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Abstract. Participants in argumentation often have some doubts in their argu-
ments and/or the arguments of the other participants. In this paper, we model un-
certainty in beliefs using a probability distribution over models of the language,
and use this to identify which are good arguments (i.e. those with support with a
probability on or above a threshold). We then investigate three strategies for par-
ticipants in dialogical argumentation that use this uncertainty information. The
first is an exhaustive strategy for presenting a participant’s good arguments, the
second is a refinement of the first that selects the good arguments that are also
good arguments for the opponent, and the third selects any argument as long as it
is a good argument for the opponent. We show that the advantage of the second
strategy is that on average it results in shorter dialogues than the first strategy, and
the advantage of the third strategy is that under some general circumstances the
participant can always win the dialogue.

1 Introduction

Persuasion is a complex multifaceted concept. In this paper, we consider uncertainty in
persuasion which is a topic that is underdeveloped in formal models of argument. We
represent the uncertainty that an agent has over its own beliefs by a probability distri-
bution over the models of the language. The agent uses this to judge which arguments
are “good arguments” (arguments with premises with a probability on or above a “good
argument” threshold), and which are “good targets” (arguments with premises with a
probability on or below a “good target” threshold) and as such should be attacked if
an attacker exists. The idea is that if an argument is a good argument but not a good
target, then the agent considers the argument but ignores any attack on it. To illustrate,
consider the following arguments1. Suppose each is a good argument.

– A1 “The metro is the best way to the airport.”
– A2 “There is a strike today by metro workers.”

Now consider the threshold for attack. It would be reasonable in this context to take
a skeptical view (because we worry about missing the flight) and set the threshold for
being a good target to be above the threshold for being a good argument. So even if
the threshold for being a good argument might be set to a high level, we might want
the threshold for being a good target to be even higher. Therefore, for this example, we
would get an argument graph with both arguments where A2 attacks A1.

1 Note, we not proposing a formal model of argument-based decision making (c.f. [1]), but rather
investigating criteria for selecting arguments and attacks to present in argumentation.
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As an alternative example, considerA3 and the potential counterargumentA2 where
both are good arguments. Here we might take a credulous view (because we might
not worry too much about the risk or consequences of delay on the metro when going
home). So we set the threshold for being a good argument as above the threshold for
being a good target. In this context, we may say that even though there exists the coun-
terargument A2, A3 is not a good target because the threshold for being a good target
is lower in this case. In other words, there is insufficient doubt in A3 for A2 to attack
it. In this example, this is reasonable since often some trains still run when there are
problems with the service.

– A3 “The metro is the best way to go home”

As well as considering how an agent might judge its own arguments and counterar-
guments using its probability distribution, we also want to consider how it can be used
in dialogue strategies. For this, we let an agent have an estimate of its opponent’s prob-
ability distribution. This can be used to make the argumentation more efficient and/or
more efficacious. There is no point in presenting arguments that are not going to per-
suade an opponent, particularly when there may be alternative arguments that could
bring about the required outcome. Consider the following dialogue where participant 1
(husband) wants to persuade participant 2 (wife) to buy a particular car. Argument A5

indicates that participant 2 does not believe argument A4, and so participant 1 has not
used a good argument to persuade participant 2.

– A4 “The car is a nice red colour, and that is the only criterion to consider, therefore
we should buy it.”

– A5 “It is a nice red colour, but I don’t agree that that is the only criterion to con-
sider.”

Now consider argument A6 which participant 2 sees as a good argument but not a
good target. So if participant 1 has a good estimate of the probability distribution of
participant 2, then it could see A6 as better to posit than A4, and that this could result
in a more persuasive dialogue.

– A6 “The car is the most economical and easy car to drive out of the options available
to us, and those are the criteria we want to satisfy, so we should buy the car.”

In this paper, we formalise good argument and good attack, and investigate their use
in persuasion dialogues.

2 Preliminaries

We review abstract argumentation [2], probabilistic logic [3], and the use of probabilis-
tic logic in argumentation [4].
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2.1 Abstract Argumentation

An abstract argument graph is a pair (A,R) where A is a set and R ⊆ A × A.
Each element A ∈ A is called an argument and (A,B) ∈ R means that A attacks
B (accordingly, A is said to be an attacker of B) and so A is a counterargument
for B. A set of arguments S ⊆ A attacks Aj ∈ A iff there is an argument Ai ∈ S
such that Ai attacks Aj . Also, S defends Ai ∈ S iff for each argument Aj ∈ A,
if Aj attacks Ai then S attacks Aj . A set S ⊆ A of arguments is conflict-free iff
there are no arguments Ai and Aj in S such that Ai attacks Aj . Let Γ be a conflict-
free set of arguments, and let Defended : ℘(A) �→ ℘(A) be a function such that
Defended(Γ ) = {A | Γ defendsA}. We consider the following extensions: (1) Γ
is a complete extension iff Γ = Defended(Γ ); and (2) Γ is a grounded extension
iff it is the minimal (w.r.t. set inclusion) complete extension. For G = (A,R), let
Nodes(G) = A and let Grounded(G) be the grounded extension of G.

