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Abstract. We propose and evaluate a versatile scheme for image pre-
segmentation that generates a partition of the image into a selectable
number of patches (’superpixels’ ), under the constraint of obtaining max-
imum homogeneity of the ’texture’ inside of each patch, and maximum
accordance of the contours with both the image content as well as a
Gibbs-Markov random field model. In contrast to current state-of-the
art approaches to superpixel segmentation, ’homogeneity’ does not limit
itself to smooth region-internal signals and high feature value similar-
ity between neighboring pixels, but is applicable also to highly textured
scenes. The energy functional that is to be maximized for this purpose
has only a very small number of design parameters, depending on the
particular statistical model used for the images.

The capability of the resulting partitions to deform according to the
image content can be controlled by a single parameter. We show by
means of an extensive comparative experimental evaluation that the
compactness-controlled contour-relaxed superpixels method outperforms
the state-of-the art superpixel algorithms with respect to boundary recall
and undersegmentation error while being faster or on a par with respect
to runtime.

1 Introduction

The history of image segmentation research, when regarded on the scale of
decades, exhibits clearly discernible phases during which certain method
paradigms have been dominant. There has been a period of statistical models
during the 1980/90ies, largely induced by the requirements and operating condi-
tions of remote sensing and (somewhat later) image communication. Currently,
in the early 2010ies, segmentation research is clearly dominated by graph-based
methods, partially also variational methods. However, it is important not to mix
and possibly confuse the image model (comprising the ’energy function’ that
should be minimal for a ’good’ segmentation), vs. the optimization scheme.

We propose and extensively evaluate in the following a method for computing
superpixels, that is: relatively small regions that are expected to be homoge-
nous with respect to their internal texture. In contrast to most other currently
discussed superpixel approaches, this method can be deduced from a statistical
model, and homogeneity refers to ’real’ texture, not the constricted interpreta-
tion of having locally smooth, or even constant, image values.
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Furthermore, the features used for the segmentation process can be almost
arbitrarily combined from choices such as a) gray values, b) color vectors, c)
texture features (= outputs of texture operators applied onto a spatial neigh-
borhood centered on the regarded pixel), d) depth values (e.g. from an active
depth camera) e) motion vectors, and many more. Thus we speak of a whole fam-
ily of segmentation modules that can be constructed from the basic approach.
The only constraint is that the individual feature channels can be regarded as
uncorrelated – for reasons that become clear later (section 4.1). The two main
contributions of the paper are a statistically sound approach to obtain a super-
pixel energy function, allowing explicit control of compactness, and an extensive
comparative evaluation with state-of-the art approaches for a) the base line gray
value version of contour-relaxed superpixels and b) the color version.

2 Related Work

The term ’superpixels’ dates way back in the 1980ies and has been popularized
by Ren and Malik [1]. It can be defined as a connected group of pixels similar
with respect to certain features, i.e. their color value. A superpixel segmenta-
tion of an image is an oversegmentation into typically many subregions, all of
them expected to be a proper subset of exactly one ’semantic’ region. Usually,
superpixel segmentations serve as precursor to higher level tasks such as object
segmentation, motion estimation or tracking [1–4] where computations are more
efficiently done on some few hundred groups of such pixels [1, 3, 5] instead of
105 − 106 pixels.

Superpixels can be obtained using standard segmentation algorithms, e.g. the
well known mean-shift [6] and watershed [7] algorithms. However, it has been
shown that these ’general purpose’ algorithms typically produce superpixels of
highly irregular shape and size and do not allow to directly control the number
of superpixels [8, 9]. It is a common view in the literature [8–10] that superpixel
algorithms should include a compactness constraint and should allow to directly
control the number of superpixels (to avoid a costly parameter search) such that
superpixels are similar in size. While non-compact superpixels can adapt to quite
complicated object shapes, they risk a larger extent of undersegmentation error,
a measure of overlap between a single superpixel and multiple objects. In our
approach, the degree of compactness can be controlled by a single parameter.
Variation of this parameter allows a system designer to chose between highly
compact superpixels and an almost ’fluid’ behavior that aligns superpixels well
even with complicated boundaries.

