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Abstract. Consensus clustering methodologies combine a set of parti-
tions on the clustering ensemble providing a consensus partition. One
of the drawbacks of the standard combination algorithms is that all the
partitions of the ensemble have the same weight on the aggregation pro-
cess. By making a differentiation among the partitions the quality of the
consensus could be improved. In this paper we propose a novel formu-
lation that tries to find a median-partition for the clustering ensemble
process based on the evidence accumulation framework, but including a
weighting mechanism that allows to differentiate the importance of the
partitions of the ensemble in order to become more robust to noisy en-
sembles. Experiments on both synthetic and real benchmark data show
the effectiveness of the proposed approach.
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1 Introduction

The combination of multiple sources of information either in the supervised or
unsupervised learning setting allows to obtain improvements on the classification
performance. In the unsupervised paradigm, this task is difficult due to the label
correspondence problem, i.e., the lack of explicit correspondences between the
cluster labels produced by the different clustering algorithms. This problem is
made more serious if additionally clusterings with different numbers of clusters
are allowed in the ensemble. Clustering ensemble methods, also known as con-
sensus clustering methods, propose a formalism to tackle this problem, allowing
the combination of a set of base clustering algorithms into a single consensus
partition.

Recent surveys present an overview on this research topic [1, 2]. One of the
main approaches is known as median-partition [2], where the consensus solution
is obtained as the partition having lowest divergence from all the partitions
in the clustering ensemble. Another significant approach, known as Evidence
Accumulation Clustering (EAC) [3], is based on object co-occurences, where the
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consensus is obtained through a voting process among the objects. Specifically,
the consensus clustering problem is addressed by summarizing the information
of the ensemble into a pairwise co-association matrix, where each entry holds the
fraction of clusterings in the ensemble in which a given pair of objects is placed
in the same cluster. By doing so, the label correspondence problem is implicitly
solved. This matrix, which is regarded to as a similarity matrix, is used to feed a
pairwise similarity clustering algorithm to deliver the final consensus clustering.
In [3] agglomerative hierarchical algorithms are used to extract the consensus
partition and in [4] a graph partitioning algorithm (METIS [5]) are used.

In [6] a more principled way of using the information in the co-association
matrix has been proposed. Specifically, the problem of extracting a consensus
partition is posed as a matrix factorization problem involving the co-association
matrix, where the factor matrix is left-stochastic, i.e. nonnegative with columns
summing up to one. Each column of the factor matrix can be interpreted as a
multinomial distribution expressing the probabilities of each object of being as-
signed to each cluster. In [7], a probabilistic model for the co-association matrix
has been proposed, entitled Probabilistic Evidence Accumulation for Clustering
Ensembles. In this model, the entries of the co-association matrix are regarded
as independent observations of binomial random variables counting the num-
ber of times two objects occur in a same cluster. These random variables are
parametrized by the unknown assignments of objects to clusters, which are in
turn estimated by adopting a maximum-likelihood approach. In [8] a new for-
mulation is proposed that constitute a generalization of [6] which is solved in
way which is close in spirit to [7]. This method, entitled PEACE, creates sparse
co-association matrices by a simple uniform sampling criterion and exploits this
sparsity to achieve sub-linear iterations in the consensus clustering algorithm.

One of the drawbacks of previous combination methodologies is that all in-
put partitions of the ensemble have the same weight in the aggregation process,
when in fact some of them are less important than other [9]. The partitions of
the ensemble may come from different algorithms, or from the same algorithm
with different initializations. It was shown that the diversity on the clustering
ensemble leads to an enhancement on the performance [10], but extreme cases
introduce to much variability leading to a significant drop on the performance.
Moreover the clustering ensemble can be composed by a subset of partitions
highly correlated that can decrease significantly the variability biasing the con-
sensus solution to one of the one of the input partitions.

