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Abstract. It is of great interest in image-guided prostate interventions
and diagnosis of prostate cancer to accurately and efficiently delineate
the boundaries of prostate, especially its two clinically meaningful sub-
regions/zones of the central gland (CZ) and the peripheral zone (PZ),
in the given magnetic resonance (MR) images. We propose a novel cou-
pled level-sets/contours evolution approach to simultaneously locating
the prostate region and its two sub-regions, which properly introduces
the recently developed convex relaxation technique to jointly evolve two
coupled level-sets in a global optimization manner. Especially, in contrast
to the classical level-set methods, we demonstrate that the two coupled
level-sets can be simultaneously moved to their globally optimal positions
at each discrete time-frame while preserving the spatial inter-surface con-
sistency; we study the resulting complicated combinatorial optimization
problem at each discrete time evolution by means of convex relaxation
and show its global and exact optimality, for which we introduce the
novel coupled continuous max-flow model and demonstrate its duality
to the investigated convex relaxed optimization problem with the region
constraint. The proposed coupled continuous max-flow model naturally
leads to a new and efficient algorithm, which enjoys great advantages in
numerics and can be readily implemented on GPUs. Experiments over 10
T2-weighted 3D prostate MRIs, by inter- and intra-operator variability,
demonstrate the promising performance of the proposed approach.

Keywords: Convex Optimization, 3D Prostate Zonal Segmentation.

1 Introduction

Prostate cancer is one of major health problems in the western world, with
one in six men affected during their lifetime [1]. In diagnosing prostate cancer,
transrectal ultrasound (TRUS) guided biopsies have become the gold standard.
However, the accuracy of the TRUS guided biopsy relies on and is limited by
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the fidelity. Magnetic resonance (MR) imaging is an attractive option for guiding
and monitoring such interventions due to its superior visualization of not only
the prostate, but also its substructure and surrounding tissues [2, 3]. The fusion
of 3D TRUS and MRI provides an effective way to target biopsy needles in the
3D TRUS image toward the prostate region containing MR identified suspicious
lesions, which is regarded as an alternative to the more expensive and inefficient
MRI-based prostate biopsy [4] and the less accurate conventional 2D TRUS-
guieded prostate biopsy. On the other hand, during guidance of the biopsy, the
prostate region is usually recognized by two visually meaningful subregions in
a prostate MRI: the central gland (CG) and the peripheral zone (PZ) [5], and
up to 80% of prostate cancers are located within the PZ region [6]. The abil-
ity to superimpose the 3D TRUS image used to guide the biopsy onto these
pre-segmented prostate zones(subregions) of interest in MRIs is highly desired
in a fused 3D TRUS/MRI guided biopsy system. In addition, computer aided
diagnosis (CAD) techniques for prostate cancer can also benefit from the correct
interpretation of the prostate zonal anatomy since the occurrence and appear-
ance of the cancer depends on its zonal location [7, 8]; and the ratio of CG
volume to whole prostate gland (WG) can be used to monitor prostate hyper-
plasia [9]. To this end, efficient and accurate extraction of the prostate region,
in particular its sub-regions of CG and PZ, from 3D prostate MRIs is of great
interest in both image-guided prostate interventions and diagnosis of prostate
cancer.

