
Chapter 7
Theoretical Ab Initio Calculations
in Ordered-Vacancy Compounds
at High Pressures

A. Muñoz and M. Fuentes-Cabrera

Abstract Ab initio calculations within the Density Funtional Theory and the
Density Functional Perturbation Theory of the defect chalcopyrite, defect stannite
and pseudo-cubic chalcopyrite structures of AB2X4 (X = S and Se) compounds are
reported. The electronic, dynamical, and elastic properties under hydrostatic pres-
sures are reviewed and discussed in relation with pressure-induced order-disorder
phase transitions. Finally, as a matter of example, we present new results of a first-
principles study of the pressure dependence of several properties for the pseudo-cubic
chalcopyrite structure of CdIn2Se4. We found that the generalized Born stability cri-
teria are violated above 11GPa, thus PC-CdIn2Se4 becomes mechanically unstable.
Furthermore, we found a phonon dynamical instability around 18GPa; thus showing
that PC-CdIn2Se4 becomes unstable at high pressures not only from the static but
also from the dynamical point of view.

Keywords Ab initio ·High pressure ·Defect chalcopyrite ·Defect stannite ·Defect
famatinite · Pseudocubic chalcopyrite · Electronic · Dynamical · Elastic properties
7.1 Introduction

Ordered-vacancy compounds (OVCs) of the AIIBIII
2 XVI

4 family are semiconducting
materials with potential applications in nonlinear optical and photovoltaic devices.
OVCs crystallize in several tetragonal structures (defect chalcopyrite, defect stannite,
and pseudocubic structure) derived from the zinc-blende structure. These structures
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can be considered as tetrahedrally coordinated if one assumes that they contain an
ordered array of stoichiometric vacancies (�) that compensate the smaller number
of cations (A and B) with respect to anions (X). In this way, these compounds can
be also formulated as�AIIBIII

2 XVI
4 . The effect of the stoichiometric vacancies on the

electronic and stability properties of these compounds has been the subject of several
theoretical studies.

This chapter will focus on the theoretical studies from ab initio methods of the
structural, electronic, elastic, and dynamical properties of these compounds under
hydrostatic pressure. We will review the high-pressure studies already published
for sulphur- and selenium-based OVCs with defect chalcopyrite and defect stannite
structures. Furthremore,wewill provide, as amatter of example, some new results for
CdIn2Se4 with pseudocubic structure in order to show how the theoretical methods
can be used to study and to predict the dynamical and elastic properties since no high-
pressure experimental results are available for this compound to our knowledge.

7.2 Theoretical Background

The state-of-the-art in computational materials science uses the ability of quantum
mechanics to predict the total energy of a system of nuclei and electrons. In this
respect, ab initio calculation techniques only require as input data the atomic num-
ber and the chemical composition of the material. With this input it is possible to
calculate a variety of properties (electronic, elastic, thermal, vibrational) of anymate-
rial of interest. In what follows, we give a general introduction to these techniques by
focusing on how they have been applied to the study of structural, electronic, dynam-
ical, and elastic properties of AIIBIII

2 XVI
4 chalcopyrite compounds under hydrostatic

pressure.
The Density Functional Theory (DFT) is an ab initio technique that allows the

study and prediction of the electronic and structural properties of a material by min-
imizing its total energy with respect to the nuclear and electronic coordinates. The
fundamental variable in this theory is the electronic charge density of the system.
The theorem of Hohenberg and Kohn [1] and the seminal work of Khon and Sham
[2] are the basis of this theory since they establish that the total energy, E(V), of the
ground state of a system is an unique functional of the charge density (and therefore
of volume, V), and that this functional is a global (not local) minimum of energy
for the correct ground state density. A review on DFT applications can be found
in reference [3]. The main approximation in DFT is related to the way in which
the contribution to the energy from the effects of the exchange–correlation interac-
tions between electrons is described. The Local Density Approximation (LDA) and
the Generalized Gradient Approximation (GGA) are the most popular descriptions
currently used [4].

Mujica et al. [5] have reviewed how DFT is applied to the study of the high-
pressure phases ofmany semiconductor compounds. Twodifferent strategies are used
to identify the lowest-enthalpy phase of a material as a function of applied pressure.
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One strategy consists onminimizing, for a selected set of volumes, the total energy as
function of the structural external and internal parameters. It is important to note that
pressure, P(V), is a function of volume which is obtained within the DFT formalism
at the same time, but independently, as total energy, E(V). The values of pressure (as
well others derivatives of the energy) are obtained from the stress theorem [6] which
allows also to compute the enthalpy, H = E+PV. In the other strategy, the enthalpy
is directly minimized at constant pressure. Both strategies provide values for energy,
volume, and pressure from where the equation of state (EOS) for a selected structure
can be obtained. These techniques, however, have important limitations, the most
important one being the existence of many local minima in the configuration space.
Many strategies are adopted to overcome this limitation in order to study the high-
pressure phases ofmanymaterials. For instance, some techniques search the structure
of a material at a selected pressure avoiding the imposition of special symmetries,
other techniques employ a random search [7], and others employ evolutionary and
genetic algorithms [8].

