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Abstract. We propose a unified graph cut based global minimization
method for multiphase image segmentation by convexifying the non-
convex image segmentation cost functionals. As examples, we shall apply
this method to the non-convex multiphase Chan-Vese (CV) model and
piecewise constant level set method (PCLSM). Both continuous and dis-
cretized formulations will be treated. For the discrete models, we propose
a unified graph cut algorithm to implement the CV and PCLSM models,
which extends the result of Bae and Tai [I] to any phases CV model.
Moreover, in the continuous case, we further improve the model to be
convex without any conditions using a number of techniques that are
unique to the continuous segmentation models. With the convex relax-
ation and the dual method, the related continuous dual model is convex
and we can mathematically show that the global minimization can be
achieved. The corresponding continuous max-flow algorithm is easy and
stable. Experimental results show that our model is very efficient.

1 Introduction

Many multiphase image segmentation models are non-convex and thus the cor-
responding numerical algorithms may sometimes get stuck at a local minimum
close to the initial condition and produce undesirable segmentation results. For
example, the multiphase Chan-Vese (CV) model [2] to partition an image into
n parts by using log, n level set functions is non-convex. Its global minimization
can not be guaranteed. Another multiphase segmentation method is to use a
piecewise constant level set method PCLSM [3l/4] to represent different classes,
the constraint of imposing the label function to be a piecewise constant function
is non-convex, and thus the global minimization for such a model also can not
be guaranteed.

Some efforts on the global minimization have been done in recent years. For
the discrete methods, it is well-known that the global minimization can be at-
tained by the graph cut approach. However, the graph cut method can only
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minimize some particular energies [5]. For a modified PCLSM [6], the global
minimization can be obtained by Ishikawa graph cut method [7]. As to the
multiphase CV model, generally speaking, the global minimization can not be
achieved by the graph cut method since its associated discrete energy does not
satisfy the graph representation condition in [5]. When a convex condition holds
for the data term, Bae-Tai [8] have showed that the 4-phase CV model can
be globally optimized by graph cut. If the convex condition fails, the authors
also propose a truncation method to approximately minimize the energy. In [§],
the weights assignment for the graph is derived from a nonnegative solution for
some coupled linear equations, and the related convex condition makes sure that
there is at least one nonnegative solution. To find such a nonnegative solution
is not easy for any arbitrary phases segmentation, and thus this method is not
convenient to be extended to any phases CV partition problems.

In the continuous case, convex relaxation method (e.g. [9HI5]) is very popular
in recent years. The main idea of the convex relaxation is to relax the binary
characteristic function into a continuous interval [0, 1] such that the non-convex
original problem becomes convex. Solving such a relaxed convex problem can
enable one to find a global minimizer, and then the global binary solution of the
original problem can be obtained by a threshold process. The functional lifting
method [I0] can be regarded as a convex relaxation of PCLSM, while the multi-
dimensional generalization of the functional lifting [I6] ensure that one can get
a convex formulation of multiphase CV model. The continuous max-flow [15]
approach shows that finding a max-flow on a discrete graph, namely graph cut
method, corresponding to solving a continuous primal-dual problem. It gives the
connections between the discrete approach and continuous method. More inter-
estingly, it was found that the ”"cut” is just the Lagrangian multiplier for the
flow conservation constraint when maximizing the total flow. Recently, some ex-
perimental comparisons between discrete and continuous segmentation methods
has been given in [17] for some selected continuous multi-labelling approaches. It
would be interesting to see a systematical comparison including these continuous
max-flow with Augmented Lagrangian approaches.

The non-convex property of both PCLSM and CV models comes from the
existence of some non-convex multiplication function terms. In this paper, we
shall show that both of these two models can be written as some similar linear
term plus multiplication function terms. Based on the graph cut minimization
theory [5] and the property of maz function which is associated to the convex
envelope of the multiplication function, we propose a unified graph cut method to
globally solve these two models. Since each term of the cost functional is convex
after using the envelope functions, and thus the related relaxation continuous
problem is also convex. Our method can easily handle any phases segmentation
problems. For the discrete PCLSM, finding max-flows on the proposed graph is
faster than Ishikawa’s [7]. For the discrete 4-phase CV model, the proposed graph
would be the same as [§], but it is easier to handle any phases segmentation.
Moreover, to drop the convex condition in K-phase CV model in graph cut
method, we propose a continuous relaxation max-flow method for multiphase
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CV. Compared the earlier graph cut method, the proposed model is convex
without any condition. Experimental results have shown that this can improve
the quality of the segmentation results. A simultaneous work [I8] appearing in
this conference also derives a convex relaxation for the Chan-Vese model with
any number of phases. However, their approach is based on directly computing
the convex envelope of the data term.