The problem of weighting differently each of the base clustering solutions was
already studied in the literature [9, 11–16]. In Duarte et al. [11] the weighting of
the partitions is obtained using internal and relative clustering validation indexes,
and the combination is performed using the Evidence Accumulation Clustering
algorithm. Fern and Lin [12] define two important quantities that should be con-
sidered on the selection process, namely quality calculated between each ensemble
and a consensus solution, and diversity of the ensemble. They propose three dif-
ferent heuristics that jointly consider these criteria. Hong et al. [15] also ground
their algorithm on these criteria, and use a re-sampling-basedmethod to estimate
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them. Jia et al. [16] only use a quality criterion on their selection mechanism. In
Li and Ding [9], the weighted consensus clustering is based on nonnegative matrix
factorization framework but focus only on the quality criterion. Vega-Pons et al.
[13] follow the idea of finding the median partition but weighting differently each
partition, finding their relevance through an intermediate step.

In this work, we propose a consensus clustering approach based on the evidence
accumulation framework,which includes aweightingmechanism that allows to dif-
ferentiate the importance of the partitions of the ensemble in order to becomemore
robust to noisy ensembles. Our approach tries to find amedian-partition, i.e.mini-
mizing its divergence from the other partitions in the ensemble, in a way that takes
into account the co-occurrences of objects in clusters. Additionally, we jointly op-
timize the importance of each partition in the ensemble by means of weight vari-
ables representing a discrete probability distribution over the set of partitions in
the ensemble. To overcome the occurrence of trivial weightings, i.e. putting full
mass on a single partition, we introduce two regularizationmechanisms which lead
to two different formulations. In the first formulation, regularization is achieved by
restricting the set of feasible probability distributions determining the partitions’
importance weights. In the second formulation, a classical �2 regularization is
adopted. We determine the median-partition and the weights vector by means
of an alternating optimization procedure, which guarantees to find a local solu-
tion. Finally, we perform experiments on ensembles derived from synthetic and
real datasets to assess the validity of our model.

The paper is organized as follows: in Section 2 we present the notation used
throughout the paper and we introduce our robust consensus clustering model
and the two related formulations deriving from the use of different regularization
techniques. In Section 3, we present the optimization procedure adopted to find
a consensus clustering solution, together with the weights associated to each
partition in the ensemble, according to the two proposed formulations. Section
4 is devoted to assessing the effectiveness of the proposed approach. Finally, we
draw conclusions in Section 5.

2 Formulation

We start introducing the basic notation and definitions adopted throughout the
paper. We denote sets with upper-case calligraphic-style letters (e.g., X ), col-
umn vectors with bold lower-case letters (e.g., x), matrices with upper-case
typewriter-style letters (e.g., X), indices with lower-case letters (e.g., i) and con-
stants with lower-case typewriter-style letters (e.g., n). We denote by �P the
indicator function yielding 1 if proposition P holds true, 0 otherwise. We indi-
cate with Aij the ijth component of matrix A and with vi the ith component
of vector v. The vector of all 1s of size k is denoted by 1k, the subscript being
dropped where size is unambiguous. Let A be a k× n matrix. The transposition

of A is denoted by A�. The Frobenious norm of A is denoted by ‖A‖ =
√∑

ij A
2
ij .

The sets of real and nonnegative real numbers are denoted by � and �+ as
usual. We compactly write [n] for the set {1, . . . , n}. We denote by �r� and �r�
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the floor and ceil operators giving the largest integer value upper bounded by
r ∈ � and the smallest integer value lower bounded by r, respectively. The set
of left-stochastic k× n matrices is denoted by S =

{
X ∈ �

k×n
+ : X�1k = 1n

}
and

we denote by S01 = S ∩ {0, 1}k×n the set of binary left-stochastic matrices.
Let X = {xi}i∈[n] be a set of n data points. An ensemble of clusterings of

