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Abstract. DL-Lite is one of the most important fragment of descrip-
tion logics that allows a flexible representation of knowledge with a low
computational complexity of the reasoning process. This paper investi-
gates an extension of DL-Lite to deal with uncertainty associated with
objects, concepts or relations using a possibility theory framework. Pos-
sibility theory offers a natural framework for representing uncertain and
incomplete information. It is particularly useful for handling inconsistent
knowledge. We first provide foundations of possibilistic DL-Lite, denoted
by π-DL-Lite, where we present its syntax and its semantics. We then
study the reasoning tasks and show how to measure the inconsistency
degree of a knowledge base using query evaluations. An important result
of the paper is that the extension of the expressive power of DL-Lite is
done without additional extra computational costs.

1 Introduction

Description Logics (DLs, for short) [2] are well-known logics based on first order
logic, introduced for representing knowledge. Nowadays, DLs have regained an
important place in various domain areas and especially in the Semantic Web. DLs
provide the foundations of the Web Ontology Language (OWL). According to
W3C 1 three profiles of OWL2 are proposed as sub-languages of the full OWL2
language, to offer important advantages in particular application scenarios. One
of these profiles is OWL2-QL dedicated to applications that use huge volumes of
data where query answering is the most important reasoning task. OWL2-QL is
based on DL-Lite which is a family of tractable DLs investigated by [4]. Indeed,
Knowledge Bases (KB) consistency and all DLs standard reasoning services are
polynomial for combined complexity (i.e. the overall size of the KB) [1]. In
these logics, the most important task of reasoning is answering complex queries
(especially conjunctive queries) where the reasoning complexity is in LogSpace
for data complexity (i.e. the size of the data) [1].

Now, in real world applications, knowledge is usually affected with uncertainty
and imprecision. Recently, several works have been proposed to deal with proba-
bilistic and non-probabilistic uncertainty [8] on one hand and to deal with fuzzy
information [11] on the other hand. A particular attention was given to fuzzy
1 http://www.w3.org/TR/owl2-overview/
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extensions of DLs (e.g. [18,3]) and DL-Lite (e.g. [19,12]). Besides, some works
are devoted to possibilistic extensions of DLs (e.g. [10,8,14]) which are basically
based on standard DLs reasoning services. However, there is no work on pos-
sibilistic extension of DL-Lite and there is no work that has been proposed to
extend query answering within a possibility theory setting. This paper concerns
the development of uncertainty-based DL-Lite using possibility theory. Possibil-
ity theory [9] is a very natural framework to deal with ordinal and qualitative
uncertainty. It deals with non-probabilistic information as it is particularly ap-
propriate when the uncertainty scale only reflects a priority relation between
different pieces of information.

Possibilistic Description Logics (Possibilistic-DLs for short) are frameworks
introduced to deal with uncertainty and to ensure reasoning under inconsistent
KB. Originally, the use of possibility theory to extend DLs has been proposed by
[10] then has been discussed by [8]. In these works the syntax and the semantics
of DLs has been extended in the possibility theory framework by attaching to
every axiom a confidence degree to encode its certainty. This confidence degree
first reflects to what extent an axiom can be considered as certain (priority,
important, etc) in the available knowledge. And then it is used to determine the
inconsistency of a KB and to ensure inference services. However, there are no
algorithms to compute inconsistency of a Possibilistic-DLs KB. In addition, only
some inference services have been defined. Such limitation has constituted the
main topics of the works proposed by [17,16] where the authors first redefine the
syntax and semantics of Possibilistic-DLs, and then investigate several inference
services that can be done on a Possibilistic-DLs KB. Furthermore, they provided
an algorithm to compute inconsistency degree and possibilistic inference services.
It has been shown that checking the consistency degree and several inference
services can be done with classical DLs reasoning services through consistent
sub-sets of the Possibilistic-DLs KB. An implementation of a reasoner called
DL-Poss, has been provided in [13]. A deeper discussion on Possibilistic-DLs has
been provided in [14]. Finally, it is important to point out that another method
has been introduced in [6,15] for checking inconsistency of possibilistic-DLs as a
direct extension of the tableau algorithm.

