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Abstract. We gradually develop a novel functional for joint variational
object segmentation and shape matching. The formulation, based on the
Wasserstein distance, allows modelling of local object appearance, sta-
tistical shape variations and geometric invariance in a uniform way. For
learning of class typical shape variations we adopt a recently presented
approach and extend it to support inference of deformations during seg-
mentation of new query images. The resulting way of describing and
fitting trained shape variations is in style reminiscent of contour-based
variational shape priors, but does not require an intricate conversion
between the contour and the region representation of shapes. A well-
founded hierarchical branch-and-bound scheme, based on local adaptive
convex relaxation, is presented, that provably finds the global minimum
of the functional.

Keywords: Wasserstein distance, non-convex optimization, convex
relaxation.

1 Introduction

Object segmentation and shape matching are fundamental problems in image
processing and computer vision that underlie many high-level approaches to un-
derstanding the content of an image. They are intimately related: segmentation
of the foreground object is a prerequisite for shape matching in a sequential
analysis of an image. On the other hand, if performed simultaneously, matching
can guide the segmentation process by supplying additional information about
the object shape in a noisy environment where unsupervised segmentation would
fail. Naturally, joint application is a more complicated problem.

We propose a new functional for simultaneous segmentation and statistical
model-based shape matching within a single variational approach. The math-
ematical framework allows to combine key concepts - appearance modelling,
modelling and description of deformable regions or contours, geometric
invariance - in a uniform way. We rely on convex relaxation and a hierarchi-
cal branch-and-bound scheme for global optimization.

1.1 Related Literature

Wasserstein Distance and Image Registration. Optimal transport is a
popular tool for object matching and image registration [3,10] due to its
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favourable properties: Choosing the cost function to be the squared Euclidean
distance between pixels gives access to the rich theory of the Monge formula-
tion of optimal transport. Also, thanks to the linear programming relaxation
due to Kantorovich such problems usually involve convex functionals. On the
other hand, directly converting grey values to mass densities, as often done [3],
is not robust to noise. A näıve extension to noise handling will only work if the
query and the reference image are aligned properly (see e.g. [7] for an attempt
to alleviate these restrictions). Additionally, when measuring the similarity be-
tween two objects via plain optimal transport, their distance will exclusively
be determined by the resulting optimal transport cost. During the registration
process there is no way to benefit from prior knowledge to distinguish common
and uncommon types of deformations. However, after having computed the reg-
istrations, there are promising ideas how to extract and analyze information on
the deformations from the optimal registrations [10]. The observed deformation
fields are viewed as elements of the tangent space of a reference shape where
then standard machine learning techniques (e.g. PCA) can be applied.

Variational Image Segmentation and Contour Based Shape Priors. For
object segmentation variational approaches with shape priors, based on contour
spaces have received a lot of attention [1,2]. The manifold of shapes, described
by closed contours has been studied extensively [8,5]. Again, here working in the
tangent space of a reference shape enables application of machine learning tools
to learn object typical deformations from training data.

However, the map between the contour representation of a shape and the re-
gion representation by its indicator function is mathematically complex. Thus,
when combined with region based variational segmentation functionals, the con-
tour based shape priors tend to yield highly non-convex functionals that rely
on a good initialization to give useful, only locally optimal, results (e.g. [2]).
There are approaches to model shape statistics directly on the set of indicator
functions, yielding overall convex functionals [4,6]. But due to required convex-
ity, these shape representations are rather simplistic and lack important features
such as geometric invariance.

1.2 Contribution

In this paper we propose a new functional for noise robust joint object segmen-
tation and shape matching based on the Wasserstein distance. We start with
a functional for variational segmentation where we regularize the segmentation
with the Wasserstein distance to a reference measure. This functional has several
limitations, hinted at above and further discussed in Section 3.1. To overcome
these, we enhance the functional by additional degrees of freedom, obtaining an
advantageous new approach:

(i) The optimal segmentation & matching become invariant under translations
and approximately invariant w.r.t. rotations and scale transformations.

(ii) Prior knowledge on object-typical deformations can be learned from train-
ing samples and exploited during the registration process. Although the
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mathematical representation is different, the scope of our approach is sim-
ilar to that of contour-based shape priors.