X is a collection E = {X(u)}u∈[m] of m partitions, obtained by running different
algorithms (e.g., different parametrizations and/or initializations) on the data
set X . Each partition X(u) ∈ S01 can be regarded as a binary left-stochastic

matrix where X
(u)
ki indicates whether the ith data point belongs to cluster k in

the uth partition.
A consensus clustering (or consensus partition) for an ensemble E is typically

defined as a partition minimizing its divergence from the other partitions in
the ensemble. This definition, however, implicitly assumes that the ensemble is
noiseless and, thus, that all clusterings should be given equal importance during
the establishment of a consensus partition. In order to be more robust to noisy
elements, we introduce a probability distribution over the set of partitions in the
ensemble that allows to automatically tune the importance of each partition in
the ensemble. Formally, a consensus, median partition under this setting can be
found as the solution of the following optimization problem:

min
∑

u∈U αud(Z, X
(u))

s.t. Z ∈ S01

α ∈ Δ ,
(1)

where d(·, ·) is a function providing a distance between the partitions given as
arguments, and Δ is the set of m-dimensional vectors representing a discrete
probability distribution.

We select the distance function d(·, ·) by following the EAC principles. In
specific, we implicitly sidestep the problem of cluster correspondences in the
computation of the distance between partitions, by counting the errors in the
pairwise cluster co-occurrences as follows

d(Z, X) =
∥∥Z�Z− X�X

∥∥2 . (2)

Indeed, this distance counts the number of times two data points are assigned the
same cluster in X but different ones in Z and vice versa. Moreover, for convenience,
instead of attacking (1) directly, we relax the troublesome integer constraints by
replacing the left-stochastic binary matrix variable Z with a left-stochastic real
matrix variable Y ∈ S yielding the following relaxed continuous optimization
problem:

min
∑

u∈U αu

∥∥∥Y�Y− X(u)
�
X(u)

∥∥∥
2

s.t. Y ∈ S
α ∈ Δ .

(3)
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We can finally project Y back on S01 by performing a maximum a posteriori
choice over each column of Y.

Unfortunately, the optimization problem in (3) is ill posed, because trivial
distributions, putting full mass on a single partition u ∈ [m], lead to an optimal
solution by setting Y = X(u). The same issue clearly afflicts also the original
formulation in (1). To overcome this problem, we need a form of regularization
on the probability distribution α. In this paper, we propose two different regu-
larization solutions that will be described in the next subsections, one acting on
the feasible domain of (3), the other acting on its objective function.

2.1 Regularization of α Using a Restricted Simplex

The first formulation forces the consensus clustering to agree with at least a
share 0 < ρ ≤ 1 of the partitions in the ensemble. By doing so, noisy partitions
might be excluded from the objective and thus their importance can be nullified
and, at the same time, trivial weighting solutions can be excluded as a minimum
number of partitions should actively be involved in the minimization. This is
achieved by constraining α to lie in a ρ-restricted simplex Δρ which is defined
as

Δρ =
{
α ∈ �

m
+ : α�1 = 1 , α ≤ ρ1

}
,

where ρ ≥ m−1, since otherwise the set Δρ would be empty. Since ρ can be
regarded as the largest probability that can be taken by an element of α, auto-
matically at least �ρ−1� entries of α have to be strictly positive. Clearly, if ρ ≥ 1
we fall back to the standard simplex, i.e. Δρ = Δ for all ρ ≥ 1.

By changing the domain of α in (3) to a ρ-restricted simplex, with m−1 ≤
ρ < 1 we get the following regularized formulation:

min
∑

u∈U αu

∥∥∥Y�Y− X(u)
�
X(u)

∥∥∥
2

s.t. Y ∈ S
α ∈ Δρ .

(4)

This formulation falls back to the unweighted case when ρ = m−1 and to the
unregularized case (3) when ρ ≥ 1.

2.2 Regularization of α Using �2-Norm

Our second formulation, considers the following, classical �2 regularization
parametrized by λ ≥ 0:

min
∑

u∈U αu

∥∥∥Y�Y− X(u)
�
X(u)

∥∥∥
2

+ λ
2 ‖α‖2

s.t. Y ∈ S
α ∈ Δ .