2.2 Probabilistic Logic

We use an established proposal for capturing probabilistic belief in classical proposi-
tional formulae [3]. For this, we assume that the propositional language L is finite.
The set of models (i.e. interpretations) of L is denoted ML. Each model in ML

is an assignment of true or false to the formulae of the language defined in the
usual way for classical logic. So for each model m, and ψ ∈ L, m(ψ) = true or
m(ψ) = false. For φ ∈ L, Models(φ) denotes the set of models of φ (i.e. Models(φ) =
{m ∈ ML | m(φ) = true}), and for Δ ⊆ L, Models(Δ) denotes the set of models of
Δ (i.e. Models(Δ) = ∩φ∈ΔModels(φ)). Let Δ |= ψ denote Models(Δ) ⊆ Models(ψ).

Let L be a propositional language and let ML be the models of the language. A
function P : ML → [0, 1] is a probability distribution iff

∑
m∈ML P (m) = 1.

From a probability distribution, we get the probability of a formula φ ∈ L as follows:
P (φ) =

∑
m∈Models(φ) P (m).

Example 1. Let the atoms of L be {a, b}, and so L is the set of propositional formulae
formed from them. Let m1 and m2 be models s.t. m1(a) = true, m1(b) = true,
m2(a) = true, and m2(b) = false. Now suppose P (m1) = 0.8 and P (m2) = 0.2.
Hence, P (a) = 1, P (a ∧ b) = 0.8, P (b ∨ ¬b) = 1, P (¬a ∨ ¬b) = 0.2, etc.

For any probability distribution P , if |= α, then P (α) = 1, and if |= ¬(α ∧ β), then
P (α ∨ β) = P (α) + P (β).

2.3 Logical Arguments

We use deductive arguments based on classical logic to instantiate abstract argument
graphs. Let Δ ⊆ L be a set of propositional formulae and let 	 be the classical con-
sequence relation. 〈Φ, α〉 is a deductive argument (or simply argument) iff Φ ⊆
Δ and Φ 	 α and Φ �	 ⊥ and there is no Ψ ⊂ Φ s.t. Ψ 	 α. For an argument
A = 〈Φ, α〉, let Support(A) = Φ and Claim(A) = α. Let Arg(Δ) be the set of de-
ductive arguments obtained from Δ. For counterarguments, we use direct undercuts
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[5, 6]. Argument A is a direct undercut of argument B when Claim(A) is ¬ψ for
some ψ ∈ Support(B). The set of direct undercuts is Ucuts(Δ) = {(A,B) | A,B ∈
Arg(Δ) and A is a direct undercut of B}. The probability of an argument is the proba-
bility of its support.

Definition 1. Let P be a probability distribution onML. The probability of an argu-
ment 〈Φ, α〉 ∈ Arg(L), denotedP (〈Φ, α〉), isP (φ1∧. . .∧φn), whereΦ = {φ, . . . , φn}.
Example 2. Consider the following probability distribution over models (with atoms a
and b) for each participant.

Model a b Participant 1 Participant 2

m1 true true 0.5 0.0
m2 true false 0.5 0.0
m3 false true 0.0 0.6
m4 false false 0.0 0.4

Let Δ1 = {a,¬b} (resp. Δ2 = {b,¬b, b→ ¬a}) be the knowlegebase for participant 1
(resp. 2). Below is the probability of each argument according to each participant.

Argument Participant 1 Participant 2

A1 = 〈{a}, a〉 1.0 0.0
A2 = 〈{b, b→ ¬a},¬a〉 0.0 0.6
A3 = 〈{¬b},¬b〉 0.5 0.4

It is possible for the knowledgebase to be inconsistent and yet for the participant to
have a probability distribution over the models, as illustrated by Example 2.

3 Good Arguments and Good Attacks

Each agent has a knowledgebaseΔ, and a probability distribution P , and these are used
to identify good arguments.