(iii) The overall functional is non-convex. Yet, instead of heuristic local op-
timization we propose a hierarchical branch-and-bound scheme to obtain
global optimizers. We show how bounds can be obtained by adaptive convex
relaxation that becomes tighter as the hierarchy-scale becomes finer and
how successive refinement of the bound computations converges towards
the global optimum (Propositions 1 and 2).

Organization. After a brief review of the mathematical background in the
next section, we will gradually motivate and develop the full functional in Sec.
3. Global optimization of the non-convex functional is discussed in Sec. 4, key
properties of the approach are illustrated with experiments in Sec. 5, before we
reach a short conclusion at the end.

2 Mathematical Background: Wasserstein Distance

For any measurable space A denote by P(A) the set of non-negative measures
thereon. For two measurable spaces A,B, a measure μ on A and a measurable
map f : A → B, the push-forward f� μ of μ onto B via f is defined by f� μ(σ) =
μ(f−1(σ)) for all measurable σ ⊂ B.

Let X be a measurable space with measures μ, ν ∈ P(X) of the same total
mass. Then the set of couplings Π(μ, ν) between μ and ν is given by

Π(μ, ν) ={π ∈ P(X ×X) : π(σ ×X) = μ(σ), π(X × σ) = ν(σ)

for all measurable σ ⊂ X} . (1)

For a metric dX : X ×X → � ∪ {∞} the Wasserstein distance is determined by

D(μ, ν) =

(
inf

π∈Π(μ,ν)

{∫
X×X

d2X(x, y) dπ(x, y) : π ∈ Π(μ, ν)

})1/2

. (2)

The minimizing coupling π, determining the Wasserstein distance D is called
optimal transport in the literature [9].

For absolutely continuous measures onX = �
n, metrized with the Wasserstein

distance w.r.t. the Euclidean metric, the optimal π ∈ Π(μ, ν) is induced by a
unique map ϕ : X → X , i.e. π = (id, ϕ)� μ. That is, at any point x, the mass of
μ is transported to the unique location ϕ(x). Further, these measures constitute
a Riemannian manifold. When ϕ is the optimal transport map between μ and
ν then the vector field t(x) = ϕ(x) − x corresponds to a vector in the tangent
space of μ. For two vectors t1, t2 in the tangent space the inner product is given
by 〈t1, t2〉μ =

∫
X〈t1(x), t2(x)〉�n dμ(x).

We adopt the idea from [10] to use PCA on the tangent space to learn typical
object deformations. However, in our approach we will be able to benefit from
this learned knowledge during segmentation/matching of new images.
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3 Variational Approach

3.1 Problem Setup and Näıve Approach

We will now, step by step, describe the problem to be solved, set out the notation
and develop the final form of our proposed functional.

Let Y be the image domain which we want to separate into fore- and back-
ground. We can describe the separation by an indicator function u : Y → {0, 1}.
To obtain feasible optimization problems, one typically relaxes the constraint
that u must be binary to the interval [0, 1]. In this paper we use optimal trans-
port as a regularizer. Therefore we interpret the relaxed function u as the density
of a measure ν. For simplicity we will define our functionals directly over the set
of measures, drop u and translate the [0, 1]-constraint appropriately.

To find the optimal segmentation ν of Y we want to combine local information
with prior knowledge on the shape of the sought-after object. This information
is given by a reference measure μ on a template space X . Let both X and Y
be embedded into �2, i.e. X,Y ⊂ �

2. Considering the literature, one might be
tempted to optimize ν w.r.t. a local data term and regularize by its Wasserstein
distance to μ in �2. The optimal coupling between μ and the optimal ν can then
be interpreted as a registration between the template and its counterpart in the
image. A corresponding functional could look like this:

E0(ν) =
1

2
D(μ, ν)2 +G(ν) =

1

2
inf

π∈Π(μ,ν)

∫
X×Y

‖x− y‖2 dπ(x, y) +G(ν) (3)

where G is the function that encodes local appearance information. An illus-
tration of the functional is given in Fig. 1a. For the remainder of the paper we
choose G to be linear in ν:

G(ν) =

∫
Y

g(y) dν(y) (4)

Here g is a function of local weights, g(y) < 0 (g(y) > 0) indicating foreground
(background) affinity of point y ∈ Y . For the applicability of the framework
presented in this paper, G can be any 1-homogeneous convex function.

