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Abstract. In the literature, enforcement consists in changing an argumentation
system in order to force it to accept a given set of arguments. In this paper, we
extend this notion by allowing incomplete information about the initial argumen-
tation system. Generalized enforcement is an operation that maps a propositional
formula describing a system and a propositional formula that describes a goal, to
a new formula describing the possible resulting systems. This is done under some
constraints about the allowed changes. We give a set of postulates restraining the
class of enforcement operators and provide a representation theorem linking them
to a family of proximity relations on argumentation systems.
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1 Introduction

During a trial, a lawyer makes her final address to the judge; the lawyer of the opposite
party, say O, is able to build the argumentation system (a graph containing arguments
and attacks relation between them) corresponding to this pleading. O is also able to
compute all the arguments that are accepted according to the pleading, i.e., the set of
consensual arguments. Suppose now that O wants to force the audience to accept an-
other set of arguments. She has to make a change to the argumentation system, either
by adding an argument or by making an objection about an argument (to remove it) in
order to achieve this goal. In the literature, the operation to perform on an argumenta-
tion system in order to ensure that a given set of arguments is accepted given a set of
authorized changes is called “enforcement” [3].

This enforcement may be done more or less easily, since it may involve more or less
changes (costs to add/remove arguments may be introduced). The aim of the speaker
will be to find the least expensive changes to make to the argumentation system.

The previous example is a particular case of a more general enforcement operator.
Since we could consider cases where Agent O does not know exactly the argumentation
system on which she must make a change but knows only some information about
it (e.g. some arguments that are accepted or that are present in the system). In this
more general case, the idea is to ensure that the argumentation system after change
satisfies a given goal whatever the initial system is. The result of enforcement will give
a characterization of the set of argumentation systems that could be obtained (taking
into account a set of authorized changes).

The key idea developed in this paper is the parallel between belief update theory
[19,16] and enforcement in argumentation. Enforcement consists in searching for the
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argumentation systems that are closest to a given starting argumentation system, in a
set of argumentation systems in which some target arguments are accepted. This gives
us the parallel with preorders on worlds in belief update. Hence worlds correspond to
argumentation systems while formulas should represent knowledge about these argu-
mentation systems. In classical enforcement this knowledge is expressed in terms of a
description of an initial argumentation system and a set of arguments that one wants to
see accepted. This is why we propose to introduce a propositional language in which
this kind of information may be expressed. This language enables us to generalize en-
forcement with a broader expressiveness.

Our paper is situated in the growing domain of dynamics of argumentation systems
[8,7,9,3,18,17] which covers both addition and removal of arguments or interactions. It
is organized as follows. We first restate abstract argumentation theory. Then we present
a framework that illustrates a particular case of change in argumentation, it concerns
an agent that wants to act on a given target system, this agent has a given goal and her
possible actions are limited. We then recall classical enforcement. In the third section
we propose a generalization of classical enforcement. Finally, we do a parallel with
belief update. As classical update postulates do not allow to deal with restrictions about
the authorized changes, we had to introduce a new set of postulates that characterizes
generalized enforcement. All the proofs can be found in [4].

2 Framework

2.1 Abstract Argumentation

Let us consider a set Arg of symbols (denoted by lower case letters) representing a set
of arguments and a relation Rel on Arg × Arg. The pair 〈Arg, Rel〉, called universe,
allows us to represent the set of possible arguments together with their interactions.
More precisely, Arg represents a maybe infinite set of arguments usable in a given
domain (e.g. if the domain is a knowledge base then Arg and Rel are the set of all
arguments and interactions that may be built from the formulas of the base). We can
also, as in the following example borrowed from [5], assume that Arg and Rel are
explicitly provided.

Example 1. During a trial1 concerning a defendant (Mr. X), several arguments can be
involved to determine his guilt. This set of arguments i.e., the set Arg and the relation
Rel are given below.

x0 Mr. X is not guilty of premeditated murder of Mrs. X , his wife.

x1 Mr. X is guilty of premeditated murder of Mrs. X .

x2
The defendant has an alibi, his business associate has solemnly sworn that he met him
at the time of the murder.

