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Preface

This Festschrift for Rinus Plasmeijer has been compiled to celebrate the com-
bined occasion of Rinus’s 61st birthday and the 25th Symposium on Implemen-
tation and Application of Functional Languages.

After the Plasmeijer family moved from Amsterdam to Hengelo in the eastern
part of The Netherlands, Rinus was born on October 26 in 1952. Rinus completed
secondary school at “De Grundel” in Hengelo without much effort. In 1971 he
started studying Applied Mathematics at the Technical University Twente in
Enschede. Although the university in Enschede is very close to Hengelo, he lived
on campus instead of at home. These studies were also not a real challenge for
Rinus and hence he obtained his Bachelor in 1975, which was quite prompt in
those days. Rinus continued with a Master in Applied Mathematics within the
Division of Computer Science. This was probably as close as you could get to an
academic study in computer science in The Netherlands at that time.

After graduating as an engineer, Rinus attended the Catholic University in
Nijmegen where he works to this very day, despite a change of the university
name to Radboud University Nijmegen. Rinus started working in the Computer
Graphics Department while Kees Koster was starting preparations for academic
computer science education and the corresponding computer science department.
Already in 1981 Rinus completed his PhD thesis entitled “Input tools – a lan-
guage model for interaction and process communication.” Although this title
might suggest a close relationship with his current work on the iTask system
and the associated generic input tools for browsers, the actual tools described in
his thesis are quite different in many aspects. Nevertheless, both try to provide
state-of-the-art abstractions to describe user interactions for programs. Back in
1981 the context was still an imperative paradigm.

At about the same time as Rinus finished his PhD, important changes oc-
curred in computer science in The Netherlands. At ten different universities the
academic study Computer Science was initiated. To handle the teaching associ-
ated with this study and to extend computer science research, additional staff
was appointed. Raymond Boute became full professor in the field of operating
systems and introduced functional programming very enthusiastically. In partic-
ular, a tape with the language SASL from David Turner stimulated the curiosity
for “modern” functional programming languages. In November 1984, a cooper-
ative research project was started at the universities of Amsterdam (hardware),
Utrecht (theory), and Nijmegen (software), called the Dutch Parallel Reduction
Machine Project, which was sponsored by the Dutch Ministry of Science and
Education (Science Council). As the initial step for the first externally funded
project on functional programming, Rinus made a tour throughout the UK to-
gether with Marko van Eekelen and Pieter Hartel in 1985 [18] in which they
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visited the most active research groups to bring them on par with the state of
the art.

In those days achieving a reasonable performance was seen as one of the main
challenges for functional programming research. Parallel reduction of functional
programs was considered to be one of the most promising solutions. In 1987 this
cooperation resulted in the first publication on the lazy functional programming
language Clean [8]. The name Clean is a shorthand for Clean LEAN, and LEAN
[4] stands for the Language of East Anglia and Nijmegen, which was the result
of a long cooperation between the research groups at these universities. The
main part of the Clean language implementation was done by Tom Brus and
Maarten van Leer. In contrast to most functional programming languages, Clean
is based on Term Graph Rewrite Systems rather than on λ-calculus [3, 26]. Henk
Barendregt and his group and later Jan Willem Klop and his group helped to
develop the required theoretical backing for the Clean implementation. Within
the Clean group, Henk and Jan Willem were known as mister λ-calculus and
mister rewrite system. As a result of this project, the future Spinoza prize winner
Henk Barendregt moved from Utrecht University to the Radboud University
in Nijmegen. Later, Jan Willem Klop was also appointed as professor at the
Radboud University. To this day there is ongoing scientific cooperation between
Henk, Jan Willem, and Rinus.

In addition to these international IFL meetings, an annual series of national,
informal meetings focusing on the education of functional programming was
started in 1993, called the Netherlands Functional Programming (NL-FP day).
Rinus was one of the initiators and the first meeting was also in Nijmegen. Cur-
rently, this series of meetings is held on the first Friday of January. The 2013
meeting was again in Nijmegen. Over the years, the scope of the event has slowly
broadened. It is no longer restricted to teaching functional programming, but
includes nice topics in functional programming in general. As a result, there are
also participants from software companies using functional programming lan-
guages. During the last few years, the NL-FP days have attracted an increasing
number of participants as well as their first international guests.

During the late 1980s, many functional programming groups in Europe were
working on creating efficient implementations of lazy functional programming
languages. Over a dozen non-strict, purely functional programming languages
existed. Most researchers were quite satisfied with Miranda [28] as a lazy func-
tional language. However, the trade mark on this language made it impossible to
implement it. In 1987, at the Functional Programming Languages and Computer
Architecture Conference (FPCA [12]), in Portland, Oregon, these researchers de-
cided to form a committee to define a common language [10]. In 1990 this com-
mittee presented Haskell 1.0. Originally, Rinus participated in this committee.
He left the committee because he felt that too much effort was put into adding
new experimental language constructs instead of defining a small, Miranda-like,
language. The functional programming group in Nijmegen decided to stick to
Clean.



