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Abstract. In the paper we address a challenging problem of incorpo-
rating preferences on possible shapes of an object in a binary image
segmentation framework. We extend the well-known conditional random
fields model by adding new variables that are responsible for the shape
of an object. We describe the shape via a flexible graph augmented with
vertex positions and edge widths. We derive exact and approximate algo-
rithms for MAP estimation of label and shape variables given an image.
An original learning procedure for tuning parameters of our model based
on unlabeled images with only shape descriptions given is also presented.
Experiments confirm that our model improves the segmentation quality
in hard-to-segment images by taking into account the knowledge about
typical shapes of the object.
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1 Introduction

Image segmentation is a well-studied problem in computer vision. It can be
solved well (see, for example, [13]) when objects differ in color and texture from
background significantly. However, in case of non-discriminative color models and
weak object boundaries some high-level knowledge about the scene is required
to make segmentation more robust. For example, one can have some clues about
the shape of the object being segmented, and use those as a segmentation prior.

Taking such knowledge into account while segmenting an image is not an
easy task. Introduction of high-level constraints into state-of-the-art approaches
to image segmentation such as conditional random fields (CRF) [9] leads either
to oversimplified models, or to complex models with high-order terms, which are
hard to infer solutions from and even harder to learn. As a result, such models
are tweaked manually and tend to perform much worse than they could have.

In this paper we aim to introduce a model for shape-constrained binary seg-
mentation (i.e. segmentation to object and background) that is powerful enough
to describe complex shapes, and yet has tractable inference and learning pro-
cedures. Our model is built upon a popular way (see, for example, [8,10,16])
of introducing global constraints into CRF, which uses unary terms of the CRF
energy to constrain labeling together with an additional term as a prior for high-
level clues, which in our case are shape descriptions. We describe object shape
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via a graph augmented with vertex positions and edge widths, a way that is
similar to part-based models [4,3] but seems to be more rich. One interesting
property of our segmentation model is that it can be seen as a shape fitting
model that uses pixel labels as latent variables. It allows us to come up with a
training formulation that does not require pixel labels to learn from.

1.1 Related Work

The description of object shape proposed in this work can be seen as an applica-
tion of part-based object modeling, technique that is well-developed in the con-
text of the object part detection problem. Furthermore, both exact inference and
learning procedures proposed in this paper are build on top of techniques devel-
oped for this kind of models. In [4] one such model, namely pictorial structure,
is presented together with an efficient inference algorithm based on dynamic
programming. A follow-up work [5] introduces a max-margin semi-supervised
learning procedure for it. Another example is [3], which uses a trained mixture
of part-based models for pose estimation and action classification.

Part-based models were used to constrain segmentation before. One example
is [16], which proposes a description of object shape that is quite similar to ours.
In fact, it is even more powerful since we don’t allow width to vary along the
edges of graph representing shape. However, this limitation makes it possible to
build an algorithm for exact inference in our model. Another similar work is [12],
which proposes a two-step algorithm for human segmentation. The proposed
algorithm first tries to find the most plausible configuration of a part-based
human model given an image using MCMC, and then uses it to constrain the
segmentation. We think, however, that pixel labelings induced by shapes have
lots of information about the correctness of shape fitting, and, therefore, fitting
should not be decoupled from the segmentation process. Another example of a
work that uses part-based models for image segmentation is [8], which represents
object shape via a layered pictorial structure and finds segmentation by using
Monte Carlo EM combined with loopy BP, since the model is too complicated
for exact inference.

Other approaches to shape-constrained segmentation that do not involve mod-
eling of object parts are known in literature. One notable class of such techniques
includes star-shape prior [14] and tightness prior [11]. Both come with an effi-
cient segmentation procedure that has good optimality guarantees, but impose
quite weak restrictions on object shape and, therefore, can be of limited utility
when segmenting certain kinds of objects. Another group of works includes those
trying to describe shape via a hard mask [15,2], representation that we find to be
improper for classes of objects with high shape variability. One notable member
of this group is [10], which models object shape via a huge set of different masks
and also provides a framework for exact inference in CRF with high-order terms
resulting from such constraints. We’ve used this framework as a basis for the
exact inference algorithm we propose in this paper.
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1.2 Contribution

Main contributions of this paper are

– a flexible model of object shape, which is invariant to translation and rotation
and allows to describe classes of forms with high variability;

– two inference procedures for the segmentation constrained with the proposed
shape model. The first one is fast but approximate, while the other one is
slower but capable of obtaining exact solutions;

– a new formulation of learning from weakly labeled data problem for adjusting
the parameters of our shape-constrained segmentation model. As a weak
labeling we only use object shape descriptions for each image without pixel-
wise image labeling.

