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Preface

LightSec 2013 was the Second International Workshop on Lightweight Cryptog-
raphy for Security and Privacy, which was held in TÜSSİDE Gebze/Kocaeli
Turkey during May 6–7, 2013. The workshop was sponsored by TÜBİTAK
BİLGEM UEKAE (The Scientific and Technological Research Council of Turkey,
National Research Institute of Electronics and Cryptology).

The ProgramCommittee (PC) consisted of 34 members representing 18 coun-
tries. There were 30 papers from 15 countries submitted to the workshop and
three of them were withdrawn without review. The 27 remaining submissions
were reviewed by the PC members themselves or assigned to external reviewers.
Each submission was double-blind reviewed by at least three PC members and
the submissions by PC members were assigned to five reviewers. The vast ma-
jority of the papers were reviewed by four reviewers. The PC members selected
10 papers out of the 27 submissions for presentation.

The program also included three excellent invited talks by experts in the
field. The first talk was given by Axel Poschmann about “Implementation As-
pects of Lightweight Cryptography.” Gregor Leander presented the second talk
on “Design Strategies for Lightweight Block Ciphers: PRINCE and Beyond.”
Jacques Stern gave the third invited presentation on the topic of “Randomness
and Lack of Randomness in Cryptography.”

We would like to thank all the people who contributed to making the work-
shop successful. First, we greatly appreciated the valuable work of the authors
and we thank them for submitting their manuscripts to LightSec 2013. We are
also grateful to the PC members and the external reviewers whose admirable
effort in reviewing the submissions definitely enhanced the scientific quality of
the program. Thanks also to the invited speakers, Axel Poschmann, Gregor Le-
ander, and Jacques Stern, for their willingness to participate in LightSec 2013.
Last but not least, we would like to thank Hüseyin Demirci and the organizing
team for their management of the organization.

May 2013 Gildas Avoine
Orhun Kara
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Adnan Baysal
Muhammed Ali Bingöl
Serkan Çelik
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A Lightweight ATmega-Based

Application-Specific Instruction-Set Processor
for Elliptic Curve Cryptography

Erich Wenger

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, 8010 Graz, Austria
erich.wenger@iaik.tugraz.at

Abstract. It is inevitable that future Radio-Frequency Identification
(RFID) technology must support complex protocols and public-key cryp-
tography. In this paper, we present an Application-Specific Instruction-
Set Processor (ASIP) based on a clone of the ATmega128 microprocessor.
A leakage-resilient, constant-runtime, and assembly-optimized software
implementation of an elliptic curve point multiplication, which outper-
forms related work, requires 9,230–34,928 kCycles or 681–2,576 ms for
standard conform elliptic curves (secp160r1, secp192r1, secp224r1, and
secp256r1). Because this is too slow for most applications, the micro-
processor has been equipped with a multiply-accumulate and a bit-serial
instruction-set extension. Therefore, the runtime has been reduced to
practically usable 96–248ms, while keeping the power below 1.1mW,
and the area consumption between 19–27 kGE.

Keywords: ATmega, Elliptic Curve Cryptography, Instruction Set Ex-
tension, Application Specific Instruction-set Processor, Constant Run-
time.

1 Introduction

The future Internet of things will consist of embedded smart cards, wireless sen-
sor networks, and Radio-Frequency Identification (RFID) tags. Those devices
must be capable to communicate with other entities over an air interface and
must provide privacy and security capabilities. At Asiacrypt 2007, Serge Vau-
denay [20] showed that “...an RFID scheme that achieves narrow-strong privacy
... essentially needs public-key cryptography techniques.”

Among the three most popular public-key cryptographic systems (RSA, El-
Gamal, and ECC), Elliptic Curve Cryptography (ECC) is the least resource
demanding and most suitable for embedded systems. In the past ECC has been
well studied and standardized by SECG [2] and NIST [17]. One could also in-
vestigate non-standardized curves (e.g., by Gallant, Lambert, and Vanstone [7]
or Bernstein et al. [1]), but for open-loop systems one should stick to the given

G. Avoine and O. Kara (Eds.): LightSec 2013, LNCS 8162, pp. 1–15, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Schematic diagram of the used processing architecture

standards. In this work we focus on the four prime-field based Weierstrass curves
secp160-256r1 as those are already used for mainstream applications such as
TLS, IPSec, and SSH.

While public-key systems are very resource demanding, RFID tags must con-
sume little power, be cheap (have a small chip area) and support real-time ap-
plications (respond within a given time). The traditional approach, which will
pretty soon exceed its realms of possibility, is to equip the state machine of an
RFID tag with a dedicated hardware block doing public-key cryptography. A
more sophisticated solution is to base the design on a microprocessor, in par-
ticular on an Application-Specific Instruction-Set Processor (ASIP). An ASIP
unites the advantages of programmable microprocessors (flexibility, extendabil-
ity) with the advantages of dedicated hardware blocks (high-performance, low-
power). Therefore, dedicated hardware units can be avoided and the overall
hardware footprint decreases. In this paper, we transform a commercially avail-
able microprocessor into an ASIP targeting RFID and public-key cryptography.

For this paper, we base our design on the popular 8-bit Atmel ATmega128
AVR processor. This processor comes with an extensive instruction set and a
dedicated hardware multiplier (important for prime-field arithmetic). The AT-
mega128 is used for a magnitude of applications and is supported by many
toolchains (e.g., avr-gcc, IAR, Crossworks). In Wenger et al. [21], we presented
‘Just Another AVR’ (JAAVR, see Figure 1), a feature-complete clone of the pop-
ular ATmega128 which is written in VHDL and only requires 6,140GE, making
it perfectly suitable for area-sensitive embedded designs. In [21], we equipped an
earlier version of JAAVR with a dedicated RFID modem, and evaluated ECC,
AES, and Grøstl. As expected, those results show that ECC is the dominating
component.

Our Contribution. In this paper we present an JAAVR-based ASIP opti-
mized for ECC. First, we present new assembly optimized ATmega-compatible
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runtime results in which we outperform related software implementations (in-
cluding our own in [21]). Second, we optimize the cycles-per-instruction (CPI) of
all load, store, and multiply instructions of JAAVR in order to achieve speedups
of 25–27%. Third, we are the first to actually build an ATmega128-compatible
processor with multiply-accumulate instruction-set extensions as ASIC. Previous
work was either simulated or only performed on FPGAs. Fourth, we are also the
first to build a tightly-coupled bit-serial multiplier as instruction-set extension
of JAAVR for prime-field based ECC. Utilizing all those techniques, we present
a 19 kGE small design suitable for RFID and other real-time applications.

This paper is structured as follows: Section 2 elaborates some basic design
decisions. Section 3 discusses efficient software implementation techniques for
ECC. Sections 4-6 deal with the improvement of the CPI of JAAVR, the uti-
lization of a multiply-accumulate instruction, and the integration of a bit-serial
multiplier, respectively. Section 7 discusses the results in connection with related
work. Section 8 concludes the work. The most important results are gathered in
Table 2. They are discussed throughout the paper.

2 Basic Reasoning

For RFID applications, the runtime of an algorithm is important in two respects.
First, it must be sufficiently fast to support real-time applications. Second, by
having a fast implementation, one can reduce the clock frequency and therefore
reduce the power consumption. For a passively powered RFID tag, the power
consumption is of upmost importance. For a typical ISO-14443-compatible [13]
tag, we assume the following requirements. The clock should be an integer frac-
tion of 13.56MHz, the maximum power consumption below 2mW, and the max-
imum runtime for an ECC point multiplication is 100-500ms. It should be noted
that all our hardware designs easily exceed this minimum clock frequency of
13.56MHz.

Tools. For all of our implementations, we performed hardware synthesis
(Cadence RTL Compiler v08.10), power simulations (Cadence First Encounter
v08.10), and cycle-accurate post-synthesis and post-layout hardware simulations
(using NCSim v08.20). As process technology the UMC 130nm low-leakage
CMOS technology with Faraday design libraries in combination with area-efficient
single-port register-based RAM macros and Via-1 ROM macros is used. Previ-
ous experiments showed that synthesizing the programmemory as standard logic
cells results in smaller (post synthesis) but less routable designs (post place-and-
route). A decreased cell density increases the size of the synthesized program
memory to a point where the available Via-1 ROM macro is effectively smaller.

Practical Security. When implementing cryptography, the designer must con-
sider practical attack scenarios such as timing, side-channel and fault attacks.
Regarding timing attacks, all assembly-optimized implementations perform the
point multiplication in constant runtime. Further, all implementations provide
a basic resistance against power-analysis attacks. The Montgomery ladder for-
mula by Hutter et al. [11] performs key-independent double-and-add operations.
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Table 1. secp160r1 point multiplication results using different multi-precision integer
multiplication methods: operand-scanning (OS), product-scanning (PS), hybrid, and
operand-caching (OC)

Impl. Point- Integer- Program-Memory Chip
Multiplication Multiplication Size Integer Mul. Area

[kCycles] [Cycles] [Bytes] [%] [GE]

OS in C 37,168 9,807 4,188 3 17,738
OS 17,607 5,505 12,110 62 23,540
PS looped 17,226 5,367 4,636 4 17,638
PS 13,546 4,035 9,860 54 21,701a

Hybrid 10,609 2,972 9,050 49 21,701a

OC 9,230 2,473 8,218 46 21,701a

a Identical, because only certain discrete ROM macros are available.

With its requirement of 16 field multiplications and 17 field additions per key
bit, it is reasonably fast. The finite-field multiplication is used for multiplications
as well as for squarings. At the end of the Montgomery ladder, a y-coordinate-
recovery and a constant-runtime inversion based on exponentiation (Fermat’s
little theorem) are performed. For side channel and fault security we also per-
form projective point randomization [4] before (against side-channel attacks)
and point verification before and after (against fault attacks) the point multi-
plication. Because we did not perform practical power analysis attacks or fault
simulations, we do not claim to be side channel or fault secure, but we use al-
gorithms that improve resistance against those attacks. Thus all our results are
practically relevant.

3 The Baseline: Efficient Software Implementation

By choosing an 8-bit processor we start with a rather small but “arithmetically
speaking” slow processor. Our first not constant-time, plain-C implementation
showed excruciatingly-slow runtimes of 37–131 million cycles, 2.7–9.6 seconds
(@ 13.56MHz). Thus optimizing the existing code in assembly is mandatory.
For all following comparisons we consider our C implementations as baseline. In
hardware it requires 16.9–19.5kGE and 561–656μW.

The first (and most laborious) optimization we have performed is the re-
placement of all field operations with constant-runtime assembly functions. This
not only improves the runtime but also makes all timing attacks infeasible. The
field addition and subtraction operations have been unrolled and perform the
reduction without branches. For the field multiplications, we have taken advan-
tage of the standardized Mersenne-like primes to get branch-free code using only
addition and shift operations.

The most time-consuming algorithm is the multi-precision integer multipli-
cation. Hutter and Wenger [12] did a thorough comparison between the School-
book’s operand-scanning (OS), Comba’s [3] product-scanning (PS), Gura et
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al.’s [9] hybrid and their own operand-caching (OC) multiplication methods.
We implemented unrolled and looped versions of those algorithms in assembly.
Table 1 shows that by doing so the runtimes of integer and point multiplica-
tions for secp160r1 were improved by factors of 3.97 and 4.03, respectively. Our
fastest implementation, based on the operand-caching method, achieved a run-
time of 9,230kCycles for a point multiplication. For comparison: Gura et al. [9],
Szczechowiak et al. [19], Wenger et al. [21], and Liu et al. [16] achieved runtimes
of 6,480kCycles, 9,376kCycles, 13,027kCycles and 16,939kCycles, respectively.
However, most of those implementations do not consider side-channel attacks.
For instance, Gura et al. used a Jacobian-based NAF point-multiplication for-
mula. For reference, we applied the same technique as Gura et al. and improved
their fastest implementation by 50 kCycles to 6,430kCycles.

Apart from the expected runtime differences (OS > PS > Hybrid > OC),
unrolling the integer multiplication has a huge impact on the size of the program
code. Up to 62% of the entries in the program memory are due to the unrolled
integer multiplication. Compared to the C implementation, the chip size of the
programmemory increased by up to 76%. Despite of that, assembly optimization
and ‘unrolling’ improved the area-time-product by a factor of up to 3.3, thus
establishing themselves as one of the most important optimization techniques.

The focus of this section was to perform software optimizations both appli-
cable to the ATmega128 and JAAVR. In the next sections, we present hardware
optimization techniques that improve both the execution time as well as the
total hardware footprint.

4 Improving the CPU

Already during the design of JAAVR, we realized several avenues for optimiza-
tion potentials. It was necessary to artificially introduce NOP operations in order
to achieve identical cycles-per-instruction (CPI) counts compared to the original
ATmega128. The most significant difference is that the ATmega128 uses a two-
stage pipeline and JAAVR does not. So all we needed to improve the performance
of store and multiply operations was to deactivate the NOP operations.

Unlike our previous paper [21], we also optimized memory load operations.
For the cycle-accurate (CA) design, two cycles are needed to load data from
the synchronous data memory. During the first cycle the address is applied to
memory and during the second cycle the obtained data word is stored to a
general purpose registers (GPR).

In order to reduce the latency of all load operations, we decided to introduce
a pipelining structure. While the first cycle of the operation stays identical, the
second cycle is performed as part of the subsequent operation. As Figure 2 shows,
multiplexers before and after each general purpose register were added. MUX2
is used to update the next value stored within the GPR. MUX1 overrides the
current contents within the GPR. Thus the ALU is working on an updated set
of GPR. The impact of the multiplexers on the critical path is hardly noticeable.

By switching JAAVR from the CA to the FAST mode, the following instruc-
tions improve: MUL*, ST, STD, PUSH, LD, LDD, POP, IJMP, RJMP, CBI, SBI (2→ 1),
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Fig. 2. The multiplexers were added to reduce the necessary cycles per load instruction

RCALL, ICALL, LPM, ELPM (3→ 2), CALL, RET, and RETI (4→ 3). This increased
the size of JAAVR form 6,140GE to 6,791GE (by 10%), while the runtime of the
fastest point multiplication improved by 26%. Thus, the area-runtime product
improved by a factor of 1.31.

After enabling those optimizations, JAAVR is still instruction-set compatible
with the original ATmega128. So any (cryptographic) algorithm would benefit
from the improved instruction-timing. The next two sections are dedicated on
optimizing JAAVR for ECC using instruction-set extensions, transforming our
design into an ASIP.

5 The Power of the MULACC Command

When investigating the instructions used for the unrolled product-scanning multi-
precision multiplication, one can observe that there are four instructions, always
used in consecutive order: MUL, ADD, ADC, and ADC. The idea behind the multiply-
accumulate instruction-set extension is to combine those instructions into a sin-
gle MULACC command, as it has been done in related work.

Already in 2004, Großschädl and Savaş [8] used five custom instructions to
accelerate prime fields and binary extension fields on a MIPS32 core and gained
a speedup of about six for binary extension fields. In 2005, Eberle et al. [5]
presented multiply-accumulate instruction-set extensions for binary-extension
fields on an ATmega128. They improved sect223r1 by a factor of 13.6, but did
not use ISE for prime fields as we do it in this paper.

In fact, we used the MULACC instruction to improve the fastest multi-precision
multiplication formula: the operand-caching method. We are the first to com-
bine the operand caching method with an instruction-set extension. Like the
product-scanning method, this method uses the same sequence of instructions
as mentioned above. So, by combining the operand-caching multiplication, which
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reduces the number of load and store operations, and the multiply-accumulate
instruction, which reduces the number of additions, we achieved a new speed
record: 631 cycles for a 160-bit integer multiplication.

There are two main challenges concerning the introduction of new instruc-
tions: First, most of the 216 possibilities of the 16-bit instruction words are al-
ready assigned to existing instructions. Thus, the introduction of a new instruc-
tion would mean to modify existing instructions and being no longer compatible
with the original ATmega128. Second, adapting the source code of avr-gcc,
avr-as, and avr-ld to add new instructions does not seem to be straightfor-
ward.

Our solution is to introduce a new, within the I/O memory mapped, register
that can switch the processor to a special operating mode. In this special op-
erating mode, certain existing instructions are reinterpreted. For this solution,
none of the avr-gcc tools had to be modified.

In order to improve the performance of the operand-caching multiplication,
we introduced two instructions: MULACC and ST SHIFTACC. MULACCmultiplies two
registers Rd and Rr and adds the result to the accumulator stored in R0-R2:
(R2, R1, R0) ← (R2, R1, R0) + Rd × Rr. This operation can be performed 28

times without the risk of an overflowing accumulator. This is more than the
required e = 10 accumulations performed within the operand-caching multi-
plication algorithm (e is a parameter to adjust the operand caching method,
see [12]). After e MULACC operations, ST SHIFTACC is used to store the lowest
byte of the accumulator (ST R0,Z+) and shifts the accumulator by 8 bits to the
right (R0 ← R1, R1 ← R2, R2 ← 0). Because of those optimizations, we freed
up two registers that were used as temporary storage of the product. In order
not to waste them, we increased e from 10 to 11, which further decreased the
number of necessary load and store instructions.

By using those instruction-set extensions, a 160× 160-bit multiplication can
be performed three times faster. It takes 631 cycles compared to 1,896 cycles.
A detailed decomposition of the used instructions can be found in Appendix A.
Further, the ISE had hardly any impact on the size of JAAVR. Only 257GE
or 3.8% of additional logic had to be added. At the same time, the size of the
program memory decreased: from 11,807GE to 8,202GE (-31%). Adding all
those improvements together, the area-time product improved by a factor of 2.4.

A point multiplication in secp160r1 takes 3,268kCycles. A profiling analysis
showed that 83.2% of the total runtime are spent on the field multiplications.
The optimized reduction algorithm for the secp160r1 prime 2160−231−1 utilizes
26.1% of the total runtime or a third of the field multiplication. Thus, any
further optimizations must not only consider the integer multiplication, but the
field multiplication as a whole. This is done in the following section.

6 Using a Dedicated Digit-Serial Multiplier

When investigating related work on ECC, one can either find ECC designs based
on an word-level multiplier (cf. [10,22]), as we used in the previous sections,
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or designs based on a digit-serial multiplier (cf. [6]). A digit-serial multiplier
simultaneously operates on all digits of the multiplicand a, but only a single
digit bi of the multiplicand b.

In this section we want to introduce the concept of a ‘tightly-coupled’ bit-
serial multiplier, which merges a bit-serial multiplier with the CPU. By reusing
existing registers, we were able to keep the impact on the total chip area to a
minimum and avoid unnecessary data transfers.

A block diagram of our bit-serial multiplier is depicted in Figure 3. Algo-
rithm 1 shows the pseudo-code to control it. An MSB-first multiplier is used
which accesses all bi starting with the most significant bit. The Z-register (R30,
R31) is used to address the memory, and R29 is used to store the byte containing
bi. During each cycle, R29 is shifted to the left using the LSL (Logic Shift Left)
instruction of JAAVR. At the same time the Work register is updated in the
following manner: Work ← (a × bi + Work � |bi|) (mod p). In each cycle the
most significant bit of R29 (bi) is multiplied with a, the product is added to a
shifted version of the n-bit1 Work register, and the Work register is updated with
the reduced sum. After the last computation cycle, the product a × b (mod p)

1 n relates to the number of bits needed to represent any value in Fp.
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Algorithm 1. Pseudocode for the bit-serial multiplication

1: PUSH all call-saved registers.
2: LD operand a to R0-R28 and Extension.
3: Switch to ISE mode. (memory mapped config register)
4: Clear Work register.
5: for i from �n

8
� − 1 to 0 do

6: LD R29, -Z (load bi, pre-decrement pointer register Z)
7: 8 times: LSL R29 (triggers bit-serial multiplier)
8: end for
9: Store Work register.
10: Switch back to normal mode.
11: POP all call-saved registers.

is stored in the Work register. A modified store instruction (ST) is used to write
the Work register to memory, one byte at a time.

To reuse existing registers, a is stored in register R0 to R28 and the Extension
register. For secp256r1, three IO-memory-mapped 8-bit Extension registers are
necessary. So for secp160-224r1 it was only necessary to add the Work register
and the combinatoric logic.

A field multiplication for secp160r1 takes 271 cycles. 9×20 = 180 cycles are
used by the digit-serial multiplication, 2×20 = 40 cycles are necessary for loading
operand a and storing the result, and 51 cycles are necessary to comply with the
C-calling convention (PUSH, POP, CALL, RET) and to switch between the normal
ATmega128 compatible operation mode and the instruction-set-extension mode.

Compared to the original software implementations in C, a speedup between
30 (secp160r1) and 44 (secp256r1) was achieved. The bit-serial approach is
also 2.3–3.7 times faster than the MULACC instruction-set extension. The size of
the program memory decreased significantly by 25%–41%. However, the size of
the CPU core increased by 61%–107%. 4,551GE are required for the bit-serial
multiplier for secp160r1 and 7,792GE have to be added for secp256r1. The
question now is whether adding the bit-serial multiplier improves or worsens the
area-runtime product. In fact, it improves by a factor of 2.1–3.1, which makes
the tightly-coupled digit-serial multiplier (by far) the fastest, even though not
the smallest hardware implementation presented in this paper.

7 Results

The most important results of our implementations are summarized in Table 2
and have already been discussed in the previous sections. It contains figures that
are characteristic for software and hardware implementations. Every row labeled
with cycle accuracy (CA) is applicable for an ATmega128 as well as JAAVR.
Using a TCL-based simulation script, we measured the data-memory require-
ments (including stack) of all implementations. The bit-serial designs needs the
least data memory, because the memory for a temporary 2n-bit product was
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Table 2. Summary of all experiments. SARP stands for ‘scaled area-runtime product’.

Impl. Runtime Program Data Area Requirement Power Energy Runtime SARP
Memory JAAVR ROM RAM Total @13.56MHz @13.56MHz

[kCycles] [Bytes] [Bytes] [kGE] [kGE] [kGE] [kGE] [μW] [μJ] [ms]

secp160r1

CA in C 37,168 4,188 418 6,140 7,744 3,855 17,738 561 1,539 2,741 22.5
CA 9,230 8,218 402 6,140 11,807 3,754 21,701 662 450 681 6.8
FAST 6,764 8,218 402 6,791 11,807 3,754 22,352 824 411 499 5.2
MULACC 3,268 5,688 402 7,048 8,202 3,754 19,004 850 205 241 2.1
bit-serial 1,298 4,286 350 11,341 7,744 3,452 22,537 1,013 97 96 1.0

secp192r1, NIST P-192

CA in C 55,365 3,916 483 6,140 6,505 4,233 16,877 640 2,615 4,083 21.6
CA 15,093 10,070 462 6,140 11,807 4,107 22,054 677 753 1,113 7.7
FAST 11,101 10,070 462 6,791 11,807 4,107 22,705 832 681 819 5.8
MULACC 5,022 6,396 462 7,048 10,040 4,107 21,195 864 320 370 2.5
bit-serial 1,813 4,490 406 12,302 7,744 3,779 23,825 1,084 145 134 1.0

secp224r1, NIST P-224

CA in C 86,058 3,926 569 6,140 6,363 4,712 17,215 663 4,208 6,346 23.9
CA 23,213 12,374 526 6,140 15,484 4,485 26,109 689 1,179 1,712 9.8
FAST 17,114 12,374 526 6,791 15,484 4,485 26,760 843 1,063 1,262 7.4
MULACC 7,537 7,404 526 7,048 10,040 4,485 21,573 848 472 556 2.6
bit-serial 2,469 4,808 466 13,237 7,744 4,132 25,113 1,032 188 182 1.0

secp256r1, NIST P-256

CA in C 130,695 5,604 645 6,140 8,202 5,165 19,506 656 6,320 9,638 27.8
CA 34,928 15,888 590 6,140 17,029 4,838 28,006 663 1,707 2,576 10.7
FAST 26,290 15,888 590 6,791 17,029 4,838 28,657 811 1,572 1,939 8.2
MULACC 11,900 9,372 590 7,048 11,807 4,838 23,693 836 733 878 3.1
bit-serial 3,367 5,532 522 14,583 8,202 4,460 27,244 1,031 256 248 1.0

saved. The RAM and ROM macros are chosen according to the data and pro-
gram memory requirements. Because those macros are only available in certain
sizes, not every difference measured in Bytes is reflected in the actual area of
the ROM macro (in gate equivalents).

7.1 Reached Goals

All targeted goals (< 2mW, < 500ms @ 13.56MHz) have been met. An exception
are the larger 224-bit and 256-bit elliptic curves which render the MULACC based
approach as too slow. The runtimes of 100–200ms show that the clock frequency
can be decreased by factors of 2–4, which in turn would decrease the power
consumptions by a factor of 2–4.

7.2 Related Work

For a fair comparison with related work, it is important to not only consider
plain numbers (chip area, runtime, power), but also the provided features. We
distinguish whether a design is microprocessor-based (MCU), comes with a C-
compiler, considers side-channel attacks, or performs binary- or prime-field based
ECC. One must also consider the used manufacturing technology, but this would
go beyond the scope of this paper.

A fair comparison with dedicated hardware designs is tough. While they
are optimized to the limit, they lack the rich set of features our ASIP pro-
vides. The ASIP is easily extendable and provides a compiler toolchain. Also our
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Table 3. Comparison with related work

Reference Runtime Area Characteristics
[kCycles] [GE]

ISE - secp160r1

Gura [9] 4,720 - ATmega-based
OC + MULACC 3,268 19,004 ATmega-based

Dedicated Hardware - secp160r1

bit-serial 1,298 22,537 ATmega-based
OC + MULACC 3,268 19,004 ATmega-based
Fürbass [6] 362 19,000 ECDSA-like

Dedicated Hardware - secp192r1

Satoh [18] 4,165 29,655 ECC
bit-serial 1,813 23,825 ATmega-based
Fürbass [6] 502 23,600 ECDSA-like
OC + MULACC 5,022 21,195 ATmega-based
Hutter [10] 859 19,115 ECDSA, MCU
Wenger [22] 1,377 11,686 ECDSA, MCU

microprocessor-based approach has not yet reached its limits (c.f. Appendix C),
but applying those ideas would make our design incompatible with a standard
ATmega128. Table 3 summarizes the comparison with related work.

Fürbass et al. [6], Hutter et al. [10], Satoh et al. [18], and Wenger et al. [22]
worked on dedicated prime-field based elliptic curve hardware designs. They
require 12–30kGE of hardware and 362–4,165kCycles of runtime. Although most
of their solutions are faster, it is important to notice that our solutions provide
sufficiently fast response times. Hutter et al. and Wenger et al. implemented
the full ECDSA signature algorithm and Fürbass et al. implemented ECDSA
without a hash algorithm. The designs by Hutter et al. and Wenger et al. is micro
controller based, but does not provide a C-compiler. The designs by Fürbass et
al. and Satoh et al. are not micro controller based, so it probably is easier to
adapt our designs for real-world scenarios.

Most comparable to this paper are the works of Gura et al. [9], Kumar
and Paar [15], and Koschuch et al. [14]. Gura et al. added simulated ISE to
an AVR processor, but achieved slower runtimes results. Kumar and Paar used
the ATSTK94 FPSLIC demonstration board to extend an AVR processor with
a bit-serial multiplier extension for binary extension fields. They however have
not applied their methodology to prime fields and do not provide results for
an ASIC. Koschuch et al. synthesized an 8051-compatible microprocessor and
equipped it with a hardware accelerator for binary extension fields. In total, they
needed 29 kGE and 1.2MCycles. Even though we use prime fields, our results
are smaller and approximately of similar speed.

8 Conclusion

After our thorough analysis of instruction-set extensions for ECC, the follow-
ing conclusions can be drawn: First, if the area footprint is most important
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(e.g., for RFID) our MULACC-based ASIP is the best choice. The chip area is
on par with related work and reasonable response times of less than 370ms are
achievable. Second, for applications such as wireless sensor networks or embed-
ded smart cards, the tightly-coupled bit-serial ASIP approach is most suitable.
It provides the best energy efficiency and the best area-time product. Third,
the design space for ECC implementations is huge: the ratios between the best
and the worst implementation across all tested elliptic curves in the categories
of area-runtime product, runtime, and energy are 87:1, 101:1, and 65:1, respec-
tively. Our results show that the figures vary by up to two orders of magnitude
across the hardware/software design space, which gives a designer a multitude
of options to fine-tune a design for a given set of requirements.
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A Decomposition of Instructions

Table 4 shows the decomposition of used instructions for performing a 160×160-
bit multiplication with and without instruction-set extension. Using the ISE, the
necessary additions were nearly eliminated.

Table 4. Decomposition of the number of cycles per type of instruction necessary for
a 160× 160-bit multiplication

Instruction CA FAST ISE

MUL 800 400 0
MULACC 0 0 400
LD 160 80 76
ST 120 60 0
ST SHIFTACC 0 0 58
ADC 820 820 18
ADD 420 420 18
CLR 63 63 4
PUSH 36 18 18
POP 36 18 18
Others 18 17 21

Total 2,473 1,896 631

B Runtimes of Finite-Field Operations

The runtimes of all finite-field operations for secp160r1 are presented in Table 5.
Especially the comparable slow finite-field multiplication greatly profited from
the performed optimizations. Because the inversion is based on an exponenti-
ation, the speedup of the inversion is a direct reflection of the speedup of the
multiplication. Using the bit-serial multiplier, the ratio between additions and
multiplications is only 1.5. This needs to be taken in concern when a method or
formula for the point multiplication is chosen.

Table 5. Runtimes of finite-field operations for secp160r1

Operation CA FAST ISE bit-serial

Addition 291 176 176 176
Subtraction 291 176 176 176
Multiplication 3,024 2,249 984 271
Inversion 519,217 386,368 170,053 48,130
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C The Limits

In this paper we concentrated on delivering sufficiently fast and power-aware
ASIPs for future RFID technology. We sticked to modifying the processing core
and only optimized the finite-field operations in assembly language. However, if
you want to make our design into an actual product, further optimizations need
to be considered.

Constants consume space within the program and data memory. At startup
they are loaded from the program memory and stored to the data memory.
If one would add a memory-mapped table within the data memory bus, one
could significantly reduce the size of the necessary RAM macro. The RAM
macro could be shrunken by at least seven times 160-bit = 140 bytes.

Memory Management is currently performed by the compiler by reserving
memory on the stack. If the whole source code would be written in assembly,
unnecessary and redundant data memory entries could be avoided.

Processor Features that are not needed for ECC could be removed. E.g. the
I/O bus is mapped within the data memory, or MOVW instructions are not
needed for the finite-field operations. Removing those feature would decrease
the size of JAAVR by 420GE.

Processor Instructions that are not needed for ECC could be removed. For
instance the FMUL* and MULS* multiplier instructions are not needed for an
ECC point multiplication.

Program Memory is currently synthesized as Via-1 ROM macros. Using
smaller ROM macros would significantly decrease the size of the program
memory. Because the program memory is the largest part of the presented
design, decreasing its size has a significant impact on the total chip area.
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Abstract. In this paper, we propose a software oriented lightweight
block cipher, ITUbee. The cipher is especially suitable for resource con-
strained devices including an 8-bit microcontroller such as sensor nodes
in wireless sensor networks. For a sensor node one of the most important
constraints is the low energy consumption because of the limited battery
power. Also, the memory on sensor nodes are restricted. We have simu-
lated the performance of ITUbee in the AVR ATtiny45 microcontroller
using the integrated development platform Atmel Studio 6. We have eval-
uated the memory usage and clock cycles needed for an encryption. The
number of clock cycles gives a metric for energy consumption. The sim-
ulation results show that ITUbee is a competitive block cipher on 8-bit
software platforms in terms of energy consumption. Also, less memory
requirement of the cipher is remarkable. In addition, we have shown that
the attacks which are effective on software oriented lightweight block
ciphers can not reduce the 80-bit security level of ITUbee.

Keywords: Lightweight block cipher, cryptanalysis, sensor nodes, AVR
ATtiny.

1 Introduction

Lightweight cryptography is needed for the security and privacy demands of the
applications where resource constrained devices such as RFID tags and sensor
nodes are used. Because of the increase in the usage of these devices in daily life,
designing lightweight primitives is getting prominent. Block ciphers are essen-
tial primitives in cryptographic applications and therefore there have been sev-
eral designed lightweight block ciphers. Some of the proposed lightweight block
ciphers are DESXL [21], HIGHT [16], KASUMI [1], KATAN [8], KLEIN[14],
LBlock [30], LED [15], mCrypton [22], PRESENT [6], PRINCE [7], PRINTci-
pher [19], SEA [28] and TEA [29]. However, most of the ciphers in this list have
a hardware oriented design.

In this paper, we propose a new software oriented lightweight block cipher,
ITUbee, for resource constrained devices which include a microcontroller and
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have a limited battery power such as sensor nodes in wireless sensor networks.
To reduce the energy consumption of the cipher we have preferred not to use
a key schedule. Also, we have designed the cipher based on a Feistel structure.
Generally the ciphers having no key schedule are of SPN structure such as LED
and PRINCE. To the best of our knowledge, the only cipher based on Fesitel
Structure with a very simple key schedule is GOST [32]. However, a cipher
based on Fesitel Structure with no key schedule (or a very simple key schedule)
is subject to related key attacks as observed in GOST cipher [20]. To prevent
this weakness we have used a new approach in the design of the round function.
In every round the round key is injected between two nonlinear operations.

To evaluate the performance of ITUbee we have simulated the energy con-
sumption and memory usage of the cipher on the Atmel ATtiny45 8-bit micro-
contoller using Atmel Studio 6. The simulation results show that ITUbee is an
energy efficient block cipher and the memory requirement is very low. We have
compared ITUbee with the ciphers mentioned in a recent work [13] to present
its efficiency in terms of energy consumption. Also, we have analyzed the secu-
rity of the cipher against some attacks applied on software oriented lightweight
block ciphers. We claim that ITUbee offers 80-bit security.

The rest of the paper is organized as follows. In Section 2, we give the def-
inition of ITUbee. We explain the design rationale in Section 3. In Section 4,
we present preliminary security analysis of the cipher. After giving simulation
details and performance results of ITUbee, we compare the performance results
with the results of some existing ciphers in Section 5. We conclude the paper with
Section 6.

2 Definition of ITUbee

2.1 Notation

Throughout this paper we use the following notations:
A‖B : Concatenation of two bit strings A and B.
K : 80-bit master key.
KL : The left half of the master key.
KR : The right half of the master key.
P : 80-bit plaintext.
PL : The left half of the plaintext.
PR : The right half of the plaintext.
C : 80-bit ciphertext.
CL : The left half of the ciphertext.
CR : The right half of the ciphertext.
RCi : The round constant used in the i-th round.

2.2 Definition of the Cipher

The key length and block size of ITUbee are 80 bits. The cipher has a Feistel
structure consisting of 20 rounds and there are key whitening layers at the top
and at the bottom of the cipher as illustrated in Figure 1.



18 F. Karakoç, H. Demirci, and A.E. Harmancı

Fig. 1. ITUbee encryption algorithm

The encryption operation proceeds as follows:

1. X1 ← PL ⊕KL and X0 ← PR ⊕KR.
2. for i = 1...20 do

(a) if i ∈ {1, 3, ..., 19}
i. RK ← KR.

