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Abstract. In this paper, we present a general convex formulation for
global histogram-based binary segmentation. The model relies on a data
term measuring the histograms of the regions to segment w.r.t. refer-
ence histograms as well as TV regularization allowing the penalization
of the length of the interface between the two regions. The framework is
based on some l1 data term, and the obtained functional is minimized
with an algorithm adapted to non smooth optimization. We present the
functional and the related numerical algorithm and we then discuss the
incorporation of color histograms, cumulative histograms or structure
tensor histograms. Experiments show the interest of the method for a
large range of data including both gray-scale and color images. Compar-
isons with a local approach based on the Potts model or with a recent
one based on Wasserstein distance also show the interest of our method.

Keywords: segmentation, global histogram, convex, structure tensor,
non smooth optimization.

1 Introduction

Image segmentation has been the subject of active research for more than 20
years (see e.g. [2,11] and references therein). For instance, we can refer to the
seminal work of Mumford and Shah [16], or to its very popular approximation
with level sets developed by Chan and Vese in [9]. This last work provides a very
flexible algorithm to segment an image into two homogeneous parts, each one
being characterized by its mean gray level value.

In the case of textured images, a lot of extensions of [9] have been proposed
to enhance the mean value image segmentation model. For instance, local his-
tograms are used in [31,17], Gabor filters in [27] and [20], wavelet packets in [3]
and textures are characterized thanks to the structure tensor in [6,26].

When considering the global histograms of the regions to segment, there also
exist a large body of literature [1,7,15,14] also based on [9]. Recent works make
use of the Bhattacharyya distance [30] or the Wasserstein distance [21] to com-
pare globally the histograms. It is important to notice that this class of ap-
proaches involves complex shape gradient computations [12] for the level set
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evolution equation. Moreover, as these methods all rely on the evolution of a
level set function [19], it leads to non convex methods that are sensible to the
initialization choice and only a local minimizer of the associated energy is com-
puted. Other models as in [25,28,4,13] that use graph-based methods and also
[24] obtain good results without level-sets, but these algorithms are not bound
to give a global minimum of the original energy.

Recently, convexification methods have been proposed to tackle this problem,
as in [18,23,8,5,29]. The original Chan-Vese model [9] can indeed be convexified,
and a global solution can be efficiently computed, for instance with a primal-
dual algorithm. A simple thresholding of this global solution provides then a
global minimizer of the original non convex problem. Up to our knowledge, such
approaches have not been developed yet for global histogram segmentation with
length boundary regularization.

The contribution of this paper is thus to introduce a convex model to segment
an image into two parts, each region being characterized by its global histogram.
This convex model is minimized efficiently by using a non smooth convex op-
timization algorithm [8]. The model is first developed for the case of grayscale
images, and then extended to the case of features based on the structure tensor,
and finally to the case of color images.

With respect to the previously mentioned global histogram based segmenta-
tion methods relying on the evolution of a level set function, the approach here
is much simpler. On the one hand, the proposed algorithm is faster than the
ones based on Wasserstein distance [17,21], and on the other hand despite the
simplicity of the approach the obtained segmentation results are very good while
being independent of the initialization.

The plan of the paper is the following. We introduce our model for global
histogram based binary segmentation in Section 2. Our functional relies on some
l1 norm for the data term, and we propose an efficient numerical scheme based on
a non smooth convex optimization algorithm. We present in Section 3 numerous
numerical examples to show the strength of the method, as well as its limitations.
In Section 4, we illustrate the importance of global histogram comparisons to get
a global image segmentation and we give some comparisons with the approach
of [21]. We conclude in Section 5 and we present some future venues of research.

2 A Convex Variational Formulation

The problem tackled in this paper concerns the segmentation of an image into
two parts through global histogram constraints. Our approach is motivated by
two issues. The first one concerns the dependence to the initialization, the second
is the problem of locality in the histogram comparison.