2 Shape-Constrained Binary Segmentation

We state the problem of image segmentation with shape constraints as the prob-
lem of finding minimum of the energy function
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w.r.t. variables Li ∈ {0, 1} representing pixel labels and variable s describing
object shape. Variable i indexes all pixels and N stands for the set of pairs of
indices of neighboring image pixels. Pairwise terms φij , which we require to be
non-negative for reasons explained later, can be used to move object boundary
towards the areas with high color gradient magnitude. There are two types of
unary terms: constant φ0,1i that can be used to encode known color distributions

of object and background, and ψ0,1
i that depend on s and, thus, allow us to relate

shape descriptions with labeling configurations. Energy term f(s) is used to
penalize improbable shape descriptions. We give more information about terms
involving variable s in the following sections of the paper. Term weights w0,1

c ,
w0,1

s and wp act as model parameters.

2.1 The Model of Object Shape

We describe object shape via a graph augmented with vertex positions and edge
width values. One example of such description, which we would call shape graph
from now, is shown in Fig. 1(a). By varying angles, lengths, and widths in graphs
we can obtain different shape variations. However incidence relation in the graph
is fixed so all shape variations have similar structure.

More formally, shape graph is a tuple (Es,Vs), where
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Here Es stands for the set of edges of shape graph s, in which every edge esk has
width bsk and connects vertices with indices fs

k tsk. The set of graph vertices is
denoted as Vs. Vertex v

s
l has coords (xsl , y

s
l ) on the image.

Each shape graph has an associated value of the shape energy
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where M stands for the set of pairs of edge indices involved in pairwise con-
straints,

‖esk‖ = ‖vsfk − vstk‖ (3)

is the length of edge esk, and
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is the directed angle between edges with indices k1 and k2. Parameter ρlk1,k2

stands for the mean length ratio between edges with indices k1 and k2, while
wl

k1,k2
measures softness of the constraint. Parameters αk1,k2 , w

α
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b
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have analogous meaning for angles between edges and width-to-length ratios
respectively. Parameters lr and wr are used to specify the scale of the so-called
root edge esr, thus enforcing the scale of the whole model through pairwise edge
length constraints.

The form of angle penalty terms is justified by the fact that the difference of
two angles inside the [−π, π] range can lie outside this range and, thus, can have
an alternative representation with lower penalty inside.

The idea behind this energy function is to penalize uncommon shapes while
allowing different object parts to have different variability. For example, a shape
model aiming to describe both running and standing horses can enforce quite
soft constraints on the angle between horse body and legs compared to the angle
between its neck and head.

Since the shape energy terms depend only on edge length, width and angles
between edges, the energy is invariant to both rotation and translation. However
such information, if available, can be easily incorporated into the energy function
as a constraint on the root edge, as it was done for scale.

The reason this model is not invariant to scale lies in the form of pairwise
terms enforcing constraints on lengths of neighboring edges. These terms could
have been made scale-invariant by replacing length difference by ratio difference
as it was done for terms involving edge width, but then we won’t be able to
apply the exact inference algorithm described in Sect. 2.4 to our problem.
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(a) A photo of a giraffe with a shape
graph modeling its shape

(b) ψ1
i (s)− ψ0

i (s) induced by the graph
on the left. Positive values are colored
red.

Fig. 1. An illustration of a graph-based shape model

2.2 Relation to Pixel Labeling

In order to complete the description of the proposed shape model, we need to
specify the way it affects image labeling. It is natural to assume that pixels
located near some edge of the shape graph will probably belong to object, while
pixels that are far from any edge will most likely belong to background. Based
on this assumption we define shape-based unary terms for pixel i as
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β(b) =
4 log 2

b2
, (7)

where d[p, (v1, v2)]) is the distance from a point p to a segment (v1, v2), pi rep-
resents the coordinates of the i-th pixel of an image and |I| is the total number
of pixels. Reasons for scaling terms by inverse image size are explained in Sect.
4.2. Form of the coefficient β(b) is justified by the requirement that object and
background labels should be equally likely at half-width distance from an edge.
An example of shape terms induced by a shape graph can be seen in Fig. 1(b).
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2.3 Approximate Inference

Energy function (1) has a nice property: if the shape description s is fixed
and φij ≥ 0 for every pair of neighboring pixels, its minimum can be effi-
ciently computed via graph cuts [1]. It allows us to cast the problem of min-
imizing E(L, s) to the problem of finding

min
s
F (s) = min

s
min
L
E(L, s). (8)

Function F (s) has quite a few parameters compared to the original energy func-
tion, can be efficiently computed in each point, and, thus, can be minimized
using some derivative-free optimization technique.