Many studies focused their efforts on the segmentation of the whole prostate
in 3D MR images (especially in T2w 3D MRIs), see [10] for a review; where the
obvious intensity inhomogeneity of prostate makes the segmentation task chal-
lenging. However, only few studies focused on the segmentation of the prostate
sub-regions/zones in 3D MRIs. Allen et al. [11] proposed a method for the auto-
matic delineation of the prostate boundaries and CG, which was limited to the
middle region of the prostate (where T2w contrast permits accurate segmenta-
tion), and ignored the apex and base of the gland. Yin et al. [12] proposed an
automated CG segmentation algorithm based on Layered Optimal Graph Image
Segmentation of Multiple Objects and Surfaces (LOGISMOS). The first paper
about segmenting the prostate into two regions of PZ and CG was proposed
by Makni et al. [13]. The authors proposed a modified version of the evidential
C-means algorithm to cluster voxels into their respective zones incorporating the
spatial relation between voxels in 3D multispectral MRIs including a T2w im-
age, a diffusion weighted image (DWI), and a contrast enhanced MRI (CEMRI).
More recently, Litjens et al. [14] proposed a pattern recognition method to clas-
sify the voxels using anatomical, intensity and texture features in multispectral
MRIs. However, in [13] and [14], the segmentation of prostate peripheral zone
relies on the manual segmentation of the whole prostate gland.

Contributions: Based on recent developments of the new global optimization
technique to the single level-set/contour propagation [15–17], we propose a new
global optimization-based coupled level-set evolution approach to delineating
the whole prostate gland (WG) and its subregions of CG and PZ jointly from a
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(a) (b) (c)

Fig. 1. (a) shows the proposed layout of anatomically consistent regions: the whole
prostate(WG) RWG and its two zones: central gland(CG) RCG and peripheral
zone(PZ) RPZ , which are mutually distinct from the background region RB . (b) il-
lustrates the segmented contours overlaid on a T2w prostate MRI slice.

single input 3D T2 weighted prostate MR image. The proposed method matches
the intensity distribution models of the two prostate sub-regions CG and PZ to
guide the simultaneous propagation of two coupled level-sets. We efficiently and
globally solve the resulted challenging combinatorial optimization problem, the
so-called coupled min-cut model, during each discrete time evolution by means
of convex relaxation. We propose a novel spatially continuous flow-maximization
model, i.e. the coupled continuous max-flow model, and demonstrate its duality
to the studied convex relaxed optimization problem with the region consistency
constraint. The coupled continuous max-flow model directly leads to a new and
efficient continuous max-flow based algorithm, which enjoys great advantages in
numerics and can be readily implemented on GPUs. Experiments over 10 T2-
weighted 3D prostate MRIs, by inter- and intra-operator variability, demonstrate
the promising performance of the proposed approach. The proposed method can
be easily applied to other image segmentation tasks.

The classical level-set methods [18] are based on locally computing the associ-
ated convention PDE in a time-explicit manner and converge slowly; especially,
an extremely complex scheme is required for correctly propagating multi-class
level-sets. In contrast, the global optimization based contour evolution technique
introduces a new implicit-time contour convenction scheme which allows the
large time step-size to accelerate convergence, and the inter-level-set contraints
can be easily adapted into the propagation process in a global optimization way
(as the proposed approach in this work).

2 Global Optimization to Coupled Contour Evolution

Now we target to segment a given 3D T2w prostate MR image I(x) into the
prostate region RWG together with its two mutually distinct sub-regions: the
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central gland RCG and the peripheral zone RPZ , where RB denotes the back-
ground (see Figure 1(a)), i.e.

Ω = RWG ∪ RB , RWG ∩RB = ∅ , (1)

where the two spatially coherent sub-regions: the RCG and RPZ constitute the
whole prostate region RWG such that

RWG = RCG ∪ RPZ ; RCG ∩RPZ = ∅ . (2)

In this context, we propose a novel global optimization based approach to jointly
evolving two coupled contours CWG and CCG to the correct boundaries of the
prostate and the central gland, while keeping the inter-contour relationship

RCG ⊂ RWG ; (3)

i.e. the inclusion region RCG of CCG is covered by the inclusion region RWG of
CWG. Clearly, once the two contours CCG and CWG are computed, the peripheral
zoneRPZ is determined by the complementary regionRWG\RCG. We show that
the resulting combinatorial optimization at each discrete-time contour propaga-
tion can be solved globally and exactly by convex relaxation, which means that
the two contours can be moved to their ‘best’ positions during each discrete time
evolution. With this respect, we propose and investigate a unified framework in
terms of coupled continuous max-flow model. In addition, the new optimization
theory can be used to drive an efficient coupled continuous max-flow based algo-
rithms, which have great numerical advantages and can be readily implemented
on graphics processing units (GPU) to achieve a high computation performance.
The proposed optimization theory and algorithm can be directly extended to the
general case of evolving n > 2 contours Ci, i = 1 . . . n, while preserving the order
Cn
t ⊂ Cn−1

t . . . ⊂ C1
t ; and also applied to other image segmentation applications.