Notations

Let Ω be the image domain: we assume Ω to be a non empty open bounded
subset of �2 with Lipschitz boundary. We note |Ω| the size of Ω and 〈., .〉 the
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standard inner product on L2(Ω), that is 〈u, v〉 =∑x∈Ω u(x)v(x) in the discrete

setting. Let I : Ω �→ Λ ⊂ �
k be the image, Λ finite, h0 and h1 two given reference

histograms: Λ → [0; 1], with
∑

λ∈Λ hi(λ) = 1, i = 0, 1. We aim at estimating
a binary segmentation represented by u : Ω → {0, 1}, where the histogram
computed on the region Ω0 := {x ∈ Ω, u(x) = 0} is close to h0 (resp. the
histogram on Ω1 := {x ∈ Ω, u(x) = 1} should be close to h1). The histogram on
the region Ω1 is then computed as:

hu(λ) =
1

|Ω1|
∑

x∈Ω

u(x)�I=λ(x) =
1

∑
x∈Ω u(x)

∑

x∈Ω

u(x)�I=λ(x) (1)

To realize the segmentation, we first require a metric between histograms, and
we will thus consider a norm ‖ . ‖ on �

Λ. In order to control the length of the
interface between the two parts of the partition, a total variation regularization
is also considered. The segmentation can therefore be obtained by minimizing
the following non-convex energy :

J(u) = TV (u) +
∣
∣
∣
∣(hu − h1)λ∈Λ

∣
∣
∣
∣+
∣
∣
∣
∣(h1−u − h0)λ∈Λ

∣
∣
∣
∣ (2)

Convexification

In the aim of defining a convex model, we propose to reformulate the data term
comparing histograms. To that end, we can first observe that

‖ hu − h1 ‖ =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(
1

∑
Ω u(x)

∑

Ω

u(x)�I=λ(x) − h1(λ)

)

λ∈Λ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(3)

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1
∑

Ω u(x)

(
∑

Ω

u(x)�I=λ(x) −
(
∑

Ω

u(x)

)

h1(λ)

)

λ∈Λ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
(4)

Assuming that the size of the area Ω1 defined by |Ω1| =
∑

Ω u(x) is known, we
can only keep the distance

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(
∑

Ω

u(x)
(
�I=λ(x)− h1(λ)

)
)

λ∈Λ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(5)

which is convex in u. Note that a similar problem is tackled in [10] in the slightly
different framework of cosegmentation with no total variation, and a solution is
found without modifying this term. The very same convex reformulation can be
done for the second term involving 1 − u and the histogram h0, thus removing
a factor 1∑

Ω(1−u(x)) =
1

|Ω0| .
With such normalizations, the data terms of the two partitions are no more

balanced. Nevertheless, a weighting factor β ∈ [0, 1] can be introduced. This
factor represents the ratio β =

∑
Ω u(x)/|Ω| = |Ω1|/|Ω|. As |Ω| = |Ω0| + |Ω1|,

one can see that
∑

Ω(1 − u(x))/|Ω| = |Ω0|/|Ω| = (|Ω| − |Ω1|)/|Ω| = 1 − β,
which gives the normalization factor of the second term.
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Defining g1λ(x) := �I=λ(x)−h1(λ), g0λ(x) := �I=λ(x)−h0(λ), the final convex
model reads:

J(u) = TV (u) +
1

β
‖ (
〈
u, g1λ

〉
Ω
)λ∈Λ ‖ +

1

1− β
‖ (
〈
1− u, g0λ

〉
Ω
)λ∈Λ ‖ . (6)

It now remains to choose the distance to compare histograms.

l1 Data Term

Up to now, the general model has been designed for any data norm. In this
section, we choose the l1 norm: ‖ h ‖l1=

∑
λ∈Λ |h(λ)|. We therefore have the

following energy:

J(u) = TV (u) + μ
1

β

∑

λ∈Λ

∣
∣
〈
u, g1λ

〉
Ω

∣
∣+ μ

1

1− β

∑

λ∈Λ

∣
∣
〈
1− u, g0λ

〉
Ω

∣
∣ (7)

= TV (u) + μ
1

β

∑

λ∈Λ

∣
∣
∣
∣
∣

∑

x∈Ω

u(x)g1λ(x)

∣
∣
∣
∣
∣
+ μ

1

1− β

∑

λ∈Λ

∣
∣
∣
∣
∣

∑

x∈Ω

(1− u(x))g0λ(x)

∣
∣
∣
∣
∣
.