The various approaches proposed since [1] can roughly be grouped into graph-
based and gradient-based methods. Among the most popular graph-based meth-
ods one finds the superpixel algorithms based on normalized cuts [1, 5, 11] and
Felzenszwalb & Huttenlocher’s approach [12] who compute a superpixel segmen-
tation by solving a shortest spanning tree problem. A drawback of [12] is that
they do not encode a compactness constraint. A problem of the normalized cut
approach [1] is its computational effort, since (depending on the image size) a
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single run of the algorithm may take minutes on hardware as of 2012. In the
’superpixel lattices’ proposal [13], superpixels are forced to conform to a grid
by introducing a topology constraint leading to superpixels with a rectangular
shape. SP-Lattice is among the fastest superpixel methods up to now [13, 14],
but produces results of lower quality compared to more recent work [8, 9, 14].

More recently, Veksler et al. [9] and [14] computed superpixel segmentations
within the well known graph cuts and expansion moves framework. Veksler et
al. cover an image with overlapping square patches of fixed size which are subse-
quently stitched during optimization using α−expansion. They define a second
order energy function containing a data term modeling the likelihood for a spe-
cific label for a single pixel and a prior term resembling the Potts model. Two
different flavors of the approach are proposed, namely ’compact’ and ’constant’
superpixels, respectively. The ’compact’ superpixels have the inherent problem
that the likelihood term does not differentiate between pixels having different
color, but assigns low energy to all labels (patches) that overlap the regarded
pixel. Therefore neighboring pixels are likely to be assigned the same label re-
gardless of their color, leading to superpixels possibly containing strong disconti-
nuities. In ’constant superpixels’, a different data term is used which is based on
the distance in color space between the regarded pixel and the color of the cen-
ter pixel of the current label thus encouraging superpixels of constant or similar
intensity. For more than 400 superpixels, the constant version of [9] outperforms
TurboPixels, the normalized cut approach as well as the method by Felzenszwalb
& Huttenlocher. However, while Veksler et al. encode a compactness constraint,
their method does not allow to control the number of superpixels directly but
would need a parameter search to do so. The work of Zhang et al. [14] relies on
pseudo-boolean optimization and is inspired by the one by Veksler et al., trying
to overcome the aforementioned difficulties by design. They report runtime fig-
ures much lower than the ones by Veksler et al. which are independent of the
number of superpixels. However the quality of their superpixels with respect to
boundary recall RB and undersegmentation error Eus is worse than Veksler’s.

TurboPixels [8], and more recently SLIC superpixels [10] are prominent gradi-
ent based methods. Such methods do not formulate segmentation as some graph
based related problem such as mincut but rather optimize the energy function
in a gradient ascent/descent sense. TurboPixels are based on the geometric flow
implemented via level sets. The method allows to directly control the number of
superpixels and integrates a compactness constraint. In the SLIC (’simple lin-
ear iterative clustering’) method [10], the computation of superpixels is cast as a
clustering problem in a five dimensional feature space consisting of the three Lab
color channels and the pixel 2d coordinates. The scheme starts with regularly
sampling N cluster centers in image space, subsequently perturbing the center
locations such that they lie at the lowest image gradient position within a small
sub window. Then pixels are assigned to the best fitting cluster center within a
small neighborhood and cluster centers are recomputed based on the �1 norm be-
tween old and new center positions. The method can directly control the number
of superpixels and encodes a compactness constraint. It is shown [10] that SLIC
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outperforms TurboPixels, the method of Felzenszwalb & Huttenlocher, and the
normalized cut approach of [1, 5].

3 Outline of the New Approach

In this work we propose a superpixel algorithm that has the following advantages:
(a) direct control of the number of superpixels, (b) control of the compactness of
the superpixels by setting a (single) compactness parameter κ, thus superpixels
can be allowed to adapt to complicated shapes if needed, and (c) most impor-
tantly: an explicit statistical modeling of superpixel shape and content allows
to perform the segmentation on an arbitrary number of feature channels, e.g.
intensity-only, color, depth, or ’real’ texture feature vectors. The energy func-
tion to be optimized is derived from this statistical image model, and it turns
out that already a local optimization is sufficient for yielding results competitive
or superior to the state of the art. The image model used for contour-relaxed
superpixels is based on homogeneously textured regions; this includes the plain
model of smooth (=quasi-constant) gray or color values, but goes significantly
beyond this.