The rest of the paper is organized as follows: section [2]is a brief introduction
of the fundamental energy minimization theory with graph cut; in section [3]
we propose the graph construction for the PCLSM and CV models; section [
contains a continuous relaxation max-flow model for CV with super-level set
representation; we show some experimental results and comparisons with other
methods in section B finally, some conclusions and discussions are presented in
section [6l

2  Energy Minimization with Graph Cut

In [B], the authors have given the condition of what energies can be minimized
by graph cut. In this section, we shall briefly review the main results of [5].

Let vy, va, -+ ,v, € {0,1}, £ be a function of some binary variables. Then the
following theorems hold:

Theorem 1 ( [5]). All the functions E(v;) of one binary variable can be mini-
mized by graph cut.

Theorem 2 ( [5]). A function E(vi,v2) of 2 binary variables can be minimized
by graph cut if and only if £ is submodular, i.e. £(0,0)+E(1,1) < £(0,1)+E(1,0).
More generally, E(v1,- -+ ,vn) of n binary variables can be minimized by graph
cut if and only if € is submodular.

Theorem 3 (additivity, [5]). The sum of finite number of submodular func-
tions is submodular.

From the additivity theorem Bl one can conclude that if there are n functions
which can be minimized by n different graphs, then the sum of the n functions
also can be minimized by graph cut. This can be done by simply putting the
vertices together and adding the n graphs’ edge weights together (if any graphs
have no edge between two vertices, one can add an edge with weight 0). For the
proofs of these theorems, please refer to [5].

Suppose a s-t graph G = (V,E) is constituted by a set of vertices V and a
set of directed edges E. Here there are two special distinguished vertices in V,
the source s and the sink t. A cut on the graph G is denoted by (Vi, V), which
is to partition the vertices V into two disjoint connected set V4 and V; such
that s € Vg and t € V,. For all binary variable v; € {0, 1}, let v; = 0 if the
associated vertex belongs to V, and v; = 1 for vertex belongs to V;. Based on
these theorems, we have the following conclusions:
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Proposition 1 (linear function). The minimization problem v} = argmin
'Uie{O,l}
{&(v;) = a;v;}, where a; is a known coefficient, corresponds to finding the min-

cut on graph displayed in Fig.

Proposition 2 (piecewise linear function). The minimization problem (v,
vi) = argmin {€(v;,v;) = by max{v; — v;,0}}, where b;; > 0 is a known
vi,v;€{0,1}

coefficient, corresponds to find the min-cut on graph displayed in Fig.

These two properties are very important to construct a graph to minimize the
energies of PCLSM and CV models. We shall show that both of these two models
can be minimized by solving min cuts on graphs which constituted by sum of
these two graphs. Since there are some multiplication functions terms in PCLSM
and CV, for convenience, we firstly construct a graph to minimize such a term
according to the propositions [l and

The multiplication function &(vy,- -+ ,v,) = —c [}, v;, where 0 < v; < 1 and
c is a known coefficient, is non-convex. From convex analysis theory (e.g. [19]),
one can get its convex envelope

Hox _ Jemax{—vi,—vo, -, vy}, c >0,
E™(v1, -+ ,vp) = { —emax{3, v — 0}, ¢ <0

which is the tightest convex function below £. Moreover, in binary case, i.e.
v; € {0,1}, we have £ = £**. Thus, to minimize £ with the binary constraint
can be replaced by finding the minimizer of the convex function £** with the
same constraint. This is also the main idea of the convex relaxation method for
product label spaces in [20]. When ¢ > 0, in the two variables case, one can get

E™ (v1,v2) = cmax{vy — v1,0} — cva.

