human
behavior [16]. In this paper, we further analyze the data to study the impact the
agent’s approximate theory of mind had on its performance.

We begin our investigation of the agent’s complexity/accuracy trade-off by
measuring the accuracy of the agent’s theory of mind. We observe significant
overlap between the human players’ actual behavior and the agents’ idealized
expectations, but we also observe significant deviations. Forming an incorrect
expectation about a person is not inherently damaging, so we then analyzed
how different deviations affected the game outcomes. We observe that many
classes of inaccuracy in the agent’s theory of mind did not hurt the agent’s
performance and, in fact, some of them played to the agent’s benefit. The results
suggest potential advantages to giving an agent a computational model of theory
of mind that is overly simplified, especially as a first step when investigating a
domain with as much uncertainty as wartime negotiation.

2 Wartime Negotiation

A number of formal models in the political science literature represent war as a
costly process embedded within a negotiation game. In these models, two sides
are in a dispute over the division of a desirable resource, which we will illustrate
as territory claimed by both sides. The game begins with some initial split of the
territory. The game progresses round by round, with each round consisting of one
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side proposing a split of the territory, the other side responding to that proposal,
and a possible battle between the two. The game ends with a final split achieved
by either an agreement on the proposed split or a decisive military victory by
one side on the battlefield.

We chose two models, Powell [13] and Slantchev [1§], for this investigation,
based on their impact on the field and their appropriateness for a human-agent
game interaction. Both models assume fixed probabilities associated with the
battlefield, so that one side’s probability of winning does not change during the
course of the game, regardless of previous military outcomes. The costs of a
single battle are also fixed throughout the course of the game. In our study, we
present these costs to the human players in terms of troops lost.

A critical property of these models is uncertainty about the costs to the other
side and the likelihood of battlefield outcomes. If both sides had complete in-
formation about the costs and probabilities, they could do an exact cost-benefit
analysis and immediately agree upon a territorial split. In both models we im-
plemented, only one side has complete information and the other is uncertain
about the probability and costs of battlefield outcomes. This asymmetry lends
itself to our human participant study, as we can give the agent complete informa-
tion about the game probabilities and costs, but withhold that information from
the human player. Even with complete information about the game uncertainty,
the agent still needs to model the players’ uncertainty and how it affects their
decisions.

2.1 The Powell Model

In the following Powell model [13], Player 1 is a human player and Player 2 is
an agent:

1. Player 1 makes an offer of 2% of the territory.
2. Player 2 decides to accept, reject, or attack.
(a) If accept, Player 2 gets %, Player 1 gets (100 — )%, and game ends.
(b) If attack, Players 1 and 2 lose ¢; and co troops, respectively. Player 1
collapses with probability p; and Player 2 collapses with probability ps.
i. If only Player 1 collapses, Player 2 gets 100%, and game ends.
ii. If only Player 2 collapses, Player 1 gets 100%, and game ends.
iii. Otherwise, return to Step 1.
(c) If reject, Player 1 decides whether or not to attack.
i. If attack, go to Step 2b; otherwise, return to Step 1.

Player 1 (the human player) does not have prior knowledge of the probabilities
of collapse (p;) or the costs of war (¢;), but Player 2 (the agent) does. In the game-
theoretic analysis of this model, Player 2 can compute the optimal threshold,
where it should accept any offer from Player 1 that exceeds the threshold and
reject or attack otherwise. This threshold is lower the higher its costs (cz), the
higher its probability of collapse (p2), and the lower Player 1’s probability of
collapse (p1). Because Player 1 does not know these values, it is uncertain about
Player 2’s threshold for accepting an offer. The equilibrium behavior can be
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Table 1. Game features across the four experimental conditions
Powell28 Powell72 Slantchev28 Slantchev72

Start  28% 72% 28% 2%

A single battle can end the war in A single battle changes military

War . osition € [0, 10], with 10 (0) be-
a win/loss for the player ?ng a win (lE)SS) 1101" the play(er)

Battle Battle occurs only if either side Battle occurs every round, not ini-
unilaterally initiates tiated by either side

Offers  Agent cannot counteroffer Agent must counteroffer

described as screening, where Player 1 will make a series of increasingly attractive
offers, expecting weaker opponents (who have a lower threshold) to accept early
in the process, thus screening them out before making the higher offers necessary
to appease stronger opponents [13].

2.2 The Slantchev Model

Unlike the Powell model’s probability of collapse, the Slantchev model includes
an additional variable, military position (k € {0,1,2,...,N}), that represents
gradual military progress toward or away from complete collapse [I8]. We again
have a human as Player 1 and an agent as Player 2:

1. The initiating player makes an offer of % of the territory.
2. The responding player decides to accept or reject the offer.
(a) If accept, the responding player gets 2%, the initiating player gets (100 —
)%, and game ends.
(b) If reject, continue to Step 3.
3. Battle occurs, and Players 1 and 2 lose ¢; and ¢ troops, respectively. Player
1 wins the battle with probability p, Player 2 with probability 1 — p.
(a) If Player 1 wins, k < k+ 1. If k = N, then Player 1 gets 100% and game
ends.
(b) If Player 2 wins, k < k — 1. If kK = 0, then Player 2 gets 100% and game
ends.
4. Return to Step 1 with initiating and responding players reversed.

Like the Powell model, Player 1 does not know the battle probability (p)
or costs (¢;), but Player 2 does. Thus, the agent can compute a threshold for
acceptable offers, but this threshold is now a function of k, the current military
position. This threshold increases (and the agent’s counteroffers decrease) as k
decreases, co decreases, and p decreases. As in the Powell model, the human
players are uncertain about this threshold because of their ignorance of the
underlying probability and cost, so the equilibrium behavior again exhibits some
screening.

