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Abstract. A new approach for the effective computation of geodesic re-
gression curves in shape spaces is presented. Here, one asks for a geodesic
curve on the shape manifold that minimizes a sum of dissimilarity mea-
sures between given two- or three-dimensional input shapes and corre-
sponding shapes along the regression curve. The proposed method is
based on a variational time discretization of geodesics. Curves in shape
space are represented as deformations of suitable reference shapes, which
renders the computation of a discrete geodesic as a PDE constrained
optimization for a family of deformations. The PDE constraint is de-
duced from the discretization of the covariant derivative of the velocity
in the tangential direction along a geodesic. Finite elements are used
for the spatial discretization, and a hierarchical minimization strategy
together with a Lagrangian multiplier type gradient descent scheme is
implemented. The method is applied to the analysis of root growth in
botany and the morphological changes of brain structures due to aging.

1 Introduction

Geodesic paths in shape space are the natural generalization of straight lines in
Euclidian space. Applications include shape modeling in computer vision and
graphics [1I2] or in computational anatomy [3l4], and shape clustering [5] as well
as shape statistics [6]. As a generalization of linear regression in Euclidian space
we investigate in this paper geodesic paths in shape space which best approx-
imate given time indexed sets of input shapes in a least squares sense. Fig.[I]
shows a discrete geodesic regression path in the space of 3D objects representing
the growth process of sugar beet roots over a vegetation period.
Time-dependent shape statistics and shape regression has already been inves-
tigated in [7], where the regression curve is obtained via a simultaneous kernel
weighted averaging in time and on shape space. In the application to brain im-
ages the kernel on shape space is linked to the Sobolev metric from the group of
diffeomorphisms approach [§]. A variational formulation of geodesic regression
is given in [9], where for given input shapes S; at times ¢; the (in a least squares
sense) best approximating geodesic is computed as the minimizer of the energy
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Fig. 1. Discrete regression curve (bright) for sugar beet input shapes (dark) at 5 dif-
ferent days in the vegetation period

E[S,v] =13, distg(expp(ti v),S;) over the initial shape S of the geodesic path
and its initial velocity or momentum v. Here, dist(:,-) is the Riemannian dis-
tance and exp the exponential map. A computationally efficient method in the
group of diffeomorphisms shape space is based on duality calculus in constrained
optimization and presented in [I0]. In [II], a generalization allowing for image
metamorphosis—simultaneous diffeomorphic image deformation and image in-
tensity modulation—is proposed. In contrast to these approaches, we here do
not minimize over the initial data of geodesic shooting but directly over the
shapes along a time discrete geodesic. The classical energy minimization prop-
erty of cubic splines exploited in the shape space context in [I2] is related to
the penalty used in our approach, which is defined via the L? integral of the
covariant derivative of the shape velocity along shape curves.

There is a rich diversity of underlying Riemannian structures in the shape
space context. On the space of planar curves the L?-metric on direction and cur-
vature functions is proposed in [I], and the L?-metric on stretching and bending
variations in [I3], as well as curvature-weighted L?- or Sobolev-type metrics in
[14/15], some of which allow closed-form geodesics [I6JI7]. In the flow of diffeo-
morphism approach [18] the metric g(v,v) = [ p Lv-vdz is defined on Eulerian
motion fields v for a higher order elliptic operator L on some computational
domain D C R?. Fuchset al. [I9] propose a viscous-fluid based Riemannian met-
ric related to the approach considered here. Here, we take up the time discrete
concept proposed in [20] and define time discrete geodesics as minimizers of a
time discrete path energy. In the concrete application, the path energy consists
of a sum of matching energies, whose Hessian at the identity coincides with the
rate of viscous dissipation generated by the shape deformation.

