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Abstract. Variational models as the Mumford-Shah model and the ac-
tive contour model have many applications in image segmentation. In this
paper, we propose a new multiclass segmentation model by combining
the Rudin-Osher-Fatemi model with an iterative thresholding procedure.
We show that our new model for two classes is indeed equivalent to the
Chan-Vese model but with an adapted regularization parameter which
allows to segment classes with similar gray values. We propose an ef-
ficient algorithm and discuss its convergence under certain conditions.
Experiments on cartoon, texture and medical images demonstrate that
our algorithm is not only fast but provides very good segmentation re-
sults in comparison with other state-of-the-art segmentation models in
particular for images containing classes of similar gray values.

1 Introduction

Throughout this paper, let Ω ⊂ R
2 be a bounded, open set and f : Ω̄ → [0, 1] a

given image. In 1989, Mumford and Shah in [23] proposed to solve segmentation
problems by minimizing over (Γ, u) ∈ Ω ×W 1

2 (Ω \ Γ ) the energy

EMS(Γ, u) := H1(Γ ) + μ

∫
Ω\Γ

|∇u|2dx+ λ

∫
Ω

(u − f)2dx, λ, μ > 0,

where H1 denotes the 1D Hausdorff measure. The functional EMS contains three
terms: the regularity term on Γ in terms of its length, the regularity term im-
posing smoothness of u on areas Ω \ Γ , and the data fidelity term. Related ap-
proaches in a spatially discrete setting were proposed in [8,18]. An early attempt
to solve the challenging task of finding a minimizer of the non-convex, non-
smooth Mumford-Shah functional was done by approximating it by a sequence
of simpler elliptic problems in [3]. Many approaches to simplify the model were
meanwhile proposed in the literature as, e.g., the convex relaxation of the piece-
wise smooth Mumford-Shah functional by functional lifting in [26]. A frequently
applied strategy is to restrict the model to ∇u = 0 on Ω \Γ which results in the
piecewise constant Mumford-Shah model

EPCMS(Γ, u) := H1(Γ ) + λ

∫
Ω

(u − f)2dx. (1)
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Assuming that Ω =
⋃K−1

i=0 Ωi with pairwise disjoint sets Ωi and u(x) := mi for
x ∈ Ωi, i = 0, . . .K − 1, the above functional can be rewritten as

EPCMS(Ω,m) =
1

2

K−1∑
i=0

Per(Ωi;Ω) + λ

K−1∑
i=0

∫
Ωi

(mi − f)2 dx, (2)

where Per(Ωi;Ω) denotes the perimeter of Ωi in Ω and m := (mi)
K−1
i=0 , Ω :=

(Ωi)
K−1
i=0 . For K = 2, the piecewise constant Mumford-Shah model is actually

the model of the active contours without edges (Chan-Vese model) [16], i.e.

ECV(Ω1,m0,m1) = Per(Ω1;Ω) + λ
( ∫

Ω1

(m1 − f)2 dx+

∫

Ω\Ω1

(m0 − f)2 dx
)
. (3)

One of the model’s drawbacks is that it can easily get stuck in local minima.
To overcome this drawback, a convex relaxation approach was proposed in [15].
More precisely, it was shown that the global minimizer of ECV(·,m0,m1) for
fixed m0,m1 can be found by solving

min
0≤u≤1

∫
Ω

|∇u|+ λ

∫
Ω

(
(m0 − f)2 − (m1 − f)2

)
u(x)dx, (4)

and setting Ω1 := {x ∈ Ω : u(x) > ρ} for any ρ ∈ (0, 1], see also [6,9]. In other
words, (4) is a tight relaxation of the Chan-Vese model with fixed mi, i = 0, 1.
There are many other approaches for two-phase image segmentation based on
the Chan-Vese model and its convex version, see, e.g., [31], [9] and [17].

In [28], Chan and Vese proposed a multiphase segmentation model using level
sets. Convex (non-tight) relaxation approaches for the model with fixed m were
proposed, e.g., in [21,22,25,29,30] and for the full model in [10]. For more details
see also [5].