The lattice dynamics of amaterial and its behavior under high pressure can be ana-
lyzed by DFT or by the Density Functional Perturbation Theory (DFPT) [9]. DFPT
requires the calculation of the ground state charge density and its linear response
to external excitations. This permits, among other interesting quantities, to obtain
the elastic properties and the phonon dispersion along the whole Brillouin zone. In
particular, this technique is interesting for the study of phonons in polar materials,
which are more complex from the theoretical point of view, since the long range of
the Coulomb interactions gives rise to a macroscopic electric field, and phonons in
polar materials are coupled to this macroscopic electric field. This effect is reflected
in the appearance in polar materials of different values for the frequencies of the
transversal optic (TO) and the longitudinal optic (LO) phonons at the zone center
(� point) of the Brillouin zone; i.e., the so-called LO–TO splitting. This splitting
can be calculated by means of the Born effective charge tensor Z* and the electronic
dielectric constant ε∞. To take these two variables into account for the calculation
of the LO–TO splitting, DFPT requires the study of the electron density response
to an homogeneous electric field allowing to obtain the LO–TO splitting near the �

point (along the [100] or [010] and [001] directions in OVCs).
Phonon frequencies can be also calculated from energy differences using DFT

instead of DFPT. In DFT, phonon frequencies are obtained producing small finite
displacements of a few atoms in a periodic crystal at equilibrium. In this method-
ology, one begins with the equilibrium structure at a certain pressure and produces
a distortion by displacing a single atom by a small amount U0 (typically 0.2 Å in
OVCs). The atomic forces that result from this distortion are then computed, and the
ratio of these forces and U0 gives one complete row of the force-constants matrix.
Subsequently, symmetry operations are applied to these rows to produce the complete
matrix. Within the harmonic approximation, this method is exact, yet anharmonic
effects are avoided by averaging the results with displacements +U0 and −U0. This
approach, named the frozen-phonon approach or direct method, permits to calculate
a phonon vibration at a selected wave vector, q [10, 11]. In this method, the study
of phonons in polar materials is not straightforward, as in DFPT, because the non-
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analytic term related with the electric field is not included in the dynamical matrix at
the� point, so only frequencies of TOmodes are obtained; i.e., the LO-TO splitting is
not provided. However, the LO–TO splitting can be obtained a posteriori if the Born
effective charge tensor and the macroscopic dielectric constant are calculated from
ab initio. In summary, the direct method approach can be used for the calculation of
the phonon dispersion but is limited by the size of the system under study when the
size of the supercell increases. Its advantage relies on how easy it is to implement.

Since Raman and infrared spectra provide information of phonon frequencies at
the � point, these frequencies can be computed either with DFPT or with the direct
method approach. The study of the vibrational spectra of the material under pressure
can provide many interesting properties of the compound under study. For example,
the presence of soft modes could be related with phase transitions [9]. Furthermore,
using simple models to describe the electron–phonon interactions it is possible to
calculate the temperature dependence of the electronic band gap [12].

Elastic constants are interesting to know the elastic or mechanical properties
of materials. The elastic properties provide, not only information concerning the
strength of the material, they also provide important insight into the interatomic
potentials, EOS, and other elastic quantities (Young modulus, shear modulus, etc.)
which are interesting for material engineering. The pressure behavior of the elas-
tic constants of a material in a certain structure gives information concerning the
mechanical stability of that material under pressure and its possible relation with the
structural transformations. These constants can be viewed as force constants asso-
ciated to a homogeneous strain applied to the material. In fact, the calculation of
the elastic constants is performed by studying the response of the periodic system
to a microscopic distortion. In order to obtain the elastic constants from ab initio
methods, again DFPT is used to calculate the elastic constants tensor.

7.3 Structural Considerations

As already commented, AIIBIII
2 XVI

4 compounds (with A and B divalent and trivalent
metals, respectively andX = S, Se) knownas ordered vacancy compounds crystallize
in different tetragonal structures deriving from the zinc-blende structure. In fact, they
are variants of the tetrahedrally-bonded tetragonal chalcopyrite structure which is
common to materials of chemical composition AIIBIVXV

2 and AIBIIIXVI
2 . Different

crystal structures with slightly different ordering of the cations and vacancies as well
as order–disorder transition phases exist in this type of compounds. Excellent works
related with these materials can be found in the review of Georgobiani et al. [13] and
in the paper of Bernard and Zunger [14].

OVCs of the AIIBIII
2 XVI

4 family crystallize in three different tetragonal phases:
the defect chalcopyrite (DC) structure (space group I-4, No. 82), also known
as thiogallate structure, the defect stannite (DS) structure, also known as defect
famatinite, (space group I-42m, No. 121), and the ordered pseudo-cubic structure
(PC) (space group P-42m, No. 111). The DC and DS structures are defective-like
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chalcopyrite structures with different degrees of cation disorder which have seven
atoms and one vacancy per unit cell. If the vacancy is considered as an atom, them
each atom is surrounded by four neighbors in a tetrahedral-like environment. For
details and pictures of all these structures we refer the readers to the two previous
chapters of this book.

7.4 Electronic Band Structure and Optical Properties

As already commented, AIIBIII
2 XVI

4 materials are interesting for nonlinear frequency
conversion applications and nonlinear optical devices and some of them have been
proposed for phase changememories to replace actual flashmemories. The reduction
of the cubicTd symmetry in zinc-blende-type crystals to the tetragonal symmetryD2d

in chalcopyrite-type and defect chalcopyrite-type crystals is the origin of birefringent
behavior and the reason for the nonlinear properties of these semiconductors [14].
Thus, their electronic band structures and their evolution under pressure have been the
subject of numerous experimental and theoretical studies. It is well known that DFT
systematically underestimates the band gap and that different exchange-correlation
functional provides different values of the band gap, yet the pressure evolution and
the symmetry of the band gap are usually well described [15]. As the theoretical
techniques improved, many OVCs of the AIIBIII

2 XVI
4 family have been studied and

their electronic properties have been compared to experimentswhen possible. Inwhat
follows, we briefly describe some of the most interesting studies on the electronic
properties of these compounds.

