A Class of High Order Compact Schemes
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Abstract In this paper, we design a class of linear compact schemes based on the
cell-centered compact scheme of ((Lele, J Comput Phys 103:16—42, 1992). These
schemes equate a weighted sum of the nodal derivatives of a smooth function to a
weighted sum of the function on both the grid points and the cell-centers. Through
systematic Fourier analysis and numerical tests, we observe that the schemes have
good properties of high order, high resolution, and low dissipation. It is an ideal
class of schemes for the simulation of multiscale problems such as aeroacoustics
and turbulence.
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1 Introduction

Direct numerical simulation (DNS) and large eddy simulation (LES) are two
important methods to reveal the mechanism of multiscale problems such as tur-
bulence and aeroacoustics. DNS for multiscale problems requires that the
numerical grid should be fine enough to resolve the structure of smallest scales.
However, due to the limitation of computational resources, most DNS studies have
been carried out with marginal grid resolution. Besides the common problems in
DNS of turbulence, there are computational issues that are unique to aeroacoustics
(Tam 1995). First, the aerodynamic noise is broadband and the spectrum is fairly
wide. Second, the amplitudes of the physical variables of the aerodynamic noise
are far smaller than those of the mean flow. Third, the distance from the noise
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source to the location of interest in aeroacoustic problems is quite long. To ensure
that the computed solution is uniformly accurate over such a long propagation
distance, the numerical scheme should have minimal numerical dispersion, dis-
sipation, and anisotropy.

The most influential compact schemes for derivatives, interpolation, and fil-
tering were proposed by Lele (1992). Through systematic Fourier analysis, it is
shown that these compact schemes have spectral-like resolution for short waves.

In this paper, we propose a new idea to design the compact scheme based on the
cell-centered compact scheme of Lele (1992). Instead of using only the values on
cell centers, both the values of cell centers and grid nodes are used on the right
hand side of compact schemes. Both the accuracy order and the wave resolution
property are improved significantly. Numerical tests show that this is an ideal
scheme for the DNS for multiscale problems.

2 Central Compact Schemes

In this section, we present the methodology to design central compact schemes
(CCS). We start our work from the cell-centered compact scheme (CCCS) pro-
posed by Lele (1992). Then we extend this scheme to a class of higher order
schemes with good spectral resolution.

2.1 Lele’s Compact Scheme

Lele (1992) proposed two kinds of central compact schemes. One is a linear CCCS
given by

, S = fir S — s
B2 + ol +ff +ocf+1+ﬁj;+2_aijx’f+b’3Ax’
e (1)

The other is a cell-noded compact scheme (CNCS) given by

ﬁ+1 ]3'71 ]3‘+2 — fi—2
fZAx s 4Ax
Jj+3 — Jj-3

CAx (2)

The stencil involved in the CCCS and CNCS is shown in Fig. 1. The constraints
on the coefficients o, f8, a, b, and ¢ corresponding to different orders of accuracy
can be derived by matching the Taylor series coefficients and these have been
listed in Lele (1992).
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Fig. 1 The stencil of cell-centerd and cell-noded compact schemes

2.2 A New Class of Central Compact Schemes

In Lele’s cell-centered compact schemes given by Eq. (1), the stencil contains both
the grid point and half grid points. However, only the values at the cell-centers are
used to calculate the derivatives at the cell-nodes. If the values at both the cell-
nodes and the cell-centers are used, one could get a compact scheme with higher
order accuracy and better resolution.

Based on this idea, we design a class of CCS given by the following formula.
We use the scheme (3) to compute the values on cell-nodes, and the scheme (4) to
compute the values on cell-centers.