The paper is organized as follows. Based on a brief review in Section[2 of the
concept of discrete geodesics proposed in [20] we develop a general variational
model for shape regression in Section[3l In SectionM] this model is illustrated for
the case of a finite dimensional manifold embedded in Euclidian space. Then, in
Sectionfh] we investigate the application to the space of viscous fluidic objects.
The algorithmic ingredients required to solve the underlying optimization prob-
lem are studied in detail in Section[fl The application of the method to shape
statistics in anatomy and botany is presented in Section[ll Finally, in Section[8]
we draw conclusions.
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2 Discrete Geodesics in Shape Space

In this section, we briefly review the notion of continuous geodesics on shape
spaces considered as Riemannian manifolds and adopt a recently introduced
variational time discretization [20]. Let M denote the space of shapes as a Rie-
mannian manifold with a metric gg acting on variations S of shapes S which
are considered as tangent vectors on the manifold M. A curve S : [0,1] —
M with S(0) = S4 and S(1) = Sp is a geodesic if it is a local minimizer
of the path energy E[(S(t))icf0,1]] = fol gs(t)(S(t),S(t))dt. Such curves solve

Vs(t)S(t) = 0, where V denotes the Levi-Civita connection, and in addition

gs(t)(S(t),S(t)) = const. The associated distance dist(S4,Spg) is the minimal
path length L[(S(t))¢cjo,1] = fol (gs(t)(S(t), S(t)))? dt and minimizers of the en-
ergy also minimize the path length. If a continuous path (S(t)):c[o,1] is sampled
at times t, = k7 for k = 0,...,K and 7 := Il(, Jensen’s inequality implies
the estimate £[(S(t))ie0,1] > izk{{:l dist®(Sg_1,Sk) with S, = S(tx). Here,
equality holds for geodesic paths due to the constant speed property of energy
minimizing paths. This observation allows us to derive the fundamental notion
of a discrete geodesic: Approximating the local squared Riemannian distance
dist?(-, -) by a functional W : M x M — R, (S1,82) — WIS}, Sy] in such a way
that dist?(S,S) = WS, S] + O(dist*(S, S)) , we are naturally led to the discrete
path energy E

K
E[Sk] = K ) WI[Si—1,S1] (1)

k=1

for discrete paths Sk = (So,...,Sk). A discrete geodesic (of order K) is then
defined as a minimizer of E[Sk] for fixed end points Sp, S . In this discrete model
WIS, S] can be interpreted as the cost required to deform the shape S into the
shape S. The required approximation property already implies WIS, S] =0 and
that for the first and second variation of W with respect to the second shape
we have 0s,W(S,S] = 0 and ;03 WS, S| = gs for smooth g and W (cf. the
exposition in [20]).

3 Derivation of the Discrete Regression Model

Based on the concept of discrete geodesics revisited in the last section, we are
now in the position to derive our discrete shape regression model from a corre-
sponding model of continuous geodesic regression. Let us consider sets of input
shapes {SZ}ZZle for k = 0,..., K, which represent sets of statistical mea-
surements at times t; € [0,1] on the shape manifold M. As a notational sim-
plification let us suppose already here that all times ¢ at which input shapes
are given are multiples of the time step size 7 = 11( of the discrete model to be
introduced later. Indeed, this is no severe restriction because a generalization to
discrete geodesics with non-constant time step sizes is straightforward (actually,
a non-constant time step has been used in the computation underlying Fig.[).
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Now we ask for a geodesic curve S = (S(t)):e[0,1) on M which minimizes a sum
of dissimilarity measures between the input shapes Sj and the associated shapes
S(tx) on the geodesic curve. More precisely, we aim at minimizing

FIs| =>" Z diss[S(t), Si] (2)

k=0 i=1

under the constraint that S is actually a geodesic, namely that Vs(t)S(t) =0.In
analogy to the standard linear regression model in R™ the measure diss[-, -] might
be the squared (geodesic) distance on M (cf. [9]) or another in general nonlinear
measure of shape dissimilarity. Based on the above discussed approximation
properties diss[S(t),Si] = W[S(tx), Si] is a natural choice.

Instead of enforcing the strict constraint that S is a geodesic, we might alter-
natively consider a penalty approach with

Fe[S] = F[S] + f/() gs(t)(VS(t)S(t),Vs(t)S(t)) dt (3)

for a small penalty parameter €. Obviously, on geodesic curves S the two energies
F€[S] and F[S] coincide. As a scaling factor C' we choose F[S™f], where S™f is
a curve in shape space with S™(¢;) being the shape mean of the input shapes
at time ¢ in the sense of [21], i.e. S™f(t),) = argming >/ | diss[S, Si].