1 In real life, lawyers may be confronted to tougher problems than the one presented here.
Namely objection should often be done before an argument is fully laid out in order to stop
the jury forming an impression. Unfortunately, this side of real life argumentation is not yet
handled in our proposal.
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x3
The close working business relationships between Mr. X and his associate induce
suspicions about his testimony.

x4
Mr. X loves his wife so deeply that he asked her to marry him twice. A man who loves
his wife cannot be her killer.

x5 Mr. X has a reputation for being promiscuous.

x6
The defendant had no interest to kill his wife, since he was not the beneficiary of the
huge life insurance she contracted.

x7
The defendant is a man known to be venal and his “love” for a very rich woman could
be only lure of profit.

x5 x6 x3 x2

x7 x4 x1 x0

A new definition of argumentation system derives directly from a universe 〈Arg,
Rel〉. It differs slightly from the definition of [13] by the fact that arguments and inter-
actions are taken in the universe. In the following, we will use indifferently “argumen-
tation system” or “argumentation graph”.

Definition 1. An argumentation graph G is a pair (A,R) where A ⊆ Arg is the finite
set of vertices of G called “arguments” and R ⊆ RA = Rel ∩ (A × A) (RA is the
restriction of Rel on A) is its set of edges, called “attacks”. The set of argumentation
graphs that may be built on the universe 〈Arg, Rel〉 is denoted by Γ . In the following,
x ∈ G when x is an argument, is a shortcut for x ∈ A.

Example 2. In Example 1, we consider that all the arguments of the universe are known
by Agent O, but she is not sure about the content of the jury’s argumentation system.
She hesitates between two graphs:

x2

x7 x4 x1 x0

x2

x4 x1 x0

In argumentation theory, see [13], given such graphs, there are several ways to com-
pute a set of “accepted” arguments. This computation depends on the way to select
admissible groups of arguments, called “extensions”; several definitions can be consid-
ered for the “extensions”, they are called “semantics”. It depends also on the attribution
of a status to arguments, for instance an argument can be “accepted skeptically” or re-
spectively “credulously”, if it belongs to all, respectively, to at least one extension. For
sake of generality, we are not interested in a particular semantics nor on the mechanism
used to instate the status of the arguments. We only consider a function acc : Γ → 2Arg

which associates with any argumentation graph G the set of arguments that have an
accepted status in G according to a given semantics and a given status computation2.

2 This function could be parameterized by the precise semantics used.
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We will define a propositional language L in order to be able to describe an argu-
mentation system and its set of accepted arguments. Its semantics will be defined with
respect to Γ . ∀ϕ ∈ L , we denote by [ϕ] the set of argumentation graphs such that ϕ
is true in these graphs, namely [ϕ] = {G ∈ Γ s.t. ϕ is true in G}. As usual, we denote
G |= ϕ iff G ∈ [ϕ] and ϕ |= ψ iff [ϕ] ⊆ [ψ].

For sake of simplicity in all the examples, we are going to use a restricted proposi-
tional language LArg, only able to express conditions about the presence or the accepted
status of an argument in a graph. With this language, we can only handle examples about
argument addition or removal. Hence, changes about interactions won’t be considered,
which allows us to assume that R is always equal to RA in all our examples.

Definition 2. Let ΓArg be the set of argumentation graphs (A,RA) that may be built on
Arg. Let LArg be the propositional language associated with the vocabulary {a(x), on(x)
| x ∈ Arg}3, with the usual connectives ¬,∧,∨,→,↔ and constants ⊥ and . Its se-
mantics is defined with respect to ΓArg as follows: let G ∈ ΓArg
– the formula ⊥ is always false in G
– the formula  is always true in G
– if x ∈ Arg then
• the formula a(x) is true in G iff x ∈ acc(G),
• the formula on(x) is true in G iff x ∈ G

– the non atomic formulas are interpreted as usual, ¬ϕ is true in G if ϕ is not true in
G, ϕ1 ∨ ϕ2 is true in G if ϕ1 or ϕ2 is true in G, etc.

Note that every accepted argument in a graph should belong to the graph, hence in
LArg, ∀G ∈ ΓArg, ∀x ∈ Arg, G |= a(x) → on(x).

Definition 3. The characteristic function fArg associated with LArg, fArg : ΓArg →
LArg, is defined by:
∀G ∈ ΓArg, fArg(G) =

∧
x∈G on(x) ∧

∧
x∈Arg\G ¬on(x).