(b) else
i. RK ← KL.

(c) Xi+1 ← Xi−1 ⊕ F (L(RK ⊕ RCi ⊕ F (Xi))). Note that 16-bit round
constant is added to the rightmost 16 bits.

3. CL ← X20 ⊕KR and CR ← X21 ⊕KL.

The definitions of the functions used in the rounds are:
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Table 1. Round constants used in ITUbee

i RCi i RCi i RCi i RCi

1 0x1428 6 0x0f23 11 0x0a1e 16 0x0519
2 0x1327 7 0x0e22 12 0x091d 17 0x0418
3 0x1226 8 0x0d21 13 0x081c 18 0x0317
4 0x1125 9 0x0c20 14 0x071b 19 0x0216
5 0x1024 10 0x0b1f 15 0x061a 20 0x0115

– F (X) = S(L(S(X))).
– S(a‖b‖c‖d‖e) = s[a]‖s[b]‖s[c]‖s[d]‖s[e] where a, b, c, d, e are 8-bit values and

s is the S-box used in AES [10].
– L(a‖b‖c‖d‖e) = (e ⊕ a⊕ b)‖(a⊕ b⊕ c)‖(b⊕ c⊕ d)‖(c⊕ d⊕ e)‖(d⊕ e⊕ a).

The round constants used in ITUbee are given in Table 1.
The whitening and round keys are derived from the master key directly.

(KL‖KR) and (KR‖KL) are used as whitening keys at the top and at the bot-
tom of the encryption algorithm respectively and for odd rounds KR is used as
round keys while for even rounds KL is used.

The decryption process is the same as the encryption process except that in
the decryption process the key is (KR‖KL) and the round constants are used in
reversed order.

2.3 Security Goal

ITUbee offers 80-bit security. Also, the cipher provides the same security level
against attacks in related key models as well as in single key attack models. In
addition, the cipher has no weak keys.

3 Design Rationale

Power consumption is a major consideration in the design of ITUbee because
of the limited battery power of sensor nodes. Also, we have paid attention on
the memory requirement.

We have preferred a Feistel structure which enables us to use the same pro-
gram code for encryption and decryption processes in a microcontroller which
leads to less memory requirement. Also, the elimination of the key schedule re-
duces the energy consumption and memory requirement. The usage of a Fesitel
structure with no key schedule providing security against related key attacks
makes ITUbee different from previously proposed ciphers.

S-boxes satisfy good confusion with less number of operations in microcon-
trollers. Thus, we have used 8-bit S-boxes to confuse 8 bits with just a table
look-up which reduces the power consumption dramatically. In the linear layer
we have used a cellular automaton just consisting of 15 XOR operations. To
make the proofs for the security of the cipher against differential, linear and
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related key differential attacks simple we have constructed a 40-bit substitution
box, F function, in a light way which is S ◦ L ◦ S.

The cipher has a Feistel structure and also has no key schedule. These two
properties of the cipher makes the cipher weaker for related key differential
attacks. One example of such an attack was applied on full GOST [20]. To save
the security of the cipher against for such an attack we have injected the round
keys between two nonlinear operations (two F functions). To the best of our
knowledge this rationale is a not followed before. Also, we have used a linear
layer between two F functions to avoid using two consecutive S-boxes.

Some attacks such as reflection [17], slide [4], and slidex [12] use similarities
between round functions. To break the similarities between round functions we
have used round constants. However, we have reduced the size of the constants
to save from the number of operations and memory requirement as in [19]. We
have derived that the number of bits of a round constant should be at least 16.
If we had used 8-bit round constants then there would be some patterns in the
ciphertexts as described in Proposition 1 and 2.

Proposition 1. F function preserves the pattern for the inputs (a, b, b, a, c)
where a, b, c are 8-bit values.

Proof. The first S-box layer does not change the pattern. After the linear layer
the output will be ((s[c]⊕s[a]⊕s[b])‖(s[a]⊕s[b]⊕s[b])‖(s[b]⊕s[b]⊕s[a])‖(s[b]⊕
s[a]⊕s[c])‖(s[a]⊕s[c]⊕s[a])) = ((s[c]⊕s[a]⊕s[b])‖s[a]‖s[a]‖s([b]⊕s[a]⊕s[c])‖s[c])
which is the same pattern. Thus, this pattern is not changed by F function.

Proposition 2. Assume that 1-byte round constants are used in ITUbee and
the round constants are added on the rightmost byte of 40-bit value. When the
input and the key are of the form (a‖b‖b‖a‖c‖d‖e‖e‖d‖f) then the ciphertext will
be in the same form where a, b, c, d, e, f are 1-bytes.

Proof. PL, PR,KL,KR have the same pattern as in Proposition 1. Thus, the key
additions in the algorithm does not change the pattern. Also, F , L and S-box
layers preserve this pattern as presented in Proposition 1. In addition, the round
constant addition does not change the pattern because the constant changes only
the rightmost byte which does not affect the pattern. As a result, CL and CR

will have the same pattern and this is independent of the number of rounds.

Also, we have chosen i-th round constant as (0x15 − i)‖(0x29 − i) not to
use any memory for the constants in the case where only encryption process is
required in the microcontroller.

We have observed that the maximum number of rounds that cryptanalytic
attacks can be applied is around 10. To have a high security margin we have
decided the number of rounds as 20.

4 Security Analysis

4.1 Differential and Linear Cryptanalysis

The differential and linear cryptanalysis are the mostly used cryptanalysis tech-
niques [3,25]. In these techniques, nonlinear operations in an encryption process
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are treated as linear operations with a probability to model the whole cipher as
a linear algorithm.

The only nonlinear part in ITUbee is the S-box operation. Thus, counting
the number of active S-boxes in differential and linear characteristics is the main
work of the differential and linear cryptanalysis of the cipher. The branch number
of the linear layer in F is 4, that means at least 4 S-boxes are active when one F
is active. For one round, if the left half of the input is active then there will be
2 active F functions. In the Feistel Structure the left halves of the inputs of at
least 2 rounds out of 3 consecutive rounds have differences if the function which
produces the output to add to the right half is one-to-one. In our cipher, this
function is one-to-one, so we can say that we have at least 4 active F functions
that is 16 active S-boxes for 3 consecutive rounds. The S-box used in ITUbee
is the AES S-box and the best probability for one input-output difference is 2−6

and the best linear bias for an input-output mask is 2−4. Thus, for consecutive
3 rounds the best probability of a differential characteristic and the best linear
bias of a linear characteristic will be (2−6)16 = 2−96 and 215 × (2−4)16 = 2−49

respectively which are not usable in differential and linear attacks. Therefore,
it seems that differential and linear attacks can not be applied on 20-round
ITUbee.

However, to give a proof against the differential and linear attacks it is not
sufficient to count the number of active S-boxes in the characteristics because of
the differential and the linear hull effects.

To analyze the differential effects on our cipher we have focused on the differ-
ential probabilities for the F function. We have seen that while one active F func-
tion has at least 4 active S-boxes which leads to the probability (2−6)4 = 2−24,
the F function can have differentials having a greater probability than 2−24. The
reason is the following summation of the probabilities of the characteristics:

Pr(ΔX
F→ ΔY ) =

∑
ΔZ

Pr(ΔX
S→ ΔZ)× Pr(L(ΔZ)

S→ ΔY ).

This effect can increase the probability of a differential for the F function
but the probability will be less than 2−17. In the case where only 4 bytes are
active totally in the input and output of the F function, there will only be one
free active byte which can take any difference. This free active byte can take at
most 27 different values. Thus, the summation of the probabilities of differential
characteristics which leads to a differential for the F function will be less than
(2−6)4 × 27 = 2−17.

In consecutive 6 rounds there will be at least 8 active F functions and there-
fore the probability of a differential characteristic for 6 rounds will be less than
(2−17)8 = 2−136. However, it is necessary to consider the differential effect on
consecutive two F functions. To see this effect we have performed experiments
on a toy version of F functions. In this version the S-box is replaced with a 3-bit
S-box and the word size of 8-bit is replaced with 3-bit and the other operations
are same. In this version the maximum probability of F function is less than
or equal to (2−2)4 × 22 = 2−6. The experiment result shows that the maximum
probability of consecutive two F functions is not bigger than 2−6. As a result
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of this experiment, we assume that maximum differential probability for con-
secutive two F functions is not bigger than 2−17. For 8 rounds there is at least
5 active rounds and so this leads to a probability smaller than (2−17)5 = 2−85

which is not usable in a classical differential attack. Also, note that the differen-
tials which has a maximum probability for two consecutive F functions are key
dependent so this leads to another difficulty for these type of attacks.

4.2 Meet-in-the-Middle Type Attacks

Each key bit affects all bits of the output after consecutive 3 rounds. Thus,
we assume that the basic meet-in-the-middle attacks are not applicable to our
cipher. Recently, there have been some extensions of the basic meet-in-the-middle
attacks such as the multidimensional meet-in-the-middle attack [33], the biclique
attack [5]. In the case of independent biclique type attacks, let us assume that
the key whitenings does not exist. The maximum number of rounds on which
a biclique can be constructed is 2. Also, in the meet-in-the-middle step of this
attack the number of F functions in the recalculation step which is done for
the whole key space is about 32. Thus, the complexity of such an attack is
approximately 32×280

40 ≈ 2−79.678 so this attack can not reduce the security level
of ITUbee more than 1-bit. The multidimensional meet-in-the-middle attack is
usable if the key length of the cipher is bigger than the block size. For ITUbee
the block size and key length are the same. We conclude that also this attack
does not threat the security level of our cipher.

4.3 Related Key Differential Attacks

In the related key attack model, the adversary is able to collect plaintext and
ciphertext pairs under related keys. In our algorithm, we divide the master key
into two parts KL and KR and we use these parts between F functions in the
rounds. It is trivial to see that when there is a difference in the key used between
F functions, then at least one of the F functions will be active. In the best case
for the adversary, the difference will be only one part of the key KL or KR. As
a result, in two consecutive rounds there exists at least one active F function
in the case of the related key attack. The probabilities of differentials for the F
function is less than 2−17 as given in the Section 4.1. Thus, for 10 consecutive
rounds the probabilities will be less than (2−17)5 = 2−85 which is not usable in
an attack.

4.4 Impossible Differential Attacks

One of the most powerful attacks on lightweight block ciphers is the impossi-
ble differential attack [2] which have been applied on many lightweight ciphers
[9,18,23,24,27,31]. We could not find any impossible differential characteristic for
6 or more rounds. We conclude that this attack technique is not applicable to
our cipher.
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4.5 Self-similarity Attacks

The sel-similarty attacks such as reflection [17], slide [4], and slidex [12] use
similarities of round functions. For ITUbee the round functions are very similar
due to the non-existence of the key schedule. The only part in the cipher which
prevent the cipher from these attacks is the round constant addition. We believe
that because of the round constant these attacks can not be applied to ITUbee.

5 Simulation Results

We have written the code of ITUbee in assembly and simulated the energy
consumption and memory usage of it on the Atmel 8-bit AVR ATtiny45 RISC-
based microcontroller using Atmel Studio 6. The microcontroller has a Harvard
architecture in which the instruction and data memory are separated. The in-
struction and data memory are a 4-kB Flash memory and 256-byte static RAM,
respectively. In the implementation of our cipher we have stored the 8-bit S-box
used in the cipher in the instruction memory. Also, we have used CPU regis-
ters for all internal variables and we have not used any SRAM except for the
plaintext/ciphertext and master key. To compare the performance of our cipher
with some other lightweight ciphers we present the memory requirement of the
encryption process and the number of clock cycles needed for an encryption op-
eration of some ciphers in Table 2. Note that the implementations in [13] were
also on an ATtiny45 microcontroller. Also, we give the number of clock cycles
per one byte in the table dividing the number of cycles for an encryption to the
block size in bytes. In addition, we present the product of the number of clock
cycles per one byte with the memory requirement of the ciphers in the table to
give another metric to compare the performance results of the ciphers.

The table demonstrates that an ITUbee encryption process is performed in
less clock cycles than the other ciphers. The number of clock cycles is strongly
correlated with the energy consumption [11,13]. As a result, it can be extracted
from the table that ITUbee is the encryption algorithm which has the least
energy consumption in the list. 716 byte memory requirement of the cipher is
also remarkable. In the case of using less memory, the energy consumption will
increase but it is still remarkable.

6 Conclusion

We have proposed a software oriented lightweight block cipher named ITUbee
for applications such as wireless sensor networks consisting of low-power nodes
including an 8-bit microcontroller. We have used a Feistel structure with no key
schedule to reduce the energy consumption. To prevent the cipher from related
key attacks we have used the round key addition between two nonlinear layers in
each round. We have simulated the performance of the cipher in terms of energy
consumption and memory usage on the 8-bit ATtiny45 microcontroller. We have
shown that ITUbee consumes less energy than the ciphers whose performance
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Table 2. Performance results of some lightweight ciphers

Cipher Block size Key size Memory Clock cycles Clock cycles Cycle ×
[bits] [bits] [bytes] per one enc. per one byte Memory

AES [13] 128 128 1689 4557 284 479676
DESXL [13] 64 184 868 84602 10575 9179100
HIGHT [13] 64 128 434 19503 2437 1057658
IDEA [13] 64 128 1068 ≈ 8250 1031 1101108
KASUMI [13] 64 128 1288 11939 1492 1921696
KATAN [13] 64 80 356 72063 9007 3206492
KLEIN [13] 64 80 1286 6095 761 978646
mCrypton [13] 64 96 1104 16457 2057 2270928
NOEKEON [13] 128 128 396 23517 1469 581724
PRESENT [13] 64 80 1018 11342 1417 1442506
SEA [13] 96 96 450 41604 3467 1560150
TEA [13] 64 128 672 7408 926 622272
LBlock [30] 64 80 not given 3955 494 -
ITUbee [this paper] 80 80 716 2607 261 186876
cycle optimized
ITUbee [this paper] 80 80 586 2937 294 172284
memory optimized

results are given in a recent work [13] while the memory usage of ITUbee is
also remarkable. In addition, we have analyzed the security of the cipher against
some attacks which are effective on software oriented lightweight block ciphers
and we have concluded that these attacks can not reduce the 80-bit security level
of ITUbee.
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this paper.
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A AES S-Box

s[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8
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0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
}

B Test Vectors

Plaintext Key Ciphertext
00000000000000000000 00000000000000000000 471330577984cbecf6c8
01000000000000000000 00000000000000000080 761b8299b3f6a99f0838
6925278951fbf3b25ccc c538bd9289822be43363 c42e0f48cd5a87d0055f
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Abstract. Lightweight cryptography aims to provide sufficient security
with low area/power/energy requirements for constrained devices. In this
paper, we focus on the lightweight encryption algorithm specified and ap-
proved in NRS 009-6-7:2002 by Electricity Suppliers Liaison Committee
to be used with tokens in prepayment electricity dispensing systems in
South Africa. The algorithm is a 16-round SP network with 64-bit key
using two 4-to-4 bit S-boxes and a 64-bit permutation. The S-boxes and
the permutation are kept secret and provided only to the manufactur-
ers of the system under license conditions. We present related-key slide
attacks to recover the secret key and secret components using four sce-
narios; (i) known S-box and permutation with 248 time complexity using
216 + 1 chosen plaintexts; (ii) unknown S-box and known permutation
with 255 time complexity using 222.71 + 1 chosen plaintexts; (iii) known
S-box and unknown permutation with 248 time complexity using 216 +1
chosen plaintexts and 212.28 adaptively chosen plaintexts; and finally,
(iv) unknown S-box and permutation, with 248 time complexity using
222.71 + 1 chosen plaintexts and 231.29 adaptively chosen plaintexts. We
also extend these attacks to recover the secret components in a chosen-
key setting with practical complexities.

Keywords: Lightweight Block Ciphers, Related-Key Slide Attacks, Se-
cret Components.

1 Introduction

Lightweight cryptography aims to provide sufficient security with low
area/power/energy requirements for constrained devices; such as RFID tags,
smart cards, tiny computing devices etc. Although there have been constant
efforts to improve the performance of AES [1,2], the smallest AES implemen-
tation requires 2400 GEs [3], mainly due to the large key and block sizes. This
makes AES implementations inappropriate for many devices with tight area con-
straints. Due to the limitations of AES, several lightweight block ciphers with
smaller key and block sizes have been proposed recently, such as PRESENT [4],
Hight [5], DESL [6], PRINTcipher [7] etc.

Security through obscurity is not a widely accepted approach to provide se-
curity. Still, in some of the schemes using small key sizes, it is common to find
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“obscurity” being used as a complementary mean to achieve security. One fa-
mous example having security by obscurity is the stream cipher A5/1 that is
used in GSM applications. Although the algorithm was initially kept secret, it
became public by reverse engineering [8]. Another example is the block cipher
C2 [9], designed for digital rights management, which uses secret 8-to-8 bit S-box
that is available only through licensing. Borghoff et al. [10] presented an attack
on C2 that recovers the secret S-box and the key, with 253.5 time complexity.
In this paper, we focus on the lightweight block cipher specified and approved
in the standard NRS 009-6-7:2002 [11] by Electricity Suppliers Liaison Com-
mittee to be used with tokens in prepayment electricity dispensing systems in
South Africa. The respective algorithm is a 16-round SP network with 64-bit
key, with simple rounds similar to PRESENT [4]. The description of the main
components, namely two 4-to-4 bit S-boxes and the 64-bit permutation, are not
publicly available, and being provided only to the manufacturers of the system,
under license conditions.

Recently, Borghoff et al. [12,13] presented a generic differential-type attack
strategy to attack PRESENT-like ciphers in which the S-boxes are chosen uni-
formly at random at each round and the bit permutation is secret. The attack
is based on slender sets which are defined as the set of eight input pairs that
yield the same output different Hamming weight one, to recover an S-box. The
attacker constructs truncated differentials for the full cipher to determine the
slender sets of the S-boxes. The main assumption of the attack is that the prob-
ability of the truncated differentials is higher when the input difference to the
second round has Hamming weight of one, which is not necessarily true for ci-
phers having a strong confusion layer. Hence, as also mentioned in [12,13], the
attack does not apply to ciphers where cryptographically strong S-boxes are
used.

In this paper, we apply the well-known slide attacks, proposed by Biryukov
and Wagner [14], to attack the target cipher. We present related-key slide attacks
to recover the secret key and secret components, in four different scenarios of
adversary capabilities: (i) known S-box and permutation with 248 time complex-
ity using 216 + 1 chosen plaintexts; (ii) unknown S-box and known permutation
with 255 time complexity using 222.71 + 1 chosen plaintexts; (iii) known S-box
and unknown permutation with 248 time complexity using 216 +1 chosen plain-
texts and 212.28 adaptively chosen plaintexts; and finally, (iv) unknown S-box
and permutation, with 248 time complexity using 222.71+1 chosen plaintexts and
231.29 adaptively chosen plaintexts. We also extend these attacks to recover the
secret components of the algorithm in a chosen-key setting with practical com-
plexities. Moreover, we present a generic way to improve the exhaustive search
around 19 percent. The attack complexities are summarized in Table 1.

The organization of the paper is as follows. In Sec. 2, we give a brief description
of the encryption algorithm. In Sec. 3, we present the details of the related-key
slide attack for different scenarios. In Sec. 4, we extend secret component recovery
attacks using a chosen-key setting. In Sec. 5, we provide a method to improve the
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Table 1. Complexities of the related-key slide attacks with different adversary
capabilities

§ S-box Perm.
Time

# CP # Adapt. CP
# Related

Comp. Keys
3.1 � � 248 216 + 1 - 2
3.1 ✗ � 255 222.71 + 1 - 2
3.3 � ✗ 248 216 + 1 212.28 8
3.4 ✗ ✗ 248 222.71 + 1 231.29 8

attack complexities. Finally, we conclude this paper and summarize our results
in Sec. 6.

2 The Algorithm Specification

The encryption algorithm specified by NRS 009-6-7:2002 [11] is a 64-bit block
cipher with an SP-network structure, having 16 rounds. Let the 64-bit key K be
(k0, k1, . . . , k63). The 16-bit round keys for encryption, RKi = (ri,0, ri,1, . . . , ri,15)
(0 ≤ i ≤ 15) are defined as;

RKi = (k′15−i, k
′
15−i+4, k

′
15−i+8, . . . , k

′
15−i+60),

where all the indices are calculated modulo 64 and k′i represents the bitwise
complement of ki. Hence, in each round 16 bits of the key are used.

Each round consists of a key-dependent nonlinear substitution layer S and a
linear bitwise permutation layer π. In the nonlinear layer, the state is partitioned
into 16 four-bit sub-blocks and a 4-to-4 bit S-box is applied to each sub-block.
The algorithm uses two S-boxes S1 and S2, which are selected alternatively
according to the corresponding round-key bit. The permutation π(x1, . . . , x64)
is defined as (xp(1), . . . , xp(64)), where p(i) is a permutation of {1, 2, . . . , 64}.

In the decryption algorithm, the round keys are defined as RKi =
(ki, ki+4, ki+8, . . . , ki+60), for 0 ≤ i ≤ 15 and the round operations are ap-
plied in the reverse order. The encryption round keys are the complement of
the decryption round keys, i.e. the ith round key for encryption is the bitwise
complement of (15 − i)th round key for decryption. Therefore, in order to sat-
isfy P = DK(EK(P )) for any plaintext P , S1 should be the inverse of S2. The
pseudocodes of the encryption and decryption algorithms are provided in Fig. 1.

It should also be noted that the cipher Cipher1 that uses the S-boxes
S1, S2, and key K, denoted as Cipher1(S1, S2,K) is equivalent to the cipher
Cipher2(S2, S1, K̄), where K̄ is the bitwise complement of K. In other words,
the encryption of any plaintext P using Cipher1 having K and Cipher2 having K̄
are equal. In this paper, we assume that the attack is successful, whenever the
attacker can recover Cipher1 or Cipher2.
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Encryption (P,K)

for i = 0 to 15;
RKi = (k′

15−i, k
′
15−i+4, . . . , k

′
15−i+60);

STATE = P
for i = 0 to 15

Parse STATE as STATE0|| . . . ||STATE15;
for j = 0 to 15

if (ri,j = 0)
STATEj = S1(STATEj);

else
STATEj = S2(STATEj);

end for
Reassemble STATE;
STATE = π(STATE);
end for

C = STATE;

Return C

Decryption(C,K)

for i = 0 to 15;
RKi = (ki, ki+4, . . . , ki+60);

STATE = C
for i = 0 to 15

STATE = π−1(STATE);
Parse STATE as STATE0|| . . . ||STATE15;
for j = 0 to 15

if (ri,j = 0)
STATEj = S1(STATEj);

else
STATEj = S2(STATEj);

end for
Reassemble STATE;
end for

P = STATE;

Return P

Fig. 1. Pseudocode of the encryption and the decryption algorithm

3 Related-Key Slide Attacks

The slide attack, introduced by Biryukov and Wagner [14], is a generic attack
that can be applied to block ciphers with periodic key schedule and the attack
is applicable independent of the number of rounds.

We consider an attacker with black box access to two encryption devices
initialized with secret keys K and K′, respectively, where K′ is equal to the left
cyclic rotation of K by 1 bit, i.e. K = K′ ≪ 1. Consequently, the round keys
generated by K and K′, denoted as RKi and RK′

i respectively, satisfies RKi+1 =
RK′

i, for i = 0, . . . , 14 and RK′
15 = RK0 ≪ 4.

The plaintexts P and P′ are considered to be slid pairs, if one round encryption
of P using the round key RK0 is P′ and the following 15 rounds are identical as
given in Fig. 2. Whenever the attacker has a slid pair P and P′, he can search
for the round key RK0 (or RK′

15) using the following partial encryptions,

P′ = π(S(P,RK0)), or

C′ = π(S(C,RK′
15)).

After recovering 16 bits of the secret key, the attacker can exhaustively search for
the remaining key bits. However, before the exhaustive search, any components
that remain secret should first be recovered. This recovery might need more slid
pairs, which can be accomplished (provided one slid pair is already known) by
the algorithm described in Appendix A.

In the following four subsections, we present related-key slide attacks for four
scenarios; (i) known S-box and known permutation, (ii) unknown S-box and
known permutation, (iii) known S-box and unknown permutation and lastly,
(iv) unknown S-box and unknown permutation.
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Fig. 2. Slid pairs P and P′

3.1 Known S-Box and Permutation Case

First, the attacker tries to identify slid pairs P and P′, such that one round partial
encryption of P using RK0 is equal to P′, i.e., P′ = π(S(P,RK0)). The attacker
fixes P′ to all zero input, and since π is a bitwise permutation, π(0, . . . , 0) =
(0, . . . , 0) is satisfied, then P also satisfies

S(P,RK0) = (0, . . . , 0) (1)

Then, the attacker finds Np = 216 candidates {P1, . . . , PNp} for P such that
(1) holds. These candidates for P should be of the form (a0, a1, . . . , a15), where
four-bit ai’s can take at most two distinct values, let’s say a and b, such that
S1(a) = 0 and S2(b) = 0, i.e., ai ∈ {a, b} (0 ≤ i ≤ 15). For each candidate
Pi = (a0, a1, . . . , a15), there exists a unique round key Ri = (r0, r1, . . . , r15),
where

ri =

{
0, if ai = a

1, if ai = b

such that (1) holds (0 ≤ i ≤ 15). Next, the attacker obtains Ci = EK(Pi) values
and finds the correct (Pi, Ci) pair that satisfy

C′ = π(S(Ci,RK
′
15), (2)

where RK′
15 = Ri ≪ 4. After obtaining the correct Pi, the attacker determines

Ri, hence the 16 bits of the secret key K. The attacker exhaustively searches for
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the rest of the key bits. The time complexity of the attack is 248 + 216 ≈ 248

with 216 + 1 chosen plaintexts, where 216 plaintexts are encrypted using key K
and one plaintext is encrypted using key K′.

3.2 Unknown S-Box and Known Permutation Case

In this case, the values of a and b satisfying S1(a) = 0 and S2(b) = 0 are
unknown to the attacker, therefore, for all possible selections of a and b, the
attacker considers the plaintexts of the form

(a0, a1, . . . , a15) (3)

where ai ∈ {a, b}’s (0 ≤ i ≤ 15). Then, Np is 216
(
16
2

)
≈ 222.91. For a strong

S-box, we can assume that there exist no fixed points (particularly, S1(0) �=
0 and S2(0) �= 0), then Np reduces to 216

(
15
2

)
≈ 222.71. It should be noted

that the corresponding first round key for each Pi is not unique. There are two
possibilities, where one of them is the bitwise complement of the other. The
attacker is allowed to use any of them, and depending on his selection he either
recovers Cipher1 or Cipher2, defined in Sec. 2. Note that Cipher1 and Cipher2 are
equivalent.

After obtaining C′ = EK′(P′), where P′ is the all zero plaintext, the attacker
obtains Np ciphertexts, (Ci = EK(Pi)). Since the permutation is known, the
attacker can determine π−1(C′), and try to find the correct (Pi, Ci) pair that
satisfy

π−1(C′) = S(Ci,RK
′
15), (4)

where RK′
15 = RKi ≪ 4. Since the S-boxes are unknown to the attacker, it is

not trivial to eliminate the Ci’s that do not satisfy (4). However, for each (Pi, Ci)
pair, the attacker can partially construct the S-boxes and eliminate the Pi’s that
result in invalid S-boxes.

For the correct Pi = (a0, . . . , a15) (with corresponding Ci = (c0, . . . , c15) and
Ri = (ri,0, . . . , ri,15)), the following should hold:

– Property 1: If ri,j = 1, then S1(aj) = 0, otherwise S2(aj) = 0, for all
0 ≤ j ≤ 15.

– Property 2: Due to the symmetry of the S-boxes, if ri,j = 1, then S2(0) =
aj , otherwise S1(0) = aj , for all 0 ≤ j ≤ 15.

– Property 3: Let C′′ = π−1(C′) = (c′′1 , c
′′
2 , . . . , c

′′
16). Due to the key schedule,

RK15 = Ri ≪ 4. Then, if ri,j+4 = 1, then S1(aj) = c′′j , otherwise S2(aj) =
c′′j , for all 0 ≤ j ≤ 15.

– Property 4: Due to the symmetry of the S-boxes, if ri,j+4 = 1, then
S2(c′′j ) = aj , otherwise S1(c′′j ) = aj , for all 0 ≤ j ≤ 15.

Using this approach, we obtain 36 constraints (4 from Property 1 and 2; 32
from Property 3 and 4) for the S-boxes (some of which might be equivalent).
Whenever we obtain contradicting constraints, we conclude that the candidate
is incorrect. The correct Pi will never result in a contradiction, however, in
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theory, with very small probability, it is possible that an incorrect Pi satisfies all
constraints. We have experimentally tried 225 random inputs and observed that
for none of the inputs, all of the 36 constraints are satisfied, so we assume that
the expected number of false alarms in 222.71 plaintexts is zero.

After determining the value of P, the attacker can partially construct S-box,
however, it is possible that the S-boxes are not uniquely determined. Based on
Proposition 1 provided Appendix B, the attacker is expected to determine 11
outputs of S1 and S2 (out of 16) and this enables the attacker to reduce the
possible S-boxes from 244(= 16!) to approximately 27(= 5!).

Example 1. Let

P = (10,1,1,1,10,1,1,10,10,10,1,10,10,1,1,1),

P′ = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

C = (7,2,4,1,6,12,14,5,13,7,6,1,10,11,14,2),

π−1(C′) = (12,3,8,5,3,10,13,13,14,15,14,0,0,9,13,3),

RK1 = (1,0,0,0,1,0,0,1,1,1,0,1,1,0,0,0),

RK15 = (1,0,0,1,1,1,0,1,1,0,0,0,1,0,0,0).

Due to Property 1 and 2, the following values of the S-boxes are determined.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1 10 0 * * * * * * * * * * * * * *
S2 1 * * * * * * * * * 0 * * * * *

Due to Property 3 and 4, the following values of the S-boxes are determined.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1 10 0 3 6 8 1 14 15 * * 12 9 7 5 13 *
S2 1 5 * 2 * 13 3 12 4 11 0 * 10 14 6 7

Using the properties, 13 (out of 16) values of S-boxes are determined. The unde-
termined outputs of S1 can take three values, namely 2, 4, 11. Therefore, there
are only 6 different S-boxes that can satisfy the given constraints.

The attacker obtains 16 key bits with a time complexity of 222.71 and 222.71+1
chosen plaintexts. Then, the attacker searches for the rest of the keys using ex-
haustive search, for each possible S-box. The complexity of this part is 255(=
248+7). The attacker can verify the obtained key and the S-box using the pre-
viously obtained plaintext and ciphertext pairs. So, the total complexity of the
attack is 255 + 222.71 ≈ 255 with 222.71 + 1 chosen plaintexts.

3.3 Known S-Box and Unknown Permutation Case

Since the S-boxes are known (similar to the case given in Sec. 3.1), Pi’s can take
216 values of the following form (a0, a1, . . . , a15) where ai ∈ {a, b} (for 0 ≤ i ≤ 15)
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such that S1(a) = 0 and S2(b) = 0. To identify P, the attacker obtains the
corresponding Ci’s and applies one more substitution layer to the Ci’s using
the corresponding round keys. For the correct i, S(Ci, Ri ≪ 4) = π(C′) holds.
Although the attacker does not know the permutation, based on the following
observation, it is possible to eliminate the Ci’s, when the weight of S(Ci, Ri ≪ 4)
is different from the weight of C′

Observation 1. Let X = (x1, . . . , x64) be a 64 bit value. The weight of X,
denoted as w(X) is the number of xi’s that are equal to 1. Then,

w(X) = w(π(X)) = w(π−1(X)),

since the permutation π only changes the positions of the bits.
For an incorrect i, we can assume that S(Ci, Ri ≪ 4) and C′ are independent.

Since the weight of randomly chosen 64-bit inputs is binomially distributed with
mean 32 and variance 16, the probability that w(S(Ci, Ri ≪ 4)) and w(C′) are
equal is

Pr(w(S(Ci, Ri ≪ 4)) = w(C′)) =
64∑
i=0

Pr(w(Ci) = i)× Pr(w(C′) = i)

=

64∑
i=0

(
64

i

)
0.564 ×

(
64

i

)
0.564

= 0.07.

With probability 0.93 (= 1− 0.07), the attacker eliminates the incorrect Pi’s. In
out of Np = 216 candidates, 0.07Np ≈ 212.17 of them are expected to result in a
false alarm. For 212.17 Pi’s, the attacker generates other slid pairs (See Appendix
A) and checks the corresponding weights of the slid pairs as described above.
If the weights are not equal, the attacker concludes that the corresponding Pi

was a false alarm. By using one additional slid pair, the expected number of
false alarms reduces from 212.17 to 28.34. As seen from Table 2, five slid pairs are
enough to identify the correct Pi.

To identify P, hence 16 bits of the key, the required time complexity is 216.11(=
216 + 1 + 212.28) with 216 + 1 chosen plaintexts and 212.28 adaptively chosen
plaintexts. To recover the rest of the 48 bits of the key, the attacker first needs
to recover the bit permutation π.

Table 2. False alarms and complexities using additional slid pairs

# Slid pairs # False # Chosen Adaptively Chosen
Alarms Plaintext Plaintext

1 212.17 216 + 1 0
2 28.34 216 + 1 212.17

3 24.51 216 + 1 212.27

4 20.69 216 + 1 212.28

5 2−3.18 216 + 1 212.28
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Recovering the Permutation π. For each slid pair X and Y , the attacker
has an input/output pair for π, i.e.

Y = π(S(X,RK0)). (5)

Let the attacker has N (Xi, Yi) pairs such that Xi = (xi
1, . . . , x

i
64) and Yi =

π(Xi) = (xi
p(1), . . . , x

i
p(64)). Initially, p(j) ∈ {1, . . . , 64}, for 1 ≤ j ≤ 64. For each

(Xi, Yi), the attacker updates the possible values of p(j) by

p(j) ∈ {l|yij = xi
l , 1 ≤ l ≤ 64}.

After checking each input pairs, the possible values of p(j) halves, on the average.
Then, after a number of pairs, it is possible to recover p(j) uniquely. We have
implemented this approach to recover 64-bit permutations. For 1000 randomly
constructed permutations, on the average, 28 input/output pairs were enough
to uniquely recover the permutation.

Example 2. Let p′ be a permutation of 16 values and π′(x1, . . . , x16) =
(xp′(1), xp′(2), . . . , xp′(16)). Initially, p

′(j) ∈ {1, . . . , 16}, for all j. Let

π′(1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0) = (0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1).