4 Theory of Contour-Relaxed Superpixels

In this section, we summarize the theoretical basis on which the contour-relaxed
superpixels approach is built. Attempts to formulate the segmentation problem
as an estimation task can already be found in the very early literature. Still,
the potentials and advantages of a well-founded statistical model for low-level
segmentation are not reflected in the current literature. We build on the funda-
mental model used by Mester et al. [15, 16] and transform it into a competitive
superpixel approach by introducing a compactness term.

Let the total set of measurements on the image array (= a 2D-array of vec-
tors), be summarized in a single huge vector z. Let Q = {R1, R2, . . . Rn} be a
partition of the image array. The measurements inside of each region are the out-
comes of region-specific stochastic processes, and each such process is associated
with an individual parameter vector θi = θ(Ri). The combination of a parti-
tionQ and the parameter ensemble {θ} = {θ1, θ2, . . . θn} is denoted as the ’array
state’ S. Each completely specified array state S induces a joint probability den-
sity p(z,Q, {θ}) = p(z,S) for the ensemble of randomvariables z. Given an image
measurement vector z, the notion ’segmentation’ means to find an array state S
which has a high likelihood to have generated the observed image vector z.

4.1 Deriving the Segmentation ’Energy Function’ from
Maximum-A-Posteriori (MAP) Principles

The particular combination of a partition Q and the corresponding model pa-
rameters {θ1, θ2, . . .θn} that maximizes the probability density function

p(S|z) = p(Q , {θ1, θ2, . . .θn}|z) (1)
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is considered as the maximum-a-posteriori (MAP) estimate of the array state S.
From Bayes’ theorem we obtain

p(S|z) = p(z|S) · p(S)/p(z). (2)

With the observed image vector z being fixed, p(z) is merely a normalizer. Thus
we search the particular array state S which maximizes the target function J

J := p(z|S) · p(S) = p(z, S) = p(z|Q , θ) · p(θ|Q) · p(Q). (3)

The joint density in Eq. 3 consist of the prior probability p(Q) for the regarded
partition Q, and the conditional densities for z given the individual region model
processes. Using a Gibbs random field (GRF) with discrete two-element cliques,
p(Q) is expressed as

p(Q) =
1

Z
· exp

(
−
∑
ci

Vc(ci)

)
. (4)

Here, ci denote all maximal cliques of size 2. The potentials Vc(ci) depend on
whether the label values in such a clique are identical or not (Potts model).
While computing the partition function Z is intractable in general, it is not
needed here, as we are only interested in the MAP estimate of Eq. 3.

The region-specific model parameter vectors θ are considered as unknown deter-
ministic parameters, (i.e. we assume a ’flat’, uninformative prior for them) such
that only the distribution for the partition Q appears in p(S)

p(S) = p(θ,Q) = α · p(Q). (5)

The model parameters θ are obtained by maximizing the term p(z|S) with
respect to the parameter θ while the partition Q is fixed, that means by a
region-specific maximum likelihood estimation (’EM style’):

p(z,S) = p(z|S) · p(S)
= p(z|Q , {θ̂ML

(Q)}) · p(Q) · α
The texture processes of the individual regions are considered to be pairwise
statistically independent between regions. This means that knowing the complete
texture signal inside region Ri does not yield any information on the texture
signal inside region Rj , j �= i. Thus, the joint probability density of observing
all the texture signals (= the complete vector-valued image z) can be written
as a product, bearing in mind that this is an approximation (due to the ML
parameter estimate):

p(z|Q) =
∏
Ri

∏
k

p(zik|θML
i ) (6)

Here i denotes the region, and index k varies over the feature channels. This plain
double product is of course the result of the independence between regions, on
one hand, and the (assumed) independence between feature channels, on the
other hand, which may be a coarse but effective approximation in some cases.
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4.2 The Optimization: ’Contour Relaxation’

Given an initial partition Q0, J in Eq. 3 is maximised by variation of pixel labels.
Each grid point x0 which is located on the contour of a region is regarded and
it is checked whether a change of its initial region label into a another label
occuring in its neighborhood leads to an increase of target function J (Eq. 3). If
this is the case, the change of the label is carried out. The focusing on contour
pixels and a local subset of labels is essential for the speed and explains how the
method is related to the general ICM framework [17].