(5)

This formulation falls back to (3) by taking λ = 0 and to the unweighted case
when λ → ∞. Indeed, the probability distribution α is pushed towards the
uniform distribution as the regularization constant λ increases.



312 A. Lourenço et al.

It is interesting to notice that (5) presents a special case of elastic net regu-
larization [17] in which the parameter related to the �1 regularization is taken
to infinity and becomes a constraint in Δ.

3 Algorithm

Solving (4) or (5) is in general a hard problem. We propose here for both an
alternating, local optimization procedure which interleaves updates of the cluster
assignments Y and updates of the weights vector α. The update procedure for
the cluster assignments Y is the same for both the regularized formulations and
will be addressed in the next subsection, while the update procedure of α is in
general different for (4) or (5) and it will be addressed in Subsection 3.2 and 3.3,
respectively.

3.1 Optimization of Y in (4) and (5)

Assume α to be fixed and consider the problem of optimizing (4) or (5) with
respect to Y only. This yields a non-convex continuous optimization problem
which can be conveniently rewritten into the following one, which shares with
(4) and (5) the same local minimizers:

min
∥∥∥Y�Y−∑u∈U αuX

(u)�X(u)
∥∥∥
2

s.t. Y ∈ S .
(6)

The equivalence between (4)/(5) and (6) can be grasped by noting that the terms
depending on Y are the same in both the optimization problems and the objec-

tives differ simply by an additive, constant term. The matrix
∑

u∈U αuX
(u)�X(u)

can be regarded as the weighted co-association matrix. Indeed, when α is the
uniform distribution, we fall back to the classic notion of co-association matrix
as originally defined in [3].

A local solution of the optimization problem in (6) can be efficiently computed
using the approach proposed in [8], which is a primal, line search approach
that iteratively improves the objective by optimizing one column of Y at time.
Each update has a linear complexity both in time and space. Another advantage
of this optimization approach is that it can handle sparsified versions of the
optimization problem in (6), where the Frobenious norm runs over a sparse
subset of the entries of the matrix given as argument, which is useful in the case
of large datasets. In the sparisified scenario, the time complexity of every line
search can be reduced to sub-linear.

3.2 Optimization of α in (4)

Assume Y to be fixed in (4) and let us focus on the optimization of the vector-
valued variable α only. By letting d ∈ �

m
+ be a vector with entries

du =
∥∥∥Y�Y− X(u)

�
X(u)

∥∥∥
2

, (7)
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we can rewrite the optimization problem restricted to α as follows:

min α�d
s.t. α�1 = 1

α ≤ ρ1
α ∈ �

m
+ .

(8)

This is a linear programming problem, whose solution can be readily computed
as stated by the following proposition.

Proposition 1. Assume without loss of generality that d satisfies the relation
du ≤ dv for all 0 ≤ u ≤ v ≤ m. Let r = 1 − ρ�ρ−1�. A solution of (8) is given
by αu = ρ�u≤�ρ−1� + r�u=�ρ−1	, for all u ∈ [m].

Proof. We proceed with a proof by contradiction. Assume thatα is not a solution
of (8) and let β ∈ Δρ be a solution of (8), which exists since the feasible set is
compact. Clearly, β = α. The solution β must satisfy the property that βu ≥ βv

for all 0 ≤ u ≤ v ≤ m. Otherwise, by swapping the elements in β indexed
by a pair of indices violating the condition, we would yield a better solution,
contradicting the optimality of β.

