
Weiru Liu
V.S. Subrahmanian
Jef Wijsen (Eds.)

 123

LN
AI

 8
07

8

7th International Conference, SUM 2013
Washington, DC, USA, September 2013
Proceedings

Scalable Uncertainty
Management

Lecture Notes in Artificial Intelligence 8078

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Weiru Liu V.S. Subrahmanian JefWijsen (Eds.)

Scalable Uncertainty
Management
7th International Conference, SUM 2013
Washington, DC, USA, September 16-18, 2013
Proceedings

13

Volume Editors

Weiru Liu
Queen’s University Belfast
School of Electronics, Electrical Engineering and Computer Science
Belfast BT9 5BN, UK
E-mail: w.liu@qub.ac.uk

V.S. Subrahmanian
University of Maryland
Department of Computer Science
College Park, MD 20742, USA
E-mail: vs@umiacs.umd.edu

Jef Wijsen
Université de Mons
Département d’Informatique
7000 Mons, Belgium
E-mail: jef.wijsen@umons.ac.be

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40380-4 e-ISBN 978-3-642-40381-1
DOI 10.1007/978-3-642-40381-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013945725

CR Subject Classification (1998): I.2, H.4, H.3, H.5, C.2, H.2, F.4.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Information systems are becoming increasingly complex, involving massive
amounts of data coming from different sources. Information is often inconsistent,
incomplete, heterogeneous, and pervaded with uncertainty. The annual Interna-
tional Conference on Scalable Uncertainty Management (SUM) has grown out of
this wide-ranging interest in the management of uncertainty and inconsistency
in databases, the Web, the Semantic Web, and artificial intelligence applications.

The series of SUM conferences provides an international forum for the com-
munication of research advances in the management of uncertain, incomplete, or
inconsistent information. Previous SUM conferences have been held in Washing-
ton DC (2007 and 2009), Naples (2008), Toulouse (2010), Dayton (2011), and
Marburg (2012).

This volume contains the papers presented at the 7th International Con-
ference on Scalable Uncertainty Management (SUM 2013), which was held in
Washington DC, USA, during September 16–18, 2013. The call for papers so-
licited submissions in two categories: regular research papers and short papers
reporting on interesting work in progress or providing system descriptions. The
call for papers resulted in 57 submissions, among which 47 regular papers and
10 short papers. Each paper was reviewed by at least three Program Committee
members. Based on the review reports and discussions, 29 papers were accepted
for publication and presentation at the conference, among which 26 regular pa-
pers and three short papers.

The conference program also included invited lectures by three world-leading
researchers: Christos Faloutsos of Carnegie Mellon University, Steve Eubank of
Virginia Tech, and Rama Chellappa of University of Maryland.

A conference such as this can only succeed as a team effort. We would like
to thank several people and institutions: the authors of submitted papers, the
invited speakers, and the conference participants; the members of the Program
Committee and the external referees; Alfred Hofmann and Springer for provid-
ing assistance and advice in the preparation of the proceedings; the University
of Maryland Institute for Advanced Computer Studies for providing local facil-
ities; Jonathan Hourez for mastering the conference website; the creators and
maintainers of the conference management system EasyChair. All of them made
the success of SUM 2013 possible.

July 2013 Weiru Liu
V.S. Subrahmanian

Jef Wijsen

Organization

SUM 2013 was organized by the University of Maryland Institute for Advanced
Computer Studies.

General Chair

V.S. Subrahmanian University of Maryland, USA

Program Committee Chairs

Weiru Liu Queen’s University Belfast, UK
Jef Wijsen University of Mons, Belgium

Program Committee

Leila Amgoud IRIT, France
Chitta Baral Arizona State University, USA
Nahla Ben Amor Institut supérieur de gestion de Tunis, Tunisia
Salem Benferhat University of Artois, France
Leopoldo Bertossi Carleton University, Canada
Yaxin Bi University of Ulster, UK
Loreto Bravo University of Concepcion, Chili
Laurence Cholvy ONERA, Toulouse, France
Jan Chomicki SUNY Buffalo, USA
Fabio Gagliardi Cozman University of Sao Paulo, Brazil
Alfredo Cuzzocrea Università della Calabria, Italy
Thierry Denoeux Université de Technologie de Compigne, France
Jürgen Dix TU Clausthal, Germany
Didier Dubois IRIT, France
Thomas Eiter TU Vienna, Austria
Zied Elouedi Institut supérieur de gestion de Tunis, Tunisia
Lluis Godo IIIA, Spain
Nikos Gorogiannis University College London, UK
John Grant Towson University, USA
Sergio Greco Università della Calabria, Italy
Anthony Hunter University College London, UK
Gabriele Kern-Isberner Technische Universität Dortmund, Germany
Kathryn Laskey George Mason University, USA
Jonathan Lawry University of Bristol, UK

VIII Organization

Churn-Jung Liau Academia Sinica, Taiwan
Sebastian Link University of Auckland, New Zealand
Peter Lucas University of Nijmegen, Netherlands
Thomas Lukasiewicz University of Oxford, UK
Jianbing Ma Queen’s University Belfast, UK
Zongmin Ma Northeastern University, China
Thomas Meyer Centre for AI Research, CSIR and UKZN,

South Africa
Serafin Moral Universidad de Granada, Spain
Kedian Mu Peking University, China
Dan Olteanu Oxford University, UK
Jeff Z. Pan Aberdeen University, UK
Simon Parsons City University New York, USA
Gabriella Pasi Università degli Studi di Milano Bicocca, Italy
Olivier Pivert IRISA-ENSSAT, France
David Poole University of British Columbia, Canada
Henri Prade IRIT, France
Andrea Pugliese Università della Calabria, Italy
Guilin Qi Southeast University, China
Prakash Shenoy University of Kansas, USA
Guillermo Ricardo Simari Universidad Nacional del Sur, Bahia Blanca,

Argentina
Umberto Straccia ISTI-CNR, Italy
Nic Wilson University College Cork, Ireland, and Queen’s

University Belfast, UK

External Reviewers

Teresa Alsinet
Gloria Bordogna
Julien Brunel
Nils Bulling
Minh Dao-Tran
Sergio Flesca
Filippo Furfaro
Jhonatan Garcia
Arjen Hommersom
Louise Leenen
Cristian Molinaro

Francesco Parisi
Antonino Rullo
Daria Stepanova
Ivan Varzinczak
Marina Velikova
Songxin Wang
Yining Wu
Guohui Xiao
Xiaowang Zhang
Yuting Zhao

Invited Talks

Influence Propagation in Large Graphs—Theorems,
Algorithms, and Case Studies
Christos Faloutsos (Carnegie Mellon University)

Given the specifics of a virus (or product, or hashtag) how quickly will it propa-
gate on a contact network? Will it create an epidemic, or will it quickly die out?
The way a virus/product/meme propagates on a graph is important, because it
can help us design immunization policies (if we want to stop it) or marketing
policies (if we want it to succeed). We present some surprising results on the
so-called “epidemic threshold”, we discuss the effects of time-varying contact
networks, and we present fast algorithms to achieve near-optimal immunization.

Using Network Reliability Polynomials to Characterize
Contact Networks for Infectious Disease Epidemiology
Steve Eubank (Virginia Tech)

It is well-known that the structure of host-host contact networks can play an im-
portant role in determining the spread of infectious disease. Especially over the
past decade, there have been many attempts to infer human contact networks
at scales from urban regions to continents, and to simulate epidemics on the re-
sulting networks. Moreover, since both pharmaceutical and non-pharmaceutical
interventions can be represented as changes in network structure, simulated epi-
demics can be used to evaluate hypothetical combinations of interventions. Un-
fortunately, it is difficult to understand the simulated epidemics’ sensitivity to
details in the network structure. Results, for example those relating degree dis-
tribution to outbreak dynamics, typically make unwarranted assumptions about
independence or symmetries in the network that introduce hard-to-control er-
rors. Understanding this sensitivity to network structure is crucial for answering
several related questions:

– How closely must the inferred networks match the modeled system for infer-
ences about interventions to be useful?

– Can we take a short cut to evaluating interventions that eliminates the need
for simulations by characterizing networks directly?

– Given a network, what is the optimal intervention under constrained re-
sources? If we cannot optimize, can we at least develop useful rules of thumb?

This talk will review 50± year-old concepts of network reliability and describe
how they can be extended and applied in the context of epidemiology. I will

X Invited Talks

introduce a class of reliability polynomials and demonstrate several useful repre-
sentations for them; discuss briefly the computational complexity of evaluating
the polynomials exactly; and illustrate the use of scalable, distributed simulation
for efficient approximation. I will show how to identify the contacts that are the
most important targets for intervention and, more generally, how to characterize
and compare networks in terms that are immediately relevant to epidemiology.
Some representations of the reliability polynomial are well-suited to analytical
reasoning about graph structure. I will illustrate this with a brief discussion of
the phenomenon of “crossing reliability”. In the context of outbreak interven-
tions, the possibility that reliability polynomials cross implies that the relative
ranking of interventions depends on the host-host transmissibility. I will discuss
what kinds of structural changes induce crossing reliability, and the magnitude
of the resulting difference in reliability.

The Evolution of Probabilistic Models and Uncertainty
Analysis in Computer Vision Research
Rama Chellappa (University of Maryland)

During the past three decades, probabilistic methods and uncertainty analysis
have been slowly but steadily integrated into computer vision research. During
the early years, as more emphasis was given to geometry and probabilistic in-
ference over geometric representations was challenging, the role of probabilistic
inference was minimal. Since the introduction of Markov random fields, robust
methods and error bounds, many computer vision problems are lending them-
selves for more rigorous analysis. In this talk, I will illustrate these ideas by
highlighting the role played by MRFs in image analysis, error bounds for the
structure from motion problem and some recent works on probabilistic inference
on manifolds for activity recognition.

Table of Contents

Argumentation

Analysis of Dialogical Argumentation via Finite State Machines 1
Anthony Hunter

What Can Argumentation Do for Inconsistent Ontology Query
Answering? . 15

Madalina Croitoru and Srdjan Vesic

Enforcement in Argumentation Is a Kind of Update 30
Pierre Bisquert, Claudette Cayrol,
Florence Dupin de Saint-Cyr, and Marie-Christine Lagasquie-Schiex

A Conditional Logic-Based Argumentation Framework 44
Philippe Besnard, Éric Grégoire, and Badran Raddaoui

Modelling Uncertainty in Persuasion . 57
Anthony Hunter

On the Implementation of a Multiple Output Algorithm for Defeasible
Argumentation . 71

Teresa Alsinet, Ramón Béjar, Lluis Godo, and Francesc Guitart

A Formal Characterization of the Outcomes of Rule-Based
Argumentation Systems . 78

Leila Amgoud and Philippe Besnard

Meta-level Argumentation with Argument Schemes 92
Jann Müller, Anthony Hunter, and Philip Taylor

Efficiently Estimating the Probability of Extensions in Abstract
Argumentation . 106

Bettina Fazzinga, Sergio Flesca, and Francesco Parisi

AFs with Necessities: Further Semantics and Labelling
Characterization . 120

Farid Nouioua

Ranking-Based Semantics for Argumentation Frameworks 134
Leila Amgoud and Jonathan Ben-Naim

A Logical Theory about Dynamics in Abstract Argumentation 148
Richard Booth, Souhila Kaci, Tjitze Rienstra, and
Leendert van der Torre

XII Table of Contents

Belief Functions, Possibility Theory and their
Applications

Sound Source Localization from Uncertain Information Using the
Evidential EM Algorithm . 162

Xun Wang, Benjamin Quost, Jean-Daniel Chazot, and
Jérôme Antoni

An Improvement of Subject Reacquisition by Reasoning and
Revision . 176

Jianbing Ma, Weiru Liu, Paul Miller, and Fabian Campbell-West

Belief Functions: A Revision of Plausibility Conflict and Pignistic
Conflict . 190

Milan Daniel

Bipolar Possibility Theory as a Basis for a Logic of Desires and Beliefs . . 204
Didier Dubois, Emiliano Lorini, and Henri Prade

Databases

A New Class of Lineage Expressions over Probabilistic Databases
Computable in P-Time . 219

Batya Kenig, Avigdor Gal, and Ofer Strichman

The Semantics of Aggregate Queries in Data Exchange Revisited 233
Phokion G. Kolaitis and Francesca Spezzano

PossDB: An Uncertainty Database Management System 247
Gösta Grahne, Adrian Onet, and Nihat Tartal

Aggregate Count Queries in Probabilistic Spatio-temporal Databases . . . 255
John Grant, Cristian Molinaro, and Francesco Parisi

Intelligent Data Analytics

Approximate Reasoning about Generalized Conditional Independence
with Complete Random Variables . 269

Sebastian Link

Combinatorial Prediction Markets: An Experimental Study 283
Walter A. Powell, Robin Hanson, Kathryn B. Laskey, and
Charles Twardy

A Scalable Learning Algorithm for Kernel Probabilistic Classifier 297
Mathieu Serrurier and Henri Prade

Table of Contents XIII

Logics, Description Logic, and Semantic Web

Privacy-Preserving Social Network Publication Based on Positional
Indiscernibility . 311

Tsan-sheng Hsu, Churn-Jung Liau, and Da-Wei Wang

On the Implementation of a Fuzzy DL Solver over Infinite-Valued
Product Logic with SMT Solvers . 325

Teresa Alsinet, David Barroso, Ramón Béjar, Félix Bou,
Marco Cerami, and Francesc Esteva

On the Merit of Selecting Different Belief Merging Operators 331
Pilar Pozos-Parra, Kevin McAreavey, and Weiru Liu

Possibilistic DL-Lite . 346
Salem Benferhat and Zied Bouraoui

Group Preferences for Query Answering in Datalog+/- Ontologies 360
Thomas Lukasiewicz, Maria Vanina Martinez,
Gerardo I. Simari, and Oana Tifrea-Marciuska

Reasoning with Semantic-Enabled Qualitative Preferences 374
Tommaso Di Noia, Thomas Lukasiewicz, and Gerardo I. Simari

Author Index . 387

Analysis of Dialogical Argumentation

via Finite State Machines

Anthony Hunter

Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

Abstract. Dialogical argumentation is an important cognitive activ-
ity by which agents exchange arguments and counterarguments as part
of some process such as discussion, debate, persuasion and negotiation.
Whilst numerous formal systems have been proposed, there is a lack of
frameworks for implementing and evaluating these proposals. First-order
executable logic has been proposed as a general framework for specify-
ing and analysing dialogical argumentation. In this paper, we investi-
gate how we can implement systems for dialogical argumentation using
propositional executable logic. Our approach is to present and evalu-
ate an algorithm that generates a finite state machine that reflects a
propositional executable logic specification for a dialogical argumenta-
tion together with an initial state. We also consider how the finite state
machines can be analysed, with the minimax strategy being used as an
illustration of the kinds of empirical analysis that can be undertaken.

1 Introduction

Dialogical argumentation involves agents exchanging arguments in activities such
as discussion, debate, persuasion, and negotiation [1]. Dialogue games are now a
common approach to characterizing argumentation-based agent dialogues (e.g.
[2–12]). Dialogue games are normally made up of a set of communicative acts
called moves, and a protocol specifying which moves can be made at each step of
the dialogue. In order to compare and evaluate dialogical argumentation systems,
we proposed in a previous paper that first-order executable logic could be used as
common theoretical framework to specify and analyse dialogical argumentation
systems [13].

In this paper, we explore the implementation of dialogical argumentation sys-
tems in executable logic. For this, we focus on propositional executable logic
as a special case, and investigate how a finite state machine (FSM) can be
generated as a representation of the possible dialogues that can emanate from
an initial state. The FSM is a useful structure for investigating various prop-
erties of the dialogue, including conformance to protocols, and application of
strategies. We provide empirical results on generating FSMs for dialogical ar-
gumentation, and how they can be analysed using the minimax strategy. We
demonstrate through preliminary implementation that it is computationally vi-
able to generate the FSMs and to analyse them. This has wider implications in

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 1–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 A. Hunter

using executable logic for applying dialogical argumentation in practical uncer-
tainty management applications, since we can now empirically investigate the
performance of the systems in handling inconsistency in data and knowledge.

2 Propositional Executable Logic

In this section, we present a propositional version of the executable logic which
we will show is amenable to implementation. This is a simplified version of the
framework for first-order executable logic in [13].

We assume a set of atoms which we use to form propositional formulae in
the usual way using disjunction, conjunction, and negation connectives. We con-
struct modal formulae using the �, �, ⊕, and � modal operators. We only allow
literals to be in the scope of a modal operator. If α is a literal, then each of ⊕α,
�α, �α, and �α is an action unit. Informally, we describe the meaning of ac-
tion units as follows: ⊕α means that the action by an agent is to add the literal
α to its next private state; �α means that the action by an agent is to delete
the literal α from its next private state; �α means that the action by an agent
is to add the literal α to the next public state; and �α means that the action
by an agent is to delete the literal α from the next public state.

We use the action units to form action formulae as follows using the dis-
junction and conjunction connectives: (1) If φ is an action unit, then φ is an
action formula; And (2) If α and β are action formulae, then α∨β and α∧β are
action formulae. Then, we define the action rules as follows: If φ is a classical
formula and ψ is an action formula then φ ⇒ ψ is an action rule. For instance,
b(a) ⇒ �c(a) is an action rule (which we might use in an example where b

denotes belief, and c denotes claim, and a is some information).
Implicit in the definitions for the language is the fact that we can use it as a

meta-language [14]. For this, the object-language will be represented by terms
in this meta-language. For instance, the object-level formula p(a, b) → q(a, b)
can be represented by a term where the object-level literals p(a, b) and q(a, b)
are represented by constant symbols, and → is represented by a function sym-
bol. Then we can form the atom belief(p(a, b) → q(a, b)) where belief is a
predicate symbol. Note, in general, no special meaning is ascribed the predi-
cate symbols or terms. They are used as in classical logic. Also, the terms and
predicates are all ground, and so it is essentially a propositional language.

We use a state-based model of dialogical argumentation with the following
definition of an execution state. To simplify the presentation, we restrict consid-
eration in this paper to two agents. An execution represents a finite or infinite
sequence of execution states. If the sequence is finite, then t denotes the terminal
state, otherwise t = ∞.

Definition 1. An execution e is a tuple e = (s1, a1, p, a2, s2, t), where for each
n ∈ N where 0 ≤ n ≤ t, s1(n) is a set of ground literals, a1(n) is a set of ground
action units, p(n) is a set of ground literals, a2(n) is a set of ground action units,
s2(n) is a set of ground literals, and t ∈ N∪ {∞}. For each n ∈ N, if 0 ≤ n ≤ t,
then an execution state is e(n) = (s1(n), a1(n), p(n), a2(n), s2(n)) where e(0)

Analysis of Dialogical Argumentation via Finite State Machines 3

is the initial state. We assume a1(0) = a2(0) = ∅. We call s1(n) the private
state of agent 1 at time n, a1(n) the action state of agent 1 at time n, p(n) the
public state at time n, a2(n) the action state of agent 2 at time n, s2(n) the
private state of agent 2 at time n.

In general, there is no restriction on the literals that can appear in the private
and public state. The choice depends on the specific dialogical argumentation
we want to specify. This flexibility means we can capture diverse kinds of in-
formation in the private state about agents by assuming predicate symbols for
their own beliefs, objectives, preferences, arguments, etc, and for what they know
about other agents. The flexibility also means we can capture diverse information
in the public state about moves made, commitments made, etc.

Example 1. The first 5 steps of an infinite execution where each row in the table
is an execution state where b denotes belief, and c denotes claim.

n s1(n) a1(n) p(n) a2(n) s2(n)

0 b(a) b(¬a)
1 b(a) �c(a),�c(¬a) b(¬a)
2 b(a) c(a) �c(¬a),�c(a) b(¬a)
3 b(a) �c(a),�c(¬a) c(¬a) b(¬a)
4 b(a) c(a) �c(¬a),�c(a) b(¬a)
5

We define a system in terms of the action rules for each agent, which specify
what moves the agent can potentially make based on the current state of the
dialogue. In this paper, we assume agents take turns, and at each time point the
actions are from the head of just one rule (as defined in the rest of this section).

Definition 2. A system is a tuple (Rulesx, Initials) where Rulesx is the set
of action rules for agent x ∈ {1, 2}, and Initials is the set of initial states.

Given the current state of an execution, the following definition captures which
rules are fired. For agent x, these are the rules that have the condition literals
satisfied by the current private state sx(n) and public state p(n). We use classical
entailment, denoted |=, for satisfaction, but other relations could be used (e.g.
Belnap’s four valued logic). In order to relate an action state in an execution
with an action formula, we require the following definition.

Definition 3. For an action state ax(n), and an action formula φ, ax(n) sat-
isfies φ, denoted ax(n) |∼ φ, as follows.

1. ax(n) |∼ α iff α ∈ ax(n) when α is an action unit
2. ax(n) |∼ α ∧ β iff ax(n) |∼ α and ax(n) |∼ β
3. ax(n) |∼ α ∨ β iff ax(n) |∼ α or ax(n) |∼ β

For an action state ax(n), and an action formula φ, ax(n) minimally satisfies
φ, denoted ax(n) � φ, iff ax(n) |∼ φ and for all X ⊂ ax(n), X |�∼ φ.

4 A. Hunter

Example 2. Consider the execution in Example 1. For agent 1 at n = 1, we have
a1(1) � �c(a) ∧�c(¬a).

We give two constraints on an execution to ensure that they are well-behaved.
The first (propagated) ensures that each subsequent private state (respectively
each subsequent public state) is the current private state (respectively current
public state) for the agent updated by the actions given in the action state. The
second (engaged) ensures that an execution does not have one state with no
actions followed immediately by another state with no actions (otherwise the
dialogue can lapse) except at the end of the dialogue where neither agent has
further actions.

Definition 4. An execution (s1, a1, p, a2, s2, t) is propagated iff for all x ∈
{1, 2}, for all n ∈ {0, . . . , t− 1}, where a(n) = a1(n) ∪ a2(n)

1. sx(n+ 1) = (sx(n) \ {φ | �φ ∈ ax(n)}) ∪ {φ | ⊕φ ∈ ax(n)}
2. p(n+ 1) = (p(n) \ {φ | �φ ∈ a(n)}) ∪ {φ | �φ ∈ a(n)}

Definition 5. Let e = (s1, a1, p, a2, s2, t) be an execution and a(n) = a1(n) ∪
a2(n). e is finitely engaged iff (1) t �= ∞; (2) for all n ∈ {1, . . . , t − 2}, if
a(n) = ∅, then a(n + 1) �= ∅ (3) a(t − 1) = ∅; and (4) a(t) = ∅. e is infinitely
engaged iff (1) t = ∞; and (2) for all n ∈ N, if a(n) = ∅, then a(n+ 1) �= ∅.

The next definition shows how a system provides the initial state of an execu-
tion and the actions that can appear in an execution. It also ensures turn taking
by the two agents.

Definition 6. Let S = (Rulesx, Initials) be a system and e = (s1, a1, p, a2, s2, t)
be an execution. S generates e iff (1) e is propogated; (2) e is finitely engaged
or infinitely engaged; (3) e(0) ∈ Initials; and (4) for all m ∈ {1, . . . , t− 1}

1. If m is odd, then a2(m) = ∅ and either a1(m) = ∅ or there is an φ ⇒ ψ ∈
Rules1 s.t. s1(m) ∪ p(m) |= φ and a1(m) � ψ

2. If m is even, then a1(m) = ∅ and either a2(m) = ∅ or there is an φ ⇒ ψ ∈
Rules2 s.t. s1(m) ∪ p(m) |= φ and a2(m) � ψ

Example 3. We can obtain the execution in Example 1 with the following rules:
(1) b(a) ⇒ �c(a) ∧�c(¬a); And (2) b(¬a) ⇒ �c(¬a) ∧�c(a).

3 Generation of Finite State Machines

In [13], we showed that for any executable logic system with a finite set of ground
action rules, and an initial state, there is an FSM that consumes exactly the finite
execution sequences of the system for that initial state. That result assumes that
each agent makes all its possible actions at each step of the execution. Also that
result only showed that there exist these FSMs, and did not give any way of
obtaining them.

Analysis of Dialogical Argumentation via Finite State Machines 5

In this paper, we focus on propositional executable logic where the agents
take it in turn, and only one head of one action rule is used, and show how we
can construct an FSM that represents the set of executions for an initial state
for a system. For this, each state is a tuple (r, s1(n), p(n), s2(n)), and each letter
in the alphabet is a tuple (a1(n), a2(n)), where n is an execution step and r is
the agent holding the turn when n < t and r is 0 when n = t.

Definition 7. An FSM M = (States, T rans, Start, T erm,Alphabet) repre-
sents a system S = (Rulesx, Initials) for an initial state I ∈ Initials iff

(1)States = {(y, s1(n), p(n), s2(n)) | there is an execution e = (s1, a1, p, a2, s2, t)
s.t. S generates e and I = (s1(0), a1(0), p(0), a2(0), s2(0))
and there is an n ≤ t s.t. y = 0 when n = t

and y = 1 when n < t and n is odd
and y = 2 when n < t and n is even }

(2)Term = {(y, s1(n), p(n), s2(n)) ∈ States | y = 0}

(3)Alphabet = {(a1(n), a2(n)) | there is an n ≤ t and there is an execution e
s.t. S generates e and e(0) = I and e = (s1, a1, p, a2, s2, t).}

(4)Start = (1, s1(0), p(0), s2(0)) where I = (s1(0), a1(0), p(0), a2(0), s2(0))

(5)Trans is the smallest subset of States×Alphabet×States s.t. for all executions
e and for all n < t there is a transition τ ∈ Trans such that

τ = ((x, s1(n), p(n), s2(n)), (a1(n), a2(n)), (y, s1(n+ 1), p(n+ 1), s2(n+ 1)))

where x is 1 when n is odd, x is 2 when n is even, y is 1 when n+ 1 < t and n
is odd, y is 2 when n+ 1 < t and n is even, and y is 0 when n+ 1 = t.

Example 4. Let M be the following FSM where σ1 = (1, {b(a)}, {}, {b(¬a)}); σ2
= (2, {b(a)}, {c(a)}, {b(¬a)}); σ3 = (1, {b(a)}, {c(¬a)}, {b(¬a)}). τ1 = ({�c(a),
�c(¬a)}, ∅); and τ2 = (∅, {�c(¬a),�c(a)}). M represents the system in Ex 1.

σ1start σ2 σ3
τ1

τ2

τ1

Proposition 1. For each S = (Rulesx, Initials), then there is an FSM M such
that M represents S for an initial state I ∈ Initials.

Definition 8. A string ρ reflects an execution e = (s1, a1, p, a2, s2, t) iff ρ is
the string τ1 . . . τt−1 and for each 1 ≤ n < t, τn is the tuple (a1(n), a2(n)).

Proposition 2. Let S = (Rulesx, Initials) be a system. and let M be an FSM
that represents S for I ∈ Initials.

6 A. Hunter

1. for all ρ s.t. M accepts ρ, there is an e s.t. S generates e and e(0) = I and
ρ reflects e,

2. for all finite e s.t. S generates e and e(0) = I, then there is a ρ such that M
accepts ρ and ρ reflects e.

So for each initial state for a system, we can obtain an FSM that is a concise
representation of the executions of the system for that initial state. In Figure
1, we provide an algorithm for generating these FSMs. We show correctness for
the algorithm as follows.

Proposition 3. Let S = (Rulesx, Initials) be a system and let I ∈ Initials. If
M represents S w.r.t. I and BuildMachine(Rulesx, I) = M ′, then M = M ′.

An FSM provides a more efficient representation of all the possible executions
than the set of executions for an initial state. For instance, if there is a set of
states that appear in some permutation of each of the executions then this can
be more compactly represented by an FSM. And if there are infinite sequences,
then again this can be more compactly represented by an FSM.

Once we have an FSM of a system with an initial state, we can ask obvious
simple questions such as is termination possible, is termination guaranteed, and
is one system subsumed by another? So by translating a system into an FSM,
we can harness substantial theory and tools for analysing FSMs.

Next we give a couple of very simple examples of FSMs obtained from ex-
ecutable logic. In these examples, we assume that agent 1 is trying to win an
argument with agent 2. We assume that agent 1 has a goal. This is represented
by the predicate g(c) in the private state of agent 1 for some argument c. In its
private state, each agent has zero or more arguments represented by the predi-
cate n(c), and zero or more attacks e(d, c) from d to c. In the public state, each
argument c is represented by the predicate a(c). Each agent can add attacks
e(d, c) to the public state, if the attacked argument is already in the public state
(i.e. a(c) is in the public state), and the agent also has the attacker in its private
state (i.e. n(d) is in the private state). We have encoded the rules so that after
an argument has been used as an attacker, it is removed from the private state of
the agent so that it does not keep firing the action rule (this is one of a number
of ways that we can avoid repetition of moves).

Example 5. For the following action rules, with the initial state where the private
state of agent 1 is {g(a), n(a), n(c), e(c, b)}, the public state is empty, and the pri-
vate state of agent 2 is {n(b), e(b, a)}), we get the following FSM, with the states
below and the transitions: τ1 = ({�a(a),�n(a)}, ∅); τ2 = (∅, {�a(b, a),�n(b)});
τ3 = ({�a(c, b),�n(c)}, ∅); and τ4 = (∅, ∅).

g(a) ∧ n(a) ⇒ �a(a) ∧ �n(a)
a(a) ∧ n(b) ∧ e(b, a) ⇒ �a(b, a) ∧ �n(b)
a(b) ∧ n(c) ∧ e(c, b) ⇒ �a(c, b) ∧ �n(c)

σ1start σ2 σ3 σ4 σ5 σ6
τ1 τ2 τ3 τ4 τ4

Analysis of Dialogical Argumentation via Finite State Machines 7

σ1 = (1, {g(a), n(a), n(c), e(c, b)}, {}, {n(b), e(b, a)})
σ2 = (2, {g(a), n(c), e(c, b)}, {a(a)}, {n(b), e(b, a)})
σ3 = (1, {g(a), n(c), e(c, b)}, {a(a), a(b, a)}, {e(b, a)})
σ4 = (2, {g(a), e(c, b)}, {a(a), a(b), a(c), a(c, b), a(b, a)}, {e(b, a)})
σ5 = (1, {g(a), e(c, b)}, {a(a), a(b), a(c), a(c, b), a(b, a)}, {e(b, a)})
σ6 = (0, {g(a), e(c, b)}, {a(a), a(b), a(c), a(c, b), a(b, a)}, {e(b, a)})

abc

This terminal state therefore contains the above argument graph, and hence the
goal argument a is in the grounded extension of the graph (as defined in [15]).

Example 6. For the following action rules, with the initial state where the private
state of agent 1 is {g(a), n(a)}, the public state is empty, and the private state of
agent 2 is {n(b), n(c), e(b, a), e(c, a)}), we get the following FSM, with the states
below and the transitions: τ1 = ({�a(a),�n(a)}, ∅); τ2 = (∅, {�a(b, a),�n(b)});
τ3 = (∅, {�a(c, a),�n(c)}); and τ4 = (∅, ∅).

g(a) ∧ n(a) ⇒ �a(a) ∧ �n(a)
a(a) ∧ n(b) ∧ e(b, a) ⇒ �a(b, a) ∧ �n(b)
a(a) ∧ n(c) ∧ e(c, a) ⇒ �a(c, a) ∧ �n(c)

σ1start σ2

σ3

σ4

σ5

σ6

σ7 σ8 σ9
τ1

τ2

τ3

τ4

τ4

τ3

τ2
τ4 τ4

σ1 = (1, {g(a), n(a)}, {}, {n(b), n(c), e(b, a), e(c, a)})
σ2 = (2, {g(a)}, {a(a)}, {n(b), n(c), e(b, a), e(c, a)})
σ3 = (1, {g(a)}, {a(a), a(b), a(b, a)}, {n(c), e(b, a), e(c, a)})
σ4 = (1, {g(a)}, {a(a), a(c), a(c, a)}, {n(b), e(b, a), e(c, a)})
σ5 = (2, {g(a)}, {a(a), a(b), a(b, a)}, {n(c), e(b, a), e(c, a)})
σ6 = (2, {g(a)}, {a(a), a(c), a(c, a)}, {n(b), e(b, a), e(c, a)})
σ7 = (1, {g(a)}, {a(a), a(b), a(c), a(c, a), a(b, a)}, {e(b, a), e(c, a)})
σ8 = (2, {g(a)}, {a(a), a(b), a(c), a(c, a), a(b, a)}, {e(b, a), e(c, a)})
σ9 = (0, {g(a)}, {a(a), a(b), a(c), a(c, a), a(b, a)}, {e(b, a), e(c, a)})

bac

The terminal state therefore contains the above argument graph, and hence the
goal argument a is in the grounded extension of the graph.

In the above examples, we have considered a formalisation of dialogical argu-
mentation where agents exchange abstract arguments and attacks. It is straight-
forward to formalize other kinds of example to exchange a wider range of moves,
richer content (e.g. logical arguments composed of premises and conclusion [10]),
and richer notions (e.g. value-based argumentation [16]).

8 A. Hunter

01 BuildMachine(Rulesx, I)
02 Start = (1, S1, P, S2) where I = (S1, A1, P, A2, S2)
03 States1 = NewStates1 = {Start}
04 States2 = Trans1 = Trans2 = ∅
05 x = 1, y = 2
06 While NewStatesx �= ∅
07 NextStates = NextTrans = ∅
08 For (x,S1, P, S2) ∈ NewStatesx
09 Fired = {ψ | φ⇒ ψ ∈ Rulesx and Sx ∪ P |= φ}
10 IfFired == ∅
11 Then NextTrans = NextTrans ∪ {((x, S1, P, S2), (∅, ∅), (y, S1, P, S2))}
12 Else forA ∈ Disjuncts(Fired)
13 NewS = Sx \ {α | �α ∈ A} ∪ {α | ⊕α ∈ A}
14 NewP = P \ {α | �α ∈ A} ∪ {α | �α ∈ A}
15 Ifx == 1, NextState = (2, NewS, P, S2) and Label = (A, ∅)
16 Else NextState = (1, S1, P,NewS) and Label = (∅, A)
17 NextStates = NextStates∪ {NextState}
18 NextTrans = NextTrans∪ {((x,S1, P, S2), Label,NextState)}
19 If x == 1, then x = 2 and y = 1, else x = 1 and y = 2
20 NewStatesx = NextStates \ Statesx
21 Statesx = Statesx ∪NextStates
22 Transx = Transx ∪NextTrans
23 Close = {σ′′ | (σ, τ, σ′), (σ′, τ, σ′′) ∈ Trans1 ∪ Trans2}
24 Trans = MarkTrans(Trans1 ∪ Trans2, Close)
25 States = MarkStates(States1 ∪ States2, Close)
26 Term = MarkTerm(Close)
27 Alphabet = {τ | (σ, τ, σ′) ∈ States}
28 Return (States, T rans, Start, T erm,Alphabet)

Fig. 1. An algorithm for generating an FSM from a system S =
(Rulesx, Initials) and an initial state I . The subsidiary function Disjuncts(Fired) is
{{ψ1

1 , .., ψ
1
k1
}, .., {ψi

1, .., ψ
1
ki
} | ((ψ1

1 ∧ .. ∧ ψ1
k1
) ∨ .. ∨ (ψi

1 ∧ .. ∧ ψ1
ki
)) ∈ Fired)}. For

turn-taking, for agent x, Statex is the set of expanded states and NewStatesx is the
set of unexpanded states. Lines 02-05 set up the construction with agent 1 being the
agent to expand the initial state. At lines 06-18, when it is turn of x, each unexpanded
state in NewStatesx is expanded by identifying the fired rules. At lines 10-11, if there
are no fired rules, then the empty transition (i.e. (∅, ∅)) is obtained, otherwise at lines
12-17, each disjunct for each fired rule gives a next state and transition that is added
to NextStates and NextTrans accordingly. At lines 19-22, the turn is passed to the
other agent, and NewStatesx, Statesx, and Transx updated. At line 23, the terminal
states are identified from the transitions. At line 24, the MarkTrans function returns
the union of the transitions for each agent but for each σ = (x,S1, P, S2) ∈ Term,
σ is changed to (0, S1, P, S2) in order to mark it as a terminal state in the FSM. At
line 25, the MarkStates function returns the union of the states for each agent but for
each σ = (x,S1, P, S2) ∈ Term, σ is changed to (0, S1, P, S2), and similarly at line
26, MarkTerm function returns the set Close but with each state being of the form
(0, S1, P, S2).

Analysis of Dialogical Argumentation via Finite State Machines 9

4 Minimax Analysis of Finite State Machines

Minimax analysis is applied to two-person games for deciding which moves to
make. We assume two players called MIN and MAX. MAX moves first, and
they take turns until the game is over. An end function determines when the
game is over. Each state where the game has ended is an end state. A utility
function (i.e. a payoff function) gives the outcome of the game (eg chess has
win, draw, and loose). The minimax strategy is that MAX aims to get to an
end state that maximizes its utility regardless of what MIN does

We can apply the minimax strategy to the FSM machines generated for dia-
logical argumentation as follows: (1) Undertake breadth-first search of the FSM;
(2) Stop searching at a node on a branch if the node is an end state according
to the end function (note, this is not necessarily a terminal state in the FSM);
(3) Apply the utility function to each leaf node n (i.e. to each end state) in
the search tree to give the value value(n) of the node; (4) Traverse the tree in
post-order, and calculate the value of each non-leaf node as follows where the
non-leaf node n is at depth d and with children {n1, .., nk}:
– If d is odd, then value(n) is the maximum of value(n1),.., value(nk).
– If d is even, then value(n) is the minimum of value(n1),.., value(nk).

There are numerous types of dialogical argumentation that can be modelled
using propositional executable logic and analysed using the minimax strategy.
Before we discuss some of these options, we consider some simple examples where
we assume that the search tree is exhaustive, (so each branch only terminates
when it reaches a terminal state in the FSM), and the utility function returns 1
if the goal argument is in the grounded extension of the graph in the terminal
state, and returns 0 otherwise.

Example 7. From the FSM in Example 5, we get the minimax search tree in
Figure 2a, and from the FSM in Example 6, we get the minimax search tree
in Figure 2b. In each case, the terminal states contains an argument graph in
which the goal argument is in the grounded extension of the graph. So each leaf
of the minimax tree has a utility of 1, and each non-node has the value 1. Hence,
agent 1 is guaranteed to win each dialogue whatever agent 2 does.

The next example is more interesting from the point of view of using the
minimax strategy since agent 1 has a choice of what moves it can make and this
can affect whether or not it wins.

Example 8. In this example, we assume agent 1 has two goals a and b, but it
can only present arguments for one of them. So if it makes the wrong choice
it can loose the game. The executable logic rules and resulting FSM are as
follows where τ1 = ({�a(b),�n(b),�g(a)}, ∅), τ2 = ({�a(a),�n(a),�g(b)}, ∅),
τ3 = (∅, {�a(c, a),�n(c)}), and τ4 = (∅, ∅). For the minimax tree (given in
Figure 2c) the left branch results in an argument graph in which the goal is not
in the grounded extension, whereas the right branch terminates in an argument
graph in which the goal is in the grounded extension. By a minimax analysis,
agent 1 wins.

10 A. Hunter

g(a) ∧ n(a) ⇒ �a(a) ∧ �n(a) ∧�g(b)
g(b) ∧ n(b) ⇒ �a(b) ∧ �n(b) ∧�g(a)
a(a) ∧ n(c) ∧ e(c, a) ⇒ �a(c, a) ∧ �n(c)

σ1start

σ2 σ4 σ6

σ3 σ5 σ7 σ8

τ1

τ2

τ4

τ3

τ4

τ4 τ4

σ1 = (1, {g(a), g(b), n(a), n(b)}, {}, {n(c), e(c, a)})
σ2 = (2, {g(a), g(b), n(a)}, {a(b)}, {n(c), e(c, a)})
σ3 = (2, {g(a), g(b), n(b)}, {a(a)}, {n(c), e(c, a)})
σ4 = (1, {g(a), g(b), n(a)}, {a(b)}, {n(c), e(c, a)})
σ5 = (1, {g(a), g(b), n(b)}, {a(a), a(c), a(c, a)}, {e(c, a)})
σ6 = (0, {g(a), g(b), n(a)}, {a(b)}, {n(c), e(c, a)})
σ7 = (2, {g(a), g(b), n(b)}, {a(a), a(c), a(c, a)}, {e(c, a)})
σ8 = (0, {g(a), g(b), n(b)}, {a(a), a(c), a(c, a)}, {e(c, a)})

σ1[1]

σ2[1]

σ3[1]

(a)

σ1[1]

σ2[1]

σ3[1]

σ5[1]

σ7[1]

σ4[1]

σ6[1]

σ7[1]

(b)

σ1[1]

σ3[0]

σ5[0]

σ2[1]

(c)

Fig. 2. Minimax trees for Examples 7 and 8. Since each terminal state in an FSM is a
copy of the previous two states, we save space by not giving these copies in the search
tree. The minimax value for a node is given in the square brackets within the node.
(a) is for Example 5, (b) is for Example 6 and (c) is for Example 8

We can use any criterion for identifying the end state. In the above, we have used
the exhaustive end function giving an end state (i.e. the leaf node in the search
tree) which is a terminal state in the FSM followed by two empty transitions. If the
branch does not come to a terminal state in the FSM, then it is an infinite branch.
We could use a non-repetitive end function where the search tree stops when
there are no new nodes to visit. For instance, for example 4, we could use the non-
repetitive end function to give a search tree that contains one branch σ1, σ2, σ3
where σ1 is the root and σ3 is the leaf. Another simple option is a fixed-depth
end function which has a specified maximum depth for any branch of the search

Analysis of Dialogical Argumentation via Finite State Machines 11

tree. More advanced options for end functions include concession end function
when an agent has a loosing position, and it knows that it cannot add anything
to change the position, then it concedes.

There is also a range of options for the utility function. In the examples,
we have used grounded semantics to determine whether a goal argument is in
the grounded extension of the argument graph specified in the terminal public
state. A refinement is the weighted utility function which weights the utility
assigned by the grounded utility function by 1/d where d is the depth of the
leaf. The aim of this is to favour shorter dialogues. Further definitions for utility
functions arise from using other semantics such as preferred or stable semantics
and richer formalisms such as valued-based argumentation [16].

5 Implementation Study

In this study, we have implemented three algorithms: The generator algorithm for
taking an initial state and a set of action rules for each agent, and outputting
the fabricated FSM; A breadth-first search algorithm for taking an FSM and
a choice of termination function, and outputting a search tree; And a minimax
assignment algorithm for taking a search tree and a choice of utility function, and
outputting a minimax tree. These implemented algorithms were used together
so that given an initial state and rules for each agent, the overall output was a
minimax tree. This could then be used to determine whether or not agent 1 had
a winning strategy (given the initial state). The implementation incorporates the
exhaustive termination function, and two choices of utility function (grounded
and weighted grounded).

The implementation is in Python 2.6 and was run on a Windows XP PC
with Intel Core 2 Duo CPU E8500 at 3.16 GHz and 3.25 GB RAM. For the
evaluation, we also implemented an algorithm for generating tests inputs. Each
test input comprised an initial state, and a set of action rules for each agent.
Each initial state involved 20 arguments randomly assigned to the two agents
and up to 20 attacks per agent. For each attack in an agent’s private state, the
attacker is an argument in the agent’s private state, and the attacked argument
is an argument in the other agent’s private state.

The results are presented in the following table. Each row is produced from
100 runs. Each run (i.e. a single initial state and action rules for each agent),
was timed. If the time exceeded 100 seconds for the generator algorithm, the run
was terminated

Average no. Average no. Average no. Average no. Average Median No. of runs
attacks FSM nodes FSM transitions tree nodes run time run time timed out

9.64 6.29 9.59 31.43 0.27 0.18 0
11.47 16.01 39.48 1049.14 6.75 0.18 1
13.29 12.03 27.74 973.84 9.09 0.18 2
14.96 12.50 27.77 668.65 6.41 0.19 13
16.98 19.81 49.96 2229.64 25.09 0.20 19
18.02 19.01 47.81 2992.24 43.43 0.23 30

12 A. Hunter

As can be seen from these results, up to about 15 attacks per agent, the
implementation runs in negligible time. However, above 15 attacks per agent,
the time did increase markedly, and a substantially minority of these timed out.
To indicate the size of the larger FSMs, consider the last line of the table where
the runs had an average of 18.02 attacks per agent: For this set, 8 out of 100 runs
had 80+ nodes in the FSM. Of these 8 runs, the number of states was between
80 and 163, and the number of transitions was between 223 and 514.

The algorithm is somewhat naive in a number of respects. For instance, the
algorithm for finding the grounded extension considers every subset of the set
of arguments (i.e. 220 sets). Clearly more efficient algorithms can be developed
or calculation subcontracted to a system such as ASPARTIX [17]. Nonetheless,
there are interesting applications where 20 arguments would be a reasonable,
and so we have shown that we can analyse such situations successfully using the
Minimax strategy, and with some refinement of the algorithms, it is likely that
larger FSMs can be constructed and analysed.

Since the main aim was to show that FSMs can be generated and analysed,
we only used a simple kind of argumentation dialogue. It is straightforward to
develop alternative and more complex scenarios, using the language of propo-
sitional executable logic e.g. for capturing beliefs, goals, uncertainty etc, for
specifying richer behaviour.

6 Discussion

In this paper, we have investigated a uniform way of presenting and executing
dialogical argumentation systems based on a propositional executable logic. As
a result different dialogical argumentation systems can be compared and im-
plemented more easily than before. The implementation is generic in that any
action rules and initial states can be used to generate the FSM and properties
of them can be identified empirically.

In the examples in this paper, we have assumed that when an agent presents
an argument, the only reaction the other agent can have is to present a coun-
terargument (if it has one) from a set that is fixed in advance of the dialogue.
Yet when agents argue, one agent can reveal information that can be used by
the other agent to create new arguments. We illustrate this in the context of
logical arguments. Here, we assume that each argument is a tuple 〈Φ, ψ〉 where
Φ is a set of formulae that entails a formula ψ. In Figure 3a, we see an argument
graph instantiated with logical arguments. Suppose arguments A1, A3 and A4

are presented by agent 1, and arguments A2, A5 and A6 are presented by agent
2. Since agent 1 is being exhaustive in the arguments it presents, agent 2 can
get a formula that it can use to create a counterargument. In Figure 3b, agent 1
is selective in the arguments it presents, and as a result, agent 2 lacks a formula
in order to construct the counterarguments it needs. We can model this argu-
mentation in propositional executable logic, generate the corresponding FSM,
and provide an analysis in terms of minimax strategy that would ensure that
agent 1 would provide A4 and not A3, thereby ensuring that it behaves more

Analysis of Dialogical Argumentation via Finite State Machines 13

intelligently. We can capture each of these arguments as a proposition and use
the minimax strategy in our implementation to obtain the tree in Figure 3b.

A1 = 〈{b, b → a}, a〉

A2 = 〈{c, c→ ¬b},¬b〉

A3 = 〈{d, e, d ∧ e→ ¬c},¬c〉

A5 = 〈{d, d→ ¬e},¬e〉

A4 = 〈{g, g → ¬c},¬c〉

A6 = 〈{d, d→ ¬g},¬g〉

(a)

A1 = 〈{b, b→ a}, a〉

A2 = 〈{c, c→ ¬b},¬b〉

A4 = 〈{g, g → ¬c},¬c〉

(b)

Fig. 3. Consider the following knowledgebases for each agent Δ1 = {b, d, e, g, b →
a, d ∧ e → ¬c, g → ¬c} and Δ2 = {c, c → ¬b, d → ¬e, d → ¬g}. (a) Agent 1 is
exhaustive in the arguments posited, thereby allowing agent 2 to construct arguments
that cause the root to be defeated. (b)Agent is selective in the arguments posited,
thereby ensuring that the root is undefeated.

General frameworks for dialogue games have been proposed [18, 8]. They offer
insights on dialogical argumentation systems, but they do not provide sufficient
detail to formally analyse or implement specific systems. A more detailed frame-
work, that is based on situation calculus, has been proposed by Brewka [19],
though the emphasis is on modelling the protocols for the moves made in dia-
logical argumentation based on the public state rather than on strategies based
on the private states of the agents.

The minimax strategy has been considered elsewhere in models of argumenta-
tion (such as for determining argument strength [20] and for marking strategies
for dialectical trees [21], for deciding on utterances in a specific dialogical argu-
mentation [22]). However, this paper appears to be the first empirical study of
using the minimax strategy in dialogical argumentation.

In future work, we will extend the analytical techniques for imperfect games
where only a partial search tree is constructed before the utility function is
applied, and extend the representation with weights on transitions (e.g. weights
based on tropical semirings to capture probabilistic transitions) to explore the
choices of transition based on preference or uncertainty.

References

1. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)

2. Amgoud, L., Maudet, N., Parsons, S.: Arguments, dialogue and negotiation. In:
European Conf. on Artificial Intelligence (ECAI 2000), pp. 338–342. IOS Press
(2000)

3. Black, E., Hunter, A.: An inquiry dialogue system. Autonomous Agents and Multi-
Agent Systems 19(2), 173–209 (2009)

14 A. Hunter

4. Dignum, F., Dunin-Keplicz, B., Verbrugge, R.: Dialogue in team formation.
In: Dignum, F.P.M., Greaves, M. (eds.) Agent Communication. LNCS (LNAI),
vol. 1916, pp. 264–280. Springer, Heidelberg (2000)

5. Fan, X., Toni, F.: Assumption-based argumentation dialogues. In: Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 198–203
(2011)

6. Hamblin, C.: Mathematical models of dialogue. Theoria 37, 567–583 (1971)
7. Mackenzie, J.: Question begging in non-cumulative systems. Journal of Philosoph-

ical Logic 8, 117–133 (1979)
8. McBurney, P., Parsons, S.: Games that agents play: A formal framework for dia-

logues between autonomous agents. Journal of Logic, Language and Information 11,
315–334 (2002)

9. McBurney, P., van Eijk, R., Parsons, S., Amgoud, L.: A dialogue-game protocol
for agent purchase negotiations. Journal of Autonomous Agents and Multi-Agent
Systems 7, 235–273 (2003)

10. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some for-
mal inter-agent dialogues. J. of Logic and Comp. 13(3), 347–376 (2003)

11. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. J. of
Logic and Comp. 15(6), 1009–1040 (2005)

12. Walton, D., Krabbe, E.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. SUNY Press (1995)

13. Black, E., Hunter, A.: Executable logic for dialogical argumentation. In: European
Conf. on Artificial Intelligence (ECAI 2012), pp. 15–20. IOS Press (2012)

14. Wooldridge, M., McBurney, P., Parsons, S.: On the meta-logic of arguments. In:
Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005. LNCS
(LNAI), vol. 4049, pp. 42–56. Springer, Heidelberg (2006)

15. Dung, P.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–357 (1995)

16. Bench-Capon, T.: Persuasion in practical argument using value based argumenta-
tion frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

17. Egly, U., Gaggl, S., Woltran, S.: Aspartix: Implementing argumentation frame-
works using answer-set programming. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 734–738. Springer, Heidelberg (2008)

18. Maudet, N., Evrard, F.: A generic framework for dialogue game implementation.
In: Proc. 2nd Workshop on Formal Semantics & Pragmatics of Dialogue, University
of Twente, pp. 185–198 (1998)

19. Brewka, G.: Dynamic argument systems: A formal model of argumentation pro-
cesses based on situation calculus. J. Logic & Comp. 11(2), 257–282 (2001)

20. Matt, P., Toni, F.: A game-theoretic measure of argument strength for abstract
argumentation. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 285–297. Springer, Heidelberg (2008)

21. Rotstein, N., Moguillansky, M., Simari, G.: Dialectical abstract argumentation. In:
Proceedings of IJCAI, pp. 898–903 (2009)

22. Oren, N., Norman, T.: Arguing using opponent models. In: McBurney, P., Rahwan,
I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS, vol. 6057, pp. 160–174.
Springer, Heidelberg (2010)

What Can Argumentation Do for Inconsistent Ontology
Query Answering?

Madalina Croitoru1 and Srdjan Vesic2,�

1 INRIA, LIRMM, Univ. Montpellier 2, France
2 CRIL - CNRS, France

Abstract. The area of inconsistent ontological knowledge base query answer-
ing studies the problem of inferring from an inconsistent ontology. To deal with
such a situation, different semantics have been defined in the literature (e.g. AR,
IAR, ICR). Argumentation theory can also be used to draw conclusions under
inconsistency. Given a set of arguments and attacks between them, one applies
a particular semantics (e.g. stable, preferred, grounded) to calculate the sets of
accepted arguments and conclusions. However, it is not clear what are the similar-
ities and differences of semantics from ontological knowledge base query answer-
ing and semantics from argumentation theory. This paper provides the answer to
that question. Namely, we prove that: (1) sceptical acceptance under stable and
preferred semantics corresponds to ICR semantics; (2) universal acceptance un-
der stable and preferred semantics corresponds to AR semantics; (3) acceptance
under grounded semantics corresponds to IAR semantics. We also prove that the
argumentation framework we define satisfies the rationality postulates (e.g. con-
sistency, closure).

1 Introduction

Ontological knowledge base query answering problem has received renewed interest in
the knowledge representation community (and especially in the Semantic Web domain
where it is known as the ontology based data access problem [17]). It considers a con-
sistent ontological knowledge base (made from facts and rules) and aims to answer if
a query is entailed by the knowledge base (KB). Recently, this question was also con-
sidered in the case where the KB is inconsistent [16,8]. Maximal consistent subsets of
the KB, called repairs, are then considered and different semantics (based on classical
entailment on repairs) are proposed in order to compute the set of accepted formulae.

Argumentation theory is also a well-known method for dealing with inconsistent
knowledge [5,2]. Logic-based argumentation [6] considers constructing arguments from
inconsistent knowledge bases, identifying attacks between them and selecting accept-
able arguments and their conclusions. In order to know which arguments to accept, one
applies a particular argumentation semantics.
� The major part of the work on this paper was carried out while Srdjan Vesic was affiliated with

the Computer Science and Communication Research Unit at the University of Luxembourg.
During this period, Srdjan Vesic’s project was supported by the National Research Fund, Lux-
embourg, and cofunded under the Marie Curie Actions of the European Commission (FP7-
COFUND). At the time when the authors were finishing the work on this paper, Srdjan Vesic
was a CRNS researcher affiliated with CRIL.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 15–29, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

16 M. Croitoru and S. Vesic

This paper starts from the observation that both inconsistent ontological KB query
answering and instantiated argumentation theory deal with the same issue, which is
reasoning under inconsistent information. Furthermore, both communities have several
mechanisms to select acceptable conclusions and they both call them semantics. The
research questions one could immediately ask are: Is there a link between the seman-
tics used in inconsistent ontological KB query answering and those from argumentation
theory? Is it possible to instantiate Dung’s ([15]) abstract argumentation theory in a way
to implement the existing semantics from ontological KB query answering? If so, which
semantics from ontological KB query answering correspond to which semantics from
argumentation theory? Does the proposed instantiation of Dung’s abstract argumenta-
tion theory satisfy the rationality postulates [10]?

There are several benefits from answering those questions. First, it would allow to
import some results from argumentation theory to ontological query answering and
vice versa, and more generally open the way to the Argumentation Web [19]. Second,
it might be possible to use these results in order to explain to users how repairs are con-
structed and why a particular conclusion holds in a given semantics by constructing and
evaluating arguments in favour of different conclusions [14]. Also, on a more theoreti-
cal side, proving a link between argumentation theory and the results in the knowledge
representation community would be a step forward in understanding the expressibility
of Dung’s abstract theory for logic based argumentation [21].

The paper is organised as follows. In Section 2 the ontological query answering
problem is explained and the logical language used throughout the paper is introduced.
The end of this section introduces the existing semantics proposed in the literature to
deal with inconsistent knowledge bases. Then, in Section 3, we define the basics of ar-
gumentation theory. Section 4 proves the links between the extensions obtained under
different argumentation semantics in this instantiated logical argumentation setting and
the repairs of the ontological knowledge base. We show the equivalence between the
semantics from inconsistent ontological KB query answering area and those defined in
argumentation theory in Section 5. Furthermore, the argumentation framework thus de-
fined respects the rationality postulates (Section 6). The paper concludes with Section 7.
Some proofs are omitted due to the space restrictions, but they are all available in the
technical report that can also be found online at http://hal-lirmm.ccsd.cnrs.
fr/docs/00/81/26/30/PDF/TR-Vesic-Croitoru.pdf .

2 Ontological Conjunctive Query Answering

The main goal of this section is to introduce the syntax and semantics of the SRC
language [3,4], which is used in this paper due to its relevance in the context of the on-
tological KB query answering. Note that the goal of the present paper is not to change
or criticise the definitions from this area; we simply present the existing work. Our goal
is to study the link between the existing work in this area and the existing work in argu-
mentation theory. In the following, we give a general setting knowledge representation
language which can then be instantiated according to properties on rules or constraints
and yield equivalent languages to those used by [16] and [8].

http://hal-lirmm.ccsd.cnrs.fr/docs/00/81/26/30/PDF/TR-Vesic-Croitoru.pdf
http://hal-lirmm.ccsd.cnrs.fr/docs/00/81/26/30/PDF/TR-Vesic-Croitoru.pdf

What Can Argumentation Do for Inconsistent Ontology Query Answering? 17

A knowledge base is a 3-tuple K = (F ,R,N) composed of three finite sets of
formulae: a set F of facts, a set R of rules and a set N of constraints. Let us formally
define what we accept as F , R and N .

Facts Syntax. Let C be a set of constants and P = P1 ∪P2 . . .∪Pn a set of predicates
of the corresponding arity i = 1, . . . , n. Let V be a countably infinite set of variables.
We define the set of terms by T = V ∪ C. As usual, given i ∈ {1 . . . n}, p ∈ Pi

and t1, . . . , ti ∈ T we call p(t1, . . . , ti) an atom. If γ is an atom or a conjunction
of atoms, we denote by var(γ) the set of variables in γ and by term(γ) the set of
terms in γ. A fact is the existential closure of an atom or an existential closure of a
conjunction of atoms. (Note that there is no negation or disjunction in the facts.) As an
example, consider C = {Tom}, P = P1∪P2, with P1 = {cat,mouse}, P2 = {eats}
and V = {x1, x2, x3, . . .}. Then, cat(Tom), eats(Tom, x1) are examples of atoms
and γ = cat(Tom) ∧mouse(x1) ∧ eats(Tom, x1) is an example of a conjunction of
atoms. It holds that var(γ) = {x1} and term(γ) = {Tom, x1}. As an example of a
fact, consider ∃x1(cat(Tom) ∧mouse(x1) ∧ eats(Tom, x1)).

An interpretation is a pair I = (�, .I) where � is the interpretation domain (possi-
bly infinite) and .I , the interpretation function, satisfies:

1. For all c ∈ C, we have cI ∈ �,
2. For all i and for all p ∈ Pi, we have pI ⊆ �i,
3. If c, c′ ∈ C and c �= c′ then cI �= c′I .

Let γ be an atom or a conjunction of atoms or a fact. We say that γ is true under interpre-
tation I iff there is a function ι which maps the terms (variables and constants) of γ into
� such that for all constants c, it holds that ι(c) = cI and for all atoms p(t1, ...ti) ap-
pearing in γ, it holds that (ι(t1), ..., ι(ti)) ∈ pI . For a set F containing any combination
of atoms, conjunctions of atoms and facts, we say that F is true under interpretation I
iff there is a function ι which maps the terms (variables and constants) of all formulae in
F into � such that for all constants c, it holds that ι(c) = cI and for all atoms p(t1, ...ti)
appearing in formulae of F , it holds that (ι(t1), ..., ι(ti)) ∈ pI . Note that this means that
for example sets F1 = {∃x(cat(x) ∧ dog(x))} and F2 = {∃x(cat(x)), ∃x(dog(x))}
are true under exactly the same set of interpretations. Namely, in both cases, variable
x is mapped to an object of Δ. On the other hand, there are some interpretations under
which set F3 = {∃x1(cat(x1)), ∃x2(dog(x2))} is true whereas F1 and F2 are not.

If γ is true in I we say that I is a model of γ. Let γ′ be an atom, a conjunction
of atoms or a fact. We say that γ is a logical consequence of γ′ (γ′ entails γ, denoted
γ′ |= γ) iff all models of γ are models of γ′. If a set F is true in I we say that I
is a model of F . We say that a formula γ is a logical consequence of a set F (denoted
F |= γ) iff all models of F are models of γ. We say that a set G is a logical consequence
of set F (denoted F |= G) if and only if all models of F are models of G. Two sets F
and G are logically equivalent (denoted F ≡ G) if and only if F |= G and G |= F .

Given a set of variables X and a set of terms T, a substitution σ of X by T is a
mapping from X to T (denoted σ : X → T). Given an atom or a conjunction of
atoms γ, σ(γ) denotes the expression obtained from γ by replacing each occurrence of
x ∈ X ∩ var(γ) by σ(x). If a fact F is the existential closure of a conjunction γ then
we define σ(F) as the existential closure of σ(γ). Finally, let us define homomorphism.

18 M. Croitoru and S. Vesic

Let F and F ′ be atoms, conjunctions of atoms or facts (it is not necessarily the case
that F and F ′ are of the same type, e.g. F can be an atom and F ′ a conjunction of
atoms). Let σ be a substitution such that σ : var(F) → term(F ′). We say that σ is
a homomorphism from F to F ′ if and only if the set of atoms appearing in σ(F) is
a subset of the set of atoms appearing in σ(F ′). For example, let F = cat(x1) and
F ′ = cat(Tom)∧mouse(Jerry). Let σ : var(F) → term(F ′) be a substitution such
that σ(x1) = Tom. Then, σ is a homomorphism from F to F ′ since the atoms in σ(F)
are {cat(Tom)} and the atoms in σ(F ′) are {cat(Tom),mouse(Jerry)}.

It is known that F ′ |= F if and only if there is a homomorphism from F to F ′ [12].

Rules. A rule R is a formula ∀x1, . . . , ∀xn ∀y1, . . . , ∀ym (H(x1, . . . , xn, y1, . . . , ym)
→ ∃z1, ...∃zk C(y1, . . . , ym, z1, ...zk)) where H , the hypothesis, and C, the conclu-
sion, are atoms or conjunctions of atoms, n,m, k ∈ {0, 1, . . .}, x1, . . . , xn are the
variables appearing in H , y1, . . . , ym are the variables appearing in both H and C and
z1, . . . , zk the new variables introduced in the conclusion (for example ∀x1(cat(x1) →
miaw(x1)) or ∀x1((mouse(x1) → ∃z1(cat(z1) ∧ eats(z1, x1)))).

Reasoning consists of applying rules on the set and thus inferring new knowledge. A
ruleR = (H,C) is applicable to set F if and only if there exists F ′ ⊆ F such that there
is a homomorphism σ from the hypothesis of R to the conjunction of elements of F ′.
For example, rule ∀x1(cat(x1) → miaw(x1)) is applicable to set {cat(Tom)}, since
there is a homomorphism from cat(x1) to cat(Tom). If rule R is applicable to set F ,
the application of R to F according to σ produces a set F ∪ {σ(C)}. In our example,
the produced set is {cat(Tom),miaw(Tom)}. We then say that the new set (which
includes the old one and adds the new information to it) is an immediate derivation of
F by R. This new set is denoted by R(F). Applying a rule on a set produces a new set.

Let F be a subset of F and let R be a set of rules. A set Fn is called an R-derivation
of F if there is a sequence of sets (derivation sequence) (F0, F1, . . . , Fn) such that:

– F0 ⊆ F
– F0 is R-consistent
– for every i ∈ {1, . . . , n− 1}, it holds that Fi is an immediate derivation of Fi−1

– (no formula in Fn contains a conjunction and Fn is an immediate derivation of Fn−1)
or Fn is obtained from Fn−1 by conjunction elimination.

Conjunction elimination is the following procedure: while there exists at least one con-
junction in at least one formula, take an arbitrary formula ϕ containing a conjunction.
If ϕ is of the form ϕ = ψ ∧ ψ′ then exchange it with two formulae ψ and ψ′. If ϕ is
of the form ∃x(ψ ∧ ψ′) then exchange it with two formulae ∃x(ψ) and ∃x(ψ′). The
idea is just to start with an R-consistent set and apply (some of the) rules. The only
technical detail is that the conjunctions are eliminated from the final result. So if the
last set in a sequence does not contain conjunctions, nothing is done. Else, we eliminate
those conjunctions. This technicality is needed in order to stay as close as possible to
the procedures used in the literature in the case when the knowledge base is consistent.

Given a set {F0, . . . , Fk} ⊆ F and a set of rules R, the closure of {F0, . . . , Fk} with
respect to R, denoted ClR({F0, . . . , Fk}), is defined as the smallest set (with respect
to ⊆) which contains {F0, . . . , Fk}, and is closed for R-derivation (that is, for every
R-derivation Fn of {F0, . . . , Fk}, we have Fn ⊆ ClR({F0, . . . , Fk})). Finally, we say

What Can Argumentation Do for Inconsistent Ontology Query Answering? 19

that a set F and a set of rules R entail a fact G (and we write F ,R |= G) iff the closure
of the facts by all the rules entails G (i.e. if ClR(F) |= G).

As an example, consider a set of facts F = {cat(Tom), small(Tom)} and the rule
set R = {R1 = ∀x1(cat(x1) → miaw(x1) ∧ animal(x1)), R2 = ∀x1(miaw(x1) ∧
small(x1) → cute(x1))}. Then, F0, F1, F2 is a derivation sequence, where F0 =
{cat(Tom), small(Tom)}, F1 = R1(F0) = {cat(Tom), small(Tom), miaw(Tom)
∧animal(Tom)}, F2 = {cat(Tom), small(Tom), miaw(Tom) ∧ animal(Tom),
cute(Tom)} and F3 = {cat(Tom), small(Tom), miaw(Tom), animal(Tom),
cute(Tom)}.

We conclude the presentation on rules in SRC by a remark on performing union on
facts when they are viewed as sets of atoms. In order to preserve semantics the union is
done by renaming variables. For example, let us consider a fact F1 = {∃xcat(x)} and
a fact F2 = {∃xanimal(x)}. Then the fact F = F1 ∪ F2 is the union of the two fact
after variable naming has been performed: F = {∃x1cat(x1), ∃x2animal(x2)}.

Constraints. A constraint is a formula ∀x1 . . . ∀ xn (H(x1, . . . , xn) → ⊥), where H
is an atom or a conjunction of atoms and n ∈ {0, 1, 2, . . .}. Equivalently, a constraint
can be written as ¬(∃x1, ..., ∃xnH(x1, ...xn)). As an example of a constraint, consider
∀x1(cat(x1)∧dog(x1) → ⊥).H(x1, . . . , xn) is called the hypothesis of the constraint.

Given a knowledge base K = (F ,R,N), a set {F1, . . . , Fk} ⊆ F is said to be in-
consistent if and only if there exists a constraintN ∈ N such that {F1, . . . , Fk} |= HN ,
where HN denotes the existential closure of the hypothesis of N . A set is consistent if
and only if it is not inconsistent. A set {F1, . . . , Fk} ⊆ F is R-inconsistent if and only
if there exists a constraint N ∈ N such that ClR({F1, . . . , Fk}) |= HN , where HN

denotes the existential closure of the hypothesis of N .
A set of facts is said to be R-consistent if and only if it is not R-inconsistent. A

knowledge base (F ,R,N) is said to be consistent if and only if F is R-consistent. A
knowledge base is inconsistent if and only if it is not consistent.

Example 1. Let us consider the following knowledge base K = (F ,R,N), with: F =
{cat(Tom), bark(Tom)}, R = {∀x1(cat(x1) → miaw(x1))}, N = {∀x1(bark(x1)
∧miaw(x1) → ⊥)}. The only rule in the knowledge base is applicable to the set
{cat(Tom), bark(Tom)} and its immediate derivation produces the set {cat(Tom),
bark(Tom),miaw(Tom)}. Since ClR(F) |= ∃x1(bark(x1) ∧miaw(x1)) the KB is
inconsistent.

Given a knowledge base, one can ask a conjunctive query in order to know whether
something holds or not. Without loss of generality we consider in this paper boolean
conjunctive queries (which are facts). As an example of a query, take ∃x1cat(x1). The
answer to query α is positive if and only if F ,R |= α.

2.1 Query Answering over Inconsistent Ontological Knowledge Bases

Notice that (like in classical logic), if a knowledge base K = (F ,R,N) is inconsis-
tent, then everything is entailed from it. In other words, every query is true. Thus, the
approach we described until now is not robust enough to deal with inconsistent infor-
mation. However, there are cases when the knowledge base is inconsistent; this phe-
nomenon has attracted particular attention during the recent years [8,16]. For example,

20 M. Croitoru and S. Vesic

the set F may be obtained by combining several sets of facts, coming from different
agents. In this paper, we study a general case when K is inconsistent without making
any hypotheses about the origin of this inconsistency. Thus, our results can be applied
to an inconsistent base independently of how it is obtained.

A common solution [8,16] is to construct maximal (with respect to set inclusion)
consistent subsets of K. Such subsets are called repairs. Formally, given a knowledge
base K = (F ,R,N), define:

Repair(K) = {F ′ ⊆ F | F ′ is maximal for ⊆ R-consistent set}

We now mention a very important technical detail. In some papers, a set of formulae
is identified with the conjunction of those formulae. This is not of particular significance
when the knowledge base is consistent. However, in case of an inconsistent knowl-
edge base, this makes a big difference. Consider for example K1 = (F1,R1,N1) with
F1 = {dog(Tom), cat(Tom)}, R1 = ∅ and N1 = {∀x1(dog(x1) ∧ cat(x1) → ⊥)},
compared with K2 = (F2,R2,N2) with F2 = {dog(Tom) ∧ cat(Tom)}, R2 = ∅
and N2 = {∀x1(dog(x1) ∧ cat(x1) → ⊥)}. In this case, according to the definition
of a repair, K1 would have two repairs and K2 would have no repairs at all. We could
proceed like this, but we find it confusing given the existing literature in this area. This
is why, in order to be completely precise, from now on we suppose that F does not
contain conjunctions. Namely, F is supposed to be a set composed of of atoms and of
existential closures of atoms.

Once the repairs calculated, there are different ways to calculate the set of facts that
follow from an inconsistent knowledge base. For example, we may want to accept a
query if it is entailed in all repairs (AR semantics).

Definition 1. Let K = (F ,R,N) be a knowledge base and let α be a query. Then α is
AR-entailed from K, written K |=AR α iff for every repair A′ ∈ Repair(K), it holds
that ClR(A′) |= α.

Another possibility is to check whether the query is entailed from the intersection of
closed repairs (ICR semantics).

Definition 2. Let K = (F ,R,N) be a knowledge base and let α be a query. Then α is
ICR-entailed from K, written K |=ICR α iff

⋂
A′∈Repair(K) ClR(A′) |= α.

Example 2 (Example 1 Cont.). Repair(K) = {R1, R2} with R1 = {cat(Tom)}
and R2 = {bark(Tom)}}. ClR(R1) = {cat(Tom),miaw(Tom)}, ClR(R2) =
{bark(Tom)}. It is not the case that K |=ICR cat(Tom).

Finally, another possibility is to consider the intersection of all repairs and then close
this intersection under the rules (IAR semantics).

Definition 3. Let K = (F ,R,N) be a knowledge base and let α be a query. Then α is
IAR-entailed from K, written K |=IAR α iff ClR(

⋂
A′∈Repair(K)) |= α.

What Can Argumentation Do for Inconsistent Ontology Query Answering? 21

The three semantics can yield different results [16,8]:

Example 3. (ICR and IAR different from AR) Consider K = (F ,R,N), with: F =
{havecat(Tom), haveMouse(Jerry)}, intuitively, we have a cat (called Tom) and a
mouse (called Jerry); R = {∀x1 (haveCat(x1) → haveAnimal(x1)),
∀x2 (haveMouse(x2) → haveAnimal(x2))}; N = {∀x1∀x2(haveCat(x1)
∧haveMouse(x2) → ⊥)}, meaning that we cannot have both a cat and a mouse (since
the cat would eat the mouse). There are two repairs: R1 = {haveCat(Tom)} and
R2 = {haveMouse(Jerry)}. ClR(R1) = {haveCat(Tom), haveAnimal(Tom)}
and ClR(R2) = {haveMouse(Jerry), haveAnimal(Jerry)}. Consider a queryα =
∃x1 haveAnimal(x1) asking whether we have an animal. It holds that K |=AR α since
ClR(R1) |= α and ClR |= α, but neither K |=ICR α (since ClR(R1)∩ClR(R2) = ∅)
nor K |=IAR α (since R1 ∩R2 = ∅).

Example 4. (AR and ICR different from IAR) Consider K = (F ,R,N), with: F =
{cat(Tom), dog(Tom)}, R = {∀x1(cat(x1) → animal(x1)),
∀x2(dog(x2) → animal(x2))}, N = {∀x(cat(x) ∧ dog(x) → ⊥)}.

We have Repair(K) = {R1, R2} with R1 = {cat(Tom)} and R2 = {dog(Tom)}.
ClR(R1) = {cat(Tom), animal(Tom)}, ClR(R2) = {dog(Tom), animal(Tom)}.

It is not the case that K |=IAR ∃x(animal(x)) (since R1

⋂
R2 = ∅). However,

K |=AR ∃x(animal(x)). This is due to the fact that ClR(R1) |= ∃x(animal(x))
and ClR(R2) |= ∃x(animal(x)). Also, we have K |=ICR ∃x(animal(x)) since
ClR(R1) ∩ ClR(R2) = {animal(Tom)}.

3 Argumentation over Inconsistent Ontological Knowledge Bases

This section shows that it is possible to define an instantiation of Dung’s abstract argu-
mentation theory [15] used to reason with an inconsistent ontological KB.

We first define the notion of an argument. For a set of formulae G = {G1, . . . , Gn},
notation

∧
G is used as an abbreviation for G1 ∧ . . . ∧Gn.

Definition 4. Given a knowledge base K = (F ,R,N), an argument a is a tuple a =
(F0, F1, . . . , Fn) where:

– (F0, . . . , Fn−1) is a derivation sequence with respect to K
– Fn is an atom, a conjunction of atoms, the existential closure of an atom or the exis-

tential closure of a conjunction of atoms such that Fn−1 |= Fn.

Example 5 (Example 2 Cont.). Considera=({cat(Tom)}, {cat(Tom),miaw(Tom)},
miaw(Tom)) and b = ({bark(Tom)}, bark(Tom)) as two examples of arguments.

This is a straightforward way to define an argument when dealing with SRClanguage,
since this way, an argument corresponds to a derivation.

To simplify the notation, from now on, we suppose that we are given a fixed knowl-
edge base K = (F ,R,N) and do not explicitly mention F , R nor N if not neces-
sary. Let a = (F0, ..., Fn) be an argument. Then, we denote Supp(a) = F0 and
Conc(a) = Fn. Let S ⊆ F a set of facts, Arg(S) is defined as the set of all ar-
guments a such that Supp(a) ⊆ S. Note that the set Arg(S) is also dependent on

22 M. Croitoru and S. Vesic

the set of rules and the set of constraints, but for simplicity reasons, we do not write
Arg(S,R,N) when it is clear to which K = (F ,R,N) we refer to. Finally, let E be
a set of arguments. The base of E is defined as the union of the argument supports:
Base(E) =

⋃
a∈E Supp(a).

Arguments may attack each other, which is captured by a binary attack relation
Att ⊆ Arg(F) × Arg(F). Recall that the repairs are the subsets of F while the set
R is always taken as a whole. This means that the authors of the semantics used to deal
with an inconsistent ontological KB envisage the set of facts as inconsistent and the set
of rules as consistent. When it comes to the attack relation, this means that we only
need the so called “assumption attack” since, roughly speaking, all the inconsistency
“comes from the facts”.

Definition 5. Let K = (F ,R,N) be a knowledge base and let a and b be two argu-
ments. The argument a attacks argument b, denoted (a, b) ∈ Att, if and only if there
exists ϕ ∈ Supp(b) such that the set {Conc(a), ϕ} is R-inconsistent.

This attack relation is not symmetric. To see why, consider the following example.
Let F = {p(m), q(m), r(m)}, R = ∅, N = {∀x1(p(x1) ∧ q(x1) ∧ r(x1) → ⊥)}. Let
a = ({p(m), q(m)}, p(m) ∧ q(m)), b = ({r(m)}, r(m)). We have (a, b) ∈ Att and
(b, a) /∈ Att. Note that using attack relations which are not symmetric is very common
in argumentation literature. Moreover, symmetric attack relation have been criticised
for violating some desirable properties [1].

Definition 6. Given a knowledge base K = (F ,R,N), the corresponding argumenta-
tion framework AFK is a pair (A = Arg(F), Att) where A is the set of arguments
that can be constructed from F and Att is the corresponding attack relation as speci-
fied in Definition 5. Let E ⊆ A and a ∈ A. We say that E is conflict free iff there exists
no arguments a, b ∈ E such that (a, b) ∈ Att. E defends a iff for every argument b ∈ A,
if we have (b, a) ∈ Att then there exists c ∈ E such that (c, b) ∈ Att. E is admissible
iff it is conflict free and defends all its arguments. E is a complete extension iff E is an
admissible set which contains all the arguments it defends. E is a preferred extension
iff it is maximal (with respect to set inclusion) admissible set. E is a stable extension
iff it is conflict-free and for all a ∈ A \ E , there exists an argument b ∈ E such that
(b, a) ∈ Att. E is a grounded extension iff E is a minimal (for set inclusion) complete
extension. If a semantics returns exactly one extension for every argumentation frame-
work, then it is called a single-extension semantics. For an argumentation framework
AS = (A, Att) we denote by Extx(AS) (or by Extx(A, Att)) the set of its extensions
with respect to semantics x. We use the abbreviations c, p, s, and g for respectively com-
plete, preferred, stable and grounded semantics. An argument is sceptically accepted if
it is in all extensions, credulously accepted if it is in at least one extension and rejected
if it is not in any extension.

Finally, we introduce two definitions allowing us to reason over such an argumentation
framework. The output of an argumentation framework is usually defined [10, Defi-
nition 12] as the set of conclusions that appear in all the extensions (under a given
semantics).

What Can Argumentation Do for Inconsistent Ontology Query Answering? 23

Definition 7 (Output of an argumentation framework). Let K = (F ,R,N) be a
knowledge base and AFK the corresponding argumentation framework. The output of
AFK under semantics x is defined as:

Outputx(AFK) =
⋂

E∈Extx(AFK)

Concs(E).

When Extx(AFK) = ∅, we define Output(AFK) = ∅ by convention.

Note that the previous definition asks for existence of a conclusion in every exten-
sion. This kind of acceptance is usually referred to as sceptical acceptance. We say that
a query α is sceptically accepted if it is a logical consequence of the output of AFK :

Definition 8 (Sceptical acceptance of a query). Let K = (F ,R,N) be a knowledge
base and AFK the corresponding argumentation framework. A query α is sceptically
accepted under semantics x if and only if Outputx(AFK) |= α.

It is possible to make an alternative definition, which uses the notion of universal ac-
ceptance instead of sceptical one. According to universal criteria, a query α is accepted
if it is a logical consequence of conclusions of every extension:

Definition 9 (Universal acceptance of a query). Let K = (F ,R,N) be a knowledge
base and AFK the corresponding argumentation framework. A query α is universally
accepted under semantics x if and only if for every extension Ei ∈ Extx(AFK), it
holds that Concs(Ei) |= α.

In general, universal and sceptical acceptance of a query do not coincide. Take for
instance the KB from Example 3, construct the corresponding argumentation frame-
work, and compare the sets of universally and sceptically accepted queries under pre-
ferred semantics. Note that for single-extension semantics (e.g. grounded), the notions
of sceptical and universal acceptance coincide. So we simply use word “accepted” in
this context.

Definition 10 (Acceptance of a query). Let K = (F ,R,N) be a knowledge base,
AFK the corresponding argumentation framework, x a single-extension semantics and
let E be the unique extension of AFK . A query α is accepted under semantics x if and
only if Concs(E) |= α.

4 Equivalence between Repairs and Extensions

In this section, we prove two links between the repairs of an ontological KB and the
corresponding argumentation framework: Theorem 1 shows that the repairs of the KB
correspond exactly to the stable (and preferred, since in this instantiation the stable and
the preferred semantics coincide) extensions of the argumentation framework; Theorem
2 proves that the intersection of all the repairs of the KB corresponds to the grounded
extension of the argumentation framework.

24 M. Croitoru and S. Vesic

Theorem 1. Let K = (F ,R,N) be a knowledge base, AFK the corresponding argu-
mentation framework and x ∈ {s, p}1. Then:

Extx(AFK) = {Arg(A′) | A′ ∈ Repair(K)}

Proof. The plan of the proof is as follows:

1. We prove that {Arg(A′) | A′ ∈ Repair(K)} ⊆ Exts(AFK).
2. We prove that Extp(AFK) ⊆ {Arg(A′) | A′ ∈ Repair(K)}.
3. Since every stable extension is a preferred one [15], we can proceed as follows.

From the first item, we have that {Arg(A′) | A′ ∈ Repair(K)} ⊆ Extp(AFK),
thus the theorem holds for preferred semantics. From the second item we have that
Exts(AFK) ⊆ {Arg(A′) | A′ ∈ Repair(K)}, thus the theorem holds for stable
semantics.

1. We first show {Arg(A′) | A′ ∈ Repair(K)} ⊆ Exts(AFK). Let A′ ∈ Repair(K)
and let E = Arg(A′). Let us prove that E is a stable extension of (Arg(F), Att).
We first prove that E is conflict-free. By means of contradiction we suppose the
contrary, i.e. let a, b ∈ E such that (a, b) ∈ Att. From the definition of attack, there
exists ϕ ∈ Supp(b) such that {Conc(a), ϕ} is R-inconsistent. Thus Supp(a) ∪ {ϕ}
is R-inconsistent; consequently A′ is R-inconsistent, contradiction. Therefore E is
conflict-free.

Let us now prove that E attacks all arguments outside the set. Let b ∈ Arg(F) \
Arg(A′) and let ϕ ∈ Supp(b), such that ϕ /∈ A′. Let A′

c be the set obtained from A′

by conjunction elimination and let a = (A′, A′
c,
∧
A′

c). We have ϕ /∈ A′, so, due to
the set inclusion maximality for the repairs, {

∧
A′

c, ϕ} is R-inconsistent. Therefore,
(a, b) ∈ Att. Consequently, E is a stable extension.

2. We now need to prove that Extp(AFK) ⊆ {Arg(A′) | A′ ∈ Repair(K)}. Let
E ∈ Extp(AFK) and let us prove that there exists a repairA′ such that E = Arg(A′).
Let S = Base(E). Let us prove that S is R-consistent. Aiming to a contradiction,
suppose that S is R-inconsistent. Let S′ ⊆ S be such that (1) S′ is R-inconsistent
and (2) every proper set of S′ is R-consistent. Let us denote S′ = {ϕ1, ϕ2, ..., ϕn}.
Let a ∈ E be an argument such that ϕn ∈ Supp(a). Let S′

c be the set obtained from
S′ \ {ϕ} by conjunction elimination and let a′ = (S′ \ {ϕn}, S′

c,
∧
S′
c). We have

that (a′, a) ∈ Att. Since E is conflict free, then a′ /∈ E . Since E is an admissible
set, there exists b ∈ E such that (b, a′) ∈ Att. Since b attacks a′ then there exists
i ∈ {1, 2, ..., n− 1} such that {Conc(b), ϕi} is R-inconsistent. Since ϕi ∈ Base(E),
then there exists c ∈ E such that ϕi ∈ Supp(c). Thus (b, c) ∈ Att, contradiction. So
it must be that S is R-consistent.

Let us now prove that there exists no S′ ⊆ F such that S � S′ and S′ is R-
consistent. We use the proof by contradiction. Thus, suppose that S is not a maximal
R-consistent subset of F . Then, there exists S′ ∈ Repair(K), such that S � S′. We
have that E ⊆ Arg(S), since S = Base(E). Denote E ′ = Arg(S′). Since S � S′

then Arg(S) � E ′. Thus, E � E ′. From the first part of the proof, E ′ ∈ Exts(AFK).

1 Recall that s stands for stable and p for preferred semantics.

What Can Argumentation Do for Inconsistent Ontology Query Answering? 25

Consequently, E ′ ∈ Extp(AFK). We also know that E ∈ Extp(AFK). Contradic-
tion, since no preferred set can be a proper subset of another preferred set. Thus, we
conclude that Base(E) ∈ Repair(K).

Let us show that E = Arg(Base(E)). It must be that E ⊆ Arg(S). Also, we know
(from the first part) that Arg(S) is a stable and a preferred extension, thus the case
E � Arg(s) is not possible.

3. Now we know that {Arg(A′) | A′ ∈ Repair(K)} ⊆ Exts(AFK) and Extp(AFK)
⊆ {Arg(A′) | A′ ∈ Repair(K)}. The theorem follows from those two facts, as
explained at the beginning of the proof.

To prove Theorem 2, we use the following lemma which says that if there are no re-
jected arguments under preferred semantics, then the grounded extension is equal to
the intersection of all preferred extensions. Note that this result holds for every argu-
mentation framework (not only for the one studied in this paper, where arguments are
constructed from an ontological knowledge base). Thus, we only suppose that we are
given a set and a binary relation on it (called attack relation).

Lemma 1. Let AS = (A, Att) be an argumentation framework and GE its grounded
extension.

If A ⊆
⋃

Ei∈Extp(AS)

Ei then GE =
⋂

Ei∈Extp(AS)

Ei.

We can now, using the previous result, show the link between the intersection of
repairs and the grounded extension.

Theorem 2. Let K = (F ,R,N) be a knowledge base and AFK the corresponding
argumentation framework. Denote the grounded extension of AFK by GE. Then:

GE = Arg(
⋂

A′∈Repair(K)

A′).

5 Semantics Equivalence

This section presents the main result of the paper. It shows the links between semantics
from argumentation theory (stable, preferred, grounded) and semantics from inconsis-
tent ontology KB query answering (ICR, AR, IAR). More precisely, we show that: (1)
sceptical acceptance under stable and preferred semantics corresponds to ICR seman-
tics; (2) universal acceptance under stable and preferred semantics corresponds to AR
semantics; (3) acceptance under grounded semantics corresponds to IAR semantics.
The proof of Theorem 3 is based on Theorem 1 and the proof of Theorem 4 is derived
from Theorem 2.

Theorem 3. Let K = (F ,R,N) be a knowledge base, let AFK be the corresponding
argumentation framework and let α be a query. Let x ∈ {s, p} be stable or preferred
semantics. Then:

– K |=ICR α iff α is sceptically accepted under semantics x.
– K |=AR α iff α is universally accepted under semantics x.

26 M. Croitoru and S. Vesic

Theorem 4. Let K = (F ,R,N) be a knowledge base, let AFK be the corresponding
argumentation framework and let α be a query. Then:

K |=IAR α iff α is accepted under grounded semantics.

Proof. Let us denote the grounded extension of AFK by GE and the intersection of all
repairs by Ioar =

⋂
A′∈Repair(K)A

′. From Definition 10, we have:

α is accepted under grounded semantics iff Concs(GE) |= α. (1)

From Theorem 2, we have:
GE = Arg(Ioar). (2)

Note also that for every set of facts {F1, . . . , Fn} and for every query α, we have that
ClR({F1, . . . , Fn}) |= α if and only if Concs(Arg({F1, . . . , Fn})) |= α. Thus,

ClR(Ioar) |= α if and only if Concs(Arg(Ioar)) |= α. (3)

From (2) and (3) we have that:

ClR(Ioar) |= α if and only if Concs(GE) |= α. (4)

From Definition 3, one obtains:

ClR(Ioar) |= α if and only if K |=IAR α. (5)

The theorem now follows from (1), (4) and (5).

6 Postulates

In this section, we prove that the framework we propose in this paper satisfies the ra-
tionality postulates for instantiated argumentation frameworks [10]. We first prove the
indirect consistency postulate.

Proposition 1 (Indirect consistency). Let K = (F ,R,N) be a knowledge base,AFK

the corresponding argumentation framework and x ∈ {s, p, g}. Then:

– for every Ei ∈ Extx(AFK), ClR(Concs(Ei)) is a consistent set
– ClR(Outputx(AFK)) is a consistent set.

Proof.
– Let Ei be a stable or a preferred extension of AFK . From Theorem 1, there exists a

repair A′ ∈ Repair(K) such that Ei = Arg(A′). Note that Concs(Ei) = ClR(A′) ∪
{α | ClR(A) |= α} (this follows directly from Definition 4). Consequently, the set of
R-derivations of Concs(Ei) and the set of R-derivations of ClR(A′) coincide. For-
mally, ClR(ClR(A′)) = ClR(Concs(Ei)). Since ClR is idempotent, this means that
ClR(A′) = ClR(Concs(Ei)). Since ClR(A′) is consistent, then ClR(Concs(Ei)) is
consistent.

What Can Argumentation Do for Inconsistent Ontology Query Answering? 27

Let us now consider the case of grounded semantics. Denote GE the grounded
extension of AFK . We have just seen that for every Ei ∈ Extp(AFK), it holds
that ClR(Concs(Ei)) is a consistent set. Since the grounded extension is a subset of
the intersection of all the preferred extensions [15], and since there is at least one
preferred extension, say E1, then GE ⊆ E1. Since ClR(Concs(Ei)) is consistent then
ClR(Concs(GE)) is also consistent.

– Consider the case of stable or preferred semantics. Let us prove ClR(Outputx(AFK))
is a consistent set. Recall that Outputx(AFK) =

⋂
Ei∈Extx(AFK) Concs(Ei). Since

every knowledge base has at least one repair then, according to Theorem 1, there
is at least one stable or preferred extension Ei. From Definition 7, we have that
Outputx(AFK) ⊆ Concs(Ei). Concs(Ei) is R-consistent thus Outputx(AFK) is
R-consistent. In other words, ClR(Outputx(AFK)) is consistent.

Note that in the case of grounded semantics the second part of the proposition
follows directly from the first one, since ClR(Outputg(AFK)) = ClR(Concs(GE)).

Since our instantiation satisfies indirect consistency then it also satisfies direct con-
sistency. This comes from R-consistency definition; namely, if a set is R-consistent,
then it is necessarily consistent. Thus, we obtain the following corollary.

Corollary 1 (Direct consistency). Let K = (F ,R,N) be a knowledge base, AFK

the corresponding argumentation framework and x ∈ {s, p, g}. Then:

– for every Ei ∈ Extx(AFK), Concs(Ei) is a consistent set
– Outputx(AFK) is a consistent set.

We can now also show that the present argumentation formalism also satisfies the
closure postulate.

Proposition 2 (Closure). Let K = (F ,R,N) be a knowledge base, AFK the corre-
sponding argumentation framework and x ∈ {s, p, g}. Then:

– for every Ei ∈ Extx(AFK), Concs(Ei) = ClR(Concs(Ei)).
– Outputx(AFK) = ClR(Outputx(AFK)).

7 Summary and Conclusion

This paper investigates the links between the semantics used in argumentation theory
and those from the inconsistent ontological KB query answering.

Contribution of the Paper. First, we show that it is possible to instantiate Dung’s
abstract argumentation theory in a way to deal with inconsistency in an ontological
KB. Second, we formally prove the links between the semantics from ontological KB
query answering and those from argumentation theory: ICR semantics corresponds to
sceptical acceptance under stable or preferred argumentation semantics, AR semantics
corresponds to universal acceptance under stable / preferred argumentation semantics
and IAR semantics corresponds to acceptance under grounded argumentation seman-
tics. Third, we show that the instantiation we define satisfies the rationality postulates.

28 M. Croitoru and S. Vesic

The fourth contribution of the paper is to make a bridge between the argumentation
community and the knowledge representation community.

Applications of Our Work. The first possible application of our work is to import some
results about semantics and acceptance from argumentation to ontological KB query
answering and vice versa. Second, arguments can be used for explanatory purposes. In
other words, we can use arguments and counter arguments to graphically represent and
explain why different points of view are conflicting or not and why certain argument
is (not) in all extensions. However, we suppose that the user understands the notion of
logical consequence under first order logic when it comes to consistent data. For exam-
ple, we suppose that the user is able to understand that if cat(Tom) ∧miaw(Tom) is
present in the set, then queries cat(Tom) and ∃xcat(x) are both true. To sum up, we
suppose that the other methods are used to explain reasoning under consistent knowl-
edge and we use argumentation to explain reasoning under inconsistent knowledge.

Related Work. Note that this is the first work studying the link between semantics used
in argumentation (stable, preferred, grounded) and semantics used in inconsistent on-
tological knowledge base query answering (AR, IAR, ICR). There is not much related
work. However, we review some papers that study similar issues.

For instance, the link between maximal consistent subsets of a knowledge base and
stable extensions of the corresponding argumentation system was shown by Cayrol
[11]. That was the first work showing this type of connection between argument-based
and non argument-based reasoning. This result was generalised [20] by studying the
whole class of argumentation systems corresponding to maximal consistent subsets of
the propositional knowledge base. The link between the ASPIC system [18] and the
Argument Interchange Format (AIF) ontology [13] has recently been studied [7]. An-
other related paper comprises constructing an argumentation framework with ontolog-
ical knowledge allowing two agents to discuss the answer to queries concerning their
knowledge (even if it is inconsistent) without one agent having to copy all of their on-
tology to the other [9]. While those papers are in the area of our paper, none of them is
related to the study of the links between different semantics for inconsistent ontological
KB query answering and different argumentation semantics.s

Future Work. We plan to answer different questions, like: Can other semantics from ar-
gumentation theory yield different results? Are those results useful for inconsistent on-
tological KB query answering? What happens in the case when preferences are present?

References

1. Amgoud, L., Besnard, P.: Bridging the gap between abstract argumentation systems and
logic. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 12–27. Springer,
Heidelberg (2009)

2. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation
frameworks. Journal of Automated Reasoning 29 (2), 125–169 (2002)

3. Baget, J.-F., Mugnier, M.-L.: The Complexity of Rules and Constraints. JAIR 16, 425–465
(2002)

4. Baget, J.-F., Mugnier, M.-L., Rudolph, S., Thomazo, M.: Walking the complexity lines for
generalized guarded existential rules. In: Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence (IJCAI 2011), pp. 712–717 (2011)

What Can Argumentation Do for Inconsistent Ontology Query Answering? 29

5. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent
knowledge bases. In: Proceedings of the 9th Conference on Uncertainty in Artificial intelli-
gence (UAI 1993), pp. 411–419 (1993)

6. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)
7. Bex, F.J., Modgil, S.J., Prakken, H., Reed, C.: On logical specifications of the argument

interchange format. Journal of Logic and Computation (2013)
8. Bienvenu, M.: On the complexity of consistent query answering in the presence of simple

ontologies. In: Proc. of AAAI (2012)
9. Black, E., Hunter, A., Pan, J.Z.: An argument-based approach to using multiple ontologies.

In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 68–79. Springer, Heidel-
berg (2009)

10. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial Intel-
ligence Journal 171 (5-6), 286–310 (2007)

11. Cayrol, C.: On the relation between argumentation and non-monotonic coherence-based en-
tailment. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI 1995), pp. 1443–1448 (1995)

12. Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation and Reasoning—
Computational Foundations of Conceptual Graphs. Advanced Information and Knowledge
Processing. Springer (2009)

13. Chesnevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M.,
Vreeswijk, G., Willmott, S.: Towards an argument interchange format. Knowledge Engi-
neering Review 21(4), 293–316 (2006)

14. Dix, J., Parsons, S., Prakken, H., Simari, G.R.: Research challenges for argumentation. Com-
puter Science - R&D 23(1), 27–34 (2009)

15. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence Journal 77, 321–
357 (1995)

16. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics
for description logics. In: Proc. of RR, pp. 103–117 (2010)

17. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS 2002 (2002)
18. Modgil, S.J., Prakken, H.: A general account of argumentation with preferences. Artificial

Intelligence Journal (2013)
19. Rahwan, I., Zablith, F., Reed, C.: Laying the foundations for a world wide argument web.

Artificial Intelligence 171(10-15), 897–921 (2007)
20. Vesic, S.: Maxi-consistent operators in argumentation. In: 20th European Conference on Ar-

tificial Intelligence (ECAI 2012), pp. 810–815 (2012)
21. Vesic, S., van der Torre, L.: Beyond maxi-consistent argumentation operators. In: del Cerro,

L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 424–436. Springer,
Heidelberg (2012)

Enforcement in Argumentation Is a Kind of Update

Pierre Bisquert, Claudette Cayrol,
Florence Dupin de Saint-Cyr, and Marie-Christine Lagasquie-Schiex

IRIT – UPS, Toulouse, France
{bisquert,ccayrol,dupin,lagasq}@irit.fr

Abstract. In the literature, enforcement consists in changing an argumentation
system in order to force it to accept a given set of arguments. In this paper, we
extend this notion by allowing incomplete information about the initial argumen-
tation system. Generalized enforcement is an operation that maps a propositional
formula describing a system and a propositional formula that describes a goal, to
a new formula describing the possible resulting systems. This is done under some
constraints about the allowed changes. We give a set of postulates restraining the
class of enforcement operators and provide a representation theorem linking them
to a family of proximity relations on argumentation systems.

Keywords: dynamics in argumentation, belief change.

1 Introduction

During a trial, a lawyer makes her final address to the judge; the lawyer of the opposite
party, say O, is able to build the argumentation system (a graph containing arguments
and attacks relation between them) corresponding to this pleading. O is also able to
compute all the arguments that are accepted according to the pleading, i.e., the set of
consensual arguments. Suppose now that O wants to force the audience to accept an-
other set of arguments. She has to make a change to the argumentation system, either
by adding an argument or by making an objection about an argument (to remove it) in
order to achieve this goal. In the literature, the operation to perform on an argumenta-
tion system in order to ensure that a given set of arguments is accepted given a set of
authorized changes is called “enforcement” [3].

This enforcement may be done more or less easily, since it may involve more or less
changes (costs to add/remove arguments may be introduced). The aim of the speaker
will be to find the least expensive changes to make to the argumentation system.

The previous example is a particular case of a more general enforcement operator.
Since we could consider cases where Agent O does not know exactly the argumentation
system on which she must make a change but knows only some information about
it (e.g. some arguments that are accepted or that are present in the system). In this
more general case, the idea is to ensure that the argumentation system after change
satisfies a given goal whatever the initial system is. The result of enforcement will give
a characterization of the set of argumentation systems that could be obtained (taking
into account a set of authorized changes).

The key idea developed in this paper is the parallel between belief update theory
[19,16] and enforcement in argumentation. Enforcement consists in searching for the

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 30–43, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Enforcement in Argumentation Is a Kind of Update 31

argumentation systems that are closest to a given starting argumentation system, in a
set of argumentation systems in which some target arguments are accepted. This gives
us the parallel with preorders on worlds in belief update. Hence worlds correspond to
argumentation systems while formulas should represent knowledge about these argu-
mentation systems. In classical enforcement this knowledge is expressed in terms of a
description of an initial argumentation system and a set of arguments that one wants to
see accepted. This is why we propose to introduce a propositional language in which
this kind of information may be expressed. This language enables us to generalize en-
forcement with a broader expressiveness.

Our paper is situated in the growing domain of dynamics of argumentation systems
[8,7,9,3,18,17] which covers both addition and removal of arguments or interactions. It
is organized as follows. We first restate abstract argumentation theory. Then we present
a framework that illustrates a particular case of change in argumentation, it concerns
an agent that wants to act on a given target system, this agent has a given goal and her
possible actions are limited. We then recall classical enforcement. In the third section
we propose a generalization of classical enforcement. Finally, we do a parallel with
belief update. As classical update postulates do not allow to deal with restrictions about
the authorized changes, we had to introduce a new set of postulates that characterizes
generalized enforcement. All the proofs can be found in [4].

2 Framework

2.1 Abstract Argumentation

Let us consider a set Arg of symbols (denoted by lower case letters) representing a set
of arguments and a relation Rel on Arg × Arg. The pair 〈Arg, Rel〉, called universe,
allows us to represent the set of possible arguments together with their interactions.
More precisely, Arg represents a maybe infinite set of arguments usable in a given
domain (e.g. if the domain is a knowledge base then Arg and Rel are the set of all
arguments and interactions that may be built from the formulas of the base). We can
also, as in the following example borrowed from [5], assume that Arg and Rel are
explicitly provided.

Example 1. During a trial1 concerning a defendant (Mr. X), several arguments can be
involved to determine his guilt. This set of arguments i.e., the set Arg and the relation
Rel are given below.

x0 Mr. X is not guilty of premeditated murder of Mrs. X , his wife.

x1 Mr. X is guilty of premeditated murder of Mrs. X .

x2
The defendant has an alibi, his business associate has solemnly sworn that he met him
at the time of the murder.

1 In real life, lawyers may be confronted to tougher problems than the one presented here.
Namely objection should often be done before an argument is fully laid out in order to stop
the jury forming an impression. Unfortunately, this side of real life argumentation is not yet
handled in our proposal.

32 P. Bisquert et al.

x3
The close working business relationships between Mr. X and his associate induce
suspicions about his testimony.

x4
Mr. X loves his wife so deeply that he asked her to marry him twice. A man who loves
his wife cannot be her killer.

x5 Mr. X has a reputation for being promiscuous.

x6
The defendant had no interest to kill his wife, since he was not the beneficiary of the
huge life insurance she contracted.

x7
The defendant is a man known to be venal and his “love” for a very rich woman could
be only lure of profit.

x5 x6 x3 x2

x7 x4 x1 x0

A new definition of argumentation system derives directly from a universe 〈Arg,
Rel〉. It differs slightly from the definition of [13] by the fact that arguments and inter-
actions are taken in the universe. In the following, we will use indifferently “argumen-
tation system” or “argumentation graph”.

Definition 1. An argumentation graph G is a pair (A,R) where A ⊆ Arg is the finite
set of vertices of G called “arguments” and R ⊆ RA = Rel ∩ (A × A) (RA is the
restriction of Rel on A) is its set of edges, called “attacks”. The set of argumentation
graphs that may be built on the universe 〈Arg, Rel〉 is denoted by Γ . In the following,
x ∈ G when x is an argument, is a shortcut for x ∈ A.

Example 2. In Example 1, we consider that all the arguments of the universe are known
by Agent O, but she is not sure about the content of the jury’s argumentation system.
She hesitates between two graphs:

x2

x7 x4 x1 x0

x2

x4 x1 x0

In argumentation theory, see [13], given such graphs, there are several ways to com-
pute a set of “accepted” arguments. This computation depends on the way to select
admissible groups of arguments, called “extensions”; several definitions can be consid-
ered for the “extensions”, they are called “semantics”. It depends also on the attribution
of a status to arguments, for instance an argument can be “accepted skeptically” or re-
spectively “credulously”, if it belongs to all, respectively, to at least one extension. For
sake of generality, we are not interested in a particular semantics nor on the mechanism
used to instate the status of the arguments. We only consider a function acc : Γ → 2Arg

which associates with any argumentation graph G the set of arguments that have an
accepted status in G according to a given semantics and a given status computation2.

2 This function could be parameterized by the precise semantics used.

Enforcement in Argumentation Is a Kind of Update 33

We will define a propositional language L in order to be able to describe an argu-
mentation system and its set of accepted arguments. Its semantics will be defined with
respect to Γ . ∀ϕ ∈ L , we denote by [ϕ] the set of argumentation graphs such that ϕ
is true in these graphs, namely [ϕ] = {G ∈ Γ s.t. ϕ is true in G}. As usual, we denote
G |= ϕ iff G ∈ [ϕ] and ϕ |= ψ iff [ϕ] ⊆ [ψ].

For sake of simplicity in all the examples, we are going to use a restricted proposi-
tional language LArg, only able to express conditions about the presence or the accepted
status of an argument in a graph. With this language, we can only handle examples about
argument addition or removal. Hence, changes about interactions won’t be considered,
which allows us to assume that R is always equal to RA in all our examples.

Definition 2. Let ΓArg be the set of argumentation graphs (A,RA) that may be built on
Arg. Let LArg be the propositional language associated with the vocabulary {a(x), on(x)
| x ∈ Arg}3, with the usual connectives ¬,∧,∨,→,↔ and constants ⊥ and �. Its se-
mantics is defined with respect to ΓArg as follows: let G ∈ ΓArg

– the formula ⊥ is always false in G
– the formula � is always true in G
– if x ∈ Arg then
• the formula a(x) is true in G iff x ∈ acc(G),
• the formula on(x) is true in G iff x ∈ G

– the non atomic formulas are interpreted as usual, ¬ϕ is true in G if ϕ is not true in
G, ϕ1 ∨ ϕ2 is true in G if ϕ1 or ϕ2 is true in G, etc.

Note that every accepted argument in a graph should belong to the graph, hence in
LArg, ∀G ∈ ΓArg, ∀x ∈ Arg, G |= a(x) → on(x).

Definition 3. The characteristic function fArg associated with LArg, fArg : ΓArg →
LArg, is defined by:
∀G ∈ ΓArg, fArg(G) =

∧
x∈G on(x) ∧

∧
x∈Arg\G ¬on(x).

Note that, in Definition 2, the attack relation being fixed, if the set of arguments be-
longing to G is known then G is perfectly known. More formally, fArg(G) characterizes
G in a unique way:

Property 1. ∀G ∈ ΓArg, [fArg(G)] = {G}

Example 3. The jury’s system is not completely known by Agent O. It is represented
in LArg by the formula ϕJury = on(x0) ∧ on(x1) ∧ on(x2) ∧ on(x4) ∧ ¬on(x3)
∧ ¬on(x5) ∧ ¬on(x6) ∧ (on(x7) ∨ ¬on(x7)) which covers the two graphs drawn in
Example 2; the disjunction between on(x7) and ¬on(x7) expresses the fact that Agent
O hesitates. Moreover, x0, x2 and (x4 or x7) are the only members of the “grounded
extension” [13]. Hence, ϕJury |= a(x0) ∧ a(x2) ∧ (a(x4) ∨ a(x7)).

Note that the idea to write propositional formulas for expressing acceptability of ar-
guments was first proposed in [11]. This was done with a completely different aim,
namely to generalize Dung’s argumentation framework by taking into account addi-
tional constraints (expressed in logic) on the admissible sets of arguments.

3 “a” stands for “accepted in G” while “on” stands for “belongs to G”.

34 P. Bisquert et al.

2.2 Change in Argumentation

In this section we propose a definition of change in argumentation based on the work
of [9,6] and adapted to the encoding of generalized enforcement operators. [9] have
distinguished four change operations. An elementary change is either adding/removing
an argument with a set of attacks involving it, or adding/removing an attack. According
to the restriction explained in Section 2.1, we only present in Definition 4 the opera-
tions of addition and removal on arguments. Moreover operations are only defined for
specific argumentation systems of the form (A,RA) where RA = Rel ∩ (A × A) i.e.
RA contains all the attacks concerning arguments of A that are present in the universe
(Arg, Rel). Note that this definition gives only a particular example of change opera-
tions when the attack relation is fixed.

The purpose of the following definitions is the introduction of a particular frame-
work, that will be used to illustrate enforcement. In this framework, we consider an
agent that may act on a target argumentation system. This agent has a goal and should
follow some constraints about the actions she has the right to do. For instance, an agent
can only advance arguments that she knows. Hence some restrictions are added on the
possible changes that may take place on the system. These constraints are represented
by the notion of executable operation.

We first refine the notion of elementary operation within the meaning of [9] in four
points: first a precise syntax is given; then we define an allowed operation w.r.t. a given
agent’s knowledge; we restrict this notion w.r.t. its feasibility on the target system (it
is not possible to add an already present argument or to remove an argument which
was not in the graph), it leads to the notion of executable operation; and finally, we
study the impact of an operation on an argumentation system. Note that considering
only elementary operations does not result in a loss of generality since any change can
be translated into a sequence of elementary operations, called program in Definition 5.

Definition 4. Let k be an agent and Gk = 〈Ak, RAk
〉 be her argumentation system

and let G = 〈A,RA〉 be an argumentation system.
– An elementary operation is a pair o = 〈op, x〉 where op ∈ {⊕,�} and x ∈ Arg.
– An elementary operation 〈op, x〉 is allowed for k iff x ∈ Ak.4

– An operation executable by k on G is an operation 〈op, x〉 allowed for k such that:
• if op = ⊕ then x �∈ A
• if op = � then x ∈ A.

– An operation o = 〈op, x〉 executable by k onG provides a new argumentation system
G′ = o(G) = 〈A′, RA′〉 such that:
• if op = ⊕ then G′ = 〈A ∪ {x}, RA∪{x}〉
• if op = � then G′ = 〈A \ {x}, RA\{x}〉

Example 4. From Arg and Rel given in Example 1, several elementary operations
are syntactically correct, e.g., 〈⊕, {x2}〉 and 〈�, {x4}〉. Among the elementary opera-
tions, Agent O is only allowed to use those concerning arguments she knows. Since O

4 Note that in the case of an argument addition, if the attack relation had not been imposed then
it would have been possible to add an argument with only a part of the known attacks and
therefore to “lie by omission” or to add attacks unknown to the agent and therefore lie in an
“active” way. This will be the subject of future work.

Enforcement in Argumentation Is a Kind of Update 35

learnt all about this trial, all the elementary operations are allowed for O. 〈⊕, {x5}〉,
〈�, {x4}〉, 〈�, {x2}〉 are some executable operations for O on the systems described
by ϕJury .

Finally, we consider sequences of operations executed by an agent on an argumen-
tation system, called programs, which are providing the possibility for an agent to per-
form several elementary operations one after the other.

Definition 5. Let G = 〈A,RA〉 be an argumentation system. A program p executable
by an agent k on G is a finite ordered sequence of n operations (o1, · · · , on) s.t.:
– n = 1 : o1 is executable by k on G. Hence p(G) = o1(G).
– n > 1 : (o1, · · · , on−1) is a program p′ executable by k on G such that p′(G) = G′

and on is executable by k on G′. Hence p(G) = on(G
′).

– By extension, an empty sequence is also a program. Hence, for p = (), p(G) = G.

2.3 Enforcement

The main references about enforcement are [3,2] that address the following question :
is it possible to change a given argumentation system, by applying change operations,
so that a desired set of arguments becomes accepted? Baumann has specified necessary
and sufficient conditions under which enforcements are possible, in the case where
change operations are restricted to the addition of new arguments and new attacks.
More precisely, [2] introduces three types of changes called expansions: the normal
expansion adds new arguments and new attacks concerning at least one of the new
arguments, the weak expansion refines the normal expansion by the addition of new
arguments not attacking any old argument and the strong expansion refines the normal
expansion by the addition of new arguments not being attacked by any old argument.

It is not the case in general that any desired set of arguments is enforceable using a
particular expansion. Moreover, in some cases, several enforcements are possible, some
of them requiring more effort than others. In order to capture this idea, [2] introduces
the notion of characteristic which depends on a semantics and on a set of possible ex-
pansions. The characteristic of a set of arguments is defined as the minimal number of
modifications (defined by the differences between the attacks on the two graphs) that
are needed in order to enforce this set of arguments. This number equals 0 when each
argument of the desired set is already accepted. It equals infinity if no enforcement is
possible. [2] provides means to compute the characteristic w.r.t. a given type of expan-
sion and a given semantics.

3 Towards Generalized Enforcement

Let us formalize enforcement using the definitions presented in Section 2.1. Let G ∈ Γ
and X ⊆ Arg. An enforcement of X on G is a graph G′ ∈ Γ obtained from G by
applying change operations and such that X ⊆ acc(G′). Different enforcements of
X on G can be compared using a preorder �G. For instance, it seems natural to look
for enforcements performing a minimal change on G. Minimality can be based on a

36 P. Bisquert et al.

distance for instance. In that case, given two enforcements G′ and G′′ of X on G,
G′ �G G′′ may be defined as distance(G,G′) ≤ distance(G,G′′).

This preorder �G suggests to draw a parallel between the enforcement problem and
an update problem. Indeed, as we will see in Section 4.1, update is also related to
the same kind of preorder on worlds w.r.t. a given world. More precisely an update
operator maps a knowledge base and a piece of information to a new knowledge base,
where knowledge bases are expressed in terms of propositional formulas. The semantic
counterpart of this mapping is defined by operations on models of formulas, i.e., worlds.
This gives birth to the idea that graphs are to worlds what formulas characterizing sets
of graphs are to formulas characterizing sets of worlds.

Definition 2 enables us to continue the parallel. Let S ⊆ Arg and α =
∧

x∈S a(x).
[α] can be considered as the set of graphs in which the elements of S are accepted. In
other words, [α] plays the role of the set of graphs that accept S.

This leads to formalize an enforcement problem as an operator applying to propo-
sitional formulas, with a semantic counterpart working with argumentation graphs. So
enforcing a propositional formula α on a propositional formula ϕ means enforcing α
on the graphs that satisfy ϕ.

This setting allows us to have two generalizations of enforcement: first it is now
possible to use enforcement not only to impose that a set of arguments is accepted,
but also to make enforcement with any goal that can be expressed in a propositional
language describing graphs. Second, the initial graph does not necessarily have to be
completely known since a description in a propositional language allows for a richer
expressivity. Hence, a set of graphs will be considered as representing the initial state
of the argumentation system.

Let us explain more precisely the notion of goal: it reflects conditions that an agent
would like to see satisfied in a particular argumentation system. We may consider two
types of goals, namely “absolute” and “relative”. An absolute goal only takes into ac-
count the resulting system after modifying the target system; it formally focuses on G′.
A relative goal takes into account the target system and its resulting system; it formally
focuses on (G,G′). An example of relative goal could be that the number of accepted ar-
guments increases after enforcement. In the following, we only consider absolute goals,
since relative goals are difficult to express in an update manner.

These goals could involve the arguments, the extensions, the set of extensions as
well as its cardinality, the set of extensions containing a particular argument as well
as its cardinality. Hence goals are represented by expressions involving these notions
and that may contain classic comparison operators (=, <, >, etc.), quantifiers ∀ and ∃,
membership (∈) and inclusion (⊆), union (∪) and intersection (∩) of sets, classical logic
operators (∧, ∨, →, ↔, ¬). If we associate a propositional formula with an absolute goal
then a goal is satisfied in a graph if the associated formula holds in this graph.

Example 5. We know that O wants to enforce the set {x1}. This goal can be expressed
in LArg by the formula a(x1). To enforce Argument x1 on the Jury’s graph, O can use
the program (〈⊕, x5〉, 〈⊕, x3〉) which has the impact shown in the following graphs. A
more complex goal could be e.g., ¬a(x4) ∨ a(x0).

Enforcement in Argumentation Is a Kind of Update 37

x5 x3 x2

x7 x4 x1 x0

x5 x3 x2

x4 x1 x0

We are now able to define formally generalized enforcement.
Requirement: Generalized enforcement is based on a propositional language L

able to describe any argumentation system and its set of accepted arguments, and a
characteristic function f associated with L , such that ∀G ∈ Γ , [f(G)] = {G}.

For instance, LArg of Definition 2 could be used as L . However, LArg does not
allow to express conditions about the cardinality of each extension after enforcement.
LArg is only an example that has been introduced for illustrative purpose. The following
results hold for any propositional language L .

In order to capture classical enforcement we also need to be able to restrict the ways
that graphs are allowed to change. This is done by introducing a set T ⊆ Γ × Γ of
allowed transitions between graphs.

Here are three examples of sets of allowed transitions that could be used:

– If the allowed changes are executable elementary operations for an agent k then T k
e =

{(G,G′) ∈ Γ × Γ , ∃o s.t. o is an elementary executable operation by k on G s.t.
o(G) = G′}.

– If the allowed changes are executable programs by an agent k then T k
p = {(G,G′) ∈

Γ × Γ , ∃p s.t. p is an executable program by k on G s.t. p(G) = G′}
– Baumann’s normal expansion can be translated in terms of allowed transitions as
follows: TB = {(G,G′) ∈ Γ × Γ , with G = (A,RA) and G′ = (A′, RA′) s.t.
A � A′}. It means that the transitions admitted by Baumann’s normal expansion are
restricted to the addition of a new set of arguments.

Now, we are in position to define formally a generalized enforcement operator:

Definition 6. A generalized enforcement operator is a mapping relative to a set of au-
thorized transitions T ⊆ Γ ×Γ from L ×L → L which associates with any formula
ϕ giving information about a target argumentation system, and any formula α encoding
a goal, a formula, denoted ϕ♦Tα, characterizing the argumentation systems in which
α holds, that can be obtained by a change belonging to T .

Example 6. In Example 5, if Agent O wants to enforce acceptation of x1 when x2 and
x4 are present (w.r.t. the grounded semantics) with an executable program then she can
use the following result: ϕJury♦TO

p
(a(x1) ∧ on(x2) ∧ on(x4)) |= on(x3) ∧ on(x5)

Notation: ∀ϕ, ψ ∈ L , a transition in T is possible between a set of graphs satisfying
ϕ to a set of graphs satisfying ψ, denoted (ϕ, ψ) |= T , iff ([ϕ] �= ∅ and ∀G ∈ [ϕ],
∃G′ ∈ [ψ], (G,G′) ∈ T). In other words, a transition from a given set of graphs
towards another set is possible, iff there is a possible transition from each graph of the
first set (which should not be empty) towards at least one graph of the second set.

38 P. Bisquert et al.

4 Generalized Enforcement Postulates

4.1 Background on Belief Change Theory

In the field of belief change theory, the paper of AGM [1] has introduced the concept
of “belief revision”. Belief revision aims at defining how to integrate a new piece of
information into a set of initial beliefs. Beliefs are represented by sentences of a formal
language. Revision consists in adding information while preserving consistency.

A very important distinction between belief revision and belief update was first es-
tablished in [19]. The difference is in the nature of the new piece of information: either
it is completing the knowledge of the world or it informs that there is a change in the
world. More precisely, update is a process which takes into account a physical evolution
of the system while revision is a process taking into account an epistemic evolution, it is
the knowledge about the world that is evolving. In this paper, we rather face an update
problem, since in enforcement, the agent wants to change a graph in order to ensure
that some arguments are now accepted (graphs play the role of worlds, as explained in
Section 3)5.

We need to recall some background on belief update. An update operator [19,16] is a
function mapping a knowledge base ϕ, expressed in a propositional logic L , represent-
ing knowledge about a system in an initial state and a new piece of informationα ∈ L ,
to a new knowledge base ϕ � α ∈ L representing the system after this evolution. In
belief update, the input α should be interpreted as the projection of the expected effects
of some “explicit change”, or more precisely, the expected effect of the action “make
α true”. The key property of belief update is Katsuno and Mendelzon’s Postulate U8
which tells that models of ϕ are updated independently (contrarily to belief revision).
We recall here the postulates of Katsuno and Mendelzon, where L denotes any propo-
sitional language and [ϕ] denotes the set of models of the formula ϕ:6 ∀ϕ, ψ, α, β ∈ L ,

U1: ϕ � α |= α
U2: ϕ |= α =⇒ [ϕ � α] = [ϕ]
U3: [ϕ] �= ∅ and [α] �= ∅ =⇒ [ϕ � α] �= ∅
U4: [ϕ] = [ψ] and [α] = [β] =⇒ [ϕ � α] = [ψ � β]
U5: (ϕ � α) ∧ β |= ϕ � (α ∧ β)
U8: [(ϕ ∨ ψ) � α] = [(ϕ � α) ∨ (ψ � α)]
U9: if card([ϕ]) = 1 then [(ϕ �α)∧β] �= ∅ =⇒ ϕ � (α∧β) |= (ϕ �α)∧β (where
card(E) denotes the cardinality of the set E)

These postulates allow Katsuno and Mendelzon to write the following representa-
tion theorem concerning update, namely, an operator satisfying these postulates can be
defined by means of a ternary preference relation on worlds (the set of all worlds is
denoted by Ω).

5 A revision approach would apply to situations in which the agent learns some information
about the initial argumentation system and wants to correct her knowledge about it. This
would mean that the argumentation system has not changed but the awareness of the agent
has evolved.

6 Postulates U6 and U7 are not considered here since the set U1-U8 is only related to a family
of partial preorders while replacing U6-U7 by U9 ensures a family of complete preorders.

Enforcement in Argumentation Is a Kind of Update 39

Theorem 1 ([16]). There is an operator � : L × L → L satisfying U1, U2, U3,
U4, U5, U8, U9 iff there is a faithful assignment that associates with each ω ∈ Ω a
complete preorder, denoted �ω s.t. ∀ϕ, α ∈ L , [ϕ � α] =

⋃
ω∈[ϕ]{ω′ ∈ [α] s.t. ∀ω′′ ∈

[α], ω′ �ω ω′′}
where an assignment of a preorder7 �ω to each ω ∈ Ω is faithful iff ∀ω, ω′ ∈ Ω,

ω ≺ω ω′.

This set of postulates has already been broadly discussed in the literature (see e.g.,
[15,14,12]). U2 for instance imposes inertia which is not always suitable. Herzig [14]
proposes to restrict possible updates by taking into account integrity constraints, i.e.,
formulas that should hold before and after update. Dubois et al. [12] proposes to not
impose inertia and to allow for update failure even if the formulas are consistent. This
is done by introducing an unreachable world called z in order to dispose of an upper
bound of the proximity from a current world to an unreachable world. In the following,
as seen in Section 3, we want to restrain the possible changes. Hence we have to allow
for enforcement failure. As we have seen, we choose to introduce a set of allowed tran-
sitions T which restricts possible enforcements. The idea to define an update operator
based on a set of authorized transitions was first introduced by Cordier and Siegel [10].
Their proposal goes beyond our idea since they allow for a greater expressivity by using
prioritized transition constraints. However, this proposal is only defined at a semanti-
cal level (in terms of preorders between worlds), hence they do not provide postulates
nor representation theorem associated with their update operator. Moreover our idea to
define postulates related to a set T of authorized transitions generalizes [14] since in-
tegrity constraints can be encoded with T (the converse is not possible). Consequently,
we have now to adapt update postulates in order to restrict possible transitions.

4.2 Postulates Characterizing Enforcement on Graphs with Transition
Constraints

We are going to define a set of rational postulates for ♦T . These postulates are con-
straints that aim at translating the idea of enforcement. Some postulates coming from
update are suitable, namely U1, since it ensures that after enforcement the constraints
imposed by α are true. U2 postulate is optional, it imposes that if α already holds in a
graph then enforcing α means no change. This postulate imposes inertia as a preferred
change, this may not be desirable in all situations. U3 transposed in terms of graphs
imposes that if a formula holds for some graphs and if the update piece of information
also holds for some graphs then the result of enforcement should give a non empty set
of graphs. Here, we do not want to impose that any enforcement is always possible
since some graphs may be unreachable from others. So we propose to replace U3 by a
postulate called E3 based on the set of authorized transitions T : ∀ϕ, ψ, α, β ∈ L

E3: [ϕ♦Tα] �= ∅ iff (ϕ, α) |= T

Due to the definition of (ϕ, α) |= T , E3 handles two cases of enforcement impossibility:
no possible transition and no world (i.e. no graph satisfying ϕ or α, as it will be shown
in Proposition 3).

7 In the following, ≺ω is defined from �ω as usual by: a ≺ω b iff a �ω b and not b �ω a.

40 P. Bisquert et al.

U4 is suitable in our setting since enforcement operators are defined semantically.
U5 is also suitable for enforcement since it says that graphs enforced by α in which
β already holds are graphs in which the constraints α and β are enforced. Due to the
fact that we want to allow for enforcement failure, this postulate had been restricted to
“complete” formulas8.

E5: if card([ϕ]) = 1 then (ϕ♦Tα) ∧ β |= ϕ♦T (α ∧ β)if card([ϕ]) = 1 then
(ϕ♦Tα) ∧ β |= ϕ♦T (α ∧ β)

U8 captures the decomposability of enforcement with respect to a set of possible input
attack graphs. We slightly change this postulate in order to take into account the pos-
sibility of failure, namely if enforcing something is impossible then enforcing it on a
larger set of graphs is also impossible, else the enforcement can be decomposable:

E8 if ([ϕ] �= ∅ and [ϕ♦Tα] = ∅) or ([ψ] �= ∅ and [ψ♦Tα] = ∅)
then [(ϕ ∨ ψ)♦Tα] = ∅
else [(ϕ ∨ ψ)♦Tα] = [(ϕ♦Tα) ∨ (ψ♦Tα)]

Postulate U9 is a kind of converse of U5 but restricted to a “complete” formula ϕ i.e.
such that, card([ϕ]) = 1, this restriction is required in the proof of KM theorem as well
as in Theorem 2.

Note that the presence of U1 in the set of postulates characterizing an enforcement
operator is not necessary since U1 can be derived from E3, E5 and E8.

Proposition 1. U1 is implied by E3, E5 and E8.

These postulates allow us to write the following representation theorem concern-
ing enforcement, namely, an enforcement operator satisfying these postulates can be
defined by means of the definition of a family of preorders on graphs.

Definition 7. Given a set T ⊆ Γ ×Γ of accepted transitions, an assignment respecting
T is a function that associates with each G ∈ Γ a complete preorder �G such that
∀G1, G2 ∈ Γ , if (G,G1) ∈ T and (G,G2) �∈ T then G2 ��G G1.

Theorem 2. Given a set T ⊆ Γ × Γ of accepted transitions, there is an operator
♦T : L ×L → L satisfying E3, U4, E5, E8, U9 iff there is an assignment respecting
T s.t. ∀G ∈ Γ , ∀ϕ, α ∈ L ,
– [f(G)♦Tα] = {G1 ∈ [α] s.t. (G,G1) ∈ T and ∀G2 ∈ [α] s.t.(G,G2) ∈ T,

G1 �G G2}

– [ϕ♦Tα] =

∣∣∣∣∅ if ∃G ∈ [ϕ] s.t. [f(G)♦Tα] = ∅⋃
G∈[ϕ][f(G)♦Tα] otherwise

This result is a significant headway, but as usual for a representation theorem, it
gives only a link between the existence of an assignment of preorders and the fact that
an enforcement operator satisfies the postulates. It does not give any clue about how to
assign these preorders i.e., how to design precisely an enforcement operator.

The following proposition establishes the fact that 5 postulates are necessary and
sufficient to define an enforcement operator, namely E3, U4, E5, E8 and U9. Indeed,
U1 can be derived from them (as seen in Proposition 1).

8 Note that card[ϕ] = 1 iff ∃G ∈ Γ s.t. [ϕ] = [f(G)].

Enforcement in Argumentation Is a Kind of Update 41

Proposition 2. E3, U4, E5, E8, U9 constitute a minimal set: no postulate can be de-
rived from the others.

From Theorem 2 we can deduce two simple cases of impossibility: if the initial
situation or the goal is impossible then enforcement is impossible (this result is a kind
of converse of U3).

Proposition 3. If ♦T satisfies E3, U4, E5, E8 and U9 then ([ϕ] = ∅ or [α] = ∅ =⇒
[ϕ♦Tα] = ∅).

The following property ensures that if an enforcement is possible then a more general
enforcement is also possible.

Proposition 4. If ♦T satisfies E3 then ([ϕ] �= ∅ and [ϕ♦Tα] �= ∅ =⇒ [ϕ♦T (α ∨
β)] �= ∅).

Note that there are some cases where U2 does not hold together with E3, U4, E5, E8
and U9. If U2 is imposed then the enforcement operator is associated with a preorder
in which a given graph is always closer to itself than to any other graph. This is why it
imposes to have a faithful assignment. In that case, the relation represented by T should
be reflexive.

Definition 8. A faithful assignment is a function that associates with each G ∈ Γ a
complete preorder9 �G such that ∀G1 ∈ Γ , G ≺G G1.

Proposition 5. Given a reflexive relation T ⊆ Γ × Γ of accepted transitions, there is
an operator ♦T : L ×L → L satisfying E3, U4, E5, E8, U9 that satisfies U2 iff there
is a faithful assignment respecting T defined as in Theorem 2.

If we remove the constraint about authorized transitions then we recover Katsuno
and Mendelzon theorem, namely:

Proposition 6. If T = Γ × Γ then ♦T satisfies U2, E3, U4, E5, E8, U9 iff ♦ satisfies
U1, U2, U3, U4, U5, U8 and U9.

Among the different kinds of changes proposed by Baumann, the normal expansion,
i.e., adding an argument with the attacks that concern it, can be encoded in our frame-
work as follows.

Remark 1. Baumann’s enforcement by normal expansion is a particular enforcement
operator ♦T : L × L → L such that T = TB. Moreover, the language used is
restricted as follows: the formulas that describe the initial system are restricted to {ϕ ∈
Lon, card([ϕ]) = 1} and the formulas that describe the facts that should be enforced
are only conjunctions of positive literals of La, where La and Lon are respectively the
propositional languages based only on a(x) and on on(x) variables.

In Baumann’s framework, the formula concerning the initial graph should be com-
plete, i.e., should correspond to only one graph. The formula concerning the goal of

9 In the following, ≺G is defined from �G as usual by: a ≺G b iff a �G b and not b �G a.

42 P. Bisquert et al.

enforcement should describe a set of arguments that should be accepted (under a given
semantics) after the change. Due to Theorem 2, there exists a family of preorders that
could be defined. Baumann proposes to use the following:G′ �G G′′ iff dist(G,G′) ≤
dist(G,G′′) where dist(G,G′) is the number of attacks that differs in G and G′.10

5 Conclusion

The work of [2] gives the basics about enforcement, our approach investigates several
new issues:
– we propose to take into account the ability to remove an argument, which could help
to enforce a set of arguments with less effort. We also generalize what can be enforced,
not only sets of arguments can be enforced but any goal that can be expressed in
propositional logic is allowed.

– we enable the possibility to restrict the authorized changes. In generalized enforce-
ment, authorized changes may be described by a set of possible transitions. Hence, the
structure of the changes can be restricted (for instance to additions only or to elemen-
tary operations) as well as the arguments that are allowed to be added/removed.

Finally, our main contribution is to state that enforcement is a kind of update, which
allows for an axiomatic approach. This kind of update is more general than classical
update since it allows to take into account transition constraints.

In this paper, for sake of shortness, we use a simplified logical language for describ-
ing argumentation systems in our examples, this makes us focus only on changes about
arguments hence allow us to consider a fixed attack relation. However our results hold
on any given propositional logic, hence choosing a logic in which attacks are encoded
would enable us to deal with changes on attacks. This deserves more investigation.

Another issue is to find postulates that are more specific for argumentation dynam-
ics. Indeed, we have defined a set of postulates that may characterize changes in any
kind of graphs that can be defined in propositional logic, provided that a transition func-
tion is given. Further research should take into account the particularities of the graphs
representing argumentation systems (semantics notions should be introduced in the pos-
tulates). Moreover, in this paper we have focused on a representation theorem based on
complete preorders between pairs of argumentation graphs ; another study would be
required for partial preorders. Finally, it would be worthwhile to study what could be
the counterpart of enforcement for revision instead of update.

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet
contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)

2. Baumann, R.: What does it take to enforce an argument? minimal change in abstract argu-
mentation. In: ECAI, pp. 127–132 (2012)

10 Note that since Baumann’s enforcement is defined on one graph and not on a set of graphs,
then it is also a kind of belief revision since revision and update collapse when the initial world
is completely known (this kind of belief revision won’t be a pure AGM revision but rather a
revision under transition constraints).

