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Preface

Energy minimization methods have become an established paradigm for resolv-
ing a variety of challenging problems in the fields of computer vision and pattern
recognition. In spite of the lack of a “unifying theory of vision,” notable progress
has been achieved over the last few decades and we are now able to solve ap-
plication problems that were not possible before. Much of this progress can be
contributed to improved optimization strategies. In fact, most of the state-of-
the-art methods are nowadays based on the concept of computing solutions to a
given problem by minimizing the respective energies using modern optimization
methods.

This volume contains the papers presented at the 9th International Confer-
ence on Energy Minimization Methods in Computer Vision and Pattern Recog-
nition (EMMCVPR 2013), held in Lund, Sweden, during August 19–21, 2013.
These papers demonstrate the broad scope of the research field, ranging from ap-
plications in medical imaging to semantic scene analysis and image editing. The
energy minimization methods include everything from discrete graph theoreti-
cal approaches and Markov Random Fields to variational methods and partial
differential equations. We received 40 submissions and based on the reviewers’
recommendations, after a double-blind review process, 26 high-quality papers
were selected for publication, all of them as oral presentations.

Furthermore, we were delighted that three leading experts from the fields of
computer vision and optimization, namely, Stephen Boyd (Stanford University),
Olga Veksler (University of Western Ontario) and Thomas Pock (Graz University
of Technology), agreed to further enrich the conference with inspiring keynote
lectures.

We would like to express our gratitude to those who made this event possible
and contributed to its success. In particular, the international Program Com-
mittee of top international experts in the field provided excellent reviews. A
major donation from the Swedish Research Council is gratefully acknowledged.
We are also grateful for the local support from all the people in the Mathemati-
cal Imaging Group at Lund University, as well as for the financial back-up from
the Swedish Society for Automated Image Analysis. It is our belief that this
conference helped to advance the field of energy minimization methods and to
further establish the mathematical foundations of computer vision.

May 2013 Anders Heyden
Fredrik Kahl
Carl Olsson

Magnus Oskarsson
Xue-Cheng Tai
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Rapid Mode Estimation for 3D Brain MRI

Tumor Segmentation

Haithem Boussaid, Iasonas Kokkinos, and Nikos Paragios

Center for Visual Computing, Ecole Centrale de Paris, France
Galen, INRIA Saclay, France

{haithem.boussaid,iasonas.kokkinos,nikos.paragios}@ecp.fr

Abstract. The efficient definition of the tumor area is crucial in brain
tumor resection planning. But current methods embedded in computer
aided diagnosis systems can be time consuming, while the initialization
of the segmentation mask may be possible. In this work, we develop a
method for rapid automated segmentation of brain tumors.

The main contribution of our work is an efficient method to initialize
the segmentation by casting it as nonparametric density mode estima-
tion, and developing a Branch and Bound-based method to efficiently
find the mode (maximum) of the density function. Our technique is
exact, has guaranteed convergence to the global optimum, and scales
logarithmically in the volume dimensions by virtue of recursively subdi-
viding the search space through Branch-and-Bound and Dual-Tress data
structures.

This estimated mode provides our system with an initial tumor hy-
pothesis which is then refined by graph-cuts to provide a sharper outline
of the tumor area.

We demonstrate a 12-fold acceleration with respect to a standard
mean-shift implementation, allowing us to accelerate tumor detection to
a level that would facilitate a high-degree brain tumor resection planning.

1 Introduction

The most common treatment of brain tumors is surgical resection, while a deter-
mining factor for the quality of the intervention is efficient identification in the
planning of the surgical margins. Conventional segmentation techniques rely on
prior knowledge and smoothness constraint to overcome the enormous variabil-
ity of tumors both in terms of location as well as in terms of geometric charac-
teristics. Recent studies indicate statistical preferential locations for tumors in
the brain [1]. [2] proved that using this information improves substantially the
results. In this work, we develop a rapid method for automated segmentation
initialization that relies on nonparametric density mode estimation. The mode
of nonparametric density estimate corresponds to the center of the tumor, and
localizing it in a three-dimensional volume is used to initialize a 3D segmentation
using graph-cuts.

Clustering, segmentation and nonparametric density mode estimation are re-
lated problems whose combination has been particularly studied in 2D images in

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 H. Boussaid, I. Kokkinos, and N. Paragios

Fig. 1. First row: patient MRI, Second row: adaboost scores, Third row: detection
bounding boxes. From left to right: x-y plane, x-z plane, y-z plane where x,y,z are the
coordinates of the tumor center.

the thread of works developed around the Mean-Shift method [3]. This method
is also used as a component in a number of diagnosis tools such as vessel track-
ing [4], Multiple Sclerosis brain segmentation [5] and MRI brain clustering [6],
and is a general tool that applies transversally to a host of problems in medical
imaging.

Our goal is to address the computational complexity of the mode estimation
problem. The original Mean Shift method [3] is iterative, scales linearly in the
number of points used in the Kernel Density Estimation (KDE) (as it follows the
trajectory of every one of them) and can require careful checking of convergence.
Faster variants of Mean Shift exist including Medoid Shift [7], Quick Shift [8],
Fast Gauss transforms [9] as well as the Dual Tree variant of Mean Shift [10].
However, those of them that are exact [9,10] are ‘dense’ i.e. evaluate the KDE
over a dense set of locations; as such they may be inappropriate for application
to 3D medical image volumes. Alternatively, while those that focus on the modes
[7,8] are only approximate, and have complexity proportional to O(KN) where
N is the number of pixels and K is the typical neighborhood size.

The main contribution of our work is a rapid mode estimation technique for
3D MRI image segmentation. Dealing with three dimensional data challenges
several algorithms which are reasonably efficient for 2D medical image analysis.
In this paper, we leverage recent developments using Branch-and-Bound (BB)
in object detection [11], which demonstrated that detection is possible in time
sub-linear in the image size.
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The main thrust of our work is the adaptation of this idea to the mode find-
ing problem in KDE, typically addressed through Mean Shift. We propose an
algorithm that can find the mode of the density with best-case complexity being
logarithmic in the size of the search space.

We apply our algorithm to the setting of 3D brain tumor segmentation. Our
algorithm takes the scores of a discriminatively trained classifier for tumor voxels
and uses them to construct weights for a KDE-based estimate of the tumor
location. Using standard mean shift would require tracking the trajectory of
each voxel, and identifying the largest basin of attraction. Instead our algorithm
narrows down the location of the maximum through an iterative branch-and
bound algorithm. In specific, we construct bounds on the value of the KDE
over intervals of the search space, and use these bounds to devise a prioritized
search strategy for the density’s mode. We demonstrate substantial speedups
when comparing to the standard mean-shift algorithm.

Furthermore, we couple the mode estimation results with a post-processing
step using graph-cuts, which allows us to boost the segmentation performance of
our algorithm. Systematic evaluations are performed on clinical datasets demon-
strating a 12-fold acceleration in speed over classical Mean-Shift while at the
same time achieving robust tumor detection and segmentation.

2 3D Structure Detection

Our goal is to devise an algorithm that can quickly detect the largest region
corresponding to a class (tumor in our case) within a 3D volume. This problem
is particularly challenging for standard segmentation algorithms as it is hard to
define exact boundaries between tumor and normal tissue [12]. Moreover, relying
only on a classifier to separate the tumor class from the remaining structures in
the MRI volume is tricky, due to the similarity between tumor and normal tissue
and the high diversity in appearance of tumor tissue among different patients
[12].

We start by phrasing our problem as mode seeking for a Kernel Density Es-
timate and then proceed to describing our Branch-and-Bound based optimiza-
tion algorithm. We note that even though we focus on tumor segmentation, the
same approach could potentially be useful to other maximization problems in
3D space.

2.1 Problem Formulation

We consider that we are provided with a scoring function that estimates the
probability wi with which a voxel xi in �3 can belong to the considered class
(i.e. a tumor vs non-tumor classifier). Namely, we have a mapping:

f : �3 → [0, 1] , xi �→ wi, (1)

where f encapsulates the feature extraction around xi and the subsequent for-
mation of the class posterior. In specific, this score can be the output of a soft
classifier or a likelihood function on the density distribution of the tumor class.
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In order to pool information from multiple voxels and obtain a regularized
labeling of the 3D volume, we phrase our problem in terms of a Kernel-based
Density Estimator of the form:

KDE(x) =
n∑
i=1

wiKh (x− xi) (2)

We consider that Kh is a separable decreasing kernel, with the parameter h
determining the used amount of smoothing. In the context of our application,
we work with the finite-support Epanechnikov kernel [13]:

Kh(x− xi) =

⎧⎨
⎩

0 if ‖x− xi‖ > h

3
4

(
1−
(

‖x−xi‖
h

)2)
else,

(3)

even though any other separable decreasing kernel could be used, e.g. an uniform
or a Gaussian kernel [2]. We also note that in principle we should normalize the
wi elements to have unit sum, but the subsequent tasks are unaffected by this
normalization. We address the problem of region detection in terms of mode
estimation for the KDE above, namely we set out to find:

x∗ = argmax
�3

S(x) = argmax
�3

n∑
i=1

wiKh (x− xi) (4)

Instead of the iterative procedure employed by Mean-Shift, we now describe how
Brand-and-Bound can be used to directly recover the solution of Eq.4.

2.2 Branch and Bound Algorithm

Branch-and-Bound is an optimization method that searches for global maximum
of a function S(x). To this end, the algorithm employs a recursive subdivision
of an interval of solutions X in its prioritized search for the maximum. The
priority of an interval is determined by the function’s upper bound S within it.
So, if we consider the maximum value of function S within the interval X , say
S(X) = maxx∈X S(x), we bound it with S(X) ≥ S(X). Moreover, we require
S({x}) = S(x)

At each iteration a candidate domain X is popped from the priority queue,
and split into subintervals. A new upper bound for each subinterval is computed
and inserted in the priority queue. The bounding function drives BB to the
most promising intervals until the first singleton interval, say x, is reached. Since
the bound is tight for singletons, we know that the solutions contained in the
remaining intervals of the priority queue will score below x, since the upper
bound of their scores is below the returned singleton’s score. This guarantees
that once a singleton is popped from the priority queue, it will be the global
maximum of S.
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2.3 Bounding the KDE Score

Having phrased the general setting of Branch-and-Bound, we now turn to how
we can apply it to mode finding for Kernel Density Estimation; the main math-
ematical construct that we need is a bound on the score of a KDE within an
interval of solutions. Namely, we need a function S(X) which gives us for an
interval X an upper bound to the score of the KDE score within X :

S(X) ≥ max
xj∈X

n∑
xi∈X′

wiKh (xj − xi) = S(X). (5)

We call points contained in X ′ the source locations and points in X the domain
locations, with the intuition that the points in X ′ contribute to a score in X
[14].

We now decompose the computation of the upper bound in Eq. 5 into smaller
parts by using the partitionsX = ∪d∈DXd andX ′ = ∪s∈SX . Our decomposition
is based on the fact that maxx f(x) + g(x) ≤ maxx f(x) +maxx g(x). For Eq. 5
this means that if we separately maximize some of the summands and add them
back, this gives us something that will be larger than S(X) (and as such, a valid
candidate for S(X)).

Based on this observation we introduce the quantity:

μsd = max
xj∈Xd

∑
xi∈Xs

wiKh (xj − xi) (6)

and upper bound the right-hand side of Eq. 5 as:

S(X) ≤ max
d

∑
s

μsd (7)

where we have brought the summation over s outside the maximization over
xj . This means that if we can construct separately upper bounds to μsd, we can
add them up and obtain a valid upper bound for S(X). This will then be used
by Branch-and-Bound to prioritize the search over intervals that contain the
density’s mode.

In particular, we can upper bound μX
′

X with μX
′

X as follows:

μX
′

X
.
= (
∑
i∈X′

s

wi)max
i∈X

max
j∈X′K(xi, xj) (8)

Thus, the upper bound S(X) for S(X) can be written as:

S(X)
.
= max

X

∑
X′

μX
′

X ≥ S(X) (9)

The first term in Eq. 8 can be computed rapidly over large intervals using fine-
to-coarse summation. The second term can also be efficiently computed by ex-
ploiting the fact that X and X ′ are hyperrecangles, as also illustrated in the
right of Fig. 2, and detailed in [14,11].
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Fig. 2. Left: an example of Dual Trees interaction: points belonging to Source node
6 have insignificant contribution to the objective sum computed in Domain points in
node A. Right: Distance bounds between nodes in dual trees.

3 3D Brain Tumor Segmentation

Once a region of interest is efficiently selected, we proceed to segmentation in
order to delineate the tumor from the normal tissue. Many segmentation meth-
ods have been proposed in the literature for tumor segmentation. MRF based-
segmentation [15] has proved its performance and robustness in many appli-
cations. Therefore, we formulate the task of tumor segmentation from the 3D
volume of interest as a discrete energy minimization problem. The 3D volume
V is viewed as a lattice {ϑ, ε} where each voxel vp forms a node in the graph.
The MRF energy is written as:

E(V ) =
∑
p∈ϑ

Θp(vp) +
∑

(p,q)∈ε
Θpq(vp, vq) (10)

The function f serves as the unary potential energy. In order to improve the
classification results, we use a regularization expressed by the binary potential
energy. The conventional 4-neighborhood system is extended in 3D so that each
voxel has 8 neighbors. We consider, in this work, the Potts model modulated by
the contrast of normalized intensities as our regularization function.

This global criterion measures both the total dissimilarity among the two
groups and the total similarity inside them. Global minimum of the consid-
ered energy is efficiently computed with the graph cut/max flow minimization
algorithm[15,16].

4 Experimental Evaluation

To evaluate our method on a real dataset, we use adaboost to provide us with
the scores of individual voxels. It is based on the idea that a combination of weak
classifiers such as decision trees can create a strong classifier. We use 40 randomly
selected images to train the classifier with the following features: normalized in-
tensities, locations (x,y,z), intensities of smoothed image at 3 half octave scales,
gradient magnitude, Laplacian of Gaussian features at 3 half octave scales, ab-
solute of Laplacian of Gaussian features at 3 different scales. Our classifier was
trained with 50 rounds of boosting and we employed Decision Tress of Depth 3.
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Fig. 3. First row: a) patient MRI, b) adaboost segmentation result, c) graph cut result
considering the whole volume. Second row: a) our method: bounding box b) our method
segmentation results, c) ground truth segmentation.

Table 1. Average computational time comparison

image size profile our method Mean-Shift exhaustive search

256x256x24
detection 2.5s 31s 60s

overall time 17s 46.5s 75.5s

512x512x33
detection 8s 223s 319s

overall time 93s 293.5s 389s

4.1 The Dataset

We did our experiments on a dataset composed of 113 patients with low grade
gliomas. The patient age ranged from 21 to 65 years, and tumor size between
3.5 and 250 cm3. The MRI volume size varied from 256x256x24 to 512x512x33.
The voxel resolution ranged from 0.4x0.4 to 0.9x0.9 mm2 in the (x,y) plane and
5.3 to 6.4 mm in the z plane. The 3D images were rigidly aligned using medInria
[17]. The dataset comes with a manual segmentation of the gliomas tumor done
by experts, which is considered as our ground truth data.

4.2 Validation Methodology

In order to assess the quality of the segmentation results, we compute the Dice
similarity coefficient, which reflects the overlapping rate between the segmented
volume and the volume defined by experts. We evaluate the efficiency of our
algorithm by comparing the computational time of the detection part with the
Mean-Shift procedure and convolving the 3D volume with the kernel. Since the
tumor size can achieve 250 cm3 we convolve with an Epanechnikov kernel whose
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Fig. 4. Segmentation results. The manual segmentation (yellow) is superimposed to
the automatic segmentation (red).

scale equals nearly the quarter of the volume size. This value matches the max-
imal size of the ground truth segmented gliomas. We use the most efficient
available CPU version of convolution. The used package detects automatically
if the kernel is separable and optimizes the convolution computation.

4.3 Results

The average Dice computed on our database is 0.73 (cf. Fig. 5) which is compa-
rable to the results produced by the state of the art methods [18,2]. we report
from [18] that the computational cost is between 20 and 120 seconds and the
average DICE coefficient is 0.77. Our average computational time is 19 seconds.
Mode estimation is a principal ingredient of the proposed method, as the re-
sults become less accurate if we only use either adaboost classifier or graph-cuts
(cf. Fig. 5, Fig. 4). We compare the computational time between our work, a
standard implementation of Mean Shift and an exhaustive search over volume
locations after evaluating KDE in all locations cf. Table 1. We run the algorithms
on a 4-core Intel Xeon computer which frequence is 2.67GHz. We use, though,
a single core in the computation.

5 Discussion

While our method was inspired from previous work [14,11], we recall that[14]
does not use Branch-and-Bound and provides a technique for the efficient
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Fig. 5. Boxplots of the Dice values. From left to right: segmentation results with boost-
ing only, boosting and pairwise regularization, boosting, rapid mode estimation and
pairwise regularization.

computation of a KDE score everywhere, on all ‘domain points’. Similarly, the
multipole method [19] evaluates a KDE on all candidate locations, and is thus
linear in the number of points. The aforementioned methods are excellent for
KDE evaluation- but for mode estimation they perform an ‘overkill’, since they
exactly evaluate the score everywhere, while we only want the location of the
maximum. Instead our technique searches directly for the maximum location,
and effectively ‘ignores’ less promising locations. In particular we discard chunks
of points quickly by using cheaply computable upper bounds to their score. This
allows us to work in time sublinear (practically logarithmic) in the number of
possible locations. This is crucial for 3D medical data, where increasing the res-
olution by a factor of 2 will result in an 8-fold slowdown for Multipole/Dual
Trees, but will require only 3 more iterations for our method (cf. Table. 1).

To the best of our knowledge, branch and bound has not been used before for
mode estimation of KDEs. It was used in [11] for Object Detection, but with
a different score function. We thus expect that our work will be of interest to
other researchers working on mode estimation.

6 Conclusion

In this paper, we have presented a Branch-and-Bound based method for efficient
mode estimation in KDE. We used our method for brain tumor detection and
segmentation of 3D MR images. We demonstrate that our method results in a
12-fold speedup over standard Mean-Shift. Our approach is more robust than
applying graph cut on the whole volume. The largest part of the computational
time is taken by feature computation which can easily accelerated with graphic
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processing units. Future directions include evaluating and adapting the proposed
approach to the 3D liver tumor tracking in radiation therapy where real time is
crucial.
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Abstract. It is of great interest in image-guided prostate interventions
and diagnosis of prostate cancer to accurately and efficiently delineate
the boundaries of prostate, especially its two clinically meaningful sub-
regions/zones of the central gland (CZ) and the peripheral zone (PZ),
in the given magnetic resonance (MR) images. We propose a novel cou-
pled level-sets/contours evolution approach to simultaneously locating
the prostate region and its two sub-regions, which properly introduces
the recently developed convex relaxation technique to jointly evolve two
coupled level-sets in a global optimization manner. Especially, in contrast
to the classical level-set methods, we demonstrate that the two coupled
level-sets can be simultaneously moved to their globally optimal positions
at each discrete time-frame while preserving the spatial inter-surface con-
sistency; we study the resulting complicated combinatorial optimization
problem at each discrete time evolution by means of convex relaxation
and show its global and exact optimality, for which we introduce the
novel coupled continuous max-flow model and demonstrate its duality
to the investigated convex relaxed optimization problem with the region
constraint. The proposed coupled continuous max-flow model naturally
leads to a new and efficient algorithm, which enjoys great advantages in
numerics and can be readily implemented on GPUs. Experiments over 10
T2-weighted 3D prostate MRIs, by inter- and intra-operator variability,
demonstrate the promising performance of the proposed approach.

Keywords: Convex Optimization, 3D Prostate Zonal Segmentation.

1 Introduction

Prostate cancer is one of major health problems in the western world, with
one in six men affected during their lifetime [1]. In diagnosing prostate cancer,
transrectal ultrasound (TRUS) guided biopsies have become the gold standard.
However, the accuracy of the TRUS guided biopsy relies on and is limited by
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the fidelity. Magnetic resonance (MR) imaging is an attractive option for guiding
and monitoring such interventions due to its superior visualization of not only
the prostate, but also its substructure and surrounding tissues [2, 3]. The fusion
of 3D TRUS and MRI provides an effective way to target biopsy needles in the
3D TRUS image toward the prostate region containing MR identified suspicious
lesions, which is regarded as an alternative to the more expensive and inefficient
MRI-based prostate biopsy [4] and the less accurate conventional 2D TRUS-
guieded prostate biopsy. On the other hand, during guidance of the biopsy, the
prostate region is usually recognized by two visually meaningful subregions in
a prostate MRI: the central gland (CG) and the peripheral zone (PZ) [5], and
up to 80% of prostate cancers are located within the PZ region [6]. The abil-
ity to superimpose the 3D TRUS image used to guide the biopsy onto these
pre-segmented prostate zones(subregions) of interest in MRIs is highly desired
in a fused 3D TRUS/MRI guided biopsy system. In addition, computer aided
diagnosis (CAD) techniques for prostate cancer can also benefit from the correct
interpretation of the prostate zonal anatomy since the occurrence and appear-
ance of the cancer depends on its zonal location [7, 8]; and the ratio of CG
volume to whole prostate gland (WG) can be used to monitor prostate hyper-
plasia [9]. To this end, efficient and accurate extraction of the prostate region,
in particular its sub-regions of CG and PZ, from 3D prostate MRIs is of great
interest in both image-guided prostate interventions and diagnosis of prostate
cancer.

Many studies focused their efforts on the segmentation of the whole prostate
in 3D MR images (especially in T2w 3D MRIs), see [10] for a review; where the
obvious intensity inhomogeneity of prostate makes the segmentation task chal-
lenging. However, only few studies focused on the segmentation of the prostate
sub-regions/zones in 3D MRIs. Allen et al. [11] proposed a method for the auto-
matic delineation of the prostate boundaries and CG, which was limited to the
middle region of the prostate (where T2w contrast permits accurate segmenta-
tion), and ignored the apex and base of the gland. Yin et al. [12] proposed an
automated CG segmentation algorithm based on Layered Optimal Graph Image
Segmentation of Multiple Objects and Surfaces (LOGISMOS). The first paper
about segmenting the prostate into two regions of PZ and CG was proposed
by Makni et al. [13]. The authors proposed a modified version of the evidential
C-means algorithm to cluster voxels into their respective zones incorporating the
spatial relation between voxels in 3D multispectral MRIs including a T2w im-
age, a diffusion weighted image (DWI), and a contrast enhanced MRI (CEMRI).
More recently, Litjens et al. [14] proposed a pattern recognition method to clas-
sify the voxels using anatomical, intensity and texture features in multispectral
MRIs. However, in [13] and [14], the segmentation of prostate peripheral zone
relies on the manual segmentation of the whole prostate gland.

Contributions: Based on recent developments of the new global optimization
technique to the single level-set/contour propagation [15–17], we propose a new
global optimization-based coupled level-set evolution approach to delineating
the whole prostate gland (WG) and its subregions of CG and PZ jointly from a
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(a) (b) (c)

Fig. 1. (a) shows the proposed layout of anatomically consistent regions: the whole
prostate(WG) RWG and its two zones: central gland(CG) RCG and peripheral
zone(PZ) RPZ , which are mutually distinct from the background region RB . (b) il-
lustrates the segmented contours overlaid on a T2w prostate MRI slice.

single input 3D T2 weighted prostate MR image. The proposed method matches
the intensity distribution models of the two prostate sub-regions CG and PZ to
guide the simultaneous propagation of two coupled level-sets. We efficiently and
globally solve the resulted challenging combinatorial optimization problem, the
so-called coupled min-cut model, during each discrete time evolution by means
of convex relaxation. We propose a novel spatially continuous flow-maximization
model, i.e. the coupled continuous max-flow model, and demonstrate its duality
to the studied convex relaxed optimization problem with the region consistency
constraint. The coupled continuous max-flow model directly leads to a new and
efficient continuous max-flow based algorithm, which enjoys great advantages in
numerics and can be readily implemented on GPUs. Experiments over 10 T2-
weighted 3D prostate MRIs, by inter- and intra-operator variability, demonstrate
the promising performance of the proposed approach. The proposed method can
be easily applied to other image segmentation tasks.

The classical level-set methods [18] are based on locally computing the associ-
ated convention PDE in a time-explicit manner and converge slowly; especially,
an extremely complex scheme is required for correctly propagating multi-class
level-sets. In contrast, the global optimization based contour evolution technique
introduces a new implicit-time contour convenction scheme which allows the
large time step-size to accelerate convergence, and the inter-level-set contraints
can be easily adapted into the propagation process in a global optimization way
(as the proposed approach in this work).

2 Global Optimization to Coupled Contour Evolution

Now we target to segment a given 3D T2w prostate MR image I(x) into the
prostate region RWG together with its two mutually distinct sub-regions: the
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central gland RCG and the peripheral zone RPZ , where RB denotes the back-
ground (see Figure 1(a)), i.e.

Ω = RWG ∪ RB , RWG ∩RB = ∅ , (1)

where the two spatially coherent sub-regions: the RCG and RPZ constitute the
whole prostate region RWG such that

RWG = RCG ∪ RPZ ; RCG ∩RPZ = ∅ . (2)

In this context, we propose a novel global optimization based approach to jointly
evolving two coupled contours CWG and CCG to the correct boundaries of the
prostate and the central gland, while keeping the inter-contour relationship

RCG ⊂ RWG ; (3)

i.e. the inclusion region RCG of CCG is covered by the inclusion region RWG of
CWG. Clearly, once the two contours CCG and CWG are computed, the peripheral
zoneRPZ is determined by the complementary regionRWG\RCG. We show that
the resulting combinatorial optimization at each discrete-time contour propaga-
tion can be solved globally and exactly by convex relaxation, which means that
the two contours can be moved to their ‘best’ positions during each discrete time
evolution. With this respect, we propose and investigate a unified framework in
terms of coupled continuous max-flow model. In addition, the new optimization
theory can be used to drive an efficient coupled continuous max-flow based algo-
rithms, which have great numerical advantages and can be readily implemented
on graphics processing units (GPU) to achieve a high computation performance.
The proposed optimization theory and algorithm can be directly extended to the
general case of evolving n > 2 contours Ci, i = 1 . . . n, while preserving the order
Cnt ⊂ Cn−1

t . . . ⊂ C1t ; and also applied to other image segmentation applications.

2.1 Matching Multiple Intensity Distribution Models

One major challenge to segment a typical T2w prostate MR image is the strong
intensity inhomogeneity of prostate (see Figure 1(a)), where the zones RCG and
RPZ of RWG have their distinct intensity appearances, hence constitute the
complex appearance model of the prostate region RWG. In this work, we pro-
pose to model the intensity appearance of the prostate region RWG by the two
independent appearance models of its two sub-regions RCG and RPZ , which
are distinct to each other. This sets up a proper composite appearance descrip-
tion of the entire prostate region RWG in practice. Such a composite intensity
appearance model is shown to be more accurate than the often-used mixture ap-
pearance model in practice [19]. Indeed, the two separated appearance models
can be obtained much easier and more accurately, with less influence by sam-
pling statistics, than the direct mixture appearence model of RWG. We propose
to match the two distinct appearance models of the prostate sub-regions RCG
and RPZ in stead of the mixture model of the prostate RWG.



16 J. Yuan et al.

Let πi(z), i ∈ {CG,PZ}, be the intensity probability density function (PDF)
of the respective prostate sub-region Ri and z ∈ Z gives the photometric value
of intensities. Also, let πB(I(x)) be the PDF of the background region RB .
In practice, such PDFs of intensities of the interesting object regions provide
a reliable and global description of the segmented objects [20], which can be
learned from either sampled pixels or given training datasets.

Given the indicator functions ui(x) ∈ {0, 1}, i ∈ {CG,WG}, of the inclusion
region of the contour Ci:

ui(x) :=

{
1 , where x is inside Ci
0 , otherwise

, i ∈ {CG,WG} , (4)

the Bhattacharyya distance [20] is used for matching the PDFs of the three dis-
tinct regions:RCG, RPZ andRB ; which results in the following model-matching
term:

Em(u) = −
∑
z∈Z

{√
πCG(z)φCG(z) +

√
πPZ(z)φPZ(z) +

√
πB(z)φB(z)

}
(5)

where φCG,PZ,B(u, z) are the respective PDFs for the estimated regions of RCG,
RPZ and RB , and computed by the Parzen method:

φCG(z) =

∫
Ω
K(z − I(x))uCG dx∫

uCG dx
, φPZ(z) =

∫
Ω
K(z − I(x)) (uWG − uCG) dx∫

(uWG − uCG) dx

and

φB(z) =

∫
Ω
K(z − I(x)) (1 − uWG) dx∫

(1− uWG) dx

where K(·) is the Gaussian kernel function K(x) = 1√
2πσ2

exp(−x2/2σ2).

Optimization Model: In view of the histogram matching energy function (5)
and region constraint (3), we propose to compute the region indictor functions
uCG(x), uWG(x) ∈ {0, 1} by minimizing the following energy function

min
uCG,WG(x)∈{0,1}

Em(u) +

∫
Ω

g(x) |∇uCG(x)| dx +

∫
Ω

g(x) |∇uWG(x)| dx (6)

subject to the inter-region constraint

uCG(x) ≤ uWG(x) , ∀x ∈ Ω ; (7)

where the total-variation functions properly approximates the weighted areas of
RCG and RWG and (7) corresponds to (3).

2.2 Global Optimization and Coupled Contour Evolution

Now we study the optimization problem (6) and introduce a novel global op-
timization based approach to evolving the two contours CCG and CWG, w.r.t.
RCG and RWG, simultaneously while preserving the constraint (3).
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Single Contour Evolution and Min-Cut: In contrast to the classical level-
set evolution theory, the recent developments [16, 17] of the global optimization
theory to the evolution of a single contour C proves that the propagation of the
contour Ct at time t to its new position Ct+h at time t+ h can be modeled and
globally optimized in terms of computing the min-cut problem:

Ct+h := min
C

∫
C+

c+(x) dx +

∫
C−
c−(x) dx +

∫
∂C
g(s) ds , (8)

where

1. C+ indicates the region expansion w.r.t. Ct: for ∀x ∈ C+, it is initially outside
Ct at time t, and ‘jumps’ to be inside Ct+h at t+h; for such a ‘jump’, it pays
the cost:

c+(x) =
(
dist(x, ∂Ct) + f(x)

)
/h ; (9)

2. C− indicates the region shrinkage w.r.t. Ct: for ∀x ∈ C−, it is initially inside
Ct at t, and ‘jumps’ to be outside Ct+h at t + h; for such a ‘jump’, it pays
the cost c−(x):

c−(x) =
(
dist(x, ∂Ct)− f(x)

)
/h . (10)

The function dist(x, ∂Ct) gives the distance of any x ∈ Ω to the current contour
Ct, where Ω is the image domain; the outer force function f(x) is data-associated
and is chosen based on the specified application: for example, f(x) can be defined
using the first-order variation of the distribution matching function, e.g. the
Bhattacharyya distance. Obviously, the time step-size h is implicitly adapted in
the cost functions (9)-(10), which allows a large value in numerical practice to
speed-up the evolution of contours towards convergence.

To be more clear, we define the cost functions Ds(x) and Dt(x) as follows:

Ds(x) :=

{
c−(x) , where x ∈ Ct
0 , otherwise

, Dt(x) :=

{
c+(x) , where x /∈ Ct
0 , otherwise

; (11)

which can be interpreted as the cost of assigning each pixel x to be foreground or
background, respectively. Let u(x) ∈ {0, 1} be the labeling function of the new
contour C in (8). Therefore, the proposed optimization model (8) to contour
evolution can be equally reformulated as the min-cut model :

min
u(x)∈{0,1}

〈1− u,Ds〉+ 〈u,Dt〉+
∫
Ω

g(x) |∇u| dx , (12)

which can be solved globally and exactly with various efficient algorithms of
graph-cut and convex optimization!

Coupled Contour Evolution and Coupled Min-Cuts: Following the same
ideas of (8), for the evolution of the contour CCG during the discrete time-frame
from t to t+h, we, correspondingly, define the cost functions c+CG(x) and c

−
CG(x)

w.r.t. region expansion C+CG and shrinkage C−CG; for the evolution of CWG, we



18 J. Yuan et al.

define c+WG(x) and c
−
WG(x) as the respective costs to region changes. Therefore,

we optimize the problem (6) by evolving the two contours CCG and CWG, which
propagates the contours CCGt and CWGt at time t to their new positions CCGt+h
and CWGt+h while preserving the constraint (3): RCG ⊂ RWG by the following
minimization problem:

min
CCG,CWG

∑
i∈{CG,WG}

{∫
C+
i

c+i (x) +

∫
C−
i

c−i (x) +

∫
∂Ci

g(s)
}

(13)

subject to the region constraint RCG ⊂ RWG.
Similar as (11), we define the label assignment cost functionsDis(x) andD

i
t(x),

i ∈ {CG,WG}, such that:

Dis(x) :=

{
c−i (x) , where x ∈ Cit
0 , otherwise

, Dit(x) :=

{
c+i (x) , where x /∈ Cit
0 , otherwise

. (14)

In consequence, the optimization problem (13) can be equally represented by

min
uCG,WG(x)∈{0,1}

∑
i∈{CG,WG}

{〈
1− ui, D

i
s

〉
+
〈
ui, D

i
t

〉
+

∫
Ω

g |∇ui| dx
}

(15)

subject to the linear inequality region constraint (7), i.e. uCG(x) ≤ uWG(x).
Clearly, without the constraint (7), the formulation (15) gives rise to two

independent min-cut problems; the region constraint (7) conjoins these two in-
dependent min-cut problems with each other. Hence, in this paper, we call (15)
the model of coupled min-cuts in the spatially continuous setting, i.e. the coupled
continuous min-cut model.

Convex Relaxation and Coupled Continuous Max-Flow Model: In this
work, we investigate the proposed challenging combinatorial optimization prob-
lems (15) by convex relaxation, where the binary constrained labeling functions
uCG,WG(x) ∈ {0, 1} are relaxed to be the convex constraint uCG,WG(x) ∈ [0, 1].
Therefore, we have the corresponding convex relaxation problem:

min
uCG,WG∈[0,1]

∑
i∈{CG,WG}

{ 〈
1− ui, D

i
s

〉
+
〈
ui, D

i
t

〉
+

∫
Ω

g |∇ui| dx
}
, (16)

subject to the region constraint (7).
In the following sections, we propose the novel dual model to the convex

optimization problem (16), which corresponds to maximize the streaming flows
upon a novel coupled flow-maximization setting, i.e. the coupled continuous max-
flow model. With help of the new coupled continuous max-flow model, we show
the convex relaxed optimization problem (16) solves the original combinatorial
optimization (16) exactly and globally! This means the two coupled contours CCG
and CWG can be moved to their globally optimized positions, i.e. best positions,
during each discrete time frame. In addition, we can directly derive the new
coupled continuous max-flow algorithm which avoids tackling the non-smooth
function terms and linear constraint in (16) and enjoys a fast convergence.
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Coupled Continuous Max-Flow Model: To motivate the coupled contin-
uous max-flow model, we introduce a novel flow configuration (shown in Fig.
1(c)), which is the combination of two independent standard flow-maximization
settings (see [21, 22] etc.), linked by an additional directed flow r(x) in-between:

– We set up two copies ΩCG and ΩWG of Ω w.r.t. the essential two continuous
min-cuts; for Ωi, i ∈ {CG,WG}, two extra nodes si and ti are added as
the source and sink terminals; we link si to each pixel x ∈ Ωi and link x
to ti, see Fig. 1(c); moreover, within each of Ωi, i ∈ {CG,WG}, we define
the source flow pis(x) which is directed from si to each x and the sink flow
pit(x) which is directed from each x to ti; also, within each of Ωi, there is
the spatial flow qi(x) around each pixel x.

– At each pixel x, there exists an extra flow r(x) directed from Ω2 to Ω1.

For the two source flow fields pCGs (x) and pWGs (x), we define the flow capacity
constraints:

pCGs (x) ≤ DCGs (x) , pWGs (x) ≤ DWGs (x) ; ∀x ∈ Ω . (17)

Likewise, for the two sink flow fields: pCGt (x) and pWGt (x), and the spatial flows:
qCG(x) and qWG(x), we define the respective flow capacity constraints:

pCGt (x) ≤ DCGt (x) , pWGt (x) ≤ DWGt (x) ; ∀x ∈ Ω ; (18)

and ∣∣qCG(x)∣∣ ≤ g(x) ,
∣∣qWG(x)∣∣ ≤ g(x) ; ∀x ∈ Ω . (19)

Moreover, the extra directed flow field r(x) for each x at ΩWG to the same
position at ΩCG is constrained by

r(x) ≥ 0 ; ∀x ∈ Ω . (20)

In addition to the above flow capacity constraints, at each pixel x ∈ Ωi,
i ∈ {CG,WG}, all the flow fields pis(x), p

i
t(x), qi(x) and r(x) are balanced such

that

RCG(x) := div qCG(x) + pCGt (x) − pCGs (x) − r(x) = 0 ; (21)

and

RWG(x) := div qWG(x) + pWGt (x) − pWGs (x) + r(x) = 0 . (22)

Therefore, we propose the novel coupled continuous max-flow model which
achieves the maximum total flows directed from s1 and s2, i.e.

max
ps,pt,q,r

∫
Ω

pCGs dx +

∫
Ω

pWGs dx (23)

subject to the flow capacity conditions (17) - (20) and the flow conservation
conditions (21) and (22).
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Duality and Global Optimum to (15): Note that (23) provides two indepen-
dent continuous max-flow problems, which are linked by the extra directed flow
field r(x). We can prove the duality between the coupled continuous max-flow
model (23) and the convex relaxed optimization problem (16), (see [22, 23])

Proposition 1. The proposed coupled continuous max-flowmodel (23) is equiv-
alent or dual to the convex relaxed coupled continuous min-cut formulation (16):

(23) ⇐⇒ (16) .

Clearly, for the given convex relaxation problem (16), the global optimum exists.
In addition, with helps of the proposed continuous max-flow model (23), we can
prove thresholding the global optimum of (16) also solve the original combina-
torial optimization problem (15). This means that the two contours CCG and
CWG can be moved to their ‘best’ position(s), i.e. the global optimum, during
each discrete time frame!

Proposition 2. Let u∗CG(x), u
∗
WG(x) ∈ [0, 1] be any global optimum of the con-

vex relaxed coupled continuous min-cut formulation (16), their thresholds
u�CG(x) ∈ {0, 1} and u�WG(x) ∈ {0, 1}:

u�i(x) =

{
1 , when u∗i (x) > 

0 , when u∗i (x) ≤ 


, i ∈ {CG,WG} (24)

for any 
 ∈ [0, 1), solves the original binary-constrained coupled continuous min-
cut problem (15) globally and exactly.

Actually, the functions u�CG(x), u
�
WG(x) ∈ {0, 1} indicate the new positions of

the two thresholded level-sets CCG and CWG respectively, which are the globally
optimized contours to (13).

The proofs of Prop. 1 and Prop. 2 are omitted here due to the limit space.

Coupled Continuous Max-Flow Algorithm: On the other hand, the pro-
posed coupled continuous max-flow model (23) naturally leads to an efficient
coupled continuous max-flow based algorithm in a multiplier-augmented way [24]
(similar as [22, 23]). Based on the augmented Lagrangian algorithmic scheme,
we introduce the multiplier functions uCG(x) and uWG(x) to (21) and (22) re-
spectively and define the Lagrangian function:

L(ps, pt, q, r, u) :=

∫
Ω

pCGs (x) dx+ 〈uCG, RCG〉+
∫
Ω

pWGs (x) dx+ 〈uWG, RWG〉 .

We also define the following augmented Lagrangian function

Lc(ps, pt, q, r, u) := L(ps, pt, q, r, u)−
c

2
‖RCG‖2 −

c

2
‖RWG‖2

where c > 0 is constant.
We proposed the coupled continuous max-flow algorithm which explores the

following iteration till convergence: each k-th iteration consists of the flow max-
imization steps over the flow functions ps, pt, q and r and corresponding flow
constraints, and the label updating steps:
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1. Maximize Lc(ps, pt, q, r, u) over the spatial flows
∣∣qi(x)∣∣ ≤ g(x), i ∈

{CG,WG}, by fixing the other variables, which gives

(qi)k+1 := argmax
|qi(x)|≤g(x)

− c
2

∥∥div qi − F ki
∥∥2 ,

where
F ki (x) =

(
(pis)

k − (pit)
k − rk + (ui)

k
)
(x)/c .

It can be implemented by the one-step of gradient-projection procedure [25].
2. Maximize Lc(ps, pt, q, r, u) over the source flows pis(x) ≤ Dis(x), i ∈
{CG,WG}, by fixing the other variables, which gives

(pis)
k+1 := argmax

pis(x)≤Di
s(x)

∫
Ω

pis dx−
c

2

∥∥pis −Gki
∥∥2 ,

where
Gki (x) =

(
div qk+1

i + (pit)
k + rk − (ui)

k/c
)
(x) .

It can be solved exactly by:

(pis)
k+1(x) = min

(
Gki (x) + 1/c , Dis(x)

)
. (25)

3. Maximize Lc(ps, pt, q, r, u) over the sink flows pit(x) ≤ Dit(x), i ∈ {CG,WG},
by fixing the other variables, which gives

(pit)
k+1 := argmax

pit(x)≤Di
t(x)

− c
2

∥∥pit +Hki
∥∥2 ,

where
Hki (x) =

(
div qk+1

i − (pis)
k+1 + rk − (ui)

k/c
)
(x) .

It can be solved exactly by:

(pit)
k+1(x) = min

(
−Hki (x) , D

i
t(x)
)
. (26)

4. Maximize Lc(ps, pt, q, r, u) over the coupled flow field r(x) ≥ 0 by fixing the
other variables, which gives

rk+1 := argmax
r(x)≥0

− c
2

∥∥r − JkCG
∥∥2 − c

2

∥∥r + JkWG
∥∥2 ,

where Ji(x), i ∈ {CG,WG}, are fixed. It can be compted exactly by

rk+1(x) = max
(
0, (J1 − J2)/2

)
.

5. Update the multiplier functions uk+1
i (x), i ∈ {CG,WG}, by

uk+1
i (x) = uki (x)− cRk+1

i (x) . (27)

The coupled continuous max-flow algorithm successfully avoids directly handling
the non-smooth functions and linear constraint in the corresponding convex re-
laxation model (16). The experiments show that the proposed algorithm also
obtains a much faster convergence rate in practice. In addition, the coupled con-
tinuous max-flow algorithm can be readily implemented on GPUs to significantly
speed-up computation.
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3 Experiments and Results

Experiment Implementation: We applied the proposed continuous max-flow
algorithm on 10 T2w MR images acquired using a body coil. Subjects were
scanned at 3 Tesla with a GE Excite HD MRI system (Milwaukee, WI, USA). All
images were acquired at 512×512×36 voxels with spacing of 0.27×0.27×2.2mm3.
Two closed surfaces were constructed via a thin-plate spline fitting with ten to
twelve user selected initial points on the WG and CG surface, respectively, which
were used as the initial CG and WG surfaces for surface evolution. The original
input 3D image was also cropped by enlarging the bounding box of the initial
WG surface by 30 voxels in order to speed up computations. The initial PDFs
for the regions of RCZ and RPZ were calculated based on the intensities in the
user-initialized CG and PZ regions, respectively.

Evaluation Metrics: The proposed segmentation method was evaluated
by comparing the results to manual segmentations in terms of DSC, the
mean absolute surface distance (MAD), and the maximum absolute distance
(MAXD) [26, 27]. All validation metrics were calculated for the entire prostate
gland, central gland and peripheral zone. In addition, the coefficient-of-variation
(CV ) of DSC [27] was used to evaluate the intra-observer variability of our
method introduced by manual initialization.

(a) (b) (c) (d)

Fig. 2. Segmentation result of one prostate. (a) rendered resulting surface, (b) ax-
ial view, (c) sagittal view, and (d) coronal view, Green: the segmented PZ, red: the
segmented CG.

Accuracy: Visual inspections in Fig. 2 show that the PZ and CG regions seg-
mented by the proposed approach agree well with the objects. Quantitative
experiment result for 10 patient images using the proposed method is shown in
Table 1. The mean DSC was 89.2±4.5% for the whole prostate gland, 84.7±5.2%
for the central gland, and 68.5± 6.9% for the peripheral zone. In addition, the
evaluation results of MAD and MAXD are provided in Table 1, which give similar
information to DSC.

Reliablility: Ten images were also segmented three times by the same observer
to assess the intra-observer variability introduced by the user initialization. The
proposed method initialized by three repetitions yielded a CV of 7.5%, 5.6%,
and 5.0% for PZ, CG, and WG, respectively. It can be seen that the proposed
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Table 1. Mean segmentation results in terms of DSC, MAD and MAXD for 10 patient
images

DSC (%) MAD (mm) MAXD (mm)

PZ 68.5 ± 6.9 4.8± 2.1 20.1 ± 11.5
CG 84.7 ± 5.2 3.2± 1.2 12.3 ± 3.8
WG 89.2 ± 4.5 2.9± 0.9 12.2 ± 4.8

Table 2. Intra-observer variability results in terms of DSC (%) using three repetitions
of the same observer for ten patient images

PZ CG WG

experiment 1 68.5± 6.9 84.7 ± 5.2 89.2 ± 4.5
experiment 2 67.9± 5.8 85.3 ± 4.5 88.7 ± 4.0
experiment 3 69.2± 6.5 84.5 ± 4.5 89.0 ± 3.8

CV (%) 7.5 5.6 5.0

method demonstrated low intra-observer segmentation variability for the CG
and WG, suggesting a good reproducibility.

Computational Time: The proposed approach was implemented in Matlab
(Natick, MA) using CUDA (NVIDIA Corp., Santa Clara, CA). The experiments
were performed on a Windows desktop with an Intel i7-2600 CPU (3.4 GHz)
and a GPU of NVIDIA Geforce 580X. The mean run time of three repeated
segmentations for each 3D MR image was used to estimate the segmentation
time in this study. The mean segmentation time was 8±0.5s (converged with 3 -
5 surface evolutions) in addition to 40± 5s for initialization, resulting in a total
segmentation time of less than 50s for each 3D image (512× 512× 36 voxels).

4 Discussions and Conclusions

In this work, we propose and evaluate a new global optimization-based cou-
pled contour evolution approach to simultaneously extracting the boundaries of
prostate and its component zones from the input 3D prostate T2w MRI, which
address the challenge of segmenting multiple prostate regions in a numerically
stable and efficient way. In contrary to the classical level-set methods, the pro-
posed approach demonstrates great advantages in terms of numerical efficiency
and moving the coupled contours to their ’best’ positions simultaneously while
preserving the inter-contour relationship. The introduced algorithm shows reli-
able performance results with minimal user interactions using ten patient im-
ages, suggesting itself for potential clinical use in 3D TRUS/MR image guided
prostate interventions and computer aided diagnosis of prostate cancer.

The experimental results using ten 3D MR patient prostate images showed
that the proposed continuous max-flow algorithm is capable of providing a robust
and efficient segmentation for different prostate zones at the same time, such as
PZ, CG and WG, with promising accuracy and reliability. In terms of accuracy,
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DSC of 89.2±4.5% for the whole prostate region(WG), based on the introduced
composite intensity appearance model, is better than the result of 86.2 ± 3.0%
obtained by the state-of-art mixture intensity model; DSCs of 68.5± 6.9% and
84.7± 5.2% for PZ and CG yielded by our methods are lower than 75.0± 7.0%
and 89.0± 3.0% reported in [14] or 76.0± 6.0% and 87.0± 4.0% reported in [13].
However, these two methods made use of multi-spectral MR information and
required manual WG segmentations as initialization. In addition, comparing
to these methods, the proposed method also needs less user interactions and
computation time. In order to improve the segmentation accuracy, our future
studies might put emphasis on incorporating additional prior information, such
as texture and shape, or relying on information from multi-spectral MR imaging.
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Abstract. Osmosis is a transport phenomenon that is omnipresent in
nature. It differs from diffusion by the fact that it allows nonconstant
steady states. In our paper we lay the foundations of osmosis filtering for
visual computing applications. We model filters with osmotic properties
by means of linear drift-diffusion processes. They preserve the average
grey value and the nonnegativity of the initial image. Most interestingly,
however, we show how the nonconstant steady state of an osmosis evolu-
tion can be steered by its drift vector field. We interpret this behaviour as
a data integration mechanism. In the integrable case, we characterise the
steady state as a minimiser of a suitable energy functional. In the nonin-
tegrable case, we can exploit osmosis as a framework to fuse incompatible
data in a visually convincing way. Osmotic data fusion differs from gradi-
ent domain methods by its intrinsic invariance under multiplicative grey
scale changes. The osmosis framework constitutes a novel class of meth-
ods that can be taylored to solve various problems in image processing,
computer vision, and computer graphics. We demonstrate its versatility
by proposing osmosis models for compact image respresentation, shadow
removal, and seamless image cloning.

Keywords: osmosis, drift–diffusion, Fokker–Planck equation, diffusion
filters, gradient domain methods, shadow removal, image editing.

1 Introduction

While diffusion processes are frequently used in image processing, computer
vision and computer graphics, there is a closely related transport phenomenon in
nature that is basically unexplored in visual computing applications: It is called
osmosis [1]. Osmosis describes transport through a semipermeable membrane in
such a way that in its steady state, the liquid concentrations on both sides of the
membrane can differ. Osmosis is the primary mechanism for transporting water
in and out of cells, and it has many applications in medicine and engineering.
It can be seen as the nonsymmetric counterpart of diffusion. Since diffusion can
only model symmetric transport processes, it leads to flat steady states [2].
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Our Contributions. The goal of our paper is to lay the foundations of osmosis
filtering for visual computing applications. In contrast to osmosis in natural sys-
tems we do not need two different phases (water and salt) and a membrane that
is only permeable for one of them: We can obtain nonconstant steady states
within a single phase that represents the grey value. All we have to do is to
supplement diffusion with a drift term. The resulting drift-diffusion process is
also in divergence form and thus preserves the average grey value of the initial
image, but it allows to have full control over its nonflat steady state: We show
that we can design osmosis filters that converge to any specified image. Most
importantly, we shall see that osmosis has the ability to integrate conflicting
gradient data in a visually convincing way. This enables many applications be-
yond classical data regularisation tasks. In particular, we show the potential of
osmosis for three prototypical problems: compact data representation, shadow
removal, and image editing. Interestingly, these applications do not require any
nonlinearities: The richness of the drift term permits to reach these goals already
within a linear setting.

Paper Structure. In Section 2 we describe our drift-diffusion framework for
continuous osmosis filters, analyse its essential properties, and interprete os-
mosis processes as models for data integration. Afterwards we sketch a simple
numerical scheme in Section 3. Applications of osmosis models to visual com-
puting problems are described in Section 4, and our paper is concluded with a
summary in Section 5.

Related Work. While diffusion filters are often combined with data fidelity
terms, there are not many combinations with a drift term in divergence form so
far. Hagenburg et al. [3] have proposed a lattice Boltzmann model for dithering
that approximates a nonlinear drift-diffusion equation in the continuous limit.
However, they did not investigate this continuous model any further. In [4] it
was shown that a combination of a discrete osmosis model with a stabilised
backward diffusion filter is useful for designing numerical schemes for hyper-
bolic conservation laws that benefit from low numerical diffusion. Moreover, this
discrete osmosis model has been interpreted as a nonsymmetric Markov chain,
while discrete diffusion filters lead to symmetric Markov chains. Illner and Ne-
unzert [5] have investigated so-called directed diffusion processes that converge
to a specified background image, but did not apply them to image processing
problems.

With respect to their ability to integrate incompatible gradient data, osmosis
methods can be related to gradient domain methods. In computer vision, gradi-
ent domain methods are used for shape from shading [6], for shadow removal [7],
and as models for retinex [8]. In computer graphics they are useful for a number
of image editing and fusion problems; see e.g. [9, 10]. Relations between osmo-
sis and gradient domain methods are discussed in Section 2.3, and Section 4.3
gives an experimental comparison. With respect to their invariance under multi-
plicative brightness changes, osmosis methods also resemble Georgiev’s covariant
derivative framework [11], but appear to be easier to understand.
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Since our drift-diffusion formulation of osmosis filtering can be interpreted in a
stochastic way as Fokker-Planck equation [12], it has some structural similarities
to work by Sochen [13] that deals with a stochastic justification of the Beltrami
flow. He mentions the potential benefit of drift terms but did not carry out
any experiments. The Fokker-Planck equation has also been used by Wang and
Hancock [14] for performing probabilistic relaxation labelling on graphs.

While the present paper focuses on the continuous theory and introduces
specific models for different visual computing applications, we have also authored
a companion paper that establishes a fully discrete theory for osmosis and studies
efficient numerical methods [15].

2 Continuous Linear Osmosis Filtering

2.1 Drift–Diffusion Model

We consider a rectangular image domain Ω ⊂ R2 with boundary ∂Ω. A rea-
sonable osmosis theory for greyscale images requires a positive initial image
f : Ω → R+. Moreover, we assume that we can choose some drift vector field
d : Ω → R2. As we will see below, it allows us to steer the osmosis process to
a desired nonflat steady state. Then a (linear) osmosis filter computes a fam-
ily {u(x, t) | t ≥ 0} of processed versions of f(x) by solving the drift-diffusion
equation

∂tu = Δu − div (du) on Ω × (0, T ], (1)

with f as initial condition,

u(x, 0) = f(x) on Ω, (2)

and homogeneous Neumann boundary conditions:

〈∇u− du, n〉 = 0 on ∂Ω × (0, T ]. (3)

Here 〈., .〉 denotes the Euclidean inner product, and n is the outer normal vector
to the image boundary ∂Ω. Thus, the boundary conditions specify a vanishing
flux across the image boundaries.

Extending linear osmosis to colour images does not create specific problems:
One proceeds separately in each RGB channel using individual drift vector fields
in each channel.

2.2 Theoretical Properties

While the main focus of our paper is on modelling aspects, successful modelling
is impossible without some insights into essential theoretical properties. They
are summarised in the following proposition.
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Proposition 1. [Theory for Continuous Linear Osmosis]

A classical solution of the linear osmosis process (1)–(3) with positive initial
image f : Ω → R+ and drift vector field d : Ω → R2 satisfies the following
properties:

(a) The average grey value is preserved:

1

|Ω|

∫
Ω

u(x, t) dx =
1

|Ω|

∫
Ω

f(x) dx ∀ t > 0 . (4)

(b) The evolution preserves nonnegativity:

u(x, t) ≥ 0 ∀x ∈ Ω, ∀t > 0. (5)

(c) If d satisfies

d = ∇(ln v) =
∇v

v
(6)

with some positive image v, then the follwoing holds:
The steady state equation

Δu − div (du) = 0 (7)

is equivalent to the Euler-Lagrange equation of the energy functional

E(u) =

∫
Ω

v
∣∣∣∇(u

v

)∣∣∣2 dx. (8)

Moreover, the steady state solution of the osmosis process is given by w(x) =
μf

μv
v(x), where μf and μv denote the average grey values of f and v.

Proof

(a) Let μ(t) := 1
|Ω|
∫
Ω u(x, t) dx denote the average grey value at time t ≥ 0.

Using the divergence theorem and the homogeneous Neumann boundary
conditions we obtain

dμ

dt
=

1

|Ω|

∫
Ω

∂tu dx =
1

|Ω|

∫
Ω

div (∇u− du) dx

=

∫
∂Ω

〈∇u− du,n〉 dS = 0. (9)

Thus, the average grey value remains constant over time.
(b) Assume that T > 0 is the smallest time where minx,t u(x, t) = 0, and that

this minimum is attained in some inner point ξ. Thus, ∇u(ξ, T ) = 0, and
we have

∂tu(ξ, T ) = Δu(ξ, T ) − u(ξ, T )︸ ︷︷ ︸
=0

divd − d�∇u(ξ, T )︸ ︷︷ ︸
=0

. (10)

This shows that in (ξ, T )� the osmosis evolution behaves like the diffusion
equation ∂tu = Δu. It is well known that for diffusion with homogeneous
Neumann boundary conditions the minimum cannot decrease in time; see
e.g. [2]. Thus, the solution of the osmosis process remains nonnegative.
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(c) The energy functional (8) can be rewritten as

E(u) =

∫
Ω

F (u,∇u) dx (11)

with

F (u,∇u) =
|v∇u− u∇v|2

v3
. (12)

From the calculus of variations we know that any minimiser of E(u) satisfies
the Euler-Lagrange equation

0 = Fu − ∂xFux − ∂yFuy (13)

with homogeneous Neumann boundary conditions, where x = (x, y)� and
subscripts denote partial derivatives. With F from (12) this becomes after
some simplifications

0 = −2v div
(
v∇u− u∇v

v3

)
− 4∇�v (v∇u− u∇v)

v3
. (14)

Using

div
(
v∇
(u
v

))
= v2 div

(
v∇u− u∇v

v3

)
+

2∇�v (v∇u− u∇v)

v2
(15)

the Euler-Lagrange equation can be written as

0 = − 2

v
div
(
v∇
(u
v

))
. (16)

It is easy to check that this is equivalent to (7) if d = ∇v
v with v > 0.

Straightforward computations also show that one obtains (3) as boundary
condition on ∂Ω.

It is clear that an image v with d = ∇v
v also fulfils the steady state

equation (7) of the osmosis evolution with homogeneous Neumann boundary
conditions. However, note that with v also cv with any constant c is a solution
of this problem. Since the osmosis evolution preserves the average grey value
and the nonnegativity of the initial image, it can only converge to a rescaled
version w of v that is nonnegative and has the same average grey value as
the original image f . Thus, w(x) =

μf

μv
v(x). ��

Preservation of the average grey value does not distinguish osmosis from diffusion
filtering [2]. However, while diffusion filtering satisfies a maximum–minimum
principle [2], osmosis only fulfils a weaker form of stability, namely preservation
of nonnegativity. We conjecture that it is possible to establish preservation of
strict positivity, since this also holds in the fully discrete case [15].

Proposition 1 implies that osmosis permits nontrivial steady states. This is
a fundamental difference to diffusion that allows only flat steady states [2].
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Fig. 1. Convergence of osmosis to a specified image. From left to right: (a) Original
image, 512 × 512 pixels. Each channel has the same mean value as the mandrill test
image. (b) Osmosis result at evolution time t = 50. (c) t = 1000. (d) t = 250000 gives
a steady state that is identical to the mandrill image.

Of course, these steady state results should be accompanied by a formal conver-
gence analysis. This is mathematically more involved and will be presented in a
journal version of our paper.

Figure 1 illustrates such a convergence behaviour. Starting from a flat initial
image, we can choose the drift vector field such that osmosis converges to the
mandrill test image: If v = (v1, v2, v3)

� is the RGB image of the mandrill, the
drift vector in channel i is chosen as ∇(ln vi).

2.3 Osmosis as a Process for Data Integration

We have seen that for d := ∇(ln v), osmosis converges to a multiplicatively
rescaled version of v. This motivates us to call d[v] := ∇(ln v) the canonical
drift vector field of the image v. Since d[v] contains derivative information of the
steady state, we may regard osmosis as a process for data integration.

Obviously it is not very exciting to design an osmosis process that converges
to an image which we know already. However, much more interesting situations
arise when we modify the drift vector field, e.g. by setting certain components
to zero, or by fusing the canonical drift vector fields of different images. Such
applications will be considered in Section 4. Although in general the new drift
vector field will be nonintegrable, osmosis will still create a steady state that aims
at finding a good compromise between all conflicting constraints. In that sense
osmosis resembles gradient domain methods that are popular both in computer
vision [6–8] and in computer graphics [10, 9]. Let us analyse these connections
in more detail.

Gradient domain methods integrate a (possibly nonintegrable) gradient field
approximation p = (p1, p2)

� by minimising the energy

E(u) =

∫
Ω

|∇u− p|2 dx. (17)

The corresponding Euler–Lagrange equation that a minimiser w has to fulfil is
given by the Poisson equation

Δw = divp. (18)



32 J. Weickert et al.

In the integrable case with p = ∇v, it is clear that an additive shift of v gives
the same p. Thus, gradient domain methods can recover v up to an additive
constant.

On the other hand, an osmotic steady state w satisfies

Δw = div (dw). (19)

An integrable osmosis setting with d = ∇(ln v) is invariant under multiplicative
rescalings of v. In this sense it resembles Georgiev’s covariant derivative frame-
work [11], but appear to be easier to comprehend. For computer vision applica-
tions where illumination changes are often modelled as multiplicative changes of
the grey values, this multiplicative invariance of osmosis is preferable over the
additive invariance of gradient domain methods.

In the nonintegrable case, gradient domain methods and osmosis can give
different results that cannot be transformed into each other by simple additive
or multiplicative grey value changes.

3 A Simple Numerical Scheme

To keep our paper self-contained, let us now sketch a simple explicit finite differ-
ence scheme for our osmosis model. For more numerical details and more efficient
schemes we refer to [15], where a general fully discrete theory for osmosis filtering
is established.

We consider a grid size h in x- and y-direction, and a time step size τ > 0.
Moreover, we denote by uki,j an approximation to u in the grid point ((i−1

2 )h, (j−
1
2 )h))

� at time kτ . Setting d = (d1, d2)
�, a straightforward finite difference

discretisation of (1) is given by

uk+1
i,j − uki,j

τ
=

uki+1,j + uki−1,j + uki,j+1 + uki,j−1 − 4uki,j
h2

− 1

h

(
d1,i+ 1

2 ,j

uki+1,j + uki,j
2

− d1,i− 1
2 ,j

uki,j + uki−1,j

2

)

− 1

h

(
d2,i,j+ 1

2

uki,j+1 + uki,j
2

− d2,i,j− 1
2

uki,j + uki,j−1

2

)
. (20)

It allows to compute the results at time level k+1 from the data at level k. This
scheme also holds for boundary points, if we mirror the image at its boundaries
and assume a zero drift vector across boundaries.

For some positive image v, we obtain a discrete approximation of its canonical
drift vector field (d1[v], d2[v])

� = ∇v
v at intermediate grid points via

d1,i+ 1
2 ,j

=
2 (vi+1,j − vi,j)

h (vi+1,j + vi,j)
, d2,i,j+ 1

2
=

2 (vi,j+1 − vi,j)

h (vi,j+1 + vi,j)
. (21)
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In [15] we show that the scheme (20)–(21) preserves positivity and converges to
its unique steady state if the time step size satisfies

τ <
h2

8
. (22)

4 Application to Visual Computing Problems

In order to illustrate the potential of osmosis models to solve visual computing
problems, we study three fairly different applications: compact image represen-
tation, shadow removal, and seamless image cloning. All results below display
steady states that have been computed with the numerical scheme from Sec-
tion 3 with h := 1 and τ := 0.1. One can achieve positivity of a bytewise coded
initial image by adding an offset value of ε > 0 such that each channel lies in the
range [ε, 255+ε]. Offset values should not be too large to avoid that they have
a visible impact on the result. We choose ε := 1.

4.1 Compact Data Representation

Let us now investigate if osmosis processes can be useful for compact image
representations. There has been a long tradition of reconstructing images from
their information near edges; see e.g. [16, 17]. One may for instance store the grey
values on both sides of the edges as Dirichlet data, and interpolate the remaining
data by solving the Laplace equation Δu = 0 in between. While this requires to
store two grey values per edge point, it appears tempting to use osmosis and keep
only the magnitude of the induced drift vector at each edge pixel, since we know
that its direction is orthogonal to the edge contour. All drift vectors that are not
adjacent to edges are set to zero, such that homogeneous diffusion interpolation
is performed. This is illustrated in Figure 2. We observe that this compact image
representation works well at step edges, while the contrasts that are reproduced
at smooth edges appear somewhat too low. This proof-of-concept application
indicates that osmosis can become a valuable tool for encoding step edges within
a more comprehensive image compression approach based in partial differential
equations (PDEs). More details will be reported in forthcoming publications.

4.2 Shadow Removal

Many computer vision tasks such as segmentation, tracking, and object recog-
nition benefit from the removal of shadows. To this end, one wants to identify
the shadow region and adapt its brightness to the brightness of the rest of the
image. Several methods have been proposed to find suitable shadow edges; see
[18] and the references therein. Here we assume that the shadow edges are given,
and we concentrate on the brightness adaptation problem. So far, this brightness
adaptation has been achieved for example with gradient domain methods [7] or
with pyramid-based approaches [18].
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Fig. 2. Osmosis for compact image representation. (a) Left: Original image. (b)
Middle: Canny edges, amounting to 9.6% of all pixels. (c) Right: Reconstruction
using the average grey value of the orginal image and the canonical drift vectors in the
edges.

Interestingly the invariance of osmosis under global multiplicative greyscale
changes offers a particularly elegant solution for this task: If one models shadows
as a local multiplicative illumination change within the image, then this only
affects the canonical drift vectors at the transition between the shadow and
the rest of the image. Thus, shadow removal can be accomplished by simply
modifying the canonical drift vectors at the shadow boundaries. Setting them to
zero at these locations turns osmosis locally into homogoneneous diffusion and
guarantees a continuous transition. An osmosis evolution that starts with the
original image and uses these modified drift vectors converges to a steady state
where the shadow has been removed. Osmosis shadow removal has no problems
recovering texture details in the shadow part which in an important criterion in
state-of-the-art methods [19].

Figure 3 illustrates these ideas. If one uses the original image as initialisation,
the results will be somewhat too dark due to the shadow region and the fact
that osmosis preserves the average grey value (or colour value in each channel).
As a remedy, one may want to rescale the results such that the values in the
non-shadow region approximate the ones in the initial image. This is done in
Figure 3(d).

4.3 Seamless Image Cloning

The property of osmosis to fuse incompatible information can also be used for
seamless image cloning. Figure 4 illustrates the problem: Two images f1 and f2
are to be merged such that f2 replaces image information of f1. The rectangular
image domain of the original image f1 is denoted by Ω, and the image domain
that is to be inserted is Γ . Its boundary is given by ∂Γ .

The classical gradient domain method for seamless image cloning is Poisson
image editing [10]. It creates a fused image by solving the Poisson equation (18)
with gradient data p = ∇f2 in Γ and Dirichlet boundary conditions u = f1 on
∂Γ . By construction, this localises the influence of the patch to the domain Γ .
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Fig. 3. Shadow removal by osmosis. (a) Top left: Original image (400× 299 pixels).
(b) Top right: User-selected shadow boundaries. In these boundaries all drift vectors
are set to zero (homogeneous diffusion). In the other areas, the canonical drift vectors
are used. (c) Bottom left: Osmosis reconstruction with (a) as initialisation. (d)
Bottom right: Multiplicative rescaling of (c) such that the colours in the non-shadow
regions approximate the ones in (a).

To provide an osmosis-based alternative to Poisson image editing, we proceed
as follows: We use the canonical drift vectors of f1 in Ω \ Γ , and the ones of f2
in Γ . At the interface ∂Γ , we use the arithmetic mean of both drift vectors. The
process is initialised with f1 on the entire rectangular image domain Ω, and its
steady state gives the cloned image.

Figure 5 juxtaposes the results of Poisson image editing and osmosis image
editing for an application where we want to clone the face of Lagrange on the
body of Euler. While both methods give seamless results, Poisson image editing
is unable to adapt the higher contrast of the face of Lagrange to the lower con-
trast of the Euler image. Section 2.3 gives an explanation for this phenomenon:
Gradient domain methods allow only additive grey value shifts, and additive
shifts cannot influence the contrast. Osmosis image editing, on the other hand,
enables multiplicative changes that can also adapt the contrast. This is one rea-
son why the osmosis result in Fig. 5(f) comes visually closer to the original Euler
image in Fig. 5(a). A second reason results from the averaging of the canonical
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Fig. 4. Illustration of the image editing problem

Fig. 5. Seamless image cloning (cf. [4]). (a) Top left: Painting of Euler. (b) Top mid-
dle: Drawing of Lagrange (with selected face region). (c) Top right: Direct cloning
of Lagrange on top of Euler’s face. (d) Bottom left: Poisson image editing with
Dirichlet data of Euler at the interface. (e) Bottom right: Osmosis image editing
with averaged drift vector fields at the interface. Source of original images: Wikimedia
Commons.
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Fig. 6. Comparison between Poisson image editing and osmosis image editing when the
contrast of the inserted patch is not optimal. (a) Top left: Original image (400× 300
pixels). (b) Top right: Direct cloning of a patch where the RGB values have been
multiplied by a factor 0.25. (c) Bottom left: Poisson image editing suffers from the
poor contrast whithin the cloned patch. (d) Bottom right: Osmosis image editing
gives a much better contrast reconstruction.

drift vectors at the interface ∂Γ . This makes the influence of the osmosis editing
global, which also contributes to a more harmonic impression.

Fig. 6 presents a synthetic experiment that is taylored to visualise the differ-
ences between gradient domain editing and osmosis editing. We have reduced
the contrast in the mouth region of the teddy bear by multiplying the RGB
values by 0.25. While gradient domain editing cannot increase the contrast in
the cloned patch, this is no problem for osmosis image editing.

These discussions show that there are two reasons for the superiority of osmo-
sis image editing over Poisson image editing: boundary conditions that avoid a
strict localisation, and the ability of osmosis to perform multiplicative brightness
adaptations instead of additive ones.

5 Summary and Conclusions

We have advocated osmosis as a novel concept for visual computing. It is surpris-
ing that after decades of intensive research on PDE methods in image analysis,
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this important process in nature has been widely ignored by our research com-
munity so far. While osmosis filters differ from homogeneous diffusion filtering
“only” by their drift term, this term has a fundamental consequence: It creates
nonconstant steady states that can be controlled in a transparent way by the drift
vector field. This offers interesting application areas that go far beyond the clas-
sical image regularisation and enhancement applications of diffusion methods.
We have illustrated this potential by using osmosis for compact image repre-
sentation, shadow removal, and seamless image cloning. While many diffusion
filters rely on nonlinear concepts and may even require singular diffusivities or
anisotropic diffusion tensors, our osmosis models show their high versatility al-
ready within a purely linear setting. Moreover, unlike gradient domain methods,
osmosis is intrinsically invariant under global multiplicative changes of the grey
values. In view of their promising potential, it is our hope that osmosis modelling
will become a widely applied framework for visual computing.

Obviously our paper can only serve as a starting point, and there are many
ways to continue research on osmosis processes for image analysis and synthesis.
While our applications have exploited the nontrivial steady states of osmosis
processes, it would also be interesting to see if the evolution itself has useful
applications. On a theoretical side, we are working on a complete well-posedness
and convergence theory for continuous linear osmosis processes, and we are also
establishing a linear osmosis theory for semidiscrete and fully discrete processes;
see [15] for first results. Last but not least, we will also consider nonlinear gen-
eralisations of our linear osmosis framework.
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Abstract. Blind deconvolution involves the estimation of a sharp signal or image
given only a blurry observation. Because this problem is fundamentally ill-posed,
strong priors on both the sharp image and blur kernel are required to regularize the
solution space. While this naturally leads to a standard MAP estimation frame-
work, performance is compromised by unknown trade-off parameter settings,
optimization heuristics, and convergence issues stemming from non-convexity
and/or poor prior selections. To mitigate these problems, several authors have re-
cently proposed substituting a variational Bayesian (VB) strategy that marginal-
izes over the high-dimensional image space leading to better estimates of the
blur kernel. However, the underlying cost function now involves both integrals
with no closed-form solution and complex, function-valued arguments, thus los-
ing the transparency of MAP. To elucidate these issues, we demonstrate that the
VB methodology can be recast as an unconventional MAP problem with a very
particular penalty/prior that couples the image, blur kernel, and noise level in a
principled way. This unique penalty has a number of useful characteristics per-
taining to relative concavity, local minima avoidance, and scale-invariance that
allow us to rigorously explain the success of VB including its existing implemen-
tational heuristics and approximations. It also provides strict criteria for choos-
ing the optimal image prior that, perhaps counter-intuitively, need not reflect the
statistics of natural scenes. In so doing we challenge the prevailing notion of why
VB is successful for blind deconvolution while providing a transparent platform
for introducing enhancements and extensions.

1 Introduction

Image blur is an undesirable phenomenon that often accompanies the image forma-
tion process and may arise, for example, because of camera-shake during acquisition.
Blind image deconvolution or deblurring strategies aim to recover a sharp image from
only a blurry, compromised observation, a long-standing problem [8] that remains an
active research topic [5,16,11,4,6]. Assuming a convolutional blur model with additive
noise [5,16], the low quality image observation process is commonly modeled as

y = k ∗ x+ n, (1)

where k is the point spread function (PSF) or blur kernel, ∗ denotes the 2D convolution
operator, and n is a noise term commonly assumed to be zero-mean Gaussian with co-
varianceλI (although as we shall see, these assumptions about the noise distribution can
easily be relaxed via the framework described herein). The task of blind deconvolution

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 40–53, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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is to estimate both the sharp image x and blur kernelk given only the blurry observation
y, where we will mostly be assuming that x and y represent filtered (e.g., gradient do-
main) versions of the original pixel-domain images. Because k is non-invertible, some
(typically) high frequency information is lost during the observation process, and thus
even if k were known, the non-blind estimation of x is ill-posed. However, in the blind
case where k is also unknown, the difficulty is exacerbated considerably, with many
possible image/kernel pairs explaining the observed data equally well.

To alleviate this problem, prior assumptions must be adopted to constrain the space
of candidate solutions, which naturally suggests a Bayesian framework. In Section 2, we
briefly review the two most common classes of Bayesian algorithms for blind deconvo-
lution used in the literature, (i) Maximum a Posteriori (MAP) estimation and (ii) Vari-
ational Bayes (VB), and then later detail their fundamental limitations, which include
heuristic implementational requirements and complex cost functions that are difficult to
disentangle. Section 3 uses ideas from convex analysis to reformulate these Bayesian
methods promoting greater understanding and suggesting useful enhancements, such
as rigorous criteria for choosing appropriate image priors. Experiments are carried out
in Section 4 to provide corroborating empirical evidence for some of our theoretical
claims. Finally, concluding remarks are contained in Section 5.

2 MAP versus VB

To compensate for the ill-posedness of the blind deconvolution problem, a strong prior
is required for both the sharp image and kernel to regularize the solution space. Re-
cently, natural image statistics have been invoked to design prior (regularization) mod-
els, e.g., [9,7], and MAP estimation using these priors has been proposed for blind
deconvolution, e.g., [5,16,12]. While some specifications may differ, the basic idea is
to find the mode of the posterior distribution p(x,k|y), which is equivalent to solving

min
x,k

−2 log p(y|x,k)p(x)p(k) ≡ min
x,k

1

λ
‖k ∗ x− y‖22 + gx(x) + gk(k), (2)

where gx(x) is a penalty term over the desired image while gk(k) regularizes the blur
kernel, both of which generally have embedded parameters that must be balanced along
with λ. It is also typical to assume that

∑
i ki = 1, with ki ≥ 0 and we will adopt this

assumption throughout (however, Section 3.5 will discuss a type of scale invariance
such that this assumption becomes irrelevant anyway).

Although straightforward, there are many problems with existing MAP approaches
including ineffective global minima, e.g., poor priors may lead to degenerate solutions
like the delta kernel (frequently called the no-blur solution), or too many local minima
and subsequent convergence issues. Therefore, the generation of useful solutions (or to
guide the algorithm carefully to a proper local minima) requires a delicate balancing
of various factors such as dynamic noise levels, trade-off parameter values, and other
heuristic regularizers such as salient structure selection [16,4,6] (we will discuss such
issues more in Sections 3.3 and 3.4). To mitigate some of these shortcomings of MAP,
the influential work by Levin et al. and others proposes to instead solve [11]

max
k

p(k|y) ≡ min
k
−2 log p(y|k)p(k), (3)
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where p(y|k) =
∫
p(x,y|k)dx. This technique is sometimes referred to as Type II

estimation in the statistics literature.1 Once k is estimated in this way, x can then be
obtained via conventional non-blind deconvolution techniques. One motivation for the
Type II strategy is based on the inherent asymmetry in the dimensionality of the image
relative to the kernel [11]. By integrating out (or averaging over) the high-dimensional
image, the estimation process can then more accurately estimate the few remaining
low-dimensional parameters in k.

The challenge of course with (3) is that the evaluation of p(y|k) requires a marginal-
ization over x, which is a computationally intractable integral given realistic image
priors. Consequently a variational Bayesian (VB) strategy is used to approximate the
troublesome marginalization [12]. A similar idea has also been proposed by a number of
other authors [13,5,1]. In brief, VB provides a convenient way of computing a rigorous
upper bound on − log p(y|k), which can then be substituted into (3) for optimization
purposes leading to an approximate Type II estimator.

The VB methodology can be easily applied whenever the image prior p(x) is ex-
pressible as a Gaussian scale mixture (GSM) [15], meaning

p(x) = exp

[
−1

2
gx(x)

]
=
∏
i

exp

[
−1

2
gx(xi)

]
=
∏
i

∫
N (xi; 0, γi)p(γi)dγi,(4)

where each N (xi; 0, γi) represents a zero mean Gaussian with variance γi and prior
distribution p(γi). The role of this decomposition will become apparent below. Also,
with some abuse of notation, p(γi) may characterize a discrete distribution, in which
case the integral in (4) can be reduced to a summation. Note that all prior distributions
expressible via (4) will be supergaussian [15], and therefore will to varying degrees
favor a sparse x. Given this p(x), the negative log of p(y|k) can be upper bounded via

− log p(y|k) ≤ −
∫∫

q(x,γ) log
p(x,γ,y|k)
q(x,γ)

dxdγ︸ ︷︷ ︸
F [q(x,γ),k]

,

where F [q(x,γ),k] is called the free energy, q(x,γ) is an arbitrary distribution over
x, and γ = [γ1, γ2, . . .]

T , the vector of all the variances from (4). Equality is obtained
when q(x,γ) = p(x,γ|y,k). In fact, if we were able to iteratively minimize this F
over q(x,γ) and k (i.e., a form of coordinate descent), this would be exactly equivalent
to the standard expectation-maximization (EM) algorithm for minimizing− log p(y|k)
with respect to k, treating γ and x as hidden data and assuming p(k) is flat within the
specified constraint set mentioned previously (see [2, Ch.9.4] for a detailed examina-
tion of this fact). However, optimizing over q(x,γ) is intractable since p(x,γ|y,k) is
generally not available in closed-form. Likewise, there is no closed-form update for k,
and hence no exact EM solution is possible.

The VB theory shows that if we restrict the form of q(x,γ) via structural assump-
tions, the updates can now actually be computed, albeit approximately. For this purpose

1 To be more specific, Type II estimation refers to the case where we optimize over one set of
unknown variables after marginalizing out another set, in our case the image x. In this context,
standard MAP over both x and k can be viewed as Type I.
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Algorithm 1. VB Blind Deblurring [12,15,1]
1: Input: a blurry image y, noise level reduction factor β (β > 1), minimum noise

level λ0, an image prior p(x) = exp[− 1
2gx(x)] =

∏
i exp[− 1

2gx(xi)]
2: Initialize: blur kernel k, noise level λ
3: While stopping criteria is not satisfied, do

– Update sufficient statistics for q(γ) =
∏
i q(γi)

ωi � Eq(γi)[γ
−1
i ]← gx

′(σi)
2σi

, with σ2
i � Eq(xi)[x

2
i ] = μ2

i + Cii.
– Update sufficient statistics for q(x) =

∏
i q(xi)

μ � Eq(x)[x]← A−1b, Cii � Varq(xi)[xi]← A−1
ii , where A = HTH

λ +

diag[ω], b = HTy
λ , H is the convolution matrix of k.

– Update k
k ← argmink≥0 ‖y −Wk‖22 +

∑
j cjk

2
j , where cj =

∑
i Ci+j,i+j and W is

the convolution matrix of μ.
– Noise level reduction If λ > λ0, then λ← λ/β.

4: End

the most common constraint is that q(x,γ) must be factorized, sometimes called a
mean-field approximation [2, Ch.10.1]:

min
q(x,γ),k

F [q(x,γ),k] , s.t. q(x,γ) =
∏
i

q(xi)q(γi). (5)

The requisite update rules are shown in Algorithm 1. Numerous methods fall within this
category with some implementational differences. Note also that the full distributions
for each q(xi) and q(γi) are generally not needed; only a few sufficient statistics are
required (certain means and variances, see Algorithm 1), analogous to standard EM.
These can be efficiently computed using techniques from [15] for any p(x) produced
by (4). In the VB algorithm from [12], the sufficient statistic for γ is computed using an
alternative methodology which applies only to finite Gaussian scale mixtures. However,
the resulting updates are nonetheless equivalent to Algorithm 1 as shown in [19].

While possibly well-motivated in principle, the Type II approach relies on rather se-
vere factorial assumptions which may compromise the original high-level justifications.
In fact, at any minimizing solution denoted q∗(xi), q∗(γi), ∀i,k∗, it is easily shown
that the gap between F and − log p(y|k∗) is given explicitly by the KL divergence
between the distributions

∏
i q

∗(xi)q∗(γi) and p(x,γ|y,k∗). Because the posterior
p(x,γ, |y,k) is generally highly coupled (non-factorial), this divergence will typically
be quite high, indicating that the associated approximation could be of low quality.
We therefore have no reason to believe that this k∗ is anywhere near the maximizer of
p(y|k), which was the ultimate goal and motivation of Type II to begin with.

Other problems persist as well. For example, the free energy cost function, which
involves both integration and function-valued arguments, is not nearly as transparent as
the standard MAP estimation from (2). Moreover for practical use, like most deconvo-
lution algorithms including MAP, VB requires an appropriate schedule for reducing the
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noise variance λ during each iteration (see Algorithm 1), otherwise performance can be
quite poor.

It therefore becomes difficult to rigorously explain exactly why VB has often been
empirically more successful than MAP in practice (see [1,12] for empirical compar-
isons), nor how to decide which image priors operate best in the VB framework. While
Levin et al. have suggested that at a high level, marginalization over the latent image
using natural-image-statistic-based priors is a good idea to overcome some of the prob-
lems faced by MAP estimation [11], this argument only directly motivates substituting
(3) for (2) rather than providing explicit rationalization for (5). Thus, we intend to more
meticulously investigate the mechanism by which VB operates, explicitly accounting
for all of the approximations and assumptions involved by drawing on sparse estima-
tion concepts from [15,18]. This endeavor will also naturally motivate extensions to the
VB framework and a simple prescription for choosing an appropriate image prior p(x).
Overall, we hope that we can further demystify VB providing an entry point for broader
improvements such as robust non-uniform deblurring.

Several surprising, possibly counterintuitive conclusions emerge from our investiga-
tion in Section 3 which challenge some of the prevailing wisdom regarding why and
how Bayesian algorithms can be advantageous for blind deconvolution. These include:

– The optimal image prior for blind deconvolution purposes using VB or MAP is
likely not the one which most closely reflects natural images statistics. Rather, we
argue that it is a highly-sparse distribution that most significantly discriminates
between blurry and sharp images.

– The advantage of VB over MAP is not directly related to the dimensionality dif-
ferences between k and x and the conventional benefits of marginalization over
the latter. In fact, we prove in Section 3.1 that the underlying cost functions are
formally equivalent in ideal noiseless environments given the factorial assumptions
required by practical VB algorithms. Instead, there is an intrinsic mechanism built
into VB that allows bad locally minimizing solutions to be largely avoided even
when using the highly non-convex, discriminative priors needed to distinguish be-
tween blurry and sharp images. This represents a new perspective on the relative
advantages of VB.

– The VB algorithm can be reformulated in such a way that non-Gaussian noise mod-
els, non-uniform blur operators, and other extensions are easily incorporated, cir-
cumventing one important perceived advantage of MAP.

3 Analysis of Variational Bayes

Following [5] and [12], we work in the derivative domain of images for ease of
modeling and better performance, meaning that x and y denote the lexicographically
ordered image derivatives of sharp and blurry images respectively obtained via a partic-
ular derivative filter. Given that convolution is commutative, the blur kernel is unaltered.

For latent sharp image derivatives of size M × N and blur kernel of size P × Q,
we denote the lexicographically ordered vector of sharp image derivatives, blurry im-
age derivatives, and blur kernel as x ∈ Rm, y ∈ Rn and k ∈ Rl respectively, with
m � MN , n � (M − P + 1)(N − Q + 1), and l � PQ. This assumes a single
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derivative filter. The extension to multiple filters, typically one for each image dimen-
sion, follows naturally. For simplicity of notation however, we omit explicit referencing
of multiple filters throughout this paper, although all related analysis follow through in
a straightforward manner.

The likelihood model (1) can be rewritten as y = Hx + n = Wk + n, where
H ∈ R

n×m and W ∈ R
n×l are the convolution matrices constructed from the blur

kernel and sharp image respectively. We introduce a matrix Ī ∈ Rl×m, where the j-th
row of Ī is a binary vector with 1 indicating that the j-th element of k (i.e. kj) appears

in the corresponding column of H and 0 otherwise. We define ‖k̄‖2 �
√∑

j k
2
j Īji,

which is equivalent to the norm of the i-th column of H. It can also be viewed as the
effective norm of k accounting for the boundary effects. 2 The element-wise magnitude
of x is given by |x| � [|x1|, |x2|, · · · ]T .

Finally we introduce the definition of relative concavity [14] which will serve sub-
sequent analyses:

Definition 1. Let u be a strictly increasing function on [a, b]. The function ν is concave
relative to u on the interval [a, b] if and only if ν(y) ≤ ν(x)+ ν′(x)

u′(x) [u(y)− u(x)] holds
∀x, y ∈ (a, b).

We will use ν ≺ u to denote that ν is concave relative to u on [0,∞). This can be
understood as a natural generalization of the traditional notion of a concavity, in that a
concave function is equivalently concave relative to a linear function per Definition 1.
The notion of relative concavity induces an ordering for many of the common sparsity
promoting penalty functions. Intuitively, a non-decreasing function ν of |xi| is more
aggressive in promoting sparsity than some u if it is concave relative to u.

3.1 Connecting VB with MAP

As mentioned previously, the VB algorithm of [12] can be efficiently implemented us-
ing any image prior expressible in the form of (4). However, for our purposes we re-
quire an alternative representation with roots in convex analysis. Based on [15], it can
be shown that any prior given by (4) can also be represented as a maximization over
scaled Gaussians with different variances leading to the alternative representation

p(xi) = exp

[
−1

2
gx(xi)

]
= max
γi≥0

N (xi; 0, γi) exp

[
−1

2
f(γi)

]
, (6)

where f is some non-negative energy function; the associated exponentiated factor is
sometimes treated as a hyperprior, although it will not generally integrate to one. This
f , which determines the form of gx, will ultimately play a central role in how VB
penalizes x as will be explored via the results of this section. We now re-express the

2 Technically ‖k̄‖2 depends on i, the index of image pixels, but it only makes a difference near
the image boundaries. We prefer to avoid an explicit notational dependency on i to keep the
presentation concise. The subsequent analysis will also omit this dependency although all of
the results carry through in the general case. The same is true for other quantities that depend
on ‖k̄‖2, e.g., the ρ parameter defined later in (7).
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VB cost function in an alternative form amenable to direct comparisons with MAP from
(2):

Theorem 1. Consider the objective function

L(x,k) � 1

λ
‖y − k ∗ x‖22 +

∑
i

[
gVB(xi, ρ) + log ‖k̄‖22

]
, (7)

where
gVB(xi, ρ) � min

γi≥0

[
x2i
γi

+ log(ρ+ γi) + f(γi)

]
, and ρ � λ

‖k̄‖22
. (8)

Algorithm 1 minimizing (5) is equivalent to coordinate descent minimization of (7) over
x, k, and the latent variables γ = [γ1, γ2, . . .]

T .