Definition 2. For a knowledgebase Δ, a probability distribution P , and a threshold
T ∈ [0, 1], the set of good arguments is GoodArg(Δ,P, T ) = {A ∈ Arg(Δ) | P (A) ≥
T }.
Hence, if T = 0, then all arguments from the knowledgebase are good arguments
(i.e. GoodArg(Δ,P, T ) = Arg(Δ)). Whereas if T = 1, then only arguments that have
premises that are certain are good arguments. Furthermore, if T = 1, then the premises
of the good arguments are consistent together (i.e. (∪A∈GoodArg(Δ,P,T )Support(A)) �	
⊥), and so there are no A,B ∈ GoodArg(Δ,P, T ) such that A is a direct undercut of
B when T = 1.

Good targets (defined next) are arguments for which there is sufficient doubt in their
premises for us to want to attack them even if an attacker exists. If an argument is not
a good target, then we will ignore attacks on it. This is a form of inconsistency/conflict
tolerance allowing us to focus on the more significant inconsistencies/conflicts.
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Definition 3. For a probability distribution P , a threshold S ∈ [0, 1], and a knowledge-
baseΔ, the set of good targets is GoodTarget(Δ,P, S) = {B ∈ Arg(Δ) | P (B) ≤ S}.

If S = 1, then GoodTarget(Δ,P, S) = Arg(Δ), whereas if S = 0, then only
arguments with support with zero probability are good targets. Next, we use S to select
the attacks.

Definition 4. For a knowledgebase Δ, a probability function over arguments P , and
a threshold S ∈ [0, 1], the set of good attacks is GoodAttack(Δ,P, S) = {(A,B) |
(A,B) ∈ Ucuts(Δ) and P (B) ≤ S}.

Given a knowledgebase, and a probability distribution, a good graph is the set of
good arguments and good attacks that can be formed.

Definition 5. For a knowledgebase Δ, thresholds T, S ∈ [0, 1], and a probability dis-
tribution P , the good graph is an argument graph, GoodGraph(Δ,P, T, S) = (A,R),
where A = GoodArg(Δ,P, T ) andR = GoodAttack(Δ,P, S).

For considering whether or not a specific argument is in the grounded extension of a
(good) graph, we only need to consider the component containing it, as illustrated next.

Example 3. SupposeΔ = {a,¬a}. LetA1 = 〈{a}, a〉 andA2 = 〈{¬a},¬a〉. Suppose
we want to determine whether A1 is in the grounded extension of the good graph.
Depending on the choice of P , S, and T , the component to consider is one of G1 to G6

where G1 is (∅, ∅) when P (A1) < T , and the constraints for G2 to G6 are tabulated
below.

Graph Structure P (A1)?T P (A2)?T P (A1)?S P (A2)?S

G2 A1 P (A1) ≥ T P (A2) < T n/a n/a
G3 A1 A2 P (A1) ≥ T P (A2) ≥ T P (A1) > S P (A2) > S
G4 A1 ← A2 P (A1) ≥ T P (A2) ≥ T P (A1) ≤ S P (A2) > S
G5 A1 → A2 P (A1) ≥ T P (A2) ≥ T P (A1) > S P (A2) ≤ S
G6 A1 ↔ A2 P (A1) ≥ T P (A2) ≥ T P (A1) ≤ S P (A2) ≤ S

Proposition 1. If T > S, then ∀ Δ, P , GoodArg(Δ,P, T ) ∩ GoodTarget(Δ,P, S) =
∅. and if T ≤ S, then ∃Δ, P s.t. GoodArg(Δ,P, T )∩GoodTarget(Δ,P, S) �= ∅. Also
if T = 0 and S = 1, then ∀ Δ, P , GoodArg(Δ,P, T ) = GoodTarget(Δ,P, S).

Example 4. Consider the arguments A1 = 〈{a}, a〉 and A2 = 〈{¬a},¬a〉 generated
from Δ where T = 0 and S = 1. Whatever choice is made for P , either P (A1) < 1 or
P (A2) < 1 or both P (A1) < 1 and P (A2) < 1. So if T = 0 then both arguments are
good arguments, and if S = 1 then each argument attacks the other.

In the following, we consider how components in good graphs are constructed via
dialogical argumentation. For this, we will assume S < T , and so T affects the choice
of arguments to present, and S affects the choice of counterarguments to present.
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4 Participants

We will assume two participants called 1 and 2 where 1 wants to persuade 2 about a
claim φ which we refer to as the persuasion claim. Informally, for participant 1 to
persuade participant 2 to accept the persuasion claim, it needs to give an argument with
claim φ that is in the grounded extension of the argument graph produced during the
dialogue. We formalize this in the next section.