An optimal segmentation is then described by an optimizer of E0 w.r.t. the
following feasible set:

S(M) = {ν ∈ P(Y ) : ν(Y ) = M, ν(σ) ≤ L(σ) for all measurable σ ⊂ Y } . (5)

Here L denotes the Lebesgue measure on Y . This constraint is equivalent to the
density of ν being a relaxed indicator function. M = μ(X) is the total mass of μ
to ensure that the Wasserstein distance D(μ, ν) is well defined for all feasible ν.

Limitations. In addition to the mass constraint, as discussed in the introduc-
tion, functional (3) has two major shortcomings. The first is the dependence of
the optimal ν on the relative embedding of X and Y into the �2 plane. Assume
both μ and ν were fixed. Then any optimal coupling π ∈ Π(μ, ν) would be still
be optimal after relative translation of X and Y (of course taking into account
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Fig. 1. Illustration of functionals E0(ν), eq. (3), and E1(α, ν), eq. (8): (a) The segmen-
tation in Y is described by measure ν which is regularized by the Wasserstein distance
to a template measure μ, living on X. This simple approach introduces strong bias,
depending on the relative location of X and Y , and lacks the ability to explicitly model
typical object deformations. (b) In the enhanced functional the template measure μ is
deformed by the map Tα, resulting in the push-forward Tα � μ. The segmentation ν is
then regularized by its Wasserstein distance to Tα � μ. The corresponding optimal cou-
pling π gives a registration between the foreground part of the image and the deformed
template.

the coordinate transformation caused by the translation). However, since we do
not consider ν to be fixed, as in other approaches, but optimize over ν, we can-
not exploit this quasi-invariance. Any fixed embedding of X and Y will always
introduce a bias, encouraging ν to have its mass close to μ, breaking translation
invariance, which is clearly not what we want.

The second problem is that any deformation between μ and ν is uniformly
penalized by its transportation distance. No information on more or less common
deformations can be encoded.

To overcome these restrictions we propose to additionally optimize over the
embedding of X into �2.

3.2 Wasserstein Modes

Let Tα : X → �
2 be a family of functions, parametrized by some vector α ∈ �

n,
used to adjust the position of X to obtain better matches between template and
query image. We choose:

Tα(x) = x+
n∑

i=1

αi · ti(x) (6)

This linear decomposition will give us enough flexibility to deform X while keep-
ing the resulting functionals easy to handle. We refer to the functions ti as
modes. They can be used to make the approach invariant w.r.t. translation, ap-
proximately invariant under rotation and scale and introduce prior knowledge
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on learned object deformations into the functional. The enhanced version of (3)
that we consider in this paper is:

E1(α, ν) =
1

2
D(Tα � μ, ν)

2 + F (α) +G(ν)

=
1

2
inf

π∈Π(Tα � μ,ν)

∫
X×Y

‖x− y‖2 dπ(x, y) + F (α) +G(ν) (7)

Note that by a standard argument from measure theory we can rewrite this as

E1(α, ν) =
1

2
inf

π∈Π(μ,ν)

∫
X×Y

‖Tα(x)− y‖2 dπ(x, y) + F (α) +G(ν) . (8)

F is a function that can introduce statistical knowledge on the distribution of
the coefficients α. The functional E1 is illustrated in Fig. 1b. For simplicity, in
the course of this paper we choose

F (α) =
1

2
α�Σ−1 α , (9)

for some symmetric, positive semi-definite Σ−1. We choose a basis in which
Σ−1 = diag({Σ−1

i }ni=1) is diagonal. So coefficients with Σ−1
i = 0 can move freely

and and coefficients Σ−1
i > 0 model i.i.d. Gaussian distributions αi ∼ N (0, Σ2

i ).
The functional E1 has an intuitive and transparent interpretation: With the

coefficients α we describe a finite dimensional submanifold of known shapes, F
modelling their plausibility. ν is the segmentation-measure, its local plausibility
measured by G. D(Tα � μ, ν) allows the optimal segmentation to be more flexible
than the finite-dimensional submanifold given by the modes would allow, by
measuring the distance of ν from the most plausible point on the manifold, and
actually carrying out the corresponding assignment.