Proofs will be deferred to [19]. The penalty on k in (7) is not unlike those incorporated
into standard MAP schemes from (2). However, quite unlike MAP, the image penalty
gVB is dependent on both the noise level λ and the kernel k through the parameter ρ, the
ratio of the noise level to the squared kernel norm. Moreover, with a general λ �= 0, it
is easily shown that gVB is non-separable in k and x, meaning gVB(xi, ρ) �= h1(xi) +
h2(k) for any possible functions h1 and h2. The remainder of Section 3 will explore the
consequences of this crucial, yet previously unexamined distinction from typical MAP
formulations.

In contrast, with λ = 0, both MAP and VB possess a formally equivalent penalty on
each xi via the following corollary:

Corollary 1. If λ = 0, then gVB(xi, 0) = gx(xi) ≡ −2 log p(xi).

Therefore the underlying VB cost function is effectively no different than regular MAP
from (2) in the noiseless setting, a conclusion that seems to counter some of the prevail-
ing understanding of VB deconvolution algorithms.

3.2 Evaluating the VB Image Penalty gVB

We will now attempt to explore in more depth exactly how the image penalty gVB from
(7) contributes to the success of VB. While in a few special cases gVB can be computed
in closed-form for general ρ �= 0 leading to greater transparency, as we shall see below
the VB algorithm and certain attendant analyses can nevertheless be carried through
even when closed-form solutions for gVB are not possible. Importantly, we can assess
properties that may potentially affect the sparsity and quality of resulting solutions as λ
and ‖k̄‖22 are varied.

A highly sparse prior, and therefore penalty function, is generally more effective in
differentiating sharp images with fine structures from blurry ones (more on this later).
Recall that concavity with respect to coefficient magnitudes is a signature property of
such sparse penalties [18]. A potential advantage of MAP is that it is very straightfor-
ward to characterize the associated image penalty; namely, if gx from (2) is a highly
concave, nondecreasing function of each |xi|, then we may expect that sparse image
gradients will be heavily favored. And for two candidate image penalties gx(1) and
gx

(2), if gx(1) ≺ gx
(2), then we may expect the former to promote an even sparser

solution than the latter (provided we are not trapped at a bad local solution).
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In contrast, with VB it is completely unclear to what degree gVB favors sparse so-
lutions. We now explicitly describe sufficient and necessary conditions for gVB to be a
concave, nondecreasing function of |xi|, which turn out to be much stricter than the
conditions required for MAP.

Theorem 2. The VB penalty gVB will be a concave, non-decreasing function of |xi|
for any ρ if and only if f from (6) is a concave, non-decreasing function on [0,∞).
Moreover, at leastm−n elements of x will equal zero at any locally minimizing solution
to (7) (however typically many more will equal zero in practice).

Theorem 2 explicitly quantifies what class of image priors leads to a strong, sparsity-
promoting x penalty when fully propagated through the VB framework. Yet while this
attribute may anchor VB as a legitimate sparse estimator in the image (filter) domain
given an appropriate f , it does not explain precisely why VB often produces superior
results to MAP. In fact, the associated MAP penalty gx (when generated from the same
f ) will actually promote sparse solutions under much weaker conditions as follows:

Corollary 2. The MAP penalty gx will be a concave, non-decreasing function of |xi| if
and only if ϑ(z) � log(z) + f(z) is a concave, non-decreasing function on [0,∞).

The extra log factor implies that f itself need not be concave to ensure that gx is con-
cave. For example, the selection f(z) = z− log(z) it not concave and yet the associated
gx still will be since now ϑ(z) = z, which is concave and non-decreasing as required
by Corollary 2. Moving forward then, to really understand VB we must look deeper and
examine the role of ρ in modulating the effective penalty on x.

For this purpose, consider the simplest choice for f satisfying the conditions of
Theorem 2; namely, f(γ) = b for some constant b. This in turn implies that p(xi)
is the improper Jeffreys non-informative prior on the coefficient magnitudes |xi|, i.e.,
p(x) ∝ 1/|x|, after solving the maximization from (6), and is attractive in part because
there are no embedded hyperparameters (the constant b is irrelevant).

Theorem 3. In the special case where f(γi) = b, then

gVB(xi, ρ) ≡
2|xi|

|xi|+
√
x2i + 4ρ

+ log

(
2ρ+ x2i + |xi|

√
x2i + 4ρ

)
. (9)

Figure 1 (a) displays a 2D plot of this penalty function. In the limit as ρ → 0, the
first term in (9) converges to the indicator function I[xi �= 0], and thus when we
sum over i we obtain the 
0 norm of x.3 The second term in (9), when we again
sum over i, converges to

∑
i log |xi|, ignoring a constant factor. Sometimes referred

to as Gaussian entropy, this term can also be connected to the 
0 norm via the relations
‖x‖0 ≡ limp→0

∑
i |xi|p and limp→0

1
p

∑
i(|xi|p−1) =

∑
i log |xi| [18]. Thus the cu-

mulative effect when ρ becomes small is an image prior that closely mimics the highly
non-convex 
0 norm. In contrast, when ρ becomes large, it can be shown that both terms
in (9), when combined for all i, approach scaled versions of the convex 
1 norm. Ad-
ditionally, if we assume a fixed kernel and ignore boundary effects, this scaling turns

3 Although with ρ = 0, this term reduces to a constant, and therefore has no impact.
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out to be optimal in a particular Bayesian sense (this technical point will be addressed
further in a future publication).

For intermediate values of ρ between these two extremes, we obtain a gVB that be-
comes less concave with respect to each |xi| as ρ increases in the specific sense of
relative concavity discussed previously. To help formalize this notion, we define the
function gραVB : R+ → R as gραVB (z) = gVB(z, ρ = ρα), with z ≥ 0. Note that because
gVB is a symmetric function with respect to the origin, we may conveniently examine
its concavity properties considering only the positive half of the real line. We then have
the following:

Corollary 3. If f(γi) = b, then gρ1VB ≺ gρ2VB for ρ1 < ρ2.

Thus, as the noise level λ is increased, ρ increases and we have a penalty that behaves
more like a convex (less sparse) function, and so becomes less prone to local minima.
In contrast, as ‖k̄‖22 is increased, meaning that ρ is now reduced, the penalty actually
becomes more concave with respect to |xi|. This phenomena is in some ways similar
to certain homotopy sparse estimation schemes (e.g., [3]), where heuristic hyperparam-
eters are introduced to gradually introduce greater non-convexity into canonical com-
pressive sensing problems, but without any dependence on the noise or other factors.
The key difference here with VB is that penalty shape modulation is explicitly dictated
by both the noise level λ and the kernel k in an entirely integrated fashion.

3.3 Noise Dependency Analysis

The success of practical VB blind deconvolution algorithms is heavily dependent on
some form of stagewise coarse-to-fine approach, whereby the kernel is repeatedly re-
estimated at successively higher resolutions. One way to implement this approach is to
initially use large values of λ such that only dominant, primarily low-frequency image
structures dictate the optimization [11]. During subsequent iterations as the blur ker-
nel begins to reflect the correct coarse shape, λ can be gradually reduced to allow the
recovery of more detailed, fine structures.

A highly sparse (concave) prior can ultimately be more effective in differentiating
sharp images and fine structures from blurry ones (see [19] and references within).
However, if such a prior is applied at the initial stages of estimation, the iterations are
likely to become trapped at suboptimal local minima, of which there will always be a
combinatorial number. Moreover, in the early stages, the effective noise level is actually
high due to errors contained in the estimated blur kernel, and exceedingly sparse im-
age penalties are likely to produce unstable solutions. Given the reformulation outlined
above, we can now argue that VB implicitly avoids these problems by beginning with a
large λ (and therefore a large ρ), such that the penalty function is initially nearly convex
in |xi|. As the iterations proceed and fine structures need to be resolved, the penalty
function becomes less convex as λ is reduced, but the risk of local minima and insta-
bility is ameliorated by the fact that we are likely to be already in the neighborhood
of a desirable basin of attraction. Additionally, the implicit noise level (or modeling
error) is now substantially less. This kind of automatic ‘resolution’ adaptive penalty
shaping is arguably superior to conventional MAP approaches based on (2), where the
concavity/shape of the induced separable penalty function is kept fixed regardless of the
variation in the noise level or scale.
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3.4 Blur Dependency Analysis

The shape parameter ρ is also affected by the kernel norm, with larger values of ‖k̄‖22
leading to less convexity of the penalty function gVB while small values increase the con-
vexity. With the standard assumptions

∑
j kj = 1 and kj ≥ 0, ‖k̄‖22 is bounded between

1/l and 1, where l is the number of pixels in the kernel.4 An increase of ‖k̄‖22 indicates
that the kernel is more sparse, with the extreme case of k = δ leading to ‖k̄‖22 = 1. In
this situation, gVB is the most concave in |xi| (per the analysis of Section 3.2), which is
reasonable, as this is the easiest kernel type to handle so the sparsest penalty function
can be used without much concern over local minima. In contrast, ‖k̄‖22 is the smallest
when all elements are equal, which is the more challenging case corresponding with a
broad diffuse image blur, with many local minima. In this situation, the penalty func-
tion is more convex and conservative. In general, a highly concave prior is not needed
to disambiguate a highly blurred image from a relatively sharp one.

Additionally, at the beginning of the learning process when λ is large and before any
detailed structures have been resolved, the log ‖k̄‖22 penalty on k from (7) will naturally
favor a blurry, diffuse kernel in the absence of additional information. This will help
ensure that gVB is relatively convex and less aggressive during the initial VB iterations.
However, as the algorithm proceeds, λ is reduced, and some elements of x are pushed
towards zero, the penalty gVB, with its embedded k dependency, will gradually become
less convex and can increasingly dominate the overall cost function (since for small
λ and large ‖k̄‖22 the lower bound on gVB can drop arbitrarily per the above described
concavity modulation). Because gVB is minimized as k becomes relatively sparse, a
more refined k can be explored at this stage to the extent that x can be pushed towards
greater sparsity as well (if x is not sparse, then there is no real benefit to refining k).
Again, this desirable effect occurs with relatively limited risk of local minima because
of the gradual, intrinsically-calibrated introduction of increased concavity. In contrast,
successful MAP algorithms must add various structure selection heuristics or penalty
terms and associated trade-off parameters to (2) in order to avoid suboptimal minima
and improve performance [16,4,17].

3.5 Other Choices for f

Because essentially any sparse prior on x can be expressed using the alternative vari-
ational form from (6), choosing such a prior is tantamount to choosing f which then
determines gVB. Theorem 2 suggests that a concave, non-decreasing f is useful for fa-
voring sparsity (assumed to be in the gradient domain). Moreover, Theorem 3 and sub-
sequent analyses suggest that the simplifying choice where f(γ) = b possesses several
attractive properties regarding the relative concavity of the resulting gVB. But what about
other selections for f and therefore gVB?

While directly working with gVB can sometimes be limiting (except in certain special
cases like f(γ) = b from before), the variational form of (8) allows us to closely examine

4 Actually, because of natural invariances embedded into the VB cost function, the assumption∑
j kj = 1 is not needed for the analysis that follows. See Section 3.5 for more details.
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the relative concavity of a useful proxy. Let ψ(γi, ρ) � log(ρ + γi) + f(γi). Then for
fixed λ and k the VB estimation problem can equivalently be viewed as solving

min
x,γ≥0

1

λ
‖y − k ∗ x‖22 +

∑
i

[
x2i
γi

+ ψ(γi, ρ)

]
. (10)

It now becomes clear that the sparsity of x and γ are intimated related. More con-
cretely, assuming f is concave and non-decreasing, then there is actually a one-to-one
correspondence in that whenever xi = 0, the optimal γi = 0, and vice versa.5 Therefore
we may instead examine the relative concavity of ψ for different ρ values, which will
directly determine the sparsity of γ and in turn, the sparsity of x. This then motivates
the following result:

Theorem 4. Let ρ1 < ρ2 and assume that f is a concave, non-decreasing function.
Then ψρ1 ≺ ψρ2 if and only if f(γ) = aγ + b, with a ≥ 0.

Thus, although we have not been able to formally establish a relative concavity result
for all general gVB directly, Theorem 4 provides a nearly identical analog allowing us to
draw similar conclusions to those detailed in Sections 3.3 and 3.4 whenever a general
affine f is adopted. Perhaps more importantly, it also suggests that as f deviates from
an affine function, we may begin to lose some of the desirable effects regarding the
described penalty shape modulation.

While previously we closely scrutinized the special affine case where f(γ) = b, it
still remains to examine the more general affine form f(γ) = aγ + b, a > 0. In fact,
it is not difficult to show that as a is increased, the resulting penalty on x increasingly
resembles an 
1 norm with lesser dependency on ρ, thus severely muting the effect of
the shape modulation that appears to be so effective (see arguments above and empir-
ical results section below). So there currently does not seem to be any advantage to
choosing some a > 0 and we are left, out of the multitude of potential image priors,
with the conveniently simple choice of f(γ) = b, where the value of b is inconsequen-
tial. Experimental results support this conclusion: namely, as a is increased from zero
performance gradually degrades (results not shown for space considerations).

As a final justification for simply choosing f(γ) = b, there is a desirable form of
invariance that uniquely accompanies this selection.

Theorem 5. If x∗ and k∗ represent the optimal solution to (7) under the constraint∑
i ki = 1, then α−1x∗ and αk∗ will always represent the optimal solution under the

modified constraint
∑
i ki = α if and only if f(γ) = b.

This is unlike the myriad of MAP algorithms or VB with other choices of f , where the
exact calibration of the constraint can fundamentally alter the form of the optimal solu-
tion beyond a mere rescaling. Moreover, if such a constraint on k is omitted altogether,
these other methods must then carefully tune associated trade-off parameters, so in one
way or another this lack of invariance may require additional tuning.

5 To see this first consider xi = 0. The x2
i /γi term can be ignored and so the optimal γi need

only minimize log(ρ + γi) + f(γi), which is concave and non-decreasing whenever f is.
Therefore the optimal γi is trivially zero. Conversely if γi = 0, then there is effectively an
infinite penalty on xi, and so the optimal xi must also be zero.
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Fig. 1. (a) A 2D example surface plot of the coupled penalty function gVB(x, ρ); f is a constant.
(b) Evaluation of the restoration results: Cumulative histogram of the deconvolution error ratio
across 32 test examples. The height of the bar indicates the percentage of images having error
ratio below that level. High bars indicate better performance.

4 Experimental Results

We emphasize that the primary purpose of this paper is the formal analysis of state-of-
the-art VB methodology. Empirical support for recent VB algorithms, complementary
to our theoretical presentation, can be found in [1,12]. Nonetheless, motivated by our
results herein, we now briefly evaluate two simple enhancements of Algorithm 1. In
particular, we (i) learn the λ parameter from Algorithm 1 based on updates from [19]
derived using the VB formulation given in Section 3.1, and (ii) incorporate an image prior
obtained using a flat f in (6) instead of a prior based on natural image statistics. We will
refer to this algorithm as VB-Jeffreys since the underlying image prior is based on the
improper Jeffreys distribution as described previously. Interestingly, Babacan et al. [1]
experiment with a variety of VB algorithms using different underlying image priors, and
empirically find that f as a constant works best; however, no explanation is given for
why this should be the case. Thus, our results in Section 3 provide a powerful theoretical
confirmation of this selection, along with a number of useful attendant intuitions.6

We reproduce the experiments from [12] using the benchmark test data from [11].7

This consists of 4 base images of size 255×255 and 8 different blurring effects, leading
to a total of 32 blurry images. We compare the VB-Jeffreys method with the algorithms
of Shan et al. [16], Xu et al. [17], Cho et al. [4], Fergus et al. [5] and Levin et al. [12].
The methods of Fergus et al. and Levin et al. are two related VB approaches, labeled
VB-Fergus and VB-Levin respectively. The other three methods [16,17,4] follow the
MAP framework, and are labeled as MAP-Shan, MAP-Xu and MAP-Cho respectively.

6 Based on a strong simplifying assumption that the covariance C from Algorithm 1 is a constant,
Babacan et al. [1] provide some preliminary discussion regarding possibly why VB may be
advantageous over MAP. However, this material mostly exists in the sparse estimation literature
(e.g., see [15,18] and related references) and therefore the behavior of VB blind deconvolution
remains an open question.

7 This data is available online at http://www.wisdom.weizmann.ac.il/˜levina/
papers/LevinEtalCVPR09Data.rar

 http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.rar
 http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.rar
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The SSD (Sum of Squared Difference) metric defined in [11] is used for measuring
the error between estimated and the ground-truth images. To normalize for the fact
that harder kernels give a larger image reconstruction error even when the true kernel is
known, the SSD ratio between the image deconvolved with the estimated kernel and the
image deconvolved with the ground-truth kernel is used as the final evaluation measure.

The results of MAP-Cho, VB-Fergus, and VB-Levin are from the dataset accom-
panying [12] directly. The results of MAP-Shan and MAP-Xu are produced using the
software provided by the authors, for which we adjust the parameters carefully. For all
algorithms we run every test image with the same parameters and non-blind deconvo-
lution step, similar to [11]. The cumulative histogram of the error ratios is shown in
Figure 1(b). The height of the bar indicates the percentage of images having error ratio
below that level. High bars indicate better performance. As mentioned by Levin et al.,
the results with error ratios above 2 may already have some visually implausible re-
gions [11]. The VB-Jeffreys algorithm can achieve around 90% success with error ratio
below 2, well above the other algorithms.

In general, all of the VB algorithms exhibit good performance, especially given that
they do not benefit from any additional prior information or regularization heuristics
that facilitate blur-adaptive structure selection, meaning additional refinements based
on domain knowledge added to (2) that boost all of the MAP algorithms. Notably, even
without this additional regularization factors, VB-Jeffreys significantly outperforms the
MAP algorithms. However, one curious phenomenon is that both VB-Fergus and VB-
Levin experience a relatively large drop-off in performance when the error ratio reduces
from 1.5 to 1.1. While it is difficult to be absolutely certain, one plausible explanation
for this decline relates to the prior selection employed by these algorithms. In both
cases, the prior is based on a finite mixture of zero mean Gaussians with different
variances tuned to natural image statistics. While such a prior does heavily favor ap-
proximately sparse signals, it will never produce any exactly sparse estimates at any
resolution of the course-to-fine hierarchy, and hence, especially at high resolutions the
penalty shape modulation effect of VB will be highly muted. Thus these algorithms
may not be optimal for resolving extremely fine details, which is required for reliably
producing image estimates with the lowest error ratios. In contrast, to achieve high er-
ror ratios only lower resolution features need be resolved, and in this regime VB-Levin,
which is the closest algorithmically to VB-Jeffreys, performs nearly the best. Again,
this reinforces the notion that natural image statistics may not be the optimal basis for
image priors within the VB framework.

5 Conclusion

This paper carefully examines the underlying VB objective function in a transparent
form, leading to better understanding and a principled criteria for choosing the optimal
image prior. In this context, we have motivated a unique selection, out of the infinite set
of possible sparse image priors, that simultaneously allows for maximal discrimination
between blurry and sharp images, displays a desirable form of scale invariance, and
leads to an intrinsic coupling between the blur kernel, noise level, and image penalty
such that bad local minima can largely be avoided. From this perspective, it is no longer
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difficult to enhance performance and generality by inheriting additional penalty func-
tions or noise models (e.g., Laplacian, Poisson, etc.) commonly reserved for MAP. To
the best of our knowledge, this represents a new viewpoint for understanding VB al-
gorithms. While technically these conclusions only apply to the uniform blur model
described by (1), we envision that many of the underlying principles can nonetheless
be applied to more general models in the future. Initial results using a non-uniform blur
model are promising [20].
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the Bit-Depth of Low Contrast Image
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Abstract. Traditionally, bit-depth expansion is an image processing
technique to display a low bit-depth image on a high bit-depth mon-
itor. In this paper, we study a variational method for expanding the
bit-depth of low contrast images. Our idea is to develop a variational
approach containing an energy functional to determine a local mapping
function f(r, x) for bit-depth expansion via a smoothing technique, such
that each pixel can be adjusted locally to a high bit-depth value. In
order to enhance low contrast images, we make use of the histogram
equalization technique for such local mapping function. Both bit-depth
expansion and equalization terms can be combined together into the re-
sulting objective function. In order to minimize the differences among
the local mapping function at the nearby pixel locations, the spatial
regularization of the mapping is incorporated in the objective function.
Experimental results are reported to show that the performance of the
proposed method is competitive with the other compared methods for
several testing low contrast images.

Keywords: bit-depth expansion, variational methods, low contrast,
spatial regularization.

1 Introduction

The bit-depth of an image refer to the number of bits used to represent a pixel
value. A high bit-depth implies greater ability to store the information. The most
widely used images are 8-bit in gray-level or 24-bit in color, which are suitable
for displaying on traditional Cathode Ray Tube (CRT) monitors. There are some
legacy images stored in a low bit-depth. Also high bit-depth images are emerging
along with the development of capturing and displaying instruments in imaging
sciences. A low bit-depth image has its advantages on saving storage space and
transmission.However, content and contrast are distorted in lowbit-depth images.
In particular, it would be useful and interesting to display a high bit-depth image
from a low bit-depth and low contrast image and This paper aims at investigating
an variational method to expand the bit-depth of low contrast images.

1.1 Bit-Depth Expansion Methods

The conventional methods for bit-depth expansion include zero-padding (ZP),
multiplication-by-an-ideal-gain (MIG) [1], bit-replication (BR) [1], Gamma-
expansion (GE) [2], and high dynamic range imaging (HDRI). Whereas HDRI

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 54–65, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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usually requires a collection of photographs taken with different exposures, for
instance the methods in [3–6], we focus on the problem of expanding the bit-
depth from one given image only.

The bit-depth expansion problem came up from the inverse image dithering
problem. The problem can be depicted as follows. Given a p−bit image X with
a range [0, 2p− 1] and a q−bit (q > p) image Y with a range [0, 2q − 1], the goal
is to convert X to Y . Obviously the most simple idea is through zero padding
(ZP): [Y ]i,j = [X ]i,j × 2(q−p). Another basic method is to multiply an ideal gain
(MIG) and then round to the nearest integer:

[Y ]i,j = Round

(
[X ]i,j ×

2q − 1

2p − 1

)

The other method combining the gamma selection is used in Akyuz’s psy-
chophysical experiments [2], namely gamma expansion (GE) method:

Y = k(
X −Xmin

Xmax −Xmin
)γ ,

where k represents the highest possible value of Y and γ determines the nonlin-
earity of the scaling. In [1], a bit replication (BR) method is proposed:

[X ]i,j = xp−1xp−2 · · ·x1x0; [Y ]i,j = xp−1xp−2 · · ·x1x0xp−1xp−2 · · · ,

where xk is the kth bit of the (i, j)th pixel value [X ]i,j of X . These methods
achieve an one-to-one mapping, which means a gray level in a low bit-depth
image can only be mapped to a certain gray level in a high bit-depth image. It
is clear that these methods do not consider spatial pixel locations in adjusting
pixel values. Thus the resulting image may suffer from contouring artifacts. Re-
cently, a more sophisticated method is proposed in [7]. The idea is to use MIG
as initialization of the high bit-depth image, and then remove the contouring
artifacts by a spatial variant filter based on the segmentation of the contour
suffered region. The results of this two-step method depend on whether the con-
tour region can be correctly divided from smooth regions. In [8], other low-pass
filters with adaptive windows size are developed to obtain a better performance
in edge-preservation and contour removal.

1.2 The Contribution

In this paper, we propose and develop a variational approach containing an
energy functional to determine a local mapping function f(r, x) for bit-depth
expansion, such that each pixel can be adjusted locally to a high bit-depth
value. Here r refers to the variable for the number of bits used and x refers
to the variable for pixel locations. A smoothing technique can be employed in
the expansion process by considering the regularization based on the first-order
derivative of f with respect to r:

∫
x

∫
r fr(r, x)

2. Since low bit-depth images may
be degraded due to exposure reasons [9], the visual appearance (contrast) of the
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displayed image should be enhanced in the variational method. We can make
use of the histogram equalization technique to find a local mapping function
to enhance low contrast images:

∫
x

∫
r fr(r, x)

2/h(r, x) where h(r, x) is the lo-
cal histogram of a low contrast image. As both bit-expansion and histogram
equalization processes involves the first-order derivative of f with respect to
r, we combine them together into the resulting objective function. In order to
minimize the differences among the local mapping function at the nearby pixel
locations, the spatial regularization of the mapping is also incorporated in the
functional:

∫
x

∫
r
‖∇f(r, x)‖22. To adjust a local mapping function, we also in-

corporate another penalty term to require the mean brightness of the displayed
image can be close to that of the input image. Experimental results are reported
to show that the performance of the proposed method is competitive with the
other compared methods for several testing low contrast images.

The outline of this paper is organized as follows. In Section 2, we will describe
the proposed model. In Section 3, we will present the algorithm to solve the
proposed model numerically. In Section 4, we will present numerical examples
to show the effectiveness of the proposed model. Finally, the concluding remarks
will be given in Section 5.

2 The Proposed Model

Our main idea is to make use of histogram equalization and smoothing techniques
to determine an local mapping function to display low bit-depth and low contrast
images. Let r and s represent the normalized variables for a low contrast low bit-
depth image and its displayed bit-expanded image respectively, i.e., 0 ≤ r, s ≤ 1.
Assume that h(r) represents the normalized histograms for the input low bit-
depth image. A function s = f(r), is used to map each input level r to a new level
s to achieve the required enhancement objective. It has been shown in [10] that
the histogram equalization problem can be considered a variational minimization
problem as follows:

min
f
J(f) =

∫ 1

0

1

h(r)
f2
r dr, (1)

where fr is the first derivative of f with respect to r.
Suppose Ω denotes the image domain. In order to preserve more local image

details and to make the enhancement according to such details of an input low
bit-depth image, we employ a local transformation f(r, x), where (r, x) ∈ Λ =
(0, 1) × Ω. Here, at each pixel location x, we design a transformation f(r, x).
Then a term of an objective function should contain∫

Λ

1

h(r, x)
fr(r, x)

2dxdr. (2)

On the other hand, a smoothing technique is used for bit-depth expansion. We
can include a term ∫

Λ

fr(r, x)
2dxdr
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Here fr(r, x) is the first-order derivative of f with respect to r. As both bit-
expansion and histogram equalization processes involves fr(r, x), we combine
them together by considering (2) only into the resulting objective function.

In order to minimize the differences among the local transformations at the
nearby pixel locations, the spatial regularization of the transformation is also
incorporated in the functional for the equalization process. In particular, we
consider the H1-norm regularization |∇f |2 of f in the model, where ∇ denotes
the gradient operator of f with respect to the horizontal and vertical directions
of an image. Moreover, we can incorporate another penalty term that the mean
brightness of the displayed high bit-depth image can be close to that of the input
low bit-depth image. The proposed variational model is given as follows:

Φ(f) =

∫
Λ

1

h(r, x)
fr(r, x)

2dxdr + γ1

∫
Λ

|∇f |2dxdr + γ2

∫
Ω

(∫ 1

0

fh(r, x)dr− μ

)2

dx,

(3)

where γ1 and γ2 are two positive regularization parameters, and μ is the mean
brightness of the input low bit-depth image.

According to [7, 8], the disadvantage of ZP, MIG, BR and GE methods is
that they only provide one-to-one mapping from a low to high bit-depth image.
Indeed, most of possible values in high bit-depth image are not used. In the
proposed, we make use of the variational method to determine a local transfor-
mation which gives a one-to-many mapping from a low to high bit-depth image.
According to local transformation based on local image details, the same pixel
value at two different locations may be mapped to two different pixel values, and
the two pixel values at the nearby pixel locations may be mapped to close pixel
values. We expect the noise and contour artifacts of the displayed high bit-depth
image can be resolved, and its local contrast can also be enhanced.

In a discrete setting, the functional in (3) can be written as follows:

Φd(f ) =

R∑
i=1

N∑
j=1

(D
(r)
i,j f)

2

hi,j
+ γ1

R∑
i=1

N∑
j=1

∥∥∥D(x)
i,j f
∥∥∥2
2
+ γ2

N∑
j=1

(
R∑
i=1

fi,jhi,j − μ

)2

, (4)

where R and N refers to the number of high bit-depth levels and the number of
pixel values respectively, f = [fi,j ] is the n-vector containing the transformation
function values at the i-th high bit-depth level and j-th pixel location (the
lexicographic ordering of f is used), n = R × N refers to the total number
of unknowns. For a displayed high bit-depth image of q bits, R is equal to 2q.

Moreover, D
(r)
i,j f is the discrete derivative value of f with respect to the i-th high

bit-depth level at j-th pixel location, and D
(x)
i,j f is the discrete gradient vector

of f with respect to the j-th pixel location at the i-th high bit-depth level (the

Euclidean norm ‖D(x)
i,j f‖22 is used). It is clear that D

(r)
i,j is an 1-by-n matrix and

D
(x)
i,j is an 2-by-n matrix for 1 ≤ i ≤ R and 1 ≤ j ≤ N .
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As a summary, the following minimization problem is employed for displaying
a high bit-depth image:

min
f
Φd(f) subject to 0 ≤ f ≤ 1 (5)

3 The Algorithm

In practice, we employ the alternating direction method of multipliers (ADMM)
to solve the constrained optimization problem in (5). For simplicity, we form

n-by-n matrix D(r) = [(D
(r)
i,j )

T ] and 2n-by-n matrix D(x) = [(D
(x)
i,j )

T ]. By using
the Lagrangian multipliers λ1, λ2, λ3, λ4 to the linear constraints:

u = D(r)f , and v = w = z = f ,

with u = [ui,j], the augmented Lagrangian function is given by

L(f ,u,v,w, z, λ1 , λ2, λ3, λ4)

= ι(z) +
R∑
i=1

N∑
j=1

u2
i,j

hi,j
+ γ1

R∑
i=1

N∑
j=1

∥∥∥D(x)
i,j v
∥∥∥2
2
+ γ2

N∑
j=1

(
R∑
i=1

wi,jhi,j − μ

)2

+

< λ1,u−D(r)f > + < λ2,v − f > + < λ3,w− f > + < λ4, z− f > +

β(||u−D(r)f ||22 + ||v − f ||22 + ||w − f ||22 + ||z− f ||22),

where

ι(z) :=

{
0, 0 ≤ z ≤ 1,
+∞, otherwise,

and < ·, · > is the inner product of Euclidean space.

The Algorithm:

(i) Set f0 = f̃ , λ01 = λ̃1, λ
0
2 = λ̃2, λ

0
3 = λ̃3, λ

0
4 = λ̃4 be the initial input data;

(ii) At the kth iteration:
– Given fk, λk1 , λ

k
2 , λ

k
3 , λ

k
4 , and compute uk+1, vk+1,wk+1, zk+1 by solving:

min
u,v,w,z

L(fk,u,v,w, z, λk1 , λk2 , λk3 , λk4); (6)

– Given uk+1,vk+1,wk+1, zk+1, and compute fk+1 by solving:

L(f ,uk+1,vk+1,wk+1, zk+1, λk1 , λ
k
2 , λ

k
3 , λ

k
4); (7)

– Updating λk+1
1 , λk+1

2 , λk+1
3 , λk+1

4 by using:

λk+1
1 = λk1 + 2 ∗ β(uk+1 −D(r)fk+1),

λk+1
2 = λk2 + 2 ∗ β(vk+1 − fk+1),

λk+1
3 = λk3 + 2 ∗ β(wk+1 − fk+1),

λk+1
4 = λk4 + 2 ∗ β(zk+1 − fk+1).
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(iii) Go back to Step (ii) until
||fk+1 − fk||
||fk+1|| ≤ ε.

For the subproblem in (6), all the unknowns can be solved separately. In the
next section, we test the proposed algorithm to expand low bit-depth and low
contrast images.

4 Numerical Results

For ease and obviousness of displaying the results, we test our variational method
on 8-bit (in each channel) RGB images of size 256 × 256 as shown in Figures 1-
5(a). The input images in Figures 1-5(b) are obtained from 8-bit original images in
Figures 1-5(a) by averaging, and some of them are manually lowered the contrast

(a) 8-bit color image (b) 6-bit color input image (c) GE with γ = 1 (d) GE with γ = 0.45

(e) GE with γ = 2.2 (f) iTMO (g) iTMO with HE (h) Proposed method with
γ1 = 1000, γ2 = 10
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Fig. 1. The Comparison of different methods for the “Couple” image
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Table 1. PSNR value comparison

Input PSNR (dB)

Images Proposed GE with γ = 1 GE with γ = 0.45 GE with γ = 2.2 iTMO iTMO with HE

Lena 19.49 19.09 9.66 6.65 17.09 17.46
Boats 20.22 20.17 13.13 7.53 17.56 20.42

Monolake 24.33 9.24 12.14 10.23 12.03 20.23
Peppers 29.35 7.13 10.09 17.17 9.84 19.22

(a) 8-bit color image (b) 6-bit color input image (c) GE with γ = 1 (d) GE with γ = 0.45

(e) GE with γ = 2.2 (f) iTMO (g) iTMO with HE (h) Proposed method with
γ1 = 100, γ2 = 10
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Fig. 2. The Comparison of different methods for the “Lena” image

or biased the exposure to simulate different degradation cases.We see fromFigures
1(h)-(i), the histogram are biased toward the small values, and this input image in
is underexposed. Here the histogram combines all the pixel values in the red, green
and blue channels. We see from Figures 2-5(h) that the histograms of Figures 2-
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(a) 8-bit color image (b) 6-bit color input image (c) GE with γ = 1 (d) GE with γ = 0.45

(e) GE with γ = 2.2 (f) iTMO (g) iTMO with HE (h) Proposed method with
γ1 = 1000000, γ2 = 500
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0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

(k) Histogram of (c)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

(l) Histogram of (d)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

(m) Histogram of (e)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

(n) Histogram of (f)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

(o) Histogram of (g)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

(p) Histogram of (h)

Fig. 3. The Comparison of different methods for the “Boats” image

5(a) are not biased toward the small or large values. Therefore, wemanually adjust
their pixel values to under-exposed images (see Figures 2-3(b) and 2-3(i)) and the
over-exposed images (Figures 4-5(b) and 4-5(i)).

We compare our results with Gamma expansion (GE) method [2] and Ban-
terle’s inverse tone mapping operators (iTMO) method [11]. GE method has the
effect of adjusting the contrast and iTMO method simulates the camera response
function. To keep comparison fair, we also consider doing the histogram equal-
ization to the input images first and then applying iTMO method. The PSNR
values between the resulting image and the original 8-bit image are shown in
Table 1 except for Figure 1 where it is a low contrast image already.

The parameters in GE method is set as the same in Akyuz’s psychophysical
investigations in [2] with three gamma alternatives γ = 1, 0.45, 2.2. The iTMO
method inverts the Reinhard’s tone mapping operators in [12]. The initial local
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(a) 8-bit color image (b) 6-bit color input image (c) GE with γ = 1 (d) GE with γ = 0.45

(e) GE with γ = 2.2 (f) iTMO (g) iTMO with HE (h) Proposed method with
γ1 = 100000, γ2 = 10000
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Fig. 4. The Comparison of different methods for the “Monolake” image

histogram hi,j in equation (4) was obtained by calculating the local histograms
of the input low contrast image and then linearly project them onto the desired
dynamic range with zeros padding. The values of parameters β, γ1 and γ2 are
tuned according to the PSNR values between the displayed image and the origi-
nal 8-bit image. In the tests, we set the fixed value of the penalty parameter β to
be 100 in the ADMM method. The stopping criterion of the ADMM method is
that the relative difference between the successive iterates ε is less than 1×10−4.

According to Figures 1-5, it can be shown from the results that the proposed
method achieves better visual appearance and obtain higher PSNR values than
the other testing methods in most cases. The local contrast is enhanced to in-
crease detailed visibility. In the meanwhile, the over-exposed or under-exposed
images can be adjusted through the histogram redistribution process to achieve
a observer-friendly display in high bit-depth setting. These results are also re-
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(a) 8-bit color image (b) 6-bit color input image (c) GE with γ = 1 (d) GE with γ = 0.45

(e) GE with γ = 2.2 (f) iTMO (g) iTMO with HE (h) Proposed method with
γ1 = 1000000, γ2 = 10
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Fig. 5. The Comparison of different methods for the “Peppers” image

flected from the more equalized histograms generated by the proposed method,
see Figures 1-5(n). However, the histograms generated by the other methods
are still biased toward either small or large pixel values, see Figures 1-5(j), 1-
5(k), 1-5(l), and 1-5(m). Indeed, the results by iTMO show that the contrast
can also be enhanced but only on the limited middle range. Since it only reverts
by using one nonlinear s-shaped camera response function. it cannot deal with
the regions with small or large pixel values, especially when the input image is
under-exposed or over-exposed. The GE method can also control the contrast
uniformly, but it cannot improve local contrast of input images.

Finally, we report the ADMM method converges very fast. In our examples,
it takes around 5-10 iterations to obtain the resulting high bit-depth image, and
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the computational time is about 15 seconds in average. Since we are doing local
histogram calculation, the algorithm is easy to be modified to parallel computing
for acceleration.

5 Concluding Remarks

In this paper, we have presented a variational method to generate a high bit-
depth image from a single low bit-depth image so that it can be appropriately
displayed on a high bit-depth monitor or projector. The pixel values from a
low bit-depth image are mapped to that on a high bit-depth image by spatial
variant mapping functions, derived from the constrained variational histogram
equalization method. The energy minimization problem can be solved efficiently
by ADMM algorithm. From the experimental results, we can see that the detailed
visibility can be enhanced as well as avoiding the over-enhancement of the noise
and other artifacts. The proposed method can also deal with the under-exposed
or over-exposed input images to enhance their local contrast in the resulting
high bit-depth image.
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Abstract. In this paper we propose an efficient method to calculate a high-
quality depth map from a single raw image captured by a light field or plenoptic
camera. The proposed model combines the main idea of Active Wavefront Sam-
pling (AWS) with the light field technique, i.e. we extract so-called sub-aperture
images out of the raw image of a plenoptic camera, in such a way that the virtual
view points are arranged on circles around a fixed center view. By tracking an
imaged scene point over a sequence of sub-aperture images corresponding to a
common circle, one can observe a virtual rotation of the scene point on the image
plane. Our model is able to measure a dense field of these rotations, which are
inversely related to the scene depth.

Keywords: Light field, depth, continuous optimization.

1 Introduction

In geometrical optics, rays are used to model the propagation of light. The amount of
light propagated by a ray is denoted as radiance, and the radiance along all rays in a 3D
space is called the plenoptic function [1]. The plenoptic function is a 5D function, due to
the fact that a ray in 3D space can be parametrized via a position (x, y, z) and a direction
(ξ, η). However, the 5D plenoptic function contains redundant information, because
the radiance along a ray remains constant till it hits an object. Thus, the redundant
information is one dimensional which reduces the 5D plenoptic function to the 4D light
field [14] or Lumigraph [12].

There are different devices to capture light fields. The simplest ones are single mov-
ing cameras (gantry constructions), which allow a large baseline between captured
viewpoints, but are limited to static scenes. Another way of capturing light fields is
via multiple cameras. This approach allows to capture dynamic scenes, but is very
hardware intensive. In order to capture a full light field, multiple cameras have to be
arranged in a 2D array [22]. A further device which re-attracts attention in recent years
is the light field [14] or plenoptic camera [2]. As long ago as in the year 1908, Lipp-
mann [15] introduced the basic idea of such a camera. The technique has then been
developed and improved by various authors [8–10], but it needed nearly a century till
the first commercial plenoptic camera has become available [19, 18].
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Fig. 1. (a) and (b) illustrates different types of light field or plenoptic cameras defined by Lums-
daine and Georgiev [16]. (a) Sketch of a traditional light field camera, also called plenoptic
1.0 camera. (b) Sketch of a focused light field camera, also denoted as plenoptic 2.0 camera.
(c) Sketch of the used light field parametrization. The 4D light field L(x, y, ξ, η) is rewritten as
L(p, q), where p is a point in the image plane and q is a point in the lens plane. Thus p represents
the spatial component and q represents the directional component.

Compared to a conventional camera (2D photograph), which only captures the total
amount of light striking each point on the image sensor, a light field camera records the
amount of light of individual light rays, which contribute to the final image. Recording
the additional directional information is achieved by inserting a micro-lens-array into
the optical train of a conventional camera. This has the effect, that the micro-lenses
separate the incoming light into several rays of different directions. The individual light
rays are then captured at different locations on the sensor.

Depending on the focusing position of the main lens and the micro-lenses, Lums-
daine and Georgiev [16] distinguished between two types of plenoptic cameras, plenop-
tic 1.0 and plenoptic 2.0 (cf Figure 1(a) and 1(b)). In a traditional plenoptic camera
(plenoptic 1.0) [2, 19, 18] the main lens is focused at the micro-lens plane and the
micro-lenses are focused at the main lens (optical infinity). Thus, the position of each
micro-lens captures spatial information, and the part of the sensor under each micro-
lens captures angular information. Note, that each micro-lens spans the same angular
range. Thus, the size of the individual micro-lenses sets the spatial sampling resolution,
which leads to a fundamental trade-off: For a fixed sensor resolution, the increase of di-
rectional resolution, simultaneously decreases the spatial resolution of the final image.
In a focused plenoptic camera (plenoptic 2.0) the micro-lenses are focused on the focal
plane of the main lens, which has on the one hand the effect, that angular information
is spread across different micro-lenses, but on the other hand the camera now records
dense spatial information, rather than dense directional information, which results in a
higher spatial resolution of the final image.

Using a two-plane parametrization (cf Figure 1(c)) the general structure of a light
field can be considered as a 4D function

L : Ω ×Π → R, (p, q) �→ L(p, q) (1)

where p := (x, y)T and q := (ξ, η)T represent coordinate pairs in the image plane
Ω ⊂ R

2 and in the lens plane Π ⊂ R
2, respectively.
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(a) (b) (c)

Fig. 2. Raw image data captured with a plenoptic 1.0 camera. (a) shows the complete raw image
and (b) and (c) are closeup views, which show the effect of the micro-lens array. Each micro-lens
splits the incoming light into rays of different directions, where each ray hits the image sensor
behind the micro-lens at a different location. Thus the use of such a micro-lens array makes it
possible to capture the 4D light field.

There are several different visualizations of the light field data. The most obvious
one, in the case of a plenoptic camera, is the raw image recorded by the sensor itself.
This raw image is a composition of small discs, where each disc represents the image
of a specific micro-lens. A typical example of a raw image obtained by a plenoptic
camera is shown in Figure 2. Another representation can be obtained by extracting all
values out of the raw image, which correspond to light-rays with the same direction. In
the case of a plenoptic 1.0 this means one has to consider all image values which are
located at the same position in the disc-like image of each micro-lens. As in [18], images
obtained in such a way will be referred to as sub-aperture images. In terms of the 4D
light field L(p, q), a sub-aperture image is an image obtained by holding a direction q
fixed and varying over all image positions p. This sub-aperture representation provides
an interesting interpretation of the light field data as a series of images with slightly
different viewpoints, which are parallel to a common image plane. This shows that the
light field provides information about the scene geometry. We also want to mention a
more abstract visualization of the light field, which goes under the name epipolar image.
An epipolar image is a slice of the light field, where one coordinate of the position p
and one coordinate of the direction q is held constant.

It has been shown, that the light field can be used for different image processing tasks,
like e.g. digital refocusing [13, 18], extending the depth of field [18], digital correction
of lens aberrations [18], super-resolution [4, 24], and depth estimation [3, 23]. In this
paper we will focus mainly on the latter task of depth calculation.

There has been done a lot of research in developing algorithm for traditional stereo
estimation, but there is a lack of algorithms, which are capable of exploiting the struc-
ture within a light field. To the best of our knowledge, there are two recent works,
which consider the task of depth estimation using a plenoptic camera. First, Bishop and
Favaro [3] proposed an iterative multi-view method for depth estimation which con-
siders all possible combinations of sub-aperture images on a rectangular grid aligned
with the micro-lens center. Second, Wanner and Goldluecke [23] proposed a method
for depth labeling of light fields, where they make use of the epipolar representation of
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the light field. They also propose to enforce additional global visibility constraints, but
even without this additional step, their method is computational expensive.

2 Methodology

The proposed method is motivated by the idea of Active Wavefront Sampling
(AWS)[11], which is a 3D surface imaging technique, that uses a conventional cam-
era and a so called AWS module. The simples type of an AWS module is an off-axis
aperture, which is rotated around the optical axis. This circular movement of the aper-
ture results in a rotation of a scene point’s image on the image plane. This has the effect,
that the scene point’s depth is encoded by the radius of the according rotation on the
image plane. A scene point located on the in-focus plane of the main lens will have a
zero radius and thus its image will remain constant throughout all aperture positions,
whereas scene points located at increasing distances from the in-focus plane will rotate
on circles with increasing radii. Note, that a scene point which is located behind the
in-focus plane will have an image rotation that is shifted by π on the rotation circle,
compared to a scene point in-front of the in-focus plane. After calculating the circle
rotation, the true depth can be obtained by simple geometric considerations.

Due to the fact that an image recorded with a traditional camera and an additional
AWS module is similar to a specific sub-aperture image extracted from the light field,
it is possible to apply the main idea of AWS to the light field setting. More precisely,
in the case of a plenoptic 1.0 camera, i.e. that we have to extract sub-aperture images,
where the directional positions lie on a circle centered at the origin of the lens planeΠ .

Contrary to AWS, the light field provides much more information than just sub-
aperture images corresponding to a single rotating off-axis aperture. The light field data
allows to extract sub-aperture images corresponding to arbitrary circles and, what is
even more important, it also allows to extract the center view. Moreover, it should also
be mentioned, that in the light field setting the different sub-aperture images corre-
spond to the same point in time. In the AWS setting images are captured at different
times, where the time-difference depends on the time needed to mechanically move the
rotating off-axis aperture from one position to the next.

We also want to note, that, in the AWS setting as well as in the light field setting, a
circle movement is not the only path, which can be used. In general an arbitrary path
can be used, and depth can be recovered as long as the path is known. However, in this
work we will restrict ourselves to circular paths. On the one hand circular paths are used
due to the fact that such patterns match the raw image data better than rectangular ones,
and thus reduce unwanted effects like vignetting. On the other hand the use of circular
patterns also simplifies the model.

3 Shape from Light Field Model

We now continue with formulating the proposed stereo model, which is based on varia-
tional principles. As an example we will briefly describe the general variational problem
for stereo estimation, which is usually written as follows:

min
d
λΨ(d; IL, IR) + Φ(d) , (2)
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where Ψ measures the data fidelity between two image IL and IR for a given disparity
map d, Φ is a regularization function, and λ � 0 weights the influence of the data term.
Common fidelity terms are e.g. the Euclidean norm, or the 
1 norm.

The problem of stereo matching is in general ill-posed, therefore additional assump-
tions about the disparity map d are needed. This prior knowledge is added via the reg-
ularization function Φ. A popular regularization term is the Total Variation TV(x) =∫
d|∇x|, which favors piecewise constant solutions.
In what follows we will present the proposed model for estimating a depth map for

a given light field L(p, q). The model can be seen as a specialized multi-view stereo
matching approach, where the rotation radius of a scene point’s image is measured
with respect to a given center position. We will first describe the data-fidelity term and
discuss afterwards suitable regularization functions.

3.1 Data Fidelity Term

In our model we assume a plenoptic 1.0 camera, and we denote with u : Ω → R

a function which defines for each scene point, captured at the position p ∈ Ω in the
center view L(·,0), the corresponding scene point’s largest image rotation radius. This
allows us to state the following energy in the continuous setting:

Edata(u) =

∫
Ω

∫ R

0

∫ 2π

0

ψs,r(p, u(p)) d(s, r, p) , (3)

with

ψs,r(p, u(p)) = θ
(
L (p,0)− L

(
p− u(p)

ϕs,r
R

,ϕs,r

))
, (4)

where ϕs,r = r (cos(s), sin(s))
T is a circle parametrization with radius r and center at

the origin, Ω ⊂ R2 is the image domain, θ(·) denotes an error estimator, and R > 0
is the predefined largest allowed circle radius in the lens plane, which corresponds to
the largest possible aperture radius of the main lens. Thus, ψs,r(p, u(p)) measures the
brightness difference between the center view L(·,0) at position p and the sub-aperture
imageL(·, ϕs,r) at positionp− u(p)ϕs,r

R . Here, the latter position describes for varying
s a circle in the image plane centered at p and with radius u(p) rR (cf Figure 3).

As already mentioned above, common fidelity terms are the Euclidean norm or the 
1

norm. The corresponding error functions are the quadratic differences and the absolute
differences, respectively. The Euclidean norm provides the advantage of being differ-
entiable, which allows to apply standard optimization techniques. But it comes with the
disadvantage of not being robust to outliers, which occur in areas of occlusions. The 
1

norm on the other hand is non-smooth, but it is more robust to outliers, and hence we
will make us of it, i.e. we choose θ(x) = |x|.

In order to obtain a convex approximation of the data term (3) we use first-order
Taylor approximations for the sub-aperture images, i.e.

L
(
p− u(p)

ϕs,r
R

,ϕs,r

)
≈ (5)

L
(
p− u0(p)

ϕs,r
R

,ϕs,r

)
+ (u(p)− u0(p))

r

R
∇−ϕs,r

r
L
(
p− u0(p)

ϕs,r
R

,ϕs,r

)
,
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Fig. 3. (a) and (b) illustrate the parametrization used in (3). (a) sketches a scene point’s image po-
sition (purple dot) and the corresponding rotation circle, and (b) shows the according directional
sampling position in the lens plane for extracting the sub-aperture image. (c) and (d) provide a
visualization of the scene point’s image rotation. (c) is the center view and (d) shows the color in-
verted difference image between two sub-aperture images . The two fixed directional components
of the light field, which are used to extract the sup-aperture images, are chosen to lie opposite to
each other on a circle centered at zero.

where ∇−ϕs,r
r

denotes the directional derivative, with direction [−ϕs,r

r ,0]T.

Finally we want to note, that although the 
1 norm is robust to outliers it is not robust
to varying illumination. Thus, e.g. vignetting effects of the main lens and the micro-
lenses, might lead to problems. In order to be more robust against illumination changes,
we apply a structure-texture decomposition [25] on the sub-aperture images, i.e. we
pre-process each image by removing its low frequency component.

3.2 Regularization Term

In this section we will briefly discuss different regularization terms, which can be added
to the data-fidelity term proposed in Section 3.1. A regularization term is needed due to
the fact, that the problem of minimizing (3) with respect to u is ill-posed, and therefore
the fidelity term alone does not provide sufficient information to calculate a reliable
solution. Thus, we additionally assume that u varies smoothly almost everywhere in the
image domain. In order to add this assumption to our model, we will use an extension
of Total Generalized Variation (TGV) [5]. As indicated by the name, TGV is a gen-
eralization of the famous Total Variation (TV). Whereas TV favors piecewise constant
solutions, TGVk favors piecewise polynomial solutions of order k− 1, e.g. TGV2 will
favor piecewise linear solutions. Following the work by Ranftl et al. [21], we extend
TGV2 by using an anisotropic diffusion tensor D

1
2 . This diffusion tensor connects the

prior with the image content, which leads to solutions with a lower degree of smooth-
ness around depth edges. This image-driven TGV regularization term can be written
as

Ereg(u) = min
w

α1‖D
1
2 (∇u−w)‖M + α0‖∇w‖M , (6)
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where ‖ · ‖M denotes a Radon norm for vector-valued and matrix-valued Radon mea-
sures, and α0, α1 > 0. Furthermore, as in [21]

D
1
2 = exp(−γ |∇I|β)nnT + n⊥n⊥T

, (7)

where I denotes the center view L(·,0), n is the normalized gradient, n⊥ is a vec-
tor perpendicular to n, and γ and β are predefined scalars. Combining the data term
in (3) and the above regularization term (6) leads to a robust model, which is capable of
reconstructing subpixel accurate depth maps.

3.3 Discretization

By discretizing the spatial domain Ω, and the involved circles in (3) we obtain

Êdata(u) =
∑
p∈Ω̂

M∑
i=1

N∑
j=1

ψsj ,ri(p, u(p)), with sj =
2 π(j − 1)

N
and ri =

R i

M
, (8)

where Ω̂ := {(x, y)T ∈ N2
0 |x < n, y < m} denotes the discrete image domain.

Furthermore,M andN are the number of different sampling circles, and the number of
uniform sampling positions on each circle, respectively.

3.4 Optimization

In order to optimize the complete discretized problem

min
u∈Rmn

λ Êdata(u) + Êreg(u) (9)

we use a primal-dual algorithm, proposed by Chambolle et al. [7]. Therefore, we first
have to rewrite (9) as a saddle point problem. Note, that u ∈ Rmn is now represented as
a column vector, and Êreg(u) denotes the discrete version of (6). To simplify notation
we first define Ãij and Bij ∈ R

mn as

Ãij :=

(
ri
R
∇−ϕsj,ri

ri

L
(
p− u0(p)

ϕsj ,ri
R

,ϕsj ,ri

))
p∈Ω̂

, (10)

Bij :=
(
L (p,0)− L

(
p− u0(p)

ϕsj ,ri
R

,ϕsj ,ri

))
p∈Ω̂

, (11)

and by setting Aij := diag(Ãij), it is possible to formulate (9) equivalently as the
following saddle point problem

min
u,w

max
‖pu‖∞ ≤ 1
‖pw‖∞ ≤ 1
‖pij‖∞ ≤ 1

{
λ

M∑
i=1

N∑
j=1

〈Bij −Aij(u− u0),pij〉+ (12)

α1

〈
D

1
2 (∇u−w),pu

〉
+ α0 〈∇w,pw〉

}
,



Variational Shape from Light Field 73

Algorithm 1. Primal-Dual Algorithm for Shape from Light Field
Require: Choose σ > 0 and τ > 0, s.t. τσ = 1. Set Σpu , Σpw , Σpij , Tu, and Tw as in (13),

n = 0, and the rest arbitrary.

while n < iter do

// Dual step

pn+1
u ← P{‖pu‖∞�1}

(
pn
u + σΣpuα1

(
D

1
2 (∇ūn − w̄n)

))
pn+1
w ← P{‖pw‖∞�1} (p

n
w + σΣpwα0 (∇w̄n))

pn+1
ij ← P{‖pij‖∞�1}

(
pn
ij + σλ (Bij − Aij(ū

n − u0))
)

// Primal step

un+1 ← un − τ Tu

(
α1∇T

(
D

1
2pn+1

u

)
+ λ

∑
i,j Aijp

n+1
ij

)
wn+1 ← wn − τ Tw

(
α0∇Tpn+1

w − α1D
1
2pn+1

u

)
ūn+1 ← 2un+1 − un

w̄n+1 ← 2wn+1 −wn

// Iterate
n ← n+ 1

end while

where the dual variables pij have the same dimension as Bij . Now we can directly
apply the algorithm proposed in [7] to solve (12).

An improvement with respect to convergence speed can be obtained by using ad-
equate symmetric and positive definite preconditioning matrices [20], leading to the
update scheme shown in Algorithm 1, which is iterated for a fixed number of itera-
tions or till a suitable convergence criterion is fulfilled. Here P denotes a reprojection
operator, and Σ∗, and T∗ are the preconditioning matrices, given as follows

Σpu =
1

3
I, Σpw =

1

2
I, Σpij = I, Tw =

1

α2
1 + 4α2

0

I

Tu =
(
α1 diag

(
DT
xDx +DT

yDy
))−1

+
∑
i,j

(λAij)
−2
, (13)

where I denotes the identity matrix,
(Dx

Dy

)
:= D

1
2∇, and diag(X) takes a matrix X

and sets all elements, which are not on the main diagonal to zero.
Due to the fact, that the linear approximation (5) is only accurate in a small area

around u0 we embed the complete algorithm into a coarse-to-fine warping scheme [6].
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clean vignetting vignetting & noise

Fig. 4. Examples of generated synthetic data. The figure shows pairs of images, where one is
a closeup view of the synthetic raw image data and the other represents a corresponding sub-
aperture image. From left to right the pairs show clean data, data with added vignetting effects,
and data with added vignetting effect and additive Gaussian noise.

4 Experimental Results

In this section we first evaluate our method using the Light Field Benchmark Dataset
(LFBD)1, which is a dataset of synthetic light fields created with Blender2. All light
field scenes within the dataset have a directional resolution of 9 × 9 pixels per micro-
lens, and varying spatial resolutions, which are listed in Table 1. After the synthetic
evaluation we will also present some qualitative results for real world data, where we
use raw images captured with a Lytro3 camera as input for the proposed algorithm.

4.1 Synthetic Experiments

We first evaluate our algorithm on synthetic images similar to the ones taken with a
plenoptic camera (cf Figure 4), where the images are created using the LFBD. For
the synthetic experiments we set M = 1 and N = 8, which means that we use a
single circle and 8 sampling positions per circle. Other parameters are tuned for the
different scenes. Figure 5 shows qualitative depth map results for the proposed approach
as well as the ground truth data provided in the LFBD. It can be observed, that the
proposed approach is capable of creating piecewise smooth depth maps with clear depth
discontinuities. Further, we also visualize the relative depth errors in green (red), which
are smaller (larger) than 0.2% and 1.0% in column four and five, respectively. It can be
seen that the remaining errors are concentrated at occlusion boundaries or at positions
of specular highlights.

Next we simulate vignetting effects of the micro-lenses and the main lens as well
as additive image noise. For the vignetting effect of the main lens and micro-lenses
we reduce the brightness of pixel based on their distance from the image center and the
micro-lens center, respectively. As image noise we use additive Gaussian noise with zero
mean and a variance with a σ equal to 2% of the image dynamic range. Example images
are shown in Figure 4 and the quantitative results can be found in Table 1. To justify
the high quality of our depth map results we also provide the results for the variational

1 http://lightfield-analysis.net
2 http://www.blender.org/
3 https://www.lytro.com/

http://lightfield-analysis.net
http://www.blender.org/
https://www.lytro.com/
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Fig. 5. Qualitative results for synthetic scenes. All scenes have a directional resolution of 9 × 9
pixels per micro-lens, and varying spatial resolutions, which are listed in Table 1. The figure
shows from left to right, the center view, the color coded ground truth depth map, the color coded
depth map results for the proposed method, and maps which indicate in green (red) the pixels
with a relative depth error of less (more) than 0.2% and 1.0%, respectively.
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Table 1. Quantitative results for the scenes shown in Figure 5. The table shows the percentage
of pixels with a relative depth error of more than 0.2%, 0.5%, and 1.0%, for different synthetic
scenes.

clean vignetting vignetting & noise spatial
1.0% 0.5% 0.2% 1.0% 0.5% 0.2% 1.0% 0.5% 0.2% resolution

buddha 2.12 3.91 8.37 2.23 4.41 10.38 2.42 4.97 15.28 768× 768
buddha2 1.15 2.44 15.05 1.69 4.40 21.81 1.53 3.86 23.33 768× 768
mona 2.08 4.66 12.90 2.44 6.47 19.54 2.82 9.46 22.11 768× 768
papillon 2.42 3.82 8.79 2.37 4.17 12.97 3.08 6.26 19.12 768× 768
stillLife 0.96 2.32 6.33 1.00 2.17 6.89 0.94 2.17 6.02 768× 768
horses 1.98 4.47 16.83 2.56 6.98 21.37 3.71 11.05 27.86 1024× 576
medieval 1.53 2.93 11.09 1.70 3.50 18.78 1.69 4.54 19.74 1024× 720

average 1.75 3.51 11.34 2.00 4.59 15.96 2.31 6.04 19.07

Table 2. Quantitative results of methods proposed by Wanner and Goldluecke [23] evaluated on
an older version of the LFBD. The results are taken from [23], and provided here as a reference
point to the results shown in Table 1. The scenes are quite similar to the ones shown in Figure 5
(especially the buddha∗ scene is nearly identical to the buddha2 scene of the current LFBD). The
table shows the percentage of pixels with a relative depth error of more than 0.2% and 1.0%, for
the different methods proposed in [23].

Local [23] Global [23] Consistent [23] directional spatial
1.0% 0.2% 1.0% 0.2% 1.0% 0.2% resolution resolution

conehead∗ 22.9 78.5 1.3 51.0 1.1 48.9 21× 21 500× 500
mona∗ 57.0 91.9 25.7 87.7 19.9 84.5 41× 41 512× 512
buddha∗ 20.4 73.6 4.1 61.7 2.9 60.4 21× 21 768× 768

average 33.4 81.3 10.4 66.8 8.0 64.6

depth labeling approach presented in [23] (cf Table 2). These results were generated
using an older version of the LFBD, which is unfortunately no longer available. How-
ever, certain scenes like e.g. the buddha∗ scene is nearly identical to the buddha2 scene
in the current LFBD, which allows to draw a comparison. By doing so, we see that the
proposed method outperforms the method in [23] in terms of accuracy by a large mar-
gin. Moreover, depending on the spatial resolution of the input images, the proposed
approach takes about 5-10 seconds to compute, whereas the global approach and the
consistent approach proposed in [23] take 2-10 minutes and several hours, respectively.

4.2 Real World Experiments

In this section we present some qualitative real world results obtained by using the pro-
posed shape from light field method. For light field capturing we use a Lytro camera.
Such a camera provides a spatial resolution of around 380 × 330 micro-lenses and a
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3D view disparity all in-focus 3D view disparity all in-focus

Fig. 6. Qualitative results, which demonstrate the effectiveness of the proposed model. The figure
shows depth map results in terms of 3D views and color-coded disparity maps as well as all-in-
focus results for various scenes.

WTA TGV2 �1 proposed method all in-focus
shape from focus

Fig. 7. Comparison to shape-from-focus. The figure shows shape from focus results in terms of
the winner-takes-all (WTA) solution and a TGV2 regularized version, where 12 digital refocused
images (provided by the commercial Lytro software) were used as input. Furthermore, the figure
shows the calculated depth maps of the proposed method, and corresponding all in-focus images.
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directional resolution of about 10× 10 pixels per micro-lens. For the real world exper-
iments we set M = 1 and N = 16, and we again tune the other parameters. Figure 6
provides results of the proposed method for different scenes. Among others, Figure 6
shows 3D views created using the calculated depth maps, as well as color-coded dispar-
ity maps. Although the spatial resolution provided by the Lytro camera is quite low and
the extracted sub-aperture images are quite noisy, the proposed method is again able to
calculate piecewise smooth depth maps, with clearly visible depth discontinuities.

It should also be mentioned, that by using the calculated image rotation u, one can
easily generate an all-in-focus image by summing up corresponding image locations in
the sub-aperture images. All-in-focus results are shown in the third and sixth column of
Figure 6.

In a final experiment we compare our results to the commercial Lytro software. Here
we compare the proposed approach with a shape-from-focus approach [17]. For the
shape-from-focus approach we use 12 digital refocused images, provided by the Lytro
software, where we apply a high-pass filter on the images to measure the in-focus area
in each image. The qualitative results in terms of the winner-takes-all (WTA) solution
and a TGV2 regularized versions are shown in Figure 7. It can be seen, that the results
generated with the proposed approach are clearly superior.

5 Conclusion

In this work we proposed a method for calculating a high quality depth map out of a
given light field, which was captured with a plenoptic camera. We first showed that
it is possible to extract sub-aperture images out of the raw light field data, which are
similar to those images captured with a rotating off-axis aperture in the AWS setting.
Based on this observation we formulated a variational model which measures a dense
field of scene point’s image rotation radii over certain sub-aperture images, where these
rotation radii encode depth information of the scene points in the image.

In the experiment section we showed on synthetic and real world examples that our
model is capable of generating high-quality depth maps. We simulated vignetting ef-
fects and image noise on synthetic data. Moreover, we also showed that our model is
robust enough to generate piecewise smooth depth maps with sharp depth discontinu-
ities, out of the noisy and highly aliased sub-aperture images extracted form the raw
light field data, which was captured with a Lytro camera.
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Abstract. Second derivative regularization methods for dense stereo matching is
a topic of intense research. Some of the most successful recent methods employ
so called binary fusion moves where the combination of two proposal solutions
is computed. In many cases the fusion move can be solved optimally, but the ap-
proach is limited to fusing pairs of proposals in each move. For multiple proposals
iterative binary fusion may potentially lead to local minima.

In this paper we demonstrate how to simultaneously fuse more than two pro-
posals at the same time for a 2nd order stereo regularizer. The optimization is
made possible by effectively computing a generalized distance transform. This
allows for computation of messages in linear time in the number of proposals. In
addition the approach provides a lower bound on the globally optimal solution of
the multi-fusion problem. We verify experimentally that the lower bound is very
close to the computed solution, thus providing a near optimal solution.

1 Introduction

Dense stereo matching is a classical Computer Vision problem. The problem is in most
cases ill posed due to ambiguous texture and therefore regularization terms have to
be incorporated. The most popular ones are the first order regularizers [2,3,6]. These
typically penalize assignments where neighboring pixels have different disparity. Their
popularity is in large part due to the fact that they often result in submodular formula-
tions when applying move-making algorithms such as α-expansion [2] or fusion moves
[8]. On the downside this type of regularization favors fronto-parallel planes since sur-
faces with a non-zero disparity derivative are penalized.

To address this problem [1] used 3D-labels corresponding to arbitrary 3D-planes.
The interaction between planes is a Potts model and therefore this approach is suitable
for piecewise planar scenes. Li and Zucker [9] use pairwise interactions between 3D
labels (encoding disparity and disparity derivatives) to penalize non-smooth surfaces.
In contrast Woodford et.al. [17] use regular disparity labels to encode second derivative
priors. The optimization problem is however made substantially more difficult due to
the introduction of non-submodular triple-interactions.

In [10] it is shown how to encode second derivative priors using labels similar to
those used by Li and Zucker [9]. In addition it is shown both theoretically and ex-
perimentally that resulting optimization problems are often nearly submodular making
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them easier to solve than the corresponding triple clique versions. On the downside the
label space is much bigger than that of [17].

In this paper we show that it is possible to simultaneously fuse more than two pro-
posals solutions for the formulation of [10] using message-passing-based methods such
as TRW-S [5]. We will refer to this formulation as 3D-label stereo. We show that it is
possible to compute generalized distance transforms in linear time using methods sim-
ilar to those of [3] despite the fact that our labels are 3-dimensional. This opens up the
possibility of extending the fusion approach of [8] by fusing more than two models at a
time. We show that this approach results in solutions with reduced energy compared to
the standard fusion approach.

For standard first order stereo regularization, where each label represent a disparity,
fusing multiple models at the same time have already been explored in [15]. However
their method requires the regularizer to be convex in the label index, which is not true
for 3D-label stereo.

1.1 Background: Fusion Moves for Stereo

Consider an arbitrary second order pseudo-boolean function of n variables, usually ex-
pressed as,

E
(
x
)
=
∑
p

Up
(
xp
)
+
∑
p

∑
q∈N (p)

Vpq
(
xp, xq

)
, (1)

here x ∈ Ln, where L is some discrete set and N is some connectivity. In vision E is
usually called the energy function and our goal is to find a minimizer of it. Lempitsky et
al. [8] proposed to a minimization method that iteratively reduces the energy by fusing
candidate solutions. Two assignments x0 and x1 are fused together into one solution
with lower energy by solving

min
z∈{0,1}n

E
(
z · x0 + (1− z) · x1

)
, (2)

where · is element-wise multiplication. We refer to solving (2) as performing a binary
fusion move, and a possible solution to (1) as a proposal. It is possible to optimize
a given energy function by generating a lot of proposals and then iteratively perform
binary fusion.

For the problem of stereo matching it was shown in [10] how to formulate a second
derivative surface prior in the form of (1). Let I be the image and D : I → R be the
disparity function (disparities assigned to every pixel of I). To each pixel p we assign 3
dimensional labels xp consisting of the disparityD (p) and the gradient of the disparity
∇D (p). Let the function TpD : I → R be the tangent at the point p seen as a function
of the whole image, that is

TpD(x) = D (p) +∇D (p)
T
(x− p). (3)

If τ is a threshold and we use

Vpq = min(|TpD(q)−D (q)|, τ) = min(|D (p) +∇D (p)
T
(q − p)−D (q)|, τ), (4)
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then according to the Taylor expansion we get

Vpq ≈ min(|1
2
(q − p)T∇2D (p) (q − p)|, τ). (5)

That is, the penalty Vpq measures the truncated 2nd derivative in the direction q − p.
Note that the energy in (1) is symmetric since there is also a term Vqp. In contrast,
Woodford et.al. [17] only assign a disparity to each pixel, and therefore require triple
cliques to estimate the 2nd derivative. It is shown in [10] that the 3D-label formulation
gives simpler (often submodular) interactions and therefore each fusion move becomes
easier to solve.

Binary fusion moves are limited in that they can only fuse two proposals at a time.
Therefore in case of many proposals the end result may depend on the order the pro-
posals are fused. The focus of this paper is to go beyond binary fusion moves and
simultaneously fuse hundreds of proposals by solving,

min
z∈{0,...,k}n

E

(
n∑
i=1

(Iz=i · xi)
)

(6)

where Iz=i is the indicator function for proposal i. We will refer to solving (6) as per-
forming simultaneous fusion. We will show that this is possible using message-passing
methods since generalized distance functions can be efficiently computed for our en-
ergy.

Why? One natural question to ask is: Is it not sufficient to consider binary fusion? One
reason for simultaneous fusion is that we are able to avoid local optima, as illustrated
in Figure 1. Another advantage is that we can get guarantees on our solution. That is,
given n proposals we know how far away from the optimal fusion of the n proposals
our solution is. If we perform binary fusion iteratively we can only get guarantees on
each fusion step but we do not know if the order of the fusion has led us into a local
optima.

(a) Start solution (b) One plane (c) Three planes

Fig. 1. Motivational example for simultaneously fusion. a) Suppose a real surface is represented
by the dashed curve, our current best solution is given by the thick black line and three proposals
are shown as the three gray lines. b) A possible solution after binary fusion with one of the pro-
posals, note that this solution incurs a large regularization cost. Because of the cost this proposal
might never be successfully fused. c) If we fuse all three planes simultaneously we can jump
directly to a better solution.
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1.2 Optimization

Belief propagation (BP) minimizes functions such as (1) by sending messages between
the nodes of the underlying graph. The message from node p to q contains information
about the optimal assignment of p given the current assignments in p’s neighborhood.
If the neighborhood structure forms a tree then BP is guaranteed to give the optimal
solution after one pass of messages. If the graph contains cycles the algorithm is no
longer guaranteed to even converge.

The property of optimality on trees is exploited in Tree Reweighted Message Passing
(TRW) methods [16]. Given a general graph with cycles TRW decomposes the graph
into trees and optimize these separately. If all sub-problems provide the same solution
then this is also the optimal solution to the original graph. Otherwise the sub-problems
provide a lower bound on the original problem. By changing the decomposition TRW
aims at maximizing this lower bound. In [5] a variant of TRW, called TRW-S, which is
guaranteed to converge is presented. The decomposition idea was further expanded in
[7] where it is shown that modifying the TRW approach slightly results in Lagrangian
dual problem, which can be efficiently solved using projected subgradients, with better
theoretical properties than TRW-S.

The core of all these methods is efficient message passing. Each message is a vector
of the same dimension as the number of possible labels. Let mtpq denote the message
that node p sends to node q at iteration t. The message is generally defined by

mtpq(xq) = min
xp

(
Vpq(xp, xq) + h(xp)

)
, (7)

where

h(xp) = Up(xp) +
∑

s∈N (p)\q
mt−1
sp (xp). (8)

The messages updates for TRW-S are similar to this. Straight forward computation of
messages using the formula (7) takes O

(
n2
)

evaluations, where n is the number of
labels. However for special types of pairwise interactions (7) can be evaluated more
efficiently using the generalized distance transform [3]. For example, in the case of an

1 penalty

Vpq(xp, xq) = |xp − xq|, (9)

the function mtpq(x) is

mtpq(x) = min
xp

(|xp − x|+ h(xp)) , (10)

which can be seen as the lower envelope of a set of cones, see Figure 3. It was demon-
strated in [3] that computation of the lower envelope can be done in linear time, thus
reducing the overall time required to compute messages to O(n). In Section 2 we show
how to compute messages in O(n) for 3D-label stereo.
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2 Simultaneous Fusion

Earlier approaches to minimize (1), in the context of 2nd order stereo regularizers, have
consisted of iteratively fusing one proposal after another in different order until the
energy have stopped decreasing [10,17]. That is, solving (2) over and over. We call
this approach iterative binary fusion. Binary fusion guarantees to generate a sequence
of solutions with decreasing energy and under the assumption of submodularity each
fusion move is solved optimally. In the case of multiple proposals there are however
little or no guarantees about the quality of the end result.

In this paper we propose to fuse all proposals at the same time, that is solving (6).
We call this simultaneous fusion. In order to to minimize (6) we use TRW-S [5]. Such
an approach will, in contrast to iterative binary fusion, provide both a good solution and
a lower bound on the best energy possible to obtain with the available proposals. In the
experiments section we show that the solutions given by simultaneous fusion are often
very close to the lower bound indicating that the solutions are near optimal.

To minimize (6) we need to compute update messages. If the number of possible
labels are small solving (7) in each iteration is no problem. Using a brute force, all
messages can be found in O

(
n2
)

where n is the number of proposals. As the number
proposals increase this becomes intractable. To reduce this complexity we will evalu-
ate (7) using generalized distance transforms. In principle our labels belong to a 3D-
dimensional space and computing distance transforms in this space may seem difficult.
However due to the fact that the interaction is defined using distances along the viewing
ray we can apply regular one dimensional distance transforms with little modification.
The only extra step required is sorting the labels according to their disparity as the
disparity of a given label can vary between neighbors.

2.1 Efficient Distance Transform

In this section we will cover efficient distance transform for 
1 and 
2 regularization
of 3D-label stereo [10]. If pixel p is assigned the tangent of function Di : I → R at
p and pixel q is assigned the tangent of Dj : I → R at q, then we formulate the 
1
regularization interaction (from p to q) as

Vpq(Di,Dj) = α|TpDi(q)−Dj(q)|, (11)

where α is a regularization weight. For simplicity we postpone the introduction of the
threshold term τ to a later stage. The weight α can vary between pixel pairs (in [17]
α depends on an underlying segmentation of the image). For ease of notation we only
denote the coefficient α. The interaction measures the difference between the disparity
assignment at q and the tangent function TpDi evaluated at q, see Figure 2 (b). Note that
there is a similar term Vqp (from q to p) and therefore the interaction is symmetric. In
contrast, a standard first order method directly measures the distance between the two
neighboring disparity assignments Di(p) and Dj(q), see Figure 2 (a). Similarly the 
2
cost is defined as

Vpq(Di,Dj) = α (TpDi(q)−Dj(q))2 . (12)
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p q

D(p)

D(q)

I

(a) Disparity

p q

D(p)

D(q)

I

TpD(q)

(b) 3D-label stereo

p q

D0(p)

I

TpD1(q) = d′1

D1(p) TpD0(q) = d′0

D0(q) = d0

D1(q) = d1

(c) Simultaneous fusion

Fig. 2. The difference between standard and 3D-label stereo for rectified cameras. The image
plane is denoted by I and the viewing ray of pixel p and q are marked. a) Standard stereo, the
marked distance is |D(p)−D(q)| which is used for regularization. b) 3D-label stereo, the tangent
plane is indicated by a slanted line. The indicated distance is |TpD − D(q)| which is used for
regularization. c) Taking it one step further given two disparity proposal functions D0 and D1 we
see that all points needed to calculate the regularization costs are located along q′s viewing ray.

Our messages will be of the form

mtpq(Dj) = min
i=0,...,n

(
Vpq(Di,Dj) + h(Di)

)
, (13)

where

h(Di) = Up(Di) +
∑

s∈N (p)\q
mt−1
sp (Di). (14)

Here Up is a data term that can depend on the tangent plane at the pixel p. In general
such a functional would require using distance transforms in R

3 (since our labels are
3 dimensional). However, due to the particular form of our pairwise interaction it is
enough to consider 1-dimensional distance transforms on the viewing rays of the pixels.

To make further discussion easier we introduce some notation. Suppose that we
would like to fuse n + 1 proposals D0, ...,Dn. Each proposal Di and tangent TpDi
gives a disparity value at q (the intersection with the viewing ray), see Figure 2 (c). We
denote these points

Q = {D0(q), . . . ,Dn(q)} = {d0, . . . , dn} , (15)

Q′ = {TpD0(q) , . . . , TpDn(q)} = {d′0, . . . , d′n} . (16)

Furthermore we let hi = h(Di). To compute the message mtpq , in case of our 
1 inter-
action, we need to evaluate the function

f(d) = min
i=0,...,n

α|d′i − d|+ hi (17)

for the disparities d ∈ Q. If the labels are sorted according to disparity this can be done
in linear time (as we will outline below). The order at which the points in Q′ appear
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along the viewing ray at q depends on the tilt of the tangent functions, see Figure 2
(c). Therefore the same set of tangents at p will have different orderings for different
neighbors q of p. To be able to compute the distance transform and evaluate f(d) in
linear time we thus need to maintain an ordering of the labels for each neighbor. Since
labels are fixed the sorting can be done once at start up and maintained during the op-
timization, to avoid the O(n logn) sorting complexity. When the order at q is available
we can apply the algorithm from [3] with some minor modifications.

2.2 Algorithm

In [3] a distance transform is introduced that can handle standard stereo regularization.
For 3D-label stereo we propose slight modification to the distance transform in [3]
which will handle both the 
1 and 
2 regularization. For 
1 regularization each disparity
label at p can be though of as representing a cone rooted at (d′i, hi) with slope α|d′i−d|.
If we construct the lower envelope of all these cones then we can solve (7) efficiently,
since mtpq(Dj) is the height of the lower envelope at disparity dj .

�1 Regularization. The distance transform sequentially constructs the lower envelope
of the cones by first sorting Q′ and then going through each point d′ ∈ Q′. A important
observation is that Q′ needs only to be sorted once before the message passing starts
since the labels do not change during the optimization. In what follows let i be the index
of point d′i and let j be the last point added to the the lower envelope. For each point d′i
drawn from Q′ one of the following three cases may occur

1. hi is above the current lower envelope at d′i.
2. hi + α|d′i − d′j | is below the current lower envelope at d′i.
3. Neither 1 nor 2.

For case 1) we can just skip point i as it will never be part of the lower envelope. For
case 2) the previously added interval to the lower envelope is removed and we repeat
the comparison for interval j − 1. In case 3) the lower envelope intersects the cone
associated with point i. For 
1 regularization two cones intersect when

d =
hi − hj + α(d′i + d′j)

2α
. (18)

The intersection is calculated and the new interval is added to the lower envelope. An
example lower envelope is constructed in Figure 3.

After the lower envelope is calculated the message cost formtpq(Dj) is just the height
of the lower envelope at position dj . When using standard stereo regularization the set
of disparities are usually the same for all pixels. In our case Q and Q′ most likely differ.
However the evaluation of the message values for all the disparities in Q is easily seen
to be linear since both the linear interval of the lower envelope and the set Q are ordered
according to disparity.

A final thing to consider is when we add truncation to the regularization term such
as

Vpq(Di,Dj) = αmin (|TpDi(q)−Dj(q)|, τ) , (19)
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d′0 d′1 d′2 d′3

h1

h0
h2

h3

d′0 d′1 d′2 d′3 d′0 d′1 d′2 d′3 d′0 d′1 d′2 d′3

Fig. 3. Example construction of lower envelope for �1 regularization assuming the points are
ordered in ascending order. The dashed lines indicate the cost α|d′i−d|+hi. The current estimated
lower envelope is given by the thick red line and the progress is indicated by the green line. a)
The algorithms is initialized. b) α|d′1 − d′0| + h1 < h0. The cone belonging to d′0 will never be
part of the lower envelope. c) α|d′2 − d′1|+h1 < h2. The cone belonging to d′2 will never be part
of the lower envelope. Finally in (d) the current estimate of the lower bound is intersecting with
d′3’s cone. The lower envelope is divided into two intervals. One belonging to d′1 and one to d′3.

where τ is some truncation level. The highest cost any message can have is

min
i
hi + ατ, (20)

and can be calculated in O(n). The truncation is then added to the message by taking
the minimum of the non-truncated message value mtpq(Di) and the largest message
cost. Pseudocode for the algorithm is given in Algorithm 1.

�2 Regularization. The only modification needed is related to the construction of the
lower envelope, which is described in [3]. The rest is carried over from the 
1 regular-
ization algorithm. For 
2 regularization the lower envelope consists of parabolas of the
form α(d′i − d)2 + hi. The lower envelope is sequentially constructed by considering
intersection of the parabolas, which for parabolas i, j is given by

d =

(
hi + α(d′i)

2
)
−
(
hj + α(d′j)

2
)

2α
(
d′i − d′j

) . (21)

Let j be the last added point to the lower envelope and let zj be the first point in the
interval where it is part of the lower envelope. For each point i drawn from Q′ and as
long as d′i �= d′j , consider the intersection of parabolas i and j, Denote the intersection
d, one of the following two cases occur

1. d > zj . The intersection is added to the lower envelope.
2. d ≤ zj . Repeat intersection with parabola j − 1.

When d′i = d′j , the parabolas do not intersect and the parabola with smallest hi is kept in
the lower envelope. This case is not covered in [3] and correspond to several proposals
intersecting the q-ray at the same point. This occurs frequently for 3D-label stereo.

Complexity for 
1 and 
2. Let n be the number of labels. The sorting of points is done
only once and outside of the message update. For the lower envelope, the maximum
number of intervals is n + 1. Each interval is visited at most 3 times. Once when it
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is added, once when it is intersected and once when it is removed. All other parts of
the algorithm are at most single nested loops of size n, hence the complexity for each
message update is O(n).

Algorithm 1. Message update for 
1 regularization.

function DISTANCE(x, y)
return α|x − y|

function UPDATE INTERVALS(interval, start, intersection)
v[interval] ← start � Label belonging to this interval.
z[interval] ← intersection � Lower limit of this interval.
z[interval + 1] ← ∞ � Upper limit of this interval.

Precondition: Q and Q′ are sorted.
function MESSAGE UPDATE(Q,Q′, α, τ )

UPDATE INTERVALS(0, 0,−∞)
maxVal← ∞
for i ← 1 to n− 1 do

maxVal← min(maxVal, hi)
j ← 0 � Number of intervals in the lower envelope.
for l = i to 0 do

if DISTANCE
(
d′i, d

′
j

)
+ hv[j] ≤ hi then � Case 1

break
else if DISTANCE

(
d′i, d

′
j

)
+ hi < hv[j] then � Case 2

if j = 0 then
UPDATE INTERVALS(0, i,−∞)

else
j ← j − 1

else � Case 3
j ← j + 1
intersection ←

(
hi − hj + α(d′i + d′j)

)
/2α

UPDATE INTERVALS (j, i, intersection)
break

j ← 0
maxVal← maxVal+ ατ . � Largest message cost.
for i ← 1 to n− 1 do

while z[j + 1] < di do
j ← j + 1

m[i] ← min
(
DISTANCE

(
di, d

′
j

)
+ hv[j],maxVal

)
return m

3 Experiments

For all experiments we adopt the energy function used in [17] with the appropriate mod-
ifications described in [10]. The occlusion term is removed for simplicity. The energy
is defined as E(D) = Ephoto(D) + Esmooth(D). Ephoto is defined as:
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Ephoto(D) = − log
(
1 + exp(−‖D(x)− I0(x)‖2/90)

)
, (22)

where I0 is the reference image. We adopt the regularization from [17] just like in [10]:

Esmooth (D) =
∑
p

∑
q∈N (p)

W ({p, q}) τ min

(
Vpq(D,D)

τ
, 1

)γ
, (23)

where γ = i gives the 
i reguralization. Futhermore W ({p, q}) is a weight depending
on a segmentation of the image. If p and q lie in different segments it takes a low value,
if they belong the same segment it takes a high value. N is normal 4-connectivity and
the truncation τ = 0.02. See [17] for further details.

We also make use of the SegPln proposals introduced in [17]. The SegPln proposals
are generated by segmenting the image with 14 different parameter settings. For each
segmentation local window matching is used to find a disparity estimate. A piecewise
planar function is fit to the estimated disparity using LO-RANSAC.

3.1 Simultaneous Fusion

To quantitatively evaluate simultaneous fusion we use the full Middlebury stereo dataset
[4,12,13,14], consisting of 40 stereo image pairs using the previously described energy
function with 
1 regularization. For every stereo pair we generate the 14 SegPln pro-
posals and 300 equally distanced fronto parallel plane proposals.

TRW-S will for each iteration produce a lower bound (l) and a current best solution
(e). We define the relative duality gap as: |(e − l)/e|. The iterative binary fusion is
performed in random order until no proposal changes the current disparity estimate.

Each binary fusion is optimized using roof duality [11]. The simultaneous fusion is
solved using TRW-S for either 3000 iterations or until the relative duality gap is less
than 0.001.

In general simultaneous fusion is expected to be slower than iterative binary fusion
since it solves a much harder problem. To make the comparison more equal we spend
the time difference fusing random fronto parallel planes to the iterative solution. We
call the final solution extra.

Quantitative result for 
1 regularization on the Middlebury data set can be seen in
Table 1. An example highlighting the quality difference for simultaneous and iterative
binary fusion is given in Figure 4.

The difference is larger when the number of proposals is low. When the number
of proposals is very large the binary fusion approach performs surprisingly well for
many of the data sets. The resulting disparity estimate is almost as good as that of
simultaneous fusion which can be verified to be near optimal due to the lower bound
being almost tight. For some data sets the lower energy clearly improved the resulting
disparity map, Figure 5. For other data sets the improvement was more subtle, Figure 6.

We also perform some experiments using 
2 regularization. See Figures 7 and 8. In
all examples we only show the part of the image visible in both views.
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Table 1. Complete experiments on the middlebury dataset

Sequence
Iterative (Iter) Simultaneous (Sim) Sim / Iter Sim/extra

Iterations Time (m) Iterations Time (m) Rel. gap Energy Time Energy

Aloe 3278 16.4 3000 358.8 0.001 0.994 21.83 0.996
Art 3546 23.1 3000 384.5 0.002 0.992 16.67 0.994

Baby1 2458 13.0 3000 342.3 0.036 1.006 26.25 1.006
Baby2 2862 14.8 3000 342.1 0.016 0.988 23.11 0.989
Baby3 3045 17.3 3000 361.7 0.021 0.976 20.94 0.976
Barn1 4353 22.2 3000 370.2 0.000 0.999 16.66 0.999
Barn2 2897 14.6 3000 366.5 0.001 0.997 25.06 0.997
Books 3683 21.3 3000 383.7 0.014 0.996 18.00 0.998

Bowling1 2126 14.8 3000 345.4 0.009 0.992 23.30 0.993
Bowling2 3028 17.0 3000 356.1 0.002 0.995 20.94 0.996

Bull 3896 19.2 1302 163.8 0.000 0.997 8.52 0.997
Cloth1 3614 17.3 3000 341.0 0.001 0.989 19.76 0.991
Cloth2 3356 18.7 3000 352.4 0.020 0.988 18.87 0.990
Cloth3 2967 14.0 3000 341.3 0.001 0.978 24.36 0.980
Cloth4 3940 20.6 3000 353.9 0.001 0.988 17.20 0.990

Computer 3382 20.1 3000 363.1 0.002 0.992 18.09 0.994
Cones 4180 23.6 3000 373.9 0.007 1.002 15.83 1.002
Dolls 3219 19.4 3000 375.7 0.003 0.993 19.33 0.995

Drumsticks 2844 17.9 3000 379.6 0.014 1.007 21.26 1.009
Dwarves 3388 19.3 3000 369.2 0.026 1.012 19.14 1.014

Flowerpots 3103 16.8 3000 356.3 0.023 0.993 21.21 0.994
Lampshade1 2498 15.9 1425 173.7 0.000 0.976 10.91 0.976
Lampshade2 1935 13.1 3000 352.7 0.011 0.991 26.87 0.992

Laundry 4047 24.1 3000 365.4 0.006 0.995 15.17 0.998
Map 2704 4.5 3000 133.9 0.001 0.999 29.64 0.999

Midd1 3627 36.0 3000 378.4 0.013 0.972 10.52 0.973
Midd2 3082 35.8 3000 371.2 0.002 0.980 10.38 0.981

Moebius 4261 26.7 3000 377.3 0.003 0.990 14.12 0.992
Monopoly 3577 47.3 3000 359.9 0.009 1.004 7.60 1.004

Plastic 2522 20.3 1551 181.6 0.000 0.980 8.93 0.980
Poster 2798 15.1 3000 375.3 0.008 1.003 24.83 1.003

Reindeer 3708 23.3 3000 369.0 0.034 1.009 15.82 1.011
Rocks1 2578 13.6 3000 351.5 0.011 0.989 25.86 0.990
Rocks2 3365 16.1 3000 353.3 0.001 0.965 21.93 0.966

Sawtooth 3302 16.2 3000 369.8 0.003 0.999 22.79 1.000
Teddy 4386 23.8 3000 379.6 0.012 1.006 15.97 1.007

Tsukuba 2562 9.0 3000 246.9 0.001 0.995 27.41 0.996
Venus 2697 14.2 3000 373.3 0.000 0.996 26.21 0.997
Wood1 2555 16.2 914 123.5 0.000 0.989 7.63 0.989
Wood2 2958 21.0 3000 355.8 0.000 1.000 16.98 1.000

Geom. mean 3150.9 18.1 2753.6 322.9 0.002 0.993 17.83 0.994
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Reference image Iterative fusion Simultaneous fusion

Fig. 4. Surface view of a toy example on the Baby2 sequence using �1 regularization. Fusing only
the 14 SegPln proposals.

