Streaky Structures in a Controlled Turbulent Boundary Layer

H. L. Bai, Y. Zhou and W. G. Zhang

Abstract This paper reports the modifications of near-wall low-speed streaks by local surface oscillations generated by a spanwise-aligned actuator array in a turbulent boundary layer over a flat plate at $Re_{\theta} = 1,000$. The streaks were educed from PIV-measured fluctuating velocities in the viscous sublayer using a procedure proposed by Schoppa and Hussain [\(2002](#page-5-0)). The wall-based perturbations, corresponding to a large skin-friction drag reduction (about 50 % at 17 wall units downstream of the actuator array), modified greatly the low-speed streaks, leading to a reduction by over 15 % in both the averaged width and spacing while an increase by 17 % in the streak center number. The alterations of velocity streak distributions are consistent with results from other techniques such as smoke-wire flow visualization and two-point cross-correlation, where the breakup of largescale coherent structures into small-scale ones was observed.

Keywords Boundary-layer control · Drag reduction · Velocity streak eduction

1 Introduction

Active control of turbulent boundary layers (TBLs) for skin-friction drag reduction has been received a great deal of attention in fluid dynamics research community due to its significance in engineering applications. It has been widely accepted that

H. L. Bai $(\boxtimes) \cdot Y$. Zhou

Y. Zhou

Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China e-mail: hl_bai@126.comhlbai@hitsz.edu.cn

Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China

W. G. Zhang China Aerodynamics Research and Development Center, Mianyang 621000, China

large-scale coherent structures in the near-wall region of a TBL is closely connected to large skin-friction drag. Thus, manipulating these structures may affect the skin-friction drag. Recently, Bai et al. ([2012\)](#page-5-0) employed a spanwisealigned PZT actuator array generating local surface perturbations to disturb the streaky structures. Under the optimum control parameters, they achieved a large reduction in local skin-friction drag by 50 % at 17 wall units downstream of the actuator array while observed a significant impairment of large-scale coherent structures. The alterations of near-wall flow structures by this technique were carefully examined based on extensive measurements via smoke-wire flow visualization, hotwire, hot-film, and PIV techniques. The present work aims to further study the modifications of near-wall structures based on PIV-measured fluctuating velocities in the viscous sublayer using a velocity streak eduction procedure proposed by Schoppa and Hussain [\(2002](#page-5-0)).

2 Experimental Details

Experiments were conducted in a closed-circuit wind tunnel with a 2.4-m-long test section of 0.6×0.6 m. With the leading edge tripped, a flat plate placed horizontally in the tunnel was used to produce a fully developed TBL. As shown in Fig. 1a, one array of 16 PZT actuators was deployed at 1.5 m downstream of the leading edge of the plate. Each actuator, having a dimension of $22 \times 2 \times 0.33$ mm (length \times width \times thickness), was flush-mounted with the plate surface. The actuators are cantilever-supported, with its inactive part (2 mm long) glued to a substrate, which is embedded in a circular plug-base. There is a cavity under each actuator so that the active part (20 mm long) of the actuator can vibrate freely. The spacing between two adjacent actuators is 1 mm. All actuators

Fig. 1 a Layout of 16 PZT actuators, b the cantilever-supported actuator and one spanwise wave formed at $\varphi_{i,i+1} = 24^{\circ}$ ($\lambda_z = 45$ mm or 312 wall units)

will generate individual wall-normal oscillations when driven by a sinusoidal voltage and, given a phase shift $(\varphi_{i,i+1})$ between two adjacent elements, a transverse travelling wave on the wall surface (Fig. [1b](#page-1-0)). At the actuation location, the TBL has a momentum thickness $\theta = 6.5$ mm, given a free-stream velocity $U_{\infty} = 2.4$ m/s, and a Reynolds number Re = 1,000 based θ and U_{∞} . The origin of the coordinate system is at the actuator tip, with the $x₋$, $y₋$, and z -axes along the streamwise, normal, and spanwise directions, respectively (Fig. [1](#page-1-0)).

PIV measurements of fluctuating velocity (u^+) in the xz-plane of $y^+ = 5.5$ were conducted for the natural and disturbed flows. For the latter case, the actuators were operated under the optimum parameters, i.e., $A_o^+ = 2.22, f_o^+ = 0.65$, and φ_{i} , $i_{i+1} = 18^{\circ}$, where A_{\circ}^{+} is the peak-to-peak oscillation amplitude at the actuator tip and f_o^+ is the oscillation frequency, corresponding to the maximum drag reduction of 50 % at $x^+=17$. Unless otherwise stated, superscript '+' denotes normalization based on the wall variables in the absence of control. The PIV image covers an area of $x^+ = 0$ -306 and $z^+ = \pm 153$. Spatial cross-correlation, with an interrogation window of 64 \times 64 pixels and a 50 % overlap along both directions, was calculated to determine velocity vectors. Over 2,000 pairs of images were taken during the measurements.