Due to the conditional independence structure induced by a pairwise GRF,
only the 8 cliques including site x0 need to be taken into account. Hence the
expression p(Q) (Eq. 4) can be factorized into

p(Q) = k1 · exp(−n′
BB − n′

CC), (7)

where only the second factor depends on the label of x0. Here, n
′
B and n′

C denote
the numbers of inhomogeneous horizontal/vertical and diagonal cliques where B
and C are the associated costs, respectively.

Given the partition Q, the conditional likelihood of the image data z can be
factorized into a constant and a variable term:

p(z | Q) = k2 ·
∏
{Rj}

p
(
z(Rj) | θ(Rj)

)
, (8)

with the variable product here comprising only those regionsRj that may include
pixel x0. From the set of legal choices of q(x0), the label maximizing

p(z,Q) = k1 · k2 · exp(−n′
BB − n′

CC) ·
∏
{Rj}

p
(
z(Rj) | θ(Rj)

)
(9)

is then assigned to point x0. Due to the extreme value range of (9), it is com-
putationally mandatory to minimize the negative log of (9) instead of directly
maximizing it. This yields the main part of the energy function L to be mini-
mized in the contour-relaxed superpixels framework (see sec. 5.1).

This scheme denoted as ’contour relaxation’ is performed by scanning the
whole image using the ’coding scheme’ proposed by Besag [18] to avoid direc-
tional preferences. The computational expense is rather low, as only pixels on
the region boundaries are considered during optimization. The parameter values
B and C of the Gibbs model are far from being critical. See section 6 for the
values used in our experiments, and the number of passes over the image array.

5 Specific Design Features of the Proposed Approach

The combination of a probabilistic target function to be maximized (or mini-
mized, if the negative logarithm is regarded) and a greedy iterative optimization
scheme, as described in the preceding section, leaves of course ample space for
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selecting the features, the shape of the assumed distributions (Gaussian, Lapla-
cian, etc.) in the feature channels. The number of channels, and the kind of in-
formation assigned to the channels (gray values, color components, depth values,
texture features, ...) allows many variants of the fundamental scheme, yielding
a whole family of segmentation methods. What is not needed are weight factors
that weigh the relative importance of the individual features; since the moments
of the distributions are estimated in the course of the process, the correct bal-
ance between the features is obtained automatically — this is certainly one of
the main advantages of the approach.

What remains to be explained is how the functional form of the feature pdfs,
the likelihood terms appearing in the energy function, and the actual data in
the regions are tied together. This is done by simply computing unnormalized
moments of the data fk(xi) in each region Rj , that is:

N :=
∑
i∈Rj

1 S :=
∑
i∈Rj

fk(xi) Q :=
∑
i∈Rj

f2
k (xi) (10)

From these sufficient statistics N , S, and Q, the ML estimates of the pdf param-
eters in channel k can be computed, and thus the likelihood for a given ensemble
of data values can be determined.

5.1 Adding a Compactness Term κ

Experiments with the original model from [15, 16] show that using this uni-
versal segmentation scheme for the particular purpose of computing superpixels
suffers from the compactness of the regions not being directly controllable. We
introduce an additional compactness term that ensures that the (fundamentally
fluid) regions do not create too wriggled, too elongated regions, as this could be
the case for a pure Gibbs-Markov random field model with realistic parameters.

Carrying over the cost functional L from the MAP criterion in section 4, we
can now enforce spatial compactness for the regions to be formed, and define a
new cost functional L̃ by adding an extra ’regularization’ term which penalizes
the squared deviation between the spatial location x of the pixels in the region
Rj and the center m of the region Rj , as follows

L̃ = L+ κ ·
∑
x∈Rj

(x−m(Rj))
T (x−m(Rj)), (11)

where κ is a parameter which controls the compactness of the regions. It is
straightforward to show that L̃ can be fully expressed in terms of these ’spatial
moments’ introduced in Eq. 11, the ensemble of clique potentials, and the suf-
ficient statistics N , S, and Q previously defined, if the functional form of the
feature distributions is given (e.g. a Gaussian model). In case that a Laplacian
pdf is chosen, a corresponding set of sufficient statistics can likewise be defined,
by incorporating the sum of the absolute values of the scalar features instead of
squares. Likewise, other distributions such as χ2 or Rayleigh pdfs can be used.
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6 Evaluation and Experimental Results

The Contour-relaxed superpixels1 approach has been evaluated for many of the
numerous variations comprised by the approach; we present in the following
the most relevant test results as permitted space allows. The quality of the
method is quantitatively expressed by the two established measures ’boundary
recall’ (RB) and ’undersegmentation error’ (Eus) evaluated on the 300 images
from the Berkeley Segmentation Database (BSDS300) [19] which contains ground
truth segmentations provided by human subjects. The boundary recall RB is a
measure of how well the superpixel boundaries align with ground truth segments,
while the undersegmentation error Eus measures the degree of bleeding caused
by superpixels overlapping more than one ground truth segment. We compute
the undersegmentation error Eus using the definition of [8] and the boundary
recall using the MATLAB code provided by the BSD benchmark.