2.1 Matching Multiple Intensity Distribution Models

One major challenge to segment a typical T2w prostate MR image is the strong
intensity inhomogeneity of prostate (see Figure 1(a)), where the zones RCG and
RPZ of RWG have their distinct intensity appearances, hence constitute the
complex appearance model of the prostate region RWG. In this work, we pro-
pose to model the intensity appearance of the prostate region RWG by the two
independent appearance models of its two sub-regions RCG and RPZ , which
are distinct to each other. This sets up a proper composite appearance descrip-
tion of the entire prostate region RWG in practice. Such a composite intensity
appearance model is shown to be more accurate than the often-used mixture ap-
pearance model in practice [19]. Indeed, the two separated appearance models
can be obtained much easier and more accurately, with less influence by sam-
pling statistics, than the direct mixture appearence model of RWG. We propose
to match the two distinct appearance models of the prostate sub-regions RCG

and RPZ in stead of the mixture model of the prostate RWG.
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Let πi(z), i ∈ {CG,PZ}, be the intensity probability density function (PDF)
of the respective prostate sub-region Ri and z ∈ Z gives the photometric value
of intensities. Also, let πB(I(x)) be the PDF of the background region RB .
In practice, such PDFs of intensities of the interesting object regions provide
a reliable and global description of the segmented objects [20], which can be
learned from either sampled pixels or given training datasets.

Given the indicator functions ui(x) ∈ {0, 1}, i ∈ {CG,WG}, of the inclusion
region of the contour Ci:

ui(x) :=

{
1 , where x is inside Ci

0 , otherwise
, i ∈ {CG,WG} , (4)

the Bhattacharyya distance [20] is used for matching the PDFs of the three dis-
tinct regions:RCG, RPZ and RB ; which results in the following model-matching
term:

Em(u) = −
∑
z∈Z

{√
πCG(z)φCG(z) +

√
πPZ(z)φPZ(z) +

√
πB(z)φB(z)

}
(5)

where φCG,PZ,B(u, z) are the respective PDFs for the estimated regions of RCG,
RPZ and RB , and computed by the Parzen method:

φCG(z) =

∫
Ω
K(z − I(x))uCG dx∫

uCG dx
, φPZ(z) =

∫
Ω
K(z − I(x)) (uWG − uCG) dx∫

(uWG − uCG) dx

and

φB(z) =

∫
Ω
K(z − I(x)) (1 − uWG) dx∫

(1− uWG) dx

where K(·) is the Gaussian kernel function K(x) = 1√
2πσ2

exp(−x2/2σ2).

Optimization Model: In view of the histogram matching energy function (5)
and region constraint (3), we propose to compute the region indictor functions
uCG(x), uWG(x) ∈ {0, 1} by minimizing the following energy function

min
uCG,WG(x)∈{0,1}

Em(u) +

∫
Ω

g(x) |∇uCG(x)| dx +

∫
Ω

g(x) |∇uWG(x)| dx (6)

subject to the inter-region constraint

uCG(x) ≤ uWG(x) , ∀x ∈ Ω ; (7)

where the total-variation functions properly approximates the weighted areas of
RCG and RWG and (7) corresponds to (3).