An important question addressed in this paper is : “How one can extend the
expressive power of DL-Lite, to deal with possibilistic uncertain information,
without increasing the computational cost?”. This paper provides a positive an-
swer to this question. Such a good result is possible when we restrict ourself to
DL-Lite. Note first that most extensions of possibilistic DLs [17,16,6] all need
some extra computation costs. In these existing approaches, computing incon-
sistency degree comes down to achieve a number of calls (at least log2N calls,
where N is the size of the uncertainty scale) to the inconsistency checking in
standard (without uncertainty) DLs.

This paper departs from existing approaches and follows another direction
to achieve reasoning tasks in possibilistic DL-Lite. The idea is to modify the
inconsistency computation algorithm used in standard DL-Lite by simply prop-
agating the uncertainty degrees associated with axioms. In fact, we will see that
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the uncertainty propagation does not generate any extra computational cost,
and hence the computational complexity of possibilistic DL-Lite is the same as
the one of DL-Lite.

The rest of this paper is organized as follows: Section 2 briefly recalls pre-
liminaries on DL-Lite. Section 3 rephrases possibility theory framework over
DL-Lite interpretations. Section 4 discusses the possibilistic extension of DL-
Lite, denoted π-DL-Lite, where we present its syntax and its semantics. Section
5 introduces the so-called π-negated closure of a π-DL-Lite knowledge bases.
Section 6 gives a method to compute inconsistency of the π-DL-Lite KB using
query evaluations. Section 7 studies deferent possibilistic inferences. Section 8
concludes the paper.

2 DL-Lite Logic

The vocabulary of DLs is based on concepts which correspond to unary predi-
cates to denote sets of individuals, and roles, which correspond to binary pred-
icates, to denote binary relations among individuals. A description language is
characterized by a set of constructs used to build complex concepts and roles
form atomic ones and it is employed to structure a domain of interest. Each
description language allows different sets of constructs. A DLs knowledge base
is specified through several inclusions between concepts and roles.

In this paper, we focus on DL-Lite one of the most important fragment of
DLs. For sake of simplicity, we only consider DL-LiteHcore (originally DL-LiteR)
that underlies OWL2-QL language as DL-Lite logic. For more details about the
different logics in DL-Lite family see [1]. However, results of this paper are valid
for other logics of the DL-Lite family.

The language of DL-Litecore is the core language for DL-LiteR and it is
ensured by a description language defined as follow [5]:

B −→ A | ∃R C −→ B | ¬B
R −→ P | P− E −→ R | ¬R

where A is an atomic concept, P is an atomic role, Concepts B (resp. C) are
called basic (resp. complex) concepts and roles R (resp. E) are called basic (resp.
complex) roles. Note that DL-Lite language does not allows the use of the con-
junctive and the disjunctive operators. However, one can easily add conjunctions
(resp. disjunction) in the right-hand side (resp. left-hand side) of inclusion ax-
ioms. Indeed, the conjunction of the form B � C1 � C2 is equivalent to the
pair of inclusion axioms B � C1 and B � C2, while the disjunction of the form
B1 �B2 � C is equivalent to the pair of inclusion axioms B1 � C and B2 � C.

A DL-Lite knowledge base is a pair K = 〈T ,A〉 where T is a TBox and A is an
ABox. The DL-Litecore TBox is constituted by a finite set of inclusion axioms
of the form B � C. Let use ai and aj to denote two individuals (constants), the
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DL-Litecore ABox is constituted by a finite set of membership assertion on
atomic concepts and on atomic roles of the form A (ai) and P (ai, aj). The DL-
LiteR extends DL-Litecore with the ability of specifying inclusion assertions
between roles of the form R � E. For more detailed description on DL-Lite
family, see [5].

As usual in DLs, the DL-Lite semantics is given by an interpretation I =(
Δ, .I

)
which consists of a non-empty domain Δ and an interpretation function

.I . The function .I assigns to each individual a an element aI ∈ ΔI , to each
atomic concept A a subset AI ⊆ ΔI and to each atomic role P a subset P I ⊆
ΔI×ΔI over the domain. Furthermore, the interpretation function .I is extended
to complex concepts and roles (e.g. (P−)I =

{
(y, x) ∈ ΔI ×ΔI | (x, y) ∈ P I

}
and

(∃R)I =
{
x ∈ ΔI |∃y ∈ ΔI such that (x, y) ∈ RI

}
).

For the TBox, we say that an interpretation I is a model of an inclusion axiom,
denoted by I |= B � C (resp. I |= R � E) iff BI ⊆ CI (resp. RI ⊆ EI). For
the ABox, we say that an interpretation I is a model of membership assertion,
denoted by I |= A (ai) (resp. I |= P (ai, aj) ) iff aIi ∈ AI (resp.