The experiments have been carried out based on a straightforward single
threaded and unoptimized C/C++ implementation. For images available in the
Berkeley database with a resolution of 481 × 321 (or 321 × 481) pixels, one
iteration of the contour relaxation on a single channel takes about 40 ms on an
Intel Xenon 2.8GHz processor.
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Fig. 1. Column 1 and 2: Benchmark results using intensity and compactness feature:
Average boundary recall, and undersegmentation error including error bars (±σ/2) on
the BSD300 dataset (300 images). Column 3 and 4: Benchmark results using color
and compactness feature. Best viewed in color.

As the BSD benchmark differentiates between gray and color image segmen-
tation, we divide our evaluation in two parts, superpixels computed on gray
value images and color images, respectively. We compare our results with the
state-of-the-art superpixel methods for both settings, namely the approach by
Veksler et al. [9] and SLIC superpixels [10], where both of them also include
a compactness term. Note that there are many other algorithms available, e.g.
Turbo-Pixels [8], NCuts [1], Lattice Superpixels [13] and recently QPBO super-
pixels [14]. However, it has been shown [10, 14] that SLIC and the approach by
Veksler et al. outperform the aforementioned algorithms with respect to bound-
ary recall and undersegmentation error but are coequal or better with respect to
runtime performance. Therefore we will exclude these methods from the qual-
itative evaluation but will reference them within the discussion of the runtime

1 Code will soon be available at http://www.vsi.cs.uni-frankfurt.de

http://www.vsi.cs.uni-frankfurt.de
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Fig. 2. (left) Runtime performance: Average runtime in seconds averaged over the
BSD300 dataset (300 images). (right) Typical results obtained with our method when
initialized with axis aligned square blocks (green boundaries), and when initialized with
a diamond pattern (red boundaries).

performance. Note that we compare our superpixel approach to its most serious
competitors but do not include full (object based) segmentation algorithms, e.g.
gPb-owt-ucm and its variants [20], as this would not be a fair comparison. How-
ever, our approach could be used as an integral part of such a full segmentation.

Single Channel Superpixels. Within the following experiments, we configure
the algorithm to use a single gray value feature channel and the compactness
term. We control the number of generated superpixels by initializing the label
array with a ’blind’ segmentation consisting of equally-sized square blocks. Fol-
lowing this initialization, we perform twelve passes of the contour relaxation.
The clique costs for inhomogenous horizontal or vertical and diagonal cliques

were set to B = 0.3 and C =
√
0.3√
2
, respectively, The value of the compact-

ness parameter κ was 0.015. These parameters have been kept constant for all
the experiments. We compute the boundary recall and undersegmentation er-
ror for 200, 300, 400, 500, 600, 800, 1000 and 1200 superpixels by averaging
over these measures for the 300 images from the BSD. We compare our results
with the approach by Veklser et al. [9] using their publicly available implemen-
tation2 while setting the parameters to the ones reported in their paper. Note
that it is not possible to directly control the number of superpixels generated
by their algorithm but indirectly with a patch size parameter. We set the patch
size parameter such that on average the method computes, say, 500 superpixels
while the exact number of superpixels produced can vary for each individual
image. Figure 1 shows the boundary recall and undersegmentation error for
the proposed method (oursGray) and the one by Veksler et al., specifically the
’constant’ version (vekslerConst) (cf. Sec. 2). Note that Veksler et al. use a
global optimization method (graph cuts), while we achieve our results merely
with local greedy optimization. In order to allow an evaluation of the influence