Note that, in Definition 2, the attack relation being fixed, if the set of arguments be-
longing toG is known thenG is perfectly known. More formally, fArg(G) characterizes
G in a unique way:

Property 1. ∀G ∈ ΓArg, [fArg(G)] = {G}
Example 3. The jury’s system is not completely known by Agent O. It is represented
in LArg by the formula ϕJury = on(x0) ∧ on(x1) ∧ on(x2) ∧ on(x4) ∧ ¬on(x3)
∧ ¬on(x5) ∧ ¬on(x6) ∧ (on(x7) ∨ ¬on(x7)) which covers the two graphs drawn in
Example 2; the disjunction between on(x7) and ¬on(x7) expresses the fact that Agent
O hesitates. Moreover, x0, x2 and (x4 or x7) are the only members of the “grounded
extension” [13]. Hence, ϕJury |= a(x0) ∧ a(x2) ∧ (a(x4) ∨ a(x7)).

Note that the idea to write propositional formulas for expressing acceptability of ar-
guments was first proposed in [11]. This was done with a completely different aim,
namely to generalize Dung’s argumentation framework by taking into account addi-
tional constraints (expressed in logic) on the admissible sets of arguments.

3 “a” stands for “accepted in G” while “on” stands for “belongs to G”.
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2.2 Change in Argumentation

In this section we propose a definition of change in argumentation based on the work
of [9,6] and adapted to the encoding of generalized enforcement operators. [9] have
distinguished four change operations. An elementary change is either adding/removing
an argument with a set of attacks involving it, or adding/removing an attack. According
to the restriction explained in Section 2.1, we only present in Definition 4 the opera-
tions of addition and removal on arguments. Moreover operations are only defined for
specific argumentation systems of the form (A,RA) where RA = Rel ∩ (A × A) i.e.
RA contains all the attacks concerning arguments of A that are present in the universe
(Arg, Rel). Note that this definition gives only a particular example of change opera-
tions when the attack relation is fixed.

The purpose of the following definitions is the introduction of a particular frame-
work, that will be used to illustrate enforcement. In this framework, we consider an
agent that may act on a target argumentation system. This agent has a goal and should
follow some constraints about the actions she has the right to do. For instance, an agent
can only advance arguments that she knows. Hence some restrictions are added on the
possible changes that may take place on the system. These constraints are represented
by the notion of executable operation.

We first refine the notion of elementary operation within the meaning of [9] in four
points: first a precise syntax is given; then we define an allowed operation w.r.t. a given
agent’s knowledge; we restrict this notion w.r.t. its feasibility on the target system (it
is not possible to add an already present argument or to remove an argument which
was not in the graph), it leads to the notion of executable operation; and finally, we
study the impact of an operation on an argumentation system. Note that considering
only elementary operations does not result in a loss of generality since any change can
be translated into a sequence of elementary operations, called program in Definition 5.

Definition 4. Let k be an agent and Gk = 〈Ak, RAk
〉 be her argumentation system

and let G = 〈A,RA〉 be an argumentation system.
– An elementary operation is a pair o = 〈op, x〉 where op ∈ {⊕,�} and x ∈ Arg.
– An elementary operation 〈op, x〉 is allowed for k iff x ∈ Ak.4

– An operation executable by k on G is an operation 〈op, x〉 allowed for k such that:
• if op = ⊕ then x �∈ A
• if op = � then x ∈ A.

– An operation o = 〈op, x〉 executable by k onG provides a new argumentation system
G′ = o(G) = 〈A′, RA′〉 such that:
• if op = ⊕ then G′ = 〈A ∪ {x}, RA∪{x}〉
• if op = � then G′ = 〈A \ {x}, RA\{x}〉

Example 4. From Arg and Rel given in Example 1, several elementary operations
are syntactically correct, e.g., 〈⊕, {x2}〉 and 〈�, {x4}〉. Among the elementary opera-
tions, Agent O is only allowed to use those concerning arguments she knows. Since O

4 Note that in the case of an argument addition, if the attack relation had not been imposed then
it would have been possible to add an argument with only a part of the known attacks and
therefore to “lie by omission” or to add attacks unknown to the agent and therefore lie in an
“active” way. This will be the subject of future work.
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learnt all about this trial, all the elementary operations are allowed for O. 〈⊕, {x5}〉,
〈�, {x4}〉, 〈�, {x2}〉 are some executable operations for O on the systems described
by ϕJury .

Finally, we consider sequences of operations executed by an agent on an argumen-
tation system, called programs, which are providing the possibility for an agent to per-
form several elementary operations one after the other.