Enforcement in Argumentation Is a Kind of Update 43

3. Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and monotonic-
ity results. In: Proc. of COMMA, pp. 75–86. IOS Press (2010)

4. Bisquert, P., Cayrol, C., de Saint Cyr, F.D., Lagasquie-Schiex, M.C.: Axiomatic approach of
enforcement in argumentation. Tech. rep., IRIT, Toulouse, France (2013),
ftp://ftp.irit.fr/pub/IRIT/ADRIA/rap-IRIT-2013-24.pdf

5. Bisquert, P., Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Change in argumen-
tation systems: Exploring the interest of removing an argument. In: Benferhat, S., Grant, J.
(eds.) SUM 2011. LNCS, vol. 6929, pp. 275–288. Springer, Heidelberg (2011)

6. Bisquert, P., Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Duality between Addi-
tion and Removal. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo,
B., Yager, R.R. (eds.) IPMU 2012, Part I. CCIS, vol. 297, pp. 219–229. Springer, Heidelberg
(2012)

7. Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single extensions:
Abstraction principles and the grounded extension. In: Sossai, C., Chemello, G. (eds.) EC-
SQARU 2009. LNCS (LNAI), vol. 5590, pp. 107–118. Springer, Heidelberg (2009)

8. Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single extensions:
Attack refinement and the grounded extension. In: Proc. of AAMAS, pp. 1213–1214 (2009)

9. Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Change in abstract argumenta-
tion frameworks: Adding an argument. Journal of Artificial Intelligence Research 38, 49–84
(2010)

10. Cordier, M.-O., Siegel, P.: Prioritized transitions for updates. In: Froidevaux, C., Kohlas, J.
(eds.) ECSQARU 1995. LNCS, vol. 946, pp. 142–150. Springer, Heidelberg (1995)

11. Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frameworks. In: Proc.
of KR, pp. 112–122 (2006)

12. Dubois, D., de Saint-Cyr, F.D., Prade, H.: Update postulates without inertia. In: Froidevaux,
C., Kohlas, J. (eds.) ECSQARU 1995. LNCS (LNAI), vol. 946, pp. 162–170. Springer, Hei-
delberg (1995)

13. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358
(1995)

14. Herzig, A.: On updates with integrity constraints. In: Belief Change in Rational Agents
(2005)

15. Herzig, A., Rifi, O.: Propositional belief base update and minimal change. Artificial Intelli-
gence 115, 107–138 (1999)

16. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and
revising it. In: Proc. of KR, pp. 387–394 (1991)

17. Liao, B., Jin, L., Koons, R.: Dynamics of argumentation systems: A division-based method.
Artificial Intelligence 175(11), 1790 (2011)

18. Moguillansky, M.O., Rotstein, N.D., Falappa, M.A., García, A.J., Simari, G.R.: Argument
theory change through defeater activation. In: Proc. of COMMA, pp. 359–366. IOS Press
(2010)

19. Winslett, M.: Reasoning about action using a possible models approach. In: Proc. of AAAI,
pp. 89–93 (1988)

ftp://ftp.irit.fr/pub/IRIT/ADRIA/rap-IRIT-2013-24.pdf

A Conditional Logic-Based

Argumentation Framework

Philippe Besnard1, Éric Grégoire2, and Badran Raddaoui2

1 IRIT
UMR 5505 CNRS, 118 route de Narbonne

F-31065 Toulouse Cedex, France
besnard@irit.fr

2 CRIL
Université d’Artois & CNRS, rue Jean Souvraz SP18

F-62307 Lens Cedex, France
{gregoire,raddaoui}@cril.fr

Abstract. The goal of this paper is twofold. First, a logic-based argu-
mentation framework is introduced in the context of conditional logic, as
conditional logic is often regarded as an appealing setting for knowledge
representation and reasoning. Second, a concept of conditional contrari-
ety is defined that covers usual inconsistency-based conflicts and puts in
light a specific form of conflicts that often occurs in real-life: when an
agent asserts an If then rule, it can be argued that additional conditions
are actually needed to derive the conclusion.

Keywords: Conditional Logic, Logical Argumentation Theory, Condi-
tional Contrariety.

1 Introduction

Argumentation has long been a major topic in A.I. (see e.g., [1, 2] and for more
recent accounts e.g., [3]) that has concerned a large variety of application do-
mains for more than a decade, like e.g., law [4, 5], medicine [6], negotiation [7],
decision making [8] and multiagent systems [9, 10]. Two main families of compu-
tational models for argumentation have been proposed in the literature: namely,
the abstract and the logic-based argumentation frameworks. Following the sem-
inal work of [11], the first family is based on graph-oriented representations and
focuses mainly on the interaction between arguments without taking the possi-
ble internal structure of the involved arguments into account. On the contrary,
the logic-based approaches (e.g., [12–19]) exploit the logical internal structure of
arguments and adopt inconsistency as a pivotal paradigm: any pair of conflicting
arguments must be contradictory. Consequently, no conflicting arguments can
be found together inside a same consistent set of formulas.

However, many natural real-life arguments and counter-arguments do not nec-
essarily appear mutually inconsistent in usual knowledge representation modes.
For example, consider the assertion If there is a match tonight then John will

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 44–56, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Conditional Logic-Based Argumentation Framework 45

go to the stadium encoded through a (material) implicative formula in standard
logic as MatchTonight → JohnGoesToStadium, so that in case MatchTonight is
true, JohnGoesToStadium can be deduced. Now, the following objection can be
raised against that argument through the sentence If there is a match tonight
and if John has got enough money then John will go to the stadium, which re-
quires an additional condition for John to go the stadium if there is a match
tonight. The latter sentence is a deductive consequence of the first one and tak-
ing both of them does not yield an inconsistent set. This paper aims to extend
the logic-based approaches by encompassing this specific form of contrariety.

It is possible to represent the above example as a case of inconsistency-based
conflict by using e.g. a modal logic of necessity and possibility, and more informa-
tion: when the first sentence is augmented so that it excludes the possibility that
John does not go to the stadium tonight if there is a match, whereas the other
sentence allows this possibility to happen. Such an alternative representation re-
quires all this additional or implicit information to be asserted and represented
in some way. On the contrary, we provide a representation framework where the
motivating example can be modeled in a way close to natural language impli-
cations and without resorting to logical inconsistency; moreover, the framework
allows a form of contrariety to be recognized between the implicative formulas.

To this end, we resort to conditional logic, which allows an additional specific
implicative connective to be used, in addition to standard-logic material impli-
cation. Conditional logic is actually rooted in the formalization of hypothetical
or counterfactual reasoning of the form If α were true then β would be true and
attempts to avoid some pitfalls of material implication to represent patterns
of conditional or hypothetical reasoning. Actually, the conditional implication
connective is often regarded as a very suitable connective to encode many im-
plicative reasoning patterns from real-life; accordingly, conditional logic has long
been investigated in many A.I. areas [20] like belief revision [21], data base and
knowledge update [22] natural language semantics for handling hypothetical and
counterfactual sentences [23], non-monotonic and prototypical reasoning [24, 25],
causal inference [26] and logic programming [27], just to mention some seminal
works.

The goal of this paper is thus twofold. First, we revisit frameworks à la [15, 28]
to lay down the main foundations of a logic-based argumentation framework
based on conditional logic. Second, we introduce a concept of conditional con-
trariety that encompasses both the conflicts through inconsistency and a general-
ization of the conflict illustrated in the motivating example. One intended benefit
is that when an agent represents If then rules using the conditional connective,
the framework allows one to argue against this rule by stating that additional
conditions are required in order for the conclusion of the rule to hold. Accord-
ingly, in this framework, the conditional implication connective is intended to
be used to represent hypothetical reasoning and other implications that can be
questioned within an argumentation process.

The paper is organized as follows. In the next section, the user is provided
with basic elements of conditional logic MP. In section 3, conditional contrariety

46 P. Besnard, É. Grégoire, and B. Raddaoui

is motivated and introduced. Section 4 revisits the main foundational concepts
of Besnard and Hunter’s framework so that conditional contrariety is covered.
The last section discusses some promising paths for further research. For the
clarity of presentation, all proofs are given in an appendix.

2 Conditional Logics

Conditional logics are rooted in the formalization of counterfactual or hypothet-
ical reasoning of the form ‘If α were true then β would be true”, for which an
additional connective, called conditional connective and denoted ⇒, is gener-
ally introduced. Roughly, a conditional formula α ⇒ β is valid when β is true
in the possible worlds where α is true. Clearly, this diverges from the (material)
implicative standard-logic formula α → β, since this latter one is equivalent to
¬α ∨ β which is also satisfied when α is false. In the paper, we consider the
well-known conditional logic MP, which can be extended to yield many of the
other popular conditional logics (see e.g., [29]).

MP is an extension of the language and inference system of classical Boolean
logic. It is a language of formulas, denoted Lc. We use α, β, γ, δ, . . . to denote
formulas of Lc and Δ, Φ, Ψ , Θ, . . . to denote sets of formulas of Lc. Formulas are
built in the usual way from the standard connectives ¬, ∧, ∨, → and ↔: they
accommodate the conditional connective ⇒ through the additional formation
rule: if α and β are formulas, so is α ⇒ β. � and ⊥ represent truth and falsity,
respectively. A concept of extended literal proves useful: an extended literal is of
the form α or ¬α such that α is either an atom or a formula with the conditional
connective as the main connective.

The inferential apparatus of MP consists of the following axioms schemas
and inference rules [29], enriching standard Boolean logic to yield an inference
relation denoted �c.

RCEA.
�c α ↔ β

�c (α ⇒ γ) ↔ (β ⇒ γ)

RCEC.
�c α ↔ β

�c (γ ⇒ α) ↔ (γ ⇒ β)

CC. �c ((α ⇒ β) ∧ (α ⇒ γ)) → (α ⇒ (β ∧ γ))

CM. �c (α ⇒ (β ∧ γ)) → ((α ⇒ β) ∧ (α ⇒ γ))

CN. �c (α ⇒ �)

MP. �c (α ⇒ β) → (α → β)

In the paper, an expression of the form α ≡ β will be a shortcut for α �c β and
β �c α. We make use of the disjunctive form of conditional formulas, defined as
follows.

Definition 1. The disjunctive form of a formula α of Lc, denoted DF (α), is
the first (according to the lexicographic order) formula of the form α1 ∨ . . . ∨αn

A Conditional Logic-Based Argumentation Framework 47

that is logically equivalent with α under �c and such that each αi is a conjunction
of extended literals.

3 Conditional Contrariety

Conditional contrariety (in short, contrariety) is the cornerstone concept in this
paper. It is intended to encompass both logical inconsistency in MP and a form
of contrariety involving a pair of conditional implicative formulas where the first
one would entail the other one in standard logic if the material implication were
used. Let us introduce the concept progressively and refer to items of the next
formal definition through their numbering like e.g., (I), (II.a) or (II.2.).

Let α and β be two formulas of Lc s.t. DF (α) = α1 ∨ . . . ∨ αn and DF (β) =
β1 ∨ . . . ∨ βm.
α is in contrariety to β, denoted α �� β, in any of the following situations.
(I.) First, α and β are mutually inconsistent in MP. Note that this also covers

the standard-logic occurrences of inconsistency. Formally, whenever {α, β} �c ⊥
we have α �� β. Taking into account the DF of α and β, this amounts to ∀αi, ∀βj
{αi, βj} �c ⊥. Let us note that if β is itself inconsistent then any formula α is
in contrariety to β, in particular β is in contrariety to β.

(II.) Second, we need to address the case that requires α of the form φ∧ε ⇒ ψ
to be in contrariety to β of the form φ ⇒ ψ, just as in the motivating example
from the introduction. Actually, we can be more general and consider the cases
where a similar situation occurs with respect to a more general class of pairs of
“formulas in contrariety” that are of the form γ = γ1 ⇒ γ2 and δ = δ1 ⇒ δ2,
provided that δ and γ would be “derivable” in some sense from α and β. The
class of pairs of formulas is defined through specific inferential links between their
elements γ1, γ2, δ1 and δ2. First, γ and δ must be two conditionals about the
same conclusion: hence, γ2 ≡ δ2 (II.d). Generalizing the motivating example,
we require the antecedent of the first conditional to entail the antecedent of
the second one (but not conversely), formally γ1 �c δ1 (II.a) and δ1 �c γ1
(II.b). Another condition is required to prevent valid formulas from being in a
contrariety position: γ1 �c γ2 (II.c).

Then, we need to make clear the inferential links between the pair of formulas
α and β for which we explore a contrariety situation, and the above γ and δ
formulas that are themselves in contrariety (II.1 and II.2). First, a contrariety
situation occurs when β conditionally entails the last two formulas, i.e. β �c γ∧δ
(or equivalently, taking the DF of β, this occurs when taking βj as premisses, ∀βj)
(II.2). The motivation is as follows. Remember that whenever β was inconsistent,
any α contraried β. Likewise, if β allows by itself the derivation of both γ and
δ that are in a contrariety position, then β is in some way self-contraried, and
any α is in contrariety to β.

Finally, α �c γ while {α, β} �c γ ∧ δ naturally covers the last α �� β case. In
the definition, this condition is expressed taking the DF of both α and β into
account (II.1).

48 P. Besnard, É. Grégoire, and B. Raddaoui

It is important to stress that the contrariety concept that is defined is
deductively-based in all of the following senses. First, inconsistency is reached
through deduction. Second, the inferential relations between elements of the pair
(α, β) with elements of (γ, δ) are also of a deductive nature. Finally, the condi-
tion γ1 �c δ1 is also deductive. Accordingly, we will see that contrariety is not
symmetric in the general case.

Definition 2. Let α and β be two formulas of Lc s.t. DF (α) = α1 ∨ . . . ∨ αn

and DF (β) = β1 ∨ . . . ∨ βm.

α is in contrariety to β, denoted α �� β,
iff ∀αi, ∀βj

(I.) {αi, βj} �c ⊥, or

(II.) There exist γ1, γ2, δ1 and δ2 in Lc s.t.

(II.a) γ1 �c δ1 and
(II.b) δ1 �c γ1 and
(II.c) γ1 �c γ2 and
(II.d) γ2 ≡ δ2

where

(II.1) {αi, βj} �c (γ1 ⇒ γ2) ∧ (δ1 ⇒ δ2)
s.t. αi �c γ1 ⇒ γ2, or

(II.2) βj �c (γ1 ⇒ γ2) ∧ (δ1 ⇒ δ2).

Example 1. a∧b ⇒ c is in contrariety to a ⇒ c. a∧(a∧c ⇒ f) is in contrariety to
both formulas a → (a ⇒ f) and ¬a∨c ⇒ f . Also, ¬a∧b and a∧ (a∧c ⇒ b∨¬d)
are in contrariety to each other.

The concept of being in contrariety to a formula is naturally extended into a
concept of being in contrariety to a set of formulas.

Definition 3. Let Φ and α be a subset and a formula of Lc, respectively. α is in
contrariety to Φ, denoted α �� Φ, iff there exists β in Lc s.t. Φ �c β and α �� β.

Example 2. Let Φ = {a⇒ b, a∨ d ⇒ b∧ c, a ⇒ c}. Let α = a ⇒ b∧ c. Note that
Φ �c α. However, α �� Φ because α �� a ∨ d ⇒ b ∧ c.

Obviously, �� is neither symmetric, nor antisymmetric, nor antireflexive. How-
ever, it is monotonic and syntax-independent.

Proposition 1. Let Φ, Ψ and α be two subsets and a formula of Lc, respectively.
If α �� Φ then α �� Φ ∪ Ψ .

Proposition 2. Let Φ, α and β be a subset and two formulas of Lc, respectively.
If α ≡ β then α �� Φ iff β �� Φ.

A Conditional Logic-Based Argumentation Framework 49

4 A Conditional-Logic Argumentation Framework

Having defined the pivotal concept of contrariety, we are now ready to revisit
[15, 28]’s framework and lay down the foundations of a conditional-logic argu-
mentation framework based on contrariety. Accordingly, we revisit and extend
the following concepts, successively: arguments, conflicts, rebuttals, defeaters
and argumentation trees.

In the following, we assume a subset Δ of Lc that can be inconsistent. All
concepts will be implicitly defined relatively to Δ. Membership of formulas and
inclusion of sets of formulas to Lc will also be implicit from now on.

4.1 Arguments

After Besnard-Hunter, an argument is made of a set formulas together with a
conclusion that can be derived from the set. The usual non-contradiction condi-
tion expressed by Φ � ⊥ is naturally extended and replaced by a non-contrariety
requirement (second item).

Definition 4. An argument A is a pair 〈Φ, α〉 s.t.:

1. Φ ⊆ Δ
2. ∀β s.t. Φ �c β, β ��� Φ
3. Φ �c α
4. ∀Φ′ ⊂ Φ, Φ′ ��c α

A is said to be an argument for α. The set Φ and the formula α are the support
and the conclusion of A, respectively.

Example 3. Let Δ = {(a⇒ ¬d)∧¬b, a ⇒ c,¬a}. In view of Δ, some arguments
are:

〈{¬a},¬(a ∧ b)〉,
〈{a ⇒ c}, a⇒ c〉,

〈{(a ⇒ ¬d) ∧ ¬b, a ⇒ c}, a⇒ ¬d ∧ c〉.

Note that CC is used to obtain the conclusion of the last argument.

The following result shows that the revisited concept of argument still pre-
serves coherence, such a coherence concept being in some sense extended to ��.

Proposition 3. If 〈Φ, α〉 is an argument then α ��� Φ and ¬α �� Φ.

A notion of quasi-identical arguments is now introduced as follows. It is in-
tended to capture situations where two arguments can be said to make the same
point on the same grounds.

Definition 5. Two arguments 〈Φ, α〉 and 〈Ψ, β〉 are quasi-identical iff Φ = Ψ
and α ≡ β.

50 P. Besnard, É. Grégoire, and B. Raddaoui

Not surprisingly, provided one argument, its quasi-identical ones form an in-
finite set.

Proposition 4. Let 〈Φ, α〉 be an argument. There is an infinite set of arguments
of the form 〈Ψ, β〉 s.t. 〈Φ, α〉 and 〈Ψ, β〉 are quasi-identical.

Arguments are not necessarily independent. The definition of more conserva-
tive arguments captures a notion of subsumption between arguments, translating
situations where an argument is in some sense contained within another one.

Definition 6. An argument 〈Φ, α〉 is more conservative than an argument 〈Ψ, β〉
iff Φ ⊆ Ψ and β �c α.

Example 4. The argument 〈{a}, a∨ b〉 is more conservative than 〈{¬a∨ b, a}, b〉.
Also, 〈{(a ⇒ b) ∧ c, c → d}, (a ⇒ b) ∧ d〉 is more conservative than 〈{(a ⇒
b) ∧ c, c → d}, (a ⇒ b) ∧ c ∧ d〉.

Proposition 5. If 〈Φ, α〉 is more conservative than 〈Ψ, β〉, then β ��� Φ, α ��� Ψ
and ¬α �� Ψ .

In this last result, it is worth noting that ¬β �� Φ does not hold in full
generality. A counter-example consists of the two arguments 〈{a}, a ∨ b〉 and
〈{a, b}, a∧b〉; 〈{a}, a∨b〉 is more conservative than 〈{a, b}, a∧b〉 but ¬(a∧b) ��� a.

Actually, the concept of being more conservative induces the concept of quasi-
identical arguments, and conversely.

Proposition 6. Two arguments 〈Φ, α〉 and 〈Ψ, β〉 are quasi-identical iff each
one is more conservative than the other.

Example 5. 〈{a ⇒ b, a⇒ c}, (a ⇒ b) ∧ (a ⇒ c)〉 and 〈{a ⇒ b, a⇒ c}, a⇒ b∧ c〉
are quasi-identical as each one is more conservative than the other. In fact, the
proof of equivalence between (a ⇒ b) ∧ (a ⇒ c) and a ⇒ b ∧ c is obtained by
applying the CC and CM axioms schemas.

The notions of quasi-identicality and of being more conservative will be used
in the next Subsection to avoid some redundancy when counter-arguments need
to be listed.

4.2 Conflicts between Arguments

We now revisit conflicts-related concepts in light of conditional contrariety. Let
us start with rebuttals.

Definition 7. A rebuttal for an argument 〈Φ, α〉 is an argument 〈Ψ, β〉
s.t. β �� α.

Example 6. A rebuttal for 〈{¬a∨ b,¬b},¬a∧¬b〉 is 〈{a},¬¬a〉. Also, 〈{a∧ e ⇒
b, a∧e⇒ ¬c},¬f∨(a∧e ⇒ b∧¬c)〉 is a rebuttal for 〈{a∨d ⇒ b∧¬c, f}, (a∨d ⇒
b ∧ ¬c) ∧ f〉.

Note that CC is used to obtain the conclusion ¬f ∨ (a ∧ e ⇒ b ∧ ¬c).

A Conditional Logic-Based Argumentation Framework 51

In classical-logic-based argumentation [15], if 〈Φ, α〉 is a rebuttal for 〈Ψ, β〉
then 〈Ψ, β〉 is also a rebuttal for 〈Φ, α〉. Consequently, the notion of rebuttal is
symmetric. However, this property does not hold with respect to the contrariety
paradigm. Let us return to Example 6, the argument 〈{a∨d ⇒ b∧¬c, f}, (a∨d⇒
b∧¬c)∧ f〉 is not a rebuttal for 〈{a∧ e ⇒ b, a∧ e⇒ ¬c},¬f ∨ (a∧ e⇒ b∧¬c)〉.
The notion of rebuttal defined here is thus asymmetric.

Another concept is captured by defeaters, which are arguments whose conclu-
sion is in contrariety to the support of their targeted argument.

Definition 8. A defeater for an argument 〈Φ, α〉 is an argument 〈Ψ, β〉
s.t. β �� Φ.

Example 7. Some defeaters for 〈{a∨¬d ⇒ b∧ c, f ∨¬b, b}, f ∧ (a∨¬d ⇒ b∧ c)〉
are listed below:
〈{¬b},¬b〉,
〈{¬b},¬(¬b → b)〉,
〈{¬b,¬a → b},¬b ∧ a〉,
〈{e ∧ ¬d ⇒ b ∧ c}, e ∧ ¬d ⇒ b ∧ c〉,
〈{a ⇒ b, a⇒ c}, a ⇒ b ∧ c〉,
〈{a ⇒ b, a⇒ c},¬¬(a ⇒ b ∧ c)〉,
〈{a ⇒ b, a⇒ c}, (a ⇒ b) ∧ (a ⇒ c)〉.

Proposition 7. If 〈Ψ, β〉 is a rebuttal for 〈Φ, α〉 then 〈Ψ, β〉 is a defeater for
〈Φ, α〉.

Example 8. 〈{(a ∧ e ⇒ b ∧ c) ∧ ¬d}, (a ∧ e ⇒ b ∧ c) ∧ ¬d〉 is a rebuttal for
〈{a ⇒ b, a⇒ c}, (a ⇒ b ∧ c) ∨ d〉.
Here {a⇒ b, a ⇒ c} �c (a ⇒ b∧c)∨d, then ((a∧e ⇒ b∧c)∧¬d) �� {a⇒ b, a ⇒
c}. Consequently, 〈{(a ∧ e ⇒ b ∧ c) ∧ ¬d}, (a ∧ e ⇒ b ∧ c) ∧ ¬d〉 is a defeater for
〈{a ⇒ b, a⇒ c}, (a ⇒ b ∧ c) ∨ d〉.

An interesting special kind of defeaters are challenges. As the next proposition
shows, challenges capture some situations where the defeat relation is asymmet-
ric.

Definition 9. Let 〈Φ, α〉 and 〈Ψ, β〉 be two arguments. 〈Φ, α〉 is a challenge to
〈Ψ, β〉 iff α �� Ψ and ∀γ s.t. Ψ �c γ, γ ��� Φ.

Example 9. The argument 〈{a ∧ e ⇒ b, a ∧ e ⇒ c}, a ∧ e ⇒ b ∧ c〉 is a challenge
to the argument 〈{a ∨ d ⇒ b ∧ c}, a ∨ d ⇒ b ∧ c〉.

Proposition 8. If 〈Φ, α〉 is a challenge to 〈Ψ, β〉 then 〈Φ, α〉 is a defeater for
〈Ψ, β〉 and 〈Ψ, β〉 is not a defeater for 〈Φ, α〉.

As intended, defeaters can exist even though there is no inconsistency in-
volved. The next result shows that the support of a challenge is consistent with
the support of the argument that it attacks.

Proposition 9. If 〈Φ, α〉 is a challenge to 〈Ψ, β〉 then Φ ∪ Ψ �c ⊥.

52 P. Besnard, É. Grégoire, and B. Raddaoui

Definition 10. An argument 〈Ψ, β〉 is a maximally conservative defeater for
〈Φ, α〉 iff 〈Ψ, β〉 is a defeater for 〈Φ, α〉 such that no defeaters for 〈Φ, α〉 are
strictly more conservative than 〈Ψ, β〉.

We assume that there exists an enumeration which we call canonical enu-
meration of all maximally conservative defeaters for 〈Φ, α〉.

Example 10. Let us return to Example 7. Both of the following 〈{a ⇒ b, a ⇒
c}, a ⇒ b ∧ c〉, 〈{e ∧ ¬d ⇒ b ∧ c}, e ∧ ¬d ⇒ b ∧ c〉, 〈{¬b},¬b〉, 〈{a ⇒ b, a ⇒
c},¬¬(a ⇒ b ∧ c)〉, 〈{¬b},¬(¬b → b)〉, and 〈{a ⇒ b, a ⇒ c}, (a ⇒ b) ∧ (a ⇒ c)〉
are maximally conservative defeaters for the argument 〈{a ∨ ¬d ⇒ b ∧ c, f ∨
¬b, b}, f ∧ (a ∨ ¬d ⇒ b ∧ c)〉.

Note that, like arguments, maximally conservative defeaters are in an infinite
number, as shown by the following results.

Proposition 10. Let 〈Ψ, β〉 be a maximally conservative defeater for 〈Φ, α〉.
〈Ψ, γ〉 is a maximally conservative defeater for 〈Φ, α〉 iff 〈Ψ, β〉 and 〈Ψ, γ〉 are
quasi-identical.

Corollary 1. Let 〈Ψ, β〉 be a maximally conservative defeater for 〈Φ, α〉. There
is an infinite set of maximally conservative defeaters for 〈Φ, α〉 of the form 〈Θ, γ〉
such that 〈Ψ, β〉 and 〈Θ, γ〉 are quasi-identical.

Now, it is possible to avoid some amount of redundancy among counter-
arguments by ignoring the unnecessary variants of maximally conservative de-
featers. To this end, we define a concept of pertinent defeaters as follows.

Definition 11. Let 〈Ψ1, β1〉, . . . , 〈Ψn, βn〉, . . . be the canonical enumeration of
all maximally conservative defeaters for 〈Φ, α〉.
〈Ψi, βi〉 is a pertinent defeater for 〈Φ, α〉 iff for every j < i, 〈Ψi, βi〉 and 〈Ψj , βj〉
are not quasi-identical.

Thus, a pertinent defeater can be interpreted as the representative of a set of
counter-arguments.

Example 11. Let us return to Example 10. Suppose that 〈{a ⇒ b, a ⇒ c}, a ⇒
b∧c〉, 〈{e∧¬d ⇒ b∧c}, e∧¬d ⇒ b∧c〉, 〈{¬b},¬b〉, 〈{a⇒ b, a ⇒ c},¬¬(a ⇒ b∧c)〉,
〈{¬b},¬(¬b → b)〉, 〈{a ⇒ b, a ⇒ c}, (a ⇒ b) ∧ (a ⇒ c)〉, . . . is the canoni-
cal enumeration of the maximally conservative defeaters. Both of the following
〈{a ⇒ b, a⇒ c}, a ⇒ b∧c〉, 〈{e∧¬d ⇒ b∧c}, e∧¬d ⇒ b∧c〉, 〈{¬b},¬b〉 are per-
tinent defeaters for the argument 〈{a∨¬d ⇒ b∧c, f∨¬b, b}, f∧(a∨¬d ⇒ b∧c)〉.

Clearly, an argument may have more than one pertinent defeater. The next
result shows how the pertinent defeaters for the same argument differ from one
another.

Proposition 11. Any two different pertinent defeaters for the same argument
have distinct supports.

A Conditional Logic-Based Argumentation Framework 53

4.3 Argumentation Trees

A last basic brick of logic-based argumentation theories that we revisit is the
notion of argumentation tree and its related topics. From a set Δ of formulas,
several possibly interconnected arguments can co-exist that should be assembled
to get a full understanding about the pros and cons conducting a conclusion to
be accepted or rejected. Argumentation trees are intended to collect and organize
those arguments.

Definition 12. An argumentation tree for α is a tree T whose nodes are argu-
ments s.t.:

1. The root of T is an argument for α,
2. For every node 〈Ψ, β〉 whose ancestor nodes are 〈Ψ1, β1〉,. . . , 〈Ψn, βn〉, there

exists γ ∈ Ψ s.t. γ /∈ Ψi for i = 1..n,
3. Each child node is a pertinent defeater of its parent node.

An argumentation tree aims to exhaustively (but implicitly) capture the way
counter-arguments can take place as a dispute develops. Condition 2 requires
that each counter-argument involves extra information thereby precluding cycles.

Example 12. Let us return to Example 7. Let α = f ∧ (a ∨ ¬d ⇒ b ∧ c).

〈{a ∨ ¬d⇒ b ∧ c, f ∨ ¬b, b}, α〉

〈{a⇒ b, a⇒ c}, a⇒ b ∧ c〉

〈{¬b},¬b〉

〈{e ∧ ¬d⇒ b ∧ c}, e ∧ ¬d ⇒ b ∧ c〉

〈{e ∧ ¬d⇒ b ∧ c}, e ∧ ¬d ⇒ b ∧ c〉

Fig. 1. Argumentation tree for f ∧ (a ∨ ¬d⇒ b ∧ c)

Proposition 12. An argumentation tree for a formula α is finite.

Proposition 13. For any α s.t. Δ �c α, there is only a finite number of argu-
mentation trees for α.

Clearly, the last two properties are important in practice. They show that an
argumentation tree can indeed be an effective way of representing an argumen-
tation process.

In standard-logic argumentation [15], if Δ is consistent then all argumentation
trees have exactly one node. This is not the case in contrariety-based argumenta-
tion: from a consistent knowledge base, argumentation trees that do not collapse
into a single node exist.

54 P. Besnard, É. Grégoire, and B. Raddaoui

Example 13 illustrates that attacks between arguments need not be inconsis-
tency-based but can indeed be rooted in contrariety in conditional logic.

Example 13. Let Δ = {a⇒ b,¬d, (a ∧ (d ∨ ¬f)) ⇒ b ∧ c, a ⇒ c}.
Note that Δ is consistent. Let α = (a ⇒ b ∧ c) ∨ ¬d.

〈{a⇒ b, a⇒ c}, (a⇒ b ∧ c) ∨ ¬d〉

〈{¬d, (a ∧ (d ∨ ¬f)) ⇒ b ∧ c},¬d ∧ ((a ∧ (d ∨ ¬f)) ⇒ b ∧ c)〉

Fig. 2. Argumentation tree for (a⇒ b ∧ c) ∨ ¬d

As several different argumentation trees for a given formula α can co-exist,
the following full argumentation tree concept aims to represent them in a global
manner by considering all pertinent defeaters and all possible attacks.

Definition 13. Let T be an argumentation tree for α. T is a full argumentation
tree for α if the children of any node A consists of all pertinent defeaters of A.

Example 14. Let Δ = {a ⇒ b, a, a ∧ d ⇒ b ∧ c, c ∧ ¬a, a ⇒ c,¬c ∧ ¬a}. Let
α = a ∧ (a ⇒ b ∧ c).

〈{a, a⇒ b, a⇒ c}, α〉

〈{¬c ∧ ¬a},¬c ∧ ¬a〉〈{c ∧ ¬a}, c ∧ ¬a〉

〈{¬c ∧ ¬a},¬c ∧ ¬a〉 〈{c ∧ ¬a}, c ∧ ¬a〉
〈{a ∧ d⇒ b ∧ c}, a ∧ d⇒ b ∧ c〉

Fig. 3. Full argumentation tree for a ∧ (a⇒ b ∧ c)

5 Perspectives and Conclusion

Conditional logic is a widespread tool in A.I. This paper is an attempt to lay down
the basic bricks of logic-based argumentation in conditional logic. Interestingly, it
has allowedus to put in light and encompass a specific formof conflict that often oc-
curs in real-life argumentation: i.e., claims that additional conditions are required
for the conclusion of a rule to hold. In this respect and to some extent, this paper
targets some patterns of reasoning similar to those in [30, 31], where preemption
operators are investigated in the framework of standard logic: preemption opera-
tors allow a logically weaker piece of information to replace a stronger one. How-
ever, the problem that we have addressed in this paper is different: the focus has
been on confronting arguments, with a specific attention to comparing conditional

A Conditional Logic-Based Argumentation Framework 55

formulas making use of the conditional connective, allowing in some sense weaker
formulas of that kind to be compared to stronger ones.

In the future, we plan to investigate how to compare and rationalize argu-
mentation trees in conditional logic, consider audience and impact-related issues
on arguments and build various algorithmic tools for handling arguments and
reasoning about them.

References

1. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-
ficial Intelligence (Special Issue on Argumentation) 171(10-15) (2007)

2. Rahwan, I., Simari, G.R.: Argumentation in artificial intelligence. Springer (2009)
3. Verheij, B., Szeider, S., Woltran, S. (eds.): Computational Models of Argument

- Proceedings of COMMA 2012, Vienna, Austria, September 10-12. Frontiers in
Artificial Intelligence and Applications, vol. 245. IOS Press (2012)

4. Prakken, H.: An argumentation framework in default logic. Annals of Mathematics
and Artificial Intelligence 9(1-2), 93–132 (1993)

5. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in
legal reasoning. Artificial Intelligence and Law 4(3-4), 331–368 (1996)

6. Das, S.K., Fox, J., Krause, P.: A unified framework for hypothetical and practical
reasoning (1): Theoretical foundations. In: Gabbay, D.M., Ohlbach, H.J. (eds.)
FAPR 1996. LNCS, vol. 1085, pp. 58–72. Springer, Heidelberg (1996)

7. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by argu-
ing. Journal of Logic and Computation 8(3), 261–292 (1998)

8. Ferguson, G., Allen, J.F., Miller, B.W.: Trains-95: Towards a mixed-initiative plan-
ning assistant. In: Proceedings of the Third International Conference on Artificial
Intelligence Planning Systems (AIPS 1996), pp. 70–77 (1996)

9. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some for-
mal inter-agent dialogues. Journal of Logic and Computation 13(3), 347–376 (2003)

10. McBurney, P., Parsons, S., Rahwan, I. (eds.): ArgMAS 2011. LNCS, vol. 7543.
Springer, Heidelberg (2012)

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–358 (1995)

12. Pollock, J.L.: How to reason defeasibly. Artificial Intelligence 57, 1–42 (1992)
13. Krause, P., Ambler, S., Elvang-Gøransson, M., Fox, J.: A logic of argumentation

for reasoning under uncertainty. Computational Intelligence 11, 113–131 (1995)
14. Chesnevar, C.I., Maguitman, A.G., Loui, R.P.: Logical models of argument. ACM

Computing Surveys 32(4), 337–383 (2000)
15. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial

Intelligence 128(1-2), 203–235 (2001)
16. Garcia, A.J., Simari, G.R.: Defeasible logic programming: An argumentative ap-

proach. Theory and Practice of Logic Programming 4(1-2), 95–138 (2004)
17. Santos, E., Martins, J.P.: A default logic based framework for argumentation. In:

Proceedings of ECAI 2008, pp. 859–860 (2008)
18. Besnard, P., Grégoire, É., Piette, C., Raddaoui, B.: MUS-based generation of ar-

guments and counter-arguments. In: Proceedings of the 11th IEEE Int. Conf. on
Information Reuse and Integration (IRI 2010), pp. 239–244 (2010)

56 P. Besnard, É. Grégoire, and B. Raddaoui

19. Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classi-
cal logic arguments: Postulates and properties. Artif. Intell. 175(9-10), 1479–1497
(2011)

20. Crocco, G., Fariñas del Cerro, L., Herzig, A.: Conditionals: From philosophy to
computer science. Studies in Logic and Computation. Oxford University Press
(1995)

21. Giordano, L., Gliozzi, V., Olivetti, N.: Iterated belief revision and conditional logic.
Studia Logica 70(1), 23–47 (2002)

22. Grahne, G.: Updates and counterfactuals. Journal of Logic and Computation (1),
87–117 (2002)

23. Nute, D.: Topics in conditional logic. Reidel. Dordrecht (1980)
24. Delgrande, J.P.: An approach to default reasoning based on a first-order conditional

logic: Revised report. Artificial Intelligence 36(1), 63–90 (1988)
25. Kraus, S., Lehmann, D.J., Magidor, M.: Nonmonotonic reasoning, preferential

models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)
26. Giordano, L., Schwind, C.: Conditional logic of actions and causation. Artificial

Intelligence 157(1-2), 239–279 (2004)
27. Gabbay, D.M., Giordano, L., Martelli, A., Olivetti, N., Sapino, M.L.: Conditional

reasoning in logic programming. Journal of Logic Programming 44(1-3), 37–74
(2000)

28. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)
29. Chellas, B.F.: Basic conditional logic. Journal of Philosophical Logic 4(2), 133–153

(1975)
30. Besnard, P., Grégoire, É., Ramon, S.: Preemption operators. In: Raedt, L.D.,

Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.)
ECAI. Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 893–894.
IOS Press (2012)

31. Besnard, P., Grégoire, É., Ramon, S.: Enforcing logically weaker knowledge in
classical logic. In: Xiong, H., Lee, W.B. (eds.) KSEM 2011. LNCS, vol. 7091, pp.
44–55. Springer, Heidelberg (2011)

Modelling Uncertainty in Persuasion

Anthony Hunter

Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

Abstract. Participants in argumentation often have some doubts in their argu-
ments and/or the arguments of the other participants. In this paper, we model un-
certainty in beliefs using a probability distribution over models of the language,
and use this to identify which are good arguments (i.e. those with support with a
probability on or above a threshold). We then investigate three strategies for par-
ticipants in dialogical argumentation that use this uncertainty information. The
first is an exhaustive strategy for presenting a participant’s good arguments, the
second is a refinement of the first that selects the good arguments that are also
good arguments for the opponent, and the third selects any argument as long as it
is a good argument for the opponent. We show that the advantage of the second
strategy is that on average it results in shorter dialogues than the first strategy, and
the advantage of the third strategy is that under some general circumstances the
participant can always win the dialogue.

1 Introduction

Persuasion is a complex multifaceted concept. In this paper, we consider uncertainty in
persuasion which is a topic that is underdeveloped in formal models of argument. We
represent the uncertainty that an agent has over its own beliefs by a probability distri-
bution over the models of the language. The agent uses this to judge which arguments
are “good arguments” (arguments with premises with a probability on or above a “good
argument” threshold), and which are “good targets” (arguments with premises with a
probability on or below a “good target” threshold) and as such should be attacked if
an attacker exists. The idea is that if an argument is a good argument but not a good
target, then the agent considers the argument but ignores any attack on it. To illustrate,
consider the following arguments1. Suppose each is a good argument.

– A1 “The metro is the best way to the airport.”
– A2 “There is a strike today by metro workers.”

Now consider the threshold for attack. It would be reasonable in this context to take
a skeptical view (because we worry about missing the flight) and set the threshold for
being a good target to be above the threshold for being a good argument. So even if
the threshold for being a good argument might be set to a high level, we might want
the threshold for being a good target to be even higher. Therefore, for this example, we
would get an argument graph with both arguments where A2 attacks A1.

1 Note, we not proposing a formal model of argument-based decision making (c.f. [1]), but rather
investigating criteria for selecting arguments and attacks to present in argumentation.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 57–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

58 A. Hunter

As an alternative example, consider A3 and the potential counterargumentA2 where
both are good arguments. Here we might take a credulous view (because we might
not worry too much about the risk or consequences of delay on the metro when going
home). So we set the threshold for being a good argument as above the threshold for
being a good target. In this context, we may say that even though there exists the coun-
terargument A2, A3 is not a good target because the threshold for being a good target
is lower in this case. In other words, there is insufficient doubt in A3 for A2 to attack
it. In this example, this is reasonable since often some trains still run when there are
problems with the service.

– A3 “The metro is the best way to go home”

As well as considering how an agent might judge its own arguments and counterar-
guments using its probability distribution, we also want to consider how it can be used
in dialogue strategies. For this, we let an agent have an estimate of its opponent’s prob-
ability distribution. This can be used to make the argumentation more efficient and/or
more efficacious. There is no point in presenting arguments that are not going to per-
suade an opponent, particularly when there may be alternative arguments that could
bring about the required outcome. Consider the following dialogue where participant 1
(husband) wants to persuade participant 2 (wife) to buy a particular car. Argument A5

indicates that participant 2 does not believe argument A4, and so participant 1 has not
used a good argument to persuade participant 2.

– A4 “The car is a nice red colour, and that is the only criterion to consider, therefore
we should buy it.”

– A5 “It is a nice red colour, but I don’t agree that that is the only criterion to con-
sider.”

Now consider argument A6 which participant 2 sees as a good argument but not a
good target. So if participant 1 has a good estimate of the probability distribution of
participant 2, then it could see A6 as better to posit than A4, and that this could result
in a more persuasive dialogue.

– A6 “The car is the most economical and easy car to drive out of the options available
to us, and those are the criteria we want to satisfy, so we should buy the car.”

In this paper, we formalise good argument and good attack, and investigate their use
in persuasion dialogues.

2 Preliminaries

We review abstract argumentation [2], probabilistic logic [3], and the use of probabilis-
tic logic in argumentation [4].

Modelling Uncertainty in Persuasion 59

2.1 Abstract Argumentation

An abstract argument graph is a pair (A,R) where A is a set and R ⊆ A × A.
Each element A ∈ A is called an argument and (A,B) ∈ R means that A attacks
B (accordingly, A is said to be an attacker of B) and so A is a counterargument
for B. A set of arguments S ⊆ A attacks Aj ∈ A iff there is an argument Ai ∈ S
such that Ai attacks Aj . Also, S defends Ai ∈ S iff for each argument Aj ∈ A,
if Aj attacks Ai then S attacks Aj . A set S ⊆ A of arguments is conflict-free iff
there are no arguments Ai and Aj in S such that Ai attacks Aj . Let Γ be a conflict-
free set of arguments, and let Defended : ℘(A) → ℘(A) be a function such that
Defended(Γ) = {A | Γ defends A}. We consider the following extensions: (1) Γ
is a complete extension iff Γ = Defended(Γ); and (2) Γ is a grounded extension
iff it is the minimal (w.r.t. set inclusion) complete extension. For G = (A,R), let
Nodes(G) = A and let Grounded(G) be the grounded extension of G.

2.2 Probabilistic Logic

We use an established proposal for capturing probabilistic belief in classical proposi-
tional formulae [3]. For this, we assume that the propositional language L is finite.
The set of models (i.e. interpretations) of L is denoted ML. Each model in ML

is an assignment of true or false to the formulae of the language defined in the
usual way for classical logic. So for each model m, and ψ ∈ L, m(ψ) = true or
m(ψ) = false. For φ ∈ L, Models(φ) denotes the set of models of φ (i.e. Models(φ) =
{m ∈ ML | m(φ) = true}), and for Δ ⊆ L, Models(Δ) denotes the set of models of
Δ (i.e. Models(Δ) = ∩φ∈ΔModels(φ)). Let Δ |= ψ denote Models(Δ) ⊆ Models(ψ).

Let L be a propositional language and let ML be the models of the language. A
function P : ML → [0, 1] is a probability distribution iff

∑
m∈ML P (m) = 1.

From a probability distribution, we get the probability of a formula φ ∈ L as follows:
P (φ) =

∑
m∈Models(φ) P (m).

Example 1. Let the atoms of L be {a, b}, and so L is the set of propositional formulae
formed from them. Let m1 and m2 be models s.t. m1(a) = true, m1(b) = true,
m2(a) = true, and m2(b) = false. Now suppose P (m1) = 0.8 and P (m2) = 0.2.
Hence, P (a) = 1, P (a ∧ b) = 0.8, P (b ∨ ¬b) = 1, P (¬a ∨ ¬b) = 0.2, etc.

For any probability distribution P , if |= α, then P (α) = 1, and if |= ¬(α ∧ β), then
P (α ∨ β) = P (α) + P (β).

2.3 Logical Arguments

We use deductive arguments based on classical logic to instantiate abstract argument
graphs. Let Δ ⊆ L be a set of propositional formulae and let � be the classical con-
sequence relation. 〈Φ, α〉 is a deductive argument (or simply argument) iff Φ ⊆
Δ and Φ � α and Φ �� ⊥ and there is no Ψ ⊂ Φ s.t. Ψ � α. For an argument
A = 〈Φ, α〉, let Support(A) = Φ and Claim(A) = α. Let Arg(Δ) be the set of de-
ductive arguments obtained from Δ. For counterarguments, we use direct undercuts

60 A. Hunter

[5, 6]. Argument A is a direct undercut of argument B when Claim(A) is ¬ψ for
some ψ ∈ Support(B). The set of direct undercuts is Ucuts(Δ) = {(A,B) | A,B ∈
Arg(Δ) and A is a direct undercut of B}. The probability of an argument is the proba-
bility of its support.

Definition 1. Let P be a probability distribution on ML. The probability of an argu-
ment 〈Φ, α〉 ∈ Arg(L), denotedP (〈Φ, α〉), isP (φ1∧. . .∧φn), whereΦ = {φ, . . . , φn}.

Example 2. Consider the following probability distribution over models (with atoms a
and b) for each participant.

Model a b Participant 1 Participant 2

m1 true true 0.5 0.0
m2 true false 0.5 0.0
m3 false true 0.0 0.6
m4 false false 0.0 0.4

Let Δ1 = {a,¬b} (resp. Δ2 = {b,¬b, b→ ¬a}) be the knowlegebase for participant 1
(resp. 2). Below is the probability of each argument according to each participant.

Argument Participant 1 Participant 2

A1 = 〈{a}, a〉 1.0 0.0
A2 = 〈{b, b→ ¬a},¬a〉 0.0 0.6
A3 = 〈{¬b},¬b〉 0.5 0.4

It is possible for the knowledgebase to be inconsistent and yet for the participant to
have a probability distribution over the models, as illustrated by Example 2.

3 Good Arguments and Good Attacks

Each agent has a knowledgebaseΔ, and a probability distribution P , and these are used
to identify good arguments.

Definition 2. For a knowledgebase Δ, a probability distribution P , and a threshold
T ∈ [0, 1], the set of good arguments is GoodArg(Δ,P, T) = {A ∈ Arg(Δ) | P (A) ≥
T }.

Hence, if T = 0, then all arguments from the knowledgebase are good arguments
(i.e. GoodArg(Δ,P, T) = Arg(Δ)). Whereas if T = 1, then only arguments that have
premises that are certain are good arguments. Furthermore, if T = 1, then the premises
of the good arguments are consistent together (i.e. (∪A∈GoodArg(Δ,P,T)Support(A)) ��
⊥), and so there are no A,B ∈ GoodArg(Δ,P, T) such that A is a direct undercut of
B when T = 1.

Good targets (defined next) are arguments for which there is sufficient doubt in their
premises for us to want to attack them even if an attacker exists. If an argument is not
a good target, then we will ignore attacks on it. This is a form of inconsistency/conflict
tolerance allowing us to focus on the more significant inconsistencies/conflicts.

Modelling Uncertainty in Persuasion 61

Definition 3. For a probability distribution P , a threshold S ∈ [0, 1], and a knowledge-
baseΔ, the set of good targets is GoodTarget(Δ,P, S) = {B ∈ Arg(Δ) | P (B) ≤ S}.

If S = 1, then GoodTarget(Δ,P, S) = Arg(Δ), whereas if S = 0, then only
arguments with support with zero probability are good targets. Next, we use S to select
the attacks.

Definition 4. For a knowledgebase Δ, a probability function over arguments P , and
a threshold S ∈ [0, 1], the set of good attacks is GoodAttack(Δ,P, S) = {(A,B) |
(A,B) ∈ Ucuts(Δ) and P (B) ≤ S}.

Given a knowledgebase, and a probability distribution, a good graph is the set of
good arguments and good attacks that can be formed.

Definition 5. For a knowledgebase Δ, thresholds T, S ∈ [0, 1], and a probability dis-
tribution P , the good graph is an argument graph, GoodGraph(Δ,P, T, S) = (A,R),
where A = GoodArg(Δ,P, T) and R = GoodAttack(Δ,P, S).

For considering whether or not a specific argument is in the grounded extension of a
(good) graph, we only need to consider the component containing it, as illustrated next.

Example 3. SupposeΔ = {a,¬a}. Let A1 = 〈{a}, a〉 and A2 = 〈{¬a},¬a〉. Suppose
we want to determine whether A1 is in the grounded extension of the good graph.
Depending on the choice of P , S, and T , the component to consider is one of G1 to G6

where G1 is (∅, ∅) when P (A1) < T , and the constraints for G2 to G6 are tabulated
below.

Graph Structure P (A1)?T P (A2)?T P (A1)?S P (A2)?S

G2 A1 P (A1) ≥ T P (A2) < T n/a n/a
G3 A1 A2 P (A1) ≥ T P (A2) ≥ T P (A1) > S P (A2) > S
G4 A1 ← A2 P (A1) ≥ T P (A2) ≥ T P (A1) ≤ S P (A2) > S
G5 A1 → A2 P (A1) ≥ T P (A2) ≥ T P (A1) > S P (A2) ≤ S
G6 A1 ↔ A2 P (A1) ≥ T P (A2) ≥ T P (A1) ≤ S P (A2) ≤ S

Proposition 1. If T > S, then ∀ Δ, P , GoodArg(Δ,P, T) ∩ GoodTarget(Δ,P, S) =
∅. and if T ≤ S, then ∃Δ, P s.t. GoodArg(Δ,P, T)∩GoodTarget(Δ,P, S) �= ∅. Also
if T = 0 and S = 1, then ∀ Δ, P , GoodArg(Δ,P, T) = GoodTarget(Δ,P, S).

Example 4. Consider the arguments A1 = 〈{a}, a〉 and A2 = 〈{¬a},¬a〉 generated
from Δ where T = 0 and S = 1. Whatever choice is made for P , either P (A1) < 1 or
P (A2) < 1 or both P (A1) < 1 and P (A2) < 1. So if T = 0 then both arguments are
good arguments, and if S = 1 then each argument attacks the other.

In the following, we consider how components in good graphs are constructed via
dialogical argumentation. For this, we will assume S < T , and so T affects the choice
of arguments to present, and S affects the choice of counterarguments to present.

62 A. Hunter

4 Participants

We will assume two participants called 1 and 2 where 1 wants to persuade 2 about a
claim φ which we refer to as the persuasion claim. Informally, for participant 1 to
persuade participant 2 to accept the persuasion claim, it needs to give an argument with
claim φ that is in the grounded extension of the argument graph produced during the
dialogue. We formalize this in the next section.

For the good argument threshold T , and the good target threshold S, we assume
S < T so that each participant cannot attack its own good arguments. Each participant
has a position: Participant 1 has position Π1 = (Δ1, P1, P

′, T, S, φ) containing its
knowledgebaseΔ1, its probability distribution P1, the probability distribution P ′ which
is an estimate of the probability distribution P2 of the other agent, the thresholds T and
S, and the persuasion claim φ, and participant 2 has a position Π2 = (Δ2, P2, T, S)
containing its knowledgebase Δ2, its probability distribution P2, and the thresholds T
and S. Note, position 1 has more parameters because participant 1 has the lead role
in the dialogue. Also, note each participant does not know the position of the other
participant (apart from S and T).

Participant 1 can build P ′ as an estimate of P2 over time, such as by learning from
previous dialogues. However, participant 1 does not know whetherP ′ is a good estimate
of P2. But, we as external observers do know Π1 and Π2, and so we can measure how
well P ′ models P2. For this, we use a rank correlation coefficient which assigns a value
in [−1, 1] such that when P ′ and P2 completely agree on the ranking of the arguments,
the coefficient is 1, and when they completely disagree on the ranking of the arguments
(i.e. one is the reverse order of the other), the coefficient is −1 (as defined next).

Consider the set of arguments Arg(Δ) for some Δ and the threshold S. We compare
P ′ and P2 in terms of how they rank each argument in A ∈ Arg(Δ) with respect
to S. Let na be the number of arguments that P ′ and P2 agree on (i.e. na = |{A ∈
Arg(Δ) | (P ′(A) > S and P2(A) > S) or (P ′(A) ≤ S and P2(A) ≤ S)}|, and let
nd be the number of arguments that P ′ and P2 disagree on (i.e. nd = |{A ∈ Arg(Δ) |
(P ′(A) > S and P2(A) ≤ S) or (P ′(A) ≤ S and P2(A) > S)}|. From this, the rank
correlation coefficient is

Correlation(P ′, P2) =
na − nd

na + nd

Example 5. For Arg(Δ) = {A1, A2, A3, A4}, and S = 0.5, let P ′(A1) = 1, P ′(A2) =
0.3, P ′(A3) = 0.7, P ′(A4) = 0.4, P2(A1) = 1, P2(A2) = 0.8, P2(A3) = 0.6, and
P2(A4) = 0.2. So, the coefficient is (3 − 1)/4 = 1/2.

Note, the coefficient is the same as the Kendall rank correlation coefficient [7], but
the way we calculate na and nd is quite different.

5 Dialogical Argumentation

Participants take turns to contribute arguments and/or attacks, thereby constructing an
argument graph. For this, we just record the additions to the graph as defined next.

Modelling Uncertainty in Persuasion 63

Definition 6. A dialogue state is a pair (X,Y) where X is a set of arguments, and Y
is a set of attacks. Note, Y is not necessarily a subset of X ×X . A dialogue, denoted
D, is a sequence of dialogue states [(X1, Y1), ..., (Xn, Yn)].

We use the function D to denote a dialogue, where for an index i ∈ {1, ..., n},
D(i) = (Xi, Yi) is a dialogue state. For a dialogue D = [(X1, Y1), ..., (Xn, Yn)],
Len(D) = n is the index of the last step, and Sub(D, i) = [(X1, Y1), ..., (Xi, Yi)] is the
first i steps. For each step of the dialogue, there is an argument graph. We define this
graph recursively with the base case being the empty graph.

Definition 7. For dialogueD, s.t. 1 ≤ i ≤ Len(D), and D(i) = (Xi, Yi), Graph(D, i)
= (Ai−1 ∪Xi,Ri−1 ∪ Yi) is the dialogue graph where if i = 1, then (Ai−1,Ri−1) is
(∅, ∅), and if i > 1, then (Ai−1,Ri−1) is Graph(D, i− 1).

So for each step of the dialogue, we can construct the current state of the argument
graph. So the sequence of states of the dialogue are all used to construct the current
state of the graph. Clearly, this is monotonic: Arguments and attacks are added to the
graph, and none are subtracted.

Example 6. Consider the following probability distribution over models for each par-
ticipant, where T = 0.5 and S = 0.3.

Model a b Participant 1 Participant 2

m1 true true 0.8 0.0
m2 true false 0.1 0.5
m3 false true 0.1 0.0
m4 false false 0.0 0.5

Hence, we get the following probabilities for A1 to A3.

Argument Participant 1 Participant 2

A1 = 〈{b, b→ a}, a〉 0.8 0.0
A2 = 〈{¬b},¬b〉 0.1 1.0
A3 = 〈{b}, b〉 0.9 0.0

Now consider dialogue D = [({A1}, {}), ({A2}, {(A2, A1)}), ({A3}, {(A3, A2)}),
({}, {(A2, A3)}), ({}, {})], where Len(D) = 5, giving the dialogue graph below.

A1A2A3

A dialogue can be infinite since for example the contribution (∅, ∅) can be repeat-
edly added. So to draw the dialogue to a close, we restrict consideration to complete
dialogues.

Definition 8. A dialogueD is complete, where Len(D) = n, and the persuasion claim
is φ, iff

1. ∀i, j ∈ {1, . . . , n}, if i �= j & D(i) = D(j), then D(i) = (∅, ∅) & D(j) = (∅, ∅)
2. ∀i ∈ {1, . . . , n− 2}, if D(i) = (∅, ∅), then D(i+ 1) �= (∅, ∅)
3. if n is even, then ∃A ∈ Grounded(Graph(D,n)) s.t. Claim(A) = φ.
4. if n is odd, then � ∃A ∈ Grounded(Graph(D,n)) s.t. Claim(A) = φ.
5. D(n) = (∅, ∅)

64 A. Hunter

We explain the above conditions as follows: Condition 1 ensures that the only state
that can be repeated is the empty state; Condition 2 ensures that only the last two step
of the dialogue can have the empty state followed immediately by the empty state;
Conditions 3 and 4 ensure that if the last step is an even step then there is an argument
with the claim in the grounded extension, whereas if the last step is an odd step then
there is not an argument with the claim in the grounded extension; And condition 5
ensures that the last step is the empty state.

In the rest of the paper, for each step i, if i is odd (respectively even) participant 1
(respectively participant 2) will add D(i). So intuitively, at the last step n, if n is odd
(respectively even), participant 1 (respectively participant 2) has conceded the dialogue
(perhaps because it has nothing more to add).

Proposition 2. Let D be a complete dialogue and let A be a finite set of arguments.
If for each i, Xi ⊆ A, and Yi ⊆ A × A, and D(i) = (Xi, Yi), then D is finite (i.e.
Len(D) ∈ N).

Taking a simple view of persuasion, a participant is persuaded of a claim if the dia-
logue graph constructed is such that there is an argument for the claim in the grounded
extension of the graph. We justify this in the next section.

Definition 9. For a complete dialogue D, where Len(D) = n, the outcome of the
dialogue is specified as follows: If n is even, then participant 1 wins, whereas if n is
odd, then participant 1 looses.

So if n is even, then participant 1 is successful in persuading participant 2, otherwise
participant 1 is unsuccessful. The dialogue D in Example 6 is a complete dialogue,
and hence participant 1 looses. In the following sections, we present and justify three
strategies for constructing complete dialogues.

6 Simple Dialogues

In a simple dialogue, participant 1 can add arguments for the persuasion claim that are
not in the current dialogue graph.

Definition 10. For position Π1, and dialogue D, a posit contribution by participant
1 is ({A}, {}) where A ∈ GoodArg(Δ1, P1, T) and A �∈ Nodes(Graph(D, i)) and
Claim(A) = φ. The set of posit contributions by participant 1 for D at step i is
Posit(Π1, D, i).

Both participants can add counterarguments. For this, the NewAttackers function
identifies the good arguments that participant x has that are not in the current dialogue
graph Gi = Graph(D, i) but that attack an argument in Gi.

NewAttackers(Πx, D, i) = {A ∈ GoodArg(Δx, Px, T) | A �∈ Nodes(Gi) and
∃B ∈ Grounded(Gi) s.t. Px(B) ≤ S and A is a direct undercut of B}

Modelling Uncertainty in Persuasion 65

Definition 11. For position Πx, and a dialogue D, a counter contribution by partici-
pant x is (Xi+1, Yi+1) s.t.

if there is an A ∈ NewAttackers(Πx, D, i),
then Xi+1 = {A} and Yi+1 = NewArcs(Xi+1 ∪ Nodes(Gi), S)
else Xi+1 = {} and Yi+1 = NewArcs(Nodes(Gi), S)

where Gi = Graph(D, i) and NewArcs(Z, S) = { (A,B) | A,B ∈ Z and Px(A) ≤ S
and A is a direct undercut of B}. The set of counter contributions by participant x for
D at step i is Counter(Πx, D, i).

So a counter contribution is zero or one argument and zero or more arcs, as illus-
trated in Example 6. Let Part1(i) = Simple(Π1, D, i) ∪ Counter(Π1, D, i) (respec-
tively Part2(i) = Counter(Π2, D, i)) be the contributions for participant 1 (respectively
participant 2) at step i. The next definition ensures that the participants take turns in the
contributions.

Definition 12. For positions Π1 and Π2, a dialogue D is turn taking iff for each
i ∈ {1, . . . , Len(D)}, if i is odd, then D(i) ∈ Part1(i) and if i is even, then D(i) ∈
Part2(i).

The next definition ensures that each agent gives a contribution other than (∅, ∅) if
possible (i.e. there is a non-empty contribution) and needed (i.e. for participant 1, there
is not an argument for the persuasion claim in the grounded extension of the current
dialogue graph, and for participant 2, there is a argument for the persuasion claim in the
grounded extension of the current dialogue graph). Note, (∅, ∅) is always available as a
counter contribution.

Definition 13. For positions Π1 and Π2, a complete dialogue D is exhaustive iff for
each i ∈ {1, . . . , Len(D)}, where Gi = Graph(D, i), the following conditions hold.

1. If i is odd, and ∃A ∈ Grounded(Gi) s.t. Claim(A) = φ, then D(i) = (∅, ∅).
2. If i is odd, and � ∃A ∈ Grounded(Gi) s.t. Claim(A) = φ, and |Part1(i)| > 1,

then D(i) �= (∅, ∅).
3. If i is even, and � ∃A ∈ Grounded(Gi) s.t. Claim(A) = φ, then D(i) = (∅, ∅).
4. If i is even, and ∃A ∈ Grounded(Gi) s.t. Claim(A) = φ, and |Part2(i)| > 1,

then D(i) �= (∅, ∅).
A simple dialogue is a dialogue that is turning taking and exhaustive. These defi-

nitions specify how the dialogue is constructed, and if the dialogue is complete it will
terminate. The definitions ensure both agents only add good arguments and good at-
tacks. Let SD(Π1, Π2) be the set of simple dialogues.

Example 7. For A1, A3 and A5 from participant 1 and A2 and A4 from participant 2,
D1 is a simple dialogue for which Participant 1 wins.

A1 = 〈{b, b→ a}, a〉 D1(1) = ({A1}, {})
A2 = 〈{c, c → ¬b},¬b〉 D1(2) = ({A2}, {(A2, A1)})
A3 = 〈{d, d → ¬c},¬c〉 D1(3) = ({A3}, {(A3, A2)})
A4 = 〈{¬d},¬d〉 D1(4) = ({A4}, {(A4, A3)})
A5 = 〈{e, e→ ¬c},¬c〉 D1(5) = ({A5}, {(A5, A2)})

D1(6) = ({}, {})

66 A. Hunter

Example 8. Participant 1 has A1 and A3 and participant 2 has A2. D = [({A1}, {}),
({A2}, {(A2, A1)}), ({A3}, {(A3, A2)}), ({}, {(A1, A3)}), ({}, {})] is a simple dia-
logue that participant 1 looses.

Example 9. Participant 1 has A1, A3, A5 and A6, and participant 2 hasA2 and A4. D =
[({A1}, {}), ({A2}, {(A2, A1}), ({A3}, {(A3, A2}), ({A4}, {(A4, A3), (A4, A1)}),
({A5}, {(A5, A2)}) ({}, {}) ({A6}, {(A6, A4)}) ({}, {})] is a simple dialogue that
participant 1 wins.

We use the joint graph (defined next) to show a type of correctness of the simple
dialogues in the following result.

Definition 14. For positionsΠ1 andΠ2, the joint graph, is an argument graph (A,R),
denoted JointGraph(Π1, Π2), where A = GoodArg(Δ1, P1, T)∪GoodArg(Δ2, P2, T)
and R = {(A,B) | A,B ∈ A and (P1(B) ≤ S or P2(B) ≤ S) and A is a direct un-
dercut of B }.

Proposition 3. For positions Π1 and Π2, let G∗ be JointGraph(Π1, Π2). For each
D ∈ SD(Π1, Π2), participant 1 wins D iff there is an A ∈ Grounded(G∗) such that
Claim(A) = φ.

So a simple dialogue just involves each participant making contributions until one or
other participant concedes. Both agents are selective in the sense that they only present
good arguments and good attacks. But for participant 1, there is no consideration of
what might be more likely to be persuasive (such as presenting arguments that are less
likely to be attacked by participant 2). We address this next.

7 Bestfirst Dialogues

The bestfirst dialogue involves participant 1 selecting its best arguments for positing
first in the dialogue. Its best arguments, the bestfirst contributions, are its good argu-
ments that it believes are not good targets for participant 2.

Definition 15. For position Π1, and dialogue D, the set of bestfirst contributions is
Bestfirst(Π1, D, i) = {({A}, Y) ∈ Simple(Π1, D, i) ∪ Counter(Π1, D, i) | P ′(A) >
S}.

Definition 16. For Π1, and Π2, a simple dialogue D is bestfirst iff for each i ∈
{1,. . .,Len(n)}, if i is odd, andBestfirst(Π1, D, i) �= ∅, thenD(i) ∈ Bestfirst(Π1, D, i).
Let BD(Π1, Π2) be the set of bestfirst dialogues.

Example 10. Let D1 = [({A1}, {}), ({}, {})] and D2 = [({A2}, {}), ({A3}, {(A3,
A2)}), ({A1}, {}), ({}, {})]. Also let Correlation(P ′, P2) = 1. If P ′(A1) > S and
P ′(A2) ≤ S, then D1 is bestfirst, and if P ′(A1) ≤ S and P ′(A2) > S, then D2 is
bestfirst. In both cases, participant 1 wins.

If the correlation is positive for P ′ and P2, then the next result shows that on average
the bestfirst dialogues are shorter than the simple dialogues.

Modelling Uncertainty in Persuasion 67

Proposition 4. For the majority of positions Π1 and Π2, s.t. Correlation(P ′, P2) > 0,
then (∑

D∈BD(Π1,Π2)
Len(D)

| BD(Π1, Π2) |

)
≤

(∑
D∈SD(Π1,Π2)

Len(D)

| SD(Π1, Π2) |

)

So the bestfirst dialogue captures a more efficient form of persuasion than the simple
dialogue. Participant 1 presents its better arguments first, and if it does not succeed,
then it will use its remaining arguments.

8 Insincere Dialogues

The insincere dialogue is characterised by the proponent selecting its arguments based
on what it believes the other participant believes (and therefore selecting the arguments
that are less likely to be attacked by the other participant). Note, we do not assume that
participant 1 actually believes these arguments. It is being manipulative by presenting
arguments that it believes that the other participant will accept.

Definition 17. For position Π1, and a dialogueD, the set of insincere contributions by
participant 1 for D is the following where Πinsincere = (Δ1, P

′, P ′, S, T, φ).

Insincere(Π1, D, i) = Posit(Πinsincere, D, i) ∪ Counter(Πinsincere, D, i)}

Definition 18. For positions Π1 and Π2, a simple dialogue D is insincere iff for each
i ∈ {1, . . . , Len(n)}, if i is odd, then D(i) ∈ Insincere(Π1, D, i), and if i is even, then
D(i) ∈ Counter(Π2, D, i). Let ID(Π1, Π2) be the set of insincere dialogues.

So D ∈ ID(Π1, Π2) iff D ∈ SD(Πinsincere, Π2). The advantage for participant 1
is that it is not restricted by its own probability distribution in making its contributions.
Rather, the aim for participant 1 is to present any arguments it can with the sole aim of
winning the dialogue. Though one would assume that participant 1 would have a high
belief in the persuasion claim φ (i.e. P1(φ) is high) for it to want to resort to an insincere
dialogue.

Example 11. Let m1(a) = true, m1(b) = true, m1(c) = false, m2(a) = true,
m2(b) = false, and m2(c) = true. For positions Π1 and Π2, where Δ1 = {b, b →
a, c, c → a}, P1(m1) = 1, Δ2 = {¬b}, and P2(m2) = 1, let φ be a. Also, suppose
P ′ = P2. So A1 = 〈{b, b → a}, a〉 is a good argument for participant 1, but a good
target for participant 2. In a simple dialogue, participant 1 only has one argument for
a, and it would loose the dialogue (because participant 2 would attack with A2 =
〈{¬b},¬b〉). In contrast,A3 = 〈{c, c → a}, a〉 is not a good argument for participant 1,
but for participant 2, it is a good argument and not a good target. So, A3 is an insincere
contribution for participant 1, and it would win the insincere dialogue using it.

In the next example, we let Δ1 = L. Since participant 1 is prepared to say anything
that participant 2 believes, this just means that it is prepared to present any argumentA
available in the language L as long as the recipient believes it.

68 A. Hunter

Example 12. Let Δ1 = L where A1, A3 ∈ Arg(Δ1) and A2 ∈ Arg(Δ2), and assume
the following regarding the probability distributions.

P1(A1) > T ;P ′(A1) > T ;P ′(A1) > S;P2(A1) < S
P1(A2) < T ;P ′(A2) < T ;P ′(A2) < S;P2(A2) < S
P1(A3) < T ;P ′(A3) > T ;P ′(A3) > S;P2(A3) > S

So P ′ only differs from P2 on A1. Hence, D = [({A1}, {}), ({A2}, {(A2, A1)}),
({A3}, {(A3, A2)}), ({}, {})] is an insincere dialogue that participant 1 wins.

The following definition of openness of a position just means that there is at least one
atom in the language for which there are no strong arguments for or against it. In effect,
it means that participant 2 has not got a position so constrained that it is impossible to
persuade it.

Definition 19. A position Π2 is open iff there is an atom ψ ∈ L, s.t. for all A ∈
GoodArgs(Δ2, P2, T), Claim(A) �= ψ and Claim(A) �= ¬ψ.

Proposition 5. Let Π1 and Π2 be positions s.t. Δ1 = L, the persuasion claim is φ,
and Correlation(P ′, P2) = 1. For any D ∈ ID(Π1, Π2) if either (P2(¬φ) ≤ S and
S < 0.5) or Π2 is open, then participant 1 wins D.

The above result is a situation where the participant 1 has a very good model of
participant 2. We can generalise the result to imperfect models of the opponent so that
with high probably that participant 1 wins.

The idea of an insincere strategy is important; If a protocol for a argumentative dia-
logue allows for this strategy, then the above result shows that a participant can domi-
nate in a quite negative way. It can manipulate the opponent, and the opponent may be
oblivious to this manipulation. We are not proposing that we want to build agents who
use the insincere strategy. But, we may want to build agents who are aware that there
are other agents who do use the insincere strategy and protect against it. So we need to
formalise and investigate the insincere strategy and developments of it.

9 Discussion

In this paper, we have introduced good arguments, good targets, and good attacks. We
therefore provide a new approach to constructing argument graphs, drawing on proba-
bility theory, that allows us to drop arguments if there is too much doubt in them, and to
drop attacks if there is insufficient doubt in them. There are other proposals that drop at-
tacks (e.g. preference-based argumentation frameworks [8], value-based argumentation
frameworks [9], and weighted argumentation frameworks [10]), but they do not drop
arguments other than by attacking them, and they are not based on a quantitative theory
of uncertainty. There are proposals for using probability theory in argumentation (e.g.
[4, 11–15]) but they do not drop arguments or attacks, and there is a possibility theory
approach [16]) but it is not based on argument graphs.

Our approach has been influenced by Amgoud et al [17] (a detailed protocol for
exchanging logical arguments using preference-based argumentation). We go beyond

Modelling Uncertainty in Persuasion 69

that by providing a way to select arguments and counterarguments to be used, and for
strategies that use selectivity. We can allow for instance for an agent to present the
arguments it has greatest belief in and it thinks the other agent has high belief in. We
also allow for tolerance of arguments by an opponent. For instance an opponent may
choose to not attack an argument if it thinks the argument is not too bad.

There are a number of papers that formalize aspects of persuasion. Most approaches
are aimed at providing protocols for dialogues (for a review see [18]). Forms of cor-
rectness (e.g. the dialogue system has the same extensions under particular dialecti-
cal semantics as using the agent’s knowledgebases) have been shown for a variety of
systems (e.g. [19–22]). However, strategies for persuasion, in particular taking into ac-
count beliefs of the opponent are under-developed. Using selection of arguments, based
on probability distributions for the agents, and for modelling one agent by another, we
can formalise interesting strategies. To illustrate the potential, we consider the bestfirst
strategy with a clear proven advantage, and the more complex insincere strategy.

Strategies in argumentation have been analysed using game theory [23, 24]. This
mechanism design approach assumes that all the agents reveal their arguments at the
same time, and the resulting argument graph is evaluated using grounded semantics.
This is a one step process that does not involve logical arguments, dialogues or opponent
modelling. Mechanism design has also been used for comparing strategies for logic-
based dialogical argumentation that may involve lying [25]. This complements our work
since they do not consider the uncertainty of beliefs or modelling the opponent.

Finally, audience modelling has been considered in value-based argumentation
frameworks [9, 26] and in deductive argumentation [27, 28]. However, they have not
been harnessed in strategies in dialogical argumentation, and only [26] considers uncer-
tainty in the form of a probability assignment that an argument will promote a particular
“value” with an agent, which is a different kind of uncertainty to that considered here.

In conclusion, we provide a novel framework for modelling uncertainty in argumen-
tation, and use this to give three examples of strategy for dialogical argumentation. In
future work, we will develop further strategies, and investigate learning the probability
distributions from previous interactions.

References

1. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artificial
Intelligence 173(3-4), 413–436 (2009)

2. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming, and n-person games. Artificial Intelligence 77, 321–357 (1995)

3. Paris, J.: The Uncertain Reasoner’s Companion: A Methematical Perspective. Cambridge
University Press (1994)

4. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. International
Journal of Approximate Reasoning 54(1), 47–81 (2013)

5. Elvang-Gransson, M., Krause, P., Fox, J.: Acceptability of arguments as logical uncertainty.
In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747, pp. 85–90.
Springer, Heidelberg (1993)

6. Cayrol, C.: On the relation between argumentation and non-monotonic coherence-based en-
tailment. In: Proceedings of the Fourteenth International Joint Conference on Artificial In-
telligence (IJCAI 1995), pp. 1443–1448 (1995)

70 A. Hunter

7. Kendall, M.: A new measure of rank correlation. Biometrika 30(1-2), 81–93 (1938)
8. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable argu-

ments. Annals of Mathematics and Artificial Intelligence 34, 197–216 (2002)
9. Bench-Capon, T.: Persuasion in practical argument using value based argumentationframe-

works. Journal of Logic and Computation 13(3), 429–448 (2003)
10. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument

systems: Basic definitions, algorithms, and complexity results. Artificial Intelligence 175(2),
457–486 (2011)

11. Haenni, R.: Cost-bounded argumentation. International Journal of Approximate Reason-
ing 26(2), 101–127 (2001)

12. Dung, P., Thang, P.: Towards (probabilistic) argumentation for jury-based dispute resolution.
In: Computational Models of Argument (COMMA 2010), pp. 171–182. IOS Press (2010)

13. Li, H., Oren, N., Norman, T.: Probabilistic argumentation frameworks. In: Modgil, S., Oren,
N., Toni, F. (eds.) TAFA 2011. LNCS, vol. 7132, pp. 1–16. Springer, Heidelberg (2012)

14. Thimm, M.: A probabilistic semantics for abstract argumentation. In: Proceedings of the
European Conference on Artificial Intelligence (ECAI 2012), pp. 750–755 (2012)

15. Hunter, A.: Some foundations for probabilistic argumentation. In: Proceedings of the Inter-
national Comference on Computational Models of Argument (COMMA 2012), pp. 117–128
(2012)

16. Alsinet, T., Chesñevar, C., Godo, L., Simari, G.: A logic programming framework for
possibilistic argumentation: Formalization and logical properties. Fuzzy Sets and Sys-
tems 159(10), 1208–1228 (2008)

17. Amgoud, L., Maudet, N., Parsons, S.: Arguments, dialogue and negotiation. In: Fourteenth
European Conference on Artifcial Intelligence (ECAI 2000), pp. 338–342. IOS Press (2000)

18. Prakken, H.: Formal sytems for persuasion dialogue. Knowledge Engineering Review 21(2),
163–188 (2006)

19. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Journal of Logic
and Computation 15(6), 1009–1040 (2005)

20. Black, E., Hunter, A.: An inquiry dialogue system. Autonomous Agents and Multi-Agent
Systems 19(2), 173–209 (2009)

21. Fan, X., Toni, F.: Assumption-based argumentation dialogues. In: Proceedings of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 198–203 (2011)

22. Caminada, M., Podlaszewski, M.: Grounded semantics as persuasion dialogue. In: Compu-
tational Models of Argument (COMMA 2012), pp. 478–485 (2012)

23. Rahwan, I., Larson, K.: Mechanism design for abstract argumentation. In: Proceedings of
the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2008, IFAAMAS), pp. 1031–1038 (2008)

24. Rahwan, I., Larson, K., Tohmé, F.: A characterisation of strategy-proofness for grounded
argumentation semantics. In: Proceedings of the 21st International Joint Conference on Ar-
tificial Intelligence (IJCAI 2009), pp. 251–256 (2009)

25. Fan, X., Toni, F.: Mechanism design for argumentation-based persuasion. In: Computational
Models of Argument (COMMA 2012), pp. 322–333 (2012)

26. Oren, N., Atkinson, K., Li, H.: Group persuasion through uncertain audience modelling.
In: Proceedings of the International Comference on Computational Models of Argument
(COMMA 2012), pp. 350–357 (2012)

27. Hunter, A.: Towards higher impact argumentation. In: Proceedings of the 19th National Con-
ference on Artificial Intelligence (AAAI 2004), pp. 275–280. MIT Press (2004)

28. Hunter, A.: Making argumentation more believable. In: Proceedings of the 19th National
Conference on Artificial Intelligence (AAAI 2004), pp. 269–274. MIT Press (2004)

On the Implementation of a Multiple Output Algorithm
for Defeasible Argumentation

Teresa Alsinet1, Ramón Béjar1, Lluis Godo2, and Francesc Guitart1

1 Department of Computer Science – University of Lleida
Jaume II, 69 – 25001 Lleida, Spain

{tracy,ramon,fguitart}@diei.udl.cat
2 Artificial Intelligence Research Institute (IIIA-CSIC)

Campus UAB - 08193 Bellaterra, Barcelona, Spain
godo@iiia.csic.es

Abstract. In a previous work we defined a recursive warrant semantics for De-
feasible Logic Programming based on a general notion of collective conflict among
arguments. The main feature of this recursive semantics is that an output of a pro-
gram is a pair consisting of a set of warranted and a set of blocked formulas. A
program may have multiple outputs in case of circular definitions of conflicts
among arguments. In this paper we design an algorithm for computing each out-
put and we provide an experimental evaluation of the algorithm based on two
SAT encodings defined for the two main combinatorial subproblems that arise
when computing warranted and blocked conclusions for each output.

1 Introduction and Motivation

Defeasible Logic Programming (DeLP) [8] is a formalism that combines techniques
of both logic programming and defeasible argumentation. As in logic programming,
knowledge is represented in DeLP using facts and rules; however, DeLP also provides
the possibility of representing defeasible knowledge under the form of weak (defeasi-
ble) rules, expressing reasons to believe in a given conclusion. In DeLP, a conclusion
succeeds in a program if it is warranted, i.e., if there exists an argument (a consistent set
of defeasible rules) that, together with non-defeasible rules and facts, entails the con-
clusion, and moreover, this argument is found to be undefeated by a dialectical analysis
procedure. This builds a dialectical tree containing all arguments that challenge this ar-
gument, and all counterarguments that challenge those arguments, and so on, recursively.

In [1] we defined a new recursive semantics for DeLP based on a general notion of
collective (non-binary) conflict among arguments. In this framework, called Recursive
DeLP (R-DeLP for short), an output (or extension) of a program is a pair consisting of
a set of warranted and a set of blocked formulas. Arguments for both warranted and
blocked formulas are recursively based on warranted formulas but, while warranted
formulas do not generate any collective conflict, blocked conclusions do. Formulas that
are neither warranted nor blocked correspond to rejected formulas. The key feature that
our warrant recursive semantics addresses is the closure under subarguments postulate
recently proposed by Amgoud[4], claiming that if an argument is excluded from an out-
put, then all the arguments built on top of it should also be excluded from that output.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 71–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

72 T. Alsinet et al.

Then, in case of circular definitions of conflict among arguments, the recursive seman-
tics for warranted conclusions may result in multiple outputs for R-DeLP programs.

In this paper, after overviewing in Section 2 the main elements of the warrant recur-
sive semantics for R-DeLP, in Section 3 we design an algorithm for computing every
output for R-DeLP programs with multiple outputs, and in Section 4 we present empir-
ical results. These are obtained with an implementation of the algorithm based on two
SAT encodings defined in [2] for the two main combinatorial subproblems that arise
when computing warranted and blocked conclusions for each output for an R-DeLP
program, so that we can take profit of existing state-of-the-art SAT solvers for solving
instances of big size.

2 Preliminaries on R-DeLP

The language of R-DeLP [1], denoted L, is inherited from the language of logic pro-
gramming, including the notions of atom, literal, rule and fact. Formulas are built over
a finite set of propositional variables {p, q, . . .} which is extended with a new (negated)
atom “∼ p” for each original atom p. Atoms of the form p or ∼ p will be referred
as literals.1 Formulas of L consist of rules of the form Q ← P1 ∧ . . . ∧ Pk , where
Q,P1, . . . , Pk are literals. A fact will be a rule with no premises. We will also use the
name clause to denote a rule or a fact. The R-DeLP framework is based on the proposi-
tional logic (L,�) where the inference operator � is defined by instances of the modus
ponens rule of the form: {Q ← P1 ∧ . . . ∧ Pk , P1, . . . , Pk} � Q. A set of clauses Γ
will be deemed as contradictory, denoted Γ � ⊥, if , for some atom q, Γ � q and
Γ � ∼q.

An R-DeLP program P is a tuple P = (Π,Δ) over the logic (L,�), where Π,Δ ⊆
L, and Π �� ⊥. Π is a finite set of clauses representing strict knowledge (information
we take for granted they hold true), Δ is another finite set of clauses representing the
defeasible knowledge (formulas for which we have reasons to believe they are true).

The notion of argument is the usual one. Given an R-DeLP program P , an argument
for a literal (conclusion)Q of L is a pairA = 〈A,Q〉, with A ⊆ Δ such thatΠ∪A �� ⊥,
and A is minimal (with respect to set inclusion) such that Π ∪ A � Q. If A = ∅,
then we will call A a s-argument (s for strict), otherwise it will be a d-argument (d
for defeasible). The notion of subargument is referred to d-arguments and expresses
an incremental proof relationship between arguments which is defined as follows. Let
〈B,Q〉 and 〈A,P 〉 be two d-arguments such that the minimal sets (with respect to set
inclusion) ΠQ ⊆ Π and ΠP ⊆ Π such that ΠQ ∪ B � Q and ΠP ∪ A � P verify
that ΠQ ⊆ ΠP . Then, 〈B,Q〉 is a subargument of 〈A,P 〉, written 〈B,Q〉 � 〈A,P 〉,
when either B ⊂ A (strict inclusion for defeasible knowledge), or B = A and ΠQ ⊂
ΠP (strict inclusion for strict knowledge). More generally, we say that 〈B,Q〉 is a
subargument of a set of arguments G, written 〈B,Q〉 � G, if 〈B,Q〉 � 〈A,P 〉 for
some 〈A,P 〉 ∈ G. A literal Q of L is called justifiable conclusion with respect to P if
there exists an argument for Q, i.e. there exists A ⊆ Δ such that 〈A,Q〉 is an argument.

The warrant recursive semantics for R-DeLP is based on the following notion of
collective conflict. Let P = (Π,Δ) be an R-DeLP program and let W ⊆ L be a set

1 For a given literal Q, we write ∼Q to denote “∼q” if Q = q and “q” if Q = ∼q.

On the Implementation of a Multiple Output Algorithm for Defeasible Argumentation 73

of conclusions. We say that a set of arguments {〈A1, Q1〉, . . . , 〈Ak, Qk〉} minimally
conflicts with respect to W iff the two following conditions hold: (i) the set of argument
conclusions {Q1, . . . , Qk} is contradictory with respect to W , i.e. it holds thatΠ∪W ∪
{Q1, . . . , Qk} � ⊥; and (ii) the set {〈A1, Q1〉, . . . , 〈Ak, Qk〉} is minimal with respect
to set inclusion satisfying (i), i.e. if S � {Q1, . . . , Qk}, then Π ∪W ∪ S �� ⊥.

An output for an R-DeLP program P = (Π,Δ) is any pair (Warr,Block), where
Warr ∩ Block = ∅ and {Q | Π � Q} ⊆ Warr, satisfying the following recursive
constraints:

1. P ∈ Warr∪Block iff there exists an argument 〈A,P 〉 such that for every 〈B,Q〉 �
〈A,P 〉, Q ∈ Warr. In this case we say that the argument 〈A,Q〉 is valid with
respect to Warr.

2. For each valid argument 〈A,Q〉:
– Q ∈ Block whenever there exists a set of valid arguments G such that (i)
〈A,Q〉 �� G, and (ii) {〈A,Q〉} ∪ G minimally conflicts with respect to the
set W = {P | 〈B,P 〉 � G ∪ {〈A,Q〉}}.

– otherwise, Q ∈ Warr.

In [1] we showed that, in case of some circular definitions of conflict among argu-
ments, the output of an R-DeLP program may be not unique, that is, there may exist sev-
eral pairs (Warr,Block) satisfying the above conditions for a given R-DeLP program.
Following the approach of Pollock [9], circular definitions of conflict were formalized
by means of what we called warrant dependency graphs. A warrant dependency graph
represents (i) support relations of almost valid arguments with respect to valid argu-
ments and (ii) conflict relations of valid arguments with respect to almost valid argu-
ments. An almost valid argument is an argument based on a set of valid arguments and
whose status is warranted or blocked (but not rejected), whenever every valid argument
in the set is warranted, and rejected, otherwise. Then, a cycle in a warrant dependency
graph represents a circular definition of conflict among a set of arguments.

3 Computing the Set of Outputs for an R-DeLP Program

From a computational point of view, an output for an R-DeLP program can be com-
puted by means of a recursive procedure, starting with the computation of warranted
conclusions from strict clauses and recursively going from warranted conclusions to
defeasible arguments based on them. Next we design an algorithm implementing this
procedure for computing warranted and blocked conclusions by checking the existence
of conflicts between valid arguments and cycles at some warrant dependency graph.

The algorithm R-DeLP outputs first computes the set of warranted conclusions
form the set of strict clauses Π . Then, computes the set VA of valid arguments with re-
spect to the strict part, i.e. arguments with an empty set of subarguments. The recursive
procedure extension receives as input the current partially computed output (W,B)
and the set of valid arguments VA and dynamically updates the set VA depending on
new warranted and blocked conclusions and the appearance of cycles in some warrant
dependence graph. When a cycle is found in a warrant dependence graph, each valid
argument of the cycle can lead to a different output. Then, the procedure extension

74 T. Alsinet et al.

selects one valid argument of the cycle and recursively computes the resulting output by
warranting the selected argument. The procedure extension finishes when the status
for every valid argument of the current output is computed. When an R-DeLP program
has multiple outputs, each output is stored in the set of outputs O.

Algorithm R-DeLP outputs

Input P = (Π,Δ): An R-DeLP program

Output O: Set of outputs for P
Variables

(W,B): Current output for P
VA: Set of valid arguments w.r.t. the current set of warranted conclusions W

Method
O := ∅;
W := {Q | Π � Q};
B := ∅ ;
VA : = {〈A,Q〉 | 〈A,Q〉 is valid w.r.t. W};
extension ((W , B), VA, O)

end algorithm R-DeLP outputs

Procedure extension (input (W , B); input VA; input_output O)

Variables
Wext : Extended set of warranted conclusions
VAext: Extended set of valid arguments
is_leaf : Boolean

Method
is_leaf := true;
while (VA �= ∅ and is_leaf = true) do

while (∃〈A,Q〉 ∈ VA | ¬ cycle(〈A,Q〉, VA, W , almost_valid(VA, (W , B))) and
¬ conflict(〈A,Q〉, VA, W , not_dependent(〈A,Q〉, almost_valid(VA, (W , B)))) do

W := W ∪ {Q} ;
VA := VA\{〈A,Q〉} ∪ {〈C,P 〉 | 〈C,P 〉 is valid w.r.t. W}

end while
I := {〈A,Q〉 ∈ VA | conflict(〈A,Q〉, VA, W , ∅)};
B := B ∪ {Q | 〈A,Q〉 ∈ I};
VA := VA\I;
J := {〈A,Q〉 ∈ VA | cycle(〈A,Q〉, VA, W , almost_valid(VA, (W , B)))}
for each argument (〈A,Q〉 ∈ J) do

Wext := W ∪ {Q};
VAext := VA\{〈A,Q〉} ∪ {〈C,P 〉 | 〈C,P 〉 is valid w.r.t. Wext};
extension ((Wext , B), VAext , O)

end for
if (J �= ∅) then is_leaf := false

end while
if ((W,B) �∈ O and is_leaf = true) then O := O ∪ {(W,B)}

end procedure extension

The function almost_valid computes the set of almost valid arguments based
on some valid arguments in VA. The function not_dependent computes the set of
almost valid arguments which do not depend on 〈A,Q〉. The function conflict has
two different functionalities. On the one hand, the functionconflict checks conflicts
among the argument 〈A,Q〉 and the set VA of valid arguments, and thus, every valid ar-
gument involved in a conflict is blocked. On the other had, the function conflict
checks possible conflicts among the argument 〈A,Q〉 and the set VA of valid arguments
extended with the set of almost valid arguments whose supports depend on some argu-
ment in VA\{〈A,Q〉}, and thus, every valid argument with options to be involved in a
conflict remains as valid. Finally, the function cycle checks the existence of a cycle
in the warrant dependency graph for the set of valid arguments VA and the set of almost
valid arguments based on some valid arguments in VA.

On the Implementation of a Multiple Output Algorithm for Defeasible Argumentation 75

One of the main advantages of the warrant recursive semantics is from the imple-
mentation point of view. In order to determine the warrant status of an argument of a
given program, warrant semantics based on dialectical trees, like DeLP [5], might ex-
plore the entire set of arguments of a program in order to present an exhaustive synthesis
of the relevant chains of pros and cons for a given conclusion. In the worst case, this
could be an exponential number of arguments with respect to the number of program
rules. To avoid the systematic exploration, in [6] an improved algorithm for comput-
ing dialectical trees in a depth-first fashion was defined, where an evaluation criteria of
arguments (based on dialectical constraints) is used as an heuristic to prune the search
space. Our approach is a bit different, it does not compute the entire set of arguments
for a given literal but instead the search is driven towards the computation of at most
a valid argument per each literal. In fact, for every output, our algorithm can be imple-
mented to work in polynomial space since for each literal we need to keep in memory
at most one valid argument. Analogously, function not_dependent can be imple-
mented to generate at most one almost valid argument not based on 〈A,Q〉 for a given
literal. The only function that in the worst case can need to explore an exponential num-
ber of arguments is cycle, but we showed [2] that whenever cycle returns true for
〈A,Q〉, then a conflict will be detected with the set of almost valid arguments which do
not depend on 〈A,Q〉. Moreover, the set of valid arguments J computed by function
cycle can also be computed by checking the stability of the set of valid arguments
after two consecutive iterations, so it is not necessary to explicitly compute dependency
graphs.

4 Empirical Results

In order to compute the sets of warranted and blocked conclusions for every output (ex-
tension) the procedure extension computes two main queries during its execution:
i) whether an argument is almost valid and ii) whether there is a conflict for a valid
argument. SAT encodings were proposed in [2] to resolve them with a SAT solver. 2

In this paper we study the average number of outputs for R-DeLP instances and the
median computational cost of solving them with the R-DeLP outputs algorithm,
as the instances size increase with different instances characteristics. The main algo-
rithm has been implemented with python, and for solving the SAT encodings, we have
used the solver MiniSAT [7]. An on-line web based implementation of the R-DeLP
argumentation framework is available at the URL: http://arinf.udl.cat/rp-delp.

To generate R-DeLP problem instances with different sizes and characteristics, we
have used the generator algorithm described in [3]. We generate test-sets of instances
with different number of variables (V): {15, 20, 25, 30}3 and with clauses with one or
two literals. 4 For each number of variables, we generate three sets of instances, each

2 The set VA of valid arguments can be easily updated whenever a new conclusion is warranted.
3 Notice that the total number of literals is twice the number of variables.
4 In [3] we considered test-sets of instances with a maximum clause length parameter (ML):
{2, 4, 6}. Since the experimental results showed that increasing the number of literals per
clause also increases the number of blocked conclusions, in this paper we have only considered
the case of ML = 2 which should in principle favor the appearance of cycles.

http://arinf.udl.cat/rp-delp

76 T. Alsinet et al.

one with a different ratio of clauses to variables (C/V): {2, 4, 6}. From all the clauses
of an instance, a 10% of them are considered in the strict part of the program (Π) and
a 90% of them are considered in the defeasible part (Δ). 5

Table 1 shows the experimental results obtained for our test-sets. So far, we have
computed the average number of outputs per instance (# O), the average number of
warrants per output, the average number of warrants in the intersection of the set of
outputs and the median time for solving the instances. The results show that even for a
small number of variables V and a small ratio C/V we can have instances with mul-
tiple outputs. Observe that although the average number of outputs is not too different
between all the test-sets, the complexity of solving the instances seems to increase ex-
ponentially as either V or C/V increases. We believe this is mainly due to an increase
in the complexity of deciding the final status (warranted or blocked) of each literal for
each output.

Table 1. Experimental results for the R-DeLP outputs algorithm

V C/V # O
Warrants # Warrants

Time (s.)
per output in intersection

15
2 1.04 7.14 7.1 0.906
4 1.31 7.28 6.93 7.96
6 5.40 6.43 5.90 19.11

20
2 1.06 9.89 9.82 1.93
4 1.65 9.63 9.31 28.89
6 1.44 9.09 8.81 38.87

25
2 1.10 11.47 11.38 5.09
4 2.44 11.72 10.74 76.31
6 1.90 8.04 7.50 151.31

30
2 1.08 12.56 12.5 9.20
4 1.81 12.16 11.56 142.49
6 1.89 11.02 9.92 227.97

As future work we propose to study the average number of blocked conclusions per
output and to parameterize the maximum number of literals per clause which would
give us an idea if the computation time is higher because there is a relationship be-
tween the number of blocked and warranted conclusions. We also propose to extend the
R-DeLP outputs algorithm to the case of multiple levels for defeasible facts and
rules.

Acknowledgments. The authors acknowledge the Spanish projects ARINF (TIN2009-
14704-C03-01), TASSAT (TIN2010-20967-C04-03) and EdeTRI (TIN2012-39348-
C02-01).

5 These ratios were selected given the experimental results in [3] with single output programs,
they gave non-trivial instances in the sense of being computationally hard to solve.

On the Implementation of a Multiple Output Algorithm for Defeasible Argumentation 77

References

1. Alsinet, T., Béjar, R., Godo, L.: A characterization of collective conflict for defeasible argu-
mentation. In: COMMA 2010, pp. 27–38 (2010)

2. Alsinet, T., Béjar, R., Godo, L., Guitart, F.: Maximal ideal recursive semantics for defeasible
argumentation. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 96–109.
Springer, Heidelberg (2011)

3. Alsinet, T., Béjar, R., Godo, L., Guitart, F.: Using answer set programming for an scalable
implementation of defeasible argumentation. In: ICTAI 2012, pp. 1016–1021 (2012)

4. Amgoud, L.: Postulates for logic-based argumentation systems. In: ECAI 2012 Workshop
WL4AI, pp. 59–67 (2012)

5. Cecchi, L., Fillottrani, P., Simari, G.: On the complexity of DeLP through game semantics. In:
NMR 2006, pp. 386–394 (2006)

6. Chesñevar, C.I., Simari, G.R., Godo, L.: Computing dialectical trees efficiently in possibilis-
tic defeasible logic programming. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.)
LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 158–171. Springer, Heidelberg (2005)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. García, A., Simari, G.R.: Defeasible Logic Programming: An Argumentative Approach. The-
ory and Practice of Logic Programming 4(1), 95–138 (2004)

9. Pollock, J.L.: A recursive semantics for defeasible reasoning. In: Rahwan, Simari (eds.) Ar-
gumentation in Artificial Intelligence, pp. 173–198. Springer (2009)

A Formal Characterization of the Outcomes
of Rule-Based Argumentation Systems

Leila Amgoud and Philippe Besnard

IRIT – CNRS
118, route de Narbonne

31062, Toulouse Cedex 09

Abstract. Rule-based argumentation systems are developed for reasoning about
defeasible information. As a major feature, their logical language distinguishes
between strict rules and defeasible ones. This paper presents the first study on
the outcomes of such systems under various semantics such as naive, stable, pre-
ferred, ideal and grounded. For each of these semantics, it characterizes both the
extensions and the set of plausible inferences drawn by these systems under a few
intuitive postulates.

1 Introduction

There are two major categories of instantiations of Dung’s abstract argumentation
framework [4]. A category uses deductive logics (such as propositional logic [2,6] or
Tarskian logics [1]). The second category uses rule-based languages [3,5,7] which dis-
tinguish between facts, strict rules (they encode strict information), and defeasible rules
(they describe general behavior with exceptional cases). Despite the popularity of rule-
based argumentation systems, the results they return have not been characterized yet.
The following questions are still open:

– what are the underpinnings of the extensions under various semantics?
– do Dung’s semantics return different results as at the abstract level?
– what is the number of extensions a system may have under a given semantics?
– what are the plausible conclusions with such systems?

In this paper, we answer all the above questions. We start with a knowledge base
called a theory (a set of facts, a set of strict rules and a set of defeasible rules), we
define a notion of a derivation schema which we use to generate arguments from the
theory. For the sake of generality, the attack relation is left unspecified. We extend the
list of postulates proposed in [3] with three new postulates. We investigate outputs of
rule-based argumentation systems that satisfy all the postulates. We show that naive ex-
tensions return maximal options of the theory (an option being a sub-theory that gathers
all the facts and strict rules, and a maximal -up to consistency- set of defeasible rules
that do not conflict with the strict part). Every maximal option gives birth to a naive
extension. Furthermore, the set of plausible conclusions under the naive semantics con-
tains all the conclusions that are drawn from all the maximal options. Stable extensions
return maximal options but not necessarily all of them, it depends on the attack relation

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 78–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Formal Characterization of the Outcomes of Rule-Based Argumentation Systems 79

at work. Should not all maximal options be picked as stable extensions, defining an at-
tack relation that discard exactly the spurious ones turns out be tricky. The same results
hold for preferred semantics. We characterize both ideal and grounded extensions.

2 Rule-Based Argumentation Systems

In what follows, we consider the language used in [3]. Let L is a set of literals, i.e.,
atoms or negation of atoms. The negation of an atom x from L is denoted ¬x. Three
kinds of information (x, x1...xn denoting literals in L) are distinguished:

– Facts, which are elements of L
– Strict rules, which are of the form x1, . . . , xn → x
– Defeasible rules, which are of the form x1, . . . , xn ⇒ x

Throughout the text, rules are named r1, r2, . . . For each rule r = x1, . . . , xn → x
(as well as r = x1, . . . , xn ⇒ x), the head of the rule is Head(r) = x and the body
of the rule is Body(r) = {x1, . . . , xn}. A strict rule expresses general information that
has no exception, e.g. “penguins cannot fly” whereas a defeasible rule expresses general
information that may have exceptions, e.g. “birds can fly”.

Definition 1 (Theory). A theory is a triple T = (F ,S,D) where F is a set of facts
and S (resp. D) is a set of strict (resp. defeasible) rules.

Notation. Let T = (F ,S,D) and let T ′ = (F ′,S ′,D′) be two theories. We say that
T is a sub-theory of T ′, written T # T ′, iff F ⊆ F ′ and S ⊆ S ′ and D ⊆ D′. The
relation � is the strict version of # (i.e., it is the case that at least one of the three
inclusions is strict).

The notion of consistency is defined as follows.

Definition 2 (Consistency). A set X ⊆ L is consistent iff �x, y ∈ X s.t. x = ¬y. It is
inconsistent otherwise.

Assumption 1. The body of every (strict/defeasible) rule is finite and not empty. More-
over, for each rule r, Body(r) ∪ {Head(r)} is consistent. We say that r is consistent.

The notion of a derivation schema generalizes derivations as defined in [5,8] and
others. It shows how literals can follow from a theory.

Definition 3 (Derivation schema). Let T = (F ,S,D) be a theory and x ∈ L. A
derivation schema for x from T is a finite sequence d = 〈(x1, r1), . . . , (xn, rn)〉 s.t.

– xn = x
– for i = 1 . . . n,

• xi ∈ F and ri = ∅, or
• ri ∈ S ∪ D and Head(ri) = xi and Body(ri) ⊆ {x1, .., xi−1}

80 L. Amgoud and P. Besnard

Seq(d) = {x1, . . . , xn}.
Facts(d) = {xi | i ∈ {1, . . . , n}, ri = ∅}.
Strict(d) = {ri | i ∈ {1, . . . , n}, ri ∈ S}.
Def(d) = {ri | i ∈ {1, . . . , n}, ri ∈ D}.

Notation. In order to improve readability, we somehow abuse the notation in derivation
schemata: We use the name of the rules instead of the rules themselves.

A derivation schema is not necessarily consistent (such as (7) below), as it may
contain opposite literals in the form xi = ¬xj for some i and j (this is in accordance
with Definition 2).

Example 1. Consider T1 such that F1, S1, D1 are as follows.

F1

{
p
q

S1

⎧⎨⎩
p → s (r1)
q → ¬s (r2)
p, s → u (r3)

D1

⎧⎨⎩
¬s ⇒ t (r4)
t, u ⇒ ¬v (r5)
p ⇒ q (r6)

Each of (1)–(7) below is a derivation schema from T1

〈(p, ∅)〉 (1)

〈(q, ∅), (¬s, r2)〉 (2)

〈(p, ∅), (s, r1), (u, r3)〉 (3)

〈(p, ∅), (s, r1), (p, ∅), (u, r3)〉 (4)

〈(p, ∅), (q, ∅), (s, r1), (u, r3)〉 (5)

〈(p, ∅), (q, r6), (¬s, r2)〉 (6)

〈(p, ∅), (q, ∅), (¬s, r2), (s, r1), (u, r3), (t, r4), (¬v, r5)〉 (7)

A derivation schema may not be (⊆-)minimal. There are two reasons for that:

– repeating pairs (xi, ri) as in derivation (4) ((p, ∅) is repeated twice),
– involving literals that do not serve towards inferring the conclusion x, as is illus-

trated by (5) (q is of no use there). The derivation schema fails thus to be focussed.

Definition 4 (Minimal/focussed derivation schema). A derivation schema for x from
T is minimal iff none of its proper subsequences is a derivation schema for x from T . It
is focussed iff it can be reduced to a minimal one by just deleting repeated pairs (xi, ri).

Property 1. Let T = (F ,S,D) be a theory. A derivation schema d = 〈(x1, r1), . . . ,
(xn, rn)〉 from T is minimal iff d is focussed and the literals x1, . . . , xn are pairwise
distinct.

Notation. CN(T) denotes the set of all literals that have a derivation schema from T .
We call CN(T) the potential consequences drawn from T (for short, consequences)
but they need not be definitive as they may be dismissed by opposite conclusions.

A Formal Characterization of the Outcomes of Rule-Based Argumentation Systems 81

Property 2. Let T = (F ,S,D) be a theory.

– F ⊆ CN(T) ⊆ F ∪ {Head(r) | r ∈ S ∪ D} ⊆ L
– If T is finite, then CN(T) is finite
– F = ∅ iff CN(T) = ∅
– If d is a derivation schema from T , Seq(d) ⊆ CN(T)

Some rules may not be activated (i.e., their body has no derivation schema). Let us
consider the following example.

Example 2. Let T2 = (F2,S2,D2) such that

F2

{
p
q

S2

⎧⎨⎩p→ t (r1)
q → t (r2)
s → u (r3)

D2

{
p ⇒ q (r4)
u ⇒ v (r5)

There are rules here whose head is not a consequence of T2. CN(T2) = {p, q, t} ⊂
{p, q, t, u, v} = F2 ∪ Head(S2 ∪ D2).

It is also easy to show that CN is monotonic.

Property 3. If T # T ′ then CN(T) ⊆ CN(T ′).

The backbone of an argumentation system is naturally the notion of arguments. They
are built from a theory using the notion of derivation schema as follows.

Definition 5 (Argument). Let T = (F ,S,D) be a theory. An argument defined from
T is a pair (d, x) s.t.

– x ∈ L
– d is a derivation schema for x from T
– Seq(d) is consistent
– �T ′ � (Facts(d), Strict(d), Def(d)) s.t. x ∈ CN(T ′)

An argument (d, x) is strict iff Def(d) = ∅.

Notation. If a = (d, x) is an argument then Conc(a) = x. For a set E of arguments,
Concs(E) = {x | (d, x) ∈ E}. Arg(T) is the set of all the arguments defined from
T . For a set E of arguments,

Th(E) = (
⋃

(d,x)∈E
Facts(d),

⋃
(d,x)∈E

Strict(d),
⋃

(d,x)∈E
Def(d)).

Theorem 1. Let T be a theory. For all consistent sequence d = 〈(x1, r1), . . . , (xn, rn)〉
from T , the following two statements are equivalent:

– (d, x) is an argument (from T)
– d is a focussed derivation schema from T s.t. x = xn

Definition 6 (Sub-argument). An argument (d, x) is a sub-argument of (d′, x′) iff
(Facts(d), Strict(d), Def(d)) # (Facts(d′), Strict(d′), Def(d′)).

82 L. Amgoud and P. Besnard

Notation Sub(a) denotes the set of all sub-arguments of a.

Example 1 (Cont). The argument (〈(q, ∅), (¬s, r2)〉,¬s) has two sub-arguments:
(〈(q, ∅)〉, q) and itself. By contrast, (〈(q, ∅)〉, q) is not a sub-argument of (〈(p, ∅),
(q, r6)〉, q).

Clearly, if (d, x) is a sub-argument of (d′, x′) then Seq(d) ⊆ Seq(d′), but the con-
verse is not true as shown next.

Example 2 (Cont). Argumentsa=(〈(p, ∅), (t, r1)〉, t) and b=(〈(p, ∅), (q, r4), (t, r2)〉, t)
are s.t. Seq(a) = {p, t} ⊆ {p, q, t} = Seq(b) but a is not a sub-argument of b.

From the monotonicity of CN, it follows that the construction of arguments is a mono-
tonic process.

Proposition 1. If T # T ′ then Arg(T) ⊆ Arg(T ′).

An argumentation system is defined as follows:

Definition 7 (Argumentation system). An argumentation system (AS for short) de-
fined over a theory T = (F ,S,D) is a pair H = (Arg(T),R) where R ⊆ Arg(T) ×
Arg(T) is called an attack relation.

In what follows, arguments are evaluated using semantics proposed in [4]. Before
recalling them, let us first introduce the two requirements on which they are based.

Definition 8 (Conflict-freeness – Defence). Let H = (A, R) be an AS, E ⊆ A and
a ∈ A.

– E is conflict-free iff �a, b ∈ E s.t. aR b.
– E defends a iff ∀b ∈ A, if bR a then ∃c ∈ E s.t. c R b.

Definition 9 recalls the semantics of interest in the sequel.

Definition 9 (Acceptability semantics). Let H = (A,R) be an AS and E ⊆ A.

– E is a naive extensions iff it is a maximal (w.r.t. set ⊆) conflict-free set.
– E is an admissible set iff it is conflict-free and defends all its elements.
– E is a preferred extension iff it is a maximal (w.r.t. set ⊆) admissible set.
– E is a stable extension iff it is conflict-free and ∀a ∈ A \ E , ∃b ∈ E s.t. bR a.
– E is a grounded extension iff it is a minimal (w.r.t. set ⊆) set that is admissible and

contains any argument it defends.
– E is an ideal extension iff it is the maximal (w.r.t. set ⊆) admissible set which is part

of any preferred extension.

Notation. Extx(H) denotes the set of all the extensions of a system H under semantics
x where x ∈ {n, p, s} and n (resp. p, s) stands for naive (resp. preferred, stable).

Plausible conclusions are those common to all extensions.

A Formal Characterization of the Outcomes of Rule-Based Argumentation Systems 83

Definition 10 (Plausible conclusions). If H = (Arg(T),R) is an AS built over a the-
ory T , the set of plausible conclusions of H is

Output(H) =
⋂

Ei∈Extx(H)

Concs(Ei).

From the above definitions, namely that of an argument, it follows that the plausible
conclusions of an argumentation system are a subset of the consequences that follow
wrt CN from the theory over which the system is built.

Property 4. Let H = (Arg(T),R) be an AS built over T . Output(H) ⊆ CN(T).

3 Postulates for Argumentation Systems

We present rationality postulates that any rule-based argumentation system should sat-
isfy. The first two were already proposed in [3] and the others are new. The first postulate
ensures that the set of conclusions of arguments of each extension is consistent. This is
compatible with the fact that each extension represents a coherent position.

Postulate 1 (Consistency). Let H = (Arg(T),R) be an AS built over a theory T . For
all E ∈ Extx(H), Concs(E) is consistent. We say that H satisfies consistency.

It was shown in [3] that if an argumentation system H satisfies consistency, then its
set Output(H) of plausible conclusions is consistent as well.

Property 5 ([3]). If an AS H satisfies consistency, then Output(H) is consistent.

The second postulate ensures that the extensions of an argumentation system are
closed under strict rules. The idea is that if there is an argument with conclusion x in
an extension and there exists a strict rule x → y, then y should also be supported by an
argument in the same extension.

Postulate 2 (Closure under strict rules). Let H = (Arg(T), R) be an AS built over a
theory T . For all E ∈ Extx(H), Concs(E) = CN((Concs(E),S, ∅)). We say that H is
closed under strict rules.

It is known that if an argumentation system H is closed under strict rules, then its set
Output(H) is necessarily closed under strict rules.

Property 6 ([3]). Let H be an AS built over a theory T = (F ,S,D). If H is closed
under strict rules, then Output(H) = CN((Output(H),S, ∅)).

It was also shown in [3] that a system that satisfies consistency and closure under
strict rules satisfies indirect consistency.

Property 7 ([3]). Let H be an AS built over a theory T = (F ,S,D). If H satisfies con-
sistency and is closed under strict rules, then for all E ∈ Extx(H), CN((Concs(E),S, ∅))
is consistent.

84 L. Amgoud and P. Besnard

We propose three new postulates. The first says that if an argument belongs to an ex-
tension, then all its sub-arguments should be in the extension. It means that an argument
cannot be accepted in an extension if one of its sub-parts is rejected.

Postulate 3 (Closure under sub-arguments). Let H = (Arg(T), R) be an AS built
over a theory T . For all E ∈ Extx(H), if a ∈ E then Sub(a) ⊆ E . We say that H is
closed under sub-arguments.

The following result characterizes the extensions of an argumentation system which
is closed under sub-arguments.

Proposition 2. If an AS H is closed under sub-arguments, then ∀E ∈ Extx(H),

– Concs(E) = CN(Th(E))
– ∀(d, x) ∈ Arg(Th(E)), Seq(d) ⊆ Concs(E)

Importantly, even when a system is closed under sub-arguments, the equality E =
Arg(Th(E)) is not always true. This depends on the semantics as we will see later.

Proposition 3. If an argumentation system H satisfies consistency and closure under
sub-arguments, then ∀E ∈ Extx(H), CN(Th(E)) is consistent.

Since facts and strict rules are the “hard” part in a theory, it is natural that any strict
argument should be in all extensions. This principle is applied in default logic [9].

Postulate 4 (Strict precedence). Let H be an AS built over a theory T = (F ,S,D).
For all E ∈ Extx(H), Arg((F ,S, ∅)) ⊆ E . We say that H satisfies strict precedence.

We show next that every argumentation system satisfying Postulate 4 infers all the
conclusions that follow from the set of facts and the strict rules of a theory.

Proposition 4. Let H be an AS built over a theory T = (F ,S,D). If H satisfies strict
precedence, then F ⊆ CN((F ,S, ∅)) ⊆ Output(H).

Next is an important result for the rest of our study: it says that if an argumentation
system over a theory T satisfies Postulates 2, 3, 4, then the set of literals deduced from
Th(E), the theory of an extension E , is exactly the one obtained from Th(E) extended
by all facts and strict rules of T which are not in Th(E).

Proposition 5. Let H be an argumentation system built over a theory T = (F ,S,D).
If H satisfies postulates 2, 3, 4, then for all E ∈ Extx(H),

CN(Th(E)) = CN((F ,S,
⋃

(d,x)∈E
Def(d))).

The last postulate ensures a form of completeness of the extensions. It says that if the
sequence of an argument is part of the conclusions of a given extension, then the argu-
ment (Definition 5 ensures consistency) should belong to the extension. Informally: If
each step in the argument is good enough to be in the extension, then so is the argument
itself.

A Formal Characterization of the Outcomes of Rule-Based Argumentation Systems 85

Postulate 5 (Exhaustiveness). Let H = (Arg(T),R) be an AS built over a theory
T = (F ,S,D). For all E ∈ Extx(H), for all (d, x) ∈ Arg(T), if Seq(d) ⊆ Concs(E),
then (d, x) ∈ E .

The extensions (under any semantics) of any argumentation system that satisfies ex-
haustiveness and closure under sub-arguments are closed in terms of arguments.

Proposition 6. If an AS H is closed under sub-arguments and satisfies the exhaustive-
ness postulate, then ∀E ∈ Extx(H), E = Arg(Th(E)).

Under some semantics like naive and stable, Postulate 5 follows from consistency
and closure under sub-arguments. This is mostly the case when the attack relation is
conflict-dependent, that is, it captures the inconsistency of the theory over which the
argumentation system is built.

Definition 11 (Conflict-dependency). Let H = (Arg(T), R) be an argumentation sys-
tem. The attack relation R is conflict-dependent iff for all (d, x), (d′, x′) ∈ Arg(T), if
(d, x) R (d′, x′) then Seq(d) ∪ Seq(d′) is inconsistent.

Proposition 7. Let H = (Arg(T),R) be an argumentation system built over a the-
ory T s.t. R is conflict-dependent. If H satisfies consistency and closure under sub-
arguments, then H satisfies exhaustiveness under naive and stable semantics.

Finally, it is worth noticing that conflict-dependent relations do not admit self-
attacking arguments.

Proposition 8. Let H = (Arg(T), R) be an argumentation system. If R is conflict-
dependent, ∀a ∈ Arg(T) (a, a) /∈ R.

4 Outcomes of Argumentation Systems

This section analyzes the outputs of rule-based argumentation systems under the se-
mantics recalled in Def. 9. In the sequel, we consider only systems that satisfy the
postulates introduced in Section 3. As in [3,5,9], we assume that the “hard” part of a
theory is consistent. Formally:

Assumption 2. For all theory T = (F ,S,D), CN((F ,S, ∅)) is consistent.

Let us first introduce a key concept: that of an option.

Definition 12 (Option). Let T = (F ,S,D) be a theory. An option of T is a sub-theory
T ′ = (F ′,S ′,D′) of T such that:

– F ′ = F and S ′ = S (hence D′ ⊆ D)
– CN(T ′) is consistent
– ∀r ∈ D \ D′, CN((F ,S,D′ ∪ {r})) is inconsistent.

Let Opt(T) denote the set of all options of T .

86 L. Amgoud and P. Besnard

Example 3. Consider T3 such that F3, S3, D3 are as follows.

F3

⎧⎨⎩
p
q
¬s

S3

{
t, u, v → s (r1) D3

⎧⎨⎩
p ⇒ t (r2)
q ⇒ u (r3)
u ⇒ v (r4)

The theory T3 has three options:

– O1 = (F3,S3, {p⇒ t, q ⇒ u})
– O2 = (F3,S3, {p⇒ t, u ⇒ v})
– O3 = (F3,S3, {q ⇒ u, u ⇒ v})

When a theory is consistent, it has a unique option: itself. This is the case in Example
2: Opt(T2) = {T2}.

Property 8. Let T = (F ,S,D) be a theory.

– Opt(T) = {T } iff CN(T) is consistent.
– If CN((F ,S, ∅)) is inconsistent, then Opt(T) = ∅.
– For all r ∈ D, if CN((F ,S, {r})) is consistent, then there exists an option O s.t.

(F ,S, {r}) # O.

Note that the set of consequences of an option is not necessarily maximal for set
inclusion as shown by Example 3.

Example 3 (Cont). We have CN(O1) = {p, q,¬s, t, u}, CN(O2) = {p, q,¬s, t}, and
CN(O3) = {p, q,¬s, u, v}. Thus, CN(O2) ⊆ CN(O1).

Notation For a set B of theories, we denote its maximum as Max(B) = {T ∈ B |
�T ′ ∈ B s.t. CN(T) ⊂ CN(T ′)}. In Example 3, Max(Opt(T3)) = {O1,O3}.

The defeasible rules of a theory do not necessarily belong to an option of the theory
as shown by the following example.

Example 4. The theory T4 s.t. F4 = {p, q}, S4 = {p → s} and D4 = {q ⇒ ¬s} has
a single option: O = (F4,S4, ∅).

4.1 Naive Semantics

We start by characterizing the naive extensions of any argumentation system satisfying
the above rationality postulates. We show that each naive extension returns a maximal
option of the theory over which the system is built.

Theorem 2. Let H = (Arg(T),R) be an AS built over a theory T s.t. R is conflict-
dependent and H satisfies the postulates 1, 2, 3, and 4. For all E ∈ Extn(H), there
exists a unique O ∈ Max(Opt(T)) such that Th(E) # O and Concs(E) = CN(O).

Note that the theory of a naive extension may be a proper subset of the corresponding
maximal option. This is mainly due to the fact that an option may contain non-activated
rules while arguments are minimal and thus focussed.

A Formal Characterization of the Outcomes of Rule-Based Argumentation Systems 87

Example 2 (Cont). Since theory T2 is consistent, then it has a single (maximal) option
which is the theory itself. Any AS built over T2 and which obeys the postulates and
whose attack relation is conflict-dependent will have a single naive extension E with
Th(E) = (F , {r1, r2}, {r5}) � T2. Rules r3 and r5 are not used in arguments.

Notation For E naive extension of H s.t. O in Max(Opt(T)) satisfies Th(E) # O and

Concs(E) = CN(O), let Option(E) def
= O.

We prove that no two naive extensions return the same option. Moreover, naive exten-
sions are closed in terms of arguments.

Theorem 3. Let H = (Arg(T),R) be an AS built over a theory T s.t. R is conflict-
dependent and H satisfies the postulates 1, 2, 3, and 4.

– For all E , E ′ ∈ Extn(H), if Option(E) = Option(E ′), then E = E ′

– For all E ∈ Extn(H), E = Arg(Option(E))
We have shown that each naive extension captures exactly one maximal option and

it supports all, and only, the consequences of that option. Theorem 4 states that every
option has a corresponding naive extension. So, there is a bijection from the set of naive
extensions to the set of maximal options.

Theorem 4. Let H = (Arg(T),R) be an AS built over a theory T s.t. R is conflict-
dependent and H satisfies the postulates 1, 2, 3, and 4.

– For all O ∈ Max(Opt(T)), Arg(O) ∈ Extn(H).
– For all O ∈ Max(Opt(T)), O = Option(Arg(O))
– For all O,O′ ∈ Max(Opt(T)), if Arg(O) = Arg(O′) then O = O′.

Example 3 (Cont). The theory T3 has three options, of which only two are maximal:
Max(Opt(T)) = {O1,O3}. For all argumentation system H built over T3, if the attack
relation of H is to be conflict-dependent and the postulates satisfied, then Extn(H) =
{Arg(O1), Arg(O3)}.

It is thus possible to delimit the number of naive extensions of any argumentation
system that satisfies the four postulates.

Corollary 1. Let H = (Arg(T),R) be an AS built over a theory T s.t. R is conflict-
dependent and H satisfies the postulates 1, 2, 3, and 4. The equality |Extn(H)| =
|Max(Opt(T))| holds.

What about the plausible conclusions that are drawn from a theory using an argu-
mentation system that satisfies the postulates? From the previous results, it is easy to
show that they are the literals that follow from all the maximal options.

Theorem 5. Let H = (Arg(T),R) be an AS built over a theory T s.t. R is conflict-
dependent and H satisfies the postulates 1, 2, 3, and 4.

Output(H) =
⋂

Oi∈Max(Opt(T))

CN(Oi)

Example 3 (Cont). Any argumentation system H that can be built over the theory T3
and has a conflict-dependent attack relation and satisfies the postulates 1, 2, 3, 4 will
have as output the set Output(H) = CN(O1) ∩ CN(O2) = {p, q,¬s, u}.

88 L. Amgoud and P. Besnard

4.2 Stable Semantics

We now analyze the outcomes of rule-based argumentation systems under stable se-
mantics, again considering only systems that satisfy the rationality postulates. We show
that such systems have stable extensions if the set of facts is not empty.

Theorem 6. Let T = (F ,S,D) be a theory.Whenever H = (Arg(T),R) is an AS
satisfying postulate 4, |Exts(H)| = 0 iff F = ∅.

As for naive extensions, stable extensions of any argumentation system that satisfies
the postulates return maximal options of the theory at hand.

Theorem 7. Let H = (Arg(T),R) be an AS defined over a theory T s.t. R is conflict-
dependent and H satisfies the postulates 1, 2, 3, 4. For all E ∈ Exts(H), ∃!O ∈
Max(Opt(T)) s.t.

– Th(E) # O and Concs(E) = CN(O).
– E = Arg(O).

Two stable extensions capture distinct options.

Theorem 8. Let H = (Arg(T),R) be an AS defined over a theory T s.t. R is conflict-
dependent and H satisfies the postulates 1, 2, 3, 4.
For all E , E ′ ∈ Exts(H), if Option(E) = Option(E ′) then E = E ′.

Corollary 2. Let H = (Arg(T),R) be an AS defined over a theory T = (F ,S,D)
s.t. F �= ∅ and R is conflict-dependent and H satisfies Postulates 1,2,3,4. It holds that
1 ≤ |Exts(H)| ≤ |Max(Opt(T))|.

Theorem 7 does not guarantee that each maximal option of a theory T has a corre-
sponding stable extension. The equality |Exts(H)| = |Max(Opt(T))| depends on the
attack relation. Let $s be the set of all attack relations that are conflict-dependent and
that ensure Postulates 1, 2, 3, 4 under stable semantics. This set contains two disjoints
subsets of attack relations, i.e. $s = $s1 ∪ $s2 :

– $s1 : the relations s.t. |Exts(H)| < |Max(Opt(T))|
– $s2 : the relations s.t. |Exts(H)| = |Max(Opt(T))|

Systems that use relations in $s1 choose a proper subset of the maximal options of T
and make inferences from them. Their output sets are as follows:

Theorem 9. Let H = (Arg(T),R) be an argumentation system built over a theory
T s.t. R ∈ $s1 . Output(H) =

⋂
Oi∈S CN(Oi) with S = {Oi ∈ Max(Opt(T)) |

Arg(Oi) ∈ Exts(H)}.

These attack relations introduce a “critical discrimination” between the maximal op-
tions of a theory. Hence, great care must be exercised when designing rule-based argu-
mentation systems based on stable semantics: The principles governing the interaction
between ⇒ and R must be both rigorously and meticulously specified so as to avoid
trouble of which the following example is an easy case.

A Formal Characterization of the Outcomes of Rule-Based Argumentation Systems 89

Example 5. Let T5 be s.t. F5 = {p, q} and S5 = ∅ and D5 = {p ⇒ s, q ⇒ ¬s}. T5
has two maximal options: O1 = (F5,S5, {p ⇒ s}) and O2 = (F5,S5, {q ⇒ ¬s}).
For any system H = (Arg(T5),R) s.t. R ∈ $s1 , either i) Exts(H) = {Arg(O1)} or
ii) Exts(H) = {Arg(O2)}. In case (i), s ∈ Output(H) and ¬s /∈ Output(H). In case
(ii), ¬s is the plausible conclusion. Either choice would be arbitrary.

Attack relations of category $s2 induce a bijection between the stable extensions of
an argumentation system and the maximal options of the theory over which it is built.

Theorem 10. Let T = (Arg(T), R) be an argumentation system over a theory T s.t.
R ∈ $s2. For all O ∈ Max(Opt(T)), Arg(O) ∈ Exts(H).

Argumentation systems with an attack relation from $s2 are coherent, meaning that
the preferred extensions exhaust all and only the stable ones.

Theorem 11. Let T = (Arg(T), R) be an argumentation system over a theory T s.t.
R ∈ $s2. Exts(H) = Extp(H) = Extn(H).

Attack relations in category $s2 conform exactly to the result obtained under naive
semantics: Plausible conclusions for them are already characterized in Theorem 5.

To sum up, attack relations satisfying the postulates can be split into two categories:
$s1 and $s2 . Relations from $s2 do not offer added value as they make the stable se-
mantics case to collapse to the naive semantics case. For stable semantics to substantiate
(as compared with naive semantics) a rule-based argumentation system, attack relations
from category $s1 must be favored. However, pitfalls threaten as options are discarded,
and a lot of care must be exercised when designing such a system.

4.3 Preferred Semantics

Preferred semantics was initially proposed to overcome the limitation of stable seman-
tics which does not guarantee the existence of extensions. Indeed, any argumentation
system has at least one preferred extension which may be empty. We show that in case
of rule-based systems the empty set cannot be an extension.

Proposition 9. Let H be an AS built over a theory T = (F ,S,D) s.t. H satisfies strict
precedence. Extp(H) = {∅} iff F = ∅.

Unlike the cases of naive and stable extensions, a preferred extension may capture
only a sub-part of the consequences drawn from a maximal option.

Theorem 12. Let H = (Arg(T),R) be an AS built over a theory T s.t. R is conflict-
dependent andH satisfies the postulates 1 and 3. For all E ∈ Extp(H), ∃O ∈ Max(Opt(T))
s.t. Th(E) # O and Concs(E) ⊆ CN(O).

Two preferred extensions refer to different options.

Theorem 13. Let H = (Arg(T),R) be an argumentation system s.t. R is conflict-
dependent and H satisfies the postulates 1, 2, 3, and 4. Let E , E ′ ∈ Extp(H) and
O ∈ Max(Opt(T)). If Th(E) # O and Th(E ′) # O, then E = E ′.

90 L. Amgoud and P. Besnard

From the previous result, it follows that the number of preferred extensions does not
exceed the number of maximal options of the theory over which the system is built.

Theorem 14. Let H = (Arg(T),R) be a system built over a theory T s.t. R is conflict-
dependent and H satisfies Postulates 1, 2, 3, and 4. |Extp(H)| ≤ |Max(Opt(T))|.

Regarding the outputs of a rule-based argumentation system under preferred seman-
tics, there are two cases: i) Attack relations of category Rs2 lead to coherent systems
whose plausible conclusions are characterized by Theorem 5. Thus, naive, stable and
preferred semantics coincide. ii) Attack relations of category Rs1 lead to pick up some
maximal options and to reason about them. The plausible conclusions are given by
Theorem 9. Thus the situation about preferred semantics is similar with that for stable
semantics: For preferred semantics to offer added value over naive semantics, the attack
relation chosen must discard some maximal options but it takes a lot of care to specify
such an attack relation in full generality.

4.4 Grounded Semantics – Ideal Semantics

This section analyses the outcomes of rule-based systems under grounded and ideal
semantics. We show that the ideal extension is exactly the set of arguments built from
the free part of a theory. The free part of a theory T = (F ,S,D), denoted by Free(T),
is a sub-theory (F ,S,D′) where D′ = ∩Di where (F ,S,Di) ∈ Opt(T). In other
words, D′ contains all the defeasible rules that are not involved in any conflict.

Proposition 10. Let T be a theory. CN(Free(T)) is consistent.

We show that when the attack relation satisfies a very natural requirement, then
Arg(Free(T)) is admissible (i.e., it is conflict-free and defends all its elements).

Definition 13. Let H = (Arg(T),R) be an AS over a theory T . An attack relation R
privileges strict arguments iff for all a = (d, x), b = (d′, x′) ∈ Arg(T), if a is strict
and Seq(d) ∪ Seq(d′) is inconsistent, then aRb.

As far as we know, all the attack relations in existing rule-based argumentation sys-
tems privilege strict arguments.

Theorem 15. Let H = (Arg(T),R) be a system built over a theory T s.t. R is conflict-
dependent and privileges strict arguments. Arg(Free(T)) is admissible.

The set Arg(Free(T)) is part of every preferred extension.

Theorem 16. Let H = (Arg(T),R) be an AS over a theory T s.t. R is conflict-
dependent and privileges strict arguments, and H satisfies Postulates 1, 3, 4.
Arg(Free(T)) ⊆

⋂
Ei∈Extp(H) Ei.

We show next that in case of attack relations of category $s2, Arg(Free(T)) is
equal to the intersection of all preferred extensions. Recall that in this case, preferred
extensions coincide with stable extensions and with naive ones.

A Formal Characterization of the Outcomes of Rule-Based Argumentation Systems 91

Theorem 17. Let H = (Arg(T),R) be an AS over a theory T . If R ∈ $s2 then
Arg(Free(T)) =

⋂
Ei∈Extx(H) Ei.

From the previous result, it follows that when the attack relation is of category $s2

and privileges strict arguments, then Arg(Free(T)) is the ideal extension.

Theorem 18. Let H = (Arg(T),R) be an AS over a theory T . If R ∈ $s2 and
privileges strict arguments, then

– Arg(Free(T)) is the ideal extension of H.
– The grounded extension of H is a subset of Arg(Free(T)).

The above result shows that ideal and grounded semantics allow the inference of
literals only from the free part of a theory. Note also that grounded extension is more
cautious than ideal one and may miss intuitive (free) conclusions.

5 Conclusion

The paper provides the first investigation on the outputs of rule-based argumentation
systems. The study is general in the sense that it keeps the attack relation unspecified.
Thus, the system can be instantiated with any of the attack relations that are used in
existing systems. The results show that under naive semantics, the systems return the
literals that follow from all the options of the theory at hand. Stable and preferred se-
mantics either do not provide an added value wrt naive semantics or the attack relation
of a system should be formalized in a very rigorous way in order to avoid arbitrary re-
sults. Ideal semantics returns the free part of a theory whereas the grounded semantics
returns a sub-part of the free part meaning that it may miss interesting conclusions.

References

1. Amgoud, L., Besnard, P.: Logical limits of abstract argumentation frameworks. Journal of
Applied Non-Classical Logics (2013)

2. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation
frameworks. Inter. J. of Automated Reasoning 29(2), 125–169 (2002)

3. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial Intel-
ligence J. 171(5-6), 286–310 (2007)

4. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reason-
ing, logic programming and n-person games. AI. J. 77(2), 321–357 (1995)

5. Garcı́a, A., Simari, G.: Defeasible logic programming: an argumentative approach. Theory
and Practice of Logic Programming 4(1-2), 95–138 (2004)

6. Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic argu-
ments: Postulates and properties. Artificial Intelligence J. 175(9-10), 1479–1497 (2011)

7. Governatori, G., Maher, M., Antoniou, G., Billington, D.: Argumentation semantics for de-
feasible logic. J. of Logic and Computation 14(5), 675–702 (2004)

8. Marek, V., Nerode, A., Remmel, J.: A theory of nonmonotonic rule systems I. Annals of
Mathematics and Artificial Intelligence 1, 241–273 (1990)

9. Reiter, R.: A logic for default reasoning. Artificial Intelligence J. 13(1-2), 81–132 (1980)

Meta-level Argumentation

with Argument Schemes

Jann Müller1, Anthony Hunter2, and Philip Taylor1

1 SAP Next, Belfast BT3 9DT, United Kingdom
jann.mueller@sap.com

2 University College London, London WC1E 6BT
a.hunter@cs.ucl.ac.uk

Abstract. Arguments in real-world decision making, for example in
medical or engineering domains, are often based on patterns of informal
argumentation, called argument schemes. In order to improve automated
tool support of decision making in such domains, a formal model of ar-
gument schemes appears necessary. To address this need, we represent
each argument scheme as a defeasible rule in the meta-language, so each
application of an argument scheme results in a meta-level argument, and
we deal with critical questions via meta-level counter-arguments. In order
to understand the interactions between the object-level and meta-level
arguments, we introduce bimodal graphs. The utility of the framework
is demonstrated by a use case characteristic of the requirements of our
partner in the aviation industry.