We will now discuss the choices for the modes ti to model different types of
variation in position and shape of X .

3.3 Geometric Invariance and Statistical Shape Deformation

Euclidean Isometries. If one chooses

tt1(x) = (1, 0)�, tt2(x) = (0, 1)� (10)

one can use the corresponding coefficients αt1,t2 to translate the template X
and thus reintroduce translation invariance, that the simple approach (3) lacks.
Further, let R(φ) be the 2-dimensional rotation matrix by angle φ. Then choose

tr(x) =
d

dφ
R(φ)

∣∣∣∣
φ=0

x = (−x2, x1)
� (11)

to approximately model rotation of X up to angles of about ±30◦. For explicit
invariance under these transformations one chooses Σ−1

t1 = Σ−1
t2 = Σ−1

r = 0.
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Learning Class Typical Deformations. In this section we describe how
modes tdi can be learned that model class-typical shape variations from a set
of training samples. These modes can then be used to allow X to be deformed
in the learned way, to prefer known deformations over unknown deformations
during the segmentation process.

Let {μi}mi=1 be a set of training segmentations, given as indicator-measures:
the support of μi marks the foreground of the corresponding segmentation. As-
sume that all μi have the same mass. We arbitrarily choose μ1 to be the reference
segmentation and compute the optimal transport couplings {π1,i}ki=1 between
the reference and the other segmentations, optimized over rotation. As discussed
earlier, for fixed measures (μ1, μi) the optimal coupling does not depend on the
relative translation. It is easy to see that the relative translation with smallest
cost is the one where the centers of mass coincide [10]. Note that the opti-
mal coupling π1,1 simply transports mass from all pixels onto themselves. The
relative transportation maps that underlie the optimal couplings π1,i are then
elements of the tangent space of the manifold of measures at μ1. As in [10], we
can then perform a classical principal component analysis (PCA) on the set of
tangent vectors to obtain the mean deformation tm, a set of principal deforma-
tion modes {tdi}i and the corresponding parametersΣ−1

i for the statistical term.
Together the pairs (tdi, Σ

−1
i ) act like the well-known contour based shape priors.

However, in our approach no difficult conversion between different mathematical
shape representations is necessary.

(a) (b) (c)

Fig. 2. Learning class-typical deformation modes for starfish: (a)four ground-truth seg-
mentations for learning (b) first principal component: modelling elongation of arms(c)
second principal component: modelling angles between arms

The choice of a reference template is arbitrary and rather heuristic. In our
application it is however not possible to take the average of all given samples as
reference (as done in [10]) since we work with indicator measures and the mean
would no longer be an indicator measure. For a proof of concept however, we
consider this choice sufficient and it should be noted that the arbitrary choice of
the reference measure is somewhat alleviated by the PCA where the mean of all
observed transportation maps is determined. During segmentation the template
μ will then be generated by the reference template μ1, shifted by this mean.



130 B. Schmitzer and C. Schnörr

Scale Transformation. The presented framework of deformation modes can,
with some slight extensions, also be used to approximately model scale variations
of the template.

Let us first have a look at how the map Tα transforms the measure μ via
push-forward: μ has uniform mass density 1 within its support since it is an
indicator measure (i.e. its density is an indicator function). At Tα(x) the density
of the measure Tα �μ will depend on the Jacobian determinant JTα(x). For the
decomposition (6) and small coefficients α we find:

JTα(x) = 1 +

n∑
i=1

αi · div ti(x) +O(α2)

The rotation mode has zero divergence and since the deformation modes learned
from the training samples map indicator measures onto similar indicator mea-
sures their divergence should also be small. Since the translation modes are
constant, they have no influence on the Jacobian. Hence, the presented method
to deform the reference template, is in fact a reasonable approximate description
of a set of ‘allowed’ indicator measures.