Examining human behavior in these two games allows us to study the effec-
tiveness of the agent’s theory of mind. In addition to the variation between our
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two game models, we also vary the players’ starting territory (28% vs. 72%) to
possibly shift their reference points in the negotiation [7II2]. These four combi-
nations produce the four experimental conditions summarized in Table [l

3 PsychSim Agents in Wartime Negotiation

We implemented both the Powell and Slantchev games within PsychSim, a mul-
tiagent framework for social simulation [T0/T4]. PsychSim agents have their own
goals, private beliefs, and mental models about other agents. They generate
their beliefs and behaviors by solving POMDPs [6], whose quantitative transi-
tion probabilities and reward functions capture the game-theoretic dynamics of
our chosen models of wartime negotiation as follows:

State: Territory (0-100%), number of troops, military position (Slantchev only)

Actions: Accept/reject offer, attack (Powell), offer player 2% of territory
(Slantchev)

Transition: The probability distribution of the effects of actions on the state

Observation: We assume that the agent has complete information

Reward: Linear in amount of territory and number of troops

The PsychSim agent’s theory of mind expands this POMDP model to include
the human players’ POMDP models as well. The agent does not know what
POMDP would make the best model of the human player. For example, the
game does not reveal the probability of battlefield outcomes to the player’s
side, so it is not clear what transition function would best capture the player’s
expectations. Furthermore, while the player most likely wants to increase both
territory and surviving troops, the agent has no way of knowing whether that
desire fits a linear function like its own, let alone what weights to use even if
it does. On top of this uncertainty about the player’s model of the game, the
agent’s theory of mind must also capture the players’ theory of mind about itself.

Rather than trying to capture all of this uncertainty within the agent’s theory
of mind (e.g., by giving it a distribution over multiple POMDP models of the
player), we instead implemented an agent that has no such uncertainty. In par-
ticular, it models the human player as following a POMDP that has complete
information just as its own does. This POMDP uses a linear reward function,
just like the agent’s, but increasing in the human player’s territory and troops
instead. Thus, the agent uses a fixed model of the player as following the optimal
policy computed by solving this POMDP. The agents can then use that policy as
an expectation within its own POMDP to compute an optimal policy for itself.

3.1 Powell Agent Behavior: Attacking

Before an agent can decide whether it is optimal to accept an offer or not under
the Powell condition, it must first examine its subsequent choice of simply re-
jecting an offer, or else rejecting the offer and attacking the playe. If either side

! Under Slantchev, there is no such choice, as a battle occurs every round.
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attacks, the agent will win the war with probability pi(1 — p2) and will lose the
war with probability p2(1 — p1). For our study, we use p1 = pa = 10%, so both
probabilities come out to 9%. If the agent attacks, it therefore expects to have
100% of the territory with 9% probability, 0% with 9% probability, and its orig-
inal amount of territory with 82% probability. Regardless of the outcome, the
agent will incur a fixed loss of troops that, in its reward function, is weighted the
same as 2% of territory. Thus, the difference between an attack (by either side)
and no attack is the 18% chance of a military resolution (with an expected split
of either 0% or 100% for the agent) and the 2% cost in troops. This possibility
is valued differently by the agent depending on its starting territory:

Powell28: When not accepting an offer, the agent does not attack
Powell72: When not accepting an offer, the agent always attacks.

In other words, the possible military resolution is appealing in the Powell72 game
when the agent starts with only 28% of the territory. Furthermore, the agent’s
Powell72 policy implies that the players never get a chance to attack, as they
get that choice only if the agent rejects without attacking.

3.2 Powell Agent Behavior: Accepting Offers

Because the agent will not attack in the Powell28 condition, it weighs the hu-
man player’s offer against its current 72% of the territory. Under the Powell72
condition, on the other hand, the agent weighs the human player’s offer against
both its starting 28% territory and the possibility of earning a more favorable
split when it attacks. Because the agent does not distinguish between earning
territory at the negotiation table vs. on the battlefield, it is willing to hold out
for a higher offer than just the status quo in Powell72. In particular, the POMDP
solution generates the following thresholds for the agent:

Powell28: Accepts offers > 71% (rejects otherwise)
Powell72: Accepts offers > 35% (attacks otherwise)

3.3 Slantchev Agent Behavior: Accepting Offers

The agent performs a similar computation under Slantchev, except that battle-
field expectations are now contingent on military position, k € {0,...,10}. We
set the probability, p, of a player winning a battle to be 30%, allowing the agent
to compute its chances of winning or losing the war, which happens when k£ =0
or 10, respectively. Solving the POMDP gives the agent a policy of holding out
for higher offers as it gets closer to winning (i.e., k is low):

Slantchev28 Slantchev72
>92%if k=1 >T9%if k=1
> 8% if k=2 >64% if k=2
Accepts offers¢ > 72% if k € [3,7] Accepts offers¢ > 30% if k € [3,7]
>66%if k=8 >27T% i k=8

>51%itk=9 >20%if k=9
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3.4 Slantchev Agent Behavior: Making Offers

To decide what offers it should make in the Slantchev game (it makes no offers
under Powell), the agent first repeats the computation of Section from the
player’s perspective. Again, it assumes that the players know that p = 30%,
and will have lower thresholds than the agent does because of this military
disadvantage. It also does not change its beliefs about the player’s thresholds,
leading it to adopt a fixed policy of making offers as follows:

Slantchev28: Agent offers 10%, unless close to losing (k > 7), then offers 30%
Slantchev72: Agent offers 70%, unless close to winning, then offers 20% if
k=2,0r 10% if k= 1.