In this work we use simulated annealing as a minimization technique. It was
selected mostly due to its natural applicability to the graph-based shape descrip-
tion. We use the following transition moves:

– randomly changing the length of a random edge esk by sampling lnew from
the truncated Gaussian Nl≥lmin(l; ‖esk‖, σ2

l T
2) and shifting vtsk so that lnew

is the new length of esk (which, in turn, changes the configuration of all other
edges incident to vts

k
);

– randomly changing the width of a random edge esk by sampling bsk from
Nb≥bmin(b; bsk, σ

2
bT

2);
– randomly changing the angle between a random edge esk and a fixed direction

by sampling a new angle from N (α;∠esk, σs
αT

2) and shifting vts
k
accordingly

(again, it will change the configuration of all neighboring edges);
– applying random amount of translation, rotation or scale to the whole shape

graph. Amounts of transformation were sampled from Gaussian distributions
(truncated Gaussian in the case of scale) in the same fashion as above, with
standard deviation being proportional to T . Rotation and scale transforms
use the mean of vertex coordinates as the origin.

The current annealing temperature, T , was set to 1
log2(n+1) on the n-th annealing

iteration. We’ve used min
[
1, exp

(F (sbest)−F (s)
T

)]
as the acceptance probability

for the proposed shape graph s, where sbest is the graph with the lowest value
of F (s) found so far.

We were able to obtain quite good local minima starting the optimization
process from a mean shape graph automatically fitted into image bounds. It was
produced by first building a graph with the lowest possible energy in which root
edge has the specified direction, and then shifting the graph so that its center
corresponds to the image center. If the expected object orientation was known,
we used it as the orientation of a fitted graph. Otherwise, we tried to start the
process from a number of mean shape graphs fitted with different orientations.

2.4 Exact Inference

The exact inference procedure for the discussed model is built upon the
branch-and-mincut framework [10]. This framework aims to minimize an energy
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function of form (1) via a breadth-first branch-and-bound procedure, which uses
the expression
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to bound below the minimum of the energy when s is constrained to be in S.
This lower bound can be efficiently computed for any set S via graph cuts if the
aggregated potentials fS, {ψ0,S

i } and {ψ1,S
i } are known. In order to apply this

framework to our model we need to provide a way to describe a set of shape
graphs S together with a subdivision scheme for it. We also need to provide an
efficient algorithm for computing aggregated potentials for any given set S.

We choose to represent S as a set of axis-aligned bounding boxes (AABB)
limiting possible positions of shape graph vertices, together with a set of one-
dimensional ranges limiting the width of each edge. More formally,
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A natural subdivision scheme for this representation is to either split one of the
vertex constraints in four, or split some edge width constraint in two until the
constraints become singletons.

In order to compute ψ1,S
i we first note that
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So, in order to compute this aggregated potential we need to find the closest
location to the pixel i for every edge of s w.r.t. constraints on S, and then
take the minimum across all edges using the maximum possible width for every
edge. Similar considerations apply to ψ0,S

i , but in this case every edge should
be taken away from pixel as far as possible, while its width should be made as
small as possible. When edge constraints are given by AABB, finding closest (or
farthest) location of an edge from a pixel is a simple problem that can be solved
in constant time.

In order to compute fS we first note that angles ∠(esk1
, esk2

) in (2) can be
rewritten as ∠esk2

− ∠esk1
, where ∠e is an angle between an edge and some

fixed direction. Then all pairwise terms of (2) will be quadratic w.r.t. values
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‖, ‖esk2
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. Thus, given M corresponds to a tree, the energy can

be efficiently minimized via dynamic programming accelerated using general-
ized distance transform (GDT) technique [4], considering these values together
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with bk as variables. Feasible sets for edge lengths and angles are given by Vl,
while widths should be constrained by Bk. Note that the shape graph itself is
not forced to be a tree, only the graph of pairwise edge constraints given by M.

3 Learning from Weakly-Labeled Data

In this section we describe a way to estimate the parameters of the shape-
constrained binary segmentation model (1). We first explain our training problem
formulation and the way we build training set, and then show a way to estimate
non-linear and linear parameters of the model separately.