(
aIi , a

I
j

)
∈ P I).

Note that we only consider DL-Lite with unique name assumption (i.e. ai �= aj
where i �= j). Thus, I is a model of knowledge base K = 〈T ,A〉, denoted by
I � K, iff I � T and I � A. A KB K is said to be consistent (or satisfiable) if it
admits at least one model.

3 Possibility Distribution over DL-Lite Interpretations

Possibility theory (e.g. [9]) offers an important framework for representing and
reasoning with uncertain, partial and inconsistent pieces of information. In what
follows, we rephrase possibility theory framework over DL-Lite interpretations.
Let L be a finite DL-Lite description language, Ω be a universe of discourse and
I =

(
Δ, .I

)
∈ Ω be a DL-Lite interpretation.

3.1 Possibility Distribution

A possibility distribution is considered as one of the main block of possibility
theory. It is a mapping, denoted by π, from the universe of discourse Ω to
the unit interval [0, 1]. It assigns to each interpretation I ∈ Ω a possibility
degree π (I) ∈ [0, 1] that represents its compatibility or consistency relative to
the available knowledge. When π (I) = 1, we say that I is totally possible and
it is fully consistent with the available knowledge. When π (I) = 0, we say
that I is impossible and it is fully inconsistent with the available knowledge.
Then, two special cases exist: a total ignorance when ∀I ∈ Ω, π (I) = 1 and a
complete knowledge when ∃I ′ ∈ Ω, π (I ′) = 1 and ∀I ∈ Ω, I ′ �= I, π (I) = 1. By
convention, a possibility distribution π is said to be normalized if there exists
at least one totally possible interpretation, namely ∃I ∈ Ω, π (I) = 1, otherwise,
we say that π is sub-normalized. For two events I and I ′, we say that I is more
consistent or compatible than I ′ if π (I) > π (I ′).
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3.2 Possibility and Necessity Measures

Let us consider ϕ be a subset of Ω. Let ¬ϕ be the complementary of ϕ, namely
¬ϕ = Ω \ ϕ. In standard possibility theory, given a possibility distribution π,
one can define two measures from 2Ω to the interval [0, 1] which discriminate
between the plausibility and the certainty of a subset ϕ. These two measure are:

Possibility Measure. A possibility measure, denoted by Π , is a function of
the form Π (ϕ) = max {π (I) : I ∈ ϕ}
Π (ϕ) evaluates to what extent the subset ϕ is compatible with the available

knowledge encoded by π. When Π (ϕ) = 1, we say that ϕ is certainty true if
Π (¬ϕ) = 0 and we say that the ϕ is somewhat certain if Π (¬ϕ) ∈ ]0, 1[. When
Π (ϕ) = 1 and Π (¬ϕ) = 1, we say that there is a total ignorance about ϕ. The
possibility measure satisfies the following properties for normalized possibility
distributions:

∀ϕ ∈ Ω, ∀ψ ∈ Ω,Π (ϕ ∪ ψ) = max (Π (ϕ) , Π (ψ))

∀ϕ ∈ Ω, ∀ψ ∈ Ω,Π (ϕ ∩ ψ) ≤ min (Π (ϕ) , Π (ψ))

Necessity Measure. A necessity measure, denoted by N , is a function of the
form N (ϕ) = 1−Π (¬ϕ)
N (ϕ) evaluates to what extent ϕ is certainty entailed from available knowl-

edge encoded by π. When N (ϕ) = 1, we say that ϕ is certain. When N (ϕ) ∈
]0, 1[, we say that ϕ is somewhat certain. When N (ϕ) = 0 and N (¬ϕ) = 0, we
say that there is a total ignorance. The necessity measure satisfies the following
properties for normalized possibility distributions:

∀ϕ ∈ Ω, ∀ψ ∈ Ω,N (ϕ ∩ ψ) = min (N (ϕ) , N (ψ))

∀ϕ ∈ Ω, ∀ψ ∈ Ω,N (ϕ ∪ ψ) ≥ max (N (ϕ) , N (ψ))

Now, clearly not all subsets of Ω represent axioms of DL-Lite language.
For instance, assume that our vocabulary is composed of one concept A and
two individuals a1 and a2. Assume that we have two interpretations I1 =(
Δ = {a1, a2} , .I1

)
and I2 =

(
Δ = {a1, a2} , .I2

)
such that AI1 = {a1} and

AI2 = {a2}. Clearly, {I1, I2} does not correspond to any axiom of our DL-
Lite language, since {I1, I2} intuitively encodes the axiom A (a1)∨A (a2), while
the disjunction operator is not allowed in DL-Lite language.