One can observe that our global data term depends on the whole state {u(x), x ∈
Ω}, for each value λ ∈ Λ. We want to minimize J(u) on the set BV (Ω, {0, 1}).
As this binary set is not convex, we relax our problem by minimizing J(u)
on BV (Ω, [0, 1]). We will get back to the original domain by thresholding the
solution of the relaxed problem. However, there is no guarantee that this strat-
egy should lead to minimizers of the original problem, and different choices of
thresholds may lead to different solutions.

Finally notice that if the original problem has many global minimizers, the
result given by the convex minimization can be such that we do not know how
to use it in order to get back to the original problem. Even if specific scenarios
could be built to make such situation happen, this issue never occurred in our
experiments with non-synthetic data.

Since our functional can be written as the sum of non-smooth convex terms,
some of them being the composition of a l1 norm and a linear operator, we will
write the problem with dual variables. Let us write A and B the linear operators
A : u �→ (

〈
u, g1λ

〉
Ω
)λ∈Λ, B : u �→ (

〈
u, g0λ

〉
Ω
)λ∈Λ. We can write the problem as a

saddle point one
arg max

q1,q2,q3
argmin

u
E(q1, q2, q3, u) (8)

where

E(q1, q2, q3, u) = 〈q1,∇u〉Ω + 〈q2, Au〉Λ + 〈q3, B(1 − u)〉Λ (9)

−χB(0,1)(q1)− χ[−μ 1
β ,μ 1

β ](q2)− χ[−μ 1
1−β ,μ 1

1−β ](q3) + χ[0,1](u)

= 〈q,Ku〉Ω×Λ2 − F ∗(q) +G(u) (10)

with q = (q1, q2, q3) ∈ (�Ω × �
Ω) × �

Λ × �
Λ of dimension 2 |Ω| + 2 |Λ|, K :

u �→ (∇u,Au,−Bu), G(u) = χ[0,1](u), F
∗(q) = χB(0,1)(q1) + χ[−μ 1

β ,μ 1
β ](q2) +
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χ[−μ 1
1−β ,μ 1

1−β ](q3)− 〈q3, B1〉, B(0, 1) the closed unit disc of �2. In the previous

expressions, χC denotes the characteristic function of the convex set C, i.e.
χC(x) = 0 if x ∈ C, χC(x) = ∞ if x /∈ C. We optimize this criterion with a
primal-dual scheme as explained here-after.

Optimization with a Preconditioned Primal-Dual Algorithm (PPD)

We now give the general formulation of the PPD algorithm, and then write the
algorithm applied to our functional.

Let X , Y be two finite-dimensional vector spaces. We write 〈., .〉 the standard
inner products, K : X → Y a linear operator and G : X → � ∪ {∞} and
F ∗ : Y → � ∪ {∞} some convex functions (F ∗ being the Legendre Fenchel
transform of F [22]). We want to solve

min
x∈X

max
y∈Y

〈Kx, y〉+G(x) − F ∗(y). (11)

In [22], a preconditioned primal-dual algorithm has been proposed to solve such
convex problem. The algorithm reads:

Algorithm 1. Preconditioned primal-dual algorithm ([22])

uk+1 = (I + T∂G)−1
(
uk − TKtzk

)

zk+1 = (I +Σ∂F ∗)−1
(
zk −ΣK(2uk+1 − uk)

)

with T and Σ symmetric positive definite matrices such that ‖ Σ
1
2KT

1
2 ‖2< 1

and (I+T∂G)−1(û) := argminu∈U G(u)+ 1
2τ

〈
T−1(u− û), u− û

〉
. Such process

converges to a saddle point in O( 1k ) (with k the number of iterations). As pro-
posed in [22], one can take T = diag(τ1, ..., τn) and Σ = diag(σ1, ..., σm) with
τj <

1∑m
i=1 |Ki,j | , σi <

1∑n
j=1 |Ki,j | .