Then, we conclude that p′(1) can only be {5, 6, 7, 8, 10, 12, 14, 16}, since yp′(1) =
xi, only for i ∈ {5, 6, 7, 8, 10, 12, 14, 16}. Similarly, we can say that

p′(3), p′(8), p′(9), p′(12), p′(13), p′(14), p′(15) ∈ {5, 6, 7, 8, 10, 12, 14, 16}
p′(2), p′(4), p′(5), p′(6), p′(7), p′(10), p′(11), p′(16) ∈ {1, 2, 3, 4, 9, 11, 13, 15}

Using the second pair

π′(0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1) = (1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1),

following constraints hold

p′(1), p′(3), p′(10), p′(14), p′(15) ∈ {7, 8, 10, 12, 14, 16}
p′(2), p′(6), p′(11), p′(12) ∈ {1, 9, 11, 13}
p′(4), p′(5), p′(8), p′(16) ∈ {2, 3, 4, 15}

p′(9), p′(13) ∈ {5, 6}

Using the following pairs,

π′(0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0) = (1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1),

π′(0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1) = (0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0),

π′(1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1) = (1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0),

π′(1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1) = (1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1),

π′(1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1) = (0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0),

we uniquely determine p′(i) as:
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p′(i) 10 4 5 7 12 8 14 3 11 1 2 13 6 15 16 9

The attacker recovers the permutation, on the average using 28 slid pairs. The
attacker exhaustively searches for the rest of the key bits and recovers the key
and the permutation with 248(= 248+216.11) time complexity and 216+1 chosen
plaintexts and 212.28 adaptively chosen plaintexts.

3.4 Unknown S-Box and Permutation Case

In this case, the attacker needs to identify the slid pairs P and P′, without
the knowledge of the S-boxes and the permutation. Similar to other cases, the
attacker fixes P′ to the all zero plaintext and searches for P among 222.71 many
possible candidates, denoted as Pi for 0 ≤ i ≤ 222.71, as given in Sec. 3.2.

Here, the attacker is assumed to have access to eight encryption devices using
the keys K,K ≪ 16,K ≪ 32,K ≪ 48,K′,K′ ≪ 16,K′ ≪ 32 and K′ ≪ 48.

The attacker first iteratively encrypts the all zero plaintext P and obtains the
Yj values as given below;

P
EK−−→ Y1

EK≪16−−−−→ Y2
EK≪32−−−−→ Y3

EK≪48−−−−→ Y4
EK−−→ Y5

EK≪16−−−−→ . . .

Similarly, for each candidate Pi, the attacker generates Xi,j using

Pi
EK′−−→ Xi,1

EK′≪16−−−−−→ Xi,2
EK′≪32−−−−−→ Xi,3

EK′≪48−−−−−→ Xi,4
EK′−−→ Xi,5

EK′≪16−−−−−→ . . .

For the correct Pi, i.e. Pi = P, the attacker gets input/output values for the last
round encryption, hence the following is satisfied,

Yj = π(S(Xi,j , Ri)) (6)

for j = 1, 2, . . .. To determine the correct P, the attacker eliminates the candi-
dates, for which Yj = π(S(Xi,j , Ri)) cannot be satisfied for any valid S-box and
permutation selection.

For each Pi, the attacker considers the Xi,j values in the set Sa,0, where

Sa,0 = {Xi,j|Xi,j = (a, ∗, ∗, . . . , ∗), Ri = (0, ∗, . . . , ∗)}.

After applying the S-box layer to the Xi,j ’s in Sa,0, the first four bits of the
outputs will be the same. Since the permutation π only changes the bit positions,
there will be four bit positions, let’s say i1, i2, i3 and i4, that will be take the
same value in all Yi’s that corresponds to the Xi,j ’s in the set Sa,0. Let Q be the
number of bit positions that take the same value for these Yi’s. For the correct
Pi, Q cannot be less than 4. For an incorrect Pi, the probability that Q ≥ 4
using n input/output pairs is

Pr(Q ≥ 4) =

(
64

4

)
(1/16)n−1.
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Using this formula, the expected number of incorrect Pi’s with Q ≥ 4 is 2−24.72

with n = 12. Hence, if the attacker can construct the set Sa,i with n = 12
elements, he can uniquely determine P among 222.71 candidates. It should be
noted that the attacker is not limited to the first S-box input, and can apply
the technique for any of the 16 S-box inputs, and the input a can take any value
from {0, 1, . . . , 15}. To guarantee that the attacker can construct such a set, with
at least 12 elements, the attacker requires approximately 28.58(= 12x16x2) slid
pairs. We experimentally verified that it is possible to determine P using 28.58

slid pairs. Next, the attacker aims to recover the secret components.
Recovering the Secret Components. After determining P, the attacker can
generate up to 232 (Xi,Y

′
i, Ri) values for the last round as given in Equation (6).

Then, for each bit of Yi, the attacker finds the input S-box, using the technique
described above.

Example 3. Let Xi (i = 1, 2, 3) be 16 bit inputs having the first four bits equal
to 1. Let Yi’s be the one round encryption of Xi’s with four parallel S-boxes and
a permutation.

X1 = (1111 0010 1101 0001) Y1 = (0011 1011 1100 1001)

X2 = (1111 1011 1001 1101) Y2 = (0000 1111 0101 1000)

X3 = (1111 0001 1010 0000) Y3 = (1011 1100 1001 0011)

It is seen that the bits 2, 5, 11 and 13 are equal in all Yi’s. The attacker concludes
that these bits are the outputs of the first S-box. The attacker cannot determine
the output of 1111 for the first S-box, however, attacker knows that it is a
permutation of the bits 0100, hence can be 1000, 0100, 0010 or 0001. Although,
the attacker does not know the exact value, he knows what the value will be
after the permutation, i.e., the bits 2, 5, 10 and 14 will be 0,1,0,0, respectively.

Attacker repeats this experiment, for all 16 S-boxes and uniquely determines
the composition of the individual S-boxes and partial permutations. Although
the attacker cannot individually determine the S-boxes, the composition of S-
box with the permutation is enough to construct an equivalent cipher. 28.58

adaptively chosen plaintexts for the related keys are enough to recover the com-
position of one S-box input and the partial permutation. To recover all 16 output
of the S-box, 212.58 adaptively chosen plaintexts are enough, with similar time
complexity. We experimentally observed that 210 slid pairs are enough recover
composition of S-box and permutation.

In the last step, the attacker recovers the rest of the 48 bits, by exhaustively
searching. The attack requires 248 time complexity and 231.29 = (222.71+8.58)
adaptively chosen plaintexts using eight related keys to recover the key and the
secret components.

4 Chosen-Key Component Recovery

In the previous section, we assumed an attacker having access to encryption
devices using related keys. In this section, we assume that the attacker is able
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to choose the key and aim to recover the secret components. For the keys that
satisfy K = (K ≪ 1), namely (0, 0, . . . , 0) or (1, 1, . . . , 1), the attacks described
to recover the S-boxes and the permutations can be applied using only one key.
Without loss of generality, we assume that the attacker fixes K to (0, 0, . . . , 0).

– S-Box Recovery. In this case, possible candidates for P take the form
(a, a, . . . , a), where a can be any 4-bit value. Therefore,Np = 24. By applying
the attack described in Sec. 3.2, the attacker is able to obtain the S-box with
time complexity of 211(= 24+7).

– Permutation Recovery. With known S-boxes, there is only one candidate
for P, namely (a, a, . . . , a), where S1(a) = 0. Then, by applying the attack
described in Sec. 3.3, the attacker determines the permutation with 56 adap-
tively chosen plaintexts with similar time complexity. Note that the number
of required adaptively chosen plaintext is 28 for each key in Sec. 3.3.

– S-Box and Permutation Recovery. In this case, there are 24 candidates
for P having the form (a, a, . . . , a), where a can be any 4-bit value. Therefore,
Np = 24. Then, the attacker constructs an equivalent cipher with 28.58 × 2
adaptively chosen plaintext with similar time complexity as given in Sec.
3.4.

5 Improved Exhaustive Key Search

In this section, we present a method to improve exhaustive key search, by taking
the advantage of a weakness in the key schedule. It is assumed that the attacker
knows the S-boxes (S1 and S2), the permutation π and a plaintext/ciphertext
pair (P1, C1).

The attack begins with the attacker partitioning the key space into 248

classes; Class 1, . . . ,Class 248, with each class containing 216 keys. Let Bi =
(b1, b2, . . . , b48) be the binary representation of the integer i using 48 bits, for
0 ≤ i ≤ 248. Class i consists of 216 keys having the following format;

(b1, b2, b3, ∗, b4, b5, b6, ∗, . . . , b46, b47, b48, ∗),

where ∗ can be either 0 or 1. In the generic exhaustive key search, to search
for a key in a given class, 216 encryptions are required. However due to the key
schedule of the respective algorithm, it is possible to reuse some encryptions.
The attacker partially encrypts P1 using the first three round keys, which only
requires (b1, . . . , b48), and stores the result as C′. Note that there is a unique C′

for each class. Then, trying all 216 keys in the class, encrypts C′ for 13 more
rounds and compares the resulting value with the given ciphertext C1. Using
this approach, the total amount of work in terms of number of encryption is
216(13/16)+ 3 ≈ 215.70. Considering all classes, the complexity is reduced by 19
percent, in compared to the generic exhaustive key search.

Similarly, the method also works to improve the exhaustive search of the 48-
bit key space, when 16 bits of the key are known, as required in all the attacks
presented in the paper. In that case, the complexity of the attack reduces to
247.70 from 248.
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6 Conclusion

In this paper, we analyzed the security of the lightweight encryption algorithm
specified and approved in NRS 009-6-7:2002 by Electricity Suppliers Liaison
Committee to be used with tokens in prepayment electricity dispensing systems
in South Africa. The algorithm aims to achieve security by secrecy of its main
building blocks, namely the S-boxes and the permutations.

In the paper, we presented related-key slide attacks to recover the secret key
for the four respective scenarios composed of known vs. unknown S-box and
known vs. unknown permutation. We showed that it is possible to recover the
key even without the knowledge of the main building blocks.

The main weakness of the algorithm is due to the cyclic key schedule, and the
identical round structure. The attacks can be avoided by breaking the symmetry
between the round functions. Including an additional layer that uses a counter
or a constant might be an easy countermeasure for the attacks. It should also
be noted that increasing the number of rounds does not increase the security of
the cipher against slide attacks, on the contrary, the cipher may become weaker.
For example, if the number of rounds is increased to 64, finding slid pairs would
require two related keys, rather than eight, when the permutation is secret.
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Appendix

A Constructing Slid Pairs

In this part, we present a method to construct slid pairs, given the slid pair P
and P′ using the keys K and K′ = K ≪ 1 (See Fig. 2). Let the attacker has access
to eight encryption devices using keys K ≪ 16i and K′ ≪ 16i for i = 0, 1, 2, 3.
If P and P′ are slid pairs, then the ciphertexts C1 = EK(P) and C′

1 = EK′(P′)
are slid pairs using the keys K ≪ 16 and K′ ≪ 16, respectively. Similarly, C2

and C′
2 are slid pairs using the keys K ≪ 32 and K′ ≪ 32. In general, Ci and

C′
i are slid pairs using the keys K ≪ 16(i mod 4) and K′ ≪ 16(i mod 4).

To generate N slid pairs with keys K and K′, the attacker make 4N iterative
encryptions and gets the values Ci and C′

i for i = 0 mod 4 as given in Figure
3. Due to the birthday bound, the attacker can generate approximately 232 slid
pairs using the slid pair P and P′.

B Number of Possible S-Boxes

In this part, we aim to find the number of possible S-boxes that satisfy a number
of given constraints.

Proposition 1. Let X = (x1, . . . , xn) be a random sample of n, with replace-
ment, from a population of D = {1, 2, . . . , N}. For i ∈ D, let Yi denote the
number of times i occurs in the sample,

Yi = #{j ∈ {1, 2, . . . , N} : xj = i}.

http://www.scard.org/gsm/a51.html
http://www.4centity.com/
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P
EK−−→ C1

EK≪16−−−−→ C2
EK≪32−−−−→ C3

EK≪48−−−−→ C4
EK−−→ C5

EK≪16−−−−→ . . . −→ CN

P′ EK′−−→ C′
1

EK′≪16−−−−−→ C′
2

EK′≪32−−−−−→ C′
3

EK′≪48−−−−−→ C′
4

EK′−−→ C′
5

EK′≪16−−−−−→ . . . −→ C′
N

Fig. 3. Iterative encryption using eight related keys

The number of distinct population values in the sample is

VN,n = #{j ∈ {1, 2, . . . , N} : Yj > 0}.

The density function of VN,n is

Pr(VN,n = j) =

(
N

j

) j∑
k=0

(−1)k
(
j

k

)
(
j − k

N
)n

for j = 1, . . . ,min{N,n}.

For each S-box, N = 16, and the number of constraints is n = 18. Table 3
shows the probability distribution of the number of recovered outputs of the S-
boxes. The distribution takes its maximum value for 12 recovered outputs, with
expected values of

∑16
j=1 kPr(V16,18 = j) = 10.99 ≈ 11.

Table 3. The probability distribution of V16,18

j Pr(V16,18 = j) j Pr(V16,18 = j)
1 2−68 9 2−3.42

2 2−47.09 10 2−2.13

3 2−34.34 11 2−1.69

4 2−25.20 12 2−2.11

5 2−18.25 13 2−3.43

6 2−12.85 14 2−5.75

7 2−8.70 15 2−9.26

8 2−5.59 16 2−14.46
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Abstract. PRINCE is a new lightweight block cipher proposed at the
ASIACRYPT’2012 conference. In this paper two observations on the
linear layer of the cipher are presented. Based on the observations a
differential fault attack is applied to the cipher under a random nibble-
level fault model, aiming to use fault injections as few as possible. The
attack uniquely determines the 128-bit key of the cipher using less than 7
fault injections on average. In the case with 4 fault injections, the attack
limits the size of key space to less than 218.

Keywords: lightweight cipher, PRINCE block cipher, differential fault
attack.

1 Introduction

The idea of injecting faults during the execution of cryptographic algorithms to
retrieve the key was first introduced by Boneh, DeMillo, and Lipton who suc-
ceeded in breaking a CRT version of RSA [4]. Later, Biham and Shamir adapted
this idea to differential analysis on block ciphers and introduced the concept of
Differential Fault Attack (DFA) [2]. Block ciphers implemented on smart cards
and other low-end devices are vulnerable to such attacks, which exploit the links
between right ciphertexts and the faulty counterparts. Typical examples are dif-
ferential fault attack on AES, CLIEFIA and IDEA [15,6,7]. Usually the faults are
injected by disturbing the power supply voltage, the frequency of the external
clock, or by applying a laser beam, etc [1].

Recent years, many lightweight block ciphers have been proposed in the liter-
ature to provide cryptographic building blocks for resource constrained devices
such as RFID tags. Among the best studied ciphers are PRESENT, KATAN,
LED and PRINTCipher [3,5,9,11]. PRINCE is a novel lightweight block cipher
proposed in 2012 [10], which is optimized with respect to latency when imple-
mented in hardware. This is the first lightweight block cipher that takes latency
as main priority.

In this paper, we present a differential fault attack on PRINCE under a ran-
dom fault model which adds a random disturbance to a nibble of the state
whose position cannot be predicted in advance. Our attack was inspired by the

G. Avoine and O. Kara (Eds.): LightSec 2013, LNCS 8162, pp. 43–54, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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differential fault attacks on AES [13](especially [12,16]), since a typical round of
PRINCE resembles that of AES. For AES, MDS plays an important role in its
linear layer, while PRINCE only achieves an almost-MDS property. Based on
the diffusion property of the linear layer of PRINCE, our attack was developed.
With the knowledge of the difference distribution table of the Sbox it used, the
number of survival keys using one fault injection can be evaluated statistically.
However, the data complexity of finding the unique key is difficult to estimate
due to the uncertainty of the diffusion property of the linear layer. Hence we
obtain related results through experiments. The experiments show 4 faults are
enough to break PRINCE practically and 7 fault injections uniquely determine
the 128-bit key of PRINCE.

This paper is organized as follows: Section 2 briefly describes the PRINCE
block cipher; in Section 3 we elaborate on our differential fault attack on
PRINCE; Section 4 discusses the results; and finally, we conclude the paper
in the last section.

2 Brief Description of PRINCE

PRINCE is a 64-bit block cipher with a 128-bit key. The key schedule is very
simple. Specifically, the 128-bit key is split into two 64-bit parts:

k = k0||k1,

and extended to 192 bits by the following mapping:

(k0||k1)→ (k0||k′0||k1) := (k0||(k0 ≫ 1)⊕ (k0 � 63)||k1).

During the encryption the first two subkeys k0 and k′0 are used as whitening
keys, while the third subkey k1 is the key for a 12-round block cipher refered to
as PRINCEcore. The highlevel structure of PRINCE is demonstrated in Fig. 1.

corePRINCEm c
0k

'
0k

Fig. 1. The highlevel structure of PRINCE

The 12-round process of PRINCEcore is depicted in Fig. 2. A typical round of
PRINCEcore consists of an Sbox layer, a linear layer and an addition layer. The
intermediate computation result, called state is usually represented by a 64-bit
vector or a 16-nibble vector.

Sbox-Layer. The cipher uses a 4-bit Sbox which is given as in Table 1. We
denote the Sbox and its inverse by S and S−1 respectively.
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Fig. 2. PRINCEcore

Table 1. The Sbox S of PRINCE

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

Linear Layer. As can be seen from Fig. 2, the linear layer uses a matrix M or
M ′ and is called M - or M ′-mapping according to the matrix used. In the linear
layer the 64-bit state is multiplied with M or M ′, both of which are 64 × 64
matrices and built from four 4× 4 matrices. These four matrices are

M0 =

⎡
⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,M1 =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,M2 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ ,M3 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

Two block matrices M̂ (0) and M̂ (1) of size 16× 16 are generated as follows:

M̂ (0) =

⎡
⎢⎢⎣
M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

⎤
⎥⎥⎦ , M̂ (1) =

⎡
⎢⎢⎣
M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3

⎤
⎥⎥⎦ .

Then, the 64× 64 matrix M ′ is constructed as a block diagonal matrix with
M̂ (0), M̂ (1), M̂ (1), M̂ (0) as its diagonal blocks. Note that M ′ is an involution
matrix; that is to say, M ′M ′ = I is the identity matrix.

The M -mapping is the composition of the M ′-mapping and a permutation
SR, i.e. M = SR ◦M ′. SR behaves like the AES shift rows and permutes the 16
nibbles of the state as (a0, a1, · · · , a15)→ (a0, a5, · · · , a11), where the subscripts
are changed according to Table 2. Also, the inverse of SR is denoted by SR−1

for the sake of simplicity.

Addition. The 64-bit state is xored with the 64-bit subkey k1 and a round-
dependent constant as listed in Table 3. Note that the 12 round constants have a
symmetric property: for all 0 ≤ i ≤ 11, RCi⊕RC11−i = 0Xc0ac29b7c97c50dd(=:
α). With this property and together with the fact that M ′ is an involution ma-
trix, the encryption and decryption of the cipher have the following relationship:
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Table 2. The SR operation of PRINCE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

D(k0||k′
0||k1)(·) = E(k′

0||k0||k1⊕α)(·).
Thus, a same hardware implementation can fulfill both encryption and de-

cryption operations of the PRINCE cipher.

Table 3. Round constants

RC0 0000000000000000
RC1 13198a2e03707344
RC2 a4093822299f31d0
RC3 082efa98ec4e6c89
RC4 452821e638d01377
RC5 be5466cf34e90c6c
RC6 7ef84f78fd955cb1
RC7 85840851f1ac43aa
RC8 c882d32f25323c54
RC9 64a51195e0e3610d
RC10 d3b5a399ca0c2399
RC11 c0ac29b7c97c50dd

More details about this cipher can be found in [10].

3 Attacking PRINCE

The sketch of our attack is inspired by recent differential fault attack against
AES [12,16]. In these attacks the recovery of key bytes benefits from the optimal
diffusion property of the linear layer, but in the case of PRINCE, the linear
layer lacks of such optimal diffusion property. However, PRINCE’s linear layer
has its own properties, which can be utilized to develop a differential fault attack
against PRINCE.

In this section the fault model is stated first. Then we describe our two im-
portant observations of PRINCE’s linear layer. Exploiting these observations,
our attack is elaborated afterwards.

3.1 Fault Model

We are dealing with random faults on a single nibble whose position cannot be
predicted in advance. The effect of the introduced fault is to add an arbitrary
nonzero nibble disturbance to the state. Thus, faults can be induced within
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nibble-wise operations including Sbox substitution, SR operation and addition,
which is beneficial to fault injections. This kind of nibble-wise fault model has
also been used in [8].

Although PRINCE may not be implemented in a round-based fashion, we
assume an attacker can typically predict when a particular round happens and
induce a nibble fault at a specific round. Moreover, the time that certain events
take place can often be determined by analyzing a suitable side channel leakage.
Furthermore, we assume that an attacker can repeat the experiments with the
same plaintext and key without applying external physical effects.

In the remaining part of this paper, a 16-nibbleX is represented with (X0, X1,
· · · , X15) and we always denote by (C,C∗) a pair of a right ciphertext C and its
corresponding faulty ciphertext C∗ for the same plaintext and key.

3.2 Observations

Before going to the details of our observations, we split the 16 nibbles of the
state of PRINCE into four groups numbered from 1 to 4 as depicted in Fig. 3.

Fig. 3. Split the nibbles into four groups

Diffusion Property of the M ′-Mapping. Set X = (X0, X1, · · · , X15) and
Y = (Y0, Y1, · · · , Y15) to be the input and the corresponding output of the M ′-
mapping.

First, the M ′-mapping diffuses the nibbles within groups. If only a certain
group of X has nonzero nibbles, then only the same group of Y has nonzero
nibbles. Hence the M ′-mapping of the 64-bit state can be regarded as four small
separate mappings M ′

1,M
′
2,M

′
3, and M ′

4, each of which diffuses the nibbles of
the corresponding group.

Second, the M ′-mapping achieves an almost-MDS property. If X has only one
nonzero nibble, say X2 (belongs to Group 1), Y will have at most 4 nonzero nib-
bles, all of which are located in the same group (Group 1). Concretely speaking,
if the Hamming weight of X2 is greater than 1, then all the four nibbles of Group
1 of Y are nonzero; otherwise, exactly three of them are nonzero.

Diffusion Property of the SR. Set X = (X0, X1, · · · , X15) and Y = (Y0, Y1,
· · · , Y15) to be the input and the corresponding output of the SR operation.
If X has a group of four non-zero nibbles, then Y will still have four non-zero
nibbles, each of which is located in a different group. In a nutshell SR diffuses
the nibbles over groups.
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3.3 Principle of the Attack at the 11-th Round

Our attack is based on the induction of a nibble fault at the 10-th round under the
model mentioned above. To explain the attack, first let us consider the scenario
when there is a nibble disturbance at the 11-th round.

For the three operations marked in Fig. 4(a) where we want to inject a fault,
the attack works the same in principle. Below we suppose faults are injected
during the Sbox substitution of 11-th round.

iRCkk ,,' 10

iRCk ,1

M

1S

1SR

1S

iRCk ,1

M

1S

iRCkk ,,' 10

1SR

iRCk ,1

M

1S

1SR

1S

(a) (b)

Fig. 4. Attack PRINCE with fault at 11-th round and 10-th round

Assume we get a right ciphertext C and its corresponding faulty ciphertext
C∗ for the same plaintext and key. The fault can happen at any position of the
16 nibbles. For the sake of simplicity, we take the first nibble as a faulty nibble
and analysis for other positions are the same.

As illustrated in Fig. 4(a), the fault injected in the first nibble during the
Sbox substitution of 11-th round influences the first group of the 16 nibbles of
the final ciphertext due to the diffusion property of M ′-mapping.

In this context, first four nibbles C0, C1, C2, C3 and C∗
0 , C

∗
1 , C

∗
2 , C

∗
3 are known,

and so is the fact that the the bitwise Exclusive-or (XOR) differences of them
stem from a single nibble induced by the fault.

Let us look into the first nibble. The C0 and C∗
0 are known. Given the input

difference of the first Sbox Δin
0 , with the knowledge of the difference distribution
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table of the S−1 of PRINCE (see Table 4) in mind, the first nibble ofK = k′0⊕k1
will be limited to one of 0, 2, or 4 choices by the following equation [14]:

S(C0 ⊕K0)⊕ S(C∗
0 ⊕K0) = Δin

0 .

Table 4. Difference distribution table of the S−1 used by PRINCE

Δin
Δout

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 4 2 0 2 0 0 0 0 0 0 2 4 2 0 0
2 0 0 0 0 2 2 2 2 2 2 0 0 0 0 2 2
3 0 0 4 0 4 2 2 0 0 2 2 0 0 0 0 0
4 0 2 0 0 2 0 0 0 4 0 2 4 0 0 0 2
5 0 0 0 2 2 2 2 0 2 0 4 0 2 0 0 0
6 0 2 0 2 0 0 2 2 0 0 0 0 2 0 4 2
7 0 0 2 0 0 2 0 0 0 0 4 2 0 2 2 2
8 0 4 2 2 2 0 0 2 2 0 2 0 0 0 0 0
9 0 2 0 2 0 2 2 0 2 2 0 0 0 4 0 0
A 0 0 0 2 2 0 0 4 0 2 0 0 2 2 0 2
B 0 2 0 2 0 2 2 0 2 0 0 2 2 0 2 0
C 0 0 0 2 0 2 0 0 0 4 0 2 2 0 2 2
D 0 0 4 0 0 2 0 2 2 2 0 0 0 2 2 0
E 0 0 2 0 0 0 4 2 0 0 0 2 2 2 0 2
F 0 0 0 2 0 0 0 2 0 2 2 2 0 2 2 2

To get information about all the first four-nibble of K = k
′
0 ⊕ k1, we can

guess (Δin
0 , Δin

1 , Δin
2 , Δin

3 ), i.e. the input difference of the first four Sboxes and
then search the subkey information. Before searching, it is necessary to check
whether the guesses satisfy the following two conditions which we call the M ′-
Mapping Conditions.

– Non-zero Δin
i s are valid differences that can lead to the right output differ-

ences.
– The preimage of (Δin

0 , Δin
1 , Δ

in
2 , Δin

3 ) under the corresponding submapping
of M ′-mapping has only one nonzero nibble.

A guess cannot be called a right guess until it passes the M ′-mapping Con-
ditions. Below a right guess’s four-nibble preimage under the corresponding
submapping of M ′-mapping is denoted by P .

Now consider the number of suggested four-nibble key values given one right
four-nibble guess. Note that a pair of nonzero input/output differences of a
single Sbox suggests 2 or 4 values (16/7 in average) for a subkey nibble, and
zero differences suggest all possible values for a subkey nibble. As a result, one
pair of input/output differences of four Sboxes suggests 24 ∼ 210 values for the
four-nibble subkey used, where 210 = 4 · 4 · 4 · 16 since there is at least three
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nonzero differential nibbles. According to the property of the M ′-mapping, the
number of values suggested for a four-nibble subkey in average is

11

15
×
(
16

7

)4

+
4

15
×
(
16

7

)3

×16 ≈ 71.

Therefore, such a pair (C,C∗) reduces the size of the four-nibble subkey space
from 216 to t1 · 71, where t1 is the number of right four-nibble guesses of the
input difference of the Sbox layer.

If we want to uniquely determine the first four nibbles of k
′
0 ⊕ k1, at least

another fault leading to non-zero ciphertext difference at first four nibbles is
needed. Hence, the whole nibbles of k

′
0⊕ k1 can be uniquely determined with at

lest 4× 2 = 8 fault injections, each of which leaks some information of a group
of nibbles of the 64-bit key.

After k
′
0 ⊕ k1 has been recovered, the last round can be peeled off, and the

attack is repeated on the reduced cipher to reveal k1.

3.4 Attack Strategy at the 10-th Round

In this subsection our target fault attack on PRINCE is described on the basis
of the principle elaborated in the previous subsection, aiming to use less faults
as possible.

The attack scenario remains except that faults are injected one round earlier,
as depicted in Fig. 4 (b). Set the first nibble to be the faulty nibble again (other
cases work the same).

Suppose that the induced fault difference has a Hamming weight greater than
1 and the opposite case will be discussed later. As demonstrated by Fig. 4 (b),
the difference keeps until it goes into the M ′-mapping of the 11-th round. The
M ′-mapping spreads the difference to the whole group, and then the four nibble
differences are changed by the S−1. In order to make a distinction among the four
nibble differences, we color them differently. The SR−1 of the 12-th round splits
the four nibble differences into different groups, making each group have one
and only one nonzero nibble of difference. After that, M ′-mapping propagates
differences within groups, resulting full difference in the ciphertext.

Given a pair (C,C∗) whose fault difference propagation follows the pattern
depicted in Fig. 4(b), the analysis is sketched below.

1. For group i, 1 ≤ i ≤ 4, guess (Δin
4i, Δ

in
4i+1, Δ

in
4i+2, Δ

in
4i+3). For those that

satisfy the M ′-Mapping Conditions, store (Pi, (Δ
in
4i, Δ

in
4i+1, Δ

in
4i+2, Δ

in
4i+3)) in

table Ti, where Pi is the four-nibble preimage of the corresponding guess.
2. After we get such four tables, search four-nibble subkey values using the

items in Table Ti, 1 ≤ i ≤ 4 as we do in Section 3.3.
3. Using the Pis in four tables Ti, 1 ≤ i ≤ 4, check whether the concatenations

of P1||P2||P3||P4 satisfy the SR Condition, which is defined as the four non-
zero nibbles need to gather together in a single group after the SR operation.
For those concatenations that pass the SR Condition, record (P1, P2, P3, P4)
in table D.
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4. To get candidates of 64-bit key, concatenate the four-nibble subkey values
suggested by (P1, P2, P3, P4), the items of D.

5. Inject more faults and repeat previous steps to reduce the space of the 64-bit
key.

Since 71 four-nibble subkey values in average is returned by a pair of in-
put/output differences of a group, t2 · 714 = t2 · 224.60 values of 64-bit key will
be obtained with one fault injected at round 10, where t2 is the number of items
in list D. In this context, 64-bit key information are interrelated with one fault,
and hence at least 2 fault are needed to recover 64-bit subkey information.

For the fault difference with Hamming weight equal to 1, less information
can be obtained, since the fault difference propagates to only thress nibbles
within the same group after the M ′-mapping of 11-th round. The following
SR−1 operation then scatters the three non-zero nibbles into different groups,
resulting differences in only three groups of nibbles in the ciphertext. In this case,
the 64-bit key space is reduced approximately to a size of t2 ·713 ·216 = t2 ·234.45.

Note that the induced fault difference has a Hamming weight greater than 1
with probability 11/15 and for the other case the probability is 4/15. Considering
these two cases together, the number of possible values for the 64-bit key is
reduced to

t2 ·
(
11

15
· 714 + 4

15
· 713 · 216

)
= t2 · 232.55

with one fault injection.
Once the outer 64-bit subkey has been recovered, the last round can be peeled

off and the inner 64-bit subkey will be retrieved in a more efficient way.
For the recovery of the inner 64-bit key k1, the M ′-Mapping Conditions can

be applied to the items in D after Step 3. In other words, the difference of the
states after decrypting two rounds back needs to have only one non-zero nibble1.
In this way more wrong keys can be excluded.

For a group of four nibbles (all of them are nonzero or three of them are
nonzero), it satisfies the M ′-Mapping Condition with probability of

4× 15
11
15 × 154 + 4

15 × 153
= 2−9.31

Consequently, using one fault injection the number of suggested values for the
subkey k1 is about

t2 · 232.55 · 2−9.31 = t2 · 223.24.
This is verified by the experimental results in the next section.

4 Results

In fact, random faults introduce differences with any Hamming weight. Due to
the uncertainty of the fault difference and the almost-MDS diffusion property of

1 This cannot be applied to the recovery of outer 64-bit subkey since the decryption
needs subkey k1 which is totally unknown.



52 L. Song and L. Hu

M ′-mapping, it is difficult to estimate accurately the number of fault injections
needed to uniquely determine the 128-bit key. Through experiments on a PC,
we not only verify the number of survival keys using one fault injection, but also
evaluate the data complexity .

According to the experiments, t1 ranges from 1 to 6 and has an average of
2.50, while t2 ∈ [1, 12] and achieves 1.88 on average. The result in Table 5, which
is derived statistically from 1000 instances, shows that using 4.05 fault injections
in average, the outer 64-bit key will be determined uniquely. In addition, if only
2 fault injections are used, the number of candidates for the outer 64-bit keys
will be 214.18. Similarly, the unique determination of the inner 64-bit key needs
2.56 fault injections in average and 2 fault injections reduce the size of the 64-bit
key space to 23, as shown in Table 6. Note that 234.76 and 225.32, which are the
experimental number of suggested values for the 64-bit subkeys using one fault
injection, are very close to our estimates.

The time complexity mainly lies in the computation of Step 2 in the algorithm
of Section 3.4. Since the computations for each group are processed separately
and parallelly, the time complexity is very small, which is around 216.

Table 5. Recovery of outer 64-bit key of PRINCE

#faults 1 2 3 4 4.05

#survival 234.76 214.18 28.94 3.53 1

Table 6. Recovery of inner 64-bit key of PRINCE

#faults 1 2 2.56

#survival 225.32 8.03 1

5 Conclusions and Future Work

In this paper we broke PRINCE with differential fault attack under the random
fault model which adds a nibble of disturbance to the state of the cipher. Ex-
periments showed that the 128-bit key can be uniquely determined using 6.61
fault injections. Also, the key space can be reduced to a size of 217.18 with 4
fault injections. To our knowledge, this is the first differential fault attack on
PRINCE.

To prevent our attack, the designers and manufacturers need to guarantee that
our fault model is impossible. Nowadays hardware and software countermeasures
that can be used to counteract fault attacks had already been widely defined
and successfully deployed, but any kind of them is costly for such a low-latency
lightweight block cipher. In future work, some efficient countermeasures will be
explored on one hand, and on the other we will mount differential fault attack
against PRINCE under more practical models.



Differential Fault Attack on PRINCE Block Cipher 53

Acknowledgement. The authors would like to thank the anonymous re-
viewers for their valuable comments and suggestions. The work of this pa-
per was supported by the National Key Basic Research Program of China
(2013CB834203), the National Natural Science Foundation of China (Grants
61070172 and 10990011), the Strategic Priority Research Program of Chinese
Academy of Sciences under Grant XDA06010702, and the State Key Labora-
tory of Information Security, Chinese Academy of Sciences.

References

1. Bar-el, H., Choukri, H., Naccache, D., Tunstal, M., Whelan, C.: The Sorcerers
Apprentice Guide to Fault Attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

2. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking
Cryptographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

5. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
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Abstract. TWINE is a lightweight block cipher designed for multiple
platforms and was proposed at Selected Areas in Cryptography, 2012.
The number of rounds of TWINE is 36 and the most powerful attack
given by the designers is the impossible differential attack against 24
rounds of TWINE-128 whose time complexity is 2115.10 encryptions and
data complexity is 252.21 blocks. The best attack known so far is the
biclique attack on the full round cipher with a time complexity of 2126.82

and data complexity of 260. However the time complexity of biclique
attack is near exhaustive search and data needed for the attack is near
the whole codebook.

In this paper we propose some meet-in-the-middle type attacks on
reduced round TWINE-128. We show that meet-in-the-middle type at-
tacks can be applied on more rounds than the best attack done by the
designers while they claim that the first 5 rounds contain all the key bits
for TWINE-128.

Our attacks are due to the slow diffusion of both the cipher and the
key schedule algorithm. One of our attacks just use 212 chosen plaintext-
ciphertext pair with time complexity of 2124 to break 21 rounds of the
algorithm. Also we propose another attack on 25 rounds of the cipher by
using 248 chosen plaintext-ciphertext pairs with the time complexity of
2122 and memory complexity of 2125 while the best attack proposed by
the designers is for 24 rounds.