In the following, possibility and necessity measures are assumed to only be
defined over a DL-Lite language. Namely, if φ is an axiom, we define its associated
possibility measures as: Π (φ) = max

I∈Ω
{π (I) : I |= φ} and its associated necessity

measures as: N (φ) = 1−max
I∈Ω

{π (I) : I � φ} where I � φ means that I is not a

model of φ.
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4 Possibilistic DL-Lite

In this section we go one step further in the definition of possibilistic extension
of DL-Lite, denoted by π-DL-Lite by presenting its syntax and how to generate
a possibility distribution associated with a π-DL-Lite KB.

4.1 Syntax

We consider L the description language DL-Lite recalled in Section 2.

Definition 1. A π-DL-Lite KB K = {〈φi, αi〉 : 1, ..., n} is a set of possibilistic
axioms of the form 〈φ, α〉 where φ is an axiom expressed in L and α ∈ ] 0, 1] is
the degree of certainty of φ.

Only somewhat certain information (namely α > 0) are explicitly represented in
π-DL-Lite KB. 〈φ, α〉 means that the uncertainty degree of φ is at least equal
to α. The higher is the degree α the more important is the axiom or the fact.
The degree α can be associated either with an inclusion axiom between concepts
or roles (TBox), or with facts (ABox). A π-DL-Lite K will also be represented
by a couple K = 〈T ,A〉 where both elements in T and A may be uncertain.
Note that, if we consider α = 1 then we represent a classical DL-Lite KB:
K∗ = {φi : 〈φi, αi〉 ∈ K}.
Example 1. Let Teacher, PhdStudent and Student be three atomic concepts
and TeachesTo be an atomic role. The following possibilistic TBox T and the
possibilistic ABox A will be used in the rest of the paper:

T = { 〈Teacher � ¬Student, .8〉,
〈PhdStudent � Student, .7〉,
〈PhdStudent � Teacher, .9〉,
〈∃teachesTo � Teacher, .6〉,
〈∃teachesTo− � Student, .5〉}.
A = {〈Student (b) , .95〉 , 〈teachesTo (b, c) , 1〉}.

In π-DL-Lite KB, the necessity degree attached to an axiom reflects its confi-
dence and evaluates to what extent this axiom is considered as certain. For in-
stance the axiom 〈teachesTo (b, c) , 1〉 states that we are absolutely certain that
the “the Teacher b teachesTo the Student c”. However the axiom 〈PhdStudent �
Student, .7〉 simply states that a PhdStudent may be a Student with a certainty
degree equal or greater than .7.

4.2 From π-DL-Lite Knowledge Base to π-DL-Lite Possibility
Distribution

The semantics of π-DL-Lite is given by a possibility distribution, denoted πK,
defined over the set of all interpretations I =

(
Δ, .I

)
of a DL-Lite language (see

Section 3). As in standard possibilistic logic [7], given a π-DL-Lite knowledge
base K the possibility distribution induced by K is defined as follow:
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Definition 2. For every I ∈ Ω

πK (I)=

{
1 if ∀ 〈φi, αi〉 ∈ K, I � φi
1−max {αi : (φi, αi) ∈ K|I � φi} otherwise

where � is the satisfaction relation between DL-Lite formulas recalled in Sec-
tion 2. 〈φi, αi〉 ∈ K means that 〈φi, αi〉 ∈ K either belongs to the TBox T or the
ABox A of K.

Example 2. (Example 1 continued) Using Definition 2, we compute the following
possibility degree of three interpretations where Δ = {b, c} :

I .I πK
I1 (Student)

I

= {b, c}, (PhdStudent)I = {b}, (Teacher)I = {b} .2
(teachesTo)

I
= {(b, c)}

I2 (Student)
I

= {b, c},(PhdStudent)I = {},(Teacher)I = {} .4
(teachesTo)

I
= {(b, c)}

I3 (Student)
I

= {b}, (PhdStudent)I = {},(Teacher)I = {c} 0
(teachesTo)I = {(c, b)}

In this example, we can see that the interpretation I1 does not satisfy〈Teacher
� ¬Student, .8〉, the interpretation I2 doesnot satisfy 〈∃teachesTo � Teacher, .6〉
and the interpretation I3 does not satisfy 〈teachesTo (b, c) , 1〉. Hence, no one of
these interpretations is a model of K.