Application of PPD to Functional (8)

Introducing the following relations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tu(x) = τxu(x), τx < 1
2+

∑
λ∈Λ(|g1

λ(x)|+|g0
λ(x)|)

,

Atq2 =
∑

λ∈Λ q2(λ)g
1
λ,

Btq3 =
∑

λ∈Λ q3(λ)g
0
λ,

σ1 < 1
4 ,

Σ2q2(λ) = σ2,λq2(λ), σ2,λ < 1∑
x∈Ω g1

λ(x)
,

Σ3q3(λ) = σ3,λq3(λ), σ3,λ < 1∑
x∈Ω g0

λ(x)
,

b = B1,

(12)

the PPD Algorithm 1 applied to our functional (7) gives the Algorithm 2, where
PC is the orthogonal projection on the convex C:
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Algorithm 2.

uk+1 = P[0,1]

(
uk − T

(
Atqk2 −Btqk3 − div(qk1 )

))

qk+1
1 = PB(0,1)

(
qk1 + σ1∇(2uk+1 − uk)

)

qk+1
2 = P[−µ 1

β
,µ 1

β
]

(
qk2 +Σ2A(2uk+1 − uk)

)

qk+1
3 = P[−µ 1

1−β
,µ 1

1−β
]

(
qk3 −Σ3

(
B(2uk+1 − uk)− b

))
.

3 Applications

We now present some experiments on synthetic and natural images, assuming
that the histograms of the two areas to segment are known. They are in fact
given by manual scribbles selected by the user in our practical applications (they
are displayed on the images with red rectangles for the first region and green
rectangles for the second one).

The balance between the data term and the regularization term is tuned by
the user.

The parameter β is always fixed at 0.5, we show in Figure 4 that changing it
can improve the result, but its value did not seem critical in our experiments. As
our functional is convex, the process is simply initialized with u = 0.5 in all our
experiments, which is a main difference with existing approaches based on global
histograms [17,21,30]. The final solution is currently obtained by thresholding
the estimated solution u∗ with u∗ ≥ 0.5, the choice of the threshold leading to
slightly different results.

3.1 Grayscale Images

In practical applications, images are always corrupted by some noise. In order to
get a more robust algorithm, we can work with cumulative histograms instead
of histograms. Situations may happen where a pixel value is represented in none
of the reference distributions h0 and h1. For instance, let us consider that the
reference histograms have been learned from a clean image. If this histogram is
finely quantified and sparse, adding some noise (or an offset ) to the image may
lead to such issue. In this case, the values of a lot of noised pixels may belong
to empty bins of both reference histograms and the segmentation will fail.

Cumulative histograms are one way to tackle this problem.
All the derivations we have made so far in the paper for histogram based

segmentation hold true for cumulative histograms and we get the following func-
tional:

J(u) = TV (u) + μ
∑

Λ

(
1

β

∣
∣
∣
〈
u, g1C,λ

〉
Ω

∣
∣
∣+

1

1− β

∣
∣
∣
〈
1− u, g0C,λ

〉
Ω

∣
∣
∣

)

(13)

with gC,λ =
∑

γ≤λ g
0
λ = �I≤λ−h0

C(λ), and the cumulative histogram is obtained

as h0
C(λ) =

∑
γ≤λ h

0(γ). The associated numerical schemes are therefore similar.
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In order to show the robustness of cumulative histograms to noise, we segment
in Figure 1 a synthetic image (a) with two areas that have the same color mean
but different histograms with two non zero values, and we add a Gaussian noise
to the image (b). We first estimate the reference histograms on the clean image.
The objective is here to see if it is possible to retrieve the objects in the noisy
image, knowing the histograms on the clean image. We show the results obtained
with the data terms based on (c) histograms and (d) cumulative histograms. As
expected, the simple histogram comparison fails, whereas the cumulative version
of the model is able to give good segmentations of the objects.