In [12] a two-stage image segmentation method which finds the solution of a
convex variant of the Mumford-Shah model in the first stage followed by one
thresholding step in the second stage was proposed. The applied functional was
the Rudin-Osher-Fatemi (ROF) functional [27] supplemented by the essential
additional term

∫ |∇u|2 dx.
In this paper, we propose a new multiphase segmentation model based on

iteratively thresholding the minimizer of the original ROF functional. In contrast
to [12] we propose a strategy to update the thresholds and prove its convergence
under certain conditions. There exists a clear relationship of our new model
to the Chan-Vese model (3) which shows that a solution of (3) for a certain
regularization parameter can actually be given by iteratively thresholding the
ROF minimizer. Numerical examples demonstrate that our algorithm is not only
fast but produces also very good results for images whose classes are close to
each other. In particular it outperforms the algorithm in [12].

The paper is organized as follows: In Section 2, we introduce our segmentation
model and discuss its the properties. We propose an efficient solution algorithm
and provide a convergence analysis in Section 3. Finally, in Section 4, we test
our algorithm on various synthetic and real-world images and compare it with
other state-of-the-art segmentation algorithms.
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2 Continuous Model

2.1 Notation

We briefly introduce the basic notation and relations which can be found, e.g., in
[2,4]. In the following a ‘set’ is understood as a Lebesgue measurable set in R

2,
where we will consider equivalence classes of sets which are equal up to Lebesgue
negligible sets. By |A| we denote the Lebesgue measure of a set A. By BV (Ω)
we denote the space of functions of bounded variation, i.e., the Banach space of
functions u : Ω → R with finite norm ‖u‖BV := ‖u‖L1(Ω) + TV (u), where

TV (u) := sup
{∫

Ω

u(x)divϕdx : ϕ ∈ C1
c (Ω,R2), ‖ϕ‖∞ ≤ 1

}
.

The distributional first order derivative Du of u is a vector-valued Radon mea-
sure with total variation |Du| = TV (u). In particular, we have for u ∈ W 1

1 (Ω)
that Du = ∇u ∈ L1 so that in this case TV (u) =

∫
Ω
|∇u| dx. For a Lebesgue

measurable set A ⊂ Ω, the perimeter of A in Ω is defined by Per(A;Ω) :=
TV (χA), where χA denotes the characteristic function of A. Hence A is of finite
perimeter, if its characteristic function has bounded variation. If A has a C1

boundary, then Per(A;Ω) coincides with H1(∂A ∩Ω). We define the mean of f
on A ⊂ R

2 by

meanf (A) :=

{ 1
|A|

∫
A
f dx if |A| > 0,

0 otherwise.

We call (u∗, c∗) a partial minimizer of some objective function E(u, c) if

E(u∗, c∗) ≤ E(u∗, c) for all feasible c, and
E(u∗, c∗) ≤ E(u, c∗) for all feasible u.

(5)

In case E is differentiable on its domain every partial minimizer contained in
the interior of the domain is stationary, see, e.g., [19]. For example we see that a
partial minimizer (Ω∗,m∗) of the piecewise constant Mumford-Shah model (2)
with Ω∗ = (Ω∗

i )
K−1
i=0 , m∗ = (m∗

i )
K−1
i=0 has to fulfill

m∗
i = meanf (Ω

∗
i ), i = 0, . . . ,K − 1. (6)

2.2 Model

We start by considering the segmentation into K = 2 classes. Let

E(Σ, τ) := Per(Σ;Ω) + μ

∫
Σ

τ − f dx, μ > 0. (7)

Note that E(∅, τ) = 0 and E(Ω, τ) = μ
∫
Ω τ − f dx. Since f maps into [0, 1], the

global minimizer of E(·, τ) for fixed τ ≤ 0 is Ω and for τ ≥ 1 it is ∅. Therefore we
restrict ourselves to τ ∈ (0, 1). We intend to find (Σ∗, τ∗) ∈ Ω × (0, 1) fulfilling

E(Σ∗, τ∗) ≤ E(Σ, τ∗) ∀Σ ⊂ Ω, (8)

τ∗ =
1

2

(
meanf (Σ

∗) + meanf (Ω\Σ∗)
)
.