2 http://www.csd.uwo.ca/faculty/olga/Code/

http://www.csd.uwo.ca/faculty/olga/Code/
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Fig. 3. Contour-relaxed superpixels results on a set of test images from the Berkeley
database. The green boundaries show the superpixel results produced by our method
compared to (top row ) Veksler et al. in red when initialized with 500 (column 1 and
3) and 600 (column 2) superpixels and (bottom row) to SLIC in red when initialized
with 400 (column 1 and 2) and 500 (column 3) superpixels. Best viewed in color.

of the number of iterations during optimization, we additionally compute the
RB and Eus measures while letting our method perform as many runs of the
contour relaxation until no label changes occur, that is until a local optimum
is reached (oursGrayLOPT in Fig. 1). From Fig. 1 it can be seen that while
vekslerConst achieves a better boundary recall when the desired number of su-
perpixels is relatively small (200 to 400), our contour-relaxed superpixels method
performs better in terms of boundary recall for 550 or more superpixels. Further-
more, our method consistently outperforms its competitor vekslerConst with
respect to undersegmentation error. Figure 1 also shows that the actual num-
ber of iterations of the contour relaxation influences the results only marginally.
While more iterations slightly improve the boundary recall for 200 to 400 su-
perpixels, they nearly have no influence on the undersegmentation error and are
non-critical in practice. Figure 2 (left) shows graphs of the average running time
over 200 to 1200 superpixels. While vekslerConst roughly takes 7 to 12 sec-
onds, our method only takes 0.3 to 0.7 seconds. Note that the runtime of our
method slightly increases with the number of superpixels: as more superpixels
lead to more contour pixels in the label array, more pixels have to be visited
and evaluated for a possible label change. Our method also compares favorably
to Lattice- and QPBO superpixels where the authors of [14] report an average
runtime for QPBO superpixels (independent of the number of superpixels) of
0.5 seconds, but are outperformed by the Veksler et al. approach with respect
to boundary recall and undersegmentation error. Furthermore, [14] report that
their method is usually 10% slower than Lattice superpixels. Our method has a
comparable runtime while outperforming both methods in terms of quality, as
expressed by RB and Eus.
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Multi-channel Superpixels. Within the following experiments we set up our
algorithm using three independent feature channels one for each of the three
YUV color channels and the compactness term. We use the same label array
initialization as for the single feature case and only rescale the compactness
parameter κ to 0.045 to account for the increased number of feature channels.
Again, these parameters have been kept fixed while computing the boundary re-
call and undersegmentation error for 200, 300, 400, 500, 600, 800, 1000 and 1200
superpixels by averaging over these measures for the 300 images from the BSD.
We compare our results with SLIC superpixels using their publicly available im-
plementation3 where the exact number of superpixels can be controlled. As for
the approach by Veksler et al., we set the parameters of the SLIC implementa-
tion to the ones reported by the authors in the corresponding paper. Figure 1
shows the boundary recall and undersegmentation error for the proposed method
(oursColor and oursColorLOPT) and SLIC (SLIC). It can be seen that we con-
sistently perform better than SLIC with respect to undersegmentation error even
for few superpixels. Note that the margin by which we outperform SLIC increases
with the number of superpixels. For 200 to 750 superpixels SLIC achieves a better
boundary recall, however, our method is coequal or better than SLIC for 750 or
more superpixels. As for the single feature case, the actual number of iterations
of contour relaxation only has a marginal effect on the results as can be seen
from the boundary recall and undersegmentation error for oursColorLOPT com-
pared to oursColor. Figure 2 (left) shows graphs of the average running time
over 200 to 1200 superpixels. Here, SLIC takes 0.25 seconds independent of the
number of superpixels while our method needs 0.6 to 1.7 seconds depending on
the number of superpixels. Note that our method can easily be parallelized, that
is by computing the region statistics for each channel in parallel thus making it
possible to achieve a similar runtime as for the single channel version with 0.3
to 0.7 seconds. Furthermore our runtime performance also compares favorably
over TurboPixels and NCuts which take several seconds and more than 30 sec-
onds (both depending on the number of superpixels, see [8]), respectively. For
a qualitative evaluation, Fig. 3 shows example superpixel segmentations using
the proposed contour-relaxed superpixels approach, the method of Veksler et al.
and SLIC. One can see that the obtained boundary maps respect the prominent
boundaries of the image, and furthermore, the effect of the compactness term is
clearly visible, as the resulting regions are compact and regularly shaped. As can
be seen in Fig. 3, the contour-relaxed superpixels approach considers the strongly
textured areas as homogeneous and textured, and does not spend ’energy’ on
complicated region contours, in contrast to Veksler et al. and SLIC shown be-
sides. Furthermore, Fig. 2 (right) shows that the initial segmentation only has a
minor influence on the results and that our approach does not have an intrin-
sic bias towards a specific boundary layout (horizontal/vertical). While in areas
of homogeneous texture the segmentation stays close to the initial partition,
superpixels adapt to shapes as necessary.