One of the earliest theoretical studies on the electronic properties is that of
Baldereschi et al. [16]. In 1977, they used a pseudopotential method to investigate
the electronic properties of PC-CdIn2Se4. The character and value of the calculated
band gap were in agreement with previous experiments, yet an intra-valence gap
was found. In 1988, Bernard and Zunger [14] used an all-electron potential-variation
mixed-basis approach to investigate the structure and electronic properties of the
same material. This study revealed that the vacancy has associated with it lone-pair
Se dangling orbitals which are oriented in different directions and form a disperse
band occupying the uppermost part of the valence band. However, unlike Baldereschi
et al. [16], an intra-valence gap was not found. Subsequently, Marinelli et al. [17]
using DFT-LDA and norm-conserving pseudopotentials studied the PC and spinel
(space group Fd-3m, No. 227) structures of CdIn2Se4 at equilibrium pressure. For
the PC structure, they did not find an intra-valence gap, either.

Of the theoretical studies, the most comprehensive ones are those of Jiang and
Lambrecht [18] and Mishra and Ganguli [19]. They studied the materials AIIBIII

2 XVI
4

(A = Zn, Cd, Hg; B = Al, Ga, In; X = S, Se, Te) and AAl2Se4 (A = Ag,
Cu, Cd, Zn), respectively. Noteworthy, Jiang and Lambrecht [18] used an empirical
correction for the band gaps that improved the agreement with experimental data.
This work reports the band structure and the band gap of many compounds with DC
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structure and the authors examined the chemical trends for the bands gaps and the
relations with the possible nonlinear optical applications.

DC-CdAl2Se4was studied by Fuentes Cabrera and Sankey [20], using total energy
pseudopotential calculations with the LDA functional parametrized by Perdew and
Zunger [21], and the GGA functional in the Perdew and Wang approximation [22]
for the exchange correlation potential. They studied the DC and the spinel phases and
showed that the DC phase has a direct gap while the spinel phase has an indirect gap.
Using a Generalized Density Functional Theory (GDFT) correction [23], the calcu-
lated band gap of the DC phase was found in excellent agreement with experiments.
These authors also showed that DC and spinel structures have practically the same
energy when the LDA functional is used, whereas the DC phase is more stable than
the spinel structure, as is experimentally found, when the GGA functional is used.
Recently, Ourani et al. have studied the same compound bymeans of the full potential
linearized augmented plane waves (FP-LAPW) [24]. Using the Engel-Vosko GGA
functional (EV-GGA) [25], they found a direct band gap very close to the 3.07eV
experimental band gap. Verma et al. [26] analyzed the pressure and temperature evo-
lution of direct and indirect band gaps of this compound, using FP-LAPW method,
and considering the effect of employing different exchange-correlation functionals
(LDA [20], Perdew–Burke–Ernzenhoff (GGA-PBE) [27], and GGA and the EV-
GGA [25]). Calculations with EV-GGA were found to reproduce well the value of
the experimental band gap.

The electronic and optical properties of ZnAl2Se4 have been reported by Verma
et al. [28] calculated with the FP-LAPWmethod and two different functionals for the
exchange-correlation potential (GGA-PBE [27] and EV-GGA [25]). They concluded
that ZnAl2Se4 is a direct wide band gap material and that both the direct and indirect
band gaps increase with pressure. The optical properties were also reported showing
a considerable anisotropy.

The trends of the band gap pressure coefficients of the family compounds
ZnGa2X4 (X = S, Se, Te) have been studied by Jiang et al. [29] using the LDA
functional to describe the exchange-correlation potential with the pseudopotential
plane wave method. They found that DC and DS phases have different band gaps.
Ouahrani et al. [30] have made a study of the AAl2Se4 compounds (A = Zn, Cd, and
Hg) within the DFT and the GW quasi-particle approximation to correct the DFT
band gap underestimation, with emphasis in the influence between nonlinear optical
properties and the iconicity degree.

Singh et al. investigated the electronic and optical properties of DC-HgAl2Se4
using the FP-LAPW method with LDA, GGA, GGA-PBE, and EV-GGA exchange-
correlation functionals [31]. They also included the spin-orbit coupling in the
calculations and showed that this reproduces the structural parameters better thanEV-
GGA.However, EV-GGAgives a band gap in excellent agreement with experimental
results. The real and imaginary part of the dielectric functionwas also reported, show-
ing considerable anisotropy of optical properties. Similarly, Reshak et al. investigated
DC-HgGa2S4 with the FP-LAPW method and different exchange correlation func-
tionals (LDA, GGA, and EVGGA) to study the band gap [32]. Once again, it was
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found that EV-GGA functional gives a direct band gap of 2.84eV in good agreement
with the experiments.

Lavrentyev et al. performed ab initio calculations and X-ray photoelectron spec-
troscopy, to study DC-CdGa2S4 and DC-CdGa2Se4 compounds [33–35]. They
reported a direct band gap in CdGa2Se4 and the real and imaginary part of the
electronic dielectric function that evidence considerable anisotropy. For CdGa2S4,
employing an ab initio full Multiple scattering code, they obtained the theoretical
form of the X-ray absorption spectra and the density of states which reveals how the
form of the edge of conduction band is determined mainly by Ga s-states.

Fuentes-Cabrera et al. investigated the dependence of the band-gap with pressure
of DC-CdGa2S4 and DC-CdGa2Se4 without the inclusion of disorder in the struc-
ture [36]. The band gap showed a parabolic behavior: as the pressure increased, the
band gap reached a maximum and then it started to decrease. The strong nonlinear
pressure dependence of the optical band gap in DC-CdGa2Se4 and DC-HgGa2Se4
and other OVCs was studied experimentally and theoretically (with DFT calcula-
tions using the GGA-PBE functional) by Manjón et al. [37]. The strong nonlinear
behavior of the direct band gap was found to be due to a band anti-crossing at the �

point caused by the presence of ordered stoichiometric vacancies in OVCs. There-
fore, it was proposed that this nonlinear behavior of the direct band gap is a general
characteristic of the adamantine-type OVCs of the BIII

2 XVI
3 and AIIBIII

2 XVI
4 families.

A similar experimental and theoretical study of the pressure dependence of the band
gap was performed by Gomis et al. in DC-CdGa2Se4 [38]. The dependence of the
band gap under pressure showed a parabolic behavior as in [36]. However, the exper-
imental and the theoretical dependence showed a disagreement at high pressures.
This was interpreted as an indication that order–disorder transitions (not considered
in calculations) were taking place. That is, it was argued that as the order-disorder
transitions consisting of cation or cation-vacancy disorder were not accounted for
by theory (since in these calculations the structures remained always ordered with
cations and vacancies at fixed positions), so theywere the reason for the disagreement
between theory and experiment.