For the good argument threshold T , and the good target threshold S, we assume
S < T so that each participant cannot attack its own good arguments. Each participant
has a position: Participant 1 has position Π1 = (Δ1, P1, P

′, T, S, φ) containing its
knowledgebaseΔ1, its probability distribution P1, the probability distribution P ′ which
is an estimate of the probability distribution P2 of the other agent, the thresholds T and
S, and the persuasion claim φ, and participant 2 has a position Π2 = (Δ2, P2, T, S)
containing its knowledgebase Δ2, its probability distribution P2, and the thresholds T
and S. Note, position 1 has more parameters because participant 1 has the lead role
in the dialogue. Also, note each participant does not know the position of the other
participant (apart from S and T ).

Participant 1 can build P ′ as an estimate of P2 over time, such as by learning from
previous dialogues. However, participant 1 does not know whetherP ′ is a good estimate
of P2. But, we as external observers do know Π1 and Π2, and so we can measure how
well P ′ models P2. For this, we use a rank correlation coefficient which assigns a value
in [−1, 1] such that when P ′ and P2 completely agree on the ranking of the arguments,
the coefficient is 1, and when they completely disagree on the ranking of the arguments
(i.e. one is the reverse order of the other), the coefficient is −1 (as defined next).

Consider the set of arguments Arg(Δ) for some Δ and the threshold S. We compare
P ′ and P2 in terms of how they rank each argument in A ∈ Arg(Δ) with respect
to S. Let na be the number of arguments that P ′ and P2 agree on (i.e. na = |{A ∈
Arg(Δ) | (P ′(A) > S and P2(A) > S) or (P ′(A) ≤ S and P2(A) ≤ S)}|, and let
nd be the number of arguments that P ′ and P2 disagree on (i.e. nd = |{A ∈ Arg(Δ) |
(P ′(A) > S and P2(A) ≤ S) or (P ′(A) ≤ S and P2(A) > S)}|. From this, the rank
correlation coefficient is

Correlation(P ′, P2) =
na − nd

na + nd

Example 5. For Arg(Δ) = {A1, A2, A3, A4}, and S = 0.5, let P ′(A1) = 1, P ′(A2) =
0.3, P ′(A3) = 0.7, P ′(A4) = 0.4, P2(A1) = 1, P2(A2) = 0.8, P2(A3) = 0.6, and
P2(A4) = 0.2. So, the coefficient is (3 − 1)/4 = 1/2.

Note, the coefficient is the same as the Kendall rank correlation coefficient [7], but
the way we calculate na and nd is quite different.

5 Dialogical Argumentation

Participants take turns to contribute arguments and/or attacks, thereby constructing an
argument graph. For this, we just record the additions to the graph as defined next.
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Definition 6. A dialogue state is a pair (X,Y ) where X is a set of arguments, and Y
is a set of attacks. Note, Y is not necessarily a subset of X ×X . A dialogue, denoted
D, is a sequence of dialogue states [(X1, Y1), ..., (Xn, Yn)].

We use the function D to denote a dialogue, where for an index i ∈ {1, ..., n},
D(i) = (Xi, Yi) is a dialogue state. For a dialogue D = [(X1, Y1), ..., (Xn, Yn)],
Len(D) = n is the index of the last step, and Sub(D, i) = [(X1, Y1), ..., (Xi, Yi)] is the
first i steps. For each step of the dialogue, there is an argument graph. We define this
graph recursively with the base case being the empty graph.

Definition 7. For dialogueD, s.t. 1 ≤ i ≤ Len(D), andD(i) = (Xi, Yi), Graph(D, i)
= (Ai−1 ∪Xi,Ri−1 ∪ Yi) is the dialogue graph where if i = 1, then (Ai−1,Ri−1) is
(∅, ∅), and if i > 1, then (Ai−1,Ri−1) is Graph(D, i− 1).

So for each step of the dialogue, we can construct the current state of the argument
graph. So the sequence of states of the dialogue are all used to construct the current
state of the graph. Clearly, this is monotonic: Arguments and attacks are added to the
graph, and none are subtracted.

Example 6. Consider the following probability distribution over models for each par-
ticipant, where T = 0.5 and S = 0.3.

Model a b Participant 1 Participant 2

m1 true true 0.8 0.0
m2 true false 0.1 0.5
m3 false true 0.1 0.0
m4 false false 0.0 0.5

Hence, we get the following probabilities for A1 to A3.