240 X. Cai and G. Steidl

Remark 1. Note that solving (8) is different from minimizing

min
Σ,τ

E(Σ, τ) subject to τ =
1

2

(
meanf (Σ) + meanf (Ω\Σ)

)
. (9)

Consider the 1D example with the function f(x) = x on Ω = (0, 1) and restrict
the attention to Σ ∈ {(0, b), (b, 1)}. Then τ = 1

4 (1 + 2b) in (9) and we are
searching for b. Now

E(Σ, τ) = 1 + μ

∫
I

τ − x dx =

{
1 + 1

4μb if I = (0, b),
1− 1

4μ(1− b) if I = (b, 1)

which has no minimizer in (0, 1). On the other hand, let τ∗ = 1
2 . Then it can

easily be checked that (Σ∗, τ∗) with Σ∗ = (12 , 1) fulfills (8).

The following proposition ensures the existence of a global minimizer of E(·, τ)
for fixed τ .

Proposition 1. For any fixed τ ∈ (0, 1), a global minimizer Σ of E(·, τ) in (7)
can be found by solving the convex minimization problem

min
u∈BV (Ω),u∈[0,1]

TV (u) + μ

∫
Ω

(τ − f)u dx (10)

and then setting Σ := {x ∈ Ω : u(x) > ρ} for any ρ ∈ [0, 1).

For a proof we refer to Proposition 2.1 in the review paper [14]. This proof uses
the same ideas as in [6,24] where the claim was shown for a.e. ρ ∈ [0, 1]. Based on
the next lemma, cf., [1, Lemma 4i)] and a smoothness argument, an explanation
that the minimizing set Σ is unique for fixed τ was given in [14].

Lemma 1. For fixed 0 < τ1 < τ2 < 1, let Σi be minimizers of E(·, τi), i = 1, 2.
Then |Σ2\Σ1| = 0 is fulfilled, i.e., Σ1 ⊇ Σ2 up to a negligible set.

The relationship between our model (8) and the Chan-Vese model (3) is ex-
plained in the following proposition.

Proposition 2. (Relation between the Chan-Vese model and (8))
Assume that (Σ∗, τ∗), Σ∗ ∈ {∅, Ω} is a solution of (8). Set m∗

0 := meanf (Σ
∗)

and m∗
1 := meanf (Ω \Σ∗). Let O be the set of partial minimizers of the Chan-

Vese model (3) with parameter λ := μ
2(m∗

1−m∗
0)
. Then

(
Σ∗,m∗

0,m
∗
1

) ∈ O.

Proof. Since Σ∗ = ∅ is a minimizer of E(·, τ∗) we conclude
∫
Σ∗ τ

∗ − f dx < 0
which implies τ∗ < meanf (Σ

∗) = m∗
1. Similarly, since Σ∗ = Ω, we see that

Per(Σ∗;Ω) + μ

∫
Σ∗

τ∗ − f dx ≤ μ

∫
Ω

τ∗ − f dx,

0 < Per(Σ∗;Ω) ≤ μ

∫
Ω\Σ∗

τ∗ − f dx
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and consequently m∗
0 = meanf (Ω \ Σ∗) < τ∗. Therefore m∗

0 < m∗
1. The set Σ∗

is also a minimizer of E(·, τ∗) + C with the constant C := λ
∫
Ω
(m∗

0 − f)2 dx.