1 Introduction

Complex decision making processes such as engineering design are driven by
argumentation between their participants. Human argumentation often involves
common patterns of informal reasoning, called argument schemes. An argument
scheme is, for example, the Appeal to Expert Opinion, in which one refers to
a statement by a technical expert about a particular problem. Decision making
processes, whether or not they involve argumentation, are supported by auto-
mated tools. The utility of such tools grows with the accuracy of their internal
representation of the world. Since argument schemes are a fundamental part of
complex decision making processes, they need to be formalised in software tools.
Such a formalisation will greatly improve the support that automated tools may
provide to engineering and other processes. In this paper we propose a formali-
sation of argument schemes via meta-level argumentation.

Our framework comprises three ingredients: Structured argumentation, meta-
level argumentation, and bimodal graphs. Structured argumentation allows one
to create arguments from defeasible rules. Meta-level argumentation has been
proposed to reason about arguments [11,4,18], describing the properties of ar-
guments and attacks. We present a meta-language for structured argumentation
in which argument schemes are expressed. Arguments both on the meta- and on
the object-level are given a graph-based interpretation using bimodal graphs.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 92–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Meta-level Argumentation with Argument Schemes 93

The rest of this paper is organised as follows. After a brief summary of related
work (Section 2), a brief overview of Dung’s framework for abstract argumenta-
tion is given in Section 3. In Section 4 we present the framework for structured
argumentation upon which the subsequent work is based. Abstract (graph-based)
argumentation is extended in Section 5, where Bimodal Graphs are introduced
as an interpretation of meta-level argumentation. Section 6 describes the meta-
language used in our framework for structured argumentation. In Section 7, we
use meta-ASPIC to extend structured argumentation with argument schemes.
The paper concludes with some considerations on the usefulness of our model in
practice, in particular for our use case partner (Section 8).

2 Related Work

This paper is based upon three different approaches: Abstract argumentation,
meta-level argumentation and structured argumentation.

Abstract argumentation [8] provides a graph-based interpretation of argument
graphs. Bipolar argumentation [6,12,7] is an extension of Dung’s abstract argu-
mentation framework, adding a “supports”-relation as a second relation over
arguments. Dung’s original framework considered this relationship only implic-
itly, using the concept of defence for the defeaters of an argument’s defeaters.
Supporting arguments allow additional extension semantics. For example, sets of
arguments are considered safe if none of their members depend on (are supported
by) an argument outside the extension, which results in a stronger notion of in-
ternal coherence than just being conflict-free. Whilst bipolar argumentation is
appealing as it offers a range of possibilities for defining the “supports”-relation,
there is no formalisation of meta-level arguments, and supports for attacks (i.e.
each attack by an argument A on argument B is justified by an argument C)
cannot be defined.

Meta-argumentation is concerned with using arguments to reason about ar-
guments, rather than using arguments to reason about a domain. Earlier work
on meta-level argumentation [11] has shown how several extensions to abstract
argumentation can be modeled using meta-level constructs in a “pure” abstract
argumentation system as defined by Dung [8]. This is achieved by translating
each of these additions, such as attacks on attacks, or preferences, into a constel-
lation of several arguments that are only connected by the “attacks” relation.
The extensions of the extended abstract argumentation systems are shown to
conincide with those of the resulting argument graph. However, this approach
to meta-level argumentation does not provide a systematic way of instantiating
abstract arguments. The examples in [11] suggest that there is a need for a sys-
tematic approach which uses structured arguments to unify the various proposals
for abstract argumentation.

Argument schemes are patterns of informal reasoning often employed in dis-
cussions between humans [17]. Argument schemes simplify the argumentation
process considerably, since they remove the need for making explicit every detail
of an argument, as initial results from our use cases in the aerospace industry
have shown. Previous research has been concerned with the representation of

94 J. Müller, A. Hunter, and P. Taylor

argument schemes in a formal setting [3,2,1], in particular for the legal domain
[13,9,19]. However, these proposals not do provide meta-level argumentation as
a means of reasoning about arguments. In this paper we argue that meta-level
argumentation offers some benefits to formalise a range of argument schemes
that involve arguments for decision making.

However, to represent argument schemes in structured argumentation, there
is a need to develop the meta-level aspects of structural argumentation. We
draw upon previous work on a hierarchy of meta-argumentats [18], on a logical
formisation of argument schemes [10] and recently argument schemes as a com-
ponent of social interaction [15]. Furthermore, to understand the interactions of
arguments and meta-level arguments, we propose bimodal argument graphs.

3 Dung’s Framework

Interactions between arguments can be characterised by argument graphs. This
approach was first explored by Dung [8] whose definitions we will briefly recall.

Definition 1 (Argument Graph and Extensions). A tuple (A,R) is an ar-
gument graph iffA is a set andR ⊆ A×A is relation overA, the “attacks”-relation.

Let G = (A,R) be an argument graph and let S ⊆ A.

1. S is conflict-free iff there exist no A1, A2 ∈ S such that (A1, A2) ∈ R.
2. Let A ∈ S. S defends A iff for every (B,A) ∈ R, there exists a C ∈ S such

that (C,B) ∈ R.
3. S is an admissible set iff S is conflict free and defends all of its elements

A ∈ S.
4. S is a preferred extension iff S admissible and S is maximal with respect to

⊆.
5. Let F be a function of subsets of A such that F(S) = {A | S defends A}.

Let E be the least fixed point of F . E is the grounded extension of G.
6. Let G = (A,R) be an argument graph and let x ∈ {grounded, preferred}.

Then, Σx(G) = {E ⊆ A | E is a x-extension of G}.

See Fig. 1 for an example of an argument graph.

A1 A2

A3

A4

A5

Fig. 1. An argument graph. There are two preferred extensions {A1, A4, A5} and
{A2, A4, A5} and a grounded extension {A4, A5}. Some conflict-free sets are {A1, A3},
∅, and {A2, A4}. The set {A1, A4, A5} defends A1, A4 and A5. {A1, A2} defends A1

and A2. {A1, A4, A5} is an admissible set and a preferred extension. The least fixed
point of F is {A4, A5}.

Meta-level Argumentation with Argument Schemes 95

4 Structured Argumentation

In this section we present a framework for structured argumentation that in-
stantiates abstract argument graphs. It is a subset of ASPIC+ [14].

We only model a subset of the original ASPIC+ definitions, in order to in-
crease the clarity of our presentation. For example, our framework does not
consider an ordering of the logical language, nor does it divide the knowledge
base into premises, axioms, assumptions and issues. However, the missing as-
pects of ASPIC+ may be added easily using the same method. Our framework
uses only defeasible rules, thus avoiding some of the potential issues with strict
rules in ASPIC+ [5].

Definition 2 (Logical Language). Let L be a set of positive and negative
literals such that, if x is a positive literal, then ¬x is a negative literal.

Definition 3 (Defeasible Rule). Let L be a logical language and let ϕ1, . . . , ϕn,
ϕ ∈ L with n ≥ 1. Then, ϕ1, . . . , ϕn ⇒ ϕ is a defeasible rule over L.

Example 1. A defeasible rule over LA is a, c,¬k ⇒ ¬d.

The letter D is used to denote sets of defeasible rules. Rules can be assigned a
name in order to refer to them in arguments, using a naming function n. We
now have the ingredients of an argumentation system.

Definition 4 (Argumentation System). An argumentation system AS =
(L,D, n) is an argumentation system iff

1. L is a logical language
2. D is a set of defeasible rules over L
3. n : D → L assigns names to defeasible rules.

A knowledge base contains some elements of the logical language. These are the
premises of arguments.

Definition 5 (Knowledge Base). Let L be a logical language. A set K is a
knowledge base iff K ⊆ L.

Arguments are built by applying the defeasible rules in an argumentation system
to a knowledge base. We write arguments as a sequence in square brackets: [s].
An argument is either a fact from the knowledge base or it is composed by
applying a defeasible rule to several arguments. We will write [q; s; r] to indicate
that q and s are arguments and r is a defeasible rule.

Definition 6 (Argument). Let AS = (L,D, n) be an argumentation system,
let K ⊆ L.

1. Every ϕ ∈ K is an argument [ϕ] with Conc([ϕ]) = ϕ
2. If A1, . . . , An are arguments and there exists a rule r ∈ D such that r =

Conc(A1), . . . , Conc(An) ⇒ ϕ, then A = [A1; . . . ;An; r] is an argument
with Conc(A) = ϕ

96 J. Müller, A. Hunter, and P. Taylor

Example 2. In the examples, we will omit the square brackets around arguments
if there is no ambiguity. Let LA be defined as above and let D = {a,¬k ⇒ ¬d}.
Let K = {a,¬k, d}. Possible arguments are [a], [¬k] and [a;¬k; a,¬k ⇒ ¬d]
and [d]

Definition 7 (Sub-argument). Let A,B be two arguments. A is a subargu-
ment of B, short A # B, iff B = A or B = [A1; . . . ;An; r] and ∃i ≤ n such that
A # Ai.

The auxiliary function Rules is defined on arguments and gives information
about the rules used in an argument.

Definition 8 (Rules). Let A be an argument. The function Rules returns the
rules used in A and is defined as Rules([ϕ]) = ∅ and Rules([A1; . . . ;An; r]) =
{r} ∪Rules(A1) ∪ . . . ∪Rules(An).

If the premises or conclusions of two arguments are contrary, then they attack
each other. There are two kinds of attack: Undercuts resulting from attacks on
defeasible rules, and rebuttals from attacks on conclusions.1

Definition 9 (Attack). Let AS = (L,D, n) be an argumentation system, let
K ⊆ L be a knowledge base and let A,B be arguments. A attacks B iff

1. There exists a rule r ∈ D such that Conc(A) = ¬n(r) and r ∈ Rules(B)
(undercut) or

2. There exists an argument B′ ∈ Sub(B) such that Conc(A) = ¬Conc(B′) or
¬Conc(A) = Conc(B′) (rebuttal)

Example 3. Let A1 = [a;¬k; a,¬k ⇒ ¬d] and A2 = [d] be arguments. A1 rebuts
A2 and A2 rebuts A1.

Now that attacks have been defined, an argument graph can be obtained by
constructing all arguments and their attacks.

Definition 10 (Argument Graph from Structured Argumentation). Let
AS = (L,D, n) be an argumentation system and let K ⊆ L be a knowledge base.
The argument graph of AS is defined as (A,R) with A = {A | A is an argument
in(AS,K)} and R = {(A,B) | A,B are arguments in (AS,K) and A attacks B}.

Example 4. Let AS = (L,D, n) be an argumentation system and let K ⊆ L be a
knowledge base with D = {¬k ⇒ ¬d} and K = {a,¬k, d}. The argument graph
of (AS,K) is (A,R) and it is defined as A = {[a], [¬k], A1, A2} with A1, A2 as
in Ex. 3 and a set of attacks R = {(A1, A2), (A2, A1)}.

1 ASPIC+ defines a third kind of attack, the undermining, from attacks on premises.
In our case underminings would be a subset of rebuttals since every premise is an
argument for itself.

Meta-level Argumentation with Argument Schemes 97

5 Bimodal Graphs

Bimodal graphs capture arguments both on the object-level and on the meta-
level. Every object-level argument and every object-level attack is supported by
at least one meta-level argument. Meta-level arguments can only attack meta-
level arguments, and object-level arguments can only attack object-level argu-
ments. A bimodal graph therefore has two components, one argument graph
for the meta-level and another argument graph for the object-level, alongside
a “supports”-relation that originates in the meta-level and targets attacks and
arguments on the object-level.

Definition 11 (Bimodal Argument Graph). A bimodal argument graph is
a tuple (AO,AM ,SA,SR,RO,RM) with

1. AO,AM are sets such that AO ∩AM = ∅, object- and meta-level arguments
2. RO ⊆ AO ×AO, for object-level attacks
3. RM ⊆ AM ×AM , for meta-level attacks
4. SA ⊆ AM ×AO, meta-level arguments supporting object-arguments
5. SR ⊆ AM ×AO ×AO, meta-level arguments supporting object-level attacks
6. For all A ∈ AO there exists a B ∈ AM such that (A,B) ∈ SA

7. For all (A1, A2) ∈ RO there exists a B ∈ AM such that (B,A1, A2) ∈ SR

The object-level argument graph is (AO,RO), and the meta-level argument
graph is (AM ,RM). These two components are connected by the “supports”-
relations SR and SA. This support is the only structural interaction between
meta- and object-level. Definition 11 Cond. 6 ensures that every object-level
argument is supported by at least one meta-level argument, and Def. 11 Cond.
7 ensures that every object-level attack is supported by at least one meta-level
argument.

A B

1 2

Fig. 2. Bimodal graph for the object-level graph ({1, 2}, {(1, 2)}). The support relation
is indicated by the dashed arrows. There are two meta-level arguments (AM = {A,B}),
two object-arguments AO = {1, 2} with no meta-attacks RM = ∅ and a sin-
gle object-level attack RO = {(1, 2)}. The supports are SA = {(A, 1), (B, 2)} and
SR = {(A, 1, 2)}.

Every extension of the meta-level induces a subgraph (“perspective”) of the
object-level graph with potentially many object-level extensions, as defined next.

Definition 12 (Perspective). Let G = (AO,AM ,SA,SR,RO,RM) be a bi-
modal argument graph and let x ∈ {grounded, preferred}. An x-perspective of G
is a tuple (A′

O,R′
O) if there exists an extension E ∈ Σx(AM ,RM) with

98 J. Müller, A. Hunter, and P. Taylor

1. A′
O = {A | ∃B ∈ E such that (B,A) ∈ SA}

2. R′
O = {(A1, A2) | ∃B ∈ E such that (B,A1, A2) ∈ SR}

The function Px(G) returns all x-perspectives of a bimodal argument graph
G. For all object-level arguments B, if the meta-level argument for B has no
attackers, then B is in every extension.

Proposition 1. Let G = (AO,AM ,SA,SR,RO,RM) be a bimodal argument
graph and let (A,B) ∈ SA such that �C ∈ AM such that (C,A) ∈ RM . Then,
the object-level argument B is in every perspective of G.

Since meta-level arguments reason about object-level arguments, an object-
argument may be present (acceptable) in one perspective and missing from
another perspective. If there is no conflict on the meta-level, the bimodal ar-
gument graph simply yields the same results as the object-level graph on its
own.

Definition 13 (Controversial Graph). Let G = (AO,AM ,SA,SR,RO,RM)
be a bimodal argument graph. G is controversial iff RM �= ∅. G is uncontroversial
iff G is not controversial.

Example 5. The graph shown in Fig. 5 has a disputed argument, (1). For the
grounded meta-extension {C,D}, there is a unique perspective ({2}, ∅). The
two preferred meta-extensions E1 = {A,C,D} and E2 = {B,C,D} induce two
perspectives ({1, 2}, {(1, 2)}) and ({2}, ∅) (coinciding with the grounded per-
spective).

AB C D

1 2

The simplest uncontroversial bimodal graph only has one meta-level argument
which supports all object-level arguments and their attacks.

Proposition 2. Let G = (AO,AM ,SA,SR,RO,RM) be an uncontroversial bi-
modal graph. Then, Pgrounded(G) = Ppreferred(G) = {(AO,RO)}.

The following result shows that multiple argument graphs can be combined in a
single bimodal graph in a way that each one of the original graphs is represented
by an admissible perspective of the combination.

Theorem 1. Let GO be an argument graph. For every nonempty set of subgraphs
G∗ ⊆ Subgraphs(GO), there exists a bimodal graph GB = (AO,AM ,SA,SR,
RO,RM) such that Padmissible(GB) = G∗ and (AO,RO) = GO.

Meta-level Argumentation with Argument Schemes 99

If the graphs in G∗ represent a range of argument graphs and it is uncertain what
the actual argument graph looks like (unlike a classical abstract argumentation
system, where the graph is defined with certainty and the question is which
arguments to accept). The number of admissible perspectives (ie the number of
admissible extensions of the meta-graph) can then be interpreted as a indicator
of the uncertainty inherent in G∗, the original set of graphs.

Another interpretation of Theorem 1 is that of merging multiple sets of knowl-
edge. If the graphs in G∗ represent knowledge bases – perhaps parts of the same
global graph – then creating the bimodal graph GB is a merge operation that
leaves the original sources intact.

6 Meta-ASPIC

Meta-ASPIC uses the language and reasoning of structured argumentation to
capture meta-level argumentation. In terms of the meta-level argument hierar-
chy presented by Wooldridge [18], meta-ASPIC is located on level Δ2, the first
meta-tier. Arguments in meta-ASPIC can refer to object-level arguments (ie to
arguments on Δ1), but not vice versa. Self-reference is therefore not an issue.
It is, however, possible to argue about attacks on the object-level and about
the applicability of rules, the “constituents” of arguments. Such an argumenta-
tive model of structured argumentation is useful when the original definitions
need to be extended, for example to incorporate argument schemes (Section 7),
preferences, or attacks on attacks.

Before we introduce meta-ASPIC, we will describe the language and notation
used in the definitions. The language Lm of meta-ASPIC is that of grounded
predicates p(t1, . . . , tn) applied to terms ti. A term is either an object-level sym-
bol or a grounded predicate. The rules of meta-ASPIC will be grounded us-
ing elements of an object-level knowledge base KO and a set of object-level
rules DO. Km consists of meta-level facts about defeasible object-level rules
(Rule(a1, . . . , an ⇒ a)) and about object-level facts Fact(a).

Example 6. Rule(a ⇒ b) is a predicate where a ⇒ b is a defeasible rule.

The definition of a structured argument (Def. 6) is captured on the meta-level
by creating a set of meta-level rules for object-level facts (Dk) and another set
of meta-level rules (Dd) that represent the object-level argument structure. The
first set contains exactly one grounded predicate for each of the rules and facts
in KO, as defined next. The predicate Arg(A,C) plays a central role as it denotes
an argument A with conclusion C.

Definition 14 (Standard meta-system). Let ASO = (LO,DO, nO) be an
argumentation system (Def. 4) and let KO be a knowledge base. Let G = (A,R)
be the argument graph (Def. 10) of (ASO,KO). Let %·& denote the function that
maps defeasible rules to their textual representation.

The standard meta-system of (ASO,KO), ASm = (Lm,Dm, nm) with knowledge
base Km where Dm = Dk ∪Dd ∪Datt is defined as

100 J. Müller, A. Hunter, and P. Taylor

Km = {Fact(ϕ) | ϕ ∈ KO} ∪ {Rule(r) | r ∈ DO}
Dk = {Fact(ϕ) ⇒ Arg([ϕ], ϕ) | [ϕ] ∈ A}
Dd = {Arg(A1, ϕ1), . . . , Arg(An, ϕn), Rule(r) ⇒ Arg([A1; . . . ;An; r], ϕ) |

∃B = [A1; . . . ;An; r](B ∈ A ∧ ∀1 ≤ i ≤ n.ϕi = Conc(Ai)}
Datt = {Arg(A1, c1), Arg(A2, c2) ⇒ Attacks(A1, A2) |

(A1, A2) ∈ R ∧Conc(A1) = c1 ∧ Conc(A2) = c2}
Lm = {Q | Q is a grounded predicate in Dm} ∪ {%r& | r ∈ DO}
nm = %·&

Object-level arguments, object-level attacks and the “sub-argument”-relation
over object-level arguments are represented in the standard meta-system as the
following result shows.

Proposition 3. Let AS = (L,D, n) be an argumentation system, let K be a
knowledge base and let ASm be the standard meta-system of AS with knowledge
base Km. Let (A,R) be the argument graph of (AS,K) and let (Am,Rm) be the
argument graph of (ASm,Km). Then,

1. ∀A ∈ A, ∃Am ∈ Am such that Conc(Am) = Arg(A,Conc(A))
2. ∀(A,B) ∈ R, ∃Am ∈ Am such that Conc(Am) = Att(A,B)
3. ∀A,B ∈ A . If A # B then ∃Am, Bm ∈ Am such that Am # Bm, Conc(Am) =

Arg(A,Conc(A)) and Conc(Bm) = Arg(B,Conc(B))

A meta-ASPIC system is a structured argumentation system that contains knowl-
edge of an argumentation system in the form of meta-predicates.

Definition 15 (meta-ASPIC). Let AS′ = (L′,D′, n′) be an argumentation
system (Def. 4) and let K′ be a knowledge base. (AS′,K′) is a meta-ASPIC sys-
tem iff there exists an argumentation system ASO with knowledge base KO �= ∅
such that ASm = (Lm,Dm, nm) is the standard meta-system (Def. 14) of (ASO,KO)
such that Lm ⊆ L′, Dm ⊆ D′, and nm ⊆ n′.

Example 7. Let AS,K be an object-level argumentation system and knowledge
base as in Ex. 4. The rules to represent facts in the corresponding standard
meta system are Dk = {Fact(a) ⇒ Arg([a], a), Fact(¬k)⇒ Arg([¬k],¬k), . . .}.
The single defeasible rule results in {Arg([a], a), Arg([¬k],¬k), Rule(a,¬k ⇒ ¬d)
⇒ Arg([a;¬k; a,¬k ⇒ ¬d],¬d)} = Dd

The definitions of meta-ASPIC ensure that the resulting arguments conform
with bimodal argument graphs. A meta-ASPIC system can thus be transformed
into a bimodal argument graph which can be used to evaluate arguments using
extension semantics, such as those of Dung [8]. In Def. 16, we separate meta-
level arguments from those on the object-level, by classifying them according
to their conclusions. Essentially, arguments whose conclusion is Arg(X,Y) act
as meta-support for an object-level argument X with conclusion Y . Attacks are
determined likewise, using the predicate Attacks(X1, X2).

Definition 16 (Bimodal Graph from meta-ASPIC). Let AS be a meta-
ASPIC system with knowledge base K and let (A,R) be the argument graph of
(AS,K) (Def. 10). Let Gmeta = (AO,AM ,SA,SR,RO,RM) be a bimodal argu-
ment graph. Gmeta is the bimodal graph of (AS,K) iff

Meta-level Argumentation with Argument Schemes 101

1. AO = {X | ∃A ∈ A.∃Y.Conc(A) = Arg(X,Y)}
2. AM = A
3. SA = {(A,X) | ∃A ∈ A.∃Y.Conc(A) = Arg(X,Y)}
4. SR = {(A,X, Y) | ∃A ∈ A.Conc(A) = Attacks(X,Y)}
5. RO = {(X,Y) | ∃A ∈ A.Conc(A) = Attacks(X,Y)}
6. RM = R

A standard meta-system contains one meta-level argument for each object-level
argument and for each object-level attack. The bimodal graph of a standard
meta-system does not have any attacks on the meta-level.

M5M2M1 M6M4M3

¬dd¬k a

Fig. 3. A bimodal argument graph reflecting Ex. 7. The Mi are meta-level
arguments, e.g. M1 = [Fact(¬k); Fact(¬k) ⇒ Arg(¬k,¬k)] and M4 =
[Arg(A2, d); Arg(A5,¬d); Arg(A2, d); Arg(A5,¬d) ⇒ Attacks(A2, A5)] where Ai is the
object-level argument of Mi.

Proposition 4. Let AT = (AS,K) be a standard meta-system with knowledge
base K and let B = (AO,AM ,SA,SR,RO,RM) be its bimodal graph (Def. 16).
Then, B is uncontroversial.

Meta-ASPIC as presented so far provides a baseline for argument schemes, as
we explain in the next section.

7 Argument Schemes

Argument schemes are patterns of informal reasoning [17]. An argument scheme
consists of a set of conditions and a conclusion. If the conditions are met, then
the conclusion holds. Each argument scheme is associated with set of critical
questions. Each critical question identifies possible attacks on arguments derived
from argument schemes, by pointing out either a condition that must hold for
an argument scheme to be applied, or an exception that renders an argument
scheme invalid for a specific instance.

The classification of informal arguments by argument schemes helps to identify
similar kinds of argumentation. Argument schemes can also be used to identify
weaknesses in argumentation, by making explicit the underlying assumptions
of an argument and by providing a list of typical attacks on arguments from
argument schemes, in the form of critical questions.

102 J. Müller, A. Hunter, and P. Taylor

Throughout this section, we develop the notion of argument schemes based on
a use case from our industry partner. This use case is presented in the examples,
starting with Ex. 8.

Example 8. Several engineers are designing a rib that is part of a wing. They
are currently trying to decide on a material (Mat). While in reality there is a
choice of a large number of alloys and composites, we assume here that the
principal decision is only that of aluminium (Al) or composite materials (Comp).
The choice will be represented as Mat(Comp) or Mat(Al).

The two options are mutually exclusive. This constitutes the first argument
scheme used in this example: Argument from Alternative. This alternative is
expressed by the fact Alter(Mat(Comp), Mat(Al)). Since aluminium and compos-
ites cannot both be chosen at the same time, choosing one means excluding the
other. The argument scheme is represented as

Arg(A1, Mat(Comp)), Arg(A2, Mat(Al)), Alter(Mat(Comp), Mat(Al))
⇒ Attacks(A1, A2)

(MR1)

And an analogous ruleMR2 with the conclusion Attacks(A2, A1). We use labels
MRi for defeasible rules which result in meta-level arguments. It is important
to note that, even though MR1 and MR2 seem to be based on the logical axiom
tertium non datur, it behaves differently, because the assumption that a third
option does not exist can be attacked (and indeed there are more than two
possible materials for the component).

Having established the external constraints of the solution, we now turn to
the actual debate about the materials. Engineer E is recognised by her peers as
an expert on metallurgy (abbreviated Mly) and suggests to use aluminium.

Expert(E, Mly), Domain(Mat, Mly), Asserts(E, Mat(Al))
⇒ Arg([Mat(Al)], Mat(Al))

(MR3)

In reality, arguments from expert opinion usually do not just state a conclu-
sion without backing it up with further evidence. Instead, expert arguments
summarise the expert’s reasoning as well as the conclusion [16]. For example, E
might recommend aluminium based on her experience with similar designs. Due
to the limited space we omit these details here.

It turns out that the knowledge of E, the expert, may be outdated because E
has not published any work on metallurgy recently (NoPub(E, Mly)). This opens
the argument from expert opinion to an attack on one of its premises (condi-
tions):

NoPub(E, Mly) ⇒ ¬Expert(E, Mly) (MR4)

This attack is an example of a common pattern. Every argument scheme is
associated with a list of “Critical Questions”, questions which point to potential
weaknesses of the argument. Some critical questions, such as the one expressed
in MR4, target the conditions of an argument scheme. Another type of critical
questions is aimed at exceptions to the applicability of a scheme.

Meta-level Argumentation with Argument Schemes 103

Another common pattern of argumentation is to argue from (positive or
negative) consequences. In our example, heavy components increase the fuel
consumption of airplanes. Minimising weight is therefore very important in
aerospace design. The relatively high weight of aluminium is a reason to avoid
it. This argument scheme is known as Argument from Negative Consequences
(bringing about A will result in C, C is negative, therefore A should not be
brought about). Conversely, using composites will have positive consequences,
since it is lighter. The following two rules represent this reasoning about conse-
quences.

BadCons(Mat(Al)) ⇒ Arg([BadCons(Mat(Al))],¬Mat(Al)) (MR5)

GoodCons(Mat(Comp)) ⇒ Arg([GoodCons(Mat(Comp))], Mat(Comp)) (MR6)

With the meta-level rules MR1 to MR6, several arguments from argument
schemes can be formed. The bimodal graph of this example is shown below.
Since the meta-level extensions conincide, there is only one perspective which
results in the acceptance OC and OAl on the object-level.

M+ ME MQ M−B1 B2

OC OAl OAl

Fig. 4. Bimodal graph of Ex. 8. The arguments areM+ = [GoodCons(Mat(Comp));MR6]
(Arg. from Positive Consequences), B1 = [Alter(Mat(Comp), Mat(Al));MR+] (Arg.
from Alternative), ME = [Expert(E, Mly), Domain(D, Mly), Asserts(E, Mat(Al));MR3]
(Arg. from Expert Opinion),MQ = [NoPub;MR4] andM− = [BadCons(Mat(Al));MR5]

Argument schemes affect the object-level arguments and object-level attacks.
They can therefore be defined using the appropriate predicates of meta-ASPIC.

Definition 17 (Argument Scheme). Let ϕ1, . . . , ϕn ⇒ ϕ be defeasible rule.
ϕ1, . . . , ϕn ⇒ ϕ is an argument scheme iff ϕ ∈ {Arg(A,X), Attacks(A1, A2)}
for any arguments A,A1, A2.

Critical questions are defined similarly. Definition 18 ensures that arguments
from argument schemes can be attacked by arguments whose last rule is a critical
question.

Definition 18 (Critical Question). Let r = ϕ1, . . . , ϕn ⇒ ϕ be an argument
scheme and let c = ψ1, . . . , ψn ⇒ ψ be a defeasible rule. c is a critical question
for r iff ψ = ¬ϕn (Condition) or ψ = ¬n(r) (Exception)

104 J. Müller, A. Hunter, and P. Taylor

This section demonstratedhow the language ofmeta-ASPICmay be used tomodel
the use of argument schemes as meta-level arguments. The case study illustrates
the advantages of modeling argument schemes using meta-argumentation for both
arguments and attacks on the object-level.

8 Discussion

We presented an approach to meta-level argumentation with argument schemes
based on three lines of work: Structured argumentation, meta-level argumen-
tation and bimodal graphs. The framework for structured argumentation is a
lightweight model that allows one to express object-level and meta-level argu-
ments. The interactions of arguments are evaluated using bimodal argument
graphs. We developed a set of argument schemes based on a case study from the
aerospace industry.

The version of meta-ASPIC presented in this paper only uses a subset of
the original ASPIC+ system. However, we formally prove elsewhere that the full
meta-ASPIC gives exactly the same results as ASPIC+. Argumentation systems
that already use ASPIC+ can thus easily be transformed into using meta-ASPIC
to gain extensibility as demonstrated for example in Section 7.

Our model of argument schemes goes beyond a recent proposal by Sklar et
al. [15] in two ways. Firstly, the argument schemes we consider include not only
social argumentation patterns (authority, ad hominem, etc.) but also factual
patterns determined by context (Argument from Alternative in Ex. 8 and Ar-
gument from Analogy), which are employed frequently in engineering. Secondly,
the meta-argumentation system presented above handles arguments about at-
tacks (object-level argument A attacks object-level argument B) using meta-
arguments, whereas in the approach by Sklar et al., the notion of the status of
an argument separates successful attacks from unsuccessful ones. In our system,
an unsuccessful object-level attack would be represented by a meta-level attack
on the argument that supports the object-level attack.

We are considering two avenues for future work. The first one is to extend
the theoretical foundation of bimodal graphs, in particular to explore their re-
lation to abstract argumentation in a similar fashion to [11], in order to deepen
the understanding of argument schemes. The second direction is to implement
the framework in order to measure its performance and usefulness, particularly
regarding the case study.

Acknowledgement. This work is supported by SAP AG and the Invest NI
Collaborative Grant for R&D - RD1208002.

References

1. Atkinson, K., Bench-Capon, T., Modgil, S.: Argumentation for decision support.
In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp.
822–831. Springer, Heidelberg (2006)

Meta-level Argumentation with Argument Schemes 105

2. Atkinson, K., Bench-Capon, T., Mcburney, P.: A dialogue game protocol for multi-
agent argument over proposals for action. Autonomous Agents and Multi-Agent
Systems 11(2), 153–171 (2005)

3. Bex, F., Prakken, H., Reed, C., Walton, D.: Towards a formal account of reasoning
about evidence: Argumentation schemes and generalisations. Artificial Intelligence
and Law 11, 125–165 (2003)

4. Boella, G., van der Torre, L., Villata, S.: On the acceptability of meta-arguments.
In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and In-
telligent Agent Technologies, WI-IAT 2009, vol. 2, pp. 259–262 (September 2009)

5. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Ar-
tificial Intelligence 171, 286–310 (2007)

6. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar
argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI),
vol. 3571, pp. 378–389. Springer, Heidelberg (2005)

7. Cayrol, C., Lagasquie-Schiex, M.C.: Bipolarity in argumentation graphs: Towards
a better understanding. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS,
vol. 6929, pp. 137–148. Springer, Heidelberg (2011)

8. Dung, P.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–357 (1995)

9. Gordon, T.F., Walton, D.: Legal reasoning with argumentation schemes. In: Pro-
ceedings of the 12th International Conference on Artificial Intelligence and Law,
pp. 137–146 (2009)

10. Hunter, A.: Reasoning about the appropriateness of proponents for arguments. In:
AAAI 2008, pp. 89–94 (2008)

11. Modgil, S., Bench-Capon, T.: Metalevel argumentation. Journal of Logic and Com-
putation (2010)

12. Nouioua, F., Risch, V.: Bipolar argumentation frameworks with specialized sup-
ports. In: 2010 22nd IEEE International Conference on Tools with Artificial Intel-
ligence, ICTAI, vol. 1, pp. 215–218 (2010)

13. Prakken, H., Wyner, A., Bench-Capon, T., Atkinson, K.: A formalisation of argu-
mentation schemes for legal case-based reasoning in aspic+. Journal of Logic and
Computation in press (2013)

14. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument & Computation (2010)

15. Sklar, E., Parsons, S., Singh, M.P.: Towards an argumentation-based model of
social interaction. In: Proceedings of the Tenth International Workshop on Argu-
mentation in Multi-Agent Systems, ArgMAS 2013 (2013)

16. Walton, D.: Appeal to Expert Opinion. Pennsylvania State University Press, Uni-
versity Park (1997)

17. Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University
Press (2008)

18. Wooldridge, M., McBurney, P., Parsons, S.: On the meta-logic of arguments. Ar-
gumentation in Multi-agent Systems 4049, 42–56 (2006)

19. Wyner, A.Z., Bench-Capon, T.J.M., Atkinson, K.M.: Towards formalising argu-
mentation about legal cases. In: Proceedings of the 13th International Conference
on Artificial Intelligence and Law, pp. 1–10. ACM (2011)

Efficiently Estimating the Probability of Extensions
in Abstract Argumentation�

Bettina Fazzinga, Sergio Flesca, and Francesco Parisi

DIMES - Università della Calabria, 87036 Rende (CS), Italy
{bfazzinga,flesca,fparisi}@dimes.unical.it

Abstract. Probabilistic abstract argumentation combines Dung’s abstract argu-
mentation framework with probability theory to model uncertainty in argumen-
tation. In this setting, we deal with the fundamental problem of computing the
probability Prsem(S) that a set S of arguments is an extension according to a se-
mantics sem. We focus on three popular semantics (i.e., complete, grounded, and
preferred) for which the state-of-the-art approach is that of estimating Prsem(S)
by using a Monte-Carlo simulation technique, as computing Prsem(S) has been
proved to be intractable. In this paper, we detect and exploit some properties
of these semantics to devise a new Monte-Carlo simulation approach which is
able to estimate Prsem(S) using much fewer samples than the state-of-the-art
approach, resulting in a significantly more efficient estimation technique.

1 Introduction

Argumentation allows disputes to be modeled, which arise between two or more par-
ties, each of them providing arguments to assert her reasons. Although argumentation
is strongly related to philosophy and law, it has gained remarkable interest in AI as a
reasoning model for representing dialogues, making decisions and handling inconsis-
tency/uncertainty [9,10,24].

The abstract argumentation framework (AAF) introduced in the seminal paper [12]
is a simple but powerful argumentation framework. An AAF is a pair 〈A,D〉 consisting
of a set A of arguments, and of a binary relation D over A, called defeat (or, equiv-
alently, attack) relation. Basically, an argument is an abstract entity that may attack
and/or be attacked by other arguments. For instance, consider the following scenario (in-
spired by an example in [20]), where we are interested in deciding whether to organize
or not a BBQ party in our garden on Saturday. Assume that our decision should be taken
considering the argument a, which is “Our friends will have great fun at the party”, and
the argument b, which is “Saturday will rain” (according to the BBC weather forecast-
ing service). This scenario can be modeled by the AAF A, whose set of arguments is
{a, b}, and whose defeat relation consists of the defeat δ = (b, a), meaning that the fun
at the party is jeopardized if it rains.

Several semantics for AAFs, such as admissible, complete, grounded, and preferred,
have been proposed [12,13,7] to identify “reasonable” sets of arguments, called exten-
sions. Basically, each of these semantics corresponds to some properties which “certify”

� The first two authors were supported by EJRM project.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 106–119, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Efficiently Estimating the Probability of Extensions in Abstract Argumentation 107

whether a set of arguments can be profitably used to support a point of view in a dis-
cussion. For instance, a set S of arguments is an extension according to the admissible
semantics if it has two properties: it is conflict-free (that is, there is no defeat between
arguments in S), and every argument (outside S) attacking an argument in S is coun-
terattacked by an argument in S. Intuitively enough, the fact that a set S is an extension
according to the admissible semantics means that, using the arguments in S, you do
not contradict yourself, and you can rebut to anyone who uses any of the arguments
outside S to contradict yours. The other semantics correspond to other ways of deter-
mining whether a set of arguments would be a “good point” in a dispute, and will be
described in the core of the paper. The fundamental problem of verifying whether a set
of arguments is an extension according to one of the above-mentioned semantics has
been studied in [17,15].

As a matter of fact, in the real world, arguments and defeats are often uncertain,
thus, several proposals have been made to model uncertainty in AAFs, by consider-
ing weights, preferences, or probabilities associated with arguments and/or defeats. In
this regard, [14,21,26,25] have recently extended the original Dung framework in order
to achieve probabilistic abstract argumentation frameworks (PrAFs), where uncertainty
of arguments and defeats is modeled by exploiting the probability theory. In particu-
lar, [21] proposed a PrAF where both arguments and defeats are associated with prob-
abilities. For instance, a PrAF FA can be obtained from the AAF A by considering the
argumentsa, b, and the defeat δ as probabilistic events, having probabilitiesPr(a) = .9,
Pr(b) = .7, and Pr(δ) = .9. Basically, this means that there is some uncertainty about
the fact that our friends will have fun at the party, about the truthfulness of the BBC
weather forecasting service, and about the fact that the bad weather forecast actually
entails that the party will be disliked by our friends.

The issue of how to assign probabilities to arguments and defeats in the PrAF pro-
posed in [21], has been deeply investigated in [19,20], where the justification and the
premise perspectives have been introduced. In this paper, we do not address this issue,
but we assume that the probabilities of arguments and defeats are given. We deal with
the probabilistic counterpart of the problem of verifying whether a set of arguments is
an extension according to a semantics, that is, the problem of determining the probabil-
ity PrsemF (S) that a set S of arguments is an extension according to a given semantics
sem. To this end, we consider the PrAF proposed in [21], which is based on the notion of
possible world. Basically, given a PrAF F , a possible world represents a (deterministic)
scenario consisting of some subset of the arguments and defeats in F . Hence, a possi-
ble world can be viewed as an AAF containing exactly the arguments and the defeats
occurring in the represented scenario. For instance, for the above-introduced PrAF FA,
the possible world 〈{a}, ∅〉 is the AAF representing the scenario where only a occurs,
while the possible world 〈{a, b}, {δ}〉 is the AAF representing the scenario where all
the arguments and defeats occur.

In [21] it was shown that a PrAF admits a unique probability distribution over the set
of possible worlds, which assigns a probability value to each possible world coherently
with the probabilities of arguments and defeats. This follows from the assumption that
arguments are viewed as pairwise independent probabilistic events, while each defeat is
viewed as a probabilistic event conditioned by the occurrence of the arguments it relates,

108 B. Fazzinga, S. Flesca, and F. Parisi

but independent from any other event. Once shown that a PrAF admits a unique proba-
bility distribution over the set of possible worlds, the probability PrsemF (S) is naturally
defined as the sum of the probabilities of the possible worlds where the set S of ar-
guments is an extension according to the semantics sem. Unfortunately, as pointed out
in [18], computing PrsemF (S) is intractable (actually, FP#P -complete) for the three
popular semantics complete, grounded, and preferred. Indeed, for these semantics, the
state-of-the-art approach is that of estimating PrsemF (S) by a Monte-Carlo simulation
approach, as proposed in [21], since the complexity of computing PrsemF (S) is pro-
hibitive.

Main Contributions. In this paper, we propose a new Monte-Carlo-based simulation
technique for estimating the probability PrsemF (S), where sem is one of the follow-
ing semantics: complete, grounded, preferred. In more detail, our strategy relies on the
fact that a set S of arguments is an extension according to a semantics in {complete,
grounded, preferred} only if it is conflict-free (resp., an admissible extension), and on
the fact that computing the probability that S is conflict-free (resp., an admissible exten-
sion) is in PTIME [18]. Starting from this, we devise a strategy for estimatingPrsemF (S)
which consists in:

i) first, computing an estimate of Prsem|CF

F (S) (resp., Prsem|AD

F (S)), that is the condi-
tional probability that S is an extension according to sem given that S is conflict-free
(resp., an admissible extension) by adopting a Monte-Carlo simulation approach, and

ii) then, yielding an estimate of PrsemF (S) by multiplying the estimate of Prsem|CF

F (S)

(resp., Prsem|AD

F (S)) with the probability that S is is conflict-free (resp., an admissi-
ble extension).

This strategy is implemented in two algorithms: the first one yields an estimate of
PrsemF (S) by estimatingPrsem|CF

F (S), the second one provides an estimate ofPrsemF (S)

by estimating Pr
sem|AD

F (S). Hence, differently from the approach proposed in [21],
where the aim of the Monte-Carlo simulation is that of estimating PrsemF (S), in our

approach the Monte-Carlo simulation is exploited to estimate either Prsem|CF

F (S) or

Pr
sem|AD

F (S). This implies that, instead of considering the whole set of possible worlds
of F as sample space (as done in [21]), we work over a reduced sample space, that
is, either the subset of the possible worlds wherein S is conflict-free, or the subset of
possible worlds wherein S is an admissible extension (depending whether Prsem|CF

F (S)

or Prsem|AD

F (S) is being estimated). Finally, we experimentally validate our approach
showing that both algorithms outperform the approach in [21], and that the second al-
gorithm is faster than the first one in most practical cases.

2 Preliminaries

We now overview Dung’s framework and its probabilistic extension introducesd in [21].

2.1 Abstract Argumentation

An abstract argumentation framework [12] (AAF) is a pair 〈A,D〉, where A is a finite
set, whose elements are referred to as arguments, and D ⊆ A × A is a binary relation

Efficiently Estimating the Probability of Extensions in Abstract Argumentation 109

over A, whose elements are referred to as defeats (or attacks). An argument is an ab-
stract entity whose role is determined by its relationships with other arguments. Given
an AAF A, we also refer to the set of its arguments and the set of its defeats as Arg(A)
and Def(A), respectively. Given arguments a, b ∈ A, we say that a defeats b iff there
is (a, b) ∈ D. Similarly, a set S ⊆ A defeats an argument b ∈ A iff there is a ∈ S such
that a defeats b; and argument a defeats S iff there is b ∈ S such that a defeats b. A
set S ⊆ A is said to be conflict-free if there are no a, b ∈ S such that a defeats b. An
argument a is said to be acceptable w.r.t. S ⊆ A iff ∀b ∈ A such that b defeats a, there
is c ∈ S such that c defeats b.

Several semantics for AAFs have been proposed to identify “reasonable” sets of
arguments, called extensions. We consider the following well-known semantics [12]:
admissible (ad), complete (co), grounded (gr), and preferred (pr). A set S ⊆ A is

– an admissible extension iff S is conflict-free and all its arguments are acceptable w.r.t.
S;

– a complete extension iff S is admissible and S contains all the arguments that are
acceptable w.r.t. S;

– a grounded extension iff S is a minimal (w.r.t. ⊆) complete set of arguments;
– a preferred extension iff S is a maximal (w.r.t. ⊆) admissible set of arguments;

Example 1. Consider the AAF 〈A, D〉 obtained by extending the AAF A = 〈{a, b},
{δ1 = (b, a)}〉 presented in the introduction as follows. The set A of arguments is
{a, b, c}, where c is the new argument “Saturday will be sunny” (according to the Tele-
graph weather forecasting service). The set D of defeats is {δ1=(b, a), δ2=(b, c), δ3=
(c, b)}, where δ2 and δ3 encode the fact that arguments b and c attack each other. As
S = {a, c} is conflict-free and every argument in S is acceptable w.r.t. S, it holds that
S is admissible. As S is maximally admissible, it a preferred extension. It is easy to
check that S is complete, while it is not grounded since it is not minimally complete.

Given an AAF A, a set S ⊆ Arg(A) of arguments, and a semantics sem ∈{ad, co,
gr, pr}, we define the function ext(A, sem, S) which returns true if S is an extension
according to sem, false otherwise.

2.2 Probabilistic Abstract Argumentation

We now review the probabilistic abstract argumentation framework (PrAF) proposed
in [21].

Definition 1 (PrAF). A PrAF is a tuple 〈A,PA, D, PD〉 where 〈A,D〉 is an AAF, and
PA and PD are, respectively, functions assigning a non-zero1 probability value to each
argument in A and defeat in D, that is, PA : A → (0, 1] and PD : D → (0, 1].

Basically, the value assigned by PA to an argument a represents the probability that
a actually occurs, whereas the value assigned by PD to a defeat (a, b) represents the
conditional probability that a defeats b given that both a and b occur.

1 Assigning probability equal to 0 to arguments/defeats is redundant.

110 B. Fazzinga, S. Flesca, and F. Parisi

The meaning of a PrAF is given in terms of possible worlds, each of them repre-
senting a scenario that may occur in the reality. Given a PrAF F , a possible world is
modeled by an AAF which is derived from F by considering only a subset of its argu-
ments and defeats. More formally, given a PrAF F = 〈A,PA, D, PD〉, a possible world
w of F is an AAF 〈A′, D′〉 such that A′ ⊆ A and D′ ⊆ D ∩ (A′ ×A′). The set of the
possible worlds of F will be denoted as pw(F).

Example 2. As a running example, consider the PrAF F = 〈A,PA, D, PD〉 where A
and D are those of Example 1, and assume that PD(δ2) = PD(δ3) = 1 (meaning that
arguments b and c attack each other in all the possible scenarios), and that PA(c) = .2
(this corresponds to the assumption that the Telegraph weather forecasting service has
a low reliability). Furthermore, recall that PA(a) = .9, PA(b) = .7, PD(δ1) = .9, as
defined in the introduction. The set pw(F) consists of the following possible worlds:
w1 = 〈∅, ∅〉 w2 = 〈{a}, ∅〉 w3 = 〈{b}, ∅〉 w4 = 〈{c}, ∅〉 w5 = 〈{a, b}, ∅〉 w6 =

〈{a, c}, ∅〉 w7 = 〈{b, c}, ∅〉 w8 = 〈A, ∅〉 w9 = 〈{a, b}, {δ1}〉 w10 = 〈{b, c}, {δ3}〉
w11 = 〈{b, c}, {δ2}〉 w12 = 〈{b, c}, {δ2, δ3}〉 w13 = 〈A, {δ1}〉 w14 = 〈A, {δ1, δ3}〉
w15= 〈A, {δ1, δ2}〉 w16 = 〈A,D〉 w17 = 〈A, {δ2}〉 w18 = 〈A, {δ3}〉 w19 = 〈A, {δ2, δ3}〉

An interpretation for a PrAF F = 〈A,PA, D, PD〉 is a probability distribution func-
tion I over the set pw(F) of the possible worlds. Assuming that arguments represent
pairwise independent events, and that each defeat represents an event conditioned by
the occurrence of its argument events but independent from any other event, the inter-
pretation for the PrAF F = 〈A,PA, D, PD〉 is as follows. Each w ∈ pw(F) is assigned
by I the probability:

I(w) =
∏

a∈Arg(w)

PA(a) ·
∏

a∈A\Arg(w)

(1− PA(a)) ·
∏

δ∈Def(w)

PD(δ) ·
∏

δ∈D(w)\Def(w)

(1− PD(δ))

where D(w) is the set of defeats that may appear in the possible world w, that is
D(w) = D ∩ (Arg(w) ×Arg(w)).

Example 3. Continuing our running example, the interpretation I for F is as follows.
First of all, observe that, for each possible world w ∈ pw(F), if both arguments b
and c belong to Arg(w) and δ2 �∈ Def(w) or δ3 �∈ Def(w), then I(w) = 0. The
probabilities of the other possible worlds are the following:
I(w1) = (1 − PA(a)) ·(1 − PA(b)) ·(1 − PA(c)) = .024; I(w2) = .216; I(w3) = .056;
I(w4) = .006; I(w5) = PA(a) · PA(b) · (1− PA(c)) · (1− PD(δ1)) = .0504;
I(w6) = .054; I(w9) = .4536; I(w12) = .014; I(w16) = .1134; I(w19) = .0126.

The probability PrsemF (S) that a set S of arguments is an extension according to a
given semantics sem is defined as the sum of the probabilities of the possible worlds w
for which S is an extension according to sem (i.e., ext(w, sem, S) = true).

Definition 2 (Prsem
F (S)). Given a PrAF F , a set S, and a semantics sem, the probability

PrsemF (S) thatS is an extension according to sem isPrsemF (S)=
∑

w ∈ pw(F)
∧ext(w, sem, S)

I(w).

Example 4. In our running example, the probabilities that the sets S1 = {b}, and S2 =
{ac} are admissible are as follows: PradF (S1)=I(w3)+I(w5)+I(w9)+I(w12)+I(w16)+

I(w19)= .7 PradF (S2) = I(w6)+ I(w16)+ I(w19)= .18

Efficiently Estimating the Probability of Extensions in Abstract Argumentation 111

In the following we will also refer to the probability that a set S of arguments
is conflict-free, that is the sum of probabilities of the possible worlds w wherein S
is conflict-free. Let cf(w, S) be a function returning true iff S is conflict-free in w.
Though cf is not a semantics, with a little abuse of notation, we denote as PrcfF (S) the
probability that S is conflict-free, that is PrcfF (S) =

∑
w∈pw(F)∧cf(w,S) I(w).

3 Estimating Extension Probability Using Monte-Carlo
Simulation

We first describe the state-of-the-art approach for estimating the probability PrsemF (S)
that a set S of arguments is an extension according to a semantics sem, then we intro-
duce two algorithms that, as we show in Section 4, significantly speed up the estimation
of PrsemF (S).

Throughout this section, as well as in the rest of the paper, we assume that a PrAF
F = 〈A,PA, D, PD〉, a set S ⊆ A of arguments, and a semantics sem are given.

3.1 The State-of-the-Art Approach

In this section, we briefly review the Monte-Carlo simulation approach proposed in [21],
which is implemented by Algorithm 1. Algorithm 1 estimates the probabilityPrsemF (S)
by repeatedly sampling the set pw(F) of possible worlds (i.e., the set of AAFs that can
be induced by F). It takes as input F , S, sem, an error level ε, and a confidence level
z1−α/2, and it returns an estimate P̂ r

sem

F (S) of the probability PrsemF (S) such that

PrsemF (S) lies in the interval P̂ r
sem

F (S)± ε with confidence level z1−α/2. Algorithm 1
works as follows. It samples n AAFs from the set pw(F) (Lines 2-12), and, for each
of them, it checks whether S is an extension according to sem (Line 10); if it is the
case, variable x which keeps track of the number of AAFs for which S is an exten-
sion according to sem is incremented by 1. At each iteration, an AAF is generated by
randomly selecting an argument a ∈ A according to its probability PA(a) (Lines 4-6),
and then randomly selecting a defeat such that both of its arguments are present in the
set of generated arguments according to its probability (Lines 7-9). The number n of
AAFs to be sampled to achieve the required error level ε with confidence level z1−α/2

is determined by exploiting the Agresti-Coull interval [1]. In particular, according to [1]

the estimated value p of PrsemF (S) after x successes in n samples is p =
x+(z2

1−α/2)/2

n+z2
1−α/2

(Line 11), and the number of samples ensuring that the error level is ε with confidence

level z1−α/2 is n =
z2
1−α/2·p·(1−p)

ε2 − z21−α/2 (Line 11). Thus, Algorithm 1 stops after
that n samples have been generated (Line 12), and returns the proportion x

n of successes
in the number of n generated samples.

Algorithm 1 State-of-the-art algorithm for approximating PrsemF (S)
Input: F = 〈A,PA, D, PD〉; S ⊆ A; sem; An error level ε; A confidence level z1−α/2

Output: P̂ r
sem

F (S) s.t. PrsemF (S) ∈ [P̂ r
sem

F (S)− ε, P̂ r
sem

F (S)+ ε] with confidence z1−α/2

01: x = n = 0;
02: do

112 B. Fazzinga, S. Flesca, and F. Parisi

03: Arg = Def = ∅
04: for each a ∈ A do
05: Generate a random number r ∈ [0, 1]
06: if r ≤ PA (a) then Arg = Arg ∪ {a}
07: for each 〈a, b〉 ∈ D s.t. a, b ∈ Arg do
08: Generate a random number r ∈ [0, 1]
09: if r ≤ PD(〈a, b〉) then Def = Def ∪ {〈a, b〉}
10: if ext(〈Arg,Def〉, sem,S) then x=x+1;

11: n=n+1; p =
x+(z21−α/2)/2

n+z2
1−α/2

; n =
z21−α/2·p·(1−p)

ε2
− z21−α/2

12: while n ≤ n
13: return x

n

3.2 Estimating Prsem
F (S) by Sampling AAFs Wherein S Is Conflict-Free

In this section, we introduce a Monte-Carlo approach for estimating PrsemF (S), whose
main idea is that of sampling only the AAFs of pw(F) wherein S is conflict-free. In
fact, our algorithm estimates PrsemF (S) by first computing the probabilityPrcfF (S) that

S is conflict-free and then estimating the conditional probability Prsem|CF

F (S) that S is
an extension according to sem given that S is conflict-free.

Let CF be the event “S is conflict-free”. To compute the probability PrcfF (S) of CF,
our algorithm exploits the following fact proved in [18], which entails that PrcfF (S) can
be computed in O(|S|2).

Fact 1 (PrcfF (S)). PrcfF (S) =
∏

a∈S PA(a) ·
∏

〈a, b〉 ∈ D
∧ a ∈ S ∧ b ∈ S

(
1− PD(〈a, b〉)

)
.

Since for the considered semantics (i.e., complete, grounded, preferred), S is an ex-

tension according to sem only if S is conflict-free, it holds thatPrsemF (S) =
Pr

sem|CF

F (S)

PrcfF (S)
.

Hence, PrsemF (S) can be estimated by first determining the exact value of PrcfF (S)

in polynomial time (Fact 1), and then estimating Pr
sem|CF

F (S) by sampling the AAFs
wherein CF occurs (that is, AAFs wherein S is conflict-free). However, to accomplish
this, we need to know the value of the probabilities of the argument events and defeat
events given that CF occurs. Given an argument a ∈ A and a defeat 〈a, b〉 ∈ D, we
denote as Pr(a|CF) (resp., Pr(〈a, b〉|CF)) the probability that argument a (resp., defeat
〈a, b〉) occurs given that CF occurs. The following lemma states thatPr(a|CF) coincides
with PA(a) if a is not in S, otherwise Pr(a|CF) = 1; and that Pr(〈a, b〉|CF) coincides
with PD(〈a, b〉) if a /∈ S or b /∈ S, otherwise Pr(〈a, b〉|CF) is zero.

Lemma 1. Given a PrAF F = 〈A,PA, D, PD〉 and a set S ⊆ A of arguments, then

– ∀a ∈ S, Pr(a|CF)=1; ∀a ∈ A \ S, Pr(a|CF)=PA(a);
– ∀〈a, b〉 ∈ D such that a, b ∈ S, Pr(〈a, b〉|CF) = 0;
– ∀〈a, b〉 ∈ D \ {〈a, b〉 ∈ D s.t. a, b ∈ S}, Pr(〈a, b〉|CF) = PD(〈a, b〉).

Hence, our algorithm samples the AAFs wherein CF occurs by randomly selecting
arguments and defeats according to the probabilities given in Lemma 1.

Efficiently Estimating the Probability of Extensions in Abstract Argumentation 113

Algorithm 2 estimates PrsemF (S), with error level ε and confidence level z1−α/2,

by first computing PrcfF (S) (Line 1), next, computing the estimate P̂ r
sem|CF

F (S) of

Pr
sem|CF

F (S) (Lines 2-14); and, finally, returning P̂ r
sem

F (S) = P̂ r
sem|CF

F (S) ·PrcfF (S)
(Line 15).

Algorithm 2 Estimating PrsemF (S) by sampling AAFs wherein S is conflict-free
Input and Output as in Algorithm 1
01: Compute PrcfF (S) as indicated in Fact 1
02: x = n = 0;
03: do
04: Arg = S; Def = ∅;
05: for each a ∈ A \ S do
06: Generate a random number r ∈ [0, 1]
07: if r ≤ Pr (a|CF) then Arg = Arg ∪ {a}
08: for each 〈a, b〉 ∈ D such that a, b ∈ Arg do
09: if a /∈ S ∨ b /∈ S do
10: Generate a random number r ∈ [0, 1]
11: if r ≤ Pr (〈a, b〉 |CF) then Def = Def ∪ {〈a, b〉}
12: if ext(〈Arg,Def〉, sem,S) then x=x+1;

13: n=n+1; p =
x+z21−α/2/2

n+z2
1−α/2

; n =
z21−α/2·p·(1−p)

ε2
· (PrcfF (S))2 − z21−α/2

14: while n ≤ n
15: return x/n · PrcfF (S)

The core of Algorithm 2 computes P̂ r
sem|CF

F (S) by exploiting the results of Lemma 1
as follows. At each iteration, it generates an AAF 〈Arg,Def〉 by first adding all the
a ∈ S to Arg, since Pr(a|CF) = 1 (Line 4). Then, the arguments a ∈ A \ S are
randomly added to Arg according to their probability Pr(a|CF)=PA(a) (Lines 5-7).
Moreover, as every generated AAF has to not contain any defeat 〈a, b〉 where a, b ∈ S
(due to Pr(〈a, b〉|CF) = 0), Algorithm 2 randomly adds to Def only the defeats 〈a, b〉
such that a or b is in the setArg\S according to probabilityPr(〈a, b〉|CF) = PD(〈a, b〉)
(Lines 8-11). After such an AAF has been generated, variable x is incremented by 1 if
S is an extension according to sem (Line 12).

Algorithm 2 takes as input the error level ε and the confidence level z1−α/2 to get

PrsemF (S) lying in the interval P̂ r
sem

F (S)±ε with confidence level z1−α/2. However, in

the core of Algorithm 2 we do not compute P̂ r
sem

F (S), but we compute P̂ r
sem|CF

F (S),

that is an estimate of Prsem|CF

F (S). Hence, we need to determine the error level ε to be

taken into account to get Prsem|CF

F (S) lying in the interval P̂ r
sem|CF

F (S) ± ε, which

in turn entails PrsemF (S) lying in the interval P̂ r
sem

F (S) ± ε. Since P̂ r
sem

F (S) =

P̂ r
sem|CF

F (S) · PrcfF (S), an estimate P̂ r
sem|CF

F (S) such that Prsem|CF

F (S) lies in the

interval P̂ r
sem|CF

F (S) ± ε corresponds to an estimate P̂ r
sem

F (S) such that PrsemF (S)

lies in the interval [P̂ r
sem|CF

F (S)± ε] · PrcfF (S). Thus, ε = ε/PrcfF (S).
Furthermore, we need to determine the number n of AAFs to be sampled to ensure

that the error level of P̂ r
sem|CF

F (S) is ε with confidence level z1−α/2. According to the

114 B. Fazzinga, S. Flesca, and F. Parisi

Agresti-Coull interval [1], n =
z2
1−α/2·p·(1−p)

(ε)2 − z21−α/2. Since ε = ε/PrcfF (S), we

obtain n =
z2
1−α/2·p·(1−p)·(PrcfF (S))2

ε2 − z21−α/2 (Line 13).

3.3 Estimating Prsem
F (S) by Sampling AAFs Wherein S Is Admissible

We now introduce a Monte-Carlo approach for estimating PrsemF (S) where only the
AAFs wherein S is an extension according to the admissible semantics are sampled.

Let AD be the event “S is an admissible extension”. We will show that PrsemF (S)
can be estimated by first computing (in polynomial time) the probability PradF (S) that

AD occurs and then estimating the probability Prsem|AD

F (S) that S is an extension ac-
cording to sem given that AD occurs.

The probability PradF (S) can be computed in polynomial time by exploiting the
following fact [18], which entails that PradF (S) can be computed in time O(|S| · |A|).

Fact 2 (PradF (S)). PradF (S) = PrcfF (S)·
∏

d∈A\S
(
P1(S, d)+ P2(S, d)+ P3(S, d)

)
, where:

P1(S, d) = 1−PA(d), and P2(S, d) = PA(d) ·
∏

〈d, b〉∈D
∧b ∈ S

(
1−PD(〈d, b〉)

)
, and

P3(S, d)=PA(d)·
(
1−

∏
〈d, b〉 ∈ D
∧b ∈ S

(
1−PD(〈d, b〉)

))
·
(
1−

∏
〈a, d〉 ∈ D
∧a ∈ S

(
1−PD(〈a, d〉)

))
.

As for the case of sampling only AAFs wherein S is conflict-free, since for all the se-
mantics semwe consider, S is an extension according to sem only if S is an admissible

extension, it holds that PrsemF (S) =
Pr

sem|AD

F (S)

PradF (S)
.

To sample only AAFs wherein S is an admissible extension, we need to know the
probability of the argument events given that AD occurs. This probability Pr(a|AD) is
given by the first two items of Lemma 2, which also states the following probabilities
that, as it will be clearer in the following, are exploited to estimate Prsem|AD

F (S):

(i) the probability Pr(〈a, b〉|AD) that 〈a, b〉 occurs, given that AD occurs, for each
defeat 〈a, b〉 such that both a and b belong to S;

(ii) the probability Pr(a → S|AD ∧ a) that a defeats at least one argument in S, given
that both AD and the argument event a occur, for each argument a not in S;

(ii) the probability Pr(〈a, b〉|AD ∧ b �→ S) that 〈a, b〉 occurs, given that AD occurs and
that the event “b does not defeat any argument in S” occurs, for each defeat 〈a, b〉
such that a belongs to S while b does not, or both a and b are not in S.

Lemma 2. Given a PrAF F = 〈A,PA, D, PD〉 and a set S ⊆ A of arguments, then

– ∀a ∈ S, Pr(a|AD)=1;
– ∀a ∈ A \ S, Pr(a|AD)= P2(S,a)+P3(S,a)

P1(S,a)+P2(S,a)+P3(S,a)
;

– ∀〈a, b〉 ∈ D s.t. a, b ∈ S, Pr(〈a, b〉|AD) = 0;
– ∀〈a, b〉 ∈ D s.t. a, b ∈ A \ S, Pr(〈a, b〉|AD ∧ b �→ S) = PD(〈a, b〉);
– ∀a ∈ A \ S, Pr(a→ S|AD ∧ a) = P3(S,a)

P2(S,a)+P3(S,a)
;

– ∀〈a, b〉 ∈ D s.t. a ∈ S ∧ b ∈ A \ S, Pr(〈a, b〉|AD ∧ b �→ S) = PD(〈a, b〉).

where P1(S, a), P2(S, a), and P3(S, a) are defined as in Fact 2.

Efficiently Estimating the Probability of Extensions in Abstract Argumentation 115

Algorithm 3 Estimating PrsemF (S) by sampling AAFs wherein S is admissible
Input and Output as in Algorithm 1
01: Compute PradF (S) as in Fact 2
02: x = n = 0;
03: do
04: Arg = S; Def = ∅; defeatS = ∅;
05: for each a ∈ A \ S do
06: Generate a random number r ∈ [0, 1]
07: if r ≤ Pr(a|AD) then
08: Arg = Arg ∪ {a}
09: if r ≤ Pr (a → S|AD ∧ a) then
10: Def=Def∪ generateAtLeastOneDefeatAndDefend(F , 〈Arg,Def〉, S, a)
11: defeatS = defeatS ∪ {a}
12: for each 〈a, b〉 ∈ D s.t. (a, b ∈ Arg \ S) ∨ (a ∈ S ∧ b ∈ Arg \ S ∧ b �∈ defeatS) do
13: Generate a random number r ∈ [0, 1]
14: if r ≤ Pr(〈a, b〉|AD ∧ b �→ S) then Def = Def ∪ {〈a, b〉}
15: if ext(〈Arg, Def〉, sem, S) then x=x+1;

16: n=n+1; p =
x+z21−α/2/2

n+z2
1−α/2

; n =
z21−α/2·p·(1−p)

ε2
· PradF (S)− z2

1−α/2

17: while n ≤ n
18: return x/n · PradF (S)

Algorithm 3 estimates PrsemF (S) by sampling AAFs wherein S is an admissible
extension. Analogously to Algorithm 2, Algorithm 3 first determines the (exact) prob-
ability PradF (S) that S is an admissible extension, as specified in Fact 2 (Line 1); next,

it computes the estimate P̂ r
sem|AD

F (S) of Prsem|AD

F (S) (Lines 2-17); and, finally, it de-

termines the estimate P̂ r
sem

F (S) of PrsemF (S) as P̂ r
sem

F (S) = P̂ r
sem|AD

F (S) ·PradF (S)
(Line 18).

The core of Algorithm 3 determines P̂ r
sem|AD

F (S) by exploiting the results of
Lemma 2 as follows. At each iteration, it generates an AAF 〈Arg,Def〉 by first adding
all the a ∈ S to Arg (Line 4), since Pr(a|AD) = 1. Next, to guarantee that S is an ad-
missible extension in the AAF being generated, each argument a ∈ A \ S, is randomly
added to Arg according to its probability Pr(a|AD) (Lines 5-8).

Next, for each argument a ∈ A \ S which has been added to Arg, we distinguish
two cases: (i) the event a → S occurs (i.e., the random number r generated for deciding
whether a should be added to Arg is less than or equal to Pr(a → S|AD ∧ a) – Line
9) (ii) the event a → S does not occur.

In case (i), to guarantee that S is an admissible extension in the AAF being gen-
erated, Algorithm 3 randomly generates a non-empty set Δ(a) of defeats, and it adds
the defeats in Δ(a) to the set of defeats Def of the AAF being generated (Line 10).
Specifically, Δ(a) = Δ′(a) ∪Δ′′(a) is such that |Δ′(a)|, |Δ′′(a)| ≥ 1, all the defeats
in Δ′(a) are of the form 〈a, b〉 with b ∈ S, and all the defeats in Δ′′(a) are of the form
〈c, a〉 with c ∈ S. That is, Δ′(a) consists of defeats from a toward S and, vice versa,
Δ′′(a) consists of defeats from S toward a. The fact that |Δ′′(a)| ≥ 1 (which means
that S defeats a) ensures that S remains an admissible extension even adding the de-
feats in Δ(a) to Def. The generation of the defeats in Δ(a) is accomplished by function

116 B. Fazzinga, S. Flesca, and F. Parisi

generateAtLeastOneDefeatAndDefend (Line 10) in linear time w.r.t. the size of S, and
set defeatS is used to keep track of the arguments a for which Δ(a) has been generated
(Line 11).

In case (ii), to guarantee that S is an admissible extension in the AAF being gener-
ated, no defeat from a towards S is generated and defeats from S to a are generated
according to the probability Pr(〈b, a〉|AD ∧ a �→ S). This is done at Line 14, where
Algorithm 3 also randomly adds to Def the defeats 〈a, b〉 such that both a and b belong
to A \ S, according to their probability. Observe that, since every AAF generated must
not contain any defeat 〈a, b〉 where a, b ∈ S, Algorithm 3 does not add any of these
defeats to Def .

After that such an AAF has been generated, analogously to Algorithm 2, Algorithm 3
checks whether S is an extension according to sem, and, if this is the case, variable x is
incremented by 1 (Line 15). Moreover, reasoning as in the case of Algorithm 2, it can be

shown that (i) the error level ε to be taken into account when computing P̂ r
sem|AD

F (S)
is ε = ε/PradF (S), where ε is the error level for estimating PrsemF (S), and that (ii) the

number of AAFs to be sampled to ensure that the error level of P̂ r
sem|AD

F (S) is ε with

confidence level z1−α/2 is n =
z2
1−α/2·p·(1−p)·(PradF (S))2

ε2 − z21−α/2 (Line 16).

4 Experimental Results

We now show the results of the experiments we carried out to compare the efficiency of
the three algorithms presented in the previous section. Specifically, we compare Algo-
rithm 1 (A1) with Algorithm 2 (A2) and Algorithm 3 (A3) in terms of number of gener-
ated samples and evaluation times needed to compute the probability P̂ r

sem

F (S) for the
complete, grounded and preferred semantics. To this end, we denote as samples(Ak)
and time(Ak), with k ∈ {1, 2, 3}, the average number of samples and the average
execution time of the runs of algorithm Ak, respectively, and we use the following
performance measures:

– ImpS(A2)= samples(A2)
samples(A1) and ImpS(A3)= samples(A3)

samples(A1) , for measuring the improve-
ment of A2 and A3 w.r.t. A1, in terms of number of generated samples;

– ImpT(A2) = time(A2)
time(A1) and ImpT(A3) = time(A3)

time(A1) , for measuring the improvement
of A2 and A3 w.r.t. A1, in terms of execution time.

To perform a thorough experimental evaluation of the performances of the three algo-
rithms, we varied the size of the set A of arguments of the input PrAF, the composition
of its set of defeats and the size of S as follows. We varied the size of A considering
every even number from 12 to 40 and, for each |A|, we considered 5 PrAFs having
different sets of defeats. For each of the so obtained PrAFs, we considered 5 sets S
of arguments, whose size was chosen in the interval [20%, 40%] · |A|, and such that
PrcfF (S) and PradF (S) ranged in the interval [.5, .8] and [.4, .7], respectively. For each
of these combinations of PrAF and S, we made 200 runs of each algorithm for each of
the three semantics, and we averaged the number of samples and the execution times.

Efficiently Estimating the Probability of Extensions in Abstract Argumentation 117

Fig. 1. Improvements of A2 and A3 vs A1 for (a) complete, (b) grounded, (c) preferred semantics

In all the experiments, we considered as error level ε = 0.005 and as confidence
level z1−α/2 = 95%. All experiments have been carried out on an Intel i7 CPU with
6GB RAM running Windows 7.

The results of our experiments are shown in Fig. 1. Specifically, Fig. 1(a) (resp.,
Fig. 1(b)) reports the results for the complete (resp., grounded) semantics, whereas
Fig. 1(c) reports the results for the preferred semantics. On the one hand, the experi-
ments show that, on average, ImpT(A2) is equal to 70%, meaning that the time required
by A2 to estimate PrsemF (S) is 70% of the time required by A1. As regards the number
of generated samples, ImpS(A2) is 65% on average. On the other hand, the experi-
ments show that, on average, ImpT(A3) is equal to 60%, and ImpS(A3) is equal to
55%. Hence, for every semantics, A2 and A3 perform much better than A1.

Moreover, the experiments show that, on average, the time improvement is worse
than the sample improvement for both A2 and A3 and all the three considered seman-
tics. Intuitively, this derives from the fact that a single Monte-Carlo iteration of A2 (as
well as the single iteration of A3) is on average more time consuming than a single
Monte-Carlo iteration of A1. As regards the evaluation times, considering the PrAFs
consisting of 40 arguments, A1 needs on average 3 (resp., 5, 73) ms for estimating
PrsemF (S) in the case of the complete (resp., grounded, preferred) semantics 2. We
also implemented an algorithm performing the exact computation of PrsemF (S) by di-
rectly applying the Definition 2, obtaining that it requires prohibitive evaluation times
as expected. In particular, considering PrAFs consisting of 18, 19 and 20 arguments, on
average, the exact computation required 11 and 72 minutes on PrAFs consisting of 18
and 19 arguments, respectively, while it was halted without giving results after 9 hours
on the PrAFs consisting of 20 arguments.

Summing up, since on average ImpT(A3) is about 10% better than ImpT(A2), we
can conclude that A3 performs better on our dataset. However, this does not preclude

2 Observe that the higher evaluation time for the preferred semantics is basically due to the fact
that the verification problem of checking whether a set of arguments is an extension accord-
ing to this semantics is CoNP -complete, while it is polynomial for the other two seman-
tics [17,15].

118 B. Fazzinga, S. Flesca, and F. Parisi

that A2 performs better than A3 on different datasets, where PrcfF (S) is closer to
PradF (S) than in our dataset. In fact, in our dataset, on average, the difference between
PrcfF (S) and PradF (S) is about 10%. Since it is likely that for most of the PrAFs rep-
resenting real-world situations, the difference between PrcfF (S) and PradF (S) is higher
than 10%, it is fair to claim that A3 outperformsA2 in most of the real-life contexts.

5 Related Work

Recently approaches for handling uncertainty in AAFs by relying on probability the-
ory have been proposed in [14,25,21,26]. [14] proposed a PrAF where uncertainty is
taken into account by specifying probability distribution functions (PDFs) over possible
worlds and shown how an instance of the proposed PrAF can be obtained by specifying
a probabilistic assumption-based argumentation framework (introduced by themselves).
In the same spirit, [25] defined a PrAF as a PDF over the set of possible worlds, and
introduced a probabilistic version of a fragment of ASPIC framework [23] that can be
used to instantiate the proposed PrAF. [21] proposed a PrAF where probabilities are di-
rectly associated with arguments and defeats, instead of being associated with possible
worlds, and then proposed a Monte-Carlo simulation approach to estimate the probabil-
ity Prsem(S) that a set S is an extension according to semantics sem. In [21], as well
as in [14,25], Prsem(S) is defined as the sum of the probabilities of the possible worlds
where S is an extension, according to sem. [26] did not define a probabilist version of
a classical semantics, but introduced a new probabilistic semantics based on specifying
a class of PDFs, called p-justifiable PDFs, over sets of possible AAFs, and shown that
this probabilistic semantics generalizes the complete semantics.

Though in the above-cited works probability theory is recognized as a fundamental
tool to model uncertainty, a deeper understanding of the role of probability theory in ab-
stract argumentation was developed only later in [19,20], where the connection among
argumentation theory, classical logic, and probability theory was investigated.

Besides the approaches that model uncertainty by relying on probability theory, other
proposals represent uncertainty by weights or preferences on arguments and/or defeats
[8,6,4,22,16,11], or by relying on the possibility theory [5,2,3].

Although the approaches based on weights, preferences, possibilities, or probabilities
to model uncertainty have been proved to be effective in different contexts, there is
no common agreement on what kind of approach should be used in general. In this
regard, [19,20] observed that the probability-based approaches may take advantage
from relying on a well-established and well-founded theory, whereas the approaches
based on weights or preferences do not conform to well-established theories yet.

6 Conclusions

In this paper, we focused on estimating the probability PrsemF (S) that a set S of argu-
ments is an extension for F according to a semantics sem, where sem is the complete,
the grounded, or the preferred semantics. In particular, we proposed two algorithms for
estimatingPrsemF (S), which outperform the state-of-the-art algorithm proposed in [21],
both in terms of number of generated samples and evaluation time.

Efficiently Estimating the Probability of Extensions in Abstract Argumentation 119

References

1. Agresti, A., Coull, B.A.: Approximate is better than ”exact” for interval estimation of bino-
mial proportions. The American Statistician 52(2), 119–126 (1998)

2. Alsinet, T., Chesñevar, C.I., Godo, L., Sandri, S., Simari, G.R.: Formalizing argumentative
reasoning in a possibilistic logic programming setting with fuzzy unification. Int. J. Approx.
Reasoning 48(3) (2008)

3. Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: A logic programming framework
for possibilistic argumentation: Formalization and logical properties. Fuzzy Sets and Sys-
tems 159(10), 1208–1228 (2008)

4. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable argu-
ments. Ann. Math. Artif. Intell. 34(1-3), 197–215 (2002)

5. Amgoud, L., Prade, H.: Reaching agreement through argumentation: A possibilistic ap-
proach. In: KR, pp. 175–182 (2004)

6. Amgoud, L., Vesic, S.: A new approach for preference-based argumentation frameworks.
Ann. Math. Artif. Intell. 63(2), 149–183 (2011)

7. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Argumentation in
Artificial Intelligence, pp. 25–44 (2009)

8. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation
frameworks. J. Log. Comput. 13(3), 429–448 (2003)

9. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. In-
tell. 171(10-15), 619–641 (2007)

10. Besnard, P., Hunter, A. (eds.): Elements Of Argumentation. The MIT Press (2008)
11. Coste-Marquis, S., Konieczny, S., Marquis, P., Ouali, M.A.: Weighted attacks in argumenta-

tion frameworks. In: KR (2012)
12. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)
13. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. In-

tell. 171(10-15), 642–674 (2007)
14. Dung, P.M., Thang, P.M.: Towards (probabilistic) argumentation for jury-based dispute res-

olution. In: COMMA, pp. 171–182 (2010)
15. Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell. 173(18) (2009)
16. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument

systems: Basic definitions, algorithms, and complexity results. Artif. Intell. 175(2) (2011)
17. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Argumentation in

Artificial Intelligence, pp. 85–104 (2009)
18. Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic abstract argumentation.

In: IJCAI (2013)
19. Hunter, A.: Some foundations for probabilistic abstract argumentation. In: COMMA, pp.

117–128 (2012)
20. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int. J. Ap-

prox. Reasoning 54(1), 47–81 (2013)
21. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Modgil, S., Oren,

N., Toni, F. (eds.) TAFA 2011. LNCS, vol. 7132, pp. 1–16. Springer, Heidelberg (2012)
22. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173(9-

10), 901–934 (2009)
23. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument

& Computation 1(2), 93–124 (2010)
24. Rahwan, I., Simari, G.R. (eds.): Argumentation in Artificial Intelligence. Springer (2009)
25. Rienstra, T.: Towards a probabilistic dung-style argumentation system. In: AT, pp. 138–152

(2012)
26. Thimm, M.: A probabilistic semantics for abstract argumentation. In: ECAI, pp. 750–755

(2012)

AFs with Necessities: Further Semantics

and Labelling Characterization

Farid Nouioua

LSIS, Aix-Marseille Univ.,
Avenue Escadrille Normandie Niemen. 13397 Marseille Cedex 20

farid.nouioua@lsis.org

Abstract. The Argumentation Frameworks with Necessities (AFNs)
proposed in [17] are a kind of bipolar AFs extending Dung AFs with
a support relation having the particular meaning of necessity. This pa-
per is a continuation of this work in two respects. First, we complete the
acceptability semantics picture by defining the well-founded, the com-
plete and the semi-stable semantics for AFNs. We show that the pro-
posed semantics keep the same properties as those given for Dung AFs
and represent proper generalizations of them (in absence of the necessity
relation, the classical semantics are recovered). Then, we show how to
generalize Caminada’s labelling algorithms in presence of a necessity re-
lation to compute the extensions under the studied semantics for AFNs.

Keywords: abstract argumentation, necessity relation, acceptability se-
mantics, computing extensions, labelling algorithms.

1 Introduction

Dung’s abstract argumentation theory is today one of the most influential theo-
ries in artificial intelligence approaches for argumentation. One of the numerous
extensions of Dung AFs tries to take into account positive interactions between
arguments in addition to attacks that represent negative interactions. An inter-
esting question is then to know how to represent this kind of positive interaction
and how to handle it without necessarily use an equivalent Dung AF ?

The main approaches to handle supports represent them explicitly. These ap-
proaches include the bipolar argumentation frameworks (BAFs) [10] [11], the de-
ductive supports approach [5] and the abstract dialectical frameworks [6] among
others. We have discussed in [17] the advantages and the limits of these differ-
ent proposals and introduced the Argumentation Frameworks with Necessities
(AFNs) as a kind of bipolar AFs where the support relation has the particular
meaning of “necessity”. It has been shown that thanks to this specification of the
meaning of support, it was possible to generalize some acceptability semantics
(stable and preferred) in a natural way without borrowing techniques from logic
programs (LPs) or necessarily making use of a Meta Dung model.

To complete the picture, we continue this research line by exploring further
acceptability semantics for AFNs including complete, grounded and semi-stable

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 120–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

AFNs: Further Semantics and Labelling Characterization 121

semantics. We show in particular how to keep the same “high level” definitions
and properties of the different acceptability semantics of AFs in the case of AFNs
by just a suitable incorporation of the necessity relation into some “basic level”
concepts. Thus, we generalize the fact that unlike other bipolar formalisms, to
draw conclusions, it is not necessary to first translate the AFN into a Dung AF or
to use techniques from LPs. Moreover, we show that in case where the necessity
relation is empty, we recover exactly the original versions of these semantics.

In [9] [8][16], a nice characterization of acceptability semantics using the idea
of labelling has been proposed. Extensions under a given semantics are charac-
terized by labellings satisfying some conditions that depend on this semantics.
This approach gave rise to the labelling algorithms that compute the extensions
of an AF under a given semantics. Another contribution of this paper is to gen-
eralize Caminada’s labelling characterization to the case of AFNs and to propose
new labelling algorithms for the acceptability semantics in AFNs.

In section 2. we recall some basics of Dung AFs. Section 3. presents differ-
ent acceptability semantics for AFNs. In section 4, the labelling approach for
acceptability semantics for Dung AFs is generalized to AFNs and section 5 de-
scribes adapted labelling algorithms for AFNs able to compute different kinds of
extensions (grounded, admissible, preferred, stable and semi-stable). In section
6, we give some concluding remarks and some perspectives for future work.

2 Brief Reminder of Dung AFs

An AF [12] is a pair A = 〈AR, att〉 where AR is a set of arguments and att
is a binary attack relation on AR. We abuse notation and write S att a (resp.
a att S) for S ⊆ AR and a ∈ AR to denote that b att a (resp. a att b) for some
b ∈ S. A subset S ⊆ A is conflict-free if there are no a, b ∈ S such that a att b,
S defends a if for each b ∈ AR, if b att a then S att b and S is an admissible
set if it is conflict-free and defends all its elements. The characteristic function
of an AF A is a function FA : 2A → 2A such that : FA(S) = {a|S defends a}.
We denote by S+ the set of arguments attacked by S : S+ = {a|S att a}.

Several acceptability semantics have been defined to capture sets of arguments
that may be collectively accepted from an AF. Let S ⊆ AR. S is a complete ex-
tension iff it is admissible and contains any argument it defends. S is a grounded
extension iff it is the least fixed point of FA. S is a preferred extension iff it is
a ⊆-maximal admissible set. S is a stable extension iff S is an admissible set
that attacks any argument outside it (i.e., S+ = AR \ S) and S is a semi-stable
extension iff S is is a complete extension that maximizes S ∪ S+.

3 AFNs and Their Acceptability Semantics

An AFN [17] is defined by G = 〈AR, att, N〉 where AR is a set of arguments,
att is an attack relation and N is a necessity relation. att is interpreted exactly
as in Dung AFs : a att b means that if a is accepted then b is not accepted. The
new relation N is interpreted in a dual way as follows : For E ⊆ AR and b ∈ AR,

122 F. Nouioua

E N b means that if no argument of E is accepted then b is not accepted (the
acceptance of b requires the acceptance of at least one argument of E).

Notice that E N b does not imply the existence of a “primitive” necessity
relation between element(s) of E and b. For example if E = {a, c}, the expression
E N b may not be replaced neither by the two expressions {a} N b and {c} N b
nor by only one of them. Indeed, using the two expressions together means that
to accept b the two arguments a and c must both be accepted whereas E N b
means that the acceptance of b requires at least the acceptance of one of the
two argements a or c. By using only the expression {a} N b (resp. {c} N b)
the acceptance of b will be totally independent from c (resp. a) which does
not correspond no more to the intended meaning of E N b. As an example,
suppose that we have the following three rules in a LP : r1 : a ← b., r2 :
a ← c. and r3 : d ← a. The application of r3 requires at least r1 or r2 to be
applied (either only one of them or the two together). This is captured by the
expression : {r1, r2} N r3. This meaning cannot be expressed neither by writing
only {r1} N r3 or only {r2} N r3 nor by writing both {r1} N r3 and {r2} N r3.

As for the attack relation, we do not suppose any particular property on the
necessity relation N .

In this section, we generalize the acceptability semantics to AFNs 1. The new
semantics are defined very similarly to the case of Dung AFs except that instead
of using conflict-freeness as a minimal requirement, this notion is strengthened
by an additional notion of coherence that takes into account the relation N . The
notions of defense, characteristic function and the set of attacked arguments by
a given set are also adapted to take into account the relation N .

Definition 1. (from [17]). Let S ⊆ AR, S is closed under N−1 iff for each
a ∈ S, if there is E ⊆ AR such that E N a then E ∩ S �= ∅. An argument
a ∈ S is N-Cycle-Feee in S iff for each E ⊆ AR s.t. E N a, either E ∩ S = ∅ or
there is b ∈ E ∩ S s.t. b is N-Cycle-Free in S. S is N-Cycle-Free iff each a ∈ S
is N-Cycle-Free in S. S is coherent iff S is N-Cycle-Free and closed under N−1.
Finally, S is strongly coherent iff S is coherent and conflict-free.

Intuitively, in a coherent set S, each argument is provided by at least one
of its necessary arguments and no risk of a deadlock due to necessity cycles is
present. We introduce the notion of a powerful argument to capture this meaning
of coherence at the individual (i.e., the argument) level.

Definition 2. Let G = 〈AR, att, N〉 be an AFN and S ⊆ AR. An argument
a is powerful in S iff a ∈ S and there is a sequence a0, . . . , ak of elements of S
such that ak = a, there is no E ⊆ AR s.t. E N a0 and for 1 ≤ i ≤ k : for each
E ⊆ AR, if E N ai then E ∩ {a0, . . . , ai−1} �= ∅.

Coherent sets are characterized in terms of powerful arguments as follows :

1 The work in [17] has treated this generalization for admissible sets, stable and pre-
ferred extensions. Here we consider further acceptability semantics.

AFNs: Further Semantics and Labelling Characterization 123

Proposition 1. Let G = 〈AR, att, N〉 be an AFN and S ⊆ AR. S is coherent
iff each a ∈ S is powerful in S.

The second ingredient in the generalization of acceptability semantics to AFNs
is to redefine the notions of defense, characteristic function and arguments at-
tacked (here we call them deactivated) by a given set of arguments.

Definition 3. (Defense / characteristic function / deactivated arguments). Let
S ⊆ AR and a ∈ AR. We say that S defends a iff S∪{a} is coherent and for each
b ∈ AR, if b att a then for each coherent subset C of AR that contains b, S att C.
Based on this new notion of defense, the characteristic function of an AFN is
defined as for classical AFs by F : 2AR → 2AR where F (S) = {a | S defends a}.
The set of arguments deactivated by S is defined by S+ = {a | S att a or there
is E ⊆ AR s.t. E N a and S ∩ E = ∅}.

Now, we are ready to define the different acceptability semantics of AFNs in
a very similar way as in AFs as follows :

Definition 4. (Acceptability semantics for AFNs). Let S ⊆ AR. S is : an ad-
missible set iff S is strongly coherent and defends all its arguments; a complete
extension iff S is admissible and contains any argument it defends; a grounded ex-
tension iff S is the least fixed-point of F ; a preferred extension iff S is a maximal
admissible set; a stable extension iff S is a complete extension and S+ = AR \S
and a semi-stable extension iff S is a complete extension that maximizes S∪S+.

It turns out that the main properties of the different acceptability semantics
for AFs continue to hold in the case of AFNs.

Proposition 2. Let S ⊆ AR. S is :

– an admissible set iff S ⊆ F (S); a complete extension iff S = F (S); a
grounded extension iff S is a minimal complete extension; a preferred ex-
tension iff S is a maximal complete extension.

– there is exactly one grounded extension; zero, one or several stable extensions
and at least one preferred extension.

– each stable extension is semi-stable and each semi-stable extension is pre-
ferred. The inverses are not true.

– if stable extensions exist, then they coincide with the semi-stable extensions.

The new semantics for AFNs are proper generalizations of the the correspond-
ing semantics for Dung AFs :

Proposition 3. . Let G = 〈AR, att, N〉 with N = ∅ and S ⊆ AR. S is an
admissible set (resp. complete, grounded, preferred, stable, semi-stable exten-
sion) of G iff S is an admissible set (resp. complete, grounded, preferred, stable,
semi-stable extension) of the AF F = 〈AR, att〉.

124 F. Nouioua

Example 1. . Let us consider the three AFNs depicted in figure 1.
G1 = 〈AR = {a, b, c}, att = {(b, c)}, N = {({a}, b), ({b}, a)}〉,
G2 = 〈AR = {a, b, c, d}, att = {(a, b), (d, c)}, N = {({b, c}, a)}〉 and
G3 = 〈AR = {a, b, c, d, e, f, g}, att = {(a, b), (b, a), (c, d), (d, e), (e, c), (e, f),
(g, g)}, N = {({b}, c), ({g}, f)}〉;

Fig. 1. Figure 1. (a) the AFN G1, (b) the AFN G2, (c) the AFN G3

G1 has two admissible sets : ∅ and {c}. Indeed, c is attacked by b but there is
no coherent subset containing b (the only set containing b and closed under N
is {a, b} which is not coherent). This means that {c} defends its unique element
c. We have F(∅) = {c} and F({c}) = {c} and we can check that {c} is the
unique fixed point of F . Thus, {c} is the unique complete extension of G1 which
is its grounded extension and its unique preferred extension. It is also its unique
stable and semi-stable extension since {c}+ = {a, b} = AR \ {c}.

The strongly coherent sets of G2 are : ∅, {b}, {c}, {d}, {a, c}, {b, c}, {b, d}.
Only ∅ and {d} defend their elements and are admissible. We have F(∅) = {d}
and F({d}) = {d} and we can check that {d} is the unique fixed point of F .
Thus, {d} is the unique complete extension of G2 which is its grounded extension
and its unique preferred extension. We have {d}+ = {a, c} �= AR \ {d}. G2 has
no stable extension and admits {d} as a unique semi-stable extension.

G3 has four admissible sets : ∅, {a}, {b} and {a, d}. We have F(∅) = ∅,
F({a}) = {a, d}, F({b}) = {b} and F({a, d}) = {a, d}. Thus, ∅, {b} and {a, d}
are the complete extensions G3. Among them ∅ is its grounded extension. {b}
and {a, d} are its preferred extensions. We have {b}+ = {a, f} �= AR \ {b}
and {a, d}+ = {b, c, e, f} �= AR \ {a, d}. G3 has no stable extension and since
{b} ∪ {b}+ ⊆ {a, d} ∪ {a, d}+, only {a, d} is a semi-stable extension of G3.

3.1 AFNs and AFs

Given an AFN G = 〈AR, att,N〉, a first question we are interested in is to know
if it is always possible to find a Dung AF with exactly the same arguments
and which contains all the information encoded in G. It has been shown in [17]
that the answer is positive when the necessity relation is defined between single
arguments (for AFNs where if E N a then E is a singleton). The idea is to
add the implicit attacks that result from the interaction between attacks and
necessities as follows : if a attacks b and b is necessary for c then a attacks
indirectly c and if a requires b and b attacks c then a attacks indirectly c.

AFNs: Further Semantics and Labelling Characterization 125

We show here that the answer is negative in the general case and one may
need a greater number of arguments to encode all the information of an AFN in
an AF. To show this, let us take the AFN G2 of example 1 and let us suppose
that F = 〈AR, att′〉 is an AF encoding the same information as G2. It is clear
that (a, b), (d, c) are in att′. The AF 〈AR, {(a, b), (d, c)}〉 does not have the same
extensions for all the considered semantics. Apart from these two attacks, any
other possible attack from an argument x to an argument y (x, y ∈ AR) is not
present directly or indirectly in G2. In particular we cannot say that d attacks
a because a may be obtained either by having c or b and d attacks only b.
The solution is to represent separately the two different ways to obtain a (by
providing b and by providing c) as two meta arguments, say A1 and A2. Only
the second meta argument, involving a and c, is attacked by d.

More generally, given an AFN G = 〈AR, att,N〉 and a ∈ AR, each coherent
set C ⊆ AR containing a and minimal (no subset of C containing a is coherent) is
a meta argument in the AF encoding G. Let AR′ denote the set of all such meta
arguments. Notice that any non powerful argument in AR will not be represented
in AR′ since it does not belong to any coherent set. For C1, C2 ∈ AR′, C1 attacks
C2 iff x att y for some x ∈ C1 and y ∈ C2. Let att′ be the resulting attack relation.

Theorem 1. . Let G = 〈AR, att,N〉 be an AFN, F = 〈AR′, att′〉 be the cor-
responding AF and S ⊆ AR. S is a grounded (resp. complete, preferred, stable,
semi-stable) extension of G iff F admits a set Y = {C1, ..., Cn} ⊆ AR′ as an
extension under the same semantics such that S = C1 ∪ . . . ∪ Cn.

Now, there are AFNs whose corresponding AFs contain a number of argu-
ments that is exponential with respect to the number of arguments in the initial
AFN. To show this, let us take the example of the AFN G = 〈AR, att,N〉
where AR = {a} ∪ AR1 ∪ . . . ARn, each ARi contains p arguments (p > 1) and
ARi mathcalN a (for 1 ≤ i ≤ n). Let F be the corresponding AF. The number
of arguments in G is 1 + p × n. Each set {a, b1, . . . bn} such that bi ∈ ARi for
1 ≤ i ≤ n is a minimal coherent set containing a, i.e., is a meta argument in F .
a gives rize to pn meta arguments and each x ∈ AR \ {a} gives rise to one meta
argument ({x}). The total number of the meta arguments is then pn + p × n.
Thus, even if the information present in an AFN may always be encoded by
a Dung AF, the use of an AFN in general, may allow a representation that is
significantly more concise than that obtained by using the corresponding AF.

4 A Labelling Characterization

In this section, the labelling approach for acceptability semantics in Dung AFs
[16] is generalized to AFNs. Let G = 〈AR, att, N〉 be an AFN. A labelling is
a function L : AR −→ {in, out, undec}. We let in(L) = {a ∈ AR|L(a) = in},
out(L) = {a ∈ AR|L(a) = out} and undec(L) = {a ∈ AR|L(a) = undec} and
we write a labelling L as a triplet (in(L), out(L), undec(L)). The notion of a
legal label is generalized in AFNs as follows.

126 F. Nouioua

Definition 5. Let a be an argument and L be a labelling.

– a is legally in iff a is labelled in and the two following conditions hold : (1)
for each argument b, if b att a then b ∈ out(L) (all attackers of a are out)
and (2) for each set of arguments E, if E N a then E ∩ in(L) �= ∅ (at least
one argument from each necessary set for a is in).

– a is legally out iff a is labelled out and at least one of the two following
conditions holds : either (1) there is an argument b such that b att a and
b ∈ in(L) (at least one attacker of a is in) or (2) there is a set of arguments
E, such that E N a and E ⊆ out(L) (all the arguments of at least one
necessary set for a are out).

– a is legally undec iff a is labelled undec and the three following conditions
hold : (1) for each argument b, if b att a then b /∈ in(L) (no attacker of a
is in), (2) for each set E ⊆ AR, if E N a then E �⊆ out(L) (not all the
arguments of any necessary set for a are out) and (3) either there is an
argument b such that b att a and b /∈ out(L) or there is E ⊆ AR such that
E N a and E ∩ in(L) = ∅ (either at least one attacker of a is not out or at
least one necessary set for a does not contain any argument that is in).

Notice that for N = ∅, we find exactly the original definitions of legal labels
given in [16]. In addition to legality of labels, the presence of necessity relation
imposes two further constraints. Any argument which is not powerful in AR does
not belong to any extension and must be labelled out and since each extension
E under any semantics must be coherent, the set of in arguments of any la-
belling characterizing any acceptability semantics for an AFN must be coherent.
Labellings that satisfy these constraints are called safe labellings.

Definition 6. We say that a labelling L is safe iff the set in(L) is coherent and
for each a ∈ AR: if a is not powerful in A then a ∈ out(L).

Notice that in a safe labelling, the relation N does not play any role in de-
termining whether or not an argument is legally in, out or undec. The decision
depends only on the attack relation like in classical AFs. Once the notion of
labelling is extended to take into account the necessity relation, the different
kinds of labellings are defined as usual except that they must always be safe.

Definition 7. A labelling L is : admissible iff L is safe and without any ille-
gally in or illegally out arguments; complete iff L is admissible and without any
illegally undec arguments; grounded iff L is complete and in(L) is ⊆-minimal;
preferred iff L is complete and in(L) is ⊆-maximal; stable iff L is complete and
undec(L) = ∅ and semi-stable iff L is complete and undec(L) is ⊆-minimal.

For Dung AFs (i.e. an AFN where N = ∅), any set of arguments is safe. In
this case, we obtain exactly the classical definitions for legally in, out and undec
arguments and for the different kinds of labellings. The relationship between
labellings and acceptability semantics for AFNs is given as follows.

AFNs: Further Semantics and Labelling Characterization 127

Theorem 2. S is an admissible set (resp. complete, grounded, preferred, sta-
ble, semi-stable extension) iff there is an admissible (resp. complete, grounded,
preferred, stable, semi-stable) labelling L such that S = in(L).

Example 1 (cont.). Let us take again the AFNs of example 1.
Consider the labellings: L1 = ({c}, {b}, {a}), L2 = (∅, ∅, {a, b, c}), L3 =

(∅, {a, b}, {c}), and L4 = ({c}, {a, b}, ∅) for G1. In L1 c is legally in because
L1(b) = out but b is illegally out. Moreover, L1 is not safe because b is not pow-
erful in AR but a /∈ out(L1). Thus, L1 is not admissible. L2 is not safe for the
same reason and thus, is not admissible. In L3, a and b are legally out but c is
illegally undec. L3 is admissible but not complete. In L4 c is legally in and a and
b are legally out. Moreover, L4 is safe and thus it is admissible and complete (no
argument is illegally undec in L4). In summary, we can verify that L3 and L4 are
the admissible labellings of G1 and L4 is its unique complete labelling which is
also its unique grounded and preferred labelling. Moreover, since undec(L4) = ∅,
L4 is also the unique stable and semi-stable labelling of G1.

L1 = (∅, ∅, {a, b, c, d}) and L2 = ({d}, {c}, {a, b}) are the admissible labellings
of G2. L2 is the only complete labelling of G2 (d is illegally undec in L1) which is
also its unique grounded and preferred labelling. Moreover, since undec(L2) �= ∅,
L4 is not stable but it is a semi-stable labelling of G1.

L1 = (∅, ∅, {a, b, c, d, e, f, g}), L2 = ({a}, {b, c}, {d, e, f, g}), L3 = ({b}, {a},
{c, d, e, f, g}) and L4 = ({a, d}, {b, c, e}, {f, g}) are the admissible labellings of
G3. Among them, only L2 is not complete (d is illegally undec in L2). The
grounded labelling (which minimizes the in arguments) is L1, the preferred la-
bellings (which maximize the in arguments) are L3 and L4. No complete la-
belling has an empty set of undec arguments, thus no labelling is stable. The
only semi-stable stable labelling (which minimizes undec arguments) is L4.

5 Labeling Algorithms for AFNs

In this section we adapt the labelling algorithms given in [16] for grounded,
preferred, stable and semi-stable extensions to the case of AFNs. We show that,
a suitable handling of the necessity relations allows us to keep the main form of
the existing algorithms proposed originally for Dung AFs in the case of AFNs.

5.1 Grounded Semantics

For Dung AFs, the grounded labelling is constructed by a successive application
of the characteristic function starting from the empty set and stopping when a
fixed point is found. First, the algorithm labels by in all the arguments that are
not attacked. Then each argument attacked by these arguments is labelled out.
After that, any argument whose all attackers are labelled out is labelled in, and
so on. When no more arguments my be labelled in or out, the algorithm gives
to the remaining unlabelled arguments the undec label and stops.

128 F. Nouioua

We propose a similar algorithm for the grounded semantics in AFNs with two
additional considerations : at the very beginning of the algorithm, all the non
powerful arguments in AR are labelled out2; and the addition of new in or out
arguments takes account of both the attack and the necessity relations.

The first point is required since the non powerful arguments must not be
present in the grounded extension and their attacks must not be taken into ac-
count. Once this first operation is done, it is straightforward to verify that the
set of in arguments obtained after each iteration is coherent. For the second
point, the condition of adding a new in argument is strengthened : an argument
becomes in not only if all of its attackers are out but in addition if at least an
argument of each set that is necessary for it is in. The condition of adding a
new out argument is weakened : an argument becomes out either if one of its
attackers is in or if all the arguments of one of its necessary sets are out. Here
is the algorithm that computes the grounded labelling of an AFN :

01. NB-ARGs := ∅;
02. L0 := (∅, NB-ARGs, ∅)
03. repeat
04. in(Li+1) := in(Li) ∪ {x|x is not labelled in Li and ∀y ∈ AR :
05. if y att x then y ∈ out(Li) and ∀E ⊆ AR : if E N x then

06. E ∩ in(Li) �= ∅};
07. out(Li+1) := out(Li) ∪ {x|x is not labelled in Li and either

08. ∃y ∈ AR : y att x and y ∈ in(Li) or ∃E ⊆ AR : E N x and

09. E ⊆ out(Li+1)};
10. until (Li+1 = Li)

11. LG := (in(Li), out(Li), AR \ (in(Li) ∪ out(Li)))

5.2 Preferred, Stable and Semi-stable Semantics

The original labelling algorithms for preferred, stable and semi-stable semantics
are adapted to the case of AFNs by injecting two main modifications : introduc-
ing a new operation (the cleaning operation) at the beginning of each iteration of
the algorithm and modifying slightly the so-called transition step. The operation
of cleaning a labelling L filters out the arguments that are not powerful in in(L)
in order to ensure coherence in the extensions3.

2 The detection of arguments of a set S of arguments that are not powerful is performed
by a simple iterative algorithm. This algorithm starts by taking up each argument a ∈
in(L) for which there is noE ⊆ AR such that E N a. Then at the iteration i, if the set
of all the arguments obtained so far is Hi−1 then Hi = Hi−1∪{a|if E N a then E∩
Hi−1 �= ∅}. The algorithm stops as soon as no more argument can be added (Hi =
Hi−1). The remaining arguments : in(L) \Hi are all the non powerful arguments.

3 The application of the cleaning operation at the beginning of the algorithm filters out
the non powerful arguments in AR as in the case of the algorithm for the grounded
extension. We need to use this operation again at the beginning of each subsequent
iteration because it is possible that a subset of a coherent set is not coherent.

AFNs: Further Semantics and Labelling Characterization 129

Definition 8. Let L be a labelling without illegally out arguments. The labelling
resulting from cleaning L, denoted C(L), is obtained by: (1) for each argument
a of in(L) which is not powerful in in(L), change the label of a from in to out,
(2) then, while there remain illegally out arguments, change their label to undec.

The first step changes simultaneously to out all the in arguments that are
not powerful in L. In fact, these arguments form collectively a part of the in
arguments that must not be kept. The second step is a propagation step that
ensures that it does not remain any argument that is illegally out in the resulting
labelling. It is obvious that the following holds :

Proposition 4. If L is a labelling then C(L) is safe and does not contain any
argument that is illegally out.

In a classical transition step, the label of an illegally in argument a is changed
to out. Then, only a or some of the arguments attacked by amay become illegally
out and must receive the undec label. In AFNs, because of the necessity relation,
further arguments may become illegally out and must be labelled undec. The
process must be repeated until no more such argument remains. Of course, if
N = ∅ then we find the classical definition of a transition step.

Definition 9. Let L be a safe labelling and a be an argument illegally in in L.
A transition step on a in L consists of the following : (1) change the label of a
from in to out; then (2) while there remain elements in out(L) that are illegally
out, change their labels to undec.

Based on the previous notions, a transition sequence is defined as a list
[C(L0), a1, C(L1), . . . , an, C(Ln)] (n ≥ 0) where each argument ai (0 ≤ i ≤ n)
is illegally in in C(Li−1) and Ln is the resulting labelling of the transition step
on ai in C(Li−1). A transition sequence is terminated iff C(Ln) does not contain
any argument that is illegally in. As in the classical case, throughout a transi-
tion sequence, the number of arguments labelled in is not increasing while the
number of arguments labelled undec is not decreasing.

Proposition 5. Let [C(L0), a1, C(L1), . . . , an, C(Ln)] be a transition sequence.
For each i ≥ 0 : in(C(Li+1)) ⊆ in(C(Li)) and undec(C(Li)) ⊆ undec(C(Li+1)).

An immediate consequence of the previous proposition is that if the number
of arguments is finite then, each terminated sequence is also finite. Now, the
following result shows that all the admissible sets and only them are found from
all the possible terminated transition sequences starting from the all-in labelling
(the labelling where all the arguments are in).

130 F. Nouioua

Theorem 3. If [C(L0), a1, C(L1), . . . , an, C(Ln)] (n ≥ 0) be a terminated tran-
sition sequence where L0 is the all-in labelling then C(Ln) is an admissible la-
belling. Inversely, for each admissible labelling L there exists a terminated tran-
sition sequence [C(L0), a1, C(L1), . . . , an, C(Ln)] (n ≥ 0) where L0 is the all-in
labelling and C(Ln) = L.

Admissible sets are computed by constructing a tree with C(all-in labelling)
as a root and for each node C(L) and each a that is illegally in in C(L), if L′ is
the result of a transition step on a in C(L) then C(L′) is a child for C(L). The
leaves of the tree (the set of the final elements of all the terminated transition
sequences) correspond to the admissible sets.

To compute the extensions under a given semantics, some optimization tech-
niques are proposed in [16] for Dung AFs. Fortunately, these techniques continue
to be valid for AFNs and so for LPs. Let us recall them briefly. At a given point
of the algorithm, let Σ be the set of candidate extensions found so far.

For preferred (resp. semi-stable) semantics, we keep the admissible labellings
that maximize (resp. minimize) the set of in (resp. undec) arguments. Thus, if
the current labelling L is such that in(L) ⊆ in(L′) (resp. undec(L′) ⊆ undec(L))
for some L′ ∈ Σ then we stop developing the current branch. Indeed, from
proposition 4., any descendant L′′ of L is worse than L′ because in(L′′) ⊆ in(L′)
(resp. undec(L′) ⊆ undec(L′′)). Moreover, if a new labelling L is found, L is
added to the set of candidate labellings and any candidate labelling that is worse
than L is removed. For stable semantics, we keep only admissible labellings where
the set of undec arguments is empty. Thus, if the current labelling L is such that
undec(L) �= ∅ we stop developing the current branch. Indeed, from proposition
4., for any descendant L′′ of L we will have undec(L′′) �= ∅. So, the current
branch may not yield a stable labelling.

A third optimization technique uses the so-called superillegally in arguments.
An illegally in argument is also superillegally in iff it is attacked by an argu-
ment which is either legally in or legally undec. In presence of a superillegally
in arguments, it suffices to perform a transition step on one of them instead
of performing it on all the illegally in arguments. The reason is that if a is su-
perillagally in in a labelling L then, any transition sequence that starts from L
and do not perform any transition step on a yields a labelling in which a stays
illegally in. Fortunately, this reason continue to be valid for AFNs :

Proposition 6. Let L0 be a safe labelling where an argument a is superil-
legally in and [L0, a1, C(L1), . . . , an, C(Ln)] is a transition sequence where a /∈
{a1, . . . , an} then a is illegally in in C(Ln).

In addition, since a transition step is always performed on a safe labelling, the
relation N is not used in determining illegally in or superillegally in arguments.
Now, let us give the algorithm to compute preferred labellings and describe how
to modify it in order to compute stable and semi-stable labellings.

AFNs: Further Semantics and Labelling Characterization 131

01. set-labels = ∅; find-labels(all-in);

02. print set-labels; end;

03. procedure find-labels(Lab)
04. #cleaning the laballing Lab
05. L = clean(Lab);
06. #if L is worse than an existing labelling, then stop
07. if ∃L′ ∈ set-labels : in(L) ⊂ in(L′) then
08. return

09. #if a transition sequence has terminated, then remove
10. #the worse candidates, add the new labelling and stop
11. if no argument is illegally in in L
12. for each L′ ∈ set-labels do
13. #if L′’s in arguments are a subset of
14. #L’s in arguments then remove L′

15. if in(L′) ⊂ in(L) then
16. set-labels := set-labels \ {L′}
17. end if

18. end for

19. #add L as a new candidate
20. set-labels := set-labels ∪ {L}
21. return;

22. else

23. if ∃ superillegally in arguments in L then

24. x := some superillegally argument in L;
25. find-labels(transition-step(L,x));
26. else

27. for each x that is illegally in in L do

28. find-labels(transition-step(L,x));
29. end for

30. end if

31. end if

32. end.

For the semi-stable semantics, the tree is pruned when the set of undec ar-
guments in the current labelling is a superset of the undec arguments in an
existing candidate. Thus, line 7 must be replaced by : “ if ∃L′ ∈ set-labels :
undec(L′) ⊂ undec(L) then”. For stable semantics the tree is pruned as soon as
the current labelling has a non empty set of undec arguments. Thus, we have
to replace the line 7 by : “ if undec(L) �= ∅ then”. Moreover, since a stable
extension is never strictly included in another one, lines 12-18 can be removed.

6 Concluding Remarks and Perspectives

In this paper, we continue the work presented in [17] about the AFNs in two
directions. First, we introduce new acceptability semantics for AFNs, namely
the complete, the grounded and the semi-stable semantics. We define all these

132 F. Nouioua

semantics in a very similar way to the corresponding semantics defined for clas-
sical AFs by injecting the necessity relation in defining some elementary notions.
The semantics proposed for AFNs keep the same properties and relationships
between each others as the corresponding classical semantics and they represent
proper generalizations of them (they coincide with them if the necessity relation
is empty). We show also that any AFN may be represented as an equivalent Dung
AF. However, in the general case, an AFN may express information that cannot
be encoded in the equivalent AF without using an exponential number of argu-
ments with respect to the number of arguments in the original AFN. This means
that, from a representational point of view, there are situations where AFNs are
significantly more concise in representing knowledge than classical Dung AFs.
The second contribution of this work is a generalization of Caminada’s labelling
characterization and algorithms proposed for Dung AFs to the case of AFNs.
we show that by suitable handling of the necessity relation, the modifications
required in this generalization are not so significant and the main form of the
original algorithm is kept. Moreover, if the necessity relation is empty, we recover
exactly the original labelling algorithms used for Dung AFs.

Like Dung AFs, AFNs remain very abstract and do not suppose any inter-
nal structures of arguments. Their practical use requires an instantiation step
that allows to build arguments as well as attacks and necessities from “con-
crete” knowledge bases. Several works have been proposed in this domain and
most of them use knowledge bases expressed either in classical logic or as logic
programs. The first class of works (see for example [1], [15]) follows the logical-
based argumentation approach [4] and constructs arguments from a classical
logic knowledge base K as couples of the form (support, claim) where support is
a minimal set of formulas of K that entails claim which is a formula of K. Re-
cent work (see [2] [3]) has seriously challenged the adequacy of the acceptability
semantics of Dung AFs in systems obtained by such instantiation.

Other works construct arguments from knowledge bases expressed as LPs.
In [12] arguments are build from LPs as couples (K, c) where c is a defeasi-
ble consequence of K and in [7] arguments are build as tree like structures of
rules. In [17] each rule is an argument. This kind of instantiation gives concrete
account of AFs and sheds more light on the possible links between argumenta-
tion and LPs. Some links between argumentation acceptability semantics and
LP semantics have been established as the link between : stable models in LPs
and stable semantics in AFs [12] or in AFNs [17], well-founded semantics in
LPs and grounded semantics in AFs [12] and partial stable models in LPs and
complete semantics in AFs [18]. A natural perspective is then to continue the
investigation for further possible links between the other semantics proposed
both in logic programming (like L-stable semantics [14]) and in argumentation
theory (like ideal semantics [13]), by using our instantiation method. Another
perspective is to use the labelling algorithms to propose new solvers for both
argumentation theory and logic programming under other semantics than the
stable semantics for which very efficient solvers are available today. Last but
not least, we want to generalize the dialectical proof procedures proposed for
Dung AFs (see [16]) to AFNs and also for LPs. This is beneficial in practice

AFNs: Further Semantics and Labelling Characterization 133

when the goal is to know if an argument (resp. atom) is accepted or not under a
given semantics wrt some acceptability criteria (skeptical, credulous, ...) without
computing all the extensions (resp. models) under the considered semantics.

Acknowledgments. This work is funded by the ANR (Agence Nationale de la
Recherche), ASPIQ Project. Ref: ANR-12-BS02-0003.

References

1. Amgoud, L., Besnard, P.: Bridging the gap between abstract argumentation sys-
tems and logic. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp.
12–27. Springer, Heidelberg (2009)

2. Amgoud, L.: Stable Semantics in Logic-Based Argumentation. In: Hüllermeier,
E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 58–71.
Springer, Heidelberg (2012)

3. Amgoud, L.: The Outcomes of Logic-Based Argumentation Systems under Pre-
ferred Semantics. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM
2012. LNCS, vol. 7520, pp. 72–84. Springer, Heidelberg (2012)

4. Besnard, P., Hunter, A.: Elements of Argumentation. The MIT Press (2008)
5. Boella, G., Gabbay, D.M., Van Der Torre, L., Villata, S.: Support in Abstract

Argumentation. In: Proceedings of COMMA 2010, pp. 40–51 (2010)
6. Brewka, G., Woltran, S.: Abstract Dialectical Frameworks. In: Proceedings of KR

2012, Toronto, Canada, pp. 102–111 (2010)
7. Caminada, M.W.A., Carnielli, W.A., Dunne, P.E.: Semi-Stable Semantics. J. Log.

Comp. 22(5), 1207–1254 (2012)
8. Caminada, M.W.A.: Semi-Stable Semantics. In: Proceedings of COMMA 2006,

Liverpool, UK, pp. 121–130 (2006)
9. Caminada, M.W.A.: An Algorithm for Computing Semi-Stable Semantics. In: Mel-

louli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 222–234. Springer,
Heidelberg (2007)

10. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar
argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI),
vol. 3571, pp. 378–389. Springer, Heidelberg (2005)

11. Cayrol, C., Lagasquie-Schiex, M.C.: Coalitions of arguments: A tool for handling
bipolar argumentation frameworks. Int. J. Intell. Syst. 25(1), 83–109 (2010)

12. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intel. 77, 321–357
(1995)

13. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation.
Artif. Intel. 171(10-15), 642–674 (2007)

14. Eiter, T., Leone, N., Sacca, D.: On the partial semantics for disjunctive deductive
a databases. Ann. Math. Artif. Intell. 19(1-2), 59–96 (1997)

15. Gorogiannis, N., Hunter, A.: Instantiating abstract, argumentation with classical
logic arguments: Postulates and properties. Artif. Intel. 175, 1479–1497 (2011)

16. Modgil, S., Caminada, M.W.A.: Proof Theories and Algorithms for Abstract Ar-
gumentation Frameworks. In: Rahwan, I., Simari, G. (eds.) Argumentation in Ar-
tificial Intelligence, pp. 105–129 (2009)

17. Nouioua, F., Risch, V.: Argumentation Frameworks with Necessities. In: Benferhat,
S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 163–176. Springer, Heidelberg
(2011)

18. Wu, Y., Caminada, M., Gabbay, D.: Complete Extensions in Argumentation Co-
incide with 3-Valued Stable Models in Logic Programming. Studia logica 93(2-3),
383–403 (2009)

Ranking-Based Semantics for Argumentation
Frameworks

Leila Amgoud and Jonathan Ben-Naim

IRIT – CNRS,
118, route de Narbonne, 31062, Toulouse Cedex 09, France

Abstract. An argumentation system consists of a set of interacting arguments
and a semantics for evaluating them. This paper proposes a new family of seman-
tics which rank-orders arguments from the most acceptable to the weakest one(s).
The new semantics enjoy two other main features: i) an attack weakens its target
but does not kill it, ii) the number of attackers has a great impact on the accept-
ability of an argument. We start by proposing a set of rational postulates that such
semantics could satisfy, then construct various semantics that enjoy them.

1 Introduction

Argumentation is a reasoning model based on the construction and evaluation of inter-
acting arguments. The most popular semantics were proposed by Dung in his seminal
paper [6]. Those semantics as well as their refinements (e.g. in [3,5]) partition the pow-
erset of the set of arguments into two classes: extensions and non-extensions. Every
extension represents a coherent point of view. An absolute status is assigned to each
argument: accepted (if it belongs to every extension), rejected (if it does not belong
to any extension), and undecided if it is in some extensions and not in others. Those
semantics are based in particular on the following considerations:

Killing: The impact of an attack from an argument b to an argument a is drastic, that
is, if b belongs to an extension, then a is automatically excluded from that extension
(i.e., a is killed).
Existence: One successful attack against an argument a has the same effect on a as
any number of successful attacks. Indeed, one such attack is sufficient to kill a, several
attacks cannot kill a to a greater extent.
Absoluteness: The three possible status of the arguments are absolute, that is, they
make sense even without comparing them with each other.
Flatness: All the accepted arguments have the same level of acceptability.

These four considerations seem rational in applications like paraconsistent reason-
ing. For example, the killing consideration makes sense in this application, because
arguments are formulas and attacks correspond to contradictions, and it is natural to
consider that one contradiction is lethal.

However, in other applications, e.g. decision-making, some of these considerations
are debatable. First, the killing principle is problematic in decision-making, because an
attack does not necessarily kill its target, but just weakens it. Suppose for instance that
the two following arguments a and b are exchanged by two doctors:

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 134–147, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Ranking-Based Semantics for Argumentation Frameworks 135

a: The patient should have a surgery since he has cancer.
b: The statistics show that the probability that a surgery will improve the state of the

patient is low.

In this case, the attack from b only weakens a, it does not kill a. The doctor may still
choose to do the surgery since it gives (a small) chance for the patient to survive.

Next, the existence consideration is also debatable. Suppose a seller provides the
following argument a in favor of a given car:

a: This car is certainly powerful since it is made by Peugeot.
b1: The engines of Peugeot cars break down before 300000km.
b2: The airbags of Peugeot cars are not reliable.
b3: The spare part is very expensive.

If the buyer receives the argument b1 against Peugeot (thus against a), then he accepts
less a. The situation becomes worse if he receives b2 and b3. Indeed, the more arguments
he receives against a, the less his confidence in a.

The flatness consideration is also debatable in decision-making. Suppose for exam-
ple that a is not attacked, b is attacked only by a, and c is attacked only by b. Then, a
and c are both accepted and have the same level of acceptability. But, in applications
like decision-making, it is reasonable to consider that an attack from a non-attacked
node (or any number of non-attacked nodes) does not kill the destination node. So, b is
only weakened, which means that its attack against c should have some effect, that is,
the level of acceptability of c should be lower than that of a.

To sum up, existing semantics may be well-suited for reasoning but not for applica-
tions like decision-making. In the present paper, we propose a new family of semantics
that are based on the following graded considerations:

Weakening: Arguments cannot be killed (however, they can be weakened to an extreme
extent). As a consequence, an attack from an argument b to an argument a always
decreases the degree of acceptability of a (possibly only by an infinitesimal amount).
The greater the acceptability of b, the greater the decrease in the acceptability of a.
Counting: The more numerous the attacks against a, the greater the decrease in the
acceptability of a.
Relativity: The degrees of acceptability of the arguments are relative, that is, they do
not make sense when they are not compared with each other.
Graduality: There is an arbitrarily large number of degrees of acceptability.

In our approach, a semantics is a function that transforms any argumentation graph
into a ranking on its set of arguments: from the most accepted to the weakest one(s).
Our first step consists in proposing formal postulates, each of which is an intuitive and
desirable property that a semantics may enjoy. Our postulates are based on the four
informal graded considerations described earlier: weakening, counting, relativity, and
graduality. Such an axiomatic approach allows a better understanding of semantics and
a more precise comparison between different proposals. We investigate dependencies
and compatibilities between postulates. In a second step, we construct two ranking-
based semantics satisfying certain postulates.

136 L. Amgoud and J. Ben-Naim

2 Ranking-Based Semantics

An argumentation framework consists of a set of arguments and a set of attacks between
them. Arguments represent reasons to believe in statements, doing actions, etc. Attacks
express conflicts between pairs of arguments. In what follows, both components are
assumed to be abstract entities.

Definition 1 (Argumentation framework). An argumentation framework is an or-
dered pair A = 〈A,R〉, where A is a finite set of arguments and R a binary relation
on A (i.e., R ⊆ A×A). We call R an attack relation and aRb means that a attacks b.

We turn to the notion of attacker:

Notation. Let A = 〈A,R〉 be an argumentation framework and a ∈ A. We define that
Arg(A) = A and AttA(a) = {b ∈ A | bRa}. When the context is clear, we write
Att(a) for short. The same goes for all notations.

As in classical approaches to argumentation [6], since arguments may be conflicting,
it is important to evaluate them and to identify the ones to rely on for inferring conclu-
sions (in case of handling inconsistency in knowledge bases) or making decisions, etc.
For that purpose, we propose ranking-based semantics which rank-order the set of argu-
ments from the most acceptable to the weakest one(s). Thus, unlike existing semantics
which assign an absolute status (accepted, rejected, undecided) to each argument, the
new approach compares pairs of arguments.

Definition 2 (Ranking). A ranking on a set A is a binary relation � on A such that:
� is total (i.e., ∀ a, b ∈ A, a � b or b � a) and transitive (i.e., ∀ a, b, c ∈ A, if a � b
and b � c, then a � c). Intuitively, a � b means that a is at least as acceptable as b. So,
b �� a means that a is strictly more acceptable than b.

We emphasize that, unlike in certain other works, the equal-or-more acceptable argu-
ment in an expression of the form a � b is on the left-hand side (i.e., a takes precedence
over b; the rank of a is above that of b; etc.).

Definition 3 (Ranking-based semantics). A ranking-based semantics is a function S
that transforms any argumentation framework A = 〈A,R〉 into a ranking on A.

A ranking should not be arbitrary, but should obey some postulates. By postulate, we
mean any reasonable principle, be it very general or very specific.

3 Postulates for Semantics

First of all, a ranking on a set of arguments should be defined only on the basis of the
attacks between arguments, it should not depend on the identity of the arguments (at
least when the data only consist of nodes and arrows). So, our first postulate says that
two equivalent argumentation frameworks should give rise to two equivalent rankings.
Let us first define the notion of equivalence between two argumentation frameworks.

Ranking-Based Semantics for Argumentation Frameworks 137

Definition 4 (Isomorphism). Let A = 〈A,R〉 and A′ = 〈A′,R′〉 be two argumenta-
tion frameworks. An isomorphism from A to A′ is a bijective function f from A to A′

such that ∀ a, b ∈ A, aRb iff f(a)R′f(b).

We define formally our first postulate and then exemplify it.

Postulate 1 (Abstraction). A ranking-based semantics S satisfies abstraction (Ab) iff
for any two frameworks A = 〈A,R〉 and A′ = 〈A′,R′〉, for any isomorphism f from
A to A′, we have that ∀ a, b ∈ A, 〈a, b〉 ∈ S(A) iff 〈f(a), f(b)〉 ∈ S(A′).

Example 1. Consider the two argumentation frameworks depicted in the figure below.

a b c d

The postulate (Ab) ensures that the ranking relation between a and b is the same as the
one between c and d.

It is worth pointing out that extension-based semantics (i.e., Dung’s semantics) obey
in some sense this postulate. For instance, both argumentation frameworks of Exam-
ple 1 have one preferred extension containing the non-attacked argument (a, resp. c).

The second postulate states the following: the question whether an argument a is at
least as acceptable as an argument b should be independent of any argument c that is
neither connected to a nor to b, that is, there is no path from c to a or b (ignoring the
direction of the edges). Let us first define the independent parts of an argumentation
framework.

Definition 5 (Weak connected component). A weak connected component of an ar-
gumentation framework A is a maximal subgraph of A in which any two vertices are
connected to each other by a path (ignoring the direction of the edges). We denote by
Com(A) the set of every argumentation framework B such that B is a weak connected
component of A or the graph union of several weak connected components of A.

We turn to our second postulate and to an example.

Postulate 2 (Independence). A ranking-based semantics S satisfies independence (In)
iff for every argumentation framework A, ∀ B ∈ Com(A), ∀ a, b ∈ Arg(B), 〈a, b〉 ∈
S(A) iff 〈a, b〉 ∈ S(B).

Example 1 (Cont). Assume that the two graphs of Example 1 constitute a single ar-
gumentation framework. Then, (In) ensures that the ranking relation between a and b
(and the one between c and d) remains the same after the fusion of the two frameworks.

Given our weakening principle (detailed in the introduction), it is natural to consider
that a non-attacked argument is more acceptable (and thus ranked higher) than an at-
tacked argument. In other words, there is no full reinstatement for arguments. The third
postulate reflects this idea.

138 L. Amgoud and J. Ben-Naim

Postulate 3 (Void Precedence). A ranking-based semantics S satisfies void prece-
dence (VP) iff for every argumentation framework A = 〈A,R〉, ∀a, b ∈ A, if Att(a) =
∅ and Att(b) �= ∅, then 〈b, a〉 /∈ S(A).

Example 1 (Cont). (VP) ensures that a is ranked higher than b, and c higher than d.

Non-attacked arguments are also favored by extension-based semantics. They belong
to any extension under grounded, complete, stable, and preferred semantics. Thus, they
are accepted. However, they may have the same status (accepted) as attacked arguments
(which are defended). Let us consider the following example.

Example 2. Assume the argumentation framework depicted in the figure below.

a b c

The grounded extension of this framework is {a, c}. The arguments a and c are both
accepted whereas b is rejected. Our approach ranks a higher than c since c is attacked,
thus weakened. Thus, it ensures a more refined treatment of arguments.

Since an attack always weakens its target, the next postulate states that having at-
tacked attackers is better than having non-attacked attackers (assuming the number of
attackers is the same). In other words, being defended is better than not being defended.
First, we formally introduce the notion of defender:

Notation. Let A = 〈A,R〉 be an argumentation framework and a ∈ A. We denote
by DefA(a) the set of all defenders of a in A, that is, DefA(a) = {b ∈ A | ∃c ∈
A, cRa and bRc}.

Next, we turn to the postulate and to an example.

Postulate 4 (Defense Precedence). A ranking-based semantics S satisfies defense
precedence (DP) iff for every argumentation framework A = 〈A,R〉, ∀ a, b ∈ A, if
|Att(a)| = |Att(b)|, Def(a) �= ∅, and Def(b) = ∅, then 〈b, a〉 /∈ S(A).

Example 3. Consider the argumentation framework depicted in the figure below.

h c e
a b

d g

Both arguments a and b have two attackers. The two attackers of b are not attacked,
thus they are strong. However, a is defended by h, thus the attacker c is weakened. To
sum up, a has one strong and one weak attacker, while b has two strong attackers. So,
(DP) ensures that a is ranked higher than b.

The two next postulates are based on both the weakening and the counting princi-
ples: the more the attackers of an argument a are numerous and acceptable, the less
a is acceptable. The first postulate, called counter-transitivity, corresponds to a large
version of this combined principle, the second one, called strict counter-transitivity,
corresponds to a strict version.

Ranking-Based Semantics for Argumentation Frameworks 139

More precisely, counter-transitivity says that an argument a should be ranked at least
as high as an argument b, if the attackers of b are at least as numerous and acceptable as
those of a. Let us first introduce a relation that compares sets of arguments on the basis
of a ranking on the arguments.

Definition 6 (Group comparison). Let � be a ranking on a set A of arguments. For
all A,B ⊆ A, 〈A,B〉 ∈ Gr(�) iff there exists an injective function f from B to A such
that ∀ a ∈ B, f(a) � a. Intuitively, 〈A,B〉 ∈ Gr(�) iff the elements of the group A are
at least as numerous and acceptable as those of B.

To put the emphasize on the meaning of Gr(�), we derive the following fact:

Proposition 1. Let � be a ranking on a set A of arguments and A,B ⊆ A. If 〈A,B〉 ∈
Gr(�), then:

– |A| ≥ |B|;
– for all b ∈ B, ∃a ∈ A such that a � b.

We are ready to formally state the postulate based on argument-group comparisons:

Postulate 5 (Counter-Transitivity). A ranking-based semantics S satisfies the pos-
tulate counter-transitivity (CT) iff for every argumentation framework A = 〈A,R〉,
∀ a, b ∈ A, if 〈Att(b), Att(a)〉 ∈ Gr[S(A)], then 〈a, b〉 ∈ S(A).

Example 3 (Cont). (CT) ensures that a is ranked at least as high as b.

Strict counter-transitivity is another mandatory postulate in our approach. Loosely
speaking, it says that an argument a should be ranked strictly higher than an argument
b, if the attackers of b are more numerous or more acceptable than those of a.

Definition 7 (Strict group comparison). Let � be a ranking on a set A of arguments.
For all A,B ⊆ A, 〈A,B〉 ∈ Sgr(�) iff there exists an injective function f from B to A
such that the two following conditions hold:

∀ a ∈ B, f(a) � a;
|B| < |A| or ∃ a ∈ B, a �� f(a).

Intuitively, 〈A,B〉 ∈ Sgr(�) iff the elements of A are strictly better than those of B
from a global point of view based on both cardinality and acceptability.

Postulate 6 (Strict Counter-Transitivity). A ranking-based semantics S satisfies strict
counter-transitivity (SCT) iff for every argumentation framework A = 〈A,R〉, ∀ a, b ∈
A, if 〈Att(b), Att(a)〉 ∈ Sgr[S(A)], then 〈b, a〉 /∈ S(A).

Example 3 (Cont). (SCT) ensures that a is strictly more acceptable than b.

We turn to situations where the cardinality of the attackers and their quality (i.e.,
acceptability) are opposed. Here is an example.

140 L. Amgoud and J. Ben-Naim

Example 4. Consider the argumentation framework depicted in the figure below.

h c

a e b

g d

If one non-attacked attacker is sufficient to kill an argument (which is the case in most
approaches to argumentation), then the argument a should naturally be ranked higher
than b. But, in our approach, as explained in the introduction, no number of attacked
or non-attacked attackers can kill an argument. They can just weaken it. Consequently,
in this example, a is attacked by two weakened arguments, while b is attacked by one
strong argument. As usual, we have to make a choice: give precedence to cardinal-
ity over quality (i.e. two weakened attackers are worse for the target than one strong
attacker), or on the contrary give precedence to quality over cardinality.

In certain applications such as decision-making, both options are reasonable. For
example, suppose we have to buy a car and we are considering a red one and a blue one.
In addition, the arguments of Example 4 correspond to the following statements:

b = The red car has got 5 stars out of 5 in our favorite car magazine;
e = The magazine does not take into account the fact that the red car is 1000 euros

more expensive than the blue one;
a = The blue car has got 5 stars out of 5 in our favorite car magazine;
c = The magazine does not take into account the fact that there is a probability of 0.5

that the blue car engine breaks down before 300000km. The reparations would cost
2000 euros;

h = A friend of ours is a mechanic. He would offer us a 10% discount on engine repa-
ration;

d = The magazine does not take into account the fact that there is a probability of 0.5
that the blue car will be stolen from us before 10 years. The insurance will pay for
another blue car, but there is a deductibility provision of 2000 euros;

g = In our neighborhood, the rate of motor vehicle theft is 10% lower than the average.

In this example, it is intuitive to consider that b is more acceptable than a. Indeed,
it is obvious that the group {c, d} is stronger than the singleton {e}, despite the fact
that the former is slightly weakened by h and g. Now, suppose that the argument e is
replaced by the following one:

e = The magazine does not take into account the fact that the red car is 4000 euros
more expensive than the blue one.

This time it is intuitive to consider that a is more acceptable than b.
To summarize, with abstract nodes and arrows as arguments and attacks, the outcome

of Example 4 is debatable. We can give precedence to cardinality over quality (i.e. b is
more acceptable than a) or on the contrary give precedence to quality over cardinality
(i.e. a is more acceptable than b). Both options are rational. We turn to two axioms
representing these two choices.

First, cardinality precedence says that an argument a should be ranked higher than
an argument b, if the attackers of a are less numerous than those of b.

Ranking-Based Semantics for Argumentation Frameworks 141

Postulate 7 (Cardinality Precedence). A ranking-based semantics S satisfies cardi-
nality preference (CP) iff for every argumentation framework A = 〈A,R〉, ∀ a, b ∈ A,
if |Att(a)| < |Att(b)|, then 〈b, a〉 /∈ S(A).