Reference image Ground truth Iterative (4977) Simultaneous (4918)

Fig. 5. Disparity map for Cloth4 sequence using �1 regularization with (energy)

Reference image Iterative (5314) Simultaneous (5272) Details

Fig. 6. Disparity map for Computer sequence using �1 regularization with (energy)

Reference image Ground truth Iterative (36626) Simultaneous (36180)

Fig. 7. Disparity map for Cloth3 sequence using �2 regularization with (energy)
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Reference image Ground truth Iterative (15560) Simultaneous (15260)

Fig. 8. Disparity map for Tsukuba sequence using �2 regularization with (energy)
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(a) Rocks1 sequence with 200 proposals.
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(b) Baby1 sequence with 100 proposals.

Fig. 9. Energy as a function of time (s) using �1 regularization

3.2 Energy over Time

The performance of iterative and simultaneous fusion is also evaluated by considering
energy of the optimization as a function of time, two examples are given in Figure 9. In
general iterative fusion is faster to achieve low energies but in the long run simultaneous
fusion produces solutions with lower energies.

4 Conclusions

In this paper we show how the 3D-label stereo regularization [9,10] can be optimized
using simultaneous fusion, where all proposals are fused at the same time. We identify
that the 3D-label pairwise interaction only occur along 1-dimensional viewing rays. The
order of the labels along each viewing ray can be precomputed before the optimization
starts enabling us to formulate an efficient O(n) message update algorithm.

As opposed to previously used binary fusion we both get optimality bounds on the
full fusion problem and solutions with better quality. As a bonus we show that iterative
binary fusion for 
1 regularization achieves solution surprisingly close to global optima.

Source code available at http://www.maths.lth.se/˜ulen/stereo.html.

http://www.maths.lth.se/~ulen/stereo.html
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Efficient Convex Optimization for Minimal Partition
Problems with Volume Constraints

Thomas Möllenhoff, Claudia Nieuwenhuis, Eno Töppe, and Daniel Cremers

Department of Computer Science, Technical University of Munich, Germany

Abstract. Minimal partition problems describe the task of partitioning a domain
into a set of meaningful regions. Two important examples are image segmenta-
tion and 3D reconstruction. They can both be formulated as energy minimization
problems requiring minimum boundary length or surface area of the regions. This
common prior often leads to the removal of thin or elongated structures. Volume
constraints impose an additional prior which can help preserve such structures.
There exist a multitude of algorithms to minimize such convex functionals under
convex constraints. We systematically compare the recent Primal Dual (PD) al-
gorithm [1] to the Alternating Direction Method of Multipliers (ADMM) [2] on
volume-constrained minimal partition problems. Our experiments indicate that
the ADMM approach provides comparable and often better performance.

1 Introduction

Both segmentation and 3D reconstruction approaches aim at partitioning a two or three
dimensional domain into a set of ’meaningful’ regions. For segmentation such regions
usually correspond to the projections of three-dimensional objects in an image, whereas
for 3D reconstruction the regions indicate the three dimensional objects themselves, e.g.
in a voxel grid. Such minimal partition problems come with regularization assumptions
which either promote a minimal boundary length [3–5] or a minimal surface area [6, 7].
These constraints often over-smooth the object boundaries. In segmentation the removal
of thin or elongated structures is the consequence. In 3D reconstruction the resulting
objects tend to be flat due to the minimal surface assumption. Therefore, constraints re-
stricting the object volume for specific regions are useful as an additional regularization
assumption to help preserve thin structures and obtain plastic object shapes, see Fig-
ure 1. Such volume constraints can be adapted interactively if the corresponding op-
timization problem can be solved in an efficient manner. Minimal partition problems

Fig. 1. Results of minimal partition problems (2D segmentation and 3D reconstruction from a
single image) with additional volume prior

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 94–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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can be formulated as energy minimization problems over a continuous domain based
on the commonly used total variation functional [8–10] . A bunch of algorithms exists
for optimization of the resulting functionals. In this paper the focus will especially lie
on the identification of efficient optimization algorithms with respect to the integration
of additional constraints such as the volume priors.

2 Related Work

The PD and ADMM algorithms have been previously applied to optimize energies
resulting from minimal partition problems. In particular, Goldstein et al. [11] used
ADMM to solve the two region segmentation problem amongst other geometrical prob-
lems. Recently, ADMM was also applied within several multi-region segmentation ap-
proaches [12, 13]. Niethammer et. al. [14] solved the two region segmentation problem
with volume constraints using a branch and bound method. They employ ADMM to
solve a specific sub–problem in each iteration.

The PD algorithm [15, 16, 10, 1] has become a standard algorithm for solving con-
tinuous constrained convex optimization problems with saddle-point structure. It was
applied to multi-region segmentation without volume constraints [10, 5] as well as to
single view 3D reconstruction [6].

3 Contributions

Both the PD and ADMM algorithm are well known and thoroughly studied, and they
have been applied to minimal partition problems before. In this paper we make the
following contributions:

• We impose volume constraints on the standard n region minimal partition problem
and describe how to apply the ADMM and PD algorithm to minimize the resulting
energies. We show that especially ADMM is able to handle projections onto the
resulting constraint sets without closed form solution for their combined projection.

• We systematically compare the performance of both algorithms. While ADMM
and PD have been compared on standard problems in Computer Vision before, (see
[10]) we compare them on a lesser studied problem and also provide performance
comparisons on a recent GPU.

4 Minimal Partition Problems with Volume Constraints

Let Ω ⊂ Rd denote the partition domain, i.e. d = 2 for segmentation of 2D images,
and d = 3 for 3D reconstruction. The task of partitioning the domain Ω into a set of
n pairwise disjoint regions Ωi, with Ω =

⋃n
i=1Ωi, Ωi ∩ Ωj = ∅ ∀i �= j, can be

solved by computing a labeling l :Ω→ {1, . . . , n} indicating which of the n regions
each pixel/voxel belongs to: Ωi = {x ∈ Ω : l(x) = i}.

Recently, minimal partition problems have been formulated as energy minimization
problems on the basis of functions of bounded variation (BV), i.e. functions for which
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the total variation (TV) is finite. The key idea is to encode the regions Ωi by their
indicator function u ∈ BV(Ω, {0, 1})n

ui(x) =

⎧⎨
⎩1, if l(x) = i

0, otherwise
∀i = 1, . . . , n (1)

and to solve for ui using convex relaxation techniques. For segmentation and 3D re-
construction based on volumetric constraints we can formulate the following convex
relaxed optimization problem:

min
u∈BV(Ω,[0,1])n

n∑
l=1

∫
Ω

‖Dul(x)‖ +
∫
Ω

fl(x)ul(x) dx (2)

s.t. ul(x) ≥ 0,

n∑
l=1

ul(x) = 1 ∀x ∈ Ω,
∫
Ω

ul(x) dx = Vl, l ∈ {1, . . . , n}. (3)

The total variation of u in (2) measures the length of the region boundaries or the size
of the region surfaces, respectively, and the data term f : Ω → Rn indicates how
strongly a pixel is associated with each of the n regions. The first two constraints in (3)
together form a simplex constraint, which ensures that each pixel is assigned to exactly
one label. The linear volume constraints impose a specific volume Vl on each label. To
obtain a binary solution after solving the relaxed problem each pixel is assigned to the
label with maximum indicator function value ui(x). In the two label case, i.e. n = 2
this operation will yield a globally optimal solution of the binary problem [17]. Due to
the simplex constraint we obtain u2 = 1− u1 for this case and thus

min
u1∈BV(Ω,[0,1])

∫
Ω

‖Du1(x)‖ +
∫
Ω

(f1(x) − f2(x))u1(x) dx (4)

s.t. 0 ≤ u1(x) ≤ 1,

∫
Ω

u1(x) dx = V1, (5)

which is the original foreground/background segmentation and single view 3D recon-
struction functional of [6]. In this case, the data term f1−f2 is chosen so the projection
of the segmentation onto the image plane corresponds to the silhouette of the object.

The main problem in the optimization of these functionals are the constraints in (3),
which must all be fulfilled simultaneously. One of the simplest optimization strategies
for constrained optimization is Projected Gradient Descent. However, since the total
variation is non-smooth, this method cannot be applied directly. Furthermore, there ex-
ists no closed form projection onto the feasible set in (3). Projecting the primal variable
onto the intersection of several feasible sets by Dykstra’s projection algorithm [18] in
every iteration is inexact and inefficient.

A well-known algorithm for non-smooth problems involving the total variation is
the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [19]. However, it turns
out that this algorithm also requires a projection onto the feasible set in (3) in every
iteration, which makes the algorithm slow and inexact.

Therefore, algorithms which can handle constraints simultaneously without closed
form solution for their combined projection are required to obtain fast and accurate
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solutions. ADMM can handle such constraints by separate projections on each feasible
set. Apart from ADMM there is the Primal Dual algorithm [1, 10], which can handle
constraints by the method of Lagrange multipliers.

5 Efficient Convex Optimization

In the following we will present the ADMM and the PD method in detail and see how
to apply them to the volume constrained minimal partition task. In general, these algo-
rithms solve problems of the form

min
x∈Rn

F (Kx) +G(x) (6)

where K ∈ Rn×m is a linear operator, and F : Rm → R ∪ {∞}, G : Rn → R ∪ {∞}
are proper, closed and convex functions.

Alternating Direction Method of Multipliers. We consider a slightly generalized
version of ADMM in scaled form, which is given by the update scheme⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin
x∈Rn

G(x) + τ
2‖Kx− yk + λk‖22

rk+1 = αKxk+1 + (1 − α)yk

yk+1 = argmin
y∈Rm

F (y) + τ
2‖rk+1 − y + λk‖22

λk+1 = λk + rk+1 − yk+1

(7)

where α ∈ (0, 2) is an over– or under-relaxation factor, and τ is a step size parameter.
For a derivation of this algorithm we refer the interested reader to [20]. A possible inter-
pretation of this algorithm is, that it alternatingly optimizes the Augmented Lagrangian
Lτ of the primal problem (6) in the variables x, y and λ:

Lτ (x, y, λ) = F (y) +G(x) + 〈λ,Kx− y〉 + τ

2
‖Kx− y‖22

This algorithm was first studied by Eckstein et. al. in [2], a proof of convergence of the
algorithm is given by Theorem 8 of that paper.

Preconditioned Primal Dual Algorithm. We also consider the recent algorithm by
Chambolle et al. [16, 10, 1] for finding a saddle point of the primal-dual formulation of
the problem (6)

min
x∈Rn

max
y∈Rm

〈Kx, y〉 +G(x) − F ∗(y) (8)

where F ∗ denotes the convex conjugate of F . The update steps of the algorithm are⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xk+1 = (id+T∂G)−1(xk − TKTyk)

x̄k+1 = xk+1 + θ(xk+1 − xk)

yk+1 = (id+Σ∂F ∗)−1(yk +ΣK(x̄k+1))

(9)
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where T and Σ are preconditioning matrices that can be seen as generalized step sizes.
This algorithm alternatingly performs gradient descent and ascent steps on (8) in x
and y. For further information on the algorithm we refer the interested reader to [1].
Furthermore, it has been shown in [10] that the ADMM algorithm (with α = 1) and
the PD algorithm are identical, if K is equal to the identity matrix. However, in the
general case it is often necessary to solve a least squares problem involving the matrix
K in the ADMM algorithm, while the PD algorithm has a closed for solution for the
corresponding step.

5.1 Notation and Discretization

In the following we descretize the continuous domain into a regular grid of width W ,
height H and in the 3D case depth D. To make notation easier we introduce the index
set Ω = [1 . . .W ] × [1 . . .H ] to address the individual grid elements of x ∈ RWH as
xi for some i ∈ Ω (and we define everything analogously in the 3D case).

For the discretization of the gradient operator ∇ we use forward differences and
von Neumann boundary conditions. Due to the duality of the gradient and divergence
operator the divergence operator is defined as div = −∇T , in order to satisfy the
identity 〈∇x, y〉 = −〈x, div y〉. We define the discrete Laplacian as Δ = −∇T∇.

Furthermore, we denote the isotropic discretization of the weighted TV

TVg(x) =

∫
Ω

g(t)‖∇x(t)‖2 dt as ‖∇x‖g =
∑
i∈Ω

gi‖(∇x)i‖2.

We will also make frequent use of the indicator function ιC of a set C

ιC(x) :=

{
0, x ∈ C
∞, x �∈ C

5.2 Application to Single View 3D Reconstruction

In the discrete setting we can write the continuous formulation of the single view 3D
reconstruction problem (4) as

min
u∈U∩V

‖∇u‖g + 〈u, f〉 (10)

where the set U corresponds to the simplex constraint and the set V to the volume
constraint in (3). In particular, we define the constraints as

U = {u ∈ X : 0 ≤ ui ≤ 1} and V =

{
u ∈ X :

∑
i∈Ω

ui = V
}

with X = R
WHD for a domain of width W , height H and depth D.
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Alternating Direction Method of Multipliers. We will now apply ADMM to problem

(10). We set K : X → Y as Ku =
(
∇u u

)T
and write the constraints as indicator

functions ιU and ιV to arrive at the following equivalent formulation:

min
u∈X

‖∇u‖g + ιV (u)︸ ︷︷ ︸
F (Ku)

+ 〈u, f〉 + ιU (u)︸ ︷︷ ︸
G(u)

(11)

Applying the ADMM scheme (7) yields the following algorithm:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1 = argmin
u∈X

〈u, f〉 + ιU (u) +
τ
2 ‖
(∇u
u

)
−
(
vk

wk

)
+
( λk

1

λk
2

)
‖22( rk+1

1

rk+1
2

)
= α
(∇uk+1

uk+1

)
+ (1− α)

(
vk

wk

)
(
vk+1

wk+1

)
= argmin

(v w)T∈Y
‖v‖g + ιV (w) +

τ
2‖
( rk+1

1

rk+1
2

)
−
(
v
w

)
+
( λk

1

λk
2

)
‖22( λk+1

1

λk+1
2

)
=
( λk

1

λk
2

)
+
( rk+1

1

rk+1
2

)
−
(
vk+1

wk+1

)
(12)

The update steps in r1, r2, λ1 and λ2 are just simple arithmetic operations. It remains to
show how to solve the sub-optimization problems in u, v and w. Note that the coupled
optimization problem in v and w is separable into two independent sub-problems.

Solving the sub-problem in u. Ignoring the constraint ιU which corresponds to u ∈ U ,
the minimization problem is differentiable. The required optimality conditions are given
by the Euler-Lagrange equation:

∂E

∂u
=
f

τ
+ (u− wk + λk2)− div(∇u− vk + λk1) = 0

⇔ u = (I −Δ)−1(−f
τ
+ wk − λk2 − div vk + div λk1)

This smooth, constrained problem can be approximately solved by the Projected Gra-
dient Descent method:

ûi+1 = projU (û
i − γ

∂E

∂u
)

with stepsize γ for i = 1 . . .N − 1 and û1 = uk, and finally setting uk+1 = ûN .
However, we chose to approximately solve for u by alternating Jacobi iterations

with point-wise projection to the constraint set U in the same fashion as [11]. In our
experiments we found this to be slightly faster than Projected Gradient Descent, while
producing the same final result. We noticed that using only two iterations to solve this
sub-problem seem to suffice to make the ADMM algorithm converge.

Solving the sub-problem in v. The closed-form solution for the minimizer of the opti-
mization problem

vk+1 = argmin
v

‖v‖g +
τ

2
‖v − (rk1 + λk1)‖22
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is given by the coupled shrinkage formula

vk+1 = shrinkg(r
k
1 + λk1 , τ)

which we define similarly to [11, 21] as

(shrinkg(x, τ))i =

{
0, if ‖xi‖2 ≤ gi

τ
xi − gi

τ
xi

‖xi‖2
, otherwise.

Solving the sub-problem in w. The closed form solution to the optimization problem in
w is given by the orthogonal projection of rk2 + λk2 onto the convex set V .

wk+1 = argmin
w

ιV (w) +
τ

2
‖w − (rk2 + λk2)‖22 = projV (r

k
2 + λk2).

Furthermore, a short calculation shows that

projV (x) = x− 1

|Ω|

(∑
i∈Ω

xi − V
)

where the set V is defined as above.

Preconditioned Primal Dual Algorithm. We formulate the single view 3D recon-
struction functional as the saddle–point problem

min
u∈X

max
ξ∈Y1,λ∈Y2

〈∇u, ξ〉 + 〈λ,1Tu〉︸ ︷︷ ︸
〈Ku, (ξ λ) T 〉

+ 〈u, f〉 + ιU (u)︸ ︷︷ ︸
G(u)

− (ιP (ξ) + 〈λ,V〉)︸ ︷︷ ︸
F∗( (ξ λ) T )

(13)

where P = {ξ ∈ Y1 : ‖ξ‖∞ ≤ g}. Applying scheme (9) yields:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uk+1 = projU (u
k − T (− div ξk + λk − f))

ūk+1 = uk+1 + θ(uk+1 − uk)

ξk+1 = projP (ξ
k +Σ1∇ūk+1)

λk+1 = λk +Σ2(
∑
i

ūk+1
i − V)

(14)

For a detailed derivation of these update equations, we refer the interested reader to
[1], where the algorithm is applied to similar problems without the additional volume
constraint. We pick T and Σ =

(
Σ1 0
0 Σ2

)
according to the diagonal preconditioning

scheme [1] (with α = 1), note that in our case K has full rank.

5.3 Application to Volume Constrained Multi-region Segmentation

In the general multi-region case forN ≥ 2, the discretization of the continuous problem
formulation (2) is given by

min
u∈UN∩S∩V

N∑
l=1

‖∇ul‖g + 〈ul, fl〉 (15)
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where u = (ul)
N
l=1. The constraints are implemented by the three sets

U = {u ∈ X : ui ≥ 0}, V = V1 × ...× VN and

S =

{
u ∈ XN :

N∑
l=1

(ul)i = 1

}
, where Vl =

{
ul ∈ X :

∑
i∈Ω

(ul)i = Vl

}

with X = RWH . The intersection U ∩ S is the simplex constraint and the set V the
volume constraint. Furthermore the target volumes for the individual regions are given
by (Vl)Nl=1.

Alternating Direction Method of Multipliers. We again rewrite the constraints as
indicator functions and arrive at

min
u∈XN

ιV ∩S(u) +
N∑
l=1

‖∇ul‖g︸ ︷︷ ︸
F (Ku)

+

N∑
l=1

〈ul, fl〉 + ιU (ul)︸ ︷︷ ︸
G(u)

(16)

where K : XN → Y , Y := Y N1 × Y N2 with Ku =
(
∇u1 ... ∇uN u1 ... uN

)T
. By

applying the ADMM scheme (7) to this formulation we arrive at the following algorithm
for the multi-region segmentation problem. Each step is performed for l = 1..N , since
the minimization problem can be solved separately for each ul and vl.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
l = argmin

ul∈X
〈ul, fl〉 + ιU (ul) +

τ
2‖
(∇ul
ul

)
−
( vkl
wk

l

)
+
( λk

1,l

λk
2,l

)
‖22( rk+1

1,l

rk+1
2,l

)
= α
(∇uk+1

l

uk+1
l

)
+ (1− α)

( vkl
wk

l

)
vk+1
l = argmin

vl∈Y1

‖vl‖g + τ
2 ‖r

k+1
1 − vl + λk2,l‖22

wk+1 = argmin
w∈Y N

2

ιV ∩S(w) + τ
2 ‖r

k+1
2 − w + λk2‖22( λk+1

1,l

λk+1
2,l

)
=
( λk

1,l

λk
2,l

)
+
( rk+1

1,l

rk+1
2,l

)
−
( vk+1

l

wk+1
l

)
(17)

Solving the sub-problems in ul and vl. These minimization problems are solved in the
same way as above.

Solving the sub-problem in w. Solving the minimization problem in w amounts to
finding the orthogonal projection onto the convex set V ∩ S:

wk+1 = argmin
w

ιV ∩S(w) +
τ

2
‖w − (rk2 + λk2)‖22

= projV ∩S(r
k
2 + λk2)

For the projection of x = (xl)
N
l=1 ∈ XN onto this convex set we find the following

analytical solution

projV ∩S(x) =

(
xl −

1

N

N∑
j=1

xj −
1

|Ω|

(∑
i∈Ω

(xl)i −
1

N

N∑
j=1

∑
i∈Ω

(xj)i − Vl

)
· 1X

)N

l=1
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which can be evaluated very efficiently using only basic arithmetic operations. This
closed form projection looks somewhat daunting, but can be obtained in a straightfor-
ward manner by writing the problem in w as an unconstrained optimization problem
with Lagrange multipliers.

Preconditioned Primal Dual Algorithm. Rewriting (15) as a saddle point problem
with Lagrange multipliers yields

min
u∈X

max
(ξ,λ,μ)∈Y

N∑
l=1

〈∇ul, ξl〉 + 〈λl,1Tul〉 + 〈μ,
N∑
l=1

ul〉︸ ︷︷ ︸
〈Ku, (ξ λ μ) T 〉

+

N∑
l=1

〈ul, fl〉 + ιU (ul)︸ ︷︷ ︸
G(u)

− (ιP (ξ) + 〈λ,V〉 + 〈μ,1〉)︸ ︷︷ ︸
F∗( (ξ λ μ) T )

(18)

with P =
{
ξ ∈ Y N1 : ‖ξl‖∞ ≤ g

}
, where Y := Y N1 ×Y N2 × Y3. Applying the primal-

dual algorithm (9) yields the following update scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
l = projU (u

k
l − T (− div ξkk + λkl + μk − f))

ūk+1
l = uk+1

l + θ(uk+1
l − ukl )

ξk+1
l = projP (ξ

k
l +Σ1∇ūk+1

l )

λk+1
l = λkl +Σ2(

∑
i

(ūk+1
l )i − Vl)

μk+1 = μk +Σ3(
N∑
l=1

(ūk+1
l )− 1X)

(19)

Again, we omit the detailed derivation of the update equations and refer to [1] to see how

to apply the PD algorithm to saddle point problems. We again chose Σ =
(Σ1 0 0

0 Σ2 0
0 0 Σ3

)
and T according to the diagonal preconditioning scheme with α = 1.

6 Numerical Experiments

For evaluating the ADMM and the PD algorithm with respect to runtime for minimal
partition problems under additional volume constraints we apply these algorithms to
two important problems: 3D reconstruction as formulated in [6] and image segmen-
tation based on the formulation in [5] with additional volume constraints. Both algo-
rithms were implemented according to the update rules described above and run until
the RMSE error ‖u − u∗‖2/

√
|Ω| dropped below a threshold of ε = 5.0 ∗ 10−3. The

optimal solution u∗ of the energy minimization problem was computed by letting the
algorithms run for a very long time.

We chose the ADMM parameters as τ = 1, α = 1.5 and we used 2 Jacobi iterations
for the multi-region segmentation problem and 5 for the 3D reconstruction problem.
For the PD algorithm we set θ = 1 and chose T and Σ as described above.
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Fig. 2. 3D reconstruction: Results from a single image, first row: original image, second row:
reconstructed geometry, third row: textured result. The results look identical for PD and ADMM.

a) b) c) d)

Fig. 3. Segmentation: a) original input images, b) ground truth, c) segmentation results without
volume constraints and d) with volume constraints. The results look identical for PD and ADMM.
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The algorithms were implemented in C++/CUDA and run on graphics processing
units (GPUs). We used 32–bit floating point precision. All numerical experiments were
carried out on a PC with a 3.4GHz Intel i7-3770 CPU with 32GB RAM and a NVIDIA
GeForce GTX680 graphics card on a Linux distribution.

6.1 Results for 3D Reconstruction

For 3D reconstruction we used a total number of 18 test images and computed the
reconstruction for each of them using PD and ADMM, see Figure 2. To examine how
the algorithms scale with the resolution of the reconstruction domain Ω we used three
different resolutions. A rather coarse resolution with few (≈ 3.4 · 104) voxels (sm), an
intermediate (≈ 8.0 · 105) resolution (med) and a fine resolution with a large number
(≈ 3.6 · 106) of voxels (big).

For each resolution the average runtime and standard deviation over all test images is
given in Table 1. Figure 4 shows an example for the different performances of PD and
ADMM on the giraffe image in Figure 2. The horizontal line indicates the termination
criterion where the desired accuracy of the solution is reached. Results on the other
test images look similar. From the results we can conclude that the ADMM algorithm
converges faster than the PD algorithm for the 3D reconstruction problem instance of
the minimal partition problems with volume constraints.

Table 1. 3D reconstruction: Average and standard deviation of the runtime and number of iter-
ations for the PD and ADMM algorithm over 18 different single view 3D Reconstruction exam-
ples. The results show that ADMM performs better.

Runtime in Seconds Number of Iterations

|Ω| PD ADMM PD ADMM

sm 0.15 (± 0.10) 0.10 (± 0.05) 1015 (± 618) 300 (± 152)

med 13.47 (± 11.64) 8.35 (± 7.32) 5716 (± 5664) 1471 (± 1399)

big 115.30 (± 113.60) 79.16 (± 91.80) 11724 (± 12136) 3171 (± 3776)

Table 2. Segmentation: Average and standard deviation of the runtime and iteration numbers for
the PD and ADMM algorithms on the Graz benchmark for interactive segmentation containing
262 test examples. We can conclude that ADMM outperforms the PD method.

Runtime in Seconds Number of Iterations

PD ADMM PD ADMM

4.17 (± 6.41) 3.52 (± 5.95) 6843 (± 8257) 2950 (± 3822)
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Fig. 4. 3D reconstruction: Exemplary convergence of the ADMM and the PD algorithm. The
horizontal line indicates the termination criterion based on the accuracy of the algorithm (vertical
axis). The ADMM algorithm converges significantly faster than the PD algorithm.

Fig. 5. Segmentation: Exemplary convergence of the ADMM and the PD algorithm for a single
image from the Graz benchmark for interactive segmentation. The horizontal line indicates the
termination criterion based on the accuracy of the algorithm (vertical axis). For the multi-region
segmentation problem the ADMM algorithm converges slightly faster than the PD algorithm.

6.2 Results for Volume Constrained Multi-region Segmentation

For the performance evaluation of the multi-region segmentation approach we use the
Graz interactive segmentation benchmark proposed by Santner et al. [4]. This bench-
mark contains 262 hand labeled pairs of user scribbles with ground truth. Since this
benchmark is only used for evaluating the performance of the algorithm the volume
constraints are computed from the ground truth segmentations for each image. The
data terms fi in (2) are computed based on [5], but are not part of the performance
evaluation.

Figure 5 exemplarily shows the performance in terms of runtime and number of it-
erations for the first image of the Graz database, which contains four labels. The other
performance plots look similar. On average we obtain the results in Table 2 over all im-
ages of the benchmark. From the results we can conclude that ADMM is also faster for
the multi-region segmentation problem as an instance of the minimal partition problems
with volume constraint. Figure 3 shows some qualitative segmentation results based on
an optimized volume constraint.
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Fig. 6. Cumulative distribution functions over the runtimes for the 18 3D reconstruction examples
and the 262 segmentation examples. The plots indicate for each runtime T in seconds (horizontal
axis) the ratio of examples with runtimes below T seconds P (t ≤ T ) (vertical axis). The faster
the curve grows the more efficient is the algorithm. For both instances of partition problems the
ADMM algorithm yields better performance results.

6.3 Cumulative Distribution Function of Runtimes

Finally, we show the cumulative distribution functions (CDF) of the runtimes for both
partition problems instances, i.e. 3D reconstruction and multi-region segmentation, in
Figure 6. The vertical axis shows the ratio of samples with runtimes below T seconds on
the horizontal axis (P (t ≤ T )). The 3D reconstruction results are based on 18 sample
images, which causes the staircase pattern in the plot. For the segmentation results we
had 262 sample images. The CDF plots confirm that the ADMM algorithm in general
converges faster than the PD algorithm.

7 Conclusion

We have compared two algorithms for solving the minimal partition problem with ad-
ditional volume constraints, PD and ADMM. In the PD algorithm the constraints are
handled by Lagrange multipliers, and every iteration step has a closed form solution.
Contrary, the ADMM algorithm requires an approximate solution of a least squares
problem in every iteration, and the constraints are handled by orthogonal projections
onto the corresponding sets. The results suggest that both algorithms can be extended
in a straightforward manner in order to handle additional convex constraints.

We conducted several experiments on 3D reconstruction examples and on the Graz
interactive segmentation benchmark. Our experiments indicate that the ADMM ap-
proach provides comparable and often better performance. On average, it yields shorter
runtimes than the PD algorithm and requires significantly less iterations, while the qual-
ity of the results is identical.
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9. Lellmann, J., Schnörr, C.: Continuous Multiclass Labeling Approaches and Algorithms. J.
Imaging Sci. 4, 1049–1096 (2010)

10. Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with
Applications to Imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

11. Goldstein, T., Bresson, X., Osher, S.: Geometric Applications of the Split Bregman Method:
Segmentation and Surface Reconstruction. Technical report, UCLA (2009)

12. Paul, G., Cardinale, J., Sbalzarini, I.: An Alternating Split Bregman Algorithm for Multi-
Region Segmentation. In: IEEE Asilomar Conf. Signals, Systems, and Computers, pp. 426–
430 (2011)
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Abstract. A new approach for the effective computation of geodesic re-
gression curves in shape spaces is presented. Here, one asks for a geodesic
curve on the shape manifold that minimizes a sum of dissimilarity mea-
sures between given two- or three-dimensional input shapes and corre-
sponding shapes along the regression curve. The proposed method is
based on a variational time discretization of geodesics. Curves in shape
space are represented as deformations of suitable reference shapes, which
renders the computation of a discrete geodesic as a PDE constrained
optimization for a family of deformations. The PDE constraint is de-
duced from the discretization of the covariant derivative of the velocity
in the tangential direction along a geodesic. Finite elements are used
for the spatial discretization, and a hierarchical minimization strategy
together with a Lagrangian multiplier type gradient descent scheme is
implemented. The method is applied to the analysis of root growth in
botany and the morphological changes of brain structures due to aging.

1 Introduction

Geodesic paths in shape space are the natural generalization of straight lines in
Euclidian space. Applications include shape modeling in computer vision and
graphics [1,2] or in computational anatomy [3,4], and shape clustering [5] as well
as shape statistics [6]. As a generalization of linear regression in Euclidian space
we investigate in this paper geodesic paths in shape space which best approx-
imate given time indexed sets of input shapes in a least squares sense. Fig. 1
shows a discrete geodesic regression path in the space of 3D objects representing
the growth process of sugar beet roots over a vegetation period.

Time-dependent shape statistics and shape regression has already been inves-
tigated in [7], where the regression curve is obtained via a simultaneous kernel
weighted averaging in time and on shape space. In the application to brain im-
ages the kernel on shape space is linked to the Sobolev metric from the group of
diffeomorphisms approach [8]. A variational formulation of geodesic regression
is given in [9], where for given input shapes Si at times ti the (in a least squares
sense) best approximating geodesic is computed as the minimizer of the energy

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 108–122, 2013.
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Fig. 1. Discrete regression curve (bright) for sugar beet input shapes (dark) at 5 dif-
ferent days in the vegetation period

E[S, v] = 1
2

∑
i dist

2(expp(ti v),Si) over the initial shape S of the geodesic path
and its initial velocity or momentum v. Here, dist(·, ·) is the Riemannian dis-
tance and exp the exponential map. A computationally efficient method in the
group of diffeomorphisms shape space is based on duality calculus in constrained
optimization and presented in [10]. In [11], a generalization allowing for image
metamorphosis—simultaneous diffeomorphic image deformation and image in-
tensity modulation—is proposed. In contrast to these approaches, we here do
not minimize over the initial data of geodesic shooting but directly over the
shapes along a time discrete geodesic. The classical energy minimization prop-
erty of cubic splines exploited in the shape space context in [12] is related to
the penalty used in our approach, which is defined via the L2 integral of the
covariant derivative of the shape velocity along shape curves.

There is a rich diversity of underlying Riemannian structures in the shape
space context. On the space of planar curves the L2-metric on direction and cur-
vature functions is proposed in [1], and the L2-metric on stretching and bending
variations in [13], as well as curvature-weighted L2- or Sobolev-type metrics in
[14,15], some of which allow closed-form geodesics [16,17]. In the flow of diffeo-
morphism approach [18] the metric g(v, v) =

∫
D Lv · v dx is defined on Eulerian

motion fields v for a higher order elliptic operator L on some computational
domain D ⊂ Rd. Fuchs et al. [19] propose a viscous-fluid based Riemannian met-
ric related to the approach considered here. Here, we take up the time discrete
concept proposed in [20] and define time discrete geodesics as minimizers of a
time discrete path energy. In the concrete application, the path energy consists
of a sum of matching energies, whose Hessian at the identity coincides with the
rate of viscous dissipation generated by the shape deformation.

The paper is organized as follows. Based on a brief review in Section 2 of the
concept of discrete geodesics proposed in [20] we develop a general variational
model for shape regression in Section 3. In Section 4 this model is illustrated for
the case of a finite dimensional manifold embedded in Euclidian space. Then, in
Section 5 we investigate the application to the space of viscous fluidic objects.
The algorithmic ingredients required to solve the underlying optimization prob-
lem are studied in detail in Section 6. The application of the method to shape
statistics in anatomy and botany is presented in Section 7. Finally, in Section 8
we draw conclusions.
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2 Discrete Geodesics in Shape Space

In this section, we briefly review the notion of continuous geodesics on shape
spaces considered as Riemannian manifolds and adopt a recently introduced
variational time discretization [20]. Let M denote the space of shapes as a Rie-
mannian manifold with a metric gS acting on variations Ṡ of shapes S which
are considered as tangent vectors on the manifold M. A curve S : [0, 1] →
M with S(0) = SA and S(1) = SB is a geodesic if it is a local minimizer

of the path energy E [(S(t))t∈[0,1]] =
∫ 1
0 gS(t)(Ṡ(t), Ṡ(t)) dt. Such curves solve

∇Ṡ(t)Ṡ(t) = 0, where ∇ denotes the Levi-Civita connection, and in addition

gS(t)(Ṡ(t), Ṡ(t)) = const. The associated distance dist(SA,SB) is the minimal

path length L[(S(t))t∈[0,1]] =
∫ 1

0 (gS(t)(Ṡ(t), Ṡ(t)))
1
2 dt and minimizers of the en-

ergy also minimize the path length. If a continuous path (S(t))t∈[0,1] is sampled

at times tk = kτ for k = 0, . . . ,K and τ := 1
K , Jensen’s inequality implies

the estimate E [(S(t))t∈[0,1]] ≥ 1
τ

∑K
k=1 dist

2(Sk−1,Sk) with Sk = S(tk). Here,
equality holds for geodesic paths due to the constant speed property of energy
minimizing paths. This observation allows us to derive the fundamental notion
of a discrete geodesic: Approximating the local squared Riemannian distance
dist2(·, ·) by a functional W :M×M→ R, (S1,S2) �→W[S1,S2] in such a way
that dist2(S, S̃) = W[S, S̃] +O(dist3(S, S̃)) , we are naturally led to the discrete
path energy E

E[SK ] = K

K∑
k=1

W[Sk−1,Sk] (1)

for discrete paths SK = (S0, . . . ,SK). A discrete geodesic (of order K) is then
defined as a minimizer ofE[SK ] for fixed end points S0,SK . In this discrete model
W[S, S̃] can be interpreted as the cost required to deform the shape S into the
shape S̃. The required approximation property already implies W[S,S] = 0 and
that for the first and second variation of W with respect to the second shape
we have ∂S2W[S,S] = 0 and 1

2∂
2
S2
W[S,S] = gS for smooth g and W (cf. the

exposition in [20]).

3 Derivation of the Discrete Regression Model

Based on the concept of discrete geodesics revisited in the last section, we are
now in the position to derive our discrete shape regression model from a corre-
sponding model of continuous geodesic regression. Let us consider sets of input
shapes {Sik}i=1,...,ik for k = 0, . . . ,K, which represent sets of statistical mea-
surements at times tk ∈ [0, 1] on the shape manifold M. As a notational sim-
plification let us suppose already here that all times tk at which input shapes
are given are multiples of the time step size τ = 1

K of the discrete model to be
introduced later. Indeed, this is no severe restriction because a generalization to
discrete geodesics with non-constant time step sizes is straightforward (actually,
a non-constant time step has been used in the computation underlying Fig. 1).
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Now we ask for a geodesic curve S = (S(t))t∈[0,1] on M which minimizes a sum
of dissimilarity measures between the input shapes Sik and the associated shapes
S(tk) on the geodesic curve. More precisely, we aim at minimizing

F [S] =
K∑
k=0

ik∑
i=1

diss[S(tk),S
i
k] (2)

under the constraint that S is actually a geodesic, namely that ∇Ṡ(t)Ṡ(t) = 0. In

analogy to the standard linear regression model in Rn the measure diss[·, ·] might
be the squared (geodesic) distance onM (cf. [9]) or another in general nonlinear
measure of shape dissimilarity. Based on the above discussed approximation
properties diss[S(tk),S

i
k] = W[S(tk),S

i
k] is a natural choice.

Instead of enforcing the strict constraint that S is a geodesic, we might alter-
natively consider a penalty approach with

F ε[S] = F [S] + C

ε

∫ 1

0

gS(t)(∇Ṡ(t)Ṡ(t),∇Ṡ(t)Ṡ(t)) dt (3)

for a small penalty parameter ε. Obviously, on geodesic curves S the two energies
F ε[S] and F [S] coincide. As a scaling factor C we choose F [Sref ], where Sref is
a curve in shape space with Sref(tk) being the shape mean of the input shapes

at time tk in the sense of [21], i. e. Sref(tk) = argminS̃
∑ik
i=1 diss[S̃,S

i
k].

Let us now derive a discrete analog of the above continuous variational prob-
lem and specifically ask for a discrete geodesic regression curve. Now, we consider
discrete curves (S0, . . . ,SK) in shape space and assume (potentially after rein-
dexing) that {Sik}i=1,...,ik is the set of input shapes attached to the time tk = kτ .
If ik = 0 then the corresponding set is empty, and in what follows the associ-
ated sums over i are defined to be zero. With this notation at hand the discrete
geodesic regression problem reads as follows:

Find a discrete path SK=(S0, . . . ,SK) such that F[SK ]=
∑K
k=0

∑ik
i=1 diss[Sk,S

i
k]

is minimal under the constraint that SK is a discrete geodesic, i. e. SK minimizes
E[(S0, . . . ,SK)] among all discrete paths with same end shapes S0 and SK .

To derive a discrete penalty approach we take into account a suitable approxima-
tion of the integrand of the continuous penalty energy. Indeed, for g and W suf-
ficienty smooth gS(tk)(∇Ṡ(tk)

Ṡ(tk),∇Ṡ(tk)
Ṡ(tk)) = 4K4W(S̃k,S(tk)) + O(K−2)

for each k = 1, . . . ,K − 1, where S̃k is the middle shape of the discrete geodesic
(Sk−1 = S(tk−1), S̃k,Sk+1 = S(tk+1)), i. e.

S̃k = argminS (W[Sk−1,S] +W[S,Sk+1]) . (4)

This is a straightforward consequence of the convergence theory presented in [22].

Then, writing S̃K = (S̃1, . . . , S̃K−1) and using the simple quadrature
∫ 1

0
f(t)dt =

K
∑K−1
k=1 f(tk) +O(τ) we obtain a discrete penalty approach

Fε[SK ] = Hε[SK , S̃K ] = F[SK ] +
4CK3

ε

K−1∑
k=1

W[S̃k,Sk] (5)
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ε = 1.5

t

ε = 0.15

γ = 2

t

γ = 20

Fig. 2. Results of the discrete geodesic regression for given input objects at 6 timesteps
(top row) are shown for different ε (left) and compared to the results obtained by using
a simple path length penalty γE[SK ] (right)

and seek discrete paths which minimize this functional. The approach developed
here is fairly general and will in Section 5 be applied to a concrete shape space,
namely the space of viscous fluidic objects. Fig. 2 shows results of the discrete
geodesic regression approach for different penalty parameters ε. For decreasing ε
one observes an increased rounding effect towards the right of the curve, which
reflects the global impact of the round input shapes on the resulting approximate
discrete geodesic. These results are compared to regression curves obtained when
replacing the proposed penalty by the simpler penalty γ E[SK ], where E is the
discrete path energy defined in (1). The latter leads to a collapse of the regression
curve to a global shape average (cf. [21]).

4 Regression on a Finite Dimensional Manifold

At first, as a simple example and to further motivate our approach let us briefly
demonstrate the discrete geodesic regression for the much simpler case of an
m-dimensional surface M embedded in Rd. We suppose M to be parametrized
via a smooth parametrization Y : ω → Rd; θ �→ Y (θ) over a parameter domain
ω. Furthermore, we consider the simple energy W[θ̃, θ] = |Y (θ̃)− Y (θ)|2, which
reflects the stored elastic energy in a spring spanned between points Y (θ) and
Y (θ̃) through the ambient space of M in Rd. Thus, the discrete path energy of

a path (θ0, . . . , θK) is given by E[(θ0, . . . , θK)] = K
∑K
k=1 |Y (θk) − Y (θk−1)|2 .

Now, we suppose measurements θik to be given for k = 0, . . . ,K, i = 1, . . . , ik,
i. e. {Y (θik)}i=1,...,ik are the corresponding input points on M at time tk = τk.
(As above ik = 0 indicates an empty set of input points, and in what follows
the associated sums over i are assumed empty.) Then the discrete regression
problem reads as follows:

Find a discrete path Θ = (θ0, . . . , θK) and associated points Θ̃ = (θ̃1, . . . , θ̃K−1)

such that Hε[Θ, Θ̃] =
∑K
k=0

∑ik
i=1 |Y (θk)−Y (θik)|2+ 4K3C

ε

∑K−1
k=1 |Y (θ̃k)−Y (θk)|2

is minimal subject to the constraint that θ̃k for k = 1, . . . ,K − 1 minimizes
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G(θk−1, θ, θk+1) := |Y (θ)− Y (θk−1)|2 + |Y (θ)− Y (θk+1)|2 over all θ ∈ ω.
Let us emphasize that the chosen parametrization influences the numerical so-
lution process but not the resulting regression curves which solely depend on

Fig. 3. Regression curve (black) for 20 input points on
the unit sphere for a strong penalty weight with ε =
0.028 (left) and just a mild curve smoothing with ε = 28
(right)

the manifold M, the in-
put data and the penalty
parameter ε. Fig. 3 shows
discrete regression curves
on the sphere. In the im-
plementation a parame-
trization via polar and
azimuth angle was used.
One clearly observes that
for small ε the regression
curve is close to a great
circle so that sets of in-
put points at a particu-
lar time might be located
completely on one side of
the regression curve. For larger values of ε the method still computes a smooth
regression curve which better matches the input points at the expense of being
far from a geodesic.

The optimization algorithm. Denote by Θ̃[Θ] = (θ̃1, . . . , θ̃K−1) the vector
of minimizers of G(θk−1, ·, θk+1), and define Fε[Θ] = Hε[Θ, Θ̃[Θ]]. The nec-
essary condition for θ̃k to minimize G(θk−1, ·, θk+1) is (2Y (θ̃k) − Y (θk−1) −
Y (θk+1))

TDY (θ̃k) = 0. To perform a gradient descent for the energy Fε we ap-
ply the duality techniques from constrained optimization [23] and define the dual
solution pk ∈ R

m as the solution of D2
θG(θk−1, θ̃k, θk+1)pk =

(
∂θ̃kH

ε
)
[Θ, Θ̃[Θ]].

Then we obtain ∂θkF
ε[Θ] =

(
∂θkH

ε
)
[Θ, Θ̃(Θ)] −

(
∂θk∂θ̃kH

ε
)
[Θ, Θ̃[Θ]] pk . The

required derivatives of G and Hε are evaluated as follows,

D2
θG(θk−1, θ, θk+1)ij=

d∑
n=1

(
2Yn,i(θ)Yn,j(θ)+(2Yn(θ)−Yn(θk−1)−Yn(θk+1))Yn,ij(θ)

)
,

∂θ̃kH
ε[Θ, Θ̃]i =

8CK3

ε

d∑
n=1

(Y (θ̃k)− Y (θk))nYn,i(θ̃k) ,

∂θk∂θ̃kH
ε[Θ, Θ̃]ij = −8CK3

ε

d∑
n=1

Yn,j(θk)Yn,i(θ̃k) .

5 Shape Regression in the Space of Viscous Fluidic
Objects

Now we apply the general approach of discrete geodesic regression to a physically
motivated shape space of viscous fluidic objects with a metric induced by the
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notion of viscous dissipation. Here, we assume that a viscous flow model at
least captures some characteristics of the usually much more complex underlying
processes such as e. g. plant growth. To this end, one considers objects S which
are homeomorphic to a reference object Ŝ ⊂ Rd (d = 2, 3). In general, one is
not interested in point to point correspondences between two different objects
but represents the actual shape S by an equivalence class of deformations [φ] =

{φ̃ | φ̃(Ŝ) = S}. A family (φ(t))t∈[0,1] of such deformations is associated with an

Eulerian velocity field v(t) = φ̇(t) ◦ φ−1(t), and shape variations are equivalence
classes of such motion fields with ṽ ∼ v if ṽ · n = v · n on ∂S, where n is the
outer normal on ∂S. Now, a physically motivated metric on shape variations is
given by the minimal rate of dissipation in a Newtonian fluid occupying S when
its free boundary moves according to the shape variation,

gS(v, v) = min
{ṽ | ṽ·n=v·n on ∂S}

∫
S

λ
2 (trε[ṽ])

2 + μtr(ε[ṽ]2) dx , (6)

where λ, μ > 0, ε[v] = 1
2 (∇v+∇vT ) (λ = μ = 1 in the examples). In this context,

a matching functional W to approximate the resulting squared Riemannian
distance locally can be defined via the minimization of a deformation energy
Ŵ[S, φ] =

∫
S
W (Dφ) dx over all matching deformations φ with φ(S) = S̃, i. e.

W[S, S̃] = minφ(S)=S̃ Ŵ[S, φ] for some particular deformation energy densityW .
There are primarily two options to choose a W which both ensure the requested
consistency of the functional W and the metric g, i. e. 1

2D
2
φŴ[S, id] = gS. One

could consider a simple linearized model with

W l(Dφ) = λ
2 (trε[φ− id])2 + μtr(ε[φ− id]2) . (7)

The advantage ofW l is that it is quadratic in φ so that the Euler–Lagrange equa-
tions for a functional composed of such energy densities will be linear. However,
this is at the expense of the resulting energy being rigid body motion invariant
only in an infinitesimal sense so that a relatively large number K of time steps is
required in (1) to obtain an approximate frame indifference of discrete geodesic
paths. Full rigid body motion invariance for large deformations can be guaran-
teed only for certain classes of nonlinear models W =Wnl. A specifically useful
example is the energy density

Wnl(Dφ) =
μ

2
tr(DφTDφ) +

λ

4
det(Dφ)2 −

(
μ+

λ

2

)
log detDφ− dμ

2
− λ

4
. (8)

We refer to [20] for further details on this approach.
In our application of discrete geodesic regression the computationally most

demanding task is the continual computation of the shapes S̃k for the penalty
terms W[S̃k,Sk]. Therefore it turns out to be favorable to use W l in the defini-
tion of the S̃k and the penalty functional, i. e. we choose

W[S, S̃] := min
φ(S)=S̃

Ŵl[S, φ] with Ŵl[S, φ] =

∫
S

W l(Dφ) dx (9)
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Fig. 4. A diagram illustrating the parametrization of the shapes Sk via deformations
over reference shapes Ŝk. Here, φ̂k are given deformations such that Ŝk = φ̂k(Ŝk−1).

in (4) and (5) and a large number of time steps K leading to a sufficiently small
time step size τ = 1

K . The condition on S̃k in (4) thus reads as

S̃k = argmin
S

(
min

φ(Sk−1)=S
Ŵl[Sk−1, φ] + min

φ(S)=Sk+1

Ŵl[S, φ]

)
. (10)

The treatment of the dissimilarity measure is computationally less critical and we
would like to treat large scale variations between shapes of the discrete geodesic
Sk and corresponding input shapes Sik. Hence, here we take into account the
nonlinear deformation model and define

diss[Sk,S
i
k] := min

φ(Sk)=Si
k

Ŵnl[Sk, φ] with Ŵnl[S, φ] =

∫
S

Wnl(Dφ) dx . (11)

Finally, to render the method computationally feasible, we assume all de-
formations to be defined on a computational domain D (D = [0, 1]d in the
examples) containing all shapes under consideration, and we suppose that the
material properties outside any of the shapes are by a factor δ softer than in-
side the shapes (δ = 0.01 in the examples). Thus, we replace Ŵnl/l[S, φ] by

Ŵ
nl/l
δ [S, φ] :=

∫
D
((1 − δ)χS + δ)Wnl/l(Dφ) dx (where the superscript l or nl

identifies the linear and the nonlinear model, respectively).

6 The Optimization Algorithm

Here we briefly describe the main algorithmic ingredients to minimize (5) in
the context of the space of viscous fluidic objects. The presented variational
approach for shape regression is based on functionals which depend on shapes
and deformations defined on these shapes. To render the method computation-
ally feasible, we parametrize shapes via deformations acting on reference shapes
and work solely with deformations as unknowns. Then, we consider a gradient
descent algorithm for the PDE constrained variational approach. In detail we
proceed as follows:

Parametrizing shapes via deformations. The shapes Sk of the discrete geodesic
as well as the constraint shapes S̃k are represented via deformations ψk and ψ̃k
of fixed reference shapes Ŝk, i. e. Sk = ψk(Ŝk) and S̃k = ψ̃k(Ŝk) (cf. Fig. 4). In

addition, we consider deformations ψik on Ŝk with Sik = ψik(Ŝk) for i = 1, . . . , ik.
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We can now rephrase the deformations φ̃k from the Sk onto the S̃k (which occur
in (5) via (9)) and the deformations (φik)

i=1,...,ik
k=1,...,K from the shapes Sk onto the

input shapes (which are introduced in (11) and used in F[SK ]) in terms of the
above parametrizing deformations, i. e. φik = ψik ◦ ψ−1

k , φ̃k = ψ̃k ◦ ψ−1
k .

Approximation of the matching condition. To ensure that φik matches (at least
approximately) Sk onto the input shape Sik we employ a penalty functional

P [Ŝk,S
i
k, ψ

i
k] :=

∫
D |χŜk

− χSi
k
◦ ψik|2 dx̂ weighted with C

η (η = 0.1 in the exam-

ples) and added to the total energy for all k = 0, . . . ,K and i = 1, . . . , ik.

Expressing the energy in terms of the parametrizing deformations. To simplify
notation, denote by Ψ := (ψk, (ψ

i
k)i=1,...,ik)k=0,...,K the vector of all deformations

which are considered as our actual degrees of freedom and by Ψ̃ := (ψ̃1, . . . , ψ̃K−1)
the vector of all constraint deformations. The energy Fε[SK ] over which we min-

imize in (5) is rewritten as an energy Ĥε
δη[Ψ, Ψ̃ ] of Ψ and Ψ̃ ,

Ĥε
δη[Ψ, Ψ̃ ]=

K∑
k=0

(
ik∑
i=1

(
Ŵnl
δ [ψk(Ŝk), ψ

i
k◦ψ−1

k ]+ C
η P[Ŝk,S

i
k, ψ

i
k]
))

+
4CK3

ε

K−1∑
k=1

Ŵl
δ[ψk(Ŝk), ψ̃k ◦ ψ−1

k ] . (12)

By the transformation rule we obtain the following computationally more effi-
cient reformulation of the involved deformation energies

Ŵ
nl/l
δ [ψk(Ŝk), ψ ◦ψ−1

k ] =

∫
D

((1−δ)χŜk
+ δ)Wnl/l

(
Dψ(Dψk)

−1
)
detDψkdx̂ (13)

for ψ = ψik or ψ = ψ̃k, respectively.

Realization of the constraint. We aim at minimizing Hε
δη subject to constraint

(10). I. e. for all k = 1, . . . ,K − 1 the components ψ̃k of the vector of deforma-
tions Ψ̃ describe the middle shape of a discrete 3-shape geodesic with end shapes
Sk−1 = ψk−1(Ŝk−1) and Sk+1 = ψk+1(Ŝk+1). We now slightly modify this con-

straint by requiring ψ̃k to be the minimizer of Ŵl
δ[ψk−1(Ŝk−1), ψ ◦ φ̂k ◦ψ−1

k−1] +

Ŵl
δ[ψ(Ŝk), ψk+1◦ φ̂k+1◦ψ−1] over all deformations ψ, where φ̂k are given match-

ing deformations between the reference shapes with Ŝk = φ̂k(Ŝk−1) (cf. Fig. 4).
This is not quite the same as (10), not just because of the additional regulariza-

tion, but also since here the point-to-point correspondence ψk+1◦φ̂k+1◦φ̂k◦ψ−1
k−1

between Sk−1 and Sk+1 is imposed along the 3-shape geodesic, which was not
the case originally. Nevertheless, in the limit for K →∞ and ε→ 0 the discrete
path experimentally converges to a continuous geodesic (cf. Fig. 6 and 9).

A computationally advantageous symmetrization of the constraint. To fully ex-
ploit the quadratic deformation energy in the context of the above-mentioned
constraint it is advantageous to further replace Ŵl

δ[ψ(Ŝk), ψk+1 ◦ φ̂k+1 ◦ψ−1] by
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Ŵ−l
δ [ψk+1(Ŝk+1), ψ ◦ φ̂−1

k+1 ◦ ψ
−1
k+1]

=

∫
D

((1−δ)χŜk
+δ)W l(Dψ(Dφ̂k+1)

−1(Dψk+1)
−1◦φ̂k+1) ·

detDφ̂k+1(detDψk+1) ◦ φ̂k+1dx̂

which is quadratic in ψ and in effect replaces the relaxation of the energy
minφ(S)=Sk+1

Ŵl[S, φ] in (10) by the relaxation of a similar energy based on

the inverse deformation minφ(S)=Sk+1
Ŵl[Sk+1, φ

−1]. For our applications (e. g.
Fig. 6) we experimentally validated that for this computationally motivated
modification the resulting discrete curves converge towards discrete geodesics.
Altogether we obtain the following variational definition,

ψ̃k := argmin
ψ

G[ψk−1, ψ, ψk+1] (14)

for all k = 1, . . . ,K − 1, where

G[ψk−1, ψ, ψk+1] := Ŵl
δ[ψk−1(Ŝk−1), ψ ◦ φ̂k ◦ ψ−1

k−1]

+Ŵ−l
δ [ψk+1(Ŝk+1), ψ ◦ φ̂−1

k+1 ◦ ψ
−1
k+1] + νŴl[D,ψ] .

Here, we added νŴl[D,ψ] as regularizer with ν ∼ 10−2h to ensure that not only
the compositions of deformations are regular but also the deformation ψ.

A gradient descent scheme. We apply a standard Fletcher–Reeves nonlinear con-
jugate gradient descent to the above minimization problem, which at each step re-
quires evaluation of the functional F̂εδη[Ψ ] := Ĥε

δη[Ψ, Ψ̃ [Ψ ]] and its gradient. For the
functional evaluation, the quadratic optimization problem (14) is solved for each
k = 1, . . . ,K−1 by a preconditioned linear conjugate gradient iteration. Using the
standard adjointmethod in constrained optimization [23] as in Section 4 we obtain

the Gâteaux derivative of F̂εδη[Ψ ] (which incorporates constraint (14)) as

∂ψk
F̂εδη[Ψ ] =

(
∂ψk

Ĥε
δη

)
[Ψ, Ψ̃ [Ψ ]]−

(
∂ψk

∂ψ̃k
Ĥε
δη

)
[Ψ, Ψ̃ [Ψ ]] pk , (15)

where pk is defined as the solution of the dual problem

D2
ψG[ψk−1, ψ̃k, ψk+1] pk =

(
∂ψ̃k

Ĥε
δη

)
[Ψ, Ψ̃ [Ψ ]] . (16)

Different from the nonlinear energy Ŵnl, which is strictly rigid body motion
invariant, the quadratic energy Ŵl is rigid body motion invariant solely in an
infinitesimal sense. Thus, in the case of large shape variability in the input data
it turned out to be appropriate to enforce the preservation of the center of
mass,

∫
D
((1 − δ)χŜ + δ)ψ dx̂ = 0, and the preservation of the angular mo-

mentum,
∫
D((1 − δ)χŜ + δ)

(
Dψ −DψT

)
dx̂ = 0, assuming the input shapes

are co-aligned with respect to the zero moment and the direction of the first
moment. This is implemented as an additional set of linear constraints in the
minimization in (14) and in the outer minimization with respect to the en-

ergy term Wnl
δ [Ŝk, ψk]. The latter is realized by a projective gradient descent
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input

Sk

t

ψk

Fig. 5. Top: regression input shapes (Si
k)

i=1,...,5
k=0,...,5 (grey) and reference shapes (Ŝk)

5
k=0

(black), middle: discrete regression curve (Sk)
5
k=0, bottom: the deformations (ψk)

5
k=0

scheme, the former by a Lagrange multiplier approach. To emphasize the qual-
itative behavior of geodesic regression we have computed the regression curve
for a very basic test case. Fig. 5 displays a discrete geodesic and the associ-
ated deformations acting on the reference shapes, and Fig. 6 underlines that
the resulting regression curves are actually very close to discrete geodesics. For
the spatial discretization we employ multilinear finite elements on the com-
putational domain D = [0, 1]d, which is overlaid with a regular square grid

ε = 0.3

ε = 0.03

Fig. 6. Difference between the discrete regres-
sion curve (black) and the true discrete geodesic
(red) connecting its end shapes for different ε.

of 2n + 1, n ∈ N, nodes in each
direction. Energies are computed
via Simpson quadrature on each
element. Furthermore, we apply
a cascadic approach, first com-
puting the regression curve with
a coarse spatial resolution for all
involved deformations and then
proceeding iteratively from coarse
to fine. In this cascadic approach one can also adopt the reference shapes Ŝk and
the associated reference deformations φ̂k starting on the coarsest level with a sin-
gle reference shape chosen as one of the coarsely resolved end shapes.

7 Applications in Botany and Anatomy

We applied the geodesic regression approach to the statistical analysis of the
aging of the human corpus callosum and to the growth of sugar beet roots over
a vegetation period. Fig. 7 shows the discrete regression curve for the corpus cal-
losum input shapes, which clearly reflects a substantial thinning of the structure
with increasing age (cf. the results in [9] on a similar data set). Fig. 8 presents
results obtained for 2D slices of sugar beet roots. Here, we also show the ef-
fect of an increasing number of intermediate shapes along the regression curve.
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Fig. 7. Discrete geodesic regression curve for 31 shapes representing slices of the corpus
callosum of humans at different age (2nd to 8th decade). On the right the 7 contours
are overlayed showing a thinning process with increasing age (blue to red).

t

Fig. 8. From top to bottom: 2D input slices of sugar beets at five time points (grey) and
shape averages for each time (black), regression curves for ε = 0.08 and K = 4, 8, 12

ε = 8 ε = 0.8 ε = 0.08

Fig. 9. Difference between the discrete regression curve (black) and the true discrete
geodesic (red) connecting the end shapes for three different values of ε
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Fig. 10. For the discrete sugar beet regression curve (cf. Fig. 1) the shapes Sk in
the front are color coded according to the signed distance from the shape average at
each time point and the input shapes in the back according to the distance from the
regression shape in front (colorcode: −0.127 0.061, maximal root height ≈ 0.75).

Fig. 9 once more demonstrates that already for moderately small penalty param-
eter ε the resulting curves are actually very close to a discrete geodesic. Finally,
Fig. 10 shows some quantitative analysis of the regression curve for sugar beets
in 3D.

8 Conclusions

We have described a time discrete geodesic regression approach on manifolds and
applied it to the shape space of viscous fluidic objects. The method requires the
solution of a PDE constrained optimization problem for deformations defined
on a family of reference shapes. Applications in the context of plant growth and
anatomical brain structures demonstrate the method’s potential in time depen-
dent shape statistics. A thorough convergence analysis for K → ∞ and ε → 0
following the direction in [22] is still open. The current implementation based
on a gradient descent approach requires several hours to compute a regression
geodesic for 2D shapes and several days for 3D shapes. There is a great poten-
tial for faster energy relaxation using Newton type methods and more efficient
parallel implementations. Furthermore, it would be interesting to investigate the
generalization to more general classes of regression curves and the application
to other shape spaces.

Acknowledgement. The 3D volumetric data of sugar beets acquired by 4.7T
MRI are courtesy of R. Metzner (Forschungszentrum Jülich). The corpus callo-
sum shape data was derived from MRI from the OASIS brain database (www.
oasis-brains.org).
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Object Segmentation by Shape Matching

with Wasserstein Modes

Bernhard Schmitzer and Christoph Schnörr

Image and Pattern Analysis Group, Heidelberg University

Abstract. We gradually develop a novel functional for joint variational
object segmentation and shape matching. The formulation, based on the
Wasserstein distance, allows modelling of local object appearance, sta-
tistical shape variations and geometric invariance in a uniform way. For
learning of class typical shape variations we adopt a recently presented
approach and extend it to support inference of deformations during seg-
mentation of new query images. The resulting way of describing and
fitting trained shape variations is in style reminiscent of contour-based
variational shape priors, but does not require an intricate conversion
between the contour and the region representation of shapes. A well-
founded hierarchical branch-and-bound scheme, based on local adaptive
convex relaxation, is presented, that provably finds the global minimum
of the functional.

Keywords: Wasserstein distance, non-convex optimization, convex
relaxation.

1 Introduction

Object segmentation and shape matching are fundamental problems in image
processing and computer vision that underlie many high-level approaches to un-
derstanding the content of an image. They are intimately related: segmentation
of the foreground object is a prerequisite for shape matching in a sequential
analysis of an image. On the other hand, if performed simultaneously, matching
can guide the segmentation process by supplying additional information about
the object shape in a noisy environment where unsupervised segmentation would
fail. Naturally, joint application is a more complicated problem.

We propose a new functional for simultaneous segmentation and statistical
model-based shape matching within a single variational approach. The math-
ematical framework allows to combine key concepts - appearance modelling,
modelling and description of deformable regions or contours, geometric
invariance - in a uniform way. We rely on convex relaxation and a hierarchi-
cal branch-and-bound scheme for global optimization.

1.1 Related Literature

Wasserstein Distance and Image Registration. Optimal transport is a
popular tool for object matching and image registration [3,10] due to its

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 123–136, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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favourable properties: Choosing the cost function to be the squared Euclidean
distance between pixels gives access to the rich theory of the Monge formula-
tion of optimal transport. Also, thanks to the linear programming relaxation
due to Kantorovich such problems usually involve convex functionals. On the
other hand, directly converting grey values to mass densities, as often done [3],
is not robust to noise. A näıve extension to noise handling will only work if the
query and the reference image are aligned properly (see e.g. [7] for an attempt
to alleviate these restrictions). Additionally, when measuring the similarity be-
tween two objects via plain optimal transport, their distance will exclusively
be determined by the resulting optimal transport cost. During the registration
process there is no way to benefit from prior knowledge to distinguish common
and uncommon types of deformations. However, after having computed the reg-
istrations, there are promising ideas how to extract and analyze information on
the deformations from the optimal registrations [10]. The observed deformation
fields are viewed as elements of the tangent space of a reference shape where
then standard machine learning techniques (e.g. PCA) can be applied.

Variational Image Segmentation and Contour Based Shape Priors. For
object segmentation variational approaches with shape priors, based on contour
spaces have received a lot of attention [1,2]. The manifold of shapes, described
by closed contours has been studied extensively [8,5]. Again, here working in the
tangent space of a reference shape enables application of machine learning tools
to learn object typical deformations from training data.

However, the map between the contour representation of a shape and the re-
gion representation by its indicator function is mathematically complex. Thus,
when combined with region based variational segmentation functionals, the con-
tour based shape priors tend to yield highly non-convex functionals that rely
on a good initialization to give useful, only locally optimal, results (e.g. [2]).
There are approaches to model shape statistics directly on the set of indicator
functions, yielding overall convex functionals [4,6]. But due to required convex-
ity, these shape representations are rather simplistic and lack important features
such as geometric invariance.

1.2 Contribution

In this paper we propose a new functional for noise robust joint object segmen-
tation and shape matching based on the Wasserstein distance. We start with
a functional for variational segmentation where we regularize the segmentation
with the Wasserstein distance to a reference measure. This functional has several
limitations, hinted at above and further discussed in Section 3.1. To overcome
these, we enhance the functional by additional degrees of freedom, obtaining an
advantageous new approach:

(i) The optimal segmentation & matching become invariant under translations
and approximately invariant w.r.t. rotations and scale transformations.

(ii) Prior knowledge on object-typical deformations can be learned from train-
ing samples and exploited during the registration process. Although the
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mathematical representation is different, the scope of our approach is sim-
ilar to that of contour-based shape priors.

(iii) The overall functional is non-convex. Yet, instead of heuristic local op-
timization we propose a hierarchical branch-and-bound scheme to obtain
global optimizers. We show how bounds can be obtained by adaptive convex
relaxation that becomes tighter as the hierarchy-scale becomes finer and
how successive refinement of the bound computations converges towards
the global optimum (Propositions 1 and 2).

Organization. After a brief review of the mathematical background in the
next section, we will gradually motivate and develop the full functional in Sec.
3. Global optimization of the non-convex functional is discussed in Sec. 4, key
properties of the approach are illustrated with experiments in Sec. 5, before we
reach a short conclusion at the end.

2 Mathematical Background: Wasserstein Distance

For any measurable space A denote by P(A) the set of non-negative measures
thereon. For two measurable spaces A,B, a measure μ on A and a measurable
map f : A→ B, the push-forward f� μ of μ onto B via f is defined by f� μ(σ) =
μ(f−1(σ)) for all measurable σ ⊂ B.

Let X be a measurable space with measures μ, ν ∈ P(X) of the same total
mass. Then the set of couplings Π(μ, ν) between μ and ν is given by

Π(μ, ν) ={π ∈ P(X ×X) : π(σ ×X) = μ(σ), π(X × σ) = ν(σ)

for all measurable σ ⊂ X} . (1)

For a metric dX : X ×X → � ∪ {∞} the Wasserstein distance is determined by

D(μ, ν) =

(
inf

π∈Π(μ,ν)

{∫
X×X

d2X(x, y) dπ(x, y) : π ∈ Π(μ, ν)

})1/2

. (2)

The minimizing coupling π, determining the Wasserstein distance D is called
optimal transport in the literature [9].

For absolutely continuous measures onX = �
n, metrized with the Wasserstein

distance w.r.t. the Euclidean metric, the optimal π ∈ Π(μ, ν) is induced by a
unique map ϕ : X → X , i.e. π = (id, ϕ)� μ. That is, at any point x, the mass of
μ is transported to the unique location ϕ(x). Further, these measures constitute
a Riemannian manifold. When ϕ is the optimal transport map between μ and
ν then the vector field t(x) = ϕ(x) − x corresponds to a vector in the tangent
space of μ. For two vectors t1, t2 in the tangent space the inner product is given
by 〈t1, t2〉μ =

∫
X〈t1(x), t2(x)〉�n dμ(x).

We adopt the idea from [10] to use PCA on the tangent space to learn typical
object deformations. However, in our approach we will be able to benefit from
this learned knowledge during segmentation/matching of new images.
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3 Variational Approach

3.1 Problem Setup and Näıve Approach

We will now, step by step, describe the problem to be solved, set out the notation
and develop the final form of our proposed functional.

Let Y be the image domain which we want to separate into fore- and back-
ground. We can describe the separation by an indicator function u : Y → {0, 1}.
To obtain feasible optimization problems, one typically relaxes the constraint
that u must be binary to the interval [0, 1]. In this paper we use optimal trans-
port as a regularizer. Therefore we interpret the relaxed function u as the density
of a measure ν. For simplicity we will define our functionals directly over the set
of measures, drop u and translate the [0, 1]-constraint appropriately.

To find the optimal segmentation ν of Y we want to combine local information
with prior knowledge on the shape of the sought-after object. This information
is given by a reference measure μ on a template space X . Let both X and Y
be embedded into �2, i.e. X,Y ⊂ �

2. Considering the literature, one might be
tempted to optimize ν w.r.t. a local data term and regularize by its Wasserstein
distance to μ in �2. The optimal coupling between μ and the optimal ν can then
be interpreted as a registration between the template and its counterpart in the
image. A corresponding functional could look like this:

E0(ν) =
1

2
D(μ, ν)2 +G(ν) =

1

2
inf

π∈Π(μ,ν)

∫
X×Y

‖x− y‖2 dπ(x, y) +G(ν) (3)

where G is the function that encodes local appearance information. An illus-
tration of the functional is given in Fig. 1a. For the remainder of the paper we
choose G to be linear in ν:

G(ν) =

∫
Y

g(y) dν(y) (4)

Here g is a function of local weights, g(y) < 0 (g(y) > 0) indicating foreground
(background) affinity of point y ∈ Y . For the applicability of the framework
presented in this paper, G can be any 1-homogeneous convex function.

An optimal segmentation is then described by an optimizer of E0 w.r.t. the
following feasible set:

S(M) = {ν ∈ P(Y ) : ν(Y ) =M, ν(σ) ≤ L(σ) for all measurable σ ⊂ Y } . (5)

Here L denotes the Lebesgue measure on Y . This constraint is equivalent to the
density of ν being a relaxed indicator function. M = μ(X) is the total mass of μ
to ensure that the Wasserstein distance D(μ, ν) is well defined for all feasible ν.

Limitations. In addition to the mass constraint, as discussed in the introduc-
tion, functional (3) has two major shortcomings. The first is the dependence of
the optimal ν on the relative embedding of X and Y into the �2 plane. Assume
both μ and ν were fixed. Then any optimal coupling π ∈ Π(μ, ν) would be still
be optimal after relative translation of X and Y (of course taking into account
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X,μ

π

Y, ν

(a)

x Tα(x)

X,μ

Tα

Tα � μ

π

Y, ν

(b)

Fig. 1. Illustration of functionals E0(ν), eq. (3), and E1(α, ν), eq. (8): (a) The segmen-
tation in Y is described by measure ν which is regularized by the Wasserstein distance
to a template measure μ, living on X. This simple approach introduces strong bias,
depending on the relative location of X and Y , and lacks the ability to explicitly model
typical object deformations. (b) In the enhanced functional the template measure μ is
deformed by the map Tα, resulting in the push-forward Tα � μ. The segmentation ν is
then regularized by its Wasserstein distance to Tα � μ. The corresponding optimal cou-
pling π gives a registration between the foreground part of the image and the deformed
template.

the coordinate transformation caused by the translation). However, since we do
not consider ν to be fixed, as in other approaches, but optimize over ν, we can-
not exploit this quasi-invariance. Any fixed embedding of X and Y will always
introduce a bias, encouraging ν to have its mass close to μ, breaking translation
invariance, which is clearly not what we want.

The second problem is that any deformation between μ and ν is uniformly
penalized by its transportation distance. No information on more or less common
deformations can be encoded.

To overcome these restrictions we propose to additionally optimize over the
embedding of X into �2.

3.2 Wasserstein Modes

Let Tα : X → �
2 be a family of functions, parametrized by some vector α ∈ �n,

used to adjust the position of X to obtain better matches between template and
query image. We choose:

Tα(x) = x+
n∑
i=1

αi · ti(x) (6)

This linear decomposition will give us enough flexibility to deform X while keep-
ing the resulting functionals easy to handle. We refer to the functions ti as
modes. They can be used to make the approach invariant w.r.t. translation, ap-
proximately invariant under rotation and scale and introduce prior knowledge



128 B. Schmitzer and C. Schnörr

on learned object deformations into the functional. The enhanced version of (3)
that we consider in this paper is:

E1(α, ν) =
1

2
D(Tα � μ, ν)

2 + F (α) +G(ν)

=
1

2
inf

π∈Π(Tα � μ,ν)

∫
X×Y

‖x− y‖2 dπ(x, y) + F (α) +G(ν) (7)

Note that by a standard argument from measure theory we can rewrite this as

E1(α, ν) =
1

2
inf

π∈Π(μ,ν)

∫
X×Y

‖Tα(x)− y‖2 dπ(x, y) + F (α) +G(ν) . (8)

F is a function that can introduce statistical knowledge on the distribution of
the coefficients α. The functional E1 is illustrated in Fig. 1b. For simplicity, in
the course of this paper we choose

F (α) =
1

2
α�Σ−1 α , (9)

for some symmetric, positive semi-definite Σ−1. We choose a basis in which
Σ−1 = diag({Σ−1

i }ni=1) is diagonal. So coefficients with Σ−1
i = 0 can move freely

and and coefficients Σ−1
i > 0 model i.i.d. Gaussian distributions αi ∼ N (0, Σ2

i ).
The functional E1 has an intuitive and transparent interpretation: With the

coefficients α we describe a finite dimensional submanifold of known shapes, F
modelling their plausibility. ν is the segmentation-measure, its local plausibility
measured by G. D(Tα � μ, ν) allows the optimal segmentation to be more flexible
than the finite-dimensional submanifold given by the modes would allow, by
measuring the distance of ν from the most plausible point on the manifold, and
actually carrying out the corresponding assignment.

We will now discuss the choices for the modes ti to model different types of
variation in position and shape of X .

3.3 Geometric Invariance and Statistical Shape Deformation

Euclidean Isometries. If one chooses

tt1(x) = (1, 0)�, tt2(x) = (0, 1)� (10)

one can use the corresponding coefficients αt1,t2 to translate the template X
and thus reintroduce translation invariance, that the simple approach (3) lacks.
Further, let R(φ) be the 2-dimensional rotation matrix by angle φ. Then choose

tr(x) =
d

dφ
R(φ)

∣∣∣∣
φ=0

x = (−x2, x1)� (11)

to approximately model rotation of X up to angles of about ±30◦. For explicit
invariance under these transformations one chooses Σ−1

t1 = Σ−1
t2 = Σ−1

r = 0.
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Learning Class Typical Deformations. In this section we describe how
modes tdi can be learned that model class-typical shape variations from a set
of training samples. These modes can then be used to allow X to be deformed
in the learned way, to prefer known deformations over unknown deformations
during the segmentation process.

Let {μi}mi=1 be a set of training segmentations, given as indicator-measures:
the support of μi marks the foreground of the corresponding segmentation. As-
sume that all μi have the same mass. We arbitrarily choose μ1 to be the reference
segmentation and compute the optimal transport couplings {π1,i}ki=1 between
the reference and the other segmentations, optimized over rotation. As discussed
earlier, for fixed measures (μ1, μi) the optimal coupling does not depend on the
relative translation. It is easy to see that the relative translation with smallest
cost is the one where the centers of mass coincide [10]. Note that the opti-
mal coupling π1,1 simply transports mass from all pixels onto themselves. The
relative transportation maps that underlie the optimal couplings π1,i are then
elements of the tangent space of the manifold of measures at μ1. As in [10], we
can then perform a classical principal component analysis (PCA) on the set of
tangent vectors to obtain the mean deformation tm, a set of principal deforma-
tion modes {tdi}i and the corresponding parametersΣ−1

i for the statistical term.
Together the pairs (tdi, Σ

−1
i ) act like the well-known contour based shape priors.

However, in our approach no difficult conversion between different mathematical
shape representations is necessary.

(a) (b) (c)

Fig. 2. Learning class-typical deformation modes for starfish: (a)four ground-truth seg-
mentations for learning (b) first principal component: modelling elongation of arms(c)
second principal component: modelling angles between arms

The choice of a reference template is arbitrary and rather heuristic. In our
application it is however not possible to take the average of all given samples as
reference (as done in [10]) since we work with indicator measures and the mean
would no longer be an indicator measure. For a proof of concept however, we
consider this choice sufficient and it should be noted that the arbitrary choice of
the reference measure is somewhat alleviated by the PCA where the mean of all
observed transportation maps is determined. During segmentation the template
μ will then be generated by the reference template μ1, shifted by this mean.
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Scale Transformation. The presented framework of deformation modes can,
with some slight extensions, also be used to approximately model scale variations
of the template.

Let us first have a look at how the map Tα transforms the measure μ via
push-forward: μ has uniform mass density 1 within its support since it is an
indicator measure (i.e. its density is an indicator function). At Tα(x) the density
of the measure Tα �μ will depend on the Jacobian determinant JTα(x). For the
decomposition (6) and small coefficients α we find:

JTα(x) = 1 +

n∑
i=1

αi · div ti(x) +O(α2)

The rotation mode has zero divergence and since the deformation modes learned
from the training samples map indicator measures onto similar indicator mea-
sures their divergence should also be small. Since the translation modes are
constant, they have no influence on the Jacobian. Hence, the presented method
to deform the reference template, is in fact a reasonable approximate description
of a set of ‘allowed’ indicator measures.

Now for rescaling, the corresponding mode is ts(x) = x. The Jacobian de-
terminant of x �→ x + αs · ts(x) is (1 + αs)

2, hence to keep Tα �μ an indicator
measure, we must multiply it by (1+αs)

2. To make the resulting functional scale
invariant, we choose Σ−1

s = 0 and to rescale the functional by (1 + αs)
2. One

then gets:

E1,s(α, ν) = (1 + αs)
−2

(
1

2
D((1 + αs)

2 · Tα � μ, ν)2 + F (α) +G(ν)

)
(12)

This functional will have to be optimized subject to the modified condition
ν ∈ S

(
μ(X) · (1+αs)

2
)
, with the mass of ν adjusted according to αs. Obviously

the terms depending on the mass of the measures should be rescaled. But it is
reasonable to also rescale the term F since on a larger scale also the deformation
modes need to have higher coefficients to obtain the same relative deformation.
Since we chose F to be quadratic, the chosen renormalization is exactly the one
to cancel that effect.

The scale invariance is only approximate near αs = 0 because of the raster-
ization applied for practical implementation. When the grid sizes of X and Y
become too different, one will expect numerical artifacts.

4 Optimization

Eliminating ν. The functional E1 is convex in ν for fixed α and vice versa. But
instead of a heuristic alternating optimization scheme we propose a hierarchical
branch and bound approach that yields global optimizers and also applies to the
scale-invariant version E1,s.
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For some fixed α let

E2(α) = min
ν∈S(μ(X))

E1(α, ν) , E2,s(α) = min
ν∈S((1+αs)2·μ(X))

E1,s(α, ν) . (13)

These can be computed by solving the convex optimization problem in ν for
fixed α. The remaining problem is to optimize E2 w.r.t. α. Let now A be a set
of α-parameters and define a functional over such sets:

E3(A) =

inf
ν∈S(μ(X))

1

2
inf

π∈Π(μ,ν)

∫
X×Y

(
min
α∈A

‖Tα(x)− y‖2
)
dπ(x, y) + min

α∈A
F (α) +G(ν) .

(14)

This is an adaptive convex relaxation of minimizing E2 over a given interval.
The relaxation becomes tighter as the interval becomes smaller.

For our global optimization scheme the following proposition is required:

Proposition 1. The functional E3 has the following properties:

(i)E3(A) ≤ min
α∈A

E2(α), (ii) lim
A→{α0}

E3(A) = E2(α0),

(iii)A1 ⊂ A2 ⇒ E3(A1) ≥ E3(A2) . (15)

Proof. For the lower bound property (i) note that for any feasible ν and π ∈
Π(μ, ν):∫

X×Y

(
min
α∈A

‖Tα(x)− y‖2
)
dπ(x, y) ≤ min

α∈A

∫
X×Y

‖Tα(x)− y‖2 dπ(x, y)

This inequality holds also for the infimum of π ∈ Π(μ, ν) and ν ∈ S
(
μ(X)

)
. So

the first term in E3 is bounded by minα∈A 1/2D(Tα� μ, ν)
2. The separate mini-

mization of the D and F term is obviously smaller than the joint minimization,
so the bound property holds.

For the limit property (ii) note that ‖Tα(x) − y‖2 and F (α) are continuous
functions in α. Hence, when A → {α0} all involved minimizations will converge
towards the respective function value at α0 and E3 converges as desired.

For the hierarchical bound property (iii) just note that for fixed π and ν min-
imization over the larger set will never yield the larger result for all occurrences
of α. This relation will then also hold after minimization. ��

With slight modifications E3 can be extended to the case E3,s with a scaling-
mode involved: the additional rescaling factor will also be independently op-
timized over and the feasible sets S(μ(X)), Π(μ, ν) in the initial optimization
must be replaced by S(μ(X), (1+αs,l)

2, (1+αs,u)
2), Π(μ, ν, (1+αs,l)

2, (1+αs,u)
2)
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where αs,l and αs,u are lower and upper bound for the scale coefficient for all
α ∈ A. The modified feasible sets are defined by

S(M, s1, s2) =
⋃

s1≤s≤s2
S(s ·M) (16)

Π(μ, ν, s1, s2) ={π ∈ P(X ×X) : s1 · μ(σ) ≤ π(σ × Y ) ≤ s2 · μ(σ),
π(X × σ) = ν(σ) for all measurable σ ⊂ X} . (17)

Since from any π the measure ν can be obtained by marginalization, the nested
optimization over ν and π can actually be performed at once, by only minimizing
π and transferring the constraints of ν onto π.

So E3, E3,s can be computed by solving linear programs, which can also be
rewritten as optimal transport problems with suitable dummy nodes, to use
specialized, more efficient solvers.

Branch and Bound in α. Let L = {(Ai, bi)}i be a list of α-parameter intervals
Ai and lower bounds bi on E2 on these respective intervals. For such a list
consider the following refinement procedure:

refine(L):
find the element (Aî, bî) ∈ L with the smallest lower bound bî
let subdiv(A) = {Aî,j}j be a subdivision of the interval Aî into smaller
intervals
compute bî,j = E3(Aî,j) for all Aî,j ∈ subdiv(A)
remove (Aî, bî) from L and add {(Aî,j , bî,j)}j for Aî,j ∈ subdiv(A)

This allows the following statement:

Proposition 2. Let L be a list of finite length. Let the subdivision in refine

be such that any interval will be split into a finite number of smaller intervals,
and that any two points will eventually be separated by successive subdivision.
subdiv({α0}) = {{α0}}. Then repeated application of refine to the list L will
generate an adaptive piecewise underestimator of E2 throughout the union of the
intervals A appearing in L. The sequence of smallest lower bounds will converge
to the global minimum of E2.

Proof. Obviously the sequence of smallest lower bounds is non-decreasing (see
Proposition 1 (iii)) and never greater than the minimum of E2 throughout the
considered region. So it must converge to a value which is at most this minimum.
Assume that {Ai}i is a sequence with Ai+1 ∈ subdiv(Ai) such that E3(Ai)
is a subsequence of the smallest lowest bounds of L (there must be such a
sequence since L is finite). Since subdiv will eventually separate any two distinct
points, this sequence must converge to a singleton {α0} and the corresponding
subsequence of smallest lowest bounds converges to E3({α0}) = E2(α0). Since
the sequence of smallest lowest bounds converges, and the limit is at most the
minimum of E2, E2(α0) must be the minimum. ��

In practice we start with a coarse grid of hypercubes covering the space of
reasonable α-parameters (translation throughout the image, rotation and scale
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within bounds where the approximation is valid and the deformation-coefficients
in ranges adjusted to the corresponding Gaussian covariances) and the respective
E3-bounds. Any hypercube with the smallest bound will then be subdivided into
equally sized smaller hypercubes, leading to an adaptive 2n-tree cover on the
considered parameter range.

We stop the refinement, when the interval with the lowest bound has edge-
lengths that correspond to an uncertainty in Tα(x) which is in the range of the
pixel discretization of X and Y . Further refinement would only reveal structure
determined by rasterization effects.

5 Experiments

Implementation Details. Computation of the E3-lower bound requires local
optimization w.r.t. α for the cost function entries of the optimal transport term.
Given the linear decomposition of Tα these are low-dimensional constrained
quadratic programs that can quickly be solved. For a given α-interval A the
locally minimized cost function minα∈A ‖Tα(x) − y‖2 has low values where α
values in A allow Tα(x) to be close to y and rises quickly elsewhere. Exploiting
this, we only consider a sparse subset of the full product spaceX×Y to speed up
computation. To ensure that we still obtain the global optimum, we add overflow
variables. As long as no mass is transported onto these dummy variables, the
global optimum is attained. Otherwise, more coupling combinations need to be
added.

Fig. 3. Left: Illustration of the approach on example data, analogous to Fig. 1b. Small
blue dots indicate the arbitrary position of X relative to the image Y (bounding box).
Large green dots give the position of Tα(X), the map is indicated by grey lines. The
optimal segmentation ν is given by the red shaded region in the image. As intended, the
modes model the Euclidean isometries (the true object position is not known before-
hand and is not relevant for the result), and the major deformations. The Wasserstein
distance handles the remaining degrees of freedom, guided by the local data term.
Right: The deformation of X by the non-Euclidean modes. Length and relative orien-
tation of the arms are adjusted.
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Fig. 4. Segmentation Results with Starfish-Prior. First row: original images. Second
row: affinity coefficients g, based on a primitive local color model. There is false-positive
clutter, foreground parts are poorly detected or missing. Third row: optimal segmen-
tations, based on joint segmentation and matching. The objects are correctly located,
clutter is ignored, missing parts are ‘filled in’. Different variants are segmented with
the same prior, due to statistical deformation modelling with modes.

On a small scale fluctuations may appear, although the underlying matching is
smooth (cp. Fig. 3). These could be handled by enhancing the functional G to locally
regularize the boundary of the segmentation.

Setup and Numerical Results. For learning of the object class ‘starfish’
we used about 20 ground truth segmentations. We took the first four princi-
pal components as modes, capturing about 70% of the variance in the training
set. Together with translation and rotation this amounts to seven modes to be
optimized over.

To the test images we applied a simple local color model, based on seeds, to
obtain affinity coefficients g, eq. (4). Note that we specifically chose test images
with inhomogeneously colored foreground objects and insufficient seeds for color
model training, to obtain coefficients on which a purely local segmentation would
fail and the benefit of shape-modelling can be demonstrated.