Let us now derive a discrete analog of the above continuous variational prob-
lem and specifically ask for a discrete geodesic regression curve. Now, we consider
discrete curves (So,...,Sk) in shape space and assume (potentially after rein-
dexing) that {Si}zzlzk is the set of input shapes attached to the time t; = k7.
If i = 0 then the corresponding set is empty, and in what follows the associ-
ated sums over ¢ are defined to be zero. With this notation at hand the discrete
geodesic regression problem reads as follows:

Find a discrete path Sk =(So, . .., Sk) such that F[Sk] :ZII::O szzl diss[Sy, St ]
is minimal under the constraint that Sk is a discrete geodesic, i. e. Sg minimizes
E[(So,-..,Sk)] among all discrete paths with same end shapes So and Sk .

To derive a discrete penalty approach we take into account a suitable approxima-
tion of the integrand of the continuous penalty energy. Indeed, for g and W suf-
ficienty smooth gs,)(Vg, S(tk), Vg, S(te)) = 4K*W (S, S(tg)) + O(K~2)

for each k =1,..., K — 1, where Sy, is the middle shape of the discrete geodesic
(Sk—1 = S(tk—=1), Sk, Sp+1 = S(tx+1)), i.e.

Sk = argming (W[Sk_1,S] + WS, S11]) - 4)

This is a straightforward consequence of the convergence theory presented in [22].
Then, writing Sg = (S1,...,Sk_1) and using the simple quadrature fol f)dt =
K Zi:ll f(tx) + O(7) we obtain a discrete penalty approach

40K3 ]

€

F°[Sk] = H'[Sk, S| = F[Sk] + W(Sk, Si] (5)

k=1
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Fig. 2. Results of the discrete geodesic regression for given input objects at 6 timesteps
(top row) are shown for different € (left) and compared to the results obtained by using
a simple path length penalty YE[Sk] (right)

and seek discrete paths which minimize this functional. The approach developed
here is fairly general and will in Section [Bl be applied to a concrete shape space,
namely the space of viscous fluidic objects. Fig. 2l shows results of the discrete
geodesic regression approach for different penalty parameters €. For decreasing e
one observes an increased rounding effect towards the right of the curve, which
reflects the global impact of the round input shapes on the resulting approximate
discrete geodesic. These results are compared to regression curves obtained when
replacing the proposed penalty by the simpler penalty v E[Sk], where E is the
discrete path energy defined in (). The latter leads to a collapse of the regression
curve to a global shape average (cf. [21]).

4 Regression on a Finite Dimensional Manifold

At first, as a simple example and to further motivate our approach let us briefly
demonstrate the discrete geodesic regression for the much simpler case of an
m-dimensional surface M embedded in R%. We suppose M to be parametrized
via a smooth parametrization Y : w — R%; § + Y () over a parameter domain
w. Furthermore, we consider the simple energy W6, 6] = |Y (8) — Y (8)|?, which
reflects the stored elastic energy in a spring spanned between points Y (0) and
Y(ON) through the ambient space of M in R%. Thus, the discrete path energy of
a path (90, ey 0[{) is given by E[(eo, ey 0[{)} = KZI?:I |Y(0k) — Y(9k71)|2 .
Now, we suppose measurements 6;, to be given for k = 0,..., K, i =1,... 14,
i.e. {Y(0:)}i=1,. . are the corresponding input points on M at time t, = 7k.
(As above i, = 0 indicates an empty set of input points, and in what follows
the associated sums over i are assumed empty.) Then the discrete regression
problem reads as follows:

Find a discrete path © = (0y,...,0k) and associated points 6= (51, cee é;(,l)
- ; ; 5 . L
such that H[6, O] = 0,0 Y0k, [V (00) =Y (1) P+, € S35 Y (01) =Y (0n)1

18 minimal subject to the constraint that 0y for k = 1,..., K — 1 minimizes
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G(0k—1,0,0p11) ==Y (0) = Y (0k_1)|> + |Y(0) — Y (Or+1)|? over all § € w.