4 Method

We recruited 240 participants, of an average age of 35, via Amazon Mechanical
Turk. 51% of the participants are female and 49% are male. 65% of the partici-
pants are from the United States, 29% from India and 6% from other countries.
12% of the participants have some high school or high school diploma; 63% have
some college or college degree and 25% have some graduate school or graduate
degree. 13% of the participants use a computer for 1-4 hours a day, 43% use one
5-8 hours a day and 44% use one more than 8 hours a day.

Each participant is first assigned an anonymous ID and then reads the in-
formation sheet about the study. Then the participant fills out a Background
Survey. Next the participant plays the negotiation game four times, each time
with a different agent from one of the four conditions (the order is randomized).
The game interface presents the participants with the troops and territory they
own, as well as the number of rounds left and the history of previous offers and
battle outcomes. There is no implication in the instructions that the participant
would be playing against another human player. During the negotiation, the
participant fills out an In-Game Survey. Following each negotiation game, the
participant fills out an Opinion Survey. The study is designed to be completed
within an hour, although the average duration was 32 minutes in our data.

We measured outcomes based on the following survey and game results:

Background Survey asks questions about the participant’s age, gender, na-
tionality, education, computer experience, Attitude Towards War [3], Social
Orientation [I9] and attitude towards Inappropriate Negotiation (SINS, from
7).

Opinion Survey contains questions regarding the participant’s goals during
the game and modified questions from the Subjective Value Index (SVI)
survey that measures perceptions of the negotiation outcome, process, rela-
tionship and the negotiator themselves [2].

In-Game Survey asks the participant to estimate the opponent’s response af-
ter he/she makes an offer, e.g. accept the offer, reject it or attack.

Game Logs capture the actions the participant takes, the agent’s actions and
the world states, e.g. amount of troops and territory each side has.
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5 Accuracy of the Agents’ Theory of Mind

From our study’s 240 participants, we have 238 games in the Powell72 condition
and 239 games each in the Powell28, Slantchev72, and Slantchev28 conditions.
We analyzed the participants’ decisions made in all the games they played and
categorized these decisions based on whether the agent would have made the
same decision if it were in the participants’ position. From Table 2, we see that
the degree of conformity varies widely across the different conditions and decision
types (empty cells are conditions where the action was inapplicable).

Table 2. Percentage of participant decisions that matched agent’s theory of mind

Player Action Powell 28 Powell 72 Slantchev 28 Slantchev 72

Making Offers 84% 59% 21% 34%
Response to Offer — 80.3% 75.8%
— Reject Offer — 100% 100%
— Accept Offer — 0% 0%
Decision to Attack 43% — —
— Attack 100% — —
— Not Attack 0% — —

5.1 Participant Behavior: Attacking

From Section 3], we know that the agent will attack instead of reject in Powell72,
preempting the participants’ potential choice to do so themselves. In Powell28,
the agent makes the opposite choice, and its theory of mind leads it to expect the
participants to act as it did in the same situation (i.e., having only 28% of the
territory) and attack instead of reject. The participants’ matched that expecta-
tion and decided to attack only 43% of the time. One possible explanation for
this deviation is that the participants may have placed a higher value on troops
than the agent’s reward function did. Alternatively, because the participants do
not know the probabilities of collapse, their uncertainty may have led them to
underestimate their expected gains from battle.

5.2 Participant Behavior: Making Offers

From Table[2] we see that the offers participants made did not always fall within
the range of offers the agent would have made. Section B4 lays out the ranges
of the agent’s offers under Slantchev. In Powell games, the agent does not make
offers, so we instead use the agent’s offer-accepting policy (Section B2l as the
range of offers the agent would have made. In particular, with a starting territory
of 28% (for the agent), the agent will not offer more than 65%; with a starting
territory of 72%, it will not offer more than 28%. One-way ANOVA tests show
that, overall, the participants made offers consistent with the agent’s policy
more often under Powell than under Slantchev (Meanp = 77%, Means = 26%,
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p < .0001). Within Powell games, as shown in Table [ the participants’ offers
conformed more when starting with less territory (p < .0001). Within Slantchev
games, however, the participants’ offers conformed more when starting with more
territory (p < .0001).

Powell
100 72
[ | Participants’ Offer
907 Possible Agent's Offer
a0

71
704
80
55
50 Slantchev Slantchev
28 72
40 39
8 31
30 29
204
14

104 10

o

28 72 28 72

M Offer too high W Offer too low

Powell Slantchev
(b) Percentage of participant offers that

(a) Mean offer amounts. were higher/lower than the agent’s.

Fig. 1. Offer amounts when participants deviated from the agent’s policy

To see how the participants’ offers quantitatively differed from the agent’s
model, we calculated the offers the agent would have made given the same game
states the participants were in. As a crude approximation, we calculated the
agent’s offer as a uniform distribution within the offer range. In Powell, for ex-
ample, we modeled an agent starting with 28% of territory as calculating its
offers from a uniform distribution from 0 to 65%. Figure [[al shows the partici-
pants’ and agents’ offers when a deviation occurred. A total of 756 offers made
by the participants were included in the analysis, including 227 in Powell28 con-
dition, 157 in Powell72, 273 in Slantchev28 and 99 in Slantchev72. Paired-sample
t-tests show significant differences between the participants’ and the agent’s of-
fers (p < .0001) in all four conditions. In the Powell games, participants made
higher offers than the agent would have. Section Bl gave multiple hypotheses
for why the participants might be less likely to attack than the Powell agent,
and the same causes would also lead them to be overly generous to minimize the
risk of war. Alternatively, the participants may have a preference for achieving a
resolution through negotiation than through war, so they may bias their offers to
increase the chance of acceptance by the Powell agent. In the Slantchev games,
the participants’ deviating offers exceed that of the agent under Slantchev72,
but it is lower under Slantchev28. The contrast of Slantchev28 is even starker
in Figure [[H where we see the vast majority of deviating offers are lower than



Are You Thinking What I’'m Thinking? 53

the agent’s. We do not have a good explanation for this outlying condition, al-
though given the broad uncertainty facing the participants’ they may be simply
overestimating their probability of winning a war in this case.