Definition 5. Let G = 〈A,RA〉 be an argumentation system. A program p executable
by an agent k on G is a finite ordered sequence of n operations (o1, · · · , on) s.t.:
– n = 1 : o1 is executable by k on G. Hence p(G) = o1(G).
– n > 1 : (o1, · · · , on−1) is a program p′ executable by k on G such that p′(G) = G′

and on is executable by k on G′. Hence p(G) = on(G
′).

– By extension, an empty sequence is also a program. Hence, for p = (), p(G) = G.

2.3 Enforcement

The main references about enforcement are [3,2] that address the following question :
is it possible to change a given argumentation system, by applying change operations,
so that a desired set of arguments becomes accepted? Baumann has specified necessary
and sufficient conditions under which enforcements are possible, in the case where
change operations are restricted to the addition of new arguments and new attacks.
More precisely, [2] introduces three types of changes called expansions: the normal
expansion adds new arguments and new attacks concerning at least one of the new
arguments, the weak expansion refines the normal expansion by the addition of new
arguments not attacking any old argument and the strong expansion refines the normal
expansion by the addition of new arguments not being attacked by any old argument.

It is not the case in general that any desired set of arguments is enforceable using a
particular expansion. Moreover, in some cases, several enforcements are possible, some
of them requiring more effort than others. In order to capture this idea, [2] introduces
the notion of characteristic which depends on a semantics and on a set of possible ex-
pansions. The characteristic of a set of arguments is defined as the minimal number of
modifications (defined by the differences between the attacks on the two graphs) that
are needed in order to enforce this set of arguments. This number equals 0 when each
argument of the desired set is already accepted. It equals infinity if no enforcement is
possible. [2] provides means to compute the characteristic w.r.t. a given type of expan-
sion and a given semantics.

3 Towards Generalized Enforcement

Let us formalize enforcement using the definitions presented in Section 2.1. LetG ∈ Γ
and X ⊆ Arg. An enforcement of X on G is a graph G′ ∈ Γ obtained from G by
applying change operations and such that X ⊆ acc(G′). Different enforcements of
X on G can be compared using a preorder �G. For instance, it seems natural to look
for enforcements performing a minimal change on G. Minimality can be based on a
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distance for instance. In that case, given two enforcements G′ and G′′ of X on G,
G′ �G G′′ may be defined as distance(G,G′) ≤ distance(G,G′′).

This preorder �G suggests to draw a parallel between the enforcement problem and
an update problem. Indeed, as we will see in Section 4.1, update is also related to
the same kind of preorder on worlds w.r.t. a given world. More precisely an update
operator maps a knowledge base and a piece of information to a new knowledge base,
where knowledge bases are expressed in terms of propositional formulas. The semantic
counterpart of this mapping is defined by operations on models of formulas, i.e., worlds.
This gives birth to the idea that graphs are to worlds what formulas characterizing sets
of graphs are to formulas characterizing sets of worlds.

Definition 2 enables us to continue the parallel. Let S ⊆ Arg and α =
∧

x∈S a(x).
[α] can be considered as the set of graphs in which the elements of S are accepted. In
other words, [α] plays the role of the set of graphs that accept S.

This leads to formalize an enforcement problem as an operator applying to propo-
sitional formulas, with a semantic counterpart working with argumentation graphs. So
enforcing a propositional formula α on a propositional formula ϕ means enforcing α
on the graphs that satisfy ϕ.

This setting allows us to have two generalizations of enforcement: first it is now
possible to use enforcement not only to impose that a set of arguments is accepted,
but also to make enforcement with any goal that can be expressed in a propositional
language describing graphs. Second, the initial graph does not necessarily have to be
completely known since a description in a propositional language allows for a richer
expressivity. Hence, a set of graphs will be considered as representing the initial state
of the argumentation system.

Let us explain more precisely the notion of goal: it reflects conditions that an agent
would like to see satisfied in a particular argumentation system. We may consider two
types of goals, namely “absolute” and “relative”. An absolute goal only takes into ac-
count the resulting system after modifying the target system; it formally focuses on G′.
A relative goal takes into account the target system and its resulting system; it formally
focuses on (G,G′). An example of relative goal could be that the number of accepted ar-
guments increases after enforcement. In the following, we only consider absolute goals,
since relative goals are difficult to express in an update manner.