2.2 Global Optimization and Coupled Contour Evolution

Now we study the optimization problem (6) and introduce a novel global op-
timization based approach to evolving the two contours CCG and CWG, w.r.t.
RCG and RWG, simultaneously while preserving the constraint (3).
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Single Contour Evolution and Min-Cut: In contrast to the classical level-
set evolution theory, the recent developments [16, 17] of the global optimization
theory to the evolution of a single contour C proves that the propagation of the
contour Ct at time t to its new position Ct+h at time t+ h can be modeled and
globally optimized in terms of computing the min-cut problem:

Ct+h := min
C

∫
C+

c+(x) dx +

∫
C−

c−(x) dx +

∫
∂C

g(s) ds , (8)

where

1. C+ indicates the region expansion w.r.t. Ct: for ∀x ∈ C+, it is initially outside
Ct at time t, and ‘jumps’ to be inside Ct+h at t+h; for such a ‘jump’, it pays
the cost:

c+(x) =
(
dist(x, ∂Ct) + f(x)

)
/h ; (9)

2. C− indicates the region shrinkage w.r.t. Ct: for ∀x ∈ C−, it is initially inside
Ct at t, and ‘jumps’ to be outside Ct+h at t + h; for such a ‘jump’, it pays
the cost c−(x):

c−(x) =
(
dist(x, ∂Ct)− f(x)

)
/h . (10)

The function dist(x, ∂Ct) gives the distance of any x ∈ Ω to the current contour
Ct, where Ω is the image domain; the outer force function f(x) is data-associated
and is chosen based on the specified application: for example, f(x) can be defined
using the first-order variation of the distribution matching function, e.g. the
Bhattacharyya distance. Obviously, the time step-size h is implicitly adapted in
the cost functions (9)-(10), which allows a large value in numerical practice to
speed-up the evolution of contours towards convergence.

To be more clear, we define the cost functions Ds(x) and Dt(x) as follows:

Ds(x) :=

{
c−(x) , where x ∈ Ct
0 , otherwise

, Dt(x) :=

{
c+(x) , where x /∈ Ct
0 , otherwise

; (11)

which can be interpreted as the cost of assigning each pixel x to be foreground or
background, respectively. Let u(x) ∈ {0, 1} be the labeling function of the new
contour C in (8). Therefore, the proposed optimization model (8) to contour
evolution can be equally reformulated as the min-cut model :

min
u(x)∈{0,1}

〈1− u,Ds〉+ 〈u,Dt〉+
∫
Ω

g(x) |∇u| dx , (12)

which can be solved globally and exactly with various efficient algorithms of
graph-cut and convex optimization!

Coupled Contour Evolution and Coupled Min-Cuts: Following the same
ideas of (8), for the evolution of the contour CCG during the discrete time-frame
from t to t+h, we, correspondingly, define the cost functions c+CG(x) and c−CG(x)
w.r.t. region expansion C+

CG and shrinkage C−
CG; for the evolution of CWG, we
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define c+WG(x) and c−WG(x) as the respective costs to region changes. Therefore,
we optimize the problem (6) by evolving the two contours CCG and CWG, which
propagates the contours CCG

t and CWG
t at time t to their new positions CCG

t+h

and CWG
t+h while preserving the constraint (3): RCG ⊂ RWG by the following

minimization problem:

min
CCG,CWG

∑
i∈{CG,WG}

{∫
C+
i

c+i (x) +

∫
C−
i

c−i (x) +

∫
∂Ci

g(s)
}

(13)

subject to the region constraint RCG ⊂ RWG.
Similar as (11), we define the label assignment cost functionsDi

s(x) andDi
t(x),

i ∈ {CG,WG}, such that:

Di
s(x) :=

{
c−i (x) , where x ∈ Ci

t

0 , otherwise
, Di

t(x) :=

{
c+i (x) , where x /∈ Ci

t

0 , otherwise
. (14)

In consequence, the optimization problem (13) can be equally represented by

min
uCG,WG(x)∈{0,1}

∑
i∈{CG,WG}

{〈
1− ui, D

i
s

〉
+
〈
ui, D

i
t

〉
+

∫
Ω

g |∇ui| dx
}

(15)

subject to the linear inequality region constraint (7), i.e. uCG(x) ≤ uWG(x).
Clearly, without the constraint (7), the formulation (15) gives rise to two

independent min-cut problems; the region constraint (7) conjoins these two in-
dependent min-cut problems with each other. Hence, in this paper, we call (15)
the model of coupled min-cuts in the spatially continuous setting, i.e. the coupled
continuous min-cut model.