Preface IX

In 1987, at the Parallel Architectures and Languages Europe conference
(PARLE [21]) in Eindhoven, many functional programming research groups were
present and discussed their common interests informally. They agreed that it
would be good to have an informal meeting of a few days to discuss implementa-
tion issues in depth. This informal meeting became the first IFL, Implementation
of Functional Languages Workshop, held in September 1989 in Nijmegen. Owing
to its success it became an annual event. The first events were held in Nijmegen
and were hosted by the functional programming research group of Rinus. Later,
it started moving throughout Europe and the USA. Because of its informal char-
acter there are no proceedings of the first editions of IFL. During the years, IFL
became bigger and the desire to record the results of the informal presentations
grew. The 1996 edition of IFL was the first edition to publish formal proceedings
of selected papers that are peer-reviewed to common conference standards.

Rinus was the main designer of Clean and has always been the leader of the
associated research team. Right from the start, Clean was developed as an inter-
mediate programming language with industrial strength. Speed of compilation
and speed of the compiled code is of uttermost importance. Consequently, sep-
arate compilation is demanded in order to compile large programs quickly. In
turn, this requires a proper module system and limits the possibilities for whole
program optimizations. All optimizations over module boundaries must be done
with the information available in the module interface definition. Another con-
sequence is that Rinus always stressed the importance of a single version; all
language extensions (e.g., the uniqueness type system [5, 7, 29], strictness anno-
tations [17, 6], multi-parameter type classes, dynamics [22], generics [2] and so
on) have to work smoothly together with the module system.

After the first exploratory implementations of Clean, all implementations
used a compilation scheme via the abstract ABC-machine [19, 27, 15]. The first
compiler from Clean to ABC-code was written in C for efficiency reasons. In
1994 it was decided that Clean no longer was an intermediate language for a
compiler but should become a full-fledged lazy functional programming language
[24]. After many language extensions, maintenance of the compiler written in C
became an issue. A new compiler from Clean to ABC-code in Clean was written
to cope with these problems. Later, even a front-end for Haskell 98 was added
to this compiler [9]. For many years the language was Concurrent Clean [25]
and had a parallel implementation on transputers [13] based on parallel graph
rewriting [23]. Clean is extended with a fancy object-oriented GUI library [1],
a proof system [16], a model-based test system [14], and an extension to run
partly in the browser [11]. Clean has always been strongly typed, and types play
an important role in its applications (e.g., [30, 20]).

In 1991, Prof. Zoltán Horváth from the Eötvös Loránd University in Budapest
visited the group of Rinus on a TEMPUS grant. This was the start of an ongoing
cooperation between these universities. Many of Prof. Horváth’s collegues and
students followed him and spent a successful research period in Nijmegen. The
Central European Functional Programming summer schools (CEFP) are run in
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strong cooperation. These proceedings are also published in the LNCS series.
Rinus is doctor and professor honoris causa of the Eötvös Loránd University.

For this Festschrift we invited all former PhD students of Rinus as well as
researchers in the field of functional programming who are listed in joint publi-
cations with Rinus. We received only positive reactions to this initiative. We are
very glad that many of these people, including those mentioned above, were able
to find time to write a contribution to this Festschrift for Rinus. The contribu-
tions are scientific essays, and the theme of the book is beautiful code. We asked
the authors to write about the influence the beauty of functional programming
has had or still has on their work. The order of appearance in this Festschrift is
inspired loosely by the timeline that is described above.

We are very happy that Springer recognizes the importance of the work of
Rinus and was willing to publish this Festschrift as a volume in LNCS. Each
submission was peer-reviewed to check the scientific correctness and received
constructive feedback for improvements. We express our gratitude to the follow-
ing persons who provided valuable support in the preparation of this Festschrift:

Wil van der Aalst
Steffen van Bakel
Henk Barendregt
Erik Barendsen
Ingrid Berenbroek
Tom Brus
Atze Dijkstra
László Domoszlai
Marko van Eekelen
Jörg Endrullis
Herman Geuvers
John van Groningen
Dimitri Hendriks
Ralf Hinze

Alfred Hofmann
Zoltán Horváth
Jan Martin Jansen
Johan Jeuring
Marco Kesseler
Jan Willem Klop
Tamás Kozsik
Anna Kramer
Bas Lijnse
Peter Lucas
José Pedro Magalhães
Steffen Michels
Maarten de Mol
Marco T. Morazán

Betsy Pepels
Andrew Polonsky
Hajo Reijers
Reuben Rowe
Pascal Serrarens
Sjaak Smetsers
Doaitse Swierstra
Frits Vaandrager
Edsko de Vries
Michael Westergaard
Nicolas Wu
Viktória Zsók
Erik Zuurbier

Finally, we think that it is appropriate that this Festschrift is handed over to
Rinus at the 25th edition of the IFL series returning to its roots at Nijmegen.