Now, let p ∈ [m] be the smallest index satisfying βp > αp. Hence, αu ≥ βu

holds for all u < p. Necessarily, p > �ρ−1� because by construction αu = ρ for
all 0 ≤ u ≤ �ρ−1� and therefore it cannot be exceeded by βu. Moreover, by
construction, αu = 0 for all u > �ρ−1�, which implies that αu ≤ βu for all u ≥ p.
By exploiting these relations and by the non-increasing ordering on d, we derive
that

d�(α− β) =

[
p−1∑
i=1

di(αi − βi)

]
−
⎡
⎣

m∑
i=p

di(βi − αi)

⎤
⎦

≤ dp

[
p−1∑
i=1

αi − βi

]
− dp

⎡
⎣

m∑
i=p

βi − αi

⎤
⎦ = dp

⎡
⎣∑
i∈[m]

αi − βi

⎤
⎦ = 0 ,

which contradicts the non-optimality of α. ��
The condition required on d can be met by sorting the vector d in ascending
order and by keeping track of the induced permutation. The latter can be used
at the end to reorder the solution α using the inverse mapping.

3.3 Optimization of α in (5)

Assume Y to be fixed in (5) and let us focus on the optimization of the vector-
valued variable α only. By taking d ∈ �

m
+ as defined in (7), we reduce (5) to

following convex, quadratic optimization problem:

min α�d+ λ
2α

�α
s.t. α�1 = 1

α ∈ �
m
+ .

(9)
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Fortunately, also this optimization problem can be readily computed in linear
time. The solution procedure is detailed in the following proposition.

Proposition 2. Assume without loss of generality that d satisfies the relation
du ≤ dv for all 0 ≤ u ≤ v ≤ m. Let y ∈ �

m be defined as

yu =
1

u

(
1 +

u∑
v=1

dv
λ

)

and let w be the largest element in [m] satisfying yu > du/λ. A solution of (5)
is given by αu = �u≤w(yw − du/λ), for all u ∈ [m].

Proof. We start showing that yu ≤ yu+1 for all u > w. To this end, note that
the relation yu ≤ du/λ holds for all u > w by definition of w. Then

yu =
u+ 1

u

(
yu+1 − 1

u+ 1

du+1

λ

)
≤ u+ 1

u

(
yu+1 − 1

u+ 1
yu+1

)
= yu+1 . (10)

By repeated application of this relation, we have that yu ≤ yv for all v ≥ u and
u > w.

Since the optimization problem in (9) is convex, the Karush-Kuhn-Tucker
(KKT) necessary conditions for optimality are also sufficient. Hence, a solution
α satisfying the following KKT conditions, for some value of the Lagrangian
multipliers γ ∈ � and μ ∈ �

m
+, is a solution of (9):

du + λαu − γ − μu = 0 , ∀u ∈ [m] (11)

α�1 = 1 , (12)

α�μ = 0 . (13)

We proceed by showing that the solution computed as detailed in the proposition
satisfies the KKT conditions, i.e. we have to show that Equations (11)-(13) are
satisfied for a specific choice of the Lagrangian multipliers and that our choice
of μ also satisfies the non-negativity constraint. We start noting that αu > 0 for
all u ≤ w, for we have that yw > dw/λ ≥ du/λ for all u ≤ w, and αu = 0 for all
u > w by construction. Set γ = λyw. For all u ≤ w, Equation (11) is satisfied by
taking μu = 0, while for all u > w it is satisfied by taking μu = du − λyw. This
choice of the elements of μ clearly satisfies Equation (13). Moreover, μu ≥ 0 is
clearly satisfied for all u ≤ w with equality and it is also satisfied for all u > w
because yw ≤ yu ≤ du/λ holds by the relation proven at the beginning of this
proof and by definition of w. We conclude by showing that also Equation (12)
holds. Indeed,

m∑
u=1

αu =

w∑
u=1

αu = wyw −
w∑

u=1

du
λ

= 1 .

��
As in the case of the previous formulation, the condition required for d can be
met by sorting the vector in ascending order and by keeping track of the induced
permutation, which will be used to recover the original ordering on the solution
vector α.



Consensus Clustering with Robust Evidence Accumulation 315

3.4 Summary of the Algorithm

As anticipated at the beginning of this section, the algorithm used to optimize
(4) and (5) alternates between the optimization of the cluster assignment prob-
abilities Y and the optimization of the weights vector α.