A π-DL-Lite KB is said to be consistent if the possibility distribution πK is
normalized, namely there exists an interpretation I such that πK (I) = 1. If not,
K is said to be inconsistent and its inconsistency degree is defined semantically
as follow:

Definition 3. The inconsistency degree of a π-DL-Lite KB, denoted by Inc (K),
is semantically defined as follow: Inc (K) = 1−max

I∈Ω
{πK (I)}

If Inc (K) = 1 then K is fully inconsistent and if Inc (K) = 0 then it is consistent.

Example 3. (Example 2 continued), in fact, one can check that the inconsistency
degree of K according to πK is : Inc (K)=1 −max

I∈Ω
{πK (I)} = .6, and hence K

is inconsistent (in fact, there is no way to find an interpretation that satisfy K
with a degree greater than .6).

Remark 1. In propositional possibilistic logic, each possibilistic KB induces a
joint possibility distribution and conversely. Although each π-DL-Lite KB in-
duces a unique joint possibility distribution, the converse does not hold. Consider
again the example where we only have one concept A and two individuals a1
and a2. Consider four interpretations I1, I2, I3 and I4 having the same domain
Δ = {a1, a2} and where AI1 = {a1}, AI2 = {a1}, AI2 = {a1, a2} and AI4 = ∅.



Possibilistic DL-Lite 353

Assume that π (I1) = π (I2) = 1 and π (I3) = π (I4) = .5. One can check that
there is no π-DL-Lite KB such that πK = π.

5 Possibilistic Closure in π-DL-Lite

Let us first point out that one can easily add conjunctions in the right side of
inclusion axioms. Proposition 1 shows that a complex inclusion axiom of the
form 〈B1 � B2 �B3, α〉 can be splitted into elementary inclusion axioms that
can be added to K without modifying its possibility distribution. Proposition 1
can be derived from Proposition 5 in [14] for general DLs.

Proposition 1. Let K = {IP ∪ {〈B1 � B2 �B3, α〉},A} and K′
= {IP ∪ {

〈B1 � B2, α〉 , 〈B1 � B3, α〉},A} then K and K′
induces the same possibility

distribution.

Hence, the language given in Section 2 is a simplification of the one based on
conjunctions used in the right side (resp. disjunction in left side) of inclusion
axioms.

The aim of this section is to define the so-called π-negated closure of a π-DL-
Lite KB. This notion is crucial for defining the concepts of consistency and infer-
ence from a π-DL-Lite KB. A possibilistic TBox T = {IP, IN} can be viewed as
composed of positive inclusions (PI ) of the form 〈B1 � B2, α〉 or 〈R1 � R2, α〉
and negative inclusions (NI ) of the form 〈B1 � ¬B2, α〉 or 〈R1 � ¬R2, α〉. Con-
ceptually, the PI axioms (resp. NI axioms) represent subsomption (resp. dis-
junction) between concepts or roles. Roughly speaking, this closure denoted π-
neg (T ), will contain possibilistic negated axioms of the form 〈B1 � ¬B2, α〉 or
〈R1 � ¬R2, α〉 that can be derived from T . The set π-neg (T ) is obtained by
applying a set of rules that extends the ones defined in standard DL-Lite when
axioms are weighted with uncertainty degrees.

At the beginning π-neg (T ) is set to an empty set.

Rule 1. Let T = {IP, IN} then IN ⊆ π − neg (T ).

This rule simply means that negated axioms explicitly stated in T can be
trivially derived from T .

Example 4. (Example 1 continued): Using Rule 1, we add 〈Teacher � ¬Student
, .8〉 as NI to π − neg (T ).

Rule 2. If 〈B1 � B2, α1〉 ∈ T and 〈B2 � ¬B3, α2〉 ∈ π−neg (T ) or 〈B3 � ¬B2

, α2〉 ∈ π − neg (T ) then add 〈B1 � ¬B3,min (α1, α2)〉 to π − neg (T ).

Rule 3. If 〈R1 � R2, α1〉 ∈ T and 〈R2 � ¬R3, α2〉 ∈ π−neg (T ) or 〈R3 � ¬R2

, α2〉 ∈ π − neg (T ) then add 〈R1 � ¬R3,min (α1, α2)〉 to π − neg (T ).