Keywords: TWINE, cryptanalysis, lightweight block cipher, Multidi-
mensional Meet-in-the-Middle attack.

1 Introduction

Lightweight cryptographic algorithms rise for the need of the reduction of power,
energy and area requirements in resource constraint platforms such as RFID
tags. Some of the lightweight algorithms proposed recently are HIGHT [10],
PRESENT [4], KATAN/KTANTAN [5], PRINTcipher [12], KLEIN [8], LED
[9], Piccolo [14], and TWINE [15].
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TWINE supports two key lengths, 80 and 128 bits. The encryption func-
tions are the same for both key lengths but the key schedules are different. We
name the ciphers due to their key lengths TWINE-80 and TWINE-128. The
authors didn’t evaluate the cipher against meet-in-the-middle type attacks and
they claim that it is difficult to mount such attacks on the full round since the
first 3 (5) rounds contain all the key bits for TWINE-80 (TWINE-128). The
most powerful attack given by the designers is the impossible differential attack
against 24 rounds for TWINE-128 which time complexity is 2115.10 encryptions
and data complexity is 252.21 blocks. [15]. The best attack known so far is the bi-
clique attack on the full round cipher with a time complexity of 2126.82 and data
complexity of 260 [6]. However the time complexity of the biclique attack is near
exhaustive search and data needed for the attack is near the whole codebook.

Here we propose some attacks by using some meet-in-the-middle techniques. .
First we propose a 19-round classical meet-in-the-middle attack whose data com-
plexity is just 2 known plaintext-ciphertext pair and time complexity is 2124.
Then we propose a 21-round splice-and-cut [1] attack which needs 28 chosen
plaintext-ciphertext pair and whose time complexity is 2124. By using the Mul-
tidimensional Meet-in-the-Middle technique [17] we improve the attack on 25-
rounds whose time complexity and 2125and use 248 chosen plaintext-ciphertext
pairs.

This paper is structured on 7 sections. The introduction section is followed by
Section 2 which provides a short description of the TWINE algorithm. Section
3 provides an overview of the meet-in-the-middle techniques. In section 4, we
present a 19 round basic meet-in-the-middle attack. Section 5 presents a way of
choosing different subkeys from the key schedule for better attacks and gives an
21-round meet-in-the-middle attack. Section 6 presents 25-round Multidimen-
sional Meet-in-the-Middle attack. Section 7 is devoted to the conclusion of the
paper.

2 Notation and a Short Description of TWINE

2.1 Notation

The notations used through the paper are as follows:
A : a bit string
A(i) : ith nibble of A. The left most nibble is A(0).
A(i, j, ..., k) : concatenation of i, j, ... , kth nibbles of A.
A ≪ i : i-bit cyclic shift of A.
A||B : concatenation of A and B.
Ki : 32 bit subkey value used in the ith round
Ki : 128 bit key value calculated in the ith round of the key schedule.

2.2 TWINE

TWINE is a block cipher supporting two key lengths, 80 and 128 bits. The
global structure of TWINE algorithm is a variant of Type 2 generalized Feistel
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structure [16] with 16 4-bit sub-blocks. Each version of the algorithm consists of
36 rounds and has the same round function depicted in Figure 1.

In the round function, the key addition is applied before the S-box operation
as seen in the figure and then the permutation is performed. As an example for
the permutation layer, 0th nibble before the permutation goes to 5th position
after the permutation as seen in the figure.

FFFFFFFF

S

k

F Function

Fig. 1. i-th round of TWINE

The key schedules of both versions of TWINE consist of S-box operation,
round constant addition and permutation operations.

TWINE-128 has the following key schedule which generates 36 32-bit round
keys from the 128-bit master key.

1. K0 = K
2. K1 = K0(2, 3, 12, 15, 17, 18, 28, 31)
3. for i=1,2,...,35 do the followings
4. (a) Ki = Ki−1

(b) Ki(1) = Ki(1)⊕ S[Ki(0)]
(c) Ki(4) = Ki(4)⊕ S[Ki(16)]
(d) Ki(23) = Ki(23)⊕ S[Ki(30)]
(e) Ki(7) = Ki(7)⊕ (0||CON i

H)
(f) Ki(19) = Ki(19)⊕ (0||CON i

L)
(g) Ki(0, 1, 2, 3) = Ki(0, 1, 2, 3) ≪ 4
(h) Ki = Ki ≪ 16
(i) Ki+1 = Ki(2, 3, 12, 15, 17, 18, 28, 31)

We will represent the input to the ith round function by Si where 1 ≤ i ≤ 36.
Since the analysis is independent from the S-box and constants, herewith it is
not considered necessary to go into further details. The key schedule for the 80
bit version is similar and will not be given here. For a complete description of
the algorithm, one can refer to [15].

3 An Overview of the Meet-in-the-Middle Type Attacks

Meet-in-the-Middle attack was first introduced by Diffie-Hellman to attack dou-
ble encryption of DES [7]. Although it has been more than 30 years since the
first attack was introduced it received more attention when the method was used
to attack hash functions in 2008. Many Meet-in-the-Middle techniques including



58 Ö. Boztaş, F. Karakoç, and M. Çoban

splice-and-cut, initial structure, partial matching and biclique techniques were
developed and the latter led to the preimage attack on 50 rounds SHA-512 and
the first attack on the reduced-round SKEIN hash function [11]. The biclique
technique was also introduced to cryptanalyze block ciphers which gave the first
attack on the full AES-128/-192/-256 [3].

Meet-in-the-Middle attacks depend on the fundamental idea that if the algo-
rithms can be decomposed into two consecutive parts and computation of each
part only involves partial information of the secret key then we can investigate
the security level of each part separately and finally check if the results from dif-
ferent parts match. Since evaluating two small parts requires low computational
complexity, the overall complexity to analyze the complete algorithm could de-
crease dramatically. The attack is illustrated in Figure 2. Suppose our cipher
E(k, P ) can be decomposed into two consecutive parts Ef (k1, .) and Eb(k2, .)
where k1 and k2 are subkeys used in Ef and Eb and f and b stand for forward
and backward phases. The detailed steps of the attack are as follows.

1. For each guess of the common key bits of k1 and k2
(a) Compute all possible values of v = Ef (k1, P ) for all possible key bits.

Collect v in a set T .
(b) Compute v′ = E−1

b (k2, C) for all values of k2 and check whether v′ ∈ T .
If so output the corresponding key pair (k1, k2) as a possible key.

The time complexity for (Step 1-a) in terms of complete encryp-
tions/decryptions is 2|k1|.rf

r . Similarly the time complexity of (Step 1-b) is
2|k2|.rb

r . Note that rf and rb represent the round numbers from forwards and
backwards. Total number of required plaintext-ciphertext pair is |k1+k2|

|v| .

?

v = v′

P C

r

rf rb

Ef (k1, P ) Eb(k2, C)

Fig. 2. General Meet-in-the-Middle Attack

Splice-and-Cut technique is first proposed by Aoki and Sasaki for performing
Meet-in-the-Middle attacks to compute pre-images on the hash functions SHA-0
and SHA-1 [1]. In this technique we are not restricted only to inputs and outputs
of the cipher. Suppose we choose an arbitrary value X for the intermediate state
as in Figure 3. We can do partial decryptions to get the plaintext input of the
cipher i.e P = E−1

b2
(k1, X). As long as we have the access to decryption and

encryption oracles we can perform chosen plaintext and ciphertext attacks on
target ciphers. Notice that the original Meet-in-the-Middle attacks only require
known plaintext and ciphertext pairs.
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The data complexities of Splice-and-Cut attacks depend on minimum number
of key bits we need to partially encrypt or decrypt X to get ciphertext C or
plaintext P . The data complexities will increase but the overall time complexities
may decrease since we can further divide ciphers into smaller parts.

P Cv v′X (Fixed)

E−1
b2

(k1,X) Ef1(k2, X) E−1
b1

(k3, C)

Fig. 3. Splice-and-Cut Attack

Another recent development of the meet-in-the-middle techniques is the Mul-
tidimensional Meet-in-the-Middle cryptanalysis [17]. In this method ciphers are
first divided into consecutive sub-ciphers by guesses of certain intermediate states
then meet-in-the-middle attacks are applied to these sub-ciphers separately. Fi-
nally, results of the attacks are combined to find correct keys.

Suppose we first guess an intermediate state g, and perform two meet-in-the-
middle attacks on the sub-ciphers divided by g, as shown in Figure 4. The steps
of the attack can be described as follows.

1. Compute v1 = Ef1(k1, P ) for each possible k1 , and gather all k1 ’s into a
set T1 indexed by v1 and kc1 , where kc1 is the common key of both k1 and
k2 .

2. Compute v′2 = E−1
b2

(k4, C) for each possible k4, and put all k4 ’s to a set T2

indexed by v′2 and the common key kc2 of k3 and k4 .
3. For each possible guess of g:

(a) Compute v′1 = E−1
b1

(k2, g) for each possible k2, and use v′1 and kc1 to find
matched entries of k1 in T1. Then put matched (k1, k2) into a set Q.

(b) Compute v2 = Ef2 (k3, g) for each possible k3, and then find matched
entries of (k3, k4) in T2. Check whether (k3, k4) are also matched entries
of Q. If so, do brute-force testing on the matched key tuple (k1, k2, k3, k4)
by using additional plaintext-ciphertext pairs. If all of these tests pass,
output the tuple as the correct key.

P

Ef1(k1, P ) E−1
b1

(k2, g) Ef2(k3, g) E−1
b2

(k4, C)

Cv1 v′1 v2 v′2

g (guessed value)

Fig. 4. Multidimensional Meet-in-the-Middle Attack
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Time complexity of the attack is 2|k1| + 2|k4| + 2|g|(2|k2|+|k3|). It consumes
more memory compared to original meet-in-the-middle attacks since we need to
save three sets T1, T2 and Q.

4 Basic Meet-in-the-Middle Attack on TWINE-128

In this section we present a basic meet-in-the-middle attack on 19 rounds
TWINE-128 by using the slow diffusion of the key schedule.

4.1 An Analysis of the Key Schedule

In the first round of TWINE-128 we know that only 8 nibbles of the main key,
namely K0(2, 3, 12, 15,
17, 18, 28, 31) are used. In the second round if we write the subkey nibbles in
terms of K0 again, only 8 nibbles of K0, namely K0(0, 1, 6, 7, 16, 19, 21, 22), are
used. Running the complete key schedule shows that it is not until the 29th round
that all the bits of the main key are used in the F function. See Figure 5 for
the complete diffusion of the main key bits. Rows represent rounds and columns
stand for K0 nibbles. The black boxes represent the nibbles of the main key K0

that are used in that round i.e the black nibble in position (3, 5) means that 3rd
nibble of the main key K0 is used in 5th round. Using this, we can mount a 19
round meet-in-the-middle attack on the cipher.

4.2 19-Round Meet-in-the-Middle Attack

Consider the reduced round variant of TWINE-128 which consists of 19 rounds
with the same key schedule. By using Figure 5 we see that K0(13) is not used in
the first four rounds and K0(26) is not used in the rounds from 17 to 19 round
TWINE-128. Without guessing K0(13), we can still calculate some state bits up
to 6 rounds later, which is seen in Figure 6. The gray nibbles show the values
that we cannot calculate. Note that K0(13) is used in rounds 5,9 and 10 and
we don’t need to guess this subkey to calculate the check point S11(4). From
the decryption direction, similarly we can calculate the same check point S11(4)
without guessing K0(26) which is used in 11th and 16th rounds.

Now we can mount a 19-round meet-in-the-middle attack on TWINE-128.
We have |k1| = |k2| = 124 bits and |v| = 4 bits. Moreover k1 and k2 shares
120 common bits. Then we guess these bits first and then do meet-in-the-middle
attack for the remaining bits to reduce the memory complexity. Thus the memory
complexity is just M = 24 bits and time complexity is T = 2 × 2124×10

19 ≈ 2124.
For the two plaintext - ciphertext pair, we have 2120(24 × 24 × 2−8) = 2120

remaining key bits which can be checked by exhaustive search.

5 Choosing Different Ki for Better Attacks

TWINE-128 key schedule is completely reversible. So we can choose any Ki

for i = 0, . . . , 35 to attack, because getting the value of the main key is easy by
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Fig. 5. Diffusion of the main key bits through the key schedule. Rows represent rounds
and columns stand for K0 nibbles.
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Fig. 6. 19 round Meet-in-the-Middle attack
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backward computation. This can be advantageous since running the key schedule
algorithm simultaneously for both forwards and backwards has a slower diffusion
than running the key schedule in forwarding direction only. As an example if we
choose K8 and write the subkey bits in terms of K8 the picture in Figure 5 now
becomes like in Figure 7. The black boxes show the nibbles of K8 that are used
in that round. It seems that instead of guessing the main key bits, it is better
to guess Ki for i > 0. The slow diffusion of the key schedule seems better now.
Note that only the last round subkey uses all the nibbles of K8.
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Fig. 7. Diffusion of the nibbles of K8

5.1 21 Round Splice and Cut Attack by Guessing K10

Now we will mount a 21 round splice and cut attack by guessing K10. We see
that K10(16) is not used between rounds (3 − 7). For the decryption direction,
K10(14) is not used in the last four rounds of 21-round TWINE-128. The check
point is S13(5). Note that K10(16) and K10(14) are used in the second round
as seen in Figure 8. So we can’t choose the entire state (3rd round input) as our
intermediate state because we do not want to guess K10(14) in the decryption
direction. We use a technique similar to the ladder switch presented in [2]. We
choose the intermediate values in a ladder-type structure so that decryption
without guessing K10(14) as well as encryption without guessing K10(16) are
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both possible. So we choose a fixed value for S3(6) and S3(13). In order to
decrypt this we also need the values S2(2) and S2(3) to be fixed. Now S1(7) and
S1(10) can take all the possible values and the remaining plaintext nibbles can be
fixed. Notice that we don’t need to guess the value of K10(14) in the decryption
of chosen intermediate values and K10(16) in the encryption process. For the
encryption of X we need to guess 124 bits of the key and for the decryption of
X we again need 124 bits to reach the check point S13(5). We have 120 common
key bits. The attack is performed as follows.
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Fig. 8. Chosing X for the 21 round Splice-and-Cut attack

1. Choose a fixed value for X = (S2(2, 3), S3(6, 13), S1(0, 1, 2, 3, 4, 5, 8, 9, 12, 13,
14, 15)).

2. For each guess of the common 120 key bits,
(a) Encrypt this fixed value and calculate the check point S13(5) and prepare

a table consisting of the values of S13(5) and the key bits.
(b) Decrypt this fixed value to get the corresponding plaintext.
(c) Get the corresponding ciphertext value and continue the decryption until

reaching the check point S13(5).
(d) Check for a match in the table.

We have |k1| = 124, |k2| = 124 and |v| = 4. Moreover we have 120 common
key bits. Thus the memory complexity is just M = 24 bits and time complexity
is T = 2120 ×

(
24 13

21 + 24 8
21

)
≈ 2124. For the data complexity S1(7),S1(10) and

S1(11) can take any values according to key guess and the other nibbles of the
plaintext are fixed. So we need D = 212 chosen plaintext-ciphertext pair.

6 Multidimensional Meet-in-the-Middle Attack on 25
Round TWINE-128

Consider K8 and notice that K8(1) is not used between the rounds (5-8) and
K8(22) is not used in the last four rounds of 25-round TWINE-128. But there
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is no check point here that can be efficiently calculable without guessing these
subkeys K8(22) and K8(1). So the classical meet-in-the-middle attacks do not
work here. Instead we will try to guess some state bits of the 15th and 16th round
and do two meet-in-the-middle attacks for the rounds 1 − 15 and 15 − 25. As
seen in Figure 9, K8(1) is used in the 4th round and K8(22) is used in 2nd and
4th rounds. Therefore we try to fix the values in a clever way as in the previous
section to avoid using these key values. Choose the constant value X such as

X = S5(6, 13), S4(2), S3(6, 12, 14), S2(0, 2, 6, 7, 8, 10, 12), S1(2, 6, 14)

Note that given the value of X we can decrypt it to get the plaintext values
without guessing K8(22) and encrypt X to calculate the check points without
guessing K8(1). Here is the explanation of the attack.
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Fig. 9. Chosing the value X for 25 round Multidimensional Splice and Cut attack on
TWINE-128
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1. Using X compute S13(4, 5, 6, 9, 10, 11, 13, 14, 15) as the first check point and
construct a table T1, consisting of these values and key bits indexed by S13

values.
2. Decrypt X without guessing K8(22) and get the plaintext values. Get the

corresponding ciphertext values and continue to decryption to get the value
of the 18th round’s partial state bits S18(2, 4, 5, 6, 7, 10, 11, 14) as the second
check point. Construct a table T2 in the same manner above.

3. Choose a fixed value of g = S15(0, 1, . . . , 7), S16(2, 6, 9, 10, 11, 13, 14, 15).
(a) Do a meet-in-the-middle attack between X and g and write the possible

keys (k1, k2)to the table Q.
(b) Do a meet-in-the-middle attack between C and g and check that the pos-

sible keys (k3, k4) are also in Q. If this is true then output (k1, k2, k3, k4)
as a potential key. Try these values using another P − C pair.

(c) If no keys found, change the value of g.

For the first meet-in-the-middle attack between rounds (1−15) notice that we
only need to guess 60 key bits to reach the first check point as seen in Figure 10.
Then |k1| = 124 and |k2| = 60 and |v1| = 36. Using the bits of k1 we can directly
find 48 bits of k2. So at the end of the first attack we have 2124+60−36−48 = 2100

(k1, k2) pairs. In the second meet-in-the-middle attack which is between C and
the second check point we have |k3| = 64, |k4| = 124 and |v2| = 32 bits as seen
in Figure 11. Using the bits of k4, 48 bits of k3 can be computed. Therefore at
the end of the second attack we have 2124+60−32−48 = 2104 (k3, k4) pairs. k1 and
k4 shares 120 common bits. This gives an additional 120 bits filtering and finally
we have 2100+104−120 = 284 (k1, k2, k3, k4) key tuple. These key bits can checked
trivially.
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Fig. 10. Calculating the first checkpoint from g
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Fig. 11. Calculating the second checkpoint from g

For the memory complexity, we have two tables in step 2 and 3 both having
the same size 2124. For the time complexity, in step 4−a we are required to guess
60 key bits for all the values of g for approximately 2.5 round decryption. Then
the time complexity of the first attack is 264+60×2.5

25 ≈ 2121. For the step 4 − b
we have to guess 64 key bits but notice that the values of S16(9) can be fixed.
Again there is a 2.5 round encryption therefore the time complexity of the second
attacks is also 264+60×2.5

25 ≈ 2121. Totally the time complexity is 2 × 2121 = 2122

encryptions. The data complexity is D = 248 chosen plaintext-ciphertext pairs.

7 Conclusion

In this paper, we gave meet-in-the-middle type attacks on reduced round TWINE-
128 algorithm. The attacks use the slow diffusion of both the cipher and the key
schedule. The time complexity of the 25-round attack is approximately 2122 en-
cryptions, memory complexity is around 2125 and 248 chosen plaintext-ciphertext
pairs are required. The most powerful attack given by the designers is the impos-
sible differential attack against 24 rounds for TWINE-128 which time complexity
is 2115.10 encryptions and data complexity is 252.21 blocks [15].
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Abstract. In this work we present the first implementation of the
Dahmen-Krauß Hash-Chain Signature Scheme (DKSS) for short mes-
sages on a Wireless Sensor Node. We point out one error in the originally
proposed scheme concerning the specification of the employed pseudo-
random number generator and provide a corrected specification. We also
give a new time-memory trade-off between signing time and private key
size. We present performance results for various message-lengths, which
are a parameter of this scheme, for two different choices for the block
cipher used to build the one-way functions employed in this scheme, al-
lowing comparisons with previous implementations of other public-key
signature schemes. Furthermore, we describe our implementation of a
synchronization protocol, needed in practical applications of this scheme
whenever a node lacks the predecessor of a signature.

Keywords: public key signature scheme, implementation, wireless sen-
sor nodes, embedded systems, hash-based signature scheme.

1 Introduction

A Wireless Sensor Network (WSN) is composed of a large number of sensor
nodes and one or more base stations. The base station is usually a more pow-
erful platform which connects the sensor nodes to the operator (for instance via
the internet). The sensor nodes are composed of sensors, data processing and
communication components [5]. They can be used for health, military or security
applications, for instance they can monitor a given area and determine the type,
concentration, and location of pollutants [3]. Such nodes are characterized by
restricted power supplies, small memory sizes and limited energy reserve.

Realizing security in such networks poses different challenges than those of
traditional wireless ad hoc networks. Indeed, knowing that the energy cost of
receiving or transmitting a single bit of information is approximately the same
as that of the CPU for the execution of up to a thousand cycles [15], and that
a sensor nodes’ battery lifetime is an important cost factor, the cryptographic
algorithms and protocols must be adapted to this situation.
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c© Springer-Verlag Berlin Heidelberg 2013



An Implementation of the Hash-Chain Signature Scheme 69

A further consequence of the limited battery lifetime is that lengthy crypto-
graphic computations should be avoided. Accordingly, in this application con-
text, symmetric cryptography is still favoured over public key cryptography, as
the former in general incurs a low computational cost compared to the latter.

The disadvantage of employing symmetric cryptography for a WSN lies in the
physical insecurity of the sensor nodes: once an attacker gets physical control
of a node he can extract the secret keys. One widely used approach to limit
the damage that is done in such a scenario, is to have only two neigbouring
nodes share a secret key for encryption and authentication. This approach bears
basically two problems: the first is the difficulty of the key distribution as it
is either done prior to the node deployment, then the network layout must be
planned in advance or it is done after the deployment and thus vulnerable to man-
in-the-middle attacks. Secondly, it has a big disadvantage, when it comes to the
authentication of broadcast messages, i.e. messages sent from the base station to
all or at least a large number of nodes: each node must then re-crypt respectively
re-authenticate the message with its shared secret keys for the neighbouring
nodes on the route. To avoid these problems of the key distribution public key
cryptography can be used [9][18]. For instance Elliptic Curve Cryptography has
been applied in such networks [4][19][14].

However, against the background of the in general great computational com-
plexity of public key schemes, Dahmen and Krauß present a public key signature
scheme [6] that is tailored to the application in WSNs, specifically to the authen-
tication of broadcast messages. We refer to this scheme as the Dahmen-Krauß
Signature Scheme (DKSS). In this application, the rather powerful base station
platform generates the signatures and the nodes only have to verify them with
the base station’s public key. The most important traits of the DKSS scheme
are:

– the signature size and the computational cost depend on the length of the
messages that are signed. The scheme is only efficient very short messages:
in [6] the estimated performance of DKSS verification is superior to ECDSA
for message lengths of up to 22 bit.

– A verifier needs the (i − 1)th signature to verify the ith signature.
– The total number of signatures that can be generated with one key pair is

limited and influences the private key size and signing time.
– verification cost is much smaller than the signing cost

An important feature of this signature scheme is that it offers almost equally
short signatures as ECDSA: for a security level of 80 bit and 16 bit messages,
the signature length of DKSS is 336 bit and that of ECDSA is 320 bit [6].

The remainder of this paper is organized as follows: In Section 2, we introduce
the DKSS, and give a brief description of the hardware and software of the
chosen sensor node platform. Next, in Section 3, we present corrections and
improvements we made to the originally proposed DKSS [6]. In Section 4, we
give the performance results of our implementation under various parameter
choices. Finally we give a conclusion of our work in Section 5.
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2 Preliminaries

In this section we describe the DKSS scheme and the hardware and software
platforms we used in our experiments.

2.1 The Short Hash Based Signature

We now introduce the DKSS in terms of key generation, signature generation and
verification procedures. The scheme uses a variant of the Winternitz one-time
signature scheme [7]. In contrast to the Merkle scheme [16], which uses a hash tree
construction to build an l-time signature scheme based on the one-time signature
scheme, the DKSS employs hash chains. This brings the advantage of shorter
signatures, as the authentication path, that is part of Merkle-type signatures, is
not needed. On the other hand, the disadvantage, which can however be tolerated
in the WSN application scenario, is that a verifier needs to receive all signatures,
as the preceding signature is always necessary for a verification.

Our description of the scheme deviates from the original description in [6] in
one aspect, which is the specification of the PRNG, which cannot be realized as
proposed by the authors. This is explained in detail in Section 3.1.

The DKSS is parameterized by three integers:

– As already mentioned, the number of signatures that can be generated by a
single key pair is limited. This number is l.

– The bit length of messages that can be signed is given by w = 2x � 2 for
some integer x.

– The security level is given by n.

Moreover for the following, let f : {0, 1}n −→ {0, 1}n and
g : {0, 1}4n −→ {0, 1}n be hash functions. For our implementation, we chose
the functions f , g and PRNG in accordance to the proposals given in [6]:

f(x) = �EIV (x) ⊕ x�n g(x1, x2, x3, x4) = �Ek3(x4)⊕ x4�n
with k3 = Ek2(x3)⊕ x3

k2 = Ek1(x2)⊕ x2

k1 = EIV (x1)⊕ x1

Where Ek(m) denotes the AES encryption of the message m with the key k, ⊕
denotes bitwise XOR, �x�n represents the truncation of the bit string x to n bits
and IV is a fixed public value, for instance the zero string. Before applying the
AES encryption, the message m is padded from the left with 128− n zeroes.

Furthermore, let PRNG :{0, 1}128×{0, 1}16×{0, 1}16 −→ {0, 1}n be a pseudo
random number generator which maps a fixed AES key and two variable numbers
to an n bits pseudo random number, that means : PRNG(index1, index2) = rand.
Our implementation of the PRNG function is :

PRNG(index1, index2) = EKPRNG (0 . . . 0‖index1‖index2),

where KPRNG is a secret pseudorandomly created AES key that is part of
the private key.
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The Key Pair Generation. Algorithm 1 shows how to generate one DKSS
key pair with the final link zl.

Algorithm 1. The DKSS Key Pair Generation
Require: the maximum number of signatures l, the Winternitz parameter w, and the

security level n
1: // set the final link:
2: zl ← n-bit random string
3: // Compute the one-time signature keys Xi = (xi[0], xi[1], xi[2]) ∈ {0, 1}(n,3):
4: for i = 1 to l do
5: xi[0] ← PRNG(i, 0)
6: xi[1] ← PRNG(i, 1)
7: xi[2] ← PRNG(i, 2)
8: end for
9: // Calculate the one-time verification keys Yi = (yi[0], yi[1], yi[2]) ∈ {0, 1}(n,3):

10: for i = l to 1 do
11: yi[0] ←− f2

w
2 −1(xi[0])

12: yi[1] ←− f2
w
2 −1(xi[1])

13: yi[2] ←− f2
w
2

+1−2(xi[2])
14: zi−1 ←− g(yi[0] ‖ yi[1] ‖ yi[2] ‖ zi)
15: end for
16: PubKey ←− z0
17: PrivKey ←− z1, KPRNG

18: return (PubKey, PrivKey)

In Algorithm 1, the symbol ‖ denotes the concatenation of bit strings, fk(x)
means that the function f is applied k times to x, and xi[j] denotes the j-th
entry of the array xi. With those notations the first public key is the initial link
z0 and the initial private key is KPRNG and the link z1. The latter value is
subject to change as signatures are produced by the key, i.e. if q signatures have
been produced, the private key will contain zq+1.

Furthermore, for efficient storage and computation, a hash chain traversal al-
gorithm must be used for the on-demand production of the signature and verifi-
cation keys. Concerning the choice of this algorithm, our implementation follows
the proposal of the DKSS paper [6] which specifies the traversal algorithm pre-
sented in [23]. This means that the state of the traversal algorithm must also be
part of the private key. Details about the memory demands of this algorithm are
given in Section 3.1. Figure 1 gives a visualization of the hash-chain generation.

The Signature Generation. To generate the signature of the message m =
m1‖m2 ∈ {0, . . . , 2

w
2 − 1}2 with the current link zi, the signer uses Algorithm 2.

At the end, he calculates the next link zi+1 of the hash chain with the above men-
tioned hash chain traversal algorithm. This requires to compute up to � 12 log2l�
links per chain.
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z0 z1 z2 . . . zl−1 zl

Y1 Y2 Yl

X1 X2 Xl

Fig. 1. Visualization of the generation of a hash chain during the key generation. The
arrows denote the direction of the computation, i.e. application of the functions f and g.

Algorithm 2. The DKSS Signature Generation
Require: m = m1‖m2 ∈ {0, . . . , 2w

2 −1}2 the message to sign, zi ∈ {0, 1}n the current
link

1: // Compute the one-time signature key Xi = (xi[0], xi[1], xi[2]) ∈ {0, 1}(n,3):
2: xi[0] ← PRNG(i, 0)
3: xi[1] ← PRNG(i, 1)
4: xi[2] ← PRNG(i, 2)
5: // Calculate the checksum of the message m:
6: c ←− 2

w
2
+1 − 2−m1 −m2

7: // Compute the one-time signature (α1, α2, α3):
8: α1 ←− fm1(xi[0])
9: α2 ←− fm2(xi[1])

10: α3 ←− fc(xi[2])
11: // Compute the next link zi+1 for the next signature and the updated state si+1

of the traversal algorithm:
12: (zi+1, si+1) ←− hash_traversal(zi, si)
13: return The signature σ = (i, α1, α2, α3, zi)

The Signature Verification. To verify a signature σ = (i, α1, α2, α3, zi), the
verifier needs to know the last link z1−1 given in the previous signature, and to
run Algorithm 3.

2.2 The Wireless Sensor Node Platform

As the hardware platform for our implementation, we chose the Tmote Sky
platform, featuring a Texas Instruments MSP 430 16-bit microcontroller with
10 KB of RAM and 48 KB of flash memory, running at 8 MHz.

As operating system, we chose to use the Contiki OS [1]. This operating system
is conceived for small memory microcontrollers, for instance the typical amount
of RAM and ROM are 2 respectively 40 kilobytes. The Contiki OS is open source,
highly portable, and can handle multi-tasking operations. Moreover, Contiki was
the first operating system for sensor networks to supply TCP/IP communication
or a cross-layer network simulator (Cooja) [8].

For the Contiki OS, there are three different simulation environments avail-
able; the MSPSim emulator [2], the Cooja cross-layer network simulator [11],
and the NetSim process-level simulator [10], for software development and de-
bugging. It also provides a file system, Coffee, which we use to store private
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Algorithm 3. The DKSS Signature Verification
Require: m = m1‖m2 ∈ {0, . . . , 2w

2 − 1}2 the message to verify, σ = (i, α1, α2, α3, zi)
the signature, zi−1 ∈ {0, 1}n the previous link

1: // Compute the one-time verification key Yi = (β1, β2, β3) ∈ {0, 1}(n,3):
2: c ←− 2

w
2
+1 − 2−m1 −m2

3: β1 ←− f2
w
2 −1−m1(α1)

4: β2 ←− f2
w
2 −1−m2(α2)

5: β3 ←− f2
w
2

+1−2−c(α3)
6: if g(β1‖β2‖β3‖zi) = zi−1 then
7: // The signature is accepted and the verifier stores the link zi
8: return TRUE
9: else

10: return FALSE
11: end if

and public keys on the node. Application programs for Contiki are written in C
programming language. We obtained our results with MSPSim, but also verified
them partially on an actual Tmote Sky platform.

3 Modifications to the Originally Proposed DKSS
Scheme

There are two important differences between the original paper [6] and our im-
plementation. The first one is the correction of the PRNG function and the
second one is the use of multiple chains in the hash chain traversal algorithm.

3.1 Correction of an Error in the PRNG Specification

The authors of [6] suggest that the PRNG function updates its seed ψ each time
it is called. The PRNG is then defined by :

PRNG : {0, 1}n −→ {0, 1}n × {0, 1}n

PRNG(ψ) = (rand, seedin) = (f(ψ), f(ψ) + ψ + 1 mod 2n), (1)

where rand is pseudorandom output and seedin is the updated seed. This PRNG
can produce outputs “rand” only “in one direction”, it is not possible to produce
previous outputs with the current seed.

The error of this approach has to do with the internal workings of the employed
hash chain traversal algorithm [23]. This algorithm enables the on-demand cre-
ation of the l links zi with a storage of only �1/2 log l� so called pebbles, each
consisting of a single zi, and a computational cost scaling as �log l�. Since each
zi is computed from a hash function with inputs zi+1 and Yi+1, in this traver-
sal algorithm, the pebbles can only be moved left in the spacial sense specified



74 N. Mourier, R. Stampp, and F. Strenzke

by Figure 1. This would mean for the above specified PRNG, that it produces
the Xi, which have to be created on demand for the computation of the Yi,
in descending order of i. However, for the signature generation, the Xi must be
created in ascending order. In [6] the PRNG is specified so that it allows only for
this direction, making the hash traversal impossible. This contradiction makes
it obvious that the scheme can only be realized with a PRNG which is capable
of creating the Xi in arbitrary order.

The PRNG proposed in [6] had the aim of achieving forward security, i.e.,
when an attacker captures a node and retrieves the private key, he still cannot
forge signatures with a lower index than given by the current state of the private
key, but only ones with a higher index. However, the forward security of the
PRNG according to (1) was not very strong anyway, as it lost only a single bit
of information from the seed in each call. Clearly, with the necessary changes
forward security cannot be achieved at all.

3.2 Multiple Chains

In order to allow for a time-memory trade-off for the signature generation, we
decided to allow the use of multiple chains. So for the same number of signatures
l, we can use t chains of length r = l/t for some integer t which divides l, instead
of a single chain of length l. The algorithm will be faster since there is no need
to process all chains, but only the one currently used.

Figure 2 shows how multiple chains are created and used with the one-time
signature and verification keys. According to [23] the hash chain traversal al-
gorithm has a cost of � 12 log r� in computation and �log r� in memory for each
chain of length r. When r is a power of two, the rounding operator can be left
out from these expressions.

z0 z1 z2 . . . zr−1 zr

Y1 Y2 Yn

X1 X2 Xr

z′0 z′1 z′2 . . . z′r−1 z′r

Y ′
0

X ′
0

Y ′
1 Y ′

2 Y ′
r

X ′
1 X ′

2 X ′
r

Fig. 2. Visualization of two hash chains

Using multiple chains of length r = 2x for some integer x modifies the
algorithm cost: for two chains of length l

2 the computational cost becomes
1
2 log2

(
l
2

)
= 1

2 (log2(l) − 1) < 1
2 log2(l) and the memory requirement becomes

2 log2
(
l
2

)
= 2 log2(l)− 2 > log2(l). In the general case, for t chains of length l

t
the computational cost is 1

2 (log2(l) − log2(t)) <
1
2 log2(l) and the memory re-

quirement becomes t (log2(l)− log2(t)) > log2(l). Thus the use of several chains
increases the memory cost but decreases the computational cost.
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4 Implementation of the DKSS

In this section we describe our implementation of the DKSS scheme and give
various performance results. We use n = 80 as security parameter throughout
this section.