5.3 Participant Behavior: Accepting Offers

The participants never receive offers to accept/reject under the Powell condi-
tions, so we focus on only Slantchev games here. Table [2] shows that, when
responding to an offer, the participants’ responses match the agent’s responses
80.3% of the time in Slantchev28 and 75.8% in Slantchev72. All of these devi-
ations occur when the participants accepted an offer that the agent would not
have. In other words, the agent would also have rejected any offer that the par-
ticipants chose to do. This also implies that the agent never made offers that it
would have accepted itself. Its theory of mind leads it to expect the participants
to be more lenient given their military disadvantage, even though, in reality, the
participants are initially unaware of that disadvantage.

100
1 [ Offer Player Accepted
7 I Offer Agent Would Accept a4
80
T0+
1 63
604
50
| “
104 .
20
20
| 11
10 —
/]
StartingTerritory 28 StartingTerritory 72

Fig. 2. Offers accepted by participants and agent in Slantchev games

Similarly, we compared the 145 offers participants accepted (91 from Slant-
chev28 and 54 from Slantchev72) and the ones the agents would have wanted in
that same situation. We model the offers the agent would accept as a uniform
distribution across each interval implied by the thresholds in the agent’s policy
in Section Figure 2 shows that, regardless of the starting territory, the offers
participants accepted are significantly lower than the ones the Slantchev agent
would have wanted (paired-sample t-tests, p < .0001 for both pairs). This is
consistent with the observation in Section that the participants made higher
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offers, in that they were willing to achieve a negotiated settlement lower than
what the agent would accept. It is also consistent with the hypothesis in Section
B that the participants sought to avoid losing troops in the war more than
the agent did, thus lowering their threshold for accepting an offer and bringing
about agreement sooner.

6 Impact of Inaccuracies on Agent Performance

Although the participants did not always conform to the agent’s model, it is
not clear how much the inaccuracies in the agent’s theory of mind affected its
performance. There are two obvious measures of agent performance: territory
owned and troops lost at the end of the game. We use territory as the primary
measure because it is a zero-sum game outcome that identifies a “winner” be-
tween the agent and participant, whereas both players lose troops in every battle.
Given that the agent attempted to maximize territory gains based on its theory
of mind about the participants, we might expect its optimal policy to do worse
when the participants deviate from those expectations. Indeed, when we examine
the agent’s performance in the Slantchev conditions, we see that it is negatively
correlated with the percentage of participants’ actions that deviated from the
agent’s policy (r = —.463, p < .0001). However, we did not observe such a corre-
lation under the Powell conditions (r = .080,p = .0813) So while the Slantchev
agent earned more territory the more accurate its model of the participant, we
cannot make the same overall conclusion under the Powell condition.

6.1 Impact of Deviations in Attacking

Section [5.1] showed that deviations in the participants’ attacking decisions oc-
cur in only the Powell28 condition, when they reject without attacking. The
agent expects them to attack, because the potential gain from winning the war
outweighs the 28% territory lost by losing the war. The data confirm this expec-
tation. One-way ANOVA tests show that the agent ended up with more territory
when it successfully avoided the war (Mean yy,, = 57.7%, Mean_ yy,, = 76.5%,
Nwar = 190, N_per = 49, p = .0026). Thus, the agent’s belief that attack-
ing is the optimal policy for the participants is borne out by the fact that they
did worse when deviating, e.g. the agent successfully avoided the war. However,
although this divergence between agent expectations and participant behavior
works to the agent’s benefit, it could do even better by holding out for higher
offers if it knew that the participant might not attack in retaliation.

6.2 Impact of Deviations in Making Offers

We also analyzed the relationship between the percentage of the participants’
“correct” offers and the territorial split at the end of the game. We broke down
this analysis based on how the games ended, e.g. agent accepting an offer, win-
ning/losing the war. The rationale is that making a “wrong” offer (e.g. overly
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high) may have no immediate impact on the game outcome when it gets rejected,
but a “wrong” offer that gets accepted could possibly lead to a much worse out-
come for the offeror. Indeed, within the 375 games where the offers were accepted
by the agent, there is a negative correlation between the percentage of “correct”
offers and territory the participants ended up with (r = —.3234, p < .0001).
This also means that the more often the participants’ offers conformed to the
agent’s policy, the more territory the agent ended up with, as we might expect
from a more accurate theory of mind. On the other hand, in the 580 games
that did not end with the participant making an acceptable offer to the agent
(i.e., winning/losing the war, reaching the end of the game, or the participants’
accepting an offer from the agent), there is a positive correlation between the
participants’ degree of conformity to the agent’s model and their territorial out-
come (r = .3423, p < .0001). In these games, the participants’ offers are lower
than what the agent wants or expects. Without an agreement that exceeds its
threshold, the agent relies on a battlefield outcome or the status quo, which is
not likely to favor it as much. This suggests that the agent would benefit by
lowering its threshold when dealing with such less generous participants, as the
current fixed threshold causes it to miss out on such opportunities.

6.3 Impact of Deviations in Accepting Offers

In the Slantchev games, all of the offers accepted by the participants deviated
from the agent’s policy, as seen in Section B3l To evaluate the impact of this
deviation on performance, we compared the 145 games ending with participants
accepting the agent’s offer and the 333 games ending some other way, e.g. making
an offer that the agent accepts or else somehow prolonging the war through all
15 rounds (with both sides keeping their original territory). One-way ANOVA
tests show no significant impact on how much territory the participants ended
up with (Meanacceptoffer = 22.2%, Meanapernative = 22.5%, p = .9084). This
suggests that even though the participants accepted offers that were too low in
the agent’s estimation, this deviation had little impact on the game outcome.