(a) Initial image (b) Noisy image (c) Histograms (d) Cumulative
histograms

Fig. 1. Segmentation of a noisy image with two zones that have the same color mean
but different histograms, with β = 0.5, λ = 0.07 and 100 bins. The cumulative his-
tograms version produces a good estimation, whereas the simple histogram comparison
fails. The results are here not thresholded in order to show that the failure of the his-
togram model is not due to the choice of the threshold.

We will then use the cumulative histogram version of our data term, since it
is well adapted to gray-valued images and it is more robust to noise. Notice that
the l1 data term between cumulative histograms of grayscale images corresponds
to the l1 Wasserstein distance. A segmentation of a natural image is presented
in Figure 2. The animal is accurately segmented, even if the tail is missed.

(a) Initial image (b) Segmentation

Fig. 2. Segmentation of a natural image, with β = 0.5, λ = 0.15 and 10 bins. The
animal is mainly found.
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3.2 Color Images

We show in Figure 3 the segmentation of a zebra, using color histograms. Here
again the global model produces accurate results. Next we present in Figure 4
the segmentation of a boat. In this example, the size of the two wanted partitions
is unbalanced, as the boat is small compared to the rest of the image. A slight
increase of the β parameter then allows one to obtain a more accurate estimation,
as illustrated in the image (c).

(a) Initial image (b) Segmentation

Fig. 3. Segmentation of a natural image, with β = 0.5, λ = 0.2 and 73 bins. The animal
is mainly found.

(a) Initial image (b) Segmentation with (c) Segmentation with
β = 0.5 β = 0.59

Fig. 4. Segmentation of a boat, with β = 0.5, λ = 0.13 and 53 bins. The boat is found,
but choosing β = 0.59 gives a more accurate segmentation (c) than the one obtained
with the default parameter (b).

3.3 Structure Tensor

The proposed model is also designed to deal with texture, using for instance the
structure tensor [6] defined as follows. If I is a grayscale image, the structure
tensor is the symmetric matrix (∇I)(∇I)t. Since the tensor is symmetric, it
has only 3 independent dimensions. A 3D histogram is therefore sufficient to
represent the distribution of the structure tensor values.

We can therefore apply the algorithm on the three channels of the structure
tensor or enhance the model with a 4 dimensional histogram (3 dimensions for
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the structure tensor and 1 for the grayscale image I). Here we present some
examples just involving the components of the structure tensor. We choose to
linearly normalize all channels between 0 and 1 before taking the histograms.
We give an example on a synthetic image with two regions that have the same
histograms of gray levels, and with the same orientations. The results are given
in Figure 5. The model here again performs well, even if the ring is recovered
as a disc. We also present a segmentation of two images with two textures in
Figures 6 where our global model is able to estimate accurate segmentations of
the different textures.

(a) Initial image (b) Segmentation

Fig. 5. Segmentation of a synthetic image, with β = 0.5, λ = 0.025 and 33 bins

(a) Initial image (b) Segmentation (c) Initial image (d) Segmentation

Fig. 6. Segmentation of an image of wood, with β = 0.5, λ = 0.075 and 73 bins, and
segmentation of an image composed of two textures, with β = 0.5, λ = 0.1 and 73 bins.