Convex Relaxation and Coupled Continuous Max-Flow Model: In this
work, we investigate the proposed challenging combinatorial optimization prob-
lems (15) by convex relaxation, where the binary constrained labeling functions
uCG,WG(x) ∈ {0, 1} are relaxed to be the convex constraint uCG,WG(x) ∈ [0, 1].
Therefore, we have the corresponding convex relaxation problem:

min
uCG,WG∈[0,1]

∑
i∈{CG,WG}

{ 〈
1− ui, D

i
s

〉
+
〈
ui, D

i
t

〉
+

∫
Ω

g |∇ui| dx
}
, (16)

subject to the region constraint (7).
In the following sections, we propose the novel dual model to the convex

optimization problem (16), which corresponds to maximize the streaming flows
upon a novel coupled flow-maximization setting, i.e. the coupled continuous max-
flow model. With help of the new coupled continuous max-flow model, we show
the convex relaxed optimization problem (16) solves the original combinatorial
optimization (16) exactly and globally! This means the two coupled contours CCG

and CWG can be moved to their globally optimized positions, i.e. best positions,
during each discrete time frame. In addition, we can directly derive the new
coupled continuous max-flow algorithm which avoids tackling the non-smooth
function terms and linear constraint in (16) and enjoys a fast convergence.
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Coupled Continuous Max-Flow Model: To motivate the coupled contin-
uous max-flow model, we introduce a novel flow configuration (shown in Fig.
1(c)), which is the combination of two independent standard flow-maximization
settings (see [21, 22] etc.), linked by an additional directed flow r(x) in-between:

– We set up two copies ΩCG and ΩWG of Ω w.r.t. the essential two continuous
min-cuts; for Ωi, i ∈ {CG,WG}, two extra nodes si and ti are added as
the source and sink terminals; we link si to each pixel x ∈ Ωi and link x
to ti, see Fig. 1(c); moreover, within each of Ωi, i ∈ {CG,WG}, we define
the source flow pis(x) which is directed from si to each x and the sink flow
pit(x) which is directed from each x to ti; also, within each of Ωi, there is
the spatial flow qi(x) around each pixel x.

– At each pixel x, there exists an extra flow r(x) directed from Ω2 to Ω1.

For the two source flow fields pCG
s (x) and pWG

s (x), we define the flow capacity
constraints:

pCG
s (x) ≤ DCG

s (x) , pWG
s (x) ≤ DWG

s (x) ; ∀x ∈ Ω . (17)

Likewise, for the two sink flow fields: pCG
t (x) and pWG

t (x), and the spatial flows:
qCG(x) and qWG(x), we define the respective flow capacity constraints:

pCG
t (x) ≤ DCG

t (x) , pWG
t (x) ≤ DWG

t (x) ; ∀x ∈ Ω ; (18)

and ∣∣qCG(x)
∣∣ ≤ g(x) ,

∣∣qWG(x)
∣∣ ≤ g(x) ; ∀x ∈ Ω . (19)

Moreover, the extra directed flow field r(x) for each x at ΩWG to the same
position at ΩCG is constrained by

r(x) ≥ 0 ; ∀x ∈ Ω . (20)