4.1 AES and XXTEA as Block Ciphers

In the original DKSS proposal [6], AES is suggested as the block cipher to be em-
ployed in the functions f , g and PRNG. However, in this work we also consider
another block cipher: XXTEA. It is the correction of the original block cipher
Tiny Encryption Algorithm (TEA). TEA was designed by David Wheeler and
Roger Needham of the Cambridge Computer Laboratory and first presented in
1994 [21]. This algorithm is known for its simplicity of decryption and encryp-
tion. And this simplicity also involves some weaknesses: TEA is susceptible to
a related-key attack. Thus, as the first correction, in 1997 TEA was modified to
XTEA [20]. However, it turned out that a round reduced version of the algo-
rithm is still susceptible to an impossible differential cryptanalysis [17]. Finally,
in 1998 XXTEA was presented in an unpublished technical report [20]. These
three algorithms are 64-bit block Feistel ciphers with a 128-bit key. XXTEA has
minimal block size of 64-bit but offers the possibility to use larger block sizes
that are multiples of 32 bits. XXTEA is still simple to implement (a few lines of
code) but also vulnerable to a chosen-plaintext attack given in [22].

According to [12] XXTEA is a good cipher for WSN in terms of efficiency and
performance. Since the memory demands of XXTEA are considerably smaller
than those of an AES implementation, XXTEA may be the preferable choice in
a memory-constrained application context.

Our AES implementation features only decryption and makes use of two 256
byte tables: one for the S-Boxes and the other for the MixColumn operation.
The XXTEA implementation makes uses a 96-bit block size, as then the needed
output size is n = 80 bit.

4.2 Execution Times and Memory Demands

Comparison of AES and XXTEA. Figure 3 gives the code sizes of the
DKSS implementations with AES and XXTEA. Note that only the encryption
is implemented, not the decryption. For comparison, also the code size of the
ECDSA implementation given in [13] is shown. Obviously, with AES, the code
sizes are approximately equal, for XXTEA, DKSS achieves smaller size than
ECDSA. Table 2 shows the running times of signature generation and verification
on the TMote Sky platform of DKSS for two values of the message size parameter
w. XXTEA is slower by factor 1.4 for both operations.

Multiple Chains. We determined experimentally the improvement of the ex-
ecution time achieved by the employment of multiple chains in the traversal al-
gorithm as described in Section 3.2. We used the example parameter set w = 14
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Fig. 3. Code size of the different implementation of the DKSS signature. The black
area is the code size of the DKSS scheme without the block cipher. The ECDSA code
size is taken from [13].

and l = 1024 and two different values for t, the number of chains, specifically
t = 1 and t = 8. Since the verification time is not dependent on t, we only give
the signature generation timings and the private key size; in fact the employment
of multiple chains is not affecting the verifier in any way. The results are given
in Table 1. Since the gain in speed is only approximately 10% the employment
of t > 1 is mainly useful to benefit from otherwise unused memory, since the
increase of the memory demand in this example is by a factor of about 5.3. For
all performance results given in the following sections we always imply t = 1.

Table 1. Signature generation time and key size for the DKSS scheme depending on
the number of chains for parameters w = 14 and l = 1024

t = 1 chain with r = 1024 t = 8 chains with r = 128

Sign. Gen. time 5045 ms 4611 ms
Private Key 174 Bytes 924 Bytes

Dependency on the Message Length. Figure 4 shows running time of the
signature generation for parameters l = 1024, t = 1 and varying values of w.
For comparison, we included the signature generation time for ECDSA on the
TMote Sky platform given in [14] in the figure. Obviously, the DKSS signature
generation is only faster than ECDSA for messages shorter than 10 bits. This
is a little lower than the expectation given in [6], which specifies a message size
of 14 bits for this. However, there the authors assumed an optimized assembler
implementation of AES on an 8-bit platform.
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Table 2. Running time for the signature generation and verification of a single signa-
ture on a Tmote Sky in seconds

Tmote Sky node
Message bit length w 8 bits 16 bits
XXTEA Sign 0.383 5.770

Verify 0.098 1.394
AES Sign 0.279 4.135

Verify 0.071 1.007
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Fig. 4. Comparison of the signature generation times between the DKSS with l = 1024
and ECDSA (taken from [14]) running times on a Tmote Sky

The timings for the signature verification with AES and XXTEA are given
in Figure 5. For AES, the largest message size for which DKSS is faster than
ECDSA is 18, for XXTEA it is 16. These results are also worse than the expec-
tation given in [6], which is 22 bit for AES.

4.3 Re-synchronization Protocol

In a real WSN, it may happen that a single node misses out on a signed message
because of temporary reception problems. Then, in the DKSS scheme, this node
would be incapable of verifying further signatures. To solve this problem we
created a re-synchronization protocol as proposed in [6] where the node asks
its neighbours to send the missing signatures. By this way the node can verify
each new signature and at the end knows the last one sent by the base station.
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Since sensor nodes have a limited memory space they only save a few number
of signatures and the base station, which is a platform with greater memory
capacity, saves all of them. Thus if the node misses more signatures than its
neighbours can store, the re-synchronization is made with the base station. In
this latter case, it is more useful for the base station to provide the current link
zi directly, than sending all the missing signatures, as this unnecessarily incurs a
significant energy consumption for a large number of nodes. To avoid an attacker
being able to provide a false link zi in this case, a means of authentication is
needed, this can be done with a Message Authentication Code, i.e. each node
must share an individual symmetric key with the base station. The code sizes
given in Figure 3 already include the implementation of the synchronization
protocol.

5 Conclusion

In this work we have given the first implementation of the DKSS scheme. On
the theoretical part, we have provided a correction of the erroneous specification
of the PRNG given in the DKSS publication [6]. We gave experimental results
for a variety of parameters. Our timing results are worse than those expected by
the authors of the original DKSS paper. However, there, the authors refer to an
optimized assembler implementation of AES. The comparison with a previously
published ECDSA implementation shows that the DKSS signature verification,



An Implementation of the Hash-Chain Signature Scheme 79

which is the more important operation in the broadcast scenario, is faster for
messages of up to 18 bit size. This message size can be regarded as applicable
for size-optimized broadcast message formats. Note that the broadcast protocol
might very well allow for the splitting of longer messages into parts of bit size w,
since the DKSS already implies an implicit message ordering. As long as incidents
where broadcast messages span multiple DKSS messages are rare enough and
the majority of broadcast messages requires only a single message of bit size w,
the scheme remains efficient.

Furthermore, we gave a new time-memory trade-off for the scheme by em-
ploying multiple chains instead of a single one. The benefits in reduced timings
is small, but may be useful on platforms where sufficient memory is available.

Concerning the code size, the DKSS has a certain advantage over ECDSA,
which is enhanced if encryption has to be performed on the node as well: in this
case, the cipher implementation has to be added to the ECDSA code, whereas
in the case of DKSS at least encryption is already implemented.

However, one very important feature of this scheme is that its speed basically
solely depends on the speed of the AES computation. This means that on a
platform featuring AES hardware support, this scheme will outperform ECDSA
also for larger message sizes. Note that hardware support for modular arithmetic,
as it would be needed to speed up ECDSA (or the RSA signature schemes), are
even less common on embedded platforms than AES coprocessors.

Acknowledgements. The authors would like to thank Erik Dahmen for general
support and specifically for discussions concerning the correction of the PRNG
error.
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Masaryk University, Brno, Czech Republic
{xkur,matyas}@fi.muni.cz

Abstract. Security and location privacy in wireless sensor networks has
drawn a lot of attention in recent years. Yet, the existing solutions are
not likely to bring an optimal security/cost trade-off for real networks.
They target a single attacker model and static application scenario re-
quirements. However, both the attacker model and the requirements may
evolve during the network lifetime. We propose an adaptive security ar-
chitecture that allows for a dynamic adjustment of a security/cost trade-
off. It consists of five security levels, each targeting a different attacker
model. The security levels deploy both existing and novel security and
privacy mechanisms. We also introduce a novel lightweight scheme for
the dynamic security level interchange. The proposed architecture tar-
gets a particular application scenario where both traditional security and
location privacy are concerned.

1 Introduction

A wireless sensor network (WSN) consists of tiny and cheap sensor nodes that
monitor a physical phenomenon and report the measurements to a base station.
Since information collected by a WSN is often sensitive, a certain level of security
and privacy protection may be required. In this work, we propose an efficient
adaptive security architecture for a given application scenario. Our proposal
stems from the application security and privacy requirements. Beside traditional
security services, it also supports location privacy of monitored subjects. The
critical aspect of our architecture stems from the fact that it assumes multiple
attacker models that alternate in time. This enables a dynamic optimization of
the security/cost trade-off and brings energy savings.

It is a common practice to assume the strongest yet realistic attacker model
when designing a security architecture. However, this approach may not be the
best practice for highly constrained wireless sensor networks. The strongest at-
tacker is usually present only for a certain fraction of network lifetime. For the
rest of the lifetime, the network is threatened by weaker attackers. Thus it is
not necessary to constantly protect the network against the strongest attacker.
Furthermore, such constant protection may not be even feasible as it may con-
sume too much energy to be active for the whole network lifetime. In this work,
we assume that the attacker model changes during the network lifetime. The
proposed architecture respects such changes and enables dynamically adjusting
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the security level to cover just the actual attacker model. This helps to save re-
sources while keeping security at an adequate level. Our approach assumes that
a network owner or the network itself is able to determine or at least estimate the
actual attacker model. E.g., an intelligence service may issue a temporal warning
of a higher attack risk due to a VIP person visit. Thus the network owner may
expect a stronger attacker model. A network intrusion detection system (IDS)
may detect an active attack and shift from a passive attacker level to an active
one. Sometimes, even a network itself may sense an intruder [14] and adjust the
actual attacker model. Our approach brings benefits only if the resources saved
by the approach exceed the extra resources spent for adjusting the security level
and deciding when to adjust the level. Thus it is beneficial especially in situa-
tions where there are big differences in costs of different security levels and/or
where the cost of the approach application is low.

For our application scenario, we consider five different attacker models that
result from our previous work. Thus the architecture provides five security levels
that can be dynamically interchanged during the network lifetime. Each pro-
posed security level targets a different attacker model and provides a different
security/cost trade-off. The security levels build on both existing and novel se-
curity and privacy mechanisms. We do not aim to make the security levels indis-
tinguishable for an attacker, because such levels would minimize the multi-level
approach benefits. Furthermore, an internal attacker could reveal the current se-
curity level settings either. We also introduce a lightweight scheme that enables
a dynamic security level interchange.

The proposed architecture provides – beside traditional security services –
source location privacy. This imposes a challenge. Most existing location privacy
protection mechanisms are designed to counter a passive attacker only, leaving
the responsibility for active attackers to a network IDS. Yet, it has been shown
that a privacy protection may render an IDS inefficient [8]. Thus one of our
goals when designing the architecture was to include the privacy protection in
a way that supports the concurrent operation of an IDS. For each proposed
security level, we particularly stress information on which an IDS may build its
decisions. The design of a particular IDS is left outside the scope of this paper.
The proposed architecture is currently being implemented in order to provide
detailed evaluation in both real and simulated scenarios as a part of our future
work.

The roadmap of the paper is following – we discuss the application scenario,
its requirements and threat model in Section 2. We describe the proposed archi-
tecture and security levels in Section 3. We then propose the lightweight mech-
anism for the security level interchange in Section 4. In the following Section 5,
we discuss in detail the novel privacy mechanism used – dynamically changing
pseudonyms. Section 6 describes related work. We conclude the paper in the last
section.
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2 Problem Statement

Our security architecture targets a specific application scenario. Thus it is able
to cover actual security and privacy requirements with respect to the assumed
attacker models. In this section we describe the application scenario and the
requirements. Furthermore, we discuss the assumed attacker models and the
attacker goals.

2.1 Application Scenario

We have a situation where a WSN is used by emergency services to secure a
temporary perimeter and helps to organize an emergency operation. It moni-
tors movements of an ambulance crew, police units, fire fighters and potential
intruders inside the perimeter. The network is composed of a few hundreds of
cheap lightweight nodes (potentially disposable) that are randomly spread over
the protected area and that are deployed on demand. These nodes are combined
with a few more expensive devices carried by the emergency crew. The nodes are
equipped with motion detection sensors and any moving person in their neigh-
borhood is immediately detected. Furthermore, the nodes are equipped with
other environmental sensors such as acoustic, thermal and light sensors that
may be helpful during the operation. The nodes are able to communicate with
the devices carried by the emergency crew to a distance of 5 meters using, e.g.,
near field magnetic communication [3]. We assume that such communication is
not detectable by an attacker unless she is in the communication distance. We
base our assumption on the fact that a near field signal attenuates at 1/r3, where
r is a distance from the transmitting antenna, whereas a far field signal, such
as radio communication between sensor nodes, attenuates only at 1/r2. Due to
a relatively short lifetime of the network when the emergency operation is in
progress (e.g., several days) we can afford to drain battery power more aggres-
sively and to ask for a high frequency of communication between nodes. Yet it
is still not possible to apply the strongest security measures all the time.

2.2 Security and Privacy Requirements

The application scenario has the following high level security and privacy re-
quirements.

– Location privacy of the emergency crew has to be protected, i.e., no unau-
thorized person should be able to infer the positions of the emergency crew
or to track them. Otherwise an attacker could easily disturb the emergency
operation, e.g., by leaking information to media or by a physical intervention.

– An unauthorized movement inside the monitored perimeter has to be re-
ported to a base station within 3 seconds.

– Confidentiality of measured data has to be ensured. The measured data could
provide an attacker with valuable information on a progress and a context
of the emergency operation.
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– Authentication, freshness and availability of the data are necessary for suc-
cessful coordination of the emergency operation.

We revise the requirements with respect to the actual attacker model later in
the subsections that describe the proposed security levels.

2.3 Threat Model

We consider five attacker models that result from our previous work within
the project. The first model assumes no malicious actions and is included for
reference. Each other model represents a basic attacker class with respect to
attack costs, necessary equipment and impact on a network. Thus we cover the
weakest attacker, the strongest attacker, a global eavesdropper that is often
considered in a location privacy related literature and an attacker that is from
our point of view most likely to appear in reality – internal, active and local.

We further specify each attacker model in detail prior to a related security level
description in a corresponding subsection. We describe the basic characteristics
from which the attacker models are composed below.

– Local – An attacker can overhear only a local area, i.e., her hearing range is
similar to the hearing range of sensor nodes. Furthermore, she can locate the
source of the transmission with reasonable precision. The attacker is located
at a single spot at a time, i.e., is not distributed, and is able to move at the
speed not exceeding 100 km/h.

– Global – An attacker can overhear all node-to-node and node-to-base station
communication simultaneously for all the time. She is able to locate the
source of the transmission with reasonable precision. However, she is not
able to locate or overhear communication between nodes and devices carried
by the emergency crew unless she is present in their communication range.

– Internal – An attacker is a legitimate member of a network. She has com-
promised at most 10% of sensor nodes and/or possesses secret keys from
these nodes. If the attacker is also characterized as local, all the compro-
mised nodes only come from a certain small subpart of the network. If the
attacker is global instead, there are no constraints on the location of the
compromised nodes.

– External – An attacker is not a legitimate member of a network and does
not possess any key material.

– Active – An attacker may inject/modify/replay messages or she may perform
jamming. Yet we assume that jamming can be detected by an IDS and
reported to a base station. We leave the protection against jamming out of
the scope of this work.

– Passive – An attacker takes no active actions. She neither injects/modifies/
replays messages nor jams.

2.4 Attacker Goals

The attacker wants to take advantage of the network operation. She has one or
more of the following goals. She wants to locate and track emergency crew in
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the perimeter. This may help her, e.g., to evade the crew while moving in the
perimeter, to physically attack the crew or to get information on the emergency
operation progress. This goal can be achieved not only by interfering with the
network, but also by the physical observation. Yet, in the low visibility, hilly
terrain or forest such observation is difficult. Another attacker goal is to move
within the perimeter undetected. Such goal could be achieved, e.g., by jamming
or by other active actions. Therefore, we assume an IDS that could detect such
actions and we design the security levels in a way that supports an IDS operation.

3 Security Architecture Description

The proposed security architecture consists of five security levels, each targeting
a different attacker model and offering a different security/cost tradeoff. The
levels can be dynamically interchanged to suit actual security and privacy re-
quirements for a minimum cost.

We assume that nodes have established the following types of keys – pairwise
link keys with all their direct neighbors, cluster keys for a local broadcast and
pairwise keys with a base station. Such key distribution can be achieved, e.g.,
by the LEAP+ key establishment scheme [17]. We also assume that a routing
topology is already established in a secure manner and has a tree-like structure.
This can be ensured, e.g., by the INSENS routing technique [2].

The security levels are proposed in the following subsections. Each subsection
respects the following structure – we first set up an attacker model for the level.
Then, we summarize security and privacy requirements of the level. The actual
security level specification is composed of an itemized description of security
and privacy mechanisms that fulfill the requirements. We conclude the subsec-
tion with a summary of information available to an IDS. Yet, specification of a
particular IDS is outside the scope of this paper.

3.1 Security Level 0

Security level 0 is a reference level offering maximal efficiency and minimal
privacy. No attacker is assumed. We have no security nor privacy requirements
except for a resilience against unintentional failures. Security level 0 employs no
privacy and security protection at all. Packets are sent in clear and there is no
authentication nor freshness guarantee. Even the weakest attacker can access
all the information contained in the packets and reveal a location of the source
nodes. The IDS has access to all information available.

3.2 Security Level 1

The aim of security level 1 is to protect the network against the weakest attacker
– external, passive and local. There are three basic privacy requirements: we have
to protect an identifier of the ultimate source node in the packet. Otherwise, the
attacker could infer the packet source and the reported event location. Then,
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we need to ensure application data confidentiality. This data may also reveal
private information, e.g., that a particular unit is present in the perimeter. Fi-
nally, we have to protect the source location privacy against a traffic analysis
attacks conducted by a local attacker. Security level 1 combines the following
countermeasures:

– Dynamically Changing Pseudonyms are used to protect the ultimate
source node identifier. These pseudonyms are calculated using a public one-
way function, a pairwise key and a counter value shared between a source
node and a base station. They change on per packet basis. Details on the
pseudonym generation are discussed in Section 5.

– End-to-End Encryption of Application Data ensures application data
confidentiality. The encryption is based on an end-to-end key shared between
a source node and a base station. We propose to use a counter mode of oper-
ation that ensures semantic security and does not cause a ciphertext expan-
sion. The end-to-end approach does not require a hop-by-hop re-encryption.
Furthermore, the appearance of the packet remains unchanged during the
forwarding process, which may help the IDS. Since a passive and external
attacker is assumed in this level, a link layer hop-by-hop encryption could be
used instead. This would enable data in-network processing, like aggregation.

– Phantom Routing [5] protects source location privacy against a local at-
tacker. The phantom routing has two phases – in the first phase, a packet
takes a random or directed walk for a given number of hops, in the second
phase, the packet is routed via a shortest path to a base station. The routing
information in the packet, i.e., the information on the routing phase and the
number of remaining random hops, should be encrypted hop-by-hop on the
link layer to increase the source location privacy.

The IDS has two main sources of information. Pseudonyms and encrypted
data remain unchanged during forwarding process. Additionally, link layer in-
formation (e.g., forwarding node ID, receiver ID) is sent in clear. Since external
attacker is assumed, neighboring nodes may provide their secret temporary keys
to the IDS. Thus the IDS may extract additional useful information even from
the encrypted parts of the packets. If the security level is switched, the nodes
have to replace the provided temporary keys with new ones.

3.3 Security Level 2

Security level 2 targets an internal, active and local attacker. The privacy re-
quirements cover the requirements of security level 1 – protection of the ulti-
mate source node identifier, application data confidentiality, and protection of
the source location privacy against a local attacker. Since the assumed attacker
is active and may modify, inject or replay packets, we additionally need to ensure
data authentication, freshness and integrity protection. Security level 2 encom-
passes the following security mechanisms:
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– Dynamically Changing Pseudonyms protect the ultimate source node
identifier similar to security level 1. Yet thanks to the added data authenti-
cation (see below), the pseudonyms can be shorter. For details see Section
5.

– End-to-End Encryption of Application Data ensures application data
confidentiality in the same way as in security level 1. The end-to-end ap-
proach is particularly beneficial against an internal attacker. Such an attacker
is not able to breach confidentiality of the data unless she has compromised
the ultimate source node. This does not hold for the hop-by-hop encryption,
thus we do not allow using hop-by-hop approach in security level 2. The
counter mode in combination with data authentication also provides us with
a weak data freshness.

– Phantom Routing protects source location privacy against a local attacker.
– End-to-End Data Authentication is necessary to counter an active at-

tacker who could inject or modify false data. We propose to use CBC-MAC
and the block cipher that is used for encryption. This enables a block cipher
code reuse and saves memory of the nodes. The data to authenticate shall
contain the pseudonym and the encrypted application data. We assume that
the data to authenticate shall have a fixed length. Otherwise, the length has
to be appended or XORed to the data as the secure use of CBC-MAC re-
quires. The security of the authentication directly depends on the length of
the MAC. This length can be taken as a security parameter. A reasonable
level of security can be achieved with the length of 4 bytes.

– Hop-by-Hop Packet Authentication is optional and enables nodes to
immediately filter out injected or corrupted packets. This does not hold for
an internal attacker, who can inject packets via the compromised nodes. Yet
even in this case the authentication is beneficial as it limits the possibilities
and impact of the attacker.

The IDS has access to the same information as in the case of security level 1.
Furthermore, it may exploit the hop-by-hop MAC and verify authenticity and
integrity of the packet with respect to the last hop. In security level 2 we do not
allow the neighboring nodes to provide any secret keys to the IDS, because an
internal attacker could compromise the IDS.

3.4 Security Level 3

The aim of security level 3 is to protect the network against a global eavesdrop-
per – external, passive and global attacker. The privacy requirements include a
protection of the ultimate source node identifier, application data confidential-
ity, and protection of the source location privacy against a global attacker. The
following countermeasures are employed:

– Hop-by-Hop Packet Encryption ensures application data confidentiality
and protects the ultimate source node identifier. The encryption is based on
a cluster key for a local broadcast that is shared between a sending node and
all its neighbors. The hop-by-hop approach ensures that packet appearance,
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including the source node identifier, is changed on every hop. Use of the
cluster key enables the IDS to decrypt and analyze the packets. Since the
attacker is external, we do not need to use an end-to-end encryption. Again,
we propose to use the counter mode of operation.

– Periodic Collection [12] is employed to protect the source location pri-
vacy against a global attacker. The periodic collection makes the network
traffic completely independent of the events detected and thus provides an
event source unobservability together with a source location privacy against
a global attacker [12]. In the periodic collection, nodes are equipped with the
FIFO queue to buffer incoming real packets. Every node sends packets from
the queue at a constant rate one packet per a predefined time interval. If a
node has no packet to send, it creates a dummy one and sends it instead.
Due to the hop-by-hop encryption the attacker is not able to distinguish real
packets from dummy ones.

The IDS has access to the plain application data, source node identifiers and
link layer information (e.g., forwarding node ID, receiver ID). It may also utilize
the constant traffic rate.

3.5 Security Level 4

Security level 4 protects the network against all types of assumed attackers.
The strongest attacker considered is internal, active and global. The privacy
requirements of this level are the following: protection of the ultimate source
node identifier; application data confidentiality, authentication, freshness and
integrity protection; source location privacy against a global attacker. Security
level 4 combines the following countermeasures:

– Dynamically Changing Pseudonyms are used in the short variant, sim-
ilar to security level 2.

– End-to-End Encryption of Application Data is used in the same way as
in security levels 1 & 2 to provide confidentiality against internal attacker and
in combination with end-to-end data authentication also weak data freshness.

– End-to-End Data Authentication.
– Periodic Collection provides source location privacy against a global at-

tacker.
– Hop-by-Hop Packet Encryption is necessary for a successful run of the

periodic collection. It changes the packet appearance on every hop and cloaks
the dummy packets used by the periodic collection. Cluster keys or pairwise
keys can be used for the encryption. The use of pairwise keys provides a
better protection against traffic analysis since only the nodes on the path
are able to decrypt the packets. Yet, this limits the monitoring range of the
IDS that also has to be on the path. Contrary to the pairwise keys, the use
of cluster keys extends the IDS monitoring range to a whole neighborhood,
but also helps the attacker. The attacker only needs to capture a single node
to be able to decrypt the traffic in the node’s whole neighborhood.
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– Hop-by-Hop Packet Authentication is used in a similar way to security
level 2.

The IDS may utilize the constant traffic rate created by the periodic collection.
If the IDS has keys for hop-by-hop encryption, it gets access to the end-to-
end encrypted data and pseudonyms that do not change hop-by-hop. It may
also distinguish between real and dummy packets. Furthermore, the IDS may
exploit the hop-by-hop MAC and verify authenticity and integrity of the packets
with respect to the last hop. The monitoring range of the IDS is dependent on
whether the cluster or pairwise keys are used for the hop-by-hop encryption and
authentication.

3.6 Comparison

We summarize the security levels in Table 1. We provide a rough comparison
of the energy costs of the security levels in order to plot the potential savings.
Since energy costs caused by communication usually dominate energy costs of
computations, we omit the energy spent on computations. Therefore the energy
cost of a security level is dependent on the length of packets and on the number
of transmitted packets. The additional lengths of the packets caused by security
mechanisms are summarized in Table 1. The overhead is calculated as follows.
The reference packet length with no overhead is achieved by security level 0.
Packets on this level contain only information necessary for proper application
operation. This information includes two byte ultimate source node identifier. If
a short two-byte pseudonym is applied, it replaces the plain identifier and causes
no overhead. The long four-byte pseudonym thus causes a two-byte overhead.
Encryption in the counter mode does not cause ciphertext expansion and hence
adds no extra bytes. Use of authentication adds extra four bytes for the message
authentication code. When Phantom routing is used, up to one byte of routing
information needs to be appended to every packet.

The packet overhead helps us to compare security levels that employ the same
routing technique. Yet, the critical differences in energy costs of the security
levels stem from the different routing techniques used. It is the routing that
has the major effect as it influences the number of transmitted packets. We
take the shortest path routing as a reference. The Phantom routing is a single
path routing that introduces a random or directed random walk into the routing
process. The number of extra packet transmissions can be thus approximated
by the length of the walk. The length is a security parameter and for a network
of a few hundreds of nodes the reasonable value would be between 5 and 20.
Periodic collection targets global eavesdropper. Every node has to send a packet
per predefined time interval τ no matter whether it has any real data to send.
A total number of packets transmitted during a time period T in a network of
N nodes can be estimated by T×N

τ [12]. Thus, for given T and N , the overhead
depends on the number of real data in the network and on the length of the
interval τ . The τ value also influences latency of packets. Hence, in a setting
where latency should be less than tens of seconds, the overhead introduced by
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Table 1. Comparison of the security levels. Mechanisms in brackets are optional.
Overhead values in brackets hold if optinal mechanism is enabled.

Attacker model Security mechanisms Routing
Packet
overhead

Level 0 none none shortest path 0 bytes

Level 1
external,
passive,
local

long pseudonyms,
end-to-end encryption

Phantom routing 3 bytes

Level 2
internal,
active,
local

short pseudonyms,
end-to-end encryption,
end-to-end authentication,
(hop-by-hop authentication)

Phantom routing
5 bytes
(9 bytes)

Level 3
external,
passive,
global

hop-by-hop encryption Periodic collection 0 bytes

Level 4
internal,
active,
global

short pseudonyms,
end-to-end encryption,
end-to-end authentication,
hop-by-hop encryption,
(hop-by-hop authentication)

Periodic collection
4 bytes
(8 bytes)

the Periodic collection would be much bigger than the overhead of the Phantom
routing.

4 Security Level Interchange

The described security levels can be changed on demand, to dynamically adjust
the privacy provided. The most prominent way to change the security levels is to
broadcast an authenticated and fresh change-message from the base station. The
authentication and freshness of the change-message is necessary to counter the
active attacker that could maliciously switch the network to the lowest security
level. On the contrary, the confidentiality of the message is not necessary when
the actual security level setting of the network is not secret information. Since
the number of potential security levels is limited, the change-message to be
broadcasted can be considered as a low entropy message. Thus we can employ
a broadcast authentication scheme for low entropy messages such as LEA [11].
Yet LEA is still unnecessarily costly as we need to authenticate very low entropy
messages, e.g., 3 bits.

We propose a lightweight mechanism for security level interchange based on
Lamport’s one-time passwords [9]. In our framework, five security levels can be
set up. Thus a base station generates five one-way hash chains of length n and
assigns each chain to a single security level. Let us denote ci,n the end point of the
i-th hash chain and ci,(n−j) its j-th predecessor. Prior to the network deployment,
all nodes are pre-loaded in an authenticated way with the end points of the hash
chains. These end points act as public keys for the subsequent authentication
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of change-messages. Each node also maintains a change-counter that counts the
number of level interchanges since the network deployment. Now assume that
the base station wants to set, e.g., security level 2 and it is a third interchange
since the network deployment. The base station broadcasts a change-message
of the form (levelID = 2, changeNum = 3, signature = c2,(n−3)). Each node
verifies the freshness and authenticity of the change-message upon its receipt. It
checks if its own change-counter is lesser than the changeNum. It also repeatedly
hashes the signature value c2,(n−3) and checks whether the result equals the
corresponding public key c2,n. The number of such hash applications is given
by the changeNum. If both the checks succeed, the node updates its change-
counter, sets appropriate security level and rebroadcasts the change-message.

In an efficient implementation, the node would also update the proper public
key with the obtained signature value c2,(n−3) to reduce the number of hashing
operations in the future. Also the levelID and changeNum values need not to be
included in the change-message. This information can be derived by trial hashing
of the signature value for a reasonable number of times. The exact number can be
derived from the actual use of the hash-chains and never should be much above
the current change-counter value. Also note that an attacker can mount a DoS
power consumption attack by broadcasting a forged message forcing nodes into
a trial hashing. Yet such an attack is limited by a radio range of the attacker,
it is easily detectable and the impact is low as the power consumed by the
useless computation is negligible when compared to the radio communication.
Such DoS attacks are usually considered as a threat if a useless communication
is performed by an attacked network or if the attack is hard to detect and the
computation is extremely complex.

The scheme provides us with an authenticated broadcast of very low entropy
messages. The number of different messages to be authenticated is equal to the
number of hash chains used, i.e., to the number of end points stored by the
nodes. The total number of messages to be authenticated is dependent on the
length of the hash chains n. However, the chains can be very long, e.g., n = 230,
as the length does not depend on nor influence the resources of the nodes. Using
up such number of hashes would take much longer than the assumed network
lifetime. The scheme also ensures weak message freshness due to the hash chain
construction and the change-counter.

The flooding nature of the scheme ensures a robust propagation of the level
interchange information. Thus after the flood, the network should be in a con-
sistent state. A tricky situation happens if a message is being delivered in the
middle of the security level interchange process. A node that receives the message
should decide depending on a policy to either forward the message using the old
security level, or drop the message. These options are used only if the security
level was changed recently, otherwise the message sent in invalid security level
is dropped. Alternatively, all the nodes that have initiated a message immedi-
ately before the change may resend their messages after the change. Besides the
described on demand interchange, the security levels may change also at a pre-
set time. This is extremely useful in situations in which the time intervals that
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require different security levels are a priori known. Yet this approach requires a
certain level of time synchronization across the network.

5 Dynamically Changing Pseudonyms

The identifiers of the ultimate source node have to be protected to ensure the
source location privacy. We favor to use dynamically changing pseudonyms over
end-to-end encryption. The encryption would require the base station to try
large number of decryption keys. Furthermore, the message would have to carry
an unnecessary redundancy to confirm a successful decryption with a proper key.

Whereas the use of other security mechanisms in our framework is straight-
forward or described in the referenced papers, the employment of dynamically
changing pseudonyms is more complex and differs from the existing solutions.
Therefore, we describe the details in this section. The pseudonyms are based
on a key KAB and a counter value shared between a node A and a base sta-
tion B. First, a short term key KtAB valid for a time interval t is derived
from the key KAB. Then, we use the short term key to generate a pseudonym
Ai = F (KtAB, A, i), where A is a node ID, i is an actual counter value and
F denotes a one-way function. The pseudonym Ai is valid for a message with
a counter value i. The base station B possesses similar information to that of
the node A. Thus, it can pre-compute expected values of pseudonyms and store
them in a table indexed by the pseudonyms. This enables the base station to
immediately identify the source node ID upon receipt of the packet. For every
node ID, the base station stores pseudonyms for counter values i, ..., i+ c, where
i is an expected counter value and c denotes a constant. This enables a fast
synchronization if a packet with an expected pseudonym is lost and an incoming
packet has higher counter value than expected, yet lesser than constant c. The
higher the constant, the better the ability to synchronize counter values. Note
that the size of the table does not pose a problem since the table is only main-
tained and processed by a base station. Thus the constant c can be high enough,
e.g., c = 64, to enable fast synchronization even if the packet loss ratio is high.
For an example of such table see Table 2.

The length of pseudonyms is an important parameter. It depends on the
number of nodes and the amount of traffic in the network. Should the length be
too short, pseudonyms generated by two distinct nodes could often collide by
accident. In such a case, the base station would not be able to uniquely identify
the source node. We assume here that the message contains no redundancy.
Thus, the decryption with a wrong key can result in a meaningful plaintext.
We employ pseudonyms in two different situations. In the first situation, the
pseudonym is used in combination with a MAC. In such a case, the length of the
pseudonym can be relatively short, because the potential collision could be easily
resolved by trial MAC verification. In the second situation, the message contains
no MAC. Thus the pseudonym length has to be longer. Yet we propose to use a
short pseudonym as in the first case and supplement it with a shortened MAC.
This enables the base station to resolve the potential pseudonym collisions and
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Table 2. An example of table stored at a base station. Index is on pseudonym column
to enable fast search upon a packet is received. The expected pseudonyms for nodes A
and C are in bold.

Pseudonym Counter Node ID Short term key Long term key

A3 3 A KtAB KAB

A4 4 A KtAB KAB

...
...

...
...

...

A3+c 3 + c A KtAB KAB

C7 7 C KtCB KCB

C8 8 D KtCB KCB

...
...

...
...

...

slightly improves the security by adding the short MAC. Note that such MAC
cannot be taken as a full and secure MAC since it can be, e.g., just 2B long. Yet
it provides us with an additional integrity protection, while it does not increase
communication cost and requires only a single MAC computation.

The use of pseudonyms and counter values enables a potential DoS attack by
an attacker who blocks c successive messages from the same sender. In such a
case, the sender would not be recognized by a base station again. However, there
is a simple workaround. If a base station cannot recognize a sender of a message
by the included pseudonym, it can perform a trial MAC verification with all keys
available. This does not require a counter value nor a sender identity. Once a
proper key and a sender identity are found, a counter value can be synchronized
by a trial decryption. This workaround applies directly to security levels 2 & 4
where end-to-end authentication is involved. In security level 1, it can be used if
the shortened MAC is used as proposed above. Security levels 0 & 3 do not use
pseudonyms, thus synchronization is not needed.