These goals could involve the arguments, the extensions, the set of extensions as
well as its cardinality, the set of extensions containing a particular argument as well
as its cardinality. Hence goals are represented by expressions involving these notions
and that may contain classic comparison operators (=, <, >, etc.), quantifiers ∀ and ∃,
membership (∈) and inclusion (⊆), union (∪) and intersection (∩) of sets, classical logic
operators (∧, ∨, →, ↔, ¬). If we associate a propositional formula with an absolute goal
then a goal is satisfied in a graph if the associated formula holds in this graph.

Example 5. We know that O wants to enforce the set {x1}. This goal can be expressed
in LArg by the formula a(x1). To enforce Argument x1 on the Jury’s graph, O can use
the program (〈⊕, x5〉, 〈⊕, x3〉) which has the impact shown in the following graphs. A
more complex goal could be e.g., ¬a(x4) ∨ a(x0).
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x5 x3 x2

x7 x4 x1 x0

x5 x3 x2

x4 x1 x0

We are now able to define formally generalized enforcement.
Requirement: Generalized enforcement is based on a propositional language L

able to describe any argumentation system and its set of accepted arguments, and a
characteristic function f associated with L , such that ∀G ∈ Γ , [f(G)] = {G}.

For instance, LArg of Definition 2 could be used as L . However, LArg does not
allow to express conditions about the cardinality of each extension after enforcement.
LArg is only an example that has been introduced for illustrative purpose. The following
results hold for any propositional language L .

In order to capture classical enforcement we also need to be able to restrict the ways
that graphs are allowed to change. This is done by introducing a set T ⊆ Γ × Γ of
allowed transitions between graphs.

Here are three examples of sets of allowed transitions that could be used:

– If the allowed changes are executable elementary operations for an agent k then T k
e =

{(G,G′) ∈ Γ × Γ , ∃o s.t. o is an elementary executable operation by k on G s.t.
o(G) = G′}.

– If the allowed changes are executable programs by an agent k then T k
p = {(G,G′) ∈

Γ × Γ , ∃p s.t. p is an executable program by k on G s.t. p(G) = G′}
– Baumann’s normal expansion can be translated in terms of allowed transitions as
follows: TB = {(G,G′) ∈ Γ × Γ , with G = (A,RA) and G′ = (A′, RA′) s.t.
A � A′}. It means that the transitions admitted by Baumann’s normal expansion are
restricted to the addition of a new set of arguments.

Now, we are in position to define formally a generalized enforcement operator:

Definition 6. A generalized enforcement operator is a mapping relative to a set of au-
thorized transitions T ⊆ Γ ×Γ from L ×L → L which associates with any formula
ϕ giving information about a target argumentation system, and any formula α encoding
a goal, a formula, denoted ϕ♦Tα, characterizing the argumentation systems in which
α holds, that can be obtained by a change belonging to T .

Example 6. In Example 5, if Agent O wants to enforce acceptation of x1 when x2 and
x4 are present (w.r.t. the grounded semantics) with an executable program then she can
use the following result: ϕJury♦TO

p
(a(x1) ∧ on(x2) ∧ on(x4) ) |= on(x3) ∧ on(x5)

Notation: ∀ϕ, ψ ∈ L , a transition in T is possible between a set of graphs satisfying
ϕ to a set of graphs satisfying ψ, denoted (ϕ, ψ) |= T , iff ([ϕ] �= ∅ and ∀G ∈ [ϕ],
∃G′ ∈ [ψ], (G,G′) ∈ T ). In other words, a transition from a given set of graphs
towards another set is possible, iff there is a possible transition from each graph of the
first set (which should not be empty) towards at least one graph of the second set.
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4 Generalized Enforcement Postulates

4.1 Background on Belief Change Theory

In the field of belief change theory, the paper of AGM [1] has introduced the concept
of “belief revision”. Belief revision aims at defining how to integrate a new piece of
information into a set of initial beliefs. Beliefs are represented by sentences of a formal
language. Revision consists in adding information while preserving consistency.

A very important distinction between belief revision and belief update was first es-
tablished in [19]. The difference is in the nature of the new piece of information: either
it is completing the knowledge of the world or it informs that there is a change in the
world. More precisely, update is a process which takes into account a physical evolution
of the system while revision is a process taking into account an epistemic evolution, it is
the knowledge about the world that is evolving. In this paper, we rather face an update
problem, since in enforcement, the agent wants to change a graph in order to ensure
that some arguments are now accepted (graphs play the role of worlds, as explained in
Section 3)5.