In addition to the above flow capacity constraints, at each pixel x ∈ Ωi,
i ∈ {CG,WG}, all the flow fields pis(x), p

i
t(x), qi(x) and r(x) are balanced such

that

RCG(x) := div qCG(x) + pCG
t (x) − pCG

s (x) − r(x) = 0 ; (21)

and

RWG(x) := div qWG(x) + pWG
t (x) − pWG

s (x) + r(x) = 0 . (22)

Therefore, we propose the novel coupled continuous max-flow model which
achieves the maximum total flows directed from s1 and s2, i.e.

max
ps,pt,q,r

∫
Ω

pCG
s dx +

∫
Ω

pWG
s dx (23)

subject to the flow capacity conditions (17) - (20) and the flow conservation
conditions (21) and (22).
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Duality and Global Optimum to (15): Note that (23) provides two indepen-
dent continuous max-flow problems, which are linked by the extra directed flow
field r(x). We can prove the duality between the coupled continuous max-flow
model (23) and the convex relaxed optimization problem (16), (see [22, 23])

Proposition 1. The proposed coupled continuous max-flowmodel (23) is equiv-
alent or dual to the convex relaxed coupled continuous min-cut formulation (16):

(23) ⇐⇒ (16) .

Clearly, for the given convex relaxation problem (16), the global optimum exists.
In addition, with helps of the proposed continuous max-flow model (23), we can
prove thresholding the global optimum of (16) also solve the original combina-
torial optimization problem (15). This means that the two contours CCG and
CWG can be moved to their ‘best’ position(s), i.e. the global optimum, during
each discrete time frame!

Proposition 2. Let u∗
CG(x), u

∗
WG(x) ∈ [0, 1] be any global optimum of the con-

vex relaxed coupled continuous min-cut formulation (16), their thresholds
u�
CG(x) ∈ {0, 1} and u�

WG(x) ∈ {0, 1}:

u�
i(x) =

{
1 , when u∗

i (x) > �
0 , when u∗

i (x) ≤ �
, i ∈ {CG,WG} (24)

for any � ∈ [0, 1), solves the original binary-constrained coupled continuous min-
cut problem (15) globally and exactly.

Actually, the functions u�
CG(x), u

�
WG(x) ∈ {0, 1} indicate the new positions of

the two thresholded level-sets CCG and CWG respectively, which are the globally
optimized contours to (13).

The proofs of Prop. 1 and Prop. 2 are omitted here due to the limit space.

Coupled Continuous Max-Flow Algorithm: On the other hand, the pro-
posed coupled continuous max-flow model (23) naturally leads to an efficient
coupled continuous max-flow based algorithm in a multiplier-augmented way [24]
(similar as [22, 23]). Based on the augmented Lagrangian algorithmic scheme,
we introduce the multiplier functions uCG(x) and uWG(x) to (21) and (22) re-
spectively and define the Lagrangian function:

L(ps, pt, q, r, u) :=

∫
Ω

pCG
s (x) dx+ 〈uCG, RCG〉+

∫
Ω

pWG
s (x) dx+ 〈uWG, RWG〉 .

We also define the following augmented Lagrangian function

Lc(ps, pt, q, r, u) := L(ps, pt, q, r, u)− c

2
‖RCG‖2 − c

2
‖RWG‖2

where c > 0 is constant.
We proposed the coupled continuous max-flow algorithm which explores the

following iteration till convergence: each k-th iteration consists of the flow max-
imization steps over the flow functions ps, pt, q and r and corresponding flow
constraints, and the label updating steps:
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1. Maximize Lc(ps, pt, q, r, u) over the spatial flows
∣∣qi(x)∣∣ ≤ g(x), i ∈

{CG,WG}, by fixing the other variables, which gives

(qi)k+1 := argmax
|qi(x)|≤g(x)

− c

2

∥∥div qi − F k
i

∥∥2 ,

where
F k
i (x) =

(
(pis)

k − (pit)
k − rk + (ui)

k
)
(x)/c .