Next, quality precedence says that an argument a should be ranked higher than an
argument b, if at least one attacker of b is ranked higher than any attacker of a.

Postulate 8 (Quality Precedence). A ranking-based semanticsS satisfies quality prece-
dence (QP) iff for every argumentation framework A = 〈A,R〉, ∀ a, b ∈ A, if there
exists c ∈ Att(b) such that ∀ d ∈ Att(a), 〈d, c〉 /∈ S(A), then 〈b, a〉 /∈ S(A).

The last postulate says that, all other things remaining equal, a distributed defense is
better than a focused one. This postulate is not at all mandatory. It simply represents a
reasonable choice that one can make in very specific situations. More precisely, the idea
is to compare two arguments having the same number of attackers and the same number
of defenders. In addition, each defender attacks exactly one attacker. The postulate says
that, in this case, the best kind of defense is the totally distributed one, i.e. each defender
attacks a distinct attacker. In some sense, there is no “overkill”.

First, we formally define what is a simple and distributed defense.

Definition 8 (Simple/distributed defense). Let A = 〈A,R〉 be an argumentation frame-
work and a ∈ A.

The defense of a in A is simple iff every defender of a attacks exactly one attacker of
a.
The defense of a in A is distributed iff every attacker of a is attacked by at most one
argument.

We are ready to define our last postulate:

Postulate 9 (Distributed-Defense Precedence). A ranking-based semantics S satis-
fies distributed-defense precedence (DDP) iff for any argumentation framework A =
〈A,R〉, ∀ a, b ∈ A such that |Att(a)| = |Att(b)| and |Def(a)| = |Def(b)|, if the de-
fense of a is simple and distributed and the defense of b is simple but not distributed,
then 〈b, a〉 /∈ S(A).

Let us illustrate these concepts on the following example.

Example 5. Consider the argumentation framework depicted in the figure below.

l h c e j

a k b

g d i

The two arguments a and b have the same number of defenders: Def(a) = {h, g} and
Def(b) = {e, k}. However, the defense of a is simple and distributed while the defense
of b is simple but not distributed. The postulate (DDP) ensures that a is more acceptable
than b, despite the fact that the defenders of a are weaker than those of b.

142 L. Amgoud and J. Ben-Naim

4 Relationships between Postulates

So far we have proposed a set of postulates that are suitable for defining a ranking-
based semantics in argumentation theory. In the present section, we briefly study their
dependencies, as well as their compatibilities (i.e., whether they can be satisfied together
by a semantics). We start by showing that the postulates (CT), (SCT), (VP) and (DP) are
not independent.

Proposition 2. Let S be a ranking-based semantics:

if S satisfies (SCT), then it satisfies (VP);
if S satisfies both (CT) and (SCT), then it satisfies (DP).

Let us now check the compatibility of the postulates. Unsurprisingly, (CP) and (QP)
cannot be satisfied together. Example 4 already illustrates this issue. Indeed, (QP) prefers
a to b, while (CP) prefers the converse.

Proposition 3. No ranking-based semantics can satisfy both (CP) and (QP).

In the next section, we construct a ranking-based semantics showing the following
compatibility result:

Proposition 4. The postulates (Ab), (In), (CT), (SCT), (CP), and (DDP) are compatible.

5 Discussion-Based and Burden-Based Semantics

This section introduces two semantics satisfying most of our postulates, namely those
that are compatible with (CP).

The first semantics, called discussion-based semantics, is centered on a notion of
linear discussion similar to ‘argumentation line’ in [8]. A linear discussion is a sequence
of arguments such that each argument attacks the argument preceding it in the sequence.

Definition 9 (Linear discussions). Let A = 〈A,R〉 be an argumentation framework
and a ∈ A. A linear discussion for a in A is a sequence s = 〈a1, . . . , an〉 of elements
of A (where n is a positive integer) such that a1 = a and ∀ i ∈ {2, 3, . . . , n} aiRai−1.
The length of s is n. We say that: s is won iff n is odd; s is lost iff n is even.

Let us illustrate this notion on an example.

Example 5 (Cont). Two won linear discussions for the argument a are e.g., s1 = 〈a〉
and s2 = 〈a, d, g〉 and one lost linear discussion is, for instance, s3 = 〈a, c, h, l〉.
Similarly, three won linear discussions for the argument b are s′1 = 〈b〉, s′2 = 〈b, j, e〉
and s′3 = 〈b, j, k〉 and one lost discussion is s′4 = 〈b, i〉.

The basic idea behind the semantics is the following: for every argument a, for every
positive integer i, we count the number of linear discussions for a of length i. We
positively count the lost discussions and negatively count the won discussions. So, in
any case, the smaller the number calculated, the better the situation for a.

Ranking-Based Semantics for Argumentation Frameworks 143

Definition 10 (Discussion count). Let A = 〈A,R〉 be an argumentation framework,
a ∈ A, and i a positive integer. We define that:

DisAi(a) =

{
−N if i is odd;
N if i is even;

where N is the number of linear discussions for a in A of length i.

Example 5 (Cont). The following table provides the discussion counts DisAi of the
two arguments a and b.

i a b
1 -1 -1
2 2 2
3 -2 -2
4 1 0

Our strategy is to lexicographically rank the arguments on the basis of their won and
lost linear discussions.

Definition 11 (Discussion-based semantics). The ranking-based semantics Dbs trans-
forms any argumentation framework A = 〈A,R〉 into the ranking Dbs(A) on A such
that ∀ a, b ∈ A, 〈a, b〉 ∈ Dbs(A) iff one of the two following cases holds:

∀ i ∈ {1, 2, . . .}, Disi(a) = Disi(b);
∃ i ∈ {1, 2, . . .}, Disi(a) < Disi(b) and ∀ j ∈ {1, 2, . . . , i− 1}, Disj(a) = Disj(b).

Example 5 (Cont). For every i ∈ {1, 2, 3}, Disi(a) = Disi(b). However, Dis4(a) >
Dis4(b). Thus, 〈a, b〉 /∈ Dbs(A), i.e., b is strictly more acceptable than a.

At first sight, the infinite character of the set {1, 2, . . .} of all positive integers may
look like an issue from a computational point of view. Indeed, Disi(a) may never stop
evolving. This is due to the possible presence of cycles in the argumentation framework.
But, if Disi(a) never stops evolving, it evolves cyclically. So, we strongly conjecture
that there exists a threshold t such that if ∀ i ≤ t, Disi(a) = Disi(b), then ∀ i > t,
Disi(a) = Disi(b). Such an equality-ensuring threshold would be dependent on the
length of the longest elementary cycle in the argumentation framework. This threshold
would be useful to write a program implementing our discussion-based semantics.

Note also that the computation can simply be done up to a fixed step t. The greater
t, the closer the ranking obtained to the actual discussion-based ranking.

Next, the postulates represent theoretical validations for our semantics:

Theorem 1. Dbs satisfies (Ab), (In), (CT), (SCT), and (CP).

From Proposition 2, it is immediate that Dbs satisfies additional postulates:

Corollary 1. Dbs satisfies (VP) and (DP).

Theorem 2. Dbs does not satisfy (DDP).

144 L. Amgoud and J. Ben-Naim

Next, we show that Dbs treats odd and even length cycles in a similar way:

Proposition 5. Let A = 〈A,R〉 be an argumentation framework. Suppose thatA takes
the form of a unique cycle, i.e. there exists an enumeration 〈a1, . . . , an〉 of A (without
repetition and where n is a positive integer) such that ∀i ∈ {1, 2, . . . , n−1}, Att(ai) =
{ai+1}, and Att(an) = {a1}. Then, ∀ a, b ∈ A, 〈a, b〉 ∈ Dbs(A).

The second semantics, called burden-based semantics, satisfies (DDP). It follows a
multiple steps process. At each step, it assigns a burden number to every argument. In
the initial step, this number is 1 for all arguments. Then, in each step, all the burden
numbers are simultaneously recomputed on the basis of the number of attackers and
their burden numbers in the previous step. More precisely, for every argument a, its
burden number is set back to 1, then, for every argument b attacking a, the burden
number of a is increased by a quantity inversely proportional to the burden number of b
in the previous step. More formally:

Definition 12 (Burden numbers). Let A = 〈A,R〉 be an argumentation framework,
i ∈ {0, 1, . . .}, and a ∈ A. We denote by BurAi(a) the burden number of a in the ith

step, i.e.:

Buri(a) =

{
1 if i = 0;
1 +Σb∈Att(a)1/Buri−1(b) otherwise.

By convention, if Att(a) = ∅, then Σb∈Att(a)1/Buri−1(b) = 0.
Let us illustrate this function on the following example.

Example 2 (Cont). The burden numbers of each argument are summarized in the table
below. Note that these numbers will not change beyond step 2.

Step i a b c
0 1 1 1
1 1 2 2
2 1 2 1.5
...

...
...

...

We lexicographically compare two arguments on the basis of their burden numbers.

Definition 13 (Burden-based semantics). The ranking-based semantics Bbs trans-
forms any argumentation framework A = 〈A,R〉 into the ranking Bbs(A) on A such
that ∀ a, b ∈ A, 〈a, b〉 ∈ Bbs(A) iff one of the two following cases holds:

∀ i ∈ {0, 1, . . .}, Buri(a) = Buri(b);
∃ i ∈ {0, 1, . . .}, Buri(a) < Buri(b) and ∀ j ∈ {0, 1, . . . , i− 1}, Burj(a) = Burj(b).

As for the discussion-based semantics, an equality-ensuring threshold probably ex-
ists for the burden-based semantics. Such a threshold would make possible an exact
computation, despite the fact that {0, 1, . . .} is infinite.

Note that both semantics (Dbs and Bbs) do not take into account possible depen-
dencies between an argument and one of its attackers, nor the dependencies between

Ranking-Based Semantics for Argumentation Frameworks 145

two attackers. Actually, Dbs and Bbs rank the arguments only on the basis of the struc-
ture obtained by “unrolling” the cycles. For example, our semantics do not distinguish
between a loop (e.g. aRa) and a cycle (e.g. aRb, bRa). The notion of dependence is
hard to capture and beyond the scope of this paper. Our goal in the present paper is
essentially to introduce a new kind of semantics, basic postulates for it, and instances
satisfying those postulates.

We turn to the postulate-based analysis of Bbs:

Theorem 3. Bbs satisfies (Ab), (In), (CT), (SCT), (CP), and (DDP).

From Proposition 2, it satisfies more postulates:

Corollary 2. Bbs satisfies (VP) and (DP).

Let us see on examples how the semantics works.

Example 2 (Cont). According to Bbs, the argument a is strictly more acceptable than
c which is itself strictly more acceptable than b.

Note that Bbs returns a more refined result than Dung’s semantics. Indeed, the set
{a, c} is a (preferred, grounded, stable) extension according to [6]. Our approach refines
the result by ranking a higher than c since it is not attacked. This does not mean that
Bbs semantics coincides with Dung’s ones. The following example shows that the two
approaches may return different results since they are grounded on different principles.

Example 4 (Cont). The argumentation framework has a unique extension {h, g, a, e}
which is grounded, preferred and stable. Thus, the argument b is rejected. Let us now
apply the Bbs semantics on the same framework. The table below provides the burden
numbers of the arguments.

Step i h g c d a e b
0 1 1 1 1 1 1 1
1 1 1 2 2 3 1 2
2 1 1 2 2 2 1 2
...

...
...

...
...

...
...

...

Bbs provides the following ranking: h, g, e � c, d, b � a. Thus, b is more acceptable
than a. The reason is that b has less attackers and Bbs give precedence to the cardinality
of the attackers over their quality.

Example 5 (Cont). According to Bbs, a is strictly more acceptable than b.

Note that in this example, the semantics Dbs returns the converse. This shows that
the two semantics may return very different results. This difference comes from the
postulate DDP which is satisfied by Bbs but violated by Dbs.

As with Dbs, we show next that the Bbs semantics treats odd and even length cycles
in a similar way.

146 L. Amgoud and J. Ben-Naim

Proposition 6. Let A = 〈A,R〉 be an argumentation framework. Suppose thatA takes
the form of a unique cycle, i.e. there exists an enumeration 〈a1, . . . , an〉 of A (without
repetition and where n is a positive integer) such that ∀i ∈ {1, 2, . . . , n−1}, Att(ai) =
{ai+1}, and Att(an) = {a1}. Then, ∀ a, b ∈ A, 〈a, b〉 ∈ Bbs(A).

6 Related Work

There are three works in the literature which are somehow related to our contribution.
The first attempts were done in [1,2] where the authors identified different principles
and compared existing semantics wrt them. The principles are tailored for extension-
based semantics, and do not apply for ranking-based ones.

The work in [4] is closer to ours. The authors defined a notion of gradual acceptabil-
ity. The idea is to assign a numerical value to each argument on the basis of its attackers.
The properties of the valuation function are unclear. Our approach defines, through a
set of formal postulates, the desirable properties of our semantics.

In [7], Dung’s abstract framework was extended by considering weighted attacks.
The basic idea is to remove some attacks up to a certain degree representing the tol-
erated incoherence, and then apply existing semantics to the new graph(s) by ignoring
completely the weights. This leads to extensions which are not conflict-free in the sense
of the attack relation. Consider the following weighted framework. If one tolerates in-
coherence up to degree 1 (β = 1), then the attack from a to b is ignored. Consequently,
∅ and {a, b} are two β-grounded extensions.

a
c b

1

4

5

This approach is different from ours for several reasons.
First, it does not obey the four graded considerations at the basis of our postulates

and semantics (i.e., weakening, counting, relativity, and graduality), it rather obeys the
four traditional non-graded considerations described in the introduction (i.e., killing,
existence, absoluteness, and flatness). Indeed, weights are only used for deciding which
attacks can be ignored when computing the extensions.

The second main difference stems from the fact that weights of attacks are inputs of
the argumentation system of [7]. In our approach, degrees are located in the output, i.e.
we compute the relative degree of acceptability of each argument. Note that the more an
argument is acceptable, the more the attacks emanating from it are important. However,
this does not mean that weights of attacks are generated. In our approach, the three
arguments a, b and c are equivalent with regard to Bbs and Dbs. Finally, our semantics
can be extended to deal with weighted attacks as input.

7 Conclusion

The paper develops an axiomatic approach for defining semantics for argumentation
frameworks. It proposes postulates (each of which represents a criterion) that a seman-
tics may satisfy. The approach offers thus a theoretical framework for comparing se-
mantics. It is worth emphasizing that only some of the postulates (e.g. abstraction) are

Ranking-Based Semantics for Argumentation Frameworks 147

satisfied by Dung’s semantics (when the arguments are ranked on the basis of their sta-
tus, i.e. accepted arguments are ranked above undecided ones, which are ranked above
rejected ones). The other postulates are based on graded considerations which may be
natural in applications like decision-making.

Another novelty of our approach is that it computes the acceptability of arguments
without passing through multiple points of view. Its basic idea is to compute a complete
ranking on the set of arguments. The paper proposes two novel semantics that satisfy
the postulates but that do not necessarily return the same results. An important future
work is to find sufficiently many postulates to characterize our semantics.

References

1. Amgoud, L., Vesic, S.: A new approach for preference-based argumentation frameworks. An-
nals of Mathematics and Artificial Intelligence 63(2), 149–183 (2011)

2. Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation
semantics. Artificial Intelligence 171(10-15), 675–700 (2007)

3. Baroni, P., Giacomin, M., Guida, G.: Scc-recursiveness: a general schema for argumentation
semantics. Artificial Intelligence Journal 168, 162–210 (2005)

4. Cayrol, C., Lagasquie-Schiex, M.-C.: Graduality in Argumentation. Journal of Artificial Intel-
ligence Research (JAIR) 23, 245–297 (2005)

5. Dung, P., Mancarella, P., Toni, F.: Computing ideal skeptical argumentation. Artificial Intelli-
gence Journal 171, 642–674 (2007)

6. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic
Reasoning, Logic Programming and n-Person Games. AIJ 77, 321–357 (1995)

7. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument
systems: Basic definitions, algorithms, and complexity results. Artificial Intelligence 175(2),
457–486 (2011)

8. Garcı́a, A., Simari, G.: Defeasible logic programming: an argumentative approach. Theory
and Practice of Logic Programming 4(1-2), 95–138 (2004)

A Logical Theory about Dynamics in Abstract

Argumentation

Richard Booth1, Souhila Kaci2, Tjitze Rienstra1,2, and Leendert van der Torre1

1 Université du Luxembourg
6 rue Richard Coudenhove-Kalergi, Luxembourg

{richard.booth,tjitze.rienstra,leon.vandertorre}@uni.lu
2 LIRMM (CNRS/Université Montpellier 2)

161 rue Ada, Montpellier, France
souhila.kaci@lirmm.fr

Abstract. We address dynamics in abstract argumentation using a log-
ical theory where an agent’s belief state consists of an argumentation
framework (AF, for short) and a constraint that encodes the outcome
the agent believes the AF should have. Dynamics enters in two ways: (1)
the constraint is strengthened upon learning that the AF should have a
certain outcome and (2) the AF is expanded upon learning about new
arguments/attacks. A problem faced in this setting is that a constraint
may be inconsistent with the AF’s outcome. We discuss two ways to ad-
dress this problem: First, it is still possible to form consistent fallback
beliefs, i.e., beliefs that are most plausible given the agent’s AF and con-
straint. Second, we show that it is always possible to find AF expansions
to restore consistency. Our work combines various individual approaches
in the literature on argumentation dynamics in a general setting.

Keywords: Argumentation, Dynamics, Knowledge Representation.

1 Introduction

In Dung-style argumentation [1] the argumentation framework (AF for short)
is usually assumed to be static. There are, however, many scenarios where ar-
gumentation is a dynamic process: Agents may learn that an AF must have a
certain outcome and may learn about new arguments/attacks. These are two
basic issues that a theory about argumentation dynamics should address.

Some of these aspects have received attention in recent years. For example,
the so called enforcing problem [2] is concerned with the question of whether
and how an AF can be modified to make a certain set of arguments accepted.
Other work studies the impact on the outcome of an AF when a new argument
comes into play [3] or studies the issue of reasoning with incomplete AFs [4].

We address the problem by answering the following research questions: How
can we model an agent’s belief about the outcome of an AF? and How can we
characterize the effects of an agent learning that the AF should have a certain
outcome, or learning about new arguments/attacks?

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 148–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Logical Theory about Dynamics in Abstract Argumentation 149

The basis of our approach is a logical labeling language, interpreted by label-
ings that assign to each argument a label indicating that it is accepted, rejected
or undecided [5]. Formulas in this language are statements about the acceptance
of the arguments of an AF. This allows us to reason about the outcome of an
AF in terms of beliefs, rather than extensions or labelings.

We take an agent’s belief state to consist of an AF and a formula encoding
a constraint on the outcome of the AF. The constraint is strengthened upon
learning that the AF should have a certain outcome. Furthermore, the agent’s
AF is expanded upon learning about new arguments and attacks. These two
operations are modeled by a constraint expansion and AF expansion operator.

A problem faced in this setting is that the constraint on the AF’s outcome
may be inconsistent with its actual outcome, preventing the agent from forming
consistent beliefs. We call such a state incoherent. We appeal to the intuition
that an AF provides the agent with the ability to argue for the plausibility of
the beliefs that it induces. Incoherence thus means that the agent is unable to
argue for the plausibility of her beliefs using the AF.

We show that there are two ways to deal with this. First, we show that, given
an incoherent belief state, it is always possible to come up with an expansion
of the AF that restores coherence. Such AF expansions can be thought of as
providing the missing arguments necessary to argue for her beliefs. Second, we
show that it is always possible to form consistent fallback beliefs, which represent
the “most rational” outcome of the agent’s AF, given the constraint. Finally, we
present an answer-set program for computing fallback belief, i.e., for determining
whether or not some formula is a fallback belief in a particular belief state.

Our theory about argumentation dynamics combines several individual ap-
proaches in the literature in a general setting. For example, the issue of restoring
coherence is related to the enforcing problem [2]; other ways to characterize the
effect of an AF expansion have been studied in [3] and our notion of fallback
belief is related to principles developed in [4].

A brief outline of this paper: In section 2 we introduce our labeling logic,
together with the necessary basics of argumentation theory. Next, we present
our belief state model and associated expansion operators in section 3. We then
discuss in sections 4 and 5 how to deal with incoherent belief states, i.e., by
restoring coherence via AF expansion and by using fallback belief. In section 6
we present an ASP encoding for computing fallback belief. Having focused in
these sections on the complete semantics, we turn in section 7 to a discussion of
a number of additional semantics. In section 8 we discuss related work and we
conclude and discuss future work in section 9.

2 Preliminaries

We start out with some preliminaries concerning Dung-style abstract argumen-
tation theory [1]. According to this theory, argumentation can be modeled using
an argumentation framework, which captures two basic notions, namely argu-
ments and attacks among arguments. We limit ourselves to the abstract setting,

150 R. Booth et al.

meaning that we do not specify the content of arguments in a formal way. Nev-
ertheless, arguments should be understood to consist of a claim and a reason,
i.e., some consideration that counts in favor of believing the claim to be true,
while attacks among arguments stem from conflicts between different claims and
reasons. We assume in this paper that argumentation frameworks are finite.

Definition 1. An argumentation framework (AF for short) is a pair (A,R)
where A is a finite set of arguments and R ⊆ A×A is an attack relation.

Given an AF (A,R) we say that x is an attacker of y, whenever (x, y) ∈ R.
The outcome of an AF consists of possible points of view on the acceptability of
its arguments. In the literature, these points of view are represented either by
sets of acceptable arguments, called extensions or by argument labelings, which
are functions assigning to each argument a label in, out or undecided, indicating
that the argument is respectively accepted, rejected or neither [5]. The two repre-
sentations are essentially reformulations of the same idea as they can be mapped
1-to-1 such that extensions correspond to sets of in-labeled arguments [5]. For
the current purpose we choose to adopt the labeling-based approach.

Definition 2. A labeling of an AF F = (A,R) is a function L : A → {I, O, U}.
We denote by I(L), O(L) and U(L) the set of all arguments x ∈ A such that
L(x) = I, L(x) = O or L(x) = U , respectively, and by MF the set of all
labelings of F .

Various conditions are used to single out labelings that represent rational
points of view. The following gives rise to what is called the complete semantics:

Definition 3. Let F = (A,R) be an AF and L ∈ MF a labeling. We say that
L is complete iff for each x ∈ A it holds that:
– L(x) = I iff ∀y ∈ A s.t. (y, x) ∈ R, L(y) = O,
– L(x) = O iff ∃y ∈ A s.t. (y, x) ∈ R and L(y) = I,

Thus, under the complete semantics, the outcome of an AF consists of la-
belings in which an argument is in iff its attackers are out and is out iff it has
an attacker that is in. Many of the other semantics proposed in the literature,
such as the grounded, preferred and stable semantics [1] are based on selecting
particular subsets of the set of complete labelings:

Definition 4. Let L be a complete labeling of the AF F . L is called:
– grounded iff there is no complete labeling L′ of F s.t. I(L′) ⊂ I(L),
– preferred iff there is no complete labeling L′ of F s.t. I(L) ⊂ I(L′),
– stable iff U(L) = ∅.

We focus on the complete semantics but briefly discuss the others in section 7.

Example 1. Consider the AF shown in figure 1, which has three complete label-
ings, namely IOOI, OIOI and UUUU. (We denote labelings by strings of the form
ABC . . . where A, B, C, . . . are the labels of the arguments a, b, c, . . .)

A Logical Theory about Dynamics in Abstract Argumentation 151

a

b

c d

Fig. 1. An argumentation framework

A flexible way to reason about the outcome of an AF is by using a logical
labeling language. Formulas in this language assign a label to an argument or
are boolean combinations of such assignments. The language, given an AF F =
(A,R), is denoted by LF and is generated by the following BNF, where x ∈ A:

φ := inx | outx | ux | ¬φ | φ ∨ φ | � | ⊥.

We also use the connectives ∧,→,↔, defined as usual in terms of ¬ and ∨.
Next, we define a satisfaction relation between labelings and formulas:

Definition 5. Let F be an AF. The satisfaction relation |=F⊆ MF × LF is
defined by:
– L |=F inx iff L(x) = I,
– L |=F outx iff L(x) = O,
– L |=F ux iff L(x) = U ,
– L |=F φ ∨ ψ iff L |=F φ or L |=F ψ,
– L |=F ¬φ iff L �|=F φ,
– L |=F � and L �|=F ⊥.

A model of a formula φ is a labeling L ∈ MF such that L |=F φ. We denote by
[φ]F the set of labelings satisfying φ, defined by [φ]F = {L ∈ MF | L |=F φ}.
We write φ |=F ψ iff [φ]F ⊆ [ψ]F and φ ≡F ψ iff [φ]F = [ψ]F .

Whenever the AF we talk about is clear from the context, we drop the sub-
script F from |=F , [. . .]F and ≡F .

Using this labeling language, we can reason about the outcome of an AF by
talking about beliefs induced by the AF. These beliefs can be represented by a
formula φ such that [φ] is exactly the set of complete labelings of F . It is worth
noting that φ can be formulated in a straightforward way:

Proposition 1. Let F = (A,R) be an AF. It holds that a labeling L is a com-
plete labeling of F iff L is a model of the formula

∧x∈A((inx ↔ (∧(y,x)∈Routy)) ∧ (outx ↔ (∨(y,x)∈Riny))).

Example 2. Among the beliefs induced by AF in figure 1 are ¬outd and (ina ∨
inb) ↔ ind and ¬(ina ∧ inb).

Finally, conflict-freeness is considered to be a necessary (but not sufficient)
condition for any labeling to be considered rational. We will make use of the
following definition:

152 R. Booth et al.

Definition 6. Let F = (A,R) be an AF. A labeling L of F is said to be conflict-
free iff L is a model of the formula

∧x∈A(inx → ((∧(y,x)∈Routy) ∧ (∧(x,y)∈Routy))).

We denote this formula by CfF . We say that φ is is conflict-free iff CfF �|= ¬φ.
Thus, in a conflict-free labeling any neighbor of an in-labeled argument is out.

Note that we deviate from the usual definition (see e.g. [6]), which allows neigh-
bors of an in-labeled argument to be undecided. The reason is that, given our
definition, conflict-freeness can be seen to generalize completeness in a dynamic
setting, in the sense that a conflict-free labeling of an AF is always (part of) a
complete labeling of some expansion of the AF. The benefit of this will become
clear in the following sections.

Example 3. Some examples of conflict-free labelings of the AF in figure 1 are
IOOO, UUOI and OOOO. Examples of labelings that are not are IIOO and UUIO.

3 Belief States

On the one hand, AFs interpreted under the complete semantics induce beliefs
about the status of arguments (and consequently about argument’s claims and
reasons) that are rational in the sense that the arguments and attacks in the AF
can be used to argue for the plausibility of these beliefs. For example, given the
AF ({b, a}, {(b, a)}), the belief outa can, informally speaking, be argued for by
pointing out that a is attacked by b which, in turn, is not attacked and should
thus be accepted. Furthermore, these beliefs are defeasible, because learning
about new arguments and attacks may cause old beliefs to be retracted.

On the other hand, an agent may learn or come to desire some claim to be
true or false, without being aware of arguments to argue for the plausibility of
it. This bears on the outcome that the AF should have, according to the agent.
To model scenarios like these, we define an agent’s belief state to consist not
only of an AF, but also a constraint that the agent puts on its outcome.

Definition 7. A belief state is a pair S = (F,K), where F = (A,R) is an AF
and K ∈ LF the agent’s constraint. We define K(S) by K(S) = K and Bel(S)
by [Bel(S)] = {L ∈ [K] | L is a complete labeling of F}. We say that the agent
believes ψ iff Bel(S) |= ψ and that S is coherent iff Bel(S) �|= ⊥.

Thus, the belief Bel(S) of an agent is formed by the outcome of the AF in
conjunction with the constraint. Intuitively, the plausibility of the agent’s belief
can be argued for only if it is consistent, i.e., only if the belief state is coherent.
An incoherent state is thus a state in which the agent is prevented from forming
beliefs that can be shown to be plausible via the AF.

We turn again to incoherence in the following section. We first define two
expansion operators: one that strengthens the agent’s constraint and one that
expands the AF. The constraint expansion operator takes as input a belief state
and a formula φ representing a constraint that is to be incorporated into the
new belief state. It is defined as follows.

A Logical Theory about Dynamics in Abstract Argumentation 153

Definition 8. Let F be an AF, S = (F,K) a belief state and φ ∈ LF . The
constraint expansion of S by φ, denoted S ⊕ φ is defined by S ⊕ φ = (F,K ∧ φ).

Example 4. Let S1 = (F,�) where F is the AF shown in figure 1. We do not
have Bel(S1) |= ind. That is, the agent does not believe that d is in. Consider
the constraint expansion S2 = S1 ⊕ (ina ∨ inb). Now we have Bel(S2) |= ind.
That is, after learning that either a or b is in, the agent believes that d is in.

As to expanding the AF, we make two assumptions: First, we assume that
arguments and attacks are not “forgotten”. This means that elements can be
added to an AF but not removed. Second, we assume that attacks between
arguments are determined once the arguments are known. This means that no
new attacks can be added between arguments already present in the agent’s AF.
Such expansions are called normal expansions by Baumann and Brewka [2]. We
call a set of new arguments and attacks an AF update:

Definition 9. Let F = (A,R) be an AF. An AF update for F is a pair F ∗ =
(A∗, R∗) where A∗ is a set of added arguments, such that A ∩ A∗ = ∅ and
R∗ ⊆ ((A ∪A∗)× (A ∪A∗)) \ (A×A) a set of added attacks.

The AF expansion operator is defined as follows:

Definition 10. Let F = (A,R) be an AF, S = (F,K) a belief state and F ∗ =
(A∗, R∗) an AF update for F . The AF expansion of S by F ∗, denoted by S⊗F ∗

is defined by S ⊗ F ∗ = ((A ∪ A∗, R ∪R∗),K).

Example 5. Consider the belief state S1 = (F, outa ∨ outb) where F is the AF
shown in figure 1. Note that we do not have, e.g., Bel(S1) |= inb. Now consider
the AF expansion S2 = (S1 ⊗ ({e}, {(e, a)}). Now we do have Bel(S2) |= inb.

The two operators just defined allow us to study our belief state model in a
dynamic setting, where an agent’s belief state changes after new constraints on
the AF’s outcome are acquired or after adding new arguments and attacks.

4 Restoring Coherence through AF Expansion

In the previous section we presented a belief state model which includes, besides
the agent’s AF, a constraint on its outcome. We also explained that incoherence
(i.e., the belief induced by the AF being inconsistent with the constraint) pre-
vents the agent from forming beliefs that can be shown to be plausible via the
agent’s AF. The question is then: can the AF be expanded in such a way that
the beliefs induced by it are consistent with the agent’s constraints? In other
words: can we restore coherence by expanding the AF in some way? Consider
the following example.

Example 6. Let S1 = (F,�) where F is the AF shown in figure 1. Suppose the
agent learns that both a and b are out. The resulting state S2 = S1⊕(outa∧outb)
is incoherent, i.e., we have Bel(S2) |= ⊥. Now suppose the agent learns about

154 R. Booth et al.

F ∗
1

a

b

c d

e

F ∗
2

a

b

c d

e

f

F ∗
3

a

b

c d

e

F ∗
4

a

b

c d

e

Fig. 2. Four argumentation framework updates

arguments e and f , attacking a and b. The corresponding AF update is shown as
F ∗
2 in figure 2. The resulting state is S3 = S2⊗({e, f}, {(e, a), (f, b)}). Coherence

is now restored: Bel(S3) �|= ⊥. In S3 the agent believes, e.g., that c is in and d is
out: Bel(S3) |= inc ∧ outd. Notice that F ∗

4 , too, restores coherence in state S2,
whereas F ∗

1 and F ∗
3 do not.

This example shows that it is indeed possible to expand an AF such that
coherence is restored. Note, also, that the AF updates F ∗

2 and F ∗
4 can be under-

stood to provide the “missing explanation” for the agent’s constraint outa∧outb.
That is, a and b are out because there are arguments attacking (among possibly
other arguments) a and b. We can show that, as long as the agent’s constraint
is conflict-free, there always exists some AF expansion that restores coherence.
That the agent’s constraint is required to be conflict-free follows from the fact
that attacks between existing arguments cannot be removed. Proofs are omitted
due to space constraints.

Theorem 1. Let (F,K) be an incoherent belief state where K is conflict-free.
There exists an AF update F ∗ for F such that (F,K)⊗ F ∗ is coherent.

This result essentially says that incoherence of a belief state can be under-
stood to mean that the agent’s AF is incomplete and needs to be expanded
with additional arguments and attacks. A related result, called the conservative
strong enforcing result, was presented by Baumann and Brewka [2]. However,
this result deals only with the possibility of making some set of arguments ac-
cepted. By contrast, we deal with arbitrary formulas expressible in the logical
labeling language.

5 Fallback Belief

In example 6, the agent learns that a and b are out, resulting in the belief
state becoming incoherent and beliefs becoming inconsistent. Nevertheless, it is
still possible to form reasonable, consistent beliefs given this constraint, even
without performing a coherence restoring AF expansion. To see what we mean,
it is enough to just look at the AF in figure 1 and see that, once a and b are out,
c should be in and d should be out. However, there are no complete labelings

A Logical Theory about Dynamics in Abstract Argumentation 155

satisfying these assignments of labels. Thus to form such beliefs, which we call
fallback beliefs, we must adopt a different method.

The starting point is to define a rationality order over conflict-free labelings,
used to determine their relative rationality. Consider an assignment, to each
AF F , of a total pre-order (i.e., a complete, transitive and reflexive order) �F

over conflict-free labelings of F . Given a set M ⊆ [CfF] we define min�F (M)
by min�F (M) = {L ∈ M | ∀L′ ∈ M,L �F L′}. Following terminology used
in belief revision, we call such an assignment faithful if the minimal labelings
according to �F are exactly the complete labelings of F .

Definition 11. A faithful assignment assigns to each AF F a total pre-order
�F⊆ [CfF] × [CfF] s.t. L ∈ min�F ([CfF]) iff L is a complete labeling of F . If
L �F L′, we say that L is at least as rational as L′.

In an incoherent state, i.e., when all fully rational labelings of the AF F
are ruled out, the agent can fall back on the remaining labelings that are most
rational according to the ordering �F . These labelings can be used to form
fallback beliefs, the idea being that they represent the best outcome of the AF
given the agent’s constraint. Given a belief state S, we denote the fallback belief
in S by Bel∗(S). The type of belief we end up with can be characterized by an
appropriate adaptation of the well known KM postulates [7]:

Theorem 2. The following are equivalent:

1. There exists a faithful assignment mapping each F to a total pre-order �F

such that for each K, [Bel∗((F,K))] = min�F ([K] ∩ [CfF]).
2. For each S = (F,K), Bel∗ satisfies:

P1: Bel∗(S) |= K(S) ∧ CfF .
P2: If S is coherent then Bel∗(S) ≡ Bel(S).
P3: If K(S) is conflict-free then Bel∗(S) is conflict-free.
P4: If F1 = F2 and K1 ≡ K2 then Bel∗((F1,K1)) ≡ Bel∗((F2,K2)).
P5: Bel∗(S) ∧ ψ |= Bel∗(S ⊕ ψ).
P6: If Bel∗(S) ∧ ψ is conflict-free then Bel∗(S ⊕ ψ) |= Bel∗(S) ∧ ψ.

Thus, if we define Bel∗ by [Bel∗((F,K))] = min�F ([K]∩ [CfF]) then fallback
belief behaves like the one-shot revision, by the constraint K, of the outcome of
F under the complete semantics. The postulates in proposition 2 now embody
conditions of minimal change w.r.t. the fully rational outcome of the AF, rather
than an arbitrary KB. The original postulates were discussed by Katsuno and
Mendelzon [7], who built on the AGM approach to belief revision [8]. Here we
content ourselves with pointing out how our postulates differ from the original
ones. First of all, P1, P2, P3 and P6 are changed to account for the fact that only
conflict-free labelings are considered possible. Second, in P5 and P6 conjunction
is substituted with ⊕, Finally, P4 requires the AFs (and thus orderings) in the
two belief states to be equivalent, as well as the constraint.

The question we need to answer now is: when is one conflict-free labeling
of an AF F to be more rational than another? That is, how should �F order
arbitrary conflict-free labelings of F? A natural way to do this is by looking at
the arguments that are illegally labeled [6]. This is defined as follows:

156 R. Booth et al.

Definition 12. Let F = (A,R) be an AF and L ∈ MF a labeling of F . An
argument x ∈ A is said to be:
– Illegally in iff L(x) = I and ∃y ∈ A, (y, x) ∈ R and L(y) �= O,
– Illegally out iff L(x) = O and �y ∈ A, (y, x) ∈ R such that L(y) = I,
– Illegally undecided iff L(x) = U and ∃y ∈ A, (y, x) ∈ R and L(y) = I or

�y ∈ A, (y, x) ∈ R such that L(y) = U .
We denote by ZI

F (L), Z
O
F (L) and ZU

F (L) the sets of arguments that are, respec-
tively, illegally in, out and undecided in L.

Intuitively, an illegally labeled argument indicates a local violation of the
condition imposed on the argument’s label according to the complete semantics.
It can be checked, for example, that a labeling L is a complete labeling iff it
has no arguments illegally labeled. It can also be checked that, in a conflict-free
labeling, arguments are never illegally in. Thus in judging the relative rationality
of a conflict-free labeling L, we only have to look at the sets ZO

F (L) and ZU
F (L).

What, exactly, do the sets ZO
F (L) and ZU

F (L) tell us about how rational L
is? To answer this we have to look at what it takes to turn L into a complete
labeling. We say that an AF update that turns L into (part of) a complete
labeling of the (expanded) AF is an AF update that completes L. Formally:

Definition 13. Let F ∗ = (A∗, R∗) be an AF update for F = (A,R) and L a
conflict-free labeling of F . We say that F ∗ completes L iff there is a complete
labeling L′ of the AF (A∪A∗, R∪R∗) such that (L′ ↓ A) = L, where (L ↓ A) is
a function defined by (L ↓ A)(x) = L(x), for all x ∈ A.

As a measure for the “impact” of an AF update, Baumann looked at the
number of added attacks [9]. In our setting it is more appropriate to look at the
number of arguments in the existing AF that are attacked by the AF update.
We call this this the attack degree of the AF update.

Definition 14. Let F ∗ = (A∗, R∗) be an AF update for F = (A,R). We de-
note by δF (F

∗) the attack degree of F ∗, defined by δF (F
∗) = |{x ∈ A | ∃y ∈

A∗, (y, x) ∈ R∗}|.

The key is that the sets ZO
F (L) and ZU

F (L) inform us about the minimal
impact it would take to complete L, or to turn L into a fully rational point of
view. That is, it informs us about the minimal attack degree of an AF update
that completes L:

Proposition 2. Let L be a conflict-free labeling of an AF F . If F ∗ completes L
then δF (F

∗) ≥ |ZO
F (L) ∪ ZU

F (L)|.

We use the cardinality of the sets ZO
F (L) and ZU

F (L) as the criterion to define
the rationality order �F , making the assumption that the agent believes that
conflict-free labelings that require less impact to be turned into a complete la-
beling are more rational. We now define a faithful assignment as follows: Let F
be an AF and L,L′ ∈ [CfF],

L �F L′ iff |ZO
F (L) ∪ ZU

F (L)| ≤ |ZO
F (L′) ∪ ZU

F (L′)|

A Logical Theory about Dynamics in Abstract Argumentation 157

Now, the outcome of the AF according to the agent’s fallback belief is the
outcome that would hold if some minimal impact, coherence restoring AF update
would be performed.

Example 7. The table below represents �F for the AF F shown in figure 1.

0 1 2 3 4
OIOI OIOO UUUO OOIO UUOO OOOI OUUO OOOO OUOU OUOO

UUUU OIOU IOOO OUUU UUOU OOUU UOOI OOOU UOOO

IOOI UUOI IOOU UOUU OUOI UOUO OOUO UOOU

The table groups labelings by to the number of arguments illegally labeled.
These arguments are underlined and the numbers are shown in the column head-
ers. This determines the ordering �F as follows: L ≺F L′ iff L is in another
column to the left of L′. We have the following fallback beliefs:
– Bel∗(F, outa ∧ outb) |= inc (if a and b are out then c is in).
– Bel∗(F, inc) |= outa ∧ outb (if c is in then a and b must be out).
– Bel∗(F, outd) |= ¬(ina ∧ inb) (even if d is out, a and b cannot both be in).
– Bel∗(F, outd) |= ua → uc (even if d is out, if a is undecided then so is c).

Note that none of these inferences can be made by looking only at the complete
labelings of F .

As the following theorem states more formally, and as we pointed out above,
fallback belief is formed by assuming the most rational outcome of an AF in an
incoherent state to be the outcome that would hold after a coherence restoring
AF update with minimal impact. That is, if coherence is restored using an AF
update with a minimal attack degree, then the agent’s regular belief in the
updated state includes the agent’s fallback belief in the old state.

Theorem 3. Let S be an incoherent belief state and F ∗
1 a minimal coherence

restoring update (i.e., S ⊗ F ∗
1 is coherent and there is no F ∗

2 such that S ⊗ F ∗
2

is coherent and δF (F
∗
2) < δF (F

∗
1)). It holds that Bel(S ⊗ F ∗

1) |= Bel∗(S).

Example 8. Let S = (F, outc) be a belief state with F = ({a, b, c, d, e}, {(a, b),
(b, c), (d, e), (e, c)}). We have [Bel∗(S)] = {IOOIO, OIOIO, IOOOI}. Three minimal
coherence restoring AF updates are: F ∗

1 = ({f}, {(f, c)}), F ∗
2 = ({f}, {(f, a)})

and F ∗
3 = ({f}, {(f, d)}). We have that Bel(S⊗F ∗

n) = ψ, where [ψ] = {IOOIOI}
if n = 1; [ψ] = {OIOIO}, if n = 2 and [ψ] = {IOOOII}, if n = 3. It can be checked
that, for all n ∈ {1, 2, 3}, Bel(S ⊗ F ∗

n) |= φ and thus Bel(S ⊗ F ∗
n) |= Bel∗(S).

6 Computing Fallback Beliefs with ASP

Answer-set programming has proven to be a useful mechanism to compute ex-
tensions of AFs under various semantics [10,11,12]. The idea is to encode both
the AF and a so called encoding of the semantics in a single program of which
the stable models correspond to the extensions of the AF.

In this section we show that the problem of deciding whether a formula φ is
a fallback belief in a state (F,K) can be solved, too, using an answer-set pro-
gram. The encoding, shown in listing 6, turns out to be surprisingly simple, and

158 R. Booth et al.

works as follows. The AF is assumed to be encoded (line 1) using the predi-
cates arg/1 and att/2. For example, the AF of figure 1 is encoded by the facts
arg(a), arg(b), arg(c), arg(d), att(a,b), att(a,c), att(b,a), att(b,c)
and att(c,d). The choice rule on line 2 ensures that each argument x ∈ A gets
one of three labels, expressed by the predicates in/1, out/1 and undec/1. On
lines 3 and 4 conflict-freeness is ensured. Given just these constraints, stable
models correspond to conflict-free labelings of F . Lines 5-10 are used to estab-
lish whether an argument x ∈ A is illegally labeled, expressed by the predicate
illegal(x). The cardinality of this predicate is minimized on line 12. Finally,
the agent’s constraint is assumed to be encoded (line 11) using statements re-
stricting the possible labels assigned to arguments. For example, the constraint
outa ∨ outb is encoded by the choice rule 1 {out(a), out(b)} 2, and the con-
straint outa ∧ outb by the two facts out(a) and out(b). The (optimal) stable
models now correspond to maximally rational conflict-free labelings that satisfy
the constraint.

1 % <-- Framework encoding here -->

2 1 { in(X), out(X), undec(X) } 1 :- arg(X).

3 out(Y) :- att(X, Y), in(X).

4 out(X) :- att(X, Y), in(Y).

5 legally_out(X) :- out(X), att(Y, X), in(Y).

6 legally_undec(X) :- undec(X), att(Y, X), undec(Y).

7 illegally_out(X) :- out(X), not legally_out(X).

8 illegally_undec(X) :- undec(X), not legally_undec(X).

9 illegal(X) :- illegally_out(X).

10 illegal(X) :- illegally_undec(X).

11 % <-- Constraint encoding here -->

12 #minimize { illegal(X) }.

Program 1. An answer set program to compute fallback belief

The program is compatible with the Gringo grounder (version 3.0.5) and
Clasp answer set solver (version 2.1.2) [13]. The optimal stable models can be
obtained by running the solver with the option --opt-all. The final step of the
complete procedure amounts to checking whether the formula φ is true in every
optimal stable model. Alternatively, the set of stable models of the program
can be converted into a formula in disjunctive normal form that represents the
agent’s whole fallback belief.

7 Additional Semantics

We have focused in this paper on the complete semantics. Some of the no-
tions we introduced can be adapted to other semantics in a straightforward
way. For example, we can define a family of types of s-belief for a semantics
s ∈ {Co, St, Pr,Gr} (for Complete, Stable, Preferred, Grounded) as follows:

A Logical Theory about Dynamics in Abstract Argumentation 159

Definition 15. Let F = (A,R) be an AF, S = (F,K) be the agent’s belief
state and s ∈ {Co, St, Pr,Gr}. We define Bels(S) by [Bels(S)] = {L ∈ [K] |
L is an s-labeling of F}. We say that the agent s-believes φ iff Bels(S) |= φ.

It can be checked that we have BelGr(S) |= BelCo(S) and BelSt(S) |=
BelPr(S) |= BelCo(S). This follows directly from the fact that grounded la-
belings are also complete, stable also preferred, and so on. Now consider e.g. the
following notion of s-coherence:

Definition 16. Let S be a belief state and s ∈ {Co, St, Pr,Gr}. We say that S
is s-coherent iff Bels(S) �|= ⊥.

Given the notions of s-belief and s-coherence we can generalize theorem 1:

Theorem 4. Let s ∈ {Co, St, Pr,Gr} and let (F,K) be an s-incoherent belief
state where K is conflict-free. There exists an AF update F ∗ for F such that
(F,K)⊗ F ∗ is s-coherent.

Fallback belief, however, is less straightforward to adapt, as the corresponding
rationality orderings would have to combine different criteria, i.e. minimizing/-
maximizing in-labeled arguments w.r.t. set-inclusion and minimizing illegally
labeled arguments, meaning we have to deal with partial pre-orders.

8 Related Work

In this section we give a short overview of related work. We already mentioned
the relation of our work with the enforcing problem [2]. The authors present
a result stating that every conflict-free extension can be enforced (i.e., made
accepted under a semantics) with an appropriate AF expansion. In our setting
we consider more general types of enforcing, not limited only to acceptance of
sets of arguments. Our theorem 4 thus strengthens their possibility result.

Next, different ways to characterize the impact of AF expansions have been
studied. This includes minimality w.r.t. the number of added attacks, studied
in the context of the enforcing problem [9]. Further criteria were defined in the
study of the impact on the outcome of an AF of adding an argument [3]. A
limitation in that work is that it considers only additions of a single argument.
A slightly different perspective is taken in the work of Liao, Lin and Koons [14],
where the impact of adding arguments and attacks plays a role in the efficient
recomputation of the extensions of an AF.

The ordering presented in section 5 is related to a preferential model seman-
tics for argumentation [15] and a study of nonmonotonic inference relations to
reason with AFs [4]. Also related are open labelings [16], which have a purpose
similar to ours, i.e., to identify arguments to attack in order to make a label-
ing consistent with an AF, and an approach where arguments are labeled with
formulas expressing instructions on what to attack in order to change the argu-
ment’s status under the grounded semantics [17]. We should also mention other
work in which (parts of) argumentation theory are formalized using logics. They

160 R. Booth et al.

include models using modal logics [18,19]; translations of the problem of com-
puting extensions to problems in classical logic or ASP [20,12]; and a study of a
logical language consisting of attack and defense connectives [21].

Finally, our model is related to the concept of a constrained AF, where an
AF is combined with a constraint on the status of the arguments [22]. However,
these constraints must be consistent with the AF’s outcome under the admissible
semantics, limiting the types of constraints that can be dealt with. Furthermore,
this work does not explore the relation between constraints and AF expansions.

9 Conclusion and Future Work

We believe that theories about dynamics in abstract argumentation should ad-
dress two issues: First, agents may learn or come to desire that an AF must have
a certain outcome and second, agents may expand their AF. Our solution centers
on the issue of dealing with incoherence after constraining the AF’s outcome.
Two ways to deal with this are AF expansion and by using fallback belief.

We plan to extend our work in a number of directions. First, our model al-
lows iterated updates only under the assumption that new observations never
contradict old ones. In order to allow this we have to look at revising the agent’s
constraint in the light of conflicting observations. Second, a number of generaliza-
tions are possible. For example, we may drop the requirement that observations
are conflict-free and we can allow removal of arguments and attacks.

Finally, we plan to investigate connections between the areas of abstract argu-
mentation and belief revision beyond those presented in this paper. We believe
that the approach of using a logical labeling language to reason about the out-
come of an AF is an essential step towards establishing such connections.

Acknowledgements. Richard Booth is supported by the National Research
Fund, Luxembourg (DYNGBaT project).

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

2. Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and
monotonicity results. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.)
COMMA. Frontiers in Artificial Intelligence and Applications, vol. 216, pp. 75–86.
IOS Press (2010)

3. Cayrol, C., de Saint-Cyr, F., Lagasquie-Schiex, M.: Change in abstract argumen-
tation frameworks: Adding an argument. Journal of Artificial Intelligence Re-
search 38(1), 49–84 (2010)

4. Booth, R., Kaci, S., Rienstra, T., van der Torre, L.: Monotonic and non-monotonic
inference for abstract argumentation. In: FLAIRS (2013)

A Logical Theory about Dynamics in Abstract Argumentation 161

5. Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., van
der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160,
pp. 111–123. Springer, Heidelberg (2006)

6. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation se-
mantics. Knowledge Eng. Review 26(4), 365–410 (2011)

7. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artificial Intelligence 52(3), 263–294 (1991)

8. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of symbolic logic, 510–530
(1985)

9. Baumann, R.: What does it take to enforce an argument? Minimal change in ab-
stract argumentation. In: Raedt, L.D., Bessière, C., Dubois, D., Doherty, P., Fras-
coni, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI. Frontiers in Artificial Intelligence
and Applications, vol. 242, pp. 127–132. IOS Press (2012)

10. Toni, F., Sergot, M.: Argumentation and answer set programming. In: Balduccini,
M., Son, T.C. (eds.) Gelfond Festschrift. LNCS (LNAI), vol. 6565, pp. 164–180.
Springer, Heidelberg (2011)

11. de la Banda, M.G., Pontelli, E. (eds.): ICLP 2008. LNCS, vol. 5366. Springer,
Heidelberg (2008)

12. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argument and Computation 1(2), 147–177 (2010)

13. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schnei-
der, M.: Potassco: The potsdam answer set solving collection. AI Communica-
tions 24(2), 107–124 (2011)

14. Liao, B.S., Jin, L., Koons, R.C.: Dynamics of argumentation systems: A division-
based method. Artif. Intell. 175(11), 1790–1814 (2011)

15. Roos, N.: Preferential model and argumentation semantics. In: Proceedings of the
13th International Workshop on Non-Monotonic Reasoning, NMR 2010 (2010)

16. Gratie, C., Florea, A.M.: Argumentation semantics for agents. In: Cossentino, M.,
Kaisers, M., Tuyls, K., Weiss, G. (eds.) EUMAS 2011. LNCS, vol. 7541, pp. 129–
144. Springer, Heidelberg (2012)

17. Boella, G., Gabbay, D.M., Perotti, A., van der Torre, L., Villata, S.: Conditional
labelling for abstract argumentation. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA
2011. LNCS, vol. 7132, pp. 232–248. Springer, Heidelberg (2012)

18. Grossi, D.: On the logic of argumentation theory. In: van der Hoek, W., Kaminka,
G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) AAMAS, pp. 409–416. IFAAMAS
(2010)

19. Schwarzentruber, F., Vesic, S., Rienstra, T.: Building an epistemic logic for argu-
mentation. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS,
vol. 7519, pp. 359–371. Springer, Heidelberg (2012)

20. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Del-
grande, J.P., Schaub, T. (eds.) NMR, pp. 59–64 (2004)

21. Boella, G., Hulstijn, J., van der Torre, L.W.N.: A logic of abstract argumentation.
In: Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005. LNCS
(LNAI), vol. 4049, pp. 29–41. Springer, Heidelberg (2006)

22. Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frame-
works. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 112–122. AAAI
Press (2006)

Sound Source Localization from Uncertain
Information Using the Evidential EM Algorithm

Xun Wang1,2,�, Benjamin Quost1, Jean-Daniel Chazot2, and Jérôme Antoni3

1 Heudiasyc, UMR CNRS 7253, Université de Technologie
de Compiègne, Compiègne, France

xun.wang@hds.utc.fr
2 Roberval, UMR CNRS 7337, Université de Technologie

de Compiègne, Compiègne, France
3 LVA, INSA Lyon, Lyon, France

Abstract. We consider the problem of sound sources localization from
acoustical measurements obtained from a set of microphones. We formal-
ize the problem within a statistical framework: the pressure measured by
a microphone is interpreted as a mixture of the signals emitted by the
sources, pervaded by a Gaussian noise. Maximum-likelihood estimates
of the parameters of the model (locations and strengths of the sources)
may then be computed via the EM algorithm. In this work, we intro-
duce two sources of uncertainties: the location of the microphones and
the wavenumber. First, we show how these uncertainties may be trans-
posed to the data using belief functions. Then, we detail how the local-
ization problem may be studied using a variant of the EM algorithm,
known as Evidential EM algorithm. Eventually, we present simulation
experiments which illustrate the advantage of using the Evidential EM
algorithm when uncertain data are available.

Keywords: Localization of sound sources, Inverse problem, EM algo-
rithm, Belief function, Evidential EM algorithm, Uncertain data.

1 Introduction

In this paper, we consider the problem of sound sources localization. We as-
sume there exist N sound sources on the plane, and our aim is to determine
their position using measurements made by an array of microphones. The sound
pressure measured by each microphone is interpreted as a superimposed signal
composed of N components, each of which has been emitted by a sound source.
Our purpose is to estimate the locations and strengths of the sound sources.

Feder and Weinstein [9] investigated the parameter estimation problem of su-
perimposed signals using the EM algorithm. This approach makes it possible
to compute iteratively maximum-likelihood (ML) estimates of the parameters
of a model which depends on unobserved (or “complete”) variables. In the case
of sound source estimation, each observed variable (the pressure measured by a
microphone) is the sum of several complete ones (the signals propagated by the
� Corresponding author.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 162–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Sound Source Localization Using the Evidential EM Algorithm 163

sources towards this microphone). The EM algorithm proceeds with the complete
likelihood (that is, the likelihood of the complete variables), the expectation of
which is maximized at each iteration. Cirpan and Cekli [2,3] and Kabaoglu et
al. [10] studied the localization of near-field sources using the EM algorithm.
This work is a particular case of [9], in which the sources are located using polar
coordinates. In our work, we investigated the problem of sound source localiza-
tion. However, unlike in [2,3,10], we use general coordinates, and we explicitly
describe the propagation process from the sources to the microphones using a
specific operator.

It should be stressed out that uncertainties may pervade the measurement
process, so that the sound pressures received by the microphones are not exactly
known. For instance, it may be difficult to perfectly assess the positions of the
microphones, for example due to the vibration of the antenna on which they are
set. The medium may also be the cause to some uncertainties: in particular, the
wavenumber can vary, due to a significant variation of the temperature between
the sound sources and the microphones. In this paper, we present how both these
sources of uncertainty may be taken into account in the localization process.

The theory of belief functions, also known as Dempster-Shafer theory, is a
powerful tool for managing and mining uncertain data. The theory was devel-
oped by Dempster and Shafer [5,6,13]. The problem of statistical inference was
addressed in [13], and developed by Denoeux [7]. In this latter work, the au-
thor proposed a framework in which data uncertainty is represented using belief
functions. He then introduced an extension of the EM algorithm, the Evidential
EM (E2M) algorithm, which makes it possible to estimate the parameters of
the model from such uncertain data. In this paper, we will adopt this approach
for representing the uncertainties arising from ill-known microphone locations
and wavenumber, and for estimating the locations and strengths of the sound
sources.

The organization of this paper is as follows. In Section 2, we give the basic
description of the sound sources localization model in the case of precise data
and we show how the EM algorithm may be used to solve the parameter esti-
mation problem. In Section 3, we show how imprecise microphone locations and
wavenumber may induce an uncertainty on the sound pressures measured by the
microphones. Then, in Section 4, we detail our parameter estimation method for
such uncertain data using the E2M algorithm. Finally, Section 5 presents sim-
ulation experiments which show the advantage of the E2M algorithm in coping
with uncertain data, and Section 6 concludes the paper.

2 Sound Source Localization via the EM Algorithm

2.1 Basic Description of the Model

We assume that there are M microphones on a line, with known locations
(θm, 0),m = 1, . . . ,M . We consider N sound sources, the coordinates of the n-th
source being (ξn, ηn), n = 1, . . . , N . The signal received by the m-th microphone

164 X. Wang et al.

in each snapshot is the sum of components from different sources, altered by a
complex-valued Gaussian distributed noise:

xp = G(ξ, η)A + εp. (1)

Here xp = (x1p, . . . , xMp)
T is the vector of pressures measured by the M micro-

phones in the p-th snapshot. The M-by-N matrixG(ξ, η)=(G(ξn, ηn, θm))
M,N
m=1,n=1

describes the sound propagation process: the (m,n)-th entry of this matrix is the

Green functionG(ξn, ηn, θm) = e
jk

√
(ξn−θm)2+η2

n

2π
√

(ξn−θm)2+η2
n

, that is the operator which trans-

forms the signal emitted by the n-th source into the signal received by the m-th
microphone. The vector A = (A1, . . . , AN)T contains the strengths of the sound
sources. Eventually, εp = (ε1p, . . . , εMp)

T is a complex Gaussian-distributed noise.
Note that Re(εp) and Im(εp) are independent N(0, σ

2

2 IM) M -dimensional ran-
dom variables (here, IM stands for the M-by-M identity matrix).

2.2 The EM Algorithm

In this section, we give a brief introduction of the EM algorithm [4]. Let us denote
by x the incomplete or observed data, with probability density function (pdf)
g(x|Φ). Similarly, y stands for the complete (unknown) data, with pdf f(y|Φ).
Both f and g depend on the parameter vector Φ, which is to be estimated by
maximizing the log-likelihood of the observed data (observed log-likelihood)

L(Φ) = log g(x|Φ),

over Φ. For this purpose, the EM algorithm proceeds with the complete log-
likelihood by iterating back and forth between two steps:

– the E-step, where the expectation Q(Φ|Φ′) = E(log f(y|Φ)|x, Φ′) over the
unknown variables is computed, knowing the parameter vector Φ′ estimated
at the previous iteration;

– the M-step, where ML estimates of the parameters are determined by max-
imizing Q(Φ|Φ′) with respect to Φ.

It may be shown that, under regularity conditions, the EM algorithm con-
verges towards a local maximum of the observed log-likelihood [4,17].

2.3 Model Estimation Using the EM Algorithm

We now present how the problem of sound source localization may be addressed
using the EM algorithm. Let x = (x1, . . . , xP) be the vector of observed data.
For each observed vector of pressures xp, the complete data are the contributions
yp = (y1p, . . . , yNp) of the sound sources to these measured pressures: each vector
ynp represents the set of pressures emitted by the n-th source and received by
the microphones. Thus, xp is related to the ynp by

xp =

N∑
n=1

ynp.

Sound Source Localization Using the Evidential EM Algorithm 165

We have ynp ∝ N(Gn(ξn, ηn)An,
σ2

N IM), where Gn(ξn, ηn) is the n-th column of
the matrix G(ξ, η). Since the joint pdf of the complete data over all snapshots is

f(y; ξ, η, A, σ) =

P∏
p=1

N∏
n=1

f(ynp; ξn, ηn, An, σ),

we may write the complete log-likelihood:

logL(y; ξ, η, A, σ) = −2MNP log σ − N

σ2

P∑
p=1

N∑
n=1

|ynp −Gn(ξn, ηn)An|2 . (2)

Then, given the parameters Φl = (ξl, ηl, Al, σl) estimated at iteration l, the
(l + 1)-th iteration of EM algorithm consists in the E- and M-steps.

E-step: compute Q(Φ|Φl) = E(logL(y; ξ, η, A, σ)|x, ξl, ηl, Al, σl). For this pur-
pose, let us remind the following theorem ([15]):

Theorem 1. Let X and Y be n-dimensional Gaussian random vectors with ex-
pectation mX and mY and with covariance matrix ΣXX and ΣY Y . Let ΣXY =
Cov(X,Y) and ΣYX = Cov(Y,X), then the conditional pdf of Y given X is

N(mY +ΣYXΣ
−1
XX(x−mX), ΣY Y −ΣYXΣ

−1
XXΣXY).

Since (xp, ynp)T are jointly Gaussian with expectation (G(ξ, η)A Gn(ξn, ηn)An)
T ,

assuming that yn1p and yn2p are uncorrelated for n1 �= n2, the covariance matrix

of (xp, ynp)T is

(
σ2IM

σ2

N IM
σ2

N IM
σ2

N IM

)
. Then by Theorem 1, we obtain the conditional

expectation of ynp:

E(ynp|x, ξl, ηl, Al, σl) = Gn(ξ
l
n, η

l
n)A

l
n +

1

N
(xp −G(ξl, ηl)Al); (3)

in the following, we will denote this expectation by vlnp. For each n, we have

arg max
ξn,ηn,An

Q(Φ|Φl)

= arg min
ξn,ηn,An

P∑
p=1

E
(
|ynp −Gn(ξn, ηn)An|2 |x, ξl, ηl, Al, σl

)

= arg min
ξn,ηn,An

P∑
p=1

∣∣vlnp −Gn(ξn, ηn)An

∣∣2 . (4)

M-step: compute Φl+1 = (ξl+1, ηl+1, Al+1, σl+1) so as to maximize Q(Φ;Φl).

166 X. Wang et al.

The update equation for the strength An of the sources is obtained from (4),
for n = 1 . . . , N :

Al+1
n = argmin

An

∣∣eln −Gn(ξn, ηn)An

∣∣2 =
Gn(ξn, ηn)

Heln
Gn(ξn, ηn)HGn(ξn, ηn)

, (5)

in which we write

eln =
1

P

P∑
p=1

vlnp. (6)

Therefore, the estimates for the source location are obtained by minimizing

1

P

P∑
p=1

∣∣∣∣vlnp −Gn(ξn, ηn)
Gn(ξn, ηn)

Heln
Gn(ξn, ηn)HGn(ξn, ηn)

∣∣∣∣2 ,
which gives

ξl+1
n , ηl+1

n = arg min
ξn,ηn

∣∣∣∣eln −Gn(ξn, ηn)
Gn(ξn, ηn)

Heln
Gn(ξn, ηn)HGn(ξn, ηn)

∣∣∣∣2
= arg max

ξn,ηn

(eln)
HGn(ξn, ηn)Gn(ξn, ηn)

H

Gn(ξn, ηn)HGn(ξn, ηn)
eln. (7)

Finally, by computing and maximizing E(logL(y; ξl+1, ηl+1, Al+1, σ)|x, ξl, ηl,
Al, σl) with respect to σ, we obtain the estimate of the variance σ2:

(σ2)l+1=
1

MP

P∑
p=1

N∑
n=1

[
M(N − 1)(σl)2

N2
+

∣∣vlnp −Gn(ξ
l+1
n , ηl+1

n)Al+1
n

∣∣2] . (8)

We can see that (7) is a 2-parameter optimization problem. If we assume further
that all noise sources are on a line (ηn = z), it boils down to a single-parameter
optimization problem, which is easy to solve.

Eventually, the strategy for estimating the parameters of the model using the
EM algorithm may be summarized as follows:

1. For l = 0, pick starting values for the parameters ξ0, η0, A0, σ0.
2. For l ≥ 1:

– obtain eln from (6),
– obtain ξl+1

n , ηl+1
n , for n = 1, . . . , N from (7);

– obtain Al+1
n , n = 1, . . . , N by substituting ξl+1

n , ηl+1
n back into (5);

– obtain (σ2)l+1 from (8).
3. Continue this process until convergence: stop when the relative increase of

the observed data (incomplete data) log-likelihood is less than a given thresh-
old κ:

logL(x;Φl+1)− logL(x;Φl)

logL(x;Φl)
< κ. (9)

We remark that the computation of (σ2)l+1 from (8) may be skipped if we
just care the situation of the sound sources, since the estimates of the location
and the strength do not depend on σ2.

Sound Source Localization Using the Evidential EM Algorithm 167

3 Uncertainty Representation Using Belief Functions

3.1 Uncertain Measurements

In practice, uncertainty may pervade the measurement process, so that the sound
pressures measured by microphones are not precise. For example, it may be
difficult to give an exact location for the microphones due to the vibration of
the antenna. The medium may also be the cause to some uncertainties: e.g., the
wavenumber may be ill-known, due to a significant variation of the temperature
and thus of the sound velocity between the sound sources and the microphones.

In the next subsection, we will give a short introduction of the belief func-
tions theory, which is a powerful tool for representing and managing uncertain
information. Then we will describe how the uncertainties on the microphone lo-
cations and wavenumber may be transferred to the observed data in the belief
function framework.

3.2 Belief Functions

Let X be a variable taking values in a finite domain Ω. Uncertain information
about X may be represented by a mass function mΩ : 2Ω → [0, 1], where 2Ω

stands for the power set of Ω, such that
∑

A⊆Ω m(A) = 1. Any subset A of Ω
such that m(A) > 0 is called focal element of m. A mass function m may also be
represented by its associated belief and plausibility functions. Both are defined
for all A ⊆ Ω, by:

Bel(A) =
∑
B⊆A

m(B), P l(A) =
∑

B∩A �=φ

m(B).

We can interpret Bel(A) as the degree to which the evidence supports A, while
Pl(A) can be interpreted as an upper bound on the degree of support that
could be assigned to A if further evidence was available. Eventually, note that
the function pl : Ω → [0, 1] such that pl(ω) = Pl({ω}) is the contour function
associated to mΩ .

Belief Functions on the Real Line. Here we consider the case in which the
domain ΩX = R. In this case, a mass density can be defined as a function m
from the set of closed real intervals to [0,+∞) such that m([u, v]) = f(u, v) for
all u ≤ v, where f is a two-dimensional probability density function with support
in {(u, v) ∈ R2 : u ≤ v}. The intervals [u, v] such that m([u, v]) > 0 are called
focal intervals of m. The contour function pl corresponding to m is defined by
the integral:

pl(x) =

∫ x

−∞

∫ +∞

x

f(u, v)dvdu.

One important special case of continuous belief functions are Bayesian be-
lief functions, for which focal intervals are reduced to points. Then the two-
dimensional pdf has the following form: f(u, v) = p(u)δ(u − v), where p is a
univariate pdf and δ is the Dirac delta function. If we assume further that p is
a Gaussian pdf, then pl(x) is Gaussian contour function.

168 X. Wang et al.

3.3 Uncertain Data Model Using Belief Functions

We consider here the same model as described in Section 2. We have M mi-
crophones with coordinates (θm, 0),m = 1, . . . ,M , and N sound sources, with
coordinates (ξn, ηn), n = 1, . . . , N . The complete data are the signals emitted by
the sources: yp = (y1p, y2p, . . . , yNp), in which ynp = Gn(ξn, ηn)An + εnp, such

that xp =
N∑

n=1
ynp for all p = 1, . . . , P . In this section, we present how the uncer-

tainties on the microphone locations and on the wavenumber may be transposed
to the data. A variance estimation technique via first-order Taylor expansion [1]
is used here.

Assume X1 and X2 are two independent real-valued random variables and
E(X1) = μ1, E(X2) = μ2, Var(X1) = σ2

1 , Var(X2) = σ2
2 . Furthermore, we

assume f(x1, x2) is second-order differentiable and has real-valued inputs and
complex outputs. By first-order Taylor expansion in (μ1, μ2) we have

f(x1, x2) ≈ f(μ1, μ2) +
∂f

∂x1
(μ1, μ2)(x1 − μ1) +

∂f

∂x2
(μ1, μ2)(x2 − μ2),

and by the independence of X1 and X2, we obtain

E
(
|f(X1, X2)− f(μ1, μ2)|2

)
≈

∣∣∣∣ ∂f∂X1
(μ1, μ2)

∣∣∣∣2 σ2
1 +

∣∣∣∣ ∂f∂X2
(μ1, μ2)

∣∣∣∣2 σ2
2 .

Let us remind that the p-th pressure measured by the m-th microphone is

xmp =
N∑

n=1

ymnp =
N∑

n=1

G(ξn, ηn, θm)An =
N∑

n=1

ejk
√

(ξn−θm)2+η2
n

2π
√
(ξn − θm)2 + η2n

An,

for m = 1, . . . ,M , p = 1, . . . , P . Assume that the imprecise knowledge of the mi-
crophone locations and of the wavenumber is expressed by variances σ2

θ (assumed
to be the same for all the microphones) and σ2

k. First, we remark that

∂xmp

∂k
=

N∑
n=1

jAn

2π
ejkrmn , (10)

∂xmp

∂θm
=

N∑
n=1

An

2π

[
jk

rmn
ejkrmn − 1

r2mn

e−jkrmn

](
−ξn − θm

rmn

)
, (11)

m = 1, . . . ,M , where rmn =
√
(ξn − θm)2 + η2n is the distance from the n-th

source to the m-th microphone.
Then, we can transfer the uncertainties on the microphone locations and on

the wavenumber to the measured pressure. We assume that our imprecise knowl-
edge on the actual measured pressure may be represented using a Gaussian con-
tour function N(μ∗

mp, σ
2
mp) with expectation μ∗

mp = xmp and variance

σ2
mp ≈

∣∣∣∣∂xmp

∂k

∣∣∣∣2 σ2
k +

∣∣∣∣∂xmp

∂θm

∣∣∣∣2 σ2
θ . (12)

Note that this variance is a function of ξn, ηn and An for n = 1, . . . , N .

Sound Source Localization Using the Evidential EM Algorithm 169

4 Sound Source Localization from Credal Data

4.1 Likelihood Function of a Credal Sample

Let Y be a discrete random vector taking values in ΩY , with probability function
pY (y|Φ). Let y denote a realization of Y , referred to as the complete data. In
some cases, y is not precisely observed, but it is known for sure that y ∈ A for
some A ⊆ ΩY . The likelihood function given such imprecise data is:

L(Φ;A) = pY (A;Φ) =
∑
y∈A

pY (y|Φ).

More generally, our knowledge of y may be not only imprecise, but also un-
certain; it can be described by a mass function m on ΩY with focal elements
A1, . . . , Ar and corresponding masses m(A1), . . . ,m(Ar). To extend the likeli-
hood function, Denoeux [7] proposes to compute the weighted sum of the terms
L(Φ;Ai) with coefficients m(Ai), which leads to the following expression:

L(Φ;m) =

r∑
i=1

m(Ai)L(Φ;Ai) =
∑

y∈ΩY

pY (y|Φ)pl(y). (13)

The likelihood function L(Φ;m) thus only depends on m through its associated
contour function pl. Therefore, we will write indifferently L(Φ;m) or L(Φ; pl).

The above definitions can be straightforwardly transposed to continuous case.
Assume that Y is a continuous random vector with probability density function
pY (y|Φ) and let pl : ΩX → [0, 1] be the contour function of a continuous mass
function m on ΩX . The likelihood function given pl can be defined as:

L(Φ; pl) =

∫
ΩY

pY (y;Φ)pl(y)dy, (14)

assuming this integral exists and is nonzero.

4.2 The Evidential EM Algorithm

Here we remind how the classical EM algorithm may be extended so as to es-
timate the parameters of the model when the data at hand are imprecise. An
extensive presentation of this approach may be found in [7]. The new method is
called Evidential EM (E2M) algorithm, which maximizes the generalized crite-
rion introduced in the previous section.

At iteration l, the E-step of the E2M algorithm consists in computing

Q(Φ;Φl) = EΦl [logL(Φ; y)|pl(x)] . (15)

Note that this expectation is now computed with respect to the imprecise sample
known through the contour function pl(x). The M-step is unchanged and requires
the maximization of Q(Φ;Φl) with respect to Φ. As in the EM algorithm, the
E2M algorithm alternately repeats the E- and M-steps defined above until the
relative increase of the observed-data likelihood becomes smaller than a given
threshold.

170 X. Wang et al.

4.3 Sound Source Localization via the E2M Algorithm

In this section, we present the main results which lead to the update equations
of the parameter estimates ξ, η, A and σ2. For this purpose, we give a lemma
which will be used later. Due to page limitation, we omit the proof.

Lemma 1. IfX followsM -dimensional complex Gaussian distribution with mean
μ1 and covariance matrix σ2

1IM , that is f(x) = φ(x;μ1, σ
2
1IM), and if X is known

through the Gaussian contour function pl(x) = φ(x;μ2, σ
2
2IM), then

f(x)pl(x) = φ(x;
σ2
1μ2 + σ2

2μ1

σ2
1 + σ2

2

,
σ2
1σ

2
2

σ2
1 + σ2

2

IM)φ(μ1;μ2, (σ
2
1 + σ2

2)IM)

and

f(x|pl(x)) = φ

(
x;
σ2
2μ1 + σ2

1μ2

σ2
1 + σ2

2

,
σ2
1σ

2
2IM

σ2
1 + σ2

2

)
.

The log-likelihood of the complete data y is

logL(y; ξ, η, A, σ) = −2MNP log σ − N

σ2

P∑
p=1

N∑
n=1

|ynp −Gn(ξn, ηn)An|2 .

Since the partial knowledge of the actual pressure measured by the m-th micro-
phone is representedby a Gaussian contour function pl(xmp) = N(xmp;μ

∗
mp, σ

2
mp),

by the second equation of Lemma 1

f(xmp|pl(xmp)) = φ

(
xmp;

σ2
mp[G(ξ, η)A]m + σ2μ∗

mp

σ2
mp + σ2

,
σ2
mpσ

2

σ2
mp + σ2

)
,

where [v]m stands for the m-th element of the vector v. Then, by Theorem 1,

f(ymnp|xmp) = φ

(
ymnp; [Gn(ξn, ηn)An]m +

1

N
(xmp − [G(ξ, η)A]m),

N − 1

N2
σ2

)
,

from which we can deduce

f(ymnp|xmp)f(xmp|pl(xmp))

= N2φ
(
xmp; [G(ξ, η)A −N(ynp −Gn(ξn, ηn)An)]m , (N − 1)σ2

)
φ

(
xmp;

σ2
mp[G(ξ, η)A]m + σ2μ∗

mp

σ2
mp + σ2

,
σ2
mpσ

2

σ2
mp + σ2

)
.

Then, the conditional probability of ymnp given pl(xmp) is

f(ymnp|pl(xmp)) =

∫
f(ymnp|xmp)f(xmp|pl(xmp))dxmp, (16)

Sound Source Localization Using the Evidential EM Algorithm 171

and by the first equation in Lemma 1, we can write

f(ymnp|pl(xmp)) = φ

(
ymnp; vmnp,

1

N2

Nσ2μ∗
mp + (N − 1)σ4

σ2
mp + σ2

)
,

where vmnp = [Gn(ξn, ηn)An]m + 1
N

σ2(μ∗
mp−[G(ξ,η)A]m)
σ2
mp+σ2 . Then we obtain

E(ymnp|pl(xmp); ξ
l, ηl, Al, σl) = vlmnp,

where vlmnp is obtained by replacing the parameters ξ, η, A, σ by ξl, ηl, Al, σl in
vmnp. Eventually, for each n, for obtaining the estimates of ξn, ηn, An, the E2M
algorithm amounts to solve, at iteration l,

arg max
ξn,ηn,An

E
(
logL(y; ξ, η, A, σ)|pl(x); ξl, ηl, Al, σl

)
= arg min

ξn,ηn,An

P∑
p=1

M∑
m=1

∣∣∣∣∣vlmnp − [Gn(ξn, ηn)An]m

∣∣∣∣∣
2

. (17)

The M-step of the E2M algorithm thus corresponds to the following computa-
tions:
1. From (17), we obtain the estimate of An at (l + 1)-th step

Al+1
n =

Gn(ξn, ηn)
Heln

Gn(ξn, ηn)HGn(ξn, ηn)
, (18)

n = 1, . . . , N , where

eln = (el1n, e
l
2n, . . . , e

l
Mn)

T (19)

and elmn = 1
P

P∑
p=1

vlmnp.

2. Therefore, the update equation for the source location are obtained by

arg min
ξn,ηn

M∑
m=1

∣∣∣∣∣elmn − [Gn(ξn, ηn)]mGn(ξn, ηn)
H

|Gn(ξn, ηn)|2
eln

∣∣∣∣∣
2

= arg min
ξn,ηn

(eln)
HGn(ξn, ηn)Gn(ξn, ηn)

H

|Gn(ξn, ηn)|2
eln. (20)

3. Finally, we compute E
(
logL(y; ξl+1, ηl+1, Al+1, σ)|pl(x); ξl, ηl, Al, σl

)
and

maximize it with respect to σ, then the estimate of variance σ2 is given by

(σ2)l+1 =
1

MP

P∑
p=1

N∑
n=1

M∑
m=1

[
N(σl)2σ2

mp + (N − 1)(σl)4

N2((σl)2 + σ2
mp)

+
∣∣vlmnp − [Gn(ξ

l+1
n , ηl+1

n)Al+1
n]m

∣∣2]. (21)

172 X. Wang et al.

Finally, we could summarize the algorithm as the EM algorithm at the end of
Section 2.3, but Equations (5-8) are replaced by Equations (18-21). The stopping
criterion in this E2M algorithm is the same as in Equation (9), but the observed-
data log-likelihood is replaced by logL(Φ; pl), which is computed by:

logL(Φ; pl) = −MP log π −
M∑

m=1

P∑
p=1

[
log(σ2 + σ2

mp) +

∣∣μ∗
mp − [G(ξ, η)A]m

∣∣2
σ2 + σ2

mp

]
.

5 Experiments

5.1 Data Generation

We consider M = 11 microphones situated on the x-axis with locations θm = 0 :
0.1 : 1, and N = 2 sound sources with actual coordinates ξ1 = 0.3, ξ2 = 0.7, and
η1 = η2 = 0.3 (the locations of microphones and sound sources are displayed
in Figure 1 using pink stars and black crosses respectively.). The strengths of
both sources are A1 = 0.6 and A2 = 0.8. The theoretical wavenumber value is
k = 2πf/c, where the sound frequency is f = 500Hz and the sound velocity is
assumed to be c = 340m/s.

The number of snapshots (the amount of pressures measured by each micro-
phone) is set to P = 100. Then, we introduce noise in the microphone locations
and wavenumber, as follows. For a given value of σk, we generate a wavenumber
value according to a Gaussian distribution with mean k and standard devia-
tion σk. Similarly, we introduce noise in the microphone locations using means
θ1, . . . , θ11 and standard deviation σθ. Then, we obtain simulated pressures using
Equation (1), in which we set σ = 0.05. The contour functions modeling the un-
certainty on the pressures may be obtained using the method detailed in Section
3.3. The level of noise in the data, and consequently the amount of uncertainty,
may thus be controlled through the parameters σθ and σk.

Note that the quality of the estimates obtained via the EM and E2M algo-
rithms depend on the starting values for the parameters. Therefore, for a given
dataset, we let both algorithms run using 5 different sets of starting values, re-
taining the solution with highest log-likelihood. Remark that the variances of
the contour functions σ2

mp used in the E2M algorithm are computed using the
parameters ξn, ηn and An estimated via the EM algorithm. Since the data are
randomly generated, the above procedure (from data generation to model esti-
mation) is repeated 30 times, so that mean square errors (MSE) on the parameter
values and associated 95% confidence intervals may be computed.

5.2 Results

First, we set σk = 0.5 and σθ = 0.05, and we estimate the sound source lo-
cations (ξn, ηn) using EM and E2M. Figure 1 shows the 30 estimation results
of the source locations computed by EM (left figure) and E2M (right figure).

Sound Source Localization Using the Evidential EM Algorithm 173

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Fig. 1. Locations of the sources estimated using the EM (left) and E2M (right) algo-
rithms, with σk = 0.5 and σθ = 0.05

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

std of theta
(a)

sq
ua

re
 e

rr
or

 o
f e

st
im

at
or

 x
i,

st
d

of
 k

=
0

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

std of theta
(b)

sq
ua

re
 e

rr
or

 o
f e

st
im

at
or

 A
, s

td
 o

f k
=

0

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

std of k
(c)

sq
ua

re
 e

rr
or

 o
f e

st
im

at
or

 x
i,

st
d

of
 th

et
a=

0

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

std of k
(d)

sq
ua

re
 e

rr
or

 o
f e

st
im

at
or

 A
, s

td
 o

f t
he

ta
=

0

Fig. 2. MSE and 95% confidence intervals for the estimates of sound source locations
(ξ, η) (left) and strengths A (right) using EM (blue dash lines) and E2M (red full lines),
according to the level of uncertainty in the microphone locations (top) and wavenumber
(bottom)

The estimates obtained using E2M clearly exhibit a smaller spread around the
actual locations of the sources, which demonstrates its interest in terms of dealing
with uncertain data.

To corroborate these observations, we now study the MSE of the parameters
(ξn, ηn) and An estimated via both algorithms. We set σk = 0 and increase σθ
from 0 to 0.08. The estimated MSE of the sound source locations and strengths
are displayed in Figure 2 (top) along with 95% confidence intervals. Without

174 X. Wang et al.

surprise, the accuracy of the results obtained using both algorithms decreases
as the amount of noise increases. However, E2M proves to be much more robust
to the level of noise than EM: the difference clearly shows the interest of using
E2M. More specifically, when σθ increases, the MSE of the estimates obtained
via EM increase dramatically, while the MSE obtained using E2M stay under
an acceptable level. The same phenomenon may be observed when σθ = 0 and
σk increases from 0 to 1. The corresponding results are displayed in Figure
2 (bottom). Again, as the level of uncertainty σk increases, the MSE of the
estimates obtained via EM increases much more than those obtained with E2M,
which remains at an acceptable level.

6 Conclusions

In this paper, we addressed the problem of sound source localization from acous-
tical pressures measured by a set of microphones. The problem may be solved in
a statistical setting, by assuming that each pressure measured by a microphone
is the sum of contributions of the various sources, pervaded by a Gaussian noise.
The EM algorithm may then be used to compute maximum-likelihood estimates
of the model.

However, in many applications, some parameters of the model, such as the
microphone locations or the wavenumber, may be pervaded with uncertainty. In
this work, we show how this uncertainty may be transposed on the measured
pressures. We propose to model these uncertainties using belief functions. In this
case, the parameters of the model may be estimated using a variant of the EM
algorithm, known as the Evidential EM algorithm.

The results obtained on simulated data clearly show the advantage of tak-
ing into account the uncertainty on the data, in particular when the degree of
noise due to the ill-known parameters (microphone locations and wavenumber)
is high. Then, the results obtained using the E2M algorithm are more robust
than those obtained using the EM algorithm. The generalization of our method
to the general case of spatial sources, as well as its validation on real data, are
left for further work.

Acknowledgments. This work has been partially funded by the European
Union. Europe is committed in Picardy with the FEDER.

References

1. Bevington, P.R., Keith, D.: Data Reduction and Error Analysis for the Physical
Sciences, 3rd edn. McGraw-Hill, New York (2003)

2. Cirpan, H.A., Cekli, E.: Deterministic Maximun Likelihood Approach for Local-
ization of Near-Field Sources. International Journal of Electronics and Communi-
cations 56(1), 1–10 (2002)

3. Cirpan, H.A., Cekli, E.: Unconditional Maximum Likelihood Approach for Local-
ization of Near-Field Sources: Algorithm and Performance Analysis. International
Journal of Electronics and Communications 57(1), 9–15 (2003)

Sound Source Localization Using the Evidential EM Algorithm 175

4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B
(Methodological) 39(1), 1–38 (1977)

5. Dempster, A.P.: Upper and Lower Probabilities Induced by a Multivalued Map-
ping. Annals of Mathematical Statistics 38(2), 325–339 (1967)

6. Dempster, A.P.: Upper and Lower Probabilities Generated by a Random Closed
Interval. Annals of Mathematical Statistics 39(3), 957–966 (1968)

7. Denoeux, T.: Maximum Likelihood Estimation from Uncertain Data in the Be-
lief Function Framework. IEEE Transactions on Knowledge and Data Engineer-
ing 25(1), 119–130 (2013)

8. Denoeux, T.: Maximum Likelihood Estimation from Fuzzy Data Using the EM
Algorithm. Fuzzy Sets and Systems 183(1), 72–91 (2011)

9. Feder, M., Weinstein, E.: Parameter Estimation of Superimposed Signals Using EM
Algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing 36(4)
(2005)

10. Kabaoglu, N., Cirpan, H.A., Cekli, E., Paker, S.: Deterministic Maximum Likeli-
hood Approach for 3-D Near-Field Source Localization. International Journal of
Electronics and Communications 57(5), 345–350 (2003)

11. Quost, B., Denœux, T.: Clustering Fuzzy Data Using the Fuzzy EM algorithm.
In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS (LNAI), vol. 6379, pp.
333–346. Springer, Heidelberg (2010)

12. Render, R.A., Walker, H.F.: Mixture Densities, Maximum Likelihood and the EM
Algorithm. SIAM Review 26(2), 195–239 (1984)

13. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

14. Smets, P.: Belief Functions on Real Numbers. International Journal of Approximate
Reasoning 40(3), 181–223 (2005)

15. Rhodes, I.B.: A Tutorial Introduction to Estimation and Filtering. IEEE Transac-
tion on Automatic Control AC-16(6), 688–706 (1971)

16. Williams, E.G.: Fourier Acoustic: Sound Radiation and Nearfield Acoustical Holog-
raphy. Academic Press (1999)

17. Wu, J.C.F.: On the Convergence Properties of the EM Algorithm. Annals of Statis-
tics 11(1), 95–103 (1983)

An Improvement of Subject Reacquisition
by Reasoning and Revision

Jianbing Ma1,2, Weiru Liu2, Paul Miller2, and Fabian Campbell-West2

1 School of Electronics, Electrical Engineering and Computer Science, Queen’s University
Belfast, Belfast BT7 1NN, UK

2 School of Design, Engineering and Computing, Bournemouth University, BH12 5BB, UK
{w.liu,p.miller,f.h.campbell-west}@qub.ac.uk,

jma@bournemouth.ac.uk

Abstract. CCTV systems are broadly deployed in the present world. Despite
this, the impact on anti-social and criminal behaviour has been minimal. Sub-
ject reacquisition is a fundamental task to ensure in-time reaction for intelligent
surveillance. However, traditional reacquisition based on face recognition is not
scalable, hence in this paper we use reasoning techniques to reduce the compu-
tational effort which deploys the time-of-flight information between interested
zones such as airport security corridors. Also, to improve accuracy of reacquisi-
tion, we introduce the idea of revision as a method of post-processing. We demon-
strate the significance and usefulness of our framework with an experiment which
shows much less computational effort and better accuracy.

Keywords: Subject Reacquisition, Time-of-Flight, CCTV Surveillance, Event
Reasoning, Revision.

1 Introduction

During the last decade, there has been massive investment in Closed-Circuit TeleVision
(CCTV) technology in the UK. Currently, there are approximately four million CCTV
cameras operationally deployed. Despite this, the impact on anti-social and criminal
behaviour has been minimal. Although most incidents, also called events, are captured
on video, there is no response because very little of the data is actively analysed in real-
time. Consequently, CCTV operates in a passive mode, simply collecting enormous
volumes of video data. For this technology to be effective, CCTV has to become active
by alerting security analysts in real-time so that they can stop or prevent the undesirable
behaviour. Such a quantum leap in capability will greatly increase the likelihood of
offenders being caught, a major factor in crime prevention.

To ensure in-time reaction for intelligent surveillance, one fundamental task to utilize
CCTV videos is subject reacquisition1 [1, 2, 28]. Subject reacquisition is the process
of identifying a particular subject at a specific point in space and time given knowl-
edge of a previous observation. There are many methods of performing reacquisition,

1 It is also called object reacquisition, here we use the term subject reacquisition since we focus
on reacquiring people.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 176–189, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Improvement of Subject Reacquisition by Reasoning and Revision 177

but the general case is illustrated in Fig. 1. At each checkpoint (a camera/sensor) the
face information is captured and stored in a central repository. A comparison of these
features will reveal the most suitable match from a previous checkpoint for a subject at
the current checkpoint.

In the context of this paper and the concept demonstrator it is based on, the sen-
sors are standard CCTV cameras. A video analytic sub-system performs face detection
and recognition. As the number of subjects in the system increases, the reacquisition
problem becomes more difficult and mismatch becomes more likely. In addition, since
comparisons are made between the live subject and all previously observed subjects the
system is not scalable with large numbers of subjects. It is necessary to keep the po-
tential number of comparisons at a manageable number, which is a primary goal of the
event reasoning part.

To study subject reacquisition, in this paper, we consider a scenario which involves
a simple secure corridor. At each end of the corridor is video camera. One agent is re-
sponsible for managing the events generated by these sensors. The aim of the system
is to perform subject reacquisition. When presented with live data of subject X at the
second sensor, the subject reacquisition problem is to identify which subject previously
seen at the first sensor matches subject X (Same person always presents slightly differ-
ent images in different sensors). In this context, subject reacquisition is also known as
closed-set matching. This is one of the simplest scenarios that can benefit from artificial
intelligence techniques. Also, note that this kind of secure corridor does exist in a set of
airports, e.g., the Gatwick Airport2.

In this scenario, two simplification assumptions are introduced and listed as follows:

– Only one subject shall be considered at one time(no occlusions etc.)
– The subject will be co-operative at key points (i.e. looking at the camera for a few

frames)

The first assumption removes the need for tracking the subjects spatially and the second
removes the risk that no face is present. These two assumptions are reasonable. Actually
they are fully achieved in the secure corridor case in the Gatwick airport and other
airports.

Currently, common approaches for subject reacquisition are simply by face recogni-
tion. Although face provides a rich source of information, its recognition comes with
the price of uncertainty. A great deal of research effort has been applied to this area
aiming for increasing robustness. In all non-trivial scenarios, there will be sources of
errors in a pure video-analysis system and, if unchecked, these errors will propagate
and cause further mistakes.

In this paper, an alternative approach is proposed where classic imperfect subject
reacquisition (by face recognition algorithms) results are enhanced by using artificial
intelligence approaches including event reasoning3 and belief revision4. A real-world
experiment is introduced and the baseline results are presented. More precisely, in this

2 Currently they check passengers manually.
3 As in [24, 18, 20, 25, 5, 16, 21–23, 7], event reasoning uses domain information to combine

basic events to get high-level information.
4 Belief revision depicts the process that an agent revises its belief state upon receiving new

information [13, 19, 8, 9, 15, 12, 14, 11, 10, 17].

178 J. Ma et al.

Fig. 1. Classic Subject Reacquisition

Fig. 2. Subject Reacquisition Enhanced by Reasoning and Revision

paper, event reasoning is used as pre-processing to reduce the size of comparison sets
while belief revision, or the spirit of revision, is used as post-processing to enhance
the recognition accuracy, as shown in Fig. 2. Here by comparison set we mean when a
subject X is detected at sensor 2, the set of face models from sensor 1 that should be
extracted to be compared with the face model of X.

The remainder of this paper is organized as follows. In Section 2, we briefly intro-
duce our face recognition method. In Section 3, we state our event reasoning compo-
nent using the time-of-flight information to reduce sizes of comparison sets. Section 4
describes the experimental scenario. In Section 5, we discuss how to use revision to
improve accuracy of classification and reduce reacquisition failure. In Section 6, we
conclude the paper.

2 Face Recognition

In this section, we only briefly introduce the method we used for face recognition since
it is not the main focus of the paper.

The face recognition component is designed to be modular, so that different algo-
rithms can be substituted for any component provided it has an appropriate interface.

With each new frame provided by the sensor it is necessary to search for faces. Face
detection is a mature research area and there are many solutions available, among which
we have tried two famous detectors: the Viola-Jones detector [27] and the Luxand de-
tector [6]. The Viola-Jones detector is well-known, robust and good at finding faces
in images in terms of precision and recall, but is not consistent in the bounding box

An Improvement of Subject Reacquisition by Reasoning and Revision 179

returned of the detected face. So eventually we use the Luxand detector which pro-
vides more consistent results. Again, the Face Detection sub-system is modular, so any
algorithm that can return a bounding box of a face in an image can be used.

We have also applied illumination compensation which is the process of adjusting
the pixel intensities of an input image to match the illumination profile of a reference
image. The algorithm used in the system is adapted from [4].

Faces of the same subject within a series of frames are registered to one face model
and this model is stored in a buffer.

When a subject X is detected at sensor 2 reacquisition is performed by comparing ev-
ery available face image to the set of known models (and corresponding subjects). And
the subject in the set whose face model matches the most is chosen as the reacquired
subject.

For each detected subject, a SubjectDetected event is created which contains four
pieces of information needed. Let event i be denoted by the tuple

ei = (o, d, t,M)

where o is the source identifier, d is the subject identifier, t is the timestamp and M
is the face model. The source identifier is simply an integer that uniquely identifies the
sensor. The subject identifier is also an integer, but is relative to the source. For example
the subject with ID 1 at sensor 1 is not necessarily the same as the subject with ID 1 at
sensor 2. The timestamp is the frame number, but it is assumed that this is synchronised
across all sensors. The face model is a MACE filter produced from the face image. In
implementation, M can be recorded by a pointer to the face model.

In addition, it is useful to discuss which methods can be used to integrate the relia-
bilites of face recognition generated by different frames. Now we use a simple maxi-
mum coverage method. That is, if a face model is considered the most plausible by face
recognition in one frame, then its weight is added by one. After considering all frames,
we normalize the weights of all possible face models. We are trying to use probabilistic
and evidential [3, 26] methods to compare with the current one.

3 Reasoning by Time-of-Flight

When a subject is detected at sensor 2 the agent chooses face models from sensor 1
to match to the live data at sensor 2. Without limiting the comparisons the system is
not scalable. In addition, the greater the size of comparison set the more likely it is a
mismatch will be made. However, it is possible that by limiting the comparisons that
the real subject is not included.

Our system uses domain knowledge, in the form of an average time-of-flight be-
tween the sensors, to determine appropriate models. For instance, a person cannot ap-
pear within the detection zone A, and then appear in zone B within 10 seconds. But if
the time interval is changed to 10-20 seconds, then it could be possible; if the time-of-
flight is 20-40 seconds, it is highly possible; if the time is greater than 40 seconds, it
is less likely, etc.. Empirical probabilities for such information can be found by tests.
However, by now, we will use simple settings that in some special range of time-of-
flight, the certainty is 1 instead of probabilities.

180 J. Ma et al.

Let E be the set of all events an agent has received so far. The most recent event is
eN (the N -th event). If eN .o = 2, then the subject in this event needs to be reacquired.
Let C be the comparison set of events that contain face models relative to eN . The set
C is composed according to the following rule:

C = {ei : ei.o = 1, τ1 < eN .t− ei.t < τ2}

where τ1, τ2 are thresholds on time-of-flight determined through domain knowledge
indicating the lower and upper time limits for selecting subjects for comparison. Note
that since eN is the most recent event, eN .t ≥ ei.t is always true. This rule states that
the time difference between the event of the current subject being detected at sensor 2
and the subject in event ei being detected at sensor 1 is within the range (τ1, τ2). This
rule gives event correlation between the SubjectDetected events at sensors 1 and 2. This
is directly analogous to the data association problem in conventional tracking in which
observations, i.e. SubjectDetected events, are associated with predictions, i.e. the time
difference (τ1, τ2).

The average time-of-flight between sensors 1 and 2 is denoted by λF and is part of
the domain knowledge of the application. This domain knowledge is used to calculate
the time thresholds:

τ1 = λF − s
√
λF , τ2 = λF + s

√
λF

where s in the two above equations is a scalar which determines how many standard
deviations from the mean the threshold should be set.

4 Example Scenario

In the example scenario, 30 subjects pass between two checkpoints (sensors), as shown
in Fig. 3. The time of arrival of each subject at a checkpoint is determined by a random

Fig. 3. All 30 subjects in the experiment

variable with a Poisson distribution. The Poisson distribution is used in queuing models
for this purpose. It is characterized by a mean value, λ, which defines the probability
distribution according to the standard Poisson distribution such that:

p(t;λ) =
λte−λ

t!

where t is a non-negative integer.
Let the time of arrival of subject i at checkpoint 1 be denoted by ti. Without loss of

generality we set t1 = 1. The difference in arrival time, ai,j , between two consecutive
subjects i and j can be modeled as a random variable with an Exponential distribution
of mean denoted by λA. The arrival time of subject i at checkpoint 1 can be written as

ti = ti−1 + ai−1,i

An Improvement of Subject Reacquisition by Reasoning and Revision 181

for i > 1. For this scenario the values of ai,j were determined by a random number
generator with λA = 3.

The time-of-flight between checkpoints 1 and 2 can also be modeled as a random
variable with a Poisson distribution of mean λF . Let the time-of-flight for subject i be
denoted by Fi. Then the time of arrival of subject i at checkpoint 2, denoted by ui, can
be written as

ui = ti + Fi.

For this scenario the values of Fi were determined by a random number generator
with λF = 11.

The video data for the example scenario was created by manually editing existing
video footage to meet the requirements of the timing model above.

The method for choosing the comparison set, C, is described in the previous section.
Given the events produced for the example scenario, it is necessary to set λF = 11 and
s = 3.5 to ensure the comparison set always includes the correct subject. At s ≤ 3 the
comparison set for some subject at sensor 2 will be empty.

For illustration simplicity, here we list the system behavior on nine subjects, which
generates nine events at each sensor for a total of 18 input events. Reacquisition is
performed for every input event at the second sensor for a total of nine output events.

Fig. 4. The subject order at each sensor and the comparison sets for each subject

Fig. 45 shows the comparison set for each subject. Fig. 4 provides the orders each
subject is present at each camera and the comparison set for each subject. To avoid
confusion, the subjects are numbered according to their order at sensor 1. Between
sensors 1 and 2 subjects 3 and 5 changed places. This means subject 5 moved quickly
between the sensors and subject 3 moved slowly. Subjects 6 and 7 also changed places
while moving between sensors.

5 For the sake of privacy, we have blurred the faces used.

182 J. Ma et al.

Also from Fig. 4, we can see that our event reasoning method indeed reduces the size
of comparison set a lot. Classically each subject at sensor 2 should compare to 9 nine
candidates, but in our system, it only needs to compare to 5.3 candidates on average.
That is, we have a 41% decrease in computational effort. Actually, in our 30 people
experiment, the average size of comparison sets is 8, which saves 72% computational
effort. Not surprisingly, if the scale of scenario becomes larger, it will save even more
computational effort.

5 Revision

In this section, we discuss how to revise the face recognition results provided that there
are obvious errors in the results. First, we describe the experimental result.

5.1 Comparison Reasoning

The subject reacquisition result based on the comparison set is shown in the following
Fig. 5. In Fig. 5, we can see that in terms of classification results three out of nine

Fig. 5. Reacquisition result based on the comparison set

reacquisitions are incorrect, i.e., reacquisitions of subjects 1, 6, and 7, and one subject
was not reacquired at all.

Classification accuracy is defined as:

Accuracy =
correct classifications
total classifications

.

The results above yield an accuracy of 67%.

An Improvement of Subject Reacquisition by Reasoning and Revision 183

Reacquisition failure can occur for the following reasons:

1. A subject is falsely detected and therefore the reacquired model is incorrect.
2. A subject is not detected when present at the second sensor, so reacquisition is not

performed.
3. The subject is detected but wrongly reacquired. This can occur for the following

reasons:
(a) The comparison set C is empty.
(b) The comparison set C does not contain the true subject.
(c) The true subject is not chosen from the comparison set C.

Reasons 1, 2 and 3c on the list are failures of the video analytics, rather than the event
reasoning part. Reasons 3a and 3b are failures of the reasoning.

Reacquisition failure is clearly shown in Fig. 5.1. Until a better description of system

Fig. 6. Types of Errors in Reacquisition

failure is developed, the Reacquisition Failure measure will be calculated as

Reacq.Failure =
incorrect reacquisitions+missed reacquisitions

possible correct reacquisitions
= 4/9 = 44%.

This is different to 1-Accuracy, as it considers models that are not reacquired at all. The
failure measure is a worst-case view of the system, relative to the subjects rather than
just the system outcome. It can be described as the proportion of ’problematic’ subjects.
Note that it is possible for the failure measure to be greater than 1, which reflects the
imbalance between the number of ways the system can be correct versus the number of
ways the system can fail.

Note that Subject 9 is incorrectly reacquired as the seventh subject at sensor 2. This
raises the important issue of what to do once reacquisition has occurred. If the reacquisi-
tion is assumed correct, then subject 9 would be removed from subsequent comparisons
and the final comparison set would be empty.

184 J. Ma et al.

Note that if the system makes an incorrect classification that implies the system has,
or will, either make a duplicate reacquisition decision or will switch subjects. A du-
plicate reacquisition implies that one of the subjects has not been reacquired. Subject
switching is when two subjects are confused with each other.

In addition, in our 30 people experiment, the accuracy rate is 87% (26/30).

5.2 Revision of Reacquisition Results

When we have conflict reacquisition results, i.e., duplicate reacquisition, missing some-
one out, etc., we then use revision as a post-processing method to improve accuracy.

First, let us note that due to the closed world assumption, mistakes cannot happen in
isolation, one mistake should infer another. That is, if we have missed out on someone,
then there should be duplicate reacquisition, and vice versa.

The basic idea of revision in subject reacquisition can be described as follows: when
we have conflict classification results, we can first determine the more reliable clas-
sification result (which is provided by the degree of certainties of face classification
results), then we remove that candidate in the other conflicting comparison set. For in-
stance, if both subjects X and Y are classified as person A while reliability (i.e., degree
of certainty) shows the classification of X to A is more plausible, then we will remove
candidate A in the comparison set of Y, and then we can choose the best match for Y in
the new comparison set. This process is not strictly belief revision but deploys the idea
of revision in artificial intelligence.

Here we should note that mistakes can cascade. That is, if in the revision process,
we have wrongly removed a correct candidate from a comparison set, e.g., removing A
from the comparison set of Y, and we choose B as the reacquisition result of Y, then it is
possible that B has been reacquired by subject Z which makes another conflict between
the reacquisitions of Y and Z and a further revision should be taken, and so on. In this
sense, a wrong revision can destroy all correct reacquisition results.

To overcome this deficiency, we need to limit the amount of changes that can be
made. Here we propose two kinds of revision:

– One step revision
– Limited revision based on threshold

By one step revision, we mean we do not proceed if a revision result induces a
further conflict. For instance, suppose X and Y are classified as A, and Z is classified
as B. Assume r(X → A) > r(Y → A) (here r(X → A) is the degree of certainty for
X classified as A), Y should be revised as a second choice, and suppose it is B which
leads to further conflict with the reacquisition of Z. Now if r(X → A) < r(Z → B),
we just keep the original result, i.e., X, Y are classified as A and Z as B, else we keep
the revised result, i.e., X is classified as A and Y, Z as B. And we finish here.

In Algorithm 1, notation CY means the comparison set of Y. By applying Algorithm
1, we have the following result showing in Fig. 7: From Fig. 7, we find that two incorrect
reacquisitions have been corrected, which improves the Accuracy from 67% to 89%, a
22% increase in Accuracy, and the reacquisition failure rate is reduced from 44% to
22%. Also, from Fig. 7, we know that revision cannot always achieve consistency.

An Improvement of Subject Reacquisition by Reasoning and Revision 185

Algorithm 1. One Step Revision
Require: All subjects, their comparison sets and their reacquired results.
Ensure: Revised reacquired results.
1: for each set S of conflict subjects do
2: Revision = 1;
3: A = classified result of each subject in S;
4: X = maxS{r(X) : X ∈ S};
5: for each subject Y in S \ {X} do
6: TempReacq(Y) = maxCY {r(Y → B) : B ∈ CY \ {A}};
7: B = TempReacq(Y);
8: if exist Z, Reacq(Z)=B and r(X → A) < r(Z → B) then
9: Revision = 0;

10: BREAK;
11: end if
12: end for
13: if Revision = 1 then
14: for each subject Y in S \ {X} do
15: Reacq(Y) = maxCY {r(Y → B) : B ∈ CY \ {A}};
16: end for
17: end if
18: end for
19: return Revised reacquired results.

Fig. 7. Revised Reacquisition Result by One Step Revision

186 J. Ma et al.

In addition, for the 30 people experiment, the revised result achieves a remarkable
97% accuracy (29/30).

For limited revision, we should first introduce a threshold value t to indicate the
difference between reliabilities (degrees of certainty) of classification results. As men-
tioned above, again we suppose X and Y are classified as A and Z classified as B.

If r(X → A)− r(Y → A) >= t, then Y should be revised to a second choice, else
we do nothing. Now suppose Y is revised to B. Now

If r(Y → B) > r(Z → B)
if r(Y → B)− r(Z → B) > t, then we go on to revise the classification of Z,

and so on.
else we do nothing.

If r(Y → B) <= r(Z → B)
if r(Z → B)− r(Y → B) >= t, then we go on to revise the classification of

Y, and so on.
else we do nothing.

Each time reacquisition of some subject is changed, it may cause further revision.
Since limited revision does not rewind as done in one step revision (e.g., the revision of
Y from A to B can be rewound (Y changes back to A) by a further conflict reacquisition
Z), the algorithm of limited revision looks very simple.

Algorithm 2. Limited Revision
Require: All subjects, their comparison sets and their reacquired results, a threshold value t,

0 < t < 1.
Ensure: Revised reacquired results.
1: while exist a set S of conflict subjects do
2: A = classified result of each subject in S;
3: X = maxS{r(X) : X ∈ S};
4: for each subject Y in S \ {X} do
5: if r(X → A)− r(Y → A) >= t then
6: Reacq(Y) = maxCY {r(Y → B) : B ∈ CY \ {A}};
7: end if
8: end for
9: end while

10: return Revised reacquired results.

In this way, we can prove that revision (change of reacquisition result) can only hap-
pen for limited times, so we do not need to worry about the cascade mistake problem.
We have the following result.

Proposition 1. In Algorithm 2, revision for each subject can happen at most , 1
t - times.

Here , 1
t - is an integer less than or equal to 1

t .

Proof of Proposition 1: We only need to note that each time the reacquisition for a
subject is revised, its reliability to its reacquired result is reduced by at least t. So if it is
revised by l times, then we have lt <= 1, which leads to l ≤ , 1

t - (since l is an integer).

An Improvement of Subject Reacquisition by Reasoning and Revision 187

Of course, this , 1
t - is a theoretic limit. In practice, revision will happen much less.

In our experiment, limited revision happens to get the same result as one-step revision,
i.e., 97% (29/30). However, it could be expected that the results will be different when
the experiment scale gets larger.

6 Conclusion

In this paper, we proposed a system for monitoring subjects passing between two sen-
sors in a secure corridor. A hybrid real-synthetic scenario was created to model an au-
thentic flow of subjects through the corridor. The sensors use video analytics to detect
and learn face-based appearance models. Event reasoning using time-of-flight domain
knowledge is proved helpful in reducing the comparison set and saves much compu-
tational effort. In addition, revision is deployed in this system to improve accuracy.
Experimental results from the sequence show that revision does play an important role
in increasing accuracy and decreasing reacquisition failure.

Applying artificial intelligence ideas to video surveillance is not a new idea, e.g.,
[24, 20], but it is seldom to see AI applied to subject reacquisition. Our paper hence can
reminder researchers from the vision community and the AI community to be aware of
the advantages of each area..

For future work, since the video analytics system is modular, there is potential for
modifications to all aspects of the system. An evaluation of the different modules needs
to be completed to ensure the best parameters are being used. Other video features, like
clothing models and hair colour analysis can be incorporated.

For reasoning, currently generating the comparison is based on the time-of-flight of
subjects through the corridor. The choice of the thresholds τ1, τ2 is most important. If
the thresholds are too far apart the comparison set will include unnecessary samples. If
the thresholds are too close the true subject may not be in the comparison set and the
system will fail.

It may be more appropriate to use different values of s when calculating τ1 and τ2. A
better scheme might be to start with strict bounds and relax them if the set C is empty.
A problem with this, however, is that a non-empty set C that doesn’t contain the true
subject will definitely produce an incorrect reacquisition result. As a future work, we
will investigate how to choose these two thresholds in general, and, if not well chosen,
how does the system behave.

Detecting missed and/or duplicate reacquisitions is straightforward. Missed reac-
quisitions can be triggered by setting a maximum value on the time-of-flight between
sensors. If a subject from sensor 1 has not been reacquired before that time then the
agent must re-evaluate previous decisions with belief revision. Duplicate reacquisition
occurs when two reacquisitions link to the same subject ID at the previous sensor.

Also, we are performing a much bigger scale of experiment to validate our system,
and considering using other features (clothing color, Radio Frequency IDentification
(RFID), etc.) to further improve accuracy.

188 J. Ma et al.

References

1. Arth, C., Leistner, C., Bischof, H.: Object reacquisition and tracking in large-scale smart
camera networks. In: Procs. of 1st ACM/IEEE Distributed Smart Cameras, ICDSC 2007, pp.
156–163 (2007)

2. Campbell-West, F., Wang, H., Miller, P.: Where is it? object reacquisition in surveillance
video. In: Procs. of Machine Vision and Image Processing, IMVIP 2008, pp. 182–187 (2008)

3. Dempster, A.P.: A generalization of bayesian inference. J. Roy. Statist. Soc. Series B 30,
205–247 (1968)

4. Jiang, X., Fan, P., Ravyse, I., Sahli, H., Huang, J., Zhao, R., Zhang, Y.: Perception-based
lighting adjustment of image sequences. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.)
ACCV 2009, Part III. LNCS, vol. 5996, pp. 118–129. Springer, Heidelberg (2010)

5. Liu, W., Miller, P., Ma, J., Yan, W.: Challenges of distributed intelligent surveillance sys-
tem with heterogenous information. In: Procs. of QRASA, Pasadena, California, pp. 69–74
(2009)

6. Luxand.com. face recognition
7. Ma, J.: Qualitative approach to bayesian networks with multiple causes. IEEE Transactions

on Systems, Man, and Cybernetics, Part A 42(2), 382–391 (2012)
8. Ma, J., Benferhat, S., Liu, W.: Revising partial pre-orders with partial pre-orders: A unit-

based revision framework (2012)
9. Ma, J., Benferhat, S., Liu, W.: Revision over partial pre-orders: A postulational study. In:

Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 219–
232. Springer, Heidelberg (2012)

10. Ma, J., Liu, W.: A general model for epistemic state revision using plausibility measures. In:
Procs. of ECAI, pp. 356–360 (2008)

11. Ma, J., Liu, W.: Modeling belief change on epistemic states. In: Procs. of FLAIRS (2009)
12. Ma, J., Liu, W.: A framework for managing uncertain inputs: An axiomization of rewarding.

Int. J. Approx. Reasoning 52(7), 917–934 (2011)
13. Ma, J., Liu, W., Benferhat, S.: A belief revision framework for revising epistemic states with

partial epistemic states. In: Procs. of AAAI, pp. 333–338 (2010)
14. Ma, J., Liu, W., Dubois, D., Prade, H.: Revision rules in the theory of evidence. In: Procs. of

ICTAI, pp. 295–302 (2010)
15. Ma, J., Liu, W., Dubois, D., Prade, H.: Bridging Jeffrey’s rule, AGM revision and Demp-

ster conditioning in the theory of evidence. International Journal on Artificial Intelligence
Tools 20(4), 691–720 (2011)

16. Ma, J., Liu, W., Hunter, A.: Inducing probability distributions from knowledge bases with
(in)dependence relations. In: Procs. of AAAI, pp. 339–344 (2010)

17. Ma, J., Liu, W., Hunter, A.: Modeling and reasoning with qualitative comparative clinical
knowledge. Int. J. Intell. Syst. 26(1), 25–46 (2011)

18. Ma, J., Liu, W., Miller, P.: Event modelling and reasoning with uncertain information for dis-
tributed sensor networks. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379,
pp. 236–249. Springer, Heidelberg (2010)

19. Ma, J., Liu, W., Miller, P.: Belief change with noisy sensing in the situation calculus. In:
Procs. of UAI (2011)

20. Ma, J., Liu, W., Miller, P.: Handling sequential observations in intelligent surveillance. In:
Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 547–560. Springer, Heidel-
berg (2011)

21. Ma, J., Liu, W., Miller, P.: A characteristic function approach to inconsistency measures
for knowledge bases. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012.
LNCS, vol. 7520, pp. 473–485. Springer, Heidelberg (2012)

An Improvement of Subject Reacquisition by Reasoning and Revision 189

22. Ma, J., Liu, W., Miller, P.: Evidential fusion for gender profiling. In: Hüllermeier, E., Link, S.,
Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 514–524. Springer, Heidelberg
(2012)

23. Ma, J., Liu, W., Miller, P.: An evidential improvement for gender profiling. In: Denœux, T.,
Masson, M.-H. (eds.) Belief Functions: Theory & Appl. AISC, vol. 164, pp. 29–36. Springer,
Heidelberg (2012)

24. Ma, J., Liu, W., Miller, P., Yan, W.: Event composition with imperfect information for bus
surveillance. In: Procs. of AVSS, pp. 382–387. IEEE Press (2009)

25. Miller, P., Liu, W., Fowler, F., Zhou, H., Shen, J., Ma, J., Zhang, J., Yan, W., McLaughlin, K.,
Sezer, S.: Intelligent sensor information system for public transport: To safely go. In: Procs.
of AVSS (2010)

26. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
27. Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In:

Procs. of IEEE CVPR, pp. 511–518 (2001)
28. Walter, M.R., Friedman, Y., Antone, M., Teller, S.: Appearance-based object reacquisition

for mobile manipulation. In: Procs. of IEEE Computer Vision and Pattern Recognition Work-
shops, CVPRW, pp. 1–8 (2010)

Belief Functions:

A Revision of Plausibility Conflict
and Pignistic Conflict

Milan Daniel

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodárenskou věž́ı 2, CZ – 182 07 Prague 8, Czech Republic

milan.daniel@cs.cas.cz

Abstract. Plausibility conflict of belief functions is based on decisional
support / opposition of elements of a frame of discernment. It distin-
guishes conflict between belief functions from internal conflicts of indi-
vidual functions.

This contribution presents a revision of plausibility conflict between
belief functions. According to four types of conflicting sets, four variants
of plausibility conflict are defined. Further, a new alternative approach
— pignistic conflict — based on pignistic probability instead of on nor-
malized plausibility of singletons is introduced. Its cautious version may
be considered to be an improvement of Liu’s degree of conflict cf .

Comparing the approaches, a relation of sum of conflicting belief
masses m∩©(∅) and a relation of a distance of belief functions to con-
flict between belief functions are also discussed.

Keywords: belief functions, Dempster-Shafer theory, internal conflict,
conflict between belief functions, plausibility conflict, pignistic conflict,
degree of conflict, uncertainty.

1 Introduction

Belief functions are one of the widely used formalisms for uncertainty represen-
tation and processing that enable representation of incomplete and uncertain
knowledge, belief updating, and combination of evidence. They present a prin-
cipal notion of the Dempster-Shafer Theory or the Theory of Evidence [17].

When combining belief functions (BFs) by the conjunctive rules of combina-
tion, conflicts often appear which are assigned to ∅ by non-normalized conjunc-
tive rule ∩© or normalized by Dempster’s rule of combination ⊕. Combination
of conflicting BFs and interpretation of conflicts is often questionable in real
applications, thus a series of alternative combination rules was suggested and a
series of papers on conflicting belief functions was published, e.g. [2,4,14,20].

In [7], new ideas concerning interpretation, definition, and measurement of
conflicts of BFs were introduced. We presented three new approaches to interpre-
tation and computation of conflicts: combinational conflict, plausibility conflict,
and comparative conflict. Important distinction of conflicts between BFs from

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 190–203, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Conflicts of Belief Functions 191

internal conflicts of single BF, and distinction of a conflict between BFs from a
difference between BFs was introduced there. Properties of the most elaborated
and prospective of the three approaches — plausibility conflict of BFs — are
studied in [10].

The presented study brings a revision and improvement of the plausibility
conflict for a specific class of couples of BFs, where the original formulation does
not work well; the improvement idea has motivated several variants of definition
of conflicting set, from which the conflict is computed (Section 3). A new alterna-
tive approach based on pignistic probability instead of on normalized plausibility
of singletons (normalized contour function) is also discussed and compared to
the plausibility conflict (Sect. 4). Pignistic conflict is further compared to Liu’s
degree of conflict [14] in Section 4.2, which also discusses a relation of sum of
conflicting masses and a relation of distance of BFs to conflict between the BFs.

2 State of the Art

2.1 General Primer on Belief Functions

We assume classic definitions of basic notions from theory of belief functions [17]
on finite frames of discernment Ωn = {ω1, ω2, ..., ωn}, see also [4–9].

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such
that

∑
A⊆Ω m(A) = 1; the values of the bba are called basic belief masses

(bbm). m(∅) = 0 is usually assumed. A belief function (BF) is a mapping
Bel : P(Ω) −→ [0, 1], Bel(A) =

∑
∅�=X⊆Am(X). A plausibility function Pl(A) =∑

∅�=A∩X m(X). There is a unique correspondence among m and corresponding
Bel and Pl thus we often speak about m as of belief function.

A focal element is a subsetX of the frame of discernment, such thatm(X) > 0.
If all the focal elements are singletons (i.e. one-element subsets of Ω), then
we speak about a Bayesian belief function (BBF); in fact, it is a probability
distribution on Ω. In the case of m(Ω) = 1 we speak about vacuous BF (VBF).

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕m2)(A) =∑
X∩Y=AKm1(X)m2(Y) forA �= ∅, whereK= 1

1−κ , κ=
∑

X∩Y=∅m1(X)m2(Y),
and (m1 ⊕m2)(∅) = 0, see [17]; putting K = 1 and (m1 ⊕m2)(∅) = κ we obtain
the non-normalized conjunctive rule of combination ∩©, see e. g. [18].

Normalized plausibility of singletons1 of Bel is BBF such that Pl({ωi})∑
ω∈Ω Pl({ω}) ;

the formula is also used as definition of probability transformation Pl P of BF

Bel: (Pl P (Bel))(ωi) =
Pl({ωi})∑

ω∈Ω Pl({ω}) [3,5]. Smets’ pignistic probability is given

by BetP (ω) =
∑

ω∈X⊆Ω
1

|X|
m(X)

1−m(∅) [18].

2.2 Conflict of Belief Functions

When combining two BFs Bel1, Bel2 given by m1 and m2 conflicting belief
masses m1(X) > 0, m2(Y) > 0, where X ∩ Y = ∅, often appear. The sum of

1 Plausibility of singletons is called contour function by Shafer in [17], thus P l P (Bel)
is a normalization of contour function in fact.

192 M. Daniel

products of such conflicting masses corresponds to m(∅) when non-normalized
conjunctive rule of combination ∩© is applied and m = m1 ∩©m2. This sum is
considered to be a conflict between belief functions Bel1 and Bel2 in [17]2; this
interpretation is commonly used when dealing with conflicting belief functions.
Unfortunately, the name and interpretation of this notion does not correctly
correspond to reality. We often obtain positive sum of conflicting belief masses
even if two numerically same belief functions3 are combined, see e.g. examples
discussed by Almond [1] already in 1995 and by Liu [14], for another examples
see [7].

Liu further correctly demonstrates [14] that neither distance nor difference
are adequate measures of conflicts between BFs. (For relation of distance and
conflict see Section 4.2.) Thus Liu uses a two-dimensional (composed) measure
degree of conflict cf(m1,m2) = (m∩©(∅), difBetm2

m1
) (see also Section 4.2). Liu

puts together two previous non-adequate measures of conflict m∩©(∅) and a dis-
tance together as two components of a new measure of conflict between BFs cf ;
unfortunatelly this does not capture a nature of conflictness / non-conflictness
between BFs. For detail see Example 5 in Section 4.2. Hence this progressive
approach should be further developed.

Internal conflicts IntC(mi) which are included in particular individual BFs
are distinguished from conflict between BFs C(m1,m2) in [7]; the entire sum of
conflicting masses is called total conflict; and three approaches to conflicts were
introduced: combinational, plausibility and comparative. In this study, we will
discuss the most elaborated and most prospective of the three approaches — the
plausibility conflict.

An internal conflict of a BF is a conflict included inside an individual BF.
BF is non-conflicting if it is consistent (it has no internal conflict) otherwise it
is internally conflicting. A conflict between BFs is a conflict between opinions of
believers which are expressed by the BFs (the individual attitudes of believers;
particular BFs may be internally conflicting or non-conflicting). If there is a pos-
itive conflict between BFs, we simply say that the BFs are mutually conflicting;
otherwise they are mutually non-conflicting, i.e., there is no conflict between
them.

Analogously to the original m∩©(∅) and cf , the three approaches from [7],
including the plausibility conflict (Def. 1 and 2), seem to be rather empirical.
For introductive axiomatic studies of conflicts between BFs see [11] and [16],
unfortunately these studies do not yet capture a real nature of conflict, as e.g.
Martin adds a non-correctly presented or ad-hoc strong axiom of inclusion [16]
and proposes an inclusion-weighted distance as a measure of conflict. Hence, this
interesting and complex topic is still open for discussion and further development.
The important ideas from [11] and [16] should be studied and elaborated together
with those from [7].

2 A weight of conflict between BFs Bel1 and Bel2 is defined as log 1
1−m∩©(∅) in [17].

3 All BFs combined by ⊕ and ∩© are assumed to be mutually independent, even if they
are numerically same.
m∩©(∅) is called autoconflict when numerically same BFs are combined [16].

Conflicts of Belief Functions 193

Two BFs on a 2−element frame of discernment which both support/prefer the
same element of the frame (i.e., both oppose the other element) are assumed to be
mutually non-conflicting in [7] (there is no conflict between them); otherwise they
are mutually conflicting. Unfortunately, the generalization of this assumption to
general finite frame was not precise, thus the original definitions of plausibility
conflict need correction (see Section 3). Conflict between BFs is distinguished
from internal conflict in [7,10] thus two definitions were introduced in [7]:

Definition 1. The internal plausibility conflict Pl-IntC of BF Bel is defined as

Pl-IntC(Bel) = 1−maxω∈ΩPl({ω}),
where Pl is the plausibility corresponding to Bel.

Definition 2. The conflicting set ΩPlC(Bel1, Bel2) is defined as the set of el-
ements ω ∈ Ωn with conflicting Pl P masses, i.e., ΩPlC(Bel1, Bel2) = {ω ∈
Ωn | (Pl P (Bel1)(ω)− 1

n)(Pl P (Bel2)(ω)− 1
n) < 0}.

Plausibility conflict between BFs Bel1 and Bel2 is then defined by the formula

Pl-C(Bel1, Bel2) = min(Pl-C0(Bel1, Bel2), (m1 ∩©m2)(∅)),
where4

Pl-C0(Bel1, Bel2) =
∑

ω∈ΩPlC(Bel1,Bel2)

1

2
|Pl P (Bel1)(ω)− Pl P (Bel2)(ω)|.

If ΩPlC(Bel1, Bel2) = ∅ then BFs Bel1 and Bel2 on Ωn are mutually non-
conflicting. The reverse statement does not hold true for n > 2, see e.g. Exam-
ple 1 (i.e. Example 5 from [7], Example 8 from [6]). Any two BFs (m1({ω1}),
m1({ω2})) = (a, b) and (m2({ω1}),m2({ω2})) = (c, d) on Ω2 are mutually non-
conflicting iff ΩPlC((a, b), (c, d)) = ∅ iff (a− b)(c− d) ≥ 0.

Usingm∩©(∅), degree of conflict cf , or measures of conflict based on a distance,
a misclassification of BFs as beeing in mutual conflict sometimes appear. This
is not a problem of the plausibility conflict which detects conflict according
to harmonious/disharmonious support/opposition of individual elements of the
frame of discernment by the BFs in question. For more properties of plausibility
conflict Pl-C and its comparison with Liu’s degree of conflict cf [14] see [10].

Example 1. Let us suppose Ω6, now; and two intuitively non-conflicting BFs m1

and m2.
X : {ω1} {ω2} {ω3} {ω4} {ω5} {ω6} {ω1, ω2, ω3, ω4}

m1(X) : 1.00
m2(X) : 1.00

Pl P (m1) = (1.00, 0.00, 0.00, 0.00, 0.00, 0.00),
Pl P (m2) = (0.25, 0.25, 0.25, 0.25, 0.00, 0.00), (we mean Pl P (Beli) for Beli cor-
responding tomi), ΩPlC(mi,mj) = {ω2, ω3, ω4}, as Pl P (m2)(ωi)=

1
4>

1
6 for i=

2, 3, 4, whereas Pl P (m1)(ωi) = 0 < 1
6 for i = 2, 3, 4, (the other elements are non-

conflicting: Pl P (m1)(ω1) = 1 > 1
6 , Pl P (m2)(ω1) = 1

4 > 1
6 , Pl P (m1)(ωi) =

0 = Pl P (m2)(ωi) for i = 5, 6; Pl-C(m1,m2) = min(0.375, 0.00) = 0.00.

4 P l-C0 is not a separate measure of conflict in general; it is just a component of P l-C.

194 M. Daniel

3 Revision and Improvement of Plausibility Conflict

3.1 A Set of Conflicting Belief Functions with Empty ΩPlC

While developing a brand new approach to conflicts which is based on decom-
position of belief functions to their conflicting and non-conflicting parts [8], and
comparing the approach under development with plausibility conflict, a special
class of conflicting pairs of BFs with ΩPlC = ∅ was observed: pairs of BFs
which support and oppose same sets of elements of Ω (i.e., mi({ωj}) is always
≥ 1

n or always ≤ 1
n for i = 1, 2 and any fixed j), but where {ω |Pl P1(ω) =

maxiPl P1(ωi)} ∩ {ω |Pl P2(ω) = maxiPl P2(ωi)} = ∅, see e.g. Example 2.

Example 2. Let us suppose Ω3, now; and two BFs m1 and m2 given as follows:
X : {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω3

m1(X) : 0.3 0.2 0.1 0.3 0.1
m2(X) : 0.3 0.4 0.1 0.1 0.1

Pl P (m1) = (0.4666, 0.4000, 0.1333), Pl P (m2) = (0.3846, 0.4615, 0.1539),
Pl P (m1)(ω1), P l P (m1)(ω2), P l P (m2)(ω1), P l P (m2)(ω2) > 0.33,
Pl P (m1)(ω3), P l P (m2)(ω3) < 0.33, hence ΩPlC(mi,mj) = ∅ (as all the ele-
ments are non-conflicting according to definition from [7]);
m(∅) = 0.08+0.008+0.15+0.03 = 0.34; Pl-C(m1,m2) = min(0.00, 0.34) = 0.00.

BFs m1 and m2 are classified as non-conflicting by Pl-C. There is really a
relatively high consensus of BFs. Both m1 and m2 support the elements ω1 and
ω2 (i.e., mi({ωj}) > 1

3) and oppose ω3 (i.e., mi({ω3}) < 1
3). A majority of focal

elements have the same belief: Bel1({ω1}) = Bel2({ω1}) = 0.3, Bel1({ω3}) =
Bel2({ω3}) = 0.1, Bel1({ω1, ω2}) = Bel2({ω1, ω2}) = 0.8, Bel1({ω1, ω3}) =
Bel2({ω1, ω3}) = 0.4; only beliefs of {ω2} and of {ω2, ω3} differ: Bel1({ω2}) =
0.2, Bel2({ω2}) = 0.4, Bel1({ω2, ω3}) = 0.3, Bel2({ω2, ω3}) = 0.5. Analogously,
a majority of focal elements have the same plausibility: Pl1({ω2}) = Pl2({ω2}) =
0.6, Pl1({ω3}) = Pl2({ω3}) = 0.2, Pl1({ω1, ω2}) = Pl2({ω1, ω2}) = 0.9,
Pl1({ω2, ω3}) = Pl2({ω2, ω3}) = 0.7; only plausibilities of {ω1} and of {ω1, ω3}
differ: Pl1({ω1})=0.7, P l2({ω1})=0.5, Pl1({ω1, ω3})=0.8, P l2({ω1, ω3})=0.6.

The problem arises when we want to make a decision as ω1 has highest be-
lief, plausibility, Pl P and also BetP for Bel1, whereas ω2 has highest belief,
plausibility, Pl P and also BetP , in the case of Bel2. (There is BetP1(ω1) =
0.483, BetP1(ω2) = 0.383, BetP1(ω3) = 0.133, BetP2(ω1) = 0.383, BetP2(ω2) =
0.483, BetP2(ω3) = 0.133.) Hence the belief functions produce different decision,
thus it is not correct to classify them as non-conflicting.

The problem comes from the incorrect generalization of the idea of plausibility
conflict from 2-element frame of discernment Ω2 to a general Ωn in [7]. When
ωi is supported (preferred) by a BF Bel, it automatically has higher values of
Bel, Pl, Pl P and BetP than ωj �= ωi, i.e. ωi has the highest Pl P of both two
elements of Ω2. A situation is much more complicated in the case of general
frame of discernment, thus we have to add to conflicting set also elements with
maximal Pl P if they are different, independently of the fact whether both of
these elements are prefered by both of the BFs or not.

Conflicts of Belief Functions 195

Example 2 (cont.). Including ω1 and ω2 into conflicting set ofm1 and m2 we ob-
tain 1

2 (0.4666−0.3846) = 0.082/2 for ω1 and 0.0615/2 for ω2, thus Pl-C0(m1,m2)
= (0.082+0, 0615)/2 = 0.0718, and Pl-C(m1,m2) = min(0.0718, 0.34) = 0.0718.

There is a small plausibility conflict Pl-C between Bel1 and Bel2 which cor-
responds both to different decision made according to the beliefs (conflictness)
and to high consensus of both the beliefs (the value of the conflict is small).

3.2 Four Variants of Correction of Conflicting Sets

According to the previous subsection it is obvious that we have to add singletons
with the highest Pl (if they are different) into the conflicting set of the beliefs.
In relation to this two questions arise:

A decision is made according to the highest (normalized) plausibility; is it
necessary to consider singletons which have not the highest plausibility as ele-
ments of the conflicting set? Is it not enough to decide conflictness and compute
a conflict between BFs just from maximal plausibilities if they arise at different
singletons?

On the other side, there are many pairs of BFs which are not conflicting
according to the plausibility conflict, but they are conflicting according to m(∅),
conflict measures based on a distance [15,16] and according to Liu’s cf [14]. Is it
enough to add the singletons with the highest plausibility into the conflicting set
or it is necessary to add something more, e.g., singletons with different ordering
number when ordered with respect to their (normalized) plausibility?

Keeping these questions open for a future discussion, denoting the original
conflicting set ΩPlC from [7] (Section 2, Def. 2 here) as ΩPlC0 , and defining a
partial order Ord of the elements of Ωn, we can define four different conflicting
sets for any pair of BFs: ΩsmPlC , ΩspPlC , ΩcpP lC and ΩcbP lC , according to the
possible answers to the questions above.

Definition 3. Let us denote ΩPlC0(Bel1, Bel2) = {ω ∈ Ωn | (Pl P (Bel1)(ω)−
1
n)(Pl P (Bel2)(ω) − 1

n) < 0}. Let us define Ord : Ωn −→ P({1, 2, ..., n}), such
thatOrd(ω)={k1, k1+1, ..., km} iff there exist just k1−1 elements ωi s.t. Pl P (ωi)
> Pl P (ω) and there exist just n−km elements ωj s.t. Pl P (ωj) < Pl P (ω).