Thus, based on the theorems 2 Bl and propositions [l Bl we have the following
conclusion:

S S S
| A
max{a; 0} 0 0 0 0
bij Cij
Vi Vi Vj Vi vj
max{—a; 0} 0 0 0 Cij
=
T T T
(a) asv; (b) bijmax{v; —  (c) —cijviv;
Vi, 0}

Fig. 1.
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Corollary 1 (multiplication function). The multiplication E(v) = —cp,
[T, vi,v; € {0,1} is submodular if and only if the coefficient ¢, > 0. In partic-
ular, the 2 variables multiplication € (v;,v;) = —c;jv:v5, v, v; € {0,1} is submod-

ular if and only if the coefficient c;; > 0. Moreover, if c;; > 0, the related binary
minimization problem corresponds to find the min-cut on the graph displayed in

Fig.

3 Graph Construction for PCLSM and CV Models

In this section, we shall use the results in section [2] to construct graphs to solve
PCLSM and CV models.

3.1 PCLSM

Now, we use the former method to minimize PCLSM with graph cut.
With the label function representation, the energy of multi-phase segmenta-
tion problem can be written as the following modified PCLSM [3]

K-1
gPCLSM (p) _ }:(/‘@Jdk¢x+,{/\vmmx, (1)
o /e 10
Herel: 2 — {0,1,---, K — 1} is an unknown integer function whose K different

values are used to represent the K number of phases, and

1, i(x) =k,
&*_{mxﬂ¢k

The first term is the data term which gives the classification criterion, and each
d* should depend on the input image I. For example, d*(z) = |I(x) — c*|*,
A = 1,2 represents that the pixels are classified in terms of the intensity means
{ck}le. In this paper, we suppose d* > 0 are known. While the second term is
the regularization term and p is a parameter which controls the balance of these
two terms. This functional is non-convex because of the existence of composite
function of delta function and I. However, with the help of the y-super-level set
function

[ 1, when l(z) >,
¢7(z) = {O, when [(z) <7, (2)
we have
¢"(x) — 6" (2) = By 3)

for k=0,1,--- , K — 1. Together with the generalized co-area formula [21]

Jwnae= [ (f jvwxndv) dr,
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the functional can be formulated as

EPCLSM (¢4, Z / — " Hdkdz + p Z/ |VoF|de, (4)

where ¢ = (¢13¢2,' te ,¢K71)a¢1 Z ¢2 Z 2 ¢K713 and ¢O = 13¢K =0.

The functional (@) is now convex, compared with the original formulation
(). The above process is the functional lifting method (FLM) that has been
developed in [I0], but the data term is slightly different from [I0]. The data
term here is linear but L! in [10].

In discrete case, (@) can be globally minimized by graph cut. In the next, we
shall construct such a graph.

Let P be the set of mesh grid points in (2, and N; be the set of 4 nearest
neighbors of p € P. For 2 C R?, P = {(i,j) C Z?} and for each p = (i,j) € P

N;l, = {(Zi 17j)7(i7j + 1)}3

Let ¢’;,d’; be the function values of ¢* and d* at p € P. If we choose the

anisotropic TV
TV () = [ 96 e = [ (000" + 010" iy

for the regularization term in (@), and employ the difference schemes

k k k k
|8m1(,25k‘ ‘8¢1¢ | + \8w12¢ | |¢7+1J ¢”‘ 4 |¢7 1,5 ¢”‘

0z Bry & : i : :
|6x2¢k‘:‘22¢|+‘22¢|:|¢]+1¢‘]‘ |¢‘71¢‘]‘

then the discrete formulation of (@) should be

K—1 K-1
EPOLSM=D (g) _ Z Z (¢k — @bty db + '; Z Z Z ¢k — orl.

k=0 pcP k=1 peP qeN*

p

From propositon [, ¢kdk —¢k+1dk can be minimized by solving the min-cuts on
graphs displayed in Flg and respectively. Accordlng to the additivity
theorem [3] and combining the constramt condition ¢' > -+ > ¢%~!, the data
term at each pixel p € P in the above energy can be mlnlmlzed through searching
the min-cut on graph defined in Fig For a cut (V,,Vy), we say (V,,Vy) is
a feasible cut when the cost of the cut C'(Vs, Vi) < 4+00. Besides, let us denote

B:{¢: (¢1a¢25“' 5¢K71) :¢k € {0,1},1:¢O>¢1 >¢2 > >¢K71 >¢K:0}
(5)
Then we have the following result:

Proposition 3. There is a one-to-one correspondence between the feasible cuts
of graph G = (V,E) defined on Fz'g and the binary super-level set function
¢, and

min C(V,Vy) —mln ZZ ¢k ¢k+1

v,V
(Vs, V) k=0 peP
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As to the regularization term, since ¢>’;, ¢§ are binary and we have

K—-1 K—-1 K—-1

DD el =1 3 D e —ahl =L D0 D0 Y (¢h+oh—2649}).

k=1 peP geN} k=1 peP qgeN} k=1 peP geN}

By applying the additivity theorem [ and corollary [l the regularization term
can be minimized by solving the min-cut on the graph displayed in Fig[3l

Finally, we can get the graph for minimizing the energy EF¢LSM =D by simply
adding the edge weights of graphs defined in Fig and Fig together
according to the additivity of the graph.