It can be implemented by the one-step of gradient-projection procedure [25].
2. Maximize Lc(ps, pt, q, r, u) over the source flows pis(x) ≤ Di

s(x), i ∈
{CG,WG}, by fixing the other variables, which gives

(pis)
k+1 := argmax

pi
s(x)≤Di

s(x)

∫
Ω

pis dx− c

2

∥∥pis −Gk
i

∥∥2 ,

where
Gk

i (x) =
(
div qk+1

i + (pit)
k + rk − (ui)

k/c
)
(x) .

It can be solved exactly by:

(pis)
k+1(x) = min

(
Gk

i (x) + 1/c , Di
s(x)

)
. (25)

3. Maximize Lc(ps, pt, q, r, u) over the sink flows pit(x) ≤ Di
t(x), i ∈ {CG,WG},

by fixing the other variables, which gives

(pit)
k+1 := argmax

pi
t(x)≤Di

t(x)

− c

2

∥∥pit +Hk
i

∥∥2 ,

where
Hk

i (x) =
(
div qk+1

i − (pis)
k+1 + rk − (ui)

k/c
)
(x) .

It can be solved exactly by:

(pit)
k+1(x) = min

(−Hk
i (x) , D

i
t(x)

)
. (26)

4. Maximize Lc(ps, pt, q, r, u) over the coupled flow field r(x) ≥ 0 by fixing the
other variables, which gives

rk+1 := argmax
r(x)≥0

− c

2

∥∥r − Jk
CG

∥∥2 − c

2

∥∥r + Jk
WG

∥∥2
,

where Ji(x), i ∈ {CG,WG}, are fixed. It can be compted exactly by

rk+1(x) = max
(
0, (J1 − J2)/2

)
.

5. Update the multiplier functions uk+1
i (x), i ∈ {CG,WG}, by

uk+1
i (x) = uk

i (x)− cRk+1
i (x) . (27)

The coupled continuous max-flow algorithm successfully avoids directly handling
the non-smooth functions and linear constraint in the corresponding convex re-
laxation model (16). The experiments show that the proposed algorithm also
obtains a much faster convergence rate in practice. In addition, the coupled con-
tinuous max-flow algorithm can be readily implemented on GPUs to significantly
speed-up computation.
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3 Experiments and Results

Experiment Implementation: We applied the proposed continuous max-flow
algorithm on 10 T2w MR images acquired using a body coil. Subjects were
scanned at 3 Tesla with a GE Excite HD MRI system (Milwaukee, WI, USA). All
images were acquired at 512×512×36 voxels with spacing of 0.27×0.27×2.2mm3.
Two closed surfaces were constructed via a thin-plate spline fitting with ten to
twelve user selected initial points on the WG and CG surface, respectively, which
were used as the initial CG and WG surfaces for surface evolution. The original
input 3D image was also cropped by enlarging the bounding box of the initial
WG surface by 30 voxels in order to speed up computations. The initial PDFs
for the regions of RCZ and RPZ were calculated based on the intensities in the
user-initialized CG and PZ regions, respectively.

Evaluation Metrics: The proposed segmentation method was evaluated
by comparing the results to manual segmentations in terms of DSC, the
mean absolute surface distance (MAD), and the maximum absolute distance
(MAXD) [26, 27]. All validation metrics were calculated for the entire prostate
gland, central gland and peripheral zone. In addition, the coefficient-of-variation
(CV ) of DSC [27] was used to evaluate the intra-observer variability of our
method introduced by manual initialization.

(a) (b) (c) (d)

Fig. 2. Segmentation result of one prostate. (a) rendered resulting surface, (b) ax-
ial view, (c) sagittal view, and (d) coronal view, Green: the segmented PZ, red: the
segmented CG.