7 Discussion

Despite its strong assumptions, the agent’s theory of mind still allowed it to per-
form well (although not optimally), because most of the participants’ deviations
from expectations did not hurt the agent’s performance. By examining the im-
pact of the deviations on the agent’s performance, we can prioritize the areas of
its theory of mind that we need to improve. For example, by assuming that the
participants have complete information, the agent misjudged the offers the par-
ticipants would make and accept. The agent could instead bias its expectations
of the participants to be more conservative given their lack of information. More
generally, an agent operating in other domains with similarly uncertain human
participants can also benefit from a theory of mind that perturbs an expectation
of optimality with a degree of risk aversion.
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Even when properly accounting for the participants’ uncertainty, we also saw
potential deviations due to unanticipated values. For example, the participants’
SVI survey responses indicate that they placed a value on reaching an agreement
with their negotiation partner. Our agent did not incorporate such a value, nor
did it expect the participants to do so. By modifying our agent’s theory of mind
to include such a value on agreement, it could generate expectations that better
account for the participants’ willingness to give up territory in exchange for
a quicker settlement. We could then repeat the methodology of this paper to
evaluate the degree to which the participants’ conformed to this modified theory
of mind and the potential impact of this change on agent performance.

We can use this paper’s methodology to evaluate completely different meth-
ods for theory of mind as well. For example, the original game-theoretic analyses
of wartime negotiation prescribe that the offering side should start with a low
amount and steadily increase it, to screen for the other side’s acceptance thresh-
old with minimal over-offering [I3/18]. Even without implementing this model
in our own agent, we can still measure the degree to which it matches our par-
ticipants’ behavior. Participants followed this strategy in 317 of our games, and
violated it by either repeating or decreasing their offer in 286 game%. Overall,
there is no significant impact of following the equilibrium strategy on the agent’s
performance. However, within the games ending with the agent accepting the
participant’s offer, the ones where the participants played consistently with the
equilibrium strategy resulted in more territory for the agent (Mean., = 34.6%,
Mean-.cq = 46.9%, p < .0001). Thus, while screening may be a best response in
the theoretical setting, the participants’ uncertainty leads them to over-offering
in practice, to the agents’ benefit.

It is clearly insufficient to evaluate only the accuracy of an IVA’s theory of
mind with respect to actual human behavior. Some classes of inaccuracy may
not have any negative impact on the agent’s performance, in which case it is
unnecessary to enrich the model to remedy that inaccuracy. Furthermore, in
a domain with multiple sources of uncertainty, even one as simplified as our
wartime negotiation models, expanding theory of mind without a good model of
that uncertainty can be even detrimental to agent performance. Theory of mind
exists in service of the overall social interaction, and our analysis demonstrates
that we should seek improvements to the modeling of others only when motivated
by the subsequent improvements in that interaction.

Acknowledgments. This work was sponsored by the U.S. Army Research,
Development, and Engineering Command (RDECOM). The content does not
necessarily reflect the position or the policy of the Government. No official en-
dorsement should be inferred.

% The remaining 352 games ended before the participant made a second offer.
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Abstract. The role of the body in the generation of behavior is a topic
that has sparked the attention of many fields from philosophy to science
and more recently robotics. We address the question of how an embodied
agent should be modeled in order to change the traditional dualist ap-
proach of creating embodied agents. By looking at behavior generation
as a shared process between mind and body, we are able to create mod-
ules that generate and manage behavior, which are neither part of the
body nor the mind, thus allowing a more flexible and natural control. A
case study is presented to demonstrate and discuss our model.

Keywords: Embodied Agents, Embodied Cognition, Artificial Intelli-
gence, Robotics.

1 Introduction

Embodiment as something of or related to the human body is an important
field of research. Our physical bodies define how we stand in space and time,
and our awareness is deeply influenced by the fact that we have a body. Over
the years, philosophers, psychologists, cognitive scientists, and more recently
computer scientists have looked at embodiment from different perspectives.

In Computer Science, there is the concept of embodied agent, which is a
software agent that interacts with the surrounding environment through a body.
Embodied agents can have actual physical bodies, like Robots [I], or they can
have a graphical representation of their body, like Embodied Conversational
Agents [2][3]. In both cases, a form of embodiment (physical or virtual) is a
necessary condition to interact with the environment and with human beings
[4].

One particular topic related with embodiment is the relationship between
mind and body. The mind-body problem was famously addressed by Descartes
in the 17th century when he proposed his dualist perspective. Cartesian Dualism
assumes that the mental phenomena are essentially non-physical, and that mind
and body are two separate things.

The traditional computational models to create embodied agents follow a
dualist perspective. There is a clear separation between the “mind” of the agent
and the “body” of the agent. The body is an interface to the environment through
a set of sensors and effectors. The mind receives sensory information from the
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(© Springer-Verlag Berlin Heidelberg 2013
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body, analyzes that information and activates the effectors. There is a continuous
sense-reason-act loop in which the mind has full control over the body.

However, such approach has some implications. The mind, as a centralized
decision-making system, has to cope with different levels of control at the same
time, ranging from lower-level control of sensors and effectors to higher-level
cognitive tasks that involve reasoning and deciding what the virtual agent or
the robot should do next. Moreover, the level of abstraction provided by both
sensors and effectors, and their ability to map sensory input into symbolic rep-
resentations or turn symbolic representations into effector output, has a direct
impact in what the agent can do. As a consequence, the mind usually ends up
tightly coupled to a particular form of embodiment.