S

|

dy

Q ¢

0

(|

T

(a) (b) (©) Yrso' (o5 —op™") dy
opdy  —pTdy

Fig. 2. Graph construction for data term at each pixel p € P in PCLSM

SRS

() 5ol (0) 4 DU Ty (64 + 05 — 2000
2049p)
Fig. 3. Graph construction for regularization term at each pixel p € P in PCLSM. In

Fig all the weights of red and blue edges (t-link) are 4y, and all the weights of
black edges (n-link) are p.
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3.2 CV Model

The Chan-Vese model [22] is a popular image segmentation model, a general-
ization of Chan-Vese model has been proposed in [2] to partition an image into
K parts by using log, K level set functions. In [4], vector binary functions were
used to represent the different phases and this has a very close relationship to
the things we are going to discuss here. For the general CV model with any
number of phases, we firstly derive a general formulation for multi-phase CV
model from the binary representation of integers. It is well known that for any
integer k € {0,1,--- , K — 1}, there is a mapping A : ZT U {0} — B such that
A(k) = bkal -+ bLbY, where B is the set of the binary representation of integers.
Here b € {0,1},m=0,--- ,M —1, M = [logy K|, and [-] is a ceiling operator.
For example, the binary representation of integer A(5) = 101. In essence, the CV
model is closely related to this binary representation. For simplification, we first
consider the K = 2™ M =1,2--- case. Let us write the binary representation
of the label function [ : 2 — {0,1,---,2M — 1} as A(l) = M~ ... 40 and in
this case it is easy to check A is a 1-1 mapping, then

M-1
L, ym = by,
0Lk = 641, A(k) = 5wM*1---w0,b2H---b2 = H Oyrm b = {0: else.
m=0

Using the ~y-super-level set function representation for )™ and let us denote

mam o f 1, when ¢™(x) = b},
¢ (2) = {0, when ™ (z) < b},

for allm =0,1,--- , M — 1. Now, we have

P — I = Sy,
and thus
M-1
ok = H (¢mbk — gt
m=0

In the above equation,

¢m,0 — 1’¢m,1 — wm’¢7n,2 — 07

since b, 9™ € {0, 1}, so the unknown variables are only ¢~ = (¢%!, ¢t ... |
¢M71,1).

If the segmentation phase K # 2M ie. 2M~1 < K < 2™ then A may not be
a 1-1 mapping, which means that we may use serval labels to indicate one class.
This can be achieved by adding several d ~! in the energy.

Replacing the ¢ function in () with the above expression and modifying the
regularization term, we get the multi-phase CV model for any K phases:

2M_q M-1 M—1
SCV—K(¢~,1) — Z / dk H (¢nL,bZ” _ ¢m,b,’§"+1)dx+u Z / |V¢’”’1|dx,
k=0 2  m=o0 m=0 "
(6)
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where d¥ = d¥~1 when K —1 < k < 2M — 1. Let point out that the choice of d*

K—-1 ;k
when K —1 < k < 2™ —1 is not unique, for example, one can use d* = E"‘? d
for k> K — 1.

The discrete formulation of the regularization term in CV model (@) is

CV-K _1M_1 mo__ Am
ROVK(g)= LYY ey —ap,

m=0 peP geN}

which can be minimized by graph cut in terms of our earlier discussion.

Let ig < i1 < -+ < im—1 be any m-combination of the set {0,1,---, M — 1}
and S™ be a set which contains the C7} different m-combinations. For simplicity,
we rewrite ¢ as ™. In the discrete case, the data term in CV model (@) can
be expressed as

1 1

M 1 i i . . i
LA CE oI D b oD o= R

peP m=1ig,iy, iy _1ESM tg=01t1=0 tm—1=0

where the coefficients

) ) — m—1, oi;
i G R

Now, the data term DV ~X only contains some multiplying functions, we can

use the former theorems. According to proposition[I], corollary [l and theorem [3]

we can get the following result

Proposition 4. The K-phases discrete C'V model can be exactly minimized by
graph cut if the coefficients Zzozo e Zim_lzo c;:j;‘; <0 forall2 <m <
M.