We need to recall some background on belief update. An update operator [19,16] is a
function mapping a knowledge base ϕ, expressed in a propositional logic L , represent-
ing knowledge about a system in an initial state and a new piece of informationα ∈ L ,
to a new knowledge base ϕ � α ∈ L representing the system after this evolution. In
belief update, the input α should be interpreted as the projection of the expected effects
of some “explicit change”, or more precisely, the expected effect of the action “make
α true”. The key property of belief update is Katsuno and Mendelzon’s Postulate U8
which tells that models of ϕ are updated independently (contrarily to belief revision).
We recall here the postulates of Katsuno and Mendelzon, where L denotes any propo-
sitional language and [ϕ] denotes the set of models of the formula ϕ:6 ∀ϕ, ψ, α, β ∈ L ,

U1: ϕ � α |= α
U2: ϕ |= α =⇒ [ϕ � α] = [ϕ]
U3: [ϕ] �= ∅ and [α] �= ∅ =⇒ [ϕ � α] �= ∅

U4: [ϕ] = [ψ] and [α] = [β] =⇒ [ϕ � α] = [ψ � β]
U5: (ϕ � α) ∧ β |= ϕ � (α ∧ β)
U8: [(ϕ ∨ ψ) � α] = [(ϕ � α) ∨ (ψ � α)]
U9: if card([ϕ]) = 1 then [(ϕ �α)∧β] �= ∅ =⇒ ϕ � (α∧β) |= (ϕ �α)∧β (where
card(E) denotes the cardinality of the set E)

These postulates allow Katsuno and Mendelzon to write the following representa-
tion theorem concerning update, namely, an operator satisfying these postulates can be
defined by means of a ternary preference relation on worlds (the set of all worlds is
denoted by Ω).

5 A revision approach would apply to situations in which the agent learns some information
about the initial argumentation system and wants to correct her knowledge about it. This
would mean that the argumentation system has not changed but the awareness of the agent
has evolved.

6 Postulates U6 and U7 are not considered here since the set U1-U8 is only related to a family
of partial preorders while replacing U6-U7 by U9 ensures a family of complete preorders.
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Theorem 1 ([16]). There is an operator � : L × L → L satisfying U1, U2, U3,
U4, U5, U8, U9 iff there is a faithful assignment that associates with each ω ∈ Ω a
complete preorder, denoted �ω s.t. ∀ϕ, α ∈ L , [ϕ � α] = ⋃

ω∈[ϕ]{ω′ ∈ [α] s.t. ∀ω′′ ∈
[α], ω′ �ω ω

′′}
where an assignment of a preorder7 �ω to each ω ∈ Ω is faithful iff ∀ω, ω′ ∈ Ω,

ω ≺ω ω
′.

This set of postulates has already been broadly discussed in the literature (see e.g.,
[15,14,12]). U2 for instance imposes inertia which is not always suitable. Herzig [14]
proposes to restrict possible updates by taking into account integrity constraints, i.e.,
formulas that should hold before and after update. Dubois et al. [12] proposes to not
impose inertia and to allow for update failure even if the formulas are consistent. This
is done by introducing an unreachable world called z in order to dispose of an upper
bound of the proximity from a current world to an unreachable world. In the following,
as seen in Section 3, we want to restrain the possible changes. Hence we have to allow
for enforcement failure. As we have seen, we choose to introduce a set of allowed tran-
sitions T which restricts possible enforcements. The idea to define an update operator
based on a set of authorized transitions was first introduced by Cordier and Siegel [10].
Their proposal goes beyond our idea since they allow for a greater expressivity by using
prioritized transition constraints. However, this proposal is only defined at a semanti-
cal level (in terms of preorders between worlds), hence they do not provide postulates
nor representation theorem associated with their update operator. Moreover our idea to
define postulates related to a set T of authorized transitions generalizes [14] since in-
tegrity constraints can be encoded with T (the converse is not possible). Consequently,
we have now to adapt update postulates in order to restrict possible transitions.