3.1 Training Set

Since the energy (1) is a function of shape graph and pixel labeling, it is natural to
use a set of images augmented with both ground truth labelings and graphs as a
training set. However, true labelings are much more expensive to obtain in terms
of human labor amount required to label one image compared to shape graphs.
We aim to solve this issue by proposing a novel formulation of the segmentation
model training problem. We note that the segmentation energy minimum, if
expressed in a form (8), can be seen as the most plausible configuration of a
shape graph on a given image, with pixel labels acting as latent variables of the
model. We therefore state the problem of training our model as the problem of
training shape graph fitting model given shape graph ground truth only. The
hope is that the best labeling associated with the fitted graph corresponds to a
meaningful segmentation. Experimental results shown later confirm that this is
actually the case.

We denote the training set for our training problem as

(I1, s1), . . . , (Im, sm), (13)

where Im is m-th training image, sm is a ground truth shape graph for it and
M is the total number of images in the training set.

3.2 Learning Non-linear Parameters

Our model has a number of non-linear parameters, r, lr, {ρlk1,k2
}, {αk1,k2},

{ρbk}, which we will together denote as θ from now. We propose to train these
parameters before the rest of the model in order to simplify the procedure.
Training objective is to choose θ that minimizes the total energy of the training
set

M∑

m=1

f(sm; θ), (14)
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where f(s; θ) is given by (2). While the shape energy also depends on the values
of term weights, the optimal parameter values do not and are given by the
following expressions:
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The estimation procedure for αk1,k2 is also trivial, but hard to write in a closed
form since multiple angle representations should be considered when averaging
angles.

3.3 Learning Linear Parameters

Discussed model has wr, {wl
k1,k2

}, {wα
k1,k2

}, {wb
k}, w0,1

c , w0,1
s and wp as its linear

parameters. Let us denote the vector containing all these parameters as w and
introduce the vector Φ(I, L, s) containing negated energy terms corresponding
to weights in w for a given image I with an associated labeling L and a shape
graph s. Now the problem of segmenting image I can be stated as the problem
of finding

argmin
L,s

E(L, s) = argmax
L,s

wTΦ(I, L, s). (19)

Such a reformulation allows us to use the latent structural SVM formulation [17]
for weight training. Thus, we want to find
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The idea behind this objective is to enforce a ground truth shape graph together
with its best possible labeling have lesser energy value than any other shape
graph and labeling. Loss function Δ(s1, s2) is used to rescale the energy margin
depending on how close the two graphs are: graphs similar to the ground truth
should also have low energy, while those significantly distinct from the ground
truth should have much higher energy values. The loss function we use is of form

Δ(s1, s2) =
∑

l

min{‖vs1l − vs2l ‖, tv}+ λ
∑

k

min{|bs1k − bs2k |, te}. (21)
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The motivation behind truncating the loss is that when some graph is too much
apart from the ground truth, one should not really care about the value of margin
as soon as it’s large.

Convex-concave procedure (CCCP) [18] can be used to minimize (20), which
would result in an iterative procedure with two-step iterations. On each CCCP
iteration the expression wTΦ(Im, L, sm) is first maximized w.r.t. L for each m
in order to obtain L̃m, new optimal values of the latent variables. For the model
considered in this paper it can be done via a graph cut. Obtained L̃m are then
substituted into (20), which results in a regular structural SVM problem

1

2
wTw +

C

M

M∑

m=1

{
max
L,s

[wTΦ(Im, L, s) +Δ(s, sm)]−

−wTΦ(Im, L̃m, sm)
}
→ min

w

(22)

that should be solved in order to update weights.
In order to solve (22) we employ the cutting plane algorithm [7] in which

most violated constraints argmaxL,s[w
TΦ(Im, L, s)+Δ(s, sm)] are found by the

inference algorithm described in Sect. 2.3. Loss function can be easily incor-
porated into it, since the annealing only requires the ability to evaluate the
objective function at a point. We’ve found it useful to start the annealing from
both a mean shape graph fitted into image and a ground truth shape graph and
then choose the best solution among two. While we are unable to obtain exact
solutions to the SSVM problem this way due to the usage of an approximate
procedure for finding most violated constraints, weights we’ve found on each
iteration were close enough to global optima for CCCP to converge.