In both references [14] and [16], it was suggested that the stoichiometric vacancies
play a determinant role on the structural properties of these materials. This would
explain why for some of these compounds it is, generally, impossible to determine
unequivocally whether they are in an ordered stannite (or famatinite) or in a defect
chalcopyrite structure at room temperature. In this respect, Bernard and Zunger [14]
discussed a number of possible order–disorder transitions, and even identified two
stages of disordering. These disordering transitions are discussed in the next section.

7.5 Vibrational Properties Under Hydrostatic Pressure

Some empirical methods can be also employed in the study of the dynamical prop-
erties of materials. Lattice dynamical calculations of DC-AGa2X4 (A = Cd, Hg;
X = S, Se) compounds were performed by Ohrendorf et al. using a short-range
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force model; i.e., an empirical model [39]. The work discusses the problems related
with the long range interactions, and how the force parameters, used in the study of
vibrational properties, are affected. In what follows, we will concentrate only in the
theoretical ab initio studies of the vibrational properties.

The primitive unit cell of tetragonal DC and DS structures contains one formula
unit, i.e., 7 atoms. As commented in the two previous chapters, there are 21 normal
modes of vibration, of which 3 are acoustic and 18 are optical modes. According to
group theory, the irreducible representations of phonon modes at the � point for the
DC structure are:

� : 3A(R) ⊕ 6B(R, IR) ⊕ 6E(R, IR)

where R means that the mode is Raman active and IR that it is infrared active. The A
modes are non-polar, and the B and E (doubly degenerated) are polar modes. This
results in 13 Raman-active modes (3A ⊕ 5B ⊕ 5E), 10 IR-active modes (5B ⊕ 5E),
and 3 acoustic modes (B ⊕ E). On the other hand, the ordered DS structure (model 1
in Table 5.2) has also 21 phonon modes at the � zone center point with the following
mechanical representation:

� : 2A1(R) ⊕ A2(R, IR) ⊕ 2B1(R) ⊕ 4B2(R, IR) ⊕ 6E(R, IR)

where B2 and E are polar modes. This gives 12 Raman-active modes (2A1 ⊕ 2 B1 ⊕
3B2 ⊕ 5E), 8 IR-active modes (3B2 ⊕ 5E), 3 acoustic modes (B2 and E), and one
silent mode A2. Since polar modes have a LO–TO splitting, this means that the DC
structure has 23 Raman-active modes and the DS structure has 20 Raman-active
modes.

In 1988, Bernard and Zunger suggested that the vacancies play a determinant role
in the structural properties of AIIBIII

2 XVI
4 OVCs [14]. In particular, they discussed a

number of possible order–disorder transitions and proposed two stages of disordering
upon increasing temperature. In the first stage, the two cations A and B mutually
substitute for one another; in the second stage, the two cations and the vacancy
disorder mutually. Such transitions would explain why for some of these compounds
it is generally unequivocally impossible to determine whether they are in an ordered
stannite (or famatinite) or in a defect chalcopyrite structure at room temperature.

In 1999, Ursaki et al. used Raman spectroscopy under hydrostatic pressure to
investigate the compounds AGa2X4 (A = Cd, Zn; X = S, Se) [40]. The compounds
with Cd crystallize in the DC structure, whereas those with Zn crystallize in the DS
structure (model 6 in Table5.2 with partial disorder in the cation sublattice). Ursaki
et al. proposed that all these compounds undergo the two stages of pressure-induced
disordering already proposed by Bernard and Zunger for temperature-induced dis-
ordering. They suggested that in the DC compounds the first stage involved a disor-
dering among the Cd and Ga cations (thus leading to the DS structure as commented
in [41]). This stage could also occur for the compounds with the DS structure having
model 6 in Table5.2 and [41], where Zn and Ga atoms are already partially disor-
dered, if one considers that both Zn and Ga atoms can become totally disordered to

http://dx.doi.org/10.1007/978-3-642-40367-5_5
http://dx.doi.org/10.1007/978-3-642-40367-5_5
http://dx.doi.org/10.1007/978-3-642-40367-5_5
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give the DS structure (model 2 in Table5.2 and [41]. The first stage of disordering
was proposed to be characterized by the tetragonal distortion of the initial struc-
tures. In the second stage of disordering, vacancies are involved in the disordering
with cations giving rise to a disordered zinc-blende (DZ) structure prior to the phase
transition to the Raman-inactive disordered rocksalt (DR) structure. Unfortunately,
Raman spectra of the DZ phase have not been found prior to the transition from
either DC or DS compounds to the DR phase yet. Therefore, the existence of these
two stages of pressure-induced disorder have been recently questioned by the group
of Manjón et al. in several papers which support only the existence of the first stage
of disorder and the direct transition from the DS structures to the DR phase [38, 42,
43].