3 Results and Discussions

Table 1 presents a comparison of the statistical results from the streak eduction between the natural and controlled flows, i.e., identified low-speed streak center numbers N, and averaged low-speed streak spacing \bar{S}^+ and width \bar{L}^+ . The number of low-speed streak centers was increased by about 17% , while the averaged width and spacing were reduced by 15.5 and 17.3 %, respectively, by the wallbased oscillations.

Figure [2](#page-3-0) shows histograms of the low-speed streak spacing S^+ and width L^+ with and without control. The distributions of S^+ (Fig. [2a](#page-3-0)) and L^+ (Fig. [2](#page-3-0)b) were greatly modified by the local surface oscillations. In the absence of control, the histogram of S^+ shows a positively skewed distribution, with the highest value at $S^+ \approx 60$. Under control, the S^+ -distribution was more positively skewed, with its maximum shifted toward smaller S^+ (\approx 50). For the low-speed streak width, the highest probability occurs at $L^+ \approx 30$ in the natural flow but is shifted toward smaller $L⁺$ under control, suggesting impaired streaks. The observations are in line

Fig. 2 Histograms of low-speed streak spacing S^+ (a) and width L^+ (b): filled square, natural; empty square, controlled

with results from smoke-wire flow visualization (Fig. 3) and two-point crosscorrelation function R_{uu} of u (Fig. [4\)](#page-4-0). Large-scale coherent structures appear broken up, resulting in considerably smaller-scale longitudinal structures (Fig. 3). R_{uu} in Fig. [4](#page-4-0) indicates that lateral integral scale (areas under the curve) of the streaks was reduced by the wall-based oscillations.

Figure [5](#page-4-0) shows the histograms of $\partial u^{+}/\partial x^{+}$ and $\partial u^{+}/\partial z^{+}$ at the streak borders with and without control, which characterize the internal shear layer and streamwise vortex generation. The histogram (Fig. [5](#page-4-0)a) appears positively skewed in the absence of oscillations, due to the fact that the magnitude of positive $\partial u^+/\partial x^+$ decreases across the streak border when fluid particles move from the inside to outside of a low-speed streak. Once the control was introduced, the histogram is more symmetrical, which is attributed to the occurrence of less

Fig. 3 Typical photographs of instantaneous flow structure in the xz-plane at $y^+ = 10$ from smoke-wire flow visualization: **a** uncontrolled, **b** controlled. Flow at $U_{\infty} = 1.5$ m/s is left to right. Circular arrows indicate streamwise vortices

coherent structures in the disturbed flow and thus consistent with observations from the flow visualization (Fig. [3\)](#page-3-0). The higher probability of large $|\partial u^+/\partial x^+|$ in the histogram tails in the disturbed flow suggests that the low-speed streaks become less aligned with the streamwise flow and probably more wavy, compared to the natural case.

The histogram of $\partial u^{+}/\partial z^{+}$ (Fig. 5b) was modified by the wall-based oscillations, with the distribution mainly shifted to larger $|\partial u^+/\partial z^+|$ compared to the natural case. The $|\partial u^+/\partial z^+|$ at the streak borders is an indicator of the streak strength. Thus, the alteration of $\partial u^{+}/\partial z^{+}$ histogram in Fig. 5b suggests an increase in streak strength and an indication of strong formation of streamwise vortices due to the wall-based oscillations. This feature is distinct from that using other techniques (Du et al. [2002\)](#page-5-0).

Fig. 5 Histograms of $\partial u^+/\partial x^+$ (a) and $\partial u^+/\partial z^+$ (b) at streak borders: *filled square*, natural; empty square, controlled

4 Conclusions

The turbulent boundary layer is manipulated based on wall-normal oscillations generated by an array of 16 piezo-ceramic actuators flush-mounted to the wall surface; driven by a sinusoidal voltage, each oscillated independently and produced a perturbation to the flow. The maximum drag reduction reaches 50 % at $x^+=17$ under the optimum control parameters for the first time using an array of discrete actuators. The low-speed streaks in the viscous sublayer of this manipulated flow have been examined and detected based on PIV-measured u^+ of $y^+=$ 5.5. It has been found that the streaks decrease by over 15 % in width and spacing, though their strength is increased, in distinct contrast with the observation by others.

Acknowledgments This work is supported by grants PolyU 5329/11E (HKSAR) and 11172085 (NSFC).

References

- Bai HL, Zhou Y, Zhang WG, Xu SJ et al (2012) Active control of turbulent boundary layer based on local surface perturbation. J Fluid Mech (submitted)
- Du Y, Symeonidis V, Karniadakis GE (2002) Drag reduction in wall-bounded turbulence via a transverse travelling wave. J Fluid Mech 457:1–34
- Schoppa W, Hussain F (2002) Coherent structure generation in near-wall turbulence. J Fluid Mech 453:57–108