Now, we can define simple conflicting set ΩsmPlC by ΩsmPlC(m1,m2) = ∅ if
{ω | 1∈Ord1(ω)}∩{ω | 1∈Ord2(ω)} �= ∅, ΩsmPlC(m1,m2) = {ω | 1∈Ord1(ω)}∪
{ω | 1 ∈ Ord2(ω)} if {ω | 1 ∈ Ord1(ω)} ∩ {ω | 1 ∈ Ord2(ω)} = ∅, where Ordi is
partial order defined by Pl Pi (i.e. defined by Pli).

Let us further define support conflicting set ΩspPlC by ΩspPlC(m1,m2) =
ΩPlC0(m1,m2) ∪ ΩsmPlC(m1,m2); comparative conflicting set ΩcpP lC by
ΩcpP lC(m1,m2) = {ω |Ord1(ω) ∩ Ord2(ω) = ∅} and combined conflicting set
ΩcbP lC as ΩcbP lC(m1,m2) = ΩPlC0(m1,m2) ∪ΩcpP lC(m1,m2).
Using these four types of conflicting sets we can define 4 different conflictness
smPl-C, spP l-C, cpP l-C and cbP l-C and related procedures for computation of
conflict.

Using any of these four variants of conflicting sets instead of the original ΩPlC

corrects the definition of the plausibility conflict between BFs (Def. 2).

196 M. Daniel

3.3 Properties of Conflicting Sets ΩsmPlC , ΩspPlC , ΩcpPlC , ΩcbP lC

Lemma 1. The following inclusions hold true for any couple of belief functions
Bel1, Bel2:
(i) ΩsmPlC(Bel1, Bel2) ⊆ ΩspPlC(Bel1, Bel2) ⊆ ΩcbP lC(Bel1, Bel2).
(ii) ΩsmPlC(Bel1, Bel2) ⊆ ΩcpP lC(Bel1, Bel2) ⊆ ΩcbP lC(Bel1, Bel2).
(iii) There exist couples of belief functions Bel1 and Bel2 such that the above
inclusions are proper. Hence there are four different types of plausibility conflict
in general.

Proof. Proofs of (i) and (ii) follow the construction of conflicting sets. Proof of
(iii) follows Examples 3 and 4.

Lemma 2. (i) The following holds true for any belief function Bel defined on
n-element frame of discernment Ωn: ΩsmPlC(Bel, Bel) = ΩspPlC (Bel, Bel) =
ΩcpP lC(Bel, Bel) = ΩcbP lC(Bel, Bel) = ΩPlC0(Bel, Bel) = ∅.
(ii) The following holds true for any couple of belief functions Bel1, Bel2 defined
on 2-element frame of discernment Ω2: ΩsmPlC(Bel1, Bel2)=ΩspPlC (Bel1, Bel2)
= ΩcpP lC(Bel1, Bel2) = ΩcbP lC(Bel1, Bel2) = ΩPlC0(Bel1, Bel2).

Corollary 1. There is only one type of plausibility conflict (according to the
previous definitions) on two-element frame of discernment Ω2.

Example 3. Let suppose Ω3 now; and two BFs m1 and m2:
X : {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω3

m1(X) : 0.3 0.3 0.1 0.3
m2(X) : 0.4 0.1 0.1 0.4

Pl P (m1) = (0.45, 0.35, 0.20), Pl P (m2) = (0.45, 0.30, 0.25),
Ord1(ω1)={1}, Ord1(ω2)={2}, Ord1(ω3)={3}, Ord2(ω1)={1}, Ord2(ω2)={2},
Ord2(ω3)={3}, thus Ord1≡ Ord2, and ΩsmPlC(m1,m2)=ΩcpP lC(m1,m2)=∅.
Pl P (m1)(ω1), P l P (m1)(ω2), P l P (m2)(ω1) > 0.33,
Pl P (m1)(ω3), P l P (m2)(ω2), P l P (m2)(ω3) < 0.33, hence ΩspPlC (m1,m2) =
{ω2} as (Pl P (m1)(ω2)− 1

n)(Pl P (m2)(ω2)− 1
n) = (0.35−0.33)(0.30−0.33) < 0,

hence ω2 ∈ ΩspPlC(m1,m2) (both other elements are non-conflicting).
Thus we have ∅ = ΩcpP lC(m1,m2) ⊂ ΩspPlC(m1,m2) = ΩcbP lC(m1,m2)={ω2}.
Further m(∅) = 0.03 + 0.04 = 0.07, hence cpP l-C(m1,m2) = min(0.00, 0.07) =
0.00 �= cbP l-C(m1,m2) = min(0.025, 0.07) = 0.025.

Example 4. Let suppose Ω3 now; and two BFs m1 and m2:
X : {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω3

m1(X) : 0.6 0.2 0.1 0.1
m2(X) : 0.6 0.3 0.1

Pl P (m1) = (0.600, 0.266, 0.133), Pl P (m2) = (0.666, 0.066, 0.266),
Ord1(ω1)={1}, Ord1(ω2)={2}, Ord1(ω3)={3}, Ord2(ω1)={1}, Ord2(ω2)={3},
Ord2(ω3) = {2}, thus Ord1(ω2) ∩ Ord2(ω2) = ∅ = Ord1(ω3) ∩ Ord2(ω3), and
ΩsmPlC(m1,m2)=∅ �= ΩcpP lC(m1,m2)={ω2, ω3}. Pl P (m1)(ω1), P l P (m2)(ω1)
> 0.33, Pl P (m1)(ω2), P l P (m1)(ω3), P l P (m2)(ω2), P l P (m2)(ω3) < 0.33, hence
ΩspPlC(m1,m2)=∅. Thus ΩspPlC(m1,m2)⊂ΩcpP lC(m1,m2)=ΩcbP lC(m1,m2).

Conflicts of Belief Functions 197

3.4 Summary of the Plausibility Conflict

There are four different generalizations of unique plausibility conflict from a
2-element frame of discernment to a general n-element frame.

According to inclusions from Lemma 1 we can see that the simple plausi-
bility conflict smPl-C using the least conflicting set ΩsmPlC(Bel1, Bel2) is the
weakest one of the four plausibility approaches; it tolerates more couples of
BFs as mutually non-conflicting (there is no conflict between them). On the
other side, the combined plausibility conflict using the greatest conflicting set
ΩcbP lC(Bel1, Bel2) is the most cautious (most strict) of the approaches. It clas-
sifies more conflicting couples of BFs and produces the greatest conflict cbP l-C.
Both the support plausibility conflict and comparative plausibility conflict are
mutually incomparable from this point of view; the values of both of them are
between the values of the simple plausibility conflict and of the cautious com-
bined plausibility conflict. We can formalize this by the following theorem.

Theorem 1. The following holds true for four types of plausibility conflict and
any belief functions Bel1 and Bel2.
(i) smPl-C(Bel1, Bel2) ≤ spP l-C(Bel1, Bel2) ≤ cbP l-C(Bel1, Bel2),
(ii) smPl-C(Bel1, Bel2) ≤ cpP l-C(Bel1, Bel2) ≤ cbP l-C(Bel1, Bel2).

Simple plausibility conflict approach classifies two belief functions as mutually
non-conflicting whenever they give the greatest decisional support (preference)
to the same elements of the frame. The cautious combined plausibility conflict
classifies two belief functions as mutually non-conflicting only when both beliefs
provide the same sets of elements of Ωn which are supported and opposed (to be
more precise which are not opposed and which are not supported) and moreover
when the orders of the elements according to the support/opposition are the
same. Such BFs should be really mutually non-conflicting despite usually positive
distance and frequent positive (m1 ∩©m2)(∅). The principle of all four variants of
plausibility conflict is the same; the difference among them is only relatively
small. When a positive simple plausibility conflict between BFs appears, some
level of mutual conflictness of the BFs is hardly opposed. On the other hand,
when cautious (combined) non-conflictness appears then mutual non-conflictnes
of the BFs is hardly opposed.

The simple plausibility conflict is the simplest from the computational point
of view. Anywhere, where just indetification of strong conflict between BFs is
required this version is definitely sufficient.

Considering Martin’s axioms [16], all four variants of the plausibility conflict
satisfy axioms 1 – 4 (non-negativity, identity, symmetry and normalization). The
5th axiom of inclusion is either non-correctly presented in [16], or it is simply too
strong thus, it is not satisfied by any of four variants of the plausibility conflict.

4 Pignistic Conflict of Belief Functions

There are frequent questions: Why is normalized plausibility of singletons used
in definition of conflict? Why not to use popular pignistic probability instead?

198 M. Daniel

Yes, syntactically, pignistic probability can be used instead of normalized
plausibility of singletons. We will obtain analogous definitions.

4.1 Definitions of Pignistic Conflict

Definition 4. Let the internal pignistic conflict of BF Bel be defined as

BetP -IntC(Bel) = 1−maxω∈ΩBetP (ω),

where BetP is the pignistic probability corresponding to Bel.

This internal pignistic conflict is greater or equal to internal plausibility con-
flict as BetP (ω) ≤ Pl(ω). The internal plausibility conflict is defined by the
plausibility values, not by the related probabilistic transformation Pl P , thus it
has a reasonable interpretation, which is hard to say about the internal pignistic
conflict.

The conflicting set ΩBetC0(Bel1, Bel2) can be defined analogously to the plau-
sibility version as the set of elements ω ∈ Ωn with conflicting BetP values
ΩBetC0(Bel1, Bel2) = {ω ∈ Ωn | (BetP (Bel1)(ω) − 1

n)(BetP (Bel2)(ω) − 1
n) <

0}. Further, there may by defined four variants of pignistic conflicting sets
ΩsmBetC , ΩspBetC , ΩcpBetC and ΩcbBetC , analogously to their plausibility pat-
terns.

Definition 5. Pignistic conflict between BFs Bel1 and Bel2 is defined by the
formula

Bet-C(Bel1, Bel2) = min(Bet-C0(Bel1, Bel2), (m1 ∩©m2)(∅)),
where

Bet-C0(Bel1, Bel2) =
∑

ω∈ΩBetC(Bel1,Bel2)

1

2
|BetP (Bel1)(ω)−BetP (Bel2)(ω)|,

substituting ΩsmBetC , ΩspBetC , ΩcpBetC , or ΩcbBetC for ΩBetC .

Inclusions analogous to those from Lemma 1 hold true here, and following
the analogous definitions, the following theorem (an analogy of Theorem 1) also
holds true.

Theorem 2. The following holds true for four types of pignistic conflict and
any belief functions Bel1 and Bel2.
(i) smBet-C(Bel1, Bel2) ≤ spBet-C(Bel1, Bel2) ≤ cbBet-C(Bel1, Bel2),
(ii) smBet-C(Bel1, Bel2) ≤ cpBet-C(Bel1, Bel2) ≤ cbBet-C(Bel1, Bel2).

Mutual comparison of four variants of the pignistic conflict is completely anal-
ogous to that of the plausibility conflict. Also Martin’s axioms 1–4 are satisfied
by all variants of the pignistic conflict, but the 5th one (inclusion) is not satisfied
by any of them.

We have to note that in general there are two numerical differences between
BetP and Pl P : i) different values of both probabilities, which make different

Conflicts of Belief Functions 199

values of related conflict between BFs, ii) even the order of the values can be
different (it does not hold true Ord-Pl(ω) = Ord-Bet(ω) in general) thus a
couple of plausibility non-conflicting BFs may be pignisticly conflicting and vice-
versa.

Thus the definition of pignistic conflict is analogous to that of plausibility
conflict, however, these methods are not equivalent.

We have to further note the principal theoretical difference that Pl P com-
mutes with Dempster’s rule of combination [3,5] whereas BetP does not. Pl P
is the only probability transformation of BFs which is compatible with conjunc-
tive combination rule. Conflict between belief functions is frequently used when
belief functions are combined [2,13,14,20]. Here the compatibility plays very im-
portant role: it is an argument for using the plausibility conflict and for not-using
its pignistic alternative.

While betting, we are interested in the most perspective elements only or in
all the elements, thus from the betting point of view only simple pignistic conflict
smBet-C(Bel1, Bel2) and cautious (combined) pignistic conflict cbBet-C(Bel1,
Bel2) play some role (not spBet-C and cpBet-C which have not a reasonable
interpretation from the betting point of view).

4.2 Relation of Pignistic Conflict Bet-C and of Liu’s Degree of
Conflict cf

We can observe that pignistic conflict Bet-C(Bel1, Bel2) has some similarities
with Liu’s degree of conflict cf(Bel1, Bel2). Both the approaches use (m1 ∩©m2)(∅)
and both use some pignistic probability, but there are also important differences.
Let us recall the definition of degree of conflict cf and also Liu’s general definition
of conflict before analysing the relation of the approaches.

Definition 6 (Liu). A conflict between two beliefs in DS theory can be inter-
preted as one source strongly supports one hypothesis and the other strongly
supports another hypothesis, and the two hypothesis are not compatible ([14]
Definition 8).

Definition 7 (Liu). Let m1 and m2 be two bbas on frame Ω and let BetPm1

and BetPm2 be the results of two pignistic transformations from them respectively
then difBetPmj

mi
= maxA⊆Ω(|BetPmi(A) −BetPmj (A)|)

is called the distance between betting commitments of the two bbas ([14] Defi-
nition 9).

Definition 8 (Liu). Let m1 and m2 be two bbas. Let cf(m1,m2) = (m⊕(∅),
difBetP) be a two-dimensional measure where m⊕(∅) is the mass of uncommit-
ted belief when combining m1 and m2 with Dempster’s rule and difBetP be the
distance between betting commitments in Definition 9 (Def. 7 here), m1 and m2

are defined as in conflict iff both difBetP > ε and m⊕(∅) > ε hold true, where
ε ∈ [0, 1] is the threshold of conflict tolerance ([14] Definition 10).

200 M. Daniel

Note that there should be rather m∩©(∅) instead of m⊕(∅) (more precisely
(mi ∩©mj)(∅)) in fact. Further, we can simplify difBetP

mj
mi using the following

lemma from [10].

Lemma 3 (Daniel). For any belief functions Beli, Belj given by bbas mi, mj

holds true that:

difBetPmj
mi

= Diff(BetPmi, BetPmj) =
1

2

∑
ω∈Ω

|BetPmi({ω})−BetPmj ({ω})|.

Liu correctly presents [14] that neither m∩©(∅) nor distance or difference are
adequate measures of conflicts between BFs. Thus she uses the two-dimensional
(composed) measure cf which just includes both the non-adequate components,
which are really somehow related to a size of a conflict. What is this relation?

Interpretation of m∩©(∅) as a conflict between BFs is not easy as it somehow
includes conflict between the belief functions, but also internal conflicts of both
arguments of belief combination. Much clearer is the interpretation of the rest of
belief masses: 1−m∩©(∅) is the sum of belief masses related to the conjunctive
consensus of the arguments m1 and m2; this definitely does not include any
conflict, thus m∩©(∅) is simply an upper bound of the conflict between belief
functions.

What about a difference or a distance? It definitely does not hold true that
the higher a distance is the higher is the conflict. It is sure that zero distance
means zero conflict, as we suppose, that a belief function is non-conflicting with
itself. What does a small distance mean? It is not necessary a small conflict,
it could be just a small difference of two non-conflicting BFs (same elements
supported, same elements opposed, same order of sizes of supported/opposed
element) with numerically different values, for an example of BFs on Ω2 see Fig.
1. What does a medium distance mean? Analogously, it can be no conflict, small
conflict or medium conflict, (see the second triangle in Fig. 1). Large distance
means conflicts (small, medium or large), just a very large distance means a very
large conflict (see the last triangle in Fig. 1). We can simplify this by saying that
analogously to m∩©(∅) a distance of BFs is also an upper bound of the conflict
between them.

Degree of conflict cf successfully distinguishes conflict between BF both from
their distance and from m∩©(∅). It correctly considers that there is no conflict
between two identical BFs. Strongly mutually conflicting BFs are recognized
as really conflicting, unfortunately there are still mutually non-conflicting BFs
which are classified like conflicting by cf . A support of different non-compatible
hypotheses is correctly classified as conflict according to Def. 6, on the other
hand, support of the same or compatible hypotheses is not classified as non-
conflict. See the following example:

Example 5. Let suppose BFs m1 = (0.55, 0.40; 0.05) and m2 = (0.95, 0.01; 0.04)
on Ω2 and m3 = (0.55, 0.20, 0.10, 0.10, 0, ..., 0; 0.05) and m4 = (0.85, 0.06, 0.02,
0.02, 0, ..., 0; 0.05) on Ω4. There is cf(m1,m2) = (0.3855, 0.40) and cf(m3,m4) =
(0.415, 0.30), thus some degree of conflict is classified by cf in both cases.

Conflicts of Belief Functions 201

small distance medium distance large distance very large distance

Fig. 1. Couples of BFs on Ω2 with different sizes of a distance. BFs in the same
half of a triangle are mutually non-conflicting; conflict appears if one BF is in the
upper (left) and the other in the lower (right) part of the triangle; BFs from the axis
are non-conflicting with any other. Pair (x, y) represents BF given by m({ω1}) = x,
m({ω2}) = y here; m({ω1, ω2}) = 1−x−y.

Nevertheless, both believers 1 and 2 support (prefer) ω1 and both of them
oppose ω2. Their beliefs differ only in a degree of support of ω1 (opposition
of ω2). Similarly both believers 3 and 4 support (prefer) ω1 and both of them
oppose ω2, ω3, ω4, even orders of degrees of opposition of ω2, ω3, ω4 are the same
for both believers. Thus also believers 3 and 4 are in accord and their beliefs
differ only in a degree of support of ω1 and degree of opposition of ω2, ω3, ω4.
There is a difference between the beliefs but not a conflict between them.

Above, we have recognizedm∩©(∅) and Diff(BetPmi,BetPmj)) as upper bou-
nds of conflict. Thus, cf should rather be a number≤ min(m∩©(∅),Diff(BetPmi ,
BetPmj)) than a couple of these values, as cf may be limited by its upper bounds
but not equal to them in general. The upper bound of cf looks very similarly to
Bet-C; it differs only by the fact that differences |BetPmi({ω})−BetPmj({ω})|
are summed over ΩBetC by Bet-C whereas by cf over entire Ω.

This is the principal difference between the two approaches; ΩBetC may be
empty for mutually non-conflicting BFs which are in a positive distance, with
positive m∩©(∅). Classification of non-conflictness according to ΩBetC better cor-
responds to Liu’s Definition 8 from [14] (Def. 6 here), where conflict is given by
strong support of incompatible hypothesis. (An idea of support (preference) or
opposition of elements according to BetP is analogous to that according to Pl P
[7,10]). Nevertheless non-conflictness classified according to Liu’s Definition 10
is given by components of cf m∩©(∅) and Diff(BetPmi, BetPmj) and by arti-
ficially determined threshold ε of a conflict tolerance, which has nothing to do
with with a nature of the belief functions, which are or which are not in a con-
flict, for detail see [14]. The conflict tolerance should be used for decision how
to handle beliefs which are in a conflict; not for classification whether the beliefs
are or are not in a conflict.
ΩcbBetC is the largest of the conflicting sets defined in the previous Section as

variants of ΩBetC , thus the cautious (combined) pignistic conflict is the closest
one to cf . Thus cbBet-C can be considered as an real improvement of the degree
of conflict cf . Nevertheless, for a utilization related to conflicting belief functions
combination plausibility conflict is recommended, see the previous Section.

202 M. Daniel

5 Ideas for a Future Research

A theoretical question, which BFs should be considered as mutually conflicting
and which not, should be analysed in more detail together with ideas and results
from [11,16]: to obtain a deeper understanding of the real nature of conflict of
BFs; to be able to recommend which of the 4 variants of conflicting sets are
better and more useful.

A new approach to conflict based on decomposition of BFs to their conflicting
and non-conflicting parts is just under development.

Axiomatic approaches to conflict of BFs [11,16] should by studied and further
elaborated together with the presented results and with conflicting and non-
conflicting parts of BF.

6 Conclusion

An improvement of the plausibility conflict of belief functions was presented. A
new alternative pignistic conflict was introduced and compared with the plau-
sibility one. Higher importance and utility of the plausibility conflict, from the
point of view of belief combination, was concluded.

Further, it was shown that pignistic conflict can be considered as an improve-
ment of Liu’s degree of conflict. Degree of conflict distinguishes conflict between
BFs from m∩©(∅) and from distance/difference of BFs. Both plausibility and
pignistic conflicts go further to the nature of a conflict, they capture also mu-
tual non-conflictness of BFs which prefer/oppose same elements of the frame of
discernment. They further distinguish internal conflict of single belief functions
from conflict between them.

The plausibility conflict has better interpretation than pignistic one, as it does
not depend on any extra additive assumption, just on plausibility equivalent to
corresponding belief function and normalization, whereas the pignistic conflict de-
pends on the pignistic transformation, thus on its linearity property assumption
[19]. Normalized plausibility of singletons is further compatible with conjunctive
rule of combination, it commutes with Dempster’s rule whereas pignistic trans-
formation does not comute with any rule for combination of belief functions [5].

We have compared two new approaches to conflict between BFs with Liu’s
degree of conflict. Unfortunately, any of the presented approaches to conflict
between BFs still does not fully cover the complete nature of conflict between
BFs as a difference is partially included in the definitions of all investigated
approaches to conflict between belief functions.

Acknowledgments. This research is supported by the grant P202/10/1826 of
the Grant Agency of the Czech Republic. The partial institutional support RVO:
67985807 is also acknowledged.

References

1. Almond, R.G.: Graphical Belief Modeling. Chapman & Hall, London (1995)
2. Ayoun, A., Smets, P.: Data association in multi-target detection using the trans-

ferable belief model. Int. Journal of Intelligent Systems 16(10), 1167–1182 (2001)

Conflicts of Belief Functions 203

3. Cobb, B.R., Shenoy, P.P.: A Comparison of Methods for Transforming Belief Func-
tion Models to Probability Models. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU
2003. LNCS (LNAI), vol. 2711, pp. 255–266. Springer, Heidelberg (2003)

4. Daniel, M.: Distribution of Contradictive Belief Masses in Combination of Belief
Functions. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) Information,
Uncertainty and Fusion, pp. 431–446. Kluwer Academic Publishers, Boston (2000)

5. Daniel, M.: Probabilistic Transformations of Belief Functions. In: Godo, L. (ed.)
ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 539–551. Springer, Heidelberg
(2005)

6. Daniel, M.: New Approach to Conflicts within and between Belief Functions. Tech-
nical report V-1062, ICS AS CR, Prague (2009)

7. Daniel, M.: Conflicts within and between Belief Functions. In: Hüllermeier, E.,
Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 696–705.
Springer, Heidelberg (2010)

8. Daniel, M.: Non-conflicting and Conflicting Parts of Belief Functions. In: Coolen,
F., de Cooman, G., Fetz, T., Oberguggenberger, M. (eds.) ISIPTA 2011: Proceed-
ings of the 7th ISIPTA, pp. 149–158. Studia Universitätsverlag, Innsbruck (2011)

9. Daniel, M.: Introduction to an Algebra of Belief Functions on Three-element Frame
of Discernment — A Quasi Bayesian Case. In: Greco, S., Bouchon-Meunier, B.,
Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R., et al. (eds.) IPMU 2012,
Part III. CCIS, vol. 299, pp. 532–542. Springer, Heidelberg (2012)

10. Daniel, M.: Properties of Plausibility Conflict of Belief Functions. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 235–246. Springer, Heidelberg
(2013)

11. Destercke, S., Burger, T.: Revisiting the Notion of Conflicting Belief Functions.
In: Denœux, T., Masson, M.-H. (eds.) Belief Functions: Theory & Appl. AISC,
vol. 164, pp. 153–160. Springer, Heidelberg (2012)

12. Hájek, P., Havránek, T., Jiroušek, R.: Uncertain Information Processing in Expert
Systems. CRC Press, Boca Raton (1992)

13. Lefèvre, É., Elouedi, Z., Mercier, D.: Towards an Alarm for Opposition Conflict in
a Conjunctive Combination of Belief Functions. In: Liu, W. (ed.) ECSQARU 2011.
LNCS, vol. 6717, pp. 314–325. Springer, Heidelberg (2011)

14. Liu, W.: Analysing the degree of conflict among belief functions. Artificial Intelli-
gence 170, 909–924 (2006)

15. Martin, A., Jousselme, A.-L., Osswald, C.: Conflict measure for the discounting
operation on belief functions. In: Proceedings of 11th International Conference on
Information Fusion, Fusion 2008, Cologne, Germany (2008)

16. Martin, A.: About Conflict in the Theory of Belief Functions. In: Denœux, T.,
Masson, M.-H. (eds.) Belief Functions: Theory & Appl. AISC, vol. 164, pp. 161–
168. Springer, Heidelberg (2012)

17. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

18. Smets, P.: The combination of evidence in the transferable belief model. IEEE-
Pattern analysis and Machine Intelligence 12, 447–458 (1990)

19. Smets, P.: Decision Making in the TBM: the Necessity of the Pignistic Transfor-
mation. Int. Journal of Approximate Reasoning 38, 133–147 (2005)

20. Smets, P.: Analyzing the combination of conflicting belief functions. Information
Fusion 8, 387–412 (2007)

Bipolar Possibility Theory
as a Basis for a Logic of Desires and Beliefs

Didier Dubois, Emiliano Lorini, and Henri Prade

IRIT-CNRS, Université Paul Sabatier, Toulouse, France

Abstract. Bipolar possibility theory relies on the use of four set functions. On
the one hand, a weak possibility and a strong necessity measure are increasing
set functions, which are respectively max-decomposable with respect to union
and min-decomposable with respect to intersection. On the other hand, strong
possibility and weak necessity measures are two decreasing set functions, which
are respectively min-decomposable with respect to union and max-decomposable
with respect to intersection. In the first part of the paper we advocate the use
of the last two functions for modeling a notion of graded desire. Moreover, we
show that the combination of weak possibility and strong possibility allows us
to model a notion of realistic desire, i.e., a desire that does not only account for
satisfactoriness but also for its epistemic possibility. In the second part of the
paper we show that possibility theory offers a semantic basis for developing a
modal logic of beliefs and desires.

1 Introduction

Possibility theory has been originally proposed as an alternative approach to probabil-
ity for modeling epistemic uncertainty, independently by two authors. In economics,
Shackle [26] advocated a new view of the idea of expectation in terms of degree of sur-
prise (a substitute for a degree of impossibility). Later in computer sciences, Zadeh [28]
introduced a setting for modeling the information originated from linguistic statements
in terms of fuzzy sets (understood as possibility distributions). Zadeh’s proposal for a
possibility theory relies on the idea of possibility measure, a max-decomposable set
function w.r.t. union with values in [0, 1]. However, in these works, the duality between
possibility and necessity (captured by a min-decomposable set function with respect to
intersection) was not exploited. Later, it has been recognized that two other set func-
tions, which contrast with the two previous ones by their decreasingness, also make
sense in this setting [10]. These two latter set functions, which are dual of each other,
model an idea of strong (guaranteed) possibility and of weak necessity respectively,
while the original possibility measure that evaluates the consistency between the con-
sidered event and the available information, corresponds to a weak potential possibility.

The framework of possibility theory with its four basic set functions exhibits a rich
structure of oppositions, which can be also closely related to other structures of oppo-
sitions that exist in modal logics and other settings such that formal concept analysis
for instance [11]. Moreover, possibility theory is graded since the four set functions can
take values in the unit interval. This very general setting can not only be interpreted in
terms of uncertainty. It makes sense for preference modeling as well [2]. But it is also
of interest when modeling situations that require modal logic languages, and where

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 204–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Bipolar Possibility Theory as a Basis for a Logic of Desires and Beliefs 205

grading modalities is meaningful. For instance, when modeling uncertainty, necessity
measures are useful for representing beliefs and their epistemic entrenchments [9].

We provide here an investigation of the potentials of possibility theory for modeling
the concept of desire. Indeed, although this concept has been already investigated in the
past in artificial intelligence [19,20],1 up to now, no clear connection between a theory
of desires and possibility theory has been built. The rest of the paper is organized as
follows. Section 2 presents a background on possibility theory. Section 3 discusses the
modeling of desires in terms of strong possibility, as well the dual notion of potential
desire in terms of weak necessity. We conclude by defining a notion of realistic desire,
in the sense of desiring something that one considers epistemically possible. In Section
4 we introduce a modal logic of beliefs and desires based on possibility theory, more
precisely, of realistic desires. The extension of this logic to graded desires is outlined.
Finally, Section 5 points out some lines for further research on the relationship between
possibility theory and the logic of emotions. A first version of sections 1-3 is in [22].

2 Background on Possibility Theory

Let π be a mapping from a set of worlds W to [0, 1] that rank-orders them. Note that
this encompasses the particular case where π reduces to the characteristic function of
a subset E ⊆ W . The possibility distribution π may represent a plausibility ordering
(and E the available evidence) when modeling epistemic uncertainty, or a preference
ordering (E is then the subset of satisfactory worlds) when modeling preferences. Let
us recall the complete system of the 4 set functions underlying possibility theory [10]
and their characteristic properties:

– i) The (weak) possibility measure (or potential possibility)Π(A) = maxw∈A π(w)
evaluates to what extent there is a world in A that is possible. When π reduces to E,
Π(A) = 1 if A ∩ E �= ∅, which expresses the consistency of the event A with E,
and Π(A) = 0 otherwise. Possibility measures are characterized by the following
decomposability property: Π(A ∪B) = max(Π(A), Π(B)).

– ii) The dual (strong or or actual) necessity measure N(A) = minw �∈A 1− π(w) =
1 − Π(A) evaluates to what extent it is certain (necessarily true) that all possible
worlds are in A. When π reduces to E, N(A) = 1 if E ⊆ A, which expresses
that E entails event A (when E represents evidence), and N(A) = 0 otherwise.
The duality of N w. r. t. Π expresses that A is all the more certain as the oppo-
site event A is impossible. Necessity measures are characterized by the following
decomposability property: N(A ∩B) = min(N(A), N(B)).

– iii) The strong (or actual, or “guaranteed”) possibility measureΔ(A)=minw∈A π(w)
evaluates to what extent any value inA is possible. When π reduces toE,Δ(A) = 1
if A ⊆ E, and Δ(A) = 0 otherwise. Strong possibility measures are characterized
by the following property: Δ(A ∪B) = min(Δ(A), Δ(B)).

1 For instance, in [19] Lang et al. propose a formal theory of desires based on Boutilier’s logic
QDT [4] in which two ordering relations representing preference and normality are given. The
interpretation given to the statement “in context ϕ, I desire ψ” is “the best among the most
normal ϕ ∧ ψ worlds are preferred to the most normal ϕ ∧ ¬ψ worlds” which is different
from interpretation of desire given in this paper.

206 D. Dubois, E. Lorini, and H. Prade

– iv) The dual (weak) (or potential) necessity measure ∇(A) = maxw �∈A 1−π(w) =
1 − Δ(A) evaluates to what extent there is a value outside A that is impossible.
When π reduces toE, ∇(A) = 1 ifA∪E �= U , and ∇(A) = 0 otherwise. Weak ne-
cessity measures are characterized by property: ∇(A ∩B) = max(∇(A),∇(B)).

Δ, ∇ are decreasing set functions, while the (weak) possibility and (strong) necessity
measures are increasing. A modal logic counterpart of these 4 modalities has been pro-
posed in the binary-valued case (things are possible or impossible) [7]. There is a close
link between Spohn functions and (weak) possibility / (strong) necessity measures [9].

3 Possibility Theory as Basis for a Logical Theory of Desires

The possibility and necessity operatorsΠ andN have a clear epistemic meaning both in
the frameworks of possibility theory, and of Spohn’s uncertainty theory [27] (also refer-
red to as ‘κ calculus’, or as ‘rank-based system’ and ‘qualitative probabilities’ [16]).
Differently from the operators Π and N , the operators Δ and ∇ have not an intuitive
interpretation in terms of epistemic attitudes. Indeed, although Δ and ∇ make sense
from the point of view of possibility theory and also from a logical viewpoint, it is not
fully clear which kind of mental attitudes these two operators aim at modeling. Here we
defend the idea that Δ and ∇ can be viewed as operators modeling motivational mental
attitudes such as goals or desires.2 In particular, we claim that Δ can be used to model
the notion of desire, whereas ∇ can be used to model the notion of potential desire. 3

According to the philosophical theory of motivation based on Hume [18], a desire
can be conceived as an agent’s motivational attitude which consists in an anticipatory
mental representation of a pleasant (or desirable) state of affairs (representational di-
mension of desires) that motivates the agent to achieve it (motivational dimension of
desires). In this perspective, the motivational dimension of an agent’s desire is real-
ized through its representational dimension. For example when an agent desires to be
at the Japanese restaurant eating sushi, he imagines himself eating sushi at the Japanese
restaurant and this representation gives him pleasure. This pleasant representation mo-
tivates him to go to the Japanese restaurant in order to eat sushi.

Intuitively speaking, with the term potential desire, we refer to a weaker form of
motivational attitude. We assume that an agent considers a given property ϕ potentially
desirable if ϕ does not conflict with the agent’s current desires. In this sense, ϕ is poten-
tially desirable if it is not incompatible with the agent’s current desires. Following ideas
presented in [21], let us explain why the operator Δ is a good candidate for modeling
the concept of desire and why ∇ is a good candidate for modeling the idea of desire
compatibility. We define an agent’s mental state as a tuple M = (E,D) where:

– E ⊆ W is a non-empty subset of the set of all worlds, and
– D ⊂ W is a proper subset of the set of all worlds.

2 We use the term ‘motivational’ mental attitude (e.g., a desire, a goal or an intention) in order
to distinguish it from an ‘epistemic’ mental attitude such as knowledge or belief.

3 Here, the word potential does not refer to the idea that ϕ would be desired by the agent as
a consequence of his mental state, but the agent has not enough deductive power to become
aware of it. It is more the idea that the agent has no reason not to desire ϕ. Another possible
term is desire admissibility or desire compatibility.

Bipolar Possibility Theory as a Basis for a Logic of Desires and Beliefs 207

The set E defines the set of worlds envisaged by the agent (i.e., the set of worlds that
the agent considers possible), whereas D is the set of desirable worlds for the agent.
Let M denote the set of all mental states. We here assume for every mental state M
there exists a world with a minimal degree of desirability 0 (this is why D �= W). This
type of normality constraint for guaranteed possibility distributions is usually assumed
in possibility theory. More generally, a graded mental state is a pair M = (π, δ) where:

– π : W → L is a normal possibility distribution over the set of all worlds, where
‘normal’ means that π(w) = 1 for some w ∈ W , and

– δ : W → L is a function mapping every worldw to its desirability (or pleasantness)
degree in L, with δ(w) = 0 for some w ∈ W .

– L is a bounded chain acting as a qualitative scale for possibility and desirability,
that make these notions commensurate.

Note that while δ(w) = 1 expresses complete desirability, δ(w) = 0 expresses indif-
ference, rather than repulsion. The condition δ(w) = 0 for some w ∈ W indicates that
desire presupposes that not everything is desired.

3.1 Modeling Desire Using Δ Function

We here assume that in order to determine how much a proposition ϕ is desirable an
agent takes into consideration the worst situation in which ϕ is true. Thus, denoting by
||ϕ|| the set of situations where ϕ is true, for all graded mental states M=(π, δ) and for
all propositions ϕ, we can interpret Δ(||ϕ||) =minu∈||ϕ||D(u) as the extent to which
the agent desires ϕ to be true. Let us justify the following two properties for desires:
Δ(||ϕ ∨ ψ||) = min(Δ(||ϕ||), Δ(||ψ||)) and Δ(||ϕ ∧ ψ||) ≥ max(Δ(||ϕ||), Δ(||ψ||)).

According to the first property, an agent desires ϕ to be true with a given strength α
and desires ψ to be true with a given strength β if and only if the agent desires ϕ or ψ
to be true with strength equal to min(α, β). Notice that in the case of epistemic states,
this property would not make any sense because the plausibility of ϕ ∨ ψ should be
clearly at least equal to the maximum of the plausibilities of ϕ and ψ. For the notion of
desires, it seems intuitively satisfactory to have the opposite, namely the level of desire
of ϕ∨ψ should be at most equal to the minimum of the desire levels of ϕ and ψ. Indeed,
we only deal with here with “positive”4 desires (i.e., desires to reach something with
a given strength). Under this proviso, the level of desire of ϕ ∧ ψ cannot be less than
the maximum of the levels of desire of ϕ and ψ. According to the second property, the
joint occurrence of two desired events ϕ and ψ is more desirable than the occurrence
of one of the two events. This is the reason why in the right side of the equality we
have the max. The latter property does not make any sense in the case of epistemic
attitudes like beliefs, as the joint occurrence of two events ϕ and ψ is epistemically
less plausible than the occurrence of a single event. On the contrary it makes perfect
sense for motivational attitudes likes desires. By way of example, suppose Peter wishes
to go to the cinema in the evening with strength α (i.e., Δ(||goToCinema ||) = α)

4 The distinction between positive and negative desires is a classical one in psychology. Negative
desires correspond to state of affairs the agent wants to avoid with a given strength, and then
desires the opposite to be true. However, we do not develop this bipolar view here.

208 D. Dubois, E. Lorini, and H. Prade

and, at the same time, he wishes to spend the evening with his girlfriend with strength
β (i.e., Δ(||stayWithGirlfriend ||) = β). Then, according to the preceding property,
Peter wishes to to go the cinema with his girlfriend with strength at least max{α, β}
(i.e., Δ(||goToCinema ∧ stayWithGirlfriend ||) ≥ max{α, β}). This is a reasonable
conclusion because the situation in which Peter achieves his two desires is (for Peter)
at least as pleasant as the situation in which he achieves only one desire. A similar in-
tuition can be found in [5] about the min-decomposability of disjunctive desires, where
however it is emphasized that it corresponds to a pessimistic view.

From the normality constraint of δ, we can deduce the following inference rule:

Proposition 1. For every M ∈ M, if Δ(||ϕ||) > 0 then Δ(||¬ϕ||) = 0.

This means that if an agent desiresϕ to be true — i.e., with some strengthα > 0 — then
he does not desire ϕ to be false. In other words, an agent’s desires must be consistent.

Note that the operator Δ satisfies the following additional property:

Proposition 2. For every M ∈ M, if ||ϕ|| = ∅ then Δ(||ϕ||) = 1.

i.e., in absence of actual situations whereϕ is true, the propertyϕ is desirable by default.

3.2 Modeling Potential Desire Using ∇
As pointed out above, we claim that the operator ∇ allows us to capture a concept of
potential desire (or desire compatibility): ∇(||ϕ||) represents the extent to which an
agent considers ϕ a potentially desirable property or, alternatively, the extent to which
the property ϕ is not incompatible with the agent’s desires. An interesting situation is
when the property ϕ is maximally potentially desirable for the agent (i.e., ∇(||ϕ||) =
1). This is the same thing as saying that the agent does not desire ϕ to be false (i.e.,
Δ(||¬ϕ||) = 0). Intuitively, this means that ϕ is totally potentially desirable in as much
as the level of desire for ¬ϕ is 0. In particular, given a graded mental state M = (π, δ),
let D = {w ∈ W : δ(w) > 0} be the set of somewhat satisfactory or desirable worlds
in M . Then, we have ∇(||ϕ||) = 1 if and only if D ∩ ||¬ϕ|| �= ∅, i.e., ¬ϕ is consistent
with what is not desirable, represented by the set D.

Another interesting situation is when the property ϕ is maximally desirable for the
agent (i.e., Δ(||ϕ||) = 1). This is the same thing as saying that ¬ϕ is not at all poten-
tially desirable for the agent (i.e., ∇(||¬ϕ||) = 0). It is worth noting that if an agent
desires ϕ to be true, then ϕ should be maximally potentially desirable. This property is
expressed by the following valid inference rule which follows straightforwardly from
the previous one and from the definition of ∇(||ϕ||) as 1−Δ(||¬ϕ||):
Proposition 3. For every M , if Δ(||ϕ||) > 0 then ∇(||ϕ||) = 1.

Let us now consider the case in which the agent does not desireϕ (i.e.,Δ(||ϕ||) = 0).
In this case two different situations are possible: either Δ(||¬ϕ||) = 0 and ϕ is fully
compatible with the agent’s desires (i.e., ∇(||ϕ||) = 1), or Δ(||¬ϕ||) > 0 and then ϕ is
not fully compatible with the agent’s desires (i.e., ∇(||ϕ||) < 1).

3.3 Some Valid Inference Rules for Desires

The following is a valid inference rule for Δ-based logic, see [7,12] for the proof:

Bipolar Possibility Theory as a Basis for a Logic of Desires and Beliefs 209

Proposition 4. For every M ∈ M, if Δ(||ϕ ∧ ψ||) ≥ α and Δ(||¬ϕ ∧ χ||) ≥ β then
Δ(||ψ ∧ χ||) ≥ min(α, β).

Therefore, if we interpretΔ as a desire operator, we have that if an agent desiresϕ∧ψ
with strength at least α and desires ¬ϕ∧χ with strength at least β, then he desires ψ∧χ
with strength at least min(α, β). This seems a reasonable property of desires. By way
of example, suppose Peter desires to be in a situation in which he drinks red wine and
eats a pizza with strength at least α and, at the same time, he desires to be in a situation
in which he does not drink red wine and eats tiramisú as a dessert with strength at least
β. Then, it is reasonable to conclude that Peter desires to be in a situation in which he
eats both a pizza and tiramisú with strength at least min(α, β).

Another rule, never studied, mixes Δ (alias actual desire) and ∇ (potential desire):

Proposition 5. For every M ∈ M, if Δ(||ϕ ∧ ψ||) ≥ α and ∇(||¬ϕ ∧ χ||) ≥ β then
∇(||ψ ∧ χ||) ≥ α ∗ β, where α ∗ β = α if α > 1− β and α ∗ β = 0 if 1− β ≥ α.

Proof. First, we have by duality Δ(||ϕ ∧ ψ||) ≥ α ⇔ ∇(||¬ϕ ∨ ¬ψ||) ≤ 1− α. Then
observe ¬ϕ∧ χ ≡ (¬ϕ ∨¬ψ) ∧ (¬ϕ ∨ψ)∧ χ. Thus ∇(||¬ϕ ∧ χ||) = max(∇(||¬ϕ ∨
¬ψ||),∇(||(¬ϕ ∨ ψ) ∧ χ||)) ≥ β which leads to max(1 − α,∇(||ψ ∧ χ||)) ≥ β from
which the result follows. The last inequality is obtained by noticing that ∇(||(¬ϕ∨ψ)∧
χ||) ≤ ∇(||ψ ∧ χ||) due to the decreasingness of ∇. It can be shown that α ∗ β is the
tightest lower bound that can be established for the above pattern. 12

Thus, in particular, if ϕ is fully potentially desirable (∇(||ϕ||) = 1), and ¬ϕ ∧ ψ is
fully desirable (Δ(||¬ϕ∧ψ||) = 1), then ψ is fully potentially desirable (∇(||ψ||) = 1).
The two above inference rules are the counterparts of the following inference rule:

if N(||ϕ ∨ ψ||) ≥ α and N(||¬ϕ ∨ χ||) ≥ β then N(||ψ ∨ χ||) ≥ min(α, β)

(the basic inference rule in standard possibilistic logic), and of the following one [8]:

if N(||ϕ ∨ ψ||) ≥ α and Π(||¬ϕ ∨ χ||) ≥ β then Π(||ψ ∨ χ||) ≥ α ∗ β
with α ∗ β = α if α > 1 − β and α ∗ β = 0 if 1 − β ≥ α. They are themselves the
graded counterparts of two inference rules well-known in modal logic [13,8].

3.4 Realistic Desires

Besides, Δ(||ϕ||) = α implies that for any ψ logically independent from ϕ, it holds
that Δ(||ϕ ∧ ψ||) ≥ α and Δ(||ϕ ∧ ¬ψ||) ≥ α, which may sound counterintuitive.
Indeed, suppose you wish to choose a menu and you prefer to eat fish than not to a
certain degree. It means that you should wish to eat fish with white wine, and fish with
red wine to a degree at least as high. Yet, you may dislike very much to drink red wine
with fish. Your desire for fish presupposes the restaurant offers white wine as well. So
you express your desire for fish is conditioned to the possibility of having white wine
as well. In other words, you believe that in fish restaurants it is more likely to find white
wine than red wine. Modeling desire irrespectively of what you assume to be possible
is liable to such kind of paradoxes when using the set-function δ.

This discussion suggests that a realistic desire can be defined as one whose real-
ization is considered possible by the agent. The most natural representation consists

210 D. Dubois, E. Lorini, and H. Prade

in restricting crist mental states to pairs (E,D) such that E ∩ D �= ∅, called realistic
mental states, the set of which is denoted by Mr. Indeed, if E ∩D = ∅, then the agent
knows that desirable states are impossible in his view. Then the agent with mental state
(E,D) is said to realistically desire ϕ if and only if Δ(||ϕ||) = 1 (that is, ||ϕ|| ⊆ D)
and Π(||ϕ||) = 1 (that is, ||ϕ|| ∩ E �= ∅).

A more conservative notion of realistic desire would consist in requestingN(||ϕ||) =
1 instead of Π(||ϕ||) = 1, that is realistic desire would concern only propositions ϕ
such that the agent is certain that ϕ is true. However one may question the fact that re-
alistically desiring ϕ to be true may presuppose no risk at all for ϕ being false, namely
the complete certainty that ϕ is true. This corresponds better to the idea of happiness.
On the contrary, the preceding the notion of realistic desire defined by Δ(||ϕ||) = 1 and
Π(||ϕ||) = 1 corresponds to the notion of hope. Indeed, according to psychological the-
ories of emotion (e.g., [24]), while happiness is triggered by prospective consequences
(or prospects), hope is triggered by actual consequences. 5

In the case of graded mental states, (π, δ), one may take a restritive point of view
on possible states of affairs, evaluating desired statements overs pairs (π, δ) such that
E = {w : π(w) = 1} ∩ {w : δ(w) > 0} �= ∅. It comes down to working with pairs
(E, δ) where only desire is graded. Then desires are expressed under the assumption
that they can be achieved in at least one normal situation.

Alternatively one may compute the degree of realistic desire in the mental state (π, δ)
as ρ(||ϕ||) = min(Δ(||ϕ||), Π(||ϕ||)). It presupposes that degrees of plausibility and
degrees of desire are commensurate.

Note that the above proposal differs from the one that would restrict desired states
to possible ones, that is, replacing δ by δπ = min(δ, π) since ρ(A) ≥ Δπ(A) =
minw∈Amin(δ(w), π(w)). For instance, if E ∩ D �= ∅, A ∩ E �= ∅, E ∩ A �= ∅, and
A ⊆ D, then ρ(A) = 1 but Δπ(A) = 0 since then δπ(w) = 0 for some w ∈ A.

4 Logics of Beliefs and Desires

In this section we introduce some variants of a modal logic of beliefs and desires, called
here BDL, based on the ideas presented in the previous sections. Specifically, the logics
presented here support reasoning about the notion of belief, as traditionally studied
in the area of modal logic of belief (alias doxastic logic) [23,14,17], in combination
with the notion of (Δ-based) desire discussed in Section 3.1 and the notion of (Δ-
based) realistic desire discussed in Section 3.4. We first consider a simpler logic, in
line with the previous sections, that, like MEL [1], does not support the nesting of
modalities and allows us to reason about purely (non-graded) notions of belief and
desire. The semantics will then be defined in terms of mental states (pairs of sets or
distributions). Then, we present a simple generalization of this logic that allows us to
formalize notions of graded belief and graded desire. Finally, we consider a full-fledged
modal logic of graded beliefs and graded desires with multiple agents that supports the
nesting of modalities. The nesting of modalities is crucial in order to represent an agent
i’s beliefs about the beliefs (or the desires) of a different agent j.

5 Like [15], we here interpret the term ‘prospect’ as synonymous of ‘uncertain consequence’ (in
contrast with ‘actual consequence’ as synonymous of ‘certain consequence’).

Bipolar Possibility Theory as a Basis for a Logic of Desires and Beliefs 211

4.1 Minimal Modal Logic of Beliefs and Desires MBDL

Let us introduce a propositional language PL based on a countable set Prop of atomic
propositions (with typical members denoted p, q, . . .), and defined by the following
grammar: ϕ ::= p | ¬ϕ | ϕ ∧ ψ, where p ranges over a given countable set of atomic
propositions Prop = {p, q, . . .}, some of which can be decision variables. The other
Boolean constructions �, ⊥, ∨, → and ↔ are defined from p, ¬ and ∧ in the standard
way. A propositional valuation is defined in the standard way as a subset of atomic
propositions considered as true, the other ones being false. Propositional valuations,
also called worlds or states, are denoted by symbols w. The set W is identified with the
set 2Prop of all propositional valuations. Let ||p||={w : p∈w} be the set of models of p.

The extension of propositional formulas is defined in the standard way as follows:
||¬ϕ|| = W \ ||ϕ||; ||ϕ ∧ ψ|| = ||ϕ|| ∩ ||ψ||

We first consider the Boolean case and the most elementary language that may cap-
ture the previously introduced notions. The language LN,Δ of the logic MBDL is de-
fined as follows: Φ ::= Nϕ | Δϕ | ¬Φ | Φ ∧ Ψ , where formulas ϕ range over
PL. In other words, Nϕ and Δϕ are atomic propositions, respectively referring to the
statements “the agent believes that ϕ” and “the agent desires that ϕ”. The two modal
operators N and Δ have the following intuitive readings:

– Nϕ means: the agent believes that ϕ is true (i.e., ϕ is true in all worlds that the
agent envisages as possible),

– Δϕ means: the agent considers ϕ desirable in all worlds where ϕ is true.

The dual operators Π and ∇ are defined in the usual way as follows:

Πϕ
def
= ¬N¬ϕ; ∇ϕ def

= ¬Δ¬ϕ
The set of axioms of MBDL is given in Figure 2 and provides a proof system for

this logic MBDL. The first three modal axioms are those of KD, more specifically its
subjective fragment where modalities are not nested. They account for Boolean ne-
cessity measures. The three following ones for the desire modality are the translation
of the former when replacing necessity by guaranteed possibility, using the identity
N(A) = minw �∈A 1− π(w) = Δ(A) if δ = 1− π.

All tautologies of propositional calculus (PC)

(Nϕ ∧N(ϕ → ψ)) → Nψ (KN)

¬(Nϕ ∧N¬ϕ) (DN)

N� (NN)

(Δϕ ∧Δ(¬ϕ ∧ ψ)) → Δψ (KΔ)

¬(Δϕ ∧Δ¬ϕ) (DΔ)

Δ⊥ (NΔ)

ϕ,ϕ → ψ

ψ
(MP)

Fig. 1. Sound and complete axiomatization of MBDL

212 D. Dubois, E. Lorini, and H. Prade

The truth of a MBDL formula is evaluated w. r. t. a valuation w and a mental state
M=(E,D) ∈ M, by means of the following rules:

M |= Nϕ ⇐⇒ ∀w ∈ E,w ∈ ||ϕ||; M |= Δϕ ⇐⇒ ∀w |= ϕ,w ∈ D
M |= ¬Φ ⇐⇒ M �|= Φ; M |= Φ ∧ Ψ ⇐⇒ M |= Φ AND M |= Ψ

We say that a formula Φ of the language LBDL(Prop) is valid, denoted by |=MBDL Φ, if
and only if for every mental state M in MM |= Φ. We say that Φ is satisfiable if and
only if ¬Φ is not valid. It can be checked that

– M |= Nϕ if and only if N(||ϕ||) = 1 with respect to E.
– M |= Δϕ if and only if Δ(||ϕ||) = 1 with respect to D.

In the logic MBDL we can also formally express the concept of realistic desire:

RΔϕ
def
= Δϕ ∧ ¬N¬ϕ.

We can now prove the completeness theorem for this logic:
Theorem 1. The axioms and the rules of inference given in Figure 1 provides a sound
and complete axiomatization for the logic MBDL.

Proof (Sketch). Soundness is easy to obtain. As to completeness, note that axioms KN ,
DN , and NN imply the equivalence betweenN(ϕ∧ψ) andNϕ∧Nψ. Likewise, axioms
KΔ, DΔ, and NΔ imply the equivalence between Δ(ϕ ∨ ψ) and Δϕ ∧Δψ. Besides, a
propositional valuation v of the language of MBDL assigns 0 or 1 to each Nϕ and Δϕ.
Define two set functions ν and μ over W by letting ν(A) = 1 if and only if v(Nϕ) = 1
if A = ||ϕ|| and 0 otherwise; and likewise μ(A) = 1 if and only if v(Δϕ) = 1 if
A = ||ϕ|| and 0 otherwise. Axioms of propositional logic ensures these definitions are
sound (truth assignments to Nϕ and Δϕ do not change if ϕ is replaced by a logically
equivalent proposition). Moreover the 6 first modal axioms imply that ν is a Boolean
necessity measure and μ a Boolean guaranteed possibility measure. It means that there
exists a mental state M = (Ev, Dv) such that v(Nϕ) = 1 if and only if Ev ⊆ ||ϕ|| and
v(Δϕ) = 1 if and only if ||ϕ|| ⊆ Dv. Using the completeness of propositional logic,
we thus prove that, for any subset of formulas B in the logic MBDL:

B �MBDL Φ ⇐⇒ B ∪ {KN , DN , NN ,KΔ, DΔ, NΔ} �PL Φ
⇐⇒ (∀v, v |=PL B ∪ {KN , DN , NN ,KΔ, DΔ, NΔ} ⇒ v |=PL Φ

⇐⇒ ∀(E,D) ∈ M, (E,D) |=MBDL B ⇒ (E,D) |=MBDL Φ ⇐⇒ B |=MBDL Φ

An interesting aspect of the modal logic MBDL is that one can make syntactic proofs
of some properties of the notions of (Δ-based) desire. For instance, we can give the
following syntactic proof of the inference rule for desire given in Proposition 4 when
α = 1, namely {Δ(ϕ ∧ ψ), Δ(¬ϕ ∧ χ)} �MBDL Δ(ψ ∧ χ):

1. Applying KΔ when ψ |= ϕ yields theorem T1:�MBDL Δϕ → Δψ if ψ |= ϕ.
2. KΔ can be written as T2: if ϕ∧ψ is a contradiction,�MBDL Δϕ∧Δψ → Δ(ϕ∨ψ).
3. Applying T2: {Δ(ϕ ∧ ψ), Δ(¬ϕ ∧ χ)} �MBDL Δ((ϕ ∧ ψ) ∨ (¬ϕ ∧ χ))
4. By T1, {Δ(ϕ∧ψ), Δ(¬ϕ∧χ)} �MBDL Δ(ψ∧χ) since ψ∧χ |= (ϕ∧ψ)∨(¬ϕ∧χ)

Bipolar Possibility Theory as a Basis for a Logic of Desires and Beliefs 213

4.2 Outline of a Minimal Modal Logic of Graded Beliefs and Desires MGBDL

Assume a finite chain L ⊆ [0, 1] containing the values 0 and 1 such that for every α ∈ L
we have 1 − α ∈ L. For every α ∈ L such that α > 0, let p(α) denote the number
β ∈ L such that β < α and there is no γ ∈ L such that β < γ < α. β is called the
predecessor of α in L. Furthermore, let p(0) = 0. For every α ∈ L such that α < 1,
let σ(α) denote the number β ∈ L such that α < β and there is no γ ∈ L such that
α < γ < β. β is called the successor of α in L. Furthermore, let σ(1) = 1.

The language LL
N,Δ of the graded logic MGBDL is defined as follows:

Φ ::= N≥αϕ | Δ≥βϕ | ¬Φ | Φ ∧ Ψ,

where formulas ϕ range over PL and α > 0, β > 0 ∈ L. In other words, N≥αϕ and
Δ≥βϕ are atomic propositions, respectively encoding the statements:

– N≥αϕ means: the agent believes that ϕ is true to at least level α (i.e., ϕ is true in
all worlds that the agent envisages as possible at level at least σ(1 − α)),

– Δ≥βϕ: for the agent ϕ is desirable at least at level β in all worlds where ϕ is true.

The set of axioms of MGBDL are those of PL, the six first modal ones of Figure 1
for each N≥α and Δ≥β . Finally, we must add weakening axioms for the two graded
modalities:

[WΔ] : Δ≥βϕ → Δ≥p(β)ϕ [WN] : N≥αϕ → N≥p(α)ϕ.
The semantics is defined by means of graded mental states (π, δ) as defined in

Section 3. A completeness theorem can be proved as for the Boolean case. Again
the idea is to interpret any propositional valuation v of the language LL

N,Δ as a pair
of set functions (gvN , g

v
Δ) on W stemming from a pair (π, δ). Namely we can let

gvN(||ϕ||) = max{α : v(N≥αϕ) = 1}, and gvΔ(||ϕ||) = max{β : v(Δ≥βϕ) = 1},
which is meaningful due to the weakening axioms, and prove that the other axioms
ensure that gvN is a necessity measure, and gvΔ is a guaranteed possibility measure.

4.3 Multi-agent Modal Logic of Graded Beliefs and Desires GBDLn

Let Agt = {1, . . . , n} be a finite set of agents (or individuals). The language LL
Ni,Δi

of
the logic GBDLn consists of a set of formulae and is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | N≥α
i ϕ | Δ≥β

i ϕ

where p ranges over the set of atomic propositions Prop, α, β ∈ L \ {0} and i ranges
over the set of agents Agt . The two modal operators N≥α

i and Δ≥β
i have the following

intuitive readings:

– N≥α
i ϕ means: agent i believes that ϕ is true with strength at least α (i.e., ϕ is true

in all worlds that agent i considers possible at level at least σ(1− α)),
– Δ≥β

i ϕ means: agent i desires ϕ with strength at least β (i.e., all worlds in which ϕ
is true are desirable for agent i at level at least β).

The interesting aspect of the logic GBDLn is that it allows to represent what a
given agent i believes about another j’s beliefs and desires. For instance, the formula
N≥α1

1 N≥α2

2 ϕ expresses that agent 1 believes with strength at least α1 that agent 2

214 D. Dubois, E. Lorini, and H. Prade

believes ϕ with strength at least α2, whereas the formula N≥α1

1 Δ≥β2

2 ϕ expresses that
agent 1 believes with strength at least α1 that agent 2 desires ϕ with strength at least β2.

The semantics of the logic GBDLn is defined in terms of multi-agent mental states
of the form M = (S, {πi,s}i∈Agt,s∈S , {δi,s}i∈Agt,s∈S , V) where:

– S is a set of states, including states of the agents (possibly more general than W) ;
– for all s ∈ S and for all i ∈ Agt , (πi,s, δi,s) is a graded mental state over the set S

as the one defined in Section 3;
– V : S −→ 2Prop is a valuation function for atomic propositions: p ∈ V (s) means

that proposition p is true at world w = V (s).

Specifically, πi,s(s′) captures how much, in state s, agent i thinks that state s′ is (epis-
temically) possible, while δi,s(s

′) captures how much, in state s, agent i thinks that
state s is desirable. Note that parameterizing possibility distributions πi,s and δi,s with
states is one way to model an agent i’s uncertainty about the beliefs and the desires of
another agent j.

The truth of a GBDLn formula is evaluated with respect to a given state s in a multi-
agent mental state M = (S, {πi,s}i∈Agt,s∈S , {δi,s}i∈Agt,s∈S , V) by means of the fol-
lowing rules:

M, s |= p ⇐⇒ p ∈ V (s)

M, s |= ¬ϕ ⇐⇒ M, s �|= ϕ

M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ AND M, s |= ψ

M, s |= N≥α
i ϕ ⇐⇒ ∀s′ ∈ S : IF πi,s(s

′) ≥ σ(1− α) THEN M, s |= ϕ

M, s |= Δ≥β
i ϕ ⇐⇒ ∀s′ ∈ S : IF M, s |= ϕ THEN δi,s(s

′) ≥ β

We say that a formula ϕ of the logic GBDLn is valid, denoted by |=GBDLn ϕ, if and
only if for every multi-agent mental stateM = (S, {πi,s}i∈Agt,s∈S , {δi,s}i∈Agt,s∈S , V)
and for every state s in S, M, s |= ϕ. We say that ϕ is GBDLn satisfiable if and only

if ¬ϕ is not GBDLn valid. For instance, ¬N≥σ(0)
1 Δ

≥σ(0)
2 p ∧ ¬N≥σ(0)

1 ¬Δ≥σ(0)
2 p is a

satisfiable formula in the logic GBDLn. It means that agent 1 is uncertain whether agent
2 desires p or not.

In the logic GBDLn we can also formally express the concept of realistic desire for
a given agent i. For all all i ∈ Agt we define:

RΔ≥β
i ϕ

def
= Δ≥β

i ϕ ∧ ¬N≥1
i ¬ϕ

where RΔ≥β
i ϕ has to be read “agent i realistically desires ϕ with strength at least β”.

The above realistic desire operatorRΔ≥β
i exactly corresponds to the notion of realistic

desire discussed in Section 3.4. The general idea is that agent i realistically desires ϕ
with strength at least β (i.e., RΔ≥β

i ϕ) if and only if agent i desires ϕ with strength at
least β and is not completely certain that ϕ is false.

We can prove that the list of principles given in Figure 2 provides a proof system
for the logic GBDLn. In the axiomatization we use the following abbreviation for all
γ ∈ L \ {1}:

�≤γ
i ϕ

def
= Δ

≥σ(γ)
i ¬ϕ

Bipolar Possibility Theory as a Basis for a Logic of Desires and Beliefs 215

All tautologies of propositional calculus (PC)

(N≥α
i ϕ ∧N≥α

i (ϕ→ ψ)) → N≥α
i ψ (K

N
≥α
i

)

¬(N≥α
i ϕ ∧N≥α

i ¬ϕ) (D
N

≥α
i

)

(�≤γ
i ϕ ∧�≤γ

i (ϕ → ψ)) → �≤γ
i ψ (K�≤γ

i
)

¬(�≤0
i ϕ ∧�≤0

i ¬ϕ) (D�≤0
i

)

N≥α
i ϕ→ N

≥p(α)
i ϕ (Incl

N
≥α
i ,N

≥p(α)
i

)

�≤γ
i ϕ→ �≤p(γ)

i ϕ (Incl�≤γ
i ,�≤p(γ)

i

)

ϕ,ϕ → ψ

ψ
(MP)

ϕ

N≥α
i ϕ

(Nec
N

≥α
i

)

ϕ

�≤γ
i ϕ

(Nec�≤γ
i

)

Fig. 2. Sound and complete axiomatization of GBDLn

Theorem 2. The axioms and the rules of inference given in Figure 2 provides a sound
and complete axiomatization for the logic BDL.

Proof (Sketch). It is a routine task to verify that the axioms given in Figure 2 are
sound and that the rules of inference preserve validity. The proof of completeness
has 2 steps. Step 1 consists in proving that the semantics of the logic GBDLn given
above is equivalent to an alternative semantics in terms of Kripke models with acces-
sibility relations. Specifically, let us define the notion of Kripke GBDLn model as a
tuple M = (S, {Ti,≥α}i∈Agt,α∈L\{0}, {Ri,≤γ}i∈Agt,γ∈L\{1}, V) where S and V are
as defined above, and every Ti,≥α and every Ri,≤γ are binary relations on S satisfy-
ing the constraints: (C1) Ti,≥1 is serial; (C2) Ri,≤0 is serial; (C3) forall α ∈ L \ {0},
Ti,≥σ(α) ⊆ Ti,≥α; (C4) for all γ ∈ L \ {1}, Ri,≤p(γ) ⊆ Ri,≤γ .

In this alternative Kripke semantics for GBDLn, the truth of a formula is evaluated
w. r. t. a state s in a Kripke GBDLn model M by means of the following rules:

M, s |= p ⇐⇒ p ∈ V (s) ; M, s |= ¬ϕ ⇐⇒ M, s �|= ϕ

M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ AND M, s |= ψ

M, s |= N≥α
i ϕ ⇐⇒ ∀s′ ∈ Ti,≥σ(1−α)(s) : M, s |= ϕ

M, s |= Δ≥β
i ϕ ⇐⇒ ∀s′ ∈ Ri,≤p(β)(s) : M, s |= ¬ϕ

where Ti,≥σ(1−α)(s) = {s′ ∈ S | (s, s′) ∈ Ti,≥σ(1−α)} and Ri,≤p(β)(s) = {s ∈ S |
(s, s′) ∈ Ri,≤p(β)}. We say that a formula ϕ of the logic GBDLn is valid with respect
to the class of Kripke GBDLn models if and only if for every Kripke GBDLn model M
and for every state s in S we have M, s |= ϕ.

216 D. Dubois, E. Lorini, and H. Prade

Lemma 1. For every formula ϕ of the logic GBDLn, |=GBDLn ϕ if and only if ϕ is valid
with respect to the class of Kripke GBDLn models.

The 2nd step of the proof consists in showing that the list of principles given in Fig-
ure 2 completely axiomatizes the set of validities of the logic GBDLn whose language is
interpreted over Kripke GBDLn models. It is a routine task to check that the axioms in
Figure 2 correspond one-to-one to their semantic counterparts on GBDLn Kripke mod-
els. In particular, Axioms K

N≥α
i

and K�≤γ
i

together with the rules of inference Nec
N≥α

i

and Nec�≤γ
i

correspond to the fact that N≥α
i and �≤γ

i ϕ are normal modal operators
interpreted by means of accessibility relations. Axiom D

N≥α
i

corresponds to the fact
that the relation Ti,≥1 is serial (Constraint C1), while Axiom D�≤0

i
corresponds to the

fact that the relation Ri,≤0 is serial (Constraint C2). Moreover, Axioms Incl
N

≥α
i ,N

≥p(α)
i

and Incl�≤γ
i ,�≤p(γ)

i

correspond respectively to the Constraints C3 and C4.

It is routine, too, to check that all principles given in Figure 2 are in the so-called
Sahlqvist class [25]. This means that they are complete with respect to the defined
model classes, cf. [3, Th. 2.42]. 12

5 Conclusive Remarks: Towards Emotions

In the previous sections, we have shown that possibility theory offers a unified logical
framework in which both epistemic attitudes such as beliefs and motivational attitudes
such as desires can be modeled. As a perspective along this line, we may study how
the components of the approach, the epistemic one and the motivational one, can be
combined in order to model basic emotion types such as hope and fear. Similar ideas
on the logic of emotion intensity have been recently presented in [6] without making a
connection with possibility theory.

Besides, we have described two extreme approaches to the problem: a minimal sin-
gle agent logic of desire and belief and a maximal multi-agent one. The first one is
completely faithful to the framework of possibility theory described in the first two sec-
tions of this paper. Its weighted version is an extension of possibilistic logic, but it has
arguably a limited expressive power. On the other hand, the multi-agent logic GBDLn

is a graded extension of the full-fledged multimodal logic KDn that is very expressive,
but is arguably overexpressive as it contains formulas that can be make hardly intuitive
sense, and its semantics is much richer than the framework of possibility theory. So,
there is a need for more research on the bridge between modal and possibilistic logics.
The logic GBDLn:

– allows for objective formulas while MBDL does not. What is their role and can we
dispense with them?

– allows for introspective formulas of the form N≥α1

1 N≥α2

1 ϕ that are not part of the
setting of possibility theory. How to make sense of them?

– presupposes that the epistemic state of an agent depends on the (objective) state this
agent is in, which is not part of the formal framework described in the first sections.
It enables standard techniques in modal logic to be applied, but it is not always easy
to interpret.

Bipolar Possibility Theory as a Basis for a Logic of Desires and Beliefs 217

More work is needed to come up with an epistemic logic framework which is at the
same time expressive enough for our purpose, and where both semantic and syntactic
aspects remain under control.

References

1. Banerjee, M., Dubois, D.: A simple modal logic for reasoning about revealed beliefs. In:
Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 805–816. Springer,
Heidelberg (2009)

2. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar possibility theory in preference mod-
eling: Representation, fusion and optimal solutions. Information Fusion 7, 135–150 (2006)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)
4. Boutilier, C.: Towards a logic for qualitative decision theory. In: Principles of Knowledge

Representation and Reasoning: Proc. of the 5th Int. Conf. (KR 1994), pp. 75–86. AAAI
Press (1994)

5. Casali, A., Godo, L., Sierra, C.: A graded BDI agent model to represent and reason about
preferences. Artif. Intell. 175, 1468–1478 (2011)

6. Dastani, M., Lorini, E.: A logic of emotions: from appraisal to coping. In: Proc. of AAMAS
2012, pp. 1133–1140. ACM Press (2012)

7. Dubois, D., Hajek, P., Prade, H.: Knowledge-driven versus data-driven logics. J. of Logic,
Language, and Information 9, 65–89 (2000)

8. Dubois, D., Prade, H.: Resolution principles in possibilistic logic. Int. J. Appr. Reas. 4, 1–21
(1990)

9. Dubois, D., Prade, H.: Epistemic entrenchment and possibilistic logic. Artificial Intelli-
gence 50, 223–239 (1991)

10. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Gabbay,
D., Smets, P. (eds.) Quantified Representation of Uncertainty and Imprecision. Handbook of
Defeasible Reasoning and Uncertainty Management Systems, vol. 1, pp. 169–226. Kluwer
(1998)

11. Dubois, D., Prade, H.: From Blanchés hexagonal organization of concepts to formal concept
analysis and possibility theory. Logica Universalis 6(1), 149–169 (2012)

12. Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets
and Systems 144, 3–23 (2004)

13. Fariñas del Cerro, L.: Resolution modal logic. Logique et Analyse 110-111, 153–172 (1985)
14. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press

(1995)
15. Gratch, J., Marsella, S.: A domain independent framework for modeling emotion. Cognitive

Systems Research 5(4), 269–306 (2004)
16. Goldszmidt, M., Pearl, J.: Qualitative probability for default reasoning, belief revision and

causal modeling. Artificial Intelligence 84, 52–112 (1996)
17. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two Notions. Cornell

University Press (1962)
18. Hume, D.: A Treatise of Human Nature. In: Selby-Bigge, L.A., Nidditch, P.H. (eds.). Claren-

don Press, Oxford (1978)
19. Lang, J., van der Torre, L., Weydert, E.: Hidden Uncertainty in the Logical Representation of

Desires. In: Proc. of Int. Joint Conf. on Artificial Intelligence, pp. 685–690. Morgan Kauf-
mann (2003)

20. Lang, J., van der Torre, L., Weydert, E.: Utilitarian Desires. J. of Autonomous Agents and
Multi-Agent Systems 5, 329–363 (2002)

218 D. Dubois, E. Lorini, and H. Prade

21. Lorini, E.: A dynamic logic of knowledge, graded beliefs and graded goals and its application
to emotion modelling. In: van Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS,
vol. 6953, pp. 165–178. Springer, Heidelberg (2011)

22. Lorini, E., Prade, H.: Strong possibility and weak necessity as a basis for a logic of desires.
In: Godo, L., Prade, H. (eds.) Working Papers of the ECAI 2012 Workshop on Weighted
Logics for Artificial Intelligence (WL4AI 2012), Montpellier, pp. 99–103 (August 28, 2012)

23. Meyer, J.J., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge
University Press (1995)

24. Ortony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambr. Univ. Pr.
(1988)

25. Sahlqvist, H.: Completeness and correspondence in the first and second order semantics for
modal logic. In: Proc. of 3rd Scandinavian Logic Symp., pp. 110–143. North-Holland (1975)

26. Shackle, G.L.S.: Decision, Order, and Time in Human Affairs. Cambridge Univ. Press (1961)
27. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Causation

in Decision, Belief Change and Statistics, pp. 105–134. Kluwer (1988)
28. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets & Syst. 1, 3–28

(1978)

A New Class of Lineage Expressions over

Probabilistic Databases Computable in P-Time

Batya Kenig, Avigdor Gal, and Ofer Strichman

Technion, Israel Instutute of Technology, Haifa, Israel

Abstract. We study the problem of query evaluation over tuple-
independent probabilistic databases. We define a new characterization
of lineage expressions called disjoint branch acyclic, and show this class
to be computed in P-time. Specifically, this work extends the class of lin-
eage expressions for which evaluation can be performed in PTIME. We
achieve this extension with a novel usage of junction trees to compute
the probability of these lineage expressions.

1 Introduction

Applications in many areas such as data cleaning, data integration and event
monitoring produce large volumes of uncertain data. Probabilistic databases in
which the tuples’ presence is uncertain, and known only with some probability,
enable modeling and processing such uncertain data.

Answering queries over probabilistic databases has drawn much attention in
the database community in recent years. A model of tuple-independent (or tuple-
level semantics) probabilistic databases was introduced by Cavallo and Pittarelli
[3] and was extensively discussed in the literature, e.g., [9,6]. According to this
model, each tuple t is annotated by an existence probability pt > 0, meaning it
appears in a possible world with probability pt, independently of other tuples.
This defines a probability distribution over all possible database instances.

Query evaluation over tuple-independent probabilistic databases is #P -hard
in general, even for simple conjunctive queries without self-joins [6]. Dalvi
and Suciu have introduced a dichotomy classification of queries over tuple-
independent probabilistic databases, where any query with a safe plan can be
computed extensionally by extending the query operators to enable an efficient
computation of the result’s probability [6,5]. The extensional approach is very
efficient, but may be applied to a limited set of queries [13,6].

Even for queries without a safe plan there are database instances for which
probabilities could be computed in PTIME. An intensional approach to evaluate
queries over tuple-independent probabilistic databases considers both the query
and the database instance. The query result is first computed and represented
as a Boolean formula, termed a lineage expression [2], defined over Boolean
variables corresponding to tuples in the database. The lineage describes how the
answer was derived from the tuples in the database (see Table 1).

Various inference algorithms can be used to compute the result tuple probabil-
ities, either exactly [16] or approximately [17]. Roy et al. [18] and Sen et al. [19]

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 219–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

220 B. Kenig, A. Gal, and O. Strichman

A B
r1 a b
r2 f e

(a) R

B C
y1 b c
y2 e c
y3 e g

(b) Y

C D
t1 c d
t2 g h

(c) T

Fig. 1. Probabilistic Database with variables

showed a polynomial time algorithm for recognizing lineage expressions that can
be transformed to a read-once form, and computing their probability. Their al-
gorithm is applicable for lineages resulting from conjunctive queries without self
joins.

Consider the tuple-independent probabilistic database of Figure 1 and the
Boolean conjunctive query

Q1():-R (x, y) , Y (y, z) (1)

Q1 is a conjunctive query without self-joins that has a safe plan [6]. Olteanu and
Huang [16] showed that the lineage resulting from conjunctive queries without
self-joins, that have a safe plan, always have a read-once equivalent. Indeed, the
lineage expression of Q1 over the database in Fig. 1 is r1y1 + r2y2 + r2y3, which
has an equivalent read-once form, r1y1 + r2 (y2 + y3).
Q2 is an example of a query that does not have a safe plan:

Q2():-R (x, y) , Y (y, z) , T (z, w) (2)

The lineage expression of Q2 over the database is

r1y1t1 + r2y2t1 + r2y3t2 (3)

It was shown [18,12] that Expression 3 does not have an equivalent read-once
form.

In this work we introduce a new class of lineage expressions called disjoint
branch acyclic lineage expressions. Such lineage expressions are defined using
restrictions on their respective hypergraph. Going back to Example 1, the lineage
expression in Eq. 3 is disjoint branch acyclic, possessing a special structure that
can be exploited for efficient computation.

We characterize disjoint branch acyclic lineage expressions and present, as
part of the proof of the class computation time, an algorithm to compute the
probability of this form in time that is polynomial in the size of the formula.

The rest of the paper is organized as follows: Section 2 introduces background
on a specific class of chordal graphs, probability computation using probabilistic
graphical models, and hypergraph acyclicity. Lineage acyclicity is presented in
Section 3. Section 4 presents the main theorem of this work, proving it by show-
ing an algorithm for probability computation of disjoint branch acyclic lineage
expressions. We conclude in Section 5.

A New Class of Lineage Expressions over Probabilistic Databases 221

2 Preliminaries

At the heart of the proposed method for computing the probability of Boolean
lineage expressions lies a graph with a specific structure termed rooted directed
path graph. This class of graphs and its PTIME recognition algorithm were first
introduced by Gavril [11]. This section discusses this class of graphs and other no-
tions significant to our proposed approach. We present a class of chordal graphs,
namely rooted directed path graphs (Section 2.1) and discuss probability com-
putation using probabilistic graph models (Section 2.2). We conclude with the
introduction of hypergraph acyclicity (Section 2.3).

A clique C of a graph G(V,E) is a subset of V where every pair of nodes
is adjacent. We denote by KG the set of maximal cliques in G. For a vertex
v ∈ V we denote by Kv the set of maximal cliques in KG that contain v. We
use T (V,E) to denote a tree. A subtree is a connected subgraph of a tree. In
particular, a path in a tree can be viewed as a subtree. Whenever a subtree is
induced from a subset of nodes V ′ ⊆ V of a tree T (V,E), we do not explicitly
state its set of edges, but rather denote it using T (V ′).

2.1 Classes of Chordal Graphs

A chord is an edge connecting two non-consecutive nodes in a cycle or path. G
is chordal or triangulated if it does not contain any chordless cycles. Discovering
whether G is chordal can be performed in time O(|V |+ |E|) [20].

A P4 denotes a chordless path with four vertices and three edges. A graph is
considered to be P4-free if it does not contain a P4.

An intersection graph of a finite family of non-empty sets is obtained by rep-
resenting each set by a vertex, and connecting two vertices if their corresponding
sets intersect. Gavril [10] characterizes the connection between chordal graphs
and intersection graphs, as follows.

Theorem 1 ([10]). Let G(V,E) be an undirected graph. The following state-
ments are equivalent:

1. G is chordal.
2. There exists a tree T (KG) such that for every v ∈ V the subgraph induced

by Kv is a subtree T (Kv).
3. G is the intersection graph of a family of subtrees of some tree T ′.

T (KG) is called a junction tree possessing the following running intersection
property: for every pair of cliques C1, C2 ∈ Kv every clique on the path from C1

to C2 in T (KG) belongs to Kv.
Let T ′ be a rooted directed tree, and consider a group of directed paths in

T ′. Let G be the intersection graph of directed paths in T ′. Then G is a Rooted
Directed Path Graph, and T ′ is called the host tree of G.

The following property (Theorem 2 [11]) defines a characteristic tree, asso-
ciated with a rooted directed path graph. This tree is of prime concern in this
work.

222 B. Kenig, A. Gal, and O. Strichman

Theorem 2 ([11]). A graph G(V,E) is a rooted directed path graph (rdpg) iff
there exists a rooted directed tree Tr whose vertex set is KG, so that for every
vertex v ∈ V , Tr(Kv) is a directed path of Tr.

Constructing the characteristic tree of a rooted directed path graph G(V), if
one exists, takes O(|V |4) [11].1 The characteristic tree Tr of an rdpg G(V,E) is,
in fact, a special form of a junction tree (Definition 1), where every vertex v ∈ V
appears in exactly one branch of Tr. Such a junction tree is known as a disjoint
branch junction tree (dbjt) [8].

Definition 1. Let Tr be a junction tree with root r and children r1, r2, ..., rl
roots of subtrees Tr1 , ..., Trl, respectively. A junction tree Tr is a dbjt if:

1. Tr contains a single node, r, i.e., |Tr| = 1, or
2. The following two conditions jointly hold: (a) ∀ri �= rj , Cri ∩ Crj = ∅; and

(b) ∀Tri ∈ {Tr1 , Tr2 , ..., Trl}, Tri recursively complies with the conditions 1
and 2.

An example of a rooted directed path graph and its corresponding character-
istic tree (or dbjt) are presented in Figures 2b and 2c, respectively. Definition 1
characterizes the dbjt properties that enable the efficient computation we show
in this work.

2.2 Probability Computation Using Probabilistic Graph Models

Probabilistic Graphical Models (PGMs) refer to a set of approaches for repre-
senting and reasoning about large joint probability distributions [15]. A PGM is
a graph in which nodes represent random variables and edges represent direct
dependencies between them. An example of a directed PGM is given in Figure
2a, representing the lineage expression of Eq. 3.

Inference in PGMs is the task of answering queries over the probability distri-
bution described by the graph and is, in general, #P-complete [15]. One of the
well-known inference algorithms is the junction tree algorithm [15]. The algo-
rithm is designed for undirected PGMs in which for every maximal clique C in
the PGM, there exists a factor FC that is a function from the set of assignments
of C to the set of non-negative reals. The algorithm consists of two parts, compi-
lation and message passing. The compilation part includes three steps, namely
moralization, triangulation and construction, as follows.Moralization, in the case
of a directed PGM, involves connecting all parents of a given node and dropping
the direction of edges (e.g., Figure 2b). Triangulation adds extra edges to create
a chordal graph. The example graph obtained after moralization in Figure 2b is
already chordal and therefore no edges need to be added. We note that this ex-
ample is also a rooted directed path graph (see Section 2.1). Construction forms

1 To date, this is the most efficient published recognition algorithm for rooted directed
path graphs [4]. There is also an unpublished linear time algorithm [7] for this class
of graphs.

A New Class of Lineage Expressions over Probabilistic Databases 223

r1 y1 t1 y2 r2 y3 t2

i1 i2 i3

(a) PGM

r1 y1 t1 y2 r2 y3 t2

i1 i2 i3

(b) rdpg/Moralized PGM

t1,r1,y1,i1 t1,r2,y2,i2 r2,y3,t2,i3t1 r2

(c) Characteristic tree/dbjt

Fig. 2. PGM, moralization and junction tree

a junction tree over the maximal cliques in the resulting graph G(V). Figure 2c
shows the junction tree of the graph in Figure 2b. Note that since the graph is
a rooted directed path graph, its junction tree is in fact a dbjt.

The message-passing part has two steps. First, for each edge of the tree
(C1, C2) ∈ T a factor, defined over the variables in the intersection S = C1∩C2, is
defined. The factor entries are initialized to 1. Then, neighboring nodes C1, C2 ex-
change messages through the factor defined on their intersection FS , S = C1∩C2.
The message from C1 to C2 is:

μC1,C2(S) =
∑

x∈C1\S
F1(C1)

and the message from C2 to C1 is:

μC2,C1(S) =

∑
x∈C2\S F2(C2)

μC1,C2(S)

After every pair of adjacent nodes in the junction tree have exchanged mes-
sages, each factor holds the marginal of the joint probability distribution of the
entire variable set. The message-passing protocol is such that every edge in the
tree is processed once in each direction. Therefore, the runtime of the message
passing algorithm is O(N ·Dk) where N is the number of nodes in the tree, D is
the domain of the variables, and k is the size of the largest clique. k−1 is referred
to as the width of the associated PGM and clearly, the inference algorithm is
exponential in the PGM’s width so bounded width implies tractability in graph-
ical models. PGMs may have several different triangulations, affecting the size
of the largest clique in the graph. The smallest width that can be obtained for a
PGM is its treewidth, where the treewidth of a chordal graph is simply its width.
Finding an optimal triangulation is known to be NP-complete. However, in this
work we introduce a method to compute the probability of a family of lineage
expressions in time that is polynomial in their treewidth.

224 B. Kenig, A. Gal, and O. Strichman

2.3 Hypergraphs and Acyclicity

A hypergraphH = (V,E) is a generalization of a graph where V is the set of nodes
and the set of edges E is a set of non-empty subsets of V . Edges in a hypergraph
are termed hyperedges. The primal graph G(H) = (V,EG) corresponding to
a hypergraph H is the graph whose vertices are those of H and whose edges
are the set of all pairs of nodes that occur together in some hyperedge of H
(EG = {(u, v) : {u, v} ⊆ V, ∃e ∈ E, {u, v} ⊆ e}). A hypergraph H is conformal
if every clique in its primal graph G(H) is contained in a hyperedge of H .
Acyclicity in a hypergraph is defined as follows.

Definition 2 (acyclicity [1]). A hypergraph H is acyclic (or α-acyclic) if H
is conformal and its primal graph G(H) is chordal.

Beeri et. al [1] showed that a hypergraph is acyclic iff it has a junction tree.
Duris [8] also showed that for a restricted form of acyclic hypergraphs (called
γ-acyclic) there exists a dbjt rooted at every node. An algorithm that constructs
a dbjt in time O(|V |2) for γ-acyclic hypergraphs was also introduced there.

3 Disjoint Branch Acyclic Lineage (DBAL) Expressions

We now introduce a class of Boolean lineage expressions, connecting it to rooted
directed path graphs. Let f(V) denote a lineage expression of a set of literals
V , resulting from a query q, as derived by the query engine. Lineage expressions
of conjunctive queries are monotone formulas, where all literals are positive and
only conjunctions and disjunctions are used. An implicant p ⊆ V of f is a set of
literals such that whenever they are true, f is true as well. An implicant of f is
called a prime implicant if it cannot be reduced. We denote by fIDNF f ’s DNF
form containing only prime implicants. fIDNF can be modeled as a hypergraph
Hf (V,E), where each literal corresponds to a node in the graph and each prime
implicant corresponds to a hyperedge.
fIDNF is not always available, and expanding f to its DNF form may result

in an exponentially larger formula. Therefore, we now propose the construction
of an alternative graph G(f), built over f(V). The set of literals V is the set
of nodes of G(f) and two nodes are connected iff they belong to a common
prime implicant. G(f) is exactly Hf ’s primal graph, i.e., G(Hf) = G(f). For a
restricted set of queries, G(f) can be built directly from f by using a method
proposed by Roy et al. [18]. We say that f is conformal if every maximal clique
in G(f) is contained in a prime implicant of f .

Definition 1 (Lineage expression acyclicity). A lineage expression f is
acyclic if G(f) is chordal and f is conformal.

Definition 2 (Disjoint Branch Acyclic Lineage Expressions). A lineage
expression f is a Disjoint Branch Acyclic Lineage Expression or DBAL if f is
acyclic and G(f) is a rooted directed path graph.

Following the discussion in Section 2.1, DBAL expressions have a dbjt. The lin-
eage expression in Eq. 3 (Section 1) is an example of a DBAL. Its corresponding
dbjt is presented in Figure 2c.

A New Class of Lineage Expressions over Probabilistic Databases 225

4 DBAL Expression Probability Computation

In this section we prove that the probability of disjoint branch acyclic lineage
(DBAL) expressions over tuple independent probabilistic databases can be com-
puted in PTIME.

Theorem 1. Let f(V) be a DBAL expression. The probability Pr(f = 1) can
be computed in time O(nk2) where n = |V | and k is the size of the largest clique
in G(f).

At the heart of the proof is an algorithm for computing the probability of
DBAL expressions in time that is quadratic in the size of the treewidth. This
solution is unique since, to the best of our knowledge, it is the first time an
algorithm that runs in time polynomial (quadratic) of the treewidth, as opposed
to exponential, is introduced in the context of tuple independent probabilistic
databases.

Section 4.1 introduces an example that will be used to demonstrate the al-
gorithm and Section 4.2 discusses factor representation in our setting. Finally,
Section 4.3 details the algorithm and presents lemmas 1 and 2 that argue for
the correctness of the algorithm and its complexity, respectively, which together
proves Theorem 1 above.

4.1 Illustrating Example

We first motivate and explain the algorithm approach using a simple example.

r1

y1

t1

y2

r2

t2

y3

(a)
Primal
graph

r1 y1 t1 y2 r2 y3 t2

i1=0 i2=0 i3=0

j=0

(b) Bayesian net

Fig. 3. Illustration for Example 1

Example 1. Consider query Q2() : −R (x, y) , Y (y, z) , T (z, w), presented earlier
over the instance in Table 1. The lineage of the query is j = r1y1t1 + r2y2t1 +
r2y3t2. The primal graph corresponding to the query is given in Figure 3a. It
is easy to see that this lineage expression is not read-once since it has a P4:
(r1, t1, r2, t2). Let us denote by i1 = r1y1t1, i2 = r2y2t1, and i3 = r2y3t2. We are

226 B. Kenig, A. Gal, and O. Strichman

ultimately interested in calculating the probability: Pr(j = 1) = 1− Pr(j = 0).
If j = 0 then we know that i1 = i2 = i3 = 0. These values can be seen as
introduction of evidence in a Bayesian network, illustrated in Figure 3b. After
moralization (see Section 2.2), the network is chordal and conformal and there-
fore has a junction tree depicted in Figure 4. In the Junction-Tree algorithm,
any node may be selected as root. For this example let us select node {r2, y3, t2}
as the root. 12

In the classic junction tree algorithm, where factors are represented in tab-
ular form, each entry in the factor table represents a single assignment, lead-
ing to a representation that is exponential in the number of variables in the
table. We present linear sized factors, where each entry represents multiple
assignments. See, for example, Figure 4, where asterisks represent wildcard as-
signments. Here, the number of entries in each factor is exactly the node’s cardi-
nality. The message passing is illustrated in Figure 4, and will be demonstrated
in detail in Section 4.3. After the completion of the algorithm, the root node
contains the marginal probability of its entries (see Section 2.2). Therefore, all
the entries of the root node’s factor are added in order to obtain the required
probability.

4.2 Factor Representation and Projection

Hereinafter we shall use a tabular notation to represent a factor, where columns
represent random variables, and rows correspond to a set of mutual exclusive
value assignments. The notation introduced below is illustrated in Example 2.
Given a factor over the set of random variables X = (X1, X2, ..., Xn) we denote
by FX [j, k] (or simply F [j, k] whenever the variable set is clear from the context)
the value of Xk in the jth entry. Xk’s value may be the wildcard,‘*’, indicating
that it can be either 0 or 1. The assignments represented by the jth entry
are denoted by F [j] and their overall probability is denoted by Pr(F [j]). Let
X ′ ⊂ X be a subset of the variables of factor F , we denote by F [j,X ′] the
values of variables X ′ in the jth entry of the factor. Finally, given an assignment
X = x, we denote by Pr(F [x]) the probability corresponding to this entry in
factor F .

Example 2. Consider the factor F in Table 2, representing the joint distri-
bution of independent boolean random variables X1, X2, X3. Using our no-
tation, F [2, 3] = ∗ and F [2] = [1, 0, ∗]. Also, Pr(F [3]) = pX1 · pX3

and
F [3, {X1, X3}] = [1, 0]. Finally, Pr(F [{X1 = 1, X2 = 0, X3 = ∗}]) = pX1 . 12

Each maximal clique in the primal graph of a DBAL expression corresponds
to exactly one prime implicant of the lineage’s IDNF form. As a result, each node
in the corresponding junction tree contains a factor that represents a single DNF
prime implicant of the lineage. We will refer to these as DNF factors. For each
variable X in the expression we define a base factor, F b

X . Base factors contain

A New Class of Lineage Expressions over Probabilistic Databases 227

exactly two entries, with values 0, 1 and their appropriate probabilities pX , pX ,
respectively. Each base factor is assigned to exactly one node in the junction
tree.

Consider some DNF prime implicant d, containing k literals, d = X1·X2·...·Xk.
The probability of d = 0 is computed as follows:

Pr(d = 0) = Pr(X1 = 0)+Pr(X1 = 1, X2 = 0)+...+Pr(X1 = 1, ..., Xk−1 = 1, Xk = 0).
(4)

Table 1. Factor Table

X1 X2 Xk Pr
0 * * * * 1
1 0 * * * 1
1 1 0 * * 1
1 * 1
1 1 1 ... 0 1

The k summands in Eq. 4 create a mutually exclusive
and exhaustive set of configurations.

For illustration, consider Table 1 over X1, ..., Xk. The
“Pr” values are initialized to 1.

The asterisks in the table represent wildcard assign-
ments, as follows:

Pr(X1 = 1, ..., Xi−1 = 1, Xi = 0, Xi+1 = ∗, ..., Xk = ∗) =

∑

xi+1,...,xk∈{0,1}
Pr(X1 = 1, ...Xi−1 = 1, Xi = 0, Xi+1 = xi+1, ..., Xk = xk) =

∑

xi+1,...,xk∈{0,1}
Pr(Xi+1 =xi+1, ..., Xk =xk|X1 =1, ..., Xi−1 =1, Xi =0) · Pr(X1 =1, ..., Xi−1 =1, Xi =0)

= Pr(X1 = 1) · ... · Pr(Xi−1 = 1) · Pr(Xi = 0) ·
∑

xi+1,...,xk∈{0,1}
Pr(Xi+1 = xi+1, ..., Xk = xk) (5)

using the tuple independence assumption in the transition from the third to the
fourth line of the equation. Informally, once we know that Xj = 0, then the
implicant’s value is false regardless of the values of its other literals.

At the beginning of the algorithm, the values in the “Pr” column of the
factors depend on the assignment of the base factors to the nodes in the tree.
For example, a factor over variablesX1, X2, X3 at the beginning of the algorithm
is given in Table 2. For the sake of illustration, we assume that the base factor
F b
X2

is assigned to a different node (DNF factor).

Table 2. Factor Table with
partial base factors

X1 X2 X3 Pr
0 * * pX1

1 0 * pX1

1 1 0 pX1 · pX3

The proposed algorithm is actually a series of
projections (defined below) over the linear-sized
factors of the junction tree. In the general mes-
sage passing algorithm [15], in which each entry
in the factor represents a single configuration of
the variables (and therefore the size of the fac-
tor is exponential in the number of variables), the
probabilities of the entries with common values in
the projected variables are simply added. This is
not the case for the linear sized factors used in our setting. Definition 1 formalizes
this notion of projection in our setting, and Example 3 demonstrates it.

Definition 1 (factor projection). Let FX∪X′ be a factor over variables X∪X ′

where X = {X1, ..., Xm} and X ′ = {X ′
1, ..., X

′
l}. The projection of F over

228 B. Kenig, A. Gal, and O. Strichman

the variables in X, denoted FX =
∏

X FX∪X′ , is a new factor containing only
variables X. The probability column in FX is computed as follows:

Pr(FX [j]) =
∑

i∈[1,|X∪X′|]:FX∪X′ [i,X]=FX [j]

Pr(FX∪X′ [i])

The projection
∏

X FX∪X′ may be applied to FX∪X′ under the following condi-
tions:

1. The variables X ′, projected out of the factor FX∪X′ , appear after (referring
to column order) the variables X.

2. The base factors corresponding to the variables X ′ are included in factor
FX∪X′ before the projection operation can be applied.

Example 3. Consider Table 2 and the factor FX1,X2,X3 over the variable set
{X1, X2, X3}. We start by projecting out the variable X3. Condition 1 of Defini-
tion 1 is satisfied. As for Condition 2, X3’s probability, pX3 , is already available
in the factor, and therefore

FX1,X2 =
∏

X1,X2

FX1,X2,X3 =

X1 X2 Pr
0 ∗ pX1

1 0 pX1

1 1 pX1 · pX3

Projecting out X2 from FX1,X2 requires multiplying in X2’s base factor to satisfy
Condition 2. Therefore,

FX1 =
∏
X1

FX1,X2 =

X1 Pr
0 pX1

1 pX1(pX2
+ pX2 · pX3

)

12

4.3 Algorithm Description

Let Ci denote the set of variables in node i of the junction tree, |Ci| its car-
dinality, and Fi its factor. In this section we use the factor notation defined in
Section 4.2. Br denotes the set of variables in node r, for which base factors
have been assigned, i.e., Br = {X : X ∈ Cr, F

b
X is assigned to r}. We denote

by children(i) and p(i) the children and parent of node i in the junction tree,
respectively. A message between node i and node j, μi,j(Ci ∩ Cj) is a factor
over the intersection of the two nodes. The number of entries in μi,j(Ci ∩Cj) is
|Ci ∩ Cj |+ 1 (including the entry containing all ones).

The algorithm uses a partial order � over the variables in the junction tree
T . We denote by vars(�) the set of variables over which � is defined.

The pseudocode of the algorithm over linear sized factors is given in al-
gorithms 1 and 2. After the initial call to Algorithm 2 (Line 1 of Algorithm 1), the

A New Class of Lineage Expressions over Probabilistic Databases 229

Algorithm 1. Message Passing: Initial Call

Input: dbjt (see Definition 1) Tr′ with root r′ corresponding to a lineage
expression f .
Output: Pr(f = 0)

1: Call Algorithm 2 with parameters: Tr′ and �← ∅.
2: Return

∑|Cr′ |
j=1 Pr(Fr′ [j]).

algorithm performs a series of recursive calls to update the probabilities in the
node factors of the junction tree.

Each message from a node i to its parent, p(i), is a projection on factor Fi over
the variables Ci ∩Cp(i). According to the definition of projection (Definition 1),
variables Ci ∩Cp(i) should appear before Ci \Cp(i) in the factor table represen-
tation. Therefore, lines 1-5 of Algorithm 2 define an order over the variables in
the root node r that was given as a parameter (Cr), such that projection over
variables Cr ∩ Cp(r) is made possible. In Example 1, Figure 4, the root node
contains ordered variables {r2, y3, t2}. In the factor for the child node with vari-
ables {t1, r2, y2}, r2 appears before t1 and y2 because the message between this
node and its parent is over variable r2. Likewise, in the factor with variables
{t1, r1, y1}, t1 appears before r1 and y1. The order is updated in line 5.

Lines 6-10 initialize a factor for node r based on the ordering � that was
updated in lines 1-5, and according to the base factors assigned to this node. In
Example 1 (Figure 4), the base factors for variables y3 and t2 are assigned to
the root node, while the base factor for r2 is assigned to the middle node (with
variables {t1, r2, y2}).

Lines 11-21 initiate a recursive call on the children of r. In Line 13, the mes-
sages from all children of r are collected. Each one of the messages, μi,r(Cri∩Cr),
received by the node in line 13 contains |Cri ∩ Cr| + 1 entries, which form an
exhaustive and mutual exclusive set of configurations. For example, consider the
message μ1,2(t1) from node {t1, r1, y1} to node {t1, r2, y2} (Figure 4).

As in the case of projection, in order to add the probabilities of the entries in
the messages, the appropriate base factors need to be multiplied in before the
addition can take place. For example, in Figure 4, the base factor for t1, F

b
t1 , is

not part of the factor of node {t1, r1, y1}, and therefore not part of the original
message, μ1,2(t1), (containing only entries where t1 = 0 and t1 = 1). However, in
order to augment the factor with the entry t1 = ∗, the values in the probability
column of the entries corresponding to t1 = 0 and t1 = 1 need to be added. In
order for the resulting probability to be correct, the probabilities of the entries
corresponding to t1 = 0 and t1 = 1 are multiplied by pt1 and pt1 respectively.
The entry where t1 = ∗ in Figure 4 was appended to the message because it
will be used by node {t1, r2, y2}. Such entries are calculated in lines 14-21 of the
algorithm. There are exactly |Cri ∩Cr | such entries added to the message which
correspond to partial sums over the entries in the original message μi,r(Cri ∩Cr).

230 B. Kenig, A. Gal, and O. Strichman

Algorithm 2. Message Passing: Main Procedure
Input: dbjt Tr with root r and a partial order �.
Output: Factor Fr with correct probabilities

1: if r �= r′ then
2: Define an order �r over Cr s.t.: 1. Cr ∩ Cp(r) appear before Cr\Cp(r) 2. The order of

variables Cr ∩ vars(�) complies with �.
3: else
4: define an arbitrary order over variables Cr

5: Update � according to the steps above.
{Initialize node’s factor based on �}

6: Define a linear-sized factor Fr based on �.
7: for j ← 1 to |Cr| do
8: Pr(Fr[j]) ← 1.0 {initialize factor entries}
9: for X ∈ Br do
10: Pr(Fr[j]) ← Pr(Fr [j]) · Pr(X = Fr [j, {X}])

{apply projection on subtrees}
11: for all ri ∈ children(r) do
12: Recursively call the algorithm on subtree Tri

with root ri and (updated) ordering �.

13: μi,r(Cr ∩ Cri
) ←

∏
Cr∩Cri

(Fri
) [project on the children’s factor to get the message]

14: for j ← 1 to |Cr ∩ Cri
| + 1 do

15: Mi,r [j] ← 1.0 [iterate over entries in the message]
16: for X ∈ ((Cr ∩ Cri

) \ Bri
) do

17: Mi,r [j] ← Mi,r [j] · Pr(X = μi,r [j, {X}]) [Pr(X = ∗) = 1.0]
18: prob ← Pr(μi,r [|Cri

∩ Cr| + 1) · Mi,r [|Cri
∩ Cr| + 1] [initialize prob according to entry

[1,1,...,1]]
19: for k ← |Cri

∩ Cr| to 1 do

20: prob ← prob + Pr(μi,r [k]) ·Mi,r [k] [update prob]
21: Pr(μi,r[X1 = 1, ...,Xk−1 = 1, Xk = ∗, ...,X|Cri

∩Cr | = ∗]) ← prob

{update factor using children’s projected factors}
22: for j ← 1 to |Cr| do
23: for all ri ∈ children(r) do
24: Pr(Fr[j]) ← Pr(Fr [j]) · Pr(μi,r [Fr[j, Cri

∩ Cr]])

Finally, lines 22-24 update Fr according to the messages received from its
children. The correctness of the algorithm for disjoint branch junction trees
is given in Lemma 1. The proof is omitted due to space considerations. It is
available in the full version of this paper [14].

Lemma 1. Let Tr′ be a dbjt with root r′, corresponding to lineage expression f .
After running Algorithm 1 on Tr′, Pr(Fr′ [j]), j ∈ [1, |Cr′ |] contains the marginal
probability corresponding to the configurations represented by the jth entry of this
factor.

Lemma 2. The complexity of algorithms 1 and 2 on a disjoint branch junction
tree of size n is O(n · k2MAX) where kMAX = MAXi=1..n|Ci|.
Proof. The loop in lines 6-10 is performed in O(|Cr |2) since |Br| ≤ |Cr|. Sim-
ilarly, the loop in lines 14-17 is performed in O((|Cr ∩ Cri | + 1)2), but since
subsumption cannot occur in the junction tree, |Cr| > |Cr ∩ Cri |, we arrive
again at runtime of O(|Cr |2). The loop in lines 19-21 takes time O(|Cr ∩ Cri |).

A node r in the tree receives messages from all of its neighbors, except its
parent in the algorithm. Since the children create a partition of a subset of the
variables in the node, then the number of children can be at most |Cr|. The
number of entries for which the probability is updated is exactly |Cr|, therefore
the total runtime is

∑n
i=1O(|Cr |2) = O(n · (k2MAX)).

A New Class of Lineage Expressions over Probabilistic Databases 231

1 1 1, ,t r y 1 2 2, ,t r y 2 3 2, ,r y t1t 2r
1

1 1

1 1 1 Pr

0 * * 1

1 0 *

1 1 0
r

r y

t r y

p

p p
3

3 2

2 3 2 Pr

0 * * 1

1 0 *

1 1 0
y

y t

r y t

p

p p
2

2 1

2 1 2

2 1 2 Pr

0 * *

1 0 *

1 1 0

r

r

r yt

t

r t y

p

p p

p p p

112 1 11 2

2 1 2 1

2 11 2 1 1 2 1 2

2 1 2

1,2

1,2

1,2

Pr

0 * * [[]]

1 0 *

1 1 0 [

· (*)

· (0)

· (1])

rt r yt

rt

r r

r t r t

r y rr y t y

r t y

p p p p p p p

p p p p

p p p p p p p p p

μ

μ

μ

+ + =

=

+ =

1 1 1, ,t r y
1 2 2, ,t r y 2 3 2, ,r y t1t 2r

11 1

11 1 11

1

1,2 1

Pr

()
0 1

1

* []
rr y

rt r yt

t

p p p

p p

t

p p p

μ

+

+

=

+

3

3 2

2 3 2

2,3

2,3

2,3

· (0)

·

Pr

0 * * 1

1 0 *

1 1 0

(1)

· (1)
y

y t

r y t

p

p p

μ

μ

μ1 1 1, ,t r y 1 2 2, ,t r y
2 3 2, ,r y t1t 2r

112 1 11

2 11 2 1 11

2

2,3 2 [[

Pr

]]

[[]

(0

]

)

1
rt r ytr

r yr yt rt

p p p p p p

p p p p p p p

r

rμ + +

+ +

=

1 1 1, ,t r y 1 2 2, ,t r y 2 3 2, ,r y t1t 2r
1

1 1

1 1 1 Pr

0 * * 1

1 0 *

1 1 0
r

r y

t r y

p

p p
3

3 2

2 3 2 Pr

0 * * 1

1 0 *

1 1 0
y

y t

r y t

p

p p
2

2 1

2 1 2

2 1 2 Pr

0 * *

1 0 *

1 1 0

r

r

r yt

t

r t y

p

p p

p p p

1 1 1, ,t r y1 1 1, ,t r y 1 2 2, ,t r y1 2 2, ,t r y 2 3 2, ,r y t2 3 2, ,r y t1t1t 2r2r
1

1 1

1 1 1 Pr

0 * * 1

1 0 *

1 1 0
r

r y

t r y

p

p p
3

3 2

2 3 2 Pr

0 * * 1

1 0 *

1 1 0
y

y t

r y t

p

p p
2

2 1

2 1 2

2 1 2 Pr

0 * *

1 0 *

1 1 0

r

r

r yt

t

r t y

p

p p

p p p

112 1 11 2

2 1 2 1

2 11 2 1 1 2 1 2

2 1 2

1,2

1,2

1,2

Pr

0 * * [[]]

1 0 *

1 1 0 [

· (*)

· (0)

· (1])

rt r yt

rt

r r

r t r t

r y rr y t y

r t y

p p p p p p p

p p p p

p p p p p p p p p

μ

μ

μ

+ + =

=

+ =

1 1 1, ,t r y
1 2 2, ,t r y 2 3 2, ,r y t1t 2r

11 1

11 1 11

1

1,2 1

Pr

()
0 1

1

* []
rr y

rt r yt

t

p p p

p p

t

p p p

μ

+

+

=

+

112 1 11 2

2 1 2 1

2 11 2 1 1 2 1 2

2 1 2

1,2

1,2

1,2

Pr

0 * * [[]]

1 0 *

1 1 0 [

· (*)

· (0)

· (1])

rt r yt

rt

r r

r t r t

r y rr y t y

r t y

p p p p p p p

p p p p

p p p p p p p p p

μ

μ

μ

+ + =

=

+ =

1 1 1, ,t r y1 1 1, ,t r y
1 2 2, ,t r y1 2 2, ,t r y 2 3 2, ,r y t2 3 2, ,r y t1t1t 2r2r

11 1

11 1 11

1

1,2 1

Pr

()
0 1

1

* []
rr y

rt r yt

t

p p p

p p

t

p p p

μ

+

+

=

+

3

3 2

2 3 2

2,3

2,3

2,3

· (0)

·

Pr

0 * * 1

1 0 *

1 1 0

(1)

· (1)
y

y t

r y t

p

p p

μ

μ

μ1 1 1, ,t r y 1 2 2, ,t r y
2 3 2, ,r y t1t 2r

112 1 11

2 11 2 1 11

2

2,3 2 [[

Pr

]]

[[]

(0

]

)

1
rt r ytr

r yr yt rt

p p p p p p

p p p p p p p

r

rμ + +

+ +

=

3

3 2

2 3 2

2,3

2,3

2,3

· (0)

·

Pr

0 * * 1

1 0 *

1 1 0

(1)

· (1)
y

y t

r y t

p

p p

μ

μ

μ1 1 1, ,t r y 1 2 2, ,t r y
2 3 2, ,r y t1t 2r

112 1 11

2 11 2 1 11

2

2,3 2 [[

Pr

]]

[[]

(0

]

)

1
rt r ytr

r yr yt rt

p p p p p p

p p p p p p p

r

rμ + +

+ +

=

1 1 1, ,t r y1 1 1, ,t r y 1 2 2, ,t r y1 2 2, ,t r y
2 3 2, ,r y t2 3 2, ,r y t1t1t 2r2r

112 1 11

2 11 2 1 11

2

2,3 2 [[

Pr

]]

[[]

(0

]

)

1
rt r ytr

r yr yt rt

p p p p p p

p p p p p p p

r

rμ + +

+ +

=

Fig. 4. Message Passing using Alg. 2 over f = t1r1y1 + t1r2y2 + r2y3t2

Algorithms 1 and 2 along with Lemmas 1 and 2 complete the proof for the
main theorem of this section, Theorem 1. Overall, we have shown that DBAL
expressions, having a dbjt, can be evaluated in polynomial time.

5 Conclusions

We have presented disjoint branch acyclic lineage expressions, a new class of
lineage expressions of queries over tuple independent probabilistic databases,
and shown that probability computation over this class can be done in low
polynomial data complexity.

As part of future research we plan to investigate queries and database in-
stances that induce junction trees with structural properties that enable efficient
probability calculation. Furthermore, we plan to explore how such queries relate
to existing characterizations of tractability [13]. Since correlations between tuples
can naturally arise in many applications, we intend to investigate how to extend
the proposed approach to models without the tuple-independence assumption.

Acknowledgments. The work was carried out in and partially supported by
the Technion–Microsoft Electronic Commerce research center.

232 B. Kenig, A. Gal, and O. Strichman

References

1. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. J. ACM 30, 479–513 (1983)

2. Benjelloun, O., Sarma, A., Halevy, A., Theobald, M., Widom, J.: Databases with
uncertainty and lineage. VLDB Journal 17(2), 243–264 (2008)

3. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: VLDB, pp.
71–81 (1987)

4. Chaplick, S.: Path Graphs and PR-trees. PhD thesis, Charles University, Prague
(January 2012)

5. Dalvi, N., Schnaitter, K., Suciu, D.: Computing query probability with incidence
algebras. In: PODS, pp. 203–214. ACM (2010)

6. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
Journal 16, 523–544 (2007)

7. Dietz, P.F.: Intersection Graph Algorithms. PhD thesis, Cornell University (August
1984)

8. Duris, D.: Some characterizations of γ and β-acyclicity of hypergraphs. Inf. Process.
Lett. 112(16), 617–620 (2012)

9. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of in-
formation retrieval and database systems. ACM Transactions on Information Sys-
tems 15, 32–66 (1994)

10. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory, Series B 16(1), 47–56 (1974)

11. Gavril, F.: A recignition algorithm for the intersection graphs of directed paths in
directed trees. Discrete Mathematics 13, 237–249 (1975)

12. Golumbic, M., Mintz, A., Rotics, U.: Factoring and recognition of read-once func-
tions using cographs and normality. In: DAC (June 2001)

13. Jha, A.K., Suciu, D.: Knowledge compilation meets database theory: compiling
queries to decision diagrams. In: ICDT, pp. 162–173 (2011)

14. Kenig, B., Gal, A., Strichman, O.: A new class of lineage expressions over
probabilistic databases computable in p-time. Technical Report IE/IS-2013-01,
Technion – Israel Institute of Technology (January 2013),
http://ie.technion.ac.il/tech_reports/1365582056_TechReportSUM2013.pdf

15. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. The MIT Press (August 2009)

16. Olteanu, D., Huang, J.: Using OBDDs for efficient query evaluation on probabilistic
databases. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291,
pp. 326–340. Springer, Heidelberg (2008)

17. Olteanu, D., Huang, J., Koch, C.: Approximate confidence computation in proba-
bilistic databases. In: ICDE, pp. 145–156 (2010)

18. Roy, S., Perduca, V., Tannen, V.: Faster query answering in probabilistic databases
using read-once functions. In: ICDT, pp. 232–243 (2011)

19. Sen, P., Deshpande, A., Getoor, L.: Read-once functions and query evaluation in
probabilistic databases. PVLDB 3(1), 1068–1079 (2010)

20. Tarjan, R.E., Yannakakis, M.: Addendum: Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM J. Comput. 14(1), 254–255 (1985)

http://ie.technion.ac.il/tech_reports/1365582056_TechReportSUM2013.pdf

The Semantics of Aggregate Queries

in Data Exchange Revisited�

Phokion G. Kolaitis1 and Francesca Spezzano2

1 University of California Santa Cruz & IBM Research - Almaden, USA
2 DIMES, Università della Calabria, Italy

kolaitis@cs.ucsc.edu, fspezzano@dimes.unical.it

Abstract. Defining “good” semantics for non-monotonic queries and
for aggregate queries in the context of data exchange has turned out
to be a challenging problem for a number of reasons, including the de-
pendence of the semantics of the concrete syntactic representation of the
schema mapping at hand. In this paper, we revisit the semantics of aggre-
gate queries in data exchange by introducing the aggregate most-certain
answers, a new semantics that is invariant under logical equivalence.
Informally, the aggregate most-certain answers are obtained by taking
the intersection of the aggregate certain answers over all schema map-
pings that are logically equivalent to the given schema mapping. Our
main technical result is that for schema mappings specified by source-
to-target tuple-generating dependencies only (no target constraints), the
aggregate most-certain answers w.r.t. a schema mapping coincide with
the aggregate certain answers w.r.t. the schema mapping in normal form
associated with the given schema mapping. This result provides an in-
trinsic justification for using schema mappings in normal form and, at
the same time, implies that the aggregate most-certain answers are com-
putable in polynomial time. We also consider the semantics of aggre-
gate queries w.r.t. schema mappings whose specification includes target
constraints, and discuss some of the delicate issues involved in defining
rigorous semantics for such schema mappings.

1 Introduction

Data exchange is the problem of restructuring and translating data structured
under one schema, called the source schema, into data structured under a differ-
ent schema, called target schema [5]. Data exchange is formalized using schema
mappings, i.e., quadruples of the form M = (S,T, Σst, Σt), where S is the
source schema, T is the target schema, Σst is a set of constraints describing the
relationship between source and target, and Σt is a set of target constraints.
The constraints between source and target are typically specified using source-
to-target tuple generating dependencies (s-t tgds). Furthermore, the target con-
straints are typically specified using target tuple-generating dependencies (target
tgds) and target equality generating dependencies (target egds).

� This research was partially supported by NSF Grants IIS-0905276 and IIS-1217869,
and the project Cardiotech funded by the Italian Research Ministry.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 233–246, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

234 P.G. Kolaitis and F. Spezzano

Two different algorithmic problems have been extensively studied in the con-
text of data exchange: given a source instance, materialize a “good solution” for
the given instance and answer queries posed over the target schema. If M is a
schema mapping as above and if I is a source instance, then a target instance
J is called a solution for I w.r.t. M if 〈I, J〉 |= Σst ∪ Σt. In general, a source
instance may have more than one solutions, so this raises the questions: which
solution should be materialized and what are the semantics of target queries?
Universal solutions, first introduced in [5], have turned out to be the preferred
solutions to materialize in the context of data exchange. Moreover, under the
condition of weak acyclicity [5] or some other mild structural condition on the
target tgds, a canonical universal solution for a given source instance can be effi-
ciently constructed using the chase procedure. As regards to the second problem,
the notion of the certain answers has been adopted as semantics of answering
queries over the target schema. More precisely, assume that M is a schema map-
ping and that for every source instance I, we have a set W(M, I) (or, simply,
W(I)) of “possible worlds” for I w.r.t. M, that is, a set of solutions of interest
for I w.r.t. M. If Q is a query over the target schema, then the certain answers
of Q on I is the set certain(Q, I,W(I)) =

⋂
{Q(J)|J ∈ W(I)}.

Several different types of solutions have been considered and studied in depth
as possible worlds in the semantics of the certain answers; these include the
set of all solutions [5], the set of all universal solutions [4], the set of CWA-
solutions [9,10], and the set of all GCWA∗-solutions [8]. For (unions of) con-
junctive queries, all these different types of possible worlds lead to the same cer-
tain answers, but they often lead to different certain answers on non-monotonic
queries, that is, queries that involve universal quantification and/or some form
of negation. Moreover, when the set of all solutions is used as the set of possi-
ble worlds, then the certain answers of non-monotonic queries can be counter-
intuitive. In fact, this was one of the main motivations for the introduction and
study of the CWA-solutions and their variants.

The preceding discussion concerns relational queries without aggregate op-
erators. The study of aggregate queries in data exchange was initiated in [1],
where the notion of range semantics [2] of aggregate queries on inconsistent
databases was suitably adapted in the context of data exchange to define the
notion of aggregate certain answers with respect to a schema mapping M with
no target constraints and a collection {W(M, I) : I a source instance} of pos-
sible worlds. In [1], it was pointed out that if the set of all solutions or the set
of all CWA-solutions is taken as the set of possible worlds, then the resulting
aggregate certain answers are rather trivial. For this reason, a different set of
possible worlds was proposed as an alternative, namely, the set of all solutions
that are endomorphic images of the canonical universal solution obtained using
the oblivious chase (also known as the naive chase). In [1] it was shown that
this approach gives rise to non-trivial and meaningful aggregate certain answers.
Moreover, the aggregate certain answers of the operators min, max, count, sum,
and avg were shown to be computable in polynomial time.

The Semantics of Aggregate Queries in Data Exchange Revisited 235

Even though the semantics of aggregate queries based on the endomorphic im-
ages of the canonical universal solution have many desirable features, they suffer
from the following shortcoming: they are not invariant under logical equivalence,
which means that they depend on the concrete syntactic representation of the
s-t tgds defining the schema mapping at hand1.

Example 1. Consider the logically equivalent schema mappings M1 = ({P (A)},
{R(B,C)}, {σ1}, ∅) and Mn = ({P (A)}, {R(B,C)}, {σn}, ∅), n ≥ 2, where

σ1 : ∀x(P (x) → ∃y R(x, y)) and
σn : ∀x(P (x) → ∃y1 . . . yn R(x, y1), . . . , R(x, yn))

and the database instanceD = {P (1)}. We have that, for example, the aggregate
certain answers for count(R.B) is [1, 1] on M1, while they are [1, n] on Mn. �

In [7], it was shown that every schema mapping specified by s-t tgds only
can be transformed via rewrite rules into a logically equivalent one that is also
specified by s-t tgds only, is minimal with respect to four particular criteria, and
is unique up to variable renaming. This transformation can thus be thought of
as a normal form for a schema mapping specified by s-t tgds. In [7], this normal
form was used to give unambiguous semantics for the aggregate certain answers
in data exchange. Specifically, given a schema mapping M specified by s-t tgds,
one first obtains a logically equivalent schema mapping MNF in normal form
and then uses the certain aggregate answers on MNF with the endomorphic
images of the canonical universal solution w.r.t. MNF as possible worlds. This
approach bypasses the dependence of the semantics of the concrete syntactic
representation of the schema mapping at hand; however, it raises the question
as to whether there is some other, and perhaps deeper, justification for the
particular choice of the normal form. Furthermore, there is a broader question
concerning the semantics of aggregate queries for schema mappings with target
tgds, since, for, among other difficulties, no satisfactory normal form for such
schema mappings has been found thus far.

In this paper, we revisit the semantics of aggregate queries in data exchange
aiming to address the two preceding questions. To this effect, we introduce a
new semantics for aggregate queries in data exchange, which we call the ag-
gregate most-certain answers. Informally, the aggregate most-certain answers
are obtained by taking the intersection of the aggregate certain answers over
all schema mappings that are logically equivalent to the schema mapping at
hand. Clearly, this semantics is invariant under logical equivalence and does not
assume the existence of a normal form. Our main technical result is that for
schema mappings specified by s-t tgds only (no target constraints) the aggregate
most-certain answers w.r.t. a schema mapping M coincide with the aggregate
certain answers w.r.t. the schema mapping MNF in normal form associated

1 Note that the certain answers of non-monotonic queries based on CWA-solutions
suffer from the same shortcoming.

236 P.G. Kolaitis and F. Spezzano

with M. This result provides an intrinsic justification for using schema mappings
in normal form and also implies that the aggregate most-certain answers are
computable in polynomial time.

After this, we consider the semantics of aggregate queries w.r.t. schema map-
pings specified by s-t tgds and target tgds. For such schema mappings, it is well
known that solutions are not closed under endomorphisms, but are closed under
retractions (see, e.g., [6]). For this reason, we propose to use the retractions of
the canonical universal solution as possible worlds, instead of using the endo-
morphic images of it (since some of these endomorphic images may not even be
solutions). We discuss some of the delicate issues involved in defining rigorous
semantics based on retractions for schema mappings specified by s-t tgds and
tgds. Finally, we compare the semantics based on retractions against the seman-
tics based on endomorphic images in the case of schema mappings specified by
s-t tgds only. In particular, the semantics based on retractions coincide with
those based on endomorphic images for queries involving max, min, and count

(hence, they can be computed in polynomial time), but, in general, differ on
queries involving sum and avg. However, we show that for queries involving sum

and avg, the aggregate certain answers and the aggregate most-certain answers
with retractions as possible worlds can be computed in polynomial time.

2 Preliminaries

Let Const be an infinite set of constants and let Null be an infinite set of nulls
that is disjoint from Const. All values in source instances are assumed to be
constants. In contrast, target instances have values from Const ∪Null.

Homomorphisms, Endomorphisms, and Retractions. LetK and J be two
instances over a relational schema R with values in Const ∪Null. A homomor-
phism h : K → J is a mapping from the active domain adom(K) to the active
domain adom(J) such that: (1) h(c) = c, for every c ∈ Const; and (2) for every
fact Ri(t) of K, we have that Ri(h(t)) is a fact of J , where if t = (a1, ..., as), then
h(t) = (h(a1), ..., h(as)). An endomorphism of J is a homomorphism from J to
J . Clearly, the composition of two endomorphisms is also an endomorphism. A
subinstance J ′ ⊆ J is called a retract of J if there is a homomorphism h : J → J ′

such that for all a ∈ adom(J ′), h(a) = a. Such a homomorphism is called a re-
traction. Note that the composition h′ ◦ h of two retractions h : J → J ′ and
h′ : J ′ → J ′′ is also a retraction. A target instance J is said to be a core if there
is no proper subinstance J ′ ⊆ J and homomorphism h : J → J ′.

Schema Mappings, Universal Solutions, Oblivious Chase. Let S be a
source schema and T a target schema. A source-to-target tuple-generating de-
pendency (s-t tgd) is an expression of the form ∀x∀z(φS(x, z) → ∃yψT(x,y)),
where φS(x, z) is a conjunction of atoms over S, and ψT(x,y)) is a conjunction
of atoms over T. A target tuple-generating-dependency (target tgd) is an expres-
sion of the form ∀x∀z(φT(x, z) → ∃y ψT(x,y)), where φT(x, z) and ψT(x,y) are
conjunctions of atoms over T. Finally, a target equality-generating dependency
(target egd) is an expression of the form ∀x(φT(x) → (xi = xj)), where φT(x) is

The Semantics of Aggregate Queries in Data Exchange Revisited 237

Rule 1 (Core of the conclusion)
τ : φ(x) → (∃y)ψ(x,y) ⇒ τ ′: φ(x) → (∃y)ψ(x,yσ), s.t. ψ(x,yσ) is the core of ψ(x,y).
Rule 2 (Core of the antecedent)
τ : φ(x, z) → (∃y)ψ(x,y) ⇒ τ ′ : φ(x, zσ) → (∃y)ψ(x,y),
s.t. φ(x, zσ) is the core of φ(x, z).
Rule 3 (Splitting)
τ : φ(x) → (∃y)ψ(x,y) ⇒ {τ1, . . . , τn}, where {ψ1(x,y1), . . . , ψn(x,yn)} are the
components of ψ(x,y), and τi : φ(x) → (∃yi)ψi(x,yi), for i ∈ {1, . . . , n}.
Rule 4 (Implication of a s-t tgd)
Σ ⇒ Σ\{τ} if Σ\{τ} |= τ .
Rule 5 (Implication of atoms in the conclusion)
Σ ⇒ (Σ\{τ}) ∪ {τ ′} if τ : φ(x) → (∃y)ψ(x,y) and τ ′ : φ(x) → (∃y′)ψ′(x,y′),
s.t. At(ψ′(x,y′)) ⊂ At(ψ(x,y)) and (Σ\{τ}) ∪ {τ ′} |= τ .

Fig. 1. Rules for redundancy elimination from s-t TGDs

a conjunction of atoms over T. In what follows, we will often omit the universal
quantifiers in front of s-t tgds, target tgds, and target egds.

Let M = (S,T, Σst, Σt) be a schema mapping, where Σst is a set of s-t
tgds and Σt is a set of target tgds and target egds. If I is a source instance,
then a universal solution [5] for I is a solution J such that for every solution
J ′ of J , there is a homomorphism from J to J ′. In general, a source instance
may have no universal solutions, even if it has solutions. However, if the set
of target tgds is weakly acyclic [5], then universal solutions exist if and only if
solutions exist; moreover, if a solution exists, then a universal solution can be
efficiently constructed using the standard chase procedure (see [5] for details).
In particular, if the schema mapping has no target constraints (i.e., it is of the
form M = (S,T, Σst, ∅)), then, given a source instance I, a canonical universal
solution can be constructed using the oblivious (also known as the naive) chase
[3,11]. The oblivious chase is the variant of the chase procedure in which, when
a s-t tgd is triggered, then new nulls are introduced each time to witness the
existential quantifiers in the right-hand side of that s-t tgd. For a given instance
I, the oblivious chase produces a unique (up to renaming of nulls) canonical
universal solution, which will be denoted as CanSol(M, I) or, simply, CanSol(I)
whenever M is understood from the context.

Logical Equivalence and Normal Forms. We will often identify a schema
mapping M = (S,T, Σst, Σt) with the set of dependencies Σ = Σst ∪ Σt,
without explicitly mentioning the schemas. Two schema mappings Σ and Σ′

over 〈S,T〉 are logically equivalent (denoted as Σ ≡ Σ′) if for every source
instance I and target instance J , we have that 〈I, J〉 |= Σ ⇔ 〈I, J〉 |= Σ′.

Let Σst be a set of s-t tgds. A normal form ΣNF
st for Σst that is logically

equivalent to Σst and unique up to variable renaming has been defined in [7].

Definition 1. [7] Let Σst be a set of s-t TGDs. The s-t tgds normal form ΣNF
st

associated with Σst is the set of s-t tgds obtained from Σst by the exhaustive
application of the five rules in Figure 1. �

238 P.G. Kolaitis and F. Spezzano

We now explain briefly some of the notions used in Figure 1. Detailed defi-
nitions can be found in [7]. A substitution σ is a function that sends variables
to other domain elements (i.e., variables or constants). We write σ = {x1 ←
a1, . . . , xn ← an} if σ maps each xi to ai and is the identity outside {x1, . . . , xn}.
The application of a substitution is usually denoted in post-fix notation. Given a
conjunctive query φ(x), we denote by At(φ(x)) the instance consisting of exactly
the atoms of φ(x). Let φ(x,y) be a conjunctive query with variables in x ∪ y
and let A denote the instance consisting of the atoms At(φ(x,y)), where the
variables x are considered as constants and the variables y as labelled nulls. Let
A′ be the core of A and let σ : y → Const ∪ x ∪ y be a substitution such that
At(φ(x,yσ)) = A′. Then, the core of φ(x,y) is defined as the conjunctive query
φ(x,yσ).

In [7], it was shown that the normal form ΣNF
st associated with a set Σst of s-t

tgds is optimal in the sense that it is minimal with respect to the following crite-
ria: number of tgds, antecedent and conclusion size, and number of existentially
quantified variables in the conclusion.

Answering Aggregate Queries in Data Exchange. We now recall the se-
mantics for answering aggregate queries in data exchange proposed in [1].

Definition 2. Let M be a schema mapping and suppose that, for every source
instance I, we have a set W(I) of solutions of I w.r.t M. Let Q be a query of
the form SELECT f(R.A) FROM R, where R is a first-order query over the target
schema T, A is an attribute of R, and f ∈ {min, max, count, count(∗), sum, avg}2.
(1) A possible answer of Q w.r.t. I and W(I) is a value r s.t. there exists an
instance J ∈ W(I) for which Q(J) = r.
(2) poss(Q, I,W(I)) denotes the set of all possible answers of Q w.r.t. I and
W(I).
(3) For the aggregate query Q, the aggregate certain answers of Q with respect
to I and W(I), denoted by agg-certain(Q, I, W(I)), is the interval

[glb(poss(Q, I,W(I))), lub(poss(Q, I,W(I)))],
where glb and lub stand for greatest lower bound and least upper bound. �

Let M = (S,T, Σst, ∅) be a schema mapping with no target constraints. If I
is a source instance, then Endom(I,M) (or simply Endom(I)) stands for the set
of all endomorphic images of CanSol(M, I). As mentioned earlier, it was shown
in [1] that the sets Endom(I,M), I source instance, form a collection of possible
worlds that give rise to meaningful and non-trivial semantics of aggregate queries.
Moreover, the aggregate certain answers are computable in PTIME.

Theorem 1. [1] Let M = (S,T, Σst, ∅) be a schema mapping with no target
constraints, let R be a CQ over T or a relational symbol in T, let A be an
attribute in R and f the aggregate operator min(R.A), max(R.A), count(R.A),
count(∗), sum(R.A), or avg(R.A). Then, agg-certain(f(R.A), I, Endom(I)) is
in PTIME in each of the following cases:
2 For all aggregate operators but count(*), tuples with a null value in attribute R.A
are ignored in the computation.

The Semantics of Aggregate Queries in Data Exchange Revisited 239

1. R is a CQ and f ∈ {min(R.A), max(R.A), count(R.A), count(∗)}.
2. R is a CQ and f = sum(R.A) and A is an attribute with non negative values

only.
3. R is a target relation symbol and f = avg (R.A). �

More specifically, CanSol(I) and its core are sufficient for computing the
certain answers to min, max, count, count(∗), as well as the certain answers to
the special case of sum in which the sum is over an attribute taking non-negative
values only; in what follows, we will refer to this special case as special-sum.
The case of the avg requires a more sophisticated PTIME algorithm based on
the concepts of blocks of nulls and local endomorphism. For sum over an attribute
taking arbitrary values, a simpler version of the algorithm for avg is used.

3 Aggregate Most-Certain Answers

In this section, we introduce a semantics for aggregate queries in data exchange
that is independent from the concrete syntactic representation of the tgds, and,
consequently, it is preserved between logically equivalent schema mappings.

Let S be a source schema and T a target schema. We will consider schema
mappings M = (S,T, Σst, Σt) and, as before, we will identify each such schema
mapping with the set Σ = Σst ∪ Σt of the constraints that define M. We also
assume that, for every source instance I and every schema mapping Σ, we have
a set W(I,Σ) of solutions for I w.r.t. Σ.

Definition 3. Let Σ be a schema mapping and let Q be a query of the form
SELECT f(R.A) FROM R, where R is a first-order query over the target schema
T, A is an attribute of R, and f ∈ {min, max, count, count(∗), sum, avg}.

If I is a source instance, then the aggregate most-certain answers of the query
Q on I w.r.t. W(Σ, I) is the set

agg-most-certain(Q, I,W(Σ, I)) =
⋂

Σ′≡Σ agg−certain(Q, I,W(Σ′, I)) �

For every schema mapping Σ′ ≡ Σ, we have that the aggregate certain
answer agg-certain(Q, I,W(Σ′, I)) is the interval of values [lΣ′ , uΣ′], where
lΣ′ = glb(poss(Q, I,W(Σ′, I))) and uΣ′ = lub(poss(Q, I,W(Σ′, I))). It follows
that an equivalent definition of the aggregate most-certain answer is

agg-most-certain(Q, I,W(Σ, I)) =
⋂

Σ′≡Σ [lΣ′ , uΣ′] = [L,U],

where L = glb({lΣ′ |Σ′ ≡ Σ}) and U = lub({uΣ′ |Σ′ ≡ Σ}).

Computing the Most-Certain Answers for s-t Tgds. On the face of it, the
definition of the aggregate most-certain answers is not effective, since it entails
an intersection of infinitely many sets. In what follows, we will show that if Σ
is a schema mapping specified by s-t tgds only, then the aggregate most-certain
answers w.r.t Σ coincide with the aggregate certain answers w.r.t. the normal
form ΣNF associated with Σ. To prove this result, we will analyze separately
each normalization rule in Figure 1. We state a series of relevant lemmas, whose
proofs will be given in the full version.