Argument Participant 1 Participant 2

A1 = 〈{b, b→ a}, a〉 0.8 0.0
A2 = 〈{¬b},¬b〉 0.1 1.0
A3 = 〈{b}, b〉 0.9 0.0

Now consider dialogue D = [ ({A1}, {}), ({A2}, {(A2, A1)}), ({A3}, {(A3, A2)}),
({}, {(A2, A3)}), ({}, {}) ], where Len(D) = 5, giving the dialogue graph below.

A1A2A3

A dialogue can be infinite since for example the contribution (∅, ∅) can be repeat-
edly added. So to draw the dialogue to a close, we restrict consideration to complete
dialogues.

Definition 8. A dialogueD is complete, where Len(D) = n, and the persuasion claim
is φ, iff

1. ∀i, j ∈ {1, . . . , n}, if i �= j & D(i) = D(j), then D(i) = (∅, ∅) & D(j) = (∅, ∅)
2. ∀i ∈ {1, . . . , n− 2}, if D(i) = (∅, ∅), then D(i+ 1) �= (∅, ∅)
3. if n is even, then ∃A ∈ Grounded(Graph(D,n)) s.t. Claim(A) = φ.
4. if n is odd, then � ∃A ∈ Grounded(Graph(D,n)) s.t. Claim(A) = φ.
5. D(n) = (∅, ∅)
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We explain the above conditions as follows: Condition 1 ensures that the only state
that can be repeated is the empty state; Condition 2 ensures that only the last two step
of the dialogue can have the empty state followed immediately by the empty state;
Conditions 3 and 4 ensure that if the last step is an even step then there is an argument
with the claim in the grounded extension, whereas if the last step is an odd step then
there is not an argument with the claim in the grounded extension; And condition 5
ensures that the last step is the empty state.

In the rest of the paper, for each step i, if i is odd (respectively even) participant 1
(respectively participant 2) will add D(i). So intuitively, at the last step n, if n is odd
(respectively even), participant 1 (respectively participant 2) has conceded the dialogue
(perhaps because it has nothing more to add).

Proposition 2. Let D be a complete dialogue and let A be a finite set of arguments.
If for each i, Xi ⊆ A, and Yi ⊆ A × A, and D(i) = (Xi, Yi), then D is finite (i.e.
Len(D) ∈ N).

Taking a simple view of persuasion, a participant is persuaded of a claim if the dia-
logue graph constructed is such that there is an argument for the claim in the grounded
extension of the graph. We justify this in the next section.

Definition 9. For a complete dialogue D, where Len(D) = n, the outcome of the
dialogue is specified as follows: If n is even, then participant 1 wins, whereas if n is
odd, then participant 1 looses.

So if n is even, then participant 1 is successful in persuading participant 2, otherwise
participant 1 is unsuccessful. The dialogue D in Example 6 is a complete dialogue,
and hence participant 1 looses. In the following sections, we present and justify three
strategies for constructing complete dialogues.

6 Simple Dialogues

In a simple dialogue, participant 1 can add arguments for the persuasion claim that are
not in the current dialogue graph.

Definition 10. For position Π1, and dialogue D, a posit contribution by participant
1 is ({A}, {}) where A ∈ GoodArg(Δ1, P1, T ) and A �∈ Nodes(Graph(D, i)) and
Claim(A) = φ. The set of posit contributions by participant 1 for D at step i is
Posit(Π1, D, i).

Both participants can add counterarguments. For this, the NewAttackers function
identifies the good arguments that participant x has that are not in the current dialogue
graph Gi = Graph(D, i) but that attack an argument in Gi.

NewAttackers(Πx, D, i) = {A ∈ GoodArg(Δx, Px, T ) | A �∈ Nodes(Gi) and
∃B ∈ Grounded(Gi) s.t. Px(B) ≤ S and A is a direct undercut of B}
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Definition 11. For position Πx, and a dialogueD, a counter contribution by partici-
pant x is (Xi+1, Yi+1) s.t.

if there is an A ∈ NewAttackers(Πx, D, i),
then Xi+1 = {A} and Yi+1 = NewArcs(Xi+1 ∪ Nodes(Gi), S)
else Xi+1 = {} and Yi+1 = NewArcs(Nodes(Gi), S)

where Gi = Graph(D, i) and NewArcs(Z, S) = { (A,B) | A,B ∈ Z and Px(A) ≤ S
and A is a direct undercut of B}. The set of counter contributions by participant x for
D at step i is Counter(Πx, D, i).

So a counter contribution is zero or one argument and zero or more arcs, as illus-
trated in Example 6. Let Part1(i) = Simple(Π1, D, i) ∪ Counter(Π1, D, i) (respec-
tively Part2(i) = Counter(Π2, D, i)) be the contributions for participant 1 (respectively
participant 2) at step i. The next definition ensures that the participants take turns in the
contributions.