In 2001, Fuentes-Cabrera used DFT-LDA calculations to investigate the Raman
spectra under hydrostatic pressure of the compounds DC-CdGa2X4 (X = S, Se)
[36]. The LO–TO splitting was not taken into account in this study. The results were
subsequently fitted to the polynomial, i.e.ω = ω0 + a P + bP2,whereω is frequency
andP is pressure; this is the same polynomial considered byUrsaki et al. [40]. A good
agreement was found in the comparison of the experimental and theoretical Raman
frequencies at different pressures. This was also true even for the A and E modes,
whose changes in width were considered as the signals for the first stage of pressure-
induced phase transitions. The agreement of the frequencies at different pressureswas
surprising because in the theoretical calculations the structures were not disordered
at all, whereas Ursaki et al. suggested several order–disorder transitions caused by
the two-stages of disordering proposed by Bernard and Zunger. This data along with
the theoretical dependence of the band gap with pressure [36] offer one more piece
of the puzzle, and could be compared with future experimental studies to settle the
argument of whether order–disordering transitions were or not taking place under
hydrostatic pressure.

In a subsequent study, Gomis et al. measured and calculated, using ab initio tech-
niques, the optical and vibrational spectra of DC-CdGa2Se4 under pressure [38].
Raman scattering measurements complemented with the lattice dynamics calcula-
tions allowed to assign and to discuss the symmetries of the Raman-active modes
up to 22 GPa. In general, a good agreement between experimental and theoretical
phonon frequencies was found along the whole pressure range.

Vilaplana et al. performed recently experiments and ab initioDFPT calculations to
evaluate the vibrational properties ofDC-ZnGa2Se4,DS-ZnGa2Se4,DC-HgGa2Se4,
and DC-HgGa2S4 under pressure [42–44]. Pure B and E modes with TO and LO
splitting were obtained which could be compared to experimental values. Tables7.1,
7.2 show the experimental and theoretical Ramanmode frequencies of Raman-active
optical modes and the pressure coefficients for DC-HgGa2Se4 and DC-HgGa2S4,
respectively. Figures7.1 and 7.2 show the theoretical and experimental Raman-active
modes as function of pressure ofDS andDCphases of ZnGa2Se4 respectively. Itmust
be noted that the theoretical DS structure was calculatedwith the 4d sites occupied by
Ga (model 1 in Table5.2 and [41]) to be comparedwith the experimental DS structure
where Zn and Ga are mixed in 4d sites (model 6 in Table5.2 and [41]) because of
the computationally expensive task of performing calculations of disordered phases

http://dx.doi.org/10.1007/978-3-642-40367-5_5
http://dx.doi.org/10.1007/978-3-642-40367-5_5
http://dx.doi.org/10.1007/978-3-642-40367-5_5


194 A. Muñoz and M. Fuentes-Cabrera

Table 7.1 Experimental and theoretical Raman mode frequencies and their pressure coefficients
in DC-HgG2Se4 at zero pressure using ω(P) = ω0 + a1P + a2P2

Mode ω0
a [cm−1] aa

1 aa
2 × 100 ωb

0 [cm−1] ab
1 ab

2 × 100
symmetry [cm−1GPa−1] [cm−1GPa−2] [cm−1GPa−1] [cm−1GPa−2]
E1
TO 51.1 0.30 −2.3 49.1 0.26 −2.9

E1
LO 53.0 −0.02 −2.2

B1
TO 54.7 1.50 −2.1 49.9 1.73 −2.7

B1
LO 50.9 1.60 −2.3

E2
TO 100.1 0.03 −0.8 94.9 −0.13

E2
LO 95.0 −0.13

B2
TO 119.5 0.07 5.9 116.0 −0.10

B2
LO 119.3 −0.26

A1 139.2 4.72 −7.3 126.8 4.53 −5.1

E3
TO 157.8 4.66 −8.5 143.8 4.65 −7.2

E3
LO 150.9 4.54 −6.7

B3
TO 176.4 4.72 −10.6 161.2 4.55 −6.6

B3
LO 169.1 4.86 −7.4

A2 182.6 4.45 −18.0 165.4 4.00 −6.5

A3 205.4 2.86 −3.6 185.0 2.97 −2.6

B4
TO 216.3 2.01 0.4 198.6 2.04 0.5

B4
LO 213.9 1.91 −0.2

E4
TO 235.8 4.17 −7.6 215.9 4.71 −7.5

E4
LO 224.8 4.43 −6.4

E5
TO 242.8 4.47 −9.7 232.3 3.61 −3.7

E5
LO 271.5 2.54 −2.85 249.9 3.48 −4.7

B5
TO 272.3 4.90 −5.94 240.4 6.60 −10.3

B5
LO 288.4 3.08 −0.92 252.7 6.07 −9.0

a Experimental Raman data
b Theoretical calculations

with ab initio techniques. These results are a clear example of how the ab initio
calculations can help to identify the different Raman modes and the reasonable
agreement between the theoretical data and the experimental results.

7.6 Elastic Properties Under Pressure

The study of the elastic properties of ternary chalcopyrite compounds with ab initio
methods was also applied to AIIBIII

2 XVI
4 compounds. It must be noted that very few

ab initio theoretical studies of elastic properties are available for these materials.
Compounds crystallizing in the DC (I-4) structure belong to the tetragonal

Laue group TII. This Laue group contains all crystals with 4, −4 and 4/m point
groups. In this group there are seven independent elastic constants which are:
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Fig. 7.1 Pressure dependence of the experimental (symbols) and calculated (lines) vibrational
modes in DS-ZnGa2Se4

C11, C12, C13, C33, C44, C66, and C16 [45]. On the other hand, the DS (I-42m) and
PC (P-42m) structures belong to the tetragonal Laue group TI, which contains all
crystals with 422, 4mm, −42m and 4/mmm point groups. In this group there are six
independent second-order elastic constants which are: C ′

11, C ′
12, C ′

13, C ′
33, C ′

44, and
C ′
66 [45]. It is possible to transform the seven components Cij of the elastic tensor of

a TII crystal into the six components C ′
ij of the elastic tensor of a TI crystal. For that

purpose it is necessary to make C ′
16 equal to zero by means of a rotation around the

z axis [46].
Gomis et al. recently performed a theoretical study of the elastic properties of

