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Abstract. The purpose of making efficient and flexible manufacturing systems 
is often related to the possibility to analyze the system considering at the same 
time a wide number of parameters and their interactions. Simulation models are 
proved to be useful to support and drive company management in improving 
the performances of production and logistic systems. However, to achieve the 
expected results, a detailed model of the production and logistic system is 
needed as well as a structured error analysis to guarantee results reliability. The 
aim of this paper is to give some practical guide lines in order to drive the error 
analysis for discrete event stochastic simulation model that are widely used to 
study production and logistic system. 
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1 Introduction 

Stochastic, discrete events, simulation models are widely used to study production 
and logistic system. Apart from the development, one of the main problem of this 
approach is to perform the error analysis on the outputs of the simulation model. 
Simulation experiments are classified as either terminating or non-terminating as far 
as the goal of the simulation is concerned (Law and Kelton, 2000), (Fishman, 2000). 

If we limit our interests on non-terminating simulation, the error analysis can be 
split into two different parts. The first part consists of individuating the initial 
transient period and the confidence interval of the outputs. The second part consists of 
estimating how the transient period and the outputs confidence interval varies when 
the initial model scenario is changed. The first part of the problem is widely studied, 
Kelton (1983-1989), Schruben (1982-1983), Welch (1982), Vassilacopoulos (1989) 
White (1997), and many methods are provided to determinate the transient period 
often related to output stability, that can be quantified in different ways. Between the 
proposed techniques Mean Squared Pure Error method, Mosca et al. (1985-1992), 
should be reminded as a practical method useful to determinate both transient period  
and confidence interval. On the other hand the second part of error analysis problem 
is not commonly addressed directly as reported in the recent work of Sandikc (2006) 
that tries to fill the gap for the initial transient period for simulation model addressing 
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production lines. The variance of outputs confidence interval between different scenario 
is often faced with the hypothesis that it is normally distributed around a central value 
used in the reference scenario according with the basic theory of statistics (Box et al. 
2013). But in many practical cases there is no evidences that this hypothesis is correct 
and, moreover, the significance of central value, for the reference scenario, is lost. In 
fact in some recent simulation handbook (Chung 2004) the advice to quantify the 
confidence interval for all different simulated scenario is given.  

2 Purpose  

The aim of this paper is to give some practical guidelines in order to drive the error 
analysis for discrete event stochastic simulation models. The paper is focused on the 
study of confidence interval variance related to the variance of simulated scenario. 
Nowadays, in many practical applications, the calculation potential is large enough to 
perform “long” simulation run in order to assure to exceed the initial transient period. 
Much more important is to determinate the confidence interval for the outputs in  
different simulated scenario, because overestimate or underestimate these confidence 
intervals can drive analysts towards a wrong interpretation of the results.   

3 Methodology 

To address the aim of the paper a quite simple discrete event simulation model is 
considered and the MSPE (1) is used to estimate outputs confidence interval. Then the 
simulation are performed according to different scenario and the variance of 
confidence interval is studied for different outputs.  ܧܲܵܯ௜ ൌ ∑ ൫௬ೕ೔ି௒೔൯మೝೕసభ ௥ିଵ  *

כ (1)                                        ݅: ,݅ ݕܽ݀ ݐܽ ݁ݑ݈ܽݒ ݐݑ݌ݐݑ݋ :௝௜ݕ ;ݕܽ݀ ;݆ ݊݋݅ݐ݈ܽܿ݅݌݁ݎ ௜ܻ : ,݅ ݕܽ݀ ݐܽ ݊ܽ݁݉ ݐݑ݌ݐݑ݋   .ݏ݊݋݅ݐ݈ܽܿ݅݌݁ݎ ݎ ݊݋
This paper is grounded on a discrete events simulation model reproducing a re-order 
point logistic system, in particular a single-item fixed order quantity system also 
known as: Economic Order Quantity (EOQ) model. The economic order quantity 
(EOQ), first introduced by Harris (1913), and developed by Brown (1963) and Bather 
(1966) with stochastic demand, is a well-known and commonly used inventory 
control techniques reported in a great variety of hand book, for example: Tersine 
(1988) and Ghiani (2004).  The notation used in this paper is illustrated in table 1. 

Table 1. Symbol and definitions 

Symbol Unit Definition 
N Day Number of days for simulation 
Di Unit/day Mean demand per day in units 
Lt Day Mean lead time in day 
Co Euro/order Single order cost in euro 
Cs Euro/ unit*year Stock cost in euro per unit per year 
SS Unit Safety stocks in unit 
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3.1 Simulation Model 

The simulation model was developed according with the standard EOQ model for 
single item. A set of stochastic functions, developed in SciLab environment, are used 
to generate the demand that activates the model. The simulation model was tested 
performing standard EOQ model with normal distributed demand (where σd is 
demand standard deviation) and normal distributed lead time (where σt is lead time 
standard deviation). The parameters set used in the reference scenario are illustrated 
in table 2. 

Table 2. Used parameters set 

Parameter Set value 
Di 1.000,00
σd 300,00
Lt 7,00
σt 2,00
Co 1.000,00
Cs 1,00

Imposed SL 0,95
 

To evaluate model performances, in terms of achieved service level, a set of  4 Key 
Performance Indicators (KPI) is defined. The used KPI are illustrated in table 3. 

Table 3. Used KPI 

KPI Unit Definition 
SL1 % 1-Number of stock-out in days per day 
SL2 % 1-Number of stock-out in units per day 
SL3 % 1-Number of stock-out in units per day during lead time 
SL4 % 1-Number of stock-out event during lead time period 

3.2 Design of the Experiments  

To investigate the influence of different parameters on confidence intervals four 
factors are considered. These four factors are: 

• Demand distribution; 
• Lead time distribution; 
• Ratio Co/Cs; 
• SS, safety stocks. 

A full factorial experiment with three levels is used in this paper. Four factors and 
three levels give 34 = 81 combinations. For each combination a number of 5 
replications were conducted for a number of 405 simulations. The three settings for 
the four factors are shown in table 4.  
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4 Findings 
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Fig. 1. MSPE for KPI SL1 and SL3 
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Table 5. ANOVA tes

Factors L
Demand distribution 3,1

Lead time distribution < 2

Safety Stocks 0,0

Ratio Co/Cs 0,1

Demand dist.: Lead time 
dist. 

< 2

Demand dist.: Safety 
Stocks 

0,6

Demand dist.: Ratio 
Co/Cs 

0,0

Lead time dist.: Safety 
Stocks 

0,5

Lead time dist.: Ratio 
Co/Cs 

0,0

Safety Stocks: Ratio 
Co/Cs 

0,9
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t P-value results, codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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016213 * 0,031195 * 0,0091386 ** 0,0912483  

570304  0,801933  0,0424879 * 0,2119648  

025063 * 0,009775 ** < 2.2e-16 *** 0,1682513  

92423  0,918936  0,9432251  0,8817591  
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the reference scenario is almost verified. On the other hand, when the studied 
parameters are not numerical, for example distribution type as in the considered case 
study, the confidence interval must be re-calculated in each scenario because the 
variance could be high and the interaction are almost unpredictable. So, in practice, 
the effort to check the confidence interval related to discrete event simulation should 
be done when the modified parameters are not simply numeric. This kind of analysis, 
thanks to the actual computational resource, is not prohibitive in terms of time when 
we manage a rather simple model.  

6 Limitation and Further Work 

The number of replications for each scenario provided in the DOE is fixed, a deeper 
study about this aspect should be investigate. 
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