Fig. 3 illustrates the approach for a typical example. Position and pose of
the sought-after object are correctly estimated by the modes, independent of the
position of X, i.e. without requiring a good initial guess. Figure 4 gives original
image, affinity coefficients g and the resulting segmentation for the example
in Fig. 3 in column 1 and for further examples. The segmentations in Fig. 4
sometimes exhibit small holes or fluctuations along the boundary, even though
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Fig. 5. Scale Invariance and Superpixels. Left: Foreground-affinities g, eq. (4), of a
superpixel over-segmentation of an image with two fish of different size, both of which
induce strong local minima of our approach. By artificially breaking scale invariance
through modelling the scale coefficient αs to be Gaussian, one can choose which one
shall be segmented by setting the mean scale. Other than that, the setup was absolutely
identical. One obtains similar segmentation results with a free-moving scale coefficient,
if one, in turn, erases one of the fish from the g-coefficients. Right: Template X for
fish-experiment. To prevent that the small fish is simply immersed in the big one, one
must explicitly model a region of background around the fish, by reversing the affinity
coefficients for this region of X. Black (grey) dots indicate fore-(back-)ground.

the underlying object position and pose are very accurately determined (see
Fig. 3) and the computed matching is smooth. These irregularities on the pixel
level are induced by noise in g and could be removed by local regularization of
the boundary of ν (e.g. total variation). As long as such an extension yields a
convex functional G, it is still compatible with our approach. To make the acting
of the presented Wasserstein-regularization as transparent as possible, however,
we chose to omit such fine-tuning.

Scale Invariance and Representation Flexibility. In this section we demon-
strate two further important properties of our approach: scale invariance and
flexibility in application. Due to the general formulation of optimal transport,
adaption to superpixels is straightforward, which facilitates application to large
images. In a discrete implementation Y need not be a regular grid (pixel-level)
in �2, but can be any set of points.

We illustrate both aspects in Fig. 5. Our approach, equipped with a prior
trained on fish, is run on an image with a large and a small fish. We demon-
strate scale invariance by actually artificially breaking it: by modelling the scale-
coefficient αs to be Gaussian, through the choice of the mean scale αs,m we can
trigger which of the two fish is segmented, while the wrong sized one is ignored.
Except for the mean scale, no modifications in the approach were made.

6 Conclusion

We developed a novel variational approach for joint image segmentation and
shape matching. The formulation, based on the Wasserstein distance, allows to
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combine modelling of appearance, statistical shape deformation and geometric
invariance in a uniform way, by allowing the reference template to be moved and
deformed. We extended previous work on analyzing observed deformation fields
for object classification to be applicable already during matching of new query
images. The resulting way of describing and fitting trained shape variations is in
style reminiscent of contour-based variational shape priors, but does not require
an intricate conversion between the contour and the region representation of
shapes. A well-founded hierarchical branch-and-bound scheme, based on local
adaptive convex relaxation, is presented, that provably finds the global minimum.

At some points, development of the presented approach is not yet complete
(e.g. modelling rotation beyond linear approximation, a more satisfying way to
find a reference template, adding local boundary regularization of ν to suppress
fluctuations). Yet, as experiments demonstrated, the functional is able to per-
form robust segmentation and matching in a noisy environment, which, due to
geometric invariance, does not depend on a proper initialization. Additionally,
the scale invariance property and the natural portability onto superpixel images
have been illustrated.
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Learning a Model for Shape-Constrained Image

Segmentation from Weakly Labeled Data

Boris Yangel and Dmitry Vetrov

Lomonosov Moscow State University

Abstract. In the paper we address a challenging problem of incorpo-
rating preferences on possible shapes of an object in a binary image
segmentation framework. We extend the well-known conditional random
fields model by adding new variables that are responsible for the shape
of an object. We describe the shape via a flexible graph augmented with
vertex positions and edge widths. We derive exact and approximate algo-
rithms for MAP estimation of label and shape variables given an image.
An original learning procedure for tuning parameters of our model based
on unlabeled images with only shape descriptions given is also presented.
Experiments confirm that our model improves the segmentation quality
in hard-to-segment images by taking into account the knowledge about
typical shapes of the object.

Keywords: MRF, image segmentation, shape priors, weakly-labeled data,
part-based models

1 Introduction

Image segmentation is a well-studied problem in computer vision. It can be
solved well (see, for example, [13]) when objects differ in color and texture from
background significantly. However, in case of non-discriminative color models and
weak object boundaries some high-level knowledge about the scene is required
to make segmentation more robust. For example, one can have some clues about
the shape of the object being segmented, and use those as a segmentation prior.

Taking such knowledge into account while segmenting an image is not an
easy task. Introduction of high-level constraints into state-of-the-art approaches
to image segmentation such as conditional random fields (CRF) [9] leads either
to oversimplified models, or to complex models with high-order terms, which are
hard to infer solutions from and even harder to learn. As a result, such models
are tweaked manually and tend to perform much worse than they could have.

In this paper we aim to introduce a model for shape-constrained binary seg-
mentation (i.e. segmentation to object and background) that is powerful enough
to describe complex shapes, and yet has tractable inference and learning pro-
cedures. Our model is built upon a popular way (see, for example, [8,10,16])
of introducing global constraints into CRF, which uses unary terms of the CRF
energy to constrain labeling together with an additional term as a prior for high-
level clues, which in our case are shape descriptions. We describe object shape
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via a graph augmented with vertex positions and edge widths, a way that is
similar to part-based models [4,3] but seems to be more rich. One interesting
property of our segmentation model is that it can be seen as a shape fitting
model that uses pixel labels as latent variables. It allows us to come up with a
training formulation that does not require pixel labels to learn from.

1.1 Related Work

The description of object shape proposed in this work can be seen as an applica-
tion of part-based object modeling, technique that is well-developed in the con-
text of the object part detection problem. Furthermore, both exact inference and
learning procedures proposed in this paper are build on top of techniques devel-
oped for this kind of models. In [4] one such model, namely pictorial structure,
is presented together with an efficient inference algorithm based on dynamic
programming. A follow-up work [5] introduces a max-margin semi-supervised
learning procedure for it. Another example is [3], which uses a trained mixture
of part-based models for pose estimation and action classification.

Part-based models were used to constrain segmentation before. One example
is [16], which proposes a description of object shape that is quite similar to ours.
In fact, it is even more powerful since we don’t allow width to vary along the
edges of graph representing shape. However, this limitation makes it possible to
build an algorithm for exact inference in our model. Another similar work is [12],
which proposes a two-step algorithm for human segmentation. The proposed
algorithm first tries to find the most plausible configuration of a part-based
human model given an image using MCMC, and then uses it to constrain the
segmentation. We think, however, that pixel labelings induced by shapes have
lots of information about the correctness of shape fitting, and, therefore, fitting
should not be decoupled from the segmentation process. Another example of a
work that uses part-based models for image segmentation is [8], which represents
object shape via a layered pictorial structure and finds segmentation by using
Monte Carlo EM combined with loopy BP, since the model is too complicated
for exact inference.

Other approaches to shape-constrained segmentation that do not involve mod-
eling of object parts are known in literature. One notable class of such techniques
includes star-shape prior [14] and tightness prior [11]. Both come with an effi-
cient segmentation procedure that has good optimality guarantees, but impose
quite weak restrictions on object shape and, therefore, can be of limited utility
when segmenting certain kinds of objects. Another group of works includes those
trying to describe shape via a hard mask [15,2], representation that we find to be
improper for classes of objects with high shape variability. One notable member
of this group is [10], which models object shape via a huge set of different masks
and also provides a framework for exact inference in CRF with high-order terms
resulting from such constraints. We’ve used this framework as a basis for the
exact inference algorithm we propose in this paper.
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1.2 Contribution

Main contributions of this paper are

– a flexible model of object shape, which is invariant to translation and rotation
and allows to describe classes of forms with high variability;

– two inference procedures for the segmentation constrained with the proposed
shape model. The first one is fast but approximate, while the other one is
slower but capable of obtaining exact solutions;

– a new formulation of learning from weakly labeled data problem for adjusting
the parameters of our shape-constrained segmentation model. As a weak
labeling we only use object shape descriptions for each image without pixel-
wise image labeling.

2 Shape-Constrained Binary Segmentation

We state the problem of image segmentation with shape constraints as the prob-
lem of finding minimum of the energy function

E(L, s) = f(s) + w0
c

∑
i

(1− Li)φ
0
i + w0

s

∑
i

(1 − Li)ψ
0
i (s)+

+w1
c

∑
i

Liφ
1
i + w1

s

∑
i

Liψ
1
i (s) + wp

∑
(i,j)∈N

|Li − Lj |φij
(1)

w.r.t. variables Li ∈ {0, 1} representing pixel labels and variable s describing
object shape. Variable i indexes all pixels and N stands for the set of pairs of
indices of neighboring image pixels. Pairwise terms φij , which we require to be
non-negative for reasons explained later, can be used to move object boundary
towards the areas with high color gradient magnitude. There are two types of
unary terms: constant φ0,1i that can be used to encode known color distributions

of object and background, and ψ0,1
i that depend on s and, thus, allow us to relate

shape descriptions with labeling configurations. Energy term f(s) is used to
penalize improbable shape descriptions. We give more information about terms
involving variable s in the following sections of the paper. Term weights w0,1

c ,
w0,1
s and wp act as model parameters.

2.1 The Model of Object Shape

We describe object shape via a graph augmented with vertex positions and edge
width values. One example of such description, which we would call shape graph
from now, is shown in Fig. 1(a). By varying angles, lengths, and widths in graphs
we can obtain different shape variations. However incidence relation in the graph
is fixed so all shape variations have similar structure.

More formally, shape graph is a tuple (Es,Vs), where

Es = {esk}, esk =
(
f sk , t

s
k, b

s
k

)
,

Vs = {vsl }, vsl =
(
xsl , y

s
l

)
.
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Here Es stands for the set of edges of shape graph s, in which every edge esk has
width bsk and connects vertices with indices fsk tsk. The set of graph vertices is
denoted as Vs. Vertex vsl has coords (xsl , y

s
l ) on the image.

Each shape graph has an associated value of the shape energy

f(s) = wr

(
‖esr‖
lr

− 1

)2

+
∑
k

wbk

(
bsk
‖esk‖

− ρbk

)2

+

+
∑

(k1,k2)∈M
wlk1,k2

(
‖esk1‖ − ρlk1,k2‖e

s
k2‖
)2

+

+
∑

(k1,k2)∈M
wαk1,k2 min

{(
∠(esk1 , e

s
k2)− αk1,k2 + 2π

)2
,

(
∠(esk1 , e

s
k2)− αk1,k2 − 2π

)2
,
(
∠(esk1 , e

s
k2)− αk1,k2

)2}
,

(2)

where M stands for the set of pairs of edge indices involved in pairwise con-
straints,

‖esk‖ = ‖vsfk − vstk‖ (3)

is the length of edge esk, and

∠(esk1 , e
s
k2) = ∠

(
(vsfk1

, vstk1
), (vsfk2

, vstk2
)
)

(4)

is the directed angle between edges with indices k1 and k2. Parameter ρlk1,k2
stands for the mean length ratio between edges with indices k1 and k2, while
wlk1,k2 measures softness of the constraint. Parameters αk1,k2 , w

α
k1,k2

, ρbk, w
b
k

have analogous meaning for angles between edges and width-to-length ratios
respectively. Parameters lr and wr are used to specify the scale of the so-called
root edge esr, thus enforcing the scale of the whole model through pairwise edge
length constraints.

The form of angle penalty terms is justified by the fact that the difference of
two angles inside the [−π, π] range can lie outside this range and, thus, can have
an alternative representation with lower penalty inside.

The idea behind this energy function is to penalize uncommon shapes while
allowing different object parts to have different variability. For example, a shape
model aiming to describe both running and standing horses can enforce quite
soft constraints on the angle between horse body and legs compared to the angle
between its neck and head.

Since the shape energy terms depend only on edge length, width and angles
between edges, the energy is invariant to both rotation and translation. However
such information, if available, can be easily incorporated into the energy function
as a constraint on the root edge, as it was done for scale.

The reason this model is not invariant to scale lies in the form of pairwise
terms enforcing constraints on lengths of neighboring edges. These terms could
have been made scale-invariant by replacing length difference by ratio difference
as it was done for terms involving edge width, but then we won’t be able to
apply the exact inference algorithm described in Sect. 2.4 to our problem.
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(a) A photo of a giraffe with a shape
graph modeling its shape

(b) ψ1
i (s)− ψ0

i (s) induced by the graph
on the left. Positive values are colored
red.

Fig. 1. An illustration of a graph-based shape model

2.2 Relation to Pixel Labeling

In order to complete the description of the proposed shape model, we need to
specify the way it affects image labeling. It is natural to assume that pixels
located near some edge of the shape graph will probably belong to object, while
pixels that are far from any edge will most likely belong to background. Based
on this assumption we define shape-based unary terms for pixel i as

ψ1
i (s) =

1

|I| min
esk∈Es

β(bsk)d
2[pi, (v

s
fk
, vstk)], (5)

ψ0
i (s) =

1

|I| max
es
k
∈Es

− log
[
1− exp

(
− β(bsk)d

2[pi, (v
s
fk , v

s
tk)]
)]
, (6)

β(b) =
4 log 2

b2
, (7)

where d[p, (v1, v2)]) is the distance from a point p to a segment (v1, v2), pi rep-
resents the coordinates of the i-th pixel of an image and |I| is the total number
of pixels. Reasons for scaling terms by inverse image size are explained in Sect.
4.2. Form of the coefficient β(b) is justified by the requirement that object and
background labels should be equally likely at half-width distance from an edge.
An example of shape terms induced by a shape graph can be seen in Fig. 1(b).
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2.3 Approximate Inference

Energy function (1) has a nice property: if the shape description s is fixed
and φij ≥ 0 for every pair of neighboring pixels, its minimum can be effi-
ciently computed via graph cuts [1]. It allows us to cast the problem of min-
imizing E(L, s) to the problem of finding

min
s
F (s) = min

s
min
L
E(L, s). (8)

Function F (s) has quite a few parameters compared to the original energy func-
tion, can be efficiently computed in each point, and, thus, can be minimized
using some derivative-free optimization technique.

In this work we use simulated annealing as a minimization technique. It was
selected mostly due to its natural applicability to the graph-based shape descrip-
tion. We use the following transition moves:

– randomly changing the length of a random edge esk by sampling lnew from
the truncated Gaussian Nl≥lmin(l; ‖esk‖, σ2

l T
2) and shifting vtsk so that lnew

is the new length of esk (which, in turn, changes the configuration of all other
edges incident to vts

k
);

– randomly changing the width of a random edge esk by sampling bsk from
Nb≥bmin(b; bsk, σ

2
bT

2);
– randomly changing the angle between a random edge esk and a fixed direction

by sampling a new angle from N (α;∠esk, σsαT 2) and shifting vts
k
accordingly

(again, it will change the configuration of all neighboring edges);
– applying random amount of translation, rotation or scale to the whole shape

graph. Amounts of transformation were sampled from Gaussian distributions
(truncated Gaussian in the case of scale) in the same fashion as above, with
standard deviation being proportional to T . Rotation and scale transforms
use the mean of vertex coordinates as the origin.

The current annealing temperature, T , was set to 1
log2(n+1) on the n-th annealing

iteration. We’ve used min
[
1, exp

(F (sbest)−F (s)
T

)]
as the acceptance probability

for the proposed shape graph s, where sbest is the graph with the lowest value
of F (s) found so far.

We were able to obtain quite good local minima starting the optimization
process from a mean shape graph automatically fitted into image bounds. It was
produced by first building a graph with the lowest possible energy in which root
edge has the specified direction, and then shifting the graph so that its center
corresponds to the image center. If the expected object orientation was known,
we used it as the orientation of a fitted graph. Otherwise, we tried to start the
process from a number of mean shape graphs fitted with different orientations.

2.4 Exact Inference

The exact inference procedure for the discussed model is built upon the
branch-and-mincut framework [10]. This framework aims to minimize an energy
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function of form (1) via a breadth-first branch-and-bound procedure, which uses
the expression

min
L

[
fS + w0

c

∑
i

(1 − Li)φ
0
i + w0

s

∑
i

(1− Li)ψ
0,S
i +

+w1
c

∑
i

Liφ
1
i + w1

s

∑
i

Liψ
1,S
i + wp

∑
(i,j)∈N

|Li − Lj|φij
]
,

(9)

where
fS = min

s∈S
f(s), ψ0,S

i = min
s∈S

ψ0
i (s), ψ1,S

i = min
s∈S

ψ1
i (s), (10)

to bound below the minimum of the energy when s is constrained to be in S.
This lower bound can be efficiently computed for any set S via graph cuts if the
aggregated potentials fS, {ψ0,S

i } and {ψ1,S
i } are known. In order to apply this

framework to our model we need to provide a way to describe a set of shape
graphs S together with a subdivision scheme for it. We also need to provide an
efficient algorithm for computing aggregated potentials for any given set S.

We choose to represent S as a set of axis-aligned bounding boxes (AABB)
limiting possible positions of shape graph vertices, together with a set of one-
dimensional ranges limiting the width of each edge. More formally,

s ∈ S ⇐⇒ ∀k bsk ∈ BSk , ∀l vsl ∈ V Sl ,
BSk = [bS,mink , bS,maxk ], V Sl = [xS,minl , xS,maxl ]× [yS,minl , yS,maxl ].

(11)

A natural subdivision scheme for this representation is to either split one of the
vertex constraints in four, or split some edge width constraint in two until the
constraints become singletons.

In order to compute ψ1,S
i we first note that

min
s∈S

ψ1
i (s) =

1

|I| min
k

min
bsk∈BS

k

β(b) min
vsfk

∈V S
fk

min
vstk

∈V S
tk

d2
(
pi, (v

s
fk
, vstk)

)
. (12)

So, in order to compute this aggregated potential we need to find the closest
location to the pixel i for every edge of s w.r.t. constraints on S, and then
take the minimum across all edges using the maximum possible width for every
edge. Similar considerations apply to ψ0,S

i , but in this case every edge should
be taken away from pixel as far as possible, while its width should be made as
small as possible. When edge constraints are given by AABB, finding closest (or
farthest) location of an edge from a pixel is a simple problem that can be solved
in constant time.

In order to compute fS we first note that angles ∠(esk1 , e
s
k2
) in (2) can be

rewritten as ∠esk2 − ∠esk1 , where ∠e is an angle between an edge and some
fixed direction. Then all pairwise terms of (2) will be quadratic w.r.t. values
‖esk1‖, ‖e

s
k2
‖, ∠esk1 , ∠e

s
k2
. Thus, given M corresponds to a tree, the energy can

be efficiently minimized via dynamic programming accelerated using general-
ized distance transform (GDT) technique [4], considering these values together
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with bk as variables. Feasible sets for edge lengths and angles are given by Vl,
while widths should be constrained by Bk. Note that the shape graph itself is
not forced to be a tree, only the graph of pairwise edge constraints given by M.

3 Learning from Weakly-Labeled Data

In this section we describe a way to estimate the parameters of the shape-
constrained binary segmentation model (1). We first explain our training problem
formulation and the way we build training set, and then show a way to estimate
non-linear and linear parameters of the model separately.

3.1 Training Set

Since the energy (1) is a function of shape graph and pixel labeling, it is natural to
use a set of images augmented with both ground truth labelings and graphs as a
training set. However, true labelings are much more expensive to obtain in terms
of human labor amount required to label one image compared to shape graphs.
We aim to solve this issue by proposing a novel formulation of the segmentation
model training problem. We note that the segmentation energy minimum, if
expressed in a form (8), can be seen as the most plausible configuration of a
shape graph on a given image, with pixel labels acting as latent variables of the
model. We therefore state the problem of training our model as the problem of
training shape graph fitting model given shape graph ground truth only. The
hope is that the best labeling associated with the fitted graph corresponds to a
meaningful segmentation. Experimental results shown later confirm that this is
actually the case.

We denote the training set for our training problem as

(I1, s1), . . . , (Im, sm), (13)

where Im is m-th training image, sm is a ground truth shape graph for it and
M is the total number of images in the training set.

3.2 Learning Non-linear Parameters

Our model has a number of non-linear parameters, r, lr, {ρlk1,k2}, {αk1,k2},
{ρbk}, which we will together denote as θ from now. We propose to train these
parameters before the rest of the model in order to simplify the procedure.
Training objective is to choose θ that minimizes the total energy of the training
set

M∑
m=1

f(sm; θ), (14)
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where f(s; θ) is given by (2). While the shape energy also depends on the values
of term weights, the optimal parameter values do not and are given by the
following expressions:

lk =

∑M
m=1 |es

m

k |2∑M
m=1 |es

m

k |
, (15)

r = argmin
k

M∑
m=1

( |esmk |
lk

− 1
)2
, (16)

ρbk =
1

M

M∑
m=1

bsmk
|esmk | , (17)

ρlk1,k2 =
M∑
m=1

|esmk1 ||e
sm
k2
|

|esmk2 |2
. (18)

The estimation procedure for αk1,k2 is also trivial, but hard to write in a closed
form since multiple angle representations should be considered when averaging
angles.

3.3 Learning Linear Parameters

Discussed model has wr, {wlk1,k2}, {w
α
k1,k2

}, {wbk}, w0,1
c , w0,1

s and wp as its linear
parameters. Let us denote the vector containing all these parameters as w and
introduce the vector Φ(I, L, s) containing negated energy terms corresponding
to weights in w for a given image I with an associated labeling L and a shape
graph s. Now the problem of segmenting image I can be stated as the problem
of finding

argmin
L,s

E(L, s) = argmax
L,s

wTΦ(I, L, s). (19)

Such a reformulation allows us to use the latent structural SVM formulation [17]
for weight training. Thus, we want to find

argmin
w

[
1

2
wTw +

C

M

M∑
m=1

{
max
L,s

[wTΦ(Im, L, s) +Δ(s, sm)]−

−max
L

wTΦ(Im, L, sm)
}]
.

(20)

The idea behind this objective is to enforce a ground truth shape graph together
with its best possible labeling have lesser energy value than any other shape
graph and labeling. Loss function Δ(s1, s2) is used to rescale the energy margin
depending on how close the two graphs are: graphs similar to the ground truth
should also have low energy, while those significantly distinct from the ground
truth should have much higher energy values. The loss function we use is of form

Δ(s1, s2) =
∑
l

min{‖vs1l − vs2l ‖, tv}+ λ
∑
k

min{|bs1k − bs2k |, te}. (21)
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The motivation behind truncating the loss is that when some graph is too much
apart from the ground truth, one should not really care about the value of margin
as soon as it’s large.

Convex-concave procedure (CCCP) [18] can be used to minimize (20), which
would result in an iterative procedure with two-step iterations. On each CCCP
iteration the expression wTΦ(Im, L, sm) is first maximized w.r.t. L for each m
in order to obtain L̃m, new optimal values of the latent variables. For the model
considered in this paper it can be done via a graph cut. Obtained L̃m are then
substituted into (20), which results in a regular structural SVM problem

1

2
wTw +

C

M

M∑
m=1

{
max
L,s

[wTΦ(Im, L, s) +Δ(s, sm)]−

−wTΦ(Im, L̃m, sm)
}
→ min

w

(22)

that should be solved in order to update weights.
In order to solve (22) we employ the cutting plane algorithm [7] in which

most violated constraints argmaxL,s[w
TΦ(Im, L, s)+Δ(s, sm)] are found by the

inference algorithm described in Sect. 2.3. Loss function can be easily incor-
porated into it, since the annealing only requires the ability to evaluate the
objective function at a point. We’ve found it useful to start the annealing from
both a mean shape graph fitted into image and a ground truth shape graph and
then choose the best solution among two. While we are unable to obtain exact
solutions to the SSVM problem this way due to the usage of an approximate
procedure for finding most violated constraints, weights we’ve found on each
iteration were close enough to global optima for CCCP to converge.

4 Experiments

4.1 Datasets

In order to validate the model proposed in this paper, we’ve trained it on two
different datasets. The first dataset was build from a specific subset of ETHZ
shape classes dataset [6] that contained images of giraffes. It featured images
that are hard to segment using low-level cues only due to weak boundaries and
significantly overlapping color distributions of object and background pixels.
Meanwhile, giraffe shape has a simple structure and can be described with a
graph-based model well. Another dataset was build from synthetic images of
capital “E” letter that feature totally non-discriminative object and background
color distributions, and, so, the only information segmentation model can rely
on is object shape and boundaries. All the images were downscaled to size of
about 140×140 pixels in order to speedup the training process.
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Fig. 2. Convergence of latent variables during training

4.2 Color-Based Terms

In our experiments we used unary color terms of the form

φli = − 1

|I| logP (Ii | Li = l), l ∈ {0, 1}. (23)

Color distributions for object and background were represented by 3-component
GMMs in RGB space, which were learned from seeds placed on a few training
images. Pairwise terms we used were of the form

φij =
1

|I| 12
e−α

(‖Ii‖−‖Ij‖)2
D2 , (24)

where ‖Ii‖ is brightness value of i-th pixel of image I and D is the mean bright-
ness difference value for all the pixel pairs from N in that image. Value of α was
set to 0.2. Color-based terms were scaled according to image size in the same
way as (5) and (6) to make model features independent of image size.

4.3 Model Training

Weight vector with w0
c = w1

c = 1, w0
s = w1

s = 0.3, wp = 0.001 and all other
components set to 0 was used to initialize the training process. Constant C in
latent SSVM objective (20) was set to 300. Parameters of the loss function (21)

were set as follows: λ = 10, tv = 0.25|I| 12 , te = 0.1|I| 12 . Training process usually
converged in 5-7 iterations, each iteration requiring about 70-100 cutting planes.

The most interesting observation about the training process is that the latent
variables L̃k found on each iteration of CCCP tend to converge to ground truth la-
belings (see Fig. 2 for an example). Thus, true pixel labels are actually not required
for learning since they can be closely approximated during the training process.

4.4 Segmentation

We’ve then applied trained models to images not involved in the training process
using the proposed approximate inference algorithm. Some images together with
the best found shape graph and labeling configuration can be seen in Fig. 3. Seg-
mentations based solely on color-based terms (both unary and pairwise) are pro-
vided for comparison. It can be seen that our algorithm is able to fit shape graph
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Fig. 3. Top to bottom: image, found shape graph, shape-constrained segmentation,
color-based segmentation

into an image correctly. Fitted graph induces quite reasonable segmentation of an
image, much better than the one obtained from color-based terms only.

In order to compare the approximate inference algorithm with the exact one,
we’ve applied the latter to same images. As a result, we found out that in many
cases approximate algorithm is able to find solutions very close to global optima.
However, it’s not always the case. One example where approximate inference fails
while exact succeeds is shown in Fig. 4. Unfortunately, our exact algorithm may
took a lot of time (hours sometimes) to converge despite its very efficient imple-
mentation (utilization of GPU for calculation of aggregated potentials, extensive
caching). The reason is that the bound (9) is not tight, and, thus, lots of lower
bound computations are needed before a good subset of solution space would
be discovered. Many of images in the test set require a few millions of lower
bound computations. There are also some images that require too many lower
bound computations to discover the solution, so we were not able to segment
those using our exact inference algorithm. At the same time, the proposed ap-
proximate algorithm is quite fast. It usually takes less than a minute per image
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Fig. 4. Solution found by simulated annealing (left) vs branch-and-bound

and can be further accelerated by reducing the number of annealing iterations
or reannealing attempts.

5 Conclusion

In this paper we’ve proposed amodel for shape-constrainedbinary segmentation of
an image.Themodel emerges fromcombining regularCRFfor binary segmentation
with high-order terms based on a specific form of object shape description, namely
graph-based shape representation. This representation is invariant to object ro-
tation and translation and can describe classes of objects with complex shapes
and high in-class variability.We present two inference algorithms for the proposed
model. One, which is based on simulated annealing, is fast but approximate, while
the other can obtain exact solutions via the branch-and-bound procedure.

We’ve also proposed a novel training formulation for our model, which requires
only ground truth shape descriptions but no pixel-wise labelings to learn its
parameters. Training procedures are provided for both linear and non-linear
parameters of the model. Experiments on artificial as well as real-world images
confirm that ground truth image labelings are indeed not required to learn a
well-performing model.

One interesting direction of future work would be to combine the model pro-
posed in this paper with state-of-the-art object part detectors, which output
can be used as additional clues about possible positions of shape graph vertices.
Another question is whether the exact inference algorithm we’ve presented can
be significantly accelerated by, for example, tightening the lower bound (9).

References

1. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region seg-
mentation of objects in nd images. In: Proceedings of the 8th IEEE International
Conference on Computer Vision, vol. 1, pp. 105–112. IEEE (2001)



150 B. Yangel and D. Vetrov

2. Cremers, D., Schmidt, F., Barthel, F.: Shape priors in variational image segmen-
tation: Convexity, lipschitz continuity and globally optimal solutions. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–6.
IEEE (2008)

3. Desai, C., Ramanan, D.: Detecting actions, poses, and objects with relational
phraselets. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.)
ECCV 2012, Part IV. LNCS, vol. 7575, pp. 158–172. Springer, Heidelberg (2012)

4. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. In-
ternational Journal of Computer Vision 61(1), 55–79 (2005)

5. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, mul-
tiscale, deformable part model. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

6. Ferrari, V., Jurie, F., Schmid, C.: From images to shape models for object detection.
International Journal of Computer Vision 87(3), 284–303 (2010)

7. Joachims, T., Finley, T., Yu, C.: Cutting-plane training of structural svms. Machine
Learning 77(1), 27–59 (2009)

8. Kumar, M., Torr, P., Zisserman, A.: Obj cut. In: IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 18–25.
IEEE (2005)

9. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the 18th
International Conference on Machine Learning, pp. 282–289. Morgan Kaufmann
Publishers Inc. (2001)

10. Lempitsky, V., Blake, A., Rother, C.: Image segmentation by branch-and-mincut.
In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS,
vol. 5305, pp. 15–29. Springer, Heidelberg (2008)

11. Lempitsky, V., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bound-
ing box prior. In: 2009 IEEE 12th International Conference on Computer Vision,
pp. 277–284. IEEE (2009)

12. Rauschert, I., Collins, R.T.: A generative model for simultaneous estimation of
human body shape and pixel-level segmentation. In: Fitzgibbon, A., Lazebnik, S.,
Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp.
704–717. Springer, Heidelberg (2012)

13. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction
using iterated graph cuts. ACM Transactions on Graphics (TOG) 23, 309–314
(2004)

14. Veksler, O.: Star shape prior for graph-cut image segmentation. In: Forsyth, D.,
Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467.
Springer, Heidelberg (2008)

15. Vu, N., Manjunath, B.: Shape prior segmentation of multiple objects with graph
cuts. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2008, pp. 1–8. IEEE (2008)

16. Yangel, B., Vetrov, D.: Image segmentation with a shape prior based on simplified
skeleton. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR
2011. LNCS, vol. 6819, pp. 247–260. Springer, Heidelberg (2011)

17. Yu, C., Joachims, T.: Learning structural svms with latent variables. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pp.
1169–1176. ACM (2009)

18. Yuille, A., Rangarajan, A.: The concave-convex procedure. Neural Computa-
tion 15(4), 915–936 (2003)



An Optimal Control Approach to Find Sparse
Data for Laplace Interpolation

Laurent Hoeltgen, Simon Setzer, and Joachim Weickert

Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science, Campus E1.7

Saarland University, 66041 Saarbrücken, Germany
{hoeltgen,setzer,weickert}@mia.uni-saarland.de

Abstract. Finding optimal data for inpainting is a key problem in the
context of partial differential equation-based image compression. We
present a new model for optimising the data used for the reconstruction
by the underlying homogeneous diffusion process. Our approach is based
on an optimal control framework with a strictly convex cost functional
containing an L1 term to enforce sparsity of the data and non-convex con-
straints. We propose a numerical approach that solves a series of convex
optimisation problems with linear constraints. Our numerical examples
show that it outperforms existing methods with respect to quality and
computation time.

Keywords: Laplace Interpolation, Optimal Control, Inpainting, Non-
convex Optimisation.

1 Introduction

A major challenge in data analysis is to reconstruct a function, for example a
1-D signal or an image from a few data points. In image processing this inter-
polation problem is called inpainting [2,18]. In most applications one has no
influence on the given data and thus improvements can only be made by intro-
ducing more powerful reconstruction models. In some interesting applications
however, one has the freedom to choose the interpolation data. For instance, in
recent approaches to image compression [12,16,22] the authors choose suitable
interpolation data for reconstructions via partial differential equations (PDEs).
A related approach can also be found in [8,9].

In this paper we present an energy-based approach to optimise the interpola-
tion data. Since this is a very challenging task, we restrict ourselves to a simple
reconstruction method, namely homogeneous diffusion inpainting [1,17] which is
also called Laplace interpolation. Further, we will solely focus on the optimisation
with respect to its reconstruction quality. Whether the methods presented herein
are competitive to other image compression algorithms will be the subject of fu-
ture work. Homogeneous diffusion inpainting is a fast and very flexible way to
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reconstruct large scattered datasets, especially in higher dimensions. It considers
the following boundary value problem:

−Δu = 0, on Ω \ΩK
u = f, on ΩK

∂nu = 0, on ∂Ω \ ∂ΩK
(1)

where f is a smooth function on some bounded domain Ω ⊂ R
n with a sufficiently

regular boundary ∂Ω. The set ΩK is assumed to be a subset of Ω with positive
measure. It represents the known data that will be interpolated by the underlying
diffusion process. Finally ∂nu denotes the derivative of u in outer normal direction.
Following [17], we use a binary valued mask c to rewrite (1) in the form

c (x) (u (x)− f (x))− (1− c (x))Δu (x) = 0, on Ω
∂nu (x) = 0, on ∂Ω \ ∂ΩK

(2)

where c is the characteristic function of the set ΩK , i.e. c(x) = 1 if x ∈ ΩK and
0 otherwise. It was shown in [17] that a careful tuning of the data can lead to
tremendous quality gains in the reconstruction. Related investigations can also
be found in [12], where the authors present subdivision strategies that exploit
non-linear PDEs. We also note that the problem considered in this paper is
closely related to the domain of shape, or more generally, topology optimisation.
We refer to [14,23] for general introductions to this topic and to [1] for a more
specific analysis in the context of image inpainting with homogeneous inpainting.

We will use (2) as a starting point and relax the restrictions placed upon
the function c by allowing it to take a continuous range of values. Secondly, we
will add a strictly convex energy to the PDE to penalise poor reconstructions
and non-sparse sets of interpolation data. Our complete framework can then be
regarded as an optimal control problem and presents a large-scale optimisation
task with a strictly convex but non-differentiable objective and non-convex con-
straints. The concrete formulation of the model will be derived in Section 2. In
Section 3 we will present a strategy to handle the occurring difficulties in this
optimisation problem. The underlying idea of our solver will be to replace the
original problem by a series of simpler convex optimisation problems that can be
solved efficiently. Section 4 will provide some insight in our framework by stating
optimality conditions and requirements for a monotonic convergence towards a
solution. Finally, in Section 5, we will present experiments that show the general
usefulness of our model both in the 1-D and 2-D setting.

2 A New Model for Finding Optimal Interpolation Data

If c (x) ∈ {0, 1} for all x ∈ Ω, then (1) and (2) represent equivalent formulations
of the same boundary value problem. Interestingly, the latter equation makes
also sense if c is allowed to take a continuous range of values such as R. One may
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regard continuously-valued functions c as a relaxation of the initial formulation
which is much easier to handle. Our goal will be to optimise such masks c with
respect to the accuracy of the reconstruction and to the sparsity of the interpo-
lation data. Note that these two objectives cannot be perfectly fulfilled at the
same time. If c (x) ≡ 1, then the reconstruction obtained by solving (2) is perfect.
On the other hand, the sparsest possible choice would be c (x) ≡ 0 which does
not allow any reconstruction at all. Therefore, we suggest to complement (2) by
an energy that reflects exactly this trade-off between the quality of the recon-
struction and the amount of interpolation data. The constrained optimisation
problem that we will consider is

argmin
u,c

Eλ,ε (u, c) :=

∫
Ω

1

2
(u (x)− f (x))

2
+ λ |c (x)|+ ε

2
c (x)

2
dx

such that: c (x) (u (x)− f (x))− (1− c (x))Δu (x) = 0 on Ω
∂nu = 0 on ∂Ω \ ∂ΩK

(3)

with positive parameters λ and ε. The first term of the energy penalises devia-
tions of the reconstruction from the original data f . As in many other imaging
applications such as image segmentation [20], we encourage a sparse mask by
penalising the L1 norm of c. The choice of λ lets us steer the sparsity of the
mask. For λ = 0, c(x) ≡ 1 is the optimal solution. If λ increases, the mask will
become sparser. Finally, λ→∞ will require c(x) ≡ 0.

As we will see in the forthcoming section, our numerical solver will require us
to solve intermediate problems with a linear instead of non-convex constraint.
These problems are related to optimal control problems of the form

argmin
u,c

∫
Ω

1

2
(u (x) − g (x))2 + λ |c (x)|+ ε

2
c (x)2 dx

such that: Lu = f + c

(4)

with a second-order elliptic and linear differential operator L, a state u, a control
variable c and given data g and f . Existence and regularity of such formulations is
analysed in [7,24,26]. The problem in (4) may not necessarily have a solution c if
ε = 0, unless one resorts to measures [7]. In order to avoid such ill-posed formula-
tions, one has to fix ε at a small positive value. A convergence analysis for ε→ 0 is
presented in [26]. Although the analytical discussion of our model in (3) is out of
the scope of this paper, we remark that we include the penaliser on the squared L2

norm of c for the same regularity reasons. Alternatively one could also introduce
box constraints of the form a � u(x) � b on u as discussed in [24].

3 A Solution Strategy

Our optimal control model proposed in (3) is challenging for two reasons. First
of all, the energy contains a non-differentiable term and secondly, the occurring
mixed products c(x)u(x) and c(x)Δu(x) render the set of points (u, c) that fulfil
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the PDE non-convex. In order to devise a solution strategy, we opt for a discretise-
first-then-optimise approach. We discretise the data on a regular grid and reorder
it into a vector of length n. The discrete analogue of (3) is given by

argmin
(u,c)∈Rn×Rn

1

2
‖u− f‖22 + λ‖c‖1 +

ε

2
‖c‖22

such that: diag (c) (u− f)− (I − diag (c))Du = 0

(5)

where the vectors u, f and c from Rn denote our reconstruction, the initial data
and the corresponding discretisation of the confidence function, respectively. The
operator diag(·) represents the diagonal matrix in Rn×n with its argument as
the main diagonal. Finally, I is the identity matrix and D the discrete version
of the Laplace operator with Neumann boundary conditions.

In order to tackle (5) numerically, we will replace it by a series of simpler convex
optimisation problems. This idea is related to several well-known methods from
the literature. One of the simplest strategies is known as sequential linear program-
ming (SLP) [13]. SLP methods replace a single nonlinear optimisation problem by
a sequence of linear programs. These linear programs are obtained through a first-
order Taylor approximation of the objective and the constraints. Even though this
method sounds appealing because it significantly reduces the complexity of the
problem, it has a major drawback. In order to achieve an accurate result, the so-
lution must lie at a vertex of the linearised constraint space. This requirement is
usually not fulfilled. As an alternative, one may consider linearly constrained La-
grangian methods (LCL) [11,19]. They differ from SLP formulations by the fact
that they do not linearise the objective function. They only consider a linear ap-
proximation of the constraints and try to minimise the (augmented) Lagrangian
of the original problem. In [21] it is shown that under suitable conditions one can
achieve quadratic convergence rates with LCL methods.

The main difference between these methods and ours will be the treatment of
the objective function. We keep the original energy and merely augment it by an
additional penalty term. This way we can circumvent the need to differentiate the
objective and provide an alternative approach to LCL methods that often require
the involved data to be differentiable. A similar strategy to ours is also briefly
mentioned in [25] as a possibility to derive optimality conditions for nonlinear
optimal control problems. Furthermore, similar approaches that exploit a partial
linearisation of the considered optimisation problem have recently been analysed
in [27].

As already mentioned, our goal is to replace the problem in (5) by a series
of convex problems that are easier to solve. Therefore, we will replace the con-
straints by linear counterparts that approximate the original conditions. We
define a mapping T which evaluates the constraints for given vectors u and c.

T : Rn × R
n → R

n, (u, c) �→ diag (c) (u− f)− (I − diag (c))Du (6)

Its first-order approximation around some point (ū, c̄) can be written as

T (u, c) ≈ T (ū, c̄) +DuT (ū, c̄) (u− ū) +DcT (ū, c̄) (c− c̄) (7)
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where DuT (ū, c̄) and DcT (ū, c̄) describe the Jacobi matrices for the differentia-
tion with respect to u and c at position (ū, c̄). It is easy to check that

DuT (ū, c̄) = diag (c̄)− (I − diag (c̄))D (8)
DcT (ū, c̄) = diag (ū− f +Dū) (9)

If (ū, c̄) is a feasible solution of the constraints in (5), then T (ū, c̄) = 0 and our
initial problem is approximated by

argmin
(u,c)∈Rn×Rn

1

2
‖u− f‖22 + λ‖c‖1 +

ε

2
‖c‖22

such that: DuT (ū, c̄) (u− ū) +DcT (ū, c̄) (c− c̄) = 0

(10)

However, the previous formulation is only reliable for pairs (u, c) in a neighbour-
hood of (ū, c̄). Therefore, we additionally penalise large deviations from (ū, c̄) by
adding an additional proximal term μ

2 ‖c− c̄‖22 with a positive weight μ.

argmin
(u,c)∈Rn×Rn

1

2
‖u− f‖22 + λ‖c‖1 +

ε

2
‖c‖22 +

μ

2
‖c− c̄‖22

such that: DuT (ū, c̄) (u− ū) +DcT (ū, c̄) (c− c̄) = 0

(11)

Note that u depends continuously on c. Therefore, there is no need to intro-
duce an additional proximal term for this variable. For the sake of brevity,
we define A := DuT (ū, c̄) and B := DcT (ū, c̄). A simple computation yields
Aū+Bc̄ = diag (c̄) (I +D) ū =: g. This leads us to the final form of our discrete
approximation of (3):

argmin
(u,c)∈Rn×Rn

1

2
‖u− f‖22 + λ‖c‖1 +

ε

2
‖c‖22 +

μ

2
‖c− c̄‖22

such that: Au+Bc = g

(12)

Equation (12) is a constrained optimisation problem with a strictly convex cost
and linear constraints. Such problems are well studied and many highly efficient
algorithms exist. Note that A is the system matrix one would obtain by dis-
cretising (2) with known and fixed c and sought u. In [16] it was shown that
this matrix is invertible if all the ci take only the values 0 or 1 with at least one
ci = 1. However, it is easy to see that the same argument carries over to our
case with the requirement that ci > 0 for at least one i.

In order to solve the problem occurring in (12), we use a primal-dual algorithm
for convex problems from Esser et al. [10] and Chambolle and Pock [5] where it
is referred to as PDHGMu and Algorithm 1, respectively. For convex functions
F , G and a linear operator K this algorithm solves

argmin
x

G (x) + F (Kx) (13)
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by computing iteratively

yk+1 = argmin
y

1

2
‖y −

(
yk + σKx̂k

)
‖22 + σF ∗ (y)

xk+1 = argmin
x

1

2
‖x−

(
xk − τK�yk+1

)
‖22 + τG(x)

x̂k+1 = xk+1 + θ
(
xk+1 − xk

)
(14)

where F ∗ is the Fenchel conjugate of F . It was shown in [5] that if τσ‖K‖22 <
1, θ ∈ [0, 1] and if the primal problem from (13) as well as its dual have a
solution, the sequences (xk)k, (yk)k generated by the above algorithm converge to
a solution of the primal and dual problem, respectively. We apply this algorithm
with

G(u, c) :=
1

2
‖u− f‖22 + λ‖c‖1 +

ε

2
‖c‖22 +

μ

2
‖c− c̄‖22 (15)

F (Au+Bc) := ιg(Au +Bc) (16)

where the indicator function ιg is given by

ιg (x) :=

{
0, if x = g,

∞, else.
(17)

We note that F ∗(x) = 〈x, g〉. This gives us the algorithm depicted in Algorithm 1.
Note that the updates of yk and uk only require matrix-vector products and can
be carried out in a very fast way. The update of ck can also be expressed in

Algorithm 1. Minimisation strategy for solving (12).
Input : N number of iterations.
Output : Vectors u and c solving (12)

1 Choose τ , σ > 0 such that στ‖
(
A B

)
‖22 < 1 and θ ∈ [0, 1].

2 Set u0, c0, y0 arbitrary and set û0 = u0 and ĉ0 = c0.
3 for k from 1 to N do
4 yk+1 = argminz

1
2
‖z −

(
yk + σ

(
Aûk +Bĉk

))
‖22 + σ〈z, g〉

5 uk+1 = argminz
1
2
‖z −

(
uk − τA�yk+1

)
‖22 + τ

2
‖z − f‖22

6 ck+1 = argminz
1
2
‖z −

(
ck − τB�yk+1

)
‖22 + τ

(
ε
2
‖z‖22 + μ

2
‖z − c̄‖22 + λ‖z‖1

)
7 ûk+1 = uk+1 + θ

(
uk+1 − uk

)
8 ĉk+1 = ck+1 + θ

(
ck+1 − ck

)
9 end

10 Set c ← cN and u ← uN .
11 Return Optimal solutions c and u.

closed form using the soft shrinkage operator shrinkα given by

shrinkα (x) := sgn (x) ·max (|x| − α, 0) (18)
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For vector-valued arguments, the shrinkage is performed componentwise. With
this definition, updating c comes down to computing

ck+1 = shrink τλ
1+τε+τμ

(
c− τB�yk+1 + τμc̄

1 + τε+ τμ

)
(19)

which again consists only of matrix vector multiplications and can be carried
out in a very fast way.

Algorithm 2. Minimisation strategy for solving (5).
Input : Initial mask c, parameters λ, ε, μ and N the number of iterations.
Output : Vectors u and c solving (5)

1 for k from 1 to N do
2 Set c̄k ← c.
3 Solve

(
diag(c̄k)−

(
I − diag(c̄k)

)
D
)
ūk = diag(c̄k)f for ūk.

4 Compute first-order approximation of T (u, c) around the
(
ūk, c̄k

)
.

5 Obtain c by solving (12) with Algorithm 1.
6 end
7 Compute u from c.
8 Return Optimal solutions c and u.

It is important to note that the pair (u, c) obtained from Algorithm 1 is in
general not a feasible point for the problem stated in (3). It only represents a
solution of (12). Therefore, we discard the vector u and plug c into the constraint
of (3) to obtain a linear system of equations which can be solved to obtain
a new feasible pair (ū, c̄). Using these vectors, we compute a new first-order
approximation of the previously defined function T and repeat all the steps. This
iterative scheme is repeated until convergence. The complete algorithm to solve
(5) is given in Algorithm 2. Let us remark at this point that matrix factorisation
and completion problems have a similar non-convex structure as the problems
presented in this work. Hence, similar methods as ours were recently proposed
in [15,27,28].

4 Theoretical Properties of Our New Scheme

4.1 Optimality Conditions

The linearised problem from (12) seeks the minimiser of a strictly convex en-
ergy under linear constraints. It is a well known fact that for such problems the
Karush-Kuhn-Tucker conditions yield necessary and sufficient optimality condi-
tions. They are given by the following lemma.

Lemma 1. The Lagrangian associated with the optimisation problem from (12)
is given by

L (u, c, p) :=
1

2
‖u− f‖22 + λ‖c‖1 +

ε

2
‖c‖22 +

μ

2
‖c− c̄‖22 + 〈p,Au+Bc− g〉 . (20)
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The corresponding first-order optimality conditions are given by

u− f +A�p = 0

λ∂ (‖·‖1) (c) + εc+ μ (c− c̄) +B�p  0

Au+Bc− g = 0

(21)

where ∂ (‖·‖1) (c) denotes the subdifferential of ‖·‖1 at point c.

In a similar manner, one can also derive necessary optimality conditions for (5).
We refer to [3,6,25] for more details.

Lemma 2. The following system of equations yields necessary optimality con-
ditions for (5). For a solution (u, c) ∈ Rn×Rn of (5) there must exist a p ∈ Rn

such that the following relations are fulfilled.

u− f +DuT (u, c)
�
p = 0

λ∂ (‖·‖1) (c) + εc+DcT (u, c)
�
p  0

T (u, c) = 0

(22)

Using the previous two lemmas we are able to show that fixed points of our
Algorithm 2 fulfil the necessary optimality conditions.

Proposition 1. If Algorithm 1 has reached a fixed point with respect to its input
(e.g. u = ūk and c = c̄k in lines 5 and 7 of Algorithm 2), then u and c also fulfil
the necessary optimality conditions from Lemma 2.

Proof. By construction, u and c fulfil the optimality conditions from (21). Since
c = c̄k and u = ūk, it follows that

A = DuT
(
ūk, c̄k

)
= DuT (u, c) and B = DcT

(
ūk, c̄k

)
= DcT (u, c) (23)

and hence, the first two equations from (21) and (22) coincide. Further, ūk and
c̄k are by construction feasible, thus it follows that T (u, c) = T

(
ūk, c̄k

)
= 0.

��
The following proposition states under which condition the iterates of Algo-
rithm 2 will monotonically decrease the energy.

Proposition 2. If we denote the solutions obtained from Algorithm 1 by (u, c)
and let ũ fulfil T (ũ, c) = 0, then (ũ, c) will be feasible iterates that decrease the
energy in every iteration as long as the following condition is valid.

1

2

(
‖ũ− f‖22 − ‖ūk − f‖22

)
� λ‖c̄k‖1 +

ε

2
‖c̄k‖22 −

(
λ‖c‖1 +

ε

2
‖c‖22
)

(24)

Proof. By definition of (û, c) and
(
ūk, c̄k

)
we have

1

2
‖û− f‖22 + λ‖c‖1 +

ε

2
‖c‖22 �

1

2
‖û− f‖22 + λ‖c‖1 +

ε

2
‖c‖22 +

μ

2
‖c− c̄k‖22

� 1

2
‖ūk − f‖22 + λ‖c̄k‖1 +

ε

2
‖c̄k‖22 .

(25)

Replacing û by ũ and reordering the terms yields the sought expression. ��
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Equation (24) allows an interesting interpretation. The left-hand side can be
seen as the loss in accuracy whereas the right-hand side can be considered as
the gain in sparseness. Thus, the energy will be decreasing as long as the gain
in sparseness outweighs the loss in precision.

5 Experiments

5.1 Signals in 1-D

To demonstrate the performance of our approach we have chosen the piecewise
polynomial and non-continuous signal Piece-Polynomial from the WAVELAB
850 Toolbox [4] and normalised it to the interval [0, 1] to ease the simultaneous
visualisation of signal, reconstruction and mask. The result is shown in Figure 1.
Note that the obtained mask is sparse and the non-zero entries are placed at po-
sitions where one would naturally expect them, e.g. two mask points are used to
encode a step in the signal. Also note the excellent quality of the reconstruction.

We initialise our method with u being the original signal and a full mask,
i.e. ci = 1 for all i, and use the parameters ε = 10−9, μ = 1.0, λ = 0.02.
For Algorithm 1 we set θ = 1 and τ = 0.25. In order to fulfil the step length
constraint τσL2 < 1 where L = ‖

(
A B
)
‖ we approximate L through power

iterations and set σ =
((
L2 + 0.1

)
τ
)−1. The method aborted when the distance

between two consecutive iterates dropped below 3 · 10−16. In order to reach
this precision we required about 225000 iterations of Algorithm 1. After 630
iterations of Algorithm 2 the distance between two consecutive iterates c had
dropped below 10−15 at which point the algorithm stopped. The whole algorithm
was implemented Matlab with Algorithm 1 as a mex function written in ANSI C.
All the tests were done on a desktop PC with an Intel Xeon processor (3.2GHz)
and 24GB of memory. The total runtime was roughly 10 minutes. The squared
Euclidean distance between the input signal and the reconstruction is 0.0377.

5.2 Images in 2-D

To show that our approach performs as well on 2-D data sets as it does on 1-D
signals, we apply our algorithm to three different test images and compare our
method to the state-of-the-art approach from [17]. In [17] the authors proposed
a greedy method, called stochastic sparsification, that iteratively selects a set
of candidate points and discards those pixels that yield the smallest increase in
the error when removed from the mask. This step is repeated until a desired
density is reached. In a second step, called non-local pixel exchange, mask and
non-mask pixels are swapped. If the reconstruction error increases, the swap is
undone, otherwise it is kept. This latter step is repeated until the desired error
or the maximal number of swaps is reached.
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Fig. 1. The original signal (dashed line), the reconstruction (solid line) as well as
the used mask (grey dots). As expected, the mask is sparse (17 non-zero entries out
of 128) and not binary-valued. The mask point in the middle of the signal with the
smallest value allows to better adapt to the curvature of the input signal by blending
the diffusion result with the data. Also note that the mask entries neatly align with
the discontinuities of the signal.

The results of our method are depicted in Fig. 2 and a summary with a
comparison to the approach from [17] is given in Tab. 1. As an error measure we
use the mean squared error (MSE) which is computed by

MSE (f, u) :=
1

n

n∑
i=1

(fi − ui)
2 (26)

where the two images f and u to be compared have been reshaped into vectors
of length n. For the computation of the MSE we assume that the image values
lie in the interval [0, 255].

The third column in Tab. 1 represents the MSE by using the data as it is
returned by Algorithm 2. Binarising the mask by thresholding it at 0.01 signif-
icantly increases the reconstruction error as we can see in the fourth column of
Tab. 1. In [17] an additional optimisation step on the interpolation data was
presented. The idea is to decrease the reconstruction error by optimising the
image values for a fixed mask. This so called grey value optimisation (GVO) can
clearly be used as a postprocessing step in combination with our masks.

The GVO is a least squares formulation to minimise the reconstruction error.
It solves

argmin
(u,g)∈Rn×Rn

‖u− f‖22 such that diag (c) (u− g)− (I − diag (c))Du = 0 (27)

with a fixed c and known image f . Let us define the matrix M := diag (c) −
(I − diag (c))D. Note that this matrix is identical to DuT (ū, c̄) given in (8) for
which we know that it is an invertible matrix as long as at least one entry in
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Fig. 2. First row (from left to right): Test image Trui (256× 256), mask with the
locations of the interpolation points (marked in black) with 4.95% of non-zero entries,
reconstruction with grey-value optimisation and binarised mask (MSE = 16.95). Note
that the bright spots visible in the face are an artifact stemming from the fact that the
Laplace operator is used. Parameters: λ = 0.0036, μ = 1.25, ε = 10−4, 3600 outer iter-
ations and 25000 iterations of Algorithm 1. The parameter choices for the Algorithm 1
are identical to those mentioned in the caption of Figure 1. As initialisation we used
u = f and c ≡ 1. Second row (from left to right): Test image Peppers (256× 256),
mask with the locations of the interpolation points (marked in black) with 5.02% of
non-zero entries, reconstruction with grey-value optimisation and binarised mask (MSE
= 18.44). Parameters: λ = 0.0034, μ = 0.01, ε = 10−9, 130 outer iterations and 100000
iterations of Algorithm 1. The remaining parameters are identical as in the experiment
with Trui. Third row (from left to right): Test image Walter (256 × 256), mask
with the locations of the interpolation points (marked in black) with 5.00% of non-zero
entries, reconstruction with grey-value optimisation and binary mask (MSE = 7.59).
Parameters: λ = 0.0018, 430 outer iterations and 100000 iterations of Algorithm 1. All
the other parameters are identical to those used for the Peppers experiment.
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Table 1. MSE for our experimental results. If combined with a grey value optimisation,
our binarised mask is always better than the one obtained in [17]. Note that the mask
density in [17] was exactly 5% for each image. For our experiments we had a density
of 4.95% for Trui, 5.02% for Peppers and 5.00% for Walter. The best results for each
image are marked in boldface. Unavailable results are marked with a —.

Image Algorithm Continuous c Binary c
Continuous c
with GVO

Binary c
with GVO

Trui Our method 17.41 47.89 16.98 16.95
Method of [17] — 23.21 — 17.17

Peppers Our method 18.91 30.51 18.44 18.44
Method of [17] — — — 19.38

Walter Our method 07.81 19.61 07.59 07.59
Method of [17] — — — 08.14

c is non-zero. Using that u = M−1 diag(c)g, it follows that the GVO can be
formulated as

g = argmin
x∈Rn

1

2
‖M−1 diag (c)x− f‖22 . (28)

Applying the GVO to the continuous masks only yields minimal gains. However, it
completely compensates for the loss of accuracyby binarising the mask.This is a re-
markable observation and greatly increases the potential usefulness of this method
for image compression tasks since it cuts the necessary amount of data to be stored
for the reconstruction in half. Let us emphasise that neither the binarised nor the
results with additional GVO represent solutions of our optimal control formula-
tion. Even though the binarised mask fulfils the constraints of our minimisation
problem it yields a higher energy. The results with GVO do not, in general, fulfil
the constraints of (5). The results from Tab. 1 clearly show the superiority of our
approach. Except for Trui, our continuous mask already improves the quality from
[17]. With the additional GVO we can further reduce our error measures and are
able to outperform the results from [17] in every test case.

A Greedy Speed-Up Strategy. In the above experiments we used very large
numbers of iterations in order to find the optimal error. This results in com-
putation times of several hours, similarly as the methods in [17]. For practical
purposes one can significantly reduce the number of iterations in Algorithm 1.
Moreover, the results from Tab. 1 suggest an interesting heuristic to further
speed up the computation of the mask. Our algorithm, as it is presented in this
paper, starts with a full mask which is made gradually sparser. Since the smallest
errors are obtained with a binarised mask combined with a GVO, it is not really
necessary to know the exact value of the mask at every position. Only if it will be
0 or not. Therefore, one can threshold the mask during the iterations and check
whether this thresholded version differs significantly from the thresholded mask
of the previous iterate. If not, one aborts the iteration. Using this heuristic with
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λ = 0.00325, μ = 0.01, ε = 10−9, 1250 iterations of Algorithm 1 and 50 outer
iterations we obtain a binary mask with a density of 5.01%. In combination with
GVO, the MSE for the Peppers image was 19.38, which is identical to the result
from [17]. The total runtime was 272 seconds. Even though the obtained mask
yields a slightly larger error when compared to the results from Tab. 1, the run-
time was reduced from 15 hours down to less than 5 minutes. This corresponds
to a speed-up factor of 180.

6 Conclusion

We present a new model for the determination of optimal interpolation data
for homogeneous diffusion inpainting. The formulation contains basically only a
single parameter with a very intuitive meaning. An iterative strategy to solve
the corresponding discrete optimisation problem is also derived. Numerical ex-
periments show the usefulness of the suggested method. We note that the our
method is not restricted to the Laplacian as differential operator. An exten-
sion using more powerful operators is possible. Therefore, a thorough theoretical
analysis of the framework presented in this work as well as the extension to
other PDE-based interpolation methods for image compression tasks will be the
subject of future work. We also note that our method is capable of handling non-
differentiable penalties on the reconstruction, for example the L1 norm. This
will also be the topic of future work.
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Abstract. A resolution-independent image models the true intensity
function underlying a standard image of discrete pixels. Previous work
on resolution-independent images demonstrated their efficacy, primarily
by employing regularizers that penalize discontinuity. This paper extends
the approach by permitting the curvature of resolution-independent im-
ages to be regularized. The main theoretical contribution is a gener-
alization of the well-known elastica energy for regularizing curvature.
Experiments demonstrate that (i) incorporating curvature improves the
quality of resolution-independent images, and (ii) the resulting images
compare favorably with another state-of-the-art curvature regularization
technique.

Keywords: curvature, elastica, regularization.

1 Introduction and Related Work

Viola et al. [19,20] introduced the notion of a resolution-independent latent image
to model the true intensity function underlying a standard image of discrete
pixels. Figure 1 gives an example of the approach: the true intensity function is
approximated by a piecewise linear function u, whose linear patches are defined
on a triangle mesh. The crucial feature is that the mesh’s vertices are positioned
with arbitrary precision, which frees the model from any notion of discrete pixels.
The vertex positions and patch intensities are determined by minimizing an
energy that includes a regularizer term, which models the prior expectations of
resolution-independent images in general.

Previous work on resolution-independent images employed a regularizer based
primarily on the discontinuities in u. The main contribution in this paper is
to extend the regularizer to incorporate the curvature of u. Starting from the
well-known elastica energy [2], we derive explicit expressions for computing the
elastica energy on the smooth and non-smooth regions of the image domain.
The non-smooth region includes steps and corners (defined rigorously later),
leading to separate step energy and corner energy terms in the energy functional.
The paper also includes practical experiments demonstrating the benefits of the
approach and a favorable comparison with another state-of-the-art curvature
regularizer.
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Fig. 1. In this paper, resolution-independent images are modeled as in Viola et al. [20],
employing a piecewise linear intensity function defined on a triangle mesh whose ver-
tices are positioned with arbitrary precision

There is a considerable amount of related work on curvature regularization,
including a long history of variational and level set methods (e.g. [9,12,16]),
methods derived from the elastica energy (e.g. [2,10]), and other approaches
such as total curvature [4] and Gaussian derivatives [5]. The work of Schoene-
mann et al. [15] and Strandmark and Kahl [17] is most closely related to the
present paper. These approaches regularize curvature based on a fixed [15] or
adaptive [17] mesh, employing linear programming relaxations for optimization.
However, the meshes are restricted to a fixed small set of edge angles, so lines not
at those orientations must be jagged. In our work, all angles are equally treated
(ignoring floating point issues). The curvature term contrasts with this paper in
that it applies to binary images and to corners with exactly two prongs (as de-
fined in Section 4.1); the approach here permits resolution-independent images
with arbitrary intensities and multi-pronged corners. Hence, we believe the novel
theoretical contribution of the paper is twofold: first, the well-known approach
of regularizing curvature by minimizing an elastica energy is reformulated so
that it can be applied explicitly to resolution-independent images (Sections 3
and 4); second, this reformulation leads to a corner energy that has not, to our
knowledge, been studied previously (Section 4.1).

2 The Set of Resolution-Independent Images

At the core of our approach is the concept of a resolution-independent image. For-
mal mathematical definitions are given in our technical report [6]. Here, we rely
primarily on intuition to convey the essential concepts. A resolution-independent
image is produced by an idealized camera with infinite resolution, infinite color
depth, infinite depth of field, and zero noise. The resulting image u is defined
on a connected subset Ω of R2, with intensities in the continuous range [0, 1].
We assume the world consists of piecewise smoothly-varying objects, giving rise



Curvature Regularization for Resolution-Independent Images 167

�
�

�������	


step ridge corner steps and ridges
meet at a corner

Fig. 2. Taxonomy of the jump set of a resolution-independent image. Each
panel shows part of a 2D grayscale resolution-independent image, visualized as a sur-
face. The image plane coincides with the horizontal x-y plane, and the grayscale inten-
sity of the image is plotted on the vertical z axis, as indicated by the set of axes on
the left.

to resolution-independent images that are also piecewise smooth. So Ω is parti-
tioned into a differentiable region D (where u is continuously differentiable) and
its complement J , termed the jump set (where u or its derivative is discontinu-
ous). As shown in Figure 2, it is useful to further partition J into steps, ridges,
and corners—so Ω = D∪Jstep∪Jridge∪Jcorner. Some mild assumptions [6] guar-
antee that u is well-behaved near the jump set. In particular, limx→x0 u(x) exists
for any x0 ∈ J , and is independent of the path used to approach x0, provided
the path remains in the differentiable region D.

3 Regularizers for Resolution-Independent Images

We are interested in imposing a prior on resolution-independent images u. This
will be done via a real-valued regularizer E(u), with the usual interpretation
of E as an energy functional, so that u-functions with low values of E have high
prior probability.

The elastica energy is a commonly-used regularizer for curvature in computer
vision applications. The one-dimensional version of this energy, derived from the
physical energy required to bend a thin pliable rod into a given smooth shape,
was considered as early as 1744 by Euler ([3]; see this paper’s appendix for
details). For a smooth curve Γ parameterized by arc length s, it is given by

E1D-elastica(Γ ) =

∫
s

(a+ bκ(Γ, s)p) ds. (1)

Here, a, b, p ≥ 0 are constants and κ(Γ, s) is the (unsigned) curvature of Γ at
s, as defined in elementary geometry. Physics (and Euler) say that p = 2, but
other values may give good results in computer vision applications.

Of more direct interest here is the generalization of elastica energy to two
dimensions, as proposed by Masnou and Morel [8], and employed by many others
(e.g. [15]). This two-dimensional elastica energy is given by

Eelastica(u) =

∫
x∈Ω

(a+ bκLL(x)
p)|∇u(x)| dx. (2)
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Here κLL(x) is the (unsigned, 1D) curvature of the level line of u passing through
x ∈ Ω. Chan et al. [2] provide a detailed and illuminating derivation of the
2D elastica energy (2) from the 1D pliable-rod definition (1). The basic idea
is to integrate the 1D version over levels l; the extra weight of |∇u(x)| in (2)
then appears as the Jacobian when transforming from height and arc-length
parameters (l, s) to image plane parameters x = (x, y).

As with the one-dimensional elastica energy, the two-dimensional energy (2)
has an intuitive physical interpretation: it is the total amount of energy that
would be expended to build the image out of thin, horizontal, pliable rods,
assuming the energy of each individual rod is given by Equation (1) multiplied
by the height spacing δl between rods. Note that for this physical analogy to
be appropriate, the rods must be horizontal (so that they correspond to level
sets), and they should be placed at equally-spaced heights separated by δl. As
we will be repeatedly appealing to this physical interpretation of the elastica
energy later, let us call it the pliable rod analogy. As our first practical example,
the next subsection calculates the elastica energy of a step in the image.

3.1 Computation of the Step Contribution

Consider a small portion ds of Jstep shown in Figure 3(a), where the portion is
small enough that we can approximate uL and uR as constant. To build this part
of the image requires stacking horizontal rods directly on top of each other. Each
individual rod has energy δl(a + bκ̂p) ds, by definition. The total height of the
stack is just |uL− uR|, so the contribution of this stack is (a+ bκ̂p)|uL− uR| ds.
Integrating over all elements of the step set, this is equivalent to stating that the
contribution of the entire step set to the elastica energy is∫

Jstep

(a+ bκ̂p)|uL − uR| ds. (3)

Obviously, the above argument is based on physical intuition rather than math-
ematical rigor, which may trouble some readers. In this particular case, it is
relatively easy to give a more rigorous calculation, based on smoothing u with
a small unit-volume kernel, applying the definition of elastica energy (2) that
is valid for smooth u, then taking the limit as the width of the kernel tends to
zero. However, we prefer the approach based on physical intuition because it is
easier to understand, and our final goal does not require mathematical rigor. We
need to construct an energy whose minimization results in pleasing resolution-
independent images; constructing that energy via plausible physical reasoning is
a perfectly acceptable approach. Hence, in the remainder of the paper, we will
appeal to physical intuition whenever necessary without attempting to inject
additional rigor.

4 Curvature-Related Extensions of the Elastica Energy

This section describes the main theoretical contributions of the paper. It first
gives details of how to compute the contribution to the elastica energy due to
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(a) step (b) 2-prong corner (c) 3-prong corner

Fig. 3. Computing the elastica energy of steps and corners

corners (Sections 4.1). Section 4.2 then unifies the preceding calculations into
a single generalized elastica energy. Finally, Section 4.3 describes the variant
of the generalized elastica energy appropriate for the triangle meshes used in
the present paper. To the best of our knowledge, all three subsections present
primarily novel material.

4.1 Computation of the Corner Contribution

For the reasons given in Section 3.1, we use the pliable rod model to compute the
energy of a sharp corner point, such as the one in the right-most panel of Figure 2.
It can be shown [6] that every corner lies at the endpoint of two or more prongs :
smooth curves in the jump set. The right-most panel of Figure 2 has five prongs,
for example. The image intensity is, by definition, smooth between prongs. Some
mild additional assumptions (essentially Lipschitz conditions, as described in
the technical report [6]) guarantee that the intensity tends to sensible limits
as we approach the prongs and the corner point itself. Thus, by considering
a sufficiently small neighborhood of the corner, the intensity function can be
approximated arbitrarily well by using prongs that are straight lines and an
intensity that is constant between prongs.

Let us first examine the simplest possible case: a two-prong corner (see Fig-
ure 3(b)), whose prongs meet with interior angle θ, with constant intensity values
u1 and u2 on the inside and outside of the corner respectively. How would we
build this geometric shape using horizontal pliable rods? As shown in Figure 3(b),
each rod must be bent through angle |π− θ|, and the rods are stacked vertically
(using our standard vertical spacing, δl).

Here we encounter an apparent difficulty: the construction requires sharp cor-
ners in the rods, but this leads to infinite energies if we insist on an elastica
energy of the form (1). Two easy solutions to suggest themselves. One solution
is to take p = 1. In this particular case, the energy remains finite (and is eas-
ily seen to be b|π − θ|). The other solution is to adopt a more general physical
model of our rods: simply declare that the rods are made of some material that
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can be bent into a sharp corner using finite energy. For example, this energy
could be b|π − θ|p for some p, or the energy could also incorporate robustness
by employing, say, bmin(τ, |π− θ|p) for some threshold τ . Later experiments use
the non-robust version, which performs well for our applications.

Adopting this (literally) more flexible definition of a rod, the energy of each
rod is b|π−θ|p δl, and the total height of the stack of rods is |u2−u1|. Integrating
over l, we obtain the total corner energy for a two-pronged corner as b|π−θ|p|u2−
u1|.

Now let us turn to the general case of a multi-pronged corner, with N prongs.
(See Figure 3(c) for a 3-prong example.) For concreteness, label the prongs from 1
to N in an anti-clockwise direction. As before, we may assume the prongs are
straight lines and the image takes on constant values u1, u2, . . . , uN on the wedges
between each consecutive pair of prongs. So u1 is the value of the image on
wedge 1 between prongs 1 and 2, and so on up to uN , which is the value on
wedge N between prong N and prong 1. The angle of wedge i is θi. In what
follows, subscripts are computed modulo N . In particular, uN+1 means the same
thing as u1, and similarly for θN+1.

We can think of this simplified geometry as a circular pie cut into wedges,
where each wedge happens to be of a different height and angle. We need to
calculate the energy required to build this multi-level pie out of pliable rods, as
in Figure 3(c). One simple approach uses recursion: find the lowest wedge, and
build up the sides of the wedge to the height of the lowest adjacent wedge. At
this point, the lowest wedge has effectively been removed from the structure, and
the problem has been reduced to building a new pie that possesses one fewer
wedge. The recursion can bottom out at two wedges, which is the two-prong case
considered above. Alternatively, we can make our final formula (4) a little more
elegant by bottoming out at one wedge, which is a degenerate “corner” of zero
energy.

More formally, let i∗ be the indexof the lowestwedge, so i∗=argmini∈{1,...,N} ui.
Let j∗ be the indexof the lowestwedgeadjacent to i∗, so j∗=argmini∈{i∗−1,i∗+1} ui.
Let C = (ui, θi)

N
i=1 denote the N -prong corner, and Ecnr(C) the desired elastica

energy of this corner.Write Ĉ for the (N − 1)-prong corner that results from filling
in wedge i∗ up to height uj∗ . Then compute Ecnr(C) recursively according to

Ecnr(C) =

{
0 if N = 1,

Ecnr(Ĉ) + b|π − θi∗ |p|ui∗ − uj∗ | if N > 1.
(4)

Later, we will consider a generalization of this formula in which | · | is replaced
by a robust function ρτ (·) ≡ min(τ, | · |) and raised to a power α. We also make
explicit the dependence on parameters b, p by writing

Ecnr(C; b, p, α) =

⎧⎪⎨
⎪⎩
0 if N = 1,

Ecnr(Ĉ; b, p, α, τ)

+b|π − θi∗ |pρτ (ui∗ − uj∗)
α

if N > 1.
(5)
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4.2 A Generalized Elastica Energy for All Resolution-Independent
Images

The elastica energy (2) decomposes into integrals over four regions: differentiable
(D), step (Jstep), ridge (Jridge), and corner (Jcorner). Our technical report [6]
gives details for Jridge, and this term is omitted here and in the remainder of the
paper, since our focus is on the corner energy. Hence, by substituting (3) and (5)
into (2), (and making some further generalizations described shortly) we obtain
a generalized elastica energy EG (where “G” stands for “generalized”):

EG(u) = λ1

∫
x∈D

(a+ bκLL(x)
p1 )|∇u(x)|α1 dx

+ λ2

∫
Jstep

(a+ bκ̂p2)|uL − uR|α2 ds+ λ3
∑

corners C

Ecnr(C; b, p3, α3)
(6)

Here we have allowed an arbitrary exponent αi for the gradient factor, an arbi-
trary coefficient λi, and an arbitrary curvature exponent pi in each term. The
generalization to arbitrary αi, λi, pi is not justified by any physical or theoretical
reasoning. Rather, we appeal to the fact that we are seeking a regularizer that
works well in practice. The generalization is justified if, by generalizing a phys-
ically realistic expression to one that is not physically realistic, we can obtain
better performance when analyzing real images. As we shall soon see, numerous
previous authors have taken exactly the same approach. But it should be noted
that the natural (i.e. physically realistic, according to the pliable rod model)
values for the αi, λi are all 1, and for the pi the natural value is 2.

Let us now examine how the generalized elastica energy (6) relates to previous
work. By taking λ1 = λ2 = α1 = α2 = 1, and λ3 = b = 0, we recover the total
variation [21], up to a constant multiplier. By taking λ3 = b = 0, we obtain
an expression similar to the regularizer used by Viola et al. [20]—which, as
previously noted, is the direct inspiration for the present work. Hence, the high-
level claim that the present work adds a notion of curvature to Viola et al.
can now be made more explicit: this paper incorporates the corner energy, by
permitting λ3 �= 0 in (6).

4.3 Elastica Energy for Images on a Triangle Mesh

We are particularly interested in computing the generalized elastica energy EG
for images that are piecewise linear on a triangle mesh. These images have zero
curvature on the interiors of all the triangles, so κLL ≡ 0 on D. Moreover, the
mesh edges (which are all straight lines between triangle vertices) have zero
curvature too, so κ̂ ≡ 0 on Jstep. It is easy to see that this renders irrelevant the
values of p1, p2, a, b in (6). These observations result in a simplified form of the
elastica energy for triangle meshes, ET (where the “T” stands for “triangle”):

ET(u) = λ1

∫
x∈D

|∇u(x)|α1 dx

+ λ2

∫
Jstep

|uL − uR|α2 ds+ λ3
∑

corners C

Ecnr(C; b, p3, α3, τ)
(7)
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Previous work [19] has shown some benefits from taking α1 = 2, pi = 1. The
experiments in this paper also adopt these settings, and set all other constants
(λi, αi) to their physically realistic value (1.0), except where stated otherwise.
The robustness parameter τ is set to 10% of the dynamic range in the input
image.

5 Algorithmic Details

The algorithm used here for computing resolution-independent images is mod-
eled closely on Viola’s work [19,20], where the reader can find many additional
details. First, we need a data term that expresses the affinity between u and some
input image I. This input I is a standard, discrete set of grayscale pixel values
denoted Ii. We assume pixel i of I was formed by blurring the true (continuous)
intensity function with some kernel κi. This leads to a data term D(u, I) of the
form

D(u, I) = λ0
∑
i

‖Ii −
∫
Ω

κi(x)u(x) dx‖. (8)

Here, λ0 is the data gain expressing the relative importance of the data and
regularization terms. Experiments in this paper take λ0 = 10 (unless stated
otherwise), a value that was determined by trial and error to yield reasonable
performance on a variety of inputs. For the norm ‖ · ‖, we use the square of the
standard Euclidean norm. Ideally, the kernel functions κi would be estimated
from the point spread function of the camera used to capture I, but this lies
outside the scope of the present paper. We take the pragmatic and simple choice
of setting κi to be a 2D square box function, equal to 1 on the unit square
centered at pixel i and zero elsewhere.

The computation of a resolution-independent image û is achieved by minimiz-
ing the total energy E(u, I), which combines the triangle mesh energy (7) and
data term (8):

û = argmin
u

E(u, I) = argmin
u

(ET (u) +D(u, I)). (9)

Recall that u is a piecewise linear triangle mesh, parameterized by: (i) the 2D lo-
cations of each vertex in the mesh (two real parameters per vertex); and (ii) the
height and slope of each triangle in the mesh (three real parameters per trian-
gle). The average density of the mesh is application-dependent. In experiments
reported here, the typical distance between neighboring vertices is 1–3 pixels.
Even on modest-sized images, this leads to tens of thousands of triangles and
vertices, and hundreds of thousands of parameters. For example, the 256× 256
input of the segmentation result in Figure 7 leads to a mesh with over 42,000
triangles, 21,000 vertices and a resulting total of 170,000 parameters.

All experiments in this paper perform the minimization (9) over these param-
eters by first initializing the mesh to a reasonable estimate, then applying an
off-the-shelf nonlinear optimizer. Specifically, the initialization is done by using
a regular grid of vertices spaced 1.5 pixels apart, augmented by further vertices
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placed at subpixel locations identified as edgels by a Canny edge detector. The
intensity values are initialized by assigning each triangle the constant intensity
obtained by integrating I over the triangle.

Minimization is performed inMatlab via Schmidt’s minFunc1, using the LBFGS
algorithm [11] with default options. Note that LBFGS is a quasi-Newton method,
requiring the objective function’s derivative but not its Hessian. The derivative of
non-corner terms is taken from Viola [19]; the derivative of the corner energy (5),
although tedious to implement and debug, requires only elementary geometry and
calculus.

The experiments described here require hundreds or thousands of iterations
to reach convergence (as defined by the default minFunc criteria). The approach
is thus rather computationally expensive. The computational cost of the exper-
iments reported here, all employing Matlab implementations on a 2012 desktop
PC with an Intel Core2 Q9400 CPU, range from several CPU-core-minutes (for
the results of Figure 5) to nearly 50 CPU-core-hours (for the results of Figure 7).

As previously stated, the above approach follows Viola in many respects.
There are two important differences, however. First, we perform joint optimiza-
tion over all parameters simultaneously. This contrasts with Viola’s approach,
which alternates between optimizations over the vertex location variables and
the intensity height/slope variables, and also employs so-called N/Z flip moves,
which make global changes to the mesh structure.

Second, we take a simpler approach to the problem of degenerate triangles—
triangles that become excessively narrow slivers as the optimization proceeds.
If the mesh contains one or more problematic slivers, we remove a vertex from
each sliver, and re-triangulate the resulting hole using a constrained Delauney
triangulation [13]. Each new triangle’s intensities must then be initialized based
on the nearest undisturbed triangle, and the entire minimization restarted. In
principle, this could lead to extremely slow convergence. In practice, however,
we find that running sliver-removal just once before beginning any minimization
is typically sufficient.

Figure 6, discussed in more detail below, demonstrates that our joint min-
imization approach has similar performance to the more elaborate alternating
approach of previous work. Moreover, the joint approach is simpler to implement
and appears to encounter fewer problems with degenerate triangles. (Note that
this discussion compares optimization approaches only. So in this experiment,
both the joint and alternating approaches incorporated the corner energy, and
therefore required the corner energy derivative also.)

6 Results

6.1 Qualitative Assessment of Incorporating Curvature

Figure 4 demonstrates the main qualitative result of this paper: incorporat-
ing curvature into the energy functional leads to modest improvements in the

1 Mark Schmidt, http://www.di.ens.fr/~mschmidt/Software/minFunc.html, 2012

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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quality of resolution-independent images. Given the input (a), we run our exper-
iments twice with identical settings—except for the parameter λ3 of (7) which is
switched from 0 (corresponding to “without curvature”) to 1 (corresponding to
“with curvature”) between experimental runs. Panels (b) and (c) are renderings
of the resolution-independent images produced by the two runs. To the human
eye, panels (b) and (c) outputs appear extremely similar, with excellent recon-
structions in some regions (e.g. the M, the two 7 s, and the C ) and imperfect
ones in others (e.g. the P and the 3 have their interiors incorrectly filled).

But as shown in panels (d)–(g), which zoom in on some particular regions of
interest, there are some subtle but important differences between the two out-
puts. (Note that these panels represent extreme super-resolution, showing regions
that are 11× 7 pixels in the input image.) Specifically, panels (d) and (e) show
the letter C derived from the input, without and with curvature respectively. In
both cases, the curved shape of the C has been recovered surprisingly well, albeit
imperfectly. More importantly, the output computed with curvature shows some
improvement over the without-curvature output: in panel (e), the outline of the
C represents a smoother curve, and the grayscale values in the interior of the
C are also smoother. Panels (f) and (g) show a portion of a straight specular
edge. Again, the extreme super-resolution performs well in both cases, recovering
boundaries that are nearly straight despite the blocky, staircase-like input. And
we again see artifacts of the triangle mesh in both outputs: a few triangles with
incorrectly-inferred grayscale values protrude from the main strip of high inten-
sity. But the more important point is that panel (g), computed with curvature,
produces a straighter boundary for the high-intensity strip, when compared with
panel (f) (which was computed without curvature).

Although we have shown outputs for only one image here, the results are typ-
ical. It is reasonable to conclude that incorporating curvature produces modest
improvements in the detailed structure of resolution-independent images.

6.2 Quantitative Assessment of Incorporating Curvature

In this subsection, we confirm the previous qualitative results with a quantitative
assessment based on peak signal-to-noise ratio (PSNR). The experiment involves
the task of simultaneous denoising and upsampling, as shown in Figure 5. The
ground truth image in panel (a) is a 64× 64 detail of the well-known “peppers”
image. Panel (b) is a blurred, noisy version of the ground truth. It was created
by first averaging 4× 4 blocks of (a), then adding Gaussian noise with standard
deviation equal to 5% of the image’s dynamic range. This results in a 16 × 16
image to be used as input to the algorithm for estimating resolution-independent
images (Section 5). As with the previous experiment, outputs were produced
without and with curvature energy, shown in panels (c) and (d) respectively. A
subjective assessment seems to confirm the previous experiment, since the with-
curvature result appears to have smoother object boundaries, and smoother
grayscale values within objects.
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(a) 60× 46 input image (b) output without
curvature energy

(c) output with curvature
energy

(d) detail without
curvature energy

(e) detail with
curvature energy

(f) detail without
curvature energy

(g) detail with
curvature energy

Fig. 4. Comparison of resolution-independent images computed with and without cur-
vature energy

Because we have the ground truth for this experiment, we can also assess
these outputs quantitatively, by computing their PSNR with respect to the
ground truth. The left panel of Figure 6 shows the results. This graph also
demonstrates the sensitivity of the computation to the data gain parameter, λ0,
in Equation (8). The data gain is varied on the horizontal axis, with the corre-
sponding PSNRs for the computations with and without curvature shown on the
vertical axis. A higher PSNR corresponds to a higher-quality reconstruction, so
it is clear that the with-curvature results are superior to the without-curvature
results for each value of the data gain. A further experiment demonstrated that
these results are typical, on average. A 64×64 patch was selected uniformly at
random from each of the first 40 images of the Berkeley Segmentation Dataset [7],
and the above experiment was run with identical settings on all 40 patches. The
mean improvement in PSNR after switching on curvature energy was 0.17 dB;
further details are in the technical report [6].

As discussed at the end of Section 5, this paper employs a simple joint op-
timization approach, contrasting with the more elaborate alternating approach
of previous work. The right panel of Figure 6 shows the computational expense
of these two approaches for the experiment described above (i.e. simultaneously
denoising and upsampling the “peppers” image). It is clear that the energy
minimization proceeds at roughly the same rate for both approaches, but the
alternating approach is less smooth since it encounters degenerate triangles more
often. The resulting retriangulation can also lead to an increase in the energy
value.
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(a) ground truth
image (64× 64)

(b) input image:
noisy, subsampled,

16× 16 version of (a)

(c) output without
curvature energy

(d) output with
curvature energy

Fig. 5. Simultaneous denoising and super-resolution
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Fig. 6. Left: Estimating a resolution-independent image with curvature energy pro-
duces superior PSNR. Right: The simple joint optimization approach of this paper has
similar computational expense to the more elaborate alternating approach of previous
work.

6.3 Comparison with Alternative Curvature Regularization

A comprehensive comparison with other curvature regularization techniques is
beyond the scope of this paper, since our main objective is to enhance the theory
and practice of resolution-independent images. Here, we provide here a compar-
ison with one recent state-of-the-art approach: the technique of Strandmark and
Kahl [17]. The Strandmark-Kahl (SK) approach minimizes a particular choice
of elastica energy over an adaptive mesh, but the precise form of the energy and
the methodology for adapting the mesh are quite different to the present paper.

In addition, the SK approach is targeted at regularizing curvature in binary
output images, which can therefore be regarded as foreground-background seg-
mentations. So that our results can be compared directly with SK, we obtain a
binary image by thresholding a rendering of the resolution-independent output.
More precisely, given an input image I, we run the minimization algorithm of
Section 5 to obtain a resolution-independent image u. Each triangle in the mesh
of u is assigned a new constant intensity of 1 or 0 according to whether the
triangle’s mean intensity is above a given threshold. The resulting u′ is a binary,
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input image
(256× 256)

binarized resolution-
independent image

SK output [17]

Fig. 7. Resolution-independent segmentation

resolution-independent image, and can be rendered at any desired resolution for
comparison with other algorithms.

Figure 7 shows the results of this comparison on the well-known “cameraman”
image. The bottom row comprises details from the top row, and the final column
shows the best SK output on this image. (Here, “best” simply means the most
visually pleasing result appearing in SK [17]; the image was kindly provided
by the first author of that paper.) Comparing the middle and right columns
of Figure 7, we see that the approach of this paper has segmented many more
thin, elongated regions than SK. But this difference is of little interest—without
specifying a particular application and associated error metric, one cannot say
whether it is preferable to include elongated regions in the foreground or not.
Of much more interest is the qualitative nature of the cameraman’s boundary.
We see that this paper’s approach yields boundaries that are considerably more
smooth and visually appealing than the SK output. This is particularly notice-
able on the coat, right arm, and legs.

7 Conclusion

The key contribution of the paper was the derivation of a novel corner energy (5),
used to regularize curvature in resolution-independent images modeled by piece-
wise linear triangle meshes. Experiments showed qualitative and quantitative
improvements in the accuracy of resolution-independent images inferred using
the new curvature regularizer. The technique also compared favorably with a
state-of-the-art approach for binary segmentation. The clearest opportunity for
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future work is to incorporate an energy term for the ridge set. It may also be
possible to reduce the computational expense of the approach by employing
different techniques for mesh generation (e.g. [1,14,18]).
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Appendix: Euler’s Definition of Elastica

Numerous papers cite Euler’s work on elastica, but it is surprisingly difficult
to track down the relevant excerpt. It appears in Euler’s 1744 publication [3],
Methodus inveniendi lineas curvas . . . , Appendix I (“Additamentum I”), para-
graph 2 (p247):

. . . ut inter omnes curvus eiusdem longitudinis, qua non solum per
puncta A & B transeant, sed etiam in his punctis a rectis positione
datis tangantur, definiatur ea in qua sit valor huius expressionis

∫
ds
RR

minimus.

This can be translated as:

. . . that, of all curves of the same length, which not only pass through
points A and B, but also are touched at these points by given tangents,
it is defined by that in which the value of the expression

∫
ds
R2 is the

smallest.
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Abstract. Many models have been proposed to estimate human pose
and segmentation by leveraging information from several sources. A stan-
dard approach is to formulate it in a dual decomposition framework.
However, these models generally suffer from the problem of high compu-
tational complexity. In this work, we propose PoseField, a new highly
efficient filter-based mean-field inference approach for jointly estimating
human segmentation, pose, per-pixel body parts, and depth given stereo
pairs of images. We extensively evaluate the efficiency and accuracy of-
fered by our approach on H2View [1], and Buffy [2] datasets. We achieve
20 to 70 times speedup compared to the current state-of-the-art methods,
as well as achieving better accuracy in all these cases.