4 Comparison with Local and Non Convex Approaches

In this section, we present comparisons with algorithms of the two main class
of approaches that can be found in the literature of the histogram-based seg-
mentation problem. We first compare our approach with an approach based on
local histogram comparisons through the convex Potts model. As will be shown
in the numerical computations, such a method cannot compete with the global
framework introduced in this paper. We also present some comparisons with a
recent non-convex approach based on the Wasserstein distance between global
histograms. The different experiments demonstrate the capacity of our method
to deal with global constraint while being independent of the initialization.
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Comparisons with a Local Histogram-Based Approach

In order to illustrate the importance of global histogram comparisons over local
ones, we now introduce a local histogram segmentation algorithm based on the
Potts model. A pointwise estimation of the probability of a pixel to belong to a
class can be formulated for instance with the functional:

Jpointwise(u) = TV (u) + 〈u(x), h0(I(x)) − h1(I(x))〉Ω , (14)

where the data model will enforce u(x) = 1 when h1(I(x)) > h0(I(x)). In the
aim of having a more robust data term, we can realize a local estimation of the
probability of a pixel to belong to a class. This can be formulated in the same
way with the functional:

Jlocal(u) = TV (u) +
〈
u(x), ‖ h0 − hV (x) ‖l1 − ‖ h1 − hV (x) ‖l1

〉
Ω
, (15)

where hV (x) is the histogram estimated on a neighborhood V (x) of x ∈ Ω. No-
tice that in these two functionals, the data term can be computed pointwise
(once the map of distances with local histograms has been calculated for the
local model). This is a main difference with our data term which values depend
on the whole state u. On the other hand, it is important to underline that such
functionals can be globally minimized on u ∈ BV (Ω, {0; 1}), using convexifi-
cation approaches (see[18,23,8,5,29]) for more details). We illustrate the need
to use global histogram comparisons instead of local ones on the two examples
given in Figures 7 and 8.

(a) Image data (b) Groundtruth (c) Pointwise (d) Local (e) Global

Fig. 7. Segmentation of a binary image with three regions. The respective probability
of 0 are 0.65, 0.5, 0.95. We fix two histograms h0 = [0.8, 0.2] and h1 = [0.55, 0.45]. The
local estimation on neighborhoods of size 9×9 with λ = 0.5, gives a classification where
the estimated histograms on the labeled images are not as close as the segmentation
given in (c) with our model (with parameters β = 0.5, λ = 0.5).

The synthetic data presented in Figure 7 (a) is composed of three different
regions of the same area. Each region is filled with independent realizations of
a binomial distribution with the probability of 0 depending on the region: this
probability is equal to 0.65 for the left region, 0.55 for the middle one and 0.95
for the right region. We fix two histograms, h0 = [0.8, 0.2] (i.e. the frequency
of 0 is 0.8 and the frequency of 1 is 0.2) and h1 = [0.55, 0.45]. Hence, the first
histogram (h0) exactly matches the expected histogram of the union of the left
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and the right regions, while the second one (h1) matches the one of the middle
region. The ground truth segmentation is illustrated in image (b) of Figure 7.

When realizing a pointwise estimation of the data term, the pixels with value
0 are always more probable in the class defined by h0. With no regularization
the black pixels will therefore be classified in the h0 class, and the white pixels in
the h1 class. Since in each model the probability of 0 is greater than the one of 1,
increasing the regularization weight will increase the number of pixels labeled in
h0. This kind of classification is obtained with the functional (14) and illustrated
in Figure 7 (c).

If we consider local histograms through the functional (15), the problem will
be partially solved. Indeed, if the neighborhood used to compute the local his-
tograms is sufficiently large, the data estimation will be good enough and the
central region will be classified in h1. However, if the metric used to compare
histograms is the l1 one, then the local histograms computed in the first region
will be closer to h1 and will thus be misclassified, as illustrated in image (d).

With both local models, the global histograms of the segmented regions are
not close to the given reference histograms. This is the main difference with our
modeling, as we aim at globally segmenting the image, in the sense that the
histograms of the global segmented zones should be close to the reference distri-
butions. We show in figure 7 (e) the aforementioned example, its segmentation
with local histograms and the one with our model.