6 Related Work

There are plenty of link layer security frameworks for WSNs [4, 6, 7, 10, 13, 16],
yet only some of them enable adjusting the level of security. TinySec [6] is a
link layer security architecture that offers three security modes – unprotected
mode, TineSec-AE and TinySec-Auth. The unprotected mode offers no security
service. TinySec-AE provides packet authentication and confidentiality. TinySec-
Auth ensures packet authentication only. The security modes are applied on a
per packet basis. The security mode used for a given packet is indicated by two
bits in the packet header. An appropriate security mode for a packet is selected
by a source node.

L3Sec [7] is a link layer security architecture similar to TinySec. Unlike Tiny-
Sec that offers authentication and confidentiality, L3Sec supports three security
services – authentication, confidentiality and replay protection. These services
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can be enabled or disabled separately which results in eight different security
modes in total.

SecureSense [16] is another configurable link layer security framework and
offers even more flexibility than L3Sec. SecureSense architecture enables compo-
sition of four basic security services – confidentiality, integrity, semantic security
and replay protection. It also allows to select a strength of an encryption algo-
rithm used. The enabled security services and the strength of the algorithm are
indicated by a dedicated byte in every packet header.

TinySec, L3Sec and SecureSense support a runtime composition of basic secu-
rity services on a link layer. Different packets may implement different security
services. Our architecture in turn also covers a network layer to provide source
location privacy and end-to-end security services. Therefore, the security level
is always applied throughout the whole network, not on a per packet basis. Fur-
thermore, a security level is selected by a base station or a network operator
instead of a source node.

FlexiSec [4] is a link layer security framework that offers the highest config-
urability. It enables a network owner to tailor the link layer security settings
specifically to its network application requirements and a hardware platform
used. This includes a selection of MAC lengths, encryption algorithms, modes of
operation or methods for replay protection. Yet, the required security level has
to be set prior to the network deployment and remains fixed during the network
operation time.

An architecture that is close to our approach was proposed by de Oliveira
et al. [1]. The authors extend the Manna network management framework for
sensor networks [15] with a security management functionality. In their work, a
manager running on a base station can dynamically enable or disable security
levels that consist of selected security services. The considered security services
include an end-to-end and hop-by-hop cryptography, a secure routing, key man-
agement, an IDS and revocation scheme and a secure data fusion. The approach
is policy based, thus rules in a form condition-action are specified and followed
by the manager. The condition contains information on intrusion provided by
an IDS, the action represents an activation of a particular security level. Our
work differs from this contribution in several ways. We propose an architecture
and define particular security levels for a given application scenario, whereas
de Oliveira’s work presents only a general management architecture without any
particular application or security levels in mind. We further propose a lightweight
scheme that enables a secure and efficient dynamic security level interchange.
The architecture of de Oliveira et al. does not discuss security of management
messages and fully relies on the MannaNMP protocol that does not implement
any security measure. This renders the whole architecture useless as an active
attacker can easily activate the lowest security level available. Our architecture
also includes location privacy protection, not only security related mechanisms,
and also takes the presence of an IDS into consideration.

Rios and Lopez [14] have proposed the Context-Aware Location Privacy
(CALP) approach. Their approach takes advantage of the ability of nodes to
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detect the presence of a mobile attacker. Thus using CALP, a network may be-
come aware of the attacker position and may use this knowledge to improve
security/cost trade-off. Rios and Lopez [14] have applied CALP in routing to
improve source location privacy in WSNs. If no attacker is present, packets may
be efficiently routed via the shortest path. Yet if an attacker is detected, packets
are de-routed around the detected attacker position.

7 Conclusions and Future Work

We proposed an adaptive security architecture for location privacy sensitive
wireless sensor network applications. This architecture enables us to dynami-
cally adjust the security level in the network according to the actual security
and privacy requirements. Thus it may offer much better efficiency than a tradi-
tional fixed security setting. We showed the concrete instance of the architecture
through the specification of the five security levels. These levels target a partic-
ular application scenario and multiple different attacker models. As a part of
the architecture, we proposed a lightweight mechanism for broadcast authen-
tication of very low entropy messages. This mechanism is used for a dynamic
security level interchange. Also, we proposed a simple mechanism for node iden-
tifier protection that relies on dynamically changing pseudonyms. The proposed
architecture is currently being implemented. We plan to experimentally evaluate
the architecture and the security levels in both a real network and a simulator.
We would also like to combine our scheme with a particular IDS to enhance the
overall security of the network.
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Abstract. Distance-bounding is a practical solution aiming to prevent relay at-
tacks. The main challenge when designing such protocols is maintaining their
inexpensive cryptographic nature, whilst being able to protect against as many,
if not all, of the classical threats posed in their context. Moreover, in distance-
bounding, some subtle security shortcomings related to the PRF (pseudorandom
function) assumption and ingenious attack techniques based on observing veri-
fiers’ outputs have recently been put forward. Also, the recent terrorist-fraud by
Hancke somehow recalls once more the need to account for noisy communica-
tions in the security analysis of distance-bounding. In this paper, we attempt to in-
corporate the lessons taught by these new developments in our distance-bounding
protocol design. The result is a new class of protocols, with increasing levels of
security, accommodating the latest advances1; at the same time, we preserve the
lightweight nature of the design throughout the whole class.

1 Introduction

In [9], Brands and Chaum introduced the notion of distance-bounding (DB) protocols.
The aim is to have a prover demonstrate his proximity to a verifier, and authenticate
himself to this verifier. The proof of proximity can be an efficient deterrent against relay
attacks [15]. DB protocols [23,25,34,37] generally consist of an initialisation phase
(where the parties establish some short-term secret) and a distance-bounding phase.
This latter phase is time-critical. It imposes very fast computation, typically of less
than a single clock cycle per round, and the verifier measures the time-of-flight of the
messages exchanged. This is how the verifier ascertains a distance-bound between him
and the prover.

In the literature covering such protocols, the threat-model comprises three well-
established types of attacks. The first is distance-fraud (DF), in which a prover tries
to convince the verifier that he is closer than he really is. In the second type, mafia-
fraud (MF), an adversary communicates with both a prover and a verifier which are
far apart, and the adversary tries to convince the verifier that the prover would be close

1 An earlier version of this line of work was presented in [7]. Also, some preliminaries and
adjacent topics made the subject of an invited talk [8].

G. Avoine and O. Kara (Eds.): LightSec 2013, LNCS 8162, pp. 97–113, 2013.
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enough to be granted privileges. Finally, in a terrorist-fraud (TF), an adversary is get-
ting the necessary and sufficient help from a coerced, far-away prover in order to pass
the protocol only during this corrupted run, but not in a later, coercion-free session. Gen-
eralisations of these frauds have also been described. In [13], Cremers et al. describe
distance-hijacking as a mixture between distance-fraud and terrorist-fraud: one dishon-
est, far-away prover exploits several honest provers to gain privileges. Impersonation-
fraud is presented in [16]; as its name suggests, one dishonest prover tries to imperson-
ate an honest one.

The first DB protocols were not secure against terrorist-fraud [9,21,29,35]. Then,
to name but a few, Bussard and Bagga [10], Hancke and Kuhn [21], Munilla and
Peinado [29], Kim and Avoine [24], Reid et al. [34] proposed schemes addressing
terrorist-fraud protection or mafia-fraud protection, or a better suitability to practice,
etc. For instance, in [3], the TDB protocol by Avoine et al. addresses specifically the
protection against terrorist-fraud, using threshold secret sharing schemes. Nonetheless,
many attacks [1,27,28,31,30] onto DB protocols [25,35,37,33] continue to be published.
To this end, Kim et al. stated [24] that there is no DB protocol, which can resist well
against all three classical frauds and has only one-bit challenges/responses per iteration
in the distance-bounding phase.

Recently, the first attempts to formalise DB have emerged. In [2], Avoine et al. give
a semi-formal model for distance-bounding. Dürholz et al. [17] follow, with a more pre-
cise formalisation in which the expression TF appears possibly too strong (i.e., many
protocols that are intuitively TF-resistant are shown insecure against TF in this model).
At the same time, [6,4] expose some essential shortcomings of the DB design and of
the security claims related to it (i.e., [6] exposes building blocks for DB, like pseudo-
random functions (PRFs), that lead to DF and generalised MF attacks; [4] shows that
public-key mechanisms may fail to provide TF).

In this paper, we attempt to take notice of all these recent developments: e.g., we
strengthen the way PRFs are used in DB, we reinforce and take forward the manner in
which secret sharing schemes can be employed to build TF-resistant DB protocols and,
finally, we attempt to combine it all harmoniously in such a way that we obtain robust,
yet lightweight DB.

2 Summary of DB Security: Status and Results

At this early stage, in Table 1 below, we present the security status of several, existing
DB protocols, and announce two of our DB protocols to be presented herein. Namely,
please notice our SKIpro and SKIlite protocols and their security guarantees by compar-
ison to the other DB protocols in this table.

In this table, we assumed channels that are not noisy, though further in this paper we
extend the analysis on our protocols to the case of noisy channels as well. Let us briefly
explain some details from the table. Let n be the number of DB rounds, and ν < n. Let
t be the number of possible values for a challenge, i.e., classically t = 2. In the case of
terrorist-fraud, we supposed along standard lines two facts: 1. for n−ν DB rounds, the
adversary has got all responses, irrespective of the value of challenges; 2. for the other
ν DB rounds, for each such round, the adversary knows the answers for t− 1 (out of t)
values possible for a challenge.
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Table 1. Probability of success of the best (known) attacks onto DB

Protocol Success Probability
Key-Length Distance-Fraud Mafia-fraud Terrorist-Fraud MIM

Brands & Chaum [9] n (1/2)n cnf [19] (1/2)n cnf [25] 1 cnf [25] (1/2)n

Bussard & Bagga [11] n 1 cnf [4] (1/2)n 1 cnf [4] (1/2)n

Čapkun et al. (SECTOR) [12] n (1/2)n cnf [19] (1/2)n cnf [25] 1 cnf [25] (1/2)n

Hancke & Kuhn [21] n (3/4)n cnf [19] (3/4)n cnf [25] 1 cnf [25] (3/4)n

Reid et al. [34] n (3/4)n cnf [19] (3/4)n cnf [26] (3/4)ν cnf [25] (3/4)n or 1 cnf [4]
Singelée & Preneel [35] n (1/2)n cnf [19] (1/2)n cnf [25] 1 cnf [25] (1/2)n

Tu & Piramuthu [37] n (3/4)n cnf [30] (9/16)n cnf [30] (3/4)ν cnf [30] 1 cnf [25]
Munilla & Peinado [29] n (3/4)n cnf [19] (3/5)n cnf [19] 1 cnf [19] (3/5)n

Swiss-Knife [25] n (3/4)n cnf [25] (1/2)n cnf [25] (3/4)ν cnf [25] (1/2)n

Kim & Avoine [24] n (7/8)n cnf [19] (1/2)n cnf [19] 1 cnf [19] (1/2)n

Nikov & Vauclair [32] * k̄ 1/k cnf [25] (1/2)n cnf [25] 1 cnf [25] (1/2)n

Avoine et al. [3] n (3/4)n (2/3)n (2/3)ν (2/3)n

SKIpro � (3/4)n (2/3)n (2/3)ν (2/3)n

SKIlite � (3/4)n (3/4)n 1 (3/4)n

* In this case, k̄ and k are additional parameters; this protocol requires heavy computations. The parameter ν is
explained in the paragraph above.

From the table, we can already notice some similarities between the protocol in [21],
by Hancke and Kuhn, and the simplest version of the SKI protocols to be introduced
herein, namely SKIlite . Also, we can see a certain closeness between the Avoine et al.
protocol [3] and a stronger version of our protocols, i.e., SKIpro . In that sense, what
this line of work brings as a novelty is a more precise design of the protocols (i.e., there
are design differences between the SKI protocols and its similar counterparts in the
table). Our design is driven by very recent exhibited DB attack-techniques and classical
frauds [20,4,6]. We also propose a more in-depth security analysis due to the same
recent threats and a more attentive look into the DB security in noisy communications2.

As the reader will see in our design choices presented in Section 5.3 and in the at-
tacks we present in Section 5, we get our attack bounds (as per Table 1) by enforcing
certain requirements on our DB building blocks. We hereby mention some of these en-
forcements: 1. the use of the PRF instance in the initialisation phase is masked, i.e., we
use fx(·)⊕M for a randomly looking M, instead of just employing fx(·); 2. the DB
response-function is such that it uses the secret x in a way that it does not conflict with
x keying fx(·) in the initialisation phase; 3. a linear transformation is chosen at the ini-
tialisation phase to be applied on the secret x, before we use x in the response-function.
These are the sort of design-amendments imposed by the recent, aforementioned at-
tacks [20,4,6]. In fact, the very new attack-technique in [20] is not taken into account in
Table 1. With our SKIpro protocol, we resist the TF by Hancke.

Structure. The rest of this paper is structured as follows. In Section 3, we reiterate what
are the settings in which DB communications are taking place. In Section 4, we express
the DB security requirements in these communication settings; to do so, we follow the
well-established understandings of the classical frauds in the existing literature, and we
also offer some generalisations. In Section 5, we introduce our protocol-schema, called
SKI, explain most of its design, and present two instantiations of it, i.e., SKIpro and

2 E.g., a recent attack-technique [20] by Hancke, described on page 106, reiterates the impor-
tance of considering noise in DB, bit-based computations.
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SKIlite . We then argue that these protocols protect against the frauds as they were
described in Section 4. In Section 6, we conclude. In an appendix, we present other in-
stantiations of our protocol schema (i.e., SKIshamir and SKI4 ), varying in their security
strength, but all remaining lightweight.

3 DB Communication

In what follows, we present the main, very straightforward guidelines of the settings
in which DB protocols are considered to run. (The underlying communication and the
threat model could actually be properly formalised, e.g., as an interactive system [18].
This is not our purpose herein, and it will be left for an extended version of this paper.)

DB protocols are run in natural communication settings :

– there is a generally accepted notion of time, e.g., there is a time-unit;
– a notion of measurable/quantifiable location and distance;
– the timed communication obeys the laws of physics.

All participants (provers, verifiers, adversaries) comply to the following:

– have the correct means/algorithms to run their part (e.g., an RFID tag, a reader,
both, etc.);

– are fixed at some location;
– send messages with a destination through a broadcast, non-authenticated, asyn-

chronous channel.

Furthermore, honest participants read messages that are intended for them, when these
messages reach them. An attacker can change the destination of a message, aiming it
to himself and can create his own messages and inject them into the communication.
In the distance-bounding phase, the noise of the channel cannot be corrected by honest
parties (i.e., the adversary may have extra technology to do so, but the honest parties
cannot do so within the limits of time imposed).

NOTE: It is clear in this model that an adversary can do very limited man-in-the-
middle attacks. If a verifier sends a message and expects a fast response back, this deters
a man-in-the-middle (MiM) adversary to send the message further to a prover and await
for the prover’s response to convey to the verifier, i.e., as such responses would arrive
to the verifier too late. In the same way, an adversary can get very limited, online help
even from a coerced, but far-away prover.

4 DB: Protocols and Requirements

In line with the previous section, we present these requirements using natural language.
(As before, it is worth mentioning that in a formal model for DB, these could be ex-
pressed, e.g., in the style of completeness/soundness requirements on interactive sys-
tems [18], with thresholds on the success/failure probabilities of different events or
sequences of events. This is left for an extended version of this paper tackling formali-
sation and provable security aspects.)
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4.1 Distance-Bounding Protocols

In general, let the provers be denoted by P and the verifiers by V . Let A denote the
adversary and P∗ designate dishonest provers. We assume that verifiers end the DB
protocols by outputting one bit b denoting acceptance, i.e. b = 1, or rejection, i.e., b = 0.
(I.e., this is in line with practice, where a LED turning green or red on an access point
denotes granted or denied access, respectively). In the generalised MF presented in [4],
it is this sort of return channel that facilitates the attacks (i.e., logically, intruders learn
more information by looking also at whether the run was successful or not.). We proceed
with the definition of a DB protocol.

Definition 1. Distance-Bounding Protocols. A distance-bounding (DB) protocol is
defined by an acceptable distance-bound, a prover P and a verifier V , each running
probabilistic, efficient3 algorithms, both sharing a long-term key x such that the follow-
ing happens:

– the verifier’s algorithm efficiently terminates on any interaction4;
– if the prover P is within the acceptable distance-bound from the verifier V , then the

verifier V terminates successfully (almost always5).

DB can take place in concurrent settings as well, i.e., there are several provers and
several verifiers, sharing secrets in a pairwise manner, all running the same DB protocol
in parallel. We can also think of the scenario where one prover and one verifier run the
same protocol several times, in a sequential fashion. In the description of the security re-
quirements to follow, we will also consider such multi-party extensions of the definition
above.

4.2 Distance-Bounding Requirements

Let α,β,γ,γ′ ∈ [0,1] be some variables (depending on some parameters, e.g., on the
number of rounds in the distance-bounding phase), or let α,β,γ,γ′ ∈ [0,1] be some fixed
constants (e.g., pre-established security-tolerance limits). The security requirements of
DB protocols are described below, and they depend on the values of these α,β,γ,γ′.

Definition 2. α-resistance to distance-fraud: We say that a DB protocol is α-resistant
to distance-fraud if any far-away, dishonest prover P∗ which is running the protocol
with a verifier V , on their shared secret, cannot make the verifier accept (i.e., output 1)
with a probability greater than α (taken over the random choices made by V).

3 In theory, “efficient” denotes polynomial in some security parameters. In practice, one should
be able to see clearly that these algorithms are computationally inexpensive.

4 Even if the prover is dishonest, after a finite number of steps, a reader either accepts or rejects.
5 In theory, “almost always” would entail some overwhelming probability in a security param-

eter. In practice, it means that there are some exceptional circumstances where the verifier
would reject correct transcripts. I.e., in extremely noisy channels (which occur very rarely) the
verifier would be bound to reject messages that originated correctly from the prover.
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As we said before, depending on the security desired, one may take α to be negligible
in a security parameter (e.g., cΘ(n), where c is a constant in (0,1) and n is the number
of rounds and/or the key-length) or, simply a fixed value in (0,1).

If we consider a multi-party setting (e.g., taking several runs, with far-away and close-
by provers), then the DF-resistance as defined above captures the notion of distance
hijacking in [13], i.e., an experiment in which a dishonest far-away prover P∗ may use
several other provers to get authenticated as if he was close to the verifier. The DF-
resistance we assess in Section 5.5 can be extended to account for such a multi-party
setting.

We move now to the resistance to mafia-fraud.

Definition 3. β-resistance to MF: We say that a DB protocol is β-resistant to mafia-
fraud if an adversary A interfering up to his powers within the interaction between
a far-away, honest prover P and a verifier V on their shared secret cannot make the
verifier accept (i.e., output 1) with a probability greater than β (taken over the random
choices made by P,V and A ).

Of course, this definition of MF-resistance can be cast in a multi-party setting as well
and it can also be generalised to a stronger MiM attack. For instance, in a multi-party
setting, we consider that during a learning phase, the attacker A interacts, in parallel,
with several provers and several verifiers and then —in an attack phase— A tries to win
in a run in front of a verifier, which is far-away from several provers. (In a practical
setting, it is as if an attacker would have cloned several tags and would make them
interact with several readers with which they are registered. From such a multi-party
communication, he can get potentially more benefits, faster.) In our security assessment
in Section 5.5, the arguments can be easily extended to such a concurrent setting.

Definition 4. (γ,γ′)-resistance to TF: We say that a DB protocol is (γ,γ′)-resistant to
terrorist-fraud if for any far-away, coerced prover P∗, it is the case that, below, (1)
implies (2)
— (1). an adversary A interfering up to his powers with an interaction between P∗ and
a verifier V on their shared secret, where this interaction is successful with probability
at least γ (over the random choices of V and A ),
— (2). A can later succeed on his own to make the verifier accept in a new protocol
run with a probability greater than γ′ (taken over the new random choices made by
V and A ).

This definition of TF-resistance can also be presented in a multi-party setting and
generalised to a stronger threat. For instance, one first thing to imagine is a coercion-
phase followed by a multi-party MF, i.e., a MiM phase as we mentioned after Defini-
tion 3. In fact, our assessment of TF-resistance made in Section 5.5 can be extended
easily to such an enhanced threat.

5 The SKI Distance-Bounding Protocols

In the first part of this section, we present our protocols. In the second, we explain
our design. In the third, we assess their resistance to frauds, upon the definitions and
discussions in Section 3 and Section 4.
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5.1 Protocols’ Descriptions

We now propose a schema of DB protocols denoted SKI and presented in Figure 1, i.e.,
we use “schema” to denote that, at this stage, we leave under-determined the choice
of the exact primitives to be used inside. Later in the section, by suggesting different
instantiations of these primitives, we obtain a class of DB protocols, with varying levels
of resistance to DB attacks. Nonetheless, from the weakest to the strongest of them,
these protocols are lightweight.

Verifier V Prover P
x x ∈U GF(q)� x

Initialisation phase

NP←−−−−−−−−−−−−−−−−− Generate a nonce NP ∈ {0,1}k

Choose a transformation
L ∈ L with x′ := L(x) and x′ ∈ GF(q)n,

generate a ∈ GF(q)t ′·n

and a nonce NV ∈ {0,1}k .
Do M := a⊕ fx(NP,NV ,L).

M,L,NV−−−−−−−−−−−−−−−−−→
Do x′ := L(x), x′ ∈ GF(q)n.
Do a := M⊕ fx(NP,NV ,L).

Distance-bounding phase
for i = 1 to n

Generate ci ∈ {1, . . . , t}.
Start Clock

ci−−−−−−−−−−−−−−−−−→ if ci /∈ {1, . . . , t}, halt

Stop Clock
ri←−−−−−−−−−−−−−−−−− Do ri := F(ci,ai,x′i).

Verify at least τ responses ri are correct and that their round i took at most 2B.
OutV−−−−−−−−−−−−−−−−−→

Fig. 1. The SKI schema of Distance-Bounding Protocols

Let s be a security parameter. The secret key x is a vector of � elements over GF(q),
with �∈Ω(s), with q a constant giving the power of prime so that we work over GF(q),
the finite field with q elements. In some of the concrete examples to follow, we em-
ploy q = 2, i.e., we work over bits6. The SKI protocols are built using a PRF, denoted
( fx)x∈GF(q)� .

The prover selects a nonce NP of k bits and sends it over to the verifier, for k ∈Ω(s).
The verifier V first selects a nonce NV also of k bits. Then, he picks a random linear

transformation L from a set L , set that is specified by the SKI protocol instance (as we
will concretely see later). The parties compute x′ = L(x). We consider that the vector x′

obtained out of x through L has length n, with n ∈Ω(s).

6 Irrespective of working over bits or not, we consider that the practicality of today’s cheap
RFID/NFC cards goes anyway beyond one-bit responses [36]. Moreover, pre-computation ta-
bles can be used to render online computation very efficient.
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The distance-bounding phase will have n rounds with challenges taking t possible
values, for a constant t. Another constant we use is t ′. To give an anticipative intuition,
t ′ is such that t ′ ≤ t. In our main proposal, we use t = 3 and t ′ = 2, i.e., we keep the
lightweight character.

The verifier finally picks a masking-vector M with M ∈ GF(q)t′ ·n. Further, the el-
ement a = (a1, . . . ,an) is established by V and it is sent encrypted into M as follows:
M = a⊕ fx(NP,NV ,L), with M ∈GF(q)t′ ·n. (As we can see, SKI employs fx(NP,NV ,L)
as illustrated, with fx(NP,NV ,L) ∈ GF(q)t′·n.)

So, c=(c1, . . . ,cn) is the challenge-vector with ci ∈ {1, . . . , t}, ri :=F(ci,ai,x′i) is the
i-th response to the i-th challenge ci, with i ∈ {1, . . . ,n}, ri ∈ GF(q) and F as specified
below. In our concrete proposals, we use t = 3, or t = 2 for the lighter version.

By B, we denote the maximal accepted time-of-flight of one challenge/response be-
tween P and V . Assume that messages travel uniformly with a speed of one space-
unit/time-unit. Then, as usual, B is also the distance-bound acceptable between P and V .

The protocol ends with a message OutV denoting the output of the verifier (i.e., the
success/failure of the protocol). We tolerate communication noise. Thus, a successful
run is that where at least τ out of n DB responses are correct and have been delivered
within the time-bound B. Later in the paper, it will be implied what bound on τ we need
(in function of n and the probability of the communication noise) such that legitimate
runs are not overruled, yet malicious runs are not validated.

As we anticipated already, all the variables and functions in SKI will be instantiated
with small values and lightweight mathematical objects.

NOTE: To address noisy time-critical communications, we introduce the probabil-
ity pnoise of one response being erroneous (à la [21]). The probability that at least τ
responses out of n are of the correct kind is clearly given by:

B(n,τ,1− pnoise) =
n

∑
i=τ

(n
i

)
(1− pnoise)

i pn−i
noise

It is natural to choose τ (and other parameters) such that we operate with correct DB
protocols, cnf. with Definition 1. I.e., the protocol is complete: honest communications
succeed with high probability. Let us assess this. So, let ε > 0. If we force τ such that
τ≤ (1− pnoise−ε)n, then it implies B(n,τ,1− pnoise)≥ 1−e−2ε2n (due to the Hoeffding
bound [22]), i.e., it implies the verifier accepting honest communications with a very
good probability as n grows. Also, in practice, we may use a constant pnoise (i.e., hard-
coded in the protocol implementation). This also entails employing τ as some parameter
which is linear in terms of n (in order to have negligible probabilities of failure in honest
executions).

A detailed analysis on optimising the selection of τ is provided in [14].

5.2 Towards Specific Building Blocks

We now continue with the instantiations of some objects in our SKI schema. Our
choices of them will be explained shortly.
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The response-function F. In the main body of the paper, we consider one generic such
response-function F in which the i-th response (1≤ i≤ n) is produced as follows:

Fxor(ci,ai,x
′
i) = x′i1ci=t +(ai)11ci∈{t,1}+ . . .+(ai)t′1ci∈{t,t′}

where ci ∈ {1, . . . , t}, x′i ∈GF(q), q≥ 2, (ai) j ∈GF(q), j ∈ {1, . . . , t ′}, and 1R is 1 if R
is true and 0 otherwise.

In the appendix, we will present other possibilities for the response-function F .

The set of transformations L . We can consider several sets L of transformations to be
used in the PRF-instance of SKI’s initialisation phase. (Such a set is formally referred
to as a leakage scheme and it is thuswise defined in [5].)

We consider Lbit consisting of all Lµ transforms, where Lµ is defined using a vector
µ ∈ GF(q)� by

Lµ(x) = (µ · x, . . . ,µ · x)

I.e., all coordinates of the vector Lµ(x) are set to the scalar product between µ and x.
We could consider other suitable7 instances of L , but this may entail a number of DB

rounds greater than n (because of the noise involved). Or, if no noise is to be considered,
we could employ L = Lclassic, i.e., the set containing a single function L which is the
identity function. For the purpose of this paper (i.e., lightweight DB protocols), we
restrict ourselves to using Lbit as per the above. Also, if we do not view TF-resistance,
then we can leave the L set empty.

5.3 SKI: Design Choices

Using a mask M. We chose to use a mask M, indirectly decided by V , due to the fact
that just using fx(. . . ,NP, . . .) to calculate a can lead to DF attacks [6]. To mount such
an attack, a corrupt P∗ basically chooses a trapdoor NP to bias the output distribution of
fx(. . . ,NP, . . .). By using the mask M, we prevent such a P∗ from reaching his goal.

The PRF f & the Response-Function F. Already note the Fxor is in fact carrying on
from the TDB protocol [3], i.e., using secret-sharing ideas to protect against TF. Also,
it preserves the lightweight trend.

Moreover, in SKI, the chosen f and F have to meet the following requirement. They
are such that it is indistinguishable when Lµ is applied to the secret key x and when
it is applied to another randomly selected x̄ ∈ GF(q)�, even if we are given access to
the other messages in the protocol, i.e., NP,NV and some results related to fx(Np,NV ,L)
and L(x̄) as per the protocol, or even if we choose them adaptively as an adversary may
do. This security-enforcement also has an impact on an additional property of the PRF
f (i.e., on how its keys are used outside its calls). This design choice is motivated by
the attacks in [6], where a trapdoor choice of NP or NV together with x being used in Lµ

could lead generalised MF attacks.
The F-functions that we take (see the previous section) enjoy other properties that

help attain security in front of DB frauds. E.g., similarly to [3], the F-functions are such

7 “Suitable” denotes here compliant with deterring the TF in [20].
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that knowing the complete table of the response-function F for a given ci leaks x′i, yet
knowing only up to t ′ entries challenge-response in this table discloses no information
about x′i. Please refer to [5] for details.

The Set L of Transforms. The idea of the set L is that, when leaking some noisy ver-
sions of L(x) for some chosen L ∈ L , the adversary can reconstruct x without noise.

We introduced this transformation in order to protect against a TF observed by
Hancke [20]. In this attack, a malicious prover could select a noise-vector e of Hamming
weight n− τ and provide a slightly modified, but full table of all ci �→ F(ci,ai,xi) func-
tions. The modification in the table is as follows: if ei = 1, then the output of F(v,ai,xi)
is flipped, where v ∈ {1, . . . , t} is one, randomly chosen value of the possible values
for the i-th challenge ci. Assuming that the adversary has a powerful device which can
answer to V without noise, then this adversary passes with probability γ = 1. Then, an
adversary –out of this full table– can reconstruct x+ e. Then, x cannot be recovered ef-
ficiently by the adversary (whilst P∗ substantially helped the adversary towards passing
the protocol).

Recall that –in our protocols– the “master-secret” that f is applied upon for one value
of ci is not necessarily the shared key x, but instead it is x′ with x′ = L(x), where L is the
transformation chosen byV in the initialisation phase of the protocol and discussed above.
As we said, this offers better protection against new types of threats: by introducing L(x)
instead of x inside F , then in Hancke’s attack, the adversary can get to learn L(x)+ e.

Imagine now a dishonest prover as above choosing a noise-vector e of Hamming
weight (at most) t, with e possibly depending on x and a transformation L chosen in the
current run initialisation phase. If Lbit is used as in our protocols, then in n rounds of
the attack as per the above, an attacker A deduces µ · x, for all obtained µ in the round-
transformations L = Lµ(L∈Lbit ). The attacker does so by computing the majority of the
vector x′ that he learns8 out of the responses. These values µ ·x can be correct with a high
probability, if t = HW (e) is not too close to n, i.e., t is at least less than n

2 . (HW denotes
the Hamming weight.) Then, A can solve a linear system to get x. Hence, leaking x
makes this attack not a valid terrorist-fraud (since the dishonest prover helped A pass
the protocol, but he also leaked x to this attacker). I.e., our protocol instance with Lbit

resists the attack by Hancke [20].

5.4 The Main Instances of SKI

We now propose the most interesting instances of SKI: the first one protecting against
all threats presented in Section 3 (and rendering the TF scenario by Hancke [20] hard to
mount for some parameters, if not infeasible), and a second one, much more lightweight,
not offering TF-resistance, but only DF- and MF-resistance. Of course, the spectrum of
the class SKI is much larger, and we will touch upon that in our appendix.

– SKIpro : defined by the response-function Fxor above, with q = 2, t = 3, t ′ = 2,
i.e., F(ci,ai,x′i) = (ai)ci for ci ∈ {1,2} and F(3,ai,x′i) = x′i +(ai)1 + (ai)2, with
(ai)1,(ai)2,xi ∈ GF(2), and L = Lbit;

8 We presume that if you know the full table of the response for a given ci, then this leaks x′.
Our F functions are like that.
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– SKIlite : defined by a variant of response-function Fxor above (not depending on x′i),
with q = 2, t = t ′ = 2, i.e., F(ci,ai,x′i) = (ai)ci for ci ∈ {1,2}, with (ai)1,(ai)2 ∈
GF(2), and L = /0. (In SKIlite , L = /0 since in the response-function F there is no
x′ used, as TF-resistance is not envisaged by this instance.)

Note, once more, that both protocols are very inexpensive computationally.

5.5 Security Analysis

In this section, we simply describe the best-known attack strategies for mounting DB
frauds onto SKI. We report the security analysis for SKIpro, made in a symbolic form
(i.e, on variables t, q, on the function F , etc). The analysis for SKIlite is omitted, as it
follows exactly the same principles (where eventually just the numerical values for t, q,
or the expression of F would change). In an extended version of this work [5], we will
give the formal proofs showing that these attacks are indeed the best attainable attacks
against SKI, i.e., their probabilities of success can be shown to be the actual provable
security bounds.

DF-resistance for SKIpro . Intuitively, to defeat DF-resistance, the dishonest, far-away
prover P∗ has to anticipate the challenge before it reaches him, to compute the response-
function F with the challenge as one of the arguments, and to do so as early as possible.
Then, he needs to send the resulting response pre-emptively. So, in real terms, this
P∗ is computing the preimage of a map ci �→ F(ci,ai,x′i) and he gets more successful
at mounting this fraud as this computable preimage gets larger. (Note that the size of
this computable preimage depends on some random choice, i.e., on the value selected
for ai).

We recall that our response-function for SKIpro , taken on the i-th DB round, is as
follows: F(ci,ai,x′i) = (ai)ci for ci ∈ {1,2} and F(3,ai,x′i) = x′i +(ai)1 +(ai)2. (Let us
assume a fixed transformation L that gives x′: e.g., as for SKIpro , one Lµ chosen in such
a protocol round; this does not affect the rest).

So, the best case for P∗ to invert ci �→ F(ci,ai,x′i), i.e., to get the right answer on
an “anticipated” challenge, is when (ai)1 = (ai)2 = xi. In this case, he would know the
answer, no matter which of the 3 values ci actually takes, i.e., the preimage of the map
ci �→ F(ci,ai,x′i) has size 3. Over the choice of ai, this would happen with probability
1
4 . If you look further at the response-function, you will note that it is impossible to
invert the map onto one specific value of ci, i.e., to make the aforementioned preimage
have size 1. As the preimage can only have size 1, 2 or 3, then the prover narrowing his
correct answers over a space of 2 values for the challenges can happen with probability
1− 1

4 .
So, the expected value of the size of this pre-image over the choices of ai (i.e., the

expected number of values for the challenge ci that the prover could anticipate the
answer for) is (2× 3

4 + 3× 1
4) =

9
4 .

Remember that in SKIpro , in total, we have t = 3 values for any challenge. So, given
x′ fixed, each iteration has a probability to succeed equal of 9

4 ×
1
3 = 3

4 .
We note that there is no other mechanism that this prover P∗ could pull through.

For instance, since it is the verifier who chooses a and M, the distribution of the ai’s is
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uniform, i.e., not influenced by a possible trapdoor choice of NP from P∗. (This excludes
the DF attacks in [6].)

So, we have just given the description of the best (mathematical) strategy of P∗ to
mount a DF, which passes with a probability of ( 3

4 )
n, if no noise is considered. (This is

as reported on our initial table, Table 1, on page 99.).
If, in turn, we do consider noise, then the overall success probability is going to be

B(n,τ, 3
4 ) = ∑n

i=τ
( n

i

)
( 3

4 )
i( 1

4 )
n−i. Then, for τ > ( 3

4 + ε)n, we have B(n,τ, 3
4 ) less than

e−2ε2n, for some ε > 0 (by the Hoeffding bound [22]). ��

MF-resistance for SKIpro . Assume a mafia-fraud attacker A taking part, up to his
capabilities, in an interaction between P and V .