Rules 2 and 3 simply state that transitivity holds with a weight equal to the
least weight of premises axioms.
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Rule 4. if 〈R1 � R2, α1〉 ∈ T and 〈∃R2 � ¬B,α2〉 ∈ π−neg (T ) or 〈B � ¬∃R2

, α2〉 ∈ π − neg (T ) then add 〈∃R1 � ¬B,min (α1, α2)〉 to π − neg (T ).

Rule 5. If 〈R1 � R2, α1〉 ∈ T and
〈
∃R−

2 � ¬B,α2

〉
∈ π−neg (T ) or

〈
B � ¬∃R−

2

, α2〉 ∈ π − neg (T ) then add
〈
∃R−

1 � ¬B,min (α1, α2)
〉

to π − neg (T ).

Rule 6. If 〈R � ¬R,α〉 ∈ π − neg (T ) or 〈∃R � ¬∃R,α〉 ∈ π − neg (T ) or
〈∃R− � ¬∃R−, α〉 ∈ π− neg (T ) then add 〈R � ¬R,α〉 and 〈∃R � ¬∃R,α〉 and
〈∃R− � ¬∃R−, α〉 to π − neg (T ).

Proposition 2. Let T = {IP, IN} and π−neg (T ) be the closure of T obtained
using Rules (1-6). Then K = {T ,A} and K′

= {T ∪ π − neg (T ) ,A} induce the
same possibility distribution, namely ∀I , πK (I) = πK′ (I).

Example 5. From the K = {T ,A} of Example 1, one can check that applying
Rule 1 - Rule 6 gives the following π − neg (T ) where :

π − neg (T ) = {〈Teacher � ¬Student, .8〉,
〈PhdStudent � ¬Teacher, .7〉,
〈PhdStudent � ¬Student, .8〉,
〈∃teachesTo � ¬Student, .6〉,
〈∃teachesTo− � ¬Teacher, .5〉}
A = {〈Student (b) , .95〉 , 〈teachesTo (b, c) , 1〉}

6 Checking Inconsistency

From now on, π−neg (T ) denotes the result of applying Rules 1-6 until reaching
the closure (namely, no negated axioms can be added using Rules 1-6). An
important result is that computing inconsistency of K = {T ,A} comes down to
compute inconsistency degree of K′

= {π − neg (T ) ,A}.
Proposition 3. Let K = {T ,A} and let K′

= {π − neg (T ) ,A} then Inc (K) =
Inc (K′).

Proposition 3 is important since it provides a way to compute the inconsistency
degree of a π-DL-Lite KB. Indeed, verifying inconsistency of K = {T ,A} is
reduced to verifying the inconsistency of K′

= {π − neg (T ) ,A}. A contradic-
tion is presented when a same individual (resp. two individuals) belongs to two
negated concepts (resp. negated roles) (i.e. NI in π − neg (T )). Then, checking
inconsistency is done by means a set of weighted queries issued from π−neg (T ).
Subsection 6.1 formalizes this concept of weighted queries while subsection 6.2
provides the algorithm to compute inconsistency degrees using a set of weighted
queries.

6.1 Weighted Queries

The idea is to evaluate over A suitable weighted queries expressed from π −
neg (T ) to exhibit whether the ABox A contains or not contradictions and to
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compute the inconsistency degree. To obtain the set of weighted queries qc from
π − neg (T ), we propose a translation function ψ. ψ has an argument a possi-
bilistic NI 〈B1 � ¬B2, α〉 or 〈R1 � ¬R2, α〉 and produces a weighted first order
formula.

Definition 4. ψ is a function that transforms all axioms in π − neg (T ) to
weighted query qc:

– ψ (〈B1 � ¬B2, α〉) = 〈(x, γ1, γ2).λ1 (x, γ1) ∧ λ2 (x, γ2) , α〉 with
• λi (x, γi) = Ai (x, γi) if Bi = Ai

• λi (x, γi) = ∃yi.Pi (x, yi, γi) if Bi = ∃Pi

• λi (x, γi) = ∃yi.Pi (yi, x, γi) if Bi = ∃P−
i

– ψ (〈R1 � ¬R2, α〉) = 〈(x, y, γ1, γ2).ν1 (x, y, γ1) ∧ ν2 (x, y, γ2) , α〉 with
• νi (x, y, γi) = Pi (x, y, γi) if Ri = Pi

• νi (x, y, γi) = Pi (y, x, γi) if Ri = P−
i

Intuitively, if 〈B1 � ¬B2, α〉 belongs in π − neg (T ), then a query associated to
B1 � ¬B2 simply means return all {B1(x, γ1), B2 (x, γ2)} that are present in the
ABox.

