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Abstract. The efficient definition of the tumor area is crucial in brain
tumor resection planning. But current methods embedded in computer
aided diagnosis systems can be time consuming, while the initialization
of the segmentation mask may be possible. In this work, we develop a
method for rapid automated segmentation of brain tumors.

The main contribution of our work is an efficient method to initialize
the segmentation by casting it as nonparametric density mode estima-
tion, and developing a Branch and Bound-based method to efficiently
find the mode (maximum) of the density function. Our technique is
exact, has guaranteed convergence to the global optimum, and scales
logarithmically in the volume dimensions by virtue of recursively subdi-
viding the search space through Branch-and-Bound and Dual-Tress data
structures.

This estimated mode provides our system with an initial tumor hy-
pothesis which is then refined by graph-cuts to provide a sharper outline
of the tumor area.

We demonstrate a 12-fold acceleration with respect to a standard
mean-shift implementation, allowing us to accelerate tumor detection to
a level that would facilitate a high-degree brain tumor resection planning.

1 Introduction

The most common treatment of brain tumors is surgical resection, while a deter-
mining factor for the quality of the intervention is efficient identification in the
planning of the surgical margins. Conventional segmentation techniques rely on
prior knowledge and smoothness constraint to overcome the enormous variabil-
ity of tumors both in terms of location as well as in terms of geometric charac-
teristics. Recent studies indicate statistical preferential locations for tumors in
the brain [1]. [2] proved that using this information improves substantially the
results. In this work, we develop a rapid method for automated segmentation
initialization that relies on nonparametric density mode estimation. The mode
of nonparametric density estimate corresponds to the center of the tumor, and
localizing it in a three-dimensional volume is used to initialize a 3D segmentation
using graph-cuts.

Clustering, segmentation and nonparametric density mode estimation are re-
lated problems whose combination has been particularly studied in 2D images in
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Fig. 1. First row: patient MRI, Second row: adaboost scores, Third row: detection
bounding boxes. From left to right: x-y plane, x-z plane, y-z plane where x,y,z are the
coordinates of the tumor center.

the thread of works developed around the Mean-Shift method [3]. This method
is also used as a component in a number of diagnosis tools such as vessel track-
ing [4], Multiple Sclerosis brain segmentation [5] and MRI brain clustering [6],
and is a general tool that applies transversally to a host of problems in medical
imaging.

Our goal is to address the computational complexity of the mode estimation
problem. The original Mean Shift method [3] is iterative, scales linearly in the
number of points used in the Kernel Density Estimation (KDE) (as it follows the
trajectory of every one of them) and can require careful checking of convergence.
Faster variants of Mean Shift exist including Medoid Shift [7], Quick Shift [8],
Fast Gauss transforms [9] as well as the Dual Tree variant of Mean Shift [10].
However, those of them that are exact [9,10] are ‘dense’ i.e. evaluate the KDE
over a dense set of locations; as such they may be inappropriate for application
to 3D medical image volumes. Alternatively, while those that focus on the modes
[7,8] are only approximate, and have complexity proportional to O(KN) where
N is the number of pixels and K is the typical neighborhood size.

The main contribution of our work is a rapid mode estimation technique for
3D MRI image segmentation. Dealing with three dimensional data challenges
several algorithms which are reasonably efficient for 2D medical image analysis.
In this paper, we leverage recent developments using Branch-and-Bound (BB)
in object detection [11], which demonstrated that detection is possible in time
sub-linear in the image size.
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The main thrust of our work is the adaptation of this idea to the mode find-
ing problem in KDE, typically addressed through Mean Shift. We propose an
algorithm that can find the mode of the density with best-case complexity being
logarithmic in the size of the search space.

We apply our algorithm to the setting of 3D brain tumor segmentation. Our
algorithm takes the scores of a discriminatively trained classifier for tumor voxels
and uses them to construct weights for a KDE-based estimate of the tumor
location. Using standard mean shift would require tracking the trajectory of
each voxel, and identifying the largest basin of attraction. Instead our algorithm
narrows down the location of the maximum through an iterative branch-and
bound algorithm. In specific, we construct bounds on the value of the KDE
over intervals of the search space, and use these bounds to devise a prioritized
search strategy for the density’s mode. We demonstrate substantial speedups
when comparing to the standard mean-shift algorithm.