240 P.G. Kolaitis and F. Spezzano

Lemma 1. Let Σ be a set of s-t tgds and Σ′ the set of s-t tgds obtained by the
application of Rule 2 (core of the antecedent) to Σ. If I is a source instance, then
CanSol(I,Σ′) is a retraction of CanSol(I,Σ) (up to renaming of nulls). �

Fact 2. Let Σ be a set of s-t tgds and Σ′ the set of s-t tgds obtained by the ap-
plication of Rule 3 (splitting) to Σ. if I is a source instance, then CanSol(I,Σ′)
is isomorphic to CanSol(I,Σ). �

Lemma 2. Let Σ be a set of s-t tgds and Σ′ the set of s-t tgds obtained by
the application of Rule 5 (implication of atoms in the conclusion) to Σ. If I is
a source instance, then CanSol(I,Σ′) is a retraction of CanSol(I,Σ) (up to
renaming of nulls). �

The next result follows from the fact that Rule 1 is a particular case of Rule
5, since it corresponds to the application of Rule 5 to the singleton Σ = {τ}.
Corollary 1. Let Σ be a set of s-t tgds and Σ′ the set of s-t tgds obtained by
the application of Rule 1 (core of the conclusion) to Σ. If I is a source instance,
then CanSol(I,Σ′) is a retraction of CanSol(I,Σ) (up to renaming of nulls). �

Lemma 3. Let Σ be a set of s-t tgds and Σ′ the set of s-t tgds obtained by the
application of Rule 4 (implication of a tgd) to Σ. If I is a source instance, then
CanSol(I,Σ′) is a retraction of CanSol(I,Σ) (up to renaming of nulls). �

Theorem 3. Let Σ be a set of s-t tgds, ΣNF its associated normal form, I a
source instance and JNF = CanSol(ΣNF , I). Consider a set of s-t tgds Σ′ ≡ Σ
and J ′ = CanSol(Σ′, I). Then JNF is a retraction, hence also an endomorphic
image, of J ′ (up to renaming of nulls).

Proof. If Σ′ is not in normal form, then we can normalize it by applying one
or more normalization steps: Σ′ → Σ1 → . . . → Σk = ΣNF . Let I an instance
and Ji = CanSol(I,Σi) for i = 1, . . . , k. Then, by Lemmas 1, 2 and 3, and
Corollary 1, J1 is a retraction of J ′ and Ji+1 is a retraction of Ji for i = 1, . . . , k−1
(all up to renaming of nulls). The result now follows from the fact that the
composition of retractions is a retraction. �

Corollary 2. Let Σ be a set of s-t tgds and let ΣNF be the normal form of Σ.
If I is a source instance, then Endom(I,ΣNF) ⊆ Endom(I,Σ).

Proof. This follows from Theorem 3 and the fact that the composition of endo-
morphisms is an endomorphism. �

The main theorem of this section now follows easily.

Theorem 4. Let Σ be a set of s-t tgds, let ΣNF be the associated normal form
of Σ, and let Q be a query of the form SELECT f(R.A) FROM R, where R is
a first-order query over the target schema T, A is an attribute of R, and f ∈
{min, max, count, count(∗), sum, avg}. If I is a source instance, then

agg-most-certain(Q, I, Endom(I,Σ)) = agg-certain(Q, I, Endom(I,ΣNF)). �

As mentioned in the Introduction, the preceding Theorem 4 provides an in-
trinsic justification for working with schema mappings in normal form. Moreover,
combined with Theorem 1, it implies that the aggregate most-certain answers
are computable in polynomial time.

The Semantics of Aggregate Queries in Data Exchange Revisited 241

4 Semantics of Aggregate Queries Based on Retractions

In this section, we consider schema mappings M = (S,T, Σst, Σt), where Σt is
a set of target tgds, and explore the delicate issues involved in defining mean-
ingful semantics for aggregate queries over the target schema. The first issue
is that, unlike the case of schema mappings with no target dependencies, the
semantics based on the endomorphic images of the canonical universal solutions
are no longer suitable. The reason is that solutions need not be closed under
endomorphisms. In particular, an endomorphic image of the canonical universal
solution need not be a solution (see [6] for an example). On the other hand, in
the presence of target tgds, solutions are closed under retractions, which form
an important special case of endomorphisms. Thus, given a source instance I, it
is natural to consider the set of all retracts of the canonical universal solution
for I as possible worlds, and then base the semantics of aggregate queries over
the target schema on this set.

The second and arguably more delicate issue is whether, given a source in-
stance I, there is a unique (up to renaming of nulls) canonical universal solution.
To begin with, if Σt is an arbitrary set of target tgds, then the standard chase
procedure may not terminate on a given source instance; for example, it is easy
to see that this is the case with the target tgd ∀x∀y(T (x, y) → ∃zT (z, x)). As
mentioned earlier, structural conditions on target tgds (such as weak acyclic-
ity) that guarantee the termination of the standard chase have been considered.
However, if the target tgds form a weakly acyclic set, then different runs of the
standard chase may produce universal solutions that are not unique (up to re-
naming of nulls); in fact, this is true even when Σt is empty. For this reason,
we need to consider the extension of the oblivious chase procedure for schema
mappings M = (S,T, Σst, Σt) specified by s-t tgds and target tgds. In [11], it
was shown that if M is such a schema mapping and if the oblivious chase ter-
minates on some instance I, then the canonical universal solution produced by
the oblivious chase is unique (up to renaming of nulls). This raises the question:
what are broad sufficient conditions for the termination of the oblivious chase?
As pointed out in [11], unlike the standard chase, the oblivious chase need not
terminate if the set of target tgds form a weakly acyclic set. To see this, consider
the singleton set Σt consisting of the target tgd ∀x∀y(T (x, y) → ∃zT (x, z)).
This set is weakly acyclic, yet the oblivious chase does not terminate on an in-
stance containing the fact T (1, 2), since the oblivious chase produces the infinite
sequence of facts T (1, Nk), k ≥ 1, where each Nk is a null. Nonetheless, it turns
out that the oblivious chase always terminates if target tgds form a richly acyclic
set, a strengthening of weak acyclicity considered in [6,9].

Definition 4. A position is a pair (R, i) (which we write as Ri), where R is a
relation symbol of arity r and 1 ≤ i ≤ r. We say that x occurs in Ri in a tgd φ
if there is an atom of the form R(. . . , x, . . .) in φ such that x appears in the ith

position. The dependency graph of a set Σ of target tgds is the directed graph
whose vertices are the positions of the relation symbols in Σ and, for every target
tgd σ of the form φ(x, z) → ∃y ψ(x,y), there is

242 P.G. Kolaitis and F. Spezzano

(1) an edge between Ri and Sj , whenever some x ∈ x occurs in Ri in φ and
in Sj in φ, and

(2) an edge between Ri and Sj , whenever some x ∈ x appears in Ri in φ and
some y ∈ y occurs in Sj in ψ. Furthermore, these latter edges are labeled with
∃, and are called existential edges.

We say that a set Σ of target tgds is richly acyclic if its dependency graph
has no cycle going through an existential edge. �

Note that this definition differs from the definition of a weakly acyclic set of
target tgds, as weak acyclicity stipulates in condition (2) that x must occur in
ψ. Thus, every richly acyclic set is also weakly acyclic. Some examples of richly
acyclic sets of tgds are sets of full tgds and acyclic sets of tgds.

Theorem 5. [11] Let M = (S,T, Σst, Σt) be a schema mapping such that Σt

is a richly acyclic set of target tgds. For every source instance I, the oblivious
chase terminates in polynomial time in the size of I, and produces a unique (up
to renaming of nulls) canonical universal solution CanSol(M, I) for I. �

Before proceeding further, we note that the preceding Theorem 5 does not
extend to schema mappings whose specification also includes target egds.

Example 2. [12] Let M be the schema mapping specified by the copy s-t tgd
S(x) → P (x), the target tgds σ1, σ2, and the target egd σ3, where

σ1 : P (x) → ∃yR(x, y); σ2 : R(x, y) → ∃zT (y, z); σ3 : R(x, y) → x = y.

Consider the source instance I = {S(a)}. By applying the dependencies in the
order σ1, σ2, σ3, σ1, the instance produced by the oblivious chase algorithm is
J1 = {P (a), R(a, a), T (a, η1), T (a, η2)}. If, however, we apply σ1, σ3 first, and
then σ2, we obtain the instance J2 = {P (a), R(a, a), T (a, η3)}, which is not
isomorphic to J1. �

Let M = (S,T, Σst, Σt) be a schema mapping in which Σt is a finite richly
acyclic set of target tgds. If I is a source instance, then Retract(I,M) denotes
the set of all retractions of the canonical universal solution CanSol(I) for I.
If M is understood from the context, we simply write Retract(I) instead of
Retract(I,M). By using the sets Retract(I) as sets W(I) of possible worlds in
Definition 2 and in Definition 3, we obtain the notions of the aggregate certain
answers agg-certain(Q, I,Retract(I)) and of the aggregate most-certain answers
agg-most-certain(Q, I,Retract(I)), for an aggregate query Q.

Theorem 5 implies that the notions of agg-certain(Q, I,Retract(I)) and agg-
most-certain(Q, I,Retract(I)) are well defined. Moreover, it is clear that the
aggregate most-certain answers agg-most-certain(Q, I,Retract(I)) are indepen-
dent of the syntactic representation of the schema mapping at hand. The follow-
ing results follows easily from the preceding discussion in this section, the fact
that both CanSol(I) and its core belongs to Retract(I), and the fact that the
core of CanSol(I) can be computed in polynomial time for a weakly acyclic set
of tgds [6] (hence also for a richly acyclic one).

The Semantics of Aggregate Queries in Data Exchange Revisited 243

Proposition 1. Let M = (S,T, Σst, Σt) be a schema mapping where Σt is
a richly acyclic set of target tgds, let Q be a conjunctive query over T, and
let f be one of the aggregate operator min(A), max(A), count(A), count(∗)(A)
or special-sum(A), where A is an attribute of Q. Then agg-certain(f(Q), I,
Retract(I)) can be computed in PTIME. �

It is an open problem to determine whether agg-certain(avg(Q), I,Retract(I))
is in PTIME. The same question is also open for the aggregate most-certain an-
swers agg-most-certain(f(Q), I, Retract(I)). Here, we note that the existence
of a unique normal form for schema mappings specified by s-t tgds only does not
extend (at least in a straightforward way) to schema mappings specified by s-t
tgds and a richly acyclic set of target tgds. We refer the reader to the full paper
where it is shown that the most natural modification of the normalization rules
to handle target full tgds does not give rise to a unique normal form.

4.1 Endomorphism-Based Semantics vs. Retraction-Based
Semantics

If M = (S,T, Σst, ∅) is a schema mapping specified by s-t tgds only, then ag-
gregate queries can be given meaningful semantics using either the endomorphic
images or the retracts of the canonical universal solution. Thus, it is natural
to ask: how do the endomorphism-based semantics and the retraction-based se-
mantics compare in this case?

We begin by pointing out that, as is the case with Endom(I), both CanSol(I)
and its core are members ofRetract(I). Moreover, sinceRetract(I) ⊆ Endom(I),
we have that every member of Retract(I) is a subinstance of CanSol(I) and
also a CWA-solution for I. Since both CanSol(I) and its core are members
of Retract(I), it follows that the the endomorphism-based semantics and the
retraction-based semantics give rise to the same certain answers for aggregate
queries with min, max, count, count(∗), and special-sum (as explained earlier,
special-sum is the special case of sum in which the sum is over an attribute tak-
ing non-negative values only). By Theorem 4, this also holds for the most-certain
answers. Thus, we have the following result.

Proposition 2. Let M = (S,T, Σst, ∅) be a schema mapping specified by s-t
tgds only, let Q be a conjunctive query over T, and let f be one of the aggregate
operator min(A), max(A), count(A), count(∗)(A) or special-sum, where A is
an attribute of Q. Then

agg-certain(f(Q), I, Retract(I)) = agg-certain(f(Q), I, Endom(I)), and
agg-most-certain(f(Q), I, Retract(I)) = agg-most-certain(f(Q), I, Endom(I)).

�

In contrast, for aggregate queries with average and (general) sum, the endo-
morphisms and the retractions may give rise to different certain answers.

Proposition 3. Let f be the avg or the sum aggregate operator. If M = (S,T,
Σst, ∅) is a schema mapping specified by s-t tgds only, then

1. agg-certain(f(Q), I, Retract(I)) ⊆ agg-certain(f(Q), I, Endom(I));

244 P.G. Kolaitis and F. Spezzano

2. agg-most-certain(f(Q), I, Retract(I))⊆agg-most-certain(f(Q), I, Endom(I)).

Moreover, these containments may be proper.

Proof. The containments follow from the fact that Retract(I) ⊆ Endom(I), for
every source instance I. To show that the containment for the certain answers of
the average operator can be proper, consider the schema mappingM specified by
the s-t tgds R(x, y) → T (x, y), T (y, y); P (x, y) → T (x,w1), T (w1, w2), T (y, w1)
and the source instance I = {R(1, 2), P (1, 2)}. We have that

J = CanSol(I) = {R(1, 2), P (1, 2), T (1, 2), T (2, 2), T (1, η1), T (η1, η2), T (2, η1)},

Endom(J) = {J, J1, Jcore}, and Retract(J) = {J, Jcore}, where

J1 = {R(1, 2), P (1, 2), T (1, 2), T (2, 2), T (2, η1)} and

Jcore = {R(1, 2), P (1, 2), T (1, 2), T (2, 2)}.

It easy to check that agg-certain(avg(T.A), I, Endom(I)) = [32 ,
5
3], while agg-

certain(avg (T.A), I, Retract(I)) = [32 ,
3
2]. �

Computing the Average under Retraction-Based Semantics. As men-
tioned earlier, in the case of the endomorphism-based semantics, a polynomial-
time algorithm for computing avg(R.A), where R is a target relation and A an
its attribute, was given in [1]. Here, we show that this algorithm can be adapted
to the case of the retraction-based semantics.

At this point, let us recall the concept of block homomorphism. The Gaifman
graph of the nulls of K is an undirected graph in which the nodes are all the
nulls of K, and there exists an edge between two nulls if there exists some tuple
in K in which both nulls occur. A block of nulls is the set of nulls in a connected
component of the Gaifman graph of the nulls. A block homomorphism for a block
B is a homomorphism from K[B] to K, where K[B] denotes the subinstance of
K induced by the nulls of B and the constants of K.

The algorithm for the average given in [1] is based on the following two facts:
(a) the union of block homomorphisms, one for each block of the canonical
universal solution J , is an endomorphic image of J ; (b) given an endomorphism
h for J , there exists a set of block homomorphisms such that h is equal to
their union (Proposition 5.2 in [1]). Then, the research space for the optimal
endomorphic images is given by those block homomorphisms that allow to define
all the endomorphic images of J .

In order to work with retracts instead of endomorphic images, we have to
restrict the type of block homomorphism that we have to consider, so that their
combinations give only retractions.

Definition 5. A block retraction is a block homomorphisms hr : K[B] → K
such that hr(x) = x, for all x ∈ hr(K[B]) ∩K[B]. �

The previous definition stipulates that if a null of B also appears in hr(K[B]),
then it must be mapped to itself.

The Semantics of Aggregate Queries in Data Exchange Revisited 245

Example 3. Consider the schema mapping M in the proof of Proposition 3. We
have only one block containing η1 and η2. The target instance J1 is generated via
the endomorphism h1 = {η1/2, η2/η1}. Observe that h1 is not a block retraction,
so J1 will not be taken into account as a possible world. �

Proposition 4. Let K be a target instance with b many blocks.

1. If h is a retraction of K, then h is a union of block retractions.

2. If h is a union of block retractions, then h(K) is isomorphic to a retraction
of K.

Proof. For the first part, for each block B of K, take the restriction hB of h to
B. Since h is a retraction, we have that hB(x) = x, for all x ∈ hB(K[B])∩K[B].
The union of these block retractions is equal to h.

For the second part, since a union of block homomorphisms is an endomor-
phism and a block retraction is also a block homomorphism, we have that h(K)
is an endomorphism of K. If h(K) is by itself a retraction of K, then the state-
ment holds. Suppose that h(K) is not a retraction of K. This means that there
exists at least one null value ηi in K such that h(ηi) = ηj with ηi �= ηj and
h(ηj) �= ηj (otherwise h(K) is a retraction). Consider now the homomorphism
h′, where h′(ηi) = ηi, for all ηi as above in h, and h′(ηi) = h(ηi), otherwise.
Clearly, h′(K) is a retraction for K. Moreover, by means of h′, we are substi-
tuting h(ηi) with a null value that is different from h(ηj). In fact, we have that
if h(nj) �= ni, then h′(nj) �= h′(ni) and if h(nj) = ni, then h(nj) = ni = h′(ni),
and vice versa (h′(ni) = ni = h(nj)).

It is now easy to see that h(K) and h′(K) are isomorphic, as it is sufficient
to rename h(ηi) as h

′(ηi), and vice versa. �

Example 4. Consider the instance I = {N(a), P (a)} and the schema mapping

Σst = {N(x) → R(x, y, z), P (x) → R(x, y, z)}

Let K = CanSol(I,Σst) = {R(a, η1, η2), R(a, η3, η4)}. We have two blocks in
K, namely, B1 = {η1, η2} and B2 = {η3, η4}. Then hB1 = {η1/η3, η2/η4} and
hB2 = {η3/η1, η4/η2} are two block retractions, their union is not a retraction
for K, but it is isomorphic to a retraction, namely to K itself. �

Theorem 6. Let M = (S,T, Σst, ∅) be a schema mapping specified by s-t tgds
only, let R be a target relation symbol, and let A be an attribute of R. Then agg-
certain(avg(R.A), I, Retract(I)) and agg-most-certain(avg(R.A), I, Retract(I))
are computable in PTIME.

Proof. Let M = (S,T, Σst, ∅) be a schema mapping specified by s-t tgds only.
The answer to the query avg(R.A), where R is a target relation symbol, can be
computed in PTIME by using the same algorithm for the average given by [1],
but by considering block retractions instead of block homomorphisms and using
the fact that the algorithm for the average in [1] runs in polynomial time. �

246 P.G. Kolaitis and F. Spezzano

5 Concluding Remarks

In this paper, we revisited the semantics for aggregate queries in the context
of data exchange by introducing and investigating the notion of the aggregate
most-certain answers. For schema mappings specified by s-t tgds only, we ob-
tained a fairly complete picture for these semantics by relating them to the
most-certain answers for aggregate queries with respect to schema mappings in
normal form. We also discussed some of the challenges and subtleties involved in
extending the semantics of aggregate queries to schema mappings whose speci-
fication also includes target constraints. Several problems remain open for such
schema mappings. One of them is whether or not the aggregate most-certain
answers under retraction-based semantics are computable in polynomial time
for schema mappings specified by s-t tgds and a richly acyclic set of target tgds.
Another problem, which will require both conceptual and technical advances,
is the study of the semantics of aggregate queries for schema mappings whose
target constraints also include key constraints or, more generally, target equality-
generating dependencies.

References

1. Afrati, F.N., Kolaitis, P.G.: Answering aggregate queries in data exchange. In:
PODS, pp. 129–138 (2008)

2. Arenas, M., Bertossi, L.E., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar
aggregation in inconsistent databases. Theor. Comput. Sci. 296(3), 405–434 (2003)

3. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under
expressive relational constraints. In: Description Logics (2008)

4. Fagin, R., Kolaitis, P.G., Popa, L.: Data Exchange: Getting to the Core. ACM
Transactions on Database Systems (TODS) 30(1), 174–210 (2005); A preliminary
version of this paper appeared in the 2003 PODS conference

5. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

6. Gottlob, G., Nash, A.: Efficient core computation in data exchange. J. ACM 55(2)
(2008)

7. Gottlob, G., Pichler, R., Savenkov, V.: Normalization and optimization of schema
mappings. VLDB J. 20(2), 277–302 (2011)

8. Hernich, A.: Answering non-monotonic queries in relational data exchange. In:
ICDT, pp. 143–154 (2010)

9. Hernich, A., Schweikardt, N.: CWA-solutions for data exchange settings with target
dependencies. In: PODS, pp. 113–122 (2007)

10. Libkin, L.: Data exchange and incomplete information. In: PODS, pp. 60–69 (2006)
11. Onet, A.: The chase procedure and its applications. PhD thesis, Concordia Uni-

versity (2012)
12. Onet, A.: The chase procedure and its applications to data exchange. In: Ko-

laitis, P.G., Lenzerini, M., Schweikardt, N. (eds.) Data Exchange, Integration, and
Streams. Dagstuhl Follow-Ups, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany (to appear, 2013)

PossDB: An Uncertainty

Database Management System

Gösta Grahne, Adrian Onet, and Nihat Tartal

Concordia University, Montreal, QC, H3G 1M8, Canada
{grahne,a onet,m tartal}@cs.concordia.ca

1 Introduction

Management of uncertain and imprecise data has long been recognized as an
important direction of research in data bases. With the tremendous growth of
information stored and shared over the Internet, and the introduction of new
technologies able to capture and transmit information, it has become increasingly
important for Data Base Management Systems to be able to handle uncertain
and probabilistic data. As a consequence, there has lately been significant efforts
by the database research community to develop new systems able to deal with
uncertainty, either by annotating values with probabilistic measures or defin-
ing new structures capable of capturing missing information (e.g. Trio [3] and
MayBMS [2]).

Uncertainty management is an important topic also in data exchange and
information integration. In these scenarios the data stored in one database has
to be restructured to fit the schema of a different database. The restructuring
forces the introduction of “null” values in the translated data, since the second
schema can contain columns not present in the first. In the currently commer-
cially available relational DBMS’s the missing or unknown information is stored
with a placeholder value here denoted null. It is well known that this repre-
sentation has drawbacks when it comes to query answering, and that a logically
coherent treatment of the null is still lacking from most DBMS’s.

To illustrate the above mentioned drawbacks, consider a merger of compa-
nies “Acme” and “Ajax.” Both companies keep an employee database. Let
Emp1(Name,Mstat,Dept) and Emp2(Name,Gender, Mstat), whereMstat stands
for marital status, be the schemas used by Acme and Ajax, respectively. The
merged company decides to use the schema Emp(Name,Gender,Mstat,Dept),
and it is known that all the employees from Ajax will work under the same de-
partment, which will either be ’IT’ or ’PR’. Consider now the initial data from
both companies:

Emp1
Name Mstat Dept

Alice married IT
Bob married HR
Cecilia married HR

Emp2
Name Gender Mstat

David M married
Ella F single

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 247–254, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

248 G. Grahne, A. Onet, and N. Tartal

Emp
Name Gender Mstat Dept

Alice null married IT
Bob null married HR
Cecilia null married HR
David M married null

Ella F single null

The merged company database instance
would be represented as the following
database in a standard relational DBMS:

With this incomplete database consider now the following two simple queries:

Q1: SELECT Name FROM Emp WHERE

(Gender = ’M’ AND Mstat = ’married’) OR Gender = ’F’

Q2: SELECT E.Name, F.Name FROM Emp E, Emp F

WHERE E.Dept=F.Dept AND E.Name != F.Name

Having in mindEmp1 andEmp2, one would expect the first query to return all
employee names and the second query to return the set of tuples {(Bob, Cecilia),
(David, Ella)}. Unfortunately by the default way null values are treated in
standard systems the tuples returned by the first query would return the set
{(David, Ella)} and the second query would return the set {(Bob, Cecilia)}.

2 PossDB and Conditional Tables

In this paper we introduce a new database management system called PossDB
(Possibility Data Base) able to fully support incomplete information. The pur-
pose of the PossDB system is to demonstrate that scalable processing of seman-
tically meaningful null values is indeed possible, and can be built on top of a
standard DBMS (PostgreSQL in our case).

Irrespectively of how an incomplete database instance I is represented, con-
ceptually it is a (finite or infinite) set of possible complete database instances I
(i.e. databases without null values), denoted Poss(I). Each I ∈ Poss(I) is called
a possible world of I. A query Q over a complete instance I gives a complete
instance Q(I) as answer. For incomplete databases there are three semantics for
query answers:

1. The exact answer. The answer is (conceptually) a set of complete instances,
each obtained by querying a possible world of I, i.e. {Q(I) : I ∈ Poss(I)}.
The answer should be represented in the same way as the input database,
e.g. as a relation with meaningful nulls.

2. The certain answer. This answer is a complete database containing only the
(complete) tuples that appear in in the query answer in all possible worlds.
In other words, Cert(Q(I)) =

⋂
I∈Poss(I)Q(I).

3. The possible answer. Poss(Q(I)) =
⋃

I∈Poss(I)Q(I).

PossDB: An Uncertainty Database Management System 249

The PossDB system is based on conditional tables (c-tables) [6] which gen-
eralize relations in three ways. First, in the entries in the columns, variables,
representing unknown values are allowed in addition to the usual constants. The
same variable may occur in several entries, and it represents the same unknown
value wherever it occurs. A c-table T represents a set of complete instances,
each obtained by substituting each variable with a constant, that is, applying a
valuation v to the table, where v is a mapping from the variables to constants.
Each valuation v then gives rise to a possible world v(T). The second general-
ization is that each tuple t is associated with a local condition ϕ(t), which is
a Boolean formula over equalities between constants and variables, or variables
and variables. The final generalization introduces a global condition Φ(T), which
has the same form as the local conditions. In obtaining complete instances from
a table T , we consider only those valuations v, for which v(Φ(T)) evaluates to
True, and include in v(T) only tuples v(t), where v(ϕ(t)) evaluates to True.

Emp
Name Gender Mstat Dept ϕ(t)

Alice x1 married IT True
Bob x2 married HR True
Cecilia x3 married HR True
David M married x4 True
Ella F single x4 True

In our previous example the
merged incomplete database
would be represented as the
following c-table:

The global condition Φ(Emp) is (xi = ’M’) ∨ (xi = ’F’), for i = 1, 2, 3, and
(x4 = ’IT’) ∨ (x4 = ’PR’). Under this interpretation PossDB will return the
expected results for both queries. Note that in this example the exact, possible,
and certain answers are the same.

The c-tables support the full relational algebra [6], and are capable of return-
ing the possible, the certain and the exact answers. A (complete) tuple t is in
the possible answer to a query Q, if t ∈ Q(v(T)) for some valuation v, and t is
in the certain answer if t ∈ Q(v(T)) for all valuations v. The exact answer of a
query Q on a c-table T is a c-table Q(T) such that v(Q(T)) = Q(v(T)), for all
valuations v.

C-tables are the oldest and most fundamental instance of semiring-labeled
databases [5]. By choosing the appropriate semiring, labeled databases can model
a variety of phenomena in addition to incomplete information. Examples are
probabilistic databases, various forms of database provenance, databases with
bag semantics, etc. It is our view that the experiences obtained from the PossDB
project will also be applicable to other semiring based databases.

To the best of our knowledge, PossDB is the first implemented system based
on c-tables. In the future we plan to extend our system to support the Condi-
tional Chase [4], a functionality which is highly relevant in data exchange and
information integration.

In order to gauge the scalability of our system, we have run some experiments
comparing the performance of PossDB with MayBMS [2]. The MayBMS sys-
tem uses a representation mechanism called World Set Decompositions, which

250 G. Grahne, A. Onet, and N. Tartal

is fundamentally different from c-tables. For details we refer to [2]. Similarly to
PossDB, the MayBMS system is build on top of PostgreSQL, an open source re-
lational database management system. In the case where there is no incomplete
information, both PossDB and MayBMS work exactly like classical DBMS’s.
However, at this point we have restricted, similarly to MayBMS, our data to be
encoded as positive integers. In the future we will extend the allowed data types
to include all standard base data types.

In this current stage PossDB allows the following operations: Creation of
c-tables, Querying c-tables, Inserting into c-tables, Materializing c-tables rep-
resenting the exact answers to queries, and Testing for tuple possibility and
certainty in c-tables. All these operations are expressed using an extension of
the ANSI SQL language, called C-SQL (Conditional SQL).

3 Features of PossDB

The PossDB system has system specific operations and functions related to c-
tables. To illustrate these operations, let us continue with the example from
the previous section. The global condition in our example is Φ(Emp) =def {(xi =

’M’∨xi = ’F’) : i = 1, 2, 3}∪{x4 = ’IT’∨x4 = ’PR’}. This set corresponds to a CNF
formula, where each disjunct contains all possible values for a given variable. It
is stored in a hash structure such that for each variable the hash function will
return all possible values for that variable. This representation speeds up the
processing when checking for contradictory and tautological local conditions.

Next, we present the operations of the PossDB system. Note that none of
these operations affect the global condition.

Relational Selection. The select statement generalizes the standard SQL se-
lect statement. The generalized select statement will work on c-tables rather
than relations with null’s. Beside returning the exact answer, the select state-
ment also optimizes the c-table by removing tuples t, where ϕ(t) ∧ Φ(T) is a
contradiction, and replacing with True local conditions of tuples t, where Φ(T)
logically implies ϕ(t).

Consider e.g. the query that returns all employee from the ’IT’ department:

Name Gender Mstat Dept ϕ(t)

Alice x1 married IT True
David M married x4 x4 = ’IT’
Ella F single x4 x4 = ’IT’

SELECT * FROM Emp

WHERE Dept = ’IT’

Note that the query returns a representation of the exact answer, that is a
c-table that represents the set of all possible answer instances. This pertains to
all query operations in the PossDB system.

Relational Projection. The operation is implemented, as expected, as an ex-
tension of the SQL SELECT statement.

PossDB: An Uncertainty Database Management System 251

Relational Join. The join and cross product operations work similarly with
their standard SQL counterparts, with the extension that the joined or con-
catenated tuple will have a local condition that is the conjunction of the local
conditions of the two component tuples.

Query Answers. We return the exact answer as a c-table. This is comparable
with MayBMS that returns all the tuples that can occur in the query answer on
some complete instance corresponding to the input database. This has the draw-
back that the answer may contain two mutually exclusive tuples. On the other
hand PossDB returns a c-table representing the exact answer. In some cases this
c-table might have convoluted local conditions, and it might be difficult for the
user to understand the structure. In order to overcome this, we have included
two special functions IS POSSIBLE and IS CERTAIN described next. Both func-
tions work in polynomial time.

Special Functions. We have two new functions unique to PossDB. These func-
tions are used to query for certainty and possibility of a tuple in a c-table or in
the result of a query.

IS POSSIBLE(Tuple) IN C-Table

The IS POSSIBLE is a Boolean function that takes a tuple Tuple and decides
if the tuple is possible in the c-table. Intuitively a tuple is possible in a given
c-table if there exists a valuation for the c-table that contains that tuple. The
Tuple has to be specified as a list of (Name, Value) pairs. As an example consider
the following function call:

IS POSSIBLE(Name, ’Bob’, Gender, ’M’, Dept, ’HR’) IN Emp

With the data from the previous example the IS POSSIBLE function returns
True, because the given tuple is possible in the system. However, it is not certain
because it depends on the condition (x2 = ’M’).

IS CERTAIN(Tuple) IN C-Table

Similarly to IS POSSIBLE the IS CERTAIN function takes as parameter a tuple,
and a c-table and returns True if the tuple is certain in the given c-table. Certain
means that the tuple appears under all possible interpretations of the nulls. The
following is an example of the usage of the IS CERTAIN function

IS CERTAIN (Name, ’Bob’, Dept, ’HR’) IN Emp

This function returns True, because the given tuple appears under any interpre-
tation for the nulls. Note also that the function would return False if we also
included the Gender column in the query.

4 Implementation

Without loss of generality, the information in our conditional tables are encoded
as integers. Positive integers denote constants and negative integers denote nulls.
Consequently, without variables, the PossDB system works as a regular RDBMS,
and the performance in this case will be the same as that of PostgreSQL. With
this encoding we need to be sure that the queries are properly evaluated. Thus,

252 G. Grahne, A. Onet, and N. Tartal

each equality condition of the form A = c part of a C-SQL query, where A is a
column name and c a constant, is rewritten as (A = c ∨ A < 0) in SQL. This
is necessary in order to check that the column A is either constant c or that it
represents a null value, here encoded as negative integers. In order to check for
satisfiability of a local conditions and its conjunction with the global condition,
the local conditions are converted into DNF (Disjunctive Normal Form). To
make a faster satisfiability test we store the global condition as hash based
representation of its CNF (Conjunctive Normal Form).

After the Satisfiability and Tautology checks, the system decides which tuples
to show in the result of the query by adding some annotations in the local
condition column. Our application has a GUI capable of generating the query
result in a human readable interface. From a technical perspective PossDB is
a two-layer system, the application layer built in Java and as a database layer
it uses PostgreSQL database engine. When the user types a C-SQL query, the
system interprets it and execute it by a series of SQL statements against the
database and a series of Java calls needed to make sure that the c-tables are
correctly manipulated and displayed to the user.

System Architecture. PossDB system is built on top of PostgreSQL. On the
middle tier Java R© and ANTLR [7] are being used. ANTLR is used to parse
the C-SQL queries and database conditions, while Java is used to implement
the C-SQL processing part, displaying the results, evaluating conditions, and
connecting to the PostgreSQL database server.

This Java application is working with input and output streams, hence it can
be easily ported to the any kind of application server or simply used through a
console. The connection between the Java middle tier and PostgreSQL database
server is done through JDBC.

Fig. 1. System Workflow

5 Experimental Results

We compared PossDB with MayBMS, as MayBMS also returns the exact answer
to queries, and the scalability of MayBMS has been proven [2]. Furthermore, both
PossDB and MayBMS are built on top of PostgeSQL.

Our experiments are based on the queries and data which were used for the
MayBMS experimental evaluation [2]. Those experiments used a large census
database encrypted as integers [8]. Noise was introduced by replacing some val-
ues with variables that could take between 2 and 8 possible values. A noise ratio

PossDB: An Uncertainty Database Management System 253

of n% meant that n% of the values were perturbed in this fashion. In our exper-
iments we used the same data and noise generator as MayBMS. The MayBMS
system and the noise generator were obtained from [1].

We tested both systems with up to 10 million tuples. The charts below contain
the result of the test using queries Q1 and Q2 from the experiments in [2].
The results show that PossDB clearly outperforms MayBMS. This is expected
because MayBMS needs to perform joins in order to check valuations against
the constant values, whereas for PossDB there is no such need.

System Configuration. We conducted all our experiments on Intel R©CoreTMi5-
760 processor machine with 8 GB RAM, running Windows 7 Enterprise and
PostgreSQL 9.0.

Q1: SELECT * FROM R WHERE VETSTAT = 8 AND CITIZEN = 9

Q2: SELECT STATEFIP,OCC1990,CITIZEN,SUBFAM FROM R

WHERE STATEFIP = OCC1990 AND CITIZEN = 1 AND SUBFAM > 4

For a demonstration of the system and extended version of this paper you
can visit http://triptych.encs.concordia.ca/PossDB. In future work we will
consider integrity constraints, extend the language to full SQL (e.g. queries in-
volving negation and aggregation) and integrate an optimized SAT-solver.

References

1. Maybms system and the noise generator, http://pdbench.sourceforge.net/
2. Antova, L., Koch, C., Olteanu, D.: 10ˆ10ˆ6 worlds and beyond: efficient representa-

tion and processing of incomplete information. The VLDB Journal 18(5), 1021–1040
(2009)

3. Benjelloun, O., Das Sarma, A., Halevy, A., Theobald, M., Widom, J.: Databases
with uncertainty and lineage. The VLDB Journal 17(2), 243–264 (2008)

4. Grahne, G., Onet, A.: Closed world chasing. In: Proceedings of the 4th International
Workshop on Logic in Databases, LID 2011, pp. 7–14. ACM, New York (2011)

http://triptych.encs.concordia.ca/PossDB
http://pdbench.sourceforge.net/

254 G. Grahne, A. Onet, and N. Tartal

5. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2007, pp. 31–40. ACM, New York (2007)

6. Imielinski, T., Lipski, W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

7. Parr, T.J., Parr, T.J., Quong, R.W.: Antlr: A predicated-ll(k) parser generator
(1995)

8. Ruggles, S.: Integrated public use microdata series: Version 3.0 (2004)

Aggregate Count Queries in Probabilistic
Spatio-temporal Databases

John Grant1, Cristian Molinaro2, and Francesco Parisi2

1 Towson University and University of Maryland at College Park, USA
jgrant@towson.edu

2 DIMES Department, Università della Calabria, Italy
{cmolinaro,fparisi}@dimes.unical.it

Abstract. The SPOT database concept was defined several years ago to provide
a declarative framework for probabilistic spatio-temporal databases where even
the probabilities are uncertain. Earlier work on SPOT focused on the efficient
processing of selection queries and updates. In this paper, we deal with aggregate
count queries. First, we propose three alternative semantics for the meaning of
such a query. Then, we provide polynomial time algorithms for answering count
queries under the various semantics and discuss complexity issues.

1 Introduction

Recent years have seen a great deal of interest in tracking moving objects. For this
reason, researchers have investigated in detail the representation and processing of
spatio-temporal databases (see, for instance, [29,34,20,3,30,18]). However, in many
cases the location of objects is uncertain: such cases can be handled by using proba-
bilities [35,10,7,6]. Sometimes the probabilities themselves are uncertain. The SPOT
(Spatial PrObabilistic Temporal) database concept was introduced in [26] to provide
a declarative framework for the representation and processing of probabilistic spatio-
temporal databases with uncertain probabilities. Previous work included a formal syn-
tax and semantics as well as checking for consistency: an object cannot be in two places
at the same time. Additional research focused on the efficient processing of selection
queries and database updates [27,23,16].

In this paper, we study a different kind of query: the aggregate count query, one that
has not been considered previously in the SPOT framework. A count query asks how
many objects are in a certain region at a given time. Answering this kind of query is
useful in several applications involving probabilistic spatio-temporal data. As an exam-
ple, a military agency might be interested in counting the number of enemy vehicles
that may be in a region at a given time point in order to adequately arrange its defense
line. As a second example, a cell phone provider might be interested in knowing load
on its cell towers by determining the number of cell phones that will be in the range
of some towers at a given time. As a third example, a transportation company might be
interested in predicting the number of vehicles that will be on a given road at a given
time in order avoid congestion.

We provide three alternative semantics for interpreting count queries: the expected
value semantics, the extreme values semantics, and the ranking semantics. For a query

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 255–268, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

256 J. Grant, C. Molinaro, and F. Parisi

region r and a time t, the first semantics looks at the minimum and maximum expected
values of the number of objects that can be inside region r at time t; the second seman-
tics returns the lowest and the highest numbers of objects that can be inside region r at
time t; the last semantics returns a confidence interval for each number of objects that
may be inside r at time t. A user can choose the most suitable semantics for the appli-
cation of interest. We propose polynomial time algorithms for evaluating count queries
under these three semantics, discuss relationships among them and complexity issues.

2 SPOT Databases

This section reviews the syntax and semantics of SPOT databases given in [26].

2.1 Syntax

We assume the existence of a set ID of objects ids, a set T of time points ranging over
the integers, and a finite set Space of points. We assume that Space is a grid of size
N ×N where we only consider integer coordinates (the framework is easily extensible
to higher dimensions). We assume that an object can be in only one location at a time,
but that a single location may contain more than one object. The initial SPOT definition
used only rectangular regions; we allow a region to be any non-empty set of points.

Definition 1 (SPOT atom/database). A SPOT atom is a tuple (id,r, t, [$,u]), where
id ∈ ID is an object id, r ⊆ Space is a region in the space, t ∈ T is a time point, and
[$,u]⊆ [0,1] is a probability interval. A SPOT database is a finite set of SPOT atoms.

Intuitively, the SPOT atom (id,r, t, [$,u]) says that object id is/was/will be inside re-
gion r at time t with probability in the interval [$,u]. Hence, SPOT atoms can represent
information about the past and the present, but also information about the future, such as
that deriving from methods for predicting the destination of moving objects [22,19,32],
or from querying predictive databases [4,12,14,2,24,25].

Example 1. Consider a lab where data coming from biometric sensors are collected and
analyzed. Biometric data such as faces, voices, and fingerprints recognized by sensors
are matched against given profiles (such as those of people having access to the lab)
and tuples like those in Fig. 1(a) are obtained. Every tuple consists of the profile id
resulting from the matching phase, the area of the lab where the sensor recognizing
the profile is operating, the time point at which the profile has been recognized, and
the lower and upper probability bounds of the recognizing process getting the tuple.
For instance, the tuple in the first row of the table in Fig. 1(a), representing the SPOT
atom (id1,d,1, [0.9,1]), says that the profile having id id1 was in region d at time 1 with
probability in the interval [0.9,1]. In Fig. 1(b), the plan of the lab and the areas covered
by sensors are shown. In area d a fingerprint sensor is located, whose high accuracy
entails a narrow probability interval with upper bound equal to 1. After fingerprint au-
thentication, id1 was recognized at time 3 in areas b and c with probability in [0.6,1]
and [0.7,0.8], respectively. �

Given a SPOT database S , an object id, and a time t, we use S id,t to refer to the
set S id,t = {(id′,r′, t ′, [$′,u′]) ∈ S | id′ = id ∧ t ′ = t}. Moreover, we will use ID(S)
to denote the set of ids that appear in S , that is ID(S) = {id | (id,r, t, [$,u]) ∈ S }.

Aggregate Count Queries in Probabilistic Spatio-temporal Databases 257

Id Area Time Lower Probability Upper Probability
id1 d 1 0.9 1
id1 b 3 0.6 1
id1 c 3 0.7 0.8
id2 b 1 0.5 0.9
id2 e 2 0.2 0.5
id3 e 1 0.6 0.9

�

� � � � �� �� ���
�

�

�

�

�

��

��

��

��

	

�

�

 �

(a) (b)

Fig. 1. (a) SPOT database Slab; (b) Areas of the lab

2.2 Semantics

The meaning of a SPOT database is given by the set of interpretations that satisfy it.

Definition 2 (SPOT interpretation). A SPOT interpretation is a function I : ID×
Space×T → [0,1] such that for each id ∈ ID and t ∈ T, ∑p∈Space I(id, p, t) = 1.

For a given interpretation I, we sometimes abuse notation and write Iid,t(p)= I(id, p, t).
In this case, Iid,t is a probability distribution function (PDF). The set of all interpreta-
tions for a SPOT database S will be denoted as I(S).

Example 2. Interpretation I1 for the SPOT database Slab of Example 1 is as follows.

I1(id1,(3,6),1) = 0.4 I1(id1,(2,5),1) = 0.2 I1(id1,(3,5),1) = 0.3
I1(id1,(7,7),1) = 0.1 I1(id1,(7,5),2) = 0.5 I1(id1,(4,2),2) = 0.5
I1(id1,(10,10),3) = 0.7 I1(id1,(7,5),3) = 0.3 I1(id2,(5,7),1) = 0.1
I1(id2,(12,12),1) = 0.9 I1(id2,(9,7),2) = 0.3 I1(id2,(12,13),2) = 0.7
I1(id2,(8,7),3) = 0.9 I1(id2,(11,15),3) = 0.1 I1(id3,(10,5),1) = 0.8
I1(id3,(5,6),1) = 0.2 I1(id3,(5,5),2) = 0.5 I1(id3,(6,5),2) = 0.5
I1(id3,(5,3),3) = 0.6 I1(id3,(5,6),3) = 0.4

Moreover, I1(id, p, t) = 0 for all triplets (id, p, t) not mentioned above. �

Given an interpretation I and region r, the probability that object id is in r at time t
according to I is Σp∈rI(id, p, t). We now define satisfaction and SPOT models.

Definition 3 (Satisfaction and SPOT model). Let A= (id,r, t, [$,u]) be a SPOT atom
and let I be a SPOT interpretation. We say that I satisfies A (denoted I |= A) iff
∑p∈r I(id, p, t) ∈ [$,u]. I satisfies a SPOT database S (denoted I |= S) iff ∀A ∈ S ,
I |= A. If I satisfies a SPOT atom A (resp. SPOT database S), we say that I is a model
for A (resp. S).

Example 3. In our running example, interpretation I1 is a model for the SPOT atom
(id1,d,1, [0.9,1]) as, for id id1 and time point 1, I1 assigns probability 0.4 to point (3,6),
0.2 to point (2,5), and 0.3 to point (3,5) (which are points in area d), and probability

258 J. Grant, C. Molinaro, and F. Parisi

0.1 to (7,7) which is a point outside area d. Hence, the probability that id1 is in area d
at time point 1 is 0.9, which is in the interval [0.9,1] specified by the considered SPOT
atom. Reasoning analogously, it is easy to see that I1 is a model for all of the atoms in
Fig. 1(a) except for (id2,b,1, [0.5,0.9]) as the probability to be in area b at time 1 for id
id2 is set to 0.1 by I1, instead of a value in [0.5,0.9]. Hence I1 is not a model for Slab. �

Example 4. Let M be the interpretation which is equal to I1 except that M(id2,(5,7),
1) = 0.7 and M(id2,(12,12),1) = 0.3. It is easy to check that M is a model for Slab. �

We use M(S) to denote the set of models for a SPOT database S , that is, M(S) =
{I | I ∈ I(S)∧ I |= S }. In the following we will use the symbol M to refer to interpre-
tations that are models, that is, elements in M(S).

Definition 4 (Consistency). A SPOT database S is consistent iff M(S) �= /0.

Example 5. Model M of Example 4 proves that Slab is consistent. �

As shown in [26], the consistency of a SPOT database can be checked by means of a
linear programming algorithm whose complexity is O(|ID(S)| · |T | · (|Space| · |S |)3).

Throughout the paper we assume that SPOT databases are consistent.

3 Count Queries in SPOT

In this section, we define the syntax of count queries over SPOT databases and propose
three alternative semantics. Intuitively, a count query asks for the number of objects
inside a specified region at a given time point.

Definition 5 (Count query). A count query is an expression of the form Count(r, t)
where r is a region of Space and t is a time point in T .

The count query Count(r, t) asks: “How many objects are inside region r at time
t?”. We propose three different semantics for interpreting this kind of query, namely
the expected value semantics, the extreme values semantics, and the ranking semantics,
which are introduced in the following three subsections. The first semantics looks at
the expected value of the random variable representing the number of objects that are
inside the query region r at time t. Since such an expected value varies from model to
model and a SPOT database can have multiple models, we take the lowest and highest
values across all models. The second semantics returns two integers z and Z, which are,
respectively, the lowest and the highest numbers of objects that can be inside region
r at time t (according to the different models of the given SPOT database). The last
semantics returns a confidence interval for each number of objects that may be inside
the query region r at time t.

In the rest of the paper, we assume that a SPOT database S and a count query
Q =Count(r, t) are given.

Aggregate Count Queries in Probabilistic Spatio-temporal Databases 259

3.1 Expected Value Semantics

For the count query Count(r, t), we first define the expected number of objects in region
r at time t w.r.t. a model M; then, as there may be many models for a SPOT database, we
define the expected value semantics as the tightest interval [c,C] s.t. for any M ∈ M(S)
the expected number of objects in r at time t w.r.t. M is in [c,C].

Let M be a model for S , and let XM be a random variable representing the number
of objects in region r at time t according to M. The expected answer to Q w.r.t. M
is the expected number of objects in r at time t w.r.t. M, that is: Qexp(M) = E[XM] =

∑|ID(S)|
k=0 k ·Pr(XM = k), where Pr(XM = k) denotes the probability that there are exactly

k objects in r at time t according to M.

Example 6. Continuing our running example, one may be interested in knowing the
expected number of people who are at time 1 in the region r = {(x,y)∈ Space | (0≤ x≤
6)∧ (4 ≤ y ≤ 8)} (this region includes the whole area d, a portion of area b, and some
other points). This can be expressed by the count query Q =Count(r,1). The expected
answer to Q w.r.t. model M of Example 4 is Qexp(M) = 0.9+ 0.7+ 0.2= 1.8. �

In general, the expected number of objects in a given region at a given time point may
vary in different models of M(S). The expected value answer is the tightest interval
that includes the expected numbers w.r.t. every model for S .

Definition 6 (Expected value answer). The expected value answer to Q w.r.t. S is
Qexp(S) = [c,C], where:

c = min
M∈M(S)

Qexp(M) and C = max
M∈M(S)

Qexp(M).

Example 7. The expected value answer to the query Q =Count(r,1) of Example 6 is as
follows. A model Mc for Slab such that Qexp(Mc) is less than or equal to the expected
answer w.r.t. any other model for Slab is the following:

– Mc(id1,(3,6),1) = 0.9, Mc(id1,(8,2),1) = 0.1, Mc(id2,(8,10),1) = 0.9,
Mc(id2,(12,1),1) = 0.1, Mc(id3,(10,5),1) = 0.9, and Mc(id3,(12,1),1) = 0.1;

– Mc(idi, p,1) = 0 for all other triplets not mentioned above, and Mc(idi, p, t) =
M(idi, p, t) for all triplets (idi, p, t) with t ∈ [2,3], where M is the model of Ex-
ample 4.

Reasoning as in Example 6, we obtain that Qexp(Mc) = 0.9 (note that, according to Mc,
both id2 and id3 are not in r).

A model MC for Slab such that Qexp(MC) is greater than or equal to the expected
answer w.r.t. any other model for Slab is the following:

– MC(id1,(3,6),1) = 1, MC(id2,(5,7),1) = 0.9, MC(id2,(5,5),1) = 0.1,
MC(id3,(10,5),1) = 0.6, and MC(id3,(5,5),1) = 0.4;

– MC(idi, p,1) = 0 for all other triplets not mentioned above, and MC(idi, p, t) =
M(idi, p, t) for all triplets (idi, p, t) with t ∈ [2,3], where M is the model of Ex-
ample 4.

In this case, we get Qexp(MC) = 2.4 and thus Qexp(Slab) = [0.9,2.4]. �

260 J. Grant, C. Molinaro, and F. Parisi

By Definition 6, if [c,C] is the expected value answer to a count query Q=Count(r, t)
w.r.t. a SPOT database S , then the expected number of objects in r at time t w.r.t. any
model M ∈ M(S) belongs to the interval [c,C]. The following proposition states that,
for each value v in the interval [c,C], there exists a model M such that the expected
number of objects in r at time t w.r.t. M is v.

Proposition 1. If Qexp(S) = [c,C], then ∀v ∈ [c,C], ∃M ∈ M(S) s.t. Qexp(M) = v.

Hence, the interval [c,C] makes good sense as query answer because for every value
in the interval there is a model whose expected number of objects is that value.

3.2 Extreme Values Semantics

Given a model M for a SPOT database, an object id, a region r, and a time point t, in the
following, with a slight abuse of notation we use M(id,r, t) to denote ∑p∈r M(id, p, t),
i.e. the probability that id is in r at time t w.r.t. M.

Definition 7 (Extreme values answer). The extreme values answer to Q w.r.t. S is
Qextreme(S) = [z,Z], where:

z = min
M∈M(S)

|{id such that: id ∈ ID(S)∧M(id,r, t) = 1}|, and

Z = max
M∈M(S)

|{id such that: id ∈ ID(S)∧M(id,r, t) �= 0}|.

Note that, unlike the expected value semantics, the extreme values answer gives a
pair of integers.

Example 8. Continuing our running example, one may be interested in knowing the
min and max number of people who are at time 1 in region r of Example 6. We can get
this from the extreme values answer Qextreme(Slab) to the count query Q =Count(r,1).

A model for Slab such that the number of ids that are in r with probability 1 at
time 1 is minimum w.r.t. any other model for Slab is model Mc of Example 7. In fact,
according this model no id is in r at time 1 with probability 1.

A model for Slab such that the number of ids that are in r with non-zero probability
at time 1 is maximum w.r.t. any other model for Slab is model MC of Example 7. In fact,
according to MC, ids id1, id2, and id3 are in r at time 1. Hence, Qextreme(S) = [0,3]. �

The relationship between the expected and extreme answers is the following.

Proposition 2. If Qexp(S) = [c,C] and Qextreme(S) = [z,Z], then z ≤ c ≤C ≤ Z.

3.3 Ranking Semantics

The answers provided by the expected value semantics and the extreme values se-
mantics are numeric intervals. In this section, we propose an alternative semantics
for a count query Count(r, t) which gives a set of pairs of the form 〈i, [$i,ui]〉 (with
0 ≤ i ≤ |ID(S)|) where i is the number of objects that may be in the given region r at
time point t, and [$i,ui] is the corresponding probability interval for each number.

Aggregate Count Queries in Probabilistic Spatio-temporal Databases 261

We follow an approach similar to the one adopted in the definition of the expected
value semantics, that is, for each 0 ≤ i ≤ |ID(S)| we first define the probability of
having exactly i objects in a certain region at a certain time point w.r.t. a model M.
Then, we consider the tightest interval [$i,ui] that includes such a value for every model
of a SPOT database. For this case only, we assume independence of events involv-
ing the locations of different objects. This assumption is often adopted in probabilistic
databases [33], and is reasonable in many applications (e.g., when the movement of un-
related objects is tracked). Thus, applying the independence assumption, given a model
M, the probability that two objects id1 and id2 are in locations p1 and p2, respectively,
at time t is given by M(id1, p1, t) ·M(id2, p2, t) (i.e., the product of the probability that
id1 is on p1 at time t and the probability that id2 is on p2 at time t according M).

Below we define the probability that exactly i objects are in a region r at a time point
t according to a given model M.

Definition 8 (Probability of exactly i objects with respect to a model). Let M be a
model for S . For 0 ≤ i ≤ |ID(S)|, the probability of having exactly i objects in r at
time t w.r.t. M is as follows:
ProbM(r, t, i) = ∑S⊆ID(S)∧|S|=i

(
∏id∈S M(id,r, t) · ∏id∈ID(S)\S(1−M(id,r, t))

)
.

Example 9. Consider the count query Q =Count(r,1) of Example 6 and the model M
of Example 4. As observed in Example 6, according to M, ids id1, id2, and id3 can be
in region r at time 1 with probabilities M(id1,r,1) = α1 = 0.9, M(id2,r,1) = α2 = 0.7,
and M(id3,r,1) = α3 = 0.2, respectively. The probability of having exactly 2 objects in
r at time 1 w.r.t. M is ProbM(r,1,2) = α1α2(1−α3)+α1(1−α2)α3 +(1−α1)α2α3=
0.9 ·0.7 ·0.8+ 0.9 ·0.3 ·0.2+0.1 ·0.7 ·0.2= 0.572. �

Before defining the ranking semantics we need the following auxiliary definition.

Definition 9 (Probability range for exactly i objects). For 0 ≤ i ≤ |ID(S)|, define

Probmin
S (r, t, i) = min

M∈M(S)
ProbM(r, t, i) and Probmax

S (r, t, i) = max
M∈M(S)

ProbM(r, t, i).

Example 10. Consider again the count query Q =Count(r,1) of our running example.
It is easy to see that the minimum probability Probmin

Slab
(r,1,0) of having no objects in r

at time 1 is equal to zero. In fact, the SPOT atom in the first row of the table in Fig. 1(a)
makes it possible to have id1 is in region r with probability 1 at time 1, and in such a
case the probability of having no objects in r at time 1 is 0.

The value of Probmax
Slab

(r,1,0) can be obtained by considering model Mc of Example 7
according to which only id1 is in r at time 1 with probability equal to 0.9, and both id2

and id3 are outside r. In this case, ProbMc(r,1,0) = 0.1, which is the maximum value
of ProbM(r,1,0) w.r.t. any model M for Slab. Thus, Probmax

Slab
(r,1,0) = 0.1. �

Definition 10 (Ranking answer). The ranking answer to Q w.r.t. S is as follows:

Qrank(S) = {〈i, [$i,ui]〉 | 0 ≤ i ≤ |ID(S)| ∧ $i = Probmin
S (r, t, i)∧ui = Probmax

S (r, t, i)}

Example 11. From Example 10, we have that 〈0, [0,0.1]〉 belongs to Qrank(Slab), mean-
ing that the minimum/maximum probability of having no objects in r at time 1 ranges

262 J. Grant, C. Molinaro, and F. Parisi

between 0 and 0.1. With a little effort, the reader can check that the minimum prob-
ability Probmin

S (r,1,1) of having exactly one object in r at time 1 is also 0. In fact,
the model MC introduced in Example 7 is such that ProbMC(r,1,1) = MC(id1,r,1) · (1−
MC(id2,r,1)) ·(1−MC(id3,r,1))+(1−MC(id1,r,1)) ·MC(id2,r,1) ·(1−MC(id3,r,1))+
(1−MC(id1,r,1)) ·(1−MC(id2,r,1)) ·MC(id3,r,1) = 1 ·0 ·0.6+0 ·1 ·0.6+0 ·0 ·0.4= 0,
which is the minimum probability value w.r.t. the models for Slab. The maximum prob-
ability Probmax

S (r,1,1) of having exactly one object in r at time 1 is equal to 1 by con-
sidering any model M′ placing id1 at any point in Area d with probability equal to 1,
and placing neither id2 nor id3 in region r. Hence, the pair 〈1, [0,1]〉 is in Qrank(Slab). �

The following proposition states the relationship between the expected value (resp.
extreme values) answer and the ranking answer to a count query for the class of simple
SPOT databases introduced in [26], that is SPOT databases admitting a single model.
Notice that if [c,C] is the expected value answer to a count query w.r.t. a simple SPOT
database, then c = C. Furthermore, if {〈0, [$0,u0]〉, . . . ,〈n, [$n,un]〉} is the ranking an-
swer to a count query w.r.t. a simple SPOT database, then $i = ui for 0 ≤ i ≤ n.

Proposition 3. Let S be a simple SPOT database, and let Qrank(S) = {〈0, [$0,u0]〉,
. . . , 〈n, [$n,un]〉}, where n = |ID(S)|. Then,

– Qexp(S) =
[
∑|ID(S)|

i=0 i · $i, ∑|ID(S)|
i=0 i ·ui

]
– Qextreme(S) = [min{i | 0 ≤ i ≤ n∧ $i = 1}, max{i | 0 ≤ i ≤ n∧ $i �= 0}]

4 Computing Count Queries

In this section, we provide techniques for computing count queries under the three se-
mantics presented in the previous section. It turns out that both the expected and ex-
treme values semantics are polynomial-time computable for general SPOT databases,
while the ranking semantics can be computed in polynomial time for the class of simple
SPOT databases. Notice that the proposed semantics cannot be computed by directly
applying their definitions as the number of models of a SPOT database can be infinite.

Our methods for evaluating count queries exploit the definition, introduced in [26], of
a set of linear constraints LC(S , id, t) associated with a SPOT database S , an object
id, and a time point t. LC(S , id, t) is reported in the next definition, where the variable
vp denotes the probability that object id is at point p ∈ Space at time t.

Definition 11 (LC(·)). For SPOT database S , id ∈ ID, and t ∈ T, LC(S , id, t) con-
tains exactly the linear constraints defined below:

- ∀(id,r, t, [$,u]) ∈ S id,t ,
(
$≤ ∑p∈r vp ≤ u

)
∈ LC(S , id, t);

-
(
∑p∈Space vp = 1

)
∈ LC(S , id, t);

- ∀p ∈ Space (vp ≥ 0) ∈ LC(S , id, t).

LC(S , id, t) was exploited in [26] to check the consistency of a SPOT database. In
particular, it was shown that S is consistent iff LC(S , id, t) is feasible for all 〈id, t〉
pairs. We build on LC(S , id, t) to devise strategies for computing count queries.

Aggregate Count Queries in Probabilistic Spatio-temporal Databases 263

4.1 Computing Expected Value Semantics

The following theorem provides a method to compute the answer to a count query under
the expected value semantics.

Theorem 1. If Qexp(S) = [c,C], then

c = ∑id∈ID(S)

(
minimize ∑p∈r vp subject to LC(S , id, t)

)
C = ∑id∈ID(S)

(
maximize ∑p∈r vp subject to LC(S , id, t)

)
From this theorem, a straightforward algorithm for computing count queries under

the expected value semantics follows: sum up the values obtained by solving, for each
id ∈ ID(S), the linear programs reported in Theorem 1.

Example 12. The expected answer to the query Q = Count(r,1) of Example 7 can be
determined as follows. Consider the following linear programs:

– LC(Slab, id1,1) = {0.9 ≤ ∑p∈Area d vp ≤ 1; ∑p∈Space vp = 1; ∀p ∈ Space,vp ≥ 0}.
– LC(Slab, id2,1) = {0.5≤∑p∈Area b vp ≤ 0.9; ∑p∈Space vp = 1; ∀p ∈ Space,vp ≥ 0}.
– LC(Slab, id3,1) = {0.6≤ ∑p∈Area e vp ≤ 0.9; ∑p∈Space vp = 1; ∀p ∈ Space,vp ≥ 0}.

where Space is the set of points in the grid of Fig. 1(b). By minimizing (∑p∈r vp)
subject to the three LCs above, we obtain 0.9, 0, and 0, respectively. Hence, applying
Theorem 1, the lower bound of Qexp(Slab) is the sum of these values, that is, c = 0.9.
Similarly, maximizing (∑p∈r vp) subject to the LCs results in 1, 1, and 0.4, respectively,
and applying Theorem 1 we get that the upper bound of Qexp(Slab) is C = 1+1+0.4=
2.4. Indeed, as discussed in Example 7, Qexp(Slab) = [0.9,2.4]. �

The following corollary states that Qexp(S) can be computed in polynomial time
w.r.t. the size of S and the number of points in Space.

Corollary 1. Qexp(S) can be computed in time O(|ID(S)| · (|Space| · |S |)3).

The above corollary entails that computing count queries under the expected value
semantics is not more expensive than checking the consistency of a SPOT database.

Another interesting consequence of Theorem 1 is the following. An optimized ver-
sion of LC(·), where the number of variables is drastically reduced, was introduced
in [27]. The experimental results of [27] show that solving the reduced-size LC(·) is
much more efficient than solving the equivalent system of linear inequalities in Defini-
tion 11. In this paper, we can take advantage of the result of [27] to make more efficient
the computation of the expected value semantics. In fact, even though we used LC(·) in
Theorem 1 for the sake of simplicity, it is easy to see that nothing changes if we replace
LC(·) with its equivalent optimized version of [27]. Thus, the efficiency improvements
of using the optimized version of LC(·) immediately apply to the case of computing
expected value semantics.

4.2 Computing Extreme Values Semantics

We now address the problem of computing the extreme values answer.

264 J. Grant, C. Molinaro, and F. Parisi

Theorem 2. If Qextreme(S) = [z,Z], then

z = |{id such that id ∈ ID(S)∧ (minimize ∑p∈r vp subject to LC(S , id, t)) = 1}|
Z = |{id such that id ∈ ID(S)∧ (maximize ∑p∈r vp subject to LC(S , id, t)) �= 0}|

Theorem 2 provides a way of computing the extreme values answer. Specifically, in
order to compute z (resp. Z), it suffices to solve the min- (resp. max-) version of the
linear program in Theorem 2 for each id ∈ ID(S), and then count for how many object
ids the optimization program gives a solution equal to one (resp., a positive solution).

Example 13. The extreme values answer to the query Q = Count(r,1) of Example 8
can be determined as follows. Consider LC(Slab, id1,1), LC(Slab, id2,1), and LC(Slab,
id3,1) as reported in Example 12. Since minimizing the function (∑p∈r vp) subject to
any of these three LCs we obtain all zero values, Theorem 2 entails that the lower bound
of Qextreme(Slab) is 0. Similarly, maximizing (∑p∈r vp) subject to these LCs results in
three non-zero values (i.e., 1, 1, and 0.4, respectively). Hence, by applying Theorem 2,
we obtain that the upper bound of Qextreme(Slab) is 3. �

As stated in the following corollary, the complexity of computing Qextreme(S) is
polynomial w.r.t. the size of S and the number of points in Space.

Corollary 2. Qextreme(S) can be computed in time O(|ID(S)| · (|Space| · |S |)3).

It is worth noting that, also in this case, the optimized version of LC(·) can be ex-
ploited to make more efficient the computation of the extreme values answer.

4.3 Computing Ranking Semantics

In the following proposition, given a SPOT database S , an object identifier id ∈
ID(S), and a time point t, we use vid

p to denote variable vp of LC(S , id, t).

Proposition 4. If Qrank(S) = {〈0, [$0,u0]〉, . . . ,〈n, [$n,un]〉} where n = |ID(S)|, then
for 0 ≤ i ≤ n, the following holds

$i = minimize ∑S⊆ID(S)∧|S|=i

(
∏id∈S ∑p∈r vid

p ·∏id∈ID(S)\S(1−∑p∈r vid
p)

)
subject to LC(S , id1, t)∪·· ·∪LC(S , idn, t)

ui = maximize ∑S⊆ID(S)∧|S|=i

(
∏id∈S ∑p∈r vid

p ·∏id∈ID(S)\S(1−∑p∈r vid
p)

)
subject to LC(S , id1, t)∪·· ·∪LC(S , idn, t)

The previous proposition provides a method for computing ranking answers for gen-
eral SPOT databases. However, this method has exponential complexity w.r.t. the size
of S . Below we propose a dynamic programming algorithm to compute Qrank(S)
w.r.t. simple SPOT databases, and show that the algorithm is polynomial time.

Consider a simple SPOT database S , the unique model M for S , and a count
query Q=Count(r, t). Assume an arbitrary but fixed ordering of the object identifiers in
ID(S)—we will consider the lexicographic ordering id1, . . . , idn, where n = |ID(S)|.
For 1 ≤ j ≤ n and 0 ≤ i ≤ j, we define ProbM(q, t, i, j) as follows:

ProbM(r, t,0, j) = ∏ j
k=1(1−M(idk,r, t)) 1 ≤ j ≤ n

ProbM(r, t, j, j) = ∏ j
k=1 M(idk,r, t) 1 ≤ j ≤ n

ProbM(r, t, i, j) = M(id j,r, t) ·ProbM(r, t, i− 1, j− 1)+
(1−M(id j,r, t)) ·ProbM(r, t, i, j− 1) 2 ≤ j ≤ n, 1 ≤ i ≤ j− 1

Aggregate Count Queries in Probabilistic Spatio-temporal Databases 265

The following example shows how ProbM(q, t, i, j) is computed for a given model M.

Example 14. Consider the count query Q =Count(r,1) of Example 6 and the model M
of Example 4. As observed in Example 6, according to M, ids id1, id2, and id3 can be
in region r at time 1 with probabilities M(id1,r,1) = α1 = 0.9, M(id2,r,1) = α2 = 0.7,
and M(id3,r,1) = α3 = 0.2, respectively. Hence, we have that:
ProbM(r,1,0,1) = (1−α1) = 0.1; ProbM(r,1,0,2) = (1−α1)(1−α2) = 0.03;
ProbM(r,1,0,3) = (1−α1)(1−α2)(1−α3) = 0.024; ProbM(r,1,1,1) = α1 = 0.9;
ProbM(r,1,2,2) = α1α2 = 0.63; ProbM(r,1,3,3) = α1α2α3 = 0.126;
ProbM(r,1,1,2) = α2 ·ProbM(r,1,0,1)+ (1−α2) ·ProbM(r,1,1,1) = 0.34.
ProbM(r,1,1,3) = α3 ·ProbM(r,1,0,2)+ (1−α3) ·ProbM(r,1,1,2) = 0.278.
ProbM(r,1,2,3) = α3 ·ProbM(r,1,1,2)+ (1−α3) ·ProbM(r,1,2,2) = 0.572. �

Theorem 3. For a simple SPOT database S ,if Qrank(S) = {〈0, [$0,u0]〉, . . . ,
〈n, [$n,un]〉}, where n = |ID(S)|, then $i = ui = ProbM(r, t, i,n) for 0 ≤ i ≤ n.

Example 15. Assume we have a simple SPOT database S whose unique model is
model M of Example 14. Theorem 3 entails that the ranking answer to Q =Count(r,1)
can be derived from ProbM(r,1,0,3) = 0.024, ProbM(r,1,1,3) = 0.278, ProbM(r,1,2,
3) = 0.572, and ProbM(r,1,3,3) = 0.126. Hence, Qrank(S) = {〈0, [0.024,0.024]〉,
〈1, [0.278, 0.278]〉, 〈2, [0.572,0.572]〉,〈3, [0.126,0.126]〉}. �

As stated in the following corollary, computing the ranking answer using the result
of Theorem 3 results in a polynomial time algorithm.

Corollary 3. Given a simple SPOT database S and a count query Q = Count(r, t),
the complexity of computing Qrank(S) is O(|ID(S)| · (|Space| · |S |)3).

5 Related Work

Aggregates in probabilistic databases were deeply investigated in [31], where all stan-
dard aggregate queries including finding the mean and standard deviation over an at-
tribute for specified values of other attributes were considered. In the SPOT framework
this does not apply directly as we do not actually deal with attributes whose domain is
numeric (although we use integers for time values). Thus, in this paper we focused on
counting the number of objects in a certain region at a certain time.

One aspect that distinguishes our work from previous work on aggregates in proba-
bilistic databases is that we rely on the SPOT framework, the only declarative frame-
work we are aware of that deals with spatio-temporal data with uncertain probabilities.

The standard reference for computing aggregates in spatio-temporal databases is
Lopez et al. [21]. This paper studies in detail the most efficient techniques for eval-
uating aggregate queries on spatial, temporal, and spatio-temporal databases. Gomez
et al. [15] address aggregate queries over GIS and moving object data where the non-
spatial information is stored in a data warehouse. Both these papers deal with definite
data; no probabilities are involved.

There has been recent research on probabilistic spatio-temporal databases
[9,37,36,8,38]. Chung et al. [9] derive a PDF for the location of an object moving in

266 J. Grant, C. Molinaro, and F. Parisi

a one-dimensional space. Their probabilistic range queries find objects that are in a
specified region of space within a specified time interval, and with a probability that is
at least a threshhold value. Zhang et al. [37] provide a framework that allows their model
to be incorporated into existing DBMSs and work for all objects even if their location
and velocity are uncertain. Yang et al. [36] work with moving objects in indoor space,
and their query asks for all sets of k objects that have at least a threshold probability
of containing the k nearest objects to a given object. Chen et al. [8] deal with a simi-
lar problem, and also deal with the query result quality by using both a false positive
and a false negative rate. Finally, [38] deals primarily with objects moving along road
networks, and introduce an indexing mechanism called UTH (Uncertain Trajectories
Hierarchy) to efficiently process probabilistic range queries.

Our approach to define the semantics of count queries is somewhat similar to the
approach in [5], also adopted in other works such as [1] and [13], to define the semantics
of aggregate queries over inconsistent databases. While we derive some information
(e.g., expected answer) from each model of a SPOT database and then combine it over
all models, [5] evaluates an aggregate query over each repair and combines the resulting
values by considering the tightest interval that includes all of them.

Past work on the SPOT framework investigated selection queries [27,23], that is,
queries asking for the objects id and times t such that id is inside a given query region
r at time t with a probability in the given interval [$,u]. Optimistic and cautious seman-
tics were proposed for interpreting these queries, and efficient algorithms for computing
optimistic and cautious answers were proposed in [27] and [23], respectively. A more
general version of the SPOT framework adopted in this paper was presented in [28]
and [16] with velocity constraints on moving objects as well as points in S that may
not be reachable from all other points by all objects. Also, as SPOT databases provide
information on moving objects, one aspect addressed in [28] and then further investi-
gated in [16] is that of revising SPOT data so that information on these objects may be
changed as objects move. A comprehensive survey of the results on the SPOT frame-
work can be found in [17] where several open problems were identified. One of these
problems is that of devising a full logic (including negation, disjunction and quantifiers)
for managing SPOT data. This problem was recently addressed in [11].

6 Conclusion and Topics for Further Research

We started the study of computing aggregates in the SPOT framework for probabilistic
spatio-temporal databases by focusing on count queries. We defined three semantics for
interpreting queries that ask for the number of objects in a region at a specified time and
developed polynomial time algorithms for them. However, for the ranking semantics we
assume independence of events involving the location of different objects. Also, in this
case, the polynomial time algorithm requires a SPOT database with a unique model.

There are additional topics to investigate in addition to generalizing our result for the
ranking semantics. We have only considered count queries for a single time value, but
such queries are meaningful for time intervals as well. A simple way of dealing with
a count query specifying a time interval is to evaluate the count query for each time
point in the interval and return the set of answers obtained in this way. More complex

Aggregate Count Queries in Probabilistic Spatio-temporal Databases 267

semantics would require combining such results. Additional types of count queries may
be useful for other purposes. For example, we may want to count the number of loca-
tions visited by a moving object in a time interval. So in this case we count location
points instead of objects. Alternately, we may wish to count the number of time points
during which a location contained an object. The SPOT framework does not have a
true numeric component for asking other types of aggregate queries. If we extend the
SPOT framework by adding such a component (e.g., the number of items carried by a
moving object), then computing other types of aggregates becomes meaningful.

References

1. Afrati, F.N., Kolaitis, P.G.: Answering aggregate queries in data exchange. In: Proc. PODS,
pp. 129–138 (2008)

2. Agarwal, D., Chen, D., Lin, L.-J., Shanmugasundaram, J., Vee, E.: Forecasting high-
dimensional data. In: Proc. SIGMOD, pp. 1003–1012 (2010)

3. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. Journal of Computer and
System Sciences 66(1), 207–243 (2003)

4. Akdere, M., Cetintemel, U., Riondato, M., Upfal, E., Zdonik, S.: The case for predictive
database systems: Opportunities and challenges. In: Proc. CIDR, pp. 167–174 (2011)

5. Arenas, M., Bertossi, L.E., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar aggrega-
tion in inconsistent databases. Theor. Comput. Sci. 296(3), 405–434 (2003)

6. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: Uldbs: Databases with uncertainty
and lineage. In: Proc. VLDB, pp. 953–964 (2006)

7. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error
bounds. VLDB Journal 15, 211–228 (2006)

8. Chen, Y.F., Qin, X.L., Liu, L.: Uncertain distance-based range queries over uncertain moving
objects. J. Comput. Sci. Technol. 25(5), 982–998 (2010)

9. Chung, B.S.E., Lee, W.C., Chen, A.L.P.: Processing probabilistic spatio-temporal range
queries over moving objects with uncertainty. In: Proc. EDBT, pp. 60–71 (2009)

10. Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic spatial queries on exis-
tentially uncertain data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg (2005)

11. Doder, D., Grant, J., Ognjanović, Z.: Probabilistic logics for objects located in space and
time. J. of Logic and Computation 23(3), 487–515 (2013)

12. Duan, S., Babu, S.: Processing forecasting queries. In: Proc. VLBD (2007)
13. Flesca, S., Furfaro, F., Parisi, F.: Range-consistent answers of aggregate queries under ag-

gregate constraints. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp.
163–176. Springer, Heidelberg (2010)

14. Ge, T., Zdonik, S.: A skip-list aproach for efficiently processing forecasting queries. In: Proc.
VLDB (2008)

15. Gomez, L.I., Kuijpers, B., Vaisman, A.A.: Aggregate languages for moving object and places
of interest. In: Proc. SAC, pp. 857–862 (2008)

16. Grant, J., Parisi, F., Parker, A., Subrahmanian, V.S.: An agm-style belief revision mechanism
for probabilistic spatio-temporal logics. Artif. Intell. 174(1), 72–104 (2010)

17. Grant, J., Parisi, F., Subrahmanian, V.S.: Research in Probabilistic Spatiotemporal Databases:
The SPOT Framework. In: Ma, Z., Yan, L. (eds.) Advances in Probabilistic Databases.
STUDFUZZ, vol. 340, pp. 1–22. Springer, Heidelberg (2013)

268 J. Grant, C. Molinaro, and F. Parisi

18. Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing of spa-
tiotemporal objects. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm,
K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251–268. Springer, Heidelberg (2002)

19. Hammel, T., Rogers, T.J., Yetso, B.: Fusing live sensor data into situational multimedia
views. In: Proc. MIS, pp. 145–156 (2003)

20. Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Proc. PODS, pp.
261–272 (1999)

21. Lopez, I.F.V., Snodgrass, R.T., Moon, B.: Spatiotemporal aggregate computation: A survey.
IEEE TKDE 17(2), 271–286 (2005)

22. Mittu, R., Ross, R.: Building upon the coalitions agent experiment (coax) - integration of
multimedia information in gccs-m using impact. In: Proc. MIS, pp. 35–44 (2003)

23. Parisi, F., Parker, A., Grant, J., Subrahmanian, V.S.: Scaling cautious selection in spatial
probabilistic temporal databases. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S.
(eds.) Methods for Handling Imperfect Spatial Information. STUDFUZZ, vol. 256, pp. 307–
340. Springer, Heidelberg (2010)

24. Parisi, F., Sliva, A., Subrahmanian, V.S.: Embedding forecast operators in databases. In: Ben-
ferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 373–386. Springer, Heidelberg
(2011)

25. Parisi, F., Sliva, A., Subrahmanian, V.S.: A temporal database forecasting algebra. Int. J. of
Approximate Reasoning 54(7), 827–860 (2013)

26. Parker, A., Subrahmanian, V.S., Grant, J.: A logical formulation of probabilistic spatial
databases. IEEE TKDE, 1541–1556 (2007)

27. Parker, A., Infantes, G., Grant, J., Subrahmanian, V.S.: Spot databases: Efficient consistency
checking and optimistic selection in probabilistic spatial databases. IEEE TKDE 21(1), 92–
107 (2009)

28. Parker, A., Infantes, G., Grant, J., Subrahmanian, V.S.: An AGM-based belief revision mech-
anism for probabilistic spatio-temporal logics. In: Proc. AAAI (2008)

29. Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the past, present, and anticipated future po-
sitions of moving objects. ACM Trans. Database Syst. 31(1), 255–298 (2006)

30. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches to the indexing of moving object
trajectories. In: Proc. VLDB (2000)

31. Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic databases. Jour-
nal of the ACM 52(1), 54–101 (2005)

32. Southey, F., Loh, W., Wilkinson, D.F.: Inferring complex agent motions from partial trajec-
tory observations. In: Proc. IJCAI, pp. 2631–2637 (2007)

33. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers (2011)

34. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access method
for predictive queries. In: Proc. VLDB, pp. 790–801 (2003)

35. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional
uncertain data with arbitrary probability density functions. In: Proc. VLDB, pp. 922–933
(2005)

36. Yang, B., Lu, H., Jensen, C.S.: Probabilistic threshold k nearest neighbor queries over moving
objects in symbolic indoor space. In: Proc. EDBT, pp. 335–346 (2010)

37. Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z.: Effectively indexing uncertain mov-
ing objects for predictive queries. PVLDB 2(1), 1198–1209 (2009)

38. Zheng, K., Trajcevski, G., Zhou, X., Scheuermann, P.: Probabilistic range queries for uncer-
tain trajectories on road networks. In: Proc. EDBT, pp. 283–294 (2011)

Approximate Reasoning

about Generalized Conditional Independence
with Complete Random Variables

Sebastian Link

Department of Computer Science, The University of Auckland, New Zealand

Abstract. The implication problem of conditional statements about the
independence of finitely many sets of random variables is studied in the
presence of controlled uncertainty. Uncertainty refers to the possibility
of missing data. As a control mechanism random variables can be de-
clared complete, in which case data on these random variables cannot be
missing. While the implication of conditional independence statements
is not axiomatizable, a finite Horn axiomatization is established for the
expressive class of saturated conditional independence statements under
controlled uncertainty. Complete random variables allow us to balance
the expressivity of sets of saturated statements with the efficiency of de-
ciding their implication. This ability can soundly approximate reasoning
in the absence of missing data. Delobel’s class of full first-order hierarchi-
cal database decompositions are generalized to the presence of controlled
uncertainty, and their implication problem shown to be equivalent to that
of saturated conditional independence.

1 Introduction

Background. Conditional independence is an important concept to capture
structural aspects of probability distributions, to deal with knowledge and un-
certainty in AI, and for learning and reasoning in intelligent systems [6,30,5].
Application areas include computational biology, computer vision, databases,
error-control coding, natural language processing, speech processing, and
robotics [17,5]. Recently, independence logic has been introduced as an extension
of classical first-order logic to capture independence statements [15,20]. A con-
ditional independence (CI) statement I(Y, Z | X) represents the independence
of two sets of random variables relative to a third: given three mutually dis-
joint subsets X , Y , and Z of a set V of random variables, if we have knowledge
about the state of X , then knowledge about the state of Y does not provide
additional evidence for the state of Z and vice versa. Fundamental to the task of
building a Bayesian network is the implication problem of CI statements, which
is to decide for an arbitrary set V of random variables, and an arbitrary set
Σ ∪{ϕ} of CI statements over V , whether every probability model that satisfies
every CI statement in Σ also satisfies ϕ. Indeed, if an important CI statement
ϕ is not implied by Σ, then adding ϕ to Σ results in new opportunities to con-
struct complex probability models with polynomially many parameters and to

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 269–282, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

270 S. Link

efficiently organize distributed probability computations [14]. The implication
problem for CI statements is not axiomatizable by a finite set of Horn rules
[33], and every axiom for CI statements is an axiom for graph separation, but
not vice versa [13]. Recently, the implication problem of stable CI statements
[27,35] has been shown to be finitely axiomatizable [29], and coNP -complete to
decide [28]. An important subclass of CI statements are saturated conditional
independence (SCI) statements. These are CI statements I(Y, Z | X) over V
that satisfy XY Z = V . Indeed, graph separation and SCI statements enjoy the
same axioms [13], their implication problem is equivalent to that of a proposi-
tional fragment and to that of multivalued data dependencies [23], and decidable
in almost linear time [12,14,36]. These results contribute to the success story of
Bayesian networks in AI and machine learning [5,13].

Motivation. In the real world most data samples contain missing data. AI
has long recognized the need to reveal missing data and to explain where they
come from. Significant contributions towards that aim have been made in the
literature, including [2,4,8,9,11,21,26,31,34]. However, for many missing data it
is either impossible to reveal them at all, or the process is too expensive or
inaccurate. Consequently, the concept of conditional independence should be
sufficiently robust to deal with missing data. Consider, for example, the set V
with binary random variables Cancer, Cavity, Gender, and Smoking, and the
probability model where

Smoking Gender Cancer Cavity P
true μ true true 0.5
true μ false false 0.5

are two assignments of probability one half each. Here, μ denotes a marker
saying that “no information” is available about the value of a random vari-
able in an assignment. It is natural to ask which (saturated) CI statements this
probability model satisfies, for example, σ1 = I({Cancer,Cavity}, {Gender} |
{Smoking}), or σ2 = I({Cancer}, {Cavity} | {Smoking,Gender}), or ϕ =
I({Cancer}, {Cavity,Gender} | {Smoking}). Having given CI statements a suit-
able semantics in the presence of missing data, one may wonder about the as-
sociated implication problem. For example, is there any probability model that
satisfies σ1 and σ2, but violates ϕ? In practice, it is also desirable to control
the occurrence of missing data. For this purpose, we propose the possibility
to declare random variables as complete. Assignments that carry missing data
on complete random variables are excluded from data samples. Complete vari-
ables provide thus a mechanism to soundly approximate the classical concept
of conditional independence. This is achieved by defining that conditional in-
dependence is only violated by some probability model, if the model features
complete evidence of its violation. That is, assignments with missing data on
some random variables in the condition are not taken into account when judging
conditional independence. It is the goal of this paper to investigate the impact of
complete random variables on the implication problem of generalized conditional
independence between an arbitrary finite number of sets of random variables.

Reasoning about Generalized Conditional Independence 271

Our findings are the starting point of a foundation for reasoning about condi-
tional independence in the presence of missing data, much like the findings of
[6,14] for complete data.

Contributions. As a first contribution we assign a suitable semantics to gen-
eralized CI statements in the presence of complete random variables. While
the associated implication problem is infeasible in general, our second contri-
bution establishes an axiomatization for generalized SCI statements. Complete
random variables serve as a control mechanism to soundly approximate clas-
sical reasoning about generalized conditional independence. Our completeness
argument is based on special probability models in which two assignments are
assigned probability one half. This insight has remarkable consequences. As a
third contribution we establish an equivalence between instances of the implica-
tion problem and sliced versions of the same instance in the absence of missing
data. Hence, classical tools, can even be used in the presence of missing data. As
a fourth contribution, we establish a characterization of the implication problem
in terms of that for Delobel’s class of full first-order hierarchical decomposi-
tions [7], which we generalize to the presence of null values. Finally, we combine
the third and fourth contributions to exploit an almost linear time algorithm,
originally designed to decide the implication of multivalued dependencies over
complete database relations [12], for deciding the implication of generalized SCI
statements. It is shown that attempts to increase the expressivity of generalized
SCI statements result in the failure of our equivalences, the intractability or even
the infeasibility of the associated implication problem.

2 Conditional Independence and Uncertainty

We denote by V a finite set {v1, . . . , vn} of random variables. A domain mapping
is a mapping that associates a set, dom(vi), with each random variable vi. This
set is called the domain of vi and each of its elements is a data value of vi.
We assume that each domain dom(vi) contains the element μ, which we call the
marker. Although we use μ like any other domain value, we prefer to think of μ
as a marker, denoting that no information is currently available about the data
value of vi. The interpretation of this marker means that a data value does either
not exist (known as a structural zero in statistics, and the null value inapplicable
in databases), or a data value exists but is currently unknown (known as a
sampling zero in statistics, and the null value applicable in databases). The
disadvantage is a loss in knowledge when representing data values known to not
exist or known to exist but currently unknown. One advantage is its simplicity.
As another advantage one can represent missing values, even if it is unknown
whether they do not exist or exist but are currently unknown. Further advantages
will be revealed by the results established later. For X = {v1, . . . , vk} ⊆ V we say
that x is an assignment of X , if x ∈ dom(v1)×· · ·×dom(vk). For an assignment
x of X we write x(y) for the projection of x onto Y ⊆ X . We say that x is
Y -complete, if x(v) �= μ for all v ∈ Y .

272 S. Link

It is beneficial to gain control over the occurrences of markers. For this pur-
pose we introduce complete random variables. If a random variable v is declared
complete, then μ /∈ dom(v). For a given V we define C to be the set of random
variables of V that are complete. It is a goal of this article to investigate the
properties of CI statements under controlled uncertainty, i.e., in the presence of
complete random variables. These variables provide an effective means to not
just control the degree of uncertainty, but also to soundly approximate reasoning
about CI statements in the absence of missing data.

A probability model over (V = {v1, . . . , vn}, C) is a pair (dom, P) where dom
is a domain mapping that maps each vi to a finite domain dom(vi), and P :
dom(v1)×· · ·×dom(vn) → [0, 1] is a probability distribution having the Cartesian
product of these domains as its sample space. Note that μ /∈ dom(vi) whenever
vi ∈ C.

The expression I(Y1, . . . , Yk | X) where k is a non-negative integer, and
X,Y1, . . . , Yk are mutually disjoint subsets of V , is called a generalized condi-
tional independence (GCI) statement over (V,C). The set X is called the condi-
tion. If XY1 · · ·Yk = V , we call I(Y1, . . . , Yk | X) a saturated GCI (GSCI) state-
ment. Let (dom, P) be a probability model over V . A generalized CI statement
I(Y1, . . . , Yk | X) is said to hold for (dom, P) if for every complete assignment x
of X , and for every assignment yi of Yi for i = 1, . . . , k,

P (y1, . . . ,yk,x) · P (x)k−1 = P (y1,x) · . . . · P (yk,x). (1)

Equivalently, (dom, P) is said to satisfy I(Y1, . . . , Yk | X).
The satisfaction of I(Y1, . . . , Yk | X) requires (1) to hold for complete assign-

ments x of X only. The reason is that the pairwise independence between the Yi
is conditional on X . That is, assignments that have no information about some
random variable in X are not taken into account when judging the pairwise
independence between the Yi.

The probability model from the introduction satisfies σ1 and σ2, but not ϕ. In
particular, the two assignments are not complete on Gender, i.e., σ2 is satisfied.

The expressions I(Y1, . . . , Yk | X) are generalized in the sense that they cover
CI statements as the special case where k = 2. We assume w.l.o.g. that the sets
Yi are non-empty. Indeed, for all k > 1 we have the property that a probability
distribution satisfies I(∅, Y2, . . . , Yk | X) if and only if the probability distribu-
tion satisfies I(Y2, . . . , Yk | X). If k = 1, then I(Y | X) is always satisfied, and
we identify I(∅ | X) with I(· | X). One may now define an equivalence relation
over the set of GCI statements. Indeed, two such GCI statements are equiva-
lent whenever they are satisfied by the same probability distributions. Strictly
speaking, we will apply inference rules to these equivalence classes. For the sake
of simplicity, however, we assume that in GCI statements I(Y1, . . . , Yk | X) the
sets Yi are non-empty. As we have just argued this is just a suitable choice of a
representative from the equivalence classes.

Let Σ ∪{ϕ} be a set of GCI statements over (V,C). We say that Σ C-implies
ϕ, denoted by Σ |=C ϕ, if every probability model over (V,C) that satisfies Σ
also satisfies ϕ. The implication problem for GCI statements under controlled
uncertainty is defined as follows.

Reasoning about Generalized Conditional Independence 273

PROBLEM: Implication problem
INPUT: (S,C), Set Σ ∪ {ϕ} of GCI statements over (S,C)
OUTPUT: Yes, if Σ |=C ϕ; No, otherwise

For Σ = {σ1, σ2}, one can observe that Σ C-implies ϕ if and only if Gender ∈
C. Indeed, if Gender /∈ C, then the two assignments from the introduction form
a probability model over (V,C) that satisfies Σ, but violates ϕ.

For Σ we let Σ∗
C = {ϕ | Σ |=C ϕ} be the semantic closure of Σ, i.e., the set

of all GCI statements C-implied by Σ. In order to determine the C-implied GCI
statements we use a syntactic approach by applying inference rules. These in-

ference rules have the form
premise

conclusion
condition and inference rules without any

premises and any condition are called axioms. The premise consists of a finite
set of GCI statements, and the conclusion is a singleton GCI statement. The
condition of the rule is simple in the sense that it stipulates a simple syntactic
restriction on the application of the rule. Instead of using this graphical repre-
sentation, we could also state our rules in the form of Horn rules. An inference
rule is called sound, if every probability model over (V,C) that satisfies every
GCI statement in the premise of the rule also satisfies the GCI statement in
the conclusion of the rule, given that the condition is satisfied. We let Σ �R ϕ
denote the inference of ϕ from Σ by the set R of inference rules. That is, there
is some sequence γ = [σ1, . . . , σn] of GCI statements such that σn = ϕ and
every σi is an element of Σ or results from an application of an inference rule
in R to some elements in {σ1, . . . , σi−1}. For Σ, let Σ+

R = {ϕ | Σ �R ϕ} be
its syntactic closure under inferences by R. A set R of inference rules is said
to be sound (complete) for the implication of GCI statements under controlled
uncertainty, if for every V , every C ⊆ V and for every set Σ of GCI statements
over (V,C) we have Σ+

R ⊆ Σ∗
C (Σ∗

C ⊆ Σ+
R). The (finite) set R is said to be a

(finite) axiomatization for the implication of GCI statements under controlled
uncertainty if R is both sound and complete.

The focus of the paper is the implication problem of GSCI statements under
controlled uncertainty. There are good reasons for this limitation. Already for
the special case where k = 2 and where all variables are complete, CI statements
do not enjoy a finite ground axiomatization in the form of Horn rules [33]. While,
in this special case, stable CI statements do enjoy a finite ground axiomatization,
their implication problem is coNP-hard to decide [28]. In the idealized special
case, Geiger and Pearl have established a finite axiomatization for the implication
of SCI statements [13]. That is, if for any given V , C is assumed to be V , then the
set C of inference rules from Table 1 forms an axiomatization for the implication
of SCI statements in form of a finite set of Horn rules. Note that the algebra
rule (A):

I(Y Y ′, ZZ ′ | X) I(Y Z, Y ′Z ′ | X)

I(Y Y ′Z,Z ′ | X)

can be derived from C, and is thus sound for the implication of SCIs under
certainty.

274 S. Link

Table 1. Axiomatization C of SCI statements over V

I(V −X, ∅ | X)

I(Y,Z | X)

I(Z, Y | X)
(saturated trivial independence, T ′) (symmetry, S ′)

I(ZW,Y | X) I(Z,W | XY)

I(Z, Y W | X)

I(Y,ZW | X)

I(Y,Z | XW)
(weak contraction, C) (weak union, W ′)

The following lemma shows that C does not form a finite axiomatization for
the implication of SCI statements under controlled uncertainty.

Lemma 1. The weak contraction rule (C) is not sound for the implication of
SCI statements under controlled uncertainty.

Proof. It suffices to find some probability model (dom, P) over (V,C) that
satisfies I(ZW,Y | X) and I(Z,W | XY), but violates I(Z, Y W | X).
Such a probability model has already been given in the introduction where
V = {Cancer,Cavity,Gender, Smoking}, C = {Cancer,Cavity,Gender}, Z =
{Cancer}, W = {Cavity}, Y = {Gender}, and X = {Smoking}. 12

The reason that the probability model from the introduction satisfies σ2 =
I({Cancer}, {Cavity} | {Smoking,Gender}) is that the assignments carry μ on
Gender. That is, there is no complete evidence for the violation of σ2. This
semantics of GCI statements achieves that the classical implication problem in
the absence of missing data is soundly approximated by the implication problem
under controlled uncertainty. The price to pay for permitting missing data is
therefore a loss in completeness, e.g., while ϕ is implied by σ1 and σ2 classically,
it is no longer implied when Gender is not a complete random variable.

3 Axiomatization

We show that the set S of rules in Table 2 is a finite axiomatization for the
implication of GSCI statements under controlled uncertainty. We first argue
that the rules in S are sound. There are three key observations. The first is
that a GSCI statement I(Y1, . . . , Yk | X) is satisfied by a probability model
π = (dom, P) over (V,C) if and only if for i = 1, . . . , k, π satisfies the SCI
statement I(Yi, Y1 · · ·Yk − Yi | X). The second key observation is that, for (T),
(P), and (W), the conditions in the conclusion contain the conditions of all
its premises. If there is a probability model that violates the conclusion, then
there is an assignment which is complete on the condition and violates Equation
(1). Hence, the same assignment is complete on the conditions of all premises.
The soundness of the inference rules (T ′), (S), and (W ′) [13] means that one
of the premises is also violated. This shows the soundness of (T), (P), and

Reasoning about Generalized Conditional Independence 275

Table 2. GCSI-Axiomatization S = {(T), (P), (M), (W), (R)} over (V,C)

I(V | ∅)
I(Y1, . . . , Yk | X)

I(Yπ(1), . . . , Yπ(k) | X)
(saturated trivial independence, T) (permutation, P)

I(Y1, . . . , Yk−1, Y, Z | X)

I(Y1, . . . , Yk−1, Y Z | X)

I(Y1, . . . , Yk−1, ZW | X)

I(Y1, . . . , Yk−1, Z | XW)
(merging, M) (weak union, W)

I(Z1 · · ·Zk, Y W1 · · ·Wk | X) I(Z1W1, . . . , ZkWk | XY)

I(Z1, . . . , Zk, Y W1 · · ·Wk | X)
Y ⊆ C

(restricted weak contraction, R)

(W). The soundness of the merging rule (M) is a consequence of the first key
observation, and the soundness of the algebra rule (A), already when all variables
are complete. It remains to verify the soundness of (R), to which the second key
observation does not apply. If all variables are complete, the rule (C′) is sound:

I(ZW,Y UV | X) I(ZU, V W | XY)

I(Z, Y UVW | X)
.

The rule (R′), resulting from (C′) by adding the condition Y ⊆ C, is sound
for SCI statements under controlled uncertainty. Indeed, assignments which are
complete on the condition X are also complete on XY as Y ⊆ C holds. The
soundness of (R) follows from the first key observation and that of (R′).

For some V , some C ⊆ V , and some set Σ of GSCI statements over (V,C),
and some X ⊆ V let IDepΣ,C(X) := {Y ⊆ V −X | Σ �S I(Y, Z | X)} denote
the set of all Y ⊆ V −X such that I(Y, Z | X) can be inferred from Σ by S.
The soundness of the algebra rule (A) implies that

(IDepΣ,C(X),⊆,∪,∩, (·)C , ∅, V −X)

forms a finite Boolean algebra where (·)C maps a set Y to its complement V −XY .
Recall that an element a ∈ P of a poset (P,#, 0) with least element 0 is called
an atom of (P,#, 0) precisely when a �= 0 and every element b ∈ P with b # a
satisfies b = 0 or b = a [16]. Further, (P,#, 0) is said to be atomic if for every
element b ∈ P − {0} there is an atom a ∈ P with a # b. In particular, every
finite Boolean algebra is atomic [16]. Let IDepBΣ,C(X) denote the set of all
atoms of (IDepΣ,C(X),⊆, ∅). We call IDepBΣ,C(X) the independence basis of
X with respect to Σ and C. The importance of this notion is manifested in the
following result.

Theorem 1. Let Σ be a set of GSCI statements over (V,C). Then Σ �S

I(Y1, . . . , Yk | X) if and only if for all i = 1, . . . , k, Yi =
⋃
Y for some

Y ⊆ IDepBΣ,C(X).

276 S. Link

Proof. Let Σ �S I(Y1, . . . , Yk | X). Then for all i = 1, . . . , k, Σ �S I(Yi, S −
XYi | X) by the merging rule M. Hence, for all i = 1, . . . , k, Yi ∈ IDepΣ(X).
Since every element b of a Boolean algebra is the union over those atoms a with
a ⊆ b it follows that for all i = 1, . . . , k, Yi =

⋃
Y for Y = {B ∈ IDepBΣ(X) |

B ⊆ Yi}.
Vice versa, let for i = 1, . . . , k, Yi =

⋃
Y for some Y ⊆ IDepBΣ,C(X). Let

IDepBΣ,C(X) = {B1, . . . , Bn}. Then I(B1, . . . , Bn | X) ∈ Σ+
S holds. Successive

applications of the merging rule (M) give I(Y1, . . . , Yk | X) ∈ Σ+
S. 12

For Σ = {σ1, σ2} and C = {Cancer,Cavity,Gender}, we have
IDepBΣ,C(Smoking) = {{Cancer,Cavity}, {Gender}}. Hence, ϕ /∈ Σ∗

C . If
Gender ∈ C, then ϕ ∈ Σ∗

C .

Theorem 2. The set S is sound and complete for the implication of GSCI
statements under controlled uncertainty.

Proof. It remains to show completeness. Let Σ ∪ {I(Y1, . . . , Ym | X)} be a set
of GSCI statements over (V,C), and suppose that I(Y1, . . . , Ym | X) /∈ Σ+

S. We
will show that I(Y1, . . . , Yk | X) /∈ Σ∗

C .
Let IDepBΣ,C(X) = {B1, . . . , Bn}, in particular V = XB1 · · ·Bn. Since

I(Y1, . . . , Ym | X) /∈ Σ+
S we conclude by Theorem 1 that there is some

j ∈ {1, . . . ,m} such that Yj is not the union of some elements of IDepBΣ,C(X).
Consequently, there is some i ∈ {1, . . . , n} such that Yj ∩Bi �= ∅ and Bi−Yj �= ∅
hold. Let T :=

⋃
j �=iBj ∩C, and T ′ :=

⋃
j �=iBj −C. In particular, V is the dis-

joint union ofX,T, T ′, and Bi. For every v ∈ V −C we define dom(v) = {0,1, μ};
and for every v ∈ C we define dom(v) = {0,1}. We define the following two as-
signments a1 and a2 of (V,C). We define a1(v) = 0 for all v ∈ XBiT , a1(v) = μ
for all v ∈ T ′. We further define a2(v) = a1(v) for all v ∈ XTT ′, and a2(v) = 1
for all v ∈ Bi. As probability measure we define P (a1) = P (a2) = 0.5. The
probability model is illustrated in Table 3. It follows from the construction that
(dom, P) does not satisfy I(Y1, . . . , Ym | X).

Table 3. Probability model in the completeness proof of S

XT T ′ Bi P

0 · · · 0 μ · · ·μ 0 · · ·0 0.5
0 · · · 0 μ · · ·μ 1 · · ·1 0.5

We show that (dom, P) satisfies every I(V1, . . . , Vk | U) ∈ Σ. Suppose for
some complete assignment u of U , P (u) = 0. Then equation (1) is satisfied.

If P (u,vo) = 0 for some assignment u of U , and for some assignment vo of
Vo, then P (u,v1, . . . ,vk) = 0. Then equation (1) is also satisfied. Suppose that
for some complete assignment u of U , P (u) = 0.5. If for some assignments vl of
Vl for l = 1, . . . , k, P (u,v1) = · · · = P (u,vk) = 0.5, then P (u,v1, . . . ,vk) = 0.5,
too. Again, equation (1) is satisfied.

Reasoning about Generalized Conditional Independence 277

It remains to consider the case where u is a complete assignment of U such that
P (u) = 1. In this case, the construction of the probability model tells us that U ⊆
XT . Consequently, we can apply the weak union (W) and permutation rules (P)
to I(V1, . . . , Vk | U) ∈ Σ to infer I(V1−XT, . . . , Vk−XT | XT) ∈ Σ+

S. Theorem
1 also shows that I(Bi, TT

′ | X) ∈ Σ+
S. For i = 1, . . . , k, let Zi = Vi − XTT ′

and Wi = (Vi − XT) ∩ T ′. Then, Bi = Z1 · · ·Zk, and T ′ = W1 · · ·Wk. Thus,
applying the restricted contraction rule (R) to I(Z1 · · ·Zk, TW1 · · ·Wk | X) and
I(Z1W1, . . . , ZkWk | XT) we infer I(Z1, . . . , Zk, Y W1 · · ·Wk | X) ∈ Σ+

S, since
T ⊆ C. It follows from Theorem 1 that Vl − XT , for every l = 1, . . . , k, is the
union of elements from IDepBΣ,C(X). Consequently, Vo − XT = Bi for some
o ∈ {1, . . . , k}, and Vl −XT = ∅ for all l ∈ {1, . . . , k}− {o}. Then, we are either
in the previous case where P (u,vo) = 0; or, P (u,vo) = 0.5, and P (u,vl) = 1
for every l ∈ {1, . . . , k}− {o}, and P (u,v1, . . . ,vk) = 0.5. Again, equation (1) is
satisfied. This concludes the proof. 12

The specific probability model from the introduction is a counterexample for
the implication of ϕ from Σ = {σ1, σ2} with C = {Cancer,Cavity, Smoking}. It
follows the construction in the proof of Theorem 2.

Specific instances of the implication problem for GSCI statements under con-
trolled uncertainty are equivalent to sliced versions of the same instance under
certainty. For a set Σ of GSCI statements over (V,C), let Σ[XC] denote the set
of those I(V1, . . . , Vm | U) ∈ Σ where U ⊆ XC.

Theorem 3. Let Σ ∪ {I(Y1, . . . , Yk | X)} be a set of GSCI statements over
(V,C). Then Σ |=C I(Y1, . . . , Yk | X) iff Σ[XC] |=V I(Y1, . . . , Yk | X).

Proof. Assume that Σ[XC] |=V I(Y1, . . . , Yk | X) does not hold. Then there is
a special probability model π′ = (dom, {a′1, a′2}) over (V, V) that satisfies every
σ ∈ Σ[XC] and violates I(Y1, . . . , Yk | X). With the notation from the proof
of Theorem 2, for all v ∈ V , a′1(v) = a′2(v) iff v /∈ Bi, in particular T ′ = ∅.
Define now the special probability model π = (dom, {a1, a2}) over (V,C), where
al(v) = μ, if v ∈ T ′, and al(v) = a′l(v), otherwise, for l = 1, 2. It follows that
π satisfies every σ ∈ Σ and violates I(Y1, . . . , Yk | X). In particular, for any
I(V1, . . . , Vm | U) ∈ Σ with U �⊆ XC it follows that U ∩ (BiT

′) �= ∅ and thus
a1 and a2 are not U -complete. Hence, Σ |=C I(Y1, . . . , Yk | X) does also not
hold. The same arguments also work in the other direction. If π over (V,C)
satisfies Σ and violates I(Y1, . . . , Yk | X), then π′ satisfies Σ[XC] and violates
I(Y1, . . . , Yk | X). 12

For example, Σ[Smoking,Cavity,Cancer] = {σ1} and {σ1} �|=V ϕ as the fol-
lowing probability model shows:

Smoking Gender Cancer Cavity P
true true true true 0.5
true true false false 0.5

.

Note that this probability model violates σ2.

278 S. Link

4 Equivalence to Database Decompositions

Let A = {v1, v2, . . .} be a countably infinite set of attributes. A relation schema
is a finite non-empty subset R of A. Each attribute v of R is associated with a set
dom(v), called the domain of v. In order to encompass incomplete information
the domain of each attribute contains the null marker, denoted by μ ∈ dom(v).
A tuple over R is a function t : R →

⋃
v∈R dom(v) with t(v) ∈ dom(v) for all

v ∈ R. The null marker occurrence t(v) = μ associated with an attribute v in a
tuple t means that “no information” is available about the value t(v) of t on v.
For X ⊆ R let t(X) denote the restriction of the tuple t over R to X . A (partial)
relation r over R is a finite set of tuples over R. Let t1 and t2 be two tuples over
R. It is said that t1 subsumes t2 if for every attribute v ∈ R, t1(v) = t2(v) or
t2(v) = μ holds. In consistency with previous work [1,10,18,22,37]: No relation
shall contain two tuples t1 and t2 such that t1 subsumes t2. For a tuple t over
R and a set X ⊆ R, t is said to be X-complete, if for all v ∈ X , t(v) �= μ.
Similar, a relation r over R is said to be X-complete, if every tuple t of r is
X-complete. A relation r over R is said to be a complete relation, if it is R-
complete. We recall the definition of projection and join operations on partial
relations [1,22]. Let r be some relation over R. Let X be some subset of R.
The projection r(X) of r on X is the set of tuples t for which (i) there is some
t1 ∈ r such that t = t1(X) and (ii) there is no t2 ∈ r such that t2(X) subsumes
t and t2(X) �= t. For Y ⊆ X , the Y -complete projection rY (X) of r on X is
rY (X) = {t ∈ r(X) | t is Y -complete}. Given X-complete relations r over R
and s over S such that X = R ∩ S the natural join r �� s of r and s is the
relation over R∪S which contains those tuples t such that there are some t1 ∈ r
and t2 ∈ s with t1 = t(R) and t2 = t(S) [22].

A full first-order hierarchical decomposition (FOHD) over the relation schema
R is an expression X : [Y1 | . . . | Yk] with a non-negative integer k,
X,Y1, . . . , Yk ⊆ R such that Y1, . . . , Yk form a partition of R − X . A relation
r over R is said to satisfy the FOHD X : [Y1 | · · · | Yk] over R, denoted by
|=r X : [Y1 | · · · | Yk], iff rX = (· · · (rX(XYk) �� rX(XYk−1)) �� · · ·) �� rX(XY1).

The FOHD ∅ : [Y1 | · · · | Yk] expresses the fact that any relation over R is the
Cartesian product over its projections to attribute sets in {Yi}ki=1. For k = 0,
the FOHD X : [] is satisfied trivially, where [] denotes the empty list.

Following Atzeni and Morfuni [1], a null-free subschema (NFS) over the re-
lation schema R is an expression nfs(C) where C ⊆ R. The NFS nfs(C) over
R is satisfied by a relation r over R, denoted by |=r nfs(C), if and only if r is
C-complete. SQL allows the specification of attributes as NOT NULL. NFSs occur
in everyday database practice: the set of attributes declared NOT NULL forms the
NFS over the underlying relation schema.

For a set Σ̂ ∪ {ϕ̂} of FOHDs, and an NFS nfs(C) over relation schema R, we
say that Σ̂ C-implies ϕ̂, denoted by Σ̂ |=C ϕ̂, if and only if every C-complete
relation r that satisfies Σ̂ also satisfies ϕ̂. The implication problem for FOHDs
in the presence of a null-free subschema is defined as follows.

Reasoning about Generalized Conditional Independence 279

PROBLEM: Implication problem for FOHDs
INPUT: Relation schema R with NFS nfs(C),

Set Σ̂ ∪ {ϕ̂} of FOHDs over R

OUTPUT: Yes, if Σ̂ |=C ϕ̂; No, otherwise

For a GSCI ϕ = I(Y1, . . . , Yk | X) over (V,C) we define the corresponding
FOHD ϕ̂ = X : [Y1 | · · · | Yk], and for a set Σ of GSCI over (V,C) let Σ̂ =
{σ̂ | σ ∈ Σ} denote the corresponding set of FOHDs over R = V with NFS
nfs(C). Let (T̂), (P̂), (R̂), (Ŵ), (M̂) denote the inference rules for FOHDs under
NFS nfs(C) over R that result from (T), (P), (R), (W), (M) by the translation
above. Following the lines of reasoning for GSCIs, one obtains an axiomatization
for FOHD implication in the presence of an NFS. The special probability model
π reduces to a two-tuple relation r with the two assignments in π. Completeness
follows from the key observation that r satisfies an FOHD U : [V1, . . . , Vm] if
and only if U ∩ (T ′Bi) �= ∅ or Bi ⊆ Vo for some o ∈ {1, . . . ,m}.

Theorem 4. The set Ŝ = {(T̂), (P̂), (R̂), (Ŵ), (M̂)} is a finite axiomatization
for the implication of FOHDs in the presence of a null-free subschema. 12

A C-complete two-tuple relation over R that satisfies Σ̂ and violates ϕ̂ be-
comes a special probability model over (V,C) that satisfies Σ and violates ϕ,
simply by assigning probability one half to each tuple. Vice versa, removing the
probabilities from the assignments of the special probability model results in a
two-tuple relation with the desired characteristics.

Theorem 5. Let Σ ∪ {I(Y1, . . . , Yk)} denote a set of GSCI statements over
(V,C). Then Σ |=C I(Y1, . . . , Yk | X) if and only if Σ̂ |=C X : [Y1 | · · · | Yk]. 12

For Σ̂ = {σ̂1, σ̂2} and C = {Cancer,Cavity, Smoking}, we have Σ̂ �|=C ϕ̂. The
relation with the two tuples from the introduction is not the natural join of the
projections:

Smoking Cancer
true true
true false

Smoking Gender Cavity
true μ true
true μ false

.

The results show that the implication problem of GSCI statements can be
efficiently decided without considering probabilities at all. This extends findings
for SCI statements [23,25,24].

5 Algorithm and Complexity

In practice it often suffices to know if an GSCI statement ϕ is C-implied by Σ.
Then it is inefficient to determine Σ∗

C . Let Σ ∪ {I(Y1, . . . , Yk | X)} be a set of
GSCIs over (V,C), and let Σ result from Σ by replacing each I(V1, . . . , Vm |
U) ∈ Σ by the m multivalued dependencies U � Vi. Indeed, the MVD U � Vi
is equivalent to the binary FOHD U : [Vi | V1 · · ·Vm − Vi]. Applying Theorems
3 and 5, Σ |=C {I(Y1, . . . , Yk | X)} iff for all i = 1, . . . , k, Σ[XC] |= X � Yi.

280 S. Link

Corollary 1. Using the algorithm in [12], the implication problem Σ |=C

{I(Y1, . . . , Yk | X)} can be decided in time O(|Σ|+min{nΣ[XC], log(k·pΣ[XC])}×
|Σ[XC]|). Herein, |Σ| denotes the total number of attributes in Σ, nΣ denotes
the cardinality of Σ, and pΣ denotes the maximum among the numbers of sets
in IDepBΣ,C(X) that have non-empty intersection with Yi, i = 1, . . . , k. 12

6 Non-extensibility of Findings

We would like to make a few remarks on the non-extensibility of the findings we
have presented here. These are well documented in the research literature. While
we have established an axiomatization of GSCI implication under controlled un-
certainty by a finite set of Horn rules, this is impossible to achieve for GCI
statements under controlled uncertainty. Indeed, already in the special case of
CI statements under certainty, i.e. where we consider conditional independence
between two sets of random variables only and where all variables are complete,
it is known that an axiomatization by a finite set of Horn rules does not exist
[33]. Recently, an axiomatization by a finite set of Horn rules was established
for stable conditional independence statements [29], and the associated implica-
tion problem shown to be coNP-hard [28]. Therefore, GSCI statements form an
expressive and efficient fragment of stable CI statements.

Similarly, one may consider first-order hierarchical decompositions X : [Y1 |
· · · | Yk] where XY1 · · ·Yk may not contain all underlying attributes. Again, no
axiomatization by a finite set of Horn rules can exist since it is known that such
an axiomatization does not exist for embedded multivalued dependencies [32],
i.e. in the special case where k = 2 and where complete relations are considered
only. It is further known that the implication problem of embedded multivalued
dependencies is undecidable [19].

Our equivalence between the implication of GSCIs under controlled uncer-
tainty and the implication of FOHDs in the presence of a null-free subschema
cannot be extended to cover GCIs and arbitrary first-order hierarchical decompo-
sitions. Indeed, the implication problems of conditional independence statements
and embedded multivalued dependencies do not coincide, already for the special
where all variables (attributes) are complete [33].

7 Conclusion and Future Work

Real-world data samples contain missing values that cannot all be revealed. For
this purpose we have introduced an appropriate semantics for statements about
the pairwise conditional independence between finitely many sets of random vari-
ables. Random variables can be declared complete when missing data are known
not occur for them, or when assignments with missing data on those variables are
to be excluded from data samples. We have established characterizations of the
associated implication problem for saturated independence statements in terms
of axioms, an almost linear-time algorithm, and database logic. Our findings

Reasoning about Generalized Conditional Independence 281

do not extend to more expressive statements which are not axiomatizable, not
equivalent to database logic, or likely to be intractable. Our results therefore
contribute to a solid foundation for probabilistic reasoning about uncertainty
under the realistic assumption of missing values.

For future work the impact of our approach on Bayesian networks should
be investigated in depth. Immediate open questions concern axiomatizations
for (generalized) marginal and stable conditional independence statements un-
der controlled uncertainty. It would be interesting to investigate the implica-
tion problem of GSCI statements under controlled uncertainty when the set of
random variables is undetermined, similar to the implication problem of SCI
statements under certainty [3].

References

1. Atzeni, P., Morfuni, N.: Functional dependencies and constraints on null values in
database relations. Information and Control 70(1), 1–31 (1986)

2. Batista, G., Monard, M.: An analysis of four missing data treatment methods for
supervised learning. Applied Artificial Intelligence 17(5-6), 519–533 (2003)

3. Biskup, J., Hartmann, S., Link, S.: Probabilistic conditional independence under
schema certainty and uncertainty. In: Hüllermeier, E., Link, S., Fober, T., Seeger,
B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 365–378. Springer, Heidelberg (2012)

4. Chickering, D., Heckerman, D.: Efficient approximations for the marginal likelihood
of Bayesian networks with hidden variables. Machine Learning 29(2-3), 181–212
(1997)

5. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press (2009)

6. Dawid, A.: Conditional independence in statistical theory. Journal of the Royal
Statistical Society 41(1), 1–31 (1979)

7. Delobel, C.: Normalization and hierarchical dependencies in the relational data
model. ACM Trans. Database Syst. 3(3), 201–222 (1978)

8. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society B 39, 139 (1977)

9. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases. AI Magazine 17(3), 37–54 (1996)

10. Ferrarotti, F., Hartmann, S., Link, S.: Reasoning about functional and full hierar-
chical dependencies over partial relations. Inf. Sci. 235, 150–173 (2013)

11. Friedman, N.: Learning belief networks in the presence of missing values and hidden
variables. In: ICML, pp. 125–133 (1997)

12. Galil, Z.: An almost linear-time algorithm for computing a dependency basis in a
relational database. J. ACM 29(1), 96–102 (1982)

13. Geiger, D., Pearl, J.: Logical and algorithmic properties of conditional indepen-
dence and graphical models. The Annals of Statistics 21(4), 2001–2021 (1993)

14. Geiger, D., Pearl, J.: Logical and algorithmic properties of independence and their
application to Bayesian networks. Ann. Math. Artif. Intell. 2, 165–178 (1990)

15. Grädel, E., Väänänen, J.: Dependence and independence. Studia Logica 101(2),
399–410 (2012)

16. Graetzer, G.: General lattice theory. Birkhäuser, Boston (1998)
17. Halpern, J.: Reasoning about uncertainty. MIT Press (2005)

282 S. Link

18. Hartmann, S., Link, S.: The implication problem of data dependencies over SQL
table definitions: axiomatic, algorithmic and logical characterizations. ACM Trans.
Database Syst. 37(2), Article 13 (2012)

19. Herrmann, C.: Corrigendum to “On the undecidability of implications between
embedded multivalued database dependencies”. Inf. Comput. 204(12), 1847–1851
(2006)

20. Kontinen, J., Link, S., Väänänen, J.: Independence in database relations. In:
Libkin, L. (ed.) WoLLIC 2013. LNCS, vol. 8071, pp. 179–193. Springer, Heidel-
berg (2013)

21. Lauritzen, S.: The EM algorithm for graphical association models with missing
data. Computational Statistics and Data Analysis 19, 191–201 (1995)

22. Lien, E.: On the equivalence of database models. J. ACM 29(2), 333–362 (1982)
23. Link, S.: Propositional reasoning about saturated conditional probabilistic inde-

pendence. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp.
257–267. Springer, Heidelberg (2012)

24. Link, S.: Reasoning about saturated conditional independence under uncertainty:
Axioms, algorithms, and Levesque’s situations to the rescue. AAAI (2013)

25. Link, S.: Sound approximate reasoning about saturated probabilistic conditional
independence under controlled uncertainty. J. Applied Logic (2013),
http://dx.doi.org/10.1016/j.jal.2013.05.004

26. Marlin, B., Zemel, R., Roweis, S., Slaney, M.: Recommender systems, missing data
and statistical model estimation. In: IJCAI, pp. 2686–2691 (2011)

27. Matúš, F.: Ascending and descending conditional independence relations. In:
Transactions of the 11th Prague Conference on Information Theory, Statistical
Decision Functions and Random Processes, pp. 189–200 (1992)

28. Niepert, M., Van Gucht, D., Gyssens, M.: Logical and algorithmic properties of
stable conditional independence. Int. J. Approx. Reasoning 51(5), 531–543 (2010)

29. Niepert, M., Van Gucht, D., Gyssens, M.: On the conditional independence impli-
cation problem: A lattice-theoretic approach. In: UAI, pp. 435–443 (2008)

30. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

31. Singh, M.: Learning Bayesian networks from incomplete data. In: AAAI, pp. 534–
539 (1997)

32. Stott Parker Jr., D., Parsaye-Ghomi, K.: Inferences involving embedded multival-
ued dependencies and transitive dependencies. In: SIGMOD, pp. 52–57 (1980)

33. Studený, M.: Conditional independence relations have no finite complete charac-
terization. In: Transactions of the 11th Prague Conference on Information Theory,
Statistical Decision Functions and Random Processes, pp. 377–396 (1992)

34. Thiesson, B.: Accelerated quantification of bayesian networks with incomplete data.
In: KDD, pp. 306–311 (1995)

35. de Waal, P., van der Gaag, L.: Stable independence in perfect maps. In: UAI, pp.
161–168 (2005)

36. Wong, S., Butz, C., Wu, D.: On the implication problem for probabilistic condi-
tional independency. IEEE Trans. Systems, Man, and Cybernetics, Part A: Systems
and Humans 30(6), 785–805 (2000)

37. Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–
166 (1984)

http://dx.doi.org/10.1016/j.jal.2013.05.004

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 283–296, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Combinatorial Prediction Markets:
An Experimental Study

Walter A. Powell, Robin Hanson, Kathryn B. Laskey, and Charles Twardy

Volgenau School of Engineering,
George Mason University

4400 University Drive
Fairfax, VA 22030-4444 USA

{wpowell,klaskey,ctwardy}@gmu.edu

Abstract. Prediction markets produce crowdsourced probabilistic forecasts
through a market mechanism in which forecasters buy and sell securities that
pay off when events occur. Prices in a prediction market can be interpreted as
consensus probabilities for the corresponding events. There is strong empirical
evidence that aggregate forecasts tend to be more accurate than individual fore-
casts, and that prediction markets are among the most accurate aggregation me-
thods. Combinatorial prediction markets allow forecasts not only on base
events, but also on conditional events (e.g., “A if B”) and/or Boolean combina-
tions of events. Economic theory suggests that the greater expressivity of
combinatorial prediction markets should improve accuracy by capturing depen-
dencies among related questions. This paper describes the DAGGRE combina-
torial prediction market and reports on an experimental study to compare
combinatorial and traditional prediction markets. The experiment challenged
participants to solve a “whodunit” murder mystery by using a prediction market
to arrive at group consensus probabilities for characteristics of the murderer,
and to update these consensus probabilities as clues were revealed. A Bayesian
network was used to generate the “ground truth” scenario and to provide “gold
standard" probabilistic predictions. The experiment compared predictions using
an ordinary flat prediction market with predictions using a combinatorial mar-
ket. Evaluation metrics include accuracy of participants’ predictions and the
magnitude of market updates. The murder mystery scenario provided a more
concrete, realistic, intuitive, believable, and dynamic environment than previous
empirical work on combinatorial prediction markets.

Keywords: Combinatorial prediction markets, crowdsourcing, Bayesian net-
works, combining expert judgment.

1 Crowdsourcing, Predictions, and Combinatorial Markets

Forecasting is important to business, national security, and society in general. Despite
decades of research and immense resources dedicated to developing forecasting me-
thods, getting better forecasts has proven elusive. Traditionally, forecasting has relied
on judgments of a few experts. Measured on predictive accuracy, experts repeatedly

284 W.A. Powell et al.

disappoint, even when compared to simple statistical models like “no change” or li-
near models with equal or even random weights [1-6]. Furthermore, the data required
for statistical models may be unavailable or inadequate. Recently, crowdsourcing has
been shown to improve on the judgments of individual experts, or small groups of
experts.

Common practice in crowdsourcing is to average judgments of a large group of in-
dividuals who have some knowledge of the problem [7]. Theory suggests that giving
more weight to better forecasters should outperform a simple average, but in practice
simple averaging has been surprisingly hard to beat. Recently, however, prediction
markets have been shown to improve accuracy not only over individual or small
groups of experts, but also over simple averaging [8-9]. A prediction market allows
forecasters to aggregate information into a consensus probability distribution by pur-
chasing assets that pay off contingent on an event of interest. Since resources for mak-
ing predictions are limited, forecasters self-select to make forecasts for which they
have the most information. Over time, the market gives greater weight to more suc-
cessful forecasters. More accurate forecasters acquire greater resources with which to
make further predictions; less accurate forecasters will lack the resources to have
much influence on the consensus probabilities.

We are especially interested in forecasting many interrelated variables. For such
problems, graphical models such as Bayesian networks provide a principled approach
to modeling dependencies among variables. Pennock and Wellman [10] suggested the
use of graphical models for belief aggregation. A combinatorial prediction market [8-
11] increases the expressivity of an ordinary prediction market by allowing condition-
al forecasts (e.g., the probability of B given A is p) and/or Boolean combinations of
events (e.g., the probability of B and A is q). Theory suggests that this greater ex-
pressivity, if appropriately captured in market prices, should give rise to more accu-
rate forecasts. This is almost trivially true on joint forecasts, but should also hold for
marginal forecasts when knowledge is distributed among participants and communi-
cation is primarily through the market. It should be particularly apparent if know-
ledge of correlations and knowledge of facts is held by different participants who
communicate primarily via the market.

Specifying dependencies among forecasts using a graphical probability model al-
lows tractable computation of a joint probability distribution among a large number of
interdependent questions. If asset prices are set using a logarithmic market scoring
rule (LMSR), then the assets can be factorized in a similar manner to probabilities,
giving rise to similarly efficient algorithms for managing forecasters’ assets [12].

For nearly two years the DAGGRE project [13-14] ran a public LMSR prediction
market for geopolitical forecasting. The focus was on forecasting world events: usual-
ly questions with extended time horizons and significant irreducible uncertainty.
These are the types of questions that have historically been the most vexing to intelli-
gence analysts, economists and others. The DAGGRE market opened in October of
2011 as part of IARPA’s Aggregate Contingent Estimation (ACE) program. The ini-
tial DAGGRE market was an ordinary (“flat”) prediction market. In October of

 Combinatorial Prediction Markets: An Experimental Study 285

2012, we launched a combinatorial prediction market. The market allowed users to
forecast a question conditional on assumed values of another question. At any given
time, there were on the order of 100 questions active on the market. Over time, some
questions were removed as their outcomes became known, and new questions were
added. Participants in the market were recruited from email solicitations, articles on
blogs and newspapers, and personal recruiting at professional events. Participants
received a small financial incentive for participating. Because of program restric-
tions, compensation did not depend on forecast accuracy, but the most accurate fore-
casters were recognized publicly on the DAGGRE site and listed on the leaderboard.
Over the 20 months the market was open, more than 3000 participants contributed at
least one forecast, with an average of about 150 forecasters per week. The market ran
just over 400 total questions, about 200 of which were shared with four other teams in
the IARPA-funded tournament.

Probability forecasts for the shared evaluation questions were reported daily to
IARPA. When the outcome of an evaluation question became known, the question
was scored by averaging the daily Brier score [15] over the period of time the target
question was active. This approach has the benefit of rewarding forecasts that trend
toward the correct outcome early during the period of time the question is being fore-
cast. Forecasts were evaluated against a baseline system employing a uniformly
weighted linear average of forecasts. Although early DAGGRE results were unrelia-
ble due to software issues, from February 2012 through May 2013, the DAGGRE
market accuracy was about 38% greater than the baseline system. Accuracy was
about the same before and after the launch of the combinatorial feature; however,
usage of the combinatorial capability was low. About 10% of the users ever used the
combinatorial feature, and only about 5% of the forecasts conditioned on another
question. The DAGGRE prediction market closed in June of 2013 and will reopen in
Fall 2013 with a change in focus to science and technology forecasting.

As a large-scale field study, the DAGGRE geopolitical market was not well suited
to controlled experimentation. In this paper, we report a smaller-scale study that com-
pares groups making the same predictions with the same information, one group using
an ordinary flat market and the other using a combinatorial market.

2 Scope of the Experiment

The goal of the experiment was to investigate the effects on prediction market fore-
casts of allowing users to specify conditional probability links between questions. An
experimental study [8] showed improved predictions with a combinatorial market, but
on stylized forecasting problems with little face validity. The present experiment was
designed to evaluate evidence and generate forecasts in a more concrete, realistic,
intuitive, believable, and dynamic environment than previous work. Additionally, the
experiment simulated the sequential nature of the flow of information in a prediction
market.

286 W.A. Powell et al.

3 Experimental Design

Using the actual DAGGRE market and real-world questions would have provided the
most concrete, realistic, and believable environment, but using the actual market
would cause experimental design challenges that could not easily be overcome. We
therefore chose a “murder mystery” scenario to:

• Provide a concrete, realistic, intuitive, and believable, environment, in which
relationships are based on statistical evidence familiar to the participants, e.g.
men tend to be taller than women and people who wear bifocals tend to be old-
er;

• Provide a common understanding of the basic relationships between the ques-
tions and clues upon which the belief structure (Bayes nets) could be built ;

• Use the same questions in a counterbalanced design;
• Control the delivery of information, providing clues sequentially (as in real

prediction markets) and control the level of “expert” knowledge of the partici-
pants;

• Provide correct “gold standard” beliefs; and
• Control of the timing and order of the clues and outcomes of the questions, en-

suring similar problems for different experimental runs.

The independent variables were:

• Market - the type of market, combinatorial or flat;
• Market Order - the order in which each type of market was used by the

participants, combinatorial first or flat first.

The primary focus was on the effects of the Market variable. The Market Order
variable allows analysis of interactions among the data due to learning effects. Each
participant made predictions using both the combinatorial and flat markets.

In order to simulate the variation in levels of knowledge typical in prediction mar-
kets, different information concerning the relationships among the market questions
and clues was distributed to the participants. In each session, each participant re-
ceived conditional probability tables relating the market questions to each other and
five of the ten conditional probability tables relating the clues (evidence) to the mar-
ket questions. The conditional probability tables represented the expertise of each
participant since the participants with a given table had the most accurate knowledge
of the relationships between a specific clue and the market questions. Participants
who didn’t have access to specific tables had to rely on their general knowledge and
the response of the market (including comments) to estimate the relationships be-
tween clues and questions.

The primary dependent variable was the accuracy of the predictions. For experi-
ments on information aggregation, a common criterion is the ability to calculate ideal
rational predictions given individual information and given the sum of all individual
information. This ability allows us to define a mechanism’s accuracy as the distance

 Combinatorial Prediction Markets: An Experimental Study 287

between an ideal distribution and the actual probability distribution produced by the
mechanism. The measure of the accuracy of the predictions in each market was the
Brier score. The Brier score is a proper scoring rule – that is, a forecaster minimizes
his or her expected Brier score by accurately stating his/her true probability. The
Brier score is often used as a measure to grade forecasts (Stevenson, et al. 2008). The
Brier score is defined as

BrierScore = 1

N
(fqs − oqs)

2

s=1

R

q=1

N

 ,

where N is the number of questions, R is the number of possible outcomes for each
question, fqs is the probability forecast for outcome s of question q, and oqs is an indi-
cator (1 if yes; 0 if no) for whether the actual outcome for question q was s. Clearly,
forecasts that predict the correct outcome with higher probabilities will result in lower
Brier scores. The Brier score is a proper scoring rule, meaning that if outcomes are
randomly generated according to a “gold standard” probability distribution, the Brier
score is optimized by a forecaster who reports this “gold standard” distribution.

Also important in analyzing the participants’ predictions in the expected Brier
score, also known as the Brier prediction error. The expected Brier score is defined as

ExpectedBrierScore = 1

N
fqs

G (fqs − oqs)2

s=1

R

q=1

N

 ,

where is the “gold standard” probability of a possible outcome. For our experi-

ment, fqs
G

is the probability obtained from the Bayesian network used to generate the

evidence, conditioned on the evidence that the forecaster has seen so far. The ex-
pected Brier score is measure of the inherent uncertainty in the problem – the best
forecast that could be made given available evidence.

The experiment was conducted in sessions consisting of two paired trials designed
so that each participant made predictions using both the combinatorial and flat
markets. In each trial, the participants made predictions for five identical questions
relating to characteristics of suspects in a “murder mystery.” In the first trial of each
session, half of the participants used an instance of the DAGGRE combinatorial mar-
ket (Group A) and the remaining half used an instance of the DAGGRE flat market
(Group B). In the second trial, each participant used the type of market he or she had
not used on the first trial. In each trial, the instructions, training, market questions,
and clue types were identical. Two scenarios – a series of clues and murderer charac-
teristics, representing a specific murder scenario – were selected, one for each of the
two trials. Each scenario used the same clues and murderer characteristics, but dif-
fered in the assigned values (e.g., female wearing heels vs. male wearing flats) and
the order in which the clues were presented. The scenarios were constructed to be
similar enough that effects due to scenario would be minimal.

288 W.A. Powell et al.

Two sessions of the experiment have been conducted to date. The first session was
conducted as part of the DAGGRE spring workshop in California for DAGGRE geo-
political market participants. Workshop attendees were all interested in geopolitical
prediction markets, and ranged from novice to highly experienced. The second ses-
sion was conducted at George Mason University using primarily third-year systems
engineering students as participants. All GMU participants had passed a course in
probability, and were considered to have the requisite critical thinking skills to under-
stand quickly the functioning of the DAGGRE prediction markets. We wanted all
participants to be familiar with the market, to reduce extraneous variation. All partic-
ipants were given training such that they felt comfortable using both the flat and the
combinatorial markets prior to beginning the experimental trials.

In order to provide the “gold standard” against which the participants’ predictions
could be compared, Bayesian networks representing the relationships between the
market questions and clues were developed. The full Bayes net (Fig.1) was used as
the basis for the relationships between market questions (dark) and clues (light). The
flat Bayes net (Fig. 2) was obtained by removing links between market variables and
setting their distributions to the marginal distributions obtained from the full Bayes
net. The flat Bayes net was adopted as the “gold standard” for the non-combinatorial
condition. Essentially, the combinatorial market and the flat market have identical
market questions, clue types, and relationships between questions and clue types, but
in the flat market the participants are unable to specify relationships between the mar-
ket questions. The relationships among the market questions and the clue types were
defined for the participants in conditional probability tables.