Now for rescaling, the corresponding mode is ts(x) = x. The Jacobian de-
terminant of x �→ x + αs · ts(x) is (1 + αs)

2, hence to keep Tα �μ an indicator
measure, we must multiply it by (1+αs)

2. To make the resulting functional scale
invariant, we choose Σ−1

s = 0 and to rescale the functional by (1 + αs)
2. One

then gets:

E1,s(α, ν) = (1 + αs)
−2

(
1

2
D((1 + αs)

2 · Tα � μ, ν)
2 + F (α) +G(ν)

)
(12)

This functional will have to be optimized subject to the modified condition
ν ∈ S(μ(X) · (1+αs)

2
)
, with the mass of ν adjusted according to αs. Obviously

the terms depending on the mass of the measures should be rescaled. But it is
reasonable to also rescale the term F since on a larger scale also the deformation
modes need to have higher coefficients to obtain the same relative deformation.
Since we chose F to be quadratic, the chosen renormalization is exactly the one
to cancel that effect.

The scale invariance is only approximate near αs = 0 because of the raster-
ization applied for practical implementation. When the grid sizes of X and Y
become too different, one will expect numerical artifacts.

4 Optimization

Eliminating ν. The functional E1 is convex in ν for fixed α and vice versa. But
instead of a heuristic alternating optimization scheme we propose a hierarchical
branch and bound approach that yields global optimizers and also applies to the
scale-invariant version E1,s.
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For some fixed α let

E2(α) = min
ν∈S(μ(X))

E1(α, ν) , E2,s(α) = min
ν∈S((1+αs)2·μ(X))

E1,s(α, ν) . (13)

These can be computed by solving the convex optimization problem in ν for
fixed α. The remaining problem is to optimize E2 w.r.t. α. Let now A be a set
of α-parameters and define a functional over such sets:

E3(A) =

inf
ν∈S(μ(X))

1

2
inf

π∈Π(μ,ν)

∫
X×Y

(
min
α∈A

‖Tα(x)− y‖2
)

dπ(x, y) + min
α∈A

F (α) +G(ν) .

(14)

This is an adaptive convex relaxation of minimizing E2 over a given interval.
The relaxation becomes tighter as the interval becomes smaller.

For our global optimization scheme the following proposition is required:

Proposition 1. The functional E3 has the following properties:

(i)E3(A) ≤ min
α∈A

E2(α), (ii) lim
A→{α0}

E3(A) = E2(α0),

(iii)A1 ⊂ A2 ⇒ E3(A1) ≥ E3(A2) . (15)

Proof. For the lower bound property (i) note that for any feasible ν and π ∈
Π(μ, ν):

∫
X×Y

(
min
α∈A

‖Tα(x)− y‖2
)

dπ(x, y) ≤ min
α∈A

∫
X×Y

‖Tα(x)− y‖2 dπ(x, y)

This inequality holds also for the infimum of π ∈ Π(μ, ν) and ν ∈ S(μ(X)
)
. So

the first term in E3 is bounded by minα∈A 1/2D(Tα� μ, ν)
2. The separate mini-

mization of the D and F term is obviously smaller than the joint minimization,
so the bound property holds.

For the limit property (ii) note that ‖Tα(x) − y‖2 and F (α) are continuous
functions in α. Hence, when A → {α0} all involved minimizations will converge
towards the respective function value at α0 and E3 converges as desired.

For the hierarchical bound property (iii) just note that for fixed π and ν min-
imization over the larger set will never yield the larger result for all occurrences
of α. This relation will then also hold after minimization. ��
With slight modifications E3 can be extended to the case E3,s with a scaling-
mode involved: the additional rescaling factor will also be independently op-
timized over and the feasible sets S(μ(X)), Π(μ, ν) in the initial optimization
must be replaced by S(μ(X), (1+αs,l)

2, (1+αs,u)
2), Π(μ, ν, (1+αs,l)

2, (1+αs,u)
2)
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where αs,l and αs,u are lower and upper bound for the scale coefficient for all
α ∈ A. The modified feasible sets are defined by

S(M, s1, s2) =
⋃

s1≤s≤s2

S(s ·M) (16)

Π(μ, ν, s1, s2) ={π ∈ P(X ×X) : s1 · μ(σ) ≤ π(σ × Y ) ≤ s2 · μ(σ),
π(X × σ) = ν(σ) for all measurable σ ⊂ X} . (17)

Since from any π the measure ν can be obtained by marginalization, the nested
optimization over ν and π can actually be performed at once, by only minimizing
π and transferring the constraints of ν onto π.