Furthermore, we couple the mode estimation results with a post-processing
step using graph-cuts, which allows us to boost the segmentation performance of
our algorithm. Systematic evaluations are performed on clinical datasets demon-
strating a 12-fold acceleration in speed over classical Mean-Shift while at the
same time achieving robust tumor detection and segmentation.

2 3D Structure Detection

Our goal is to devise an algorithm that can quickly detect the largest region
corresponding to a class (tumor in our case) within a 3D volume. This problem
is particularly challenging for standard segmentation algorithms as it is hard to
define exact boundaries between tumor and normal tissue [12]. Moreover, relying
only on a classifier to separate the tumor class from the remaining structures in
the MRI volume is tricky, due to the similarity between tumor and normal tissue
and the high diversity in appearance of tumor tissue among different patients
[12].

We start by phrasing our problem as mode seeking for a Kernel Density Es-
timate and then proceed to describing our Branch-and-Bound based optimiza-
tion algorithm. We note that even though we focus on tumor segmentation, the
same approach could potentially be useful to other maximization problems in
3D space.

2.1 Problem Formulation

We consider that we are provided with a scoring function that estimates the
probability wi with which a voxel xi in �3 can belong to the considered class
(i.e. a tumor vs non-tumor classifier). Namely, we have a mapping:

f : �3 → [0, 1] , xi �→ wi, (1)

where f encapsulates the feature extraction around xi and the subsequent for-
mation of the class posterior. In specific, this score can be the output of a soft
classifier or a likelihood function on the density distribution of the tumor class.
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In order to pool information from multiple voxels and obtain a regularized
labeling of the 3D volume, we phrase our problem in terms of a Kernel-based
Density Estimator of the form:

KDE(x) =
n∑

i=1

wiKh (x− xi) (2)

We consider that Kh is a separable decreasing kernel, with the parameter h
determining the used amount of smoothing. In the context of our application,
we work with the finite-support Epanechnikov kernel [13]:

Kh(x− xi) =

⎧
⎨

⎩

0 if ‖x− xi‖ > h

3
4

(
1−

(
‖x−xi‖

h

)2
)

else,
(3)

even though any other separable decreasing kernel could be used, e.g. an uniform
or a Gaussian kernel [2]. We also note that in principle we should normalize the
wi elements to have unit sum, but the subsequent tasks are unaffected by this
normalization. We address the problem of region detection in terms of mode
estimation for the KDE above, namely we set out to find:

x∗ = argmax
�3

S(x) = argmax
�3

n∑

i=1

wiKh (x− xi) (4)

Instead of the iterative procedure employed by Mean-Shift, we now describe how
Brand-and-Bound can be used to directly recover the solution of Eq.4.

2.2 Branch and Bound Algorithm

Branch-and-Bound is an optimization method that searches for global maximum
of a function S(x). To this end, the algorithm employs a recursive subdivision
of an interval of solutions X in its prioritized search for the maximum. The
priority of an interval is determined by the function’s upper bound S within it.
So, if we consider the maximum value of function S within the interval X , say
S(X) = maxx∈X S(x), we bound it with S(X) ≥ S(X). Moreover, we require
S({x}) = S(x)

At each iteration a candidate domain X is popped from the priority queue,
and split into subintervals. A new upper bound for each subinterval is computed
and inserted in the priority queue. The bounding function drives BB to the
most promising intervals until the first singleton interval, say x, is reached. Since
the bound is tight for singletons, we know that the solutions contained in the
remaining intervals of the priority queue will score below x, since the upper
bound of their scores is below the returned singleton’s score. This guarantees
that once a singleton is popped from the priority queue, it will be the global
maximum of S.
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2.3 Bounding the KDE Score

Having phrased the general setting of Branch-and-Bound, we now turn to how
we can apply it to mode finding for Kernel Density Estimation; the main math-
ematical construct that we need is a bound on the score of a KDE within an
interval of solutions. Namely, we need a function S(X) which gives us for an
interval X an upper bound to the score of the KDE score within X :

S(X) ≥ max
xj∈X

n∑

xi∈X′
wiKh (xj − xi) = S(X). (5)

We call points contained in X ′ the source locations and points in X the domain
locations, with the intuition that the points in X ′ contribute to a score in X
[14].