1 Introduction

Human pose estimation and segmentation have long been popular tasks in com-
puter vision, and a large body of research has been developed on these problems
[3–7]. Several of these methods model pose estimation and segmentation prob-
lems separately, and fail to capture the large variability and deformation in
appearance and the structure of humans.

However, when segmentation and pose estimation results are considered to-
gether, one can observe discrepancies, for example a foreground region not cor-
responding to any detected body part, or vice versa. Joining the two problems
together, either sequentially or simultaneously, can help to remove these dis-
crepancies. Researchers have thus begun to consider the possibility of jointly
estimating these outputs, leveraging the information from several high-level and
low-level cues.

A number of methods insert various algorithms into a pipeline, where the re-
sult of one algorithm is used to initialize another. For example, Bray et al. tackle
the problem of human segmentation by introducing a pose-specific MRF, encour-
aging the segmentation result to look “human-like” [8]. Similarly, Kumar et al.
use layered pictorial structures to generate an object category specific MRF to
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A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 180–194, 2013.
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Fig. 1. Given stereo pairs and initial part proposals, our approach jointly estimates the
human segmentation, pose, and depth, considering the relationships between per-pixel
body part labels and part configurations

improve segmentation [9]. The problem with this kind of approach is that errors
in one part of the algorithm can propagate to later stages. Joint inference can
be used to overcome this issue; Ladický et al. obtain an improvement in object
class segmentation by incorporating global information from object detectors
and object co-occurrence terms [10], solving detection and segmentation with
one CRF. Further, Ladický et al. frame joint estimation of object classes and
disparity as CRF problems in the product label space, and solve the two tasks
together [11].

Additionally, in the context of human pose estimation and segmentation,
Wang and Koller propose a dual-decomposition based inference method [12]
in a multi-level CRF framework to jointly estimate pose and segmentation by
introducing variables that capture the coupling between these two problems [13].
Extending their formulation, Sheasby et al. [1] add depth information, thus al-
lowing human pose, segmentation and depth to be solved together [14, 1].

The complexity of such joint frameworks is a serious issue; if the framework
is to be used for applications such as security and video gaming, fast output
is required. In such situations, it might prove desirable to find an efficiently
solvable approximation of the original problem. One such method that can be
applied here is mean-field inference [15]. For a certain class of pairwise terms,
mean-field inference has been shown to be very powerful in solving the ob-
ject class segmentation problem, and object-stereo correspondence problems in
CRF frameworks, providing an order-of-magnitude speedup [16]. In this paper,
we propose a highly efficient filter-based mean-field approach to perform joint



182 V. Vineet et al.

estimation of human segmentation, pose, per-pixel part labels, and disparity in
the product label space, producing a significant improvement in speed.

Further, to model the human skeleton, we propose a hierarchical model that
captures relations on multiple levels. At the lowest level, we estimate part labels
per pixel. Such a representation has been shown to be successful in generating
body parts proposals and pose estimation by Shotton et al. [17]. Secondly, the
higher level tries to find the best configuration from a set of part proposals. Our
framework is represented graphically in Fig 1.

Finally we extensively evaluate the efficiency and accuracy offered by our
mean-field approach on two datasets: H2View [14], and Buffy [2]. We show re-
sults for segmentation, per pixel part labelling and pose estimation; disparity
computation is used to improve these results, but is not quantitatively evalu-
ated as it is not feasible to obtain dense ground truth data. We achieve 20-70
times speedup compared to the current state-of-the-art graph-cuts based dual-
decomposition approach [1], as well achieving better accuracy in all cases.

The remainder of the paper is structured as follows: an overview of dense CRF
formulation is introduced in the next section, while our body part formulation
is discussed in Section 3. We describe our joint inference framework in Section 4
and learning of different parameters is discussed in the Section 5. Results follow
in Section 6, and Section 7 concludes the paper.

2 Overview of Dense Random Field Formulation

The goal of our joint optimization framework is to estimate human segmenta-
tion and pose, together with part labels at the pixel level, and perform stereo
reconstruction given a pair of stereo images. These problems however can be
separately solved in a conditional random field (CRF) framework. Thus, before
going into the details of the joint modelling and inference, we provide the mod-
els for solving them separately. Let XS = {XS1 , ..., XSN}, XJ = {XJ1 , ..., XJN},
XD = {XD1 , ..., XDN } be the human segmentation, per-pixel part and disparity
variables respectively. We assume each of these random variables is associated
with each pixel in the image N = {1, ..., N}. Further, each XSi takes a label
from segmentation label set LS ∈ {0, 1}, XDi takes a label from LD ∈ {0...D}
disparity labels and XJi takes a label from LJ ∈ {0, 1, ...,M} where 0 represents
background and M is the number of body parts.

First, we give details of the energy function for the segmentation variables.
Assuming the true distribution of the segmentation variables is captured by the
unary and pairwise terms, the energy function takes the following form:

ES(xS) =
∑
i∈V

ψSu (x
S
i ) +

∑
i∈V,j∈Ni

ψSp (x
S
i , x

S
j ) (1)

where Ni represents the neighborhood of the variable i, ψSu (x
S
i ) represent unary

terms for human segmentation class and ψSp (x
S
i , x

S
j ) are pairwise terms cap-

turing the interaction between a pair of segment variables. The human object
specific unary cost ψSu (x

S
i ) is computed based on a boosted unary classifier on
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image-specific appearance using the model of Shotton et al. [19]. The pairwise
terms between human segmentation variables ψSp take the form of Potts models
weighted by edge-preserving Gaussian kernels [18] as:

ψSp (x
S
i , x

S
j ) = μ(xSi , x

S
j )

V∑
v=1

w(v)k(v)(fi, fj) (2)

where μ(., .) is an arbitrary label compatibility function, while the functions
k(v)(., .), v = 1...V are Gaussian kernels defined on feature vectors fi, fj derived
from the image data at locations i and j (where Krahenbuhl and Koltun [18]
form fi by concatenating the intensity values at pixel i with the horizontal and
vertical positions of pixel i in the image), and w(v), m = 1...V are used to weight
the kernels.

Similarly we define the energy functions over the per-pixel part and disparity
variables as:

EJ (xJ) =
∑
i∈V ψ

J
u (x

J
i ) +

∑
i∈V,j∈Ni

ψJp (x
J
i , x

J
j ) (3)

ED(xD) =
∑
i∈V ψ

D
u (x

D
i ) +

∑
i∈V,j∈Ni

ψDp (x
D
i , x

D
j ) (4)

where ψJu (x
J
i ) and ψDu (x

D
i ) represent unary term for the per-pixel part and

disparity variables respectively, and ψJp (x
J
i , x

J
j ) and ψDp (x

D
i , x

D
j ) are pairwise

terms capturing the interaction between pairs of per-pixel part and disparity
variables respectively. The per-pixel part variable dependent unary cost ψJu (x

J
i )

is computed based on a boosted unary classifier on depth image. Further, if we
do not have ground truth for the depth map, we can learn the unary cost for
the per-pixel parts on image-specific appearance. The unary cost ψDu (x

D
i ) for the

disparity variables measures the color agreement of a pixel with its corresponding
pixel i from the stereo-pair given a choice of disparity xDi . The pairwise terms
for both these variables ψJp and ψDp take the form of contrast-sensitive Potts
models as mentioned earlier.

3 Joint Formulation

The goal of our joint optimization framework is to estimate human segmentation
and pose, together with part labels at the pixel level, and also perform stereo
reconstruction. We formulate the problem in a conditional random field (CRF)
framework as a product label space in a hierarchical framework. At the lower
level, we define the random variables X = [XS ,X J ,XD], where X takes a label
from the product label space L = {(LS × LJ × LD)N}. For specifying human
pose, we define a second layer, represented by a set of latent variables Y =
{Y1, Y2, ..., YM} corresponding to the M body parts, each taking labels from
LP ∈ {0, ...,K} where 1, 2, ...,K corresponds to the K part proposals generated
for each body part, and zero represents the background class. We generate K
part proposals using the model of Yang and Ramanan [7]. The graphical model
explaining our hierarchical joint model is shown in the Fig 2.
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Fig. 2. PoseField model jointly estimates the per-pixel human/background segmen-
tation, body part, and disparity labels. Further, the relationship between per pixel
body part label, and part configurations are captured in a hierarchical model with
information propagating between these different layers. (Best viewed in color)

3.1 Joint Energy Function

Given the above model, we wish to define an energy function which is general
enough to capture sufficient mutual interaction between the variables while still
providing scope for efficient inference. For this reason, we assume our energy
function to take the following form:

E(x,y) = ES(xS) + ED(xD) + EJ(xJ ) + EP (y)

+ ESJ(xS ,xJ) + ESD(xS ,xD) + EDJ (xD,xJ) + EJP (xJ ,y) (5)

Here, our joint model has been factorized into separate layers representing human
segmentation, disparity, per pixel part and latent part variables. The individual
terms at the layers are captured by ES , ED, EJ as defined earlier and EP , the
energy function for the latent part variables, details of which are provided later in
this section. Further, in order to incorporate the dependency between these vari-
ables, we add pairwise interactions between these CRF layers. ESJ , ESD, EDJ

captures the interaction between (segment,per-pixel part), (segment,disparity)
and (disparity, per-pixel part) variables. The term EJP captures the mutual in-
teraction between the (per-pixel part, latent part) variables. We design the forms
of these pairwise interactions to allow efficient and accurate inference; details
are provided below.

Per-part terms EP . In our hierarchical model, the top layer corresponds to
the human part variables Y , which involve per-part unary cost ψPu (xi = k) for
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associating the ith part to the kth proposal or to the background [1], and the
pairwise term ψPp (yi, yj) penalizes the case where parts that should be connected

are distant from one another in image space. The per-part unary term ψPu (yi = k)
is the score generated by the Yang and Ramanan model [7].

Segment, per-pixel part terms (ESJ ). The joint human segmentation and per-pixel
body part term, ESJ , encodes the relation between segmentation and per-pixel
body part. Specifically, we expect a variable that takes a body part label to belong
to the foreground class, and vice versa. We pay a cost of CSJ for violation of this
constraint, incorporated through a pairwise interaction between the segmentation
and per-pixel part variables; this interaction takes the following form:

ESJ = ψSJp (xS ,xJ ) =

N∑
i=1

CSJ · [(xSi = 1) ∧ (xJi = 0)]

+

N∑
i=1

CSJ · [(xSi = 0) ∧ (xJi �= 0)] (6)

Segment, disparity terms (ESD). Additionally, our joint object-depth cost ESD

encourages pixels with a high disparity to be classed as foreground, and pixels
with a low disparity to be classified as background. We penalize the violation of
this constraint by a cost CSD. Following the formulation of [1], we first generate
a segmentation map F = {F1, F2, ..., FN} by thresholding the disparity map,
thus each Fi takes a label from LS. We would expect the prior map F to agree
with the segmentation result, so that pixels taking human label (fi = 1) are
classified as human, and vice versa, otherwise we pay a cost CSD for violation
of this constraint:

ESD = ψSDp (xS ,xD) =

N∑
i=1

CSD · [(xSi = 1) ∧ (fi = 0)]

+

N∑
i=1

CSD · [(xSi = 0) ∧ (fi = 1)] (7)

Per-pixel part, disparity terms (EJD). The joint energy term EJD encodes the
relationship between the per-pixel body part variables and the disparity vari-
ables. As with the cost term ESD, we use a flood fill to generate a segmentation
map F = {F1, F2, . . . , FN} which gives us a prior based on disparity. We expect
pixels classed as human by this prior (so fi = 1) to be assigned to a body part
label, so xJi > 0. Conversely, pixels classed as background (fi = 0) should be
assigned to the background label (xJi = 0). Therefore, the energy term has the
following form:

EJD = ψJDp (xJ ,xD) =

N∑
i=1

CJD · [(xJi > 0) ∧ (fi = 0)]

+

N∑
i=1

CJD · [(xJi = 0) ∧ (fi = 1)] (8)
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Per-pixel part, latent part terms (EJP ). EJP enforces the constraint that when
a body part l is present in the solution at the pixel level, then the variable Y Pl
corresponding to the part l must be on, otherwise we pay a cost of CJP .

EJP = ψJPp (xJ ,y) = CJP ·
∑
l∈M

[(yl = 0) ∧ (
∑
i

[xJi = l]) > 0] (9)

4 Inference in the Joint Model

Given the above complex hierarchical model, we now propose a new mean-field
based inference approach to perform efficient inference for joint estimation. But,
before going into details of our approach, we give a general form of mean-field
update. We also highlight the work of Krahenbuhl and Koltun [18] for filter-
based efficient inference in fully connected pairwise CRFs. This model was later
extended by Vineet et.al. [16] to incorporate higher order potentials, and to solve
jointly the object-stereo correspondence problems.

Let us consider a general form of energy function:

E(Z|I) =
∑
c∈C

ψc(zc|I) (10)

where Z is a joint assignment of the random variables Z = {Z1, ..., ZNZ}, C
is a set of cliques each consisting of a subset of random variables c ⊆ Z, and
associated with a potential function ψc over settings of the random variables in
c, zc. In Sec. 2 we have that Z = XS , that each Xi takes values in the set LS
of human labels, and that C contains unary and pairwise cliques of the types
discussed. In general, in the models discussed below we will have that XS ⊆ Z,
so that Z may also include other random variables (e.g. latent variables) which
may take values in different label sets.

Considering this model, the general form of the mean-field update equation
(see [15]) is:

Qi(zi = ν) =
1

Z̃i
exp{−

∑
c∈C

∑
{zc|zi=ν}

Qc−i(zc−i) · ψc(zc)} (11)

where ν is a value in the domain of the random variable zi, zc denotes an assign-
ment of all variables in clique c, zc−i an assignment of all variables apart from Zi,
and Qc−i denotes the marginal distribution of all variables in c apart from Zi de-
rived from the joint distributionQ. Z̃i =

∑
ν exp{−

∑
c∈C
∑

{zc|zi=ν}Qc−i(zc−i)·
ψc(zc)} is a normalizing constant for random variable zi. We note that the sum-
mations

∑
{zc|zi=ν}Qc−i(zc−i) · ψc(zc) in Eq. 11 evaluate the expected value of

ψc over Q given that Zi takes the value ν.
Following this general update strategy, the updates for the densely connected

pairwise model in Eq. 1 are derived by evaluating Eq. 11 across the unary and
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pairwise potentials defined in Sec. 2 for zi = x1...N and ν = 0...L. For the densely
connected pairwise CRF model, the mean-field update takes the following form:

Qi(zi = l) =
1

Z̃i
exp{−ψi(zi)−

∑
l′∈L

∑
j �=i

Qj(zj = l′)ψij(zi, zj)} (12)

With this mean-field update, Krahenbuhl and Koltun [18] proposed a filter-based
method for performing fast inference thus reducing the complexity from O(N2)
to O(N) under the assumption that the pairwise potentials take the form of a
linear combination of Gaussian kernels. They show how the expensive message
passing update in the mean-field is approximated by a convolution with a bi-
lateral filter in a high dimensional space. Given this Gaussian convolution, they
use a permutohedral lattice based bilateral filtering method [20] for performing
efficient inference. They run the update equation for a fixed number of itera-
tions, where each iteration leads to a decrease in the KL-divergence value. To
extract a solution, they evaluate the approximate maximum posterior marginal
as z∗i = maxzi Qi(zi).

4.1 Efficient Inference

In our framework, we need to jointly estimate the best possible configurations of
the segmentation variables XS , per-pixel part variables XJ , disparity variable
XD and part variable Y P by minimizing the energy function E(x, y) in Eq. 5.
We now provide the details of our mean-field updates for efficient joint inference.

Update for segment variables (XS). Given the energy function detailed in Sec. 3.1,
the marginal update for human segmentation variable XSi takes the following
form:

QSi (x
S
[i,l]) =

1

ZSi
exp{−ψS(xSi )−

∑
l′∈LJ

∑
j �=i

QSj (x
S
[j,l′])ψ(x

S
i , x

S
j )

−
∑
l′∈LD

QDi (x
D
[i,l′])ψ(x

D
i , x

S
i )−

∑
l′∈LJ

QJi (x
J
[i,l′])ψ(x

S
i , x

J
i )} (13)

where QDi (x
D
[i,l′ ])ψ(x

D
i , x

S
i ) and QJi (x

J
[i,l′ ])ψ(x

S
i , x

J
i ) are the messages from dis-

parity and per-pixel part variables respectively to the segmentation variables.
Thus, these messages enforce the consistency between the segmentation, dispar-
ity and per-pixel part term variables. We write x[i,l] for (xi = l) and the same
notation will be followed subsequently.

Update for disparity variables (XD). Similar to the updates forXSi , the marginal
update for the per-pixel depth variables XDi takes the following form:

QDi (x
D
[i,l]) =

1

ZDi
exp{−ψD(xDi )−

∑
l′∈LD

∑
j �=i

QDj (x
D
[j,l′])ψ(x

D
i , x

D
j )

−
∑
l′∈LS

QSi (x
S
[i,l′ ])ψ(x

D
i , x

S
i )−

∑
l′∈LJ

QJi (x
J
[i,l′])ψ(x

J
i , x

D
i )} (14)
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where QSi (x
S
[i,l′ ])ψ(x

D
i , x

S
i ) and Q

J
i (x

J
[i,l′ ])ψ(x

J
i , x

D
i ) correspond to the messages

from the segmentation and per-pixel part variables to the disparity variables.

Update for per-pixel part variables (XJ). The per-pixel part variable XJi takes
messages from part configuration in the hierarchy along with the messages from
the other per-pixel part variables, segmentation variables and disparity variables.
Thus, the marginal update for the per-pixel part variables XJi take the following
form:

QJ
i (x

J
[i,l]) =

1

ZJ
i

exp{−ψJ
u(x

J
i )−

∑
l′∈LJ

∑
j �=i

QJ
j (x

J
[j,l′])ψ(x

J
i , x

J
j )

−
∑

l′∈LD
QD

i (xD
[i,l′])ψ(x

J
i , x

D
i )−

∑
l′∈LS

QS
i (x

S
[i,l′])ψ(x

J
i , x

S
i )−

∑
l′∈LP

QP
i (y[i,l′])ψ(yi, x

J
i )}

(15)

Here QPi (y[i,l′])ψ(yi, x
J
i ) carry messages from the valid part configuration in the

hierarchy to the per-pixel part variables, and QSi (x
S
[i,l′])ψ(x

J
i , x

S
i ) and Q

D
i (x

D
[i,l′ ])

ψ(xDi , x
J
i ) correspond to the messages from the segmentation and disparity vari-

ables to per-pixel part variables.
It is also to be noted that the required expectation update for messages from

other joint variables, e.g. messages from segmentation variables to disparity vari-
ables, contribute a time complexity of O(N). Thus, the marginal update steps
do not increase the overall time complexity.

Update for latent part variables (Y ). Finally, the mean-field update for the part
variables in the hierarchy corresponds to:

QPi (y[i,l]) ∝ exp{−ψu(yi)−
∑
j′∈LJ

N∑
j=1

QJj (x
J
[j,j′ ])ψ(yi, x

J
j ) (16)

where QJj (x
J
[j,j′ ])ψ(yi, x

J
j ) corresponds to the messages from the per-pixel part

variables to the part configuration variables. Evaluation of the expectation for
part variables contributes O(N) to the overall complexity. Thus, our inference
method does not increase the overall complexity of O(N) for fully connected
pairwise updates.

5 Learning

The weights CSJ , CSD, CJD, CJP capturing the relationships between variables
at different CRF layers are set through cross-validation. Our cross validation
step to search for good set of parameters to weight these different terms in
Eq. 5 is greedy in the sense that we set them one at a time sequentially. This
way of sequential learning ensured an efficient way to search for a good set of
the parameters without going through all the possible joint configurations of
the parameters. Structured learning [21] provides a possible future direction to
learn these parameters, however our focus was efficient inference. Further, the
Gaussian kernel parameters are set through cross-validation as well.
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6 Experiments

In this section, we demonstrate the efficiency and accuracy provided by our ap-
proach on the H2View [1] dataset. Further, to highlight the generalization of
our approach, we also conduct experiment on the Buffy [2] dataset where we do
not have stereo pairs of images. In all experiments, timings are based on code
run on an Intel R© Xeon R© 3.33 GHz processor, and we fix the number of full
mean-field update iterations to 5 for all models. As a baseline, we compare our
approach for the joint estimation of human segmentation, pose, per-pixel part
and disparity with the dual-decomposition based model of Sheasby et al. [1].
Further, we compare our joint approach against some other state-of-the-art ap-
proaches which do not perform any joint estimation. For example, we compare
our human segmentation results against a graph-cuts based AHCRF [22] and the
mean-field model of Krähenbühl et al. [18]. We assess human segmentation ac-
curacy in terms of the overall percentage of pixels correctly labelled, the average
recall and intersection/union score per class (defined in terms of the true/false
positives/negatives for a given class as TP/(TP+FP+FN)). Similarly, for pose
estimation, apart from comparing against the dual-decomposition based joint
labelling model of Sheasby et.al. [1], we compare the probability of correct pose
(PCP) criterion against the models of Yang and Ramanan [7], and Andriluka et
al. [23], which do not perform joint labelling. In all these cases, we use the code
provided by the authors for the AHCRF, Krähenbühl et al., Yang and Ramanan,
Andriluka et al., and Sheasby et al. However we do not quantitatively evaluate
the disparity results as we do not have the ground truth data for the disparity.

6.1 H2View Dataset

The H2View dataset [1] comprises 1108 training images and 1598 test images con-
sisting of humans in different poses performing standing, walking, crouching, and
gesticulating actions in front of a stereo camera. Ground truth human segmenta-
tion, and pose are provided; we augment these with a per-pixel part labels.

We first show the accuracy and efficiency achieved by our method on the
human segmentation results. We observe an improvement of almost 3.5% over
the dual-decomposition based joint inference model of Sheasby et al. [1], almost
4.5% compared to AHCRF [22] and almost 4% over dense CRF [18] in the I/U
score, shown in Tab. 1. Significantly, we observe an order of magnitude of speed
up (almost 20×) over the model of Sheasby et al. and a speed up of almost
5× over the AHCRF model. Further as far as pose estimation results are con-
cerned, we achieve an improvement of almost 3.5% over Yang and Ramanan, 7%
over Andriluka et al. in the PCP scores. Though these methods do not perform
joint inference, we compare to highlight the importance of joint inference. Fur-
ther compared to the model of Sheasby et al., we perform slightly worse in the
PCP score, but we observe a speed up of almost 20× over their model. Here it
should be noted that the time to evaluate the model of Yang and Ramanan to
generate initial pose proposals is not included in the models of Sheasby et.al.
and our model. Quantitative results for pose estimation are as shown in Tab. 2.
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Fig. 3. Qualitative results on two sets of images from H2View dataset. First two rows
correspond to the first image, and next two rows to the second image. From left to
right: (top row) input image, ground truth for human segmentation, output from [1],
pose estimation output from [1]; (second row): our per-pixel part label output, disparity
estimation output, segmentation and pose-estimation outputs. Last two rows show the
same set of images on the second input image. Our method is able to recover the
limbs properly on both the segmentation and pose estimation problems. (Best viewed
in color)

Table 1. Quantitative results on H2View dataset for human segmentation. The ta-
ble compares timing and accuracy of our approach (last 2 lines) against the dual-
decomposition model of Sheasby et.al. [1] as well as over other baselines. Note the
significant improvement in inference time and class-average performance our approach
against the baselines.

Method Time (s) Overall Av.Re I/U

Unary 0.36 96.12% 85.90% 78.94%
ALE [22] 1.5 96.14% 86.10% 80.14%
Sheasby [1] 25 96.67% 90.48% 81.52%
MF [18] 0.48 96.56% 86.12% 80.57%
Our 1.25 97.14% 92.32% 84.60%

Additionally we observe qualitative improvement in both the segmentation and
pose results, as shown in Fig. 3. As far as per-pixel part label accuracy is con-
cerned, we achieve 94.43% of overall percentage of correctly labelled pixels, com-
pared to 92.63% achieved by the dual-decomposition method of Sheasby et.al. [1],
and 89.55% achieved by the graph-cuts based AHCRF method [22].
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Fig. 4. Qualitative results on Buffy dataset [2]. From left to right: (first row:) input
image, ground truth of segmentation, segmentation output before joint estimation,
(second row:) segmentation output after joint estimation, pose output before joint
estimation, and pose output after joint estimation. (Best viewed in color)

Table 2. The table compares timing and accuracy of our approach (last line) against
the baseline for the pose estimation problem on H2View dataset [1]. Observe that
our approach achieves almost 20× speedup against the dual-decomposition model of
Sheasby et.al. [1] as well as over other baselines. U/LL represents average of upper and
lower legs, and U/FA represents average of upper and fore arms.

Method T(s) U/LL U/FA TO Head Overall

Sheasby [1] 25 83.43 54.56 90.05 89.8 73.18
Yang [7] 10 79.65 49.05 88.5 83.0 69.85
Andriluka [23] 35 74.85 47.7 83.9 76.0 66.03
Ours 1.2 82.86 55.16 89.05 86.20 73.12

6.2 Buffy Dataset

In order to show the generalization and effectiveness of our approach, we also
evaluate our model on the Buffy dataset. We select a set of 476 images as training
images, and 276 images as test images, using the same split as used in [2]. Since
there are no depth images, we evaluate only on joint pose and segmentation
problems. For the human segmentation case, our joint approach achieves a speed
up of almost 70× compared to the dual-decomposition based method of Sheasby
et al. [1], and 3× compared to AHCRF [22]. We also observe an improvement
of almost 10% and 1% in the I/U scores respectively on segmentation results,
shown in Tab. 3. Further, we observe an improvement of almost 0.4% over the
Yang and Ramanan model and almost 7% over the model of Sheasby et al.
model in the PCP score for the pose estimation problem, shown in Tab. 4. It
should be noted that the results of the Yang and Ramanan model [7] reported
in our paper is different than the one in their original paper since they first
generate a set of detection windows by running an upper-body detector, and
then evaluate pose detection only on these detected windows. Here we evaluate
the poses on whole image, thus a good detection of the non-detected person could
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Table 3. Quantitative results on Buffy dataset for human segmentation prob-
lem. Observe the significant speedup (almost 70×) achieved compared to the dual-
decomposition method of Sheasby et.al. [1] and over other approaches. Further, our
approach achieves better accuracy than other methods as well.

Method Time (s) Overall Av.Pr I/U

Sheasby [1] 20 80.85% 85.80% 65.01%
ALE [22] 0.96 87.88% 86.05% 74.16%
MF [18] 0.26 88.40% 86.47% 75.01%
Ours 0.28 88.79% 86.45% 75.18%

Table 4. The table compares timing and accuracy of our approach (last line) against
the baseline for pose estimation problem. Observe that our approach achieves almost
70× speedup, and almost 7% improvement in accuracy over the dual-decomposition
model of Sheasby et.al. [1].

Method T(s) L R TO H Overall

Sheasby [1] 20 61.3 63.5 81.5 85.1 69.17
Yang [7] 1 66.6 71 87.3 90.5 75.6
Ours 0.28 68.2 71 87.6 90.2 76.05

be penalized. Further improvement through pose estimation within the detected
boxes remains a possibility to our approach as well. However, our main goal is
to show the efficiency achieved by our joint model without losing any accuracy
given the same initial conditions. We also observe an improvement in qualitative
results for both the segmentation and pose estimation problems, shown in Fig. 4.

7 Discussion

In this work, we proposed PoseF ield, an efficient mean-field based method for
joint estimation of human segmentation, pose, per-pixel part and disparity. We
formulated this product label space problem in a hierarchical framework, which
captures interactions between the pixel level (human/background, disparity, and
body part labels), and the part level (head, torso, arm). Finally we have shown
the value of our approach on the H2View and Buffy datasets. In each case,
we have shown substantial improvement in inference speed (almost 20 − 70×)
over the current state-of-the-art dual-decomposition methods, while also observ-
ing a good improvement in accuracies for both human segmentation and pose
estimation problems. We believe our efficient inference algorithm would pro-
vide an alternative to some of the existing computationally expensive inference
approaches in many other fields of computer vision where joint inference is re-
quired. Future directions include investigating new ways to improve the efficiency
through parallelization and learning of the relationships between different layers
of the hierarchy in a max-margin framework.
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Abstract. We describe an approach to incorporate scene topology and seman-
tics into pixel-level object detection and localization. Our method requires video
to determine occlusion regions and thence local depth ordering, and any visual
recognition scheme that provides a score at local image regions, for instance ob-
ject detection probabilities. We set up a cost functional that incorporates occlu-
sion cues induced by object boundaries, label consistency and recognition priors,
and solve it using a convex optimization scheme. We show that our method im-
proves localization accuracy of existing recognition approaches, or equivalently
provides semantic labels to pixel-level localization and segmentation.

1 Introduction

Object detection, recognition, and localization in images and video have occupied a
large portion of the Computer Vision community in the last decade. Detection refers to
the binary decision as to whether an object (or object class, as represented by a prior
model or training set) is present in an image. A positive outcome for a specific object
class provides an answer to the recognition (or categorization) task. Given that an object
is present, localization, performed at each pixel 1, is the binary decision as to whether it
back-projects onto an object in the scene having said object label. This is often referred
to as “semantic (image) segmentation.”

However, a key challenge in labeling a scene using only a single image lies in obtain-
ing accurate object boundaries. Low-level segmentation schemes fall short when the
object of interest is highly textured and semantic classifiers tend to “bleed” across im-
age boundaries due to the support requirement for different features. Motivated by this
limitation, existing methods have proposed to incorporate additional cues (e.g. object
detectors) into the framework, extend the label consistency using higher order potentials
or take advantage of temporal information by using video sequences.

With video data, the temporal consistency between adjacent frames has often been
used to “smooth” labeling errors at the individual frame level. However, video se-
quences can also provide strong cues for object boundaries. When objects or the cam-
era move, they uncover portions of the scene that were previously hidden and obscure
other portions that were previously visible from the viewer’s perspective. These newly
revealed/occluded regions in the image naturally co-occur with object boundaries and

1 This is unlike “coarse localization” that aims to determine a few location parameters, say
position and scale of a bounding box.

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 195–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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thus provide constraints on the spatial distribution of class labels, since objects gener-
ally project to simply-connected regions of the image. With respect to the viewer, occlu-
sion regions also provide local depth ordering relations between the occluder (in front)
and the occluded (behind) objects. We exploit these relations, inferred from video, to
produce a segmentation of the image domain into semantic class labels and depth order-
ing labels. We do so within a convex optimization framework that integrates low-level
(scene topology), mid-level (label consistency), and high-level (semantic class label)
priors in the inference process. The result can be seen as either a method for segmen-
tation that provides class identity, or a method for recognition that provides accurate
pixel-level localization (Fig. 1).

2 Related Work

Pixel-level labeling in single images has been well-studied, where conditional random
fields (CRFs) have become a popular tool of choice [1,2,3,4]. Significant work has been
accomplished since the introduction of TextonBoost [1], including the development
of robust PN potentials [2] to model pixel relationships beyond pairwise constraints
and their hierarchical extension [4], leading to considerable visual improvement in the
labeling. Inference remains tractable as [2] showed that these higher order potentials
can be reduced to pairwise terms and minimized using graph cuts.

A number of methods incorporate additional cues into this framework, for example
3D information from stereo [5,6] or from structure from motion (SfM) [7]. An alter-
native is to add appearance-based geometric labels (i.e. vertical, horizontal, sky) [8],
and a model for camera viewpoint [9], which can provide powerful constraints on the
plausible locations of objects in the scene [10]. [11] takes advantage of powerful sliding
window detectors [12,13] to facilitate the labeling of objects (e.g. cars, persons) as they
project to smaller regions in the image than background classes (e.g. building, road,
or sky), an issue our approach also addresses. Incorporating multiple cues facilitates
[5,11,8,9] the joint optimization of coupled problems (e.g. semantic labels and depth
estimates).

To leverage temporal information from video, most existing work [14,15,6] enforces
label consistenty in a temporal window to smooth the output labels. [14] leverages a spa-
tial CRF with temporal information to independently model scene and object motion.
Alternatively, label smoothing can be accomplished via a Hidden Markov Model [15]
layered on top of classifier output. Recent work [6] enforces temporal consistency on la-
bels by associating their 3D locations, estimated from stereo image-pairs, across frames.
This approach works well for static environments, but struggles with reconstructing and
labeling moving objects like cars and people.

A related line of work is object segmentation in video, where temporal consistency can
be exploited by matching sparse features across images [16]. Recent results [16,17,18]
in unsupervised video object segmentation highlight the importance of using motion as a
segmentation cue. Such methods can be adopted for semantic labeling by first segmenting
the video sequence followed by labeling each segment. However, failures in the first step
cannot be recovered at the categorization step.

Our contributions can be summarized as follows: first, we propose a unified cri-
terion (5) that incorporates categorical information, label consistency constraints, and
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low-level topological cues from occluded regions for the semantic segmentation task
(Sect. 3). In addition to pixel-level object categorization, this approach also provides
pixel-level layer labels. When objects of the same category occlude each other, instead
of merely categorizing the union of their support as a single category, the layer label
indicates the presence of multiple objects in that region and accurately localizes each
instance at a pixel-level. This scenario is shown in Fig. 1. Second, we show that our op-
timization criterion can be converted into a linear program and solved efficiently (Sect.
4), once depth ordering constraints induced by occluded regions are provided. Such
constraints can only be obtained using video data [19].
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occlusion cues

object likelihoods

layers 

semantic labelspersoncar
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Fig. 1. Object probabilities from class-specific detectors (top) and occlusion cues (bottom), with
red and yellow indicating occluded and occluder regions. A single optimization solved efficiently
with a linear program solver produces pixel-level classification. Our approach not only provides
a semantic label (“person” or “background”) for each pixel (top right), but also determines there
are two instances of the same object (bottom right), one occluding the other, where the person
marked by yellow is behind the person marked by brown.

3 Formalization

Given a video sequence It : D ⊂ R2 → R+;x �→ It(x), t = 1 . . .N , we are interested
in determining whether an object of interest is present in the scene, where in the image it
projects to, and the spatial relationship between different objects (e.g. multiple instances
of the same class) with respect to the viewer. The resulting labeling is represented by a
set of binary indicator functions ul : D → {0, 1};x �→ ul(x) of the presence/absence
of an object of category l ∈ L = {1, 2, 3, . . . , L} at location x ∈ D.

Let I be the set of all possible images defined on the domain D and S = {s | s ⊂
R2, (0, 0) ∈ s} be the set of regions centered at the origin. A detector for object l is a
function f l : D × I × S → [0, 1]; (x, I, s) �→ f l(x, I, s) that yields the probability
that object l projects onto a location x based on statistics of the image restricted to a
neighborhood s of x: I|{x+x′|x′∈s}.
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Label Consistency: In principle, we could run a detector for every pixel location x ∈
D independently of the outcome of detectors at other locations y ∈ D. Clearly, this
would miss important correlations and spatial regularities that natural images exhibit.
To take these into account, we enforce label consistency between neighboring locations
x, y ∈ D by requiring that |ul(x) − ul(y)| be small unless a data-dependent measure
dμ(x, y) provides evidence of the contrary. Such a measure can be written in terms of
a kernel dμ(x, y) = K(x, y)dxdy, where K(x, y) = e−γ(It(x)−It(y))

2

if ‖x− y‖2 < ε
and 0 otherwise, where γ is a regularization parameter. Using the detector responses
{f l(x)}Ll=1 and the label consistency, instantaneous localization at time t (subscript
omitted for simplicity) could be framed as the following optimization problem

{ûl}Ll=1 = argmin
u0...uL

α

L∑
l=1

∫
D

(1− f l(x))ul(x)dx + β

L∑
l=1

∫
D

|ul(x) − ul(y)|dμ(x, y)

s. t.
L∑
l=1

ul(x) = 1, ∀x ∈ D

(1)

where α, β are tuning parameters.
∑L
l=1 u

l(x) = 1 enforces that only a single object
be present at each pixel (opacity).

Topological (Occlusion) Constraints. Multiple images {It}Tt=1 provide more than just
repeated trials to compute the likelihood in (1). They provide information on the topol-
ogy of the surfaces in the scene. Under the assumption of Lambertian reflection, con-
stant illumination and co-visibility, an image frame It is related to its immediate neigh-
bors It+dt, It−dt by the usual brightness-constancy equation

It(x) = It±dt(x+ v±t(x)) + n±(x), x ∈ D\Ω±t (2)

where v+t and v−t are the forward and backward motion fields [19]. However, in gen-
eral, there are regions, occlusions and disocclusion, in the current image at time t that
are not visible in the next and previous frames, Ω+t and Ω−t. Let Ωt be Ω+t ∪ Ω−t.
Then Ωct is the occluder, which can be restricted to a local region around the occluded
regionsΩt by using morphological operations. The relation between Ωct be Ωt induces
an ordering between two neighboring surfaces where the occluder maintains a higher
depth value (closer to camera) then the occluded one. One can enforce this ordering as
a constraint to estimate a depth layer field ct = D → Z

+;x �→ ct(x) at time t, which
maps each image location x to an integer indicating the depth order [20]. This allows
us to handle multiple layers (see Fig. 1). Omitting the subscript t for simplicity, we can
infer c by solving the minimization problem,

ĉ =argmin
c

∫
D

|c(x) − c(y)|dμ(x, y)

s. t. c(x) > c(y), x ∈ Ωc, y ∈ Ω, ‖x− y‖ < ε.

(3)

The super-level set {x|c(x) ≥ 1} is an indicator for simply-connected regions of the
image called “detachable objects” [20]. We adopt this characterization of objects as
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label-consistent regions that do not violate occluding boundaries. As Fig. 1 shows, it
is possible for an object of a given class to occlude another of the same class. Thus an
occlusion boundary does not necessarily force a change of semantic label.

Semantic Priors: While labels obtained by solving (3) are consistent with the topology
of the scene, there is nothing that couples them with object identity. Prior knowledge im-
plicit in the training set, which could facilitate detection and localization, is ignored. We
need to enable cross-talk between high-level (semantic) priors and low-level (topolog-
ical) constraints, so that object hypotheses from the probabilistic detectors can inform
occlusion-consistent segmentation and vice-versa. To this end, we can relate the label
field to the object identity via

c(x) ≥
∑
l∈F

ul(x), ∀ x ∈ D, (4)

where F ⊂ L denotes the set of “foreground” classes. This constraint not only implies
that, when c(x) = 0, we obtain

∑
l∈F u

l(x) = 0 based on the exclusion constraint∑L
l=1 u

l(x) = 1, but also encourages c(x) to become nonzero when there is a strong
detector response for any object class. Unfortunately, we cannot add additional con-
straints between the layers and the object labels as any object can be present in any
layer. With this constraint, we propose the following optimization problem:

{ûl}Ll=1, ĉ = argmin
u0...uL,c

α

L∑
l=1

∫
D

(1 − f l(x))ul(x)dx + β

L∑
l=1

∫
D

|ul(x) − ul(y)|dμ(x, y)

+

∫
D

|c(x)− c(y)|dμ(x, y)

s.t.
L∑
l=1

ul(x) = 1, ∀x ∈ D,

c(x) > c(y), x ∈ Ωc, y ∈ Ω, ‖x− y‖ < ε

c(x) ≥
∑
l∈F

ul(x).

(5)

This inference criterion incorporates high-level (category), mid-level (label consistency)
and low-level (occlusion) information. In what follows, we show how the above mini-
mization problem can be solved efficiently with linear programming.

4 Implementation

The domainD is a discrete lattice Λ of M ×N pixels, that we can represent as a graph
G = (V,E): each pixel is identified with a node i in the vertex set V , and adjacency
relationships between pixels i and j are encoded in the edge set E ⊂ V × V via i ∼ j.
The location of each pixel i in the image is given by xi ∈ D. Abusing notation, we de-
fine discrete versions of the category indicator functions {ul : V → {0, 1}; i �→ uli}Ll=1,
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the layers c : V → Z+; i �→ ci and the object detectors {f l : V → [0, 1]; i �→ f li}Ll=1

where each f li is the probability of vertex i having semantic label l. By introducing aux-
iliary variables {dij}i∼j and {vij}i∼j and relaxing the integer constraints for {ul}Ll=1
and c, we can write (5) as a linear program:

{ûl}Ll=1, ĉ = argmin
u1...uL,c

α

L∑
l=1

∑
i∈V

(1− f l
i )u

l
i + β

L∑
l=1

∑
i∼j

vij

︸ ︷︷ ︸
φsemantic

+
∑
i∼j

dij + μ
∑
i∈V

ci + λ

K∑
k=1

ξk

︸ ︷︷ ︸
φlayers

s. t.
L∑

l=1

ul
i = 1, ∀x ∈ D,

− v  Gu  v, − d  Gc  d

ci − cj ≥ 1− ξk, xi ∈ Ωc, xj ∈ Ω, i ∼ j,

ci ≥
L∑

l∈F
ul
i.

(6)

whereG is a |E|× |V | matrix that acts as a weighted gradient operator on the functions
defined on the graph G which is given by

Gi∼j,k =

⎧⎪⎨
⎪⎩

wij , if k = i

− wij , if k = j

0, otherwise,

(7)

and the measure dμ(xi, xj) becomes a symmetric matrix wij = K(xi, xj). Also note
that we incorporate model selection via

∑
i ci in (6) which penalizes spurious object

layers. We also introduce a slack variable set {ξk}, one for each ofK occluder-occluded
constraints on a pair of pixels, allowing us to ignore spurious occlusion constraints by
paying a penalty λ. This enables us to deal with inevitable errors in occlusion detection.
The formulation of the problem as a linear program enables us to benefit from efficient
numerical solvers.

Following common practice to reduce the complexity of the optimization, we parti-
tion the domainD intoN non-overlapping superpixels {si}Ni=1 such that

⋃N
i=1 si = D,

using a statistical multi-cue edge detector [21]. The form of the optimization (6) is un-
changed, since it is already written for a general graph. This reduces the size of the
linear program to a manageable complexity.

5 Experiments

We tested our model on video sequences from the MOSEG dataset [16] as well as the
CamVid dataset [22]. MOSEG contains short sequences (20-60 frames) of moving ob-
jects such as cars and people with ground truth annotations for a few frames in each
sequence. Since ground truth is only provided for moving objects, we exclude detection
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of stationary ones for evaluation purposes. For our framework, we choose cars and
people to be the object classes and construct a generic background class.

The CamVid database consists of longer clips of driving sequences taken under dif-
ferent conditions (e.g. day and dusk). The motion between adjacent frames is much
larger than in MOSEG as the camera is mounted on a fast-moving platform. Annota-
tions are provided sparsly at 1 Hz for 32 semantic classes. However, we train and test
on only the 11 classes shown in Fig. 2 as common practice when evaluating on CamVid
[7,11,23]. For our framework, we consider cars, sign-symbol, pedestrian, column-pole,
and bicyclist as the object classes and building, tree, sky, road, fence, and sidewalk as
the background classes.

While our algorithm is designed to run on video, the categorization component only
considers single image-based features. This is convenient as there exist many publicly
available image categorization datasets with densely labeled annotations and a number
of baseline evaluation methods to choose from. For our experiments with MOSEG, we
construct three classes (car, person, background) from the Graz02 database [24]. We
chose not to train on MOSEG as testing would then be trivial and limited given the
small number of annotated frames. An advantage of our approach is that any single
image semantic labeling scheme can be used as our baseline categorization method, so
long as it provides per-class probability maps.

For our experiments on MOSEG, we used [25] for our categorization component, a
bag-of-features approach shown to perform well for single image recognition and lo-
calization on Graz02 and Pascal VOC 2007/2009 [26]. Dense SIFT features [27] are
extracted and quantized via K-means (K = 400). A histogram of these quantized fea-
tures is constructed for each superpixel, which aggregates information within a local
superpixel neighborhood for training an SVM classifier with an intersection kernel.

For our experiments on CamVid, we followed the dataset’s default training and test-
ing split. For the categorization component, we used [4] to run an improved version of
TextonBoost that incorporates additional features such as Local Binary Patterns, colour
histograms, location, and dense SIFT to obtain per-pixel object class probabilities. Oc-
clusion detections and optical flow estimation are performed by [19], for which source
code is available on-line.

5.1 Comparative Evaluation

MOSEG: We compared five approaches: (i) the baseline categorization component [25]
applied to each frame of the video; (ii) TextonBoost which partitions still images into re-
gions each labeled with a specific object class considering textural properties of objects
[1]; (iii) the work of [4], which augments the pixel-wise graph cut labeling framework
with label consistency relationships on image regions and across a segmentation hier-
archy, (iv) the two-stage pipeline first partitioning the image into segments and then
classifying each segment; and (v) the proposed approach that unifies the segmentation
and classification steps into a single energy minimization framework.

We accomplish method (i) by assigning each pixel to the class inferred from the de-
tection probabilities under a CRF model enforcing spatial continuity. We use publicly
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Fig. 2. Results on CamVid sequences. (Left to right) original frame, ground truth annotations
(col. 2), labeling results from [1,4] (col. 3, 4), and the output of our proposed method (col. 5).
Notice how the proposed method better captures the boundaries of the cars (highlighted with
white boxes).

available code for (ii)2 and (iii)3 [28]. (iv) is accomplished by image segmentation from
the depth layers estimated by [20] and labeling the connected components of all the
depth layers using a bag-of-features classifier trained on the Graz dataset. (v) is our
method.

CamVid: We compare the baseline (TextonBoost with an augmented feature vector),
the single image-labeling approach of [4], and our proposed method. Here we also
enforce temporal consistency by connecting the class and layer nodes in each frame to
those in the surrounding frames. This amounts to solving equation 6 on a larger graph.
Thus we label multiple frames in one minimization. In our experiments, we used a 7
frame temporal window.

5.2 Qualitative Performance

Fig. 3 provides a basic intuition of our system. By combining the output of class-specific
bottom-up object detectors and occlusion detectors (2nd and 3rd column, respectively),
we can accurately segment and classify the vehicles (5th column), which not only

2 http://jamie.shotton.org/work/code.html
3 http://www.robots.ox.ac.uk/˜lubor/

http://jamie.shotton.org/work/code.html
http://www.robots.ox.ac.uk/~lubor/
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Fig. 3. Our algorithm compared to baseline methods on cars5 (top row) and cars2 (bottom row)
from MOSEG. Left to right: original image with groundtruth overlaid (col. 1), detector responses
for category car (cyan) and person (red) (col. 2), occluded (red) and occluder (yellow) regions
(col. 3), layer segmentation produced from occlusion cues (dark blue is the lowest layer and red is
the highest) (col. 4), and finally our classification result (col. 5). Notice the classification baseline
labels much of the image as car, while the layer segmentation often misses objects due to errors
in occlusion detection. In the top row, the car is in the same layer as the background while the
region immediately to its left is separated. In both examples, all approaches struggle with the
moving car in the far field.

improves on the baseline classifier in localization (2nd column), but also improves on
the segmentation from occlusion cues alone (4th column). In addition, our framework
provides an object category label to each segmented image region.

In the first row, the left vehicle is difficult to extract via occlusion cues alone as
too few are generated while the car is turning. By incorporating the response of a car
detector, our algorithm is able to accurately recover the leftmost vehicle. We are still
unable to extract the moving car in the background, however, as the detector response
is not significant enough in this region. This shows the interplay between the two object
localization approaches. However, in comparison to methods (i) and (ii), our approach
improves on the results in the localization and classification of objects.

It should be noted that our method not only produces a pixel-level localization, but
also a global depth ordering, which partitions the image into a set of depth layers. Thus,
if a person in the scene occludes another one, we do not merely label an amorphous
region of pixels that responded to a “person detector.” Instead, the combination of the
semantic label field and the depth layer distinguishes the individual object instances
and indicates which person is in front of the other person in the scene from the viewer’s
perspective. This is visible in Fig. 1 for the case of people. The work of Yang et al. [29]
similarly takes advantage of depth layers. However, their layers are based on the output
of single image object detectors and shape priors. We instead used the motion of objects
in the scene.

We present qualitative results of our algorithm and the comparison methods evalu-
ated on the MOSEG sequences in Fig. 5. Our algorithm consistently makes improve-
ment over the labeling schemes for single images (the baseline [25], TextonBoost [1],
and [4]), which is particularly evident at object boundaries. Thus, occlusion cues can
help regularize the probabilities generated by the baseline detection system. Note that in
the fourth column (person2), [4] fails around the head of the person. This is likely due to
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a failure in the oversegmentation step. With occlusion cues, our approach captures the
silhouette of the woman’s head. However, in this frame we fail to capture the woman
in the background, as the person detection response is weak in that region. Note that
where very small or very large motion occurs, occlusion detection fails. Despite these
issues, our method still matches or outperforms the two-step pipeline approach, recover-
ing from failures in layer estimation due to weak occlusion cues (the vehicle windshield
is mislabeled as background in cars4) or spurious occlusion detections (cars9, cars8).

Qualitative results of our algorithm and the comparison methods evaluated on frames
from CamVid are presented in Fig. 2, where we compare the output of the extended ver-
sion of TextonBoost, [4], and our proposed method. Although it is difficult to declare
one approach as superior for labeling the background classes, our approach clearly ob-
tains more accurate boundaries when considering foreground objects (here, cars), which
we highlight with white boxes. In these sequences, the significant camera motion gen-
erates strong occlusion cues for accurate segmentation, where single image appearance
features may lead to a faulty object segmentation (row 2).

5.3 Quantitative Assessment

Table 1 details the quantitative results of the comparison methods and our proposed al-
gorithm. F-measure scores were computed for all of the annotated frames in MOSEG
and averaged per sequence. The proposed algorithm outperforms the baseline and per-
forms on par or better than the two-step approach. In a few cases, the recent method [4]
performs better, particularly for sequences when the moving car is larger. Our algorithm
falls short of the two step approach on person2, where the rear left woman is partially
occluded while exiting the camera’s field of view. We do not test our scheme on the
“Tennis” and “Marple” sequences, since the annotated segmentations capture a range of
scale and viewpoint that is not represented in Graz02, our training set.

The results for the CamVid database are shown in Table 2. In most cases, we outper-
form [1,4], especially on the object categories (e.g. cars). Often, for applications such
as autonomous driving, mislabeling a portion of sky as building is of much less con-
sequence than mislabeling a person crossing the street as drive-able road. Given that
object classes often have a much smaller spatial support in the image, the addition of
occlusion cues help us to more reliably detect and accurately label the objects (e.g. cars,
people, bicyclists).

After pre-processing (occlusion detection and probability map generation), the opti-
mization takes 2-3 minutes/frame in CVX [30,31] and approximately 15 seconds with
MOSEK, a commercial tool. The entire pipeline including optical flow and occlusion
detection, edge detection and categorization scheme followed by the minimization stage
runs in 4.35 minutes for a 720×960 frame. We use a GPU implementation of the optical
flow estimation and run it on an NVIDIA GeForce GTX 560Ti, while the other stages
are performed on a single core 2.5 Ghz CPU.

In order to visualize the effects of the parameters, we obtained the minimizer of
φsemantic + ωφlayers for different choices of ω. We fixed α and β and used ω to scale
the other parameters i.e. ω, ωμ and ωλ. Fig. 4 illustrates the variation of the pixel-level
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Fig. 4. F-measure scores for pixel level classification results obtained by varying ω between 0.2
and 2. The F-measure remains constant for the intervals depicted in red, green and blue. Hence,
we only show one exemplar solution from each interval.

classification accuracy as a function of ω. Note that the classification results remain
constant over large intervals of ω. This shows that our approach is robust to reasonable
perturbations in the parameters.

Failure Modes: Our method does not always work. In the case when the training set is
not representative of the conditions to be encountered in the test set, unsurprisingly the
semantic prior does not help improve segmentation. Our method is also susceptible to
gross failures in occlusion detection, although it compensates for minor errors with the
introduction of slack variables. We are also sensitive to failures of the low-level object
detection module.

Table 1. Performance results for [25,1,4], the two step segment-then-classify approach, and fi-
nally the proposed method on the MOSEG [16] dataset. Reported F-measure scores have been
computed for the groundtruth class in each image and averaged over the sequence. In cars4, ob-
jects from classes ’People’ and ’Car’ both appear in the scene.

Sequence cars1 cars2 cars3 cars4 cars5 cars6 cars7 cars8 cars9 cars10 person1 person2
Fulkerson et al. [25] 0.71 0.51 0.50 0.34 0.41 0.26 0.31 0.57 0.44 0.39 0.38 0.65

TextonBoost [1] 0.37 0.59 0.44 0.57 0.47 0.00 0.51 0.01 0.29 0.18 0.13 0.41
Ladicky [4] 0.93 0.73 0.79 0.66 0.74 0.62 0.82 0.73 0.87 0.61 0.83 0.84

TwoStep 0.86 0.83 0.92 0.88 0.58 0.95 0.91 0.88 0.68 0.90 0.03 0.95
Our Method 0.90 0.90 0.96 0.94 0.86 0.95 0.92 0.89 0.69 0.92 0.72 0.85

Table 2. Performance results for [1,4] and the proposed method on CamVid [16]. F-measure
scores were computed for each class and ’Average’ is the average of the F-measure scores. Bolded
numbers show the best performance for the specified category. In general, our method performs
better than comparison methods. In particular, note that the use of occlusion cues allows us to
outperform the other methods in all but one object category.

Class Building Tree Sky Road Fence Sidewalk Car Column-Pole Pedestrian Sign-Symbol Bicyclist Average
TextonBoost* [1] 70.2 56.7 93.1 87.0 31.8 76.0 53.9 13.2 - 44.5 24.0 55.0

Ladicky [4] 72.7 62.4 92.3 86.4 31.9 75.6 59.0 18.0 - 32.9 30.9 56.2
Our Method 71.6 57.0 92.9 87.0 37.5 76.1 60.9 19.8 - 54.4 24.3 58.2
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Fig. 5. Results on (left to right) cars{9,10,4}, and person2 from MOSEG. (Row 1) Original frame.
(Row 2) Ground truth for cars (blue), person (red), and masked regions (gray). (Row 3) Object
probabilities from the baseline [25]. (Rows 4,5,6) Results of [25,1,4], respectively, with masked
regions in yellow. (Row 7) Segment-then-classify approach. (Row 8) Proposed method
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6 Discussion

We have presented a method to integrate (low-level) local topology information from
occlusions, (mid-level) label consistency, and (high-level) semantic information via ob-
ject class detectors to provide pixel-level localization in object recognition, or equiva-
lently to augment segmentation with object labels. We use existing occlusion detection
methods to extract occlusion regions from video and thus provide local depth ordering
constraints and existing object detection schemes to provide the probability of correct
detection for a region of an image relative to a training set of objects or object classes.
We incorporate all of these cues into a cost functional that we discretize and solve using
modern combinatorial optimization schemes. Our approach improves localization per-
formance of existing segmentation and recognition schemes, including those enforcing
label consistency using conditional random fields or other generic priors.
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Abstract. To obtain high-quality segmentation results the integration of seman-
tic information is indispensable. In contrast to existing segmentation methods
which use a spatial regularizer, i.e. a local interaction between image points, the
co-occurrence prior [15] imposes penalties on the co-existence of different labels
in a segmentation. We propose a continuous domain formulation of this prior, us-
ing a convex relaxation multi-labeling approach. While the discrete approach [15]
is employs minimization by sequential alpha expansions, our continuous convex
formulation is solved by efficient primal-dual algorithms, which are highly paral-
lelizable on the GPU. Also, our framework allows isotropic regularizers which do
not exhibit grid bias. Experimental results on the MSRC benchmark confirm that
the use of co-occurrence priors leads to drastic improvements in segmentation
compared to the classical Potts model formulation when applied .

1 Introduction

1.1 Semantic Image Labeling

While traditional image segmentation algorithms have focused on separating regions
based on homogeneity of color or texture, more recent methods have aimed at incorpo-
rating semantic knowledge into what is often called class-based image segmentation.
Rather than simply grouping regions of similar color, the goal is to assign to each pixel
of an image a semantic label such as “grass”, “sky”, “cow” or “horse”, each of which
does not necessarily share the same color model – horses may be white, brown or black
for example. Such approaches allow to impose prior knowledge about which pairs of
labels are likely to co-occur in a given image [15]. Figure 1 shows semantic labelings
computed for the image of a cow on grass with and without a co-occurrence prior:
While the color likelihood based data term has a slight preference for cat over cow,
the co-occurrence additionally imposes the information that cows are more commonly
observed on grass next to the ocean than cats.

A separate line of work has promoted the use of minimum description length (MDL)
priors [16,27,5,25] which impose a prior that favors a smaller number of labels in the
final segmentation. In practice, the advantage of such MDL priors is that one can pre-
serve a level of regularity while reducing the often over-smoothing boundary length
regularization. While many experiments demonstrating the advantage of co-occurrence
can often be reproduced with a simple MDL prior (that suppresses the emergence of
undesired labels), for the example in Figure 1 co-occurrence is vital since the number
of labels is in both cases the same.

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 209–222, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Input image Semantic segmentation with co-occurrence prior

Fig. 1. We propose a convex relaxation for co-occurrence priors in spatially continuous semantic
segmentation. Whereas purely data-driven semantic segmentation (middle) assigns the label ’cat’
to the cow, co-occurrence priors (right) substantially improve the performance by imposing the
knowledge that cows are more commonly encountered next to grass and ocean than cats.

Co-occurrence priors have been applied to the finite-dimensional discrete setting by
means of combinatorial problems on a grid [15]. These problems can be cast as large
scale integer linear programs which are solved approximatively using α-expansion [1]
or the fast primal dual algorithm [14]. However, being defined on the grid these meth-
ods are inherently anisotropic. In addition the discrete methods used for solving such
problems are sequential and thus only partially parallelizable [13]. In contrast, continu-
ous formulations allow for isotropic regularizers and appropriate discretizations of such
functionals do not show grid artefacts. Furthermore, the primal dual algorithm [4] used
for solving the continuous saddle-point problem is defined point-wise and can thus be
parallelized in a straight-forward manner and run in parallel using modern GPU’s or
other parallel architectures. For a detailed discussion see [19,11].

Thus, a major challenge addressed in this paper is how to efficiently integrate co-
occurrence priors into a convex continuous optimization approach, which allows for
fast solutions independent of the initialization of the algorithm.

In contrast to common segmentation methods we refrain from using super-pixels
[18,7,22,15]. Super-pixels prevent pixels with similar colors from being assigned to
different labels. As a consequence, elongated structures may be lost or larger chunks
may be incorrectly assigned in the final solution – see the head of the sheep in Figure
2 which is assigned to the label ’cow’. To preserve elongated structures we use the
non-local total variation formulation [24,8].

1.2 Related Work

The inspiration to this work predominantly draws from two lines of research, namely
research on label configuration priors and research on convex relaxation techniques.
On the one hand, there are a number of recent advances on label configuration ener-
gies for semantic image labeling, including the co-occurrence priors [15], MDL priors
[5,27,25,16], and hierarchical label cost priors [5].

On the other hand, there are a number of recent advances on convex relaxation tech-
niques for spatially continuous multi-label optimization. These include relaxations for
the continuous Potts model [2,3,17,26], for the non-local continuous Potts model [24],
for MDL priors [25], and for vector-valued labeling problems [9,23].
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Input no co-occ. Ladicky et al. [15] proposed

Fig. 2. Methods using super-pixel information for improving label consistency can produce mis-
labeling in the resulting segmentation as can be seen in the case of the approach in [15] which
builds on the higher order CRF approach introduces by Kohli et al. [12].

1.3 Contributions

Our contributions are the following:

• We formulate the co-occurrence priors within a spatially continuous approach to
semantic multi-label segmentation.

• We propose a convex relaxation of the co-occurrence based segmentation func-
tional which can be solved optimally. This approach yields results independent of
intialization and is - in contrast to discrete methods - straighfowardly parallelizable.

• The proposed integration of co-occurrence priors is done on a pixel level and there-
fore avoids the commonly used pre-segmentation into super-pixels.

2 Convex Multi-label Segmentation

Given a discrete label space G = {1, ..., n} with n ≥ 3, the multi-labeling problem can
be stated as a minimal partition problem. The image domainΩ ⊂ R2 is to be segmented
into n pairwise disjoint regions Ωi which are encoded by the label indicator function
u ∈ BV (Ω, {0, 1})n

ui(x) =

{
1 if x ∈ Ωi,
0 otherwise.

(2.1)

Here BV denotes the space of functions u for which the total variation

TV (u) := sup
p∈C1

c (Ω;R2)
|p(x)|≤1∀x

∫
Ω

u(x) div p(x) dx (2.2)

is bounded allowing for discontinuities. To ensure that each pixel is assigned to exactly
one region a point-wise simplex constraint is imposed on u:

n∑
i=1

ui(x) = 1 ∀x ∈ Ω. (2.3)

To find a solution to the minimal partition problem we minimize the general energy E
which can be decomposed as follows:

E(u) = ED(u) + ES(u) + EC(u), (2.4)
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The term ED is called the data term, the expression ES represents a regularization
term usually requiring smoothness of the solution, and the term EC is the global co-
occurrence energy which will be introduced in Section 3.

The data term ED(u) assigns a cost $i(x) : Ω → R to each pixel x for belonging
to region i (based on its color or texture). It can be written in terms of the indicator
functions as

ED(u) =

n∑
i=1

∫
Ω

ui(x)$i(x)dx. (2.5)

The regularization term ES(u) imposes a spatial smoothness which can be formulated
by means of the Potts model.

The classical total variation based formulation of the Potts model, 1
2

∑n
i=1 TV (ui),

minimizes the length of the interface of each region which leads to an over-smoothing
in images exhibiting objects with fine or elongated structures. To improve over this,
Werlberger et al. [24] proposed a non-local variant of the Potts model, which improves
the labeling quality on the boundaries. The key idea is that pixels x and y are likely to
share the same label if they are spatially close and have a similar color. For each pair of
pixels a weight w is defined, which measures this similarity:

w(x, y) = exp

[
−
(
dc(x, y)

α
+
ds(x, y)

β

)]
. (2.6)

Here dc and ds denote the color and spatial distance scaled by the parameters α and
β. The regularizer, finally, measures the weighted label differences for each pixel com-
pared to its spatial neighborhoodNx

ES(u) =

n∑
i=1

∫
Ω

( ∫
Nx

w(x, y) |ui(y)− ui(x)| dy
)
dx. (2.7)

Introducing a dual variable p transforms the non-differentiable expression (2.7) to a
fully differentiable one (for each fixed p):

ES(u) = sup
p∈K̃

n∑
i=1

∫
Ω

( ∫
Nx

pi(x, y) (ui(y)− ui(x)) dy

)
dx (2.8)

with the convex constraint set K̃

K̃ :=

{
p(x, y) ∈ C1 (Ω ×Ω,R)

n ∣∣ |pi(x, y)| ≤ w(x, y)

}
. (2.9)

Thus ED and ES above are both convex in u. Note that the above non-local regularizer
(2.7), and with it also our energy, is not isotropic. One could also easily use its isotropic

version, where the L1-norm in (2.7) is replaced by
√∫

Nx
w(x, y)(ui(y)− ui(x))2 dy

as in [8]. However, the results with both versions are almost the same, so that we have
chosen the form (2.7) for computational efficiency. In general, our continuous formula-
tion easily allows to incorporate isotropic regularizers, such as the isotropic Potts model
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relaxations [2,3]. Additionally, in contrast to graph based methods there is no need for
complex graph constructions when solving our optimization problem.

In order to obtain a convex optimization problem, the optimization domain must be
convex as well. Therefore, we relax the binary constraints of the indicator function u
and — together with (2.3) — obtain the convex set

S :=

{
u ∈ BV (Ω, [0, 1])n

∣∣∣ n∑
i=1

ui(x) = 1 ∀ x ∈ Ω
}
. (2.10)

After optimization of the relaxed problem the final pixel labeling L : Ω → G can be
recovered from the relaxed solution u∗ by:

L(x) = arg max
1≤i≤n

u∗i (x) (2.11)

3 A Continuous Co-occurrence Prior

In this section we introduce the global co-occurrence energyEC in (2.4), which allows
for the integration of semantic scene knowledge, such as for example that sheep and
grass often appear together in the same image whereas sheep and wolves are rarely to
be found. For each subset of labels L ⊆ G a specific penalty can be defined or learned
from training data. Note that this penalty only depends on the simultaneous occurrence
of specific labels in the image, not on their location or the size of their corresponding
regions in the segmentation.

3.1 A Convex Formulation of Label Occurrences

In order to devise the co-occurrence prior it is necessary to model the occurrences
of specific labels in the image. To this end, we introduce the label indicator function
l : S → {0, 1}n,

li(u) =

{
1, if ∃x ∈ Ω : ui(x) = 1,

0, otherwise,
(3.1)

which indicates for each label i ∈ G if it appears in the segmentation given by u ∈ S.
To obtain a convex formulation of the function l, we use the following relation which
was already used by Yuan et al. [25]:

li(u) = max
x∈Ω

ui(x) ∀i ∈ G. (3.2)

where we use max, instead of the formally correct ess sup operator, for readability. Note
that the L∞-norm on the left hand side of (3.2) couples the indicator functions of all
pixels in the image domain and, thus, represents the key ingredient for the introduction
of the global co-occurrence prior. Due to the non-differentiability of the L∞-norm and
the non-convex range {0, 1} of each label indicator function li, we relax l to map to the
unit intervals l : S → [0, 1]n and replace (3.2) by the following convex constraint:

li(u) ≥ ui(x) ∀x ∈ Ω ∀i ∈ G. (3.3)
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The idea of defining a co-occurrence energy is that it should only depend on the label
indicator functions l, which capture the global occurrence information:

EC(u) = EC(l(u)). (3.4)

Provided that EC has the following properties:

1. EC(l) is convex.
2. EC(l) is monotonically increasing w.r.t. l i.e.

l $ l =⇒ EC(l) ≤ EC(l̃), (3.5)

it can be easily shown that, replacing (3.2) by (3.3) and minimizing over l, one recovers
the optimum of the optimization problem (2.4) with respect to constraint (3.2).

3.2 A Convex Formulation of the Co-occurrence Prior

We will now formulate the continuous co-occurrence prior. To this end, the concept of
occurrence functions l in (3.2) for single labels is generalized to the occurrence of label
subsets L ⊆ G by introducing the label subset indicator function δL : S → {0, 1} :

δL(u) =

{
1 if li(u) = 1 ∀i ∈ L,
0 otherwise.

(3.6)

The function δL indicates the simultaneous occurrence of all labels in the subset L in
the image, so that it can be rewritten in the following way:

δL(u) =
∏
i∈L

li(u). (3.7)

The co-occurrence prior is then defined as the sum over all possible label combinations
of G (the elements of the power set of G) weighted by the associated co-occurrence
penalties C(L) ≥ 0

EC(l(u)) =
∑

L∈P(G)
δL(u) · C(L) =

∑
L∈P(G)

C(L)
∏
i∈L

li(u). (3.8)

Because of the product in (3.7), the term δL is not convex in terms of l for |L| ≥ 2.
Thus, a convex relaxation of the product is required to make the energy term convex.
We relax the energy (3.8) term-wise for each subset L, i.e. by relaxing each individual
addend

EL(u) := C(L)
∏
i∈L

li(u). (3.9)

A convex formulation of this kind of energies was given in [23]. Let us briefly recall
this approach for the convenience of the reader. The general considered energy is

E0(v) =
∑

γ1∈Λ1, ..., γd∈Λd

cγ v
1
γ1 · . . . · v

d
γd

(3.10)
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with d ≥ 1 finite label setsΛ1, . . . , Λd and, for each 1 ≤ i ≤ d, corresponding indicator
variables (viγ)γ∈Λi ∈ [0, 1] which satisfy the simplex constraint

∑
γ∈Λi

viγ = 1. The
costs cγ1,...,γd ∈ R can be arbitrary. The convex relaxation proposed in [23] is

Erel
0 (v) = sup

q∈Q

∑
γ1∈Λ1

q1γ1v
1
γ1 + . . .+

∑
γd∈Λd

qdγdv
d
γd (3.11)

with the convex set

Q =
{
(qiγi)1≤i≤d, γi∈Λi

∣∣ qiγi ∈R, q1γ1 + . . .+ qdγd ≤ cγ ∀γ1 ∈ Λ1, .., γd ∈ Λd
}
.

(3.12)
The convex energy Erel

0 is the tightest possible relaxation of E0: In the recent journal
version [10] of [23] it is shown that Erel

0 is the convex hull of E0. For instance, this
means thatErel

0 preserves the minimizers ofE0, i.e. minimizers of E0 are also minimiz-
ers of Erel

0 , Furthermore,Erel
0 (v) coincides with E0(v) for binary v (viγi ∈ {0, 1} for all

i and γi ∈ Λi).
In our case, we have d = |L| and only two labels per factor, i.e. Λi = {0, 1} for all

1 ≤ i ≤ d. The corresponding indicator variables are vi0 = 1 − li and vi1 = li for each
i. Finally, the costs cγ are given by

cγ =

{
C(L), if γ1 = . . . = γd = 1

0, otherwise.
(3.13)

Directly applying (3.11), and writing the dual variables as qi0 =: ϕiL and qi1 =: ψiL for
each 1 ≤ i ≤ |L|, we obtain the following convex formulation of EC :

EC(l(u)) =
∑

L∈P(G)

(
sup

(ϕL,ψL)∈QL

∑
i∈L

(1 − li(u))ϕ
i
L + li(u)ψ

i
L

)
(3.14)

with the convex constraint set

QL :=

{
(ϕL, ψL)

∣∣ ∀z ∈ {0, 1}|L| �= 1 :

∑
i∈L

(1 − zi)ϕ
i
L + ziψ

i
L ≤ 0,

∑
i∈L

ψiL ≤ C(L)

}
,

(3.15)

where 1 is a vector consisting of all ones. The terms (1− zi)ϕ
i
L + ziψ

i
L in (3.15) arise

from (3.12) by noting that qizi = (1 − zi)ϕ
i
L + ziψ

i
L for all i and zi ∈ {0, 1}.

For C(L)→∞ in (3.8) for some subset L we obtain hard constraints on label con-
figurations, i.e. δL(u) = 0. Including this constraint prohibits segmentations containing
all labels of L: The energy will be infinite if the labels from L occur in the image si-
multaneously. This corresponds to simply dropping the constraint

∑
i∈L ψ

i
L ≤ C(L)

in the above constraint set (3.15).
We can easily prove that E(l(u)) is monotonically increasing, i.e. that the require-

ment (2.5) is fulfilled. First, it is monotonic for binary l: It this case it is represented by
the original formula (3.8). Since the label subset indicator functions δL(l) are clearly
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monotonous in l and the costs C(L) are nonnegative, it follows that EC is monotonous
for binary l. This is also referred to as the principle of Occam’s razor which states that
among competing labelings the one with fewer labels should be favoured energetically.
Second, we use the fact that (3.14) is the convex hull relaxation of δL(l) to the set of
possibly non-binary l’s. This and the monotonicity for binary l yields the monotonicy
of EC(l) for general l ∈ [0, 1]n.

It follows that by means of the convex relaxation (3.3) we can recover the constraint
(3.2) and thus globally minimize the overall energy (2.4). Since the power set of G is
very large, we follow [15] and approximate the true costs C(L) by taking only sets of
two labels into account, with fixed costs which best approximate the original costs. For
details see [15]. The resulting co-occurrence energy for sets of only two labels then
reads as:

EC(l(u)) =
∑

1≤i<j≤n

(
sup

{ϕij ,ψij}∈Qi,j

(1− li(u))ϕij,1li(u)ψij,1

+ (1 − lj(u))ϕij,2 + lj(u)ψij,2

)
, (3.16)

where Qij is the convex constraint set of dual variables ϕij , ψij ∈ R2:

Qij :=
{
(ϕij , ψij)

∣∣ ψij,1 + ψij,2 ≤ cij , (3.17)

ϕij,1 + ϕij,2 ≤ 0, ϕij,1 + ψij,2 ≤ 0, ψij,1 + ϕij,2 ≤ 0

}
.

Note that in the integer linear program (ILP) given in [15] the label subset indicator
function δL(u) is realized by the following constraint ([15] equation (31)):

δL(u) ≥
∑
i∈L

li(u)− |L|+ 1. (3.18)

In contrast to our framework with the tight convex relaxations (3.11) and (3.16), equa-
tion (3.18) would introduces additional trivial solutions after relaxing the ILP to allow
δL(u) and li(u) to be from [0, 1]. For instance, (3.18) is always fulfilled for δL(u) = 0
and any l such that

∑
i∈L li ≤ |L|− 1, e.g. li = 1/(|L|− 1). Therefore, our continuous

formulation is a tighter relaxation than the linear relaxation given in [15].

4 Implementation

The overall saddle-point formulation of our optimization problem for label subsets con-
taining only two labels can be summarized as follows:
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min
u∈S

l∈[0,1]n

sup
p∈K̃

ϕij ,ψij∈Qi,j

n∑
i=1

∫
Ω

( ∫
Nx

p(x, y)(ui(y)−ui(x)) dy
)
dx+

n∑
i=1

∫
Ω

ui(x)$i(x)dx+

∑
1≤i<j≤n

(
(1− li)ϕij,1 + liψij,1 + (1 − lj)ϕij,2 + ljψij,2

)
s.t. li ≥ ui(x) ∀x ∈ Ω ∀i ∈ G. (4.1)

In order to solve the above saddle-point problem we use the first order primal dual
algorithm [21,4] which is essentially a gradient descent in the primal variables and a
gradient ascent in the dual variables with a subsequent computation of the respective
proximity operators and an over-relaxation step for the primal variables. For the time
steps we use recent preconditioning techniques introduced in [20]. This way there is no
need to compute the Lipschitz constant of the underlying linear operator. The details of
the implementation can be found in the appendix.

5 Experiments

The key contribution of this paper is the introduction of a co-occurrence prior into the
continuous multi-label framework. In this section we evaluate the proposed continuous
formulation of the segmentation problem with the co-occurrence prior on the MSRC
database [6]. To preserve comparability to [15], we use their data term, which is based
on texture boosting. As explained in Section 4 we approximate the exact co-occurrences
by considering only binary label interactions. Overall we obtain

(
n
2

)
possible binary

label interactions, i.e. 210 for the 21 labels considered in the MSRC dataset. For each
interaction we need to keep track of only eight scalar variables (dual variables and
Lagrange multipliers), which is almost negligible compared to the remaining part of
the optimization approach. Note that we obtain the co-occurrence weights cij from the
training data as in [15].

Some of the obtained segmentation results of the MSRC dataset are shown in Figure
3. A comparison of the segmentation accuracy of the proposed algorithm to the orig-
inal formulation by Ladicky et al. on the whole benchmark can be found in Figure 4.
The table indicates the numbers for each label separately as well as the average on the
whole benchmark. The results show that the segmentations obtained with the proposed
continuous formulation are comparable to those obtained by Ladicky et al. in terms of
global accuracy (which neglects the number of images per label), and even outperforms
them in terms of average accuracy over all benchmark images. Note that due to differ-
ent training and evaluation sets of images the numbers in table 4 differ slightly from the
numbers in [15].

In order to evaluate the tightness of the optimization problem we computed the fol-
lowing relative optimality bound, which is an upper bound of the energy difference
between the globally optimal binary solution and the computed binarized solution

B(u, ũ) =
E(ũ)− E(u)

E(u)
. (5.1)
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a) Input b) Potts c) Ladicky et al. [15] d) Configuration Prior

Fig. 3. Co-occurrence prior: Qualitative results on images taken from the MSRC database. The
results show (a) the original benchmark image, (b) the segmentation result without co-occurrence
prior, (c) the results by Ladicky et al. [15], (d) results from our continuous formulation of the
segmentation algorithm incorporating the co-occurrence energy.
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Here E is the energy given in (2.4), u the solution of the relaxed saddle point problem
(4.1) and ũ the binarized solution of u used for computing the final labeling, see (2.11).
We obtained an average value of B(u, ũ) = 0.17% for the optimality bound, which
means that our computed binary solutions are very close to the global optimum of the
original optimization problem.
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dataterm 83.99 77.18 67 97 91 85 86 95 88 81 90 82 94 81 62 42 91 66 86 79 54 72 31

Potts 84.80 77.88 69 97 91 86 86 96 86 82 90 81 93 83 62 42 91 68 86 80 56 72 28

proposed 85.99 78.95 72 97 91 87 86 97 86 84 90 83 93 83 64 44 93 73 87 81 59 74 25

[15] 86.76 77.78 76 99 90 77 84 99 82 88 88 80 90 90 71 47 94 68 90 73 55 77 15

Fig. 4. Segmentation accuracies of the daterterm, the pure Potts model, our approach using
the continuous formulation of the co-occurrence energy, and the results by Ladicky et al. [15].
The scores for each label are defined as True Positives · 100

True Positives + False Negatives . While the score of the proposed
method is slightly below that of [15] in the global score, it provides a better average performance.

6 Runtime

The proposed algorithm is based on a variational approach which allows for an im-
plementation on graphics hardware. In practice the optimization scheme presented in
Section 4 converges within 1000 iterations in terms of the maximal change of two suc-
cessive iterations. For the experiments we used a NVIDIA Geforce GTX480 GPU and
obtained average runtimes per image of 10 seconds for the co-occurrence segmentation.
The runtimes are similar to the computation of the pure Potts model, since the overhead
of computation compared to the classical multi-labeling problems is marginal as the
configuration priors are defined on n scalar indicator variables compared to O(|Ω|)
variables for the indicator functions u.

7 Conclusion

We proposed a convex framework for continuous multi-label optimization which allows
for the integration of semantic scene label information by means of co-occurrence pri-
ors. We formulated a variational approach together with a convex relaxation which can
be optimized with fast primal-dual schemes. The approach compared favourably with
respect to the discrete co-occurrence prior by Ladicky et al. [15] and optimality bounds
demonstrate the tightness of our convex relaxations.

A Appendix

In the following we will give some details on the optimization scheme for solving saddle
point problem (4.1). We start by introducing the Lagrange multipliers used for handling
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the convex constraints. Then we give a list of the update steps performed in our iterative
minimization scheme.

In order to impose the label configuration priors, several kinds of constraints have to
be implemented. The simplex constraint

∑
i ui(x) = 1 in (2.3) can be implemented by

introducing Lagrange multipliers λ : Ω → R. The inequality constraints can also be
easily implemented by introducing the following Lagrange multipliers:

Contraints Lagrange Multipliers

li(u) ≥ ui(x) ∀x ∈ Ω αi : Ω → R+ ∀ i ∈ {1 · · · n}
ψij,1 + ψij,2 ≤ cij βij ∈ R

− ∀ i < j ∈ G
ϕij,1 + ϕij,2 ≤ 0 θij ∈ R

− ∀ i < j ∈ G
ϕij,1 + ψij,2 ≤ 0 ηij ∈ R

− ∀ i < j ∈ G
ψij,1 + ϕij,2 ≤ 0 ξij ∈ R− ∀ i < j ∈ G

The update steps are performed point-wise for all x ∈ Ω, i ∈ {1, ..., n} and for all label
pairs 1 ≤ i < j ≤ nwhich makes it possible to parallely implement above algorithm on
modern graphics cards. Local constraints are tackled by a simple orthogonal projection
Π into the respective convex sets which can be performed by simple truncation. Overall
the update steps for solving saddle-point problem (4.1) are iterated in the following
order:

Updates for dual variables:

pk+1
i (x) = ΠK̄

(
p(x)ki +

1

2
(∇wūki (x))

)

λk+1(x) = λk(x) +
1

n

(
n∑
i=1

ūki (x) − 1

)

αk+1
i (x) = ΠR+

(
αki (x) +

1

2
(ūki (x)− l̄ki )

)

ϕk+1
ij = ϕkij +

1

3

(
1− l̄ki + θ̄kij + η̄kij
1− l̄kj + θ̄kij + ξ̄kij

)

ψk+1
ij = ψkij +

1

3

(
l̄ki + β̄kij + ξ̄kij
l̄kj + β̄kij + η̄kij

)

Updates for primal variables:

uk+1
i (x) = Π[0,1]

(
uk
i (x)−

1

2 + |N (x)|

(
�i(x) + αk

i (x) + λk(x)− divw pki (x)

))
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lk+1
i = lki −

1

|Ω|

(∫
Ω

αki (x) dx

)

βk+1
ij = ΠR−

(
βkij −

1

2
(ψkij,1 + ψkij,2 − Cij)

)

θk+1
ij = ΠR−

(
θkij −

1

2
(ϕkij,1 + ϕkij,2)

)

ηk+1
ij = ΠR−

(
ηkij −

1

2
(ϕkij,1 + ψkij,2)

)

ξk+1
ij = ΠR−

(
ξkij −

1

2
(ψkij,1 + ϕkij,2)

)
Extrapolation steps:

ūi(x)
k+1 = 2ui(x)

k+1 − ui(x)
k

l̄k+1
i = 2lk+1

i − lki

β̄k+1
ij = 2βk+1

ij − βkij

θ̄k+1
ij = 2θk+1

ij − θkij

η̄k+1
ij = 2ηk+1

ij − ηkij

ξ̄k+1
ij = 2ξk+1

ij − ξkij

Note that for the differential operators we use a non-local version of the gradient ∇w
and its respective adjoint operator − divw which are defined on a neighbourhood of
x denoted by N (x). For details see [8], and for a complete introduction to non-local
operators and their applications in computer vision, we refer to [24].
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15. Ladický, L., Russell, C., Kohli, P., Torr, P.: Inference methods for crfs with co-occurrence
statistics. International Journal of Computer Vision 103(2), 213–225 (2013)

16. Leclerc, Y.G.: Region growing using the MDL principle. In: Proc. DARPA Image Underst.
Workshop, April 6-8, pp. 720–726 (1990)

17. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling
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Abstract. We revisit the Chan-Vese model of image segmentation with
a focus on the encoding with several integer-valued labeling functions.
We relate several representations with varying amount of complexity
and demonstrate the connection to recent relaxations for product sets
and to dual maxflow-based formulations. For some special cases, it can
be shown that it is possible to guarantee binary minimizers. While this
is not true in general, we show how to derive a convex approximation
of the combinatorial problem for more than 4 phases. We also provide
a method to avoid overcounting of boundaries in the original Chan-Vese
model without departing from the efficient product-set representation.
Finally, we derive an algorithm to solve the associated discretized prob-
lem, and demonstrate that it allows to obtain good approximations for
the segmentation problem with various number of regions.

1 Introduction

In this paper we focus image segmentation formulated as a variational problem.
The general problem we are interested in, is to find a partition {Ωi}ni=1 of the
image domain Ω, by minimizing an energy functional of the form

min
{Ωi}n

i=1

n∑
i=1

∫
Ωi

fi(I
0(x)) dx + αR({∂Ωi}ni=1)

s.t.

n⋃
i=1

Ωi = Ω,

n⋂
i=1

Ωi = ∅. (1)

Here R({∂Ωi}ni=1) is a regularization term, and I0 is a given input image. A
popular choice for the regularizer is the Potts regularizer, which measures the
total length of the region boundaries,

R({∂Ωi}ni=1) =
1

2

n∑
i=1

|∂Ωi|. (2)

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 223–236, 2013.
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In order to build up algorithms for solving (1) numerically, one needs some rep-
resentation of the regions in terms of functions instead of subsets. Over the last
30 years, several such representations have been proposed, including the level
set method [16] and phase field method. Recently, there has been a particular
interest in piecewise constant representations [12], where each regions is uniquely
associated with a value of some binary or integer constrained functions. A rea-
son for the popularity of this approach, is that very good convex relaxations
often can be derived by relaxing the integrality constraints of the functions
[6,18,11,24,17,1,3]. There are in particular three classical ways of representing
multiple regions {Ωi}ni=1 in terms of piecewise constant functions

1. Integer-valued labeling function [12,13]: φ : Ω �→ {1, ..., n} such that
φ(x) = i if x ∈ Ωi, i = 1, ..., n.

2. Simplex-constrained vector function [11,24]: v : Ω �→ Δn = {v ∈ Rn :∑n
i=1 v

i = 1, vi ∈ {0, 1}, i = 1, ..., n} such that

vi(x) :=

{
1, x ∈ Ωi
0, x /∈ Ωi

, i = 1, . . . , n.

A related variant with a different parametrization of the unit simplex was
proposed in [17].

3. m = log2(n) overlapping binary functions : φ1, ..., φm : Ω �→ {0, 1} such
that x ∈ Ωi iff φ1(x)...φm(x) is the binary representation of integer i. This
representation was pioneered in a level set framework in [21] and the resulting
optimization problem is often called the Chan-Vese model. The use of binary
functions for the multiphase CV model in the continuous setting was done
in [13,14,6]. It was observed in [6] that it is possible to convex relax these
binary models.

For some special problems, convex relaxations exists that have proven to be ex-
act, meaning that global minimizers of the original non-convex problems can be
obtained from minimizers of the convex relaxations. This includes in particular
problems with two regions [6], the labeling function representation in case of a
regularization term which is convex in φ [18] and the Chan-Vese model with four
regions under some conditions on the data term [3].

These relaxations have been motivated by the theory of discrete optimization,
where it is known that the corresponding discrete optimization problems defined
over a discrete image domain are submodular and can be solved efficiently by
graph based optimization algorithm such as max-flow/min-cut. However, for
the majority of variational segmentation problem of interest, including (1) with
Potts regularizer (2), the corresponding discrete optimization problems are non-
submodular (and actually NP-hard). Convex relaxations have been proposed for
such problems that are not guaranteed to provide exact solutions in advance,
but can yield good approximations in practice.

This paper aims to give an overview of different representations of the problem
(1). In addition to focusing on the three approaches mentioned above, we propose
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new representations as combinations of several labeling functions and several
simplex constrained functions.

Secondly, we derive convex relaxations for the problems based on the convex
envelope of the data fidelity term. As a special case, we obtain a convex relaxation
of the Chan-Vese model with an arbitrary number of regions. Up until now, global
optimization algorithms for this model have only been available in case of four
regions [2,8,3]. In contrast to other relaxations [5] with more than four regions,
ours is the tightest because it is based on the convex envelope of the non-convex
data term. Furthermore, the number of unknowns grow as O(log2(n)) instead of
O(n) in [5]. A simultaneous work [15] appearing in this conference also derives
a convex relaxation of the Chan-Vese model by extending the max-flow model
developed in [3].

The proposed relaxations are closely related to the recent work [20], which
derived a convex relaxation for vector valued labeling problems. In contrast
to [20], our original problems are not vector valued. Instead, we use a vector
representation to significantly reduce the number of unknowns. We also derive
the relaxation without on an initial simplex constrained conversion used in [20].

We derive a set of conditions which can be checked in advance to guaran-
tee that a global minimizer is obtained from the relaxations. While in practice
these seem to hold only in very rare cases, our approach can at least produce
good approximations. the best approximations that are theoretically possible.
A convex relaxation for Potts regularizer is a also derived by building on the
vector relaxation and the work [17,3]. Efficient algorithms are proposed for all
the problems based on Augmented Lagrangian methods.

2 Different Representations of the Partition as
Vector-Valued Functions

2.1 2m Regions with m Binary Functions

We start by focusing on the representation 3 given in the introduction, which
is the binary version of the level set framework [21]. For each i ∈ {1, ..., n}, let
a1i a

2
i ...a

m
i denote the binary representation of i or any permutation of the digits

in the binary representation. Define w0(s) := s and w1(s) := 1−s and introduce
m binary functions φ1, ..., φm : Ω �→ {0, 1}.

The general model in [21] could then be written in terms of polynomials in
{φi}mi=1 as

min
{φi}m

i=1

∫
Ω

n∑
i=1

m∏
k=1

waki (φ
k)fi dx+ α

m∑
k=1

∫
Ω

|∇φk| (3)

subject to

φi ∈ B := {φ ∈ BV (Ω) : φ(x) ∈ {0, 1} for a.e. x ∈ Ω}, i = 1, ...,m. (4)

It is also possible to represent a number of n regions which is not a power of 2
by choosing m is the small integer such that n < 2m and setting fi =∞ for the
2m − n number of excess indices i.
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2.2 Product Space of Several Labeling Functions

A natural extension of the model in the previous section is to represent the image
partition in terms of an integer-valued labeling function φ : Ω �→ {0, ..., n− 1}
with the understanding that φ(x) = i if and only if x ∈ Ωi for i = 1, ..., n. It
has recently been established that such problems can be solved exactly if the
regularizer is the total variation of the labeling function R(φ) =

∫
Ω
|∇φ| [9,18].