Definition 12. For positions Π1 and Π2, a dialogue D is turn taking iff for each
i ∈ {1, . . . , Len(D)}, if i is odd, then D(i) ∈ Part1(i) and if i is even, then D(i) ∈
Part2(i).

The next definition ensures that each agent gives a contribution other than (∅, ∅) if
possible (i.e. there is a non-empty contribution) and needed (i.e. for participant 1, there
is not an argument for the persuasion claim in the grounded extension of the current
dialogue graph, and for participant 2, there is a argument for the persuasion claim in the
grounded extension of the current dialogue graph). Note, (∅, ∅) is always available as a
counter contribution.

Definition 13. For positions Π1 and Π2, a complete dialogue D is exhaustive iff for
each i ∈ {1, . . . , Len(D)}, where Gi = Graph(D, i), the following conditions hold.

1. If i is odd, and ∃A ∈ Grounded(Gi) s.t. Claim(A) = φ, then D(i) = (∅, ∅).
2. If i is odd, and � ∃A ∈ Grounded(Gi) s.t. Claim(A) = φ, and |Part1(i)| > 1,

then D(i) �= (∅, ∅).
3. If i is even, and � ∃A ∈ Grounded(Gi) s.t. Claim(A) = φ, then D(i) = (∅, ∅).
4. If i is even, and ∃A ∈ Grounded(Gi) s.t. Claim(A) = φ, and |Part2(i)| > 1,

then D(i) �= (∅, ∅).
A simple dialogue is a dialogue that is turning taking and exhaustive. These defi-

nitions specify how the dialogue is constructed, and if the dialogue is complete it will
terminate. The definitions ensure both agents only add good arguments and good at-
tacks. Let SD(Π1, Π2) be the set of simple dialogues.

Example 7. For A1, A3 and A5 from participant 1 and A2 and A4 from participant 2,
D1 is a simple dialogue for which Participant 1 wins.

A1 = 〈{b, b→ a}, a〉 D1(1) = ({A1}, {})
A2 = 〈{c, c→ ¬b},¬b〉 D1(2) = ({A2}, {(A2, A1)})
A3 = 〈{d, d→ ¬c},¬c〉 D1(3) = ({A3}, {(A3, A2)})
A4 = 〈{¬d},¬d〉 D1(4) = ({A4}, {(A4, A3)})
A5 = 〈{e, e→ ¬c},¬c〉 D1(5) = ({A5}, {(A5, A2)})

D1(6) = ({}, {})
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Example 8. Participant 1 has A1 and A3 and participant 2 has A2. D = [ ({A1}, {}),
({A2}, {(A2, A1)}), ({A3}, {(A3, A2)}), ({}, {(A1, A3)}), ({}, {}) ] is a simple dia-
logue that participant 1 looses.

Example 9. Participant 1 hasA1,A3,A5 andA6, and participant 2 hasA2 andA4.D =
[ ({A1}, {}), ({A2}, {(A2, A1}), ({A3}, {(A3, A2}), ({A4}, {(A4, A3), (A4, A1)}),
({A5}, {(A5, A2)}) ({}, {}) ({A6}, {(A6, A4)}) ({}, {}) ] is a simple dialogue that
participant 1 wins.

We use the joint graph (defined next) to show a type of correctness of the simple
dialogues in the following result.

Definition 14. For positionsΠ1 andΠ2, the joint graph, is an argument graph (A,R),
denoted JointGraph(Π1, Π2), whereA = GoodArg(Δ1, P1, T )∪GoodArg(Δ2, P2, T )
and R = {(A,B) | A,B ∈ A and (P1(B) ≤ S or P2(B) ≤ S) and A is a direct un-
dercut of B }.
Proposition 3. For positions Π1 and Π2, let G∗ be JointGraph(Π1, Π2). For each
D ∈ SD(Π1, Π2), participant 1 wins D iff there is an A ∈ Grounded(G∗) such that
Claim(A) = φ.

So a simple dialogue just involves each participant making contributions until one or
other participant concedes. Both agents are selective in the sense that they only present
good arguments and good attacks. But for participant 1, there is no consideration of
what might be more likely to be persuasive (such as presenting arguments that are less
likely to be attacked by participant 2). We address this next.

7 Bestfirst Dialogues

The bestfirst dialogue involves participant 1 selecting its best arguments for positing
first in the dialogue. Its best arguments, the bestfirst contributions, are its good argu-
ments that it believes are not good targets for participant 2.