A second comparison is presented in Figure 8. The reference color distributions
are here not homogeneous in the sense that the histogram of the whole region
is not similar to the ones computed in local neighborhoods. The histograms
are estimated in the regions given in the image (a). Here the orange colors are
more probable in the region related to the butterfly, so in small neighborhoods
the flowers are classified as the butterfly, and the darker regions are segmented
as being in the background. This example illustrates again the importance of
global histogram comparisons to get a global segmentation of an image. Indeed,
our global model (c) is able to recover the butterfly , whereas the local approach
(b) completely fails. Local approaches are therefore only relevant when the local
histograms correctly approximate the global ones.

Comparisons with a Shape Gradient Approach

We finally illustrate the advantage of having a convex model that does not de-
pend on the initialization. We compare our results with the ones obtained with
the Wasserstein Active Contour method proposed in [21]1. Such approach con-
sists in deforming a level set function in order to minimize globally the Wasser-
stein distance between the reference histograms and the one induced by the
segmentation. To make the level set evolve, this formulation requires complex
shape gradients computations. In Figure 9, we present the results obtained with
this approach on the synthetic three regions example (build as in Figure 7).

1 We want to thank the authors of [21], Gabriel Peyré, Jalal Fadili and Julien Rabin,
for their code.



346 R. Yıldızoğlu, J.-F. Aujol, and N. Papadakis

(a) Original image (b) Local model (c) Global model

Fig. 8. Segmentation of an image where local histograms (9 × 9 neighborhoods) are
different from the global ones. The segmentation fails for the local histogram model
(with λ = 10) as it classifies the orange areas in the first class and the darker ones
in the second class. The global histograms on the segmented zones are not close to
the given ones, contrary to our model parameterized with β = 0.5 and λ = 0.22. The
histograms were composed of 43 bins.
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(a) (b) (c) (d)

Fig. 9. We illustrate on the three regions synthetic example the problems arising with
an algorithm that is very sensitive to the chosen initialization. The Wasserstein ac-
tive contours method [21] have been initialized in different ways (first row, a-d). As
illustrated in the second row, it leads to very different segmentations, even with really
similar initializations (a-c). When carefully parameterized, such approach can lead to
good segmentations as illustrated in column (c), which is very close to the one obtained
with our global approach (see Figure 7 (c)).

An experiment on a natural image is finally shown in Figure 10. Even if this
model can give good segmentations that are close to the ones we obtained in
Figures 7 (c) and 8 (c), we illustrate that its initialization may be a critical step
as really different segmentations are obtained with very similar initializations.
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(a) (b) (c) (d)

Fig. 10. The Wasserstein active contours method [21] have been initialized in two
different ways (a-b), the corresponding segmentations being presented in (c-d). When
carefully parameterized, it leads to a segmentation close to the one obtained with our
global approach (see Figure 8 (c)).

5 Conclusions and Perspectives

In this paper, we have presented a general convex framework based on global
histograms to segment images into two parts, and we experimented a special
case defined by the l1 data term. Our approach gives good results in the set
of experiments realized on gray images, color images and also when using the
structure tensor. The additional use of the cumulative histograms also permits
to be robust to noise. Comparisons with local histogram data terms and non-
convex approaches also demonstrate the capacity of our model to deal with
complex configurations.

Even if the convex reformulation changes the nature of the problem by nor-
malizing the data terms with respect to their prior area, the value of the area
ratio parameter β is not an issue. Namely, it has been set to 0.5 in almost all of
our experiments, which shows that our model is robust in practice.

Future works will be to study the use of other descriptors for texture. We
will also be interested in investigating the connections between minimizers of
the original problem and the ones of the relaxed problem for different norms in
order to make the best possible choice when finally thresholding the estimated
solution.
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