Let us emphasize that the chosen parametrization influences the numerical so-
lution process but not the resulting regression curves which solely depend on
the manifold M, the in-
put data and the penalty
parameter e. Fig. [3] shows
discrete regression curves
on the sphere. In the im-
plementation a parame-
trization via polar and
azimuth angle was used.
One clearly observes that
for small € the regression
curve is close to a great

. . Fig. 3. Regression curve (black) for 20 input points on
circle so that sets of in- the unit sphere for a strong penalty weight with ¢ =

put .points. at a particu- 0.028 (left) and just a mild curve smoothing with e = 28
lar time might be located (right)

completely on one side of
the regression curve. For larger values of € the method still computes a smooth
regression curve which better matches the input points at the expense of being
far from a geodesic. B B

The optimization algorithm. Denote by é[@] = (01,...,0x_1) the vector
of minimizers of G(0—1,-,0k+1), and define F[O] = H(0,6[6]]. The nec-
essary condition for 6 to minimize G(0x—1,,0k+1) is QY (0r) — Y (Op—1) —
Y (6x41))T DY (8)) = 0. To perform a gradient descent for the energy F¢ we ap-
ply the duality techniques from constrained optimization [23] and define the dual
solution py € R™ as the solution of D3G(6x_1, 0y, Or+1)pr = (89~kH5)[(9, é[@]]
Then we obtain 9y, F¢[O] = (69kH€)[9,@~(@)] - (89k86~kH5)[@,é[@]]pk. The
required derivatives of G and H€¢ are evaluated as follows,

d

D3G (011, 0, 051)i5 = D (2Yri(6) Yo (60) + (22 (0) Vi (Os1) Yo (Oi2)) Yo (9))
n=1
o a1 SCE3 G -
95, H[©,0]; = D (Y (0k) = Y(0k))nYni(0) ,
n=1
- 8CK? & _

09,05, H°(6,0); =~ Y, (0)Yos (0r) -

n=1

5 Shape Regression in the Space of Viscous Fluidic
Objects

Now we apply the general approach of discrete geodesic regression to a physically
motivated shape space of viscous fluidic objects with a metric induced by the
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notion of viscous dissipation. Here, we assume that a viscous flow model at
least captures some characteristics of the usually much more complex underlying
processes such as e.g. plant growth. To this end, one considers objects S which
are homeomorphic to a reference object S c R? (d = 2,3). In general, one is
not interested in point to point correspondences between two different objects
but represents the actual shape S by an equivalence class of deformations [¢] =
{6|$(S) = S}. A family (6(t))iefo,1) of such deformations is associated with an
Eulerian velocity field v(t) = (b(t) o ¢~ 1(t), and shape variations are equivalence
classes of such motion fields with o ~ v if o-n = v -n on 9S, where n is the
outer normal on 9S. Now, a physically motivated metric on shape variations is
given by the minimal rate of dissipation in a Newtonian fluid occupying S when
its free boundary moves according to the shape variation,

ss(oo)= - min o eal)? + () do (6)
{t]|v-n=v-nondS} Jg
where A, p1 > 0, e[v] = }(Vo+VoT) (A = p = 1 in the examples). In this context,
a matching functional W to approximate the resulting squared Riemannian
dlstance locally can be defined via the minimization of a deformation energy
= [ W(D¢)dx over all matching deformations ¢ with ¢(S) = S, i.e.
W[S, S] = min,g)_g W[ , @] for some particular deformation energy density .
There are primarily two options to choose a W which both ensure the requested
consistency of the functional W and the metric g, i.e. 2D2 [S,id] = gs. One
could consider a simple linearized model with

W (D¢) = 3 (tre[¢ — id])* + ptr(e[¢p —id]?) . (7)

The advantage of W' is that it is quadratic in ¢ so that the Euler-Lagrange equa-
tions for a functional composed of such energy densities will be linear. However,
this is at the expense of the resulting energy being rigid body motion invariant
only in an infinitesimal sense so that a relatively large number K of time steps is
required in () to obtain an approximate frame indifference of discrete geodesic
paths. Full rigid body motion invariance for large deformations can be guaran-
teed only for certain classes of nonlinear models W = W™ A specifically useful
example is the energy density

Wnl(Dg) = ’;tr(DqSTDgé) + i det(D¢)? — (u + ;) log det D — d2“ - 2 . (8)

We refer to [20] for further details on this approach.