We now decompose the computation of the upper bound in Eq. 5 into smaller
parts by using the partitionsX = ∪d∈DXd andX ′ = ∪s∈SX . Our decomposition
is based on the fact that maxx f(x) + g(x) ≤ maxx f(x) +maxx g(x). For Eq. 5
this means that if we separately maximize some of the summands and add them
back, this gives us something that will be larger than S(X) (and as such, a valid
candidate for S(X)).

Based on this observation we introduce the quantity:

μs
d = max

xj∈Xd

∑

xi∈Xs

wiKh (xj − xi) (6)

and upper bound the right-hand side of Eq. 5 as:

S(X) ≤ max
d

∑

s

μs
d (7)

where we have brought the summation over s outside the maximization over
xj . This means that if we can construct separately upper bounds to μs

d, we can
add them up and obtain a valid upper bound for S(X). This will then be used
by Branch-and-Bound to prioritize the search over intervals that contain the
density’s mode.

In particular, we can upper bound μX′
X with μX′

X as follows:

μX′
X

.
= (

∑

i∈X′
s

wi)max
i∈X

max
j∈X′ K(xi, xj) (8)

Thus, the upper bound S(X) for S(X) can be written as:

S(X)
.
= max

X

∑

X′
μX′
X ≥ S(X) (9)

The first term in Eq. 8 can be computed rapidly over large intervals using fine-
to-coarse summation. The second term can also be efficiently computed by ex-
ploiting the fact that X and X ′ are hyperrecangles, as also illustrated in the
right of Fig. 2, and detailed in [14,11].
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Fig. 2. Left: an example of Dual Trees interaction: points belonging to Source node
6 have insignificant contribution to the objective sum computed in Domain points in
node A. Right: Distance bounds between nodes in dual trees.

3 3D Brain Tumor Segmentation

Once a region of interest is efficiently selected, we proceed to segmentation in
order to delineate the tumor from the normal tissue. Many segmentation meth-
ods have been proposed in the literature for tumor segmentation. MRF based-
segmentation [15] has proved its performance and robustness in many appli-
cations. Therefore, we formulate the task of tumor segmentation from the 3D
volume of interest as a discrete energy minimization problem. The 3D volume
V is viewed as a lattice {ϑ, ε} where each voxel vp forms a node in the graph.
The MRF energy is written as:

E(V ) =
∑

p∈ϑ

Θp(vp) +
∑

(p,q)∈ε

Θpq(vp, vq) (10)

The function f serves as the unary potential energy. In order to improve the
classification results, we use a regularization expressed by the binary potential
energy. The conventional 4-neighborhood system is extended in 3D so that each
voxel has 8 neighbors. We consider, in this work, the Potts model modulated by
the contrast of normalized intensities as our regularization function.

This global criterion measures both the total dissimilarity among the two
groups and the total similarity inside them. Global minimum of the consid-
ered energy is efficiently computed with the graph cut/max flow minimization
algorithm[15,16].

4 Experimental Evaluation

To evaluate our method on a real dataset, we use adaboost to provide us with
the scores of individual voxels. It is based on the idea that a combination of weak
classifiers such as decision trees can create a strong classifier. We use 40 randomly
selected images to train the classifier with the following features: normalized in-
tensities, locations (x,y,z), intensities of smoothed image at 3 half octave scales,
gradient magnitude, Laplacian of Gaussian features at 3 half octave scales, ab-
solute of Laplacian of Gaussian features at 3 different scales. Our classifier was
trained with 50 rounds of boosting and we employed Decision Tress of Depth 3.
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Fig. 3. First row: a) patient MRI, b) adaboost segmentation result, c) graph cut result
considering the whole volume. Second row: a) our method: bounding box b) our method
segmentation results, c) ground truth segmentation.