St — g

3 plitt = i1
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/ r_Jj ji 2 2
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4
te 5Ax )
We note that the cell-centered compact schemes (CCCS) given by Eq. (1) and
cell-noded compact schemes (CNCS) given by Eq. (2) of Lele (1992) are both
special cases of this class of CCS.
The physical values on cell-centers can be interpolated from the physical values
of cell-nodes. In fact, a high order compact interpolation was proposed by Lele
(1992), which has the following form:

Bfi o+ ofly +f +offy + Bfi.=a

+ c

+ e
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By + oy + Fry + ahag + Big =5 (6 + fin1) +5 (61 + fir2)
+ 5 (f2 + fiva) (5)

Taking the Fourier transformation to Eq. (3) and using Euler’s formula, the
modified wavenumber of CCS can be obtained. It is:
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Fig. 2 Modified wavenumber of CCS and comparison with CCCS and CNCS. a tridiagonal
schemes; b pentadiagonal schemes; ¢ eighth order tridiagonal CCS and CCCS combined with
eighth order compact interpolation; d eighth order tridiagonal CCS and CCCS combined with
tenth order compact interpolation

i csin (3% sin(2w esin (2
asin(%) + bsu;(w) + n3(2) +d~ 4(2 ) 4 sn5(2) (6)
2B cos(2w) + 2acos(w) + 1

Figure 2 shows the modified wavenumber of CCS, it is clear that the resolutions
of CCS are much better than those of CNCS and CCCS.

3 Numerical Experiments

In this section, we apply eighth order tridiagonal central compact scheme CCS-T8
as an example of CCS to simulate Euler and Navier—Stokes equations. The filter is
chosen to be eighth order tridiagonal scheme, the time advancement is a third order
TVD Runge—Kutta method.
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Fig. 3 The distribution of density along y = 0 and the comparison with the exact solution at
typical times of the benchmark of CAA

3.1 Benchmark of Computational Aeroacoustics

We test a benchmark of Computational Aeroacoustics (Hardin et al. 1995). Sponge
zones are used to absorb and minimize reflections from the computational
boundaries. We take a 400 x 400 equally spaced mesh and perform the simulation
until = 600.

Figure 3 contains the distributions of density along y = 0 at typical times and
their comparison with the exact solution. No noticeable difference is observed
between the numerical results and the exact solution.
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Fig. 4 Grid convergence of the turbulent kinetic energy with different schemes

3.2 Three-Dimensional Decaying Isotropic Turbulence

We start with a specified spectrum for the initial velocity field which is divergence
free. The normalized temperature and density are simply initialized to unity at all
spatial points. The dimensionless parameters are Re = 519 and M = 0.308,
yielding the initial turbulent Mach number M; to be 0.3 and the initial Taylor
microscale Reynolds number Re; to be 72.

The computational domain is [0,27] x [0,2n] X [0,2x]. Periodic boundary
conditions are used in all boundaries. Figure 4 shows the grid converged results
agree well with the numerical result of Samtaney et al. (2001). From this figure, we
find that CCS needs 40 grid density to reach grid converged solution, while the
smallest grid density to obtain the grid converged results are 64° and 80° for CCCS
and CNCS respectively. Again, we find that the resolution of CCS is much better
than those of CNCS and CCCS. It is an ideal numerical scheme for DNS of
turbulence.
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4 Conclusions

In this paper, we design a new family of linear compact schemes, named central
compact schemes, for the spatial derivatives in the Navier—Stokes equations based
on the CCCS proposed by Lele (1992). Compared to other linear compact
schemes, CCCS has nice spectral-like resolution, which may be a good method for
the computation of multiscale problems. However, previous cell-centered compact
schemes have the drawback that not all physical values on the stencil are used,
which results in the numerical scheme not reaching its maximum accuracy order.
The central compact scheme designed in this paper overcomes the drawbacks
mentioned above. First, all physical values on the stencil are used. The schemes
could reach the maximum accuracy order.

A systematic comparison with previous compact schemes, including cell-noded
compact schemes and the cell-centered compact scheme, is made. The comparison
shows the superiority of the central compact scheme over the previous compact
schemes in accuracy and resolution. It appears to be an ideal numerical method for
the computation of multiscale problems such as turbulence and aeroacoustics.
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