In our application of discrete geodesic regression the computationally most
demanding task is the continual computation of the shapes Sy for the penalty
terms WSy, Si.]. Therefore it turns out to be favorable to use W' in the defini-
tion of the Sy, and the penalty functional, i.e. we choose

W[S,S] := £)m WS, ¢] with WS / W' (Dg)d (9)
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Sk-1 ~ Sk ; Sk+1
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Yr-1 N’“ R Vr41
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> Sk_a > Sk > Skt1 >

Fig. 4. A diagram illustrating the parametrization of the shapes Sy via deformations
over reference shapes Sy. Here, ¢k are given deformations such that Sy = ¢>k(Sk 1).

in @) and (@) and a large number of time steps K leading to a sufficiently small
time step size 7 = .. The condition on Sy, in (@) thus reads as

S) = ar min( min W/ Sk—1,¢]+ min w! S,¢) . 10

gS #(Sk—1)=S | d #(8)=Sr41 [ } (10)
The treatment of the dissimilarity measure is computationally less critical and we
would like to treat large scale variations between shapes of the discrete geodesic
Sk and corresponding input shapes Sj. Hence, here we take into account the
nonlinear deformation model and define

diss[Sy,S%] ;= min  W™[Sy, ¢] with W™[S, ¢] :/W”Z(qu) dz. (11)
¢(Sk)=S}, S

Finally, to render the method computationally feasible, we assume all de-
formations to be defined on a computational domain D (D = [0,1]¢ in the
examples) containing all shapes under consideration, and we suppose that the
material properties outside any of the shapes are by a factor § softer than in-
side the shapes (6 = 0.01 in the examples). Thus, we replace W"l/Z[S,(b] by
Wnl/l[S,(b] = [,((1 = 8)xs + ) W"/!(D¢)dz (where the superscript I or nl
identifies the linear and the nonlinear model, respectively).

6 The Optimization Algorithm

Here we briefly describe the main algorithmic ingredients to minimize (@) in
the context of the space of viscous fluidic objects. The presented variational
approach for shape regression is based on functionals which depend on shapes
and deformations defined on these shapes. To render the method computation-
ally feasible, we parametrize shapes via deformations acting on reference shapes
and work solely with deformations as unknowns. Then, we consider a gradient
descent algorithm for the PDE constrained variational approach. In detail we
proceed as follows:

Parametrizing shapes via deformations. The shapes Sy of the discrete geodesic
as well as the constraint shapes S, are represented via deformations 5, and wk
of fixed reference shapes Sk, i.e. S = wk(Sk) and S;, = wk(Sk) (cf. Fig. IZI) In

addition, we consider deformations wk on Sk with Sz = wk(Sk) fori=1,..., 1.
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We can now rephrase the deformations ék from the S, onto the Sy (which occur
in (§) via @) and the deformations (¢%)i—" 7" from the shapes Sy onto the
input shapes (which are introduced in (I]:[l) and used in F[Sk]) in terms of the
above parametrizing deformations, i.e. ¢! = Pi o ’l/}k , ¢k =) o wk .

Approzimation of the matching condition. To ensure that ¢} matches (at least
approximately) Sk onto the input shape S§ we employ a penalty functional
P[S,Si, i) : = [plxs, — Xs; © ¥ |2 d2 weighted with (; (n = 0.1 in the exam-
ples) and added to the total energy for all k =0,..., K and i =1,... 4

Expressing the energy in terms of the parametrizing deformations. To simplify
notation, denote by ¥ := (1, (wii)i=1,m,ik)k=0,m,K the vector of all deformations
which are considered as our actual degrees of freedom and by ¥ := (7;17 e thR—1)
the vector of all constraint deformations. The energy F¢[Sk| over which we min-
imize in (f) is rewritten as an energy I:If;?7 (W, ] of ¥ and ¥,

K i
ﬂzn[w,@}—z@j (W' Tn(S1), vhovr 1+ S PISk, mm))

k=0 \i=1

3 K
4CK Z W[4k (Sk), r o] (12)

By the transformation rule we obtain the following computationally more effi-
cient reformulation of the involved deformation energies