Accuracy: Visual inspections in Fig. 2 show that the PZ and CG regions seg-
mented by the proposed approach agree well with the objects. Quantitative
experiment result for 10 patient images using the proposed method is shown in
Table 1. The mean DSC was 89.2±4.5% for the whole prostate gland, 84.7±5.2%
for the central gland, and 68.5± 6.9% for the peripheral zone. In addition, the
evaluation results of MAD and MAXD are provided in Table 1, which give similar
information to DSC.

Reliablility: Ten images were also segmented three times by the same observer
to assess the intra-observer variability introduced by the user initialization. The
proposed method initialized by three repetitions yielded a CV of 7.5%, 5.6%,
and 5.0% for PZ, CG, and WG, respectively. It can be seen that the proposed
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Table 1. Mean segmentation results in terms of DSC, MAD and MAXD for 10 patient
images

DSC (%) MAD (mm) MAXD (mm)

PZ 68.5 ± 6.9 4.8± 2.1 20.1 ± 11.5
CG 84.7 ± 5.2 3.2± 1.2 12.3 ± 3.8
WG 89.2 ± 4.5 2.9± 0.9 12.2 ± 4.8

Table 2. Intra-observer variability results in terms of DSC (%) using three repetitions
of the same observer for ten patient images

PZ CG WG

experiment 1 68.5± 6.9 84.7 ± 5.2 89.2 ± 4.5
experiment 2 67.9± 5.8 85.3 ± 4.5 88.7 ± 4.0
experiment 3 69.2± 6.5 84.5 ± 4.5 89.0 ± 3.8

CV (%) 7.5 5.6 5.0

method demonstrated low intra-observer segmentation variability for the CG
and WG, suggesting a good reproducibility.

Computational Time: The proposed approach was implemented in Matlab
(Natick, MA) using CUDA (NVIDIA Corp., Santa Clara, CA). The experiments
were performed on a Windows desktop with an Intel i7-2600 CPU (3.4 GHz)
and a GPU of NVIDIA Geforce 580X. The mean run time of three repeated
segmentations for each 3D MR image was used to estimate the segmentation
time in this study. The mean segmentation time was 8±0.5s (converged with 3 -
5 surface evolutions) in addition to 40± 5s for initialization, resulting in a total
segmentation time of less than 50s for each 3D image (512× 512× 36 voxels).

4 Discussions and Conclusions

In this work, we propose and evaluate a new global optimization-based cou-
pled contour evolution approach to simultaneously extracting the boundaries of
prostate and its component zones from the input 3D prostate T2w MRI, which
address the challenge of segmenting multiple prostate regions in a numerically
stable and efficient way. In contrary to the classical level-set methods, the pro-
posed approach demonstrates great advantages in terms of numerical efficiency
and moving the coupled contours to their ’best’ positions simultaneously while
preserving the inter-contour relationship. The introduced algorithm shows reli-
able performance results with minimal user interactions using ten patient im-
ages, suggesting itself for potential clinical use in 3D TRUS/MR image guided
prostate interventions and computer aided diagnosis of prostate cancer.

The experimental results using ten 3D MR patient prostate images showed
that the proposed continuous max-flow algorithm is capable of providing a robust
and efficient segmentation for different prostate zones at the same time, such as
PZ, CG and WG, with promising accuracy and reliability. In terms of accuracy,
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DSC of 89.2±4.5% for the whole prostate region(WG), based on the introduced
composite intensity appearance model, is better than the result of 86.2 ± 3.0%
obtained by the state-of-art mixture intensity model; DSCs of 68.5± 6.9% and
84.7± 5.2% for PZ and CG yielded by our methods are lower than 75.0± 7.0%
and 89.0± 3.0% reported in [14] or 76.0± 6.0% and 87.0± 4.0% reported in [13].
However, these two methods made use of multi-spectral MR information and
required manual WG segmentations as initialization. In addition, comparing
to these methods, the proposed method also needs less user interactions and
computation time. In order to improve the segmentation accuracy, our future
studies might put emphasis on incorporating additional prior information, such
as texture and shape, or relying on information from multi-spectral MR imaging.
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