Definition 15. For position Π1, and dialogue D, the set of bestfirst contributions is
Bestfirst(Π1, D, i) = {({A}, Y ) ∈ Simple(Π1, D, i) ∪ Counter(Π1, D, i) | P ′(A) >
S}.
Definition 16. For Π1, and Π2, a simple dialogue D is bestfirst iff for each i ∈
{1,. . .,Len(n)}, if i is odd, andBestfirst(Π1, D, i) �= ∅, thenD(i) ∈ Bestfirst(Π1, D, i).
Let BD(Π1, Π2) be the set of bestfirst dialogues.

Example 10. Let D1 = [ ({A1}, {}), ({}, {}) ] and D2 = [ ({A2}, {}), ({A3}, {(A3,
A2)}), ({A1}, {}), ({}, {}) ]. Also let Correlation(P ′, P2) = 1. If P ′(A1) > S and
P ′(A2) ≤ S, then D1 is bestfirst, and if P ′(A1) ≤ S and P ′(A2) > S, then D2 is
bestfirst. In both cases, participant 1 wins.

If the correlation is positive for P ′ and P2, then the next result shows that on average
the bestfirst dialogues are shorter than the simple dialogues.
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Proposition 4. For the majority of positions Π1 and Π2, s.t. Correlation(P ′, P2) > 0,
then (∑

D∈BD(Π1,Π2)
Len(D)

| BD(Π1, Π2) |

)

≤
(∑

D∈SD(Π1,Π2)
Len(D)

| SD(Π1, Π2) |

)

So the bestfirst dialogue captures a more efficient form of persuasion than the simple
dialogue. Participant 1 presents its better arguments first, and if it does not succeed,
then it will use its remaining arguments.

8 Insincere Dialogues

The insincere dialogue is characterised by the proponent selecting its arguments based
on what it believes the other participant believes (and therefore selecting the arguments
that are less likely to be attacked by the other participant). Note, we do not assume that
participant 1 actually believes these arguments. It is being manipulative by presenting
arguments that it believes that the other participant will accept.

Definition 17. For positionΠ1, and a dialogueD, the set of insincere contributions by
participant 1 for D is the following where Πinsincere = (Δ1, P

′, P ′, S, T, φ).

Insincere(Π1, D, i) = Posit(Πinsincere, D, i) ∪ Counter(Πinsincere, D, i)}

Definition 18. For positions Π1 and Π2, a simple dialogue D is insincere iff for each
i ∈ {1, . . . , Len(n)}, if i is odd, then D(i) ∈ Insincere(Π1, D, i), and if i is even, then
D(i) ∈ Counter(Π2, D, i). Let ID(Π1, Π2) be the set of insincere dialogues.

So D ∈ ID(Π1, Π2) iff D ∈ SD(Πinsincere, Π2). The advantage for participant 1
is that it is not restricted by its own probability distribution in making its contributions.
Rather, the aim for participant 1 is to present any arguments it can with the sole aim of
winning the dialogue. Though one would assume that participant 1 would have a high
belief in the persuasion claim φ (i.e. P1(φ) is high) for it to want to resort to an insincere
dialogue.

Example 11. Let m1(a) = true, m1(b) = true, m1(c) = false, m2(a) = true,
m2(b) = false, and m2(c) = true. For positions Π1 and Π2, where Δ1 = {b, b →
a, c, c → a}, P1(m1) = 1, Δ2 = {¬b}, and P2(m2) = 1, let φ be a. Also, suppose
P ′ = P2. So A1 = 〈{b, b → a}, a〉 is a good argument for participant 1, but a good
target for participant 2. In a simple dialogue, participant 1 only has one argument for
a, and it would loose the dialogue (because participant 2 would attack with A2 =
〈{¬b},¬b〉). In contrast,A3 = 〈{c, c→ a}, a〉 is not a good argument for participant 1,
but for participant 2, it is a good argument and not a good target. So, A3 is an insincere
contribution for participant 1, and it would win the insincere dialogue using it.

In the next example, we let Δ1 = L. Since participant 1 is prepared to say anything
that participant 2 believes, this just means that it is prepared to present any argumentA
available in the language L as long as the recipient believes it.
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Example 12. Let Δ1 = L where A1, A3 ∈ Arg(Δ1) and A2 ∈ Arg(Δ2), and assume
the following regarding the probability distributions.