Fig. 1. The combinatorial (Full) Bayesian network captures relationships among market va-
riables and clues

 Combinatorial Prediction Markets: An Experimental Study 289

Fig. 2. The Flat Bayesian network is obtained by removing links between market variables

Market questions and clues were chosen to be intuitive, plausibly related to a mur-
der mystery, and related to each other (to provide a valid test of a combinatorial pre-
diction market). The relationships between physical clues were based on statistical
evidence in the population of the US. For example, men are on average taller and
heavier than women; shoe size is correlated with height. The strength of the relation-
ships was exaggerated over the actual correlations in the U.S. population. This re-
flects the stereotypical nature of typical murder mysteries, and helped to ensure strong
correlations among clues and market questions.

Once the relationships among the questions and clue types were established in the
full Bayes net, the Bayes net was sampled to generate 100 simulated individuals who,
according to the scenarios, were attendees at the New Year’s eve party where the
murder occurred. Participants were told that the murderer was one of these 100 sus-
pects. Table 1 contains examples of the characteristics for each clue type and market
question associated with each case (attendee).

Because “gold standard” predictions were required for a baseline against which the
participants’ predictions could be evaluated, after the 100 individuals were simulated,

290 W.A. Powell et al.

the marginal and conditional probabilities both the full and flat Bayes nets were re-
placed with actual frequencies taken from the simulated guest list for the party. These
frequencies are reflected in Figs. 1 and 2, and were used to generate the “gold stan-
dard” predictions for the series of clues in each case.

Table 1. Partial Attendee Characteristic Table

Of the 100 cases, two were selected as murderers, one for each of the two experi-
mental trials. The differences between the Brier scores for the flat and full BNs, the
differences expected Brier scores for the flat and full BNs, and the relative probability
of each occurrence of each cases were used to select ten candidate cases. The candi-
date cases were those that:

• Had relatively large differences in the Brier scores;
• Had relatively large differences in the expected Brier scores;
• Had a variety of characteristics for clue types and outcomes for market

questions; and
• Were above average in their probability of occurrence.

Larger differences in the Brier and Expected Brier scores indicated that there should
be differences between the “gold standard” predictions and would provide opportuni-
ties for the participants to generate differences predictions in the combinatorial and
flat markets. Cases with higher than average probability of occurrence were selected
as representative of typical cases.

Once the candidate cases were selected, simulations using permutations of the or-
dering of clues were generated to evaluate the difference between the full and flat
Bayes net “gold standard” predictions over time. The two cases used in the experi-
ment and the ordering of the clues were chosen from those with larger average differ-
ences in Brier scores over time. Based on data gathered during a pilot test, the timing
of the clues was established such that individuals would have sufficient time to ana-
lyze the impact of the clues and enter any updates to the market predictions.

At the beginning of the experiment, each group (combinatorial and flat) was sub-
divided into two subgroups, each of which was seated at a separate table. Each sub-
group received marginal and conditional probability tables for the market variables, as
well as conditional probability tables for a subset of the clues. Participants were given
time to enter information from the probability tables into the market. Fig. 3 shows a
screenshot of the interface used by participants to enter probabilities. The screen
shows an assessment of the probability that the murder was a friend or relative, busi-
ness associate, competitor, or employee of the victim. Participants see the current

Guest Scent
Hair

Dyed
Hair

Length
Shoe
Type Strength

Glasses
Function

Attitude Motive

Footprint
Depth

Shoe
Size

Gender Weight Height Age

Relation-
ship

1 MSK NAT BCS FLT STR NON NUT EXT MOD MED M MED TAL ELD ASO
2 FLR DYD SHD ATH STR BIF NUT EXT DEP SML F HVY SHT MAT FOR
3 NON NAT BCS FLT WEK FRS FRN EXT MOD LRG M MED TAL MAT FOR
4 MSK NAT SHD ATH AVG NON HST MNY SHL MED M HVY TAL MAT CMP
5 NON NAT SHD FLT STR NON HST EXT MOD LRG M MED TAL YNG FOR

 Combinatorial Prediction Markets: An Experimental Study 291

probability and a chart showing the history of probability values since the start of the
experiment. Participants can use the “+” and “-“ buttons to raise or lower the proba-
bility values. The interface also shows their expected score if each of the outcomes
occurs. On the left-hand side of the screen, we see the current question highlighted.
The top part of the screen shows assumptions. In the combinatorial condition, partici-
pants can drag other questions up into the assumption area and select an assumed
value. In this case, the participant is assuming that the murderer is young; thus the
probabilities shown to the right are conditional probabilities of relationship of the
murder to the victim, given that the murderer was young.

Only those in the combinatorial condition could enter information about relation-
ships among market questions. Dragging questions into the assumptions area was
disabled in the flat condition. All participants could enter marginal probabilities.
After about ten minutes, clues were handed out at intervals of a few minutes. Near the
end of the experiment, as a way to keep up interest in the game, the guest list was
handed out and subjects were challenged to identify the murderer. At this point, par-
ticipants had enough to identify the murderer with certainty.

Fig. 3. DAGGRE Prediction Market User Interface

4 Results and Observations

The first clue was introduced about ten minutes after the probability tables were dis-
tributed. During those ten minutes, participants could use the market to establish the
initial marginal and conditional probabilities for the market questions. Fig. 4 com-
pares the time series of Brier scores for combinatorial and flat prediction markets

292 W.A. Powell et al.

starting from the time the first clue was distributed. The figure also shows the Brier
scores for the full and flat Bayesian networks. Those in the combo condition made
more edits, reflecting extra effort to correlate the market questions. Those in the flat
market could not express those correlations in the market. Since the full Bayesian
network represents all the available information, theoretically, on average it should
have the lowest Brier score for a representative case drawn from the Bayes net. The
flat Bayes net, since it does not capture the relationships among the market questions,
should not as accurately predict the outcomes of the market questions. Indeed, in Fig.
4, the Brier scores for predictions from the flat Bayes net are always greater than
those from the full Bayes net.

Fig. 4. Comparison of Brier Scores over time for experimental conditions and the Bayesian
network models. Solid dark line shows Combo market; solid gray line shows Flat market; dark
dotted line shows full Bayes net; light dotted line shows flat Bayes net.

Fig. 5 is similar to Fig. 4, but compares expected Brier scores. These figures can be
divided into regions in which the amount of information available to the participants
differed. Prior to the lists of attendee characteristics being distributed (before the
vertical lines in the figures) the participants had available only the information con-
tained in the clues and in the conditional probability tables. This information was
reflected in the Bayes nets used to construct the scenarios and clues. Near the end of
the experiment, to keep up interest, a list of party guests and their characteristics was
distributed. At this point, the participants had access to information not captured in
the Bayes nets, and this information was sufficient to identify the murderer with cer-
tainty before the clues resolving the questions were distributed. Therefore, our analy-
sis stops when the guest list was distributed.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0:00:00 0:05:00 0:10:00 0:15:00 0:20:00 0:25:00 0:30:00

Brier Score vs. Time
GMU Trial 1

Full Bayesnet Flat Bayesnet Flat Combo Guest List Available

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0:00:00 0:05:00 0:10:00 0:15:00 0:20:00 0:25:00 0:30:00

Brier Score vs. Time
CA Trial 1

Full Bayesnet Flat Bayesnet Flat Combo Guest List Available

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0:00:00 0:05:00 0:10:00 0:15:00 0:20:00 0:25:00

Brier Score vs. Time
CA Trial 2

Full Bayesnet Flat Bayesnet Flat Combo Guest List Available

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0:00:00 0:05:00 0:10:00 0:15:00 0:20:00 0:25:00 0:30:00

Brier Score vs. Time
GMU Trial 2

Full Bayesnet Flat Bayesnet Flat Combo Guest List Available

 Combinatorial Prediction Markets: An Experimental Study 293

Fig. 5. Comparison of Expected Brier Scores over time for experimental conditions and the
Bayesian network models. Solid dark line shows Combo market; solid gray line shows Flat
market; dark dotted line shows full Bayes net; light dotted line shows flat Bayes net.

As can be seen in the figures, there was a lot of noise in the markets -- compared to
the Bayes nets, and no clear tendency. Indeed, it is hard to tell from inspection which
curve had the lower time-averaged Brier score. Table 2 summarizes the average Brier
scores for the flat and combinatorial markets in each trial and compares them to the
corresponding difference in the “gold standard” Brier scores obtained from the flat
and full Bayes nets. In three of the trials, the average Brier scores from the combina-
torial markets were lower than those from the flat markets indicating that, on average,
the predictions made in the combinatorial market were more accurate than those made
in the flat markets. The exception to this was GMU Trial 1 in which the average flat
market predictions were more accurate. As expected, in three of the four trials, the
average difference between the flat and combo participants’ scores were less than
those from the corresponding Bayes nets, indicating that on average the participants
had not integrated all the available knowledge into their predictions. There was an
exception to this trend also; in CA trial 2 the difference between the participants’
Brier scores was greater than that between the Bayes net scores. Inspecting Fig. 4, it
appears that the CA trial 2 combo participants were overconfident: their combinatorial
Brier scores were below those of the full Bayes net, indicating that their predictions
were stronger than they “should” have been with the information available; however,
this overconfidence may have been warranted by the knowledge that they were partic-
ipating in an experiment.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0:00:00 0:05:00 0:10:00 0:15:00 0:20:00 0:25:00 0:30:00

Expected Brier Score vs. Time
GMU Trial 1

Expected Full Bayesnet Expected Flat Bayesnet Expected Flat

Expected Combo Guest List Available

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0:00:00 0:05:00 0:10:00 0:15:00 0:20:00 0:25:00

Expected Brier Score vs. Time
GMU Trial 2

Expected Full Bayesnet Expected Flat Bayesnet Expected Flat

Expected Combo Guest List Available

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0:00:00 0:05:00 0:10:00 0:15:00 0:20:00 0:25:00 0:30:00

Expected Brier Score vs. Time
CA Trial 2

Expected Full Bayesnet Expected Flat Bayesnet Expected Flat

Expected Combo Guest List Available

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0:00:00 0:05:00 0:10:00 0:15:00 0:20:00 0:25:00 0:30:00

Expected Brier Score vs. Time
CA Trial 1

Expected Full Bayesnet Expected Flat Bayesnet Expected Flat

Expected Combo Guest List Available

294 W.A. Powell et al.

Table 2. Average Brier Scores

Bayes Net Average

Difference
Participant Average

Difference

CA Trial 1 0.1085 0.0993

CA Trial 2 0.0281 0.1537

GMU Trial 1 0.0622 -0.0542

GMU Trial 2 0.1252 0.0951

Table 3. Average Expected Brier Scores

 Bayes Net Average
Expected Difference

Participant Average
Expected Difference

CA Trial 1 0.0569 0.0381

CA Trial 2 0.0764 0.0814

GMU Trial 1 0.0786 -0.0133

GMU Trial 2 0.0718 -0.0232

Although the results are suggestive, the effects seen in this experiment do not con-
clusively demonstrate an effect of combinatorial markets on accuracy.

Like the Brier scores, the expected Brier scores (Fig. 5 and Table 3) for the combi-
natorial market are not consistently lower than those for the flat market indicating that
that the certainty in the participant’s predictions was not consistently less for the
combinatorial market than for the flat market. As can be seen in Table 3, at various
time in the trials, the expected Brier scores in the combinatorial and flat markets ap-
proached the theoretical minimum generated by the full Bayes net expected Brier
scores, though neither the combinatorial nor the flat market expected Brier score did
so consistently. This lack of consistency is also evident in the average difference
between the participants’ expected Brier scores. Though the average expected Brier
scores for the combinatorial market were less than those for the flat market in the
California trials, they were slightly greater in the GMU trials.

5 Conclusion

The four trials in this experiment do not show a clear advantage for combo markets
over flat markets on this “murder mystery” scenario. These results set limits on the
conditions and range where a clear advantage may be seen. First, given the noise in
the market estimates, the scenarios used in these trials provided insufficient theoreti-
cal difference (~10%) between the flat and combo Brier scores (as generated by the
full and flat Bayes nets). Although each of our trials involved ~10 people working for
several hours, the effective sample size is simply the number of trials, four (4). A
scenario with a larger theoretical difference might show a consistent difference be-
tween the groups.

 Combinatorial Prediction Markets: An Experimental Study 295

Second, to level the playing field, we provided direct evidence for all the market
questions. But the most likely benefit to using a combinatorial market lies in the abil-
ity to propagate the effect of evidence through the market and influence predictions
for market questions that are not directly related to the evidence. Examination of the
data shows that changes in the predictions due to direct evidence seemed to over-
whelm the changes in predictions due to evidence that was only indirectly related to
each question. A clearer advantage for the combinatorial market might be seen if
some questions could only be predicted from evidence relating to other correlated
questions.

In designing future trials based on the experimental trials reported here, several
modifications may increase the effects on the dependent variables (Brier scores and
expected Brier scores). Possible modifications to the experimental design include
making the correlations among the questions and between evidence and the question
stronger; simulating more specialize knowledge i.e. lower percentage of the partici-
pants receive each conditional probability table; making it more difficult for partici-
pates to retain knowledge of specific relationships among the markets question and
types of evidence; and adding questions for which no direct evidence is provided, but
which are correlated with other questions for which there is evidence. Additionally,
designing trials that take less time could result in more trials being run with the same
number of participants and thus provide an overall increase in the statistical power of
the experiment. Also, the experiment could be instrumented to provide data that
would support the analysis of other metrics, e.g. joint probability distributions and
conditionals. The basic design of these experimental trials seems sound, and im-
provements to the experimental design have been identified that should increase the
ability of the Combinatorial Market experiment to determine the effects of using
probabilistically linked questions on prediction markets.

Acknowledgements. This research was supported by the Intelligence Advanced Re-
search Projects Activity (IARPA) via Department of Interior National Business Cen-
ter contract number D11PC20062. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the
U.S. Government. The authors are grateful to Shou Matsumoto, Brandon Goldfedder
and Jamie Ostheimer for software support.

References

1. Meehl, P.E.: Clinical Versus Statistical Prediction: A Theoretical Analysis and a Review
of the Evidence. University of Minnesota Press (1954)

2. Dawes, R., Faust, D., Meehl, P.E.: Clinical Versus Actuarial Judgment. Science 243(4899),
1668–1674 (1989)

296 W.A. Powell et al.

3. Marchese, M.C.: Clinical Versus Actuarial Prediction: a Review of the Literature. Percep-
tual and Motor Skills 75(2), 583–594 (1992)

4. Grove, W.M., Zald, D.H., Lebow, B.S., Snitz, B.E., Nelson, C.: Clinical Versus Mechani-
cal Prediction: a Meta-Analysis. Psychological Assessment 12(1), 19–30 (2000)

5. Tetlock, P.: Expert Political Judgment: How Good Is It? How Can We Know? Princeton
University Press (2005)

6. Silver, N.: The Signal and the Noise: Why So Many Predictions Fail — but Some Don’t,
1st edn. Penguin Press HC (2012)

7. Surowiecki, J.: The wisdom of crowds. Anchor (2005)
8. Hanson, R.: Combinatorial information market design. Information Systems Frontiers 5(1),

107–119 (2003)
9. Hanson, R.: Logarithmic market scoring rules for modular combinatorial information ag-

gregation. The Journal of Prediction Markets 1(1), 3–15 (2007)
10. Pennock, D.M., Wellman, M.P.: Graphical models for groups: Belief aggregation and risk

sharing. Decision Analysis 3, 148–164 (2005)
11. Chen, Y., Pennock, D.M.: Designing markets for prediction. AI Magazine 31(4), 42–52

(2010)
12. Sun, W., Hanson, R., Laskey, K.B., Twardy, C.: Probability and Asset Updating using

Bayesian Networks for Combinatorial Prediction Markets. In: Proceedings of the Twenty-
Eighth Conference on Uncertainty in Artificial Intelligence, Catalina Island, USA (2012)

13. Berea, A., Maxwell, D., Twardy, C.: Improving Forecasting Accuracy Using Bayesian
Network Decomposition in Prediction Markets. In: Proceedings of the AAAI Fall Sympo-
sium Series (2012)

14. Berea, A., Twardy, C.: Automated Trading in Prediction Markets. In: Greenberg, A.M.,
Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 111–122. Springer,
Heidelberg (2013)

15. Brier, G.W.: Verification of forecasts expressed in terms of probability. Monthly Weather
Review 75, 1–3 (1950)

A Scalable Learning Algorithm for Kernel

Probabilistic Classifier

Mathieu Serrurier and Henri Prade

IRIT - 118 route de Narbonne 31062, Toulouse Cedex 9, France
{serrurie,prade}@irit.fr

Abstract. In this paper we propose a probabilistic classification algo-
rithm that learns a set of kernel functions that associate a probability
distribution over classes to an input vector. This model is obtained by
maximizing a measure over the probability distributions through a lo-
cal optimization process. This measure focuses on the faithfulness of
the whole probability distribution induced rather than only consider-
ing the probabilities of the classes separately. We show that, thanks to
a pre-processing computation, the complexity of the evaluation of this
measure with respect to a model is no longer dependent on the size of
the training set. This makes the local optimization of the whole set of
kernel functions tractable, even for large databases. We experiment our
method on five benchmark datasets and the KDD Cup 2012 dataset.

1 Introduction

It is well known that machine learning algorithms are constrained by some learn-
ing bias (language bias, hypothesis bias, algorithm bias, etc.). In that respect,
learning a precise model may be illusionary. Moreover, in case where security
issues are critical for instance, predicting one class only, without describing the
uncertainty about this prediction, may be unsatisfactory. Probabilistic classifi-
cation aims at learning models that associate to an input vector a probability
distribution over classes rather than a single class. K-nearest-neighbor meth-
ods [1] compute this distribution by considering the neighborhood of the input
vector. Probabilities are then computed from the frequency of the classes. The
quality of the distribution highly depends on the density of the data. Some
other types of algorithms such as naive Bayes classifiers [7] and Gaussian pro-
cesses [9,10,15] are based on Bayesian inference. Gaussian processes assume that
the attribute values follow a Gaussian distribution, it uses kernels for describing
the co-variance between such variables. Thus, these approaches suppose strong
assumptions (high density data, independent attributes, priors about the type
of the probability distribution that underlies the data , ...). Logistic regression
has been also proposed as a probabilistic classifier [2,5] since it can be used for
a direct estimation of the probability of the classes. This approach has been
extended for the non linear case by the use of kernels logistic functions (KLR
[4]) or kernel functions [16]. These last methods are based on minimization of
the squared distance between the value of the class (0 or 1) and the predicted

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 297–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

298 M. Serrurier and H. Prade

value (between 0 and 1). Functions are learn independently for each class and a
normalization post processing is needed. Moreover, these approaches are based
on a costly optimization processes and are not tractable for large databases.
Sugiyama [13] proposes an alternative reformulation of the calculus (still based
on the minimization of squared distance) that partially overcomes this cost issue
and skips the normalization step. Even if these methods are consistent with the
maximum likelihood principle, there are based on the evaluation of the ability
of the predicted distribution to identify the most probable class, but not on
an evaluation of the faithfulness of the complete probability distribution with
respect to the data.

In this paper we propose to learn a set of kernel functions as in this other ker-
nel approaches. However, our method differs from them by many points. First,
we constrain the parameters of the kernels in order to have the sum of the prob-
abilities equal to 1. Second, the model is obtained through a local optimization
process (we propose an implementation for two algorithms: the Nelder-Mead
algorithm [8] and the particle swarm meta-heuristics [6]) by fixing the support
vectors and maximizing a quality measure that estimates the faithfulness of a
probability distribution with respect to a set of data. The kernel function are
learned all together (rather than independently in classical kernel approaches).
In this scope we have extended the loss function used in KLR to the whole
distribution. Then, this measure relies on the squared distance between the op-
timal distribution (1 for the class, 0 for the other classes) and the proposed
one. Moreover, we reformulate the computation of this measure for our set of
kernel functions and make that the complexity of this computation no longer
depend on the size of the dataset thanks to a pre-computation step. This allows
us to handle very large databases, even when using costly meta-heuristics such
as particle swarm.

The paper is structured as follows. Section 2 provides some definitions about
probabilistic loss functions and a precise description of the proposed measure.
In Section 3, we describe the model that we learn and we show how the measure
can be reformulated in order to maximize performances. Section 4 is devoted to
the description of the optimization process and the tuning of the parameters.
Last, we validate our approach by experimentation on 5 benchmark datasets and
on the KDD Cup 2012 dataset.

2 Probabilistic Loss Functions

Probabilistic loss functions are used for evaluating the adequateness of a prob-
ability distribution with respect to data. In this paper, we only consider the
case of classification. A classification database is a set of n pairs (−→x i, ci), 1 ≤
i ≤ n, where −→x i is a vector of input variables in the feature space X and
ci ∈ {C1, . . . , Cq} is the class variable. We note

1j(
−→x i) =

{
1 if ci = Cj

0 otherwise.

A Scalable Learning Algorithm for Kernel Probabilistic Classifier 299

Given a probability distribution p on the discrete space Ω = {C1, . . . , Cq}, we
denote p1, . . . , pq the probability of being an element of Ω, i.e. p(ci = Cj) =
pi. The values p1, . . . , pq entirely define p. The log-likelihood is a natural loss
function for probability distributions. Formally the likelihood coincides with a
probability value. The logarithmic-based likelihood is defined as follows (under
the strict constraint

∑q
j pj = 1):

Losslog(p|−→x i) = −
q∑

j=1

1j(
−→x i)log(pj).

However, as a probabilistic loss function, the likelihood has some limitations.
First, Losslog is not defined when pj = 0 and 1j = 1. Second, it gives a very
high weight to the error when probability is very low. These two issues are a
strong limitation when the parameters are obtained through a local optimization
process of a classifier. Indeed, avoiding the possibility to have pj = 0 can be
difficult when considering complex models. Moreover, exponential costs of error
on low probability classes may have a too high effect on the whole model.

One common approach to overcome this problem is to turn the classification
problem into a regression problem. The goal of kernel logistic regression and
kernel regression is to minimize the least square between the value of the class (0
and 1) and the predicted probability. To this end, both methods independently
learn a function (resp. kernel logistic function of kernel fj for each class Cj).
Then, for each xi, fj minimizes

LeastSquare(−→x i, fj) = (1j(
−→x i)− fj(

−→x i))
2.

It has been shown that minimizing this distance leads to an faithful estimation of
the probability of being in the class Cj . However, since the function are obtained
independently, the distribution encoded by the fn’ s does not necessarily satisfy∑q

j=1 fj(
−→x i) = 1 for all −→x i. Thus, the predicted values have to be normalized

in order to have a probability distribution and then, the faithfulness of the
probability of being in the class Cj may be altered.

In this paper, we propose a method that learns the distribution directly. In
order to achieve this goal we extend the previous expression in order to take into
account the whole probability distribution p. Thus, we obtain:

LeastSquare(−→x i, p) =

q∑
j=1

(1j(
−→x i)− pj)

2

= 1 +

q∑
j=1

p2j − 2 ∗
q∑

j=1

1j(
−→x i) ∗ pj .

We build our loss function by removing the constant and normalizing the previ-
ous calculus. Then we have :

Losssurf (p|−→x i) =

∑q
j=1 1j(

−→x i) ∗ pj − 1
2 ∗

∑q
i=1 p

2
i

n
. (1)

300 M. Serrurier and H. Prade

This loss function has been used in [11,12] for describing similar loss functions for
possibility distributions and use it into regression process. We name it Losssurf
since maximizing this function is equivalent to minimize the square of the dis-
tance between p and the optimal probability distribution p∗ (here we have for
a given −→x i, p

∗
j = 1j(

−→x i). Then, contrarily to (LeastSquare(−→x i, fj), Losssurf
takes into account the whole distribution directly, and not the probability values
independently.

3 Surface Probabilistic Kernel Classifier Learning

3.1 Definitions

We recall that a classification database is a set of n pairs, or examples, (−→x i, ci),
1 ≤ i ≤ n, where −→x i is a vector of input variables in the feature space X and
ci ∈ {C1, . . . , Cq} is the class variable. A Surface Kernel probabilistic Classifier
(Skc) associates a probability distribution over the classes to a vector of X . A
Skc is a set of q kernel functions (Skc = {f1, . . . , fq}). A function fj is a kernel
function over r support vectors −→s 1, . . . ,

−→s r (a support vector is a point in the
feature space X)), the same for all the functions, that encodes the probability
of the example −→x i pertaining to class Cj . Then we have:

fj(
−→x) =

r∑
l=1

(αj
l ∗K(−→x ,−→s l)) + αj

r+1 (2)

where the αj
l ’s and α

j
r+1 are the parameters of the function andK(., .) is a kernel

function. The probability of the example of pertaining to class Ci is then:

pj(
−→x i) = p(ci = Cj) = fj(

−→x i). (3)

We also have the following constraints:

1. ∀j ∈ 1, . . . , q, ∀l ∈ 1, . . . , r,
∑q

j=1 α
i
k = 0

2.
∑q

j=1 α
j
r+1 = 1.

3. ∀j ∈ 1, . . . , q, ∀l ∈ 1, . . . , r + 1,−1 ≤ αj
l ≤ 1

Constraints 1 and 2 guarantee that the probability distribution predicted for a
vector −→x is normalized, i.e.:

∀−→x ∈ X ,

q∑
j=1

fj(
−→x) = 1.

However, these constraints do not ensure that the distribution obtained is a
genuine probability distribution. Indeed, we may have fj(

−→x) < 0 or fj(
−→x) >

1. This can be partially overcome with constraint 3, but it is not sufficient
in general. This issue will be solved in the optimization process, as it will be
explained in the following.

A Scalable Learning Algorithm for Kernel Probabilistic Classifier 301

Once the probabilistic kernel functions defined, the goal is to find the Skc
function that associate a probability distribution over classes that is as faithful
as possible to each input vector of the training set. In the most favorable case,
we will obtain a distribution that gives the probability value 1 to the right class.
According to the previous definitions, the goal for learning Skc is to find the
Skc that maximizes the surface loss function with respect to each example in
the training set. This is formulated as follows: Find the αj

l parameters of a Skc
that maximizes the following expression:

Losssurf (Skc) =
n∑

i=1

Losssurf (Skc(−→x i)|−→x i). (4)

The maximization of Losssurf has several advantages:

• Losssurf is defined even when the probability is equal to 0 and if the prob-
ability distribution is not normalized. Losssurf is also defined for negative
values or values greater than 1. Even if these values are not acceptable for
probability prediction, it allows local optimizer to explore the whole feature
space. Contrarily to the log-likelihood, it makes also the evaluation of the
model possible when it performs well for a majority of examples and have
aberrant values only for few examples. Moreover,Losssurf always favors gen-
uine probability functions. Thus, even if the definition of Skc permits such
kind of abnormal distribution, this case never appears after the learning of
a model in the experiments.

• Losssurf evaluates the faithfulness of the probability distribution predicted
and not only its ability to identify the most probable class. Moreover, even
when only one example is considered, all the values of the probability distri-
bution are taken into account (contrarily to log-likelihood) as it can be seen
in Equation 1.

Then, this approach has some advantages with respect to the other Kernel ap-
proaches. First, the kernel functions have to be learned simultaneously and not
one by one as it is done in Kernels approach (even for the binary case). Second,
the combination of constraints and properties of the Losssurf makes that the
probability distribution predicted has not to be normalized. Finally, Losssurf
evaluates the faithfulness of the probability distribution without normalization
when kernel approaches focus on maximizing the probability associated to the
considered class (regardless of the values of the other classes). Even if these
two approaches are acceptable in terms of accuracy maximization, the proposed
approach seems best suited in terms of quality of the probability distributions
learned. But on the contrary to other kernel approaches, finding the Skc func-
tion that maximizes Losssurf (Skc) given a training set is a hard problem which
has no simple analytical solution. Section 4 shows how this issue can be handled
by local optimization algorithms. However, the computation time performance
of these algorithms depends highly on the complexity cost of the evaluation of
Losssurf (Skc).

302 M. Serrurier and H. Prade

3.2 Complexity Evaluation and Reformulation of Losssurf

Given n examples, q classes, r support vectors and a Skc function, we have:

Losssurf (Skc) =
n∑

i=1

(

q∑
j=1

(1j(
−→x i) ∗ fj(−→x i)−

1

2
fj(

−→x i)
2))

=

n∑
i=1

q∑
j=1

(1j(
−→x i) ∗

r∑
l=1

(αj
l ∗K(−→x i,

−→s l)) + αj
r+1)

− 1

2

n∑
i=1

q∑
j=1

(

r∑
l=1

(αj
l ∗K(−→x i,

−→s l)) + αj
r+1)

2.

Under this form, the complexity of the calculus is O(m ∗ q ∗ r). This can be
problematic since local optimization algorithms require to evaluate the target
function frequently. In this case, the optimization process will rapidly become
too costly when the size of the training set increases. Fortunately, it can be
reformulated in order to lead to a more tractable computation. For the sake of
readability, we split Losssurf (Skc) into two parts, namely

Losssurf (Skc) = Part1− 1

2
Part2

such that:

Part1 =

n∑
i=1

(

q∑
j=1

(1j(
−→x i) ∗ fj(−→x i))

and

Part2 =

n∑
i=1

q∑
j=1

fj(
−→x i)

2.

Part1 can be reformulated as follows:

Part1 =

n∑
i=1

q∑
j=1

(1j(
−→x i) ∗

r∑
l=1

(αj
l ∗K(−→x i,

−→s l)) + αj
r+1)

=

n∑
i=1

q∑
j=1

(1j(
−→x i) ∗ αj

r+1 +

r∑
l=1

(1j(
−→x i) ∗ αj

l ∗K(−→x i,
−→s l))

=

q∑
j=1

αj
r+1 ∗

n∑
i=1

1j(
−→x i) +

q∑
j=1

r∑
l=1

(αj
l ∗

n∑
i=1

(1j(
−→x i) ∗K(−→x i,

−→s l)))

=

q∑
j=1

(αj
r+1 ∗NBj) +

q∑
j=1

r∑
l=1

(αj
l ∗K l

j)

withK l
j =

∑n
i=1(1j(

−→x i)∗K(−→x i,
−→s l)) andNBj =

∑n
i=1 1j(

−→x i). It is interesting

to remark that K l
j and NBj do not depend on the αj

l ’s. Then, these values can

A Scalable Learning Algorithm for Kernel Probabilistic Classifier 303

be computed before the optimization process. During the optimization process,
the complexity of the computation of Part1 goes down to O(q ∗ r) which is
independent from the size of the training set. In the same way, Part2 can be
reformulated as follows:

Part2 =

n∑
i=1

q∑
j=1

(

r∑
l=1

(αj
l ∗K(−→x i,

−→s l)) + αj
r+1)

2

=

n∑
i=1

q∑
j=1

(

r∑
l=1

(αj
l ∗K(−→x i

−→s l)))
2

+
n∑

i=1

q∑
j=1

((αj
r+1)

2 + 2 ∗ αj
r+1 ∗ (

r∑
l=1

(αj
l ∗K(−→x i,

−→s l)))

=

n∑
i=1

q∑
j=1

r∑
l=1

r∑
t=1

(αj
l ∗ α

j
t ∗K(−→x i

−→s l) ∗K(−→x i,
−→s t))

+ n ∗
q∑

j=1

(αj
r+1)

2 + 2 ∗
q∑

j=1

(αj
r+1 ∗

r∑
l=1

(αj
l ∗

n∑
i=1

K(−→x i,
−→s l)))

=

q∑
j=1

r∑
l=1

r∑
t=1

(αj
l ∗ α

j
t ∗Ks,l) + n ∗

q∑
j=1

(αj
r+1)

2 + 2 ∗
q∑

j=1

(αj
r+1 ∗

r∑
l=1

(αj
l ∗Kl))

where Ks,l =
∑n

i=1(K(−→x i,
−→s l) ∗ K(−→x i, vst)) and Kl =

∑n
i=1K(−→x i,

−→s l). As

previously,Ks,l are independent from the αj
l ’s. Then if we pre-compute the values

Ks,l, the complexity of the computation of Part2 goes down to O(q ∗ r2). We
obtain a complexity of O(q ∗ r2) for the calculus of Losssurf (Skc) if we compute
the values K l

j , NBj , Ks,l and Kl before the optimization process. Then, we
can perform an optimization process that is independent from the size of the
database.

4 Optimization Process

As pointed out in the previous section, the fact learning fj functions has to be
done simultaneously makes that there is no simple analytical solution. Thanks
to the offline computation of the values that depends on the size of the database,
the evaluation of the target function of a model is not costly. In this context, the
use of local optimization algorithm is possible. However, it requires to previously
choose the number of support vectors and their values. The number of support
vectors is a parameter of the algorithm. The vectors are then obtained with the
k-means clustering algorithm. We use two different optimization algorithms. The
first one is the Nelder-Mead algorithm [8] which is very fast but converges to
local optimum. The second one is the particle swarm meta-heuristics [6] which
is more costly but has better optimization performances.

304 M. Serrurier and H. Prade

4.1 Nelder-Mead Implementation

The Nelder-Mead algorithm is a heuristics for maximizing of a function F in a N
dimensions space. It is based on the deformation of a simplex until it converges
to a local optima (Algorithm 1). The algorithm stops after a fixed number of
loops without increasing F (e1). In addition to its efficiency, the Nelder-Mead al-
gorithm is very simple and does not require to derive the function F . However, it
can be easily trapped into local optima and it depends on the starting configura-
tion. Results can be improved by restarting the algorithm with different starting
configurations. In our case a state e corresponds to the vectors that describe the
parameters αj

l of a Skc function given a kernel and a set of r support vectors.
Then the dimension of the state space is N = q ∗ (r + 1). Losssurf (Skc) corre-
sponds to the function F . The starting configurations are chosen randomly and
have to respect the constraint described in section 3.1. The operations on the
space states ensure that the constraints are not violated during the algorithm.

Algorithm 1. Nelder-Mead

Choose N + 1 points e1, . . . , eN+1

Order the points with respect to F
Compute e0 the center of gravity of e1, . . . , eN
er = 2 ∗ e0 − eN+1

if F (er) > F (eN) then
et = e0 + 2 ∗ (e0 − eN+1)
if F (et) > F (er) then
eN+1 = et

else
eN+1 = er

end if
else
ec = eN+1 +

1
2
∗ (e0 − eN+1)

if F (ec) ≥ F (en) then
eN+1 = ec

else
forall i ≥ 2 ei = e1 +

1
2
∗ (ei − e1)

end if
end if
return to step 2

4.2 Particle Swarm Implementation

In order to overcome the problem of local optima, we propose to use the particle
swarm optimization algorithm. One of the advantages of the particle swarm
optimization with respect to the other meta-heuristics is that it is particularly
suitable for continuous problems. Particle swarm works in the same settings
than Nelder-Mead algorithm. Particle swarm with N particles (N is no longer
the dimension of the state space) is described in Algorithm 2.

A Scalable Learning Algorithm for Kernel Probabilistic Classifier 305

Algorithm 2. Particle Swarm Optimization

Choose randomly N particles e1, . . . , eN
for all i bei = ei
eg = argmaxei(F (ei) (best know position)
choose randomly N velocity vectors v1, . . . , vN
repeat

for i = 1, . . . , N do
choose randomly rp and rg in [0, 1]
vi = ω ∗ vi + φp ∗ rp ∗ (bei − ei) + φg ∗ rg ∗ (eg − ei)
ei = ei + vi
if F (ei) > F (bei) then
bei = ei
if F (bei) > F (eg) then
eg = bei

end if
end if

end for
until a chosen number of times

Here, one particle represents the parameters of Skc function (αj
l). At each step

of the algorithm, each particle is moved along its velocity vector (randomly fixed
at the beginning). The velocity vectors are updated at each step by considering
the current vectors, the vector from the current particle position to particle
best known position and the vector from the current particle position to global
swarm’s best known position. In order to maintain the constraint 1 and 2 over the
parameters αj

l the values vjl of the velocity vector have to satisfy the following
constraints:

• ∀j ∈ 1, . . . , q, ∀l ∈ 1, . . . , r + 1,
∑q

j=1 v
i
k = 0

• ∀j ∈ 1, . . . , q, ∀l ∈ 1, . . . , r + 1,−1 ≤ vjl ≤ 1

If we have −1 > αj
l (resp. αj

l > 1) after the application of the velocity vector,

we fix αj
l = −1 (resp. αj

l = 1).
The particle swarm algorithm is easy to tune. The three parameters for the

updating of the velocity ω, φp and φg correspond respectively to the coefficient
for the current velocity, the coefficient for the velocity to the particle best known
position and the coefficient for the velocity to the global swarm’s best known
position. Based on [14], we use generic values that perform well in most of the
cases (ω = 0.72, φp = 1.494, φg = 1.494 and 16 particles).

5 Experimentation

In this section, we compare our algorithms with naive Bayes classifier (NBC)
and the kernel approaches (SVM) based on least square minimization described
in [16] and implement in the java version of LibSVM. We note SkcNM for the
maximization of Losssurf with the Nelder-Mead algorithm and SkcPSO for the

306 M. Serrurier and H. Prade

maximization of Losssurf with the particle swarm optimization algorithm. We
compare the results with respect to the accuracy, Losslog (mind that here the
lower the value, the better) and Losssurf . We also report time performance of
SVM, SkcNM and SkcPSO. In the first experiments, we make 100000 steps of
particle swarm movement and 5 restarts of Nelder-Mead algorithm. We empiri-
cally choose the number of support vectors with the formulas r = 1+10log(n/3)
where n is the number of examples. We use Gaussian kernels. All the experi-
ments are done on a 3Ghz computer and all the algorithms are implemented
with the JAVA language.

Table 1. Comparison of algorithms on 6 UCI dataset (10-cross validation)

db. Alg. Acc. Losslog Losssurf
Diab. NBC 75.7[5.1] 0.57[0.15] 0.32[0.04]

SVM 74.9[7.9] 0.52[0.09] 0.32[0.04]
SkcNM 76.2[8.1] 0.51[0.13] 0.33[0.04]
SkcPSO 76.3[7.6] 0.49[0.1] 0.33[0.03]

Breast. NBC 95.7[2.1] 0.26[0.13] 0.45[0.02]
SVM 95.1[2.4] 0.13[0.06] 0.46[0.01]
SkcNM 95.9[1.9] 0.12[0.04] 0.46[0.01]
SkcPSO 95.9[1.8] 0.11[0.05] 0.46[0.01]

Iono. NBC 84.8[6.1] 0.7[0.34] 0.36[0.05]
SVM 88.3[5.7] 0.29[0.06] 0.41[0.02]
SkcNM 90.8[2.7] 0.22[0.06] 0.42[0.01]
SkcPSO 93.4[2.7] 0.2[0.06] 0.42[0.01]

Mag. Tel. NBC 72.7[0.8] 0.98[0.03] 0.26[0.0]
SVM 87.6[0.8] 0.3[0.01] 0.4[0.0]
SkcNM 84.4[0.7] 0.38[0.01] 0.38[0.0]
SkcPSO 85.5[0.8] 0.38[0.01] 0.38[0.0]

Glass NBC 50.3[15.4] 1.24[0.4] 0.22[0.05]
SVM 72.8[9.5] 0.81[0.18] 0.29[0.05]
SkcNM 66.7[9.2] 0.86[0.19] 0.23[0.04]
SkcPSO 71.5[9.4] 0.79[0.13] 0.28[0.04]

5.1 Benchmark Dataset

In order to check the effectiveness of the algorithms, we used 5 benchmarks from
UCI1. All the datasets have numerical attributes only. The Diabetes database de-
scribes 2 classes with 768 examples. The Breast cancer database contains 699 ex-
amples that describes 2 classes. The Ionosphere database describes 2 classes with
351 examples. The Magic telescope database contains 19020 examples that de-
scribes 2 classes. The Glass database describes 7 classes with 224 examples. The
results presented in Table 1 are for 10-cross validation. Bold results correspond
to the highest values. It shows that the Sks approaches outperform clearly NBC

1 http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

A Scalable Learning Algorithm for Kernel Probabilistic Classifier 307

Table 2. Computation time for the Skc algorithms on 6 UCI datasets

database time
SVM SkcNM SkcPSO

Diabetes 0.2s 0.4s 7.9s

Breast c 0.1s. 0.2s 8s

Iono. 0.1s 1s 8s

Mag. Tel. 57s 1.9s 9.3s

Glass 0.1s 8s 23s

on all the databases (with a statistically significant difference for 3 databases)
both for the accuracy and the Losssurf . SkcPSO outperforms SVM on 3 of the
5 databases (with a statistically significant difference for 1 database) and is out-
performed on the two remaining ones (with a statistically significant difference
for 1 database). This shows that our approaches compete with SVM probabilistic
approach in terms of classification and have good performances for describing
faithful probability distributions (even if we consider the log-likelihood). SkcNM
and SkcPSO have close performances except when the number of classes in-
creases. We can suppose that in this case SkcNM is more easily trapped in local
optima.

Table 2 gives the time in seconds for performing the optimization of Skc. As
expected SkcNM is around 10 times more efficient than SkcPSO. Even if these
times are larger than the SVM ones, they remain very low, and are not much
sensitive to the size of the dataset (times for Ionosphere and Magic Telescope
are closed for instance). The size of the database only matters for computing
the support vectors and the pre-computed values (the number of support vector
also increases slightly when the size increases). When the size of the database
increases, as for magic telescope, our approaches become much faster than SVM
approach.

5.2 KDD Cup 2012 Dataset

In order to check the scalability of our algorithms, we use our approaches on
the KDD Cup 2012 database. This database describes a social network of micro-
blogging. “Users” are people in the social network and “items” are famous people
or objects that the users may follow. Users may be friend with other users. The
task of this challenge is to predict if a user will accept or not to follow an item
proposed by the system.

There are 10 millions of users described by their age, their genre, some key-
words and their friends. There are 50000 items described by keywords and tags.
The database contains 70 millions of propositions to follow an item with a label
that indicates if the user has accepted the proposition or not. The problem is
then a binary classification problem. We define 8 attributes based respectively
on i)the percentage of users of the same genre as the target one, which follow
the item, ii) the percentage of users of the same age category as the target one,

308 M. Serrurier and H. Prade

Table 3. Comparison of algorithms on KDD Cup 2012 dataset

database Alg. Acc. Losslog Losssurf time

Size=1K NBC 66.4 0 0.278 -
SVM 70.8 0.580 0.302 0.4
SkcNM r=10 71.0 0.557 0.312 0.2s
SkcNM r=100 71.0 0.57 0.311 12s
SkcPSO r=10 71.4 0.557 0.313 8s
SkcPSO

r=100
71.6 0.572 0.311 56s

Size=10K NBC 68.0 0.663 0.285 -
NBC 71.9 0.57 0.314 37s
SkcNM r=10 71.5 0.559 0.314 0.3s
SkcNM r=100 72.2 0.556 0.313 14s
SkcPSO r=10 71.6 0.56 0.313 8s
SkcPSO

r=100
72.7 0.55 0.320 55s

Size=100K NBC 69.0 0.662 0.292 -
SVM 72 0.55 0.315 3.5 hours
SkcNM r=10 72.2 0.547 0.316 2s
SkcNM r=100 72.2 0.543 0.318 30s
SkcPSO r=10 72.2 0.547 0.316 10s
SkcPSO

r=100
72.7 0.537 0.319 75s

Size=1M NBC 68.3 0.665 0.29 -
SVM - - - -
SkcNM r=10 72.2 0.551 0.315 19s
SkcNM r=100 72.5 0.543 0.318 97s
SkcPSO r=10 72.0 0.551 0.315 27s
SkcPSO

r=100
73 0.534 0.321 119s

which follow the item, iii) the session time, iv) the number of friends of the tar-
get user that follow the item, v) the distance between the items followed by the
user and the target item, vi) the number of users that follow the target items,
vii) the number of items that are followed by the user, and viii) the number of
times the item has been proposed to the user. We build a test dataset of around
1.9 millions of propositions.

Table 3 reports the result with different size of training sets (without any
common tuple with the test dataset) and different number of support vectors.
The results are computed on the test dataset. We can observe that performances
increase when the size of the database increases, even if the dataset is summa-
rized by the pre-computed values in the optimization process. SkcPSO performs
slightly better than SkcNM and SVM approach. Last, time values confirm the
efficiency of the approach and its low sensitivity with respect to the size of the
dataset (less than 2 minutes for the SkcPSO with r = 100 and 1 million exam-
ples in the training set). It shows that our approaches are usable on very large

A Scalable Learning Algorithm for Kernel Probabilistic Classifier 309

database while SVM would have difficulties for managing databases with more
than 10000 examples (and is intractable for more than 100000 examples).

6 Conclusion and Future Works

In this paper we have proposed a probabilistic classification method based on
the maximization of a loss probabilistic function that takes into account the
whole probability distribution and not only the probability of the class. We
propose two algorithms that simultaneously learn a set of kernel functions that
encodes a probability distribution over classes without any post-normalization
process. Last, we show that the computation time of the approach is very little
sensitive to the size of the dataset. Our method competes with the other kernel
approaches on the used benchmark datasets. Experiments on the KDD Cup 2012
dataset confirm that the approach is efficient on very large datasets when kernel
methods are not tractable. Moreover, the parameters of the algorithm can be
tuned automatically as it has been done the whole experimentation.

In the future, the way of choosing the number of kernels and computing the
support vectors has to be more deeply investigated and alternatives to clustering
approach have to be explored. We will also study how the approach can be em-
bedded into a gradient boosting process [3] in order to increase the performance
when the number of attributes and classes is large. Lastly, we have to compare
our algorithm more deeply with the other probabilistic approaches.

References

1. Cover, T.M., Hart, P.E.: Nearest neighbour pattern classification. IEEE Transac-
tions on Information Theory 13, 21–27 (1967)

2. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A li-
brary for large linear classification. Journal of Machine Learning Research 9, 1871–
1874 (2008)

3. Friedman, J.H.: Greedy function approximation: A gradient boosting machine.
Annals of Statistics 29, 1189–1232 (2000)

4. Jaakkola, T.S., Haussler, D.: Probabilistic kernel regression models. In: Proceedings
of the 1999 Conference on AI and Statistics. Morgan Kaufmann (1999)

5. Jaakkola, T.S., Jordan, M.I.: A variational approach to bayesian logistic regression
models and their extensions (1996)

6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks 1995, pp. 1942–1948 (1995)

7. Langley, P., Iba, W., Thompson, K.: An analysis of bayesian classifiers. In: Pro-
ceedings of AAAI 1992, vol. 7, pp. 223–228 (1992)

8. Nelder, J.A., Mead, R.: A simplex method for function minimization. The Com-
puter Journal 7(4), 308–313 (1965)

9. Nickisch, H., Rasmussen, C.E.: Approximations for binary gaussian process classi-
fication. Journal of Machine Learning Research 9, 2035–2078 (2008)

10. Opper, M., Winther, O.: Gaussian processes for classification: Mean field algo-
rithms. Neural Computation 12, 2000 (1999)

310 M. Serrurier and H. Prade

11. Serrurier, M., Prade, H.: Imprecise regression based on possibilistic likelihood. In:
Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 447–459. Springer,
Heidelberg (2011)

12. Serrurier, M., Prade, H.: Maximum-likelihood principle for possibility distributions
viewed as families of probabilities (regular paper). In: IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE), Taipei, Taiwan, pp. 2987–2993 (2011)

13. Sugiyama, M.: Superfast-trainable multi-class probabilistic classifier by least-
squares posterior fitting. IEICE Transactions on Information and Systems 93-
D(10), 2690–2701 (2010)

14. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and
parameter selection. Information Processing Letters 85(6), 317–325 (2003)

15. Williams, C.K.I., Barbe, D.: Bayesian classification with gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(12), 1342–1351
(1998)

16. Wu, T.-F., Chih-Jen, C.-J., Weng, R.C.: Probability estimates for multi-class clas-
sification by pairwise coupling. Journal of Machine Learning Research 5, 975–1005
(2004)

Privacy-Preserving Social Network Publication

Based on Positional Indiscernibility�

Tsan-sheng Hsu, Churn-Jung Liau, and Da-Wei Wang

Institute of Information Science
Academia Sinica, Taipei 115, Taiwan

{tshsu,liaucj,wdw}@iis.sinica.edu.tw

Abstract. In this paper, we address the issue of privacy preservation in
the context of publishing social network data. The individuals in pub-
lished social networks are typically anonymous; however, an adversary
may be able to combine the released anonymous social network data with
publicly available non-sensitive information to re-identify the individuals
in a social network. In this paper, we consider the case that an adversary
can query such publicly available databases with description logic(DL)
concepts. To address the privacy issue, we utilize social position analysis
techniques to determine the indiscernibility of individuals in a social net-
work. Social position analysis attempts to find individuals that occupy
the same position in a social network based on the pattern of their re-
lationships to other actors. Recently, it was shown that social positions
can be characterized by modal logics; thus, individuals occupying the
same social position will satisfy the same set of modal formulas. Since
DL has a close correspondences with modal logic, individuals occupy-
ing the same social position can not be distinguished by the knowledge
expressed in DL formalisms. By partitioning a set of individuals into in-
discernible classes in this way, we can easily test the safety of publishing
the social network data.

Keywords: Data privacy, social network, description logic, indiscerni-
bility, information granule.

1 Introduction

Indiscernibility is an important notion in uncertainty management and has been
extensively studied in rough set theory[15]. The notion is also the basis of many ap-
proaches to privacy-preserving data publication. In the publication of data tables,
simply maintaining the individuals’ anonymity may not be sufficient to protect
their privacy. The major threat to privacy is the re-identification of the individ-
uals by linking the anonymous data to some external databases[16,19]. Although
identifiers, such as names and social security numbers, are typically removed from
released data sets, it has long been recognized that several quasi-identifiers (e.g.,
ZIP codes, age, and sex) can be used to re-identify individual records. The main
reason is that the quasi-identifiers may appear with an individual’s identifiers in

� This work was partially supported by NSC (Taiwan) Grant 98-2221-E-001-013-MY3.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 311–324, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

312 T.-s. Hsu, C.-J. Liau, and D.-W. Wang

another public database. Therefore, the problem is how to prevent adversaries in-
ferring sensitive information about an individual by linking the released data set
to some public databases1. To test if the publication of a data table cause privacy
breach, individuals are grouped in a bin or an information granule based on the
indiscernibility of their quasi-identifier values.

An analogous situation may arise with social network data as an increasing
amount of non-sensitive information about personal social networks becomes
publicly available. An adversary may combine the released anonymous social
network with the publicly available non-sensitive information to re-identify the
individuals in the social network. Unlike in the case of data tables, in a social
network, two individuals with same quasi-identifier values may still be distin-
guishable by their relationships with other individuals. Thus, to formulate in-
formation granules for social networks, we have to consider the attributes of the
individuals as well as the relationships between the individuals.

In this paper, we address the issue of privacy preservation in publishing social
networks in the context that an adversary may be able to query publicly avail-
able databases by description logic(DL) formalisms[13]. To formulate informa-
tion granules for social networks, we utilize social position analysis techniques
to determine the indiscernibility of actors in a social network. Social position
analysis attempts to find individuals that occupy the same position in a social
network based on the patterns of their relationships with other actors. Different
notions of positional equivalence have been proposed for different relationship
patterns[9]. In this paper, we use the notions of regular equivalence and exact
equivalence to define information granules. Recently, it was shown that social po-
sitions based on such equivalences can be characterized by modal logics[10,12];
thus, individuals occupying the same social position will satisfy the same set
of modal formulas. Since DL has a close correspondences with modal logic, in-
dividuals occupying the same social position can not be distinguished by the
knowledge expressed in DL formalisms. Hence, we can define information gran-
ules as social positions in a social network. Then, by generalizing the definition of
information granules, we can extend the analytical techniques used for tabulated
data to social network data.

The remainder of the paper is organized as follows. We review the basic no-
tions of social position analysis and description logic in Sections 2 and 3 respec-
tively. In Section 4, we use positional analysis techniques to address the privacy
preservation issue in publishing social network data. Section 5 contains some
concluding remarks.

2 Social Networks and Positional Analysis

Social networks are defined by actors (or individuals) and relations; or by nodes
and edges in terms of graph theory[7]. A social network is generally defined

1 In this paper, “adversary” or “adversaries” refers to anyone receiving data and having
the potential to breach the privacy of individuals; while an individual or an actor refers
to a person whose privacy must be protected.

Privacy-Preserving Social Network Publication 313

as a relational structure N = (U, (αi)i∈I), where U is the set of actors in the
network, I is an index set and, for each i ∈ I, αi ⊆ Uki is a ki-ary relation
on the domain U . If ki = 1, then αi is also called an attribute. Most SNA
studies consider a simplified version of social networks with only binary relations.
Hence, for ease of presentation, we focus on social networks with unary and/or
binary relations. Thus, the social network considered in this article is a structure
N = (U, (pi)i∈I , (αj)j∈J), where U is a finite set of actors, pi ⊆ U for all i ∈ I,
and αj ⊆ U × U for all j ∈ J . In terms of graph theory, N is a labeled graph,
where U is a set of nodes labeled with subsets of I, and each αj denotes a set of
(labeled) edges. For each a ∈ U , the out-neighborhood and in-neighborhood of a
with respect to a binary relation α, denoted by N+

α (a) and N−
α (a) respectively,

are defined as follows:

N+
α (a) = {b ∈ U | (a, b) ∈ α},

N−
α (a) = {b ∈ U | (b, a) ∈ α}.

If ρ is an equivalence relation on U and a is an actor, the ρ-equivalence class of
a is equal to its neighborhood, i.e., [a]ρ = N+

ρ (a) = N−
ρ (a). Note that the latter

equality holds because of the symmetry of ρ.
Several equivalence relations have been proposed for exploring the similarity

between actors’ roles. The simplest definition of positional equivalence is the
concept of structural equivalence presented in [11], which states that two actors
are positionally equivalent if they are related to the same individuals. Although
structural equivalence is conceptually simple, it is sometimes restrictive. Regular
equivalence relaxes the requirement that equivalent actors must be connected to
identical actors, and suggests that actors occupy the same position if they are
connected to positionally equivalent actors. According to Boyd and Everett’s
characterization [3], an equivalence relation ρ is a regular equivalence with re-
spect to a binary relation α if it commutes with α, i.e.

αρ = ρα.

Let N = (U, (pi)i∈I , (αj)j∈J) be a social network, and let ρ be an equivalence
relation on U . Then, ρ is a regular equivalence with respect to N if

1. (a, b) ∈ ρ implies that a ∈ pi iff b ∈ pi for all i ∈ I; and
2. ρ is a regular equivalence with respect to αj for all j ∈ J .

It is known that the coarsest regular equivalence of a network always exists.
Thus, we can define that actors x and y are regularly equivalent, denoted by
x ∼=r y, if (x, y) is in the coarsest regular equivalence of the network.

For regular equivalence, only the occurrence or non-occurrence of a position in
the neighborhood of an actor is of interest. However, the number of occurrences
is sometimes an important factor in positional analysis. In such cases, a restric-
tion on the number can be added to the definition of regular equivalences. An
equivalence relation ρ is an exact equivalence with respect to a binary relation
α if for a, b ∈ U ,

(a, b) ∈ ρ ⇒ N+
α (a)//ρ = N+

α (b)//ρ and N−
α (a)//ρ = |N−

α (b)//ρ,

314 T.-s. Hsu, C.-J. Liau, and D.-W. Wang

where for any X ⊆ U , X//ρ is the “quotient multiset” of X with respect to ρ;
that is, X//ρ = {|[x]ρ | x ∈ X |}, where {| · |} denotes a multiset. Thus, the number
of equivalent neighbors must be the same for two actors to be considered exactly
equivalent. Let N = (U, (pi)i∈I , (αj)j∈J) be a social network, and let ρ be an
equivalence relation on U . Then, ρ is an exact equivalence with respect to N if

1. (a, b) ∈ ρ implies that a ∈ pi iff b ∈ pi for all i ∈ I; and
2. ρ is an exact equivalence with respect to αj for all j ∈ J .

The coarsest exact equivalence for a network exists and we can define two actors
x and y as exactly equivalent, denoted by x ∼=e y, if they belong to the coarsest
exact equivalence. The partition produced by an exact equivalence is also called
an equitable partition or a divisor of a graph[9].

3 Description Logics

Description logic(DL)2 is a fragment of first-order logic designed especially for
knowledge representation. The connection between DL and modal logics has
been explicated in [6,17]. Traditionally, modal logic has been considered the
logic for reasoning about modalities, such as necessity, possibility, time, action,
belief, knowledge, and obligation. However, semantically, it is essentially a lan-
guage for describing relational structures[2]. A relational structure is simply a
set accompanied by a collection of relations on that set. Thus, social networks
are mathematically equivalent to relational structures, and DL is an appropriate
formalism for representing social network knowledge.

The alphabet of a DL language consists of individual names, atomic concepts,
atomic roles, concept constructors. and role constructors. Complex terms can be
built inductively from atomic concepts and roles with constructors. Following
the notations in [1], we use a, b, and c for individual names, A and B for atomic
concepts, C and D for concept terms, and R and S for role terms. DL languages
are differentiated by the constructors they provide.

Tarskian semantics for a DL is given by assigning the elements of the domain
to individuals names, the sets to atomic concepts, and the binary relations to
atomic roles. Formally, an interpretation is a pair I = (ΔI, [| · |]I), where ΔI

is a non-empty set called the domain of the interpretation, and [| · |]I is an
interpretation function that assigns an element in ΔI to each individual name,
a subset of ΔI to each atomic concept, and a subset of ΔI ×ΔI to each atomic
role. For brevity, we usually omit the subscript and superscript I if no confusion
arises. The domain of [| · |] can be extended to all concept and role terms by
induction. We assume that distinct individual names denote distinct objects.
Therefore, the unique name assumption (UNA) must be satisfied; that is, if a, b
are distinct names, then [|a|] �= [|b|].

2 Most of the notations and definitions in this section follow those introduced in [1].

Privacy-Preserving Social Network Publication 315

In a knowledge base, one can distinguish between intensional knowledge, or
general knowledge about the problem domain, and extensional knowledge, which
is specific to a particular problem. Thus, a DL knowledge base is comprised of
two components: a “TBox” and an “ABox”. The TBox contains terminological
axioms , which have the form

C # D(R # S) or C ≡ D(R ≡ S),

where C,D are concepts (and R,S are roles). Axioms of the first kind are called
inclusions, while the second kind are called equalities. We only consider axioms
involving concepts.

An equality whose left-hand side is an atomic concept is called a definition.
Definitions are used to introduce symbolic names for complex descriptions. An
atomic concept that does not occur on the left-hand side of any axiom is called
primitive. A finite set of definitions Σ is called a terminology or TBox if no
symbolic name is defined more than once; that is, if, for every atomic concept A,
there is at most one axiom in Σ whose left-hand side is A. Let A,B be atomic
concepts that occur in Σ. It is said that A directly uses B in Σ if B appears on
the right-hand side of the definition of A, and “uses” is the transitive closure of
the relation “directly uses”. Then, Σ contains a cycle iff there exists an atomic
concept in Σ that uses itself. Otherwise, Σ is acyclic.

The satisfaction of an axiom in an interpretation I = 〈Δ, [| · |]〉 is defined as
follows:

C ≡ D ⇔ [|C|] = [|D|],

C # D ⇔ [|C|] ⊆ [|D|].

If I satisfies an axiom ϕ, it is written as I |= ϕ. A set of axioms Σ is satisfied by
I, written as I |= Σ, if I satisfies each axiom of Σ. Furthermore, Σ is satisfiable
if it is satisfied by some I. An axiom ϕ is the logical consequence of a TBox Σ,
denoted by Σ |= ϕ, if each interpretation that satisfies Σ also satisfies ϕ.

An ABox contains the description of the world in the form of assertional
axioms

C(a) or R(a, b),

where C is a concept term , R is a role term, and a, b are individual names. The
assertion C(a) is called a concept assertion, whereas R(a, b) is a role assertion.
An interpretation I = 〈Δ, [| · |]〉 satisfies an assertion

C(a) ⇔ [|a|] ∈ [|C|],

R(a, b) ⇔ ([|a|], [|b|]) ∈ [|R|].

I satisfies the ABox Φ if it satisfies each assertion in Φ. It is also said that I is a
model of the assertion or the ABox. Finally, I satisfies an assertion or an ABox
Φ with respect to a TBox Σ if it satisfies both Σ and the assertion or the ABox.
An assertion ϕ is a logical consequence of an ABox Φ, written as Φ |= ϕ, if for
every interpretation I, I |= Φ implies that I |= ϕ.

316 T.-s. Hsu, C.-J. Liau, and D.-W. Wang

Let L be a DL language, and let I = 〈Δ, [| · |]〉 be an interpretation of L.
Then, two elements u, v ∈ Δ are indiscernible with respect to the L-concepts (or
simply indiscernible), written as u ≡L v, if for any concept term C of L, u ∈ [|C|]
iff v ∈ [|C|]. Two individual names a and b are indiscernible with respect to the
interpretation I (or simply indiscernible), written as a ≡I

L b, if [|a|] and [|b|] are
indiscernible. Let ρ ⊆ Δ×Δ be an equivalence relation on the domain of I. Then,
we say that the L-concepts are preserved under ρ if u, v are indiscernible for any
(u, v) ∈ ρ. Obviously, a social network (U, (pi)i∈I , (αj)j∈J) can be regarded as an
interpretation of a DL language if each pi corresponds to an atomic concept and
each αj corresponds to an atomic role. Thus, all definitions of interpretations
can be applied to social networks. Next, we introduce two DL languages, called
ALCI and ALCQI, whose concepts are preserved under regular equivalence and
exact equivalence respectively.

The ALCI and ALCQI languages belong to the well-known AL (attributive
language) family, which was first presented in[18]. The constructors for the two
languages and their semantics are shown in Table 1, where %(·) denotes the
cardinality of a set. Thus, the concept terms of ALCI are formed according to
the following syntax rules:

A | � | ⊥ | ¬C | C 1D | ∀R : C | ∀R : C.

The syntax rules for ALCQI consist of those for ALCI and ≥ nR : C and
≤ nR : C, where A is an atomic concept, C and D are concept terms, R is an
atomic role or an inverse role, and n is a natural number.

4 Privacy-Preserving Social Network Publishing

4.1 Problem Formulation

We consider a scenario where a data owner wants to release a social network to
the public. The basic requirement is that any identifying information must be
removed from the data to be published; therefore, we can assume that the actors
in the social network are anonymous. Formally, we consider an anonymous social
network N = (U, (pi)i∈I , (αj)j∈J), where U is a set of anonymous actors. The
name of each actor in U can be regarded as a pseudonym. We use a DL language
L0 characterized by (X, (Ai)i∈I , (Rj)j∈J) to describe the social network, where
X is a set of individual names, each Ai is an atomic concept, and each Rj is
an atomic role. The triple (X, (Ai)i∈I , (Rj)j∈J) is also called the signature of
L0. The set X can be regarded as the set of real identifiers of the anonymous
actors. Given the unique name assumption, we can assume that the cardinality
of X and the cardinality of U are the same. Thus, the social network can be
seen as an interpretation I = (Δ, [| · |]) such that Δ = U , [|Ai|] = pi(i ∈ I), and
[|Rj |] = αj(j ∈ J). Furthermore, since the data owner knows each anonymous
actor’s identifier, he knows the interpretation of all individual names; however,
the adversary does not have such information. In other words, the restriction of
the interpretation function [| · |] to X , denoted by [| · |] 	 X , is known to the data
owner, but not to the adversary.

Privacy-Preserving Social Network Publication 317

Table 1. Constructors and semantics of description logics

Name Syntax Semantics
atomic concept A [|A|] ⊆ Δ
universal concept � Δ
empty concept ⊥ ∅
complement (negation) ¬C Δ\[|C|]
intersection C � D [|C|]∩ [|D|]
universal quantification ∀R : C {x | ∀y((x, y) ∈ [|R|] ⇒ y ∈ [|C|])}
existential quantification ∃R : C {x | ∃y((x, y) ∈ [|R|] ∧ y ∈ [|C|])}
qualified at-least restriction ≥ nR : C {x | �({y ∈ [|C|] | (x, y) ∈ [|R|]}) ≥ n}
qualified at-most restriction ≤ nR : C {x | �({y ∈ [|C|] | (x, y) ∈ [|R|]}) ≤ n}
atomic role R [|R|] ⊆ Δ × Δ

inverse role R− {(x, y) | (y, x) ∈ [|R|]}
counter domain ∼R {(x, x) | ∀y((x, y) �∈ [|R|])}
role union R � S [|R|]∪ [|S|]
role composition R ◦ S [|R|] · [|S|] = {(x, y) | ∃z((x, z) ∈ [|R|] ∧ (z, y) ∈ [|S|])}
transitive closure R+ ⋃

k>0[|R|]k where [|R|]k = [|R|]k−1 · [|R|]
class identity C? {(x, x) | x ∈ [|C|]}

Note that, according to our assumption, [| · |] 	 X is a bijection between X
and U . In other words, we implicitly assumed that the adversary knows the
set of real identifiers of all members of the network. This seems unrealistic at
first glance, since it is much more often the case that the set of individuals
who are members of the social network will not be available to the adversary.
However, with a moderately expressive query language, the information can be
easily revealed to the adversary. For example, if the query language contains the
universal query � whose answer set is X or two mutually complementary queries
ϕ and ψ whose answer sets are the complementary set of each other, then the
adversary can easily know what X is, and consequently, it is impossible to hide
the participation of any individual in the published social network.

Normally, a social network contains sensitive as well as non-sensitive informa-
tion about the actors. Non-sensitive information can be obtained from external
databases, and usually appears with the identifiers of individuals. To formalize
the situation, we assume that atomic concepts and atomic roles can be parti-
tioned into two subsets. That is, I = Is ∪ In and J = Js ∪ Jn, where Is ∩ In = ∅
and Js∩Jn = ∅. An atomic concept (resp. role) Ai (resp. Rj) whose index i ∈ In
(resp. j ∈ Jn) is a non-sensitive concept (resp. role). Let L denote the sublan-
guage of L0 with the signature (X, (Ai)i∈In , (Rj)j∈Jn). Then, all L-concepts and
roles are non-sensitive. We assume that only non-sensitive concept terms about
individuals can appear in an external database. Thus, an external database is
an ABox comprised of assertions made about the individuals in X by using only
L-terms.

Domain knowledge may be available to the public in the form of a TBox.
Since the axioms in a TBox do not involve any individuals, the TBox may con-
tain sensitive and non-sensitive terms . However, a TBox should not allow an
adversary to derive sensitive atomic concepts or roles from non-sensitive terms.

318 T.-s. Hsu, C.-J. Liau, and D.-W. Wang

Thus, a sensitive atomic concept or role should not be defined by using only non-
sensitive terms. The non-derivability of sensitive atomic concepts or roles from
non-sensitive terms is a basic assumption about the publicly available TBox. If
the assumption is not satisfied, then it may be possible to breach the privacy
of individuals by using the external database alone. This aspect is not related
to the publishing of the social network, and it is obviously beyond the scope of
the current problem. In fact, the assumption can be further relaxed if the full
contents of the Tbox are hidden from the public so that an adversary can only
retrieve information from a public database through a limited query language.
For simplicity, we assume that access to public databases is limited in this way.

Let Σ and Φ denote the publicly available TBox and ABox respectively.
We consider the case that the data owner and the adversary can retrieve non-
sensitive information about individuals by using L-concept terms to query the
public databases. The answer to a query C is defined as Ans(C|Σ,Φ) = {a ∈
X | Σ ∪Φ |= C(a)}. We also assume that the public databases are truthful with
respect to the given social network (the verity assumption) and complete (the
completeness assumption). The former means that I |= Σ and I |= Φ, and the
latter means that Ans(C|Σ,Φ)∪Ans(¬C|Σ,Φ) = X for any L-concept term C.
These two assumptions seem quite unrealistic because most databases are incom-
plete and/or contain incorrect information. However, we make the assumptions
so that we can conduct the worst-case analysis of the privacy preservation issue.
In other words, we consider the case where an adversary can obtain as much
non-sensitive information about individuals as possible. If the individuals’ pri-
vacy is not breached, even though the adversary can retrieve such truthful and
complete information, then the privacy can still be preserved when only less
reliable databases are available to the adversary.

In summary, the data owner possesses the following information:

1. the anonymous social network: N;

2. the vocabulary of the DL language L0: (X, (Ai)i∈I , (Rj)j∈J);

3. the partition of the vocabulary into sensitive and non-sensitive parts: I =
Is ∪ In and J = Js ∪ Jn;

4. the information retrieved from the public databases: Ans(C|Σ,Φ) for any
L-concept term C; and

5. the social network as the interpretation of L0: I.

If the anonymous social network is published, the adversary can obtain almost
the same information as that of the data owner, but the information about I
is only partially known by the adversary. Because the released social network is
anonymous, the adversary does not have [| · |] 	 X , although he knows [|Ai|] for
i ∈ I and [|Rj |] for j ∈ J . Indeed, since [|Ai|] is a subset of pseudonyms and [|Rj |] is
a binary relation between pseudonyms, the adversary can learn such information
from the released anonymous network. However, [| · |] 	 X is the identification of
real individuals with their corresponding pseudonyms which is exactly the target
to be protected. Thus, we can formulate the issue of privacy-preserving social
network publication as the following problem:

Privacy-Preserving Social Network Publication 319

– The data owner must decide if the privacy requirement would be violated if
an adversary could access the above-mentioned information.

Because we do not give a precise specification of the privacy requirement in the
formulation, it actually represents a family of decision problems for the data
owner. In the family, the identity disclosure problem and the information dis-
closure problem are particularly interesting. The privacy requirement for the
former is that the identities of the individuals must be hidden from the adver-
sary, whereas the requirement for the latter is that a predefined set of sensitive
facts about the individuals must be kept confidential. The two problems are
formulated more precisely as follows:

– Identity disclosure problem: Could the adversary infer [| · |] 	 X or [|a|] for
some a ∈ X?

– Information disclosure problem: Could the adversary infer C(a) or R(a, b)
for some a, b ∈ X, where C is a sensitive concept and R is a sensitive role?

4.2 Information Granules

As mentioned in Section 1, privacy preservation depends to a large extent on the
indiscernibility of individuals from the information available to the adversary.
Thus, to address the privacy preservation problem, the first step is to find the
classes of indiscernible individuals. We call such classes information granules .
They can be formed on the domain of pseudonyms U or on the domain of
real individuals X . We choose the equivalence classes of ≡L and ≡I

L as the
information granules of U and X respectively.

The following scenario explains the reason for this choice. Suppose the ad-
versary wants to know which pseudonym in the social network corresponds to
a particular individual a ∈ X . He will need to query the public databases with
different L-concept terms and compare a with the pseudonyms according to their
memberships in the answer set, since this is the only way to link the actual indi-
viduals and the pseudonyms. Initially, the adversary considers all elements in U
as possible pseudonyms for a because he does not have any information at that
point. Next, he eliminates the pseudonyms that do not match a by considering
the answers to the queries sequentially. When he reaches the point where no fur-
ther eliminations are possible, the remaining elements are possible pseudonyms
for a according to all the available information. Formally, let C1, C2, C3, . . . be
the enumeration of all L-concepts and let U0 = U . Then, we can define

Uk =

{
Uk−1\[|Ck|], if a �∈ Ans(Ck|Σ,Φ),
Uk−1\[|¬Ck|], if a ∈ Ans(Ck|Σ,Φ),

for k ≥ 1 and Ua
∞ =

⋂
k≥1 Uk. In the same way, we can also define U b

∞ for any
b ∈ X . Then, it is straightforward to derive the following result.

320 T.-s. Hsu, C.-J. Liau, and D.-W. Wang

Proposition 1

1. For any a ∈ X, u ∈ Ua
∞ iff u ≡L [|a|] (or equivalently, Ua

∞ = [[|a|]]≡L).
2. For any a, b ∈ X, if a ≡I

L b, then Ua
∞ = U b

∞.

The proposition shows that, based on the information available to the adversary,
he cannot differentiate [|a|] from the other pseudonyms in the equivalence class
[[|a|]]≡L . Thus, unless [[|a|]]≡L is a singleton, the adversary cannot infer the value
of [|a|]]. The larger the equivalence class [[|a|]]≡L , the more difficult it will be for
the adversary to identify the pseudonym of a. Therefore, we can use the well-
known k-anonymity criterion[19,20] to assess the risk of identity disclosure. In
the current context, the criterion is formulated as follows.

Definition 1. For any k > 0, the released social networkN = (U, (pi)i∈I , (αj)j∈J)
satisfies the k-anonymity criterion if for all u ∈ U , %([u]≡L) ≥ k (or equivalently,
for all a ∈ X, %([a]≡I

L
) ≥ k).

Note that 1-anonymity is always satisfied trivially. Although 2-anonymity is
usually sufficient to prevent the risk of identity disclosure, k-anonymity is some-
times required for larger k when the released data contains highly sensitive
information.

It has been shown that k-anonymity can not fully prevent the compromising
of individual privacy because of homogeneity attacks[8,5,21,22]. In the current
context, this means that all individuals in [[|a|]]≡L satisfy the same sensitive
property that can be derived from the released social network. Let SC and SR
denote, respectively, a set of sensitive concepts and a set of sensitive roles in
the language L0. Then, the logical safety criterion[8] can be used to prevent the
disclosure of sensitive information.

Definition 2. The released social network N = (U, (pi)i∈I , (αj)j∈J) is logically
safe with respect to a L0-concept C (resp. role R) if, for all u ∈ U , there exists
v ∈ [u]≡L such that v �∈ [|C|] (resp. v �∈ [|∃R : �|] and v �∈ [|∃R− : �|]). The social
network is simply logically safe if it is logically safe with respect to each concept
in SC and each role in SR.

Once the logical safety requirement has been violated for some [|a|] ∈ U , the
adversary can infer some sensitive information about a without identifying the
node in the network that corresponds to a. The criterion guarantees the hetero-
geneity of the pseudonyms that the adversary can not distinguish from [|a|] with
respect to the sensitive concepts and roles; hence, the adversary cannot infer any
sensitive information about a with certainty.

4.3 Computation with Positional Analysis

We defined information granules as equivalence classes of the indiscernibility
relations ≡L and ≡I

L, but we did not specify particular DL languages in the def-
inition. For a given DL language L, checking if u ≡L v amounts to evaluating all

Privacy-Preserving Social Network Publication 321

L-concepts in u and v. Since the set of all L-concepts is usually infinite, a straight-
forward calculation is impossible. Thus, we need more practical procedures for
computing information granules. The procedures may be quite diverse for dif-
ferent DL languages. However, because ≡L is closely related to the bisimulation
of interpretations of modal logic according to the well-known Hennessy-Milner
Theorem[2], we can find good algorithms for the computation of indiscernibil-
ity relations in the literature on bisimulation. In particular, it has been shown
that regular equivalence and exact equivalence correspond to the bisimulation of
interpretations of multi-modal logic and graded modal logic respectively[12,10].
Since ALCI and ALCQI can be exactly translated into multi-modal logic and
graded modal logic respectively, we can use existing algorithms for social position
analysis to compute the information granules. More precisely, the computation
is based on the following proposition.

Proposition 2. LetNn = (U, (pi)i∈In , (αj)j∈Jn) be thenon-sensitive sub-network
ofN. Then, for x, y ∈ U ,

1. x ∼=r y in Nn iff x ≡L y when L is formed by using only ALCI constructors
and the role constructors introduced in Table 1;

2. x ∼=e y in Nn iff x ≡L y when L is formed by using only ALCQI construc-
tors.

According to [9], there exist O(m log2 n)-time algorithms for computing the
coarsest regular equivalence ∼=r and the coarsest equitable ∼=e, where m and n
are, respectively, the number of links and the number of nodes in a network[4,14].
Thus, an implication of the above theorem is that the computation of informa-
tion granules based on the ALCI and ALCQI languages can be achieved with
the same time complexity.

Example 1. Let us consider a social network N = (U, (p1, p2), (α1, α2, α3)),
where

– U = {1, 2, · · · , 11},
– p1 = {1, 2, 3, 4, 5},
– p2 = {4, 6, 7},
– α1 = {(1, 4), (2, 4), (2, 5), (3, 5), (6, 10), (6, 11), (7, 8), (7, 9), (7, 10)},
– α2 = {(1, 6), (2, 7), (3, 6), (3, 7), (4, 9), (4, 10), (5, 8), (5, 11)}, and
– α3 = {(2, 9), (4, 8), (9, 5)}.

Furthermore, p1, α1, and α2 are non-sensitive, while p2 and α3 are sensitive.
The non-sensitive part of the network is shown in Figure 1. We assume the
query language for the external database is an ALCI language extended with
the role constructors introduced in Table 1. The signatures of L0 and L are
therefore (X,A1, A2, R1, R2, R3) and (X,A1, R1, R2) respectively, where X =
{a1, a2, · · · , a11}. By viewing the social network as an interpretation of the lan-
guage I = (U, [| · |]), we can define [|ai|] = i(1 ≤ i ≤ 11), [|Ai|] = pi(i = 1, 2), and
[|Ri|] = αi(i = 1, 2, 3). According to our problem formulation, the adversary does
not know the evaluation [|ai|], but he can retrieve the information about the indi-
viduals from the database. For ease of presentation, we assume that all concepts

322 T.-s. Hsu, C.-J. Liau, and D.-W. Wang

and roles are primitive. Thus, the TBox is empty and the ABox contains the full
description of the graph in Figure 1.

Suppose the adversary retrieves the information by using two queries A1 and
∃R1 : � (and perhaps their negations). Then, he can find that a1, a2, and a3
satisfy both queries; a4 and a5 satisfy A1, but not ∃R1 : �; a6 and a7 satisfy
∃R1 : �, but not A1; and a8, a9, a10, and a11 do not satisfy either of the queries.
Thus, the adversary can construct the following mapping:

{a1, a2, a3} −→ {1, 2, 3}
{a4, a5} −→ {4, 5}
{a6, a7} −→ {6, 7}
{a8, a9, a10, a11} −→ {8, 9, 10, 11},

which corresponds to the partition of the nodes into four blocks in Figure 1. Fur-
thermore, since the partition is based on the regular equivalence of the network,
the adversary can not obtain a finer partition by any further L-concept queries.
Therefore, the four blocks also correspond to the equivalence classes of the ≡L
relation and are the information granules of the network. Since the minimum
size of the blocks is 2, the release of the network satisfies the 2-anonymity re-
quirement, but not the 3-anonymity requirement. Moreover, suppose SC = {A2}
and SR = {R3}. Then, the logical safety requirement is also violated because
{6, 7} ⊆ [|A2|] = {4, 6, 7} and {4, 5} ⊆ [|∃R3 : �|] ∪ [|∃R−

3 : �|] = {2, 4, 5, 8, 9}.
Once the privacy breach is detected, several sanitization strategies can be applied
to the network to improve its privacy level, which we can not present here due
to the space limit.

Fig. 1. The non-sensitive part of a social network

Privacy-Preserving Social Network Publication 323

5 Concluding Remarks

In this paper, we address the issue of privacy-preserving social network publi-
cation by using social position analysis techniques. We assume the adversary’s
background knowledge is represented by concept assertions of DL. Based on
the modal logic characterization of positional analysis, actors occupying the
same social position are considered indiscernible in terms of the adversary’s
background knowledge. Thus, by partitioning a social network into equivalence
classes based on the indiscernibility relation, we can generalize the privacy crite-
ria developed for tabulated data, such as k-anonymity, logical safety, l-diversity,
and t-closeness, to social network data. An important feature of the proposed
approach is that it does not make any assumption about the content of the
adversary’s background knowledge as long as it can be represented as concept
assertions in the given DL language. As a result, the approach is robust against
a wide range of knowledge-based attacks, and it guarantees the privacy of in-
dividuals even though the adversary has access to all public concept assertions
about them.

There are several restrictions on the knowledge representation language. This
situation impacts the form of the adversary’s background knowledge that can be
represented. For example, we only allow the use of concept assertions to represent
the adversary’s background knowledge; however, sometimes relational assertions
about some public relations between individuals are also available to the ad-
versary. Moreover, in general social networks, we may have to represent binary
relations as well as k-ary relations for any k > 1. These restrictions are not essen-
tial to our framework because we can employ full-fledged quantificational logic as
the knowledge representation formalism, and define the indiscernibility relation
as a congruence relation with respect to all non-private predicates available to
the public. However, from a practical viewpoint, we would like to develop effi-
cient algorithms to identify such congruence relations. In Section 4.3, we showed
that efficient algorithms can be found for some classes of DL languages. In our
future work, we will try to extend the algorithms to a more general setting.

References

1. Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese, D.,
McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) Description Logic Hand-
book, pp. 47–100. Cambridge University Press (2002)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

3. Boyd, J.P., Everett, M.G.: Relations, residuals, regular interiors, and relative reg-
ular equivalence. Social Networks 21(2), 147–165 (1999)

4. Cardon, A., Crochemore, M.: Partitioning a graph in o(|a| log2 |v|). Theoretical
Computer Science 19, 85–98 (1982)

5. Chiang, Y.C., Hsu, T.-S., Kuo, S., Liau, C.J., Wang, D.W.: Preserving confidential-
ity when sharing medical database with the Cellsecu system. International Journal
of Medical Informatics 71, 17–23 (2003)

324 T.-s. Hsu, C.-J. Liau, and D.-W. Wang

6. de Rijke, M.: Description logics and modal logics. In: Proceedings of the 1998
International Workshop on Description Logics, DL 1998 (1998)

7. Hanneman, R.A., Riddle, M.: Introduction to Social Network Methods. University
of California, Riverside (2005)

8. Hsu, T.-S., Liau, C.-J., Wang, D.-W.: A logical model for privacy protection. In:
Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 110–124. Springer,
Heidelberg (2001)

9. Lerner, J.: Role assignments. In: Brandes, U., Erlebach, T. (eds.) Network Analysis.
LNCS, vol. 3418, pp. 216–252. Springer, Heidelberg (2005)

10. Liau, C.J.: Social networks and granular computing. In: Meyers, R.A. (ed.) Ency-
clopedia of Complexity and Systems Science, pp. 8333–8345. Springer (2009)

11. Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks.
Journal of Mathematical Sociology 1, 49–80 (1971)

12. Marx, M., Masuch, M.: Regular equivalence and dynamic logic. Social Net-
works 25(1), 51–65 (2003)

13. Nardi, D., Brachman, R.J.: An introduction to description logics. In: Baader, F.,
Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) Descrip-
tion Logic Handbook, pp. 5–44. Cambridge University Press (2002)

14. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on
Computing 16(6), 973–989 (1987)

15. Pawlak, Z.: Rough Sets–Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers (1991)

16. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans-
actions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)

17. Schild, K.: A correspondence theory for terminological logics: Preliminary report.
In: Proceedings of the 12th International Joint Conference on Artificial Intelligence,
pp. 466–471 (1991)

18. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

19. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and
suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems 10(5), 571–588 (2002)

20. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)

21. Wang, D.W., Liau, C.J., Hsu, T.-S.: Medical privacy protection based on granular
computing. Artificial Intelligence in Medicine 32(2), 137–149 (2004)

22. Wang, D.W., Liau, C.J., Hsu, T.-S.: An epistemic framework for privacy protection
in database linking. Data and Knowledge Engineering 61(1), 176–205 (2007)

On the Implementation of a Fuzzy DL Solver over
Infinite-Valued Product Logic with SMT Solvers�

Teresa Alsinet1, David Barroso1, Ramón Béjar1, Félix Bou2,3,
Marco Cerami4, and Francesc Esteva3

1 Department of Computer Science – University of Lleida
C/Jaume II, 69 – 25001 Lleida, Spain

{tracy,david,ramon}@diei.udl.cat
2 Faculty of Mathematics, University of Barcelona

Gran Vía 585 – 08007 Barcelona, Spain
bou@ub.edu

3 Artificial Intelligence Research Institute (IIIA-CSIC)
Campus UAB - 08193 Bellaterra, Barcelona, Spain

{fbou,esteva}@iiia.csic.es
4 Department of Computer Science – Palacký University in Olomouc

17. listopadu 12 – CZ-77146 Olomouc, Czech Republic
marco.cerami@upol.cz

Abstract. In this paper we explain the design and preliminary implementation
of a solver for the positive satisfiability problem of concepts in a fuzzy descrip-
tion logic over the infinite-valued product logic. This very solver also answers
1-satisfiability in quasi-witnessed models. The solver works by first performing
a direct reduction of the problem to a satisfiability problem of a quantifier free
boolean formula with non-linear real arithmetic properties, and secondly solves
the resulting formula with an SMT solver. We show that the satisfiability problem
for such formulas is still a very challenging problem for even the most advanced
SMT solvers, and so it represents an interesting problem for the community work-
ing on the theory and practice of SMT solvers.

Keywords: description logics, fuzzy product logic, SMT solvers.

1 Introduction

In the recent years, the development of solvers for reasoning problems over description
logics (DLs) has experienced an important growth, with very succesful approaches. We
have two main approaches, the most traditional one, able to handle very expressive DLs,
is the one based on Tableaux-like algorithms [1]. For certain DLs, the approach based
on translations of the problem to more basic logical reasoning problems, like the ones

� Research partially funded by the Spanish MICINN projects ARINF (TIN2009-14704-C03-
01/03) and TASSAT (TIN2010-20967-C04-01/03), MINECO project EdeTRI (TIN2012-
39348-C02-01), Agreement Techologies (CONSOLIDER CSD 2007- 0022), Catalan Gov-
ernment (2009SGR-1433/34) and ESF project POST - UP II No. CZ.1.07/2.3.00/30.0041 that
is co-financed by the European Social Fund and the state budget of the Czech Republic.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 325–330, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

326 T. Alsinet et al.

based on a translation to propositional clausal forms has shown to be very sucessful [8].
Very recently, the approach based on doing translations to less simple knowledge rep-
resentation formalisms and then using Sat Modulo Theory (SMT) solvers, has started
to receive high interest [6].

In the case of DLs over fuzzy logics (Fuzzy DLs), the state-of-the-art on solvers can
be summarized mainly on the work of Straccia and Bobillo with fuzzyDL, their solver
for Fuzzy DL over Łuckasiewicz Logic [9] (available in Straccia’s home page), that
is based on a mixture of tableau rules and Mixed Integer Linear Programming. Note
that the problem faced in [9], called concept satisfiability w.r.t. knowledge bases with
GCI, is more general than the one faced in the present paper. Unfortunately, the general
problem of concept satisfiability w.r.t. knowledge bases with GCI over infinite-valued
Łukasewicz semantics has been proved to be undecidable in [3]. Nevertheless, as proved
in [3], the solver proposed in [9] can solve the concept satisfiability problem without
knowledge bases.

In this work, we present a solver for the concept satisfiability problem without knowl-
edge bases, in the Fuzzy DL ALE over the infinite-valued product logic. This prob-
lem has been studied in [2] and the FDL under exam has been denoted Π-ALE . Our
approach is based on the last work, where the authors show that the positive and 1-
satisfiability problems in Π-ALE limited to quasi-witnessed models are decidable.

To prove the above result the authors give a reduction (inspired by the one given
by Hájek for witnessed models [7]) of the concept satisfiability problem in Π-ALE
with respect to quasi-witnessed models to an entailment problem between two sets of
propositional formulas. The algorithm presented in [2] takes a description concept
C0 as input and recursively produces a pair of propositional theories as output. The
propositional theories produced as output jointly represent a description of an FDL
interpretation (a kind of Kripke model) that is supposed to satisfy concept C0 (in the
case, obviously that C0 is satisfiable) in the sense that C0 is satisfiable if and only if
it can be proved that one of the propositional theories is not entailed by the other. The
novelty of the algorithm presented in [2] is that it can describe possibly infinite models
by means of a finite set of propositional formulas.

For this reason, the algorithm is more complex than the one of Hájek. The algorithm
proposed by Hájek, indeed, just produces one propositional theory with the property of
being satisfiable if and only if the concept C0 is satisfiable with respect to witnessed
models. The advantage of dealing with only witnessed models is that then the finite
model property holds. But in the case of quasi-witnessed models this property fails and
there can be the case of dealing with infinite models of a certain shape. In this sense
the two propositional theories in the output of the algorithm introduced in [2] represent
positive and negative constraints that this kind of structures must respect in order to
be models for the concepts considered. Hence, the problem of finding a propositional
evaluation that satisfies the set of propositionsQWT (C0) but not the set YC0 , is exactly
the problem of deciding whether YC0 is not entailed by QWT (C0).

Moreover they prove that positive satisfiability in first order product logic (and, as a
consequence, in Π-ALE) coincide with positive satisfiability with respect to the quasi-
witnessed models of first order product logic. If the same completeness result holds for
the notion of 1-satisfiability is still an open problem.

On the Implementation of a Fuzzy DL Solver 327

In this paper we present a solver that works by first performing a direct reduction of
the problem to a satisfiability problem of a boolean formula with real valued variables
and non-linear terms, more concretely boolean formulas valid in (R,+,−, ·, /, {q : q ∈
{Q}), and secondly solves the resulting formula with a SMT solver. Solving such for-
mulas is still a very challenging problem for even the most advanced SMT solvers, and
in this work we show results suggesting that this satisfiability problem for Π-ALE is a
real challenging problem for SMT solvers, and so it represents an interesting problem
for the community working on the theory and practice of SMT solvers.

2 An SMT-Based Solver for the Π-ALE Description Logic

2.1 System Architecture Design

For solving the r-satisfiability problem (where r ∈ Q∩ [0, 1]), with witnessed or quasi-
witnessed models, of an input conceptC0 in Π-ALE , our system follows the next steps:

1. The user introduces the expression of the concept C0 to be solved, and selects a
class of models to search: witnessed or quasi-witnessed.

2. From the parsing tree of C0, we either generate the set WTC0 (when selecting
witnessed models) or the set QWTC0 (when selecting quasi-witnessed models).

3. We obtain a corresponding formula FC0 , from WTC0 or QWTC0 , such that it will
have a solution in (R,+,−, ·, /, {q : q ∈ {Q}) if C0 is satisfiable with the class of
models we have selected. This is explained in more detail in the next subsection.

4. The formula FC0 is solved with a suitable SMT solver.

In our current implementation we use the SMT solver Z3 [5] although the formula
FC0 to be solved is generated in SMT 2.0 format, so we can use any SMT solver able
to solve formulas in (R,+,−, ·, /, {q : q ∈ {Q}). There is an on-line version of our
solver available at the URL: http://arinf.udl.cat/fuzzydlsolver.

2.2 Translation of Fuzzy Propositional Axioms to Non-linear Real Arithmetic
Formulas

In [2] the authors showed a translation of the r-satisfiability problem with respect to
quasi-winessed models of a conceptC0 over the logicΠ-ALE to an entailment problem
of a propositional theory (called QWTC0) in Product Logic. Instead on trying to solve
directly QWTC0 , our approach is based on a reduction to the problem of solving the
satisfiabilitity of a corresponding formula FC0 built over quantifier-free real non-linear
arithmetic logic such that FC0 is satisfiable if and only if the concept C0 is r-satisfiable
in a quasi-witnessed model over Π-ALE .

We explain the reduction for the particular case of witnessed models, presented in
the work of Hájek, that is based on a simpler fuzzy propositional theory (called WTC0).
For every proposition p, we generate a corresponding formula f(p) over quantifier-free
non-linear real arithmetic logic. See Definition 3 in [7] for a detailed explanation of
all the axioms in WTC0 obtained from an input concept C0 or Definition 10 in [2] for
the corresponding explanation of the axioms in QWTC0 for the more general case of

http://arinf.udl.cat/fuzzydlsolver

328 T. Alsinet et al.

quasi-witnessed models. The formulas to generate depend on the form of the propo-
sition p, and are indicated in Table 1. In the table, ite(C,A,B) is a shorthand for: if
condition C is true, then A must be true, else B must be true and it(C,A) is a short-
hand for: if condition C is true, then A must be true. For example, the formula of the
first row indicates that real value assigned to the propositional variable of an univer-
sal concept, pr(∀R.C(dσ)), must be equal to 1 if pr(R(dσ, dσ,n)) ≤ pr(C(dσ,n)) and
pr(C(dσ,n))/pr(R(dσ , dσ,n)) otherwise.

Table 1. Reduction of formulas from the propositional theory WTC0 to formulas in the corre-
sponding set of non-linear arithmetic boolean formulas FC0

p translation f(p)

(∀R.C(dσ) ≡ (R(dσ , dσ,n) → C(dσ,n))) ite(pr(R(dσ , dσ,n)) ≤ pr(C(dσ,n)), pr(∀R.C(dσ)) = 1,
pr(∀R.C(dσ)) · pr(R(dσ , dσ,n)) = pr(C(dσ,n)))

(∃R.C(dσ) ≡ (R(dσ , dσ,n) � C(dσ,n))) pr(∃R.C(dσ)) = pr(R(dσ, dσ,n)) ∗ pr(C(dσ,n))
∀R.C(dσ) → (R(dσ, dσ,m) → C(dσ,m)) it(pr(R(dσ, dσ,m) > pr(C(dσ,m)),

pr(∀R.C(dσ)) ≤ pr(C(dσ,m))

pr(R(dσ,dσ,m))
)

(R(dσ, dσ,m) � C(dσ,m))) → ∃R.C(dσ) pr(R(dσ, dσ,m)) · pr(C(dσ,m)) ≤ pr(∃R.C(dσ))

Then, to solve the r-satisfiability problem of conceptC0 we must determine whether:

FC0 ∪ {0 ≤ pr(E) ≤ 1 | pr(E) ∈ V ars(FC0)} ∪ {pr(C0) = r}

is satisfiable in (R,+,−, ·, /, {q : q ∈ {Q}), where V ars(FC0) denotes the set of all
the propositional variables used in formulas of FC0 .

When we ask instead to solve the problem over quasi-witnessed models, we consider
then the theory QWT (C0). In this case, we change the formula produced in the first
row of Table 1 for:

(pr(∀R.C(dσ)) = 0)∨ (ite(pr(R(dσ , dσ,n)) ≤ pr(C(dσ,n)), pr(∀R.C(dσ)) = 1,
pr(∀R.C(dσ)) · pr(R(dσ , dσ,n)) = pr(C(dσ,n))))

And we have also to consider the additional set of propositions in YC0 of Definition 10
in [2], that are of the form:

¬∀R.C(dσ)
 (R(dσ, dσ,n) → C(dσ,n))

that must not be equal to 1 in any solution of the satisfiability problem in order to encode
valid quasi-witnessed models. The idea used in [2] to add the constraint “pr(R(dσ, dσ,n))
> pr(C(dσ,n))” to YC0 is that when pr(∀R.C(dσ)) = 0 it is possible to finitely encode
an infinite model with (infinite) individuals d1σ,n, d

2
σ,n, . . . which satisfies

limi→∞
pr(C(dσ,n))

i

pr(R(dσ , dσ,n))i
= 0.

So, for each such proposition we introduce this additional formula in FC0 :

it(pr(∀R.C(dσ)) = 0, pr(R(dσ, dσ,n)) > pr(C(dσ,n))

which translates the fact that propositions in YC0 should not be satisfied in terms of
satisfiability of non-linear arithmetic boolean formulas.

On the Implementation of a Fuzzy DL Solver 329

3 Preliminary Evaluation

Consider the following family of 1-satisfiable concepts, indeed satisfiable with wit-
nessed models, in our logicΠ-ALE , that use the relation symbol friend and the atomic
concept symbol popular, determined by the following regular expression:

n+1︷ ︸︸ ︷
∀friend.∀friend. popular 1

n︷ ︸︸ ︷
∃friend.∃friend.¬popular (1)

where n is an integer parameter with n ≥ 1.
Consider also the following family of 1−satisfiable concepts, but only with quasi-

witnessed models, determined by the regular expression:

n︷ ︸︸ ︷
∀friend.∀friend. popular 1 ¬

n︷ ︸︸ ︷
∀friend.∀friend.(popular
 popular)

(2)
where n is as before an integer parameter with n ≥ 1.

Table 2. Formula size (in Kbytes) and solving times (in seconds) for FC0 obtained with our two
benchmarks of concepts with Z3 SMT solver. The generation time of the formula FC0 was less
than 0.08 seconds up to n = 8 and less than 0.2 seconds for the other sizes.

Benchmark for concepts (1) Benchmark for concepts (2)
WTC0 QWTC0 WTC0 QWTC0

n size solving time size solving time n size solving time size solving time

3 20 0.033 24 0.029 3 16 0.023 20 0.036
4 40 0.041 44 0.063 4 32 0.055 36 0.105
5 80 0.118 92 0.216 5 64 0.143 76 0.450
6 164 0.379 184 0.806 6 132 0.465 152 2.101
7 332 1.327 372 3.094 7 264 1.639 304 > 1200
8 672 5.080 756 > 1200 8 528 11.301 616 > 1200
9 1400 > 1200 1500 > 1200 9 1100 > 1200 1300 > 1200

10 2700 > 1200 3100 > 1200 10 2200 > 1200 2500 > 1200

Table 2 shows the computation times1, obtained with the SMT solver Z3 (version
4.3.2), when solving the instances from our benchmarks in the rangen ∈ {3, 4, . . . , 10}.
We have solved the instances with both encodings, the one for only witnessed models
and the one for quasi-witnessed models. The table also shows the size of the resulting
formulas FC0 obtained from each encoding. We observe that on the first benchmark,
with both encodings we solve the instances within the time limit of 20 minutes up to
n = 7, but with the quasi-witnessed encoding is always harder to solve it. For the second
benchmark, the situation is even more different between both encodings. The witnessed

1 The results were obtained with a Linux PC with four Intel i7 2.67 GhZ processors, and with
a memory limit of 7GB per execution. A time equal to > 1200 means that the execution was
aborted after 20 minutes without being able to solve the instance.

330 T. Alsinet et al.

encoding solves the instances (find that they are not satisfiable with witnessed models)
up to n = 8. By contrast, the quasi-witnessed encoding solves the instances only up to
n = 6 and always in more time.

4 Conclusions and Future Work

Our results show that the performance of our SMT-based approach, that works by solv-
ing a non-linear real arithmetic boolean formula is really problematic. So, we are now
developing a version of our tool that will consider a translation of the problem to a
satisfiability problem over a linear real arithmetic problem. This new tool is based on
some results shown in [4,2] and follows a similar approach to the one proposed in [10]
to develop a satisfiability solver for different many-valued propositional logics.

References

1. Baader, F.: Tableau algorithms for description logics. In: Dyckhoff, R. (ed.) TABLEAUX
2000. LNCS, vol. 1847, pp. 1–18. Springer, Heidelberg (2000)

2. Cerami, M., Esteva, F., Bou, F.: Decidability of a description logic over infinite-valued prod-
uct logic. In: Proceedings of KR 2010 (2010)

3. Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under
łukasiewicz t-norm. Information Sciences 227, 1–21 (2013)

4. Cignoli, R., Torrens, A.: An algebraic analysis of product logic. Multiple-Valued Logic 5,
45–65 (2000)

5. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

6. Haarslev, V., Sebastiani, R., Vescovi, M.: Automated Reasoning in ALCQ via SMT. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 283–298.
Springer, Heidelberg (2011)

7. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Systems 154(1),
1–15 (2005)

8. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive Datalog
programs. In: Proceedings of KR 2004, pp. 152–162 (2004)

9. Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy
description logics. In: Proceedings of EUSFLAT 2007, pp. 213–220 (2007)

10. Vidal, A., Bou, F., Godo, L.: An SMT-based solver for continuous t-norm based logics. In:
Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 633–
640. Springer, Heidelberg (2012)

On the Merit of Selecting Different Belief

Merging Operators

Pilar Pozos-Parra�, Kevin McAreavey, and Weiru Liu

Queen’s University Belfast, Northern Ireland
{p.pozos-parra,kmcareavey01,w.liu}@qub.ac.uk

Abstract. Belief merging operators combine multiple belief bases (a
profile) into a collective one. When the conjunction of belief bases is
consistent, all the operators agree on the result. However, if the conjunc-
tion of belief bases is inconsistent, the results vary between operators.
There is no formal manner to measure the results and decide on which
operator to select. So, in this paper we propose to evaluate the result
of merging operators by using three ordering relations (fairness, satisfac-
tion and strength) over operators for a given profile. Moreover, a relation
of conformity over operators is introduced in order to classify how well
the operator conforms to the definition of a merging operator. By using
the four proposed relations we provide a comparison of some classical
merging operators and evaluate the results for some specific profiles.

1 Introduction

Belief merging looks at strategies for combining belief bases from different sources,
which in conjunction may be inconsistent, in order to obtain a consistent belief
base representing the group. Logic-based belief merging has been studied exten-
sively [1,14,10,11,8,9]. A well known strategy is the use of an operator Δ which
takes as input the belief bases (profile)E and outputs a new consistentmerged be-
lief base Δ(E). Often operators require additional information such as a priority
relationship between the bases or numbers representing base weights. However,
in many applications this information does not exist and we must accord equal
importance to each of the beliefs and bases. Among existing operators which are
independent of additional information, we can mention: Δ

MCS
, Δ

Σ
, Δ

Gmax
and

DA2 operators. In each case the belief bases are described using a finite number
of propositional symbols; there is no hierarchy, nor priority, nor any difference in
reliability of the sources. Prioritized belief bases or weighted bases, such as in
possibilistic logic [12], will be consider in future work.

Considering flat profiles, there are two main families of belief merging oper-
ators: the formula-based operators (also called syntax-based operators) and the
model-based operators (also called distance-based operators). The operators be-
longing to the former family select subsets of consistent formulae from the profile
E. While the variety depends on the selection criterion, there is no formal way

� The first author was supported by CONACyT and UJAT.

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 331–345, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

332 P. Pozos-Parra, K. McAreavey, and W. Liu

to compare different criteria. The operators belonging to the latter family define
a distance between worlds, a distance from worlds to bases, and a distance from
worlds to profiles with the help of an aggregation function. Then, the operators
take as models of the merged result, those worlds which are closest to the be-
lief profile. While the distances allow us to define a notion of closeness in any
framework, we miss a general measure that indicates how close a profile E is to
the merged base Δ(E). A general measure will allow us to compare, in a formal
manner, the results from different operators.

In [2] the notion of a base satisfaction index (individual index) was introduced,
where such an index measures the closeness from a base K to a merged base
Δ(E). The index is a function that takes as input two belief bases: a belief base
K ∈ E and the merged base Δ(E). The output is a numeral value i(K,Δ(E))
which represents the degree of satisfaction of the base given the merged base.
While this notion allows us to measure the satisfaction of every member of a
profile, there is no measure for the satisfaction of the whole profile. So, in this
paper we propose to evaluate the result of merging operators by using three
ordering relations (fairness, satisfaction and strength) over the operators for a
given profile. Moreover, a relation of conformity over the operators is introduced
in order to classify the degree to which an operator conforms to the definition
of a merging operator. By using the four proposed relations we provide a com-
parison for some classical merging operators and we evaluate the results of these
operators for some specific profiles.

The objective of this paper is to draw a comparative landscape through crite-
rion based on a degree of satisfaction and notions of conformity and strength for
many merging operators from the literature. We focus on operators for merging
bases represented as sets of propositional formulae, where no priorities or weights
are given. The rest of the paper is organized as follows. After some preliminaries,
in Section 3 we recall some of the main merging operators from the literature.
Then, we introduce the degree of satisfaction and three relations as well as in-
troducing a method for measuring the result of the operators. In Section 5 we
compare some results for operators through our proposal for specific profiles.
Finally, we conclude mentioning some future work.

2 Preliminaries

We consider a language L of propositional logic using a finite set of proposi-
tional variables P := {p1, p2, ..., pm}, the standard connectives, and the boolean
constants � and ⊥ representing always true and false, respectively. |A| denotes
the cardinality of a set A or the absolute value of a number A.

An interpretation or world w is a function from P to {0, 1}, the set of worlds
of the language is denoted by W , its elements will be denoted by boolean vectors
of the form (w(p1), ..., w(pm)), where w(pi) = 1 (representing true) or w(pi) = 0
(representing false) for i = 1, ...,m. A world w is a model of φ ∈ L if and only
if φ is true under w in the classical truth-functional manner. The set of models
of a formula φ is denoted by mod(φ). The formula φ is consistent if and only if

On the Merit of Selecting Different Belief Merging Operators 333

there exists a model of φ. The formula φ is a logical consequence of a formula ψ,
denoted ψ |= φ if and only if mod(ψ) ⊆ mod(φ). For any set of models M ⊆ W ,
let form(M) denote a formula whose set of models are preciselyM (up to logical
equivalence), i.e., mod(form(M)) = M .

A belief base K is a finite set of propositional formulae of L representing
the beliefs from a source. Some approaches identify K by the conjunction of its
elements so each knowledge base can be treated as a single formula. For this
reason we use L rather than 2L or L to denote the set of all belief bases. A belief
profile E is a multiset (bag) of n belief bases E = {K1, ...,Kn} (n ≥ 1). The
profile represents the set of information sources to be processed. We denote the
conjunction of bases in E by

∧
E and the disjunction of bases in E by

∨
E.

A profile E is consistent if and only if
∧
E is consistent. The multi-set union

between E1 and E2 is denoted by E1 2E2.
In [6] eight postulates have been proposed to characterize the process of belief

merging with integrity constraints in a propositional setting. This characteri-
zation is rephrased, without reference to integrity constraints, producing the
following M1–M6 postulates.

Definition 1. Let E, E1, E2 be belief profiles, K1 and K2 be consistent belief
bases. Let Δ be an operator which assigns to each belief profile E a belief base
Δ(E). Δ is a merging operator if and only if it satisfies the following postulates:

(M1) Δ(E) is consistent
(M2) if

∧
E is consistent then Δ(E) ≡

∧
E

(M3) if E1 ≡ E2, then Δ(E1) ≡ Δ(E2)
(M4) Δ({K1,K2})∧K1 is consistent if and only if Δ({K1,K2})∧K2 is consistent
(M5) Δ(E1) ∧Δ(E2) |= Δ(E1 2E2)
(M6) if Δ(E1) ∧Δ(E2) is consistent, then Δ(E1 2 E2) |= Δ(E1) ∧Δ(E2)

The postulates describe the principles that a belief merging operator should
satisfy. Among them, syntax irrelevance (M3), and fairness (M4) are key pos-
tulates. In the literature [6] we can find some operators which are considered
merging operators even though they do not satisfy the six postulates. Therefore
a relation, based on the number of postulates for which operators conform, may
be a first attempt at comparing operators. Formally:

Conformity Relation. An operator Δ1 is more conforming than an operator
Δ2, denoted Δ1 ≥ Δ2, if Δ1 satisfies more postulates than Δ2.

This relation is strictly numeric in that we do not consider the satisfaction of
any one postulate to be more desirable than the satisfaction of another.

3 Belief Merging Operators

As we stated before, there are two main families of merging operators: formula-
based and model-based operators. The former selects some formulae from the
union of the bases with the help of a selection criterion. The latter selects some
interpretation with the help of some distances and aggregation functions.

334 P. Pozos-Parra, K. McAreavey, and W. Liu

3.1 Formula-Based Operators

Formula-based operators are based on the selection of consistent subsets of for-
mulae in the union of the members of a profile E. In [1], the operators aim to
find all maximally consistent subsets (MCS) of the inconsistent union of belief
bases. When an integrity constraint is imposed the operator only selects the
MCS which are consistent w.r.t. the integrity constraint. The operators are de-
fined w.r.t. a function MCS, whose input is a belief base K and an integrity
constraint μ, and the output is the set of maximal (w.r.t. inclusion) consistent
subsets of K ∪{μ} that contains μ, formally, MCS(K,μ) is the set of all F s.t.:

1. F is consistent, 2. F ⊆ K ∪ {μ},
3. μ ∈ F and 4. if F ⊂ F ′ ⊆ K ∪ {μ}, then F ′ is inconsistent.

MCS is extended for a profile E as follows: MCS(E, μ) = MCS(
⋃

K∈E
K,μ).

Another function that helps to define some operators is |MCS|, which can
be defined by replacing inclusion with cardinality in 4: if |F | < |F ′|, s.t. F ′ ⊆
K∪{μ}, then F ′ is not consistent. |MCS| is extended for a profile E in a similar
manner. The following operators have been defined in [1,5]:

1. ΔMCS1
(E, μ) =

∨
MCS(E, μ).

2. Δ
MCS3

(E, μ) =
∨
{F : F ∈ MCS(E,�) and F ∪ {μ} consistent}.

3. Δ
MCS4

(E, μ) =
∨
|MCS|(E, μ).

4. Δ
MCS5

(E, μ) =

⎧⎨⎩
∨

{F ∪{μ} : F ∈ MCS(E,�)
and F ∪ {μ} consistent}

if ∃F ∈ MCS(E,�)
s.t. F ∪ {μ} �= ∅,

μ otherwise.

The first three operators correspond respectively to operators Comb1(E, μ),
Comb3(E, μ) and Comb4(E, μ) proposed in [1]. In order to assure consistency,
Δ

MCS3
was modified in [5] as Δ

MCS5
. These operators are syntax sensitive.

Example 1. From [11]. Let E = {K1,K2,K3} where K1 = {a}, K2 = {a → b}
and K3 = {a,¬b}. Then, ΔMCS(E) = {a, a→ b} ∨ {a,¬b} ∨ {¬b, a→ b}.

3.2 Model-Based Operators

In most model-based frameworks an operator Δ is defined by a function m :
Ln → 2W from the set of profiles to the power set ofW s.t.Δ(E) = form(m(E)).
For simplicity we use the standard notation mod(Δ(E)) rather than m(E). The
process is defined using three distances: a distance from one world to another
d(w,w′), a distance from a world to a belief base d(w,K) based on d(w,w′) and a
distance from a world to a profile d(w,E) based on d(w,K). The latter distance
is usually defined by aggregation functions and allows us to define a pre-order
≤E . The closest worlds to the profile are the models of the merging process.

On the Merit of Selecting Different Belief Merging Operators 335

We summarize the definitions as follows. A distance1 between worlds is a
function d : W×W → R+ from the Cartesian square of W to the set of positive
real numbers s.t. for all w,w′ ∈ W :

1. d(w,w′) = d(w′, w) and 2. d(w,w′) = 0 iff w = w′.

The distance between a world and a belief base is a function d : W×L → R+

from the Cartesian product of W and the set of belief bases to the set of positive
real numbers. Some methods define this distance as the minimal distance be-
tween world w and any model of base K, i.e., d(w,K) = minw′∈mod(K)d(w,w

′).
Finally, the distance between a world and a profile is a function da : W ×Ln →
R+ from the Cartesian product of W and the set of profiles to the set of pos-
itive real numbers, defined as the result of applying the aggregation function
a : R+n → R+ to the distances between w and every profile member, i.e.
da(w,E) = a(d(w,K1), ..., d(w,Kn)) s.t. E = {K1, ...,Kn}.
Definition 2. An aggregation function a is a total function associating a pos-
itive real number to every finite n-tuple of positive real numbers s.t. for all
x1, ..., xn, x, y ∈ R+:

1. if x ≤ y, then a(x1, ..., x, ..., xn) ≤ a(x1, ..., y, ..., xn),
2. a(x1, ..., xn) = 0 iff x1 = ... = xn = 0 and
3. a(x) = x.

Any aggregation function induces a total pre-order ≤E on the set W w.r.t. the
distances to a given profile E. Thus, the merging operator Δd,a for a profile E
is defined as a belief base (up to logical equivalence) whose models are the set
of all worlds with the minimal distance da to the profile E, i.e.,

mod(Δd,a(E)) = min(W ,≤E).

Every framework consists of a distance and an aggregation function. The dis-
tance between worlds most widely used in the literature is Hamming distance2,
which is the number of propositional variables on which two worlds differ, i.e.,

d(w,w′) =
∑
p∈P

|w(p)− w′(p)|.

Two outstanding aggregation functions are maximum and sum, their correspond-
ing distance are defined, respectively, as follows:

d
max

(w,E) = max
K∈E

d(w,K) and d
Σ
(w,E) =

∑
K∈E

d(w,K).

In both cases, the induced pre-order is defined with the help of ≤ over real
numbers as follows:

w ≤
E
w′ iff da(w,E) ≤ da(w

′, E).

1 As in [9], the triangle inequality is not required.
2 From now, if a belief merging operator Δd,a uses Hamming distance, in order to
avoid heavy notations, we identify it by Δa.

336 P. Pozos-Parra, K. McAreavey, and W. Liu

Another well known operator is Δ
Gmax

, introduced in [7], where the aggregation
function does not output a number but instead outputs a vector of numbers,
which is the result of sorting the input distances in descending order, i.e.,

d
Gmax

(w,E) = sort(d(w,K1),, d(w,Kn)).

The operator ΔGmax uses the lexicographic ordering ≤
lex

for comparing vectors,
the pre-order induced is defined as follows.

w ≤E w′ iff dGmax(w,E) ≤
lex

dGmax(w
′, E).

Example 2. Given profile E from Example 1, and variables a and b in that order,
then:mod(Δmax(E)) = {(0, 0), (1, 0), (1, 1)};mod(ΔΣ(E)) = {(1, 0), (1, 1)}; and
mod(ΔGmax(E)) = {(1, 0), (1, 1)}.

4 On the Measure of Merging Operators

Comparing the number of postulates (from Definition 1) for which merging op-
erators conform, provides a means to generally evaluate and compare operators.
Only ΔΣ and ΔGmax satisfy all six postulates. Δmax satisfies the first five pos-
tulates. However, given a naive operator Δ� (typical of Yager’s rule for merging
belief functions [15]) s.t. Δ� =

∧
E if

∧
E is consistent and Δ� = � otherwise.

This operator satisfies the first five postulates and satisfies the last postulate
when both profiles E1 and E2 are either consistent or inconsistent. Under this
characterization we can consider Δ� to be more conforming than operators such
as Δmax which satisfy fewer postulates. However Δ� does not help to make
decisions since the result is a tautology when the sources of information are in-
consistent and the information of a tautology is neither useful nor informative.
For this reason, we also need to classify operators based on their merging result
in order to select the best operator for a given profile.

We propose to classify operators based on: (1) conformity; (2) the degree of
satisfaction of their merging result w.r.t the given profile and two relations over
operators; and (3) a relation of strength over operators. The degree of satisfaction
of a belief base is formally defined as follows:

Definition 3 (Degree of satisfaction of belief bases). Function SAT :
L×L → [0, 1] is called a the degree of satisfaction of belief bases iff for any belief
base K and K ′, it satisfies the following postulates:

Reflexivity: SAT (K,K ′) = 1 iff mod(K ′) ∩mod(K) �= ∅.
Monotonicity: SAT (K,K ′) ≥ SAT (K,K∗) iff mod(K ′) ⊆ mod(K∗).

Semantically, a degree of satisfaction for a belief base K in a given profile E,
is a measure of how satisfied the belief base K is by the merged base K ′ = Δ(E)
resulting from the application of a merging operator Δ on the profile E. Notice
that the definition considers a general case where K ′ may be a belief base which
is not necessarily the result of a merging operator. Two stronger variants are:

On the Merit of Selecting Different Belief Merging Operators 337

Definition 4. A rational degree of satisfaction is a degree of satisfaction which
satisfies the Rationality postulate: SAT (K,K ′) = 0 if mod(K ′) ∩mod(K) = ∅.
Definition 5. A symmetric degree of satisfaction is a degree of satisfaction
which satisfies the Symmetry postulate: SAT (K,K ′) = SAT (K ′,K).

Based on this degree of satisfaction we can define the degree of satisfaction of
a profile as follows:

Definition 6 (Degree of satisfaction of belief profiles). Let E be a profile,
SAT be a degree of satisfaction of belief bases and a be an aggregation function.
The degree of satisfaction of E by K ′ based on SAT and a, denoted SATa(E,K

′),
is defined as follows: SATa(E,K

′) = aK∈ESAT (K,K
′).

Then we can define a maximum and minimum degree of satisfaction for a
profile E as follows:

Definition 7. Let E be a profile and K ′ be a belief base. Then SATmax(E,K
′)

is the maximum degree of satisfaction of E by K ′ iff SATmax(E,K
′) = maxK∈E

SAT (K,K ′). Also, SATmin(E,K
′) is the minimum degree of satisfaction of E

by K ′ iff SATmin(E,K
′) = minK∈ESAT (K,K

′).

4.1 Instantiation of the Degree of Satisfaction (Base Satisfaction
Index)

Notice that Definition 3 is about properties of a measure, no specific measures
are actually given. This section and the next provide these measures. In the
literature we can find a way to define the satisfaction of a base given the merged
base: in [2] the notion of a base satisfaction index is the degree of satisfaction of
K ∈ E, given Δ(E), as a total function i from L× L to [0, 1]. Then i(K,Δ(E))
indicates how close a base K is to the merged base Δ(E). In [2] four indexes
are proposed when no additional information about the sources is available: iw,
is, ip and id. These base satisfaction indexes satisfy Definition 3, so they can be
considered as degrees of satisfaction of a belief base3. Formally:

Definition 8 (weak drastic index). This boolean index takes value 1 if the
merging result is consistent with the base and 0 otherwise, formally:

iw(K,Δ(E)) =

{
1 if K ∧Δ(E) is consistent,

0 otherwise.

Definition 9 (strong drastic index). This boolean index takes value 1 if the
belief base is a logical consequence of the merging result and 0 otherwise, formally:

is(K,Δ(E)) =

{
1 if Δ(E) |= K,

0 otherwise.

3 For the sake of readability, we use ‘base satisfaction index’ and ‘degree of satisfaction
of a belief base’ as synonyms, however, notice that a belief satisfaction index was
defined without imposing properties.

338 P. Pozos-Parra, K. McAreavey, and W. Liu

Definition 10 (probabilistic index). This index takes the value of the prob-
ability of getting a model of K among the models of Δ(E), formally:

ip(K,Δ(E)) =

{
0 if |mod(Δ(E))| = 0
|mod(K)∩mod(Δ(E))|

|mod(Δ(E))| otherwise.

So, ip takes its minimal value 0 when no model of K is in the models of the
merged baseΔ(E) and its maximal value when each model of the merged based is
a model ofK. The fact that ip is based on model counting allows some granularity
in the notion of satisfaction. Notice, is can be obtained by truncating or dropping
the decimal numbers of the ip result. In fact, ip can be seen as the probability
of getting the belief base as a logical consequence of the merged result.

Definition 11 (Dalal index). This index grows antimonotonically with the
Hamming distance between the two bases under consideration, i.e., the minimal
distance between a model of the base K and a model of base Δ(E), formally:

id(K,Δ(E)) = 1−
min

w∈mod(K),w′∈mod(Δ(E))
d(w,w′)

|P | .

This index takes its minimal value when every variable must be flipped to
obtain a model of Δ(E) from a model of K, while takes its maximal value
whenever K is consistent with Δ(E) and no flip is required.

Examples for these indexes are shown in Tables 2 and 3. We can propose other

indexes such as i′p = |mod(K)∩mod(Δ(E))|
|mod(Δ(K))| : the probability of getting the merged

result as a logical consequence of the belief base. However, there is no background
theory to support this proposal. Next we introduce a new base satisfaction index
based on inconsistency measures for propositional belief bases [3,4]. Considering
the level in which the inconsistency is measured, there are two classes of mea-
sures: Base-level measures and Formula-level measures. Those in the former class
measure the inconsistency of the belief base as a whole. While those in the latter
class measure the degree to which each formula in the belief base is responsible
for the inconsistency of the base. The output of the former is a number while
the output of the latter is a numerical vector with elements representing each
formula in the belief base. This work considers solely the former class. Another
classification found in the literature considers how inconsistency is measured. In
this case there are two main types of measures: Formula-centric measures that
count the number of formulae required for creating the inconsistency: the more
formulae required to produce an inconsistency, the less inconsistent the base;
and atom-centric measures, that take into account the proportion of the lan-
guage affected by inconsistency: the more propositional variables affected, the
more inconsistent the base.

Definition 12 (Base-level measure of inconsistency). An inconsistency
measure on a belief base is a function I : L → R.

Diverse measures are defined in [3,4], however, we will choose the measures which
satisfy two properties: syntax-insensitivity, i.e. the measures of two equivalent

On the Merit of Selecting Different Belief Merging Operators 339

belief bases are equal; and normalization, i.e. the measure is a real number
between 0 and 1. The former is required in order to assure fairness of evaluation
w.r.t. the way of writing formulae. The latter is required to assure uniformity in
the evaluation. Moreover, we consider degrees of satisfaction between 0 and 1,
representing 0 and 100% satisfaction, respectively. As far as we know the only
measure that satisfies both properties is ILPm [4].

The inconsistency measure ILPm is defined as the normalized minimum num-
ber of inconsistent truth values in the LPm models of the belief base. Formally:

ILPm(K) =
minw∈modLP (K)(|w!|)

|P |

where K is a belief base and LPm extends the notion of worlds considering three
truth values {0, 1, 1

2}, representing true, false and the additional truth value
both meaning both “true and false”. Then a world is a function from P to {0,
1, 1

2}. 3P is the set of all worlds for LPm. Truth values are ordered as 0<t
1
2<t1

and w(�) = 1, w(⊥) = 0, w(¬φ) = 1
2 iff w(φ) = 1

2 , w(¬φ) = 1 iff w(φ) =
0, w(φ ∧ ψ) = min≤t(w(φ), w(ψ)) and w(φ ∨ ψ) = max≤t(w(φ), w(ψ)). The
LPm models of the belief base are defined as: modLP (K) = {w ∈ 3P | w(K) ∈
{1, 12}} and w! = {x ∈ P | w(x) = 1

2}. The minimum models of a formula are:
min(modLP (φ)) = {w ∈ modLP (φ) | �w′ ∈ modLP (K) s.t. w′! ⊂ w!}.

Definition 13 (Base-level inconsistency index). The base-level inconsis-
tency index is defined as: ii(K,Δ(E)) = 1− I(K ∪Δ(E)).

This index grows antimonotonically with the base-level measure of inconsistency
I between the union of the two bases under consideration. This index takes its
minimal value when the degree of inconsistency of the union of the bases is the
maximum, while it takes its maximal value whenever the union of the bases is
consistent. We consider only the instance: iL(K,Δ(E)) = 1− ILPm(K ∪Δ(E)).

Proposition 1. The five satisfaction indexes are degrees of satisfaction. More
specifically is, iw and ip are rational degrees of satisfaction. Also id and iL are
symmetric degrees of satisfaction.

4.2 Instantiation of the General Degree of Satisfaction (Profile
Satisfaction Index)

Using the base satisfaction indexes, one can define a satisfaction index for the
whole profile. The profile satisfaction indexes are instantiations of degrees of
satisfaction of belief profiles, in this work we will use both notions indistinctly.
The notion of a profile satisfaction index is the degree of satisfaction of E,
given Δ(E). The index is defined as a total function i from Ln × L to R. Thus,
i(E,Δ(E)) indicates how close a profile is to the merged base Δ(E), formally:

Definition 14 (Profile satisfaction index). Let E be a profile, i be a base
satisfaction index and a be an aggregation function, the profile satisfaction index
based on i and a is defined as follows: ia(E,Δ(E)) = aK∈Ei(K,Δ(E)).

340 P. Pozos-Parra, K. McAreavey, and W. Liu

There are many ways to measure the satisfaction of the profile given the
merged base. The following measure says that a profile is as satisfied as the
satisfaction of its least satisfied element, it is an instantiation of the minimum
degree of satisfaction of a profile.

imin(E,Δ(E)) = minK∈Ei(K,Δ(E))

Alternatively, another measure says that a profile is satisfied holistically, as the
sum of the satisfaction of its elements.

iΣ(E,Δ(E)) = ΣK∈Ei(K,Δ(E)).

4.3 Evaluating Merging Operators

Postulate M4 only says that no preference should be given to either belief base
if they are inconsistent, however this is questioned in the literature. It is possible
for us to define a more refined postulate (relation) of fairness using the degree
of satisfaction, s.t. we can assign a relative degree of fairness to an operator.

Fairness relation. An operator Δ1 is fairer than an operator Δ2, denoted
Δ1 7 Δ2 iff for all E, SATmax(E,Δ1(E))−SATmin(E,Δ1(E)) ≤ SATmax(
E,Δ2(E)) − SATmin(E,Δ2(E)).

This means that a fairer operator minimizes the difference between degrees of
satisfaction among bases. We can also define a satisfaction relation between
operators based on the degree of satisfaction SAT as follows:

Satisfaction relation. An operator Δ1 is more satisfactory than an operator
Δ2, denoted Δ1 8 Δ2 if for all E, SATa(E,Δ2(E)) ≤ SATa(E,Δ1(E)).

This means that a more satisfactory operator maximizes the degree of satisfac-
tion of belief profiles. Both types of ordering relations (fairness and satisfaction)
can be used to select the best operators in terms of these criterion. See Table 1.

However, operators such as Δ� will have the highest degree of fairness and
satisfaction, in comparison to the remaining operators. Moreover, in relation to
M1–M6 postulates, the operator Δ� is considered more (or at least equally)
conforming than ΔMCS and Δmax. We can conclude that Δ� is a good choice.
However, Δ� does not produce useful and informative results since they will
be a tautology when the profile is inconsistent, so, the conformity, fairness and
satisfaction relations are insufficient. For this reason we need some way to classify
the degree of “useful and informative” merging results and so we propose to use
the notion of strength introduced in [13]. With this notion we can say that Δ�
is weaker than the other operators since its merging results are weaker.

Strength relation. An operator Δ1 is stronger than an operator Δ2, denoted
Δ1 ⊇ Δ2, if for all E, mod(Δ1(E)) ⊆ mod(Δ2(E)).

On the Merit of Selecting Different Belief Merging Operators 341

Using this notion, we can conclude that the merging operator ΔGmax is
stronger that Δmax and the operator Δ� is the weakest (see Table 1).

In short, the postulates M1–M6 allow us to define a conformity relation be-
tween operators s.t. an operator which satisfies more postulates is considered
more conforming. Additionally, a degree of satisfaction allows us to define an-
other relation between operators s.t. an operator with a higher degree of satis-
faction is ‘better’ than an operator with a lower degree of satisfaction, i.e., the
operator is closer to the original information in comparison to other possible
merging results (assuming different merging operators are available). Based on
this degree of satisfaction we define another relation of fairness over operators.
Finally, we define a strength relation over operators. Unfortunately, these 4 rela-
tions over operators cannot identified the best operator in a general case, i.e. for
every profile (see Table 1). However, we can combine the strength relation with
the fairness and satisfaction relations to define a method to classify the opera-
tors results for a given profile. Notice the relations of fairness, satisfaction and
strength can be used for particular cases ofE, where we can say, for example, that
the operatorΔ1 is stronger thanΔ2 for a givenE ifmod(Δ1(E)) ⊆ mod(Δ2(E)).

Table 1. Comparison of operators in terms of operators being more conforming (Δ1 ≥
Δ2), fairer (Δ1 � Δ2), more satisfactory (Δ1 � Δ2) or stronger (Δ1 ⊇ Δ2), where n/a
means not comparable or not found

�����Δ1

Δ2
ΔMCS Δmax ΔΣ ΔGmax Δ	

ΔMCS ≥, �,�,⊇ n/a �≥ �≥ ��
Δmax ≥ ≥, �,�,⊇ �≥ �≥, � ≥
ΔΣ ≥ ≥ ≥, �,�,⊇ ≥ ≥
ΔGmax ≥ ≥,⊇ ≥ ≥, �,�,⊇ ≥
Δ	 ≥ , �, � , �⊇ ≥, �, �,�⊇ �≥, �, � ,�⊇ �≥, �, �,�⊇ ≥, �,�,⊇

Example 3. From [14,7]. Let E = {K1,K2,K3} where K1 = {(S ∨ O) ∧ ¬D},
K2 = {(¬S ∧D ∧ ¬O) ∨ (¬S ∧ ¬D ∧O)} and K3 = {S ∧D ∧O}.

Using ip for Example 3, we have ip,max(E,Δmax(E)) = 0.33, ip,max(E,
ΔGmax(E)) = 1, and ip,min(E,Δmax(E)) = ip,min(E,ΔGmax(E)) = 0 (see Ta-
ble 3). So, for this E, Δmax is fairer than ΔGmax but using ip,Σ , ΔGmax is more
satisfactory than Δmax. Moreover, as stated previously, ΔGmax is stronger than
Δmax and ΔGmax is more conforming than Δmax since ΔGmax conforms to all
six postulates while Δmax only conforms to five.

Even for a particular E the selection of a “best result” is not always evident.
In order to classify operators for any profile we must generalize two relations.
For this reason we extend the fairness and satisfaction relations for belief bases
rather than for the result of operators , as follows:

Fairness relation over belief bases. A belief base K1 is fairer than a base
K2, denoted K1 7 K2, for every profile E if SATmax(E, K1) − SATmin(
E,K2) ≤ SATmax(E,K1)− SATmin(E,K2).

342 P. Pozos-Parra, K. McAreavey, and W. Liu

Satisfaction relation over belief bases. A belief base K1 is more satisfac-
tory than a base K2, denoted K1 8 K2, for every profile E if SATa(E,
K2) ≤ SATa(E,K1).

Now, notice that if Δ1 is stronger than Δ2 for a given E then there exists a
set of worlds Ω s.t. mod(Δ1(E))∪Ω = mod(Δ2(E)), i.e. some worlds appearing
in Δ2(E) may be ‘erased’ in the process of merging with Δ1. If Δ1(E) is fairer
than form(Ω) and Δ1(E) is more satisfactory than form(Ω), we can conclude
that the worlds which have been ‘eliminated’ by Δ1 do not affect the properties
of fairness and satisfaction of Δ1 w.r.t. the extra worlds in mod(Δ2(E)); and
given that Δ1 is stronger than Δ2 we can conclude that the result of Δ1 is better
that the result of Δ2. In selecting a result, we can say that Δ1 offers less choice
than Δ2 and so it is more useful for making decisions.

5 Comparing Operators Results

In this section we demonstrate instantiations of the degrees of satisfaction (iw,
is, ip, id and iL) and their corresponding satisfaction profile indexes as applied
to two profiles selected from the literature. Satisfaction indexes for Example 1
(resp. Example 3) are shown in Table 2 (resp. Table 3).

Table 2. Satisfaction indexes for Example 1

ΔMCS(E) Δmax(E) ΔΣ(E) ΔGmax(E)

iw(K1,Δa(E)) 1 1 1 1
iw(K2,Δa(E)) 1 1 1 1
iw(K3,Δa(E)) 1 1 1 1

iw,min(E,Δa(E)) 1 1 1 1
iw,Σ(E,Δa(E)) 3 3 3 3

is(K1,Δa(E)) 0 0 1 1
is(K2,Δa(E)) 0 0 0 0
is(K3,Δa(E)) 0 0 0 0

is,min(E,Δa(E)) 0 0 0 0
is,Σ(E,Δa(E)) 0 0 1 1

ip(K1,Δa(E)) 0.66 0.66 1 1
ip(K2,Δa(E)) 0.66 0.66 0.5 0.5
ip(K3,Δa(E)) 0.33 0.33 0.5 0.5

ip,min(E,Δa(E)) 0.33 0.33 0.5 0.5
ip,Σ(E,Δa(E)) 1.66 1.66 2 2

id(. . . ,Δa(E)) same as iw
iL(. . . ,Δa(E)) same as iw

Using the strong drastic index is for Example 1, the results are (in almost all
cases) 0, meaning the bases are inconsistent with the merged base. ip produces
a greater degree of granularity in the results which means it is a more discrim-
inative index. In both examples, the new base satisfaction index iL shows that

On the Merit of Selecting Different Belief Merging Operators 343

Table 3. Satisfaction indexes for Example 3

ΔMCS(E) Δmax(E) ΔΣ(E) ΔGmax(E)

iw(K1,Δa(E)) 1 1 1 1
iw(K2,Δa(E)) 1 0 1 0
iw(K3,Δa(E)) 1 0 0 0

iw,min(E,Δa(E)) 1 0 0 0
iw,Σ(E,Δa(E)) 3 1 2 1

is(K1,Δa(E)) 0 0 1 0
is(K2,Δa(E)) 0 0 1 0
is(K3,Δa(E)) 0 0 0 0

is,min(E,Δa(E)) 0 0 0 0
is,Σ(E,Δa(E)) 0 0 2 0

ip(K1,Δa(E)) 0.5 0.33 1 1
ip(K2,Δa(E)) 0.5 0 0.5 0
ip(K3,Δa(E)) 0.5 0 0 0

ip,min(E,Δa(E)) 0.5 0 0 0
ip,Σ(E,Δa(E)) 1.5 0.33 1.5 1

id(K1,Δa(E)) 1 1 1 1
id(K2,Δa(E)) 1 0.66 1 0.66
id(K3,Δa(E)) 1 0.66 0.66 0.66

id,min(E,Δa(E)) 1 0.66 0.66 0.66
id,Σ(E,Δa(E)) 3 2.33 2.66 2.33

iL(. . . ,Δa(E)) same as id

the ΔMCS merging operator will be maximally satisfied for each belief base Ki

as long as Ki is consistent. Likewise, the profile satisfaction indexes iL,min and
iL,Σ will be maximally satisfied, as long as ∀Ki ∈ E, Ki is consistent. In both
examples, the iL and id indexes produce the same results. The reason is: firstly,
they are both normalized with the number of variables in the merged base; and
secondly, in these examples, the number of inconsistent variables is equal to the
minimum distance between models in Ki and the merged base.