3 http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html

http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html
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Fig. 4. Influence of varying the compactness weight: Top row, columns 1-3:
contour-relaxed superpixels results for the ’plane’ image when setting the compactness
weight to 0, 0.015 and 0.03, respectively. Bottom row, columns 1-3: Region mean images
corresponding to the superpixel segmentations in the top row. Column 4 shows the
boundary recall and undersegmentation error over the number of superpixels averaged
over all images from the BSDS300 while varying the compactness weight between 0
and 0.1. Best viewed in color.

Increasing Boundary Recall by Lowering the Compactness Weight.
The precision with which the boundaries are recovered can additionally be im-
proved, leading to a higher boundary recall by decreasing the weight of the
compactness parameter κ whereas the number of relaxation passes (here: 12)
only has a minor influence as shown previously. Figure 4 shows several super-
pixel segmentations and corresponding region mean images for the ’plane’ image
from the BSD visualizing the effect of lowering the compactness weight on the
resulting superpixels. When the compactness term is set to 0 we can achieve a
boundary recall of around 0.9 for only 200 superpixels as shown in the recall
graph in Fig. 4. The spread of a superpixel is then only governed by the inho-
mogeneous clique potentials. In contrast to the common view in the literature
[8–10] that superpixel algorithms should include a compactness term in order to
avoid bleeding effects, the non-compact version of our method is only marginally
influenced with respect to the undersegmentation error as shown in the graph
in Fig. 4, as due to our model the superpixels still respect object boundaries.
However, in this setting superpixels have a highly irregular shape which might
be suboptimal for different applications. Furthermore Fig. 4 shows that when
increasing the compactness weight superpixels tend to be more regular in shape
and have similar spatial extent. This also comes at a cost, namely that the re-
gion mean images do not represent the input image as well as the one for the
non-compact version, but are merely a subsampled version.

Segmenting a ’Texture-Only’ Image. Our final (extreme) experiment shows
how our approach compares to the method of Veksler et al. and SLIC when ap-
plied to a synthetic image where all regions have the same mean gray value but
differ in variance. Figure 5 (top row) depicts that SLIC fails to extract any useful
superpixels, while the method of Veksler et al. has problems especially in regions
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Fig. 5. Top row: Texture (or noise) sensitivity: Test using an image with regions
differing only in variance, exploring the case of highly textured regions. Left to right:
input image, results from proposed method, SLIC and vekslerConst. Middle and
bottom row show typical results for highly textured scenes obtained with the pro-
posed method (green boundaries) compared to SLIC (red boundaries, second row), and
vekslerConst (red boundaries, third row), respectively. Note that all methods were
initialised with the same number of superpixels, but SLIC and vekslerConst may
reduce the number of superpixels in the final result. Best viewed in color.

of high variance. While our method also does not give fully satisfactory results
in this extreme case, it can be seen that, due to the emphasis on statistically ho-
mogeneity instead of smoothness, the proposed method does not spend ’energy’
on random region contours and regards textured areas as such. Furthermore,
Fig. 5 (row 2 and 3) shows that this is not a contrived experiment, but that this
effect is also present in natural images.

7 Conclusions

We have enhanced the contour-relaxed superpixels approach and performed an
extensive qualitative and quantitative evaluation of this method which is based
on a statistical image model and a simple, but efficient optimization scheme.
Due to the new compactness term, our approach performs, in terms of standard
superpixel benchmarks, comparable, mostly even better than state-of-the-art
approaches such as SLIC or the Veksler et al. method. This suggests that the
choice of the energy function (derived from a statistical model in our case) might
be at least equally important as the optimization method. Computationally, the
proposed approach compares similar or favorably against leading state-of-the-art
methods. The design parameters of the method allow to tune its behavior in a
goal-directed way between high precision of boundaries, strong homogeneity of
the region-internal texture, and smoothness/compactness of boundaries.
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