DC-HgGa2Se4 under pressure [47], using the pseudopotential plane wave method
with the GGA PBEsol [48] functional to describe the exchange correlation energy.
Table7.3 shows the set of seven elastic constantsCij obtained at zero pressure together
with the two sets of six C ′

ij obtained after applying the corresponding rotations. The
table also includes previous theoretical results for the seven Cij elastic constants of
DC-CdGa2Se4 and DC-CdGa2S4 [49].
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Fig. 7.2 Pressure dependence of the experimental (symbols) and calculated (lines) vibrational
modes in DC-ZnGa2Se4

From the elastic constants it is possible to obtain, using standard formulas, the
bulk modulus, B, and the shear modulus, G, for the tetragonal Laue group TI. Three
different approximations are used in order to calculate the bulk and shear modulus,
they are know as the Voigt [50], Reuss [51] and Hill [52] approximations, labeled
with subscripts V, R, and H, respectively, defined by the following equations:

BV = 2C11 + C33 + 2C12 + 4C13

9
(7.1)

BR = 1

2S11 + S33 + 2S12 + 4S13
(7.2)

BH = BV + BR

2
(7.3)
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Table 7.3 The Cij elastic constants (in GPa) for DC-HgGa2Se4

DC-HgGa2Se4 DC-CdGa2Sea4 DC-CdGa2Sa4
C11 54.2 52.5 61.8
C12 24.3 20.4 24.7
C13 31.2 38.8 35.7
C33 55.5 60.0 50.0
C44 29.9 31.6 33.9
C66 26.2 16.0 27.0
C16 −0.3 −1.9 −2.7
C ′
11 54.2b, 65.5c

C ′
12 24.3b, 13.0c

C ′
13 31.2b, 31.2c

C ′
33 55.5b, 55.5c

C ′
44 29.9b, 29.9c

C ′
66 26.2b, 14.9c

BV,BR,BH 37.5, 37.2, 37.4 36.1d 58.4d

GV,GR,GH 22.3, 18.8, 20.6
YV,YR,YH 55.9, 48.4, 52.2
νV, νR, νH 0.25, 0.28, 0.27
BV/GV,BR/GR,BH/GH 1.68, 1.98, 1.81
A 1.75c, 0.57d

The set of elastic C′
ij constants (after rotation for two different angles) are also given. The elastic

moduli B, G, and Y (in GPa) and Possion’s ratio (ν) are given in the Voigt, Reuss and Hill approx-
imations. The B/G ratio and the shear anisotropy factor (A) are also given
aCij data from [48]
b,c Rotation angle of φκ = 0.76◦ and φγ = 45.76◦, respectively
d Obtained for BR a value 40.6GPa from the Cij data from [48]

GV = 2C11 + C33 − C12 − 2C13 + 6C44 + 3C66

15
(7.4)

G R = 15

8S11 + 4S33 − 4S12 − 8S13 + 6S44 + 3S66
(7.5)

G H = GV + G R

2
(7.6)

where Sij are the components of the elastic compliance tensor (the inverse of the
elastic constants tensor).

Other interesting elastic quantities are the Young modulus (Y) and the Poisson’s
ratio (ν) defined by:

YZ = 9BZ G Z

G Z + 3BZ
(7.7)

νZ = 1

2

(
3BZ − 2G Z

3BZ + G Z

)
(7.8)
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where the subscript Z refers to the symbols V, R, and H, respectively. Table7.3
reports the values obtained of the B, G, and Y for DC-HgGa2Se4 at zero pressure
in the three approximations. The bulk modulus BH = 37.4GPa is in very good
agreement with the value of B0 = 36.0GPa obtained from a third order Birch-
Murnaghan EOS [53].

Table7.3 includes the values of the ratio between the bulk and shear modulus,
B/G, and the shear anisotropy factor A. According to the Pugh criterion [54], a B/G
value above 1.75 indicates a tendency for ductility; otherwise, thematerial behaves in
a brittle manner. The value of B/G = 1.81 indicates that the material should behave
in a ductile manner. The shear anisotropy factor A for the tetragonal cell is defined
as A = 2C66 /(C11 − C12). If A is equal to one, no anisotropy exists. On the other
hand, the more this parameter differs from one, the more elastically anisotropic is
the crystalline structure. In this case the material shows an anisotropic behavior.

As mentioned previously, the elastic constants allow the study of the mechanical
stability of the system. A lattice is mechanically stable only if the elastic energy
change associated with an arbitrary deformation given by small strains is positive
for any small deformation [55]. It means that the principal minors of the determinant
with elements Cij are all positive [56]. This is known as the Born stability criteria.
For the case of a tetragonal crystal with six Cij elastic constants, the mechanical
stability at zero pressure requires that:

C11 > 0, C44 > 0, C66 > 0, C11 − C12 > 0 (7.9)

and
C11C33 + C12C33 − 2C2

13 > 0 (7.10)

DC-HgGa2Se4 at zero pressure satisfies theBorn stability criteria and the crystal is
mechanically stable at zero pressure [47]. Similarly, Ma et al. obtained the seven the-
oretical elastic constants at equilibrium pressure of DC-CdGa2S4 andDC-CdGa2Se4
using the pseudopotential planewavemethod and theGGAapproximation to describe
the exchange correlation potential [49]. They concluded that also both compounds
are mechanically stable at zero pressure.