This can also be combined with the approach from the previous section,
by representing the partition with several labeling functions (φ1, ..., φm) tak-
ing several integer values, as proposed in a level set framework in [7]. Denote by
Li = {0, ..., Ni − 1} the set of feasible values for φi, where Ni is the number of
feasible integer values and define the vector function

φ = (φ1, ..., φm) : Ω → L1 × ...× Lm ⊂ Z
m (5)

For each x ∈ Ω, φ(x) can take
∏m
i=1Ni different values and thus be used to

represent n =
∏m
i=1Ni regions. Let {ai}ni=1 denote an enumeration of all feasible

values for φ, i.e., for each i = 1, ..., n,

ai =
(
ai1 · · ·aim

)�
(6)

such that aik ∈ Lk for k = 1, ...,m. Region Ωi can be encoded as

Ωi = {x ∈ Ω s.t. φ(x) = ai}, i = 1, ..., n (7)

However, this encoding is not unique, as the enumeration {ai}ni=1 can be re-
ordered in any way. There are n! such reordeings and they can be formulated
generally using a permutation matrix P as follows

[a1...an]← [a1...an] · P (8)

The choice of permutation may have an effect on the quality of the relaxation.
For instance [3] showed that a particular permutation of the four region model
was crucial for producing exact global minimizers of the original problem. By
introducing a function f : L1 × ...× Lm ×Ω �→ R,

f(φ(x), x) =

{
fi(x), if φ(x) = ai, i = 1, ..., n
+∞, otherwise,

(9)

we can define the regularized energy in terms of φ,

min
φ

∫
Ω

f(φ(x), x) dx + α

m∑
i=1

∫
Ω

|∇φi| (10)

In case N1 = ... = Nm = 2, the model (10) reduces to the Chan-Vese model (3).
Note that due to the separable form of the regularizer, some boundaries will be
counted more than once.



Convex Relaxations for a Generalized Chan-Vese Model 227

2.3 Product Space of Several Simplex Constrained Functions

A third way to represent the regions is in terms of several simplex constrained
vector functions: let v = (v1, ..., vm) : Ω �→ RN1 × ... × RNm be a set of unit
vector functions which satisfy

Ni∑
k=1

vik(x) = 1, vik(x) ∈ {0, 1} , k = 1, ..., Ni ∀x ∈ Ω (11)

The function v with the above constraint can represent n =
∏m
i=1Ni regions. For

every k1 ∈ {1, ..., N1}, ..., km ∈ {1, ..., Nm}, let i(k1, ..., km) = k1 +
∑m
j=2(
∏j
i=1

Ni)kj be the corresponding index, then each region can be described in terms
of v by

Ωi(k1,...,km) = {x ∈ Ω : v1k1(x) = ... = vmkm(x) = 1} (12)

In order to encode the data term we define

f(v(x), x) =

{
fi(k1,...,km)(x), if v1(x) = ek1 , ..., v

m(x) = ekm ,
+∞, otherwise.

(13)

The general segmentation model can then be formulated as

min
v∈B

∫
Ω

f(v(x), x) + α

m∑
i=1

Ni∑
ki=1

∫
Ω

|∇viki |. (14)

An advantage of this representation compared to (10) is that the regularization
term of (14) more closely resembles the Potts regularization term (2), and in
fact exactly represents it for boundaries where only one of the vi changes. For
instance, if m = 2, the boundaries will be counted at most twice, with the
majority being counted once.

3 Convex Relaxations Based on the Convex Envelope

In this section, we derive convex approximations for the models introduced in
Sect. 2 based on their convex envelopes, which are defined as the largest convex
function majorized by a given function and can under very general conditions
be computed by computing the Legendre-Fenchel biconjugate [19].

This process ensures that the convexified energy is close to the original func-
tion. In some cases, minimizers of the original problem are also minimizers of
the convex envelope. Conditions which guarantee this property in advance are
derived in Sect. 4. In [20], a convex relaxation was proposed for vector val-
ued labeling problems of the form (10) with arbitrary data terms. Our work
is an adaptation of [20] with a few distinctions. The paper [20] focused on
integer-constrained vector labeling, but first converted the problem to a simplex-
constrained formulation and derived the convex relaxation based on this formu-
lation. In contrast, we derive the convex envelope directly based on the integer
labeling formulation, which leads to a new convex problem with fewer unknowns
and a novel integer thresholding step.
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3.1 Product Space of Several Labeling Functions

The energy functional (10) is composed of a sum of a non-convex data term
and a convex regularizer. We ignore the regularization term in the following
derivations, since it is already convex. Since deriving the full convex envelope is
in general intractable, in the following we focus on deriving the convex envelope
pointwise at each x ∈ Ω, for f defined as in (9):

f∗(p(x), x) = sup
u(x)∈Rm

{( m∑
i=1

pi(x)u
i(x)
)
− f(u(x), x)

}

= max
u(x)∈{ai}n

i=1

{( m∑
i=1

pi(x)u
i(x)
)
− f(u(x), x)

}
The biconjugate is

f∗∗(φ(x), x) = sup
p(x)∈Rm

{
m∑
i=1

φi(x)pi(x)− f∗(p(x), x)}

= sup
p(x)∈Rm

{
m∑
i=1

φipi(x) + min
u(x)∈{ai}n

i=1

{
f(u(x), x) −

m∑
i=1

pi(x)u
i(x) }}

= sup
p(x)∈Rm,p0(x)∈R

m∑
i=1

φi(x)pi(x) + p0(x) (15)

s.t. p0(x) ≤ −
n∑
i=1

ui(x)pi(x) + f(u(x), x) , ∀u(x) ∈ {ai}ni=1.

Note that f∗∗(φ(x), x) = +∞ if φ is not in the convex hull of the points,
conv{a1, ..., an}: if not, the function f∗∗ + δconv{a1,...,an} is strictly greater that
f∗∗ but still majorized by f , which contradicts the maximality of f∗∗ as the
convex hull of f . The overall problem with regularization we wish to solve is
therefore

min
φ∈BV (Ω)

sup
p∈L2(Ω)m+1

∫
Ω

p0(x) +

m∑
i=1

φi(x)pi(x) dx + α

m∑
i=1

∫
Ω

|∇φi| (16)

s.t. p0(x) +

n∑
i=1

ui(x)pi(x) ≤ f(u(x), x) , ∀u(x) ∈ {ai}ni=1, ∀x ∈ Ω.

We want an integral solution φ1, ..., φm to the minimization problem (16). How-
ever, it cannot in general be expected that the solution is integral at every point.
Therefore, we apply a thresholding procedure with parameter t ∈ (0, 1] as follows

(φi)t(x) =

{
%φi&, if φi(x) < %φi(x)& + t
'φi(, else,

i = 1, ...,m (17)

where %·& and '·( are the floor and ceiling functions respectively. If the con-
straint set is binary, i.e. N1 = ... = Nm = 2, this corresponds to the standard
thresholding procedure in [6].
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3.2 Product Space of Several Simplex Constrained Functions

In the same way, one can derive the envelope relaxation of the model (14). We
start by defining the vector p = (p1, ..., pm) such that pk ∈ RNk . Computing
the envelope pointwise for each x ∈ Ω and ignoring the regularization term, one
ends up with

sup
{{pki (x)}

Nk
i=1}m

k=1

m∑
k=1

Nk∑
i=1

pki (x)v
k
i (x) (18)

subject to

Nk∑
i=1

pkaki
(x) ≤ fi(x), k = 1, ..,m, (19)

Nk∑
i=1

vki (x) = 1, k = k, ...,m, (20)

vki (x) ∈ [0, 1], i = 1, ..., Nk, k = 1, ...,m. (21)

which is also the pointwise relaxation of the data term for vector labeling prob-
lems that was proposed in [20]. The objective function (18) with constraints
(19)-(21) also arises if one computes the standard LP-relaxation (review: [22])
of the combinatorial data term (14). The model (14) can therefore be relaxed as

sup
{{pki (x)}

Nk
i=1}m

k=1

m∑
k=1

Nk∑
i=1

∫
Ω

pki (x)v
k
i (x) dx + α

m∑
i=1

Ni∑
ki=1

∫
Ω

|∇viki | dx (22)

subject to (19)–(21) for all x ∈ Ω. Although we cannot expect a binary solution
in general, an approximate partition can be obtained through the thresholding
step

vik(x)←
{
1, if i = argmaxj v

j
k(x)

0, otherwise.
, i = 1, . . . , n

Note that the Chan-Vese model can be obtained as a special case by substituting
vk1 = 1 − φk and vk2 = φk. The approach of Bae-Yuan-Tai [1] is also a special
case of this general model where global minimization can be guaranteed under
some moderate conditions.

4 Special Cases which Guarantee Global Minimizers

We show that under some conditions on the data term of (3), exact solutions will
be produced by the relaxation (16). In particular, this is true if the data term
is submodular. Observe that the energy in (3) pointwise consists of interactions
betweenm binary variables. An energy function of two binary variables E(φ1, φ2)
is said to be submodular if [4,10]

E(1, 0) + E(0, 1) ≤ E(1, 1) + E(0, 0). (23)
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A higher-order function E(x1, x2, x3) of 3 binary variables is said to be submod-
ular if the projections onto all functions of two binary variables are submodular
[4,10], i.e., if

E(b, x2, x3), E(x1, b, x3), E(x1, x2, b) (24)

are submodular for every b ∈ {0, 1}.
In [3], a different relaxation was proposed for the model (3) with four regions,

which was shown to be exact in case of a submodular data term. Specifically, it
was shown (3) could be reformulated as

min
φ1,φ2∈[0,1]

α

∫
Ω

|∇φ1|+ α

∫
Ω

|∇φ2| (25)

+

∫
Ω

(1− φ1(x))C(x) + (1− φ2(x))D(x) + φ1(x)A(x) + φ2(x)B(x) dx

+

∫
Ω

max{φ1(x) − φ2(x), 0}E(x)−min{φ1(x)− φ2(x), 0}F (x) dx

where A, ..., F satisfy the linear system of equations⎧⎪⎨
⎪⎩

A(x) +B(x) = f2(x) + σ(x)
C(x) +D(x) = f3(x) + σ(x)
A(x) + E(x) +D(x) = f1(x) + σ(x)
B(x) + F (x) + C(x) = f4(x) + σ(x)

. (26)

where σ is an arbitrary function. Consequently it was proved that an exact global
minimizer could be obtained by thresholding any solution of the convex problem.

In the following, we show that the convex envelope relaxation (16) with N1 =
N2 = 2 is equivalent to the formulation (25) in case the energy is submodular.
In [3] it was observed that one possible solution of (26) is

A = max{f2 − f4, 0}, B = max{f4 − f3, 0}, C = max{f4 − f2, 0},
D = max{f3 − f4, 0}, E = f1 + f4 − f2 − f3. (27)

Substituting this into the integrand of the data term of (25) yields

φ1(f2 − f4) + φ2(f4 − f3) + (f1 + f4 − f2 − f3)max{φ1 − φ2, 0}. (28)

for the data term. On the other hand, problem (15) is a linear program with
in this case effectively 3 unknowns (note that here we use a0 = (1, 0), a1 =
(1, 1), a2 = (0, 0), a3 = (0, 1), so that the vector (−1,−1, 1, 1) is in the null-space
of the constraint matrix for p). Any solutions must be on corners of the constraint
set, which are characterized by 3 of the constraints holding with equality, and
can be computed as

p ∈ {(f1 − f3, f2 − f1), (f2 − f4, f4 − f3), (29)

(f2 − f4, f2 − f1), (f1 − f3, f4 − f3)}. (30)
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Checking these possible solutions against the remaining constraint yields that
the first two solutions are feasible and the last two solutions are infeasible iff
f4+f1−f2−f3 � 0, which is exactly the submodularity condition. Substituting
these two solutions into (15) yields a compact expression for f∗∗,

max{φ1(f1 − f3) + φ2(f2 − f1) + f3, φ
1(f2 − f4) + φ2(f4 − f3) + f3}, (31)

which can be shown to be equivalent to (28), and consequently established the
equivalence of (16) and (25) for submodular data.

It can also be shown that if the 8 region model is submodular, the relaxation
satisfies the coarea formula and can therefore be thresholded while preserving
the energy. More details will be provided in an extended version of this paper.

5 Potts Regularization Term

The model (1) does not correspond exactly to the Potts regularizer (2) because
some of the region boundaries are counted multiple times. In the following, we
present a way to derive a convex relaxation of the Potts regularization term
by using the above representation as binary functions by introducing additional
constraints on the dual variables.

This relaxation is inspired by the work of [17], which derived a convex re-
laxation of Potts model based on the labeling function representation of the
partition. An important distinction is that the number of dual constraints in
our relaxation grow as O(log2(n)

2), whereas the number of constraints in [17]
grow as O(n2). The relaxation was proposed for the case of 4 regions in [3], our
contribution here is the generalization to 2m regions.

The model (16) can be written with dual variables as

min
φ∈BV (Ω)

sup
p∈L2(Ω)m+1,qi∈Cα

∫
Ω

p0(x) +

m∑
i=1

φi(x)pi(x) + φi(x) div qi(x) dx (32)

s.t. p0(x) +
n∑
i=1

ui(x)pi(x) ≤ f(u(x), x) , ∀u(x) ∈ {ai}ni=1, ∀x ∈ Ω

where the constraint set Cα is defined as

Cα = {q ∈ C∞(Ω)dim(Ω) : |q|∞ ≤ α}. (33)

where |q|∞ = supx∈Ω |q(x)|2. We are now interested in the binary case, i.e.
N1 = ... = Nm = 2. The convex relaxation for Potts model consists of the
optimization problem (32) with the extra dual constraint set

(q1, ..., qm) ∈ CP (34)

=
{
{qi}mi=1 ∈ Cα : |qi − qj |∞ ≤ α, |qi + qj |∞ ≤ α ; ∀ i < j ∈ {1, ...,m}

}
.

If the functions φ1, ..., φm are binary, one can easily check that the last term of
(32) corresponds to the Potts regularizer (2). The constraint set (34) contains
(log2(n))

2 inequalities.
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6 Algorithms

We derive algorithms for the problems (16) and (22). In this section, (ai)k de-
notes component i of vector a at iteration k, and ak denotes vector a at iteration
k.

Define the set

C1
p (x) = {p(x) ∈ R

m, p0(x) ∈ R :

p0(x) +

m∑
j=1

uj(x)pj(x) ≤ f(u(x), x) , ∀u(x) ∈ {ai}ni=1}

Applying the dual formulation of total variation (32) and rearranging the terms,
the model (16) can be reformulated as

min
φ∈BV (Ω)

sup
p∈L2(Ω)m+1,q∈Cα

∫
Ω

p0(x) +

m∑
i=1

φi(x)(pi(x) + div qi(x)) dx

s.t. p0(x) +

n∑
i=1

ui(x)pi(x) ≤ f(u(x), x) , ∀u(x) ∈ {ai}ni=1, ∀x ∈ Ω

Observe that φi can be interpreted as an unconstrained Lagrange multiplier for
the constraint pi + div qi = 0. Consequently, it possible to form the augmented
Lagrangian functional

L(p, q, φ) =

∫
Ω

p0 +

m∑
i=1

φi(pi + div qi) dx− c

2

m∑
i=1

||pi + div qi||2 (35)

and solve the problem (16) by the augmented Lagrangian method as follows:
initialize the starting points p0, q0, φ0, and iterate, for k = 0, 1, ...,

(p)k+1 =argmax
(p)∈C1

p

L(p, qk, φk),

(qi)k+1 =argmax
qi

L(pk+1, qi, φk), i = 1, ...,m

(φi)k+1 =(φi)k − c((pi)k+1 + div(qi)k+1), i = 1, ...,m

The first subproblem can be solved approximately as

(p)k+1 = ΠC1
p
(pk + δp

∂L

∂p
(pk, qk, φk))

where ∂L
∂p0

(pk, qk, φk) = 1 and ∂L
∂pi

(pk, qk, φk) = φi
k−c(pki −div qi

k
), i = 1, ...,m.

The projection ΠC1
p
onto Cp cannot be computed in closed form, but can be

computed iteratively by Dykstra’s algorithm. The subproblem involving q can
be solved iteratively by computing an ascent step followed by a simple projection
onto Cα. In case of a Potts regularizer, we use Dykstra’s algorithm to project q
onto its constraint set as in [17,3].
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Note that (35) resembles a max-flow problem where pi+div qi = 0 is the flow
conservation constraint. The algorithm above is in the same spirit as recently
proposed continuous max-flow algoirthms [23,3] which have demonstrated to be
very efficient in practice.

A similar Augmented Lagrangian algorithm can also be derived for (22). To
save space, we skip the details here.

7 Experiments

In the experiments we have chosen the data term

fi(x) = |I(x)− ci|β ∀x ∈ Ω, i = 1, ..., n (36)

with β = 2. The optimal parameters ci, i = 1, ..., n are calculated by iteratively
minimizing for the regions and ci until convergence. In Figure 2(f) they are
chosen uniformly between 0 and 1 without subsequent updating. We use the
relaxation (16) to find partition into various number of regions. Results with 8
regions, represented by 3 binary functions (N1 = N2 = N3 = 2), are depicted
in Figure 2 and 4. Results with 6 regions, which was represented by one binary
function and one function taking 3 integer values (N1 = 2, N2 = 3), are shown
in Figure 3 (a) and (b). Results with 16 regions in Figure 3 (c), represented by
4 binary functions (N1 = ... = N4 = 2) . Observe that the solutions φ1, ..., φm

are binary/integer at most points. In order to produce a fully binary solution we
threshold according to (17). To visualize the results, we have plotted φ1, ..., φ3

before thresholding . The results can also be depicted in a single image by the
construction I = ci in Ωi, i = 1, ..., n. We also depict I before thresholding,
by using the polynomial in (3) to represent the regions in a soft manner before
thresholding.

In the experiments with 8 regions, it is interesting to ask whether the sub-
modularity conditions (24) can be satisfied at every point for a permutation of
the labels, which would guarantee that a global minimizer can be obtained after

(a) (b)

Fig. 1. Test images
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(a) (b) (c)

(d) (e) (f)

Fig. 2. 8 regions (N1 = N2 = N3 = 2), α = 0, 1: (a)-(c) φ1, ..., φ3 before threshold, (d)
I before threshold, (e) I after threshold, (f) Potts relaxation after threshold

(a) (b) (c)

Fig. 3. (a) - (b) 6 regions (N1 = 2, N2 = 3), α = 0, 1, (a) before threshold, (b) after
threshold. (c) 16 regions (N1 = ... = N4 = 2)

(a) (b) (c) (d)

Fig. 4. 8 regions, α = 0.1. (a) Thresholded solution, (b)-(d) φ1, ..., φ3 before threshold

thresholding. Unfortunately, this was not the case for any of the possible per-
mutations (8) of the representation, in contrast to the 4-region case, where this
condition often holds [3].
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This means that in most cases it is not possible to guarantee that a global
minimizer will be obtained a priori. However the results seem to be good in
practice and are in any case the best approximations that can be obtained using
a local relaxation, i.e., a relaxation of the integrand.

8 Conclusions

We have summarized and generalized different representations of the regions
in variational image segmentation models in terms of vector functions. Convex
relaxations have been developed based on the convex envelope and connected
to recent relaxations for product sets and to dual maxflow-based formulations.
The relaxations contain a significantly lower number of unknowns than there
are regions and are the tightest convex approximations that exist for the given
set of problems. Efficient algorithms have been developed and experiments have
demonstrated that good approximations for the segmentation problems can be
obtained in practice.
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Abstract. Variational models as the Mumford-Shah model and the ac-
tive contour model have many applications in image segmentation. In this
paper, we propose a new multiclass segmentation model by combining
the Rudin-Osher-Fatemi model with an iterative thresholding procedure.
We show that our new model for two classes is indeed equivalent to the
Chan-Vese model but with an adapted regularization parameter which
allows to segment classes with similar gray values. We propose an ef-
ficient algorithm and discuss its convergence under certain conditions.
Experiments on cartoon, texture and medical images demonstrate that
our algorithm is not only fast but provides very good segmentation re-
sults in comparison with other state-of-the-art segmentation models in
particular for images containing classes of similar gray values.

1 Introduction

Throughout this paper, let Ω ⊂ R2 be a bounded, open set and f : Ω̄ → [0, 1] a
given image. In 1989, Mumford and Shah in [23] proposed to solve segmentation
problems by minimizing over (Γ, u) ∈ Ω ×W 1

2 (Ω \ Γ ) the energy

EMS(Γ, u) := H1(Γ ) + μ

∫
Ω\Γ

|∇u|2dx+ λ

∫
Ω

(u − f)2dx, λ, μ > 0,

where H1 denotes the 1D Hausdorff measure. The functional EMS contains three
terms: the regularity term on Γ in terms of its length, the regularity term im-
posing smoothness of u on areas Ω \ Γ , and the data fidelity term. Related ap-
proaches in a spatially discrete setting were proposed in [8,18]. An early attempt
to solve the challenging task of finding a minimizer of the non-convex, non-
smooth Mumford-Shah functional was done by approximating it by a sequence
of simpler elliptic problems in [3]. Many approaches to simplify the model were
meanwhile proposed in the literature as, e.g., the convex relaxation of the piece-
wise smooth Mumford-Shah functional by functional lifting in [26]. A frequently
applied strategy is to restrict the model to ∇u = 0 on Ω \Γ which results in the
piecewise constant Mumford-Shah model

EPCMS(Γ, u) := H1(Γ ) + λ

∫
Ω

(u − f)2dx. (1)

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 237–250, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



238 X. Cai and G. Steidl

Assuming that Ω =
⋃K−1
i=0 Ωi with pairwise disjoint sets Ωi and u(x) := mi for

x ∈ Ωi, i = 0, . . .K − 1, the above functional can be rewritten as

EPCMS(Ω,m) =
1

2

K−1∑
i=0

Per(Ωi;Ω) + λ

K−1∑
i=0

∫
Ωi

(mi − f)2 dx, (2)

where Per(Ωi;Ω) denotes the perimeter of Ωi in Ω and m := (mi)
K−1
i=0 , Ω :=

(Ωi)
K−1
i=0 . For K = 2, the piecewise constant Mumford-Shah model is actually

the model of the active contours without edges (Chan-Vese model) [16], i.e.

ECV(Ω1,m0,m1) = Per(Ω1;Ω) + λ
( ∫
Ω1

(m1 − f)2 dx+

∫
Ω\Ω1

(m0 − f)2 dx
)
. (3)

One of the model’s drawbacks is that it can easily get stuck in local minima.
To overcome this drawback, a convex relaxation approach was proposed in [15].
More precisely, it was shown that the global minimizer of ECV(·,m0,m1) for
fixed m0,m1 can be found by solving

min
0≤u≤1

∫
Ω

|∇u|+ λ

∫
Ω

(
(m0 − f)2 − (m1 − f)2

)
u(x)dx, (4)

and setting Ω1 := {x ∈ Ω : u(x) > ρ} for any ρ ∈ (0, 1], see also [6,9]. In other
words, (4) is a tight relaxation of the Chan-Vese model with fixed mi, i = 0, 1.
There are many other approaches for two-phase image segmentation based on
the Chan-Vese model and its convex version, see, e.g., [31], [9] and [17].

In [28], Chan and Vese proposed a multiphase segmentation model using level
sets. Convex (non-tight) relaxation approaches for the model with fixed m were
proposed, e.g., in [21,22,25,29,30] and for the full model in [10]. For more details
see also [5].

In [12] a two-stage image segmentation method which finds the solution of a
convex variant of the Mumford-Shah model in the first stage followed by one
thresholding step in the second stage was proposed. The applied functional was
the Rudin-Osher-Fatemi (ROF) functional [27] supplemented by the essential
additional term

∫
|∇u|2 dx.

In this paper, we propose a new multiphase segmentation model based on
iteratively thresholding the minimizer of the original ROF functional. In contrast
to [12] we propose a strategy to update the thresholds and prove its convergence
under certain conditions. There exists a clear relationship of our new model
to the Chan-Vese model (3) which shows that a solution of (3) for a certain
regularization parameter can actually be given by iteratively thresholding the
ROF minimizer. Numerical examples demonstrate that our algorithm is not only
fast but produces also very good results for images whose classes are close to
each other. In particular it outperforms the algorithm in [12].

The paper is organized as follows: In Section 2, we introduce our segmentation
model and discuss its the properties. We propose an efficient solution algorithm
and provide a convergence analysis in Section 3. Finally, in Section 4, we test
our algorithm on various synthetic and real-world images and compare it with
other state-of-the-art segmentation algorithms.
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2 Continuous Model

2.1 Notation

We briefly introduce the basic notation and relations which can be found, e.g., in
[2,4]. In the following a ‘set’ is understood as a Lebesgue measurable set in R2,
where we will consider equivalence classes of sets which are equal up to Lebesgue
negligible sets. By |A| we denote the Lebesgue measure of a set A. By BV (Ω)
we denote the space of functions of bounded variation, i.e., the Banach space of
functions u : Ω → R with finite norm ‖u‖BV := ‖u‖L1(Ω) + TV (u), where

TV (u) := sup
{∫

Ω

u(x)divϕdx : ϕ ∈ C1c (Ω,R2), ‖ϕ‖∞ ≤ 1
}
.

The distributional first order derivative Du of u is a vector-valued Radon mea-
sure with total variation |Du| = TV (u). In particular, we have for u ∈ W 1

1 (Ω)
that Du = ∇u ∈ L1 so that in this case TV (u) =

∫
Ω
|∇u| dx. For a Lebesgue

measurable set A ⊂ Ω, the perimeter of A in Ω is defined by Per(A;Ω) :=
TV (χA), where χA denotes the characteristic function of A. Hence A is of finite
perimeter, if its characteristic function has bounded variation. If A has a C1
boundary, then Per(A;Ω) coincides with H1(∂A ∩Ω). We define the mean of f
on A ⊂ R2 by

meanf (A) :=

{ 1
|A|
∫
A
f dx if |A| > 0,

0 otherwise.

We call (u∗, c∗) a partial minimizer of some objective function E(u, c) if

E(u∗, c∗) ≤ E(u∗, c) for all feasible c, and
E(u∗, c∗) ≤ E(u, c∗) for all feasible u.

(5)

In case E is differentiable on its domain every partial minimizer contained in
the interior of the domain is stationary, see, e.g., [19]. For example we see that a
partial minimizer (Ω∗,m∗) of the piecewise constant Mumford-Shah model (2)
with Ω∗ = (Ω∗

i )
K−1
i=0 , m∗ = (m∗

i )
K−1
i=0 has to fulfill

m∗
i = meanf (Ω

∗
i ), i = 0, . . . ,K − 1. (6)

2.2 Model

We start by considering the segmentation into K = 2 classes. Let

E(Σ, τ) := Per(Σ;Ω) + μ

∫
Σ

τ − f dx, μ > 0. (7)

Note that E(∅, τ) = 0 and E(Ω, τ) = μ
∫
Ω τ − f dx. Since f maps into [0, 1], the

global minimizer of E(·, τ) for fixed τ ≤ 0 is Ω and for τ ≥ 1 it is ∅. Therefore we
restrict ourselves to τ ∈ (0, 1). We intend to find (Σ∗, τ∗) ∈ Ω × (0, 1) fulfilling

E(Σ∗, τ∗) ≤ E(Σ, τ∗) ∀Σ ⊂ Ω, (8)

τ∗ =
1

2

(
meanf (Σ

∗) + meanf (Ω\Σ∗)
)
.
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Remark 1. Note that solving (8) is different from minimizing

min
Σ,τ

E(Σ, τ) subject to τ =
1

2

(
meanf (Σ) + meanf (Ω\Σ)

)
. (9)

Consider the 1D example with the function f(x) = x on Ω = (0, 1) and restrict
the attention to Σ ∈ {(0, b), (b, 1)}. Then τ = 1

4 (1 + 2b) in (9) and we are
searching for b. Now

E(Σ, τ) = 1 + μ

∫
I

τ − x dx =

{
1 + 1

4μb if I = (0, b),
1− 1

4μ(1− b) if I = (b, 1)

which has no minimizer in (0, 1). On the other hand, let τ∗ = 1
2 . Then it can

easily be checked that (Σ∗, τ∗) with Σ∗ = (12 , 1) fulfills (8).

The following proposition ensures the existence of a global minimizer of E(·, τ)
for fixed τ .

Proposition 1. For any fixed τ ∈ (0, 1), a global minimizer Σ of E(·, τ) in (7)
can be found by solving the convex minimization problem

min
u∈BV (Ω),u∈[0,1]

TV (u) + μ

∫
Ω

(τ − f)u dx (10)

and then setting Σ := {x ∈ Ω : u(x) > ρ} for any ρ ∈ [0, 1).

For a proof we refer to Proposition 2.1 in the review paper [14]. This proof uses
the same ideas as in [6,24] where the claim was shown for a.e. ρ ∈ [0, 1]. Based on
the next lemma, cf., [1, Lemma 4i)] and a smoothness argument, an explanation
that the minimizing set Σ is unique for fixed τ was given in [14].

Lemma 1. For fixed 0 < τ1 < τ2 < 1, let Σi be minimizers of E(·, τi), i = 1, 2.
Then |Σ2\Σ1| = 0 is fulfilled, i.e., Σ1 ⊇ Σ2 up to a negligible set.

The relationship between our model (8) and the Chan-Vese model (3) is ex-
plained in the following proposition.

Proposition 2. (Relation between the Chan-Vese model and (8))
Assume that (Σ∗, τ∗), Σ∗ �∈ {∅, Ω} is a solution of (8). Set m∗

0 := meanf (Σ
∗)

and m∗
1 := meanf (Ω \Σ∗). Let O be the set of partial minimizers of the Chan-

Vese model (3) with parameter λ := μ
2(m∗

1−m∗
0)
. Then

(
Σ∗,m∗

0,m
∗
1

)
∈ O.

Proof. Since Σ∗ �= ∅ is a minimizer of E(·, τ∗) we conclude
∫
Σ∗ τ

∗ − f dx < 0
which implies τ∗ < meanf (Σ

∗) = m∗
1. Similarly, since Σ∗ �= Ω, we see that

Per(Σ∗;Ω) + μ

∫
Σ∗
τ∗ − f dx ≤ μ

∫
Ω

τ∗ − f dx,

0 < Per(Σ∗;Ω) ≤ μ

∫
Ω\Σ∗

τ∗ − f dx
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and consequently m∗
0 = meanf (Ω \ Σ∗) < τ∗. Therefore m∗

0 < m∗
1. The set Σ∗

is also a minimizer of E(·, τ∗) + C with the constant C := λ
∫
Ω
(m∗

0 − f)2 dx.

Regarding that τ∗ =
m∗

1+m
∗
0

2 we obtain

E(Σ, τ∗) + C = Per(Σ;Ω) + μ

∫
Σ

τ∗ − f dx+ C

= Per(Σ;Ω) +
μ

2(m∗
1 −m∗

0)

∫
Σ

(m∗
1 − f)2 − (m∗

0 − f)2 dx

+ λ

∫
Ω

(m∗
0 − f)2 dx

= Per(Σ;Ω) + λ

(∫
Σ

(m∗
1 − f)2dx+

∫
Ω\Σ

(m∗
0 − f)2

)
.

By definition of m∗
i , i = 0, 1 and (6) we get the assertion. �

Since 0 < m∗
1−m∗

0 ≤ 1 the parameter λ = μ
2(m∗

1−m∗
0)

in the Chan-Vese model (3)

is larger than μ and increases ifm∗
1−m∗

0 becomes smaller. Hence, it is adapted to
the difference betweenm∗

1,m
∗
0 and penalizes the data term more if this difference

becomes smaller.
The following proposition has the important consequence that we can obtain

a minimizer Σ of E(·, τ) by minimizing the ROF functional and subsequent
thresholding of the minimizing function by τ .

Proposition 3. The set {x ∈ Ω : u(x) > τ} solves (7) if and only if the function
u ∈ BV (Ω) solves the ROF model

min
u∈BV (Ω)

TV (u) +
μ

2

∫
Ω

(
u− f)2 dx. (11)

For the proof see [14, Proposition 2.6].

We generalize (7) and (8) to the multiclass case K ≥ 2 by setting Σ := {Σi}K−1
i=1

and τ := {τi}K−1
i=1 with 0 < τ1 ≤ τ2 ≤ . . . ≤ τK−1 < 1, and

E(Σ, τ ) :=
K−1∑
i=1

(
Per(Σi;Ω) + μ

∫
Σi

τi − f dx
)
, μ > 0. (12)

For fixed τ , we know by Lemma 1 that

Ω ⊇ Στ1 ⊇ Στ2 ⊇ · · · ⊇ ΣτK−1 ⊇ ∅ (13)

and we see that the corresponding wanted segments

Ωi := Σi\Σi+1, i = 0, . . . ,K − 1, Σ0 := Ω, ΣK := ∅ (14)

are pairwise disjoint and fulfill ∪K−1
i=0 Ωi = Ω. We aim to find an ordered vector

τ ∗ and a corresponding nested set Σ∗ with

τ∗i =
1

2
(m∗

i−1 +m∗
i ), m∗

i := meanf (Ω
∗
i ), i = 1, . . . ,K − 1 (15)

which minimizes E(·, τ ∗) among all sequences of nested sets.
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3 Algorithmic Aspects

Our algorithm alternates the minimization of E(·, τ ) in (12) for fixed τ with τ1 ≤
τ2 ≤ . . . ≤ τK−1 and the computation of τ as in (15) for fixed sequences Σ of
nested sets. By Proposition 3 the minimization of E(·, τ ) in (12) for fixed τ can be
obtained by K−1 times thresholding the minimizer of the ROF functional. This
is in particular efficient since the minimizer of the ROF functional remains the
same during the whole thresholding process. We call the algorithm thresholded
ROF (T-ROF).

Algorithm (T-ROF)

Initialization: τ (0) =
(
τ
(0)
i

)K−1

i=1
with 0 < τ

(0)
1 < · · · < τ

(0)
K−1 < 1.

1. Compute the solution u of the ROF model (11).
2. For k = 0, 1, . . . , repeat

2.1. Compute Σ(k) =
(
Σ

(k)
i

)K−1

i=1
by Σ

(k)
i := {x ∈ Ω : u(x) > τ

(k)
i }.

2.2. Find Ω
(k)
i := Σ

(k)
i \Σ(k)

i+1, i = 0, . . . ,K−1 with Σ
(k)
0 := Ω and Σ

(k)
K := ∅.

2.3. Compute m
(k)
i := meanf (Ω

(k)
i ), i = 0, . . . ,K − 1.

2.4. Update τ
(k+1)
i := 1

2 (m
(k)
i−1 +m

(k)
i ), i = 1, . . . ,K − 1.

We will prove the convergence of our algorithm under the following assumption:

(A) If Στ , Στ̃ are the minimizers of E(·, τ) and E(·, τ̃ ) for any 0 < τ < τ̃ < 1
appearing in the algorithm, then

τ ≤ meanf (Στ\Στ̃ ) ≤ τ̃ . (16)

The right-hand inequality in (16) is for example fulfilled if Στ̃ is also a minimizer
of Per(Σ;Στ ) + μ

∫
Σ
τ̃ − f dx. The left-hand inequality holds if Στ\Στ̃ is also a

minimizer of Per(Σ;Ω\Στ̃ )+μ
∫
Σ
τ − f dx. Using the above assumption we can

prove the following lemma, see [11]:

Lemma 2. Under the assumption (A) our T-ROF algorithm produces sequences
(τ (k))k and (m(k))k with the following properties:

i) 0 ≤ m
(k)
0 ≤ τ

(k)
1 ≤ m

(k)
1 ≤ · · · ≤ m

(k)
K−2 ≤ τ

(k)
K−1 ≤ m

(k)
K−1

ii) Set τ
(k)
0 := 0 and τ

(k)
K := 1. If τ

(k)
i ≥ τ

(k−1)
i and τ

(k)
i+1 ≥ τ

(k−1)
i+1 , then

m
(k)
i ≥ m

(k−1)
i , i = 0, . . . ,K − 1 and this also holds true if ≤ is replaced

everywhere by ≥.

To prove the convergence of the sequence (τ (k))k, we define a sign sequence

ζ(k) = (ζ
(k)
i )K−1

i=1 as follows: If τ
(k)
i �= τ

(k−1)
i ,

ζ
(k)
i :=

{
+1 if τ

(k)
i > τ

(k−1)
i ,

−1 if τ
(k)
i < τ

(k−1)
i ,
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and otherwise

ζ
(k)
i :=

{
ζ
(k)
j if i = 1,

ζ
(k)
i−1 if i �= 1,

(17)

where j = min{l | τ (k)l �= τ
(k−1)
l }. By sk we denote the number of sign changes

in ζ(k), for example, if ζ(k) = (
︷ ︸︸ ︷
+1,+1,+1,

︷ ︸︸ ︷
−1,−1,

︷︸︸︷
+1 ,

︷︸︸︷
−1 ), then sk = 3.

Lemma 3. i) The number of sign changes sk is monotone decreasing in k.

ii) If ζ
(k+1)
1 �= ζ

(k)
1 , then we have the strict decrease sk+1 < sk.

Proof. i) Let sk = N and rewrite (τ (k))k as

(τ
(k)
0 , · · · , τ (k)l1︸ ︷︷ ︸

v
(k)
1

, · · · , τ (k)ij
, · · · , τ (k)lj︸ ︷︷ ︸
v
(k)
j

, · · · , τ (k)iN
, · · · , τ (k)K︸ ︷︷ ︸
v
(k)
N

),

where v
(k)
j contains those successive components of (τ (k))k with the same sign.

1. If #v
(k)
j ≥ 3, we consider ζ

(k+1)
i∗ with ij ≤ i∗ − 1 ≤ i∗ ≤ i∗ + 1 ≤ lj , i.e.,

ζ
(k)
i∗−1 = ζ

(k)
i∗ = ζ

(k)
i∗+1. WLOG let ζ

(k)
i∗ = −1. Then we obtain by Lemma 2 ii) that

m
(k)
i∗−1 ≤ m

(k−1)
i∗−1 and m

(k)
i∗ ≤ m

(k−1)
i∗ . Therefore

τ
(k+1)
i∗ =

m
(k)
i∗−1 +m

(k)
i∗

2
≤
m

(k−1)
i∗−1 +m

(k−1)
i∗

2
= τ

(k)
i∗

and consequently ζ
(k+1)
i∗ = −1 or ζ

(k+1)
ij

= ζ
(k+1)
ij+1 = · · · = ζ

(k+1)
i∗ = 1. The case

ζ
(k)
i∗ = 1 can be handled in the same way.

2. If there is no j such that #v
(k)
j = 1, we consider ζ

(k+1)
lj

and ζ
(k+1)
ij+1

which are

different by definition. WLOG let ζ
(k)
lj

= −1 and ζ
(k)
ij+1

= +1. Then, from Lemma

2 ii), we have

m
(k)
lj−1 ≤ m

(k−1)
lj−1 , m

(k)
ij+1

≥ m
(k−1)
ij+1

.

If m
(k)
lj

≤ m
(k−1)
lj

(or m
(k)
lj

≥ m
(k−1)
lj

), then τ
(k+1)
lj

≤ τ
(k)
lj

(or τ
(k+1)
ij+1

≥ τ
(k)
ij+1

).

This means that ζ
(k+1)
lj

�= ζ
(k)
lj

and ζ
(k+1)
ij+1

�= ζ
(k)
ij+1

is not possible at the same
time.
3. Finally, we consider the case #v

(k)
j = 1 for all j1 ≤ j ≤ j2, where #v

(k)
j1−1 >

1 and #v
(k)
j2+1 > 1. We prove that from iteration k → k + 1 the signs of

ζ
(·)
ij1−1, ζ

(·)
j , . . . , ζ

(·)
j2
, ζ

(·)
ij2+1 can not change at the same time. WLOG assume that

ζ
(k)
ij1

= −1 so that ζ
(k)
ij

= (−1)j−j1+1 for j1 ≤ j ≤ j2, and ζ
(k)
ij1−1 = ζ

(k)
ij1−2 = +1

and ζ
(k)
ij2+1 = ζ

(k)
ij2+2 = (−1)j2−j1 . ¿From Lemma 2 ii), we know that

m
(k)
ij1−2 ≥ m

(k−1)
ij1−2 , and

{
m

(k)
ij2+1 ≥ m

(k−1)
ij2+1 if j2 − j1 is even,

m
(k)
ij2+1 ≤ m

(k−1)
ij2+1 if j2 − j1 is odd.

(18)
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If in ζ
(·)
ij1−1, ζ

(·)
ij1

, · · · , ζ(·)ij2 , ζ
(·)
ij2+1 the signs change at the same time, we can

deduce by Lemma 2 ii) that{
m

(k)
ij2+1 < m

(k−1)
ij2+1 if j2 − j1 is even,

m
(k)
ij2+1 > m

(k−1)
ij2+1 if j2 − j1 is odd,

which contradicts (18).
By parts 1–3, we see that sk+1 ≤ sk for any k ∈ N.

ii) If ζ
(k+1)
1 �= ζ

(k)
1 , then v

(k)
1 = τ

(k)
1 and τ

(k)
2 ∈ v

(k)
2 . By parts 1–3 of the proof

we get sk+1 < sk. This completes the proof. �
Now we can prove the convergence of our T-ROF algorithm with a slight mod-
ification. We divide the interval [0, 1) into n > 1 disjoint subintervals [ in ,

i+1
n ),

and define a projector Pn : [0, 1) → { in : i = 0, . . . , n − 1} by Pn(x) := i
n if

x ∈ [ in ,
i+1
n ). Clearly, Pn(x1) ≥ Pn(x2) if x1 ≥ x2. We choose n large enough

(say machine precision). Instead of τ (k) we compute in each step of the T-ROF
algorithm the projection Pn(τ (k)) and continue the algorithm with these pro-
jected thresholds. Clearly, the statements of Lemma 2 and 3 remain true. For
convenience we write again τ (k) for the output of the projected algorithm.

Theorem 1. Under the assumption (A), the sequence (τ (k))k∈N produced by the
projected T-ROF algorithm converges to a vector τ ∗.

Proof. We prove the assertion by induction on the number of sign changes sk in
some iteration step k.

Assume that sk = 0. WLOG let ζ
(k)
i = +1, i = 1, . . . ,K−1, i.e., τ

(k)
i ≥ τ

(k−1)
i .

From Lemma 2 ii), we obtain m
(k)
i ≥ m

(k−1)
i and consequently τ

(k+1)
i ≥ τ

(k)
i ,

i = 1, . . . ,K − 1. Therefore sk+1 = 0 and ζ
(k+1)
i = +1, i = 1, . . . ,K − 1. This

means that each sequence (τ
(k)
i )k is monotone increasing. Since the sequences

are moreover bounded in [0, 1], we conclude that (τ (k))k converges.
Assume that (τ (k))k converges if sk ≤ N − 1 for some k ∈ N.

We prove that in case sk = N , there exists k̂ > k such that sk̂ ≤ N − 1.

If there exists k̂ > k such that ζ
(k̂)
1 �= ζ

(k)
1 , we get sk̂ ≤ N − 1 directly from

Lemma 3 ii). If ζ
(k̂)
1 = ζ

(k)
1 for all k̂ > k, then (τ

(k̂)
1 )k̂>k is monotone and

bounded and converges consequently to some threshold τ∗1 . This threshold must
be attained in the projected algorithm for some k1 > k. Now we can repeat the

same arguments with k1 instead of k and ζ
(·)
2 instead of ζ

(·)
1 to see that (τ

(k)
2 )k

converges to a threshold τ∗2 which must be attained for some k2 > k1. Moreover,

we have ζ
(j)
2 = ζ

(j)
1 for all j > k1. Repeating this procedure up to the final index

K − 1 we obtain the assertion. �

4 Numerical Results

In this section, we test our method on various images. We actually use the T-
ROF Algorithm with a discrete ROF model, see, e.g. [13], which minimizer is
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(a) Original Image (b) Corrupted Image (c) T-ROF (Ite. 6) (d) Cai [12]
SA = 0.9913 SA = 0.9878

(e) Li [22] (f) Pock [25] (g) Yuan [29] (h) He [20]
SA = 0.6918 SA = 0.8581 SA = 0.6915 SA = 0.9888

Fig. 1. Segmentation of two-class cartoon image (256 × 256) with some missing pixel
values

(a) Original image (b) Noisy image (c) T-ROF (Ite. 6) (d) Cai [12]
SA = 0.9845 SA = 0.9816

(e) Li [22] (f) Pock [25] (g) Yuan [29] (h) He [20]
SA = 0.7867 SA = 0.9658 SA = 0.9598 SA = 0.9663

Fig. 2. Segmentation of two-class image (128 × 128) with close intensities
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(a) Original Image (b) T-ROF (Ite. 11) (c) Cai [12]

(d) Li [22] (e) Pock [25] (f) Yuan [29] (g) He [20]

Fig. 3. Four-phase gray and white matter segmentation for a brain MRI image (319×
256)

Fig. 4. Stripe image with 30 stripes (140× 240) and its noisy version for the segmen-
tation in Tab. 1

computed numerically by an ADMM algorithm with fixed inner parameter 2.
Speedups by using more sophisticated methods will be considered in a future
paper. The stopping criteria in our T-ROF algorithm for u and τ are

(
‖u(i) −

u(i−1)‖2
)
/‖u(i)‖2 ≤ εu and ‖τ (k) − τ (k−1)‖2 ≤ ετ , where εu and ετ are fixed to

10−4 and 10−5, respectively. The initialization of (τ
(0)
i )K−1

i=1 was computed by
the fuzzy C-means method [7] with 100 iteration steps.

We will compare our method with the recently proposed multiclass segmenta-
tion methods [12,20,22,25,29]. Note that the methods [25,29] work with the fixed
fuzzy C-means codebook and we do not update the codebook. Such update is
however involved in [20]. The default stopping criterion used in [20,22,25] is the
maximum iteration steps; the default stopping criterion used in [29] is 10−4 and
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Table 1. Parameter μ, iteration steps, CPU time in seconds, and SA for example 4

Li [22] Pock [25] Yuan [29] He [20] Cai [12] T-ROF

Five phases

μ 80 100 10 50 10 8
Ite. 100 100 87 100 41 84 (4)
Time 3.87 6.25 4.33 16.75 1.33 1.39
SA 0.9946 0.9965 0.9867 0.9968 0.9770 0.9986

Ten phases

μ 80 100 10 50 10 8
Ite. 100 100 102 100 41 84 (5)
Time 7.71 15.41 9.79 38.52 2.11 2.33
SA 0.8545 0.9984 0.9715 0.9848 0.8900 0.9967

Fifteen phases

μ 80 100 10 50 10 8
Ite. 100 100 208 100 41 84 (5)
Time 11.56 28.21 33.21 63.67 3.06 3.74
SA 0.7715 0.9993 0.9730 0.9904 0.5280 0.9933

(a) Original image (b) Noisy image (c) T-ROF (Ite. 6) (d) Cai [12]
SA = 0.9550 SA = 0.9232

(d) Li [22] (e) Pock [25] (f) Yuan [29] (h) He [20]
SA = 0.4420 SA = 0.9485 SA = 0.9557 SA = 0.9637

Fig. 5. Segmentation of three-class image (256 × 256) containing phases with close
intensities

maximum iteration steps 300; the default stopping criterion used in [12] is 10−4.
We choose the regularization parameter μ of the fidelity term in all the methods
by judging the segmentation accuracy (SA) defined as

SA =
#correctly classified pixels

#all pixels
.
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(a) Original Image (b) Noisy Image (c) T-ROF (Ite. 5) (d) Cai [12]
SA = 0.9798 SA = 0.9688

(e) Li [22] (e) Li [22] (e) Pock [25] (h) Pock [25]
SA = 0.4900 SA = 0.9023 SA = 0.9846 SA = 0.8769

(i) Yuan [29] (j) Yuan [29] (k) He [20] (l) He [20]
SA = 0.9130 SA = 0.8744 SA = 0.6847 SA = 0.9637

Fig. 6. Segmentation of four-class image (256× 256) with close gray values

We show the results for two two-class and four multiclass images, where all
computations were done on a MacBook with 2.4 GHz processor and 4GB RAM.
For further examples we refer to [11].

Example 1 is a two-class cartoon image with some missing pixel values. The
segmentation results are shown in Fig. 1. We see that only methods [12,20] and
our method gives good results. Indeed a codebook update is required here.

Example 2 is a two-class image with close intensities generated as follows: We
have added Gaussian noise with mean 0 and variance 10−8 to constant image
with gray value 0.5. The noisy image is obtained by keeping the pixel values
belonging to the white parts of the original image and reducing the pixel values
belonging to the black parts by a factor of 2× 10−4. Fig. 2 shows the results of
the various algorithms. Except the method [22], all models produce reasonable
results.

Example 3 is a four-class gray and white matter segmentation for a brain MRI
image from [25]. Fig. 3 gives the results. We can see that, all the methods work
well for this kind of image. However our method with 11 τ -value updates is faster
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than the other methods, e.g., three times faster than the algorithm of Pock et
al. [25] with the assigned parameters.

Example 4 segments the noisy stripe image in Fig. 4 (b), which is generated
by imposing Gaussion noise with mean 0 and variance 10−3 on the clean image
Fig. 4 (a) with 30 stripes. The results for a 5, 10 and 15 class segmentation are
listed in Table 1.

Example 5 is a three-class image with close intensities. The test in image Fig.
5 is generated using the same way as those in Example 2 with Gaussian noise of
mean 0 and variance 10−2, the scalars used in the black and white parts are 0.1
and 0.6, respectively. For the results of the different methods see Fig. 5.

Example 6 shows a four-class image with close intensities. Fig. 6 (a) and (b) are
the original image and the noisy image generated by using Gaussian noise with
mean 0 and variance 3×10−2. Figs. 6 (c)–(l) provide two results for each method
using different representative parameters μ, where one parameter is optimal with
respect to the SA.
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Abstract. We propose a unified graph cut based global minimization
method for multiphase image segmentation by convexifying the non-
convex image segmentation cost functionals. As examples, we shall apply
this method to the non-convex multiphase Chan-Vese (CV) model and
piecewise constant level set method (PCLSM). Both continuous and dis-
cretized formulations will be treated. For the discrete models, we propose
a unified graph cut algorithm to implement the CV and PCLSM models,
which extends the result of Bae and Tai [1] to any phases CV model.
Moreover, in the continuous case, we further improve the model to be
convex without any conditions using a number of techniques that are
unique to the continuous segmentation models. With the convex relax-
ation and the dual method, the related continuous dual model is convex
and we can mathematically show that the global minimization can be
achieved. The corresponding continuous max-flow algorithm is easy and
stable. Experimental results show that our model is very efficient.

1 Introduction

Many multiphase image segmentation models are non-convex and thus the cor-
responding numerical algorithms may sometimes get stuck at a local minimum
close to the initial condition and produce undesirable segmentation results. For
example, the multiphase Chan-Vese (CV) model [2] to partition an image into
n parts by using log2 n level set functions is non-convex. Its global minimization
can not be guaranteed. Another multiphase segmentation method is to use a
piecewise constant level set method PCLSM [3,4] to represent different classes,
the constraint of imposing the label function to be a piecewise constant function
is non-convex, and thus the global minimization for such a model also can not
be guaranteed.

Some efforts on the global minimization have been done in recent years. For
the discrete methods, it is well-known that the global minimization can be at-
tained by the graph cut approach. However, the graph cut method can only
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minimize some particular energies [5]. For a modified PCLSM [6], the global
minimization can be obtained by Ishikawa graph cut method [7]. As to the
multiphase CV model, generally speaking, the global minimization can not be
achieved by the graph cut method since its associated discrete energy does not
satisfy the graph representation condition in [5]. When a convex condition holds
for the data term, Bae-Tai [8] have showed that the 4-phase CV model can
be globally optimized by graph cut. If the convex condition fails, the authors
also propose a truncation method to approximately minimize the energy. In [8],
the weights assignment for the graph is derived from a nonnegative solution for
some coupled linear equations, and the related convex condition makes sure that
there is at least one nonnegative solution. To find such a nonnegative solution
is not easy for any arbitrary phases segmentation, and thus this method is not
convenient to be extended to any phases CV partition problems.

In the continuous case, convex relaxation method (e.g. [9–15]) is very popular
in recent years. The main idea of the convex relaxation is to relax the binary
characteristic function into a continuous interval [0, 1] such that the non-convex
original problem becomes convex. Solving such a relaxed convex problem can
enable one to find a global minimizer, and then the global binary solution of the
original problem can be obtained by a threshold process. The functional lifting
method [10] can be regarded as a convex relaxation of PCLSM, while the multi-
dimensional generalization of the functional lifting [16] ensure that one can get
a convex formulation of multiphase CV model. The continuous max-flow [15]
approach shows that finding a max-flow on a discrete graph, namely graph cut
method, corresponding to solving a continuous primal-dual problem. It gives the
connections between the discrete approach and continuous method. More inter-
estingly, it was found that the ”cut” is just the Lagrangian multiplier for the
flow conservation constraint when maximizing the total flow. Recently, some ex-
perimental comparisons between discrete and continuous segmentation methods
has been given in [17] for some selected continuous multi-labelling approaches. It
would be interesting to see a systematical comparison including these continuous
max-flow with Augmented Lagrangian approaches.

The non-convex property of both PCLSM and CV models comes from the
existence of some non-convex multiplication function terms. In this paper, we
shall show that both of these two models can be written as some similar linear
term plus multiplication function terms. Based on the graph cut minimization
theory [5] and the property of max function which is associated to the convex
envelope of the multiplication function, we propose a unified graph cut method to
globally solve these two models. Since each term of the cost functional is convex
after using the envelope functions, and thus the related relaxation continuous
problem is also convex. Our method can easily handle any phases segmentation
problems. For the discrete PCLSM, finding max-flows on the proposed graph is
faster than Ishikawa’s [7]. For the discrete 4-phase CV model, the proposed graph
would be the same as [8], but it is easier to handle any phases segmentation.
Moreover, to drop the convex condition in K-phase CV model in graph cut
method, we propose a continuous relaxation max-flow method for multiphase
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CV. Compared the earlier graph cut method, the proposed model is convex
without any condition. Experimental results have shown that this can improve
the quality of the segmentation results. A simultaneous work [18] appearing in
this conference also derives a convex relaxation for the Chan-Vese model with
any number of phases. However, their approach is based on directly computing
the convex envelope of the data term.

The rest of the paper is organized as follows: section 2 is a brief introduction
of the fundamental energy minimization theory with graph cut; in section 3,
we propose the graph construction for the PCLSM and CV models; section 4
contains a continuous relaxation max-flow model for CV with super-level set
representation; we show some experimental results and comparisons with other
methods in section 5; finally, some conclusions and discussions are presented in
section 6.

2 Energy Minimization with Graph Cut

In [5], the authors have given the condition of what energies can be minimized
by graph cut. In this section, we shall briefly review the main results of [5].

Let v1, v2, · · · , vn ∈ {0, 1}, E be a function of some binary variables. Then the
following theorems hold:

Theorem 1 ( [5]). All the functions E(vi) of one binary variable can be mini-
mized by graph cut.

Theorem 2 ( [5]). A function E(v1, v2) of 2 binary variables can be minimized
by graph cut if and only if E is submodular, i.e. E(0, 0)+E(1, 1) � E(0, 1)+E(1, 0).
More generally, E(v1, · · · , vn) of n binary variables can be minimized by graph
cut if and only if E is submodular.

Theorem 3 (additivity, [5]). The sum of finite number of submodular func-
tions is submodular.

From the additivity theorem 3, one can conclude that if there are n functions
which can be minimized by n different graphs, then the sum of the n functions
also can be minimized by graph cut. This can be done by simply putting the
vertices together and adding the n graphs’ edge weights together (if any graphs
have no edge between two vertices, one can add an edge with weight 0). For the
proofs of these theorems, please refer to [5].

Suppose a s-t graph G = (V,E) is constituted by a set of vertices V and a
set of directed edges E. Here there are two special distinguished vertices in V,
the source s and the sink t. A cut on the graph G is denoted by (Vt,Vs), which
is to partition the vertices V into two disjoint connected set Vs and Vt such
that s ∈ Vs and t ∈ Vt. For all binary variable vi ∈ {0, 1}, let vi = 0 if the
associated vertex belongs to Vs and vj = 1 for vertex belongs to Vt. Based on
these theorems, we have the following conclusions:
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Proposition 1 (linear function). The minimization problem v∗i = argmin
vi∈{0,1}

{E(vi) = aivi}, where ai is a known coefficient, corresponds to finding the min-
cut on graph displayed in Fig.1(a).

Proposition 2 (piecewise linear function). The minimization problem (v∗i ,
v∗j ) = argmin

vi,vj∈{0,1}
{E(vi, vj) = bij max{vj − vi, 0}}, where bij � 0 is a known

coefficient, corresponds to find the min-cut on graph displayed in Fig.1(b).

These two properties are very important to construct a graph to minimize the
energies of PCLSM and CV models. We shall show that both of these two models
can be minimized by solving min cuts on graphs which constituted by sum of
these two graphs. Since there are some multiplication functions terms in PCLSM
and CV, for convenience, we firstly construct a graph to minimize such a term
according to the propositions 1 and 2.

The multiplication function E(v1, · · · , vn) = −c
∏n
i=1 vi, where 0 � vi � 1 and

c is a known coefficient, is non-convex. From convex analysis theory (e.g. [19]),
one can get its convex envelope

E∗∗(v1, · · · , vn) =
{
cmax{−v1,−v2, · · · ,−vn}, c � 0,
−cmax{

∑n
i=1 vi − n, 0}, c < 0,

which is the tightest convex function below E . Moreover, in binary case, i.e.
vi ∈ {0, 1}, we have E = E∗∗. Thus, to minimize E with the binary constraint
can be replaced by finding the minimizer of the convex function E∗∗ with the
same constraint. This is also the main idea of the convex relaxation method for
product label spaces in [20]. When c � 0, in the two variables case, one can get

E∗∗(v1, v2) = cmax{v2 − v1, 0} − cv2.

Thus, based on the theorems 2, 3, and propositions 1, 2, we have the following
conclusion:

vi
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T

max{ai 0}

max{−ai 0}

(a) aivi

vi vj

S

T
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0

0

0

bij

(b) bij max{vj −
vi, 0}

vi vj

S

T

0

0

0

cij

cij

(c) −cijvivj

Fig. 1.
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Corollary 1 (multiplication function). The multiplication E(v) = −cn∏n
i=1 vi, vi ∈ {0, 1} is submodular if and only if the coefficient cn � 0. In partic-

ular, the 2 variables multiplication E(vi, vj) = −cijvivj , vi, vj ∈ {0, 1} is submod-
ular if and only if the coefficient cij � 0. Moreover, if cij � 0, the related binary
minimization problem corresponds to find the min-cut on the graph displayed in
Fig.1(c).

3 Graph Construction for PCLSM and CV Models

In this section, we shall use the results in section 2 to construct graphs to solve
PCLSM and CV models.

3.1 PCLSM

Now, we use the former method to minimize PCLSM with graph cut.
With the label function representation, the energy of multi-phase segmenta-

tion problem can be written as the following modified PCLSM [3]

EPCLSM (l) =

K−1∑
k=0

∫
Ω

δl,kd
kdx+ μ

∫
Ω

|∇l|dx, (1)

Here l : Ω → {0, 1, · · · ,K−1} is an unknown integer function whose K different
values are used to represent the K number of phases, and

δl,k =

{
1, l(x) = k,
0, l(x) �= k.

The first term is the data term which gives the classification criterion, and each
dk should depend on the input image I. For example, dk(x) = |I(x) − ck|λ,
λ = 1, 2 represents that the pixels are classified in terms of the intensity means
{ck}Kk=1. In this paper, we suppose dk � 0 are known. While the second term is
the regularization term and μ is a parameter which controls the balance of these
two terms. This functional is non-convex because of the existence of composite
function of delta function and l. However, with the help of the γ-super-level set
function

φγ(x) =

{
1, when l(x) � γ,
0, when l(x) < γ,

(2)

we have

φk(x)− φk+1(x) = δl(x),k, (3)

for k = 0, 1, · · · ,K − 1. Together with the generalized co-area formula [21]∫
Ω

|∇l|dx =

∫
Ω

(∫ +∞

−∞
|∇φγ(x)|dγ

)
dx,
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the functional can be formulated as

EPCLSM (φ) =

K−1∑
k=0

∫
Ω

(φk − φk+1)dkdx+ μ

K−1∑
k=1

∫
Ω

|∇φk|dx, (4)

where φ = (φ1, φ2, · · · , φK−1), φ1 � φ2 � · · · � φK−1, and φ0 = 1, φK = 0.
The functional (4) is now convex, compared with the original formulation

(1). The above process is the functional lifting method (FLM) that has been
developed in [10], but the data term is slightly different from [10]. The data
term here is linear but L1 in [10].

In discrete case, (4) can be globally minimized by graph cut. In the next, we
shall construct such a graph.

Let P be the set of mesh grid points in Ω, and N4
p be the set of 4 nearest

neighbors of p ∈ P. For Ω ⊂ R2, P = {(i, j) ⊂ Z2} and for each p = (i, j) ∈ P

N4
p = {(i± 1, j), (i, j ± 1)},

Let φkp , d
k
p be the function values of φk and dk at p ∈ P. If we choose the

anisotropic TV

TV1(φ
k) =

∫
Ω

|∇φk|1dx =

∫
Ω

(|∂x1φk|+ |∂x2φk|)dx1dx2

for the regularization term in (4), and employ the difference schemes

|∂x1φk| =
|∂x1φ

k|
2 +

|∂x1φ
k|

2 =
|φk

i+1,j−φk
i,j |

2 +
|φk

i−1,j−φk
i,j |

2 ,

|∂x2φk| =
|∂x2φ

k|
2 +

|∂x2φ
k|

2 =
|φk

i,j+1−φk
i,j |

2 +
|φk

i,j−1−φk
i,j |

2 ,

then the discrete formulation of (4) should be

EPCLSM−D(φ) =
K−1∑
k=0

∑
p∈P

(
φkp − φk+1

p

)
dkp +

μ

2

K−1∑
k=1

∑
p∈P

∑
q∈N4

p

|φkq − φkp|.

From propositon 1, φkpd
k
p,−φk+1

p dkp can be minimized by solving the min-cuts on
graphs displayed in Fig.2(a) and 2(b), respectively. According to the additivity
theorem 3 and combining the constraint condition φ1 � · · · � φK−1, the data
term at each pixel p ∈ P in the above energy can be minimized through searching
the min-cut on graph defined in Fig.2(c). For a cut (Vs,Vt), we say (Vs,Vt) is
a feasible cut when the cost of the cut C(Vs,Vt) < +∞. Besides, let us denote

B = {φ = (φ1, φ2, · · · , φK−1) : φk ∈ {0, 1}, 1 = φ0 � φ1 � φ2 � · · · � φK−1 � φK = 0}.
(5)

Then we have the following result:

Proposition 3. There is a one-to-one correspondence between the feasible cuts
of graph G = (V,E) defined on Fig.2(c) and the binary super-level set function
φ, and

min
(Vs,Vt)

C(Vs,Vt) = min
φ∈B

K−1∑
k=0

∑
p∈P

(
φkp − φk+1

p

)
dkp.
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As to the regularization term, since φkp, φ
k
q are binary and we have

μ

2

K−1∑
k=1

∑
p∈P

∑
q∈N4

p

|φk
q−φk

p| =
μ

2

K−1∑
k=1

∑
p∈P

∑
q∈N4

p

|φk
q−φk

p|2 =
μ

2

K−1∑
k=1

∑
p∈P

∑
q∈N4

p

(φk
q+φk

p−2φk
qφ

k
p).

By applying the additivity theorem 3 and corollary 1, the regularization term
can be minimized by solving the min-cut on the graph displayed in Fig.3.

Finally, we can get the graph for minimizing the energy EPCLSM−D by simply
adding the edge weights of graphs defined in Fig.2(c) and Fig.3(b) together
according to the additivity of the graph.

φk
p

S

T

dkp

0

(a)
φk
pd

k
p

φk+1
p

S

T

0

dkp

(b)
−φk+1

p dkp

φ1
p φ2

p φ3
p φK−2

p· · · φK−1
p

S

T

d1p d2p d3p dK−2
p dK−1

p
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p

+∞ +∞ +∞ +∞

(c)
∑K−1
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(
φk
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p
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dkp

Fig. 2. Graph construction for data term at each pixel p ∈ P in PCLSM
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Fig. 3. Graph construction for regularization term at each pixel p ∈ P in PCLSM. In
Fig.3(b), all the weights of red and blue edges (t-link) are 4μ, and all the weights of
black edges (n-link) are μ.
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3.2 CV Model

The Chan-Vese model [22] is a popular image segmentation model, a general-
ization of Chan-Vese model has been proposed in [2] to partition an image into
K parts by using log2K level set functions. In [4], vector binary functions were
used to represent the different phases and this has a very close relationship to
the things we are going to discuss here. For the general CV model with any
number of phases, we firstly derive a general formulation for multi-phase CV
model from the binary representation of integers. It is well known that for any
integer k ∈ {0, 1, · · · ,K − 1}, there is a mapping Λ : Z+ ∪ {0} → B such that
Λ(k) = bM−1

k · · · b1kb0k, where B is the set of the binary representation of integers.
Here bmk ∈ {0, 1},m = 0, · · · ,M −1, M = 'log2K(, and '·( is a ceiling operator.
For example, the binary representation of integer Λ(5) = 101. In essence, the CV
model is closely related to this binary representation. For simplification, we first
consider the K = 2M ,M = 1, 2 · · · case. Let us write the binary representation
of the label function l : Ω → {0, 1, · · · , 2M − 1} as Λ(l) = ψM−1 · · ·ψ0, and in
this case it is easy to check Λ is a 1-1 mapping, then

δl,k = δΛ(l),Λ(k) = δψM−1···ψ0,bM−1
k ···b0k =

M−1∏
m=0

δψm,bm
k
=

{
1, ψm = bmk ,
0, else.

Using the γ-super-level set function representation for ψm and let us denote

φm,b
m
k (x) =

{
1, when ψm(x) � bmk ,
0, when ψm(x) < bmk ,

for all m = 0, 1, · · · ,M − 1. Now, we have

φm,b
m
k − φm,b

m
k +1 = δψm,bm

k
,

and thus

δl,k =

M−1∏
m=0

(φm,b
m
k − φm,b

m
k +1).

In the above equation,

φm,0 = 1, φm,1 = ψm, φm,2 = 0,

since bmk , ψ
m ∈ {0, 1}, so the unknown variables are only φ·,1 = (φ0,1, φ1,1, · · · ,

φM−1,1).
If the segmentation phase K �= 2M , i.e. 2M−1 < K < 2M , then Λ may not be

a 1-1 mapping, which means that we may use serval labels to indicate one class.
This can be achieved by adding several dK−1 in the energy.

Replacing the δ function in (4) with the above expression and modifying the
regularization term, we get the multi-phase CV model for any K phases:

ECV−K(φ·,1) =
2M−1∑
k=0

∫
Ω

dk
M−1∏
m=0

(φm,b
m
k − φm,b

m
k +1)dx+ μ

M−1∑
m=0

∫
Ω

|∇φm,1|dx,

(6)
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where dk = dK−1 when K − 1 � k � 2M − 1. Let point out that the choice of dk

when K− 1 � k � 2M − 1 is not unique, for example, one can use dk =
∑K−1

k=0 d
k

K
for k > K − 1.

The discrete formulation of the regularization term in CV model (6) is

RCV−K(φ) =
1

2

M−1∑
m=0

∑
p∈P

∑
q∈N4

p

|φmq − φmp |,

which can be minimized by graph cut in terms of our earlier discussion.
Let i0 < i1 < · · · < im−1 be any m-combination of the set {0, 1, · · · ,M − 1}

and Sm be a set which contains the CmM differentm-combinations. For simplicity,
we rewrite φm,1 as φm. In the discrete case, the data term in CV model (6) can
be expressed as

DCV −K(φ)=
∑

p∈P

⎛

⎝d0p +
M∑

m=1

∑

i0,i1,··· ,im−1∈Sm

1∑

t0=0

1∑

t1=0

· · ·
1∑

tm−1=0

c
im−1,··· ,i0
tm−1,··· ,t0φ

i0
p φ

i1
p · · ·φim−1

p

⎞

⎠ ,

where the coefficients

c
im−1,··· ,i0
tm−1,··· ,t0 = (−1)(m−∑m−1

j=0 tj) d
∑m−1

j=0 tj2
ij

p .

Now, the data term DCV−K only contains some multiplying functions, we can
use the former theorems. According to proposition 1, corollary 1 and theorem 3,
we can get the following result

Proposition 4. The K-phases discrete CV model can be exactly minimized by
graph cut if the coefficients

∑1
t0=0 · · ·

∑1
tm−1=0 c

im−1,··· ,i0
tm−1,··· ,t0 � 0 for all 2 � m �

M .

In particular, when K = 3, M = 'log2 3( = 2, then

DCV −3(φ) =
∑

p∈P

(
d0p + (c00 + c01)φ

0
p + (c10 + c11)φ

1
p + (c1,00,0 + c1,00,1 + c1,01,0 + c1,01,1)φ

0
pφ

1
p

)
=

∑
p∈P

(
d0p + (−d0p + d1p)φ

0
p + (−d0p + d2p)φ

1
p + (d0p − d1p)φ

0
pφ

1
p

)
.

Similarly, for K = 4,

DCV −4(φ) =
∑

p∈P

(
d0p + (c00 + c01)φ

0
p + (c10 + c11)φ

1
p + (c1,00,0 + c1,00,1 + c1,01,0 + c1,01,1)φ

0
pφ

1
p

)
=

∑
p∈P

(
d0p + (−d0p + d1p)φ

0
p + (−d0p + d2p)φ

1
p + (d0p − d1p − d2p + d3p)φ

0
pφ

1
p

)
.

Thus we have the following conclusion:

Corollary 2. The 3-phase discrete CV model can be exactly minimized by graph
cut if and only if d0 − d1 � 0. Similarly, the condition of the 4-phase discrete
CV model is d0− d1− d2+ d3 � 0. When these condition holds, for each pixel p,
DCV−3(φp),DCV−4(φp), μRCV−3 or 4(φp) can be minimized by finding the min
cuts on graphs defined on Fig.4(a), Fig.4(b) and Fig.4(c), respectively.
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(d) The continuous relaxation max-flow
for CV (data term).

Fig. 4. Graph construction for 3,4-phase CV model. In Fig.4(c), all the weights of red
and blue edges (t-link) are 4μ, and all the weights of black edges (n-link) are μ.

Therefore, to minimize the 3 or 4-phase discrete model can be implemented by
solving the min cut of the graph which is constituted by putting the graphs
defined by data term and regularization term together.

In 4-phase case, the corollary 2 coincides to result in [1, 8]. Here, we extend
the results to any phases CV model, which is not easy to handle with the method
of [1, 8].

In fact, when the condition
∑1
t0=0 · · ·

∑1
tm−1=0 c

im−1,··· ,i0
tm−1,··· ,t0 � 0 in proposition

4 holds, the non-convex term −φi0p φi1p · · ·φ
im−1
p can be replaced by its convex en-

velope max{−φi0 ,−φi1 , · · · ,−φim−1} since these two functionals have the same
minimizer in the binary case. As in [1], we call this condition as convex condition.
To get a convex model, one can relax the non-convex constraint φi ∈ {0, 1} to
an interval [0, 1]. In the continuous case, we can get a convex model for K-phase
CV model.

As for the convex condition in proposition 4, it depends on the segmentation
data. In the 4-phase case, it have been theoretically analyzed in [8]. In many real
image segmentation problems, it may hold that 4 cluster are sufficient. However,
we note that this condition would become stricter when the number of the phases
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increases, thus in the discrete case, the K-phase CV model may not be exactly
optimized by graph cut if the segmentation data is very bad (fails to satisfy the
convex condition). To overcome this flaw, one may use an approximation graph

cut method by cutting off the coefficient
∑1
t0=0 · · ·

∑1
tm−1=0 c

im−1,··· ,i0
tm−1,··· ,t0 as 0 when

the condition fails. However, such an approximation method may not be the
original CV model. Here, we shall propose another continuous relaxation max-
flow method, which is also a convex model but without any convex conditions.
Refer to [18] in this proceedings for another method to derive a convex relaxation
for the multiphase CV model. The relaxation of [18] is tight for any phases, but
need conditions to guarantee convexity.

4 Continuous Convex Relaxation Max-Flow for CV

The continuous max-flow method for 2-phase CV model and Potts model has
been proposed by Yuan etc. in [15, 23]. It has been extended to 4-phase CV
model by Bae-Tai in [1] with the earlier mentioned convex condition. Here, we
propose a convex continuous max-flow method for any phases CV model but
without any convex conditions.

For multi-phase CV model, the regularization term is convex and to convert it
to continuous max-flow would be the same as [1,15,23,24]. Here we only discuss
the data term.

Firstly, we construct a graph displayed in Fig.4(d): for K phases CV model,
we copy M = 'log2K( vertices vm,m = 0, · · · ,M − 1 at each pixel x; let us
denote the edges between source s and vertex vm, sink t and vertex vm as qm0
and qm1 , respectively. For k = 0, 1, · · · ,K − 1, let the binary representation of
k be Λ(k) = bM−1

k · · · b0k. We impose the capabilities of these edges satisfy the
following condition

M−1∑
m=0

qmbmk � dk, k = 0, 1 · · · , 2M − 1, (7)

where dk = dK−1 when K − 1 � k � 2M − 1.
The max-flow problem is to find the maximum capabilities of the flows which

stream from source s to sink t under a flow preserving condition and the maxi-
mum capabilities condition (7). Together with the graph defined in Fig.4(d) and
the regularization term, the proposed max-flow problem for any K-phase CV
model can be written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
max

q0,q1,p∈C

∫
Ω

M−1∑
m=0

qm1 (x)dx,

qm0 (x)− qm1 (x) −∇ · pm(x) = 0,m = 0, 1, · · · ,M − 1,∑M−1
m=0 q

m
bmk

(x) � dk(x), k = 0, 1 · · · , 2M − 1.

(8)
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Here, q0 = (q00 , · · · , qM−1
0 ), q1 = (q01 , · · · , qM−1

1 ), the second equation is the flow
preserving condition of vertex vm, in which p = (p0, · · · ,pM−1) ∈ C = {p :
||pm||∞ � μ,m = 0, 1, · · · ,M − 1.} is the associated flow function for the TV
term in CV model, and the third inequality is just the maximum capabilities
condition (7).

Applying the Lagrange multiplier method and let φ = (φ0, · · · , φM−1) be the
M Lagrange multipliers, then the problem (8) can be formulated as the following
saddle point problem:⎧⎪⎨
⎪⎩min

φ
max

q0,q1,p∈C

∫
Ω

M−1∑
m=0

(φm(x)qm0 (x) + (1− φm(x))qm1 (x)− φm(x)∇ · pm(x)) dx,∑M−1
m=0 qmbm

k
(x) � dk(x), k = 0, 1 · · · , 2M − 1.

(9)

In the above saddle point problem, the term J (φ) = max
q0,q1,p∈C

∫
Ω

M−1∑
m=0

φm(x)qm0 (x)

+(1−φm(x))qm1 (x)dx with the constraint condition (7) is associated to the data
term DCV−K(φ) in CV model (6). For this two terms, we can prove that they
have the same global minimization.

Proposition 5. If φ∗ is a binary minimizer of DCV−K(φ), then φ∗ is also a
minimizer of J (φ) under constraint (7). Moreover, DCV−K(φ∗) = J (φ∗) =∫
Ω
min{d0(x), · · · , d2M−1(x)}dx.

As to find the saddle point of (9), it can be done by projection gradient method
since the functional is linear and the constraint sets are convex for each variable.
We do not plan to list the details of the algorithm here.

5 Experimental Results

In this section, we shall give some numerical examples with the proposed method.
The first one is to partition a synthetic image in Fig. 5(a) into 3 parts. The
PCLSM, CV model and continuous convex relaxation max-flow (CCRM) of CV
are applied to segment this image. For the PCLSM and CV, we use the con-
structed graph cut to solve them. The final segmentation results are shown in
Fig.5(b)-Fig.5(d), respectively. As can seen from the figure, the result produced
by CCRM is smoother than the discrete methods. This is due to the fact that
we may employ an isotropic TV in the continuous case but not with graph cuts.
At the current CPU program implementation, the discrete graph cut method
is faster than CCRM. However, the discrete graph cut algorithm is not easy to
work with the parallel program, thus the continuous method CCRM with GPU
implementation would be faster than the discrete ones. The second example dis-
played in Fig. 6 shows the segmentation results of applying the proposed method
to a real brain MRI. In this figure, the brain image is partition into 4 parts. As
can be found again, the boundary in result of CCRM is smoother than others.
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(a) Size: 100 × 100 (b) PCLSM (c) CV (d) CCRM

Fig. 5. A comparison between discrete graph cut algorithm and continuous convex
relaxation max-flow (CCRM). The cost of the CPU time for PCLSM, CV and CCRM
are 0.0352s,0.3504s,0.4282s, respectively.

(a) Size:591×709 (b) PCLSM (c) CV (d) CCRM

Fig. 6. Different algorithms for real images. The regularization parameters for each
method are manually chosen. The clusters is 4.

6 Conclusion and Discussion

We have proposed a unified method to minimize the multiphase image segmen-
tation PCLSM and CV models with discrete graph cut and continuous max-flow.
This method is developed by considering the convexification of the multiplying
functions with graph cut method. For PCLSM, we construct a graph which is
different from the earlier Ishikawa method [7]. For CV models, we extend the
result in [1,6] to any phases and propose a saddle point problem for any phases
CV model. Compared the original CV method, the proposed convex relaxation
max-flow method is convex and thus it can get the global minimization. More-
over, we show that the key idea of CV model is to use the binary expression to
represent a integer, thus one can extend it to any n-decimal numeral system .

Acknowledgements. Liu was supported in part by National Natural Science
Foundation of China (No. 11201032), and Leung was supported in part by the
HKUST grant RPC11SC06.
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Abstract. We address the problem of segmenting an image into a
previously unknown number of segments from the perspective of graph
partitioning. Specifically, we consider minimum multicuts of superpixel
affinity graphs in which all affinities between non-adjacent superpixels
are negative. We propose a relaxation by Lagrangian decomposition and
a constrained set of re-parameterizations for which we can optimize ex-
actly and efficiently. Our contribution is to show how the planarity of
the adjacency graph can be exploited if the affinity graph is non-planar.
We demonstrate the effectiveness of this approach in user-assisted image
segmentation and show that the solution of the relaxed problem is fast
and the relaxation is tight in practice.

1 Introduction

The formalization of the image segmentation problem as a multicut problem
has recently attracted considerable attention [2,3,6,9,10,15,17]. This problem
consists in finding a partition of a weighted superpixel adjacency graph into
connected components (segments) such that the set of edges that straddle differ-
ent segments (the multicut) has minimum total weight. A positive edge weight
penalizes and a negative edge weight rewards all segmentations in which the con-
nected superpixels are in different segments. The weights depend on the image
in a way this is typically learned from data. They are called an affinity.

With the notable exception of [10], recent work has focused on the problem
described so far in which affinities are only defined for pairs of adjacent su-
perpixels. This has been motivated by three reasons. First and primary is that
affinities between adjacent superpixels can be estimated reasonably well with
methods such as the global probability of boundary [4]. Second is that the num-
ber of affinities grows linearly in the number of superpixels which is beneficial
for modeling and optimization. Third is that superpixel adjacency graphs are
planar which affords a relaxation of the multicut problem that can be solved
efficiently and is tight in practice [17], although the multicut problem for planar
graphs remains NP-hard [5].
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(a) (b)

Fig. 1. a) In natural images, we often observe pixels at different locations that clearly
belong to different segments but no clear position where the segment boundary should
be located. This occurs whenever there is a smooth transition from the color of one
region to another color of another region. In this case, affinities between adjacent super-
pixels do not provide strong cues which leads to errors in the segmentation. We show
in Section 5 that negative affinities between non-adjacenct superpixels can overcome
this problem. b) At the same time, positive affinities between non-adjacent superpixels
do not convey strong cues because separate segments can have similar texture.

In this paper, we study the generalization of the problem that allows for
negative affinities between non-adjacent superpixels. The objective is to find a
segmentation of the superpixel adjacency graph such that the sum of affinities
between superpixels in different segments in minimal. We propose a relaxation
by Lagrangian decomposition and a constrained set of re-parameterizations for
which we can optimize exactly and efficiently. We demonstrate the effectiveness
of this approach in user-assisted image segmentation and show that the solution
of the relaxed problem is fast and the relaxation is tight in practice.

Our concentration on negative non-local affinities is motivated by the following
observations: In natural images, we often observe pixels at different locations that
clearly belong to different segments but no clear position where the segment
boundary should be located. This occurs whenever there is a smooth transition
from the color of one region to another color of another region (Fig. 1a). In this
case, affinities between adjacent superpixels do not provide strong cues which
leads to errors in the segmentation. We show in Section 5 that negative affinities
between non-adjacenct superpixels can overcome this problem. At the same time,
positive affinities between non-adjacent superpixels do not convey strong cues
because separate segments can have similar texture (Fig. 1b). A conceptual
difficulty of non-local positive affinities is discussed in Appendix A.1.

2 Related Work

The multicut problem is known to be NP-complete, [7], even for planar graphs
[5]. In computer vision, this combinatorial optimization problem has been used
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to formalize image segmentation. To date, multicuts of superpixel adjacency
graphs [2,17] are among the closest, in terms of partition metrics, to the man-
made segmentations in the Berkeley Segmentation Benchmark [4].

Recent work on the multicut problem for computer vision application has af-
forded an exact cutting plane algorithm for general graph that is applicable if
edge weights are strong [3], efficient greedy algorithms suitable for large prob-
lems and problems where edge weights are weak [6], as well as diverse linear
programming (LP) relaxations [9,10,12,15,17]. The Lagrangian decomposition
we propose in this paper is built on [17] which considers optimal multicuts of
planar graphs. Our decomposition extends [17] by allowing for the introduction
of negative affinities between non-adjacent superpixels.

3 Image Segmentation by Multicuts

We now introduce the mathematical framework for our discussion. We consider a
graph (V,E) in which vertices indicate superpixels and weighted edges quantify
an affinity between superpixels. A partition of the node set is encoded as a
labeling x ∈ {0, 1}E of edges. We use xe = 0 to indicate that the pair of vertices
connected by edge e are in the same segment and use xe = 1 to indicate that the
pair are in separate segments. We call edge e uncut if xe = 0 and cut if xe = 1.
The multicut of a partition is the set of all edges that are cut.

Edge weights θ ∈ RE define an objective function over partitions. Here, θe is
called the affinity of the superpixels connected by the edge e. Negative values
indicate a reward for superpixels to be in separate segments and positive values
indicate a cost for superpixels to be in separate segments. A partition that
minimizes the sum of the affinities of cut edges is called a minimum partition.
The corresponding multicut is called a minimummulticut. We write the objective
value of a multicut (indicated by) x as the inner product θTx.

Not all binary labelings x correspond to partitions. Consider a graph of three
superpixels a, b, c which are connected by edges ab, ac, bc. Consider also the
labeling xab = 1, xac = 0, xbc = 0. This labeling states that superpixels a and b
are in separate segments while saying that both a and b are in the same segment
as c, which is contradiction.

A necessary and sufficient condition for a labeling to define a partition is that
there are no edges e such that xe = 1 within a connected component [8]. This
condition can be written as a set of inequalities as follows: For every cycle of
edges c and every edge f in c, if xf = 1, then at least one other edge in the cycle
is cut. These inequalities are called the cycle inequalities. The multicut problem
can be written as an integer program with cycle inequalities.

min
x∈RE

θTx (1)

subject to
∑
e∈c\f

xe ≥ xf ∀c ∈ cycles(V,E) ∀f ∈ c (2)

xe ∈ {0, 1} ∀e ∈ E .
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a

b

a

b

a

b

Independent edge Planar multicut Two cycle
sub-problem sub-problem sub-problems

Fig. 2. We propose a Lagrangian decomposition of the multicut problem that consists
of the following sub-problems: 1. the independent edge sub-problem, 2. the planar
multicut sub-problem, 3. a set of cycle sub-problems.

4 Lagrangian Decomposition

We now propose a Lagrangian decomposition of the multicut problem that
consists of the sub-problems depicted in Fig. 2. In the independent edge sub-
problem, edges can be cut or uncut independently. In the planar multicut sub-
problem, any solution must be a partition of the vertices and thus obey the
cycle inequalities. Affinities between non-adjacent superpixels are not included
in the planar multicut sub-problem. In a cycle sub-problem an edge between
non-adjacent superpixels is associated with a path between the corresponding
vertices of that edge. A cycle sub-problem enforces that the number of edges cut
in that cycle is not equal to one, thus enforcing the cycle inequalities for that
cycle.

We use θie, θpmc, and θc to denote the affinities of the independent edge,
planar multicut and the c-th cycle sub-problem, respectively. The corresponding
solutions are xie, xpmc, xc. For short hand, we refer to edges between adjacent
superpixels as planar edges and edges between non-adjacent superpixels as non-
planar edges. We use θNP to denote the affinities of the non-planar edges and
θP to denote the affinities of planar edges. We index non-planar edges with
ê and planar edges with e. Given the sub-problems, we write the Lagrangian
decomposition below.

max
[θie,θpmc,θc ∀c]

min
xie

(θie)Txie + min
xpmc

(θpmc)Txpmc +
∑
c∈C

min
xc

(θc)Txc (3)

subject to

θie + θpmc +
∑
c∈C

θc = θ (4)

4.1 The Planar Multicut Sub-problem

Each of the sub-problems is tractable, except for the planar multicut sub-problem
which is NP-hard [5]. To make this sub-problem tractable, we constrain the re-
parameterization. Specifically, we enforce that the minimal objective value of



270 B. Andres et al.

the planar multicut sub-problem is zero1. Consequently, the empty multicut is
optimal and thus, optimization is tractable. In order for the objective value of
the planar multicut sub-problem to be zero, it is sufficient to enforce that every
2-colorable segmentation2 has a non-negative value [17].

We introduce a matrix Z in which each row corresponds to a 2-colorable seg-
mentation. We index 2-colorable segmentations by r. For every index r and every
edge e, Zre = 1 indicates that e is cut in the r-th 2-colorable segmentation. The
constraint that every 2-colorable partition has a non-negative value is formalized
below.

Zθpmc ≥ 0 (5)

4.2 The Independent Edge Sub-problem

The affinities θie in the independent edge sub-problem have important proper-
ties. First, we establish θie ≤ 0 for every e ∈ E. Suppose there exists an edge
e such that θiee > 0. Then, xiee = 0 in any optimal solution of the independent
edge sub-problem. Notice that setting θpmce := θpmce + θiee and θiee := 0 does
not loosen the bound of Lagrangian decomposition and does not decrease the
optimal value of the planar multicut sub-problem. Thus, we can restrict the
re-parameterization to allocate non-positive affinity to every edge in the inde-
pendent edge sub-problem. Furthermore, this means we can take the value of
the independent edge sub-problem to be the sum of the terms in θie as cutting
every edge in the independent edge sub-problem is an optimal solution.

Another important property is that the affinity in the independent edge sub-
problem for a given edge e is lower bounded by min(θe, 0). This property is
established in Appendix A.2

4.3 The Cycle Sub-problems

The affinities θc in the cycle sub-problem have two importrant properties at the
optimal re-parameterization. These properties are established in Appendix A.3.