The pseudo-code of the algorithm is shown in Algorithm 1. The input con-
sists of the ensemble of clusterings E = {X(u)}u∈[m] the maximum number of
desired clusters k and the regularization parameter, namely ρ for the formula-
tion in (4) and λ for the formulation in (5). At line 1, we initialize the matrix
of probabilistic cluster assignments by randomly sampling an element of S, or
by considering a uniform distribution for all objects. At line 2, we initialize the
weights to the uniform distribution. Lines 3-6 represent the alternating opti-
mization loop, which is iterated until a stopping criterion is met, e.g. maximum
number of iterations has been reached, or the difference of either Y or α between
two consecutive iterations is below a given threshold. At line 4, we optimize (6),
which is equivalent to optimizing either regularized formulation with respect to
Y. The solution is obtained by using the algorithm described in [8]. At the next
line, we focus on optimizing the weights vector-valued variable α. Based on the
chosen formulation, we optimize (8) or (9) following the procedure described
in Proposition 1 or Proposition 2, respectively. Both solutions can be obtained
efficiently in linear time. Finally, once we exit the optimization loop, we project
Y on the set of left-stochastic binary matrices obtaining matrix X ∈ S01, and we
return X and α.

Algorithm 1. Algorithm description

Require: E = {X(u)}u∈[m]: ensemble of clusterings
Require: k: maximum number of desired clusters
Require: m−1 ≤ ρ ≤ 1, regularization parameter for formulation (4), or λ > 0,

regularization parameter for formulation (5)
1: Initialize Y ∈ S
2: α← m−11
3: repeat
4: Y← solve (6) using the approach in [8]
5: α← solve (4) or (5) based on the desired formulation
6: until termination condition is met
7: X← project Y on S01
8: return X, α

4 Experimental Evaluation

We evaluate our formulation using synthetic and real-world datasets from the
UCI Machine Learning Repository. We compare the performance of our algo-
rithm against the algorithm in [8], which we refer to as Un-weighted. We call
our two algorithms Weighted+Δρ and Weighted+�2 corresponding to the
variants described in Section 3.2 and 3.3, respectively. For all the experiments,
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Table 1. Benchmark datasets - synthetic: (s-1) spiral, (s-2) cigar, (s-3) rings, (s-4)
image-c, (s-5) image-1; real: (r-1) iris, (r-2) wine, (r-3) house-votes, (r-4) ionsphere,
(r-5) std-yeast-cell, (r-6) breast-cancer, (r-7) optdigits.

Data-Sets s-1 s-2 s-3 s-4 s-5 r-1 r-2 r-3 r-4 r-5 r-6 r-7

k 2 4 3 7 8 3 3 2 2 5 2 10

n 200 250 450 739 1000 150 178 232 351 384 683 1000

kmin − kmax 2-10 2-10 2-10 7-40 8-40 3-20 4-20 2-20 4-20 5-20 2-20 10-50

(a) spiral (b) cigar (c) rings

(d) image-c (e) image-1

Fig. 1. Sketch of the Synthetic Datasets

we used the following setting for the regularization parameters of our algorithms:
ρ = (0.8m)−1 and λ = 0.5 n2.

We performed different series of experiments to compare the performance of
our approaches on several types of ensembles: i) k-means ensemble - consisting of
m = 150 partitions generated running the classical k-means algorithm [18] with
different number of clusters, and different initializations; ii) mixed ensemble -
consisting of m = 56 partitions generated by multiple algorithms (agglomerative
hierarchical algorithms: single, average, ward, centroid link; k-means[18]; spec-
tral clustering [19]) with different number of clusters iii) noisy ensemble - an
ensemble with noisy partitions obtained from previous ensembles, changing a
percentage of the partitions of the ensemble to random partitions.