Regarding that τ∗ =
m∗

1+m∗
0

2 we obtain

E(Σ, τ∗) + C = Per(Σ;Ω) + μ

∫
Σ

τ∗ − f dx+ C

= Per(Σ;Ω) +
μ

2(m∗
1 −m∗

0)

∫
Σ

(m∗
1 − f)2 − (m∗

0 − f)2 dx

+ λ

∫
Ω

(m∗
0 − f)2 dx

= Per(Σ;Ω) + λ

(∫
Σ

(m∗
1 − f)2dx+

∫
Ω\Σ

(m∗
0 − f)2

)
.

By definition of m∗
i , i = 0, 1 and (6) we get the assertion. �

Since 0 < m∗
1−m∗

0 ≤ 1 the parameter λ = μ
2(m∗

1−m∗
0)

in the Chan-Vese model (3)

is larger than μ and increases if m∗
1−m∗

0 becomes smaller. Hence, it is adapted to
the difference betweenm∗

1,m
∗
0 and penalizes the data term more if this difference

becomes smaller.
The following proposition has the important consequence that we can obtain

a minimizer Σ of E(·, τ) by minimizing the ROF functional and subsequent
thresholding of the minimizing function by τ .

Proposition 3. The set {x ∈ Ω : u(x) > τ} solves (7) if and only if the function
u ∈ BV (Ω) solves the ROF model

min
u∈BV (Ω)

TV (u) +
μ

2

∫
Ω

(
u− f)2 dx. (11)

For the proof see [14, Proposition 2.6].

We generalize (7) and (8) to the multiclass case K ≥ 2 by setting Σ := {Σi}K−1
i=1

and τ := {τi}K−1
i=1 with 0 < τ1 ≤ τ2 ≤ . . . ≤ τK−1 < 1, and

E(Σ, τ ) :=
K−1∑
i=1

(
Per(Σi;Ω) + μ

∫
Σi

τi − f dx
)
, μ > 0. (12)

For fixed τ , we know by Lemma 1 that

Ω ⊇ Στ1 ⊇ Στ2 ⊇ · · · ⊇ ΣτK−1 ⊇ ∅ (13)

and we see that the corresponding wanted segments

Ωi := Σi\Σi+1, i = 0, . . . ,K − 1, Σ0 := Ω, ΣK := ∅ (14)

are pairwise disjoint and fulfill ∪K−1
i=0 Ωi = Ω. We aim to find an ordered vector

τ ∗ and a corresponding nested set Σ∗ with

τ∗i =
1

2
(m∗

i−1 +m∗
i ), m∗

i := meanf (Ω
∗
i ), i = 1, . . . ,K − 1 (15)

which minimizes E(·, τ ∗) among all sequences of nested sets.
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3 Algorithmic Aspects

Our algorithm alternates the minimization of E(·, τ ) in (12) for fixed τ with τ1 ≤
τ2 ≤ . . . ≤ τK−1 and the computation of τ as in (15) for fixed sequences Σ of
nested sets. By Proposition 3 the minimization of E(·, τ ) in (12) for fixed τ can be
obtained by K−1 times thresholding the minimizer of the ROF functional. This
is in particular efficient since the minimizer of the ROF functional remains the
same during the whole thresholding process. We call the algorithm thresholded
ROF (T-ROF).

Algorithm (T-ROF)

Initialization: τ (0) =
(
τ
(0)
i

)K−1

i=1
with 0 < τ

(0)
1 < · · · < τ

(0)
K−1 < 1.

1. Compute the solution u of the ROF model (11).
2. For k = 0, 1, . . . , repeat

2.1. Compute Σ(k) =
(
Σ

(k)
i

)K−1

i=1
by Σ

(k)
i := {x ∈ Ω : u(x) > τ

(k)
i }.

2.2. Find Ω
(k)
i := Σ

(k)
i \Σ(k)

i+1, i = 0, . . . ,K−1 with Σ
(k)
0 := Ω and Σ

(k)
K := ∅.

2.3. Compute m
(k)
i := meanf (Ω

(k)
i ), i = 0, . . . ,K − 1.

2.4. Update τ
(k+1)
i := 1

2 (m
(k)
i−1 +m

(k)
i ), i = 1, . . . ,K − 1.