In particular, when K =3, M = [log, 3] = 2, then

DY) = Lper (dp + (8 + D)+ (cb + cl)gy + (cg + o1t + 16+ e1))dpy)
= ZPEP (dp + (*dp + dp)¢p + (7dp + dp)¢p + (dp - dp)¢p¢p) :

Similarly, for K =4,

DY) = Lper (dp + (6 + D)y + (b + )y + (cg + ot + o + ery)dpy)
= Zpe]}” (dp + (7dp + dp)¢p + (*dp + dp)¢p + (dp —dp —dp + dp)¢p¢p) :

Thus we have the following conclusion:

Corollary 2. The 3-phase discrete C'V model can be exactly minimized by graph
cut if and only if d° — d' < 0. Similarly, the condition of the 4-phase discrete
CV model is d° — d* — d*> 4 d®> < 0. When these condition holds, for each pizel p,
DEV=3(,), DV 4(p,), uRCY =3 o7 (b)) can be minimized by finding the min

cuts on graphs defined on Fz'g Fz'g and Fig respectively.
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(c) (d) The continuous relaxation max-flow
uREV3erd(g,)  for CV (data term).

Fig. 4. Graph construction for 3,4-phase CV model. In Fig all the weights of red
and blue edges (t-link) are 44, and all the weights of black edges (n-link) are p.

Therefore, to minimize the 3 or 4-phase discrete model can be implemented by
solving the min cut of the graph which is constituted by putting the graphs
defined by data term and regularization term together.

In 4-phase case, the corollary [ coincides to result in [IL[8]. Here, we extend
the results to any phases CV model, which is not easy to handle with the method
of [1,18].

. 1 1 bty i . .
In fact, when the condition >, _o--->7, ~ _;¢, """ < 0 in proposition
= m—1=0 Ctm—

A holds, the non-convex term ,¢;}o czS;} -+~ ¢y "' can be replaced by its convex en-
velope max{—¢%, —¢' ... —¢im-1} since these two functionals have the same
minimizer in the binary case. As in [I], we call this condition as convex condition.
To get a convex model, one can relax the non-convex constraint ¢* € {0,1} to
an interval [0, 1]. In the continuous case, we can get a convex model for K-phase
CV model.

As for the convex condition in proposition [ it depends on the segmentation
data. In the 4-phase case, it have been theoretically analyzed in [§]. In many real
image segmentation problems, it may hold that 4 cluster are sufficient. However,
we note that this condition would become stricter when the number of the phases
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increases, thus in the discrete case, the K-phase CV model may not be exactly
optimized by graph cut if the segmentation data is very bad (fails to satisfy the
convex condition). To overcome this flaw, one may use an approximation graph
cut method by cutting off the coefficient Ztlozo e Ztlm_lzo ¢m VT as 0 when
the condition fails. However, such an approximation method may not be the
original CV model. Here, we shall propose another continuous relaxation max-
flow method, which is also a convex model but without any convex conditions.
Refer to [I8] in this proceedings for another method to derive a convex relaxation
for the multiphase CV model. The relaxation of [I8] is tight for any phases, but
need conditions to guarantee convexity.

4 Continuous Convex Relaxation Max-Flow for CV

The continuous max-flow method for 2-phase CV model and Potts model has
been proposed by Yuan ete. in [I5,[23]. It has been extended to 4-phase CV
model by Bae-Tai in [I] with the earlier mentioned convex condition. Here, we
propose a convex continuous max-flow method for any phases CV model but
without any convex conditions.

For multi-phase CV model, the regularization term is convex and to convert it
to continuous max-flow would be the same as [1l[152324]. Here we only discuss
the data term.

Firstly, we construct a graph displayed in Fig for K phases CV model,
we copy M = [logy K| vertices v™,m = 0,---,M — 1 at each pixel z; let us
denote the edges between source s and vertex v™, sink t and vertex v™ as ¢j"
and ¢7"*, respectively. For k = 0,1,--- | K — 1, let the binary representation of
k be A(k) = b,i\/[_l e bg. We impose the capabilities of these edges satisfy the
following condition

M-—1
qu:%Lgd’“,kzo,1~-~,2M—1, (7)
m=0

where d* = d¥—1 when K — 1 <k <2M — 1.