P1(A1) > T ;P ′(A1) > T ;P ′(A1) > S;P2(A1) < S
P1(A2) < T ;P ′(A2) < T ;P ′(A2) < S;P2(A2) < S
P1(A3) < T ;P ′(A3) > T ;P ′(A3) > S;P2(A3) > S

So P ′ only differs from P2 on A1. Hence, D = [ ({A1}, {}), ({A2}, {(A2, A1)}),
({A3}, {(A3, A2)}), ({}, {}) ] is an insincere dialogue that participant 1 wins.

The following definition of openness of a position just means that there is at least one
atom in the language for which there are no strong arguments for or against it. In effect,
it means that participant 2 has not got a position so constrained that it is impossible to
persuade it.

Definition 19. A position Π2 is open iff there is an atom ψ ∈ L, s.t. for all A ∈
GoodArgs(Δ2, P2, T ), Claim(A) �= ψ and Claim(A) �= ¬ψ.

Proposition 5. Let Π1 and Π2 be positions s.t. Δ1 = L, the persuasion claim is φ,
and Correlation(P ′, P2) = 1. For any D ∈ ID(Π1, Π2) if either (P2(¬φ) ≤ S and
S < 0.5) or Π2 is open, then participant 1 wins D.

The above result is a situation where the participant 1 has a very good model of
participant 2. We can generalise the result to imperfect models of the opponent so that
with high probably that participant 1 wins.

The idea of an insincere strategy is important; If a protocol for a argumentative dia-
logue allows for this strategy, then the above result shows that a participant can domi-
nate in a quite negative way. It can manipulate the opponent, and the opponent may be
oblivious to this manipulation. We are not proposing that we want to build agents who
use the insincere strategy. But, we may want to build agents who are aware that there
are other agents who do use the insincere strategy and protect against it. So we need to
formalise and investigate the insincere strategy and developments of it.

9 Discussion

In this paper, we have introduced good arguments, good targets, and good attacks. We
therefore provide a new approach to constructing argument graphs, drawing on proba-
bility theory, that allows us to drop arguments if there is too much doubt in them, and to
drop attacks if there is insufficient doubt in them. There are other proposals that drop at-
tacks (e.g. preference-based argumentation frameworks [8], value-based argumentation
frameworks [9], and weighted argumentation frameworks [10]), but they do not drop
arguments other than by attacking them, and they are not based on a quantitative theory
of uncertainty. There are proposals for using probability theory in argumentation (e.g.
[4, 11–15]) but they do not drop arguments or attacks, and there is a possibility theory
approach [16]) but it is not based on argument graphs.

Our approach has been influenced by Amgoud et al [17] (a detailed protocol for
exchanging logical arguments using preference-based argumentation). We go beyond
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that by providing a way to select arguments and counterarguments to be used, and for
strategies that use selectivity. We can allow for instance for an agent to present the
arguments it has greatest belief in and it thinks the other agent has high belief in. We
also allow for tolerance of arguments by an opponent. For instance an opponent may
choose to not attack an argument if it thinks the argument is not too bad.

There are a number of papers that formalize aspects of persuasion. Most approaches
are aimed at providing protocols for dialogues (for a review see [18]). Forms of cor-
rectness (e.g. the dialogue system has the same extensions under particular dialecti-
cal semantics as using the agent’s knowledgebases) have been shown for a variety of
systems (e.g. [19–22]). However, strategies for persuasion, in particular taking into ac-
count beliefs of the opponent are under-developed. Using selection of arguments, based
on probability distributions for the agents, and for modelling one agent by another, we
can formalise interesting strategies. To illustrate the potential, we consider the bestfirst
strategy with a clear proven advantage, and the more complex insincere strategy.

Strategies in argumentation have been analysed using game theory [23, 24]. This
mechanism design approach assumes that all the agents reveal their arguments at the
same time, and the resulting argument graph is evaluated using grounded semantics.
This is a one step process that does not involve logical arguments, dialogues or opponent
modelling. Mechanism design has also been used for comparing strategies for logic-
based dialogical argumentation that may involve lying [25]. This complements our work
since they do not consider the uncertainty of beliefs or modelling the opponent.

Finally, audience modelling has been considered in value-based argumentation
frameworks [9, 26] and in deductive argumentation [27, 28]. However, they have not
been harnessed in strategies in dialogical argumentation, and only [26] considers uncer-
tainty in the form of a probability assignment that an argument will promote a particular
“value” with an agent, which is a different kind of uncertainty to that considered here.

In conclusion, we provide a novel framework for modelling uncertainty in argumen-
tation, and use this to give three examples of strategy for dialogical argumentation. In
future work, we will develop further strategies, and investigate learning the probability
distributions from previous interactions.
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