Example 6. From Example 5, we obtain the following weighted queries using
Definition 4:

qc = 〈(x, γ1, γ2).T eacher (x, γ1) ∧ Student (x, γ2) , .8〉
qc = 〈(x, γ1, γ2).PhdStudent (x, γ1) ∧ Teacher (x, γ2) , .7〉
qc = 〈(x, γ1, γ2).PhdStudent (x, γ1) ∧ Student (x, γ2) , .8〉
qc = 〈(x, γ1, γ2). (∃y.teachesTo (x, y, γ1)) ∧ Student (x, γ2) , .6〉
qc = 〈(x, γ1, γ2). (∃y.teachesTo (y, x, γ1)) ∧ Teacher (x, γ2) , .5〉

6.2 An Algorithm for Computing Inconsistency Degrees

Now, we provide the algorithm Inconsistency, which takes as input a K′
=

{π − neg (T ) ,A} and computes Inc (K), the inconsistency degree of K.

Algorithmus 1. Inconsistency (K)

Input: K′
= {π − neg (T ) ,A}

Output: Inc (K)
1: cont := {0}
2: for all (φi, αi) ∈ π − neg (T ) ; i = 1..|π − neg (T ) | do
3: (qc, αq) := (ψ (φi, αi))
4: if Eval (qc,A) �= ∅ then
5: β := max (Eval (qc,A))
6: if β > αq then
7: cont := cont ∪ {αq}
8: else
9: cont := cont ∪ {β}

10: return max (cont)
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In this algorithm, the set cont stores the inconsistency degrees founded during
the algorithm. Eval (qc,A) denotes the evaluation of a weighted query qc over A
obtained by transforming π−neg (T ) with the function given in Definition 4. For
(a, αi) and (a, αj) presented in a query result, we only consider one individual
(a,min (αj , αj)). β = max (Eval (qc,A)) represents the maximum weight of all
tuples in Eval (qc,A). At this point, if the weight of the query is less than β
(i.e. αq < β) then the contradiction is issued from the query and implicitly form
the TBox corresponding axioms. Otherwise (i.e. αq ≥ β) then the contradiction
is issued from the result of the query evaluation and implicitly from ABox as-
sertions. Finally, the inconsistency degree of K (Inc (K)) is the maximum of all
contradiction degrees of the cont. In case of consistency, the “if part” of the al-
gorithm (lines 4-9) is never used, and the algorithm returns the value 0 (namely,
Inc (K) = 0). This explain why cont is initialized to {0}(line 1).

Example 7. From Example 6, only the query 〈(x, γ1, γ2). (∃y.teachesTo (x, y, γ1))
∧Student (x, γ2) , .6〉 presents a contradiction: 〈qc, .6〉 = {(b, .95, 1)}. Thus, the
inconsistency degree of the KB is Inc (K) = .6 .

We now provide two propositions that show on one hand that our π-DL-Lite
extends standard DL-Lite and on other hand that the computational complexity
of Algorithm 1 is the same as the one in standard DL-Lite.

Proposition 4. Let Ks = {Ts,As} be a standard DL-Lite. Let Kπ = {Tπ,Aπ}
where Tπ (resp. Aπ) is defined from Ts (resp. As) by assigning a degree 1
to each axiom of Ts (resp. As), namely : Tπ = {〈φi, 1〉 : φi ∈ Ts} and Aπ =
{〈φi, 1〉 : φi ∈ As}. Then Ks is consistent (in the sense of standard DL-Lite) iff
Inc (Kπ) = 0 and Ks is inconsistent iff Inc (Kπ) = 1.