4.2 Postulates Characterizing Enforcement on Graphs with Transition
Constraints

We are going to define a set of rational postulates for ♦T . These postulates are con-
straints that aim at translating the idea of enforcement. Some postulates coming from
update are suitable, namely U1, since it ensures that after enforcement the constraints
imposed by α are true. U2 postulate is optional, it imposes that if α already holds in a
graph then enforcing α means no change. This postulate imposes inertia as a preferred
change, this may not be desirable in all situations. U3 transposed in terms of graphs
imposes that if a formula holds for some graphs and if the update piece of information
also holds for some graphs then the result of enforcement should give a non empty set
of graphs. Here, we do not want to impose that any enforcement is always possible
since some graphs may be unreachable from others. So we propose to replace U3 by a
postulate called E3 based on the set of authorized transitions T : ∀ϕ, ψ, α, β ∈ L

E3: [ϕ♦Tα] �= ∅ iff (ϕ, α) |= T

Due to the definition of (ϕ, α) |= T , E3 handles two cases of enforcement impossibility:
no possible transition and no world (i.e. no graph satisfying ϕ or α, as it will be shown
in Proposition 3).

7 In the following, ≺ω is defined from �ω as usual by: a ≺ω b iff a �ω b and not b �ω a.
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U4 is suitable in our setting since enforcement operators are defined semantically.
U5 is also suitable for enforcement since it says that graphs enforced by α in which
β already holds are graphs in which the constraints α and β are enforced. Due to the
fact that we want to allow for enforcement failure, this postulate had been restricted to
“complete” formulas8.

E5: if card([ϕ]) = 1 then (ϕ♦Tα) ∧ β |= ϕ♦T (α ∧ β)if card([ϕ]) = 1 then
(ϕ♦Tα) ∧ β |= ϕ♦T (α ∧ β)

U8 captures the decomposability of enforcement with respect to a set of possible input
attack graphs. We slightly change this postulate in order to take into account the pos-
sibility of failure, namely if enforcing something is impossible then enforcing it on a
larger set of graphs is also impossible, else the enforcement can be decomposable:

E8 if ([ϕ] �= ∅ and [ϕ♦Tα] = ∅) or ([ψ] �= ∅ and [ψ♦Tα] = ∅)
then [(ϕ ∨ ψ)♦Tα] = ∅

else [(ϕ ∨ ψ)♦Tα] = [(ϕ♦Tα) ∨ (ψ♦Tα)]

Postulate U9 is a kind of converse of U5 but restricted to a “complete” formula ϕ i.e.
such that, card([ϕ]) = 1, this restriction is required in the proof of KM theorem as well
as in Theorem 2.

Note that the presence of U1 in the set of postulates characterizing an enforcement
operator is not necessary since U1 can be derived from E3, E5 and E8.

Proposition 1. U1 is implied by E3, E5 and E8.

These postulates allow us to write the following representation theorem concern-
ing enforcement, namely, an enforcement operator satisfying these postulates can be
defined by means of the definition of a family of preorders on graphs.

Definition 7. Given a set T ⊆ Γ ×Γ of accepted transitions, an assignment respecting
T is a function that associates with each G ∈ Γ a complete preorder �G such that
∀G1, G2 ∈ Γ , if (G,G1) ∈ T and (G,G2) �∈ T then G2 ��G G1.

Theorem 2. Given a set T ⊆ Γ × Γ of accepted transitions, there is an operator
♦T : L ×L → L satisfying E3, U4, E5, E8, U9 iff there is an assignment respecting
T s.t. ∀G ∈ Γ , ∀ϕ, α ∈ L ,
– [f(G)♦Tα] = {G1 ∈ [α] s.t. (G,G1) ∈ T and ∀G2 ∈ [α] s.t.(G,G2) ∈ T,

G1 �G G2}
– [ϕ♦Tα] =

∣
∣
∣
∣
∅ if ∃G ∈ [ϕ] s.t. [f(G)♦Tα] = ∅⋃

G∈[ϕ][f(G)♦Tα] otherwise

This result is a significant headway, but as usual for a representation theorem, it
gives only a link between the existence of an assignment of preorders and the fact that
an enforcement operator satisfies the postulates. It does not give any clue about how to
assign these preorders i.e., how to design precisely an enforcement operator.

The following proposition establishes the fact that 5 postulates are necessary and
sufficient to define an enforcement operator, namely E3, U4, E5, E8 and U9. Indeed,
U1 can be derived from them (as seen in Proposition 1).

8 Note that card[ϕ] = 1 iff ∃G ∈ Γ s.t. [ϕ] = [f(G)].
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Proposition 2. E3, U4, E5, E8, U9 constitute a minimal set: no postulate can be de-
rived from the others.