We will prove the convergence of our algorithm under the following assumption:

(A) If Στ , Στ̃ are the minimizers of E(·, τ) and E(·, τ̃ ) for any 0 < τ < τ̃ < 1
appearing in the algorithm, then

τ ≤ meanf (Στ\Στ̃ ) ≤ τ̃ . (16)

The right-hand inequality in (16) is for example fulfilled if Στ̃ is also a minimizer
of Per(Σ;Στ ) + μ

∫
Σ
τ̃ − f dx. The left-hand inequality holds if Στ\Στ̃ is also a

minimizer of Per(Σ;Ω\Στ̃ )+μ
∫
Σ
τ − f dx. Using the above assumption we can

prove the following lemma, see [11]:

Lemma 2. Under the assumption (A) our T-ROF algorithm produces sequences
(τ (k))k and (m(k))k with the following properties:

i) 0 ≤ m
(k)
0 ≤ τ

(k)
1 ≤ m

(k)
1 ≤ · · · ≤ m

(k)
K−2 ≤ τ

(k)
K−1 ≤ m

(k)
K−1

ii) Set τ
(k)
0 := 0 and τ

(k)
K := 1. If τ

(k)
i ≥ τ

(k−1)
i and τ

(k)
i+1 ≥ τ

(k−1)
i+1 , then

m
(k)
i ≥ m

(k−1)
i , i = 0, . . . ,K − 1 and this also holds true if ≤ is replaced

everywhere by ≥.

To prove the convergence of the sequence (τ (k))k, we define a sign sequence

ζ(k) = (ζ
(k)
i )K−1

i=1 as follows: If τ
(k)
i = τ

(k−1)
i ,

ζ
(k)
i :=

{
+1 if τ

(k)
i > τ

(k−1)
i ,

−1 if τ
(k)
i < τ

(k−1)
i ,
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and otherwise

ζ
(k)
i :=

{
ζ
(k)
j if i = 1,

ζ
(k)
i−1 if i = 1,

(17)

where j = min{l | τ (k)l = τ
(k−1)
l }. By sk we denote the number of sign changes

in ζ(k), for example, if ζ(k) = (
︷ ︸︸ ︷
+1,+1,+1,

︷ ︸︸ ︷
−1,−1,

︷︸︸︷
+1 ,

︷︸︸︷
−1 ), then sk = 3.

Lemma 3. i) The number of sign changes sk is monotone decreasing in k.

ii) If ζ
(k+1)
1 = ζ

(k)
1 , then we have the strict decrease sk+1 < sk.

Proof. i) Let sk = N and rewrite (τ (k))k as

(τ
(k)
0 , · · · , τ (k)l1︸ ︷︷ ︸

v
(k)
1

, · · · , τ (k)ij
, · · · , τ (k)lj︸ ︷︷ ︸
v
(k)
j

, · · · , τ (k)iN
, · · · , τ (k)K︸ ︷︷ ︸
v
(k)
N

),

where v
(k)
j contains those successive components of (τ (k))k with the same sign.

1. If #v
(k)
j ≥ 3, we consider ζ

(k+1)
i∗ with ij ≤ i∗ − 1 ≤ i∗ ≤ i∗ + 1 ≤ lj , i.e.,

ζ
(k)
i∗−1 = ζ

(k)
i∗ = ζ

(k)
i∗+1. WLOG let ζ

(k)
i∗ = −1. Then we obtain by Lemma 2 ii) that

m
(k)
i∗−1 ≤ m

(k−1)
i∗−1 and m

(k)
i∗ ≤ m

(k−1)
i∗ . Therefore

τ
(k+1)
i∗ =

m
(k)
i∗−1 +m

(k)
i∗

2
≤ m

(k−1)
i∗−1 +m

(k−1)
i∗

2
= τ

(k)
i∗

and consequently ζ
(k+1)
i∗ = −1 or ζ

(k+1)
ij

= ζ
(k+1)
ij+1 = · · · = ζ

(k+1)
i∗ = 1. The case

ζ
(k)
i∗ = 1 can be handled in the same way.