To analyze the mechanical stability of a structure at high pressure it is necessary
to study the evolution of the elastic constants as pressure increases and modify the
Born stability criteria. The generalized Born stability criteria valid for the tetragonal
crystal under an external hydrostatic pressure P take the form [56]:

C11 − P > 0, C44 − P > 0, C66 − P > 0, (7.11)

C11 − C12 − 2P > 0 (7.12)

(C33 − P)(C11 + C12) − 2(C13 + P)2 > 0 (7.13)

The study of the mechanical stability of DC-HgGa2Se4 under pressure by Gomis
et al. [47] concluded that the tetragonal phase becomesmechanically unstable beyond
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Table 7.4 Theoretical and experimental cell parameters and Wyckoff positions of PC-CdIn2Se4
at zero pressure

Theory Experiment [58]

a (Å) 5.7763 5.8151
c (Å) 5.9042 5.80
Wyckoff positions x y z X y z
Cd (1a) 0 0 0 0 0 0
In (2f) 0.5 0 0.5 0.5 0 0.5
Se (4n) 0.2776 0.2776 0.2281 0.2707 0.2707 0.230

13.3GPa. Experimentally, this pressure is consistent with the pressure at which dark
linear effects appear in optical absorption experiments.

7.7 Theoretical Study of CdIn2Se4 in the Pseudo-Cubic Phase

In order to illustrate how ab initio methods allow the study of OVCs in a predictive
way,wepresent a theoretical studyofPC-CdIn2Se4 under pressure [57]. Thismaterial
has not been studied experimentally under pressure. Structural studies onpolytypes of
CdIn2Se4 have been reported by Ivaschchenko et al. [58], that include the tetragonal
PC phase at zero pressure.

In the tetragonal PC structure, the primitive unit cell contains one formula unit;
i.e., 7 atoms. Cd atoms are located at 2a Wickoff positions, In atoms at 2f positions,
and Se atoms at 4n positions (x, y, z) with x = y. Therefore, in this structure there are
there are two free lattice parameters (a = b, c) and two internal atomic positions of
Se atoms (see Table7.4). Alternatively, the PC phase is characterized by one external
parameter c/a, and two internal parameters, x and z.

Total-energy ab initio simulations have been performed within DFT framework
as implemented in the Vienna ab initio simulation package (VASP) [59, 60] (and
references therein). The program performs ab initio structural calculations with the
plane-wave pseudo-potential method. The set of plane waves employed extended up
to a kinetic energy cutoff of 370 eV inorder to achieve highly converged resultswithin
the projector-augmented-wave (PAW) scheme [60, 61]. The PAWmethod takes into
account the full nodal character of the all-electron charge density distribution in the
core region. The exchange-correlation energy was treated with the GGA-PBEsol
functional [48]. It is well known that the GGA approach typically underestimates
the cohesion energy [5] (in turn producing an overestimation of the equilibrium
volume). We used dense special point grids appropriate to the structure considered
to sample the Brillouin zone (BZ), thus ensuring a high convergence of 1–2meV per
formula unit in the total energy of each structure as well as an accurate calculation of
the forces on the atoms. At each selected volume, the structures were fully relaxed
through the calculation of the forces on atoms and the stress tensor [5]. It means that
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Fig. 7.3 Theoretical E(V) and V(P) data for PC-CdIn2Se4

for a select volume, V, we obtain the theoretical E(V) and P(V) at the same time but
independently. The equilibrium volume, V0,corresponds to the relaxed theoretical
equilibrium (the V with lower E and P = 0) configuration. The forces were smaller
than 0.006 eV/Å, and the deviation of the stress tensor, from a diagonal hydrostatic
form was less than 0.1GPa in all the relaxed volumes.

Table7.4 reports the calculated structural parameters at equilibrium, except for the
typical overestimation of the GGA approach the theoretical results compare quite
well with the available experimental parameters. Figure7.3 shows the calculated
energy versus volume data, the inset also shows the calculated evolution of volume
with increasing pressure. These data are fitted with a Birch–Murnaghan 4th order
EOS [53]. Values of bulk modulus and pressure derivatives are B0 = 33.2GPa,
B′

0 = 4.7 and B′′
0 = 0.4 × 10−3. Figure7.4 shows the pressure evolution of the

calculated lattice parameters and c/a ratio. The axial compressibility for a and c axes
at zero pressure are calculated as κx = −1

x
∂x
∂p . We obtain κa = 5.7 × 10−3 GPa−1,

and κc = 9.9×10−3 GPa−1, these values show an anisotropic compressibility, being
c the most compressible axis according to our calculations.

Lattice-dynamics calculations of phononmodeswere performed at the zone center
(� point) of the BZ with the direct force-constant approach without the inclusion of
electric field effects [10]. These calculations provide information about the symmetry
of the modes and their polarization vectors, and allow us to identify the irreducible
representations and the character of the phonon modes at the � point.

According to group theory, the PC structure of CdIn2Se4 has 21 phonon modes
at � with the mechanical representation [41]:
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Fig. 7.4 Pressure depen-
dence of the theoretical lattice
paremeters a, c and c/a of
PC-CdIn2Se4

� = 2A1(R) ⊕ 2A2 ⊕ B1(R) ⊕ 4B2(R, IR) ⊕ 6E(R, IR)

where A1 and B1 are non-polar modes, A2 are silent modes, and B2 and E are polar
modes, being E modes doubly degenerated. This results in a total of 16 Raman-active
modes (2A1 ⊕ B1 ⊕ 3B2 ⊕ 5E) and 13 IR-active modes (3B2 ⊕ 5E) since one B2
and one E are acoustic modes. Table7.5 summarizes the symmetries of the phonons
along with their frequencies and pressure derivatives. The results were subsequently
fitted to the polynomial ω(P) = ω0 + a · P + b · P2, where P is the pressure,
ω0 is the zero pressure frequency, and a and b are the first-order and second-order
pressure coefficients. Figure7.5 shows the total Phonon density of states (DOS)
and the projected phonon density of states (PDOS) for each atom. The modes are
located in two frequency regions, one from 0–120 cm−1, and the other from 130–
230 cm−1, clearly separated by a phonon-gap. The main contribution to vibrations
above 130 cm−1 comes from the Se atom, due to the lower mass of this atom.
Figure7.6 shows the pressure evolution of the calculated phononmodes.Adynamical
instability appears around 18 GPa because both the silent A2 mode and the E mode
with lowest frequency become negative. The softening of these modes could be the
fingerprint of a phase transition around that pressure which is similar to the phase
transition pressures found in other OVCs of the AB2X4 family (see Chaps. 5 and 6
of this book).