Assuming that the attacker does not learn anything conclusive during the initialisa-
tion phase (about x or how to respond in the DB phase)9, the probability of him succeed-
ing in this fraud rests only on giving (by chance) the correct answers to the challenges
sent by V (before P does so); I.e., the probability of A of succeeding in this MF is
given by

p = ∏
1≤i≤n

Pr
ci∈{1,...,t}

[ri being correct for ci|ci is sent by V ].

Getting ri correct for ci can be attained in two distinct ways: 1. in the event e1 of guess-
ing c′i = ci and sending it beforehand to such a Pj and getting the correct response ri, or
2. in the event e2 of simply guessing the correct answer ri (for a challenge c′i �= ci).

So the probability of success in one round is Pr[e1]+Pr[e2] = 1
t +

t−1
t ×

1
q . In SKIpro ,

t = 3 and q = 2, so we get a concrete, overall p of ( 2
3)

n, if no noise is considered within
the communications. (This is as reported on our initial table, Table 1, on page 99.).

If we consider the noise of the channels, then we get p = B(n,τ,Pr[e1]+Pr[e2]) =
B(n,τ, 2

3 ). Then, for τ > ( 2
3 + ε)n, we have B(n,τ, 2

3 ) less than e−2ε2n, for some ε > 0
(by the Hoeffding bound [22]). ��

TF-resistance for SKIpro . We split the discussion in two analyses: I. for noiseless
communication; II. for noisy communications.

9 In fact, we can argue that this is the case in the SKI protocols. With high probability, there is
no collision between the nonces NP and NV (if the space of the nonces is large enough, e.g.,
2Ω(n)). So, the output of the PRF instance fx is not biased by the choices of these values. So,
A learns nothing from this. Also, in SKIpro , it is not x that is used in F directly, but L(x) is.
Moreover, as we stated in the description of the design, the chosen F for SKIpro is such that it
is indistinguishable when it is applied to the secret key x and when it is applied to another ran-
domly selected x′ ∈ GF(q)�, even if we are given access to the other messages in the protocol,
i.e., NP,NV , or we choose them adaptively as A may do. (We leave the complete formalism
and proof of this for an extended version of this paper [5].) So, due to this indistinguishability,
it is as if the shared secret key x were not used outside the f -keying procedure. Given the
above and the standard PRF assumption, it means that A seeing the output of fx equates to him
seeing the output of a real-random function, i.e., for A , it is as if a were chosen at random.
So, no “good” strategy comes out from the observed protocol transcript. So, there is no better
strategy but what we say in the analysis above.



Secure and Lightweight Distance-Bounding 109

I. Let us assume first that there are noiseless conditions.
As it is traditional in TF analysis, let us assume that the dishonest prover P∗ gives

away information to help A . Namely, suppose that: 1. for n− ν DB rounds, the ad-
versary has got all responses, irrespective of the value of challenges; 2. for the other
ν DB rounds, for each such round, the adversary knows the answers for t − 1 (out of
t) possible values for a challenge. Then, his best chances to succeed is to get from
V the challenges that he knows how to answer to (in the ν “decisive” rounds), i.e.,
chances of ( t−1

t )ν.
(This translates in the case of noiseless conditions to the ( 2

3 )
ν bound, reported on our

initial table, Table 1, on page 99, for SKIpro .)

II. Let us assume now that the communications are noisy.
For concreteness, let us assume that the threshold of noise acceptance is τ out of n.
As per the strong, new attack by Hancke [20], assume that the dishonest prover P∗

chose a noise bit-vector e with HW (e) = n
2 . Further assume that e deterministically

depends on x and L, i.e., e = g(x,L) for some function g (i.e., P∗ does not choose e
adaptively based on the transformation L and on x). Then, assume that this P∗ leaked the
response table with noise e. I.e., for each i with ei = 0, P∗ leaked the full c �→ F(c,ai,x′i)
table; for each i with ei = 1, P∗ leaked the table except that for some random c∗i , for
which the response-value F(c∗i ,ai,x′i) was flipped. Clearly, the leakage property10 of F
makes sure that A learns L and L(x) + g(x,L). Due to the structure of L, the latter is
a vector of Hamming weight n

2 . If g has some good property, this is indistinguishable
from L and L(x) + g(y,L) for x and y independent. But g(y,L) perfectly randomizes
L(x). So, it does not help to give any information about x to A . Without knowing x, A
cannot predict any response in another session11 with new nonces (to compute the a
vector), so A has no advantage to succeed in the protocol. Therefore, for any strategy,
γ′ is negligible.

Concretely, the probability that P∗ manages to help A succeed in the protocol during
the terrorist-fraud is the probability that at least τ rounds give a correct answer. Clearly,
the n

2 rounds for which ei = 0 will be correct for sure. The others are correct with
probability t−1

t . So, we have γ = B( n
2 ,τ−

n
2 ,

t−1
t ).

For τ− n
2 > ( t−1

t + ε)× n
2 and some positive ε, we have γ is lower than e−2ε2 n

2 (due
again to the Hoeffding bound [22]). That is, for the latter, we need τ > 5

6 n+ ε n
2 (since

our t is 3). This simply comes down to taking τ slightly bigger than 5
6 n. ��

As we mentioned above, this analysis extends almost identically to SKIlite , i.e., up
to some changes in values. As we saw, the attack bounds are obtained provided that
the design-blocks inside SKI (i.e., the PRF f , the response-function F , their inter-play

10 This holds as we assume that the response-function F is such that knowing the complete table
of the response-function F for a given ci leaks x′i.

11 As we saw in the proof for the MIM attack, there is no other advantage that this attacker can
get on his own, in such runs.
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within the rest of the design, the transformations L , etc.) meet some requirements (e.g.,
f and F are such that within the protocol-exchanges it does not show the fact that
F uses x inside, L contains linear transformations, M masks fx(. . .), etc.). All these
can be formalised further and then all these attack strategies can be transformed into
proofs of provable security bounds for the whole SKI class, i.e., all conditioned by and
parametrised in F , L , f , t, t ′, q, �, n, τ.

6 Conclusions

We note again the similar best-attack bounds stated in Table 1 for the protocol in [21],
by Hancke and Kuhn, and our simplest version of SKI, namely SKIlite . The Swiss-
Knife protocol [25] and the Avoine et al. [3] also seems to enjoy good security bounds
for DF and MF, but they do not protect against the new TF attack by Hancke [20].

Moreover, it was shown in [6] that the conditions on the underlying primitives need
to be strengthened for DF and generalised MF security to be indeed attained. This type
of attacks as in [6] can be bypassed in the SKI protocols. I.e., when the PRF instance
is used, it is masked with the randomly looking value M, computed on the right side
of the protocol avoiding the DF susceptibility shown in [6]. In our best MF description
for SKIpro , we explained the idea of choosing an f and an F that together with the
protocol transcript make F look as if it is not using x; in our further work, we will
give the formal details of how such a PRF f needs to come together with the response-
function F to attain formally the avoidance of the generalised MF exposed in [6]. We
remind that we also introduced a transform on x to be used inside the response-function
F in order to deter (if not avoid) the recent TF attacks by Hancke [20]. So, by all this
and beyond Table 1, we conclude that very compelling security—in accordance to the
recent developments in DB—is now provided by (at least one of) the SKI protocols.
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A Other Instances of SKI

In this section, we present two more instances of SKI: one with even stronger security
guarantees than what we have seen so far and another placing its assurances in between
SKIpro and SKIlite . For that, we first provide a new response-function.

Other instances of the response-function F. For the strongest version of SKI, we rec-
ommend the following response function.

Fshamir(ci,ai,x
′
i) = x′i +(ai)1ci +(ai)2ci

2 + . . .+(ai)t−1ci
t−1

where x′i ∈ GF(q), q ≥ 4, ci ∈ {1, . . . , t} is mapped to ci ∈ GF(q)∗ by an arbitrary
injective mapping, (ai) j ∈ GF(q), j ∈ {1, . . . , t− 1};

It is obvious, given the expression of Fshamir (i.e., with x′ inside it) that it is meant
to protect against classical TF. If x′ = x, then it may not protect against the newest TF
scenario by Hancke [20].

Other instances of SKI. We present two more instances of SKI in descending order of
their security strength:

– SKIshamir : defined by the response-function Fshamir above, with q = 4, t = 3, t ′ =
2, i.e., F(ci,ai,x′i) = x′i +(ai)1ci +(ai)2ci

2, with xi,(ai)1,(ai)2 ∈ GF(4) and ci ∈
GF(4)∗; L = Lbit

– SKI4 : defined by the response-function Fxor above, with q = 2, t = 4, t ′ = 3, i.e.,
F(ci,ai,x′i) = (ai)ci for ci ∈ {1,2,3} and F(4,ai,xi) = x′i+(ai)1+(ai)2+(ai)3, with
(ai)1,(ai)2,(ai)3,xi ∈ GF(2); L = Lbit.

As we can see, SKIshamir is more secure even than SKIpro , with a response-function
F , based on Shamir’s secret-sharing scheme. In fact, recalling our DF-resistance anal-
ysis, this response-function F is more powerful when it comes to inverting the map
ci �→ F(·,ai,xi). Hence, the DF-resistance of this instance is better than the one of
SKIpro . The opposite can be said about SKI4 , by comparison to SKIpro .

Security of these instances. Doing an analysis similar to the one we did for SKIpro in
Section 5.5, and we consider noisy conditions, we can state the following bounds for
the best mounted DF and MF attacks against these new instances:

SKIshamir SKI4

DF α = B(n,τ, 5
8 ) α = B(n,τ, 3

4 )

MF β = B(n,τ, 1
2) β = B(n,τ, 5

8 )

If, in turn, we do not consider noisy conditions then we get the following probabili-
ties for the best-known TF attacks against these instances of SKI:

SKIshamir SKI4

TF ( 2
3 )

ν ( 3
4 )

ν
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Abstract. Radio Frequency IDentifications (RFID) are useful low-cost
devices for identification or authentication systems through wireless com-
munication. The ownership of the RFID tag is frequently changed in the
life cycle of the tag, it may fall in to the hands of a malicious adversary.
The privacy problem in this situation is studied in the RFID ownership
transfer protocol. However, almost all literatures provide only heuristic
analysis and many protocols are broken. Elkhiyaoui et al. defined the
security model for RFID ownership transfer protocols and proposed the
detailed security proof to their protocol, but we show that their protocol
does not provide enough privacy and cover the realistic attack. We inves-
tigate a suitable security model for RFID ownership transfer protocols
and provide a new provably secure RFID ownership transfer protocol.

1 Introduction

Recently various technologies are developed to construct smart communications
with digital data. Especially, Internet of Things (IoT) and Machine-to-Machine
(M2M) architectures among them define that networked devices automatically
communicate each other without human to accomplish high speed information
transaction. One of the core building blocks to construct IoT or M2M systems
is Radio Frequency Identification (RFID). The current RFID tags are used in
logistics for product management, identification of animals, etc. RFID tags have
high readability by wireless communication and parallel processing in comparison
with barcodes. Thus RFID tag is useful device, but its privacy is a critical issue in
commercial usage. So the RFID authentication protocols and ownership transfer
protocols which focus on the life cycle are discussed in a few years [12–14,16,20].

The best way to support security and privacy is to provide security proof
based on a cryptographic security model. The security model for canonical RFID
authentication protocols is proposed by several researchers [10, 18, 21] and the
main task for protocol designers is to provide a new protocol and describe a
concrete security proof. However, when we focus on the RFID ownership transfer
protocol, one of the applications of RFID authentication protocol, almost all
literatures provide security and privacy with heuristic analysis only. They briefly
describe the requirements for RFID ownership transfer or provide only intuition
of the security proof for security and privacy, so many protocols are broken by
the other researchers [5, 6, 11, 17, 19].

G. Avoine and O. Kara (Eds.): LightSec 2013, LNCS 8162, pp. 114–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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To the best of our knowledge, the provably secure RFID ownership transfer
protocol was only provided by Elkhiyaoui et al. in RFIDSec 2011 [7, 8]. They
also introduced a security model for RFID ownership transfer protocols, but we
remark that this model has the following strong restrictions:

– The malicious adversary cannot choose the target tag to attack
– The malicious adversary cannot obtain any protocol instructions when the

tag resynchronizes to the RFID reader
– There is no malicious owner who participates in the ownership transfer

protocol.

These are different from the security model for canonical RFID authentication
protocols, the realistic usage and intuition of the privacy issue for ownership
transfer, respectively.

In this paper, we analyze their protocol and illustrate a concrete attack to
their protocol. Therefore, one can think that there is no provably secure RFID
ownership transfer protocol. We provide a new security model for RFID owner-
ship transfer protocols based on the existing construction of the RFID owner-
ship transfer protocol. Moreover, we consider the additional requirements that
both current and new owners can check the integrity of the peer. Therefore our
protocol is resilient to the general impersonation attack in addition to the tag
impersonation attack.

2 Security Model for RFID Ownership Transfer Protocols

In general, RFID ownership transfer protocols are proposed with the RFID au-
thentication protocol. So we discuss how to formalize the suitable security model
for RFID ownership transfer protocols based on the RFID authentication pro-
tocols and its operation.

In the canonical RFID authentication, there is an RFID reader R ∈ R (R
is a set of RFID readers) which interacts with multiple RFID tags T to au-
thenticate each other. Since the resource of the RFID tags is quite limited, only
symmetric key primitives are used in many RFID authentication protocols and
each tag shares a secret key with the RFID reader. Moreover, RFID tags are
very cheap devices and it is difficult to assume the tamper resilience, so the key
update mechanism is a desirable property to minimize the information leakage.
Briefly speaking, the privacy for RFID authentication protocol requires that no
adversary can obtain information about the identity of the target RFID tag from
communication messages between the reader and tags.

In contrast, the RFID ownership transfer protocol consists of three phases:
setup, authentication and ownership transfer. There are many RFID readers
treated as owner, and each reader runs an authentication protocol with their
own tags. The ownership transfer phase treats how to move the authority of the
authentication. Since the RFID ownership transfer protocol includes authentica-
tion phase, we must cover the security and privacy issues for RFID authentication
protocols in addition to that for the ownership transfer phase.
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The requirements for RFID authentication protocol and ownership transfer
protocol are correctness, security and privacy. The correctness for RFID owner-
ship transfer protocol is that the owner and tag accept each other in the authen-
tication phase and the new owner obtains the authorization of the authentication
of the tag when the current owner agrees to transfer it in the ownership transfer
phase.

2.1 Privacy

There are two fundamental privacy requirements for RFID ownership transfer
protocols described in the previous literatures:

– Old ownership privacy: When the ownership is transferred, the past interac-
tions of the tag should not be traced by the new owner, and

– New ownership privacy: When the ownership is transferred, the future in-
teractions of the tag should not be traced by the old owner.

One can solve these privacy problems with the following operation.

S1. The current owner runs RFID authentication protocol with the intended
tag (without active adversary) and resynchronizes and updates the shared
secret key.

S2. The current owner sends tag’s secret key and identity to the new owner.
S3. The new owner initializes the RFID tag and runs the setup algorithm for

the RFID authentication protocol.

Then the new ownership privacy is trivially accomplished since the initialized key
is independent from the previous one. Instead, we must define a suitable privacy
requirement for the RFID authentication protocol to cover the old ownership
privacy. Especially, tag’s privacy must be preserved even when the secret key
is revealed after the key updating algorithm. If the updated secret key gives no
information about the past communication between the current owner and the
tag, then the old ownership privacy can be satisfied by this resynchronization.
Based on the above argument, we introduce a new security model for RFID
ownership transfer protocols.

Let k be a security parameter.We consider the following privacy game between
adversaryA := (A1,A2,A3) and the challenger based on the indistinguishability-
based privacy definition proposed in [10]:

ExpIND-b
Π,A (k)

{(pki, ski)}i R← Setup(1k), pk := {pki}i;
(Rj , t

∗
0, t

∗
1, st1)

R← AReaderInit,Send,Corrupt,Result,OwnerTrans
1 (pk,R, T );

T ′ := T \ {t∗0, t∗1};
st2

R← AReaderInit,Send,Result
2 (R, T ′, I(t∗b ), st1);

πb
R← Execute(Rj , t

∗
b), π1−b

R← Execute(Rj , t
∗
1−b);

b′ R← AOwnerTrans
3 (skj+1, πb, π1−b, st2):

Output b′
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The challenger runs the setup algorithm and sends all public parameter in-
cluding public keys of all owners. Then the adversary can issue the following
queries. ReaderInit(1k) activates the reader and it outputs the new session ID,
Send(m) allows the adversary to send arbitrary message to the reader and tags,
Corrupt(t) responds tag’s secret key, Result(sid) outputs the authentication re-
sult of the session. OwnerTrans(Ri, Ri+1, t) is the interactive ownership transfer
algorithm to transfer the ownership of the tag t from current owner Ri to new
owner Ri+1. After the interaction, the adversary chooses two tags t∗0 and t∗1
whose ownership is Rj . Then the challenger flips a coin b and allows the adver-
sary to interact with the challenge tag t∗b anonymously in the challenge phase.
An intermediate algorithm I relays the communication message to accomplish
the anonymous access. If the adversary finishes this interaction, the authentica-
tion phase is executed by the current owner and two tags through the Execute
query for resynchronization. If we allow the adversary to interrupt or modify the
communication message in this phase, the Execute query becomes meaningless
so we assume that the adversary does not participate in this interaction. Instead,
the adversary obtains these transcripts and the secret key of the new owner so
as to transfer the ownership. Finally, the adversary output a bit b′. We assume
that t∗0 �= t∗1 and the adversary cannot issue the Corrupt query to (t∗0, t∗1). The
advantage of the adversary in the above game is defined by

AdvIND
Π,A(k) =

∣∣∣Pr[ExpIND-0
Π,A (k)→ 1]− Pr[ExpIND-1

Π,A (k)→ 1]
∣∣∣ .

Definition 1. An RFID ownership transfer protocol Π holds IND-privacy if for
any probabilistic polynomial time adversary A, AdvIND

Π,A(k) is negligible in k.

2.2 Security

We introduce the following three security requirements for the RFID ownership
transfer protocol:

– The current owner and tag reject the session if an adversary modifies the
communication message.

– Any illegitimate party who does not have the ownership of the tag cannot
impersonate the current owner.

– The ownership should not be transferred to the unexpected party from the
view point of the current owner.

The first issue is just the same as the security requirement for canonical RFID
authentication protocols. We define the notion of matching session as follows.
An entity has a matching session to the peer if the communication messages
between them are successfully transferred until the entity decides the authenti-
cation result. The goal of the adversary is to establish a session such that the
current owner or uncorrupted tag accepts without the matching session, The
advantage of the adversary A is evaluated by AdvRAuthΠ,A (k).
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Definition 2. An RFID authentication protocol Π holds basic security if
AdvRAuthΠ,A (k) is negligible for any probabilistic polynomial time adversary A.

When an RFID ownership transfer protocol is constructed by S1-S3, the above
security is also necessary to evaluate the security for RFID ownership transfer
protocols.

We think the other impersonation attacks must be covered in the ownership
transfer protocol since a malicious adversary may impersonate the current or new
owner to the other owner without any authorization. Let π′ be the protocol tran-
script in the ownership transfer protocol. (Rj ,Rj+1) denotes the current owner
and new owner, respectively. Consider that each owner executes the ownership
transfer protocol and outputs (b, b′) which indicates the peer owner is legitimate
or not. If one of the two coins becomes zero, the ownership transfer protocol is
terminated. We consider the following game for the above security requirements:

ExpROT-c
Π,A (k)

(pki, ski)
R← Setup(1k), pk := {pki}i;

(Rj , t
∗, st1)

R← AReaderInit,Send,Corrupt,Result,OwnerTrans
1 (pk,R, T );

π
R← Execute(Rj , t

∗);

If c = 1 — (π′, ·, b) R← OwnerTrans(A2(π, st1), Rj+1, t
∗):

If c = 2 — (π′, b, ·) R← OwnerTrans(Rj ,A2(π, st1), t
∗):

Output b

Different from the privacy game, the adversary cannot obtain any secret in-
formation of the owner. The advantage of the adversary against the above game
is defined by

AdvROT-1
Π,A (k) = Pr[ExpROT-1

Π,A (k)→ 1], and

AdvROT-2
Π,A (k) = Pr[ExpROT-2

Π,A (k)→ 1].

Definition 3. An RFID ownership transfer protocol Π is resilient to owner im-
personation attack if for any probabilistic polynomial time adversary A,
AdvROT-1

Π,A (k) and AdvROT-2
Π,A (k) are negligible in k.

3 Elkhiyaoui et al.’s Ownership Transfer Protocol and
Privacy Analysis

As explained in Section 1, the provably secure RFID ownership transfer protocol
is only introduced by Elkhiyaoui et al. [8]. They described cryptographic security
model and provided security proof for their protocol named ROTIV (RFID own-
ership transfer protocol with issuer verification). In addition to the basic owner-
ship transfer property, ROTIV allows anyone to check the issuer of the RFID tag.
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This is accomplished by the following mechanism. The issuer of the RFID tag
signs the identity of the RFID tag with digital signature algorithm proposed by
Boneh, Lynn and Shacham [3]. This signature is re-encrypted by the public key of
the current owner, and the ciphertext is stored in the RFID tag. When someone
wants to check the issuer of the tag, the current owner decrypts it and sends the
digital signature. The detailed protocol specification is the following. Their pro-
tocol uses bilinear map e : G1 × G2 → GT which satisfies e(ga1 , g

b
2) = e(g1, g2)

ab

for any a, b ∈ Zq and g1 ∈ G1, g2 ∈ G2. (MAC.Gen,MAC.Sign,MAC.Ver) is the
algorithm for message authentication code (MAC) and PRF is a pseudorandom
function.

3.1 Protocol Description

Setup Phase. First, the issuer runs the following setup algorithm:

I1. Generate g1
U← G1, g2

U← G2, z
U← Zq and compute g′1 := gz1 , g

′
2 := gz2 where

|G1| = |G2| = k (k is a security parameter).
I2. Publish pk0 := g′2 and keep sk0 := (z, g′1) as the secret key.

I3. Choose αj
U← Zq, compute (g′′1 , g

′′
2 ) := g

α2
j

1 , g
αj

2 ), and send public key pk :=
(g′′1 , g

′′
2 ) and secret key sk := αj to the j-th owner.

I4. Choose hash function H : Zq → G1 and set u := 1, v := H(t)z where t is
the identity of the RFID tag (v is the digital signature).

I5. Select the secret key for the MAC k0
R← MAC.Gen(1k) and send (s, s′, x, y) :=

(k0, k0, t, v) to the first owner.

Upon receiving (s, s′, x, y), the owner runs the following:

O1. Select r1
U← Zq and set u1 := gr11 , v1 := (g′′1 )

r1 · y.
O2. Send c := (s, u1, v1) to the RFID tag.

Note that (u1, v1) is the ciphertext of the ElGamal encryption which the plain-
text is y and its decryption key is maintained by the owner.

Authentication Phase. ROTIV is 3-move RFID authentication as follows:

A1. The owner generates n0
U← {0, 1}k and sends it to the RFID tag.

A2. The tag chooses n1
U← Zq and computes σ1 := MAC.Sign(s, (n0, n1, u1, v1)).

(n1, u1, v1, σ1) is responded to the owner.

A3. The owner computes y′ := v1/(u1)
α2

j and verifies y′ = y. If the veri-
fication fails, he terminates the protocol. Set k0 := s if MAC.Ver(s, (n0,
n1, u1, v1), σ1) = 1 and k0 := s′ if MAC.Ver(s′, (n0, n1, u1, v1), σ1) = 1.
Otherwise, the protocol is terminated. If either check is accepted, he se-

lects r2
U← Zq and computes u2 := gr21 , v2 := (g′′1 )

r2 · y. That is, the de-
crypted signature is encrypted by the owner again (with another random
coin). Then the MAC is computed as σ2 := MAC.Sign(s, (n1, u2, v2)) and
(u2, v2, σ2) is sent to the tag. Finally, the secret key of the owner is updated
to s := kj , s

′ := PRF(k0, n0).
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A4. The tag verifies MAC.Ver(k0, (n1, u2, v2), σ2) = 1 and terminates the pro-
tocol if it fails. Otherwise, it computes s′ := PRF(k0, n0) and updates its
secret key from (s, u1, v1) to (s′, u2, v2).

Ownership Transfer Phase. The current and new owners are interacted as
follows:

T1. The new owner chooses n0
U← {0, 1}k and sends n0 to the tag.

T2. The tag runs A2 and outputs (n1, u1, v1, σ1) to the new owner.

T3. The new owner selects r′ U← Zq and generates A := ur′
1 . (n1, u1, v1, σ1, A)

is sent to the current owner.
T4. The current owner verifies the RFID tag as the authentication phase. If

the authentication is accepted, he sets A′ := Aα and sends (s, t, y, A′) to the
new owner.

T5. The new owner checks

e(H(t), g′2) = e(y, g2),

e(Aα, g2) = e(A, g′2),

e(v1, g2)
r′ = e(y, g2)

r′e(A′, g′′2 ).

When all equations hold, the new owner decides that the ownership is hon-
estly transferred and runs O1 and O2.

3.2 Privacy Problems

Passive Attack. Consider the situation that an malicious adversary activates
t∗0 in the authentication phase. If the adversary eavesdrops the communication,
(u2, v2) is sent from the current owner. The adversary sends t∗0 and another tag
to the challenger in the privacy game and eavesdrops the communication. If the
same message (u2, v2) is incoming from the challenge tag, the adversary decides
that t∗0 is chosen as the challenge tag. Thus the adversary can distinguish which
tag is chosen as the challenge tag. The main problem here is that (u2, v2) output
by the reader in the first execution is sent from the tag in the next session.

Desynchronization Attack. The output message from the tag in the authenti-
cation phase can be parsed to random nonce n1, MAC σ1 and ciphertext (u1, v1).
Whenever the tag accepts the current owner, this ciphertext is re-encrypted by
the owner and the tag does not output the same ciphertext. However, if the
adversary modifies the communication and sends a random message to the tag
in A3, the reader authentication is failed and the secret key of the tag is not
updated. Though the random nonce is chosen per session, the ciphertext cannot
be updated by the tag and the adversary can observe that the same ciphertext
is output from the tag when he activates the tag two times. If the adversary
launches the message modification just before the challenge phase in the privacy
game, he can learn which tag is chosen as the challenge tag and win the game.
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Malicious New Owner Attack. ROTIV assumes that owners are always
honest. On the other hand, the old ownership privacy requires that the privacy
against the current owner must be hold even if the new owner is malicious.

ROTIV specifies that the current owner responds A′ = Aα = gαr1r
′

1 when the

new owner sends A = ur′
1 = gr1r1 in T4. Recall that α is the secret key of the

current owner. The new owner can derive (A′)−r′ = gαr11 from the response and
check

e(v1, g2) = e(gαr11 , gα2 ) · e(y, g2) = e(uα
1 , g

′′
2 ) · e(y, g2)

for any ciphertext (u1, v1) which was transferred in the authentication phase with
the current owner. This equation holds iff the decryption result of the ciphertext
equals to y which is obtained in T41 . Thus the malicious new owner can learn
when the ownership transferred tag executes the authentication protocol with
the current owner.

4 Proposed Protocol

We introduce a generic construction of the RFID ownership transfer protocol
based on the previous discussions. Let PKE := (PKE.Gen,PKE.Enc,PKE,Dec)
be public key encryption algorithm and SIG := (SIG.Gen, SIG.Sign, SIG.Ver) be
digital signature algorithm. f : {0, 1}∗ → {0, 1}4k is a pseudorandom function
(PRF). Note that the RFID tag does not execute public key encryption nor dig-
ital signature schemes. These schemes are only used in the ownership transfer of
the tag.

Setup Phase. Each owner runs key generation algorithm of the public key en-

cryption scheme (pkj , skj)
R← PKE.Gen(1k) and digital signature scheme (vkj , skj)

R← SIG.Gen(1k). {(pkj, vkj)}j is published as the public parameter. When owner

Rj obtains the ownership of tag ti, he randomly chooses si
U← {0, 1}k and com-

putes digital signature σ
R← SIG.Sign(skj , ti).Rj sends (si, σ) to the tag and keeps

the secret key si and previous secret key si.old (after the second invocation) in its
own database.

Authentication Phase. Consider that the current owner is Rj ∈ R who inter-
acts with the RFID tags.

A1. Rj chooses r1
U← {0, 1}k and sends (auth, r1) to the tag.

A2. When the tag receives (auth, r1), it chooses r2
U← {0, 1}k and computes

(k0, k1, k2, u) := f(si, auth‖r1‖r2). Then the tag responds (auth, r1, r2, k1)
to Rj .

1 Abyaneh insisted that ROTIV does not hold new ownership privacy in [1]. However,
his analysis that checking e(v1, g2) = e(h(t), g′′2 ) · e(v1/y, g2) is useless to distinguish
the challenge tag. This equation holds for any ciphertext v1 regardless of the tag’s
identity.
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A3. Upon receiving (auth, r1, r2, k1), Rj computes (k′0, k
′
1, k

′
2, u

′) := f(si,
auth‖r1‖r2) and checks k1 = k′1 for 1 ≤ i ≤ �. If this equation holds
for an index i, Rj sets si.old := si, si := k′0 and sends (auth, r2, k

′
2) to

the tag. Else if there is an index i ∈ {1, . . . , �} such that k1 = k′′1 where
(k′′0 , k

′′
1 , k

′′
2 , u

′′) := f(si.old, auth‖r1‖r2), Rj sends (auth, r2, k
′
2 := k′′2 ) to the

tag. If one of the above two equations hold, Rj accepts the session. Oth-

erwise, Rj rejects the session and outputs (auth, r2, k
′
2

U← {0, 1}k) to the
tag.

A4. When the tag receives (auth, r2, k
′
2), it verifies k

′
2 = k2. If it holds, the tag

accepts Rj and updates the secret key to si := k0. Otherwise, the tag rejects
the session and does not update the secret key.

Ownership Transfer Phase. Without loss of generality, we assume that the
current owner of the tag is Rj and new owner is Rj+1. We assume that the secret
key shared by the current owner Rj and the tag is resynchronized as denoted in
the operation model.

T1. Rj+1 chooses r1
U← {0, 1}k and sends (trans, r1) to the tag.

T2. When the tag receives (trans, r1), it chooses r2
U← {0, 1}k and computes

(k0, k1, k2, u) := f(si, trans‖r1‖r2). The tag sets c := u ⊕ σ and sends
(trans, r1, r2, c, k1) to Rj+1.

T3. Upon receiving (trans, r1, r2, c, k1), the new owner Rj+1 generates σnew
R←

SIG.Sign(skj+1, r1‖r2‖c‖k1) and sends (trans, r1, r2, c, k1, σnew) to the cur-
rent owner Rj .

T4. When Rj receives (trans, r1, r2, c, k1, σnew), he computes (k′0, k′1, k′2, u′) :=
f(si, trans‖r1‖r2) and checks k1 = k′1 for 1 ≤ i ≤ �. Then Rj verifies
SIG.Ver(vkj+1, r1‖r2‖c‖k1, σnew) = 1. This verification allows the current
owner to verify whether the valid owner requests the ownership transfer. If
both verifications hold and Rj decides to release the ownership of the tag, it

encrypts the tag’s identity ti and secret key si as c
′ R← PKE.Enc(pkj+1, ti‖si).

and sends (trans, c′) to Rj+1. Otherwise, Rj outputs ⊥ and terminates the
protocol.

T5. Rj+1 decrypts c
′ with skj+1 and obtains ti‖si. Then Rj+1 verifies the tag as

T4. Moreover, Rj+1 computes σ := c ⊕ u from si and verifies
SIG.Ver(vkj , ti, σ) = 1. If one of these verifications fails, Rj+1 terminates
the protocol. Otherwise, Rj+1 sends (trans, r2, k

′
2) to the tag.

T6. Upon receiving (trans, r2, k
′
2), the tag checks k′2 = k2. If the verification

holds, the tag allows the new setup from the new owner.

The RFID tag can proceed the authentication and ownership transfer phases
in the same way except the string literal. So the implementation cost to add
the ownership transfer is negligible from the view point of the RFID tag. The
string literal is used to classify the authentication and ownership transfer and it
prevents the reusing attack between them.
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5 Security Proof

Theorem 1. Assume that the public key encryption scheme is IND-CCA2 se-
cure and digital signature scheme is secure against EUF-CMA. Then our protocol
holds basic security and is resilient to the owner impersonation attack.

Proof. The basic security is mainly provided by the security of the PRF. Any
previous transcripts are rejected by the reader and tag because they randomly
choose the nonce (r1, r2) for each session. Even when the adversary observes
the ownership transfer interaction, the secret key of the RFID tag and its iden-
tity are encrypted by IND-CCA2 secure encryption so the ciphertext gives no
information. Therefore if a modified message is accepted, this means that the
security of the PRF is broken. The owner impersonation resilience is provided
by the digital signature scheme. Recall that each owner verifies the signature
generated by the other owner. If an adversary can successfully impersonate an
owner, it directly implies that the accepted signature is a valid forgery against
the digital signature.

When there is an adversary A who can break AdvROT-1
Π,A (k) with non-negligible

advantage, we can construct an algorithm B which breaks the security of the
digital signature. Upon receiving the verification key vk∗, B randomly selects
and guesses the owner Rj+1 who is impersonated by the adversary. B sets vk∗ as
the verification key of Rj+1 and runs all the other setup operation by himself. B
runs A internally and simulates all protocol flow with his secret except that Rj+1

runs ownership transfer protocol. When A runs the ownership transfer protocol
and issues SendReader(Rj+1, (trans, r1, r2, k1, c)), then B sends r1‖r2‖k1‖c to
the signing oracle. When σnew is responded, B sends (trans, r1, r2, k1, c, σnew)
to the adversary. If the adversary issues SendReader(Rj+1, (trans, c

′)), B runs
T5-T6. If the verification holds and tag’s identity is identified as t, B issues the

signing oracle with input t to obtain σ, and a randomly chosen s
U← {0, 1}k and

σ are kept as the tag’s new secret key. After the above simulation, the adversary
tries to impersonate the new owner and outputs (trans, r∗1 , r∗2 , k∗1 , c∗, σ∗

new). Then
B outputs (r1‖r2‖k1‖c, σ∗

new) as a forgery to the digital signature scheme.
This signature can be verified by SIG.Ver(vk∗, r1‖r2‖k1‖c, σ∗

new) = 1. However,
the probability that the adversary reuses the previous signature in the imper-
sonation phase is negligible since the secret key shared by the current owner and
tag is flesh. Thus the output message is different from the previous transcripts.
If the signature verification is accepted, it means σ∗

new is a valid forgery against
new message r1‖r2‖k1‖c where B does not issue it to the signing oracle. There-
fore B can break the security of digital signature scheme if A can impersonate
the new owner.