Human beings, on the other hand, have intermediate layers of control at dif-
ferent levels. Our bodies have regulation mechanisms that perform subconscious
tasks in parallel with our higher-level cognitive tasks. Damésio [5] presents re-
cent findings in neuroscience of how our bodies are important in shaping the
conscious mind, and their role in key processes like the emotional phenomena.
Pfeifer [6] also points out that, despite the breadth of the concept, whatever we
view as intelligent is always compliant with the physical and social rules of the
environment, and exploits these rules to create diverse behavior. Since our bodies
define how we interact with the environment, we cannot dissociate intelligence
from our body as a whole.

Therefore, we need a computational model that looks at mind and body as a
continuum. In the Society of Mind [7], Minsky looks at the mind as a collection of
cognitive processes each specialized to perform some type of function. A cognitive
process is represented by a component and the internal composition of these
components creates a network of complex behavior.

This paper looks at embodiment following the same approach. We look at the
body as a sum of components that perform specialized functions. Mind and body
can share the same space, because we don’t look at them as separate processes.
Instead, both the notions of mind and body emerge from the components that
support them.

In the next section we will look at related work. Then we present our model
and a case study that discusses our approach. Finally, we draw some conclusions
and outline future work.

2 Related Work

Researchers working in the field of virtual and robotic agents have been exploring
richer models for behavior generation in autonomous agents. Recently, there have
been developments towards new frameworks and tools to create agents capable of
generating and exhibiting complex multimodal behavior. A popular framework
that defines a pipeline for abstract behavior generation is the SAIBA framework
[8], illustrated in Figure [l

Our architecture follows on [9], which uses a pipeline of components that are
reusable and migrate across different forms of embodiment. These components
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Intent FML Behavior L Behavior
Plannin, Feedback | Planning | reedback | Realization

Fig.1. The SAIBA framework [3]

were used to create mixed scenarios where agents can migrate between virtual
and robotic bodies.

Moreover, in order to deal with the other side of the loop, Scherer et al. propose
a Perception Markup Language (PML) that should work just like BML [I0]. As
agents perceive the external world through their bodies, it enables embodiments
to create an abstraction of perceptual data in order to bring it up to the cognitive
level.

The interaction between perceptual data and BML has also been explored.
We have integrated perceptions into BML and had two different robots interact
with each other while running on the same system [I1]. The interactive behavior
is abstract enough to drive two completely different embodiments.

Other approaches to build embodied agents use physiological models to cre-
ate behavior in autonomous agents. For example, Canamero uses a multi-agent
approach where each physiological function is modeled using an agent [12]. The
work models hormones which are the foundation of motivational and emotional
processes that guide behavior selection in Robots.

From a point of view of engineering, the component-based approach is very
common in Robotics. ROS - Robot Operating System is a popular middleware
developed by Willow Garage [13] that provides a common communication layer
to enable different kinds of sensors, motors and other components to send data
between each other. ROS is module-based, meaning that a ROS-based robot
actually runs several different modules, being each one of them responsible for
controlling one or several components of the robot. The main advantage of this
is that all these modules can be shared and reused throughout the community.

3 The Censys Model

The model we propose follows on the concepts we previously introduced in
the first section, and is inspired in the component decomposition proposed by
Minsky.

Censys is modeled as a distributed network of Modules, which can have any
non-zero number of connectors. A Module is conceptualized as being a black-
boxr which can have or not an internal state, and can react to data received
on its sensors, through the use of its effectors. As an abstraction, a Module can
actually be seen as a sub-agent that composes both the mind and the mind-body
interface.

The Censys model does not enforce any specific typology for the network. It
can therefore be built just like a traditional agent, as show in Figure 2l Sensors
are illustrated as triangles pointed at the module, and actuators as triangles
pointed away from the module.
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Fig. 2. How the Censys model fits into the Traditional model

What is generally viewed as the Agent Mind, providing deliberative, reactive
or dialogue behavior, is now just a module that fits into the architecture. The
Body is decomposed into a one or more Censys modules that serve as interfaces
to the Embodiment.

A Module can use four types of connectors to sense and act:

PerceptionSensor subscribes to and receives perceptions Pr of a type T
PerceptionEffector generates perceptions Pr of a type T
ActionSensor subscribes to and receives actions A of a type T
ActionEffector generates actions A7 of a type T

The ActionEffectors and PerceptionEffectors generate actions and perceptions
and place them in the perception and action channel respectively. The channels
have the information of which ActionSensors and PerceptionSensors are sub-
scribed to which type of actions and perceptions, so it can then transmit those
to all of the subscribed sensors.

An example of how these modules can be composed into a Censys agent with
a Body, Decision-Making (DM) module, and three other Modules is shown in
Figure[Bl This agent is merely an out of context example and as such its Modules
do not have any specific meaning.

The three new modules in the example agent are able to receive some kind of
perceptions and actions, process them, and generate other kinds of perceptions
and actions.

Taking as example Module A; it subscribes to actions of type Az and converts
them into actions of type A;. The purpose of this module is thus to act as a high-to-
low-level converter, decomposing high-level actions from the DM into lower-level
actions that are more appropriate for the Body to manage and use without having
to know how to interpret the high-level information produced by the DM.

Another example, Module C, has a dual purpose. One purpose is to act as a
perception converter, by receiving lower level P; perceptions and turning them
into higher level P; symbolic perceptions that are more appropriate for the DM.
At the same time, it can also generate low-level reactions by generating Ao
actions depending on the Module’s internal state and the data collected from
the perceived Pis.
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Fig. 3. An example (no context) Censys agent

The main advantage of using this architecture as that the DM does not ex-
plicitly need to know how to communicate with the Body and vice-versa.