2. If there is no j such that #v
(k)
j = 1, we consider ζ

(k+1)
lj

and ζ
(k+1)
ij+1

which are

different by definition. WLOG let ζ
(k)
lj

= −1 and ζ
(k)
ij+1

= +1. Then, from Lemma

2 ii), we have

m
(k)
lj−1 ≤ m

(k−1)
lj−1 , m

(k)
ij+1

≥ m
(k−1)
ij+1

.

If m
(k)
lj

≤ m
(k−1)
lj

(or m
(k)
lj

≥ m
(k−1)
lj

), then τ
(k+1)
lj

≤ τ
(k)
lj

(or τ
(k+1)
ij+1

≥ τ
(k)
ij+1

).

This means that ζ
(k+1)
lj

= ζ
(k)
lj

and ζ
(k+1)
ij+1

= ζ
(k)
ij+1

is not possible at the same
time.
3. Finally, we consider the case #v

(k)
j = 1 for all j1 ≤ j ≤ j2, where #v

(k)
j1−1 >

1 and #v
(k)
j2+1 > 1. We prove that from iteration k → k + 1 the signs of

ζ
(·)
ij1−1, ζ

(·)
j , . . . , ζ

(·)
j2
, ζ

(·)
ij2+1 can not change at the same time. WLOG assume that

ζ
(k)
ij1

= −1 so that ζ
(k)
ij

= (−1)j−j1+1 for j1 ≤ j ≤ j2, and ζ
(k)
ij1−1 = ζ

(k)
ij1−2 = +1

and ζ
(k)
ij2+1 = ζ

(k)
ij2+2 = (−1)j2−j1 . ¿From Lemma 2 ii), we know that

m
(k)
ij1−2 ≥ m

(k−1)
ij1−2 , and

{
m

(k)
ij2+1 ≥ m

(k−1)
ij2+1 if j2 − j1 is even,

m
(k)
ij2+1 ≤ m

(k−1)
ij2+1 if j2 − j1 is odd.

(18)
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If in ζ
(·)
ij1−1, ζ

(·)
ij1

, · · · , ζ(·)ij2
, ζ

(·)
ij2+1 the signs change at the same time, we can

deduce by Lemma 2 ii) that
{
m

(k)
ij2+1 < m

(k−1)
ij2+1 if j2 − j1 is even,

m
(k)
ij2+1 > m

(k−1)
ij2+1 if j2 − j1 is odd,

which contradicts (18).
By parts 1–3, we see that sk+1 ≤ sk for any k ∈ N.

ii) If ζ
(k+1)
1 = ζ

(k)
1 , then v

(k)
1 = τ

(k)
1 and τ

(k)
2 ∈ v

(k)
2 . By parts 1–3 of the proof

we get sk+1 < sk. This completes the proof. �
Now we can prove the convergence of our T-ROF algorithm with a slight mod-
ification. We divide the interval [0, 1) into n > 1 disjoint subintervals [ in ,

i+1
n ),

and define a projector Pn : [0, 1) → { i
n : i = 0, . . . , n − 1} by Pn(x) := i

n if

x ∈ [ in ,
i+1
n ). Clearly, Pn(x1) ≥ Pn(x2) if x1 ≥ x2. We choose n large enough

(say machine precision). Instead of τ (k) we compute in each step of the T-ROF
algorithm the projection Pn(τ

(k)) and continue the algorithm with these pro-
jected thresholds. Clearly, the statements of Lemma 2 and 3 remain true. For
convenience we write again τ (k) for the output of the projected algorithm.

Theorem 1. Under the assumption (A), the sequence (τ (k))k∈N produced by the
projected T-ROF algorithm converges to a vector τ ∗.

Proof. We prove the assertion by induction on the number of sign changes sk in
some iteration step k.

Assume that sk = 0. WLOG let ζ
(k)
i = +1, i = 1, . . . ,K−1, i.e., τ

(k)
i ≥ τ

(k−1)
i .