Wi [0n(Se), v o] = /D<<1—5)xs:r5)W"l”(Dw(Dwk)’l) det Dy (13)

for ¢ = 4% or 1 = ¢y, respectively.
Realization of the constraint. We aim at minimizing H§, subject to constraint
Q). L.e. for all k =1,..., K — 1 the components ¥y of the vector of deforma-
tions ¥ describe the middle shape of a discrete 3-shape geodesic with end shapes
Sk_1 = Vi_ 1(S;€ 1) and Sgy1 = 'l/)}ch](SkJr]) We now slightly modify this con-
stramt by requiring ¢, to be the minimizer of W5 [thr— 1(Sk 1) Yoo (U 1]
5[w( k)s Ykt 1001109~ over all deformations ¥, where ¢, are given match-
ing deformations between the reference shapes with Sy = ¢ (Sp_1) (cf. Fig. ).
This is not quite the same as ([0, not just because of the additional regulariza-
tion, but also since here the point-to-point correspondence )y 41 o&kﬂ oék oqp];ll
between Si_; and Sg4; is imposed along the 3-shape geodesic, which was not

the case originally. Nevertheless, in the limit for K — co and € — 0 the discrete
path experimentally converges to a continuous geodesic (cf. Fig. [6l and [@J).

A computationally advantageous symmetrization of the constraint. To fully ex-
ploit the quadratic deformation energy in the context of the above-mentioned
constraint it is advantageous to further replace Wk[1)(Sy), ¥+1 0 ¢p41 09~ 1] by
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Wi (b1 (Ss1), 90 0 é;il o %11]
= /D((l*5)ng+5)Wl(D¢(D¢A5k+1)71(D¢k+1)710<ZA51¢+1) :
det D1 (det Dippy1) 0 ppyrdi

which is quadratic in ¢ and in effect replaces the relaxation of the energy

mings)—s,., W![S,¢] in ([I0) by the relaxation of a similar energy based on
the inverse deformation mings)—sg, ., Wl[SkH, #~1]. For our applications (e.g.
Fig. @) we experimentally validated that for this computationally motivated
modification the resulting discrete curves converge towards discrete geodesics.
Altogether we obtain the following variational definition,

Uy = arginin GYk—1,%, Yr41] (14)

forallk=1,...,K — 1, where

G[wk—la wa ¢k+1} = Wfs [wk—l(ék_l), ’¢ ] (&k o %;11]
W5 [0 (k1) ¥ 0 Dy 0 ity ] + v WD, ).

Here, we added vW'[D, 4] as regularizer with v ~ 1072k to ensure that not only
the compositions of deformations are regular but also the deformation .

A gradient descent scheme. We apply a standard Fletcher—Reeves nonlinear con-
jugate gradient descent to the above minimization problem, which at each step re-
quires evaluation of the functional ﬁgn W] := H 50, ¥ [¥]] and its gradient. For the
functional evaluation, the quadratic optimization problem (Il is solved for each
k=1,..., K—1Dbyapreconditioned linear conjugate gradient iteration. Using the
standard adjoint method in constrained optimization [23] as in Sectiondlwe obtain
the Gateaux derivative of an [#] (which incorporates constraint (I4])) as

00, F5, 0] = (90,115, ) [0, 010)) — (0,05, 185, ) W, (@) pe, (15)
where py, is defined as the solution of the dual problem

DG k-1, D i pi = (07, 5, ) [0, 919]] (16)

Different from the nonlinear energy W which is strictly rigid body motion
invariant, the quadratic energy Wi is rigid body motion invariant solely in an
infinitesimal sense. Thus, in the case of large shape variability in the input data
it turned out to be appropriate to enforce the preservation of the center of
mass, fD((l —d)xg + 9)Ydz = 0, and the preservation of the angular mo-
mentum, [, ((1 = &)xg + 8) (D¢ — DyT) di = 0, assuming the input shapes
are co-aligned with respect to the zero moment and the direction of the first
moment. This is implemented as an additional set of linear constraints in the
minimization in ([4) and in the outer minimization with respect to the en-
ergy term ng[ék,wk]. The latter is realized by a projective gradient descent
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Fig. 5. Top: regression input shapes (S}Q)Z:;OZ (grey) and reference shapes 0