In our example agent, we can see that the DM can only receive P, and Ps per-
ceptions and generate As and Ag actions. The body, however, can only generate
P, and P, perceptions, and receive A; and A, actions, so the DM and Body
used can natively only communicate through P, perceptions and A, actions.
This means that if we removed the three Modules (thus having a traditional
agent instead of a Censys agent), we would need to adapt both the DM and
Body to be able to deal with all types of perceptions and actions.

In a Censys agent we just use Modules that can handle these types of percep-
tions and actions, and still use the DM and Body as they are. A direct advantage
of this is that it makes it much easier to swap the traditional Agent Mind or the
Embodiment with other ones that may not have support for all the used actions
and perceptions, and still function together.

4 Case Study - A Component-Based Robot

In figure @ we present a more complex case study in which a Censys agent is
used to control a robot, based on the SAIBA framework. The Intention and
Behavior Planning is done within the Decision-Making and Dialogue Manager
modules (DMs), which generate only Apasr actions containing Behavior Markup
Language (BML) blocks[8]. The DMs also receives only Ppjsy, perceptions con-
taining a Perception Markup Language (PML) blocks, which is a high-level rep-
resentation of perceptual data [10].

This Embodiment is actually connected to the agent through three modules:
the Speech, Audio and Body Interfaces. This case study thus also serves as an
example of how a body is not necessarily one entity, but a coupling of several
entities. Moreover, if we wanted to use a different Robot we could just switch its
Body Interface and still keep all our behavior related to speech and audio.
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Fig. 4. Diagram of the Censys agent of the Cognitive/Reactive Robot case study

The Body Interface receives Apgce, Agaze and ArLocomotion actions, and
generates Pparrpvent Perceptions. These perceptions contain feedback about
the executing actions (when they physically started/finished/failed, etc.).

The Audio Interface receives Agoung actions containing an audio signal to
be output, and generates Pay,q4i, containing audio signals whenever a sound is
captured from the environment.

The Speech Interface acts as an interface to both a Text-to-Speech (TTS)
engine, and to a Speech Recognition engine. In this case we assume that the
Speech Recognition is already being fed with an audio signal, as such it pro-
duces Pspeecn, Perceptions containing detected speech. This interface also receives
Aspeech, actions containing information that the TTS engine uses to generate
speech.

We will now analyze each of the different modules that compose the behavior
of this agent:

BML Scheduler deals with decomposing high-level behaviors, and schedul-
ing and running the separate actions that compose such behavior. It subscribes
to Apmr actions that correspond to the high-level behavior (a BML block) and
generates actions of tYPe AFa,cea AGazea ALocomotion and AS’peech;

Sound Expression provides expressive redundancy to some of the agent’s
expressive behavior. In this case, every time a module produces an Apqce ac-
tion, this module will generate an Ag,ung action that contains an audio signal
corresponding to the Apgee action;
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Audio Locator serves as a converter module that takes as input Paydio
perceptions containing audio signals, and processes them in order to infer local-
ization information. If the sound can be localized it generates a PsoundLocation
perception with that information;

Gaze Reaction performs gaze reactions to sound events. Whenever it re-
ceives a PsoundLocation Perception that is loud enough, it will generate an Agq e
action that tells the body to gaze towards the direction of the sound;

PML Synthesizer acts as a low-to-high level converter, by receiving indi-
vidual perceptions like PearrBvent, PSoundLocation OF Pspeech, and transforming
them into high-level PML blocks.

4.1 Execution Example

Given the description of the case study, we now provide a description of how
that scenario could actually run.

Let’s start by assuming that we are using a NAO robotfl] for the embodiment,
and that the DMs are very simple and currently only pursue the goal of travelling
to a certain physical location that is located a couple of meters in front of the
robot’s current location. The Decision-Making module processes that goal and
defines a simple plan consisting merely of walking forward.

That plan is transformed into a BML block containing a locomotion action and
let’s say, a speech action for ”I will be there in a minute!”. The BML Scheduler
receives this action and its scheduling of the two behaviors generates first an
Aspeech, action, and then an Arocomotion action. The Agpeecn action is received
by the Speech Interface, which unpacks it and sends it to the TTS, making the
robot say ”I will be there in a minute!”. The Apocomotion action is received by
the Body Interface, which triggers the robot to start walking.

In the mean while, someone goes by NAO and speaks to him. The Audio
Interface detects this sound and generates a Payq4i0 perception, which is sensed
by the Audio Locator module which in turns calculates the offset angle at which
the sound was detected. It then generates a PsoundLocation Perception. This
perception is received both by the PML Synthesizer which generates a Pppy,
perception based on its data, and also by the Gaze Reaction module. This one
generates an Agqze action that tells the body to gaze at the angle of the detected
sound. That Agg.. action is then also received by the Body Interface, thus
making NAO look at the direction of the person who spoke, while continuing
to walk. The DMs also receive the Ppjs;, perception containing the information
about a sound perceived at certain angle, but as long as it does not interfere
with its current state and goals, this perception does not trigger anything at this
level.

That does not imply that the robot is unable to react to anything else. When
an intense sound is located, gazing at it can have several benefits. We think
of a functional one - being able to use vision recognition to analyze what has
generated the sound; and an expressive one - if it was a person who made the

!http://www.aldebaran-robotics.com
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sound, then having the robot gaze towards that direction helps to transmit a
more sentient impression of the robot.

Besides these two benefits, this behavior is not encoded neither in the DMs
nor in the embodiment, so that means it could be reused even if we switch to
another robot.

4.2 Discussion

While the diagram presented in Figure @ may seem complex, it actually portrays
a very simple scenario. What do we gain from having such cross-connections and
interrelationships?