In [7] the authors claim for Example 3 that ΔGmax selects the interpretations
chosen by both Δmax and ΔΣ , showing its good behavior, however they do not
provide a formal definition of ‘good behavior’. Our proposal, on the other hand,
allows us to provide this definition: using id and id,Σ, we can conclude that
ΔGmax is stronger than Δmax and ΔΣ , moreover, ΔGmax(E) is fairer and more
satisfactory than form(Ωmax) and form(ΩΣ) (the ‘extra’ worlds of Δmax(E)
and ΔΣ(E), respectively). So, we can conclude that the result given by ΔGmax

is better than the results given by Δmax and ΔΣ .

6 Conclusion

We proposed a method for measuring the result of different merging operators.
Firstly, we defined a relation of conformity over operators in order to classify the
degree to which an operator conforms to six postulates describing the principles

344 P. Pozos-Parra, K. McAreavey, and W. Liu

that a belief merging operator should satisfy. Next, we introduced the notion of
a degree of satisfaction of belief bases. We discovered that some base satisfaction
indexes found in the literature satisfy the definition of a degree of satisfaction
of belief bases, so we use them to define a profile satisfaction index. Based on
the notion of a degree of satisfaction and a profile satisfaction index, we defined
two more ordering relations over merging operators: fairness and satisfaction.
However, by using these relations the measure of operators does not give intuitive
classifications, for example operators such as Δ� are well placed, even though
the result is neither informative nor useful. So, a fourth relation over operators
was introduced, called strength, in order to address this issue. Even while using
the four proposed relations, some operators are not fully comparable. This means
that we cannot find a best operator for every profile. However the relations do
allow us to find the best operators for a given profile.

The proposed method is as follows: first, determine the conformity of an op-
erator, next, if an operator Δ1 is stronger than an operator Δ2 for a profile E
we can continue, otherwise stop since comparison is not possible. Choose degree
of satisfactions SAT and SATa in order to compare the operators. Find Ω: the
worlds that are included in Δ2(E) but not in Δ1(E). If Δ1(E) is fairer and more
satisfactory than Ω in terms of SAT and SATa then Δ1 provides a better result
than Δ2 for the fixed profile E given SAT and SATa. While the method is in a
preliminary phase, the application on some examples from the literature allows
us to formally demonstrate claims such as the ‘good behavior’ of ΔGmax.

Our proposed method does not work with integrity constraints however these
will be considered in future work. Also, currently we only consider flat belief
bases, but we intend to extend this for prioritized bases. In terms of aggregation
functions, we analyzed min and Σ for generating the satisfaction index of a
profile, however there are other functions available, such as Gmin, which could
be analyzed. We also intend to propose a profile satisfaction index based on
formula-level inconsistency measures.

References

1. Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases
consisting of first-order analysis. Com. Int. 8, 45–71 (1992)

2. Everaere, P., Konieczny, S., Marquis, P.: The strategy-proofness landscape of merg-
ing. J. of Art. Int. Research 28, 49–105 (2007)

3. Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information.
In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS,
vol. 3300, pp. 191–236. Springer, Heidelberg (2005)

4. Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency val-
ues. Artificial Intelligence 174(14), 1007–1026 (2010)

5. Konieczny, S.: On the difference between merging knowledge bases and combining
them. In: KR 2000, pp. 135–144 (2000)

6. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artif. Intell. 157(1-2),
49–79 (2004)

7. Konieczny, S., Pino-Pérez, R.: On the logic of merging. In: KR 1998, pp. 488–498
(1998)

On the Merit of Selecting Different Belief Merging Operators 345

8. Konieczny, S., Pino-Pérez, R.: Merging information under constraints: a logical
framework. J. of Logic. and Computation 12(5), 773–808 (2002)

9. Konieczny, S., Pino-Pérez, R.: Logic based merging. Journal of Philosophical
Logic 40(2), 239–270 (2011)

10. Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). IEEE
Transactions on Knowledge and Data Engineering 10(1), 76–90 (1998)

11. Lin, J., Mendelzon, A.: Knowledge base merging by majority. In: Pareschi, R.,
Fronhoefer, B. (eds.) Dynamic Worlds: From the Frame Problem to Knowledge
Management. Kluwer Academic (1999)

12. Liu, W., Qi, G., Bell, D.A.: Adaptive merging of prioritized knowledge bases. Fun-
dam. Inform. 73(3), 389–407 (2006)

13. Marchi, J., Bittencourt, G., Perrussel, L.: Prime forms and minimal change in
propositional belief bases. Ann. Math. Artif. Intell. 59(1), 1–45 (2010)

14. Revesz, P.Z.: On the Semantics of Arbitration. Journal of Algebra and Computa-
tion 7(2), 133–160 (1997)

15. Yager, R.R.: On the dempster-shafer framework and new combination rules. Inf.
Sci. 41(2), 93–137 (1987)

Possibilistic DL-Lite

Salem Benferhat and Zied Bouraoui

Université Lille - Nord de France
CRIL - CNRS UMR 8188

Artois, F-62307 Lens
{benferhat,bouraoui}@cril.fr

Abstract. DL-Lite is one of the most important fragment of descrip-
tion logics that allows a flexible representation of knowledge with a low
computational complexity of the reasoning process. This paper investi-
gates an extension of DL-Lite to deal with uncertainty associated with
objects, concepts or relations using a possibility theory framework. Pos-
sibility theory offers a natural framework for representing uncertain and
incomplete information. It is particularly useful for handling inconsistent
knowledge. We first provide foundations of possibilistic DL-Lite, denoted
by π-DL-Lite, where we present its syntax and its semantics. We then
study the reasoning tasks and show how to measure the inconsistency
degree of a knowledge base using query evaluations. An important result
of the paper is that the extension of the expressive power of DL-Lite is
done without additional extra computational costs.

1 Introduction

Description Logics (DLs, for short) [2] are well-known logics based on first order
logic, introduced for representing knowledge. Nowadays, DLs have regained an
important place in various domain areas and especially in the Semantic Web. DLs
provide the foundations of the Web Ontology Language (OWL). According to
W3C 1 three profiles of OWL2 are proposed as sub-languages of the full OWL2
language, to offer important advantages in particular application scenarios. One
of these profiles is OWL2-QL dedicated to applications that use huge volumes of
data where query answering is the most important reasoning task. OWL2-QL is
based on DL-Lite which is a family of tractable DLs investigated by [4]. Indeed,
Knowledge Bases (KB) consistency and all DLs standard reasoning services are
polynomial for combined complexity (i.e. the overall size of the KB) [1]. In
these logics, the most important task of reasoning is answering complex queries
(especially conjunctive queries) where the reasoning complexity is in LogSpace
for data complexity (i.e. the size of the data) [1].

Now, in real world applications, knowledge is usually affected with uncertainty
and imprecision. Recently, several works have been proposed to deal with proba-
bilistic and non-probabilistic uncertainty [8] on one hand and to deal with fuzzy
information [11] on the other hand. A particular attention was given to fuzzy
1 http://www.w3.org/TR/owl2-overview/

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 346–359, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.w3.org/TR/owl2-overview/

Possibilistic DL-Lite 347

extensions of DLs (e.g. [18,3]) and DL-Lite (e.g. [19,12]). Besides, some works
are devoted to possibilistic extensions of DLs (e.g. [10,8,14]) which are basically
based on standard DLs reasoning services. However, there is no work on pos-
sibilistic extension of DL-Lite and there is no work that has been proposed to
extend query answering within a possibility theory setting. This paper concerns
the development of uncertainty-based DL-Lite using possibility theory. Possibil-
ity theory [9] is a very natural framework to deal with ordinal and qualitative
uncertainty. It deals with non-probabilistic information as it is particularly ap-
propriate when the uncertainty scale only reflects a priority relation between
different pieces of information.

Possibilistic Description Logics (Possibilistic-DLs for short) are frameworks
introduced to deal with uncertainty and to ensure reasoning under inconsistent
KB. Originally, the use of possibility theory to extend DLs has been proposed by
[10] then has been discussed by [8]. In these works the syntax and the semantics
of DLs has been extended in the possibility theory framework by attaching to
every axiom a confidence degree to encode its certainty. This confidence degree
first reflects to what extent an axiom can be considered as certain (priority,
important, etc) in the available knowledge. And then it is used to determine the
inconsistency of a KB and to ensure inference services. However, there are no
algorithms to compute inconsistency of a Possibilistic-DLs KB. In addition, only
some inference services have been defined. Such limitation has constituted the
main topics of the works proposed by [17,16] where the authors first redefine the
syntax and semantics of Possibilistic-DLs, and then investigate several inference
services that can be done on a Possibilistic-DLs KB. Furthermore, they provided
an algorithm to compute inconsistency degree and possibilistic inference services.
It has been shown that checking the consistency degree and several inference
services can be done with classical DLs reasoning services through consistent
sub-sets of the Possibilistic-DLs KB. An implementation of a reasoner called
DL-Poss, has been provided in [13]. A deeper discussion on Possibilistic-DLs has
been provided in [14]. Finally, it is important to point out that another method
has been introduced in [6,15] for checking inconsistency of possibilistic-DLs as a
direct extension of the tableau algorithm.

An important question addressed in this paper is : “How one can extend the
expressive power of DL-Lite, to deal with possibilistic uncertain information,
without increasing the computational cost?”. This paper provides a positive an-
swer to this question. Such a good result is possible when we restrict ourself to
DL-Lite. Note first that most extensions of possibilistic DLs [17,16,6] all need
some extra computation costs. In these existing approaches, computing incon-
sistency degree comes down to achieve a number of calls (at least log2N calls,
where N is the size of the uncertainty scale) to the inconsistency checking in
standard (without uncertainty) DLs.

This paper departs from existing approaches and follows another direction
to achieve reasoning tasks in possibilistic DL-Lite. The idea is to modify the
inconsistency computation algorithm used in standard DL-Lite by simply prop-
agating the uncertainty degrees associated with axioms. In fact, we will see that

348 S. Benferhat and Z. Bouraoui

the uncertainty propagation does not generate any extra computational cost,
and hence the computational complexity of possibilistic DL-Lite is the same as
the one of DL-Lite.

The rest of this paper is organized as follows: Section 2 briefly recalls pre-
liminaries on DL-Lite. Section 3 rephrases possibility theory framework over
DL-Lite interpretations. Section 4 discusses the possibilistic extension of DL-
Lite, denoted π-DL-Lite, where we present its syntax and its semantics. Section
5 introduces the so-called π-negated closure of a π-DL-Lite knowledge bases.
Section 6 gives a method to compute inconsistency of the π-DL-Lite KB using
query evaluations. Section 7 studies deferent possibilistic inferences. Section 8
concludes the paper.

2 DL-Lite Logic

The vocabulary of DLs is based on concepts which correspond to unary predi-
cates to denote sets of individuals, and roles, which correspond to binary pred-
icates, to denote binary relations among individuals. A description language is
characterized by a set of constructs used to build complex concepts and roles
form atomic ones and it is employed to structure a domain of interest. Each
description language allows different sets of constructs. A DLs knowledge base
is specified through several inclusions between concepts and roles.

In this paper, we focus on DL-Lite one of the most important fragment of
DLs. For sake of simplicity, we only consider DL-LiteHcore (originally DL-LiteR)
that underlies OWL2-QL language as DL-Lite logic. For more details about the
different logics in DL-Lite family see [1]. However, results of this paper are valid
for other logics of the DL-Lite family.

The language of DL-Litecore is the core language for DL-LiteR and it is
ensured by a description language defined as follow [5]:

B −→ A | ∃R C −→ B | ¬B
R −→ P | P− E −→ R | ¬R

where A is an atomic concept, P is an atomic role, Concepts B (resp. C) are
called basic (resp. complex) concepts and roles R (resp. E) are called basic (resp.
complex) roles. Note that DL-Lite language does not allows the use of the con-
junctive and the disjunctive operators. However, one can easily add conjunctions
(resp. disjunction) in the right-hand side (resp. left-hand side) of inclusion ax-
ioms. Indeed, the conjunction of the form B # C1 1 C2 is equivalent to the
pair of inclusion axioms B # C1 and B # C2, while the disjunction of the form
B1 2B2 # C is equivalent to the pair of inclusion axioms B1 # C and B2 # C.

A DL-Lite knowledge base is a pair K = 〈T ,A〉 where T is a TBox and A is an
ABox. The DL-Litecore TBox is constituted by a finite set of inclusion axioms
of the form B # C. Let use ai and aj to denote two individuals (constants), the

Possibilistic DL-Lite 349

DL-Litecore ABox is constituted by a finite set of membership assertion on
atomic concepts and on atomic roles of the form A (ai) and P (ai, aj). The DL-
LiteR extends DL-Litecore with the ability of specifying inclusion assertions
between roles of the form R # E. For more detailed description on DL-Lite
family, see [5].

As usual in DLs, the DL-Lite semantics is given by an interpretation I =(
Δ, .I

)
which consists of a non-empty domain Δ and an interpretation function

.I . The function .I assigns to each individual a an element aI ∈ ΔI , to each
atomic concept A a subset AI ⊆ ΔI and to each atomic role P a subset P I ⊆
ΔI×ΔI over the domain. Furthermore, the interpretation function .I is extended
to complex concepts and roles (e.g. (P−)

I
=

{
(y, x) ∈ ΔI ×ΔI | (x, y) ∈ P I

}
and

(∃R)
I
=

{
x ∈ ΔI |∃y ∈ ΔI such that (x, y) ∈ RI

}
).

For the TBox, we say that an interpretation I is a model of an inclusion axiom,
denoted by I |= B # C (resp. I |= R # E) iff BI ⊆ CI (resp. RI ⊆ EI). For
the ABox, we say that an interpretation I is a model of membership assertion,
denoted by I |= A (ai) (resp. I |= P (ai, aj)) iff aIi ∈ AI (resp.

(
aIi , a

I
j

)
∈ P I).

Note that we only consider DL-Lite with unique name assumption (i.e. ai �= aj
where i �= j). Thus, I is a model of knowledge base K = 〈T ,A〉, denoted by
I � K, iff I � T and I � A. A KB K is said to be consistent (or satisfiable) if it
admits at least one model.

3 Possibility Distribution over DL-Lite Interpretations

Possibility theory (e.g. [9]) offers an important framework for representing and
reasoning with uncertain, partial and inconsistent pieces of information. In what
follows, we rephrase possibility theory framework over DL-Lite interpretations.
Let L be a finite DL-Lite description language, Ω be a universe of discourse and
I =

(
Δ, .I

)
∈ Ω be a DL-Lite interpretation.

3.1 Possibility Distribution

A possibility distribution is considered as one of the main block of possibility
theory. It is a mapping, denoted by π, from the universe of discourse Ω to
the unit interval [0, 1]. It assigns to each interpretation I ∈ Ω a possibility
degree π (I) ∈ [0, 1] that represents its compatibility or consistency relative to
the available knowledge. When π (I) = 1, we say that I is totally possible and
it is fully consistent with the available knowledge. When π (I) = 0, we say
that I is impossible and it is fully inconsistent with the available knowledge.
Then, two special cases exist: a total ignorance when ∀I ∈ Ω, π (I) = 1 and a
complete knowledge when ∃I ′ ∈ Ω, π (I ′) = 1 and ∀I ∈ Ω, I ′ �= I, π (I) = 1. By
convention, a possibility distribution π is said to be normalized if there exists
at least one totally possible interpretation, namely ∃I ∈ Ω, π (I) = 1, otherwise,
we say that π is sub-normalized. For two events I and I ′, we say that I is more
consistent or compatible than I ′ if π (I) > π (I ′).

350 S. Benferhat and Z. Bouraoui

3.2 Possibility and Necessity Measures

Let us consider ϕ be a subset of Ω. Let ¬ϕ be the complementary of ϕ, namely
¬ϕ = Ω \ ϕ. In standard possibility theory, given a possibility distribution π,
one can define two measures from 2Ω to the interval [0, 1] which discriminate
between the plausibility and the certainty of a subset ϕ. These two measure are:

Possibility Measure. A possibility measure, denoted by Π , is a function of
the form Π (ϕ) = max {π (I) : I ∈ ϕ}
Π (ϕ) evaluates to what extent the subset ϕ is compatible with the available

knowledge encoded by π. When Π (ϕ) = 1, we say that ϕ is certainty true if
Π (¬ϕ) = 0 and we say that the ϕ is somewhat certain if Π (¬ϕ) ∈]0, 1[. When
Π (ϕ) = 1 and Π (¬ϕ) = 1, we say that there is a total ignorance about ϕ. The
possibility measure satisfies the following properties for normalized possibility
distributions:

∀ϕ ∈ Ω, ∀ψ ∈ Ω,Π (ϕ ∪ ψ) = max (Π (ϕ) , Π (ψ))

∀ϕ ∈ Ω, ∀ψ ∈ Ω,Π (ϕ ∩ ψ) ≤ min (Π (ϕ) , Π (ψ))

Necessity Measure. A necessity measure, denoted by N , is a function of the
form N (ϕ) = 1−Π (¬ϕ)
N (ϕ) evaluates to what extent ϕ is certainty entailed from available knowl-

edge encoded by π. When N (ϕ) = 1, we say that ϕ is certain. When N (ϕ) ∈
]0, 1[, we say that ϕ is somewhat certain. When N (ϕ) = 0 and N (¬ϕ) = 0, we
say that there is a total ignorance. The necessity measure satisfies the following
properties for normalized possibility distributions:

∀ϕ ∈ Ω, ∀ψ ∈ Ω,N (ϕ ∩ ψ) = min (N (ϕ) , N (ψ))

∀ϕ ∈ Ω, ∀ψ ∈ Ω,N (ϕ ∪ ψ) ≥ max (N (ϕ) , N (ψ))

Now, clearly not all subsets of Ω represent axioms of DL-Lite language.
For instance, assume that our vocabulary is composed of one concept A and
two individuals a1 and a2. Assume that we have two interpretations I1 =(
Δ = {a1, a2} , .I1

)
and I2 =

(
Δ = {a1, a2} , .I2

)
such that AI1 = {a1} and

AI2 = {a2}. Clearly, {I1, I2} does not correspond to any axiom of our DL-
Lite language, since {I1, I2} intuitively encodes the axiom A (a1)∨A (a2), while
the disjunction operator is not allowed in DL-Lite language.

In the following, possibility and necessity measures are assumed to only be
defined over a DL-Lite language. Namely, if φ is an axiom, we define its associated
possibility measures as: Π (φ) = max

I∈Ω
{π (I) : I |= φ} and its associated necessity

measures as: N (φ) = 1−max
I∈Ω

{π (I) : I � φ} where I � φ means that I is not a

model of φ.

Possibilistic DL-Lite 351

4 Possibilistic DL-Lite

In this section we go one step further in the definition of possibilistic extension
of DL-Lite, denoted by π-DL-Lite by presenting its syntax and how to generate
a possibility distribution associated with a π-DL-Lite KB.

4.1 Syntax

We consider L the description language DL-Lite recalled in Section 2.

Definition 1. A π-DL-Lite KB K = {〈φi, αi〉 : 1, ..., n} is a set of possibilistic
axioms of the form 〈φ, α〉 where φ is an axiom expressed in L and α ∈] 0, 1] is
the degree of certainty of φ.

Only somewhat certain information (namely α > 0) are explicitly represented in
π-DL-Lite KB. 〈φ, α〉 means that the uncertainty degree of φ is at least equal
to α. The higher is the degree α the more important is the axiom or the fact.
The degree α can be associated either with an inclusion axiom between concepts
or roles (TBox), or with facts (ABox). A π-DL-Lite K will also be represented
by a couple K = 〈T ,A〉 where both elements in T and A may be uncertain.
Note that, if we consider α = 1 then we represent a classical DL-Lite KB:
K∗ = {φi : 〈φi, αi〉 ∈ K}.
Example 1. Let Teacher, PhdStudent and Student be three atomic concepts
and TeachesTo be an atomic role. The following possibilistic TBox T and the
possibilistic ABox A will be used in the rest of the paper:

T = { 〈Teacher # ¬Student, .8〉,
〈PhdStudent # Student, .7〉,
〈PhdStudent # Teacher, .9〉,
〈∃teachesTo # Teacher, .6〉,
〈∃teachesTo− # Student, .5〉}.
A = {〈Student (b) , .95〉 , 〈teachesTo (b, c) , 1〉}.

In π-DL-Lite KB, the necessity degree attached to an axiom reflects its confi-
dence and evaluates to what extent this axiom is considered as certain. For in-
stance the axiom 〈teachesTo (b, c) , 1〉 states that we are absolutely certain that
the “the Teacher b teachesTo the Student c”. However the axiom 〈PhdStudent #
Student, .7〉 simply states that a PhdStudent may be a Student with a certainty
degree equal or greater than .7.

4.2 From π-DL-Lite Knowledge Base to π-DL-Lite Possibility
Distribution

The semantics of π-DL-Lite is given by a possibility distribution, denoted πK,
defined over the set of all interpretations I =

(
Δ, .I

)
of a DL-Lite language (see

Section 3). As in standard possibilistic logic [7], given a π-DL-Lite knowledge
base K the possibility distribution induced by K is defined as follow:

352 S. Benferhat and Z. Bouraoui

Definition 2. For every I ∈ Ω

πK (I)=

{
1 if ∀ 〈φi, αi〉 ∈ K, I � φi

1−max {αi : (φi, αi) ∈ K|I � φi} otherwise

where � is the satisfaction relation between DL-Lite formulas recalled in Sec-
tion 2. 〈φi, αi〉 ∈ K means that 〈φi, αi〉 ∈ K either belongs to the TBox T or the
ABox A of K.

Example 2. (Example 1 continued) Using Definition 2, we compute the following
possibility degree of three interpretations where Δ = {b, c} :

I .I πK

I1 (Student)
I

= {b, c}, (PhdStudent)I = {b}, (Teacher)I = {b} .2
(teachesTo)

I
= {(b, c)}

I2 (Student)
I

= {b, c},(PhdStudent)I = {},(Teacher)I = {} .4
(teachesTo)

I
= {(b, c)}

I3 (Student)
I

= {b}, (PhdStudent)I = {},(Teacher)I = {c} 0
(teachesTo)I = {(c, b)}

In this example, we can see that the interpretation I1 does not satisfy〈Teacher
¬Student, .8〉, the interpretation I2 doesnot satisfy 〈∃teachesTo # Teacher, .6〉
and the interpretation I3 does not satisfy 〈teachesTo (b, c) , 1〉. Hence, no one of
these interpretations is a model of K.

A π-DL-Lite KB is said to be consistent if the possibility distribution πK is
normalized, namely there exists an interpretation I such that πK (I) = 1. If not,
K is said to be inconsistent and its inconsistency degree is defined semantically
as follow:

Definition 3. The inconsistency degree of a π-DL-Lite KB, denoted by Inc (K),
is semantically defined as follow: Inc (K) = 1−max

I∈Ω
{πK (I)}

If Inc (K) = 1 then K is fully inconsistent and if Inc (K) = 0 then it is consistent.

Example 3. (Example 2 continued), in fact, one can check that the inconsistency
degree of K according to πK is : Inc (K)=1 −max

I∈Ω
{πK (I)} = .6, and hence K

is inconsistent (in fact, there is no way to find an interpretation that satisfy K
with a degree greater than .6).

Remark 1. In propositional possibilistic logic, each possibilistic KB induces a
joint possibility distribution and conversely. Although each π-DL-Lite KB in-
duces a unique joint possibility distribution, the converse does not hold. Consider
again the example where we only have one concept A and two individuals a1
and a2. Consider four interpretations I1, I2, I3 and I4 having the same domain
Δ = {a1, a2} and where AI1 = {a1}, AI2 = {a1}, AI2 = {a1, a2} and AI4 = ∅.

Possibilistic DL-Lite 353

Assume that π (I1) = π (I2) = 1 and π (I3) = π (I4) = .5. One can check that
there is no π-DL-Lite KB such that πK = π.

5 Possibilistic Closure in π-DL-Lite

Let us first point out that one can easily add conjunctions in the right side of
inclusion axioms. Proposition 1 shows that a complex inclusion axiom of the
form 〈B1 # B2 1B3, α〉 can be splitted into elementary inclusion axioms that
can be added to K without modifying its possibility distribution. Proposition 1
can be derived from Proposition 5 in [14] for general DLs.

Proposition 1. Let K = {IP ∪ {〈B1 # B2 1B3, α〉},A} and K′
= {IP ∪ {

〈B1 # B2, α〉 , 〈B1 # B3, α〉},A} then K and K′
induces the same possibility

distribution.

Hence, the language given in Section 2 is a simplification of the one based on
conjunctions used in the right side (resp. disjunction in left side) of inclusion
axioms.

The aim of this section is to define the so-called π-negated closure of a π-DL-
Lite KB. This notion is crucial for defining the concepts of consistency and infer-
ence from a π-DL-Lite KB. A possibilistic TBox T = {IP, IN} can be viewed as
composed of positive inclusions (PI) of the form 〈B1 # B2, α〉 or 〈R1 # R2, α〉
and negative inclusions (NI) of the form 〈B1 # ¬B2, α〉 or 〈R1 # ¬R2, α〉. Con-
ceptually, the PI axioms (resp. NI axioms) represent subsomption (resp. dis-
junction) between concepts or roles. Roughly speaking, this closure denoted π-
neg (T), will contain possibilistic negated axioms of the form 〈B1 # ¬B2, α〉 or
〈R1 # ¬R2, α〉 that can be derived from T . The set π-neg (T) is obtained by
applying a set of rules that extends the ones defined in standard DL-Lite when
axioms are weighted with uncertainty degrees.

At the beginning π-neg (T) is set to an empty set.

Rule 1. Let T = {IP, IN} then IN ⊆ π − neg (T).

This rule simply means that negated axioms explicitly stated in T can be
trivially derived from T .

Example 4. (Example 1 continued): Using Rule 1, we add 〈Teacher # ¬Student
, .8〉 as NI to π − neg (T).

Rule 2. If 〈B1 # B2, α1〉 ∈ T and 〈B2 # ¬B3, α2〉 ∈ π−neg (T) or 〈B3 # ¬B2

, α2〉 ∈ π − neg (T) then add 〈B1 # ¬B3,min (α1, α2)〉 to π − neg (T).

Rule 3. If 〈R1 # R2, α1〉 ∈ T and 〈R2 # ¬R3, α2〉 ∈ π−neg (T) or 〈R3 # ¬R2

, α2〉 ∈ π − neg (T) then add 〈R1 # ¬R3,min (α1, α2)〉 to π − neg (T).

Rules 2 and 3 simply state that transitivity holds with a weight equal to the
least weight of premises axioms.

354 S. Benferhat and Z. Bouraoui

Rule 4. if 〈R1 # R2, α1〉 ∈ T and 〈∃R2 # ¬B,α2〉 ∈ π−neg (T) or 〈B # ¬∃R2

, α2〉 ∈ π − neg (T) then add 〈∃R1 # ¬B,min (α1, α2)〉 to π − neg (T).

Rule 5. If 〈R1 # R2, α1〉 ∈ T and
〈
∃R−

2 # ¬B,α2

〉
∈ π−neg (T) or

〈
B # ¬∃R−

2

, α2〉 ∈ π − neg (T) then add
〈
∃R−

1 # ¬B,min (α1, α2)
〉

to π − neg (T).

Rule 6. If 〈R # ¬R,α〉 ∈ π − neg (T) or 〈∃R # ¬∃R,α〉 ∈ π − neg (T) or
〈∃R− # ¬∃R−, α〉 ∈ π− neg (T) then add 〈R # ¬R,α〉 and 〈∃R # ¬∃R,α〉 and
〈∃R− # ¬∃R−, α〉 to π − neg (T).

Proposition 2. Let T = {IP, IN} and π−neg (T) be the closure of T obtained
using Rules (1-6). Then K = {T ,A} and K′

= {T ∪ π − neg (T) ,A} induce the
same possibility distribution, namely ∀I , πK (I) = πK′ (I).

Example 5. From the K = {T ,A} of Example 1, one can check that applying
Rule 1 - Rule 6 gives the following π − neg (T) where :

π − neg (T) = {〈Teacher # ¬Student, .8〉,
〈PhdStudent # ¬Teacher, .7〉,
〈PhdStudent # ¬Student, .8〉,
〈∃teachesTo # ¬Student, .6〉,
〈∃teachesTo− # ¬Teacher, .5〉}
A = {〈Student (b) , .95〉 , 〈teachesTo (b, c) , 1〉}

6 Checking Inconsistency

From now on, π−neg (T) denotes the result of applying Rules 1-6 until reaching
the closure (namely, no negated axioms can be added using Rules 1-6). An
important result is that computing inconsistency of K = {T ,A} comes down to
compute inconsistency degree of K′

= {π − neg (T) ,A}.
Proposition 3. Let K = {T ,A} and let K′

= {π − neg (T) ,A} then Inc (K) =
Inc (K′).

Proposition 3 is important since it provides a way to compute the inconsistency
degree of a π-DL-Lite KB. Indeed, verifying inconsistency of K = {T ,A} is
reduced to verifying the inconsistency of K′

= {π − neg (T) ,A}. A contradic-
tion is presented when a same individual (resp. two individuals) belongs to two
negated concepts (resp. negated roles) (i.e. NI in π − neg (T)). Then, checking
inconsistency is done by means a set of weighted queries issued from π−neg (T).
Subsection 6.1 formalizes this concept of weighted queries while subsection 6.2
provides the algorithm to compute inconsistency degrees using a set of weighted
queries.

6.1 Weighted Queries

The idea is to evaluate over A suitable weighted queries expressed from π −
neg (T) to exhibit whether the ABox A contains or not contradictions and to

Possibilistic DL-Lite 355

compute the inconsistency degree. To obtain the set of weighted queries qc from
π − neg (T), we propose a translation function ψ. ψ has an argument a possi-
bilistic NI 〈B1 # ¬B2, α〉 or 〈R1 # ¬R2, α〉 and produces a weighted first order
formula.

Definition 4. ψ is a function that transforms all axioms in π − neg (T) to
weighted query qc:

– ψ (〈B1 # ¬B2, α〉) = 〈(x, γ1, γ2).λ1 (x, γ1) ∧ λ2 (x, γ2) , α〉 with
• λi (x, γi) = Ai (x, γi) if Bi = Ai

• λi (x, γi) = ∃yi.Pi (x, yi, γi) if Bi = ∃Pi

• λi (x, γi) = ∃yi.Pi (yi, x, γi) if Bi = ∃P−
i

– ψ (〈R1 # ¬R2, α〉) = 〈(x, y, γ1, γ2).ν1 (x, y, γ1) ∧ ν2 (x, y, γ2) , α〉 with
• νi (x, y, γi) = Pi (x, y, γi) if Ri = Pi

• νi (x, y, γi) = Pi (y, x, γi) if Ri = P−
i

Intuitively, if 〈B1 # ¬B2, α〉 belongs in π − neg (T), then a query associated to
B1 # ¬B2 simply means return all {B1(x, γ1), B2 (x, γ2)} that are present in the
ABox.

Example 6. From Example 5, we obtain the following weighted queries using
Definition 4:

qc = 〈(x, γ1, γ2).T eacher (x, γ1) ∧ Student (x, γ2) , .8〉
qc = 〈(x, γ1, γ2).PhdStudent (x, γ1) ∧ Teacher (x, γ2) , .7〉
qc = 〈(x, γ1, γ2).PhdStudent (x, γ1) ∧ Student (x, γ2) , .8〉
qc = 〈(x, γ1, γ2). (∃y.teachesTo (x, y, γ1)) ∧ Student (x, γ2) , .6〉
qc = 〈(x, γ1, γ2). (∃y.teachesTo (y, x, γ1)) ∧ Teacher (x, γ2) , .5〉

6.2 An Algorithm for Computing Inconsistency Degrees

Now, we provide the algorithm Inconsistency, which takes as input a K′
=

{π − neg (T) ,A} and computes Inc (K), the inconsistency degree of K.

Algorithmus 1. Inconsistency (K)

Input: K′
= {π − neg (T) ,A}

Output: Inc (K)
1: cont := {0}
2: for all (φi, αi) ∈ π − neg (T) ; i = 1..|π − neg (T) | do
3: (qc, αq) := (ψ (φi, αi))
4: if Eval (qc,A) �= ∅ then
5: β := max (Eval (qc,A))
6: if β > αq then
7: cont := cont ∪ {αq}
8: else
9: cont := cont ∪ {β}

10: return max (cont)

356 S. Benferhat and Z. Bouraoui

In this algorithm, the set cont stores the inconsistency degrees founded during
the algorithm. Eval (qc,A) denotes the evaluation of a weighted query qc over A
obtained by transforming π−neg (T) with the function given in Definition 4. For
(a, αi) and (a, αj) presented in a query result, we only consider one individual
(a,min (αj , αj)). β = max (Eval (qc,A)) represents the maximum weight of all
tuples in Eval (qc,A). At this point, if the weight of the query is less than β
(i.e. αq < β) then the contradiction is issued from the query and implicitly form
the TBox corresponding axioms. Otherwise (i.e. αq ≥ β) then the contradiction
is issued from the result of the query evaluation and implicitly from ABox as-
sertions. Finally, the inconsistency degree of K (Inc (K)) is the maximum of all
contradiction degrees of the cont. In case of consistency, the “if part” of the al-
gorithm (lines 4-9) is never used, and the algorithm returns the value 0 (namely,
Inc (K) = 0). This explain why cont is initialized to {0}(line 1).

Example 7. From Example 6, only the query 〈(x, γ1, γ2). (∃y.teachesTo (x, y, γ1))
∧Student (x, γ2) , .6〉 presents a contradiction: 〈qc, .6〉 = {(b, .95, 1)}. Thus, the
inconsistency degree of the KB is Inc (K) = .6 .

We now provide two propositions that show on one hand that our π-DL-Lite
extends standard DL-Lite and on other hand that the computational complexity
of Algorithm 1 is the same as the one in standard DL-Lite.

Proposition 4. Let Ks = {Ts,As} be a standard DL-Lite. Let Kπ = {Tπ,Aπ}
where Tπ (resp. Aπ) is defined from Ts (resp. As) by assigning a degree 1
to each axiom of Ts (resp. As), namely : Tπ = {〈φi, 1〉 : φi ∈ Ts} and Aπ =
{〈φi, 1〉 : φi ∈ As}. Then Ks is consistent (in the sense of standard DL-Lite) iff
Inc (Kπ) = 0 and Ks is inconsistent iff Inc (Kπ) = 1.

Proposition 5. The complexity of Algorithm 1 is the same as the one used in
standard DL-Lite ([5], section 3.3 , Theorem 26)

To see why proposition 5 holds it is enough to see the differences between Algo-
rithm 1 and the one used in ([5], section 3.1.3) for standard DL-Lite. The first
remarks, concerns the returned result. On our algorithm, results of queries are
weighted while in standard DL-Lite, they are not. This does not change the com-
plexity. The difference concerns lines 4-9, where in standard DL-Lite algorithm
they are replaced by:
1: if Eval (qc,A) �= ∅ then
2: return True
3: else
4: return False

It is easy first to see that in case of consistency both algorithms perform same
steps, because the “ if part of the algorithm” is never considered. Now in case
of inconsistency, the worst case appears when the whole “loop” is used, namely
inconsistency appears with the last element of π − neg (T). In both cases let A
be the result of the evaluation of Eval (qc). This needs at least O (|A|) steps.
Algorithm 1 (contrary to the algorithm in standard DL-Lite [5]) computes also

Possibilistic DL-Lite 357

max {αi : 〈φi, αi〉 ∈ A} which needs again O (|A|). Since trivially, O (2 |A|) =
O (|A|), our algorithm has the same complexity as in standard DL-Lite. Hence
we increase the expressive power of DL-Lite while keeping the complexity as low
as the one of standard DL-Lite.

7 Inference in Possibilistic DL-Lite

In this section, we first present classical inference problem (i.e. subsumption and
instance checking). First, we define an α−cut of T (resp. A and K), denoted T>α

(resp. A>α, K>α), a sub base of T (resp. A and K) composed of formulas having
a weight greater than alpha (α). In possibilistic DL inference problems such as
subsumption and instance checking can be reduced to the task of computing
the inconsistency degree of the KB [14]. We present in the following inference
services in π-DL-Lite:

– Flat subsumption: Let T be a possibilistic TBox, B1 and B2 be two general
concepts, A be an atomic concept not appearing in T , and a be a constant.
Then, K |=π B1 # B2 iff the KB K1={T1,A1} where T1 = T>Inc(K) ∪
{〈A # B1, 1〉 , 〈A # ¬B2, 1〉} and A1 = {〈A (a) , 1〉} is inconsistent whatever
is the degree (∃α > 0 such that Inc (K1) = α).

– Subsumption with a necessity degree: Let T be a possibilistic TBox, B1 and
B2 be two general concepts, A be an atomic concept not appearing in T ,
and be a a constant. Then, K |=π 〈B1 # B2, α〉 iff the KB K1 = {T1,A1}
where T1 = T≥α ∪ {〈A # B1, 1〉 , 〈A # ¬B2, 1〉} and A1 = {〈A (a) , 1〉} is
inconsistent where Inc (K1) = α and α > Inc (K).

– Flat instance checking: Let K be a π-DL-Lite KB, B be a concept, A be an
atomic concept not appearing in T , and a be a constant. Then, K |=π B (a)
iff the KB K1 = {T1,A1} where T1 = T>Inc(K) ∪ {〈A # ¬B, 1〉} and A1 =
{〈A (a) , 1〉} is inconsistent (whatever is the degree).

– Instance checking with a necessity degree: Let K be a π-DL-Lite KB, B
be a concept, A be an atomic concept not appearing in T , and a be a
constant. Then, K |=π 〈B (a) , α〉 iff the KB K1={T1,A1} where T1=T>α ∪
{〈A # ¬B, 1〉} and A1={〈A (a) , 1〉} is inconsistent where Inc (K1) = α and
α > Inc (K).

KB consistency is verified by Algorithm Inconsistency, presented above, where
Inc (K) = 0. Hence, all these basic inferences can be obtained using Algorithm
1. Note the difference between flat subsumption (resp. instance checking) and
subsumption with a necessity degree (resp. instance checking with a necessity
degree) is that in the first case we only check whether the subsumption holds
whatever is the degree, while is the second case, subsumption should be satisfied
to some degree.

8 Conclusions and Future Works

In this paper, we investigated a possibilistic extension of DL-Lite. We first intro-
duced the syntax and the semantics of such extensions. We provided properties

358 S. Benferhat and Z. Bouraoui

of π-DL-Lite and show how to compute the inconsistency degree of π-DL-Lite
KB having a complexity identical to the one used in standard DL-Lite. This is
done by defining π-DL-Lite negative closure that extends the one of standard
DL-Lite. Then, we gave a method to check consistency for π-DL-Lite. Finally,
we discussed inference problems. In particular we distinguish different inference
tasks depending whether we use flat inferences or weighted inferences. Results of
this paper are important since they extended DL-Lite languages to deal with pri-
ority (between TBox axioms or ABox axioms) or uncertainty without changing
the computational complexity. Future works concern the revision of π-DL-Lite
KB in presence of new pieces of information.

Acknowledgment. This work has been supported by the french Agence Na-
tionale de la Recherche for the ASPIQ project ANR-12-BS02-0003.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The dl-lite family
and relations. J. Artif. Intell. Res., JAIR (2009)

2. Baader, F., McGuinness, L., Nardi, D., Patel-Schneider, P.F.: The description logic
handbook: Theory, implementation, and applications. Cambridge University Press
(2003)

3. Bobillo, F., Straccia, U.: fuzzydl: An expressive fuzzy description logic reasoner.
In: FUZZ-IEEE, pp. 923–930. IEEE (2008)

4. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Dl-lite:
Tractable description logics for ontologies. In: Proceedings, The Twentieth National
Conference on Artificial Intelligence and the Seventeenth Innovative Applications
of Artificial Intelligence Conference, AAAI 2005, pp. 602–607. AAAI Press / The
MIT Press (2005)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The dl-lite family. J.
Autom. Reasoning 39(3), 385–429 (2007)

6. Couchariere, O., Lesot, M.-J., Bouchon-Meunier, B.: Consistency checking for ex-
tended description logics. In: Proceedings of the 21st International Workshop on
Description Logics, DL 2008. Description Logics, vol. 9, pp. 602–607. CEUR-
WS.org / CEUR Workshop Proceedings (2008)

7. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: The Handbook of Logic
in Artificial Intelligence and Logic Programming, vol. 3, pp. 439–513. Clarendon
Press, Oxford (1994)

8. Dubois, D., Mengin, J., Prade, H.: Possibilistic uncertainty and fuzzy features in
description logic. a preliminary discussion. In: Sanchez, E. (ed.) Fuzzy Logic and
the Semantic Web. Capturing Intelligence, vol. 1, pp. 101–113. Elsevier (2006)

9. Dubois, D., Prade, H.: Possibility theory. Plenum Press, New-York (1988)
10. Hollunder, B.: An alternative proof method for possibilistic logic and its application

to terminological logics. International Journal of Approximate Reasoning 12(2),
85–109 (1995)

11. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic un-
certainty and fuzzy vagueness. Int. J. Approx. Reasoning 50(6), 837–853 (2009)

Possibilistic DL-Lite 359

12. Pan, J.Z., Stamou, G.B., Stoilos, G., Thomas, E.: Expressive querying over fuzzy dl-
lite ontologies. In: Proceedings of the 2007 International Workshop on Description
Logics, DL 2007. Description Logics, vol. 250, pp. 602–607. CEUR-WS.org / CEUR
Workshop Proceedings (2007)

13. Qi, G., Ji, Q., Pan, J.Z., Du, J.: PossDL — A possibilistic DL reasoner for uncer-
tainty reasoning and inconsistency handling. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010,
Part II. LNCS, vol. 6089, pp. 416–420. Springer, Heidelberg (2010)

14. Qi, G., Ji, Q., Pan, J.Z., Du, J.: Extending description logics with uncertainty
reasoning in possibilistic logic. Int. J. Intell. Syst. 26(4), 353–381 (2011)

15. Qi, G., Pan, J.Z.: A tableau algorithm for possibilistic description logic ALC.
In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 61–75.
Springer, Heidelberg (2008)

16. Qi, G., Pan, J.Z., Ji, Q.: Extending description logics with uncertainty reasoning in
possibilistic logic. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724,
pp. 828–839. Springer, Heidelberg (2007)

17. Qi, G., Pan, J.Z., Ji, Q.: A possibilistic extension of description logics. In: Proceed-
ings of the 2007 International Workshop on Description Logics, DL 2007, vol. 4724,
pp. 602–607. CEUR-WS.org / CEUR Workshop Proceedings (2007)

18. Straccia, U.: A fuzzy description logic. In: Mostow, J., Rich, C. (eds.) AAAI/IAAI,
pp. 594–599. AAAI Press / The MIT Press (1998)

19. Straccia, U.: Towards top-k query answering in description logics: The case of dl-
lite. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006.
LNCS (LNAI), vol. 4160, pp. 439–451. Springer, Heidelberg (2006)

Group Preferences for Query Answering
in Datalog+/– Ontologies

Thomas Lukasiewicz, Maria Vanina Martinez,
Gerardo I. Simari, and Oana Tifrea-Marciuska

Department of Computer Science, University of Oxford, UK
firstname.lastname@cs.ox.ac.uk

Abstract. In the recent years, the Web has been changing more and more to-
wards the so-called Social Semantic Web. Rather than being based on the link
structure between Web pages, the ranking of search results in the Social Seman-
tic Web needs to be based on something new. We believe that it can be based
on ontological background knowledge and on user preferences. In this paper, we
thus propose an extension of the Datalog+/– ontology language that allows for
dealing with partially ordered preferences of groups of users. We focus on an-
swering k-rank queries in this context. In detail, we present different strategies to
compute group preferences as an aggregation of the preferences of a collection
of single users. We then provide algorithms to answer k-rank queries for DAQs
(disjunctions of atomic queries) under these group preferences. We show that
such DAQ answering in Datalog+/– can be done in polynomial time in the data
complexity, as long as query answering can also be done in polynomial time (in
the data complexity) in the underlying classical ontology.

1 Introduction

In the recent years, several important changes are taking place on the classical Web.
First, the so-called Web of Data is increasingly being realized as a special case of the
Semantic Web. Second, as a part of the Social Web, users are acting more and more
as first-class citizens in the creation and delivery of contents on the Web. The com-
bination of these two technological waves is called the Social Semantic Web (or also
Web 3.0), where the classical Web of interlinked documents is more and more turning
into (i) semantic data and tags constrained by ontologies, and (ii) social data, such as
connections, interactions, reviews, and tags. The Web is thus shifting away from data
on linked Web pages towards less such interlinked data in social networks on the Web
relative to underlying ontologies. This requires new technologies for search and query
answering, where the ranking of search results is not based on the link structure between
Web pages anymore, but on the information available in the Social Semantic Web, in
particular, the underlying ontological knowledge and the preferences of the users.

Modeling the preferences of a group of users is also an important research topic in its
own right. With the growth of social media, people post their preferences and expect to
get personalized information. Moreover, people use social networks as a tool to organize
events, where it is required to combine the individual preferences and suggest items
obtained from aggregated user preferences. For example, if there is a movie night of

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 360–373, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Group Preferences for Query Answering in Datalog+/– Ontologies 361

friends, family trip, or dinner with working colleagues, one has to decide which is the
ideal movie or location for the group, given the preferences of each member.

To address this problem, individual user preferences can be adopted and then aggre-
gated to group preferences. However, this comes along with two additional challenges.
The first challenge is to define a group preference semantics that solves the possible
disagreement among users (a system should return results in such a way that each indi-
vidual benefits from the result). For example, people (even friends) often have different
tastes on movies. The second challenge is to allow for efficient algorithms, e.g., to com-
pute efficiently the answers to queries under aggregated group preferences [2].

There are many studies that are addressing the area of group modeling. Indirectly,
it is related to the area of social choice (group decision making, i.e., aiming at the
decision that is best for a user given the opinion of individuals), which was studied in
mathematics, economics, politics, and sociology [14,17]. Other areas related to social
choice are meta-search [11], collaborative filtering [9], and multi-agent systems [18].

Current approaches that deal with group preferences have been studied in the area
of recommender systems [2,13], which focus on quantitative preferences. However, in
many real-world scenarios, the ordering of preferences is incomplete. This appears due
to privacy issues or an incomplete elicitation process (users may not want to be asked
too many questions). Furthermore, it is often difficult to determine the appropriate nu-
merical preferences and weights that maximize the utility of a decision [4]. For example,
it is difficult for a user to determine a numerical value (i.e., 0.7 or 0.9) to rate a movie.
Therefore, there is a growing interest in formalisms for representing and reasoning with
qualitative incomplete preferences [15,8,1,10]. In [10], we have introduced an exten-
sion of Datalog+/– with preferences for a single user, while we now focus on extending
Datalog+/– with preferences of a group of users that comes with the two additional
aforementioned challenges. This paper solves them by providing aggregated answers
for DAQs (disjunctions of atomic queries) in polynomial time. The main contributions
of this paper can be summarized as follows.

– We introduce the G-PrefDatalog+/– framework, which is a combination of the Da-
talog+/– ontology language with group preferences. To our knowledge, this is the
first combination of ontology languages with group preferences.

– We present several strategies to compute group preferences as an aggregation of
sets of single-user preferences, based on social choice theory [12]. Using these
aggregated group preferences, we give algorithms for answering k-rank queries for
DAQs , based on a novel augmented chase procedure.

– We analyze the complexity of these algorithms, showing that answering k-rank
queries for DAQs in G-PrefDatalog+/– can be done in polynomial time in the
data complexity, as long as query answering in the underlying classical ontology
can also be done in polynomial time in the data complexity.

The rest of this paper is organized as follows. In Section 2, we briefly recall some ba-
sic concepts from classical Datalog+/– and its extension by single-user preferences.
Section 3 introduces the syntax and semantics of G-PrefDatalog+/–. In Section 4, we
present query answering algorithms, using different strategies to obtain group prefer-
ences from individual user preferences, and focusing especially on k-rank queries to
DAQs. Section 5 summarizes our main results and gives an outlook on future research.

362 T. Lukasiewicz et al.

2 Preliminaries

In this section, we briefly recall some necessary background concepts.

2.1 Datalog+/–

We first recall some basics on Datalog+/– [6], namely, on relational databases, (Bool-
ean) conjunctive queries ((B)CQs), tuple- and equality-generating dependencies (TGDs
and EGDs, respectively), negative constraints, the chase, and ontologies in Datalog+/–.

Databases and Queries. We assume (i) an infinite universe of (data) constants Δ
(which constitute the “normal” domain of a database), (ii) an infinite set of (labeled)
nulls ΔN (used as “fresh” Skolem terms, which are placeholders for unknown values,
and can thus be seen as variables), and (iii) an infinite set of variablesV (used in queries,
dependencies, and constraints). Different constants represent different values (unique
name assumption), while different nulls may represent the same value. We assume a
lexicographic order on Δ∪ΔN , with every symbol in ΔN following all symbols in Δ.
We denote by X sequences of variablesX1, . . . , Xk with k� 0. We assume a relational
schema R, which is a finite set of predicate symbols (or simply predicates). A term t is
a constant, null, or variable. An atomic formula (or atom) a has the form P (t1, ..., tn),
where P is an n-ary predicate, and t1, ..., tn are terms.

A database (instance)D for a relational schemaR is a (possibly infinite) set of atoms
with predicates from R and arguments from Δ. A conjunctive query (CQ) over R has
the form Q(X) = ∃Y Φ(X,Y), where Φ(X,Y) is a conjunction of atoms (possibly
equalities, but not inequalities) with the variables X and Y, and possibly constants, but
without nulls. A Boolean CQ (BCQ) over R is a CQ of the form Q(), often written
as the set of all its atoms, without quantifiers. Answers to CQs and BCQs are defined
via homomorphisms, which are mappings μ : Δ ∪ΔN ∪ V → Δ ∪ΔN ∪ V such that
(i) c ∈ Δ implies μ(c) = c, (ii) c ∈ ΔN implies μ(c) ∈ Δ ∪ ΔN , and (iii) μ is
naturally extended to atoms, sets of atoms, and conjunctions of atoms. The set of all
answers to a CQ Q(X)= ∃YΦ(X,Y) over a database D, denoted Q(D), is the set
of all tuples t over Δ for which there exists a homomorphism μ : X∪Y→Δ ∪ ΔN

such that μ(Φ(X,Y))⊆D and μ(X)= t. The answer to a BCQ Q() over a databaseD
is Yes, denoted D |=Q, iff Q(D) �= ∅.

Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-order
formula of the form ∀X∀Y Φ(X, Y)→∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X, Z)
are conjunctions of atoms over R (without nulls), called the body and the head of σ,
denoted body(σ) and head(σ), respectively. Such σ is satisfied in a database D for R
iff, whenever there exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms
of D, there exists an extension h′ of h that maps the atoms of Ψ(X,Z) to atoms of D.
All sets of TGDs are finite here. Since TGDs can be reduced to TGDs with only single
atoms in their heads, in the sequel, every TGD has w.l.o.g. a single atom in its head.
A TGD σ is guarded iff it contains an atom in its body that contains all universally
quantified variables of σ. The leftmost such atom is the guard atom (or guard) of σ.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases
under a set of TGDs is defined as follows. For a database D for R, and a set of TGDs

Group Preferences for Query Answering in Datalog+/– Ontologies 363

Σ on R, the set of models of D and Σ, denoted mods(D,Σ), is the set of all (possibly
infinite) databases B such that (i) D⊆B and (ii) every σ ∈Σ is satisfied in B. The set
of answers for a CQ Q toD andΣ, denoted ans(Q,D,Σ), is the set of all tuples a such
that a ∈ Q(B) for all B ∈mods(D,Σ). The answer for a BCQ Q to D and Σ is Yes,
denoted D ∪ Σ |=Q, iff ans(Q,D,Σ) �= ∅. Note that query answering under general
TGDs is undecidable [3], even when the schema and TGDs are fixed [5]. Decidability
of query answering for the guarded case follows from a bounded tree-width property.
The data complexity of query answering in this case is P-complete.

Negative constraints (or simply constraints) γ are first-order formulas of the form
∀XΦ(X)→⊥, where Φ(X) (called the body of γ) is a conjunction of atoms (with-
out nulls). Under the standard semantics of query answering of BCQs in Datalog+/–
with TGDs, adding negative constraints is computationally easy, as for each constraint
∀XΦ(X)→⊥, we only have to check that the BCQ Φ(X) evaluates to false in D un-
der Σ; if one of these checks fails, then the answer to the original BCQ Q is true,
otherwise the constraints can simply be ignored when answering the BCQ Q.

Equality-generating dependencies (or EGDs) σ, are first-order formulas of the form
∀XΦ(X) →Xi=Xj , where Φ(X), called the body of σ, denoted body(σ), is a (with-
out nulls) conjunction of atoms, and Xi and Xj are variables from X. Such σ is sat-
isfied in a database D for R iff, whenever there exists a homomorphism h such that
h(Φ(X))⊆D, it holds that h(Xi)= h(Xj). Adding EGDs over databases with TGDs
along with negative constraints does not increase the complexity of BCQ query answer-
ing as long as they are non-conflicting [6]. Intuitively, this ensures that, if the chase (see
below) fails (due to strong violations of EGDs), then it already fails on the database D,
and if it does not fail, then the EGDs do not have any impact on the chase with respect
to query answering.

We usually omit the universal quantifiers in TGDs, negative constraints, and EGDs,
and we implicitly assume that all sets of dependencies and/or constraints are finite.

The Chase. The chase was first introduced to enable checking implication of depen-
dencies, and later also for checking query containment. By “chase”, we refer both to
the chase procedure and to its output. The TGD chase works on a database via so-called
TGD chase rules (see [6] for an extended chase with also EGD chase rules).

TGD Chase Rule. Let D be a database, and σ a TGD of the form Φ(X,Y) →
∃ZΨ(X,Z). Then, σ is applicable toD if there exists a homomorphismh that maps the
atoms of Φ(X,Y) to atoms of D. Let σ be applicable to D, and h1 be a homomorphism
that extends h as follows: for each Xi ∈ X, h1(Xi) = h(Xi); for each Zj ∈ Z,
h1(Zj) = zj , where zj is a “fresh” null, i.e., zj ∈ ΔN , zj does not occur in D, and zj
lexicographically follows all other nulls already introduced. The application of σ on D
adds to D the atom h1(Ψ(X,Z)) if not already in D.

The chase algorithm for a database D and a set of TGDs Σ consists of an exhaustive
application of the TGD chase rule in a breadth-first (level-saturating) fashion, which
outputs a (possibly infinite) chase for D and Σ. Formally, the chase of level up to 0
of D relative to Σ, denoted chase0(D,Σ), is defined as D, assigning to every atom
in D the (derivation) level 0. For every k� 1, the chase of level up to k of D rela-
tive to Σ, denoted chasek(D,Σ), is constructed as follows: let I1, . . . , In be all pos-
sible images of bodies of TGDs in Σ relative to some homomorphism such that (i)

364 T. Lukasiewicz et al.

I1, . . . , In ⊆ chasek−1(D,Σ) and (ii) the highest level of an atom in every Ii is k − 1;
then, perform every corresponding TGD application on chasek−1(D,Σ), choosing the
applied TGDs and homomorphisms in a (fixed) linear and lexicographic order, respec-
tively, and assigning to every new atom the (derivation) level k. The chase of D relative
to Σ, denoted chase(D,Σ), is defined as the limit of chasek(D,Σ) for k→∞.

The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists a
homomorphism from chase(D,Σ) onto every B ∈mods(D,Σ) [6]. This implies that
BCQs Q over D and Σ can be evaluated on the chase for D and Σ, i.e., D∪Σ |= Q is
equivalent to chase(D,Σ) |= Q. For guarded TGDs Σ, such BCQs Q can be evaluated
on an initial fragment of chase(D,Σ) of constant depth k · |Q|, which is possible in
polynomial time in the data complexity.

Datalog+/– Ontologies. A Datalog+/– ontology O=(D,Σ), where Σ=ΣT ∪ ΣE ∪
ΣNC, consists of a database D, a set of TGDs ΣT , a set of non-conflicting EGDs ΣE ,
and a set of negative constraints ΣNC. We say O is guarded iff ΣT is guarded.

Example 1. A simple Datalog+/– ontology O=(D,Σ) for movies (which is inspired
by http://www.movieontology.org) is given below. Intuitively, D encodes
that m1, m2, and m3 are science fiction, documentary, and horror movies, and have the
actor sets {a1}, {a2}, and {a1, a3}, respectively, while Σ encodes that documentary
and adventure movies are movies, that science fiction and horror movies are adventure
movies, and that every movie has an actor.

D = {scifi movie(m1), doc movie(m2), thrilling(m3), has actor(m1, a1),

has actor(m2, a2), has actor(m3, a1), has actor(m3, a3)};
Σ = {doc movie(T) → movie(T), imag movie(T) → movie(T),

scifi movie(T) → imag movie(T), thrilling(T) → imag movie(T),

movie(T) → ∃A has actor(T,A)}.

2.2 Preference Datalog+/–

We now recall the PrefDatalog+/– language introduced in [10], which is a generalization
of Datalog+/– by preferences. For a more general survey of preferences in the context
of databases, we refer the reader to [16]. The approach to define preferences logically
was pursued in [7].

In the following, we denote by ΔOnt, VOnt, and ROnt the infinite sets of constants,
variables, and predicates, respectively, of standard Datalog+/– ontologies as described
in the previous section. For the preference extension, we assume a finite set of con-
stants ΔPref, an infinite set of variables VPref, and a finite set of predicates RPref such
thatRPref ⊆ ROnt,ΔPref ⊆ ΔOnt, and VPref ⊆ VOnt. These sets give rise to corresponding
Herbrand bases HOnt and HPref, as well as Herbrand universes UOnt and UPref, respec-
tively, consisting of all constructible ground atoms and terms, where HPref ⊆ HOnt.

A preference formula pf : C(a, b) is a first-order formula defining a preference re-
lation ≺C on HPref as follows: a≺C b if C(a, b). We call C(a, b) the condition of pf,
denoted cond(pf). A preference-based Datalog+/– (PrefDatalog+/–) ontology KB =
(O,P) consists of a Datalog+/– ontology O and a set of preferences formulas P .

http://www.movieontology.org

Group Preferences for Query Answering in Datalog+/– Ontologies 365

Example 2. Consider again the ontologyO=(D,Σ) from Example 1. Then, the movie
preferences of a user may be represented by the following preference formulas in P ,
encoding that science-fiction movies are preferred over documentaries, and that docu-
mentaries are preferred over horror movies:

P :

⎧⎪⎨
⎪⎩
C1 : doc movie(X) ≺ scifi movie(Y) if X �= Y ;

C2 : movie(X) ≺ movie(Y) if doc movie(X) ∧ scifi movie(Y) ∧X �= Y ;

C3 : movie(X) ≺ movie(Y) if thrilling(X) ∧ doc movie(Y) ∧X �= Y.

3 Group Preference Datalog+/–

In this section, we introduce G-PrefDatalog+/–, which generalizes PrefDatalog+/– to
group preferences; we first define its syntax and then its semantics.

3.1 Syntax

Intuitively, we now have a group of n users, and each of these users has a set of prefer-
ences. Thus, in G-PrefDatalog+/–, rather being combined with the set of preferences of
a single user (like in PrefDatalog+/–), the Datalog+/– ontology is now combined with
a collection of sets of preferences (denoted group profile), one for each user. We first
define the notion of group profile for n� 1 users as follows.

Definition 1 (Group Profile). A group profile P = (P1, . . . , Pn) for n� 1 users is a
collection of n sets of preference formulas, one such set Pi for every user i∈{1, . . . , n}.

We next define the notion of a G-PrefDatalog+/– ontology, which consists of a
Datalog+/– ontology and a group profile for n� 1 users.

Definition 2 (G-PrefDatalog+/–). A group preference-based Datalog+/– (G-PrefDa-
talog+/–) ontology KB =(O,P) consists of a Datalog+/– ontology O and a group
profile P =(P1, . . . , Pn) for n� 1 users. For every user i∈{1, . . . , n}, we denote by
User(KB , i) the PrefDatalog+/– ontology KB i=(O,Pi).

The following notion aggregates single-user preferences via counting preference
pairs. Let a, b∈HPref such that (i) O |= a, b and (ii) cond(pfi)(a, b) for some i∈{1, . . . ,
n}, pfi ∈Pi, and Pi in P . Then, #(a, b) is the number of users that prefer a over b.

Example 3. Consider again the Datalog+/– ontology O = (D,Σ) from Example 1.
Then, a G-PrefDatalog+/– ontology KB =(O,P) for n=3 users is given by the fol-
lowing group profile P =(P1, P2, P3):

P1 :

⎧⎪⎨
⎪⎩
C1,1 : doc movie(X) ≺ scifi movie(Y) if X �= Y ;

C1,2 : movie(X) ≺ movie(Y) if doc movie(X) ∧ scifi movie(Y) ∧X �= Y ;

C1,3 : movie(X) ≺ movie(Y) if thrilling(X) ∧ doc movie(Y) ∧X �= Y ;

P2 :
{
C2,1 : movie(m1) ≺ movie(m2) if �;

P3 :

⎧⎪⎨
⎪⎩
C3,1 : movie(X) ≺ movie(Y) if doc movie(X) ∧ scifi movie(Y) ∧X �= Y ;

C3,2 : movie(X) ≺ movie(Y) if has actor(X,A1) ∧ has actor(Y,A2) ∧
A1 = a3 ∧A2 = a2 ∧X �= Y.

366 T. Lukasiewicz et al.

scifi_movie(m1) doc_movie(m2) thrilling(m3)

imag_movie(m1) movie(m2) imag_movie(m3)

movie(m1) movie(m3)

u1

u2

u1

u3
u3 u1

Fig. 1. G-PrefDatalog+/– representing preferences semantically, where the chase is augmented
by preferences user preferences edges (dotted edges)

Observe also that #(movie(m1),movie(m2))= 2, since movie(m1) is preferred over
movie(m2) by users 1 and 2, while #(scifi movie(m1), doc movie(m2))= 1, since sci-
fi movie(m1) is preferred over doc movie(m2) by user 2.

3.2 Semantics

The semantics of G-PrefDatalog+/– is an extension of the semantics of PrefDatalog+/–.
Given a G-PrefDatalog+/– ontology KB =(O,P) for n� 1 users, we say that user
i∈{1, . . . , n} prefers b over a in KB , denoted KB |= a ≺i b, iff (i) O |= a, b and
(ii) cond(pfi)(a, b) for some pfi ∈Pi.

Intuitively, the consequences of a G-PrefDatalog+/– ontologyKB =(O,P) are com-
puted in terms of the chase for the classical Datalog+/– ontology O, and the collection
of sets of preference formulas P describes the preference relation over pairs of atoms
in HOnt. The extended chase forest for PrefDatalog+/– can thus be extended to groups
by labeling the preference edges with the ids of the users (see Fig. 1).

4 Query Answering Using Group Preferences

In this section, we introduce aggregation strategies that are suitable for sets of par-
tially ordered preferences. We have analyzed strategies developed for quantitative pref-
erences [12] (which yield a weak order) and adapted them to our model focusing on
avoiding the addition of extra information (i.e., without introducing new preferences).
The study of properties of this strategies (e.g., from social choice theory) is out of the
scope of this paper. These aggregation strategies are grouped into two categories: the
first is called collapse to single user (CSU), and it reduces the group modeling problem
to a single user problem by creating a virtual user that is constructed by aggregating the
preferences of the individuals from the group; the second class of strategies is called
score aggregation, and it first computes rankings relative to a query for each user, and
then aggregates these rankings using a voting-based strategy. Moreover, for each of
the two classes of strategies, we provide algorithms for answering disjunctive k-rank
queries and complexity results for them. The choice for k-rank comes as a natural ex-
tension of skyline where incomparable elements appear.

Group Preferences for Query Answering in Datalog+/– Ontologies 367

To define answers to queries, we adopt the following notion from classical logic.
A substitution is a function from variables to variables and constants. Two sets S and
T unify via a substitution θ iff θS = θT , where θA denotes the application of θ to all
variables in all elements of A. The most general unifier (mgu) is a unifier θ such that
for all other unifiers ω, there exists a substitution σ such that ω = σθ.

4.1 Collapse to Single User

In the collapse to single user (CSU) approach, the preference relations for each user
are taken into account in the generation of a new relation that encodes the dominant
preferences. This single user preference relation is then used to answer queries.

To compute k-rank answers to queries Q over a G-PrefDatalog+/– ontology KB =
((D,Σ),P), we use the chase forest for D, Σ, and Q [6]. This is defined as the di-
rected graph consisting of: (i) for every a ∈ D, one node labeled with a, and (ii) for
every node labeled with a ∈ chase(D,Σ) and for every atom b ∈ chase(D,Σ) that is
obtained from a and possibly other atoms by a one-step application of a TGD σ ∈ Σ
with a as guard, one node labeled with b along with an edge from the node labeled
with a. We propose a group preference augmented chase forest, comprised of the nec-
essary finite part of the chase forest relative to a given query that is augmented with
two additional kinds of labeled edges: individual user preference edges (u-edges) and
aggregated group preference edge (g-edges). A u-edge (a, b), with a, b ∈ chase(D,Σ),
occurs iff b ≺u

P a. The edge is labeled with u representing the identity of the user that
makes the claim. The g-edge from a to b is an edge labeled with #(a, b). We apply
the CSU-PrefChase(KB , Q) algorithm that constructs the g-edges as follows: for every
u-edge a ≺u

P b, we check if there is a g-edge between a and b. If there is no such edge,
then we add the g-edge (b, a), make a marked, and set the label to 1. If there is a g-edge
(b, a), then we increase the label by 1. If there is a g-edge (a, b) and label > 1, then we
decrease the label by 1, otherwise we delete the g-edge, and make a unmarked when-
ever a has no other incoming g-edge (see Figure 2). Finally, any cycles that appeared
(this can happen even when none of the ≺u

P relations have cycles) need to be removed—
there are many different ways in which this can be done, such as preferring edges that
have higher labels. The following result shows that this structure can be computed in
polynomial time in the data complexity.

Theorem 1. If KB = (O,P) is a guarded G-PrefDatalog+/– ontology and Q a DAQ,
CSU-PrefChase(KB , Q) can be computed in time O(n2) in the data complexity.

Proof (sketch). The CSU-PrefChase(KB , Q) structure consists of the chase forest for
(D,Σ) with additional u-edges. The construction of the classical chase forest can be
done in time O(n) in the data complexity for guarded TGDs [6]. Now, computing the u-
edges can be done in timeO(n2) in the data complexity, as this involves, for each user u,
iterating through all pairs (ai, aj) of nodes and testing in turn all formulas pfu ∈ Pu

to see if |= Cond(pfu)(ai, aj)—note that |P| is fixed in the data complexity. While
computing the u-edges, we construct the g-edges and mark the nodes; finally, removing
cycles and computing the transitive closure is also accomplished in O(n2) time. �

We now define k-rank answers based on the CSU strategy; we restrict the query
language to DAQs to ensure tractability.

368 T. Lukasiewicz et al.

Definition 3 (k-Rank Answers). Consider a G-PrefDatalog+/– ontology KB = (O,
P) and a DAQ Q(X) = q1(X1) ∨ ... ∨ qn(Xn). The set of 1-rank answers to Q is
defined as: {θqi | O |= θqi and � θ′ such that O |= θ′qj and there is no edge in
CSU-PrefChase(KB , Q) of the form (θ′qj , θqi)}, where θ, θ′ are mgu’s for the vari-
ables in X. A k-rank answer to Q is defined for transitive relations as a sequence of
maximal length of mgu’s for the variables in X: S = 〈θ1, . . . θk′〉 built by subsequently
appending the 1-rank answers to Q, removing these atoms from consideration, and re-
peating the process until either S = k or no more 1-rank answers to Q remain.

An Algorithm for Answering k-Rank Queries. Algorithm k-rank (Algorithm 1) be-
gins by computing the group preference-augmented chase forest relative to the input
ontology and query. The main while-loop iterates through the process of computing the
1-rank answers to Q by using the markings in the forest. Once the loop is finished, the
algorithm returns the first k results. In each iteration of the loop, the node markings
have done almost all of the work towards answering the query; all the algorithm needs
to do is to go through the structure and find the nodes whose labels satisfy Q and, if
unmarked, add them to the output. Once nodes are in the output list, the algorithm elim-
inates these nodes and the associated edges from the augmented group chase forest.
If there are marked nodes with no incoming g-edges (after eliminating the nodes and
edges) these nodes are changed to unmarked. The variable noEdgeTop deals with the
nodes that do not have any preference edges. Such nodes give rise to two alternatives:
to consider them as top favorite, noEdgeTop = true (since no other item is preferred to
them) or to consider them as least favorite. Note that this algorithm returns one possible
answer—incomparable elements may produce different answers.

Example 4. Consider the running example and the group forest depicted in Figure 2
for Q(X) = movie(X) ∨ thrilling(X). The call k-rank(KB , Q(X), 1, false) returns
〈movie(m1)〉; note, however, that if noEdgeTop is true, then 〈thrilling(m3)〉 is also a 1-
rank answer to Q. Call k-rank(KB , Q(X), 2, true) returns 〈movie(m1), thrilling(m3)〉
(the order can be reversed, as they are incomparable), and k-rank(KB , Q(X), 3, false)
returns 〈movie(m1),movie(m2),movie(m3)〉.

The following result establishes correctness and complexity for Algorithm k-rank.

Theorem 2. Let KB be a G-PrefDatalog+/– ontology, Q be a DAQ, and k � 0. Then,
(i) Algorithm k-rank correctly computes a k-rank answer to Q, and (ii) if CSU-Pref-
Chase(KB , Q) is computable in O(n2) time in the data complexity, then Algorithm
k-rank runs in time O(n2) in the data complexity.

As a consequence of Theorem 2, we have the following:

Corollary 1. Let KB = (O,P) be a G-PrefDatalog+/– ontology, Q be a disjunctive
query, and k � 0. If O is a guarded Datalog+/– ontology, then a k-rank answer to Q
can be computed in polynomial time in the data complexity.

4.2 Score Aggregation

Instead of adopting the approach described in the previous section, specific strategies
can be used to combine the answers to k-rank queries computed individually for each

Group Preferences for Query Answering in Datalog+/– Ontologies 369

Algorithm 1. k-rank(KB = ((D,Σ),P), Q, k, noEdgeTop)
Input: G-PrefDatalog+/– ontology KB and DAQ Q(X), k � 0, noEdgeTop.
Output: k-rank answers {a1, ..., ak′} ∈ Result to Q.
1: Result = 〈〉; i:= k;
2: Chase:= CSU-PrefChase(KB , Q);
3: while i > 0 do
4: GA:= ∅; � Initialize GA as an empty set of ground atoms
5: for each atom a labeling node v ∈ Chase do
6: if a |= Q and v is unmarked then
7: if

(
v has has at least one outgoing g-edge

)
or noEdgeTop then

8: GA:= GA ∪ {a};
9: Result:= Result ∪GA;

10: Remove GA from Chase along with all associated edges;
11: if no g-edges remain then
12: noEdgeTop:= true;
13: for each node v ∈ Chase do
14: if v is marked and has no incoming g-edges then
15: make v unmarked;
16: i:= i− |GA|;
17: return truncate(Result, k).

user based on voting mechanisms from the social choice literature. The main difference
is that, in the CSU approach, a single k-ranking is computed from a preference relation
obtained from all the users individual preferences. We consider the following strategies:

− Plurality Voting. This strategy calculates the top preferred items for each user inde-
pendently. The items’ frequency for all the users are summed up, and the items with the
highest number of votes win.
− Least Misery Strategy. This strategy first removes from consideration the elements
that are the least preferred by each of the users, and then applies plurality voting. The
idea behind it is that a group is as happy as its least happy member. A disadvantage of
this approach is that a minority opinion can dominate the result: if an element is highly
preferred by all users except one, then this element will never be chosen.
− Average Without Misery Strategy. This strategy is a generalization of the Least Misery
Strategy in which the first t least preferred elements for each member are removed.
− Fairness Strategy. This strategy is often applied when people want to fairly divide a
set of items: each person chooses in turn, until everyone has made one choice. Next,
everybody chooses a second item, often starting with the person who had to choose last
in the previous round. Using this strategy, top items from all individuals are selected.
− Dictatorship. With this strategy, groups are dominated by one person—the dictator—
who casts the only vote that counts.

An Algorithm for Aggregated k-Rank Query Answering. We now present an al-
gorithm that integrates the aggregation strategies presented above to obtain an ag-
gregated k-rank, leveraging Algorithm k-rank (Algorithm 1). Algorithm Agg-k-rank

370 T. Lukasiewicz et al.

scifi_movie(m1) doc_movie(m2) thrilling(m3)

imag_movie(m1) movie(m2) imag_movie(m3)

movie(m1) movie(m3)

u1

u2

u1

u3
u3 u1

2 1

1 X

X

X

Fig. 2. Collapse to single user: CSU-PrefChase(KB ,movie(X)). Dashed arrows are the g-edges,
labeled with a natural number (how many users prefer node a over node bminus how many users
prefer node b over a). The dotted edges are the u-edges, labeled with the id of the user that claims
the preference order). The marks in the upper left corner represent marked nodes.

(Algorithm 2) works as follows: first, if Misery is true, it computes all the nodes that are
undesired for each user; if useFairness is true, it initializes a vector of iterators that it
will use to compute the next 1-rank answers to Q for each user. The nextElement proce-
dure computes the next i-rank for the user as done in Algorithm 1 but only considering
elements that have not already been added to Result and do not appear in Misery. Fi-
nally, if useFairness is false, the algorithm computes the k-rank answers to Q for each
user and applies plurality voting. We define informally the following variables, used to
determine the strategy of the algorithm:

useFairness: Boolean variable indicating whether the fairness strategy is used or not.

useMisery: if an item is t-least liked by a member then this item should not be in the
top-k for the overall group. To calculate the least t-liked for each for the member, we
create first KB ′(O′,P ′) from KB(O,P), that contains the same O′ = O but the P ′

contains the set P with inverse relationships (if we have a ≺ b if cond(a, b) ∈ P for
some user, then we have b ≺ a if cond(a, b) ∈ P ′). We compute the k-rank for each
member u of the group, Cu = k-rank(User(KB ′, u), Q, t, false)—the last parameter
indicates that if a node does not have any incoming edges from user u, then this node is
not part of the solution. At the end, Cu contains the least preferred t-nodes.

t: threshold for useMisery = true (the t-least favorite items should not be part of top-k).
Algorithm Agg-k-rank can thus be used to compute result with respect to all of the

aggregation strategies discussed above:

− For Plurality Voting, we call Agg-k-rank(KB , Q, k, false, false, 0); Figure 3 provides
an example for the query movie(X) ∨ thrilling(X); for k = 1, the algorithm returns
movie(m1) (thrilling(m3) is also a possible answer).
− For Least Misery, we call Agg-k-rank(KB , Q, k, true, false, 1); the last parameter is
set to t for the Average Without Misery strategy; in the running example, for k = 2,
one possible answer is 〈thrilling(m3),movie(m1)〉. The first atom is in the 2-rank for
each user, and the second is in the 2-rank for users u1 and u3.
− For Fairness, we call Agg-k-rank(KB , Q, k, false, true, 0); the top items for each indi-
vidual are selected in turn in line 16 and added to the result until k answers are obtained.

Group Preferences for Query Answering in Datalog+/– Ontologies 371

scifi_movie(m1) doc_movie(m2) thrilling(m3)

imag_movie(m1) movie(m2) imag_movie(m3)

movie(m1) movie(m3)

u1

u1

u1

X

X

X

scifi_movie(m1) doc_movie(m2) thrilling(m3)

imag_movie(m1) movie(m2) imag_movie(m3)

movie(m1) movie(m3)

u2

X

scifi_movie(m1) doc_movie(m2) thrilling(m3)

imag_movie(m1) movie(m2) imag_movie(m3)

movie(m1) movie(m3)

u3
u3

X

X

Fig. 3. Preference chase relative to Plurality voting and query movie(X) ∨ thrilling(X)

In the running example, for k = 3, we get 〈movie(m1),movie(m2), thrilling(m3)〉, as-
suming that users went in order 〈u1, u2, u3〉.
− For Dictatorship, we must ignore every user’s preferences except for that of the dic-
tator (called d), so we call Agg-k-rank(User(KB , d), Q, k, false, true, 0). In our case, if
u2 is the dictator, then movie(m2), movie(m3), or thrilling(m3) can all be answers.

Corollary 2. Let KB = (O,P) be a G-PrefDatalog+/– ontology, Q be a DAQ, and
k � 0. If O is a guarded Datalog+/– ontology, then an Aggregated-k-rank answer to Q
can be computed in polynomial time in the data complexity.

Proof (sketch). Generating KB ′ can be done in polynomial time. The rest of the algo-
rithm computes the k-rank answers for each user, which we showed to be possible in
polynomial time. �

372 T. Lukasiewicz et al.

Algorithm 2. Agg-k-rank(KB , Q, k, useMisery, useFairness, t)
Input: G-PrefDatalog+/– ontology KB and DAQ Q(X), k � 0, useMisery, useFairness, t.
Output: Aggregated k-answers {a1, ..., ak′} ∈ Result to Q.
1: Misery:= ∅; Result:=〈〉;
2: PrefIter:= new (empty) vector, of size equal to the group, of iterators over vectors of atoms
3: if useMisery then
4: KB ′ = Inverse(KB);
5: for each User u in the Group do
6: Cu:= k-rank(User(KB ′, u), Q, t, false); Misery:= Misery ∪ C;
7: if useFairness then
8: for each user u in the group do
9: PrefIter[u]:= Initialize k-rank iterator

10: done:= false; i:= 0;
11: while !done do
12: for each user u in the group do
13: Result:= Result ∪ PrefIter[u].nextElement; � nextElement considers only

elements not previously added and that do not appear in Misery
14: i:= i+ 1;
15: done:= (i = k) or iterators in PrefIter reached the end for all users;
16: else
17: for each user u in the group do
18: Cu:= k-rank(User(KB , u), Q, k, true)− Misery;
19: Res = ∅; � set of 〈node, vote〉 (ground atom, integer)
20: for each c ∈ Cu do
21: if c ∈ Res.nodes then � takes the set of nodes appearing in Res
22: Res.node[c]:= Res.node[c] + 1;
23: else Res:= Res ∪ {〈c, 1〉};
24: Result:= Sort(Res).nodes; � Sort by vote and return the nodes
25: return truncate(Result, k).

5 Summary and Outlook

In this paper, we have proposed an extension of the Datalog+/– ontology language that
allows for dealing with partially ordered preferences of groups of users. To our knowl-
edge, this is the first combination of ontology languages with group preferences. We
have focused on answering k-rank queries in this context. In detail, we have presented
different strategies to compute group preferences as an aggregation of the preferences
of a collection of single users. We have then provided algorithms to answer k-rank
queries for DAQs (disjunctions of atomic queries) under these group preferences. We
have shown that such DAQ answering in Datalog+/– can be done in polynomial time in
the data complexity, as long as query answering can also be done in polynomial time
(in the data complexity) in the underlying classical ontology.

Current and future work involves implementing and testing the G-PrefDatalog+/–
framework. Furthermore, we want to explore which of the aggregation strategies is sim-
ilar to human judgment and thus well-suited as a general default aggregation strategy
for search and query answering in the Social Semantic Web.

Group Preferences for Query Answering in Datalog+/– Ontologies 373

Acknowledgments. This work was supported by the UK EPSRC grant EP/J008346/1
“PrOQAW: Probabilistic Ontological Query Answering on the Web”, the ERC (FP7/
2007-2013)/ERC grant 246858 (“DIADEM”), and by a Yahoo! Research Fellowship,
and by a Google European Doctoral Fellowship.

References

1. Ackerman, M., Choi, S.Y., Coughlin, P., Gottlieb, E., Wood, J.: Elections with partially or-
dered preferences. Public Choice (2012)

2. Amer-Yahia, S., Roy, S.B., Chawla, A., Das, G., Yu, C.: Group recommendation: Semantics
and efficiency. Proc. VLDB Endow. 2(1), 754–765 (2009)

3. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv,
O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)

4. Brafman, R.I., Domshlak, C.: Preference handling — An introductory tutorial. AI
Mag. 30(1), 58–86 (2009)

5. Calı̀, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive
relational constraints. In: Proc. KR 2008, pp. 70–80. AAAI Press (2008)

6. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable
query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

7. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4),
427–466 (2003)

8. Lang, J., Pini, M.S., Rossi, F., Salvagnin, D., Venable, K.B., Walsh, T.: Winner determina-
tion in voting trees with incomplete preferences and weighted votes. Auton. Agent. Multi-
Ag. 25(1), 130–157 (2012)

9. Linden, G., Smith, B., York, J.: Industry report: Amazon.com recommendations: Item-to-
item collaborative filtering. IEEE Distributed Systems Online 4(1) (2003)

10. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Preference-based query answering in
Datalog+/– ontologies. In: Proc. IJCAI (in press, 2013)

11. Manoj, M., Jacob, E.: Information retrieval on internet using meta-search engines: A review.
Journal of Scientific and Industrial Research 67(10), 739–746 (2008)

12. Masthoff, J.: Group modeling: Selecting a sequence of television items to suit a group of
viewers. User Modeling and User-Adapted Interaction 14(1), 37–85 (2004)

13. Ntoutsi, I., Stefanidis, K., Norvag, K., Kriegel, H.-P.: gRecs: A group recommendation sys-
tem based on user clustering. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R.,
Yoo, J. (eds.) DASFAA 2012, Part II. LNCS, vol. 7239, pp. 299–303. Springer, Heidelberg
(2012)

14. Pattanaik, P.K.: Voting and Collective Choice: Some Aspects of the Theory of Group
Decision-making. Cambridge University Press (1971)

15. Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Aggregating partially ordered preferences.
J. Log. Comput. 19(3), 475–502 (2009)

16. Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, composition and appli-
cation of preferences in database systems. ACM TODS 36(3), 19:1–19:45 (2011)

17. Taylor, A.D.: Social Choice and the Mathematics of Manipulation. Cambridge University
Press (2005)

18. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley (2009)

Reasoning with Semantic-Enabled Qualitative
Preferences

Tommaso Di Noia1, Thomas Lukasiewicz2, and Gerardo I. Simari2

1 Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Italy
t.dinoia@poliba.it

2 Department of Computer Science, University of Oxford, UK
firstname.lastname@cs.ox.ac.uk

Abstract. Personalized access to information is an important task in all real-
world applications where the user is interested in documents, items, objects or
data that match her preferences. Among qualitative approaches to preference rep-
resentation, CP-nets play a prominent role: with their clear graphical structure,
they unify an easy representation of user desires with nice computational proper-
ties when computing the best outcome. In this paper, we explore how to reason
with CP-nets in the context of the Semantic Web, where preferences are linked
to formal ontologies. We show how to compute Pareto optimal outcomes for a
semantic-enabled CP-net by solving a constraint satisfaction problem, and we
present complexity results related to different ontological languages.

1 Introduction

During the recent years, several revolutionary changes are taking place on the classical
Web. First, the so-called Web of Data is more and more being realized as a special
case of the Semantic Web. Second, as a part of the Social Web, users are acting more
and more as first-class citizens in the creation and delivery of contents on the Web.
The combination of these two technological waves is called the Social Semantic Web
(or also Web 3.0), where the classical Web of interlinked documents is more and more
turning into (i) semantic data and tags constrained by ontologies, and (ii) social data,
such as connections, interactions, reviews, and tags.

The Web is thus shifting away from data on linked Web pages towards less such
interlinked data in social networks on the Web relative to underlying ontologies. This
requires new technologies for search and query answering, where the ranking of search
results is not based on the link structure between Web pages anymore, but on the infor-
mation available in the Social Semantic Web, in particular, the underlying ontological
knowledge and the preferences of the users. Given a query, these latter play a funda-
mental role when a crisp yes/no answer is not enough to satisfy a user’s needs, since
there is a certain degree of uncertainty in possible answers [8].

We have two main ways of modeling preferences: (a) quantitative preferences are
associated with a number representing their worth or they are represented as an ordered
set of objects (e.g., “my preference for WiFi connection is 0.8” and “my preference for
cable connection is 0.4”), while (b) qualitative preferences are related to each other via
pairwise comparisons (e.g., “I prefer WiFi over cable connection”).

W. Liu, V.S. Subrahmanian, and J. Wijsen (Eds.): SUM 2013, LNAI 8078, pp. 374–386, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Reasoning with Semantic-Enabled Qualitative Preferences 375

Actually, the qualitative approach is a more natural way of representing preferences,
since humans are not very comfortable in expressing their “wishes” in terms of a nu-
merical value. To have a quantitative representation of her preferences, the user needs
to explicitly determine a value for a large number of alternatives usually described by
more than one attribute. It is generally much easier to provide information about pref-
erences as pairwise qualitative comparisons [8]. One of the most powerful qualitative
frameworks for preference representation and reasoning are perhaps CP-nets [3]. They
are a graphical language that unifies an easy representation of user desires with nice
computational properties when computing the best outcome. Most of the work done on
CP-nets and more generally on preference representation mainly deals with a propo-
sitional representations of preferences. In this paper, we propose an enhancement of
CP-nets by adding ontological information associated to preferences. This is an initial
step towards a new type of semantic search techniques able to go far beyond PageRank
and similar algorithms. They will be able to exploit social information, e.g., information
coming from social networks, and model it as semantic-enabled user preferences.

The rest of this paper is organized as follows. In Section 2, we briefly recall CP-nets
and description logics (DLs), which are the two main technologies that we use in our
approach. Section 3 introduces ontological CP-nets, i.e., CP-nets enriched with onto-
logical descriptions, and it describes how to compute optimal outcomes. In Sections 4
and 5, we provide complexity results and discuss related work, respectively. Finally, we
give a summary of the results in this paper and an outlook on future work.

2 Preliminaries

We start by introducing some notions and formalisms that are necessary to present our
framework. Given a set of variables V , an outcome is an assignment to all the variables
in V . A preference relation 7 is a total pre-order over the set of all outcomes. We
write o1 : o2 (resp., o1 7 o2) to denote that o1 is strictly preferred (resp., strictly or
equally preferred) to o2. If o1 : o2, then o2 is dominated by o1. If there is no outcome o
such that o : o1, then o1 is undominated.

A conditional preference is an expression (α : β | γ), where α, β, and γ are for-
mulas. It intuitively means that “given γ, I prefer α over β”. In the following, we often
write (α | γ) and (¬α | γ) to denote (α : ¬α | γ) and (¬α : α | γ), respectively, and
we use α̃ to represent one of the elements among α and ¬α.

2.1 CP-Nets

Conditional preferences networks (CP-nets) [3] are a formalism to represent and rea-
son about qualitative preferences. They are a compact but powerful language, which
allows the specification of preferences based on the notion of conditional preferential
independence (CPI) [13]. Let A,B ∈ V be two variables and R ⊂ V be a set of
variables such that A, B, and R partition V , and Dom(A), Dom(B), and Dom(R)
represent all possible assignments for A, B, and all the variables in R, respectively.
We say that A is conditionally preferentially independent (CPI) of B given an assign-
ment ρ ∈ Dom(R) iff, for every α1, α2 ∈ Dom(A) and β1, β2 ∈ Dom(B), we

376 T. Di Noia, T. Lukasiewicz, and G.I. Simari

have that α1β1ρ : α2β1ρ iff α1β2ρ : α2β2ρ. Here, : represents the preference
order on assignments to sets of variables. CP-nets are a graphical language to model
CPI statements. Formally, a CP-net N consists of a directed graph G over a set of
variables V = {Ai | i ∈ {1, . . . , n}} as nodes, along with a conditional preference
table CPT (Ai) for every variable Ai, which contains a preference for each pair of
values of Ai conditioned to all possible assignments to the parents of Ai in G. Given
a CP-net N , we denote by CPT i the set of all conditional preferences represented
by CPT (Ai), and we define CPT N = {CPT i | i ∈ {1, . . . , n}}. An example of a
CP-net (over only binary variables) is shown in Fig. 1.

Example 1 (Hotel). A CP-net for representing preferences for hotel accommodations is
shown in Fig. 1. Note that this is a toy example, whose purpose is to show the repre-
sentational expressiveness of CP-nets in modeling user profiles. In this simple case, we
use five binary variables of the following meaning:

α1: the hotel is located near the sea;
α2: the hotel is located in the city center;
α3: scooters for rent;
α4: parking available;
α5: bikes for rent.

Looking at CPT (A3), e.g., we see that the user prefers to have a scooter for rent in
case the hotel is located near the sea or in the city center, and that she prefers to not
have a scooter for rent if the hotel is neither near the sea nor in the city center.

To establish an order among possible outcomes of a CP-net, we introduce the no-
tion of worsening flip, which is a change in the value of a variable that worsens the
satisfaction of user preferences. As an example, if we consider the CP-net in Fig. 1,
we have a worsening flip moving from α1α2α3¬α4¬α5 to α1α2¬α3¬α4¬α5. Indeed,
given α1α2¬α4¬α5, we see that α3 is preferred over ¬α3. Based on this notion, we
can state that α1α2α3¬α4¬α5 : α1α2¬α3¬α4¬α5.

Given a CP-net, the two main queries that one may ask are:

– dominance query: given two outcomes o1 and o2, does o1 : o2 hold?
– outcome optimization: compute an optimal (i.e., undominated) outcome for the

preferences represented by a given CP-net.

Given an acyclic CP-net, one can compute the best outcome in linear time. The
algorithm just follows the order among variables represented by the graph and assigns
values to the variables Ai from top to bottom satisfying the preference order in the
corresponding CPT (Ai). For example, in the CP-net in Fig. 1, the optimal outcome
is α1α2α3α4α5. Finding optimal outcomes in cyclic CP-nets is NP-hard.

2.2 Constrained CP-Nets

In constrained CP-nets [18,4], constraints among variables are added to the basic for-
malism of CP-nets. Adding constraints among variables may reduce the set of possible
outcomes O. The approach to finding the optimal outcomes proposed in [18] relies on a

Reasoning with Semantic-Enabled Qualitative Preferences 377

Fig. 1. An example of a CP-net over five binary variables

reduction of the preferences represented in the CP-net to a set of hard constraints (which
can be represented in clause form for binary variables), taking into account the variables
occurring in the preferences. Given a CP-net N and a set of constraints C, an outcome
o is feasible iff it satisfies all the constraints in C. A feasible outcome is Pareto optimal
[4] iff it is undominated. These optimal outcomes now correspond to the solutions of
a constraint satisfaction problem. For binary variables, given a conditional preference
(αn+1 |

∧
i=1...n αi), the corresponding constraint is the clause∧

i=1...n

αi → αn+1. (1)

Given a CP-net N and a set of constraints C, a feasible Pareto optimal outcome is ex-
actly an assignment satisfying the corresponding set of clauses and all constraints in C.
We refer the reader to [18,4] for further details, including examples.

2.3 Description Logics

Description logics (DLs) are a family of formalisms that are well-established in knowl-
edge representation and reasoning [1]. We assume that the reader is familiar with DLs,
and we here only briefly recall the elements that we use in the presented approach. Ba-
sic elements of DLs are concept names, role names, and individuals. DLs are usually
endowed with a model-theoretic formal semantics. A semantic interpretation is a pair
I = (ΔI , ·I), where ΔI represents the domain, and ·I is the interpretation function.
This function maps every concept name to a subset of ΔI , and every role name to a
subset of ΔI ×ΔI . The symbols � and ⊥ are used, respectively, to represent the most
generic concept and the most specific concept. Hence, their formal semantics corre-
spond to �I = ΔI and ⊥I = ∅. The interpretation function also applies to complex
concepts: (α1β)I = αI∩βI , (α2β)I = αI∪βI , (¬α)I = ΔI\αI . In the following,
we use α → β and α ↔ β to denote ¬α 2 β and (α → β) 1 (β → α), respectively.
Given a generic formula α, we use I |= α to say that αI �= ∅.

378 T. Di Noia, T. Lukasiewicz, and G.I. Simari

Here, we use T (for “terminology”) to denote a DL ontology, i.e., a set of axioms of
the form α # β (inclusion) and α ≡ β (definition), where α and β are concepts. We
say that α is subsumed by β relative to T iff T |= α # β, denoted α #T β; α is not
satisfiable relative to the ontology T iff it is under T subsumed by the most specific
concept, i.e., T |= α # ⊥, denoted α #T ⊥; α is not subsumed by β relative to T
iff T �|= α # β, denoted α �#T β.

We write I |= T to denote that for each axiom α # β ∈ T , it holds αI ⊆ βI .
Similarly, I |=T α # β with α # β �∈ T denotes that both I |= T and I |= α # β.

Definition axioms of the formCN ≡ α can be used to define a new concept nameCN ,
then used as synonym for the formula α.

Without loss of generality, we write an interpretation I as a full conjunction of con-
cept names and negated concept names. We say that I satisfies a concept α under T ,
denoted I |=T α, iff T |= I # α. We say that α is satisfiable under T iff an interpre-
tation I exists such that I |=T α.

There are many different DLs with different expressiveness [1]. The approach that we
present here does not depend on a specific DL and can be applied to the very expressive
SROIQ(D), which is the DL behind OWL 2 (Web Ontology Language) [11]. For
further details on DLs, we refer the reader to [1].

3 Ontological CP-Nets

We now introduce a framework for preference representation that is harnessing the tech-
nologies described in the previous section. The idea is to combine CP-nets and DLs. In
the framework that we propose here, variable values are satisfiable DL formulas.

We consider only binary variables here. Two conditional preferences (α | γ) and
(α′ | γ′) are equivalent under an ontology T iff γ ≡T γ′ and α ≡T α′.

Definition 1 (ontological CP-net). An ontological CP-net (N, T) consists of a CP-
net N and an ontology T such that:

(i) for each variable A ∈ V , it holds that Dom(A) = {α,¬α}, where both α and ¬α
are DL formulas that are satisfiable relative to T ;

(ii) all the conditional preferences in CPT N are pairwise not equivalent.

Note that even if we do not have any explicit hard constraint expressed among the
variables of the CP-net, due to the underlying ontology, we have a set of implicit con-
straints among the values of the variables V in the CP-net. We show in Section 3.2 how
to explicitly encode such constraints to compute an optimal outcome.

Example 2 (Hotel cont’d). Consider a simple ontology, describing the services offered
by a hotel, containing the following set of axioms:

functional(rent);

Scooter # Motorcycle;

Motorcycle # ¬Bike;

∃rent.Scooter # ∃facilities.(Parking 1
∃payment 1 ∀payment.Free).

Reasoning with Semantic-Enabled Qualitative Preferences 379

Suppose that we have the variables A3, A4, and A5 of the CP-net of Fig. 1 with the do-
mainsDom(A3) = {α3,¬α3}, Dom(A4) = {α4,¬α4}, andDom(A5) = {α5,¬α5},
respectively, where:

α3 = ∃rent.Scooter;

α4 = ∃facilities.Parking;

α5 = ∃rent.Bike.

It is then not difficult to verify that α3 1 α5 #T ⊥ and α3 #T α4. Hence, A3 and A5

constrain each other, as well as A3 and A4.

Following [18], to compute the outcomes of a CP-net N , we can transform N into
a set of constraints represented in clausal form. For each preference Φ = (α̃ | γ) ∈
CPT N , we write the following clause:

γ → α̃. (2)

In a constrained CP-net, if we had propositional true/false variables, an outcome would
be a model, i.e., a true/false assignment that satisfies all the constraints and some of
the clauses built, starting from the preferences represented in CPT N . For ontological
CP-nets, we reuse this notion and say that an outcome I that satisfies a preference Φ,
denoted I |= Φ, is an interpretation such that:

I |=T γ → α̃.

Using a notation similar to the one proposed in [18], we call DL-opt(N) the set of DL
clauses corresponding to all the preferences in CPT N .

Definition 2 (feasible outcome and dominance). Given an ontological CP-net (N, T),
an outcome I is feasible iff I |= T . A feasible outcome I is undominated iff no feasible
outcome I ′ exists such that I ′ : I.

3.1 Propositional Compilation of DL Formulas

Given a set of satisfiable DL formulas F = {φi | i ∈ {1, . . . , n}}, some of them
may constrain others, because of their logical relationships. For example, we may have
φi 1 ¬φj # φk or φi 1 φj # ⊥. By the equivalence α # β ≡ � # ¬α 2 β, we can
always represent each constraint in its logically equivalent clausal form. The previous
constraints are then equivalent to � # ¬φi2φj2φk and� # ¬φi2¬φj , respectively. In
the following, we represent a clause ψ either as a logical disjunctive formula ψ = φ̃1 2
· · ·2φ̃n or as a set of formulasψ = {φ̃1, . . . , φ̃n}. Moreover, we often write φ̃12· · ·2φ̃n

to denote � # φ̃1 2 · · · 2 φ̃n.
A DL ontology can be seen as a set of logical constraints that reduces the set of

models for a formula. Given a set of DL formulas F , in the following, we show how to
compute a compact representation of an ontology T as a set of clauses whose variables
have a one-to-one mapping to the formulas in F .

380 T. Di Noia, T. Lukasiewicz, and G.I. Simari

Definition 3 (ontological constraint). Given an ontology T and a set of formulas F =
{φi | i ∈ {1, . . . , n}} satisfiable w.r.t. T , we say that F is minimally constrained
w.r.t. T iff

1. there exists a formula φ̃1 2 . . . 2 φ̃n such that T |= � # φ̃1 2 . . . 2 φ̃n;
2. there is no proper subset E ⊂ F such that the previous condition holds.

The formula � # φ̃1 2 . . . 2 φ̃n is called an ontological constraint.

An ontological constraint is an explicit representation of the constraints existing
among a set of formulas, due to the information encoded in the ontology T .

Definition 4 (ontological closure). Given an ontology T and a set of formulas F =
{φi | i ∈ {1, . . . , n}} satisfiable w.r.t. T , we call ontological closure of F , denoted
OCL(F , T), the set of ontological constraints built, if any, for each set in 2F .

The ontological constraint is an explicit representation of all the logical constraints
considering also an underlying ontology. If we are interested only in the relationships
between predefined formulas (due to T), then the corresponding ontological closure is
a compact and complete representation.

Example 3 (Hotel cont’d). Given the set F = {α3, α4, α5}, due to the axioms in the on-
tology, we have the two minimally constrained sets F ′ = {α3, α5} and F ′′ = {α3, α4}
and the two corresponding ontological constraints ¬α3 2 ¬α5 (indeed α3 1 α5 #T ⊥)
and ¬α3 2 α4 (indeed α3 #T α4). The corresponding ontological closure is then
OCL(F , T) = {¬α3 2 ¬α5,¬α3 2 α4}.

Proposition 1. If T |=
�
φ̃i # ⊥, then OCL(F , T) |=

�
φ̃i # ⊥.

Proof. Since T |=
�
φ̃i # ⊥, this means that we have the corresponding clause ψ =⊔

¬φ̃i such that T |= � # ψ. If F = {φi | i ∈ {1, . . . , n}} is minimally constrained,
then ψ ∈ OCL(F , T), otherwise, by definition of OCL(F , T), there will be a clause
ψ′ ∈ OCL(F , T) such that ψ′ ⊂ ψ. �

Given a set F = {φi | i ∈ {1, . . . , n}} of satisfiable formulas, we say that the set
F̃ = {φ̃i | i ∈ {1, . . . , n}} is a feasible assignment for F iff

OCL(F , T) �|=
�

i

φ̃i # ⊥.

Note that by Proposition 1, we have that if F̃ is a feasible assignment for F , then we
have T �|=

�
i φ̃i # ⊥, i.e.,

�
i φ̃i is satisfiable w.r.t. T .

Proposition 2. For each set of satisfiable formulas F , there always exists a feasible
assignment.

Proof. For each interpretation I such that I |= T , since T |= OCL(F , T), we have
I |= OCL(F , T). Hence, we always have an interpretation for each clause ψj ∈
OCL(F , T) such that (ψj)I �= ∅. Given a clause ψj , by the semantics of 2, we have
that I |= ψj iff for at least one φ̃j

i ∈ ψj the relation I |= � # φ̃j
i holds. �

Reasoning with Semantic-Enabled Qualitative Preferences 381

3.2 Computing Optimal Outcomes

The main task that we want to solve with our framework is finding an undominated fea-
sible outcome. In this section, we show how to compute it, given an ontological CP-net.
The approach mainly relies on the HARD-PARETO algorithm of [18] (see Algorithm 1).

If we have an ontological CP-net (N, T), the variable values (formulas) in a set F
may constrain each other, and the corresponding constraints are encoded inOCL(F , T).
The ontological closure of a set of formulas explicitly represents all the logical con-
straints among them with respect to an underlying ontology. The computation of all
feasible Pareto optimal solutions for an ontological CP-net goes through the Boolean
encoding of both the ontology T and of the clauses corresponding to the preferences
represented in CPT N for each variable Aj ∈ V . To use HARD-PARETO, we need a few
pre-processing steps. Given the ontological CP-net (N, T):

1. for each Aj ∈ V with Dom(Aj) = {αj,¬αj}, choose a fresh concept name Vj ;
2. define the ontology T ′ = T ∪ {Vj ≡ αj | j ∈ {1, . . . , |V|}};
3. define the ontological CP-net (N ′, T ′), where N ′ is the same CP-net as N but for

the domain of its variables. In particular, in N ′, we have Dom(Aj) = {Vj ,¬Vj};
4. define F = {Vj | j ∈ {1, . . . , |V|}}, where Vj are the concept names introduced

in step 1;
5. compute OCL(F , T ′);
6. introduce a Boolean variable vj for each Vj ∈ F ;
7. transform OCL(F , T ′) into the corresponding set of Boolean clauses C by replac-

ing Vj with the corresponding binary variable vj ;
8. transform DL-opt(N’) into the set of Boolean clauses opt(N’) by replacing Vj ∈

Dom(Aj) with the corresponding variable vj .

Note that T is logically equivalent to T ′. Indeed, we just introduced equivalence axioms
to define new concept names Vj used as synonyms of complex formulas αj . The same
holds for (N, T) and (N ′, T ′), since we just rewrite formulas in Dom(Aj) with an
equivalent concept name.

Example 4 (Hotel cont’d). With respect to the CP-net in Fig. 1, if we consider

α1 = ∃location.OnTheSea,

α2 = ∃location.CityCenter,

then we obtain:

– T ′ = T ∪ {V1 ≡ ∃location.OnTheSea, . . . , V5 ≡ ∃rent.Bike};
– C = {¬v3 ∨ ¬v5,¬v3 ∨ v4};
– opt(N’) = {v1, v2, v1 ∧ v2 → v3, . . . , v2 → v4, . . . , v3 → v5, . . .}.

Once we have C and opt(N’), we can compute the optimal outcome of (N, T) by
using the slightly modified version of HARD-PARETO represented in Algorithm 1.
The function sol(·) used in Algorithm 1 computes all the solutions for the Boolean

382 T. Di Noia, T. Lukasiewicz, and G.I. Simari

constraint satisfaction problem represented by C, opt(N’) and C ∪ opt(N’). Differently
from the original HARD-PARETO, by Proposition 2, we know that C is always con-
sistent, and so we do not need to check its consistency at the beginning of the algo-
rithm. Moreover, note that the algorithm works with propositional variables although we
are computing Pareto optimal solutions for an ontological CP-net. This means that the
dominance test in line 11 can be computed using well-known techniques for Boolean
problems.

Input: opt(N’) and C
1 Sopt ← sol(C ∪ opt(N’));
2 if Sopt = sol(C) then
3 return Sopt;
4 end
5 if sol(opt(N’)) �= ∅ and Sopt = sol(opt(N’)) then
6 return Sopt;
7 end
8 S ← sol(C)− Sopt;
9 repeat

10 choose o ∈ S;
11 if ∀o′ ∈ sol(C)− o, o′ �� o then
12 Sopt ← Sopt ∪ {o};
13 end
14 S ← S − {o};
15 until S = ∅;
16 return Sopt.

Algorithm 1. Algorithm HARD-PARETO adapted to ontological CP-nets.

The outcomes returned by Algorithm 1 in Sopt are true/false assignments to the
Boolean variables vj . To compute undominated outcomes for the original ontological
CP-net (N, T), we need to revert to a DL setting. Hence, we build the set DL-Sopt,
where for each outcome oi ∈ Sopt, we add to DL-Sopt the following formula:

Ii =
�

{Vj | vj = true in oi} 1
�

{¬Vj | vj = false in oi}.

Theorem 1. Given an ontological CP-net (N, T), the formulas Ii ∈ DL-Sopt are
undominated outcomes for (N, T).

4 Computational Complexity

We now explore the complexity of the main computational problems in ontological CP-
nets for underlying ontological languages with typical complexity of deciding knowl-
edge base satisfiability, namely, tractability and completeness for EXP and NEXP. We
also provide some special tractable cases of dominance testing in ontological CP-nets.

Reasoning with Semantic-Enabled Qualitative Preferences 383

4.1 General Results

For tractable ontology languages (i.e., those for which deciding knowledge base sats-
fiability is tractable), the complexity of ontological CP-nets is dominated by the com-
plexity of CP-nets. That is, deciding (a) consistency, (b) whether a given outcome is
undominated, and (c) dominance of two given outcomes are all PSPACE-complete.
Here, the lower bounds follow from the fact that ontological CP-nets generalize CP-
nets, for which these problems are all PSPACE-complete [10]. As for the upper bounds,
compared to standard CP-nets, these problems additionally involve knowledge base
satisfiability checks, which can all be done in polynomial time and thus also in polyno-
mial space. Note that in (a) (resp., (b)), one has to go through all outcomes o′ and check
that it is not the case that o : o′ (resp., o′ : o), which can each and thus overall be
done in polynomial space. Note also that the same complexity results hold for ontology
languages with PSPACE-complete knowledge base satisfiability checks and that even
computing the set of all undominated outcomes (generalizing (b)) is PSPACE-complete
under the condition that there are only polynomially many of them.

Theorem 2. Given an ontological CP-net (N, T) over a tractable ontology language,

(a) deciding whether (N, T) is consistent,
(b) deciding whether a given outcome o is undominated,
(c) deciding whether o≺ o′ for two given outcomes o and o′

are all PSPACE-complete.

In particular, if the ontological CP-net is defined over a DL of the DL-Lite family [7]
(which all allow for deciding knowledge base satisfiability in polynomial time, such
as DL-LiteR, which stands behind the important OWL 2 QL profile [16]), deciding (a)
consistency, (b) whether a given outcome is undominated, and (c) dominance of two
given outcomes are all PSPACE-complete.

Corollary 1. Given an ontological CP-net (N, T) over a DL from the DL-Lite family,

(a) deciding whether (N, T) is consistent,
(b) deciding whether a given outcome o is undominated,
(c) deciding whether o≺ o′ for two given outcomes o and o′

are all PSPACE-complete.

For EXP (resp., NEXP) complete ontology languages (i.e., those for which knowl-
edge base satisfiability is complete for EXP (resp., NEXP)), the complexity of ontologi-
cal CP-nets is dominated by the complexity of the ontology languages. That is, deciding
(a) inconsistency, (b) whether a given outcome is dominated, and (c) dominance of two
given outcomes are all complete for EXP (resp., NEXP). Here, the lower bounds follow
from the fact that all three problems in ontological CP-nets can be used to decide knowl-
edge base satisfiability in the underlying ontology language. As for the upper bounds, in
(a) and (b), we have to go through all outcomes, which is in EXP (resp., NEXP). Then,
we have to perform knowledge base satisfiability checks, which are also in EXP (resp.,
NEXP), and dominance checks in standard CP-nets, which are in PSPACE, and thus

384 T. Di Noia, T. Lukasiewicz, and G.I. Simari

also in EXP (resp., NEXP). Overall, (a) to (c) are thus in EXP (resp., NEXP). Note that
computing the set of all undominated outcomes (generalizing (b)) is also EXP-complete
for EXP-complete ontology languages.

Theorem 3. Given an ontological CP-net (N, T) over an EXP (resp., NEXP) complete
ontology language,

(a) deciding whether (N, T) is inconsistent,
(b) deciding whether a given outcome o is dominated,
(c) deciding whether o≺ o′ for two given outcomes o and o′

are all complete for EXP (resp., NEXP).

In particular, if the ontological CP-net is defined over the expressive DL SHIF(D)
(resp., SHOIN (D)) [12] (which stands behind OWL Lite (resp., OWL DL) [15,11],
and allows for deciding knowledge base satisfiability in EXP [12,20] (resp., NEXP, for
both unary and binary number encoding; see [17,20] and the NEXP-hardness proof for
ALCQIO in [20], which implies the NEXP-hardness of SHOIN (D))), deciding (a)
inconsistency, (b) whether a given outcome is dominated, and (c) dominance of two
given outcomes are all complete for EXP (resp., NEXP).

Corollary 2. Given an ontological CP-net (N, T) over the DL SHIF(D) (resp., SH-
OIN (D)),

(a) deciding whether (N, T) is inconsistent,
(b) deciding whether a given outcome o is dominated,
(c) deciding whether o≺ o′ for two given outcomes o and o′

are all complete for EXP (resp., NEXP).

4.2 Tractability Results

If the ontological CP-net is a polytree and defined over a tractable ontology language,
deciding dominance of two outcomes can be done in polynomial time, which follows
from the fact that for standard polytree CP-nets, dominance can be decided in polyno-
mial time [3]. Note that polytree ontological CP-nets are always consistent.

Theorem 4. Given an ontological CP-net (N, T) over a tractable ontology language,
where N is a polytree, deciding whether o ≺ o′ for two given outcomes o and o′ can be
done in polynomial time.

In particular, if the ontological CP-net is a polytree and defined over a DL of the
DL-Lite family, deciding dominance of two outcomes can be done in polynomial time.

Corollary 3. Given an ontological CP-net (N, T) over a DL from the DL-Lite family,
where N is a polytree, deciding whether o ≺ o′ for two given outcomes o and o′ can be
done in polynomial time.

Reasoning with Semantic-Enabled Qualitative Preferences 385

5 Related Work

Constrained CP-nets were originally proposed in [4], along with the algorithm SEARCH-
CP, which uses branch and bound to compute undominated outcomes. The algorithm
has an anytime behavior: it can be stopped at any time, and the set of computed solu-
tions are a subset of the set containing all the undominated outcomes. This means that
in case we are interested in any undominated outcome, we can use the first one returned
by SEARCH-CP. In [18], HARD-PARETO is presented. The most notable difference is
that HARD-PARETO does not rely on topological information like SEARCH-CP, but it
exploits only the CP-statements, thus allowing to work also with cyclic CP-nets. Dif-
ferently from the previous two papers, in our work, we allow the variable domains to
contain DL formulas constrained via ontological axioms.

There are a very few papers describing how to combine Semantic Web technologies
with preference representation and reasoning using CP-nets. To our knowledge, the
most notable work is [2]. Here, in an information retrieval context, Wordnet is used to
add a semantics to CP-net variables. Another interesting approach to mixing qualitative
preferences with a Semantic Web technology is presented in [19], where the authors
describe an extension of SPARQL, which can encode user preferences in the query.

A combination of conditional preferences (very different from CP-nets) with DL
reasoning for ranking objects is introduced in [14]. A ranking function is described that
exploits conditional preferences to perform a semantic personalized search and ranking
over a set of resources annotated via an ontological description.

6 Summary and Outlook

In classical decision theory and analysis, the preferences of decision makers are mod-
eled by utility functions. Unfortunately, the effort needed to obtain a good utility func-
tion requires a significant involvement of the user [9]. This is one of the main reasons
behind the success obtained by CP-nets since they were originally proposed [5]: they
are compact, easily understandable and well-suited for combinatorial domains, such
as multi-attribute ones. In this paper, we have described how to reason with CP-nets
whose variable values are DL formulas that refer to a common ontology. The proposed
framework is very useful in many semantic retrieval scenarios such as semantic search.

After the introduction of CP-nets, other related formalisms have been proposed such
as TCP-nets (Trade-off CP-nets) [6] or CP-theories [21]. TCP-nets extend CP-nets by
allowing to express also relative important statements between variables. With TCP-
nets, the user is allowed to express her preferences over compromises that sometimes
may be required. CP-theories generalize (T)CP-nets allowing conditional preference
statements on the values of a variable, along with a set of variables that are allowed to
vary when interpreting the preference statement. In future work, we plan to enrich these
frameworks by introducing ontological descriptions and reasoning, thus allowing the
development of more powerful semantic-enabled preference-based retrieval systems.

Acknowledgments. This work was supported by the UK EPSRC grant EP/J008346/1
“PrOQAW: Probabilistic Ontological Query Answering on the Web”, the ERC (FP7/
2007-2013) grant 246858 (“DIADEM”), and by a Yahoo! Research Fellowship.

386 T. Di Noia, T. Lukasiewicz, and G.I. Simari

References

1. Baader, F., Calvanese, D., Mc Guinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook. Cambridge University Press (2002)

2. Boubekeur, F., Boughanem, M., Tamine-Lechani, L.: Semantic information retrieval based
on CP-nets. In: Proc. FUZZ-IEEE 2007, pp. 1–7. IEEE Computer Society (2007)

3. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for rep-
resenting and reasoning with conditional ceteris paribus preference statements. J. Artif. In-
tell. Res. 21, 135–191 (2004)

4. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Preference-based con-
strained optimization with CP-nets. Computat. Intell. 20(2), 137–157 (2004)

5. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional ceteris
paribus preference statements. In: Proc. UAI 1999, pp. 71–80. Morgan Kaufmann (1999)

6. Brafman, R.I., Domshlak, C., Shimony, S.E.: On graphical modeling of preference and im-
portance. J. Artif. Intell. Res. 25(1), 389–424 (2006)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. Autom. Reason-
ing 39(3), 385–429 (2007)

8. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: An overview. Artif. In-
tell. 175(7/8), 1037–1052 (2011)

9. French, S.: Decision Theory: An Introduction to the Mathematics of Rationality. In: Ellis
Horwood Series in Mathematics and its Applications. Prentice Hall (1988)

10. Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational complexity of
dominance and consistency in CP-nets. J. Artif. Intell. Res. 33, 403–432 (2008)

11. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web Ontology
Language Primer, 2nd edn. W3C Recommendation (December 11, 2012),
http://www.w3.org/TR/owl2-primer/

12. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfia-
bility. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
17–29. Springer, Heidelberg (2003)

13. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-
offs. Cambridge University Press (1993)

14. Lukasiewicz, T., Schellhase, J.: Variable-strength conditional preferences for ranking objects
in ontologies. J. Web Sem. 5(3), 180–194 (2007)

15. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview. W3C Rec-
ommendation (February 10, 2004),
http://www.w3.org/TR/2004/REC-owl-features-20040210/

16. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontol-
ogy Language Profiles, 2nd edn. W3C Recommendation (December 11, 2012),
http://www.w3.org/TR/owl2-profiles/

17. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. Jour-
nal of Logic, Language and Information 14(3), 369–395 (2005)

18. Prestwich, S.D., Rossi, F., Brent Venable, K., Walsh, T.: Constraint-based preferential opti-
mization. In: Proc. AAAI/IAAI 2005, pp. 461–466. AAAI Press / MIT Press (2005)

19. Siberski, W., Pan, J.Z., Thaden, U.: Querying the Semantic Web with preferences. In: Cruz,
I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 612–624. Springer, Heidelberg (2006)

20. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Represen-
tation. Doctoral Dissertation, RWTH Aachen, Germany (2001)

21. Wilson, N.: Extending CP-nets with stronger conditional preference statements. In: Proc.
AAAI 2004, pp. 735–741. AAAI Press (2004)

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/owl2-profiles/

Author Index

Alsinet, Teresa 71, 325
Amgoud, Leila 78, 134
Antoni, Jérôme 162

Barroso, David 325
Béjar, Ramón 71, 325
Benferhat, Salem 346
Ben-Naim, Jonathan 134
Besnard, Philippe 44, 78
Bisquert, Pierre 30
Booth, Richard 148
Bou, Félix 325
Bouraoui, Zied 346

Campbell-West, Fabian 176
Cayrol, Claudette 30
Cerami, Marco 325
Chazot, Jean-Daniel 162
Croitoru, Madalina 15

Daniel, Milan 190
Di Noia, Tommaso 374
Dubois, Didier 204
Dupin de Saint-Cyr, Florence 30

Esteva, Francesc 325

Fazzinga, Bettina 106
Flesca, Sergio 106

Gal, Avigdor 219
Godo, Lluis 71
Grahne, Gösta 247
Grant, John 255
Grégoire, Éric 44
Guitart, Francesc 71

Hanson, Robin 283
Hsu, Tsan-sheng 311
Hunter, Anthony 1, 57, 92

Kaci, Souhila 148
Kenig, Batya 219
Kolaitis, Phokion G. 233

Lagasquie-Schiex, Marie-Christine 30
Laskey, Kathryn B. 283
Liau, Churn-Jung 311
Link, Sebastian 269
Liu, Weiru 176, 331
Lorini, Emiliano 204
Lukasiewicz, Thomas 360, 374

Ma, Jianbing 176
Martinez, Maria Vanina 360
McAreavey, Kevin 331
Miller, Paul 176
Molinaro, Cristian 255
Müller, Jann 92

Nouioua, Farid 120

Onet, Adrian 247

Parisi, Francesco 106, 255
Powell, Walter A. 283
Pozos-Parra, Pilar 331
Prade, Henri 204, 297

Quost, Benjamin 162

Raddaoui, Badran 44
Rienstra, Tjitze 148

Serrurier, Mathieu 297
Simari, Gerardo I. 360, 374
Spezzano, Francesca 233
Strichman, Ofer 219

Tartal, Nihat 247
Taylor, Philip 92
Tifrea-Marciuska, Oana 360
Twardy, Charles 283

van der Torre, Leendert 148
Vesic, Srdjan 15

Wang, Da-Wei 311
Wang, Xun 162

	Preface
	Organization
	Table of Contents
	Argumentation
	Analysis of Dialogical Argumentation via Finite State Machines
	1 Introduction
	2 Propositional Executable Logic
	3 Generation of Finite State Machines
	4 Minimax Analysis of Finite State Machines
	5 Implementation Study
	6 Discussion
	References

	What Can Argumentation Do for Inconsistent Ontology Query Answering?
	1 Introduction
	2 Ontological Conjunctive Query Answering
	2.1 Query Answering over Inconsistent Ontological Knowledge Bases

	3 Argumentation over Inconsistent Ontological Knowledge Bases
	4 Equivalence between Repairs and Extensions
	Semantics Equivalence
	6 Postulates
	7 Summary and Conclusion
	References

	Enforcement in Argumentation Is a Kind of Update
	1 Introduction
	2 Framework
	2.1 Abstract Argumentation
	2.2 Change in Argumentation
	2.3 Enforcement

	3 Towards Generalized Enforcement
	4 Generalized Enforcement Postulates
	4.1 Background on Belief Change Theory
	4.2 Postulates Characterizing Enforcement on Graphs with Transition Constraints

	5 Conclusion
	References

	A Conditional Logic-Based Argumentation Framework
	1 Introduction
	2 Conditional Logics
	3 Conditional Contrariety
	4 A Conditional-Logic Argumentation Framework
	4.1 Arguments
	4.2 Conflicts between Arguments
	4.3 Argumentation Trees

	5 Perspectives and Conclusion
	References

	Modelling Uncertainty in Persuasion
	1 Introduction
	2 Preliminaries
	2.1 Abstract Argumentation
	2.2 Probabilistic Logic
	2.3 Logical Arguments

	3 Good Arguments and Good Attacks
	4 Participants
	5 Dialogical Argumentation
	6 Simple Dialogues
	7 Bestfirst Dialogues
	8 Insincere Dialogues
	9 Discussion
	References

	On the Implementation of a Multiple Output Algorithm for Defeasible Argumentation
	1 Introduction and Motivation
	2 Preliminaries on R-DeLP
	3 Computing the Set of Outputs for an R-DeLP Program
	4 Empirical Results
	References

	A Formal Characterization of the Outcomes of Rule-Based Argumentation Systems
	1 Introduction
	2 Rule-Based Argumentation Systems
	3 Postulates for Argumentation Systems
	4 Outcomes of Argumentation Systems
	4.1 Naive Semantics
	4.2 Stable Semantics
	4.3 Preferred Semantics
	4.4 Grounded Semantics – Ideal Semantics

	5 Conclusion
	References

	Meta-level Argumentation with Argument Schemes
	1 Introduction
	2 Related Work
	3 Dung’s Framework
	4 Structured Argumentation
	5 Bimodal Graphs
	6 Meta-ASPIC
	7 Argument Schemes
	8 Discussion
	References

	Efficiently Estimating the Probability of Extensions in Abstract Argumentation
	1 Introduction
	2 Preliminaries
	2.1 Abstract Argumentation
	2.2 Probabilistic Abstract Argumentation

	3 Estimating Extension Probability Using Monte-Carlo Simulation
	3.1 The State-of-the-Art Approach
	3.2 Estimating PrsemF (S) by Sampling AAFsWherein S Is Conflict-Free
	3.3 Estimating PrsemF (S) by Sampling AAFsWherein S Is Admissible

	4 Experimental Results
	5 Related Work
	6 Conclusions
	References

	AFs with Necessities: Further Semantics and Labelling Characterization
	1 Introduction
	2 Brief Reminder of Dung AFs
	3 AFNs and Their Acceptability Semantics
	3.1 AFNs and AFs

	4 A Labelling Characterization
	5 Labeling Algorithms for AFNs
	5.1 Grounded Semantics
	5.2 Preferred, Stable and Semi-stable Semantics

	6 Concluding Remarks and Perspectives
	References

	Ranking-Based Semantics for Argumentation Frameworks
	1 Introduction
	2 Ranking-Based Semantics
	3 Postulates for Semantics
	4 Relationships between Postulates
	5 Discussion-Based and Burden-Based Semantics
	6 Related Work
	7 Conclusion
	References

	A Logical Theory about Dynamics in Abstract Argumentation
	1 Introduction
	2 Preliminaries
	3 Belief States
	4 Restoring Coherence through AF Expansion
	5 Fallback Belief
	6 Computing Fallback Beliefs with ASP
	7 Additional Semantics
	8 Related Work
	9 Conclusion and Future Work
	References

	Belief Functions, Possibility Theory and their Applications
	Sound Source Localization from Uncertain Information Using the Evidential EM Algorithm
	1 Introduction
	2 Sound Source Localization via the EM Algorithm
	2.1 Basic Description of the Model
	2.2 The EM Algorithm
	2.3 Model Estimation Using the EM Algorithm

	3 Uncertainty Representation Using Belief Functions
	3.1 Uncertain Measurements
	3.2 Belief Functions
	3.3 Uncertain Data Model Using Belief Functions

	4 Sound Source Localization from Credal Data
	4.1 Likelihood Function of a Credal Sample
	4.2 The Evidential EM Algorithm
	4.3 Sound Source Localization via the E2M Algorithm

	5 Experiments
	5.1 Data Generation
	5.2 Results

	6 Conclusions
	References

	An Improvement of Subject Reacquisition by Reasoning and Revision
	1 Introduction
	2 Face Recognition
	3 Reasoning by Time-of-Flight
	4 Example Scenario
	5 Revision
	5.1 Comparison Reasoning
	5.2 Revision of Reacquisition Results

	6 Conclusion
	References

	Belief Functions: A Revision of Plausibility Conflict and Pignistic Conflict
	1 Introduction
	2 State of the Art
	2.1 General Primer on Belief Functions
	2.2 Conflict of Belief Functions

	3 Revision and Improvement of Plausibility Conflict
	3.1 A Set of Conflicting Belief Functions with Empty ΩPlC
	3.2 Four Variants of Correction of Conflicting Sets
	3.3 Properties of Conflicting Sets ΩsmPlC, ΩspPlC, ΩcpPlC, ΩcbP lC
	3.4 Summary of the Plausibility Conflict

	4 Pignistic Conflict of Belief Functions
	4.1 Definitions of Pignistic Conflict
	4.2 Relation of Pignistic Conflict Bet-C and of Liu’s Degree ofConflict cf

	5 Ideas for a Future Research
	6 Conclusion
	References

	Bipolar Possibility Theory as a Basis for a Logic of Desires and Beliefs
	1 Introduction
	2 Background on Possibility Theory
	3 Possibility Theory as Basis for a Logical Theory of Desires
	3.1 Modeling Desire Using Δ Function
	3.2 Modeling Potential Desire Using ∇
	3.3 Some Valid Inference Rules for Desires
	3.4 Realistic Desires

	4 Logics of Beliefs and Desires
	4.1 Minimal Modal Logic of Beliefs and Desires MBDL
	4.2 Outline of a Minimal Modal Logic of Graded Beliefs and Desires MGBDL
	4.3 Multi-agentModal Logic of Graded Beliefs and Desires GBDLn

	Conclusive Remarks: Towards Emotions
	References

	Databases
	A New Class of Lineage Expressions over Probabilistic Databases Computable in P-Time
	1 Introduction
	2 Preliminaries
	2.1 Classes of Chordal Graphs
	2.2 Probability Computation Using Probabilistic Graph Models
	2.3 Hypergraphs and Acyclicity

	3 Disjoint Branch Acyclic Lineage (DBAL) Expressions
	4 DBAL Expression Probability Computation
	4.1 Illustrating Example
	4.2 Factor Representation and Projection
	4.3 Algorithm Description

	5 Conclusions
	References

	The Semantics of Aggregate Queries in Data Exchange Revisited
	1 Introduction
	2 Preliminaries
	3 Aggregate Most-Certain Answers
	4 Semantics of Aggregate Queries Based on Retractions
	4.1 Endomorphism-Based Semantics vs. Retraction-Based Semantics

	5 Concluding Remarks
	References

	PossDB: An Uncertainty Database Management System
	1 Introduction
	2 PossDB and Conditional Tables
	3 Features of PossDB
	4 Implementation
	5 Experimental Results
	References

	Aggregate Count Queries in Probabilistic Spatio-temporal Databases
	1 Introduction
	2 SPOT Databases
	2.1 Syntax
	2.2 Semantics

	3 Count Queries in SPOT
	3.1 Expected Value Semantics
	3.2 Extreme Values Semantics
	3.3 Ranking Semantics

	4 Computing Count Queries
	4.1 Computing Expected Value Semantics
	4.2 Computing Extreme Values Semantics
	4.3 Computing Ranking Semantics

	5 Related Work
	6 Conclusion and Topics for Further Research
	References

	Intelligent Data Analytics
	Approximate Reasoning about Generalized Conditional Independence with Complete Random Variables
	1 Introduction
	2 Conditional Independence and Uncertainty
	3 Axiomatization
	4 Equivalence to Database Decompositions
	5 Algorithm and Complexity
	6 Non-extensibility of Findings
	7 Conclusion and Future Work
	References

	Combinatorial Prediction Markets: An Experimental Study
	1 Crowdsourcing, Predictions, and Combinatorial Markets
	2 Scope of the Experiment
	3 Experimental Design
	4 Results and Observations
	5 Conclusion
	References

	A Scalable Learning Algorithm for Kernel Probabilistic Classifier
	1 Introduction
	2 Probabilistic Loss Functions
	3 Surface Probabilistic Kernel Classifier Learning
	3.1 Definitions
	3.2 Complexity Evaluation and Reformulation of Losssurf

	4 Optimization Process
	4.1 Nelder-Mead Implementation
	4.2 Particle Swarm Implementation

	5 Experimentation
	5.1 Benchmark Dataset
	5.2 KDD Cup 2012 Dataset

	6 Conclusion and Future Works
	References

	Logics, Description Logic, and Semantic Web
	Privacy-Preserving Social Network PublicationBased on Positional Indiscernibility
	1 Introduction
	2 Social Networks and Positional Analysis
	3 Description Logics
	4 Privacy-Preserving Social Network Publishing
	4.1 Problem Formulation
	4.2 Information Granules
	4.3 Computation with Positional Analysis

	5 Concluding Remarks
	References

	On the Implementation of a Fuzzy DL Solver over Infinite-Valued Product Logic with SMT Solvers
	1 Introduction
	2 An SMT-Based Solver for the Π-ALE Description Logic
	2.1 System Architecture Design
	2.2 Translation of Fuzzy Propositional Axioms to Non-linear Real Arithmetic Formulas

	3 Preliminary Evaluation
	4 Conclusions and Future Work
	References

	On the Merit of Selecting Different Belief Merging Operators
	1 Introduction
	2 Preliminaries
	3 Belief Merging Operators
	3.1 Formula-Based Operators
	3.2 Model-Based Operators

	4 On the Measure of Merging Operators
	4.1 Instantiation of the Degree of Satisfaction (Base Satisfaction Index)
	4.2 Instantiation of the General Degree of Satisfaction (Profile Satisfaction Index)
	4.3 Evaluating Merging Operators

	5 Comparing Operators Results
	6 Conclusion
	References

	Possibilistic DL-Lite
	1 Introduction
	2 DL-Lite Logic
	3 Possibility Distribution over DL-Lite Interpretations
	3.1 Possibility Distribution
	3.2 Possibility and Necessity Measures

	4 Possibilistic DL-Lite
	4.1 Syntax
	4.2 From π-DL-Lite Knowledge Base to π-DL-Lite Possibility Distribution

	5 Possibilistic Closure in π-DL-Lite
	6 Checking Inconsistency
	6.1 Weighted Queries
	6.2 An Algorithm for Computing Inconsistency Degrees

	7 Inference in Possibilistic DL-Lite
	8 Conclusions and Future Works
	References

	Group Preferences for Query Answering in Datalog+/– Ontologies
	1 Introduction
	2 Preliminaries
	2.1 Datalog+/–
	2.2 Preference Datalog+/–

	3 Group Preference Datalog+/–
	3.1 Syntax
	3.2 Semantics

	4 Query Answering Using Group Preferences
	4.1 Collapse to Single User
	4.2 Score Aggregation

	5 Summary and Outlook
	References

	Reasoning with Semantic-Enabled Qualitative Preferences
	1 Introduction
	2 Preliminaries
	2.1 CP-Nets
	2.2 Constrained CP-Nets
	2.3 Description Logics

	3Ontological CP-Nets
	3.1 Propositional Compilation of DL Formulas
	3.2 Computing Optimal Outcomes

	4 Computational Complexity
	4.1 General Results
	4.2 Tractability Results

	5 Related Work
	6 Summary and Outlook
	References

	Author Index