From Theorem 2 we can deduce two simple cases of impossibility: if the initial
situation or the goal is impossible then enforcement is impossible (this result is a kind
of converse of U3).

Proposition 3. If ♦T satisfies E3, U4, E5, E8 and U9 then ([ϕ] = ∅ or [α] = ∅ =⇒
[ϕ♦Tα] = ∅).

The following property ensures that if an enforcement is possible then a more general
enforcement is also possible.

Proposition 4. If ♦T satisfies E3 then ([ϕ] �= ∅ and [ϕ♦Tα] �= ∅ =⇒ [ϕ♦T (α ∨
β)] �= ∅).

Note that there are some cases where U2 does not hold together with E3, U4, E5, E8
and U9. If U2 is imposed then the enforcement operator is associated with a preorder
in which a given graph is always closer to itself than to any other graph. This is why it
imposes to have a faithful assignment. In that case, the relation represented by T should
be reflexive.

Definition 8. A faithful assignment is a function that associates with each G ∈ Γ a
complete preorder9 �G such that ∀G1 ∈ Γ , G ≺G G1.

Proposition 5. Given a reflexive relation T ⊆ Γ × Γ of accepted transitions, there is
an operator ♦T : L ×L → L satisfying E3, U4, E5, E8, U9 that satisfies U2 iff there
is a faithful assignment respecting T defined as in Theorem 2.

If we remove the constraint about authorized transitions then we recover Katsuno
and Mendelzon theorem, namely:

Proposition 6. If T = Γ × Γ then ♦T satisfies U2, E3, U4, E5, E8, U9 iff ♦ satisfies
U1, U2, U3, U4, U5, U8 and U9.

Among the different kinds of changes proposed by Baumann, the normal expansion,
i.e., adding an argument with the attacks that concern it, can be encoded in our frame-
work as follows.

Remark 1. Baumann’s enforcement by normal expansion is a particular enforcement
operator ♦T : L × L → L such that T = TB. Moreover, the language used is
restricted as follows: the formulas that describe the initial system are restricted to {ϕ ∈
Lon, card([ϕ]) = 1} and the formulas that describe the facts that should be enforced
are only conjunctions of positive literals of La, where La and Lon are respectively the
propositional languages based only on a(x) and on on(x) variables.

In Baumann’s framework, the formula concerning the initial graph should be com-
plete, i.e., should correspond to only one graph. The formula concerning the goal of

9 In the following, ≺G is defined from �G as usual by: a ≺G b iff a �G b and not b �G a.
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enforcement should describe a set of arguments that should be accepted (under a given
semantics) after the change. Due to Theorem 2, there exists a family of preorders that
could be defined. Baumann proposes to use the following:G′ �G G′′ iff dist(G,G′) ≤
dist(G,G′′) where dist(G,G′) is the number of attacks that differs in G and G′.10

5 Conclusion

The work of [2] gives the basics about enforcement, our approach investigates several
new issues:
– we propose to take into account the ability to remove an argument, which could help
to enforce a set of arguments with less effort. We also generalize what can be enforced,
not only sets of arguments can be enforced but any goal that can be expressed in
propositional logic is allowed.

– we enable the possibility to restrict the authorized changes. In generalized enforce-
ment, authorized changes may be described by a set of possible transitions. Hence, the
structure of the changes can be restricted (for instance to additions only or to elemen-
tary operations) as well as the arguments that are allowed to be added/removed.

Finally, our main contribution is to state that enforcement is a kind of update, which
allows for an axiomatic approach. This kind of update is more general than classical
update since it allows to take into account transition constraints.

In this paper, for sake of shortness, we use a simplified logical language for describ-
ing argumentation systems in our examples, this makes us focus only on changes about
arguments hence allow us to consider a fixed attack relation. However our results hold
on any given propositional logic, hence choosing a logic in which attacks are encoded
would enable us to deal with changes on attacks. This deserves more investigation.

Another issue is to find postulates that are more specific for argumentation dynam-
ics. Indeed, we have defined a set of postulates that may characterize changes in any
kind of graphs that can be defined in propositional logic, provided that a transition func-
tion is given. Further research should take into account the particularities of the graphs
representing argumentation systems (semantics notions should be introduced in the pos-
tulates). Moreover, in this paper we have focused on a representation theorem based on
complete preorders between pairs of argumentation graphs ; another study would be
required for partial preorders. Finally, it would be worthwhile to study what could be
the counterpart of enforcement for revision instead of update.
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