We find this kind of model to be especially appropriate for modeling high-level
autonomous behavior in robots, because we can create some behaviors that are
body-independent (like gaze-reacting to a sound) and use them with different
embodiments. Of course, another question may arise that is HOW does the robot
implement that gaze. That is a problem that we consider to be body-dependent,
as a robot that has a head may be able to gaze while walking, whereas a robot
built on a two-wheeled self-balancing base (like the Segway technology H) will
have to stop moving in order to turn and face another direction.

Another vantage point we find is that each module offers its own indepen-
dent control. An example of this is the Sound Expression module. The Dialogue
Manager does not even need to be aware of this module while it supports the
expression of the robot. If we know that our robot has limited expression ca-
pabilities, we can just include this module without having to change anything
else.

The BML Scheduler is also a complex control module as it manages the
scheduling and composition of behaviors that the DMs decided to execute. How-
ever, the DMs do not need to know what the Body is currently doing - resource
management is distributed along the Mind-Body space.

There is still another situation related to resource management, that is when
for example both the BML Scheduler and the Gaze Reaction modules produce
an Agaze action. In this case, and having no other module to play that role, the
resource management is expected to be done at the Embodiment layer, so we
cannot predict or define in our model what will be the resulting action.

Summing up this case study, by using a Censys agent we steer towards the
ability to reuse behaviors that manage proper and natural interaction, even when
working with different embodiments (virtual or robotic). As some of the agent’s
behavior does not need to be re-programmed, the development of new behaviors
and contexts for robot usage should therefore become more accessible.

5 Conclusion

There are several aspects that we intend to approach with our model. First
of all, we were deeply inspired by the fact that most traditional architectures

2 http://www.segway.com
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overlook the role of the body in the cognition process. This leads to placing a
high computational load on the agent’s mind and expecting it to be able to cope
with both low and high-level processes.

That is the issue that generally leads to dependence between body and mind us-
ing the traditional approach. By breaking that hard link between body and mind,
we are able to transfer some common behaviors into a more abstract functional
space between the cognitive mind and the body, thus making it feasible to share
behaviors and part of the cognition process even if we use different bodies.

One important thing on embodiment switching is when we switch between vir-
tual and robotic bodies. Virtual embodiments are considered to be perfect and
immediate, meaning that they have direct access to real information about their
body and the world around. Robots, however, have imperfect sensors and effec-
tors, meaning that there can be noise in the information and also measurement
errors or other deviations caused by gravity, inertia, friction, etc. By including
a space where we can create filters for sensors and actuators, we can relieve the
higher-level processes from handling all those issues.

In the same sense, there are some processes that may require a continuous
feedback loop between a specific controller and the embodiment. Again, such a
controller can deal with feedback and adjust the behavior in real-time without
having to interrupt the higher-level processes.

The bottom line is that Censys creates a space where we can define inter-
nal processes that run in parallel with the main control loop of the agent. This
distributed control is the base to create agents that are able to display a more
natural behavior, for example by enriching their primary behavior with involun-
tary movements or by reacting faster when something happens.

Therefore, embodied agents are able to rely on their bodies as much as they rely
on the artificial minds that reason and decide for them. Mind and body work in par-
allel to generate behavior and continuously adapt to each other. Like humans do.

5.1 Future Work

The next step will be to implement some concrete scenarios using Censys. We
want to compare the development of a Censys agent against the traditional
approach. This comparison should yield results both about how easy and fast it
is to develop a Censys agent, but also to what degree the Censys modules are
actually interchangeable within different embodiments. It should also guide us
towards defining the requirements on both the model and its modules in order
for that interchangeability to remain valid.

Censys also enables the creation of an internal body model where we can ex-
plore concepts like physiological space, interoception, and proprioception. Usu-
ally these mechanisms are part of subconscious processes which are not that
important for the actual behavior displayed by our agents. However, they might
be important in the decision process that lead to those behaviors in the first
place and we will be able to experiment with that.

There is also an open issue related to resource management (RM). Having
distributed control implies having some concurrency and how to deal with shared
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resources, like the effectors. In this paper we have delegated that process to the
actual embodiment. However, we have also hinted in our case study how the
BML Scheduler also performs some RM. That make us to wonder if it may be
possible to actually include better RM mechanisms in our model, and to what
level can they perform to be shared amongst different types of embodiment.
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Abstract. Professionals are often resistant to the introduction of technology and
can feel threatened if they perceive the technology as replacing some aspect of
their jobs. We anticipated some of these problems in the process of introducing a
bedside patient education system to a hospital, especially given that the system
presents itself as a “virtual discharge nurse” in which an animated nurse agent
interacts with patients using simulated face-to-face conversation. To increase
acceptance by nursing staff we created a version of the character designed to build
trust and rapport through a personalized conversation with them. In a randomized
trial, we compared responses after 15 minute in-service briefings on the
technology versus responses to the same briefings plus a personalized
conversation with the agent. We found that the nurses who participated in
briefings that included the personalized conversation had significantly greater
acceptance of and lower feelings of being threatened by the agent.

Keywords: Relational agent, embodied conversational agent, technology
acceptance, medical informatics.

1 Introduction

Despite billions in recent US federal spending targeted at clinical information
systems, significant barriers to adoption of health information technology (IT) remain
[1]. Some of the most significant barriers center on acceptance of the technologies by
the clinicians who use them. Although financial incentives may motivate proprietors,
it remains to be seen how effective these incentives will be at changing attitudes and
actual use behavior by clinicians on the front lines of care who do not stand to
personally profit from the incentives, especially if they feel threatened by the
technology being introduced.

A significant amount of research has been conducted over the last two decades on
the factors that lead to acceptance of a new technology. Attitudes towards a new
technology are important even in environments in which use is mandatory, and there
are many documented cases of under