(Sk)i=
(black), middle: discrete regression curve (Sy)}i_o, bottom: the deformations ()%_

scheme, the former by a Lagrange multiplier approach. To emphasize the qual-
itative behavior of geodesic regression we have computed the regression curve
for a very basic test case. Fig. [ displays a discrete geodesic and the associ-
ated deformations acting on the reference shapes, and Fig. [ underlines that
the resulting regression curves are actually very close to discrete geodesics. For
the spatial discretization we employ multilinear finite elements on the com-
putational domain D = [0,1]%, which is overlaid with a regular square grid
of 2" + 1, n € N, nodes in each

direction. Energies are computed
via Simpson quadrature on each €=03 O O Q D D D
element. Furthermore, we apply
a cascadic approach, first com- 6:0'030 O D D D D

puting the regression curve with
a coarse spatial resolution for all
involved deformations and then
proceeding iteratively from coarse
to fine. In this cascadic approach one can also adopt the reference shapes S, and
the associated reference deformations ék starting on the coarsest level with a sin-
gle reference shape chosen as one of the coarsely resolved end shapes.

Fig. 6. Difference between the discrete regres-
sion curve (black) and the true discrete geodesic
(red) connecting its end shapes for different e.

7 Applications in Botany and Anatomy

We applied the geodesic regression approach to the statistical analysis of the
aging of the human corpus callosum and to the growth of sugar beet roots over
a vegetation period. Fig. [lshows the discrete regression curve for the corpus cal-
losum input shapes, which clearly reflects a substantial thinning of the structure
with increasing age (cf. the results in [9] on a similar data set). Fig. [ presents
results obtained for 2D slices of sugar beet roots. Here, we also show the ef-
fect of an increasing number of intermediate shapes along the regression curve.
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IV

Fig. 7. Discrete geodesic regression curve for 31 shapes representing slices of the corpus
callosum of humans at different age (2°¢ to 8'® decade). On the right the 7 contours

are overlayed showing a thinning process with increasing age (blue to red).
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Fig. 8. From top to bottom: 2D input slices of sugar beets at five time points (grey) and
shape averages for each time (black), regression curves for ¢ = 0.08 and K =4, 8,12

J07)

—
—~
)

) )

T T T
30 40 50 60 70 80 90

age

AR
iRl
s
!
|

e=28 e=0.8 e =0.08

Fig. 9. Difference between the discrete regression curve (black) and the true discrete
geodesic (red) connecting the end shapes for three different values of €
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day 54 day 69 day 83 day 96 day 109

Fig. 10. For the discrete sugar beet regression curve (cf. Fig. [l the shapes Sy in
the front are color coded according to the signed distance from the shape average at
each time point and the input shapes in the back according to the distance from the
regression shape in front (colorcode: —0.127 0.061, maximal root height ~ 0.75).

Fig.@lonce more demonstrates that already for moderately small penalty param-
eter € the resulting curves are actually very close to a discrete geodesic. Finally,
Fig. [0l shows some quantitative analysis of the regression curve for sugar beets
in 3D.

8 Conclusions

We have described a time discrete geodesic regression approach on manifolds and
applied it to the shape space of viscous fluidic objects. The method requires the
solution of a PDE constrained optimization problem for deformations defined
on a family of reference shapes. Applications in the context of plant growth and
anatomical brain structures demonstrate the method’s potential in time depen-
dent shape statistics. A thorough convergence analysis for K — oo and € — 0
following the direction in [22] is still open. The current implementation based
on a gradient descent approach requires several hours to compute a regression
geodesic for 2D shapes and several days for 3D shapes. There is a great poten-
tial for faster energy relaxation using Newton type methods and more efficient
parallel implementations. Furthermore, it would be interesting to investigate the
generalization to more general classes of regression curves and the application
to other shape spaces.

Acknowledgement. The 3D volumetric data of sugar beets acquired by 4.7T
MRI are courtesy of R. Metzner (Forschungszentrum Jiilich). The corpus callo-
sum shape data was derived from MRI from the OASIS brain database (www.
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