From Lemma 2 ii), we obtain m
(k)
i ≥ m

(k−1)
i and consequently τ

(k+1)
i ≥ τ

(k)
i ,

i = 1, . . . ,K − 1. Therefore sk+1 = 0 and ζ
(k+1)
i = +1, i = 1, . . . ,K − 1. This

means that each sequence (τ
(k)
i )k is monotone increasing. Since the sequences

are moreover bounded in [0, 1], we conclude that (τ (k))k converges.
Assume that (τ (k))k converges if sk ≤ N − 1 for some k ∈ N.

We prove that in case sk = N , there exists k̂ > k such that sk̂ ≤ N − 1.

If there exists k̂ > k such that ζ
(k̂)
1 = ζ

(k)
1 , we get sk̂ ≤ N − 1 directly from

Lemma 3 ii). If ζ
(k̂)
1 = ζ

(k)
1 for all k̂ > k, then (τ

(k̂)
1 )k̂>k is monotone and

bounded and converges consequently to some threshold τ∗1 . This threshold must
be attained in the projected algorithm for some k1 > k. Now we can repeat the

same arguments with k1 instead of k and ζ
(·)
2 instead of ζ

(·)
1 to see that (τ

(k)
2 )k

converges to a threshold τ∗2 which must be attained for some k2 > k1. Moreover,

we have ζ
(j)
2 = ζ

(j)
1 for all j > k1. Repeating this procedure up to the final index

K − 1 we obtain the assertion. �

4 Numerical Results

In this section, we test our method on various images. We actually use the T-
ROF Algorithm with a discrete ROF model, see, e.g. [13], which minimizer is
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(a) Original Image (b) Corrupted Image (c) T-ROF (Ite. 6) (d) Cai [12]
SA = 0.9913 SA = 0.9878

(e) Li [22] (f) Pock [25] (g) Yuan [29] (h) He [20]
SA = 0.6918 SA = 0.8581 SA = 0.6915 SA = 0.9888

Fig. 1. Segmentation of two-class cartoon image (256 × 256) with some missing pixel
values

(a) Original image (b) Noisy image (c) T-ROF (Ite. 6) (d) Cai [12]
SA = 0.9845 SA = 0.9816

(e) Li [22] (f) Pock [25] (g) Yuan [29] (h) He [20]
SA = 0.7867 SA = 0.9658 SA = 0.9598 SA = 0.9663

Fig. 2. Segmentation of two-class image (128 × 128) with close intensities
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(a) Original Image (b) T-ROF (Ite. 11) (c) Cai [12]

(d) Li [22] (e) Pock [25] (f) Yuan [29] (g) He [20]

Fig. 3. Four-phase gray and white matter segmentation for a brain MRI image (319×
256)

Fig. 4. Stripe image with 30 stripes (140× 240) and its noisy version for the segmen-
tation in Tab. 1

computed numerically by an ADMM algorithm with fixed inner parameter 2.
Speedups by using more sophisticated methods will be considered in a future
paper. The stopping criteria in our T-ROF algorithm for u and τ are

(‖u(i) −
u(i−1)‖2

)
/‖u(i)‖2 ≤ εu and ‖τ (k) − τ (k−1)‖2 ≤ ετ , where εu and ετ are fixed to

10−4 and 10−5, respectively. The initialization of (τ
(0)
i )K−1

i=1 was computed by
the fuzzy C-means method [7] with 100 iteration steps.