4 Experiments

4.1 Datasets

In order to validate the model proposed in this paper, we’ve trained it on two
different datasets. The first dataset was build from a specific subset of ETHZ
shape classes dataset [6] that contained images of giraffes. It featured images
that are hard to segment using low-level cues only due to weak boundaries and
significantly overlapping color distributions of object and background pixels.
Meanwhile, giraffe shape has a simple structure and can be described with a
graph-based model well. Another dataset was build from synthetic images of
capital “E” letter that feature totally non-discriminative object and background
color distributions, and, so, the only information segmentation model can rely
on is object shape and boundaries. All the images were downscaled to size of
about 140×140 pixels in order to speedup the training process.
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Fig. 2. Convergence of latent variables during training

4.2 Color-Based Terms

In our experiments we used unary color terms of the form

φli = − 1

|I| logP (Ii | Li = l), l ∈ {0, 1}. (23)

Color distributions for object and background were represented by 3-component
GMMs in RGB space, which were learned from seeds placed on a few training
images. Pairwise terms we used were of the form

φij =
1

|I| 12 e
−α

(‖Ii‖−‖Ij‖)2
D2 , (24)

where ‖Ii‖ is brightness value of i-th pixel of image I and D is the mean bright-
ness difference value for all the pixel pairs from N in that image. Value of α was
set to 0.2. Color-based terms were scaled according to image size in the same
way as (5) and (6) to make model features independent of image size.

4.3 Model Training

Weight vector with w0
c = w1

c = 1, w0
s = w1

s = 0.3, wp = 0.001 and all other
components set to 0 was used to initialize the training process. Constant C in
latent SSVM objective (20) was set to 300. Parameters of the loss function (21)

were set as follows: λ = 10, tv = 0.25|I| 12 , te = 0.1|I| 12 . Training process usually
converged in 5-7 iterations, each iteration requiring about 70-100 cutting planes.

The most interesting observation about the training process is that the latent
variables L̃k found on each iteration of CCCP tend to converge to ground truth la-
belings (see Fig. 2 for an example). Thus, true pixel labels are actually not required
for learning since they can be closely approximated during the training process.

4.4 Segmentation

We’ve then applied trained models to images not involved in the training process
using the proposed approximate inference algorithm. Some images together with
the best found shape graph and labeling configuration can be seen in Fig. 3. Seg-
mentations based solely on color-based terms (both unary and pairwise) are pro-
vided for comparison. It can be seen that our algorithm is able to fit shape graph
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Fig. 3. Top to bottom: image, found shape graph, shape-constrained segmentation,
color-based segmentation

into an image correctly. Fitted graph induces quite reasonable segmentation of an
image, much better than the one obtained from color-based terms only.

In order to compare the approximate inference algorithm with the exact one,
we’ve applied the latter to same images. As a result, we found out that in many
cases approximate algorithm is able to find solutions very close to global optima.
However, it’s not always the case. One example where approximate inference fails
while exact succeeds is shown in Fig. 4. Unfortunately, our exact algorithm may
took a lot of time (hours sometimes) to converge despite its very efficient imple-
mentation (utilization of GPU for calculation of aggregated potentials, extensive
caching). The reason is that the bound (9) is not tight, and, thus, lots of lower
bound computations are needed before a good subset of solution space would
be discovered. Many of images in the test set require a few millions of lower
bound computations. There are also some images that require too many lower
bound computations to discover the solution, so we were not able to segment
those using our exact inference algorithm. At the same time, the proposed ap-
proximate algorithm is quite fast. It usually takes less than a minute per image
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Fig. 4. Solution found by simulated annealing (left) vs branch-and-bound

and can be further accelerated by reducing the number of annealing iterations
or reannealing attempts.

5 Conclusion

In this paper we’ve proposed amodel for shape-constrainedbinary segmentation of
an image.Themodel emerges fromcombining regularCRFfor binary segmentation
with high-order terms based on a specific form of object shape description, namely
graph-based shape representation. This representation is invariant to object ro-
tation and translation and can describe classes of objects with complex shapes
and high in-class variability.We present two inference algorithms for the proposed
model. One, which is based on simulated annealing, is fast but approximate, while
the other can obtain exact solutions via the branch-and-bound procedure.

We’ve also proposed a novel training formulation for our model, which requires
only ground truth shape descriptions but no pixel-wise labelings to learn its
parameters. Training procedures are provided for both linear and non-linear
parameters of the model. Experiments on artificial as well as real-world images
confirm that ground truth image labelings are indeed not required to learn a
well-performing model.

One interesting direction of future work would be to combine the model pro-
posed in this paper with state-of-the-art object part detectors, which output
can be used as additional clues about possible positions of shape graph vertices.
Another question is whether the exact inference algorithm we’ve presented can
be significantly accelerated by, for example, tightening the lower bound (9).
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