We include the effect of the electric field in our calculations by means of the
Born-effective charge tensor, and the dielectric constant calculated from ab initio.
As already commented, this procedure allows us to include the non-analytical term
at the � point and to calculate the LO–TO splitting of the polar modes B2 and E.

http://dx.doi.org/10.1007/978-3-642-40367-5_5
http://dx.doi.org/10.1007/978-3-642-40367-5_6
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Table 7.5 Theoretical frequencies of Raman, Infrared and silent modes and pressure coefficients
of PC-CdIn2Se4 as obtained from fits to the data using ω = ω0 + aP + bP2 equation

Mode symmetry ω0 (cm−1) a (cm−1GPa−1) b (cm−1GPa−2)

E(RI) 49.50 −0.77a −0.051a

A2 52.10 −1.24b −0.043b

B2(RI) 65.75 −0.26 −0.017
E (RI) 77.92 −0.41 0.005
A1 (R) 138.50 4.78 −0.044
B2 (RI) 160.05 3.86 −0.058
E (RI) 175.80 3.20 −0.024
E (RI) 179.17 4.53 −0.066
A1 (R) 183.33 3.58 −0.053
B1 (R) 183.33 3.32 −0.033
E (RI) 206.05 4.39 −0.058
A2 206.22 4.15 −0.052
B2 (RI) 210.89 2.89 −0.029
a Fit up to 18GPa
b Fit up to 14GPa

Fig. 7.5 Calculated phonon total density of states (DOS) and atom projected DOS of
PC-CdIn2Se4
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Fig. 7.6 Pressure dependence of the theoretical Raman, IR and silent modes of PC-CdIn2Se4

Figure7.7 displays the phonon dispersion at zero pressure of PC-CdIn2Se4, showing
the LO–TO splitting of the different modes at the � point.

Finally, we have studied the elastic properties of PC-CdIn2Se4. As already com-
mented, the PC structure has six independent second-order elastic constants which
are: C11, C12, C13, C33, C44, and C66. Table7.6 reports the calculated values of
the Cij elastic constants as well as the shear modulus, G, the Young modulus, Y,
the Poisson’s ratio (ν), and other calculated elastic parameters (see (7.1–7.8)). We
obtain a bulk modulus of 34.5GPa, a shear modulus Gv of 18.76GPa and a Young
modulus Yv of 47.7GPa. Note that the reported Bv bulk modulus obtained from the
elastic constants 34.8GPa, agrees with the B obtained from the Birch–Murnaghan
4th EOS fit [53], this gives confidence to our elastic constants calculation. The ratio
between bulkmodulus and shear modulus (B/G = 1.86) indicates that the compound
is ductile according to the Pugh criteria. The shear anisotropy factor (A = 3.6) is
clearly different of one, thus indicating a clear anisotropy of this compound.

At zero pressure the Born stability criteria are fulfilled for PC-CdIn2Se4and the
crystal is mechanically stable. Figure7.8 shows the pressure evolution of the Cij

elastic constants.C11,C12,C33, andC13 increasemonotonically as pressure increase,
whereasC44 andC66 increasewith pressure up to 10 and 5GPa, respectively, and then
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Fig. 7.7 Theoretical phonon dispersion at zero pressure for PC-CdIn2Se4 (LO-TO splitting at �

point is included)

decrease as pressure increase. These results allow us to study themechanical stability
under pressure. The generalized Born criteria of this compound under pressure are
represented in Fig. 7.9. It is clear that above 11GPa two of the generalized Born
criteria, defined by (7.12) and (7.13), are violated; therefore, the system becomes
mechanically unstable above this pressure. This pressure is similar to the pressure
for which the calculated elastic constant C44 begins to decrease, but lower than
the pressure at which the dynamic instability appears. It remains to be checked
experimentally if the different pressures for mechanic and dynamic instability of
PC-CdIn2Se4 could be related to the occurrence of phase transitions and to the
appearance of dark linear defects which are precursors of the phase transition to an
opaque metallic phase as the DR phase observed in several OVCs.
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Fig. 7.8 Calculated pressure evolution of the Cij elastic constants of PC-CdIn2Se4

Fig. 7.9 Generalized Born stability criteria as function of pressure for PC-CdIn2Se4
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Table 7.6 Elastic constants Cij (in GPa) for PC-CdIn2Se4. Bulk (Bv), shear (Gv), and Young (Yv)

moduli (in GPa), Poisson’s ratio (νv), Bv/Gv ratio, and shear anisotropy factor (Av) are also given
in the Voigt approximation

C11 C33 C44 C66 C12 C13 Bv Gv Ev νv Bv/Gv Av

49.9 44.1 22.3 29.6 33.6 25.7 34.5 18.8 47.7 0.27 1.86 3.64

7.8 Conclusions

In this chapter we have made an overview of the electronic, elastic, and vibrational
properties of the OVCs of the AB2X4 (X = S, Se) family under pressure from
a theoretical point of view. First principles (also known as ab initio) calculations
are a powerful complement to experimental results. These studies can predict many
properties of the materials under extreme conditions that sometimes are not available
from experiments. Although theoretical studies are scarce, e.g. there is no work
published on OVCs with X = Te, they may help to elucidate some controversy on
the structural, electronic, elastic, and vibrational properties under pressure. We also
presented a theoretical study of the pseudo-cubic CdIn2Se4 under pressure, where no
experimental data under pressure are available.We hope this overviewwill encourage
further studies that cover the lack of data on OVCs under pressure.
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