Proposition 5. The complexity of Algorithm 1 is the same as the one used in
standard DL-Lite ([5], section 3.3 , Theorem 26)

To see why proposition 5 holds it is enough to see the differences between Algo-
rithm 1 and the one used in ([5], section 3.1.3) for standard DL-Lite. The first
remarks, concerns the returned result. On our algorithm, results of queries are
weighted while in standard DL-Lite, they are not. This does not change the com-
plexity. The difference concerns lines 4-9, where in standard DL-Lite algorithm
they are replaced by:
1: if Eval (qc,A) �= ∅ then
2: return True
3: else
4: return False

It is easy first to see that in case of consistency both algorithms perform same
steps, because the “ if part of the algorithm” is never considered. Now in case
of inconsistency, the worst case appears when the whole “loop” is used, namely
inconsistency appears with the last element of π − neg (T ). In both cases let A
be the result of the evaluation of Eval (qc). This needs at least O (|A|) steps.
Algorithm 1 (contrary to the algorithm in standard DL-Lite [5]) computes also
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max {αi : 〈φi, αi〉 ∈ A} which needs again O (|A|). Since trivially, O (2 |A|) =
O (|A|), our algorithm has the same complexity as in standard DL-Lite. Hence
we increase the expressive power of DL-Lite while keeping the complexity as low
as the one of standard DL-Lite.

7 Inference in Possibilistic DL-Lite

In this section, we first present classical inference problem (i.e. subsumption and
instance checking). First, we define an α−cut of T (resp. A and K), denoted T>α

(resp. A>α, K>α), a sub base of T (resp. A and K) composed of formulas having
a weight greater than alpha (α). In possibilistic DL inference problems such as
subsumption and instance checking can be reduced to the task of computing
the inconsistency degree of the KB [14]. We present in the following inference
services in π-DL-Lite:

– Flat subsumption: Let T be a possibilistic TBox, B1 and B2 be two general
concepts, A be an atomic concept not appearing in T , and a be a constant.
Then, K |=π B1 � B2 iff the KB K1={T1,A1} where T1 = T>Inc(K) ∪
{〈A � B1, 1〉 , 〈A � ¬B2, 1〉} and A1 = {〈A (a) , 1〉} is inconsistent whatever
is the degree (∃α > 0 such that Inc (K1) = α).

– Subsumption with a necessity degree: Let T be a possibilistic TBox, B1 and
B2 be two general concepts, A be an atomic concept not appearing in T ,
and be a a constant. Then, K |=π 〈B1 � B2, α〉 iff the KB K1 = {T1,A1}
where T1 = T≥α ∪ {〈A � B1, 1〉 , 〈A � ¬B2, 1〉} and A1 = {〈A (a) , 1〉} is
inconsistent where Inc (K1) = α and α > Inc (K).

– Flat instance checking: Let K be a π-DL-Lite KB, B be a concept, A be an
atomic concept not appearing in T , and a be a constant. Then, K |=π B (a)
iff the KB K1 = {T1,A1} where T1 = T>Inc(K) ∪ {〈A � ¬B, 1〉} and A1 =
{〈A (a) , 1〉} is inconsistent (whatever is the degree).

– Instance checking with a necessity degree: Let K be a π-DL-Lite KB, B
be a concept, A be an atomic concept not appearing in T , and a be a
constant. Then, K |=π 〈B (a) , α〉 iff the KB K1={T1,A1} where T1=T>α ∪
{〈A � ¬B, 1〉} and A1={〈A (a) , 1〉} is inconsistent where Inc (K1) = α and
α > Inc (K).

KB consistency is verified by Algorithm Inconsistency, presented above, where
Inc (K) = 0. Hence, all these basic inferences can be obtained using Algorithm
1. Note the difference between flat subsumption (resp. instance checking) and
subsumption with a necessity degree (resp. instance checking with a necessity
degree) is that in the first case we only check whether the subsumption holds
whatever is the degree, while is the second case, subsumption should be satisfied
to some degree.

8 Conclusions and Future Works

In this paper, we investigated a possibilistic extension of DL-Lite. We first intro-
duced the syntax and the semantics of such extensions. We provided properties
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of π-DL-Lite and show how to compute the inconsistency degree of π-DL-Lite
KB having a complexity identical to the one used in standard DL-Lite. This is
done by defining π-DL-Lite negative closure that extends the one of standard
DL-Lite. Then, we gave a method to check consistency for π-DL-Lite. Finally,
we discussed inference problems. In particular we distinguish different inference
tasks depending whether we use flat inferences or weighted inferences. Results of
this paper are important since they extended DL-Lite languages to deal with pri-
ority (between TBox axioms or ABox axioms) or uncertainty without changing
the computational complexity. Future works concern the revision of π-DL-Lite
KB in presence of new pieces of information.
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