The first property is that the values of the affinities of the planar edges in a
given cycle sub-problem are exactly opposite of the value of the affinity of the
corresponding non-planar edge. Thus, the affinities in each cycle sub-problem
are defined by one parameter. We denote the parameter associated with the
c-th cycle as ψc. The affinity of the non-planar edge is −ψc and the affinity
of each planar edges is ψc. We use ψ to denote the concatenation of all ψc.
Second that the affinity of the non-planar edges is strictly non-positive ψc ≥ 0.
Notice also that the optimal value of each cycle sub-problem is zero so the term
corresponding to them in (3) can be removed.

1 Notice that we impose a requirement on θpmc not a requirement on xpmc.
2 A 2-colorable segmentation is a partition of the set of superpixels into connected
subsets (segments) such that every segment can be given a different color from all
adjacent segments, using only two colors overall.
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The second property is that the sum of the affinities of the copies of a given
non-planar edge ê across cycle sub-problems can be no less than θNP

ê . We use a
matrix W to define this constraint. We index W by ê, c where Wêc = 1 indicates
that non-planar edge ê is present in the c-th cycle sub-problem. The constraint
is written formally below.

−Wψ ≥ θNP (6)

4.4 Value of a Re-parameterization

We now discuss the value of a given re-parameterization. Since the optimal
values of the cycle sub-problems and the planar multicut sub-problem are zero,
the value of a given re-parameterization is the optimal value of the independent
edge sub-problem. If we re-write the re-parameterization condition in (4), we
notice that θie = θ − θpmc −

∑
c θ
c. We now discuss the mapping of ψ values

to
∑
c θ
c. This is done via a matrix operation Y ψ. Matrix Y is indexed by e, c

where Yec = 1 indicates that planar edge e is present in cycle c. We write the
value of a re-parameterization that obeys all of the constraints discussed in this
section below.

min
Xie

(θie)tX ie = 1T θie = 1T (θP − θpmc − Y ψ) + 1T (ψ + θNP) . (7)

The term 1T (θP − θpmc − Y ψ) corresponds to the value of the contribution to
the objective from planar edges. The term 1T (ψ+θNP) corresponds to the value
of the contribution to the objective from non-planar edges. We now write the
constraint that each planar edge have non-positive affinity in the independent
edge sub-problem.

θP − θpmc − Y ψ ≤ 0 (8)

We use (6) to ensure that each non-planar edge has non-positive affinity in the
independent edge sub-problem. We write the constraint that the affinity in the
single edge sub-problem for a given edge e is lower bounded by min(θe, 0) as
follows.

min([0, θP]) ≤ θP − θpmc − Y ψ (9)

In summary, the lower bound of Lagrangian decomposition is the optimal value
of the linear program below.

max
θpmc,ψ

1T (θP − θpmc − Y ψ) + 1T (ψ + θNP) (10)

subject to Zθpmc ≥ 0 (11)

−Wψ ≥ θNP (12)

θP − θpmc − Y ψ ≤ 0 (13)

min([0,−θP]) ≤ −θpmc − Y ψ (14)

ψ ≥ 0 (15)
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4.5 Optimization of the Lower Bound

Since we can not enumerate all of the constraints of the form Zθpmc ≥ 0 or
enumerate all the cycle sub-problems, we adopt a cutting plane approach in
the dual. Given a set of cycle sub-problems and a set of 2-colorable partitions
Z, we solve the LP in (10)–(15), then compute the most violated constraint
corresponding to a 2-colorable partition. This is done by minimizing the following
objective over the set of 2-colorable partitions which we denote as P2 .

min
X̄∈P2

θpmcX̄ (16)

We can compute the minimum value 2-colorable segmentation X̄ in time
O(N3/2 log(N)) where N is the number of planar edges [14]. This computa-
tion is fast in practice (less than a second in all our applications). For every
segment in X̄, we add the constraint corresponding to the cut that separates
this segment from the other segments. We repeat this until the minimum value
2-colorable partition has nearly 0 value. At any point in optimization, we can
lower bound the optimal value of the planar multicut sub-problem by 3/2 times
the value of the optimal 2-colorable partition as described in [17].

Next, we solve the dual of the Lagrangian decomposition, which provides a
non-integral partition. We then find violated cycle inequalities in the non-integral
partition and add the corresponding sub-problems to Lagrangian decomposition.
The addition of cycle sub-problems corresponds to adding columns to Y and W .
The dual of Lagrangian decomposition is written below. It is derived in the
supplement. We use φ to simplify notation where φ = min(0,−θP).

min
γ≥0,ω≥0,δ≥0,β≥0

1T (θP + φ+ θNP)− φTZTγ

− (θNP)Tω + ((−θP)T − φT )β (17)

subject to (ZTγ + β) = 1 + δ (18)

WTω ≥ Y Tβ − Y T 1 + 1− Y T δ (19)

The vector ZTγ defines a non-integral partition. The vector ω determines which
non-planar edges are cut. Here ωê = 1 indicates that edge ê is uncut and ωê = 0
indicates that edge ê is cut (not a typo). Violated cycle inequalities are then
found in this partition and the corresponding cycle sub-problems are added to
Lagrangian decomposition. Violated cycle inequalities only correspond to cy-
cles involving a non-planar edge. Violated cycle inequalities can be found using
Dijkstra’s algorithm to find a path between the superpixels connected by any
non-planar edge ê for which the fractional number of cut edges is minimal. If
the fractional number of cut edges on this path is less than 1 − ωê, we add the
cycle sub-problem containing this path to the Lagrangian decomposition. The
iteration terminates when no violated cycle inequalities are found in Ztγ.
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4.6 Constructing a Segmentation

We now consider two approaches for converting of ZTγ to an integral partition.
The first approach, which is called simple rounding, is based on rounding ZTγ to
a partition. We cut every edge e such that (ZTγ)e ≥ T where T is a parameter.
We uncut all cut edges within connected components. To select the optimal T
we can try all unique values of ZTγ or a fixed number of values uniformly spaced
over the interval [0, 1]. Notice that ZTγ ≥ T defines which non-planar edges are
cut.

For a more principled approach, we solve an integer program that constructs
a partition using a weighted sum of the 2-colorable segmentations with non-zero
γ. In practice, the number of 2-colorable segmentations with non-zero γ is small
(tens in our applications). We now discuss the integer program explicitly.

We use Ẍ to describe the integral partition that we are constructing. We use
a vector γ̈ to describe a fractional multicut. We index γ̈ with r where γ̈r defines
how much of the r-th 2-colorable partition is included in X . Vector γ̈ has only
indices corresponding to non-zero indices of γ. We use ω̈ to define which of the
non-planar edges are uncut. We use ω̈ to penalize non-planar edges being uncut.

Our ILP is built on the following constraints. We enforce that a planar edge
with negative affinity e can only be cut if the multicut defined by γ̈ cuts this
edge at least once. We enforce that a planar edge with positive affinity e can
only be uncut if, for every partition r, Zrêγ̈r = 0. We enforce that a non-planar
edge ê can only be cut in X if the cycle inequalities from the primal LP are
satisfied. We write this optimization as an ILP below. The solution of this ILP
does not make up a substantial portion of the computation time in practice.

min
Ẍ,ω̈,γ̈

(θPe )
T Ẍe − (θNP)T ω̈ + 1T θNP (20)

s.t. Ẍe ≤
∑

r s.t. Z(r,e)=1

γ̈r ∀e s.t. θe < 0 (21)

γ̈c ≤ Ẍe ∀r s.t. Z(r, e) = 1; ∀e s.t. θe ≥ 0 (22)

ω̈ê ≥ 1−
∑

r s.t. [∃e∈c Z(r,e)=1]

γ̈e; ∀c s.t. W (ê, c) = 1 (23)

Ẍe ∈ {0, 1} ∀e (24)

ω̈ê ∈ {0, 1} ∀ê (25)

γ̈r ∈ [0, 1] ∀r (26)

Once Ẍ is constructed, cut edges within connected components are uncut and
the partition is returned. In practice, the objective value of the segmentation ob-
tained by solving the ILP is nearly the same as the lower bound (cf. Section 5.2).
The entire Lagrangian decomposition algorithm is detailed in Algorithm 1.
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Algorithm 1. Semi-Planar Multicuts

Initialize Z=[], W=[], Y=[];
while true do

while true do
Solve LP in (10)
x̄ ←arg minx2c

∑
e −λexe

Z ← [Z ∪ x̄]
if

∑
e −λex̄e ∼ 0 then

break
end

end
γ ← solve LP in (17)
for ê do

Use Dijkstra’s algorithm to find a path between the superpixels
connected by edge ê for which the fractional number of cut edges is
minimal. If this number is less than 1− ωê, add a cycle sub-problem
corresponding to this path to the Lagrangian decomposition.

end

end
γ ← solve LP in (17)
round ZT γ using ILP in (20) or apply simple rounding on ZT γ to produce a
final segmentation X.

5 Application

5.1 Effectiveness

To demonstrate the effectiveness of Algorithm 1, we implement a workflow for
inter-active image segmentation that requires only trivial user input for both the
joining and cutting of segments. In the beginning, the user is presented with an
optimal multicut of a superpixel segmentation. This multicut is computed using
only affinities between adjacent superpixels. Subsequently, any combination of
two types of input is accepted to correct errors in the segmentation: 1. Scribbles
on the image to indicate pixels that belong to the same segment, 2. Pairs of
points in the image to indicate pixels that belong to different segments.

The evidence provided by scribbles is incorporated into the multicut prob-
lem by constraining variables to 0. The evidence provided by pairs of points is
incorporated as a non-local affinity with sufficiently large negative weight. Al-
ternatively, these affinities could also be incorporated as hard constraints. Hard
constraints are processed similarly to non-local affinities with finite negative
weight, except that the corresponding variable is fixed to 1 and the constant
contribution to the objective function, −∞, is ignored. Either way, every pair of
points excludes from the solution set all segmentations in which the points are
in different segments.



Segmentation of Non-planar Superpixel Affinity Graphs 275

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

50

100

150

200

Upper Bound on Factor of Error

N
um

be
r 

of
 In

st
an

ce
s

Fig. 3. The fraction by which the
value of a segmentation output by
Alg. 1 deviates from the global op-
timum (first axis) is small for a
large number of instances (second
axis). 132 of 200 instances are solved
to optimality. For 170 of the 200
instances, the error is less than
one percent. Depicted is the upper
bound on the error provided by the
gap between the value of a segmen-
tation and the LP lower bound.
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Fig. 4. Alg. 1 terminates after
4.73 s in the mean, 4.16 s in the me-
dian and 28.05 s in the worst case
of the 200 instances. This is signif-
icantly faster than the an exact al-
gorithm for general graphs [3] that
takes 51.32 s in the mean, 7.79 s in
the median and 3307.42 s (55 min-
utes) in the worst case.

At any point in time, the user can request that the augmented problem with
additional constraints be solved to obtain an updated segmentation. There is no
requirement for the user to focus on one or the other type of errors, nor to prefer
one over the other type of input. Results that confirm the effectiveness of the
algorithm and the consistency of our implementation are depicted in Fig. 5.

5.2 Quality of Bounds and Runtime

To examine the bounds provided by Alg. 1 and to compare its runtime to that of
the exact algorithm for general graphs [3], we set up segmentation problems with
negative non-local affinities for the 200 test images of the BSD500 benchmark. To
ensure that experiments are unbiased, i.e. not subjective to specific user input,
we construct these problems automatically as follows.

Starting with the same superpixels and affinities between adjacent superpixels
as in [17], we search the proximity of every superpixel for the superpixel whose
mean color differs maximally from that of the first superpixel. For every image,
we add the 50 strongest non-local affinities. Both, our implementation of Alg. 1
and the optimized C++ implementation [1] of [3], use IBM ILOG Cplex as an LP
and ILP solver, respectively. We use Blossom V [11] for computing the optimal
2-colorable partitions.

The fraction by which the value of a segmentation output by Alg. 1 deviates
from the global optimum is depicted on the first axis in Fig. 3. More precisely,
it is the upper bound on this deviation provided by the gap between the value
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of a segmentation and the LP lower bound. This gap is zero for 132 of the 200
benchmark images, indicating that these problems are solved to optimality by
Alg. 1. For 170 of the 200 instances, the error is less than one percent.

The distribution of runtimes for the 200 problems is depicted in Fig. 4. Unlike
the exact algorithm for general graphs whose worst-case runtime is prohibitive,
Alg. 1 is fast enough for inter-active applications.

6 Conclusions

We motivated the use of negative affinities between non-adjacent superpixels in
the multicut formulation of the image segmentation problem. For the resulting
NP-hard combinatorial optimization problem, we proposed a relaxation by La-
grangian decomposition and a constrained set of re-parameterizations for which
we can optimize exactly and efficiently by solving an LP. We implemented a cut-
ting plane approach in the dual, along with an algorithm to construct segmen-
tation from fractional solutions. This algorithms finds optimal to near optimal
solutions of segmentation problems with non-local negative affinities for natural
images. In our applications, it is more than 10 times faster on average than an
exact algorithm based on integer programming.

A Appendix

A.1 Difficulty of Positive Non-local Terms

We now consider why positive non-local terms are difficult. Let v and w be
superpixels connected by a positive non-local term whose corresponding edge is
xk. Let S(v, w) the set of all rings such that if all edges in a particular ring are
cut then the positive edge xk must also be cut. The corresponding addition to
the LP relaxation is written below.

∀r ∈ S(p1, p2) xk +
∑
e∈r

xe ≤ |r| . (27)

These constraints that appear elegantly in the form of separator inequalities in
[13] are remarkably fragile and almost always result in fractional solutions to
even trivial multicut problems. Moreover, these fractional solutions are uninfor-
mative with regards to what the optimal solution is. As an example, consider
five superpixels sa, sb, sc, sd, se in the plane. Let sa be surrounded on all sides
by sb, sc, sd, let se be a neighbor of sb, sc, sd and disconnected from sa. Also, let
sa, and se be paired by an infinitely strong positive term. The remaining terms
are described as follows:

θsa,sb = θsa,sc = θsa,sd =∞ (28)

θse,sb = θse,sc = θse,sd = −1 (29)

θsb,sc = θsc,sd = θsb,sd =∞ (30)

Clearly, the optimal solution is to put each superpixel in the same connected
component, and the cut cost is zero. However, the optimal fractional solution is
to cut each repulsive edge with value −2/3, and objective value is -2.
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Fig. 5. To demonstrate the effectiveness of Algorithm 1, we implement a workflow for
inter-active image segmentation that requires only trivial user input for both the joining
and cutting of segments. Presented with an initial and typically imperfect segmentation,
the user can scribble on the image (red) to indicate pixels that belong to the same
segment and click on pairs of points (green) that belong to different segments. The
latter are incorporated as non-local negative affinities.

A.2 Lower Bound on Affinities in the Independent Edge
Sub-problem

We now establish that min([0,−θP]) ≤ −θpmc−Y ψ. To do this, we rely on a the-
orem established in [16] which states that given affinities θ for an instance of the
planar multicut problem, the affinities in the planar multicut sub-problem−θpmc
are lower bounded by min([−θ, 0]). In [16], no non-planar edges are considered.
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Given optimal parameters ψ, we have a description for a planar multicut
problem instance. Thus, the parameters of the independent edge sub-problem
and the planar multicut sub-problem satisfy the following inequality.

min([−θP + Y ψ, 0]) ≤ −θpmc . (31)

Suppose that, at the optimal re-parameterization, the constraint

min([0,−θP]) ≤ −θpmc − Y ψ (32)

is not satisfied. Thus, there must be a planar edge e such that the constraint is
unsatisfied for. In this case, there must exist a cycle sub-problem c containing e
such that ψce ≥ 0. We now define α and σ as follows.

α =−min([−θe, 0])− θpmce − Y ψ (33)

σ =max([0, ψc + α])− ψc . (34)

Now set ψc = max([0, ψc + α]). For each edge f �= e in c set θpmcf = θpmcf − σ.
Notice that the bound remains constant, no additional edges are unsatisfied
and the constraint of the form min([0,−θPe ]) ≤ −θpmce − (Y ψ)e is −σ closer to
being satisfied. This process can be repeated until the constraint min([0,−θP]) ≤
−θpmc − Y ψ is satisfied for all edges.

A.3 Properties of Cycle Sub-problems

We now consider the constraints (6) on the parameters of the cycle sub-problems
discussed in Section 4.3. We establish that they do not loosen the lower bound of
Lagrangian decomposition as follows. Assume that we have maximized the lower
bound of Lagrangian decomposition and that these constraints are violated. We
then alter the re-parameterization without loosening the bound so as to enforce
the relevant constraints for a single cycle. This process can be repeated for every
cycle in which the constraints are violated.

Consider a given cycle sub-problem c and no structure in the affinities. Sup-
pose that there are zero or two or more edges with non-positive affinity. If this is
the case, move all negative affinity to the independent edge sub-problem and all
positive affinity to the planar multicut sub-problem. If the non-planar edge has
positive affinity, move the positive affinity to other copies of that edge in cycle
sub-problems and the independent edge sub-problem. Preserve that the affinity
in the independent edge sub-problem for each edge is non-positive. Finally, re-
move cycle sub-problem c from the decomposition. Notice that these alterations
to the re-parameterization do not loosen the lower bound of the decomposition.

Now consider the case where there is one negative affinity edge in cycle sub-
problem c. Set the affinity of the edge with negative affinity to the opposite
of the affinity of the edge with the smallest non-negative affinity. We denote
the value of the smallest non-negative affinity as φc. Now, set all affinities on
edges with non-negative affinity to φc. This last step is done because no optimal
configuration of cycle sub-problem c cuts a non-negative affinity edge e unless
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that edge has affinity equal to φc. We send the “excess” positive affinity from
cycle sub-problem c to the planar multicut sub-problem, which does not loosen
the lower bound of the decomposition.

Since the addition of cycle sub-problems induces non-planar edges to but
uncut or induces planar edges along a path connecting the ends of a non-planar
edge to be cut, it is clear that the affinity associated with the non-planar edge
in each given cycle sub-problem is non-positive.
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Abstract. We propose and evaluate a versatile scheme for image pre-
segmentation that generates a partition of the image into a selectable
number of patches (’superpixels’ ), under the constraint of obtaining max-
imum homogeneity of the ’texture’ inside of each patch, and maximum
accordance of the contours with both the image content as well as a
Gibbs-Markov random field model. In contrast to current state-of-the
art approaches to superpixel segmentation, ’homogeneity’ does not limit
itself to smooth region-internal signals and high feature value similar-
ity between neighboring pixels, but is applicable also to highly textured
scenes. The energy functional that is to be maximized for this purpose
has only a very small number of design parameters, depending on the
particular statistical model used for the images.

The capability of the resulting partitions to deform according to the
image content can be controlled by a single parameter. We show by
means of an extensive comparative experimental evaluation that the
compactness-controlled contour-relaxed superpixels method outperforms
the state-of-the art superpixel algorithms with respect to boundary recall
and undersegmentation error while being faster or on a par with respect
to runtime.

1 Introduction

The history of image segmentation research, when regarded on the scale of
decades, exhibits clearly discernible phases during which certain method
paradigms have been dominant. There has been a period of statistical models
during the 1980/90ies, largely induced by the requirements and operating condi-
tions of remote sensing and (somewhat later) image communication. Currently,
in the early 2010ies, segmentation research is clearly dominated by graph-based
methods, partially also variational methods. However, it is important not to mix
and possibly confuse the image model (comprising the ’energy function’ that
should be minimal for a ’good’ segmentation), vs. the optimization scheme.

We propose and extensively evaluate in the following a method for computing
superpixels, that is: relatively small regions that are expected to be homoge-
nous with respect to their internal texture. In contrast to most other currently
discussed superpixel approaches, this method can be deduced from a statistical
model, and homogeneity refers to ’real’ texture, not the constricted interpreta-
tion of having locally smooth, or even constant, image values.
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Furthermore, the features used for the segmentation process can be almost
arbitrarily combined from choices such as a) gray values, b) color vectors, c)
texture features (= outputs of texture operators applied onto a spatial neigh-
borhood centered on the regarded pixel), d) depth values (e.g. from an active
depth camera) e) motion vectors, and many more. Thus we speak of a whole fam-
ily of segmentation modules that can be constructed from the basic approach.
The only constraint is that the individual feature channels can be regarded as
uncorrelated – for reasons that become clear later (section 4.1). The two main
contributions of the paper are a statistically sound approach to obtain a super-
pixel energy function, allowing explicit control of compactness, and an extensive
comparative evaluation with state-of-the art approaches for a) the base line gray
value version of contour-relaxed superpixels and b) the color version.

2 Related Work

The term ’superpixels’ dates way back in the 1980ies and has been popularized
by Ren and Malik [1]. It can be defined as a connected group of pixels similar
with respect to certain features, i.e. their color value. A superpixel segmenta-
tion of an image is an oversegmentation into typically many subregions, all of
them expected to be a proper subset of exactly one ’semantic’ region. Usually,
superpixel segmentations serve as precursor to higher level tasks such as object
segmentation, motion estimation or tracking [1–4] where computations are more
efficiently done on some few hundred groups of such pixels [1, 3, 5] instead of
105 − 106 pixels.

Superpixels can be obtained using standard segmentation algorithms, e.g. the
well known mean-shift [6] and watershed [7] algorithms. However, it has been
shown that these ’general purpose’ algorithms typically produce superpixels of
highly irregular shape and size and do not allow to directly control the number
of superpixels [8, 9]. It is a common view in the literature [8–10] that superpixel
algorithms should include a compactness constraint and should allow to directly
control the number of superpixels (to avoid a costly parameter search) such that
superpixels are similar in size. While non-compact superpixels can adapt to quite
complicated object shapes, they risk a larger extent of undersegmentation error,
a measure of overlap between a single superpixel and multiple objects. In our
approach, the degree of compactness can be controlled by a single parameter.
Variation of this parameter allows a system designer to chose between highly
compact superpixels and an almost ’fluid’ behavior that aligns superpixels well
even with complicated boundaries.

The various approaches proposed since [1] can roughly be grouped into graph-
based and gradient-based methods. Among the most popular graph-based meth-
ods one finds the superpixel algorithms based on normalized cuts [1, 5, 11] and
Felzenszwalb & Huttenlocher’s approach [12] who compute a superpixel segmen-
tation by solving a shortest spanning tree problem. A drawback of [12] is that
they do not encode a compactness constraint. A problem of the normalized cut
approach [1] is its computational effort, since (depending on the image size) a



282 C. Conrad, M. Mertz, and R. Mester

single run of the algorithm may take minutes on hardware as of 2012. In the
’superpixel lattices’ proposal [13], superpixels are forced to conform to a grid
by introducing a topology constraint leading to superpixels with a rectangular
shape. SP-Lattice is among the fastest superpixel methods up to now [13, 14],
but produces results of lower quality compared to more recent work [8, 9, 14].

More recently, Veksler et al. [9] and [14] computed superpixel segmentations
within the well known graph cuts and expansion moves framework. Veksler et
al. cover an image with overlapping square patches of fixed size which are subse-
quently stitched during optimization using α−expansion. They define a second
order energy function containing a data term modeling the likelihood for a spe-
cific label for a single pixel and a prior term resembling the Potts model. Two
different flavors of the approach are proposed, namely ’compact’ and ’constant’
superpixels, respectively. The ’compact’ superpixels have the inherent problem
that the likelihood term does not differentiate between pixels having different
color, but assigns low energy to all labels (patches) that overlap the regarded
pixel. Therefore neighboring pixels are likely to be assigned the same label re-
gardless of their color, leading to superpixels possibly containing strong disconti-
nuities. In ’constant superpixels’, a different data term is used which is based on
the distance in color space between the regarded pixel and the color of the cen-
ter pixel of the current label thus encouraging superpixels of constant or similar
intensity. For more than 400 superpixels, the constant version of [9] outperforms
TurboPixels, the normalized cut approach as well as the method by Felzenszwalb
& Huttenlocher. However, while Veksler et al. encode a compactness constraint,
their method does not allow to control the number of superpixels directly but
would need a parameter search to do so. The work of Zhang et al. [14] relies on
pseudo-boolean optimization and is inspired by the one by Veksler et al., trying
to overcome the aforementioned difficulties by design. They report runtime fig-
ures much lower than the ones by Veksler et al. which are independent of the
number of superpixels. However the quality of their superpixels with respect to
boundary recall RB and undersegmentation error Eus is worse than Veksler’s.

TurboPixels [8], and more recently SLIC superpixels [10] are prominent gradi-
ent based methods. Such methods do not formulate segmentation as some graph
based related problem such as mincut but rather optimize the energy function
in a gradient ascent/descent sense. TurboPixels are based on the geometric flow
implemented via level sets. The method allows to directly control the number of
superpixels and integrates a compactness constraint. In the SLIC (’simple lin-
ear iterative clustering’) method [10], the computation of superpixels is cast as a
clustering problem in a five dimensional feature space consisting of the three Lab
color channels and the pixel 2d coordinates. The scheme starts with regularly
sampling N cluster centers in image space, subsequently perturbing the center
locations such that they lie at the lowest image gradient position within a small
sub window. Then pixels are assigned to the best fitting cluster center within a
small neighborhood and cluster centers are recomputed based on the 
1 norm be-
tween old and new center positions. The method can directly control the number
of superpixels and encodes a compactness constraint. It is shown [10] that SLIC
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outperforms TurboPixels, the method of Felzenszwalb & Huttenlocher, and the
normalized cut approach of [1, 5].

3 Outline of the New Approach

In this work we propose a superpixel algorithm that has the following advantages:
(a) direct control of the number of superpixels, (b) control of the compactness of
the superpixels by setting a (single) compactness parameter κ, thus superpixels
can be allowed to adapt to complicated shapes if needed, and (c) most impor-
tantly: an explicit statistical modeling of superpixel shape and content allows
to perform the segmentation on an arbitrary number of feature channels, e.g.
intensity-only, color, depth, or ’real’ texture feature vectors. The energy func-
tion to be optimized is derived from this statistical image model, and it turns
out that already a local optimization is sufficient for yielding results competitive
or superior to the state of the art. The image model used for contour-relaxed
superpixels is based on homogeneously textured regions; this includes the plain
model of smooth (=quasi-constant) gray or color values, but goes significantly
beyond this.

4 Theory of Contour-Relaxed Superpixels

In this section, we summarize the theoretical basis on which the contour-relaxed
superpixels approach is built. Attempts to formulate the segmentation problem
as an estimation task can already be found in the very early literature. Still,
the potentials and advantages of a well-founded statistical model for low-level
segmentation are not reflected in the current literature. We build on the funda-
mental model used by Mester et al. [15, 16] and transform it into a competitive
superpixel approach by introducing a compactness term.

Let the total set of measurements on the image array (= a 2D-array of vec-
tors), be summarized in a single huge vector z. Let Q = {R1, R2, . . . Rn} be a
partition of the image array. The measurements inside of each region are the out-
comes of region-specific stochastic processes, and each such process is associated
with an individual parameter vector θi = θ(Ri). The combination of a parti-
tionQ and the parameter ensemble {θ} = {θ1, θ2, . . . θn} is denoted as the ’array
state’ S. Each completely specified array state S induces a joint probability den-
sity p(z,Q, {θ}) = p(z,S) for the ensemble of randomvariables z. Given an image
measurement vector z, the notion ’segmentation’ means to find an array state S
which has a high likelihood to have generated the observed image vector z.

4.1 Deriving the Segmentation ’Energy Function’ from
Maximum-A-Posteriori (MAP) Principles

The particular combination of a partition Q and the corresponding model pa-
rameters {θ1, θ2, . . .θn} that maximizes the probability density function

p(S|z) = p(Q , {θ1, θ2, . . .θn}|z) (1)
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is considered as the maximum-a-posteriori (MAP) estimate of the array state S.
From Bayes’ theorem we obtain

p(S|z) = p(z|S) · p(S)/p(z). (2)

With the observed image vector z being fixed, p(z) is merely a normalizer. Thus
we search the particular array state S which maximizes the target function J

J := p(z|S) · p(S) = p(z, S) = p(z|Q , θ) · p(θ|Q) · p(Q). (3)

The joint density in Eq. 3 consist of the prior probability p(Q) for the regarded
partition Q, and the conditional densities for z given the individual region model
processes. Using a Gibbs random field (GRF) with discrete two-element cliques,
p(Q) is expressed as

p(Q) =
1

Z
· exp

(
−
∑
ci

Vc(ci)

)
. (4)

Here, ci denote all maximal cliques of size 2. The potentials Vc(ci) depend on
whether the label values in such a clique are identical or not (Potts model).
While computing the partition function Z is intractable in general, it is not
needed here, as we are only interested in the MAP estimate of Eq. 3.

The region-specific model parameter vectors θ are considered as unknown deter-
ministic parameters, (i.e. we assume a ’flat’, uninformative prior for them) such
that only the distribution for the partition Q appears in p(S)

p(S) = p(θ,Q) = α · p(Q). (5)

The model parameters θ are obtained by maximizing the term p(z|S) with
respect to the parameter θ while the partition Q is fixed, that means by a
region-specific maximum likelihood estimation (’EM style’):

p(z,S) = p(z|S) · p(S)

= p(z|Q , {θ̂ML(Q)}) · p(Q) · α

The texture processes of the individual regions are considered to be pairwise
statistically independent between regions. This means that knowing the complete
texture signal inside region Ri does not yield any information on the texture
signal inside region Rj , j �= i. Thus, the joint probability density of observing
all the texture signals (= the complete vector-valued image z) can be written
as a product, bearing in mind that this is an approximation (due to the ML
parameter estimate):

p(z|Q) =
∏
Ri

∏
k

p(zik|θMLi ) (6)

Here i denotes the region, and index k varies over the feature channels. This plain
double product is of course the result of the independence between regions, on
one hand, and the (assumed) independence between feature channels, on the
other hand, which may be a coarse but effective approximation in some cases.
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4.2 The Optimization: ’Contour Relaxation’

Given an initial partition Q0, J in Eq. 3 is maximised by variation of pixel labels.
Each grid point x0 which is located on the contour of a region is regarded and
it is checked whether a change of its initial region label into a another label
occuring in its neighborhood leads to an increase of target function J (Eq. 3). If
this is the case, the change of the label is carried out. The focusing on contour
pixels and a local subset of labels is essential for the speed and explains how the
method is related to the general ICM framework [17].

Due to the conditional independence structure induced by a pairwise GRF,
only the 8 cliques including site x0 need to be taken into account. Hence the
expression p(Q) (Eq. 4) can be factorized into

p(Q) = k1 · exp(−n′
BB − n′

CC), (7)

where only the second factor depends on the label of x0. Here, n
′
B and n′

C denote
the numbers of inhomogeneous horizontal/vertical and diagonal cliques where B
and C are the associated costs, respectively.

Given the partition Q, the conditional likelihood of the image data z can be
factorized into a constant and a variable term:

p(z | Q) = k2 ·
∏
{Rj}

p
(
z(Rj) | θ(Rj)

)
, (8)

with the variable product here comprising only those regionsRj that may include
pixel x0. From the set of legal choices of q(x0), the label maximizing

p(z,Q) = k1 · k2 · exp(−n′
BB − n′

CC) ·
∏
{Rj}

p
(
z(Rj) | θ(Rj)

)
(9)

is then assigned to point x0. Due to the extreme value range of (9), it is com-
putationally mandatory to minimize the negative log of (9) instead of directly
maximizing it. This yields the main part of the energy function L to be mini-
mized in the contour-relaxed superpixels framework (see sec. 5.1).

This scheme denoted as ’contour relaxation’ is performed by scanning the
whole image using the ’coding scheme’ proposed by Besag [18] to avoid direc-
tional preferences. The computational expense is rather low, as only pixels on
the region boundaries are considered during optimization. The parameter values
B and C of the Gibbs model are far from being critical. See section 6 for the
values used in our experiments, and the number of passes over the image array.

5 Specific Design Features of the Proposed Approach

The combination of a probabilistic target function to be maximized (or mini-
mized, if the negative logarithm is regarded) and a greedy iterative optimization
scheme, as described in the preceding section, leaves of course ample space for
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selecting the features, the shape of the assumed distributions (Gaussian, Lapla-
cian, etc.) in the feature channels. The number of channels, and the kind of in-
formation assigned to the channels (gray values, color components, depth values,
texture features, ...) allows many variants of the fundamental scheme, yielding
a whole family of segmentation methods. What is not needed are weight factors
that weigh the relative importance of the individual features; since the moments
of the distributions are estimated in the course of the process, the correct bal-
ance between the features is obtained automatically — this is certainly one of
the main advantages of the approach.

What remains to be explained is how the functional form of the feature pdfs,
the likelihood terms appearing in the energy function, and the actual data in
the regions are tied together. This is done by simply computing unnormalized
moments of the data fk(xi) in each region Rj , that is:

N :=
∑
i∈Rj

1 S :=
∑
i∈Rj

fk(xi) Q :=
∑
i∈Rj

f2
k (xi) (10)

From these sufficient statistics N , S, and Q, the ML estimates of the pdf param-
eters in channel k can be computed, and thus the likelihood for a given ensemble
of data values can be determined.

5.1 Adding a Compactness Term κ

Experiments with the original model from [15, 16] show that using this uni-
versal segmentation scheme for the particular purpose of computing superpixels
suffers from the compactness of the regions not being directly controllable. We
introduce an additional compactness term that ensures that the (fundamentally
fluid) regions do not create too wriggled, too elongated regions, as this could be
the case for a pure Gibbs-Markov random field model with realistic parameters.

Carrying over the cost functional L from the MAP criterion in section 4, we
can now enforce spatial compactness for the regions to be formed, and define a
new cost functional L̃ by adding an extra ’regularization’ term which penalizes
the squared deviation between the spatial location x of the pixels in the region
Rj and the center m of the region Rj , as follows

L̃ = L+ κ ·
∑
x∈Rj

(x−m(Rj))
T (x−m(Rj)), (11)

where κ is a parameter which controls the compactness of the regions. It is
straightforward to show that L̃ can be fully expressed in terms of these ’spatial
moments’ introduced in Eq. 11, the ensemble of clique potentials, and the suf-
ficient statistics N , S, and Q previously defined, if the functional form of the
feature distributions is given (e.g. a Gaussian model). In case that a Laplacian
pdf is chosen, a corresponding set of sufficient statistics can likewise be defined,
by incorporating the sum of the absolute values of the scalar features instead of
squares. Likewise, other distributions such as χ2 or Rayleigh pdfs can be used.
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6 Evaluation and Experimental Results

The Contour-relaxed superpixels1 approach has been evaluated for many of the
numerous variations comprised by the approach; we present in the following
the most relevant test results as permitted space allows. The quality of the
method is quantitatively expressed by the two established measures ’boundary
recall’ (RB) and ’undersegmentation error’ (Eus) evaluated on the 300 images
from the Berkeley Segmentation Database (BSDS300) [19] which contains ground
truth segmentations provided by human subjects. The boundary recall RB is a
measure of how well the superpixel boundaries align with ground truth segments,
while the undersegmentation error Eus measures the degree of bleeding caused
by superpixels overlapping more than one ground truth segment. We compute
the undersegmentation error Eus using the definition of [8] and the boundary
recall using the MATLAB code provided by the BSD benchmark.

The experiments have been carried out based on a straightforward single
threaded and unoptimized C/C++ implementation. For images available in the
Berkeley database with a resolution of 481 × 321 (or 321 × 481) pixels, one
iteration of the contour relaxation on a single channel takes about 40 ms on an
Intel Xenon 2.8GHz processor.
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Fig. 1. Column 1 and 2: Benchmark results using intensity and compactness feature:
Average boundary recall, and undersegmentation error including error bars (±σ/2) on
the BSD300 dataset (300 images). Column 3 and 4: Benchmark results using color
and compactness feature. Best viewed in color.

As the BSD benchmark differentiates between gray and color image segmen-
tation, we divide our evaluation in two parts, superpixels computed on gray
value images and color images, respectively. We compare our results with the
state-of-the-art superpixel methods for both settings, namely the approach by
Veksler et al. [9] and SLIC superpixels [10], where both of them also include
a compactness term. Note that there are many other algorithms available, e.g.
Turbo-Pixels [8], NCuts [1], Lattice Superpixels [13] and recently QPBO super-
pixels [14]. However, it has been shown [10, 14] that SLIC and the approach by
Veksler et al. outperform the aforementioned algorithms with respect to bound-
ary recall and undersegmentation error but are coequal or better with respect to
runtime performance. Therefore we will exclude these methods from the qual-
itative evaluation but will reference them within the discussion of the runtime

1 Code will soon be available at http://www.vsi.cs.uni-frankfurt.de

http://www.vsi.cs.uni-frankfurt.de
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Fig. 2. (left) Runtime performance: Average runtime in seconds averaged over the
BSD300 dataset (300 images). (right) Typical results obtained with our method when
initialized with axis aligned square blocks (green boundaries), and when initialized with
a diamond pattern (red boundaries).

performance. Note that we compare our superpixel approach to its most serious
competitors but do not include full (object based) segmentation algorithms, e.g.
gPb-owt-ucm and its variants [20], as this would not be a fair comparison. How-
ever, our approach could be used as an integral part of such a full segmentation.

Single Channel Superpixels. Within the following experiments, we configure
the algorithm to use a single gray value feature channel and the compactness
term. We control the number of generated superpixels by initializing the label
array with a ’blind’ segmentation consisting of equally-sized square blocks. Fol-
lowing this initialization, we perform twelve passes of the contour relaxation.
The clique costs for inhomogenous horizontal or vertical and diagonal cliques

were set to B = 0.3 and C =
√
0.3√
2
, respectively, The value of the compact-

ness parameter κ was 0.015. These parameters have been kept constant for all
the experiments. We compute the boundary recall and undersegmentation er-
ror for 200, 300, 400, 500, 600, 800, 1000 and 1200 superpixels by averaging
over these measures for the 300 images from the BSD. We compare our results
with the approach by Veklser et al. [9] using their publicly available implemen-
tation2 while setting the parameters to the ones reported in their paper. Note
that it is not possible to directly control the number of superpixels generated
by their algorithm but indirectly with a patch size parameter. We set the patch
size parameter such that on average the method computes, say, 500 superpixels
while the exact number of superpixels produced can vary for each individual
image. Figure 1 shows the boundary recall and undersegmentation error for
the proposed method (oursGray) and the one by Veksler et al., specifically the
’constant’ version (vekslerConst) (cf. Sec. 2). Note that Veksler et al. use a
global optimization method (graph cuts), while we achieve our results merely
with local greedy optimization. In order to allow an evaluation of the influence

2 http://www.csd.uwo.ca/faculty/olga/Code/

http://www.csd.uwo.ca/faculty/olga/Code/
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Fig. 3. Contour-relaxed superpixels results on a set of test images from the Berkeley
database. The green boundaries show the superpixel results produced by our method
compared to (top row ) Veksler et al. in red when initialized with 500 (column 1 and
3) and 600 (column 2) superpixels and (bottom row) to SLIC in red when initialized
with 400 (column 1 and 2) and 500 (column 3) superpixels. Best viewed in color.

of the number of iterations during optimization, we additionally compute the
RB and Eus measures while letting our method perform as many runs of the
contour relaxation until no label changes occur, that is until a local optimum
is reached (oursGrayLOPT in Fig. 1). From Fig. 1 it can be seen that while
vekslerConst achieves a better boundary recall when the desired number of su-
perpixels is relatively small (200 to 400), our contour-relaxed superpixels method
performs better in terms of boundary recall for 550 or more superpixels. Further-
more, our method consistently outperforms its competitor vekslerConst with
respect to undersegmentation error. Figure 1 also shows that the actual num-
ber of iterations of the contour relaxation influences the results only marginally.
While more iterations slightly improve the boundary recall for 200 to 400 su-
perpixels, they nearly have no influence on the undersegmentation error and are
non-critical in practice. Figure 2 (left) shows graphs of the average running time
over 200 to 1200 superpixels. While vekslerConst roughly takes 7 to 12 sec-
onds, our method only takes 0.3 to 0.7 seconds. Note that the runtime of our
method slightly increases with the number of superpixels: as more superpixels
lead to more contour pixels in the label array, more pixels have to be visited
and evaluated for a possible label change. Our method also compares favorably
to Lattice- and QPBO superpixels where the authors of [14] report an average
runtime for QPBO superpixels (independent of the number of superpixels) of
0.5 seconds, but are outperformed by the Veksler et al. approach with respect
to boundary recall and undersegmentation error. Furthermore, [14] report that
their method is usually 10% slower than Lattice superpixels. Our method has a
comparable runtime while outperforming both methods in terms of quality, as
expressed by RB and Eus.
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Multi-channel Superpixels. Within the following experiments we set up our
algorithm using three independent feature channels one for each of the three
YUV color channels and the compactness term. We use the same label array
initialization as for the single feature case and only rescale the compactness
parameter κ to 0.045 to account for the increased number of feature channels.
Again, these parameters have been kept fixed while computing the boundary re-
call and undersegmentation error for 200, 300, 400, 500, 600, 800, 1000 and 1200
superpixels by averaging over these measures for the 300 images from the BSD.
We compare our results with SLIC superpixels using their publicly available im-
plementation3 where the exact number of superpixels can be controlled. As for
the approach by Veksler et al., we set the parameters of the SLIC implementa-
tion to the ones reported by the authors in the corresponding paper. Figure 1
shows the boundary recall and undersegmentation error for the proposed method
(oursColor and oursColorLOPT) and SLIC (SLIC). It can be seen that we con-
sistently perform better than SLIC with respect to undersegmentation error even
for few superpixels. Note that the margin by which we outperform SLIC increases
with the number of superpixels. For 200 to 750 superpixels SLIC achieves a better
boundary recall, however, our method is coequal or better than SLIC for 750 or
more superpixels. As for the single feature case, the actual number of iterations
of contour relaxation only has a marginal effect on the results as can be seen
from the boundary recall and undersegmentation error for oursColorLOPT com-
pared to oursColor. Figure 2 (left) shows graphs of the average running time
over 200 to 1200 superpixels. Here, SLIC takes 0.25 seconds independent of the
number of superpixels while our method needs 0.6 to 1.7 seconds depending on
the number of superpixels. Note that our method can easily be parallelized, that
is by computing the region statistics for each channel in parallel thus making it
possible to achieve a similar runtime as for the single channel version with 0.3
to 0.7 seconds. Furthermore our runtime performance also compares favorably
over TurboPixels and NCuts which take several seconds and more than 30 sec-
onds (both depending on the number of superpixels, see [8]), respectively. For
a qualitative evaluation, Fig. 3 shows example superpixel segmentations using
the proposed contour-relaxed superpixels approach, the method of Veksler et al.
and SLIC. One can see that the obtained boundary maps respect the prominent
boundaries of the image, and furthermore, the effect of the compactness term is
clearly visible, as the resulting regions are compact and regularly shaped. As can
be seen in Fig. 3, the contour-relaxed superpixels approach considers the strongly
textured areas as homogeneous and textured, and does not spend ’energy’ on
complicated region contours, in contrast to Veksler et al. and SLIC shown be-
sides. Furthermore, Fig. 2 (right) shows that the initial segmentation only has a
minor influence on the results and that our approach does not have an intrin-
sic bias towards a specific boundary layout (horizontal/vertical). While in areas
of homogeneous texture the segmentation stays close to the initial partition,
superpixels adapt to shapes as necessary.

3 http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html

http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html
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Fig. 4. Influence of varying the compactness weight: Top row, columns 1-3:
contour-relaxed superpixels results for the ’plane’ image when setting the compactness
weight to 0, 0.015 and 0.03, respectively. Bottom row, columns 1-3: Region mean images
corresponding to the superpixel segmentations in the top row. Column 4 shows the
boundary recall and undersegmentation error over the number of superpixels averaged
over all images from the BSDS300 while varying the compactness weight between 0
and 0.1. Best viewed in color.

Increasing Boundary Recall by Lowering the Compactness Weight.
The precision with which the boundaries are recovered can additionally be im-
proved, leading to a higher boundary recall by decreasing the weight of the
compactness parameter κ whereas the number of relaxation passes (here: 12)
only has a minor influence as shown previously. Figure 4 shows several super-
pixel segmentations and corresponding region mean images for the ’plane’ image
from the BSD visualizing the effect of lowering the compactness weight on the
resulting superpixels. When the compactness term is set to 0 we can achieve a
boundary recall of around 0.9 for only 200 superpixels as shown in the recall
graph in Fig. 4. The spread of a superpixel is then only governed by the inho-
mogeneous clique potentials. In contrast to the common view in the literature
[8–10] that superpixel algorithms should include a compactness term in order to
avoid bleeding effects, the non-compact version of our method is only marginally
influenced with respect to the undersegmentation error as shown in the graph
in Fig. 4, as due to our model the superpixels still respect object boundaries.
However, in this setting superpixels have a highly irregular shape which might
be suboptimal for different applications. Furthermore Fig. 4 shows that when
increasing the compactness weight superpixels tend to be more regular in shape
and have similar spatial extent. This also comes at a cost, namely that the re-
gion mean images do not represent the input image as well as the one for the
non-compact version, but are merely a subsampled version.

Segmenting a ’Texture-Only’ Image. Our final (extreme) experiment shows
how our approach compares to the method of Veksler et al. and SLIC when ap-
plied to a synthetic image where all regions have the same mean gray value but
differ in variance. Figure 5 (top row) depicts that SLIC fails to extract any useful
superpixels, while the method of Veksler et al. has problems especially in regions
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Fig. 5. Top row: Texture (or noise) sensitivity: Test using an image with regions
differing only in variance, exploring the case of highly textured regions. Left to right:
input image, results from proposed method, SLIC and vekslerConst. Middle and
bottom row show typical results for highly textured scenes obtained with the pro-
posed method (green boundaries) compared to SLIC (red boundaries, second row), and
vekslerConst (red boundaries, third row), respectively. Note that all methods were
initialised with the same number of superpixels, but SLIC and vekslerConst may
reduce the number of superpixels in the final result. Best viewed in color.

of high variance. While our method also does not give fully satisfactory results
in this extreme case, it can be seen that, due to the emphasis on statistically ho-
mogeneity instead of smoothness, the proposed method does not spend ’energy’
on random region contours and regards textured areas as such. Furthermore,
Fig. 5 (row 2 and 3) shows that this is not a contrived experiment, but that this
effect is also present in natural images.

7 Conclusions

We have enhanced the contour-relaxed superpixels approach and performed an
extensive qualitative and quantitative evaluation of this method which is based
on a statistical image model and a simple, but efficient optimization scheme.
Due to the new compactness term, our approach performs, in terms of standard
superpixel benchmarks, comparable, mostly even better than state-of-the-art
approaches such as SLIC or the Veksler et al. method. This suggests that the
choice of the energy function (derived from a statistical model in our case) might
be at least equally important as the optimization method. Computationally, the
proposed approach compares similar or favorably against leading state-of-the-art
methods. The design parameters of the method allow to tune its behavior in a
goal-directed way between high precision of boundaries, strong homogeneity of
the region-internal texture, and smoothness/compactness of boundaries.
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Abstract. Multi-Instance Multi-Label (MIML) learning is one of chal-
lenging research problems in machine learning. The main aim of this
paper is to propose and develop a novel sparsity-based MIML learning
algorithm. Our idea is to formulate and construct a transductive objec-
tive function for labels indicator to be learned by using the method of
random walk with restart that exploits the relationships among instances
and labels of objects, and computes the affinities among the objects.
Then sparsity can be introduced in the labels indicator of the objective
function such that relevant and irrelevant objects with respect to a given
class can be distinguished. The resulting sparsity-based MIML model
can be given as a constrained convex optimization problem, and it can
be solved very efficiently by using the augmented Lagrangian method.
Experimental results on benchmark data have shown that the proposed
sparse-MIML algorithm is computationally efficient, and effective in la-
bel prediction for MIML data. We demonstrate that the performance
of the proposed method is better than the other testing MIML learning
algorithms.

Keywords: Sparsity, multi-instance multi-label data, label ranking,
Markov chain, iterative methods.

1 Introduction

In this paper, we study Multi-Instance Multi-Label (MIML) learning problems
[13]. Let X be a set of objects and Y be a set of labels or classes. We denote the
size of Y by c = |Y|, and the size of X by m = m′ +m” = |X |, where m′ and
m” are the sizes of training data and testing data, respectively. In the single-
instance single-label learning setting, each object (i.e., only one instance) X ∈ X
is assigned a single class Y ∈ Y. In the multi-instance multi-label setting, the
training data set is {(X1, Y1), (X2, Y2), ..., (Xm, Ym)}, where the i-th object Xi =

{x(i)1 , ..., x
(i)
ni } contains a bag of ni instances, and Yi = {y(i)1 , ..., y

(i)
li
} ⊂ {1, 2, ..., c}

is a set of labels assigned to Xi. The testing data set is Xm′+1, ..., Xm′+m” with-
out labels information. It is clear that the single-instance single-label scenario is
a special case of MIML setting where ni = 1 and li = 1 for all Xi and Yi. The
MIML learning task is to learn a classifier Φ : X → Y which minimizes the prob-
ability that Ŷ �= Φ(X̂) on a testing object X̂ with its set of labels Ŷ . Compared

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 294–306, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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to single-instance single-label learning problems, the MIML learning problems
are more practical to represent complicated objects which have multiple seman-
tic meanings. For example, an image can contain multiple patches where each
can be represented by an instance, and the image can belong to several classes
simultaneously; a document can contain multiple sections where each of which
can be represented as an instance, and the document can belong to different
categories.

In this paper, we are interested in classifiers which can generate a ranking
of labels for a given object such that its correct labels receive higher ranking
than the other irrelevant labels. Our aim is to compute labels indicator F for
a testing X̂ with its set of labels Ŷ such that the labels of X̂ in Y should be
ordered according to F , i.e., if F (X̂, y) > F (X̂, y′), then the label y is ranked
higher than the label y′. The classifier is evaluated in terms of its ability to
predict a good approximation for Ŷ based on the ranking by F . In particular,
we would like to obtain the ranking of labels in Ŷ is higher than the ranking of
those not in Ŷ .

The main contribution of this paper is to propose and develop a novel sparsity-
based MIML learning algorithm to compute a ranking of labels associated with
objects of multiple instances. We exploit the relationships among instances and
labels of objects so that the ranking of a class label to an object depends on
the affinity metric between the bag of instances of this object and the bag of
instances of the other objects, and the ranking of a class label of similar objects.
By employing instance-to-object relation matrix and computing the affinity met-
ric among the objects, a transductive objective function for labels indicator to
be learned can be constructed. Moreover, sparsity can be introduced in the la-
bels indicator of the objective function such that relevant and irrelevant objects
with respect to a given class can be distinguished. For example, we show in
Figure 1 the sparsity of the association of class labels and testing objects from
the two benchmark MIML data sets [13]. We see from the figure that each ob-
ject associates a few classes. The resulting sparsity-based MIML model can be
formulated as a constrained convex optimization problem, and it can be solved
very efficiently by using the augmented Lagrangian method based on separable
structure of the objective function. Experimental results on benchmark data will
show that the proposed sparse-MIML algorithm is computationally efficient, and
effective in label prediction for MIML data, and its performance is better than
the other MIML learning algorithms.

The rest of the paper is organized as follows. In Section 2, we formulate the
objective function based on affinity metric and sparsity. In Section 3, we present
the proposed algorithm. In Section 4, we review the related works. In Section 5,
we present and discuss the experimental results on two benchmark MIML data
sets. Finally, we give some concluding remarks in Section 6.

2 The Proposed Model

The main idea of the method of random walk with restart is to set up the
affinities among objects on MIML data, and initialize label information from
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Fig. 1. Sparsity of MIML image data (left) and MIML text data (right). A red (blue)
pixel refers that an object belongs (does not belong) to a class.

labeled objects [7]. As there are multiple instances among objects in MIML
data, we evaluate the affinity between the two objects which may have different
set of instances. An affinity matrix is constructed to represent affinity among
instances, and then employ instance-to-object-relation matrix to transfer the
affinity information among instances to the label information among objects.
We consider that the instances are ordered as follows:

x
(1)
1 , ..., x(1)n1︸ ︷︷ ︸
1st object

, x
(2)
1 , ..., x(2)n2︸ ︷︷ ︸
2nd object

, · · · , x(m)
1 , ..., x(m)

nm︸ ︷︷ ︸
mth object

For simplicity, we set n to be the total number of instances in the MIML data,
i.e., n =

∑m
i=1 ni. Let ai,j,s,t be the affinity between the s-th instance of the

i-th object and the t-th instance of the j-th object. Here we employ the Gaus-
sian kernel as the affinity function similar to that used in other MIML learning
algorithms [11–13]:

ai,j,s,t = exp

[
−||x(i)s − x

(j)
t ||22

2σ2

]
,

where || · ||2 is the Euclidean distance. An n-by-n block matrix A = [Ai,j ] where
the (i, j)-th block is an ni-by-nj matrix Ai,j = [ai,j,s,t] with s = 1, · · · , ni and
t = 1, · · · , nj is obtained. Note that A is a symmetric matrix. Moreover, a block
diagonal matrixB = [Bi,j ] where the (i, j)-th block is a zero matrix except i = j.
For the (i, i)-th block, Bi,i is a 1-by-ni matrix where all its entries are equal to
1. This block indicates the relation between the i-th object and its association
instances. The size of B is m-by-n, and it refers to be an object-to-instance
relation matrix that can be used to transfer from the affinity information at the
instance level to the object level. The resulting m-by-m matrix

S = BABT (1)

represents the affinities among objects.
For label prediction problem with partial labeled data, the method of random

walk with restart has probability α to return to the labeled objects. It can be
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interpreted that during each time step each object receives the label information
from its neighbors via the Markov chain, and also retains its initial label infor-
mation. The parameter α in between 0 and 1 specifies the relative amount of the
information from its neighbors and its initial label information. In this approach,
the steady state probabilities give ranking of labels to indicate the importance
of a set of labels to a unlabeled object [7]. The steady state probabilities can be
computed via the following recursive procedure:

F(t+1) = (1 − α)SD−1F(t) + αP, (2)

where D is a diagonal matrix with its main diagonal entry given by [D]i,i =∑m
k=1[S]k,i. Here F = [f1, f2, · · · , fc] is the labels indicator to be learned, where

fl is a vector of size m corresponding to the l-th class label, and F(t) refers to
the iterate of F at the t-th iteration. Also P = [p1,p2, · · · ,pc] is the given labels
of training objects, where pl is a vector of size m corresponding to the l-th class
label. One way to construct pl is by using an uniform distribution on the objects
with the label class l. More precisely,

[pl]i =

{
1/el, if l ∈ Yi
0, otherwise.

(3)

where el is the number of objects with the label class l in the training data. Note
that the summation of entries of pl is equal to 1, and the summation of entries
of fl is also equal to 1 via the iteration in (2).

By using the iteration in (2), we have

F(t) = (1− αSD−1)t−1F(0) + α
t−1∑
i=0

((1− α)SD−1)iD,

where F(0) is the initial estimate of the labels indicator. Since α is in between
0 and 1 and the spectral radius of SD−1 is equal to 11, we have lim

t→∞((1 −
α)SD−1)t−1F(0) = 0, and lim

t→∞
∑t−1
i=0((1−α)SD−1)iP = (I− (1−α)SD−1)−1P,

where 0 is a zero matrix, and I is an m-by-m matrix. Hence, the sequence {F(t)}
converges to F∗ = α(I − (1− α)SD−1)−1P or

F̂∗ = α(I − (1− α)D−1/2SD−1/2)−1P̂, (4)

where F̂∗ = D−1/2F∗ and P̂ = D−1/2P. Indeed, this solution can be obtained
by minimizing the following objective function:

J1(F̂) = tr(F̂T (I−D−1/2SD−1/2)F̂) + μ‖F̂− P̂‖2F . (5)

where tr(·) is the trace of a matrix, ‖·‖F denotes the Frobenius norm of a matrix,
and μ = α

1−α . Note that the matrix I−D−1/2SD−1/2 can be interpreted as the

1 Each column sum of SD−1 is equal to 1 and the results follow by using the Perron
Frobenius Theorem.
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graph Laplacian, see [2]. As I −D−1/2SD−1/2 is similar to I − SD−1 and the
spectral radius of SD−1 is also equal to 1. Therefore, I−D−1/2SD−1/2 is pos-
itive semi-definite, and (5) is a convex optimization problem. The optimization
problem in (5) makes use of relationships among instances and labels of objects.
An object, which contains a bag of instances that are highly similar to bags of
instances of the other objects with a particular label, receives a high ranking of
this label.

2.1 The Sparse Model

We note from (2) that the calculation of each column of F is independent, and the
solution f∗l is dependent on the iteration matrix (1−α)SD−1 and the l-th label
vector pl. The disadvantage of this approach is that we do not make use of given
label information from different classes to compute labels indicator. The main
contribution of this paper is to explore the property of F (or F̂ = D−1/2F) to
enhance classification accuracy by using given label information from different
classes. Our idea is to use the sparsity of F in the objective function. H The
aim is to distinguish the relevant and irrelevant objects with respect to a given
class, i.e., each column vector of F: [[F]1,l, [F]2,l, · · · , [F]n,l] should be sparse.
By combining these two sparse constraints in the objective function, we can
reformulate J1 in (5) as follows:

min
F̂
J(F̂) = tr(F̂TD−1/2SD−1/2F̂) + μ‖F̂− P̂‖2F + λ

c∑
l=1

√√√√ n∑
i=1

[F̂]2i,l (6)

Since the element [F]i,l is in between 0 and 1, [F̂]i,l is in between 0 and b =√∑n
i=1[S]k,i.

The first term of the right-hand side in the above cost function is the smooth-
ness constraint, which means that a proper labels indicator F̂ should not change
too much between neighbor objects. To minimize the first term, we expect that
if two objects Xi and Xj are close (i.e., [S]i,j is large or (I −D−1/2SD−1/2) is

small), [F̂]i,· and [F̂]j,· are also close to each other. The second term is the fit-
ting constraint, which means that a good labels indicator should not change too
much from the initial label assignment. The third term is the sparsity require-
ment, which means that each object labels indicator should be corresponding
to a few categories. Because of the sparsity constraint, both intra-class (column

vector of F̂ and inter-class (row vector of F̂) label rankings are considered to-
gether in the model. The trade-off between these three terms is captured by two
positive parameters μ and λ.

After solving F̂ (i.e, F) by using (6), we generate a ranking of the possi-
ble labels for a testing object Xi by ordering the values of each row of F:
[F]i,1, [F]i,2, · · · , [F]i,c where c refers to the number of classes, such that its
correct labels receive higher ranking than the other irrelevant labels.
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3 The Proposed Algorithm

The objective function in (6) is a constrained nonlinear optimization problem

with respect to F̂. Note that J(F̂) is a quadratic and continuously differentiable
function and the constraints are bounded and closed, and therefore there is
one and only one minimizer of J . To handle the constrains of F̂ efficiently,
we introduce two new variables Ĝ and Ĥ and set F̂ = Ĝ and Ĝ = Ĥ. The
corresponding augmented Lagrangian function Ja of (6) is given by

Ja(F̂, Ĝ, Ĥ, Γ
(1), Γ (2))

= tr(F̂T (I−D−1/2SD−1/2)F̂) + μ‖Ĝ− P̂‖2F + λ
c∑
l=1

√√√√ n∑
i=1

[F̂]2i,l +

Γ(1) ◦ (F̂− Ĝ) + Γ(2) ◦ (Ĝ− Ĥ) + β1‖F̂− Ĝ‖2F + β2‖Ĝ− Ĥ‖2F , (7)

with 0 ≤ [Ĥ]i,l ≤ b, where Γ(1) and Γ(2) are the Lagrangian multipliers of same

size of F̂, ◦ denotes the entrywise multiplication of two matrices, and β1 and
β2 are positive penalty parameters which are used to control the convergence
of the augmented Lagrangian method (ALM)2. Now (F̂, Ĥ) and Ĝ in (7) can
be minimized separately, and each minimization subproblem has a closed-form

solution. More specifically, with a given initial (Ĝ(0),Γ
(1)
(0),Γ

(2)
(0)), the ALM ap-

proaches the solutions of (7) via the following iterative scheme (t refers to the
iteration index):

F̂t+1 = argmin
F̂
Ja(F̂, Ĝ(t), Ĥ(t),Γ

(1)
(t) ,Γ

(2)
(t) )

= ((I−D−1/2SD−1/2) + β1I+ μI)−1(μP̂+ β1Ĝt − Γ(1)
t); (8)

for 1 ≤ l ≤ c (for each column),

Ĥt+1
:,l = argmin

Ĥ
Ja(F̂(t+1), Ĝ(t), Ĥ,Γ

(1)
(t) ,Γ

(2)
(t) ) subject to 0 ≤ [Ĥ]i,l ≤ b

=
Ĝt+1

:,l + 1
β2
(Γ(2)

t):,l

‖Ĝt+1
:,l + 1

β2
(Γ(2)

t):,l‖2
max

{∥∥∥∥Ĝt+1
:,l +

1

β2
(Γ(2)

t):,l

∥∥∥∥
2

− λ

β2
, 0

}
; (9)

Ĝt+1 = max

{
Γ(1)

t − Γ(2)
t + β1F̂t+1 + β2Ĥt

β1 + β2
, 0 ·E

}
(10)

where E is a matrix of all entries being equal to one, and the maximum operation
is entrywise based comparison;

Γ(1)
t+1 = Γ(1)

t +
β1
2
(F̂t+1 − Ĝt+1); (11)

Γ(2)
t+1 = Γ(2)

t +
β2
2
(Ĝt+1 − Ĥt+1). (12)

2 Theoretically, the ALM method is convergent for any constant β1, β2 > 0. If neces-
sary, we can adjust their values of β1 and β2 dynamically in order to achieve better
numerical performance, see [5] for a detailed discussion.
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Theoretically, the convergence of the iteration steps in (8), (9), (10), (11) and
(12) can be guaranteed and the the iterate converges to the the unique minimizer
of J in (6).

We remark that all the computations of Ĝ(t+1), Ĥ(t+1), Γ
(1)
(t+1), Γ

(2)
(t+1) can be

carried out independently at each entry. These computation tasks can be done
very efficiently. As for calculation of F̂(t+1), a m-by-m linear system is required
to solved. The main computational cost and storage is to build and store the
whole affinity matrix S or A in (1). In the implementation, we figure out that
there are many entries of the affinity matrix A being close to zero. Therefore
it may not be necessary to store these entries such that the computational cost
and the storage can be reduced. For example, we can generate a sparse and
symmetric affinity matrix Aκ as follows [8]:

ai,j,s,t =

{
exp[−||x(i)s − x

(j)
t ||2

/
2σ2], if x

(j)
t ∈ Nκ,

0, otherwise.

where Nκ is the set of κ nearest neighbors of instance x
(i)
s . The κ nearest neigh-

bors can be efficient searched by using kd-tree implementation. When Aκ is
sparse, the resulting affinity matrix Sκ = BAκB

T is also sparse and the corre-
sponding sparse linear system can be solved very efficiently.

4 Related Works

Multi-Instance (MI) learning problems [6] and Multi-Label (ML) learning prob-
lems [3] can be regarded as degenerated problems of Multi-Instance Multi-Label
learning problems. Therefore, it is natural to solve a MIML problem by decom-
posing it into ML or MI learning problems. For example, a MIML algorithm
based on support vector machine (MIML-SVM) has been developed [12] by
transforming a MIML problem into several single-instance multi-label problems.
Similarly, by using a lazy learning approach to multi-label learning to replace the
support vector machine used in MIML-SVM, a MIML-kNN algorithm is derived
[13]. On the other hand, a MIML algorithm based on boosting (MIML-Boost)
[12] has been developed by transforming a MIML problem into several multi-
instance single-label problems. Remark that it is very time-consuming to use
MIML-Boost, see [10]. Also for these two approaches, there may be some useful
information to be lost in the process and therefore the classification performance
may be degraded. Recently, Zhang and Zhou [9] designed a M3MIML algorithm
based on regularization to explicitly exploit the relationships between instances
and labels. Experimental results have shown that this algorithm achieves su-
perior performance than MIML-SVM and MIML-Boost, but the cost of this
learning algorithm is quite high.

In [7], the method of random walk with restart (MIML-RWR) is developed
for learning MIML data. The key iteration is given in (2). Experimental results on
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benchmark data have shown that the classification performance of MIML-RWR
is competitive with those of MIML-SVM, MIML-Boost and M3MIML, but the
computational time required is less than those by the other three algorithms.
Their main idea of the MIML-RWR is basically a kind of nearest neighbor ap-
proach which makes use of neighbors’ information to learn the correct labels.
The drawback of the algorithm is that each column of the solution is indepen-
dent, see (4), and the algorithm does not make use of each class information to
learn MIML data. In the proposed sparse-MIML algorithm, we also make use
of neighbors’ information to learn the correct labels, but we also employ the
sparsity to learn intra-class and inter-class label information among the objects.

5 Experimental Results

To evaluate the performance of the proposed sparse-MIML algorithm, we con-
duct experiments on two benchmark MIML data sets. The first one is the image
classification task given in [12] to study the MIML framework3. In summary,
this data set contains 2,000 scene images taken from five possible class labels
(desert, mountains, sea, sunset and trees) and each image is represented as a bag
of 9 instances in 15-dimensional using the SBN image bag generator [4]. Another
data set is the widely used Reuters-21578 text collection in text categorization4.
In summary, this data set contains 2,000 documents with multiple classes and
represented as a bag of instances based on the techniques of sliding windows,
where each instance corresponds to a text segment enclosed in a sliding window
[1]. The description of these two data sets is listed in Table 1, see [11] for the
detailed information. The text and image data are both preprocessed in our ex-
periments. Each instance is normalized such that its Euclidean norm is equal
to 1. Also we follow the setting in [11], we normalize the image data on each
dimension in the range between [0, 5] as shown in the M3MIML algorithm. In
the tests, we compare sparse-MIML with MIML-RWR5. All the comparisons are
performed in a computer running a server environment with 2.66GHz CPU and
3.5GB memory.

The performance of multi-label prediction is evaluated by four multi-label
ranking metrics: one-error, ranking loss, coverage and average precision. One-
error computes how many times the top-ranked label is not relevant. Ranking
loss computes the average fraction of label pairs that are not correctly ordered.
Coverage determines how far one needs to go in the list of labels to cover all the
relevant labels of an instance. This measure is loosely related to the precision at
the level of perfect recall. Average precision determines the percentage of relevant
labels among all labels that are ranked above. For their detailed definitions, we
refer to [6].

3 available at http://lamda.nju.edu.cn/datacode/miml-image-data.htm
4 available at http://lamda.nju.edu.cn/datacode/miml-text-data.htm
5 MIML-Boost, MIML-SVM, M3MIML and MIML-kNN are not tested as its classifi-
cation performance is not better than MIML-RWR as reported in [8].

http://lamda.nju.edu.cn/datacode/miml-image-data.htm
http://lamda.nju.edu.cn/datacode/miml-text-data.htm
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Table 1. The description of image and text data for MIML learning

Instance per bag Labels per object (c)
Data set Objects Instances Features classes min max mean+std. c=1 c=2 c≥3

Text 2,000 7,119 243 7 2 26 3.56+2.71 1701 290 9
Image 2,000 18,000 15 5 9 9 9.00+0.00 1543 442 15

Table 2. Percentage improvement of sparse-MIML over MIML-RWR on the text data

sparse-MIML one-error coverage rankLoss 1-avgPrec

50 16.33% 4.27% 12.90% 15.00%
100 12.63% 3.45% 10.00% 12.07%
200 11.58% 3.16% 10.00% 10.37%
500 7.37% 0.87% 6.67% 6.90%
1000 1.06% -1.74% 0.00% 0.00%
1500 6.38% 1.45% 6.67% 5.26%
all 2.15% -3.20% 0.00% 1.75%

Table 3. Percentage improvement of sparse-MIML over MIML-RWR on the image
data

sparse-MIML one-error coverage rankLoss 1-avgPrec

50 9.78% 2.15% 4.88% 5.00%
100 8.05% 2.94% 5.36% 6.70%
200 7.51% 3.80% 5.78% 6.51%
500 9.88% 5.02% 7.30% 8.56%
1000 9.66% 6.15% 9.19% 4.80%
1500 9.64% 5.76% 8.47% 8.94%
all 10.81% 5.48% 8.76% 9.17%

5.1 Classification Performance

We compare the average performance sparse-MIML with MIML-RWR for the
two MIML data sets. In particular, we show how many the percentage of per-
formance improvement of sparse-MIML over MIML-RWR by varying the values
of κ respectively in the construction of sparse affinity matrix Sκ in Section 3.
When κ = all, it means that all the entries are used. For the sparse-MIML, we
fix α = 0.99 and λ = 0.11 for the text data and α = 0.64 and λ = 0.17 for
the image data. For the the MIML-RWR algorithm, we choose its corresponding
optimal parameters. We see from Tables 2 and 3 that sparse-MIML consistently
performs better than MIML-RWR across all evaluation metrics and data sets
in most cases. We also note that the computational times of sparse-MIML and
MIML-RWR algorithms are about the same (sparse-MIML: about 200 seconds
and MIML-RWR: about 184 seconds), and both increase when κ increases. We
would like to report that the proposed algorithm takes 100 iterations in average
in order to satisfy the convergence criteria ‖F̂t+1 − F̂t‖2F /‖F̂t‖2F ≤ 1× 10−15.
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Table 4. Percentage improvement of sparse-MIML over MIML-RWR for different sizes
of training text data

sparse-MIML one-error coverage rankLoss 1-avgPrec

10% 1.90% 1.02% 0.00% 2.02%
20% 10.45% 1.15% 0.00% 4.82%
30% 5.83% -1.71% 0.00% 4.00%
40% 10.71% 0.00% -2.78% 1.43%
50% 2.88% -2.70% -6.06% 0.00%
60% 4.90% -2.79% -3.13% 0.00%
70% 12.24% -1.14% 0.00% 6.67%
80% 7.45% -3.49% 3.33% 3.45%
90% 10.75% 0.59% 3.57% 7.27%

Table 5. Percentage improvement of sparse-MIML over MIML-RWR for different sizes
of training image data

sparse-MIML one-error coverage rankLoss 1-avgPrec

10% 1.72% 0.94% 1.33% 1.50%
20% 0.81% 1.58% 1.50% 1.65%
30% 1.12% 2.36% -0.52% 0.43%
40% 2.03% 0.5% 0.00% 1.79%
50% 2.67% 1.01% 1.12% 2.27%
60% 3.90% 2.23% 3.41% 3.69%
70% 5.45% 3.47% 5.11% 5.09%
80% 4.97% 2.22% 4.17% 4.31%
90% 8.05% 2.94% 5.36% 6.70%

In the next experiment, we test the performance of sparse-MIML algorithm
with respect to the number of training examples. We randomly pick up 10, 20,
30, 40, 50, 60, 70, 80, 90 percentages of the data set as training data. The
remaining data set is used for testing data. The performance is measured by
averaging 10 trials by randomly selected data using this procedure. Tables 4
and 5 show the improvement of classification performance of sparse-MIML over
MIML-RWR on the text and image data sets respectively when κ = 100. We
note that the classification performance when κ = 100 is higher than those in
the other values of κ in Tables 2 and 3. For the text data, here it is optimal to
use the same set of parameters in Table 2. For the image data, we use the same
set of parameters in Table 3 when the percentages of the data are in between
30 and 90. However, when the percentages of the image data is 10 and 20, we
need to tune the parameters to be α = 0.99 and λ = 0.1. We see from Tables
4 and 5 that the performance in one-error of sparse-MIML is usually slightly
better than that of MIML-RWR except some cases in coverage and rankLoss.
Note that when we tune the parameters for sparse-MIML method, the optimal
result is obtained by finding the smallest one-error. This optimal result may not
correspond to the optimal result in the other evaluation metrics like coverage and
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rankLoss. Therefore, there are some negative values appearing in the columns of
coverage and rankLoss in Tables 4 and 5.

5.2 Effect of Parameters

In this subsection, we study the effect of parameters α and λ to the classification
performance of the sparse-MIML algorithm. In Figures 2 and 3, we show the
performance of the proposed method with 10% and 90% training image data
for different values of α and λ. When 10% training data is used, the optimal
parameters are α = 0.99 and λ = 0.1. We need to make use of affinity information
from unlabeled data (α is close to 1) to determine the ranking labels. When 90%
training data is used, the optimal parameters are α = 0.64 and λ = 0.17. Because
there is more labeled data, the usage of affinity information from unlabeled
data can be reduced and the algorithm make use of the sparsity to enhance
classification performance. It is interesting to note that the optimal values of
parameters are quite consistent for all four evaluation metrics. In Figure 4, we
also show the performance of the proposed method with 90% training text data
for different values of α and λ. Indeed, the graphs are the about the same as those
in Figure 4 when 10% data is used, and the optimal parameters are the same
for 10% and 90% training data to be used. It seems that this MIML problem for
image example may be more difficult than that for text example.
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Fig. 2. The performance of sparse-MIML with 10% training image data for different
values α and λ
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Fig. 3. The performance of sparse-MIML with 90% training image data for different
values α and λ
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Fig. 4. The performance of sparse-MIML with 90% training text data for different
values α and λ
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6 Concluding Remarks

In this paper, we have developed a sparse-MIML algorithm to determine the rank
of class labels for objects in multi-instance multi-label data. The experimental
results have demonstrated that the proposed algorithm is efficient and effective.
In the future, we would like to explore how to determine the optimal parameters
in the proposed algorithm, and apply the algorithm to the other large scale
MIML problems.
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Abstract. Consensus clustering methodologies combine a set of parti-
tions on the clustering ensemble providing a consensus partition. One
of the drawbacks of the standard combination algorithms is that all the
partitions of the ensemble have the same weight on the aggregation pro-
cess. By making a differentiation among the partitions the quality of the
consensus could be improved. In this paper we propose a novel formu-
lation that tries to find a median-partition for the clustering ensemble
process based on the evidence accumulation framework, but including a
weighting mechanism that allows to differentiate the importance of the
partitions of the ensemble in order to become more robust to noisy en-
sembles. Experiments on both synthetic and real benchmark data show
the effectiveness of the proposed approach.

Keywords: Clustering Algorithm, Clustering Ensembles,
Median-Partition, Evidence Accumulation Clustering, Clustering Selec-
tion, Clustering Weighting.

1 Introduction

The combination of multiple sources of information either in the supervised or
unsupervised learning setting allows to obtain improvements on the classification
performance. In the unsupervised paradigm, this task is difficult due to the label
correspondence problem, i.e., the lack of explicit correspondences between the
cluster labels produced by the different clustering algorithms. This problem is
made more serious if additionally clusterings with different numbers of clusters
are allowed in the ensemble. Clustering ensemble methods, also known as con-
sensus clustering methods, propose a formalism to tackle this problem, allowing
the combination of a set of base clustering algorithms into a single consensus
partition.

Recent surveys present an overview on this research topic [1, 2]. One of the
main approaches is known as median-partition [2], where the consensus solution
is obtained as the partition having lowest divergence from all the partitions
in the clustering ensemble. Another significant approach, known as Evidence
Accumulation Clustering (EAC) [3], is based on object co-occurences, where the
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consensus is obtained through a voting process among the objects. Specifically,
the consensus clustering problem is addressed by summarizing the information
of the ensemble into a pairwise co-association matrix, where each entry holds the
fraction of clusterings in the ensemble in which a given pair of objects is placed
in the same cluster. By doing so, the label correspondence problem is implicitly
solved. This matrix, which is regarded to as a similarity matrix, is used to feed a
pairwise similarity clustering algorithm to deliver the final consensus clustering.
In [3] agglomerative hierarchical algorithms are used to extract the consensus
partition and in [4] a graph partitioning algorithm (METIS [5]) are used.

In [6] a more principled way of using the information in the co-association
matrix has been proposed. Specifically, the problem of extracting a consensus
partition is posed as a matrix factorization problem involving the co-association
matrix, where the factor matrix is left-stochastic, i.e. nonnegative with columns
summing up to one. Each column of the factor matrix can be interpreted as a
multinomial distribution expressing the probabilities of each object of being as-
signed to each cluster. In [7], a probabilistic model for the co-association matrix
has been proposed, entitled Probabilistic Evidence Accumulation for Clustering
Ensembles. In this model, the entries of the co-association matrix are regarded
as independent observations of binomial random variables counting the num-
ber of times two objects occur in a same cluster. These random variables are
parametrized by the unknown assignments of objects to clusters, which are in
turn estimated by adopting a maximum-likelihood approach. In [8] a new for-
mulation is proposed that constitute a generalization of [6] which is solved in
way which is close in spirit to [7]. This method, entitled PEACE, creates sparse
co-association matrices by a simple uniform sampling criterion and exploits this
sparsity to achieve sub-linear iterations in the consensus clustering algorithm.

One of the drawbacks of previous combination methodologies is that all in-
put partitions of the ensemble have the same weight in the aggregation process,
when in fact some of them are less important than other [9]. The partitions of
the ensemble may come from different algorithms, or from the same algorithm
with different initializations. It was shown that the diversity on the clustering
ensemble leads to an enhancement on the performance [10], but extreme cases
introduce to much variability leading to a significant drop on the performance.
Moreover the clustering ensemble can be composed by a subset of partitions
highly correlated that can decrease significantly the variability biasing the con-
sensus solution to one of the one of the input partitions.

The problem of weighting differently each of the base clustering solutions was
already studied in the literature [9, 11–16]. In Duarte et al. [11] the weighting of
the partitions is obtained using internal and relative clustering validation indexes,
and the combination is performed using the Evidence Accumulation Clustering
algorithm. Fern and Lin [12] define two important quantities that should be con-
sidered on the selection process, namely quality calculated between each ensemble
and a consensus solution, and diversity of the ensemble. They propose three dif-
ferent heuristics that jointly consider these criteria. Hong et al. [15] also ground
their algorithm on these criteria, and use a re-sampling-basedmethod to estimate
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them. Jia et al. [16] only use a quality criterion on their selection mechanism. In
Li and Ding [9], the weighted consensus clustering is based on nonnegative matrix
factorization framework but focus only on the quality criterion. Vega-Pons et al.
[13] follow the idea of finding the median partition but weighting differently each
partition, finding their relevance through an intermediate step.

In this work, we propose a consensus clustering approach based on the evidence
accumulation framework,which includes aweightingmechanism that allows to dif-
ferentiate the importance of the partitions of the ensemble in order to becomemore
robust to noisy ensembles. Our approach tries to find amedian-partition, i.e.mini-
mizing its divergence from the other partitions in the ensemble, in a way that takes
into account the co-occurrences of objects in clusters. Additionally, we jointly op-
timize the importance of each partition in the ensemble by means of weight vari-
ables representing a discrete probability distribution over the set of partitions in
the ensemble. To overcome the occurrence of trivial weightings, i.e. putting full
mass on a single partition, we introduce two regularizationmechanisms which lead
to two different formulations. In the first formulation, regularization is achieved by
restricting the set of feasible probability distributions determining the partitions’
importance weights. In the second formulation, a classical 
2 regularization is
adopted. We determine the median-partition and the weights vector by means
of an alternating optimization procedure, which guarantees to find a local solu-
tion. Finally, we perform experiments on ensembles derived from synthetic and
real datasets to assess the validity of our model.

The paper is organized as follows: in Section 2 we present the notation used
throughout the paper and we introduce our robust consensus clustering model
and the two related formulations deriving from the use of different regularization
techniques. In Section 3, we present the optimization procedure adopted to find
a consensus clustering solution, together with the weights associated to each
partition in the ensemble, according to the two proposed formulations. Section
4 is devoted to assessing the effectiveness of the proposed approach. Finally, we
draw conclusions in Section 5.

2 Formulation

We start introducing the basic notation and definitions adopted throughout the
paper. We denote sets with upper-case calligraphic-style letters (e.g., X ), col-
umn vectors with bold lower-case letters (e.g., x), matrices with upper-case
typewriter-style letters (e.g., X), indices with lower-case letters (e.g., i) and con-
stants with lower-case typewriter-style letters (e.g., n). We denote by �P the
indicator function yielding 1 if proposition P holds true, 0 otherwise. We indi-
cate with Aij the ijth component of matrix A and with vi the ith component
of vector v. The vector of all 1s of size k is denoted by 1k, the subscript being
dropped where size is unambiguous. Let A be a k× n matrix. The transposition

of A is denoted by A�. The Frobenious norm of A is denoted by ‖A‖ =
√∑

ij A
2
ij .

The sets of real and nonnegative real numbers are denoted by � and �+ as
usual. We compactly write [n] for the set {1, . . . , n}. We denote by %r& and 'r(
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the floor and ceil operators giving the largest integer value upper bounded by
r ∈ � and the smallest integer value lower bounded by r, respectively. The set
of left-stochastic k× n matrices is denoted by S =

{
X ∈ �

k×n
+ : X�1k = 1n

}
and

we denote by S01 = S ∩ {0, 1}k×n the set of binary left-stochastic matrices.
Let X = {xi}i∈[n] be a set of n data points. An ensemble of clusterings of

X is a collection E = {X(u)}u∈[m] of m partitions, obtained by running different
algorithms (e.g., different parametrizations and/or initializations) on the data
set X . Each partition X(u) ∈ S01 can be regarded as a binary left-stochastic

matrix where X
(u)
ki indicates whether the ith data point belongs to cluster k in

the uth partition.
A consensus clustering (or consensus partition) for an ensemble E is typically

defined as a partition minimizing its divergence from the other partitions in
the ensemble. This definition, however, implicitly assumes that the ensemble is
noiseless and, thus, that all clusterings should be given equal importance during
the establishment of a consensus partition. In order to be more robust to noisy
elements, we introduce a probability distribution over the set of partitions in the
ensemble that allows to automatically tune the importance of each partition in
the ensemble. Formally, a consensus, median partition under this setting can be
found as the solution of the following optimization problem:

min
∑
u∈U αud(Z, X

(u))
s.t. Z ∈ S01

α ∈ Δ ,
(1)

where d(·, ·) is a function providing a distance between the partitions given as
arguments, and Δ is the set of m-dimensional vectors representing a discrete
probability distribution.

We select the distance function d(·, ·) by following the EAC principles. In
specific, we implicitly sidestep the problem of cluster correspondences in the
computation of the distance between partitions, by counting the errors in the
pairwise cluster co-occurrences as follows

d(Z, X) =
∥∥Z�Z− X�X

∥∥2 . (2)

Indeed, this distance counts the number of times two data points are assigned the
same cluster in X but different ones in Z and vice versa. Moreover, for convenience,
instead of attacking (1) directly, we relax the troublesome integer constraints by
replacing the left-stochastic binary matrix variable Z with a left-stochastic real
matrix variable Y ∈ S yielding the following relaxed continuous optimization
problem:

min
∑
u∈U αu

∥∥∥Y�Y− X(u)
�
X(u)
∥∥∥2

s.t. Y ∈ S
α ∈ Δ .

(3)
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We can finally project Y back on S01 by performing a maximum a posteriori
choice over each column of Y.

Unfortunately, the optimization problem in (3) is ill posed, because trivial
distributions, putting full mass on a single partition u ∈ [m], lead to an optimal
solution by setting Y = X(u). The same issue clearly afflicts also the original
formulation in (1). To overcome this problem, we need a form of regularization
on the probability distribution α. In this paper, we propose two different regu-
larization solutions that will be described in the next subsections, one acting on
the feasible domain of (3), the other acting on its objective function.

2.1 Regularization of α Using a Restricted Simplex

The first formulation forces the consensus clustering to agree with at least a
share 0 < ρ ≤ 1 of the partitions in the ensemble. By doing so, noisy partitions
might be excluded from the objective and thus their importance can be nullified
and, at the same time, trivial weighting solutions can be excluded as a minimum
number of partitions should actively be involved in the minimization. This is
achieved by constraining α to lie in a ρ-restricted simplex Δρ which is defined
as

Δρ =
{
α ∈ �

m
+ : α�1 = 1 , α ≤ ρ1

}
,

where ρ ≥ m−1, since otherwise the set Δρ would be empty. Since ρ can be
regarded as the largest probability that can be taken by an element of α, auto-
matically at least %ρ−1& entries of α have to be strictly positive. Clearly, if ρ ≥ 1
we fall back to the standard simplex, i.e. Δρ = Δ for all ρ ≥ 1.

By changing the domain of α in (3) to a ρ-restricted simplex, with m−1 ≤
ρ < 1 we get the following regularized formulation:

min
∑
u∈U αu

∥∥∥Y�Y− X(u)
�
X(u)
∥∥∥2

s.t. Y ∈ S
α ∈ Δρ .

(4)

This formulation falls back to the unweighted case when ρ = m−1 and to the
unregularized case (3) when ρ ≥ 1.

2.2 Regularization of α Using �2-Norm

Our second formulation, considers the following, classical 
2 regularization
parametrized by λ ≥ 0:

min
∑
u∈U αu

∥∥∥Y�Y− X(u)
�
X(u)
∥∥∥2 + λ

2 ‖α‖2

s.t. Y ∈ S
α ∈ Δ .

(5)

This formulation falls back to (3) by taking λ = 0 and to the unweighted case
when λ → ∞. Indeed, the probability distribution α is pushed towards the
uniform distribution as the regularization constant λ increases.
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It is interesting to notice that (5) presents a special case of elastic net regu-
larization [17] in which the parameter related to the 
1 regularization is taken
to infinity and becomes a constraint in Δ.

3 Algorithm

Solving (4) or (5) is in general a hard problem. We propose here for both an
alternating, local optimization procedure which interleaves updates of the cluster
assignments Y and updates of the weights vector α. The update procedure for
the cluster assignments Y is the same for both the regularized formulations and
will be addressed in the next subsection, while the update procedure of α is in
general different for (4) or (5) and it will be addressed in Subsection 3.2 and 3.3,
respectively.

3.1 Optimization of Y in (4) and (5)

Assume α to be fixed and consider the problem of optimizing (4) or (5) with
respect to Y only. This yields a non-convex continuous optimization problem
which can be conveniently rewritten into the following one, which shares with
(4) and (5) the same local minimizers:

min
∥∥∥Y�Y−∑u∈U αuX

(u)�X(u)
∥∥∥2

s.t. Y ∈ S .
(6)

The equivalence between (4)/(5) and (6) can be grasped by noting that the terms
depending on Y are the same in both the optimization problems and the objec-

tives differ simply by an additive, constant term. The matrix
∑
u∈U αuX

(u)�X(u)

can be regarded as the weighted co-association matrix. Indeed, when α is the
uniform distribution, we fall back to the classic notion of co-association matrix
as originally defined in [3].

A local solution of the optimization problem in (6) can be efficiently computed
using the approach proposed in [8], which is a primal, line search approach
that iteratively improves the objective by optimizing one column of Y at time.
Each update has a linear complexity both in time and space. Another advantage
of this optimization approach is that it can handle sparsified versions of the
optimization problem in (6), where the Frobenious norm runs over a sparse
subset of the entries of the matrix given as argument, which is useful in the case
of large datasets. In the sparisified scenario, the time complexity of every line
search can be reduced to sub-linear.

3.2 Optimization of α in (4)

Assume Y to be fixed in (4) and let us focus on the optimization of the vector-
valued variable α only. By letting d ∈ �

m
+ be a vector with entries

du =
∥∥∥Y�Y− X(u)

�
X(u)
∥∥∥2 , (7)



Consensus Clustering with Robust Evidence Accumulation 313

we can rewrite the optimization problem restricted to α as follows:

min α�d
s.t. α�1 = 1

α ≤ ρ1
α ∈ �

m
+ .

(8)

This is a linear programming problem, whose solution can be readily computed
as stated by the following proposition.

Proposition 1. Assume without loss of generality that d satisfies the relation
du ≤ dv for all 0 ≤ u ≤ v ≤ m. Let r = 1 − ρ%ρ−1&. A solution of (8) is given
by αu = ρ�u≤�ρ−1� + r�u=�ρ−1�, for all u ∈ [m].