So E3, E3,s can be computed by solving linear programs, which can also be
rewritten as optimal transport problems with suitable dummy nodes, to use
specialized, more efficient solvers.

Branch and Bound in α. Let L = {(Ai, bi)}i be a list of α-parameter intervals
Ai and lower bounds bi on E2 on these respective intervals. For such a list
consider the following refinement procedure:

refine(L):
find the element (Aî, bî) ∈ L with the smallest lower bound bî
let subdiv(A) = {Aî,j}j be a subdivision of the interval Aî into smaller
intervals
compute bî,j = E3(Aî,j) for all Aî,j ∈ subdiv(A)
remove (Aî, bî) from L and add {(Aî,j , bî,j)}j for Aî,j ∈ subdiv(A)

This allows the following statement:

Proposition 2. Let L be a list of finite length. Let the subdivision in refine

be such that any interval will be split into a finite number of smaller intervals,
and that any two points will eventually be separated by successive subdivision.
subdiv({α0}) = {{α0}}. Then repeated application of refine to the list L will
generate an adaptive piecewise underestimator of E2 throughout the union of the
intervals A appearing in L. The sequence of smallest lower bounds will converge
to the global minimum of E2.

Proof. Obviously the sequence of smallest lower bounds is non-decreasing (see
Proposition 1 (iii)) and never greater than the minimum of E2 throughout the
considered region. So it must converge to a value which is at most this minimum.
Assume that {Ai}i is a sequence with Ai+1 ∈ subdiv(Ai) such that E3(Ai)
is a subsequence of the smallest lowest bounds of L (there must be such a
sequence since L is finite). Since subdiv will eventually separate any two distinct
points, this sequence must converge to a singleton {α0} and the corresponding
subsequence of smallest lowest bounds converges to E3({α0}) = E2(α0). Since
the sequence of smallest lowest bounds converges, and the limit is at most the
minimum of E2, E2(α0) must be the minimum. ��
In practice we start with a coarse grid of hypercubes covering the space of
reasonable α-parameters (translation throughout the image, rotation and scale
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within bounds where the approximation is valid and the deformation-coefficients
in ranges adjusted to the corresponding Gaussian covariances) and the respective
E3-bounds. Any hypercube with the smallest bound will then be subdivided into
equally sized smaller hypercubes, leading to an adaptive 2n-tree cover on the
considered parameter range.

We stop the refinement, when the interval with the lowest bound has edge-
lengths that correspond to an uncertainty in Tα(x) which is in the range of the
pixel discretization of X and Y . Further refinement would only reveal structure
determined by rasterization effects.

5 Experiments

Implementation Details. Computation of the E3-lower bound requires local
optimization w.r.t. α for the cost function entries of the optimal transport term.
Given the linear decomposition of Tα these are low-dimensional constrained
quadratic programs that can quickly be solved. For a given α-interval A the
locally minimized cost function minα∈A ‖Tα(x) − y‖2 has low values where α
values in A allow Tα(x) to be close to y and rises quickly elsewhere. Exploiting
this, we only consider a sparse subset of the full product spaceX×Y to speed up
computation. To ensure that we still obtain the global optimum, we add overflow
variables. As long as no mass is transported onto these dummy variables, the
global optimum is attained. Otherwise, more coupling combinations need to be
added.

Fig. 3. Left: Illustration of the approach on example data, analogous to Fig. 1b. Small
blue dots indicate the arbitrary position of X relative to the image Y (bounding box).
Large green dots give the position of Tα(X), the map is indicated by grey lines. The
optimal segmentation ν is given by the red shaded region in the image. As intended, the
modes model the Euclidean isometries (the true object position is not known before-
hand and is not relevant for the result), and the major deformations. The Wasserstein
distance handles the remaining degrees of freedom, guided by the local data term.
Right: The deformation of X by the non-Euclidean modes. Length and relative orien-
tation of the arms are adjusted.
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Fig. 4. Segmentation Results with Starfish-Prior. First row: original images. Second
row: affinity coefficients g, based on a primitive local color model. There is false-positive
clutter, foreground parts are poorly detected or missing. Third row: optimal segmen-
tations, based on joint segmentation and matching. The objects are correctly located,
clutter is ignored, missing parts are ‘filled in’. Different variants are segmented with
the same prior, due to statistical deformation modelling with modes.