The max-flow problem is to find the maximum capabilities of the flows which
stream from source s to sink t under a flow preserving condition and the maxi-
mum capabilities condition ([7l). Together with the graph defined in Fig and
the regularization term, the proposed max-flow problem for any K-phase CV
model can be written as

max /Zq{”(m)dx,
2 m=0

q0,91,p€C
(@) —qi(x) =V -p™(z) =0,m=0,1,--- ,M — 1,
S0 ah () < dF(@), k= 0,1--- ,2M — 1.
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Here, qo = (), - - - ,qé\/ffl), q = (¢, ,q{vj*l), the second equation is the flow
preserving condition of vertex v™, in which p = (p°,--- ,pM~1) € C = {p:
[P ||loo < ptym = 0,1,---, M — 1.} is the associated flow function for the TV
term in CV model, and the third inequality is just the maximum capabilities
condition ([7]).

Applying the Lagrange multiplier method and let ¢ = (¢°,--- , ¢™~1) be the
M Lagrange multipliers, then the problem () can be formulated as the following
saddle point problem:

M-—1

1— ™(2) — ¢™(2)V - p™
e qoriaifec/ Z 2) + (1= ¢"(2))ai" () = ¢"(2)V - " () d,
Zif (@) < d @)k = 0,10 29 - 1.
)
In the above saddle point problem, the term J(¢) = max / Z ¢ (x)qy (
q0,91,p€C

+(1—¢™(x))q{" (z)dz with the constraint condition () is assomated to the data
term D¢V =K (¢) in CV model (@). For this two terms, we can prove that they
have the same global minimization.

Proposition 5. If ¢* is a binary minimizer of DV =X (¢), then ¢* is also a
minimizer of J(¢p) under constraint (7). Moreover, DCV—E(¢*) = J(¢*) =
[, min{d(z),- - ,d*" ~(z)}dz.

As to find the saddle point of (@), it can be done by projection gradient method
since the functional is linear and the constraint sets are convex for each variable.
We do not plan to list the details of the algorithm here.

5 Experimental Results

In this section, we shall give some numerical examples with the proposed method.
The first one is to partition a synthetic image in Fig. into 3 parts. The
PCLSM, CV model and continuous convex relaxation max-flow (CCRM) of CV
are applied to segment this image. For the PCLSM and CV, we use the con-
structed graph cut to solve them. The final segmentation results are shown in
FigFig respectively. As can seen from the figure, the result produced
by CCRM is smoother than the discrete methods. This is due to the fact that
we may employ an isotropic TV in the continuous case but not with graph cuts.
At the current CPU program implementation, the discrete graph cut method
is faster than CCRM. However, the discrete graph cut algorithm is not easy to
work with the parallel program, thus the continuous method CCRM with GPU
implementation would be faster than the discrete ones. The second example dis-
played in Fig. Bl shows the segmentation results of applying the proposed method
to a real brain MRI. In this figure, the brain image is partition into 4 parts. As
can be found again, the boundary in result of CCRM is smoother than others.
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(a) Size: 100 x 100 ) PCLSM ) CCRM

Fig.5. A comparison between discrete graph cut algorithm and continuous convex
relaxation max-flow (CCRM). The cost of the CPU time for PCLSM, CV and CCRM
are 0.0352s,0.3504s,0.4282s, respectively.

(a) Size591x709  (b) PCLSM (c) CV (d) CCRM

Fig. 6. Different algorithms for real images. The regularization parameters for each
method are manually chosen. The clusters is 4.

6 Conclusion and Discussion

We have proposed a unified method to minimize the multiphase image segmen-
tation PCLSM and CV models with discrete graph cut and continuous max-flow.
This method is developed by considering the convexification of the multiplying
functions with graph cut method. For PCLSM, we construct a graph which is
different from the earlier Ishikawa method [7]. For CV models, we extend the
result in [IL6] to any phases and propose a saddle point problem for any phases
CV model. Compared the original CV method, the proposed convex relaxation
max-flow method is convex and thus it can get the global minimization. More-
over, we show that the key idea of CV model is to use the binary expression to
represent a integer, thus one can extend it to any n-decimal numeral system .
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