Proof. We proceed with a proof by contradiction. Assume thatα is not a solution
of (8) and let β ∈ Δρ be a solution of (8), which exists since the feasible set is
compact. Clearly, β �= α. The solution β must satisfy the property that βu ≥ βv
for all 0 ≤ u ≤ v ≤ m. Otherwise, by swapping the elements in β indexed
by a pair of indices violating the condition, we would yield a better solution,
contradicting the optimality of β.

Now, let p ∈ [m] be the smallest index satisfying βp > αp. Hence, αu ≥ βu
holds for all u < p. Necessarily, p > %ρ−1& because by construction αu = ρ for
all 0 ≤ u ≤ %ρ−1& and therefore it cannot be exceeded by βu. Moreover, by
construction, αu = 0 for all u > 'ρ−1(, which implies that αu ≤ βu for all u ≥ p.
By exploiting these relations and by the non-increasing ordering on d, we derive
that

d�(α− β) =

[
p−1∑
i=1

di(αi − βi)

]
−

⎡
⎣ m∑
i=p

di(βi − αi)

⎤
⎦

≤ dp

[
p−1∑
i=1

αi − βi

]
− dp

⎡
⎣ m∑
i=p

βi − αi

⎤
⎦ = dp

⎡
⎣∑
i∈[m]

αi − βi

⎤
⎦ = 0 ,

which contradicts the non-optimality of α. ��

The condition required on d can be met by sorting the vector d in ascending
order and by keeping track of the induced permutation. The latter can be used
at the end to reorder the solution α using the inverse mapping.

3.3 Optimization of α in (5)

Assume Y to be fixed in (5) and let us focus on the optimization of the vector-
valued variable α only. By taking d ∈ �

m
+ as defined in (7), we reduce (5) to

following convex, quadratic optimization problem:

min α�d+ λ
2α

�α
s.t. α�1 = 1

α ∈ �
m
+ .

(9)
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Fortunately, also this optimization problem can be readily computed in linear
time. The solution procedure is detailed in the following proposition.

Proposition 2. Assume without loss of generality that d satisfies the relation
du ≤ dv for all 0 ≤ u ≤ v ≤ m. Let y ∈ �

m be defined as

yu =
1

u

(
1 +

u∑
v=1

dv
λ

)

and let w be the largest element in [m] satisfying yu > du/λ. A solution of (5)
is given by αu = �u≤w(yw − du/λ), for all u ∈ [m].

Proof. We start showing that yu ≤ yu+1 for all u > w. To this end, note that
the relation yu ≤ du/λ holds for all u > w by definition of w. Then

yu =
u+ 1

u

(
yu+1 −

1

u+ 1

du+1

λ

)
≤ u+ 1

u

(
yu+1 −

1

u+ 1
yu+1

)
= yu+1 . (10)

By repeated application of this relation, we have that yu ≤ yv for all v ≥ u and
u > w.

Since the optimization problem in (9) is convex, the Karush-Kuhn-Tucker
(KKT) necessary conditions for optimality are also sufficient. Hence, a solution
α satisfying the following KKT conditions, for some value of the Lagrangian
multipliers γ ∈ � and μ ∈ �

m
+, is a solution of (9):

du + λαu − γ − μu = 0 , ∀u ∈ [m] (11)

α�1 = 1 , (12)

α�μ = 0 . (13)

We proceed by showing that the solution computed as detailed in the proposition
satisfies the KKT conditions, i.e. we have to show that Equations (11)-(13) are
satisfied for a specific choice of the Lagrangian multipliers and that our choice
of μ also satisfies the non-negativity constraint. We start noting that αu > 0 for
all u ≤ w, for we have that yw > dw/λ ≥ du/λ for all u ≤ w, and αu = 0 for all
u > w by construction. Set γ = λyw. For all u ≤ w, Equation (11) is satisfied by
taking μu = 0, while for all u > w it is satisfied by taking μu = du − λyw. This
choice of the elements of μ clearly satisfies Equation (13). Moreover, μu ≥ 0 is
clearly satisfied for all u ≤ w with equality and it is also satisfied for all u > w
because yw ≤ yu ≤ du/λ holds by the relation proven at the beginning of this
proof and by definition of w. We conclude by showing that also Equation (12)
holds. Indeed,

m∑
u=1

αu =

w∑
u=1

αu = wyw −
w∑
u=1

du
λ

= 1 .

��
As in the case of the previous formulation, the condition required for d can be
met by sorting the vector in ascending order and by keeping track of the induced
permutation, which will be used to recover the original ordering on the solution
vector α.
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3.4 Summary of the Algorithm

As anticipated at the beginning of this section, the algorithm used to optimize
(4) and (5) alternates between the optimization of the cluster assignment prob-
abilities Y and the optimization of the weights vector α.

The pseudo-code of the algorithm is shown in Algorithm 1. The input con-
sists of the ensemble of clusterings E = {X(u)}u∈[m] the maximum number of
desired clusters k and the regularization parameter, namely ρ for the formula-
tion in (4) and λ for the formulation in (5). At line 1, we initialize the matrix
of probabilistic cluster assignments by randomly sampling an element of S, or
by considering a uniform distribution for all objects. At line 2, we initialize the
weights to the uniform distribution. Lines 3-6 represent the alternating opti-
mization loop, which is iterated until a stopping criterion is met, e.g. maximum
number of iterations has been reached, or the difference of either Y or α between
two consecutive iterations is below a given threshold. At line 4, we optimize (6),
which is equivalent to optimizing either regularized formulation with respect to
Y. The solution is obtained by using the algorithm described in [8]. At the next
line, we focus on optimizing the weights vector-valued variable α. Based on the
chosen formulation, we optimize (8) or (9) following the procedure described
in Proposition 1 or Proposition 2, respectively. Both solutions can be obtained
efficiently in linear time. Finally, once we exit the optimization loop, we project
Y on the set of left-stochastic binary matrices obtaining matrix X ∈ S01, and we
return X and α.

Algorithm 1. Algorithm description

Require: E = {X(u)}u∈[m]: ensemble of clusterings
Require: k: maximum number of desired clusters
Require: m−1 ≤ ρ ≤ 1, regularization parameter for formulation (4), or λ > 0,

regularization parameter for formulation (5)
1: Initialize Y ∈ S
2: α ← m−11
3: repeat
4: Y ← solve (6) using the approach in [8]
5: α ← solve (4) or (5) based on the desired formulation
6: until termination condition is met
7: X ← project Y on S01

8: return X, α

4 Experimental Evaluation

We evaluate our formulation using synthetic and real-world datasets from the
UCI Machine Learning Repository. We compare the performance of our algo-
rithm against the algorithm in [8], which we refer to as Un-weighted. We call
our two algorithms Weighted+Δρ and Weighted+
2 corresponding to the
variants described in Section 3.2 and 3.3, respectively. For all the experiments,
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Table 1. Benchmark datasets - synthetic: (s-1) spiral, (s-2) cigar, (s-3) rings, (s-4)
image-c, (s-5) image-1; real: (r-1) iris, (r-2) wine, (r-3) house-votes, (r-4) ionsphere,
(r-5) std-yeast-cell, (r-6) breast-cancer, (r-7) optdigits.

Data-Sets s-1 s-2 s-3 s-4 s-5 r-1 r-2 r-3 r-4 r-5 r-6 r-7

k 2 4 3 7 8 3 3 2 2 5 2 10

n 200 250 450 739 1000 150 178 232 351 384 683 1000

kmin − kmax 2-10 2-10 2-10 7-40 8-40 3-20 4-20 2-20 4-20 5-20 2-20 10-50

(a) spiral (b) cigar (c) rings

(d) image-c (e) image-1

Fig. 1. Sketch of the Synthetic Datasets

we used the following setting for the regularization parameters of our algorithms:
ρ = (0.8m)−1 and λ = 0.5 n2.

We performed different series of experiments to compare the performance of
our approaches on several types of ensembles: i) k-means ensemble - consisting of
m = 150 partitions generated running the classical k-means algorithm [18] with
different number of clusters, and different initializations; ii) mixed ensemble -
consisting of m = 56 partitions generated by multiple algorithms (agglomerative
hierarchical algorithms: single, average, ward, centroid link; k-means[18]; spec-
tral clustering [19]) with different number of clusters iii) noisy ensemble - an
ensemble with noisy partitions obtained from previous ensembles, changing a
percentage of the partitions of the ensemble to random partitions.
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(a) k-means ensemble (b) mixed ensemble

Fig. 2. Performance Evaluation for k-means and mixed ensembles in terms of Accuracy.
The weighted approaches Weighted+Δρ and Weighted+�2 are compared against
the un-weighted one.

We assess the quality of a consensus partition by comparing it against the
ground truth partition. In order to compare two hard clusterings we adopt the
H criterion introduced in [20], which computes the fraction of correct cluster as-
signments considering the best cluster matching between the consensus partition
and the ground-truth partition.

Table 1 summarizes the main characteristics of the UCI and synthetic datasets
used in the evaluation (number of ground truth clusters k and number of samples
n) and reports also the range of number of clusters used during the ensemble
generation {kmin− kmax}. Figure 1 illustrates the synthetic datasets used in the
evaluation: (a) spiral; (b) cigar; (c) rings; (d) image-c (e) image-1 .

4.1 Non-Noisy Ensembles

Figure 2 presents the performance results in terms of H criterion for the k-means
and mixed ensembles. In both types of ensembles we can see that the proposed
weighted consensus clustering approaches perform on average better than the
unweighted one, as expected, even though we have a fixed parameterization for
the regularization on all datasets. If we compare the two types of regulariza-
tion on the weighted algorithms, there is no clear winner, the 
2-regularized
being slightly better on average. Overall, we have that in the k-means ensemble
the weighted algorithms obtain better result in 8 out of 12 datasets, while in
the mixed ensemble they obtain better result in 5 out of 12 datasets. On the
remaining datasets the performance of weighted and unweighted formulations
perform comparably well.

In Figure 3 we present the co-association matrices of the weighted and un-
weighted situation and the weights that were obtained by the weighted version
(in this case obtained by the Weighted+Δρ approach). The colour scheme
on the co-association matrices goes from blue (zero similarity), to red (highest
similarity). The un-weighted co-association was transformed into the weighted
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(a) Un-weighted (b) Weighted

(c) Weights

Fig. 3. Example of Co-association matrices. On the left the unweighted version of the
co-association, and on the right the weighted co-association, obtained after weighting
the partitions.

co-association using the weights presented below, which selectively tune the im-
portance of each partition, turning the matrix into a more structured one.

4.2 Noisy Ensembles

Figure 4 presents the performance obtained on the noisy ensembles, which have
been obtained from the k-means and mixed ensembles of the previous section by
substituting 20% of the partitions with randomly generated ones. Our purpose is
to assess the robustness of the approach to outliers in the ensembles. The results
are evaluated in terms of the H criterion.

As we can see, the performance of weighted approaches tends to be more stable
than the un-weighted version. There are isolated dataset where the un-weighted
version improved the performance (when compared to non-noisy ensembles), but
this situation is not generalizable to the other datasets. The opposed situation
was also observed, with the weighted approaches improving the performance
(when compared with non-noisy ensembles), but the general trend was to con-
serve the previous result. if we compare the two types of regularization, we see
that Weighted+Δρ apparently was more stable, preserving in more situations
the previous result.
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(a) k-means ensemble (b) mixed ensemble

Fig. 4. Performance Evaluation for the noisy k-means and mixed ensembles in terms of
Accuracy. The weighted approaches Weighted+Δρ and Weighted+�2 are compared
against the unweighted one.

5 Conclusions and Future Work

One of the drawbacks of the classical clustering combination methodologies is
that all the partitions of the ensemble have the same weight in the combina-
tion process. In this paper we propose a consensus clustering approach with a
weighting mechanism that allows to select a subset of the ensemble becoming
more robust to noisy ensembles. Our approach tries to find a median-partition
based on co-occurences of objects in clusters. We follow an alternating opti-
mization procedure, which allows the determination of the median-partition and
the weights vector. Experiments on syntethic and real-world datasets show that
the proposed approach outperforms state-of-the-art approaches delivering more
robust results. Future work will focus on the application of this framework to
large-scale problems.
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Variational Image Segmentation and

Cosegmentation with the Wasserstein Distance
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Abstract. We present novel variational approaches for segmenting and
cosegmenting images. Our supervised segmentation approach extends the
classical Continuous Cut approach by a global appearance-based data
term enforcing closeness of aggregated appearance statistics to a given
prior model. This novel data term considers non-spatial, deformation-
invariant statistics with the help of the Wasserstein distance in a single
global model. The unsupervised cosegmentation model also employs the
Wasserstein distance for finding the common object in two images. We
introduce tight convex relaxations for both presented models together
with efficient algorithmic schemes for computing global minimizers. Nu-
merical experiments demonstrate the effectiveness of our models and the
convex relaxations.

Keywords: Wasserstein distance, (co)segmentation, convex relaxation.

1 Introduction

The segmentation problem for k classes consists of finding a partition (Ω1, . . . , Ωk)
of a domain Ω, which means Ω1, . . . , Ωk ⊂ Ω, Ωi ∩ Ωj = ∅ for i �= j and⋃k
i=1Ωi = Ω, such that an energyE(Ω1, . . . , Ωk) is minimized. A commonly used

energy functional comes from the minimal partition problem:

E(Ω1, . . . , Ωk) =
1

2

k∑
i=1

Per(Ωi;Ω) +

k∑
i=1

ˆ
Ωi

di(x)dx , (1)

where Per(Ωi, Ω) is the perimeter of the setΩi inΩ and di ∈ L1(Ω), i ∈ {1, . . . , k}.
Byminimizing the above functional, k sets are found such that their boundaries are
short and the areas they cover are dictated by which potential function di has the
lowest value. See [5, 12, 16] for treatments of this problem, including relaxations,
discretizations and extensions of the minimization problem (1). In the case of two
classes this is the well-known Continuous Cut segmentation model, see [8]. This
model can be exactly solved by variational methods, see [9].

Often the potential functions di(x) = − log(pi(I(x))) are chosen as the nega-
tive log-likelihood of some probability density pi modelling the data. Using such
potentials di poses in general the following problems:

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 321–334, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(a) Cont. Cut (b) Ours
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Fig. 1. Inadequacy of local costs for segmentation. Figure (a) shows the result of
the Continuous Cut segmentation, Figure (b) the result of our approach and Figure (c)
the resulting and prior foreground color histograms. The blue areas in Figures (a)
and (b) denote the areas determined to be foreground by the respective algorithms.
The ground truth foreground is the penguin, while the background is the white area
behind it as well as the “EMMCVPR” inscription. We set di(x) = − log(pi(I(x))) in
the Continuous Cut model with accurate distributions pi for the two classes. White
and black color can be found in fore- and background, hence local potentials di for
both classes are not discriminative or may lead to wrong segmentations. Although the
local potentials di used in the Continuous Cut model indicate that the “EMMCVPR”
inscription should be foreground, it is labelled correctly as background, because the
regularization strength is set high. However the white belly of the penguin is labelled
wrong, because white is more probable to be background and the regularizer is not
able to fill in the correct information. In contrast, our approach correctly determines
fore- and background, because it works on the appearance histograms of the whole
segmentation and enforces them to be close to the prespecified ones as can be seen in
Figure (c).

1. For some probability densities pi the resulting potential functions di may
not be discriminative or even misleading for some x ∈ Ω. See Figure 1 for
an illustration.

2. For individual components of the resulting partition, the corresponding ap-
pearance measures may not match well the model distributions pi.

3. In unsupervised settings like cosegmentation, which is the task of finding the
same object in two different images, we have no knowledge of the probability
distribution coming from the object we wish to cosegment. Consequently, no
probability models pi or potential functions di are available and must be
inferred as part of the optimization problem.

These problems more or less persist, even if we use more elaborate potential
functions. We resolve this issue by making our data term dependent on the
whole segmentation.

We propose to solve the first and second of the stated problems by introducing
a global term which directly works on global appearance measures. By using such
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a term, we force each of the subsets Ωi of the partition (Ω1, . . . , Ωk) to have
an appearance measure which is near a prespecified one. To approach the third
problem, we introduce a closely related global term, which depends on both
appearance measures of the common object in the two images and ensures that
they are similar.

1.1 Related Work

Segmentation. Foreground/background segmentation with the Wasserstein
distance was already proposed in the two papers [15] and [7].

Peyré et al. introduce in [15] a data term based on the Wasserstein distance
and an approximation thereof for reasons of efficiency. The model proposed there
is not convex, so it may get stuck in local minima. By contrast, we derive a fully
convex model and work directly with the Wasserstein distance.

The work of Chan et al. in [7] boils down to the Continuous Cut model.
The novelty is the computation of the local costs d1 and d2 from (1). They
are computed by comparing patches around pixels to a foreground and a back-
ground histogram with the Wasserstein distance. The model remains convex, as
it amounts to solving a Continuous Cut, so global minimizers can be computed
very efficiently with existing methods. Our approach differs in that we use the
Wasserstein distance (i) on arbitrary images opposed to grayvalue images and
(ii) as a truly global data term that depends on the segmentation. We point out
however that the limitation to grayvalue images in [7] is only made for com-
putational reasons as the one dimensional Wasserstein distance is very fast to
compute and is not an inherent limitation of the algorithm in [7].

Cosegmentation. Rother et al. introduce in [18] the cosegmentation task into
the literature. To solve the problem, they propose to find a MAP configuration
of an MRF with pairwise potentials for spatial coherency and a global constraint
to actually cosegment two images. The resulting MRF is not easy to optimize
however, and the authors employ a trust region algorithm, which they call trust
region graph cut. The algorithm they employ is not guaranteed to find a global
optimum, may get stuck in local optima and is dependent upon initialization. In
comparison, we solve a convex relaxation that is not dependent upon initializa-
tion and gives a reasonably tight global optimum of the relaxed problem.

Vicente et al. give in [19] an overview over several models for cosegmentation.
They all have in common that they seek the object to be cosegmented to have
similar appearance histograms. The approaches considered in [19] fall into two
categories: (i) the histogram matching term may not be very general or (ii) may
be difficult to optimize. Approaches falling into category (ii) are solved with
EM-type algorithms which alternatingly compute appearance models and then
match according to them. Our approach can match appearance measures very
flexibly and leads to a single convex model, hence solving both of the problems
of the approaches encountered in the paper [19].
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Another approach to cosegmentation is presented in [20], where object pro-
posals for the objects to be cosegmented are computed and taken as labels in
a graphical model. This approach is different from ours, as it relies heavily on
object proposals, which are computed with sophisticated but mathematically
less explicit methods from the realm of computer vision. For these proposals a
big array of complex features is computed. These features are used to compare
objects in different images and find the matching ones. Our model does not need
object proposals to be computed but finds the cosegmented objects in a math-
ematically more explicit variational manner by minimizing one single convex
energy function. Still, sophisticated features can be introduced in our model as
well, however this is not the focus of this paper.

1.2 Contribution

We present

– A new variational model for supervised segmentation with global appearance-
based data-terms, see Section 2,

– a new variational model for unsupervised cosegmention of two images based
on the similarity of the appearance measures of the respective cosegmenta-
tions, see Section 3,

– convex relaxations for both models together with efficient numerical schemes
to minimize them, see Section 4,

– experimental validation of the proposed approach, see Section 5.

1.3 Notation

For vectors or vector valued functions u =
(
u1, . . . , uk

)�
we will denote its i-th

entry by ui. Throughout the paper let Ω ⊂ Rl be the image domain, typically
Ω = [0, 1]2. We will denote images by I, I1, I2 : Ω →M. Images will take values
in a measurable space (M, Σ). M denotes the values an image can take, while
Σ ⊂ 2M is a σ-algebra over M. We also assume we are given a measurable
similarity function c :M×M→ R. An example is the k-dimensional euclidean
space with the Borel σ-algebra: (M, Σ) = (Rl,B(Rl)), c(v1, v2) = ‖v1 − v2‖p.
For gray-value images we have l = 1 and for color images l = 3.

For v ∈M consider the dirac measure δv(A) =

{
0, v /∈ A ∈ Σ
1, v ∈ A ∈ Σ .

Given a measurable subset Θ ⊂ Ω of the image domain and an image I : Ω →
M, consider the measure μIΘ : Σ → R+ which records the values which I takes
on the subset Θ:

μIΘ =

ˆ
Θ

δI(x)dx . (2)

Please note that the right hand side of (2) is a measure-valued integral, hence
again a measure. It follows that for a measurable set A ∈ Σ, we have μIΘ(A) =´
Θ �{I(x)∈A}dx , which is the area in Θ ⊂ Ω where I takes values in A ⊂ M.
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Therefore, the measure μIΘ captures the appearance of the image region Θ ⊂ I.
See Figure 2 for an illustration.

In the discrete case, i.e. Ω = {1, . . . , n}, M = {1, . . . ,m}, the appearance
measure μIΘ is the histogram of the image values on the subset Θ: μIΘ(A) =
#{x ∈ Θ : I(x) ∈ A} . The general setup however allows to state the model in
a continuous setting and makes notation easier.

x

I(x)

0 0.72 1

0

0.2

0.4

0.6

0.8

1 I(x) = 1
2 (sin(6x) + 2x)

A

Θ

μIΘ(A)

Fig. 2. Illustration of the con-
struction of the appearance mea-
sure μI

Θ(A) for a subregion Θ =
[0, 0.72] ⊂ Ω = [0, 1] and a sub-
set of values A = [0.4, 0.6] ⊂
M = [0, 1]. The blue parts of
the curve I(x) = 1

2
(sin(6x) + 2x)

do not contribute to μI
Θ(A) while

the red ones do. Note that Defi-
nition (2) applies also to vector-
valued and more generally to
M-valued images.

For a convex formulation of our models we introduce the space of functions

Ek =
{
u ∈ BV (Ω)k : u(x) ∈ {e1, . . . , ek} a.e. x ∈ Ω

}
, (3)

where ei are the unit vectors in Rk and BV (Ω) is the space of functions of
bounded variations, see [2] for an introduction to this topic.
Ek is not a convex set and therefore it is not amenable for use in minimization

problems in practice. Hence we consider the convex hull of Ek:

Δk =
{
u ∈ BV (Ω)k : u(x) ∈ conv{e1, . . . , ek} a.e. x ∈ Ω

}
, (4)

which is the space of functions having values in the k-dimensional unit simplex.

1.4 Wasserstein Distance

Given two measures μ1, μ2 : Σ → R+ with μ1(M) = μ2(M), the Wasserstein
distanceW (μ1, μ2) ∈ R of these two measures is computed by evaluating the cost
of an optimal rearrangement of μ1 onto μ2 with regard to a similarity function c
on M. Specifically, consider the space of all rearrangements of μ1 onto μ2, that
is all measures on M×M with marginals μ1 and μ2:

Π(μ1, μ2) = {π a measure on M×M :
π(A ×M) = μ1(A)
π(M×B) = μ2(B)

∀A,B ∈ Σ} .

(5)
Measures in Π are also known as coupling measures or transport plans in the
literature. We will stick to the name coupling measures. The Wasserstein distance
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is defined as the infimum over all possible rearrangements with regard to the
cost c:

W (μ1, μ2) = inf
π∈Π(μ1,μ2)

ˆ
M×M

c dπ , (6)

It can be shown that under mild assumptions on c the infimum is attained and
the distance is finite, see [21] for an in-depth treatise of the Wasserstein distance.
The Wasserstein distance is a metric on the space of probability measures for c
a metric on M, hence it gives a reasonable distance for measures for c properly
chosen.

The minimization problem (6) has linear objective and constraints and is
therefore a linear optimization problem, which means it is globally solvable.
Moreover it is jointly convex in both of its arguments under mild conditions as
well, so it is naturally usable in a convex variational setting, see Theorem 4.8
in [21]

Finally, the Wasserstein distance offers much flexibility in modelling similarity
and dissimilarity of measures by choosing an appropriate cost function c in (6).

2 Variational Model for Supervised Segmentation

We will combine into a single variational problem the spatial regularization from
the minimal partition problem (1), appearance measures from subsets of the
image domain constructed by (2) and the Wasserstein distance (6) for comparing
the resulting measures to obtain a new model for segmenting images.

We assume in this setting that one image I : Ω → M and k probability
measures μi over M are given. For a partition (Ω1, . . . , Ωk) of Ω we enforce
the measures μIΩi

to be similar to the prespecified measures μi by using the
Wasserstein distance (6).

Replacing the data term with the potential functions di in the minimal par-
tition problem (1) by the Wasserstein distance yields

Eseg(Ω1, . . . , Ωk) =
1

2

k∑
i=1

Per(Ωi, Ω) +

k∑
i=1

W
(
μIΩi

, |Ωi| · μi
)
. (7)

The additional multiplicative factor |Ωi| in the second argument of the Wasser-
stein distance above is needed to ensure that measures of equal mass are com-
pared, as otherwise the Wasserstein distance is ∞. This is due to the fact that
the space (5) of coupling measures Π is empty for measures of differing masses.

Minimizing (7) over all partitions (Ω1, . . . , Ωk) of Ω results in partitions,
which have regular boundaries due to the perimeter term, and the appearance
measures of the partition μIΩi

being similar to the given appearance measures

μi. Note that the measures μIΩi
depend on the partition through Ωi.

As for the minimal partition problem in [5, 9, 12, 16], we replace the sets Ωi
by indicator functions ui = �Ωi and minimize over them.
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Proposition 1. Let ui = �Ωi . Then (7) is equal to

Jseg(u) =
1
2

∑k
i=1

´
Ω
|Dui| dx+

∑k
i=1W

( ´
Ω
ui(x)δI(x)dx,

´
Ω
ui(x)dx · μi

)
,

(8)
where the Total Variation

´
Ω
|Dui| dx is to be understood as

ˆ
Ω

|Dui| dx := sup

{ˆ
Ω

ui · div(g)dx : g ∈ C1
c (Ω), ‖g‖∞ ≤ 1

}
. (9)

Minimizing (7) over all partitions (Ω1, . . . , Ωk) such that each Ωi has a finite
perimeter is equivalent to minimizing (8) over u ∈ Ek given by (3).

Proof. A partition (Ω1, . . . , Ωk) corresponds to a vector-valued function u ∈ Ek
bijectively by Ωi ⇔ ui = �Ωi . By the Coarea formula Per(Ωi, Ω) =

´
Ω
|Dui| dx

holds, see [2]. The Wasserstein term is equal, since

μIΩi
=

ˆ
Ωi

δI(x)dx =

ˆ
Ω

ui(x)δI(x)dx and |Ωi| =
ˆ
Ω

ui(x)dx . (10)

Thus, Jseg(u) = Eseg(Ω1, . . . , Ωk), which proves the first claim.
The equivalence of both minimization problems stems from the fact, that

sets of finite perimeter correspond bijectively to indicator functions of finite
variation, see again [2], and partitions correspond bijectively to vector-valued

functions such that
∑k
i=1 u

i = � and u ∈ {0, 1}k, hence

inf
u∈Ek

Jseg(u) = inf
(Ω1,...,Ωk) is a partition

Eseg(Ω1, . . . , Ωk) , (11)

which proves the second claim.

The functional Jseg(·) from (8) is convex, as the Total Variation term is convex
and the Wasserstein term is so as well by Theorem 4.8 in [21]. However Ek is
a nonconvex set, so taken together minimizing minu∈Ek

Jseg(u) is not a convex
problem. Thus, for practically finding a minimizer of (8), we have to relax the
domain over which we optimize. The following problem is convex, as Δk is the
convex hull of Ek:

inf
u∈Δk

Jseg(u) . (12)

Remark 1. It is possible to introduce additional local costs di : Ω → R without
compromising convexity of (8), i.e. to minimize

inf
u∈Δk

Jseg(u) +

k∑
i=1

ˆ
Ω

di(x)ui(x)dx . (13)

Numerically it comes at a marginal cost to do so. However we chose not to use
local costs to demonstrate most directly the power of the global Wasserstein
cost.
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Remark 2. (8) is the Continuous Cut model when we choose k = 2, two points
v1, v2 ∈ M and μ1 = δv1 and μ2 = δv2 , as then we can replace the Wasserstein
distance by multiplication with a local data term. The resulting model is the
minimal partition problem (1) for two classes. [9] shows that a global minimizer
of the non-relaxed problem can be obtained by thresholding.

3 Variational Model for Unsupervised Cosegmentation

Let two images I1, I2 : Ω →M be given and let M and c be as above. Suppose
an object is present in both images, but we have no information about the ap-
pearance, location or size of it, Thus, we consider the fully unsupervised setting.
The task is to search for two sets Ω1, Ω2 ⊂ Ω such that Ω1 and Ω2 are the
areas occupied in I1 resp. I2 by the common object. Let μI1Ω1

and μI2Ω2
be the

appearance measures of the common object in images I1 and I2 respectively. We
know that both appearance measures should be very similar. Therefore we will

use the Wasserstein distance W
(
μI1Ω1

, μI2Ω2

)
as a penalization term for enforcing

similarity of the appearance measures μI1Ω1
and μI2Ω2

.
Consider the energy

Ecoseg(Ω1, Ω2) =

2∑
i=1

Per(Ωi, Ω) +W
(
μI1Ω1

, μI2Ω2

)
+

2∑
i=1

P · |Ω\Ωi| (14)

where P > 0 and P · |Ω\Ωi| penalizes not selecting an area as the common
object. This latter term is called the ballooning term in [19] and is needed to
avoid the empty cosegmentation. Minimizing (14) results in two sets Ω1 and
Ω2 which have a short boundary due to the perimeter term and such that the
appearance measures μI1Ω1

and μI2Ω2
are similar. Note that neither μI1Ω1

nor μI2Ω2

are known but completely depend on the segmentation.
The main difference between the segmentation model (7) and the cosegmen-

tation model (14) is that in the segmentation model the second argument in the
Wasserstein distance is fixed while we allow it to vary in the cosegmentation
model.

By the same arguments as in Section 2 and Proposition 1, we can establish
a similar correspondence between (14) and a suitable convex formulation in the
space of indicator functions.

Proposition 2. Let ui = �Ωi . Then (14) is equal to

Jcoseg(u
1, u2) =

∑2
i=1

´
Ω
|Dui| dx+W

(´
Ω
u1(x)δI1(x)dx,

´
Ω
u2(x)δI2(x)dx

)
+
∑2
i=1 P ·

´
Ω
(1− ui(x)) dx

.

(15)
Minimizing Ecoseg(Ω1, Ω2) (14) over all sets Ω1, Ω2 ⊂ Ω with finite perimeter is
equivalent to minimizing Jcoseg(u

1, u2) over all {0, 1}-valued functions of finite
variation.
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As in Section 2, Jcoseg is convex, whereas the space of {0, 1}-valued functions
is not. Relaxing to functions ui : Ω → [0, 1] yields a convex relaxation.

Note that due to aggregating the appearance in the two measures μI1Ω1
and

μI2Ω2
in a translation-, rotation- and deformation-invariant way, the resulting

cosegmentation energy also exhibits these properties.

Remark 3. (14) implicitly defines the size constraint |Ω1| = |Ω2|, since the
Wasserstein distance requires both measures to have equal mass. Weakening
this constraint is beyond the scope of this paper.

4 Numerical Implementation

It is common to solve convex large-scale non-smooth problems with first order
algorithms like [3, 6, 10]. To efficiently solve our models with such schemes, it
is necessary to split our energies into suitable convex funtions, such that the
proximity operators for each function can be computed efficiently. Our splitting
results in 2+k convex non-smooth functions for the segmentation functional (8)
and 3 such functions with an additional linear term for the cosegmentation func-
tional (15). We use the Generalized Forward-Backward Splitting Algorithm [17],
which can handle an arbitrary number of convex functions in a flexible way.

In practice our image domain is discrete. Here we assume Ω = {1, . . . , n}2.
The gradient operator will be approximated by forward differences.

We can rewrite the energy function (8) for the segmentation problem as follows
by splitting variables for the gradient operator:

Jseg(u, g) = χ{∇u=g} + χ{u∈Δk} + ‖g‖+
k∑
i=1

W i
seg(u

i) , (16)

where W i
seg(u) = W

(∑
x∈Ω u(x)δI(x),

(∑
x∈Ω u(x)

)
μi
)

are the Wasserstein
terms in (8) and χTrue = 0, χFalse = +∞ stands for the indicator function.
The energy (15) for the cosegmentation problem can be split as follows:

Jcoseg(u, g) =

2∑
i=1

{
χ{∇ui=gi} + ‖gi‖

}
+ 〈d, u〉+ χ{u∈[0,1]|Ω|} +Wcoseg(u

1, u2) ,

(17)
where Wcoseg(u1, u2) =W

(∑
x∈Ω u

1(x)δI1(x),
∑
x∈Ω u

2(x)δI2(x)
)
is the Wasser-

stein term in (15) and 〈d, u〉 takes care of the balloning term.
Solving (8) and (15) with the Generalized Forward-Backward Splitting al-

gorithm from [17] requires solving efficiently the proximity operators for each
convex function in (16) and (17). The proximity operator for a function G at
point u0 is defined by

proxG(u
0) = argminu

1

2
‖u− u0‖2 +G(u) . (18)

Proximity operators for all the convex functions in (16) and (17) except for the
Wasserstein term can be computed very efficiently by standard methods:
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– proxδ{∇u=g}(u
0, g0) is the projection onto the set {∇u = g} and can be

computed with Fourier transforms.
– proxΔk

(u0) is the projection onto the simplex and can be computed in a
small finite number of steps with the algorithm from [14].

– prox‖g‖(g
0) amounts to computing the shrinkage operator.

See again [17] concerning how these proximity operators are combined.
The Wasserstein proximity operator can be computed efficiently with the

technique detailed below.

4.1 Dimensionality Reduction for the Proximity Operator of the
Wasserstein Distance

In general, computing the proximity operator of the Wasserstein distance can be
expensive and requires solving a quadratic program with |Ω| + |M|2 variables.
However due to symmetry we can significantly reduce the size of the quadratic
program to |M|2 variables, such that the Wasserstein proximation step is inde-
pendent of the size of the image.

In practice we will solve the problem on an image grid Ω = {1, . . . , n}2 and
the number of values a pixel can take is usually significantly smaller than the
number of pixels (e.g. 256 values for gray-value images and for color pictures we
may cluster the colors to reduce the number of distinct values as well, while the
number of pixels |Ω| = n2 can be huge). Hence, we may assume |Ω| * |M|.

In the following we only discuss the segmentation case due to space con-
straints.

Due to the representation of the Wasserstein distance (6), the proximity op-
erator proxW i

seg
(u0) = argminu‖u− u0‖2 +W i

seg(u) of the Wasserstein distance

in the segmentation problem (16) can be written equivalently as

argmin{u,π}
∑
x∈Ω(u(x) − u0(x))2 +

´
M×M c(v1, v2) dπ(v1, v2)

s.t. π(M×A) =
∑

{x∈I−1(A)} u(x) ∀A ⊂M
π(B ×M) =

(∑
x∈Ω u(x)

)
μi(B) ∀B ⊂M

π ≥ 0

(19)

Note that the Wasserstein distance term above is invariant to permutations
of values inside each set {I−1(v)} ∀v ∈ M. The quadratic term

∑
x∈Ω(u(x) −

u0(x))2 dx also possesses similar symmetries. This enables us to reduce the num-
ber of variables as follows:

Let nv = #{I−1(v)} be the number of pixels which take the value v ∈ M and
let μ0 =

∑
x∈Ω u

0(x)δI(x). Consider the problem

argminπ∈P(M×M)

´
M nv ·

(
π(M× {v}) − μ0({v})

)2
dv +

´
M×M c(v1, v2) dπ(v1, v2)

s.t. π(B ×M) = π(M×M) · μ1(B) ∀B ⊂ M
π ≥ 0

(20)

The relation between the two minimization problems (19) and (20) is:



Image Segmentation and Cosegmentation with the Wasserstein Distance 331

Lemma 1. The minimization problems (19) and (20) are equivalent in the fol-
lowing sense: For I(x) = v ∈ M the optimal solutions û of (19) and π̂ of (20)
correspond to each other via the relation

û(x) = u0(x) +
π̂(M×{v})− μ0({v})

nv
. (21)

Lemma 1 allows for efficiently solving (19) via (20) and (21).

5 Experiments

To show the performance of our method we have restricted ourselves to only
consider colors as features. Hence the features alone are not very distinctive, but
the whole energy function makes our approach work. Our label space M is the
CIE 1931 color space and our cost function c will be derived from the euclidean
distance on the above color space. More sophisticated features can be used in our
variational models with no additional computational cost in the minimization
procedure. Choosing such features however goes beyond the scope of this paper,
that is purely devoted to the novel variational approach, rather than to specific
application scenarios. Also, more sophisticated regularizers can be employed as
well, e.g. one could vary weights in the total variation term or use nonlocal
versions of it, see [11] for the latter.

5.1 Segmentation

In our experimental setting we assume that we have probability measures μ1, μ2

at hand for the foreground and background classes, which we employ in the global
Wasserstein data-term.We could in addition determine potential functions to en-
hance segmentation results and solve model (13), e.g. by di(x) = − log(pi(I(x))),
where pi is the density of μi. We chose to not use the latter to show the
strength of the global Wasserstein term alone and the tightness of our relaxation.
See [5, 9, 12, 16] for numerical examples of segmentation results with potential
functions alone.

For the foreground and background appearance measures we chose a part of
the foreground and background of the image respectively and constructed prior
appearance measures μ1, μ2 from them. In a preprocessing step, we clustered the
color values of the image by the k-means method [13]. The number of prototypes
was set to 50. The quadratic problem in the prox-step (20) of the Wasserstein
distance is thus a 50× 50 convex quadratic problem and efficiently solvable. We
conducted four experiments with textured objects, for which it is not always
easy to find discriminative prototypical vectors, but where the color histogram
catches much information about the objects’ appearance, see figure 3. Note for
example that the cheetah’s fur has the same color as the sand in the image,
but the distribution of the black dots and the color of the rest of the fur is still
distinctive. The fish has black regions, exactly as in the background, but the
white and black pattern is distinctive again, so a reasonable segmentation can
be obtained.
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Fig. 3. Supervised segmentation experiments with global segmentation-dependent data
term using the Wasserstein distance. Note that because the results correspond to global
optima of a single convex functional, undesired parts of the partition are solely due
to the – in our case: simple color – features and the corresponding prior appearance
measures.

5.2 Cosegmentation

For cosegmentation we first subdivide the image into superpixels with SLIC [1].
Then we modify the cost function c as follows: For each superpixel in image 1
we consider k nearest superpixels in image 2 and vice versa. For these pairs we
let c be the euclidean distance. For all other pairs of superpixels we set c to ∞.
Obviously, the optimal transport plan will be zero where the distance c is ∞,
hence we may disregard such variables. By this procedure we reduce the problem
size and computational complexity substantially while not reducing the quality
of the solution. The prox-step proxWcoseg

(u1, u2) can be further reduced with a
technique similar to the one presented in Section 4.1.

Four experiments can be seen in figure 4. The foreground objects were taken
from the dataset [4]. We rotated these objects, translated them and added dif-
ferent backgrounds. As the Wasserstein term does not depend upon location and
spatial arrangement of the pixels contributing to the cosegmentation, we could
find the common objects independently of where and in which orientation they
were located in the images without explicitly enumerating over all different pos-
sible such configurations, but by solving a single convex optimization problem to
its global optimum. Note that in this unsupervised setting, no prior knowledge
about the objects is used.

In both experimental settings our method produced functions ui which were
nearly indicator functions except on some parts of the boundaries. Empirically,
our relaxation seems to be quite tight.
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Fig. 4. Unsupervised cosegmentation: foreground regions in two images are separated
at arbitrary locations where the Wasserstein distance between the corresponding his-
tograms is small. This distance depends on the unknown segmentation, and both are
consistently determined by a single convex variational problem. No prior knowwledge
at all was used in these unsupervised experiments.

6 Conclusion

We presented new variational models for segmentation and cosegmentation. Both
utilize the Wasserstein distance as a global term for enforcing closeness between
suitable appearance measures. We also derived convex relaxations of the models
and presented efficient numerical methods for minimizing them. Both models
can be easily augmented by using different regularizers or additional data terms
and any features known from the literature.

Acknowledgements. The authors would like to thank Marco Esquinazi for
helpful discussions.
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Abstract. In this paper, we present a general convex formulation for
global histogram-based binary segmentation. The model relies on a data
term measuring the histograms of the regions to segment w.r.t. refer-
ence histograms as well as TV regularization allowing the penalization
of the length of the interface between the two regions. The framework is
based on some l1 data term, and the obtained functional is minimized
with an algorithm adapted to non smooth optimization. We present the
functional and the related numerical algorithm and we then discuss the
incorporation of color histograms, cumulative histograms or structure
tensor histograms. Experiments show the interest of the method for a
large range of data including both gray-scale and color images. Compar-
isons with a local approach based on the Potts model or with a recent
one based on Wasserstein distance also show the interest of our method.

Keywords: segmentation, global histogram, convex, structure tensor,
non smooth optimization.

1 Introduction

Image segmentation has been the subject of active research for more than 20
years (see e.g. [2,11] and references therein). For instance, we can refer to the
seminal work of Mumford and Shah [16], or to its very popular approximation
with level sets developed by Chan and Vese in [9]. This last work provides a very
flexible algorithm to segment an image into two homogeneous parts, each one
being characterized by its mean gray level value.

In the case of textured images, a lot of extensions of [9] have been proposed
to enhance the mean value image segmentation model. For instance, local his-
tograms are used in [31,17], Gabor filters in [27] and [20], wavelet packets in [3]
and textures are characterized thanks to the structure tensor in [6,26].

When considering the global histograms of the regions to segment, there also
exist a large body of literature [1,7,15,14] also based on [9]. Recent works make
use of the Bhattacharyya distance [30] or the Wasserstein distance [21] to com-
pare globally the histograms. It is important to notice that this class of ap-
proaches involves complex shape gradient computations [12] for the level set
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evolution equation. Moreover, as these methods all rely on the evolution of a
level set function [19], it leads to non convex methods that are sensible to the
initialization choice and only a local minimizer of the associated energy is com-
puted. Other models as in [25,28,4,13] that use graph-based methods and also
[24] obtain good results without level-sets, but these algorithms are not bound
to give a global minimum of the original energy.

Recently, convexification methods have been proposed to tackle this problem,
as in [18,23,8,5,29]. The original Chan-Vese model [9] can indeed be convexified,
and a global solution can be efficiently computed, for instance with a primal-
dual algorithm. A simple thresholding of this global solution provides then a
global minimizer of the original non convex problem. Up to our knowledge, such
approaches have not been developed yet for global histogram segmentation with
length boundary regularization.

The contribution of this paper is thus to introduce a convex model to segment
an image into two parts, each region being characterized by its global histogram.
This convex model is minimized efficiently by using a non smooth convex op-
timization algorithm [8]. The model is first developed for the case of grayscale
images, and then extended to the case of features based on the structure tensor,
and finally to the case of color images.

With respect to the previously mentioned global histogram based segmenta-
tion methods relying on the evolution of a level set function, the approach here
is much simpler. On the one hand, the proposed algorithm is faster than the
ones based on Wasserstein distance [17,21], and on the other hand despite the
simplicity of the approach the obtained segmentation results are very good while
being independent of the initialization.

The plan of the paper is the following. We introduce our model for global
histogram based binary segmentation in Section 2. Our functional relies on some
l1 norm for the data term, and we propose an efficient numerical scheme based on
a non smooth convex optimization algorithm. We present in Section 3 numerous
numerical examples to show the strength of the method, as well as its limitations.
In Section 4, we illustrate the importance of global histogram comparisons to get
a global image segmentation and we give some comparisons with the approach
of [21]. We conclude in Section 5 and we present some future venues of research.

2 A Convex Variational Formulation

The problem tackled in this paper concerns the segmentation of an image into
two parts through global histogram constraints. Our approach is motivated by
two issues. The first one concerns the dependence to the initialization, the second
is the problem of locality in the histogram comparison.

Notations

Let Ω be the image domain: we assume Ω to be a non empty open bounded
subset of �2 with Lipschitz boundary. We note |Ω| the size of Ω and 〈., .〉 the
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standard inner product on L2(Ω), that is 〈u, v〉 =
∑
x∈Ω u(x)v(x) in the discrete

setting. Let I : Ω �→ Λ ⊂ �
k be the image, Λ finite, h0 and h1 two given reference

histograms: Λ → [0; 1], with
∑
λ∈Λ h

i(λ) = 1, i = 0, 1. We aim at estimating
a binary segmentation represented by u : Ω → {0, 1}, where the histogram
computed on the region Ω0 := {x ∈ Ω, u(x) = 0} is close to h0 (resp. the
histogram on Ω1 := {x ∈ Ω, u(x) = 1} should be close to h1). The histogram on
the region Ω1 is then computed as:

hu(λ) =
1

|Ω1|
∑
x∈Ω

u(x)�I=λ(x) =
1∑

x∈Ω u(x)

∑
x∈Ω

u(x)�I=λ(x) (1)

To realize the segmentation, we first require a metric between histograms, and
we will thus consider a norm ‖ . ‖ on �

Λ. In order to control the length of the
interface between the two parts of the partition, a total variation regularization
is also considered. The segmentation can therefore be obtained by minimizing
the following non-convex energy :

J(u) = TV (u) +
∣∣∣∣(hu − h1)λ∈Λ

∣∣∣∣+ ∣∣∣∣(h1−u − h0)λ∈Λ
∣∣∣∣ (2)

Convexification

In the aim of defining a convex model, we propose to reformulate the data term
comparing histograms. To that end, we can first observe that

‖ hu − h1 ‖ =
∣∣∣∣∣
∣∣∣∣∣
(

1∑
Ω u(x)

∑
Ω

u(x)�I=λ(x) − h1(λ)

)
λ∈Λ

∣∣∣∣∣
∣∣∣∣∣ (3)

=

∣∣∣∣∣
∣∣∣∣∣ 1∑

Ω u(x)

(∑
Ω

u(x)�I=λ(x) −
(∑
Ω

u(x)

)
h1(λ)

)
λ∈Λ

∣∣∣∣∣
∣∣∣∣∣ (4)

Assuming that the size of the area Ω1 defined by |Ω1| =
∑
Ω u(x) is known, we

can only keep the distance∣∣∣∣∣
∣∣∣∣∣
(∑
Ω

u(x)
(
�I=λ(x)− h1(λ)

))
λ∈Λ

∣∣∣∣∣
∣∣∣∣∣ (5)

which is convex in u. Note that a similar problem is tackled in [10] in the slightly
different framework of cosegmentation with no total variation, and a solution is
found without modifying this term. The very same convex reformulation can be
done for the second term involving 1 − u and the histogram h0, thus removing
a factor 1∑

Ω(1−u(x)) =
1

|Ω0| .
With such normalizations, the data terms of the two partitions are no more

balanced. Nevertheless, a weighting factor β ∈ [0, 1] can be introduced. This
factor represents the ratio β =

∑
Ω u(x)/|Ω| = |Ω1|/|Ω|. As |Ω| = |Ω0| + |Ω1|,

one can see that
∑
Ω(1 − u(x))/|Ω| = |Ω0|/|Ω| = (|Ω| − |Ω1|)/|Ω| = 1 − β,

which gives the normalization factor of the second term.
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Defining g1λ(x) := �I=λ(x)−h1(λ), g0λ(x) := �I=λ(x)−h0(λ), the final convex
model reads:

J(u) = TV (u) +
1

β
‖ (
〈
u, g1λ

〉
Ω
)λ∈Λ ‖ +

1

1− β
‖ (
〈
1− u, g0λ

〉
Ω
)λ∈Λ ‖ . (6)

It now remains to choose the distance to compare histograms.

l1 Data Term

Up to now, the general model has been designed for any data norm. In this
section, we choose the l1 norm: ‖ h ‖l1=

∑
λ∈Λ |h(λ)|. We therefore have the

following energy:

J(u) = TV (u) + μ
1

β

∑
λ∈Λ

∣∣〈u, g1λ〉Ω∣∣+ μ
1

1− β

∑
λ∈Λ

∣∣〈1− u, g0λ
〉
Ω

∣∣ (7)

= TV (u) + μ
1

β

∑
λ∈Λ

∣∣∣∣∣∑
x∈Ω

u(x)g1λ(x)

∣∣∣∣∣ + μ
1

1− β

∑
λ∈Λ

∣∣∣∣∣∑
x∈Ω

(1− u(x))g0λ(x)

∣∣∣∣∣ .
One can observe that our global data term depends on the whole state {u(x), x ∈
Ω}, for each value λ ∈ Λ. We want to minimize J(u) on the set BV (Ω, {0, 1}).
As this binary set is not convex, we relax our problem by minimizing J(u)
on BV (Ω, [0, 1]). We will get back to the original domain by thresholding the
solution of the relaxed problem. However, there is no guarantee that this strat-
egy should lead to minimizers of the original problem, and different choices of
thresholds may lead to different solutions.

Finally notice that if the original problem has many global minimizers, the
result given by the convex minimization can be such that we do not know how
to use it in order to get back to the original problem. Even if specific scenarios
could be built to make such situation happen, this issue never occurred in our
experiments with non-synthetic data.

Since our functional can be written as the sum of non-smooth convex terms,
some of them being the composition of a l1 norm and a linear operator, we will
write the problem with dual variables. Let us write A and B the linear operators
A : u �→ (

〈
u, g1λ

〉
Ω
)λ∈Λ, B : u �→ (

〈
u, g0λ

〉
Ω
)λ∈Λ. We can write the problem as a

saddle point one
arg max

q1,q2,q3
argmin

u
E(q1, q2, q3, u) (8)

where

E(q1, q2, q3, u) = 〈q1,∇u〉Ω + 〈q2, Au〉Λ + 〈q3, B(1 − u)〉Λ (9)

−χB(0,1)(q1)− χ[−μ 1
β ,μ

1
β ](q2)− χ[−μ 1

1−β ,μ
1

1−β ](q3) + χ[0,1](u)

= 〈q,Ku〉Ω×Λ2 − F ∗(q) +G(u) (10)

with q = (q1, q2, q3) ∈ (�Ω × �
Ω) × �

Λ × �
Λ of dimension 2 |Ω| + 2 |Λ|, K :

u �→ (∇u,Au,−Bu), G(u) = χ[0,1](u), F
∗(q) = χB(0,1)(q1) + χ[−μ 1

β ,μ
1
β ](q2) +
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χ[−μ 1
1−β ,μ

1
1−β ](q3)− 〈q3, B1〉, B(0, 1) the closed unit disc of �2. In the previous

expressions, χC denotes the characteristic function of the convex set C, i.e.
χC(x) = 0 if x ∈ C, χC(x) = ∞ if x /∈ C. We optimize this criterion with a
primal-dual scheme as explained here-after.

Optimization with a Preconditioned Primal-Dual Algorithm (PPD)

We now give the general formulation of the PPD algorithm, and then write the
algorithm applied to our functional.

Let X , Y be two finite-dimensional vector spaces. We write 〈., .〉 the standard
inner products, K : X → Y a linear operator and G : X → � ∪ {∞} and
F ∗ : Y → � ∪ {∞} some convex functions (F ∗ being the Legendre Fenchel
transform of F [22]). We want to solve

min
x∈X

max
y∈Y

〈Kx, y〉+G(x) − F ∗(y). (11)

In [22], a preconditioned primal-dual algorithm has been proposed to solve such
convex problem. The algorithm reads:

Algorithm 1. Preconditioned primal-dual algorithm ([22])

uk+1 = (I + T∂G)−1
(
uk − TKtzk

)
zk+1 = (I +Σ∂F ∗)−1

(
zk −ΣK(2uk+1 − uk)

)

with T and Σ symmetric positive definite matrices such that ‖ Σ 1
2KT

1
2 ‖2< 1

and (I+T∂G)−1(û) := argminu∈U G(u)+ 1
2τ

〈
T−1(u− û), u− û

〉
. Such process

converges to a saddle point in O( 1k ) (with k the number of iterations). As pro-
posed in [22], one can take T = diag(τ1, ..., τn) and Σ = diag(σ1, ..., σm) with
τj <

1∑m
i=1 |Ki,j | , σi <

1∑n
j=1 |Ki,j | .

Application of PPD to Functional (8)

Introducing the following relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tu(x) = τxu(x), τx <
1

2+
∑

λ∈Λ(|g1λ(x)|+|g0λ(x)|)
,

Atq2 =
∑
λ∈Λ q2(λ)g

1
λ,

Btq3 =
∑
λ∈Λ q3(λ)g

0
λ,

σ1 <
1
4 ,

Σ2q2(λ) = σ2,λq2(λ), σ2,λ <
1∑

x∈Ω g
1
λ(x)

,

Σ3q3(λ) = σ3,λq3(λ), σ3,λ <
1∑

x∈Ω g
0
λ(x)

,

b = B1,

(12)

the PPD Algorithm 1 applied to our functional (7) gives the Algorithm 2, where
PC is the orthogonal projection on the convex C:
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Algorithm 2.

uk+1 = P[0,1]

(
uk − T

(
Atqk2 −Btqk3 − div(qk1 )

))
qk+1
1 = PB(0,1)

(
qk1 + σ1∇(2uk+1 − uk)

)
qk+1
2 = P[−μ 1

β
,μ 1

β
]

(
qk2 +Σ2A(2uk+1 − uk)

)
qk+1
3 = P[−μ 1

1−β
,μ 1

1−β
]

(
qk3 −Σ3

(
B(2uk+1 − uk)− b

))
.

3 Applications

We now present some experiments on synthetic and natural images, assuming
that the histograms of the two areas to segment are known. They are in fact
given by manual scribbles selected by the user in our practical applications (they
are displayed on the images with red rectangles for the first region and green
rectangles for the second one).

The balance between the data term and the regularization term is tuned by
the user.

The parameter β is always fixed at 0.5, we show in Figure 4 that changing it
can improve the result, but its value did not seem critical in our experiments. As
our functional is convex, the process is simply initialized with u = 0.5 in all our
experiments, which is a main difference with existing approaches based on global
histograms [17,21,30]. The final solution is currently obtained by thresholding
the estimated solution u∗ with u∗ ≥ 0.5, the choice of the threshold leading to
slightly different results.

3.1 Grayscale Images

In practical applications, images are always corrupted by some noise. In order to
get a more robust algorithm, we can work with cumulative histograms instead
of histograms. Situations may happen where a pixel value is represented in none
of the reference distributions h0 and h1. For instance, let us consider that the
reference histograms have been learned from a clean image. If this histogram is
finely quantified and sparse, adding some noise (or an offset ) to the image may
lead to such issue. In this case, the values of a lot of noised pixels may belong
to empty bins of both reference histograms and the segmentation will fail.

Cumulative histograms are one way to tackle this problem.
All the derivations we have made so far in the paper for histogram based

segmentation hold true for cumulative histograms and we get the following func-
tional:

J(u) = TV (u) + μ
∑
Λ

(
1

β

∣∣∣〈u, g1C,λ〉Ω∣∣∣+ 1

1− β

∣∣∣〈1− u, g0C,λ
〉
Ω

∣∣∣) (13)

with gC,λ =
∑
γ≤λ g

0
λ = �I≤λ−h0C(λ), and the cumulative histogram is obtained

as h0C(λ) =
∑
γ≤λ h

0(γ). The associated numerical schemes are therefore similar.
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In order to show the robustness of cumulative histograms to noise, we segment
in Figure 1 a synthetic image (a) with two areas that have the same color mean
but different histograms with two non zero values, and we add a Gaussian noise
to the image (b). We first estimate the reference histograms on the clean image.
The objective is here to see if it is possible to retrieve the objects in the noisy
image, knowing the histograms on the clean image. We show the results obtained
with the data terms based on (c) histograms and (d) cumulative histograms. As
expected, the simple histogram comparison fails, whereas the cumulative version
of the model is able to give good segmentations of the objects.

(a) Initial image (b) Noisy image (c) Histograms (d) Cumulative
histograms

Fig. 1. Segmentation of a noisy image with two zones that have the same color mean
but different histograms, with β = 0.5, λ = 0.07 and 100 bins. The cumulative his-
tograms version produces a good estimation, whereas the simple histogram comparison
fails. The results are here not thresholded in order to show that the failure of the his-
togram model is not due to the choice of the threshold.

We will then use the cumulative histogram version of our data term, since it
is well adapted to gray-valued images and it is more robust to noise. Notice that
the l1 data term between cumulative histograms of grayscale images corresponds
to the l1 Wasserstein distance. A segmentation of a natural image is presented
in Figure 2. The animal is accurately segmented, even if the tail is missed.

(a) Initial image (b) Segmentation

Fig. 2. Segmentation of a natural image, with β = 0.5, λ = 0.15 and 10 bins. The
animal is mainly found.
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3.2 Color Images

We show in Figure 3 the segmentation of a zebra, using color histograms. Here
again the global model produces accurate results. Next we present in Figure 4
the segmentation of a boat. In this example, the size of the two wanted partitions
is unbalanced, as the boat is small compared to the rest of the image. A slight
increase of the β parameter then allows one to obtain a more accurate estimation,
as illustrated in the image (c).

(a) Initial image (b) Segmentation

Fig. 3. Segmentation of a natural image, with β = 0.5, λ = 0.2 and 73 bins. The animal
is mainly found.

(a) Initial image (b) Segmentation with (c) Segmentation with
β = 0.5 β = 0.59

Fig. 4. Segmentation of a boat, with β = 0.5, λ = 0.13 and 53 bins. The boat is found,
but choosing β = 0.59 gives a more accurate segmentation (c) than the one obtained
with the default parameter (b).

3.3 Structure Tensor

The proposed model is also designed to deal with texture, using for instance the
structure tensor [6] defined as follows. If I is a grayscale image, the structure
tensor is the symmetric matrix (∇I)(∇I)t. Since the tensor is symmetric, it
has only 3 independent dimensions. A 3D histogram is therefore sufficient to
represent the distribution of the structure tensor values.

We can therefore apply the algorithm on the three channels of the structure
tensor or enhance the model with a 4 dimensional histogram (3 dimensions for
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the structure tensor and 1 for the grayscale image I). Here we present some
examples just involving the components of the structure tensor. We choose to
linearly normalize all channels between 0 and 1 before taking the histograms.
We give an example on a synthetic image with two regions that have the same
histograms of gray levels, and with the same orientations. The results are given
in Figure 5. The model here again performs well, even if the ring is recovered
as a disc. We also present a segmentation of two images with two textures in
Figures 6 where our global model is able to estimate accurate segmentations of
the different textures.

(a) Initial image (b) Segmentation

Fig. 5. Segmentation of a synthetic image, with β = 0.5, λ = 0.025 and 33 bins

(a) Initial image (b) Segmentation (c) Initial image (d) Segmentation

Fig. 6. Segmentation of an image of wood, with β = 0.5, λ = 0.075 and 73 bins, and
segmentation of an image composed of two textures, with β = 0.5, λ = 0.1 and 73 bins.

4 Comparison with Local and Non Convex Approaches

In this section, we present comparisons with algorithms of the two main class
of approaches that can be found in the literature of the histogram-based seg-
mentation problem. We first compare our approach with an approach based on
local histogram comparisons through the convex Potts model. As will be shown
in the numerical computations, such a method cannot compete with the global
framework introduced in this paper. We also present some comparisons with a
recent non-convex approach based on the Wasserstein distance between global
histograms. The different experiments demonstrate the capacity of our method
to deal with global constraint while being independent of the initialization.
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Comparisons with a Local Histogram-Based Approach

In order to illustrate the importance of global histogram comparisons over local
ones, we now introduce a local histogram segmentation algorithm based on the
Potts model. A pointwise estimation of the probability of a pixel to belong to a
class can be formulated for instance with the functional:

Jpointwise(u) = TV (u) + 〈u(x), h0(I(x)) − h1(I(x))〉Ω , (14)

where the data model will enforce u(x) = 1 when h1(I(x)) > h0(I(x)). In the
aim of having a more robust data term, we can realize a local estimation of the
probability of a pixel to belong to a class. This can be formulated in the same
way with the functional:

Jlocal(u) = TV (u) +
〈
u(x), ‖ h0 − hV (x) ‖l1 − ‖ h1 − hV (x) ‖l1

〉
Ω
, (15)

where hV (x) is the histogram estimated on a neighborhood V (x) of x ∈ Ω. No-
tice that in these two functionals, the data term can be computed pointwise
(once the map of distances with local histograms has been calculated for the
local model). This is a main difference with our data term which values depend
on the whole state u. On the other hand, it is important to underline that such
functionals can be globally minimized on u ∈ BV (Ω, {0; 1}), using convexifi-
cation approaches (see[18,23,8,5,29]) for more details). We illustrate the need
to use global histogram comparisons instead of local ones on the two examples
given in Figures 7 and 8.

(a) Image data (b) Groundtruth (c) Pointwise (d) Local (e) Global

Fig. 7. Segmentation of a binary image with three regions. The respective probability
of 0 are 0.65, 0.5, 0.95. We fix two histograms h0 = [0.8, 0.2] and h1 = [0.55, 0.45]. The
local estimation on neighborhoods of size 9×9 with λ = 0.5, gives a classification where
the estimated histograms on the labeled images are not as close as the segmentation
given in (c) with our model (with parameters β = 0.5, λ = 0.5).

The synthetic data presented in Figure 7 (a) is composed of three different
regions of the same area. Each region is filled with independent realizations of
a binomial distribution with the probability of 0 depending on the region: this
probability is equal to 0.65 for the left region, 0.55 for the middle one and 0.95
for the right region. We fix two histograms, h0 = [0.8, 0.2] (i.e. the frequency
of 0 is 0.8 and the frequency of 1 is 0.2) and h1 = [0.55, 0.45]. Hence, the first
histogram (h0) exactly matches the expected histogram of the union of the left
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and the right regions, while the second one (h1) matches the one of the middle
region. The ground truth segmentation is illustrated in image (b) of Figure 7.

When realizing a pointwise estimation of the data term, the pixels with value
0 are always more probable in the class defined by h0. With no regularization
the black pixels will therefore be classified in the h0 class, and the white pixels in
the h1 class. Since in each model the probability of 0 is greater than the one of 1,
increasing the regularization weight will increase the number of pixels labeled in
h0. This kind of classification is obtained with the functional (14) and illustrated
in Figure 7 (c).

If we consider local histograms through the functional (15), the problem will
be partially solved. Indeed, if the neighborhood used to compute the local his-
tograms is sufficiently large, the data estimation will be good enough and the
central region will be classified in h1. However, if the metric used to compare
histograms is the l1 one, then the local histograms computed in the first region
will be closer to h1 and will thus be misclassified, as illustrated in image (d).

With both local models, the global histograms of the segmented regions are
not close to the given reference histograms. This is the main difference with our
modeling, as we aim at globally segmenting the image, in the sense that the
histograms of the global segmented zones should be close to the reference distri-
butions. We show in figure 7 (e) the aforementioned example, its segmentation
with local histograms and the one with our model.

A second comparison is presented in Figure 8. The reference color distributions
are here not homogeneous in the sense that the histogram of the whole region
is not similar to the ones computed in local neighborhoods. The histograms
are estimated in the regions given in the image (a). Here the orange colors are
more probable in the region related to the butterfly, so in small neighborhoods
the flowers are classified as the butterfly, and the darker regions are segmented
as being in the background. This example illustrates again the importance of
global histogram comparisons to get a global segmentation of an image. Indeed,
our global model (c) is able to recover the butterfly , whereas the local approach
(b) completely fails. Local approaches are therefore only relevant when the local
histograms correctly approximate the global ones.

Comparisons with a Shape Gradient Approach

We finally illustrate the advantage of having a convex model that does not de-
pend on the initialization. We compare our results with the ones obtained with
the Wasserstein Active Contour method proposed in [21]1. Such approach con-
sists in deforming a level set function in order to minimize globally the Wasser-
stein distance between the reference histograms and the one induced by the
segmentation. To make the level set evolve, this formulation requires complex
shape gradients computations. In Figure 9, we present the results obtained with
this approach on the synthetic three regions example (build as in Figure 7).

1 We want to thank the authors of [21], Gabriel Peyré, Jalal Fadili and Julien Rabin,
for their code.
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(a) Original image (b) Local model (c) Global model

Fig. 8. Segmentation of an image where local histograms (9 × 9 neighborhoods) are
different from the global ones. The segmentation fails for the local histogram model
(with λ = 10) as it classifies the orange areas in the first class and the darker ones
in the second class. The global histograms on the segmented zones are not close to
the given ones, contrary to our model parameterized with β = 0.5 and λ = 0.22. The
histograms were composed of 43 bins.
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(a) (b) (c) (d)

Fig. 9. We illustrate on the three regions synthetic example the problems arising with
an algorithm that is very sensitive to the chosen initialization. The Wasserstein ac-
tive contours method [21] have been initialized in different ways (first row, a-d). As
illustrated in the second row, it leads to very different segmentations, even with really
similar initializations (a-c). When carefully parameterized, such approach can lead to
good segmentations as illustrated in column (c), which is very close to the one obtained
with our global approach (see Figure 7 (c)).

An experiment on a natural image is finally shown in Figure 10. Even if this
model can give good segmentations that are close to the ones we obtained in
Figures 7 (c) and 8 (c), we illustrate that its initialization may be a critical step
as really different segmentations are obtained with very similar initializations.
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(a) (b) (c) (d)

Fig. 10. The Wasserstein active contours method [21] have been initialized in two
different ways (a-b), the corresponding segmentations being presented in (c-d). When
carefully parameterized, it leads to a segmentation close to the one obtained with our
global approach (see Figure 8 (c)).

5 Conclusions and Perspectives

In this paper, we have presented a general convex framework based on global
histograms to segment images into two parts, and we experimented a special
case defined by the l1 data term. Our approach gives good results in the set
of experiments realized on gray images, color images and also when using the
structure tensor. The additional use of the cumulative histograms also permits
to be robust to noise. Comparisons with local histogram data terms and non-
convex approaches also demonstrate the capacity of our model to deal with
complex configurations.

Even if the convex reformulation changes the nature of the problem by nor-
malizing the data terms with respect to their prior area, the value of the area
ratio parameter β is not an issue. Namely, it has been set to 0.5 in almost all of
our experiments, which shows that our model is robust in practice.

Future works will be to study the use of other descriptors for texture. We
will also be interested in investigating the connections between minimizers of
the original problem and the ones of the relaxed problem for different norms in
order to make the best possible choice when finally thresholding the estimated
solution.
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A Continuous Shape Prior for MRF-Based
Segmentation
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Abstract. The competition between discrete (MRF based) and continuous (PDE
based) formulations has a very long history, especially in context of segmentation.
Obviously, both have their advantages and drawbacks. Therefore the choice of a
discrete or continuous framework is often driven by a particular application or
(even more often) by personal preferences of a particular researcher. In this work
we present a model for binary segmentation, where discrete and continuous parts
are combined in a well founded and simple way. We discuss the properties of the
proposed model, give a basic inference algorithm and validate it on a benchmark
database.

1 Introduction

The discussion about properties, advantages and drawbacks of discrete and continuous
approaches is not new (see e.g. [1]). In most cases however the questions are posed in
a quite ultimate way: “which framework is better” with respect to a particular property
(precision, modeling capabilities, computational efficiency etc.). In this work we try to
combine the advantages of continuous and discrete approaches for segmentation. To
start with, we would like to discuss/recall some relevant properties. The first issue is
the modeling. In a continuous framework it is much easier to express a-priory assump-
tions that relate to low-level features, like e.g. boundary length, curvature etc. The main
drawback of discrete methods in this respect is the presence of well known metrication
artifacts. Of course, it is possible to avoid these effects (to some extent) in the discrete
framework too [2,3]. However, it leads to higher-order MRF-s or to a complicate graph
structure, that makes the modeling less transparent and the related tasks hard to opti-
mize. On the other hand, some semi-global properties (such as e.g. scene layout [4] or
star-convexity [5]) is more convenient to express in the discrete framework. Another im-
portant related property here is the ability to deal with multi-label segmentation. Again,
this is possible in continuous approaches as well [6]. However, it leads to the complex
coupling constraints that is again hard to optimize.

An important topic is the ability to model shapes that is nowadays almost obligatory
for segmentation (especially in the unsupervised case). Many different shape priors
were studied in the continuous optimization community in the past. The most elaborated
(in our opinion) techniques are based on the Level Set representation (see e.g. [7] and
references therein). In the discrete domain this topic is not as elaborated so far. In [8] it is
shown that it is in principle possible in part-shape based segmentation. However, again
the resulting model (although of second order only) has a very complex neighborhood
structure and a lot of free parameters, that restricts the applicability.

A. Heyden et al. (Eds.): EMMCVPR 2013, LNCS 8081, pp. 350–361, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Another branch of questions deals with inference. The continuous functionals used
for inference are often convex and can be optimized globally. Even if not, convex ap-
proximations/relaxations can be used. In the discrete case most of inference tasks are
NP-complete. In particular, if the Maximum A-posteriori decision is employed as the
decision strategy, relaxations are often used for approximations, thus in fact, discrete
optimizations are substituted by corresponding continuous ones.

The main drawback of continuous methods is the lack of sound statistic interpreta-
tion, which makes it impossible to learn unknown parameters. For discrete models in
contrast, the learning can be posed in a well founded statistic way using e.g. the Max-
imum Likelihood principle or applying the ideas of discriminative learning, such as
e.g. Structural SVM [9].

The main aim of the paper is to show that the advantages of discrete and continuous
models can be combined in a well founded and simple way. This work is inspired by
[10,11] at most. In these works however, a very simple shape prior is used, which is ob-
viously not suitable for real segmentation tasks. We use a more general class of Level
Set like functions to represent shapes. In short, the proposed model consists of two
parts – a discrete and a continuous one. The former is a standard MRF consisting of the
Ising model for the a-priori probability distribution for segmentations and a Gaussian
Mixture Model for appearances (similar to e.g. [12,13]). Like in [10], the prior proba-
bility distribution is parametrized by a Level Set like function, which assigns additional
unary potentials to each pixel. The proposed model has the following properties that are
desired for segmentation:

– It is very simple and generic and has few free parameters.
– The modeling of the low-level features is expressed in a transparent way using

continuous framework.
– The segmentation is posed in a sound statistic way using discrete formulation.
– Basic algorithms for inference and learning are based on standard techniques widely

used in discrete and continuous optimization respectively.
– The method is able to work in fully unsupervised manner and gives promising

results.

2 Approach

2.1 Model

In this work we consider binary segmentation for simplicity although all consideration
can be easily generalized to the multi-label case. The model architecture is illustrated
in Fig. 1. Let G = (R,E) be a graph over the pixel grid, i.e. each node r ∈ R corre-
sponds to a pixel, the set of edges E corresponds to the 4-neighborhood structure. At
the same time the nodes are embedded in a continuous space Ω ⊂ R

2, i.e. each pixel
has its coordinates, which we denote by r ∈ Ω as well to omit notational clutter. The
segmentation is a mapping y : R → {0, 1} that assigns a label (0 for the background



352 D. Schlesinger

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

r r r r

N (xr;μi, Σi)
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− + + −

0

1I(yr �=yr′)

Fig. 1. Model overview (best viewed in color). The shape function φ(r) (red) assigns additional
unary potentials to the foreground labels (white) at each position of the underlying MRF (green).
The conditional probability distributions p(xr|yr) for observations are Gaussian Mixtures (blue)
with a common set of Gaussians (colored circles).

and 1 for the foreground) to each node r. An image is also a mapping x : R → C that
assigns a color value c ∈ C to each pixel. We denote by yr and xr the label and the
color value in pixel r correspondingly. The probability distribution for pairs (x, y) is
defined by1

p(x, y;φ) = p(y;φ) · p(x|y) =

=
1

Z(φ)
exp
[
−α

∑
rr′∈E

1I(yr �=yr′) +
∑
r

yr · φ(r)
]
·
∏
r∈R

p(xr|yr). (1)

The prior probability distribution consists of two parts (energy terms). The first one
is the Ising model that penalizes different labels in neighboring pixels by a penalty
α > 0. The second one is a shape function φ : Ω → R, which supports/suppresses the
foreground label in each pixel by assignment an additional unary energy term to it.

As usual for MRF-s, the conditional probability distribution p(x|y) is assumed to be
conditionally independent. We use Gaussian Mixture models with common Gaussians
for p(xr |yr) like in [11]. In contrast however, we use general multivariate Gaussians
instead of the isotropic ones as we are not interested in real-time performance. To sum-
marize, the probability to observe a color c ∈ C for a label k ∈ {0, 1} is

p(c|k) =
∑
i

wki · N (c;μi, Σi) (2)

with the label-specific weights wki and Gaussians N (·) with mean values μi and co-
variance matrices Σi.

1 The parameters are separated from the random variables by semicolon.
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2.2 Inference and Learning

Assuming for a moment that the shape function is known, the segmentation is posed as a
Bayesian decision task with the Hamming distance as the loss. It leads to the maximum
marginal decision strategy

y∗r = argmax
k∈{0,1}

p(yr=k|x;φ) ∀r ∈ R. (3)

Although most successful segmentation methods are based on the maximum a-posteriori
decisions, marginal based inference is becoming increasingly popular for MRF-based
approaches due to several reasons (see e.g. [14]). First of all, it follows from a more rea-
sonable loss function. Besides, as we will see later, we need marginals for other tasks
as well, namely for the shape estimation and unsupervised learning of the appearance
characteristics.

The most interesting part is the estimation of the shape function φ. We consider it
primarily as a continuous function in order to be able to use elaborated techniques from
continuous optimization. Consequently, we do not consider φ as a random variable,
mainly because it is not possible to introduce probability measures for function spaces.
Therefore, in our model the shape function is a parameter of the probability distribution.
Remember that we are mainly interested in fully unsupervised segmentation. Taking all
this into account, a reasonable choice is to estimate the shape function e.g. according
to the Maximum Likelihood principle, i.e. ln p(x;φ) → maxφ. However, it is easy to
see that such a formulation for (1) has a trivial solution. For those pixels that would
be assigned to the foreground according to the appearance model only (i.e. p(xr |1) >
p(xr|0)) the optimum with respect to φ is reached at φ(r) =∞, for other pixels φ(r) =
−∞ holds. It is indeed expected because we did not introduce any requirements (prior
assumptions etc.) for shape so far.

It is a common technique in Machine Learning to enhance an objective function
(e.g. the Likelihood in our case) by a regularizer. In Machine Learning this trick is used
mainly in order to resolve ambiguities and/or increase robustness of the learning. Here
we use the same ideas in order to be able to express our prior assumptions about the
shape. Hence, we pose the shape estimation as the following optimization task:

F (φ) = ln
[∑
y

p(x, y;φ)
]
+R(φ)→ max

φ
, (4)

where the first addend is the log-likelihood and the second one is a regularizer. Numer-
ous choices are possible for the latter. We use a simple one to keep the whole approach
as general as possible:

R(φ) = −
∫
Ω

(
λ1 · ‖∇φ‖2 + λ2 · +φ2

)
dω, (5)

First of all we would like to require that the shape function is smooth. At the same
time penalizing gradients only is not appropriate in our context because in this case the
shape function tends to be “flat” inside the segments. As the consequence, it does not
influence the underlying MRF good enough. Therefore we penalize both gradients and
Laplacians to facilitate the shape function to be “as linear as possible”.
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The derivative of the subject (4) with respect to the value of the shape function at a
given position r yields2

∂F

∂φ(r)
= p(yr=1|x;φ) − p(yr=1;φ) +

∂R(φ)

∂φ(r)
. (6)

The first term is the posterior marginal probability for the pixel r to be the foreground.
These probabilities are estimated using Gibbs Sampling. For the second one (prior
marginal probabilities) we use the following approximation. In [11] it is proposed
just to binarize the shape function at zero level and substitute real prior marginals by
p(yr=1;φ) ≈ 1I(φ(r) > 0). In our case it does not work well, because the shape is
much “weaker” as in [11] and non-parametric. However, similar observations can be
used. We performed a couple of experiments and found out that the prior marginals can
be well approximated (for reasonable values of α, λ1 and λ2) by a sigmoid function

p(yr=1;φ) ≈
exp
(
βφ(r)

)
exp
(
βφ(r)

)
+ 1

, (7)

with a constant β > 1, which makes the sigmoid function stronger compared to the
independent case α = 0. The last term in (6) is the Gâteaux derivative of (5) and is
obtained (after discretization) by convolution with the corresponding mask.

For unsupervised learning of the Gaussian mixtures (2) we follow standard tech-
niques and use the Expectation-Maximization Algorithm. Note that in the Expectation
step again the marginal posterior label probabilities should be computed.

2.3 Discussion

At this place we would like to discuss some properties of our model and relations to
other ones. The discrete part is a standard MRF. Without the shape prior it is even sim-
pler as e.g. GrabCut [13] due to the constant edge strengths α. Obviously, the discrete
part can be extended to admit more elaborated features. At this stage however we do
not follow this way because we would like to keep the model as simple as possible and
therefore as generic as possible. In particular, we would like to show that even such sim-
ple MRF is able to produce reasonable results if it is “weakly supported” by other parts
(e.g. by a continuous shape prior in our case). Nonetheless, we are mainly interested in
an unsupervised segmentation that requires generative models.

If we simplify our model in another way doing the discrete part independent (i.e. α =
0), we observe the following analogy. As the log-likelihood in (4) can be computed
explicitly, the model becomes a continuous one, where the data terms are obtained by
marginalization over labels in each pixel. The optimization (4) reads then

∑
r

ln

[
exp(φ(r))

exp(φ(r)) + 1
· p(xr|1) +

1

exp(φ(r)) + 1
· p(xr |0)

]
+R(φ)→ max

φ
. (8)

Suppose, the shape function is very “strong” (which is mainly the case in continuous
optimization, as Level Set functions are supposed to be close to the distance transform),

2 We omit detailed derivation here, because they are standard and quite straightforward.
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i.e. the sigmoid function in (8) is very close to the Heaviside function H(φ(r)) =
1I(φ(r)>0). In other words, we substitute the marginalization by binarization. Then the
model becomes a standard Level Set based continuous model for segmentation∑

r

[
H(φ(r)) · ln p(xr|1) +

(
1−H(φ(r))

)
· ln p(xr|0)

]
+R(φ) → max

φ
. (9)

We would like to stress that the optimization (4)-(6) is in fact a standard task extensively
studied in the continuous optimization in the past. The difference is only that the data
terms are not given explicitly but their derivatives (first two summands in (6)). There-
fore the whole spectrum of methods (like e.g. successive over-relaxation, scale-space
methods etc.) can be used for efficient optimization. Moreover, elaborated regularizers
can be of course used instead of the simple one (5), such as e.g. TV-norm.

2.4 Implementation Details

We implemented the method in a multi-threaded manner like in [11]3. The overall sys-
tem architecture is given in Fig. 2. Basically, it consists of three blocks that work in
parallel. The core of the algorithm is the “Gibbs Sampling” block that permanently
computes marginal posterior label probabilities for the current appearances and shape
function. The “Appearances” block observes these probabilities, performs maximiza-
tion steps of the EM-Algorithm and computes the unary potentials ln p(xr|k) according
to (2). The “Shape” block also takes the marginal posterior probabilities as the input and
performs gradient steps according to (6). The output of this block is the shape function
φ(r) (i.e. the shape dependent unary potentials in (1)).

Gibbs Sampling ShapeAppearances
Image x

p(yr=1|x)

φ(r)ln p(xr |k)

Fig. 2. The system architecture

We do not use any stopping criteria. In our experiments we just limit the time for
the system to work. After the time is elapsed, the final segmentation is obtained by
thresholding the current marginal label probabilities at 0.5 level.

The most slow procedure is the learning of appearances. We did not use accelera-
tion techniques as in [11] in order to avoid approximations. Hence, for each pixel the
marginalization over the Gaussians is necessary that involves exponentiation and taking
the logarithm many times. The fastest procedure is Gibbs Sampling that can be easily
implemented in a very efficient manner. The speed of the shape estimation lies in be-
tween. To summarize, for a typical run of 5 minutes the system was able to perform

3 The source code will be available soon at [23].
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about 33 thousands iterations (scans over the whole image) of Gibbs Sampling, about 7
thousands gradient steps for the shape learning and only about 250 iterations (M-steps)
for appearances. Obviously the computational efficiency can be essentially improved.
We plan to address this issue in the nearest future.

3 Experiments

We validate our model on the Weizmann Horse Database [15]. First of all we would
like to note that our simple generic shape prior does not fit “horses” good enough.
The obvious problems are legs, pigtails and manes. The next topic is the following. As
we perform fully unsurprised segmentation, the problem is highly ill-posed, i.e. there
can be many objects in the scene (despite of horses) that are “compact” and fit well
to our shape prior. At the same time the optimization in (4)-(6) is non-convex due to
the likelihood. Therefore we need a reasonable initialization for the shape function.
We obtained it by just considering the position dependent probability distributions of
labels, estimated from ground truths over the whole database. For each pixel we count
how many times it is labeled as foreground according to the ground truth (to do this,
images were rescaled to a predefined size). The probability map obtained in such a
manner is given in Fig. 3(a). After that we fit the shape function into these probabilities,
i.e. we perform optimization (4)-(6), where the posterior marginals are substituted by
the probability map obtained as described above. The resulting initial shape function is
shown in Fig. 3(b). The initialization for each image is obtained by rescaling this initial
shape function to the original image size.

(a) Probability map. (b) Shape function (zero-level is shown in red).

Fig. 3. Initialization for the shape function (scaled to fit into the gray-value range)
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Fig. 4. Some selected results. Left: original images; middle: obtained segmentation overlaid with
ground truth (green – false positive, magenta – false negative), right: obtained shape function,
zero level is shown in red. Best viewed in color.
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In Fig. 4 some selected results are presented. If the coloring properties are distinctive
enough, the produced segmentation is almost perfect (the first row, less that 1% mis-
classified pixels). There are also many “good” segmentations (like in the second and
the third rows, about 2-3% misclassified pixels), where the errors have a local nature.
Note, that isolated segmentation errors (see the third row) are often not presented in
the zero-level set of the found shape function. Obviously, if a particular task consists
of the retrieval of compact connected segments that need not necessarily be precise, the
zero-level can serve as the segmentation result.

In most cases the method found segmentations that we would consider rather as
“satisfactory” ones (fourth and fifth rows) – characteristic horse shapes are clearly vis-
ible at most, the obtained segmentations are however not precise enough (about 8-9%
misclassification). Finally, there are cases, for which the method does not work at all
(see Fig. 5), i.e. it produces segmentations that have nothing in common with what is
desired.

Fig. 5. Fail cases (see description for Fig. 4)

The quantitative results are presented in Fig. 6(a). For each image we compute the
Hamming distance normalized to the image size. We prefer to give a complete his-
togram of the Hamming distances to give a better feeling, how many images in the
database were segmented correctly. As it is seen from the figure there were only 12 im-
ages (out of 328 in total), where more than 20% of pixels were misclassified. 237 images
were segmented with less than 10% of inaccuracy. The most frequent error value (for
45 images) is 5%. The average normalized Hamming distance is 7.8%.

Unfortunately, it is not easy to compare the proposed model with other ones in a
straightforward manner. The obvious reason is that there are many algorithms in the
literature that are very complex, too different and therefore not comparable. Elabo-
rated segmentation techniques usually use high-level knowledge about the object to be
segmented. For example in [16,17,18] template based techniques are used, where the
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templates are learned in advance and match characteristic shape fragments during in-
ference. In [19] a complex hierarchic model is presented. In [20] a kernelized structural
SVM learning framework is employed. We would like also to mention [14], where rel-
atively simple generic features (although a lot of them) are used in a CRF framework
and marginal based inference and learning are exploited. On this background our model
looks like an extreme oversimplification. On the other hand, really simple generic algo-
rithms seem to be not able to cope with real segmentation tasks. So for example GrabCut
initialized in a reasonable manner has only 85.5% accuracy4 (data from [20]). To con-
clude, our 92.2% accuracy were really surprising. We summarize the results found in
the literature in Fig. 6(b).

We should admit that at the moment the used optimization techniques (as well as our
implementation) are very far from being computationally efficient. Processing of one
image takes about 5 minutes on a standard quad-core computer thus the processing of
the whole database takes about a day. As a consequence we were not able to tune free
parameters of the method carefully. We performed a couple of experiments for only 3-4
images taken randomly from the database and decided for values that seemed reason-
able. We also would like to note that for many images 5 minutes were obviously not
enough, i.e. the method had not enough time to converge. Consequently, we hope that
the segmentation accuracy can be further improved by using efficient implementation.
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Normalized Hamming distance (in%)

(a) Histogram of the normalized Hamming distances.

Approach Accuracy

ObjCut [16] 96.0
Levin [17] 95.5
Borenstein [18] 93.6
Zhang [19] 95.4
Bertelli [20] 94.3
Domke [14] 92.0
Our 92.2
GrabCut [13] 85.5
Co-segmentation [21] 80.1
MNcut [22] 51.0

(b) Comparison to other approaches.

Fig. 6. Quantitative evaluation

Looking at the initialization (see Fig. 3) it might be well asked, whether our results
are caused by the proposed model or by a suitable chosen initialization. In order to ver-
ify that the model really does its job, we performed the following check. We binarized
the initial shape function at the zero-level and used this binary mask as a segmenta-
tion result. For each image we compute the normalized Hamming distance between the
corresponding ground truth and the binary mask and average over the database. The
obtained accuracy was 85.1%. Of course, a reasonable initialization is necessary for the

4 To be in line with other sources we summarize the results in term of segmentation accuracy,
i.e. the percentage of correctly classified pixels.
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method. However, it is able to significantly change the initialization and considerably
improve the segmentation accuracy.

It is also interesting to see, what are influences of the different model parts to the
results. To investigate this we performed two additional tests – one without the shape
function at all (i.e. φ ≡ 0) and another one with independent MRF (i.e. α = 0). Without
the shape the model almost always produces a reasonable result – more or less compact
segments, which have however nothing in common with horses. The accuracy in this
case was about 83%. The situation without the Ising prior is slightly better – about
85%. In this case horses can be seen in obtained segmentations, which are however
very noisy.

4 Conclusion

In this work we presented a model for segmentation, which consists of two parts: a
discrete MRF and a continuous shape prior. We show that a proper combination of
seemingly very different frameworks leads to promising results remaining at the same
time quite simple. We gave a basic algorithm for inference that again consists of two
parts, each one being standard in the corresponding framework. To conclude: discrete
and continuous methods need not compete, they should rather work together.

There are numerous ways for the further research. The main motivation of the work
was the intention to combine advantages of different methods. In particular we use a
continuous shape prior in order to be able to use elaborated techniques from contin-
uous optimization. In this work however we applied only a very basic method that is
extremely inefficient in practice. Therefore this paper is rather a “work in progress”.
Other choices for the continuous part are to be evaluated.

Our treatment of “inference” (see sec. 2.2) differs from a commonly used one. Usu-
ally, parameters of a probability distribution are not dependent on a particular obser-
vation, i.e. they represent some intrinsic properties. They should be learned on a train-
ing dataset and used (remaining thereby unchanged) during inference. If something is
image-dependent, then it is rather a random variable. In our model however, it is hardly
possible to interpret the shape function as a random variable because of the infinite di-
mensionality. Therefore it is also not possible to consider the regularizer (5) as the prior
probability distribution of shapes. Hence, we are obligated to consider it as a parameter.
We plan to investigate the related questions more carefully in the future.
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Möllenhoff, Thomas 94

Ng, Michael K. 54, 294
Nieuwenhuis, Claudia 94, 209

Olsson, Carl 80

Papadakis, Nicolas 335
Paragios, Nikos 1
Pelillo, Marcello 307
Pfister, Hanspeter 266
Pock, Thomas 66

Qiao, Motong 54
Qiu, Wu 12

Rajchl, Martin 12
Ranftl, Rene 66
Ravichandran, Avinash 195
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