Consensus Clustering with Robust Evidence Accumulation 317

(a) k-means ensemble (b) mixed ensemble

Fig. 2. Performance Evaluation for k-means and mixed ensembles in terms of Accuracy.
The weighted approaches Weighted+Δρ and Weighted+�2 are compared against
the un-weighted one.

We assess the quality of a consensus partition by comparing it against the
ground truth partition. In order to compare two hard clusterings we adopt the
H criterion introduced in [20], which computes the fraction of correct cluster as-
signments considering the best cluster matching between the consensus partition
and the ground-truth partition.

Table 1 summarizes the main characteristics of the UCI and synthetic datasets
used in the evaluation (number of ground truth clusters k and number of samples
n) and reports also the range of number of clusters used during the ensemble
generation {kmin− kmax}. Figure 1 illustrates the synthetic datasets used in the
evaluation: (a) spiral; (b) cigar; (c) rings; (d) image-c (e) image-1 .

4.1 Non-Noisy Ensembles

Figure 2 presents the performance results in terms of H criterion for the k-means
and mixed ensembles. In both types of ensembles we can see that the proposed
weighted consensus clustering approaches perform on average better than the
unweighted one, as expected, even though we have a fixed parameterization for
the regularization on all datasets. If we compare the two types of regulariza-
tion on the weighted algorithms, there is no clear winner, the �2-regularized
being slightly better on average. Overall, we have that in the k-means ensemble
the weighted algorithms obtain better result in 8 out of 12 datasets, while in
the mixed ensemble they obtain better result in 5 out of 12 datasets. On the
remaining datasets the performance of weighted and unweighted formulations
perform comparably well.

In Figure 3 we present the co-association matrices of the weighted and un-
weighted situation and the weights that were obtained by the weighted version
(in this case obtained by the Weighted+Δρ approach). The colour scheme
on the co-association matrices goes from blue (zero similarity), to red (highest
similarity). The un-weighted co-association was transformed into the weighted
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(a) Un-weighted (b) Weighted

(c) Weights

Fig. 3. Example of Co-association matrices. On the left the unweighted version of the
co-association, and on the right the weighted co-association, obtained after weighting
the partitions.

co-association using the weights presented below, which selectively tune the im-
portance of each partition, turning the matrix into a more structured one.

4.2 Noisy Ensembles

Figure 4 presents the performance obtained on the noisy ensembles, which have
been obtained from the k-means and mixed ensembles of the previous section by
substituting 20% of the partitions with randomly generated ones. Our purpose is
to assess the robustness of the approach to outliers in the ensembles. The results
are evaluated in terms of the H criterion.

As we can see, the performance of weighted approaches tends to be more stable
than the un-weighted version. There are isolated dataset where the un-weighted
version improved the performance (when compared to non-noisy ensembles), but
this situation is not generalizable to the other datasets. The opposed situation
was also observed, with the weighted approaches improving the performance
(when compared with non-noisy ensembles), but the general trend was to con-
serve the previous result. if we compare the two types of regularization, we see
that Weighted+Δρ apparently was more stable, preserving in more situations
the previous result.
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(a) k-means ensemble (b) mixed ensemble

Fig. 4. Performance Evaluation for the noisy k-means and mixed ensembles in terms of
Accuracy. The weighted approaches Weighted+Δρ and Weighted+�2 are compared
against the unweighted one.

5 Conclusions and Future Work

One of the drawbacks of the classical clustering combination methodologies is
that all the partitions of the ensemble have the same weight in the combina-
tion process. In this paper we propose a consensus clustering approach with a
weighting mechanism that allows to select a subset of the ensemble becoming
more robust to noisy ensembles. Our approach tries to find a median-partition
based on co-occurences of objects in clusters. We follow an alternating opti-
mization procedure, which allows the determination of the median-partition and
the weights vector. Experiments on syntethic and real-world datasets show that
the proposed approach outperforms state-of-the-art approaches delivering more
robust results. Future work will focus on the application of this framework to
large-scale problems.
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