We will compare our method with the recently proposed multiclass segmenta-
tion methods [12,20,22,25,29]. Note that the methods [25,29] work with the fixed
fuzzy C-means codebook and we do not update the codebook. Such update is
however involved in [20]. The default stopping criterion used in [20,22,25] is the
maximum iteration steps; the default stopping criterion used in [29] is 10−4 and
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Table 1. Parameter µ, iteration steps, CPU time in seconds, and SA for example 4

Li [22] Pock [25] Yuan [29] He [20] Cai [12] T-ROF

Five phases

µ 80 100 10 50 10 8
Ite. 100 100 87 100 41 84 (4)
Time 3.87 6.25 4.33 16.75 1.33 1.39
SA 0.9946 0.9965 0.9867 0.9968 0.9770 0.9986

Ten phases

µ 80 100 10 50 10 8
Ite. 100 100 102 100 41 84 (5)
Time 7.71 15.41 9.79 38.52 2.11 2.33
SA 0.8545 0.9984 0.9715 0.9848 0.8900 0.9967

Fifteen phases

µ 80 100 10 50 10 8
Ite. 100 100 208 100 41 84 (5)
Time 11.56 28.21 33.21 63.67 3.06 3.74
SA 0.7715 0.9993 0.9730 0.9904 0.5280 0.9933

(a) Original image (b) Noisy image (c) T-ROF (Ite. 6) (d) Cai [12]
SA = 0.9550 SA = 0.9232

(d) Li [22] (e) Pock [25] (f) Yuan [29] (h) He [20]
SA = 0.4420 SA = 0.9485 SA = 0.9557 SA = 0.9637

Fig. 5. Segmentation of three-class image (256 × 256) containing phases with close
intensities

maximum iteration steps 300; the default stopping criterion used in [12] is 10−4.
We choose the regularization parameter μ of the fidelity term in all the methods
by judging the segmentation accuracy (SA) defined as

SA =
#correctly classified pixels

#all pixels
.
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(a) Original Image (b) Noisy Image (c) T-ROF (Ite. 5) (d) Cai [12]
SA = 0.9798 SA = 0.9688

(e) Li [22] (e) Li [22] (e) Pock [25] (h) Pock [25]
SA = 0.4900 SA = 0.9023 SA = 0.9846 SA = 0.8769

(i) Yuan [29] (j) Yuan [29] (k) He [20] (l) He [20]
SA = 0.9130 SA = 0.8744 SA = 0.6847 SA = 0.9637

Fig. 6. Segmentation of four-class image (256× 256) with close gray values

We show the results for two two-class and four multiclass images, where all
computations were done on a MacBook with 2.4 GHz processor and 4GB RAM.
For further examples we refer to [11].

Example 1 is a two-class cartoon image with some missing pixel values. The
segmentation results are shown in Fig. 1. We see that only methods [12,20] and
our method gives good results. Indeed a codebook update is required here.

Example 2 is a two-class image with close intensities generated as follows: We
have added Gaussian noise with mean 0 and variance 10−8 to constant image
with gray value 0.5. The noisy image is obtained by keeping the pixel values
belonging to the white parts of the original image and reducing the pixel values
belonging to the black parts by a factor of 2× 10−4. Fig. 2 shows the results of
the various algorithms. Except the method [22], all models produce reasonable
results.

Example 3 is a four-class gray and white matter segmentation for a brain MRI
image from [25]. Fig. 3 gives the results. We can see that, all the methods work
well for this kind of image. However our method with 11 τ -value updates is faster
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than the other methods, e.g., three times faster than the algorithm of Pock et
al. [25] with the assigned parameters.

Example 4 segments the noisy stripe image in Fig. 4 (b), which is generated
by imposing Gaussion noise with mean 0 and variance 10−3 on the clean image
Fig. 4 (a) with 30 stripes. The results for a 5, 10 and 15 class segmentation are
listed in Table 1.

Example 5 is a three-class image with close intensities. The test in image Fig.
5 is generated using the same way as those in Example 2 with Gaussian noise of
mean 0 and variance 10−2, the scalars used in the black and white parts are 0.1
and 0.6, respectively. For the results of the different methods see Fig. 5.

Example 6 shows a four-class image with close intensities. Fig. 6 (a) and (b) are
the original image and the noisy image generated by using Gaussian noise with
mean 0 and variance 3×10−2. Figs. 6 (c)–(l) provide two results for each method
using different representative parameters μ, where one parameter is optimal with
respect to the SA.
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