Next we discuss the situation that the adversary A who does not have the
authorization of the tag can send the ownership to the new owner. Let c′ be the
ciphertext sent from the adversary. When the new owner decrypts as t∗‖s∗ :=
PKE.Dec(skj+1, c

′), (k∗0 , k
∗
1 , k

∗
2 , u

∗) := f(s∗, trans‖r1‖r2) and σ∗ := Dec(u∗, c)
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are computed where (r1, r2, c) is given by the tag in the ownership transfer
protocol. The new owner accepts the peer iff SIG.Ver(vkj , t

∗, σ∗) = 1 holds.
Consider that s is the shared secret key between the current owner and the tag

at the beginning of the ownership transfer protocol. We consider the following
two cases.

Case 1 — s∗ = s :
We construct an algorithm B′ which can break the security of the PRF f .
B′ can access to the real function f(s, ·) or truly random function RF. B′

runs A and simulates all the protocol interactions except that Rj transfers
t∗’s ownership. When they execute ownership transfer protocol, the adver-
sary sends (trans, r1) to the tag. Then B′ randomly chooses r2 and issues
trans‖r1‖r2 to the oracle. Upon receiving (k0, k1, k2, u), B′ computes tag’s
response with k1 and u. When the advesary sends c′ to the new owner,
B′ decrypts it and obtains s∗. B′ terminates the protocol and outputs 1
iff (k0, k1, k2, u) = f(s∗, trans‖r1‖r2) holds. This event happens when the
adversary guesses the secret key against the PRF, thus B′ can break the
security of the PRF.

Case 2 — s∗ �= s : When Case 1 does not occur, the security of the digital sig-
nature algorithm is broken by an algorithm B′′. B′′ receives vk∗ and assigns
it to the verification key of Rj . The other secret key is honestly generated by
B′′ and it simulates the protocol. When Rj is designated to the new owner
of a tag or transfers the ownership of the tag, B′′ simulates the protocol
transcript with the signing oracle. When the adversary impersonates the
current owner and sends c′ to the new owner, B′′ computes as the protocol
specification and generates (t∗, σ∗). Finally, B′′ outputs it as the forgery of
the digital signature.
Since s∗ �= s is assumed in this case, deterministically defined σ∗ is different
from the past responses B′′ obtained from the signing oracle. Thus if this
signature is valid and the new owner accepts, (t∗, σ∗) is a valid forgery to
the digital signature scheme.

We note that the ciphertext sent from the current owner in the ownership trans-
fer protocol gives no information of the secret key against the adversary for any
security game. Thus the adversary cannot impersonate to the any party in our
protocol. Therefore, our protocol is resilient to the owner impersonation attack.

Now, we prove that our protocol satisfies the basic security. Based on the above
proof, we assume that the adversary A cannot receive the ownership sent from
the current owner explicitly. Even in this case, the ciphertext itself may leak some
useful information. So we show that the adversary does not obtain secret key of
the tag from this ciphertext. Consider an algorithm B which try to break the
IND-CCA2 security of the public key encryption scheme. AdvIND-CCA2

B (k) denotes
the advantage of the algorithm B for breaking the public key encryption scheme.
B assigns the public key to the current owner and simulates all the session except
that the current owner runs ownership transfer phase as a current owner. When
the authentication of the RFID tag ti and verification of the new owner are
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accepted, B sets m0 := ti‖si, chooses arbitrary message m1 and sends them
to the challenger (against the public key encryption scheme). Upon receiving
the the challenge ciphertext cb, B sends it to the new owner. B outputs 0 iff
A successfully impersonates to the owner or tag. If the public key encryption
scheme is IND-CCA2 secure, A does not realize whether b = 0 or not. Thus we
can change the valid ciphertext to the random and the probability that A learn
the secret key of the tag from the ciphertext is negligible.

When there is an adversaryA who can break basic security with non-negligible
advantage in any other case, we can construct an algorithm B which breaks the
security of the PRF. B generates secret keys and honestly simulates the protocol
except the ownership transfer protocol. B can access to the real function f(s, ·)
or truly random function RF. When the adversary sends (auth, r∗1) in the first
round and (auth, r∗1 , r

∗
2 , k

∗
1) in the second round, B issues auth‖r∗1‖r∗2 to the

oracle and obtains (k0, k1, k2, u). If k
∗
1 = k1 holds, B terminates the simulation

and outputs 1.
When the message output from the adversary is accepted, it means that the

adversary can guess the output of the PRF. Thus B can break the security of
the PRF. Note that if the adversary breaks the reader authentication, B checks
k∗2 = k2 instead of k∗1 where k∗2 is sent from the adversary in the third round.

Therefore, our protocol satisfies the basic security and owner impersonation
attack.

Theorem 2. Assume that the PRF is secure and the public key encryption
schemes is IND-CCA2 secure. Then our protocol satisfies IND-privacy.

Proof. To prove Theorem 2, we show that our protocol does not give any in-
formation about identity of the RFID tag in the authentication protocol nor
ownership transfer protocol. First we show the former proposition with the fol-
lowing game transformation. We assume that the number of the owner and tag is
denoted by n and �, respectively. Suppose that the number of secret key update
of the tag by one owner is at most q. Si denotes the event that the adversary
outputs 1 in Game i.

Game 0. This is the IND-privacy game between the adversary and challenger.
Game 1. The challenger randomly selects from {R1, . . . , Rn} and guesses the
owner of the challenge tag. If this guess is failed, the challenger terminates the
game. Otherwise, Game 1 is proceeded as Game 0.
Game 2-(i, j). We change the output value of the session as the following:

1. When the owner interacts with the tag whose index is less than i, then the

outputs of the PRF is changed as uniformly random variables (k0, k1, k2, u)
U←

{0, 1}4k.
2. For the i-th tag,

2-1. If the secret key update is less than j (j′ < j), the output variables

from the PRF is changed as (k0, k1, k2, u)
U← {0, 1}4k.

2-2. If the secret key update is greater than or equal to j (j′ ≥ j), these
outputs are computed as (k0, k1, k2, u) := f(s′j , r1‖r2).
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3. If the protocol is run with the tag whose index is greater than i, we proceed
the game as Game 0.

Lemma 1. Pr[S0] = n · Pr[S1] holds.

The probability that the challenger correctly guesses the owner for the challenge
phase is at least 1/n. Therefore we have Pr[S0] = n · Pr[S1].

Lemma 2. For any 0 ≤ j ≤ q, there exists an algorithm B1 such that
|Pr[S2-(i,j)]− Pr[S2-(i,j+1)]| ≤ AdvPRFB1,f (1

k) holds (for a fixed i = 1, . . . , �).

Proof. If there is a gap between Game 2-(i, j) and Game 2-(i, j + 1), we show
there is an algorithm B1 which breaks the security of the PRF. The only differ-
ence between these games is whether the i-th tag which updates its secret key j
times runs the PRF or these outputs are chosen by truly random.

Algorithm B1 can issue oracle queries to PRF f(si, ·) or truly random function
RF. B1 runs the setup algorithm and simulates the game as Game 1 except the
sessions executed by ti and the owner of the challenge phase. If ti updates the
secret key less than j, B1 always chooses random numbers in {0, 1}4k instead of
the output from f . If the number of key update is more than j, B1 computes the
outputs of the tag as the specification of our protocol. When the key update is
executed just j times, B1 proceeds the following.When the adversaryA issues the

ReaderInit(1k) query, B1 generates r1 U← {0, 1}k and responds r1 to the adversary.

If the SendTag(ti, r
′
1) query is issued, B1 selects r2

U← {0, 1}k and issues r′1‖r2 to
the oracle. This response (k0, k1, k2, u) ∈ {0, 1}4k is used to compute the output
message (auth, r′1, r2, c, k1) from the tag. When the owner receives (r1, r

′
2, k

′
1),

B1 issues r1‖r′2 to the oracle and authenticates the tag as A3 by using the
response from the oracle. If the authentication result is accepted, B1 outputs

(auth, r2, k2) to the adversary. Otherwise, B1 randomly chooses k2
U← {0, 1}k

and outputs (auth, r2, k2). Finally, when the adversary A outputs b, B1 outputs
the same bit.

If B1 accesses to the actual PRF, the above game is equivalent to Game 2-(i, j)
from the view point of the adversary. Otherwise, if B1 issues the oracle queries
to the truly random function, the above game is equivalent to Game 2-(i, j+1).
Thus we obtain |Pr[S1-(i,j)]− Pr[S1-(i,j+1)]| ≤ AdvPRFB1,f(1

k).
Note that Pr[S1] = Pr[S2-(1,0)] and Pr[S1-(i,q+1)] = Pr[S1-(i+1,0)] for any

1 ≤ i ≤ � since the output distributions of these games are equivalent, so we
can change Game 0 to the final game. Since the output messages derived from
the tag and owner are completed changed to random string, there is no useful
information about the tag’s identity in the authentication protocol.

The same argument is also applied to the ownership transfer phase since
authentication process is quite similar to the authentication protocol. The addi-
tional information related to the tag’s identity is only contained in the ciphertext
c sent from the tag or c′ sent from the current owner. When we proceed games
as above, we can easily show that u is also uniformly chosen as a random string.
Thus we can use u as a one-time pad and c := u⊕σ is (information theoretically)
indistinguishable from random string. Moreover, it is clear that the ciphertext
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gives no information to the adversary since the encryption scheme is IND-CCA2
secure. We can change the plaintext to generate c′ to the random message when-
ever the ownership transfer protocol is executed. If this transformation is realized
by the adversary, there is an algorithm B2 which breaks the IND-CCA2 secu-
rity against the public key encryption scheme. Therefore the adversary cannot
distinguish which tag is chosen in the challenge phase.

Remark that if the adversary breaks the basic security in the privacy game,
the tag cannot resynchronize to the reader and it is easy to distinguish the tag
from the result query. Thus we must add the advantage for the basic security to
evaluate AdvIND

Π,A(k). Finally we have

AdvIND
Π,A(k) ≤n�(q + 1) · AdvPRFB1

(k) + n(q + 1)AdvIND-CCA2
B2

(k)

+ AdvRAuthΠ,B3
(k).

for some algorithms (B1,B2,B3).

6 Additional Properties for RFID Ownership Transfer
Protocols

In this paper, we concentrate on the basic requirements for RFID ownership
transfer protocol: correctness, security and privacy only. The partial delegation of
the authorization is proposed by several researchers [12,14], but this functionality
is easily defeated by an active adversary (e.g. DDos attack). Another attractive
requirement related to the ownership transfer is to support the rewinding of
the authorization to the previous owner (authorization recovery [13]). If the
ownership transfer protocol follows S1-S3, we can add the following operation
to satisfy the rewinding process.

S4. The new owner keeps the secret key sent from the previous owner and
rewrites it to the tag when he wants to return the authorization to the
previous owner.

One may argue that the issuer verification described in [7] is removed in
our protocol. But we can easily add this function since the new owner checks
the digital signature of the current owner which is contained in the RFID tag.
Consider that the tag permanently keeps the first owner’s digital signature and
treats it as the current owner’s one. If we perform the ownership transfer phase
and modify that the current owner only outputs the digital signature of the
issuer, the issuer verification function is achieved. However, this information
implicitly gives the identity of the tag when the issuer of the two tags is different.
Thus another security model will be required and we leave it as an open problem
in this paper.

7 Conclusion

We showed an attack to the previous provably secure RFID ownership transfer
protocol. We introduced a new security model for ownership transfer protocol
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based on the previous constructions. We provide generic construction for prov-
ably secure RFID ownership transfer protocol by using public key encryption
scheme, digital signature scheme and pseudorandom function.
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1 TÜBITAK BILGEM UEKAE Gebze, Kocaeli
2 Sabancı University, Faculty of Engineering and Natural Sciences, İstanbul,
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Abstract. Radio Frequency IDentification (RFID) systems are getting
pervasively deployed in many daily life applications. But this increased
usage of RFID systems brings some serious problems together, security
and privacy. In some applications, ownership transfer of RFID labels is
sine qua non need. Specifically, the owner of RFID tag might be required
to change several times during its lifetime. Besides, after ownership trans-
fer, the authentication protocol should also prevent the old owner to trace
the tags and disallow the new owner to trace old transactions of the tags.
On the other hand, while achieving privacy and security concerns, the
computation complexity should be considered. In order to resolve these
issues, numerous authentication protocols have been proposed in the lit-
erature. Many of them failed and their computation load on the server
side is very high. Motivated by this need, we propose an RFID mutual
authentication protocol to provide ownership transfer. In our protocol,
the server needs only a constant-time complexity for identification when
the tag and server are synchronized. In case of ownership transfer, our
protocol preserves both old and new owners’ privacy. Our protocol is
backward untraceable against a strong adversary who compromise tag,
and also forward untraceable under an assumption.

Keywords: RFID, Privacy, Security, Ownership Transfer Protocol.

1 Introduction

Today, ubiquitous information and communication technology has been widely
accepted by everyone that aspire to reach information anytime and anywhere.
Radio-frequency identification (RFID) systems are one of the ubiquitous com-
puting in which technology provides practical services to people in their daily
life. RFID technology aims to identify and track an item or a person by using
radio waves. It has been pervasively deployed in several daily life applications
such as contact-less credit cards, e-passports, ticketing systems, etc.

A RFID system basically consists of several tags (transponders), a set of read-
ers (interrogator) and a back-end receiver. A tag contains a microchip which
carries data and antenna. It is interrogated by a reader via its modulated radio
signals. A RFID reader that is the central part of an RFID system, acquires
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the data of the tag and conveys it to the back-end system for further processing.
Moreover, RFID tags can be categorized into three groups by using energy source
such as active, passive and semi-passive or battery assisted tags. Passive RFID
tags do not have internal energy sources. Instead, they use the radio energy
transmitted by the reader [10]. Furthermore, RFID systems can also be grouped
into three basic ranges by their using operating frequency: Low frequency (LF,
30-300 KHz), high frequency (HF 3-30 MHz) and ultra high frequency ( 300
MHz - 3 GHz ) / microwave ( >3 GHz) [9].

Nowadays, the number of RFID applications have been proliferating because
of their productivity, efficiency, reliability and so on. Many companies also prefer
low-cost tags with tiny sizes. This brings some computational and memory re-
strictions to RFID tags. On the other hand, RFID tags and readers communicate
with each other over an air interface. This insecure channel and the limited ca-
pabilities of RFID tags cause security and privacy vulnerabilities. An adversary
can do tag impersonating, tracking, eavesdropping, and denial of service (DoS)
attack. Besides the vulnerabilities, a tag might be distinguishable in its life-span
by an attacker. If it is once recognized by an adversary, it can be easily traceable.
At that situation, there might be two attacks. (i) An attacker might track the
previous interactions of the tag or (ii) he may track the future ones. These two
attacks are called backward traceability and forward traceability, respectively.
The protocol used for RFID system should provide not only resistance against
passive attacks, replay attacks, cloning attacks but also resistance against active
attacks. There are public-key cryptography solutions in the literature but none
of them are convenient for the low-cost tags used in lots of applications because
of their limitations. It needs to find much light-weight approaches. Therefore,
many light-weight authentication protocols are proposed to defeat adversaries
that deceive the capacity-restricted tags. But, designing light-weight crypto-
graphic authentication protocols with basic cryptographic primitives (xor, hash
function) is a challenging task [18].

Another significant problem is the changing ownership of an RFID tag several
times during its life-cycle. For instance, tags are initially created and attached
to objects by producers, then labeled objects are taken over to retailers, and
finally consumers buy tagged objects from shopping malls [13]. The ownership
of a labeled object may be frequently transferred from one party to another. At
the moment of the transfer, both new and old owners have the same information
about the tag. This might cause privacy problems. This transfer should guarantee
that the old owner should no longer be able to trace the future interactions and
the new owner should not be able to trace old interactions. Besides having secure
authentication protocols by providing privacy, the performance of the entire
system becomes an important issue. Therefore, designing authentication protocol
without compromising security and privacy begets decreases the efficiency of
the whole system. However, achieving both security and privacy properties, the
computational complexity of the tag and the server side can vary dramatically
from one protocol to another. Hence, while handling security and privacy issues,
it is also important to realize it with less computational complexity.
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In order to resolve these security and privacy issues, numerous RFID authen-
tication protocols have been recently proposed [1, 4, 5, 7, 8, 11, 12, 14–17]. How-
ever, some of them are not compliant to ownership transfer. Also, none of them
achieves constant-time complexity for identification while providing forward un-
traceability against old-owner and backward untraceability (forward secrecy)
against the new owner.

Our Contributions. We propose an efficient, secure and private RFID mu-
tual authentication protocol which needs constant-time complexity to identify a
tag. Then, we utilize this protocol and achieve a secure and efficient ownership
transfer. We prove that our protocol achieves forward secrecy against the new
owner and forward untraceability against the old owner. Moreover, we also show
that our protocol provides forward secrecy against a strong attack and forward
untraceability under an assumption that the adversary misses one subsequent
successful protocol between the reader and the compromised tag.

The outline of the paper is as follows. In Section 2, security and threat model,
security and privacy concerns are discussed in RFID systems for ubiquitous
networks. Section 3 describes our proposed protocol. In Section 4, analysis of
our protocol is given in detail. In Section 5, we conclude the paper.

2 Adversarial Model

In this section we describe our adversarial model used in analyzing the proposed
protocol, then define the privacy notions which are also used to be proved. Since
the tags and the reader communicates over an insecure wireless channel, we
consider Byzantine adversarial model [6].

– Each tag memory is not tamper resistant and vulnerable to physical attacks.
– Each tag/reader performs cryptographic hash operations.
– The reader and tags communicate over an insecure wireless channel and so

an active attacker can intercept, modify and generate messages.
– The messages between server and readers are transmitted securely.
– The reader and the server are assumed to be trusted parties. They cannot

be compromised.

Since the tags are not tamper resistant, we assume that a strong adversary
can corrupt a tag and access to its persistent memory. In this case, the adversary
should not be able link any current and past communication of the victim tags.
This privacy notion is called backward untraceability. We define it more formally
as follows.

Definition 1. Backward Untraceability: An RFID scheme provides backward
untraceability if A compromising Ti at time t cannot trace the past interactions
of Ti that occurred at time t′ < t.

On the other hand, the strong adversary should not be able to trace the future
interactions of the victim tag. This privacy notion, called forward untraceability,
is described as follows.
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Definition 2. Forward Untraceability: An RFID scheme provides forward un-
traceability if A compromising Ti at time t cannot trace the future interactions
of Ti that occurred at time t′ > t.

3 The Proposed Protocol

In this section, we propose a novel scalable RFID authentication protocol which
is the enhanced version of the scheme presented in [12]. In our protocol, we
achieve the constant-time complexity for the authentication of synchronized tags
whereas the complexity in [12] is O(N) where N is the number of tag in the
system.

The notations used in the protocol are defined. Then, the initialization and
the authentication phases are described in detail. The protocol is summarized
in Figure 1.

3.1 The Notations

– ∈R: The random choice operator that randomly selects an element from a
finite set.

– ⊕, || : XOR operator and concatenation operator, respectively.
– h, H : A hash function s.t. h : {0, 1}∗ → {0, 1}n, H : {0, 1}∗ → {0, 1}2n.

Both of them are one-way and collision resistant functions.
– N : The number of tags in the database.
– Na, Nb : n-bit nonce generated by the reader and the tag, respectively.
– K : n-bit secret shared between the tag and the reader.
– val1, val2 : n-bit the server validator of the tag and the reader, respectively.
– Kold1 , Kold2 : Previous n-bit secret shared between the tag and the reader.
– valold1 , valold2 : Previous n-bit the server validator of the tag and the reader,

respectively.
– L, S : The seed value of val1 and val2, respectively.
– r1, r2 : n-bit random bit strings produced by h(Na), h(Nb,K), respectively.
– vi : n-bit random bit strings produced by h(K, r1, r2).
– M1,M2 : M1 = v1 ⊕ L, M2 = v2 ⊕ S.
– DB : Server database.
– γ : n-bit string.
– state : 1-bit string is 0 or 1.

3.2 The Registration Phase

For each tag Ti, the following steps have to be performed by the registrar (e.g.
the tag manufacturer) before the authentication protocol:

1. The registrar generates three n-bit random nonce (K, S, L). It also computes
val1 = h(L,K), val2 = h(S). Initially, Kold1 and Kold2 are both equal to K,
Sold is equal to S, and valold1 is equal to val1. Finally, state is set to 0 and
it computes hash of the shared secret key K, γ = h(K).
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2. The registrar creates an entry in its back-end database and stores (K,S,
val1, K

old1 , Kold2 , Sold, valold1 ,h(K)) in the entry.
3. The registrar assigns (K,L, val2, state) to the tag Ti.

3.3 The Authentication Phase

In our protocol (see Figure 1) each tag stores its own triple values K, L, val2,
γ,and state . The reader stores the K, S, val1 for that tag. The steps are de-
scribed below.

Step 1. A reader randomly generates an n-bit nonce Na and computes hash of
it r1 = h(Na). Then it sends r1 to the tag Ti.

Step 2. The tag Ti randomly generates a n-bit Nb nonce and computes hash of
it, r2 = h(Nb,K). Then, it checks the state. If its own state is 0, it computes
hash of the shared secret key K. If it is not, the tag randomly generates a
n-bit γ nonce. Later, the tag uses a pseudo-random function that digests r1,
r2 messages with shared secret key K to compute v1||v2 = H(K, r1, r2). The
length of each v1 and v2 are both equal to n. After that, the tag computes
message M1 by simply XORing v1 with secret L. Finally, the tag sends r2,
M1 and γ messages to the reader.

Step 3. The reader transfers Na, r1, r2, M1, and γ to the server.
Step 4. The server firstly searches in DB that there exists h(K) equals to γ.

The server performs an exhaustive search among all tags in the database.
It computes v1||v2 = H(K, r1, r2) and h(M1 ⊕ v1,K). The server checks
whether h(M1 ⊕ v1,K

old1) is equals to val1. If one match is found, then the
server computes M2 message by XORing v2 with S and then sends M2 to
the reader. After that, it updates Kold2 = Kold1 , Kold1 = K, Sold = S,
valold1 = val1, K = v2, S = Na, and val1 = r2. If no match is found,
then the server performs another an exhaustive search among all tags in the
database. In this time, it computes v1||v2 = H(Kold1 , r1, r2) and it checks
whether h(M1 ⊕ v1,K

old2) is equals to valold1 . If one match is found, the
server computes M2 message by XORing v2 with S and sends M2 to the tag.
After that, it updates K = v2, S = Na, and val1 = r1. However, if there is
no match, the server generates an n-bit random bit string and sends it to the
reader. The reason behind sending random bit string is that this prevents
any attacker to validate M1 for random nonce r1 and r2.

Step 5. The reader forwards M2 to the tag Ti. Upon receiving M2 message, Ti

computes h(M2 ⊕ v2) and checks whether it is equal to val2. If equal, then
it updates K = v2, L = Nb, and val2 = r1.

3.4 The Ownership Transfer

When the owner of the tags are required to change one party to another, the tags
are first synchronized with the server. The server runs at least two successful
authentication protocols with tags in a secure environment where no adversary



An Efficient and Private RFID Authentication Protocol 135

is allowed to perform any passive/active attacks. Then, all the tags and their
related information are transferred to new owner. Once the new owner receives
the information and tags, he/she runs at least one successful protocol between
readers and the tags in a secure environment where a malicious adversary is not
allowed.

During the ownership transfer, the old owner does not need to transfer the se-
cret values of Kold2 and Sold of the tags to the new owner because the remaining
secrets are enough to communicate with the synchronized tags.

Server
[K,Kold1,Kold2, S, Sold, val1, val

old
1 , h(K)]

Tag
[K,L, val2, state]

Reader

Na ∈R {0, 1}n
r1 = h(Na) r1 �

Nb ∈R {0, 1}n
r2 = h(Nb,K)
if(state = 0)

γ = h(K)
else

γ ∈R {0, 1}n

v1||v2 = H(K, r1, r2)
|v1| = |v2| = n
M1 = v1 ⊕ L
state = 1r2,M1, γ�r1, r2, Na,M1, γ�

�M2 �M2 if h(M2 ⊕ v2) = val2
K = v1,
L = Nb,
val2 = r1.
state = 0.

if ∃ γ = h(K) in DB
if h(M1 ⊕ v1,K

old1) = val1
s.t. v1||v2 = H(K, r1, r2)
M2 = v2 ⊕ S,Kold2 = Kold1

Kold1 = K,Sold = S,
valold1 = val1,
K = v1, S = Na,
val1 = r2.

else
{
For each record in DB
if h(M1 ⊕ v1,K

old2) = val1
s.t. v1||v2 = H(Kold1 , r1, r2)
M2 = v2 ⊕ S,Kold2 = Kold1

Kold1 = K,Sold = S,
valold1 = val1,
K = v1, S = Na,
val1 = r2.

else
M2 ∈R {0, 1}n

}

Fig. 1. The Proposed RFID Authentication Protocol

4 Security, Privacy, and Performance Analysis

In this section, we first describe the adversarial capabilities. Then, we analyze
our ownership transfer protocol depicted in Figure 1 against passive and strong
attacks.

In our model, we assume that each tag can perform cryptographic hash op-
erations. The communication between server and readers are assumed to be
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secure because they have no restriction on using SSL/TLS protocol. However,
the reader and tags communicate over an insecure wireless channel and so an
attacker can intercept, modify and generate messages. Also, each tag memory is
not tamper-proof.

4.1 The Security against Timing Attacks

The proposed protocol is vulnerable to timing attacks [3]. An adversary can
distinguish synchronized tags and un-synchronized tags by simply considering
the response time of the server because the identification time for the latter
tags requires much more than the former tags. This kind of attacks can be
avoided by using distributed computation servers. Let us illustrate the solution.
Assume that we have 220 tags in the database and the server does only 223 hash
computation per second. Then, the time to identify an un-synchronized tag is
220/223 = 0.125s but for the synchronized tag is almost zero. For the solution, we
can use multiple distributed server (say 16), then the identification time can be
reduced to 0.125/16 = 7, 8125ms and when a synchronized tag is to be identified
the server waits up to 7, 8125ms.

4.2 The Security against Passive Adversary

An offline passive adversary may want to know the contents of the secrets K
and L stored in the tag Ti. Then, the adversary simply eavesdrops the channels
between a legitimate reader and Ti in order to get r1, r2, M1, M2 and γ. With
these information and publish hash function H , she cannot obtain the secret K
or L because of one-wayness of the hash function.

Moreover, the protocol also resists against replay attack because a challenge-
response scheme is used in the protocol. In addition, for each session of the
protocol a new pair of random numbers (r1, r2) are used. This prevents to use
the same challenge-response values in other sessions.

Furthermore, our protocol is resistant against desynchronization even if’ last
flow of the protocol drops. Normally, this causes desynchronization of the tag
secrets and the back-end server. However, this issue is resolved by storing pre-
vious tag secrets in the database. Hence the server can resynchronize with the
tags in such a condition.

4.3 The Security against Strong Adversary

In this section, we will analyze the protocol depicted at Figure 1 in terms of
backward and forward untraceability [2, 15, 19] against old owner, new owner,
and a strong malicious adversary who can compromise a tag. As a starting point,
we assume that at time ti, the owner of the system is changed. We test backward
untraceability for the new owner, denoted by An, with assumption that An has
had control over communications between reader and tags made before time
ti. Note that, the number of these communications is finite. Similarly, we test
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forward untraceability against the old owner, denoted by Ao. Also, we test these
two privacy properties against a strong adversary As with assumption that As

has ability of corrupting a tag and captures its secrets. Throughout the analysis,
in order to make proofs more understandable, without loss of generality, we
assume that there are only two tags in the system, namely T0 and T1. First of
all, let us give the definitions of concepts mentioned above and the oracle that
we use in the proofs of theorem given below.

Definition 3. Oracle Ok: The oracle chooses b ∈R {0, 1}. If b = 0, Ok sends to
the adversary the protocol transcript which was realized between tag T0 and the
reader at time tk. Similarly, if b = 1, the protocol transcript which was realized
between tag T1 and the reader at time tk is sent to the adversary by the oracle.
At the end, the adversary sends the bit b′ by after investigating the transcript
sent. If Pr[(b′ = b) = 1] = 1

2 + ε, where ε is non-negligible, than the adversary
wins.

One can give simplified version of the oracle defined above as follows: At time
ti, A gets information of server and the tag T0. Then at time tk, Ok chooses
b ∈R {0, 1}. The transcript sent to the adversary according to value of b same
as above. Then, A returns b′ = 0 if he thinks the transcript sent by oracle
realized between reader and tag T0. Otherwise the adversary returns b′ = 1. If
Pr[(b′ = b) = 1] = 1

2 + ε, where ε is non-negligible, than the adversary wins.
Throughout the proofs given to the corresponding theorem, four subsequent

successful protocol transactions are enough. Thus, without loss of generality,
we assume that i = 4 is the time where server owner changed, i.e. at time t4.
Moreover, addition to the notations given at protocol steps, we use left subscript
part to denote the time that it was used.

In order to obtain traceability capability of An, we start studying with more
powerful adversary Ac, who has had all secrets of the server and tags at time ti
and observed all protocol transactions realized before given time.

Theorem 1. The system has backward untraceability property for time tk sat-
isfying k < i− 3 for the adversary Ac

Proof. Since at time t4, Ac knows the value of 4val1 and this value equals to

3r2, then at time t3, Ac can traces T0. Moreover, as Ac knows the value of

4S
old1 , then she knows the value of 3S. Thus, 2Na value is known. Therefore,

at time t2, Ac can trace T0 as he can figure out the value of 2r1 from h(2Na).
Note that, after that point, Ac knows 2r2 and 2M2 and since 2K = 4K

old2, the
values of 2v1 and 2v2 are known. Hence, 2S is known. So, Ac learns the value
of 1Na. From this knowledge, Ac calculates 1r1. Therefore, Ac can trace T0 at
time t1, which means Ac also learns the values of 1r2, 1M1, 1M2. Apart from
these values, 1L is also known. Note that, the only thing Ac knows about the
transaction happened at time t0 is 0Nb. Thus, the probability of Ac’s finding the
correct value of 0r2 is 1

2n since 0K is not known and the range of hash function
h is {0, 1}n. Similarly, finding correct values of 0r1,0M1,0M2 is 1

2n . Thus, the
probability that Ac distinguishes the transcript that the oracle sent is 1

2 + 1
2n .

However, 1
2n is negligible.
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Therefore, if Ac has all secrets of the server and tags at time ti, then the
system has backward untraceability property for time tk satisfying k < i− 3.

Remark 1. The values of Kold2 and Sold of tags are stored in server database in
order to overcome synchronization problem. If the system is synchronized when
ownership transfer is realized, then Kold2 and Sold values are not given to An.

At the next part, we give a backward traceability result for an adversary AcR,
which is like Ac with exception indicated at Remark 1.

Corollary 1. The system has backward untraceability property for time tk sat-
isfying k < i− 2 for the adversary AcR.

Remark 2. The privacy is the main aim that should be reached. Therefore, just
before ownership transfer, Ao completes two successful protocol transactions
with tags such that no part of the protocol transcripts are seen by An.

Note that the adversary Ac with incapability explained at Remark 2 corre-
sponds to the new owner, An. Thus, we have the following corollary.

Corollary 2. For the new owner, An, the system has backward untraceability
property for time tk satisfying k < i.

Theorem 2. If Ao has all secrets of the server and tags at time ti, then the
system has forward untraceability property for time tk satisfying k > i.

Proof. Since ownership transfer occurs, Ao misses at least one of the subsequent
successful protocol transactions between An and tags. We can get the best result
if one subsequent successful transaction miss is assumed. In that case, Ao only
knows values of 5K

old1, 4K
old2 , 5S

old1 and 4val1
old. Since the attacker missed

a subsequent successful transaction, the other values are unknown. Note that,
Ao can find the value of 4r2 with possibility of 1

2n since the value of 4Nb is not
known. By similar arguments, Ao guesses the value 4r2 with possibility of 1

2n .
Although Ao knows the values of 4S and 4L, as 4v1 and 4v2 are not known,
Ao can figure out the values of 4M1 and 4M2 with possibility of 1

2n . Hence, the
probability that An distinguishes the transcript that the oracle sent is at most
1
2 + 1

2n . However,
1
2n is negligible.

Therefore, if A0 has all secrets of the server and tags at time ti, then the
system has forward untraceability property for time tk satisfying k > i.

Our next result is about the adversary,As, who can corrupt a tag and capture
all secrets of the tag at any given time and follow all steps of the each successful
protocol runs before and after the time that corruption occurs.

Corollary 3. If As corrupts a tag at time tj with j �= i, then the system has
backward untraceability for time tk satisfying k < j − 1 and forward untraceabil-
ity for time tk satisfying k > j + 1 under the assumption that As misses the
transactions occurred at time j + 1 and j − 1.
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Proof. Forward secrecy part is direct result of Theorem 2. Moreover, the back-
ward secrecy result is derived from Remark 3

Remark 3. If As does not miss the transaction at j−1, then by the knowledge of

jval2, he deduces the value of j−1r1. Thus, the values of j−1r2, j−1M1, j−1M2 are
known to him. Thus, in this case, As can trace the corrupted tag at time tj−1.
However, no more traces are possible, because As knows only the value of j−2Nb

about the transaction realized at time tj−2 and from the similar arguments given
at proof of Theorem 1, the success probability that As traces the corrupted tag
at time tj−2 is 1

2 + 1
2n and 1

2n is negligible.

Remark 4. If As does not miss any transaction after corruption occurs, then As

can trace the corrupted tag forever.

Theorem 3. The proposed protocol satisfies tag authentication under the as-
sumption specified in Corollary 3.

Proof. First of all, let us assume that the adversary has no corrupt tag capa-
bility. In this case, the adversary has to learn the value of either K or Kold1 to
impersonate the tag. To learn the values of these variables, the adversary has to
learn the value of v1 of previous protocol transcript. However, to learn the value
of v1, the adversary has to figure out the value of K of previous runs or the value
of L. However, the value of L is the chosen random Nb value of previous run.
Thus, the adversary can only guess the value of L. Therefore, the values v1, K
and Kold1 are dependent each other. Thus, the only remained way for the ad-
versary to impersonate the tag is to guess the value of v1, K or Kold1 correctly.
Since the space of these variables are large enough, the success probability of
the adversary is negligible.

Moreover, since the tag authentication is investigated under the assumption
Corollary 3, the system satisfies tag authentication for the case where the ad-
versary can corrupt the tag.

4.4 Performance Issues

Considering memory storage for tag identifiers or keys and other information,
our protocol requires 3n+ 1 bit (3n-bit for K, L, and val2 and 1-bit for state)
memory in tag side. Contrary to tags, server has no limited resource so we do
not consider the server-side memory usage.

Concerning computational cost, our protocol requires at most 4 hash com-
putation overhead for the tag. If the tags and the server are synchronized, the
computational complexity at the server side is O(1). Otherwise, the complexity
is at most O(N).

5 Conclusions

In this paper, we first proposed a secure and efficient an RFID mutual authen-
tication protocol which is the revised version of the scheme presented in [12].
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With the use of the authentication protocol, we achieve ownership transfer. We
prove that our protocol provides forward untraceability against the old owner of
the tags and backward untraceability against the new owner of the tags. Also,
we show that our authentication protocol provides backward untraceability of a
tag against an adversary who compromises the tag and forward untraceability
under the assumption that the adversary misses at least one of the subsequent
authentication protocol between the tag and the reader. Our protocol requires
O(1) complexity to identify a synchronized tag.
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Kůr, Jǐŕı 81
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