Table 1. Average computational time comparison

image size profile our method Mean-Shift exhaustive search

256x256x24
detection 2.5s 31s 60s

overall time 17s 46.5s 75.5s

512x512x33
detection 8s 223s 319s

overall time 93s 293.5s 389s

4.1 The Dataset

We did our experiments on a dataset composed of 113 patients with low grade
gliomas. The patient age ranged from 21 to 65 years, and tumor size between
3.5 and 250 cm3. The MRI volume size varied from 256x256x24 to 512x512x33.
The voxel resolution ranged from 0.4x0.4 to 0.9x0.9 mm2 in the (x,y) plane and
5.3 to 6.4 mm in the z plane. The 3D images were rigidly aligned using medInria
[17]. The dataset comes with a manual segmentation of the gliomas tumor done
by experts, which is considered as our ground truth data.

4.2 Validation Methodology

In order to assess the quality of the segmentation results, we compute the Dice
similarity coefficient, which reflects the overlapping rate between the segmented
volume and the volume defined by experts. We evaluate the efficiency of our
algorithm by comparing the computational time of the detection part with the
Mean-Shift procedure and convolving the 3D volume with the kernel. Since the
tumor size can achieve 250 cm3 we convolve with an Epanechnikov kernel whose
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Fig. 4. Segmentation results. The manual segmentation (yellow) is superimposed to
the automatic segmentation (red).

scale equals nearly the quarter of the volume size. This value matches the max-
imal size of the ground truth segmented gliomas. We use the most efficient
available CPU version of convolution. The used package detects automatically
if the kernel is separable and optimizes the convolution computation.

4.3 Results

The average Dice computed on our database is 0.73 (cf. Fig. 5) which is compa-
rable to the results produced by the state of the art methods [18,2]. we report
from [18] that the computational cost is between 20 and 120 seconds and the
average DICE coefficient is 0.77. Our average computational time is 19 seconds.
Mode estimation is a principal ingredient of the proposed method, as the re-
sults become less accurate if we only use either adaboost classifier or graph-cuts
(cf. Fig. 5, Fig. 4). We compare the computational time between our work, a
standard implementation of Mean Shift and an exhaustive search over volume
locations after evaluating KDE in all locations cf. Table 1. We run the algorithms
on a 4-core Intel Xeon computer which frequence is 2.67GHz. We use, though,
a single core in the computation.

5 Discussion

While our method was inspired from previous work [14,11], we recall that[14]
does not use Branch-and-Bound and provides a technique for the efficient
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Fig. 5. Boxplots of the Dice values. From left to right: segmentation results with boost-
ing only, boosting and pairwise regularization, boosting, rapid mode estimation and
pairwise regularization.

computation of a KDE score everywhere, on all ‘domain points’. Similarly, the
multipole method [19] evaluates a KDE on all candidate locations, and is thus
linear in the number of points. The aforementioned methods are excellent for
KDE evaluation- but for mode estimation they perform an ‘overkill’, since they
exactly evaluate the score everywhere, while we only want the location of the
maximum. Instead our technique searches directly for the maximum location,
and effectively ‘ignores’ less promising locations. In particular we discard chunks
of points quickly by using cheaply computable upper bounds to their score. This
allows us to work in time sublinear (practically logarithmic) in the number of
possible locations. This is crucial for 3D medical data, where increasing the res-
olution by a factor of 2 will result in an 8-fold slowdown for Multipole/Dual
Trees, but will require only 3 more iterations for our method (cf. Table. 1).

To the best of our knowledge, branch and bound has not been used before for
mode estimation of KDEs. It was used in [11] for Object Detection, but with
a different score function. We thus expect that our work will be of interest to
other researchers working on mode estimation.

6 Conclusion

In this paper, we have presented a Branch-and-Bound based method for efficient
mode estimation in KDE. We used our method for brain tumor detection and
segmentation of 3D MR images. We demonstrate that our method results in a
12-fold speedup over standard Mean-Shift. Our approach is more robust than
applying graph cut on the whole volume. The largest part of the computational
time is taken by feature computation which can easily accelerated with graphic
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processing units. Future directions include evaluating and adapting the proposed
approach to the 3D liver tumor tracking in radiation therapy where real time is
crucial.
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