On a small scale fluctuations may appear, although the underlying matching is
smooth (cp. Fig. 3). These could be handled by enhancing the functional G to locally
regularize the boundary of the segmentation.

Setup and Numerical Results. For learning of the object class ‘starfish’
we used about 20 ground truth segmentations. We took the first four princi-
pal components as modes, capturing about 70% of the variance in the training
set. Together with translation and rotation this amounts to seven modes to be
optimized over.

To the test images we applied a simple local color model, based on seeds, to
obtain affinity coefficients g, eq. (4). Note that we specifically chose test images
with inhomogeneously colored foreground objects and insufficient seeds for color
model training, to obtain coefficients on which a purely local segmentation would
fail and the benefit of shape-modelling can be demonstrated.

Fig. 3 illustrates the approach for a typical example. Position and pose of
the sought-after object are correctly estimated by the modes, independent of the
position of X, i.e. without requiring a good initial guess. Figure 4 gives original
image, affinity coefficients g and the resulting segmentation for the example
in Fig. 3 in column 1 and for further examples. The segmentations in Fig. 4
sometimes exhibit small holes or fluctuations along the boundary, even though
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Fig. 5. Scale Invariance and Superpixels. Left: Foreground-affinities g, eq. (4), of a
superpixel over-segmentation of an image with two fish of different size, both of which
induce strong local minima of our approach. By artificially breaking scale invariance
through modelling the scale coefficient αs to be Gaussian, one can choose which one
shall be segmented by setting the mean scale. Other than that, the setup was absolutely
identical. One obtains similar segmentation results with a free-moving scale coefficient,
if one, in turn, erases one of the fish from the g-coefficients. Right: Template X for
fish-experiment. To prevent that the small fish is simply immersed in the big one, one
must explicitly model a region of background around the fish, by reversing the affinity
coefficients for this region of X. Black (grey) dots indicate fore-(back-)ground.

the underlying object position and pose are very accurately determined (see
Fig. 3) and the computed matching is smooth. These irregularities on the pixel
level are induced by noise in g and could be removed by local regularization of
the boundary of ν (e.g. total variation). As long as such an extension yields a
convex functional G, it is still compatible with our approach. To make the acting
of the presented Wasserstein-regularization as transparent as possible, however,
we chose to omit such fine-tuning.

Scale Invariance and Representation Flexibility. In this section we demon-
strate two further important properties of our approach: scale invariance and
flexibility in application. Due to the general formulation of optimal transport,
adaption to superpixels is straightforward, which facilitates application to large
images. In a discrete implementation Y need not be a regular grid (pixel-level)
in �2, but can be any set of points.

We illustrate both aspects in Fig. 5. Our approach, equipped with a prior
trained on fish, is run on an image with a large and a small fish. We demon-
strate scale invariance by actually artificially breaking it: by modelling the scale-
coefficient αs to be Gaussian, through the choice of the mean scale αs,m we can
trigger which of the two fish is segmented, while the wrong sized one is ignored.
Except for the mean scale, no modifications in the approach were made.

6 Conclusion

We developed a novel variational approach for joint image segmentation and
shape matching. The formulation, based on the Wasserstein distance, allows to
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combine modelling of appearance, statistical shape deformation and geometric
invariance in a uniform way, by allowing the reference template to be moved and
deformed. We extended previous work on analyzing observed deformation fields
for object classification to be applicable already during matching of new query
images. The resulting way of describing and fitting trained shape variations is in
style reminiscent of contour-based variational shape priors, but does not require
an intricate conversion between the contour and the region representation of
shapes. A well-founded hierarchical branch-and-bound scheme, based on local
adaptive convex relaxation, is presented, that provably finds the global minimum.

At some points, development of the presented approach is not yet complete
(e.g. modelling rotation beyond linear approximation, a more satisfying way to
find a reference template, adding local boundary regularization of ν to suppress
fluctuations). Yet, as experiments demonstrated, the functional is able to per-
form robust segmentation and matching in a noisy environment, which, due to
geometric invariance, does not depend on a proper initialization. Additionally,
the scale invariance property and the natural portability onto superpixel images
have been illustrated.
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