June 2013 Peter Achten
Pieter Koopman
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Beautiful Code, Beautiful Proof?

Maarten de Mol1 and Marko van Eekelen2,3

1 AiA Software B.V.
P.O. Box 38025, 6503 AA Nijmegen, The Netherlands
2 Institute for Computing and Information Sciences

Radboud University Nijmegen
3 School of Computer Science

Open University of the Netherlands
M.de.Mol@aiasoftware.com, M.vanEekelen@cs.ru.nl

Abstract. Functional programming languages are often praised for cre-
ating the capability of writing beautiful code. Furthermore, an often
mentioned advantage is that it is easy to reason about properties of
functional programs. Such reasoning can be either formal or informal.
This might lead to the assumption that really beautiful code is also re-
ally easy to prove. One might even say that beautiful code can only be
classified as really beautiful if the code also has a beautiful proof. This
essay explores whether beautiful code written in a functional program-
ming language also has a beautiful proof. Two small case studies discuss
both the beauty of an informal mathematical proof and the beauty of a
formal proof created in a dedicated theorem prover. General lessons are
drawn from these studies and directions for future research directions are
given.

This essay is written on the occasion of the celebration of the 61th an-
niversary of Rinus Plasmeijer, coinciding with the 25th IFL conference,
held in Nijmegen. Rinus was one of the supervisors of both the Ph.D.
Thesis of Marko van Eekelen and the Thesis of Maarten de Mol. The
authors of this essay co-authored many functional programming papers
with him both on the design and application of the functional program-
ming language Clean and on its dedicated theorem prover Sparkle.

We are most grateful for his enthusiastic guidance and for the many
hours of warm, creative and productive collaboration.

1 Introduction

The beauty of functional programming has been advocated by many authors.
John Hughes [Hug89] focuses on the expressivity and the inherent composi-
tionality of functional programming languages where Richard Bird and Phil
Wadler [BW88] advocate both the ease of proving properties in functional pro-
gramming languages and the beauty of the resulting proofs. Not every kind of
program is as easy to express in a functional language. Some programming tasks
are generally considered awkward [Pey01]. The code for this awkward squad may
be less beautiful and it may be harder to proof things about them if possible at
all. An example of such a class of hard-to-reason-about programs is the class of
programs that involve input and output [BS01, DBE04, DB06].

P. Achten and P. Koopman (Eds.): Plasmeijer Festschrift, LNCS 8106, pp. 1–7, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. de Mol and M. van Eekelen

Apart from such awkward program classes, functional programming languages
are generally well-known both for the beauty of their code and for the beauty of
reasoning about its code. It may seem reasonable to expect that these two often
come together. Following Hughes, Bird and Wadler one might assume that really
beautiful code is also really easy to prove. In fact, one even might say that code
written in a functional programming language can only be classified as beautiful
if the code also has a beautiful proof.

This essay sets out to perform a small case study studying the relation be-
tween the beauty of a code and the beauty of its proof. The lazy functional pro-
gramming language Clean [vESP97, PE99, PE02] is used since it is the language
we are most familiar with. It comes with the interactive proof assistant Sparkle
[MEP02, KEM04, MEP08, Mol09]. Sparkle makes it possible to interactively de-
fine and prove theorems aboutClean functions. It has special support for reasoning
about strictness [vEdM05] to determine and analyze the definedness properties of
the EditorArrow framework [AvdP13]. The features of Sparklemake it well suited
for the case study in this essay. In two small examples we want to explore this
expected relation between the beauty of the code and the beauty of its proof.

In Section 2 an example is taken from a standard text book of which the
text book claims that the code and the proof are beautiful. The text book does
the proof informally. The section explores whether the formal proof can also be
considered to be beautiful.

Then, in Section 3 a classic beautiful code example, the quicksort algorithm,
is taken for which we have not found a source that does the formal proof for
a functional programming language. In [FH71] Michael Foley and Tony Hoare
give both an informal proof and a formal proof of an imperative version of
Quicksort. At the moment of publication a formal proof was not possible (yet),
as was explicitly stated in the paper: ‘general purpose theorem provers are not
powerful enough to handle complex lemmas.’ Furthermore, there are some web
pages referring to informal proofs or to prove parts in Coq but they have as goal
the equivalence of an imperative program and a functional program. The goal
of Section 3 is to formally prove the correctness of the functional program and
to discuss the beauty of the formal proof for this classic example.

Finally, Section 4 describes lessons learnt from this small proof experiment
and draws conclusions.

2 Classic Beautiful Code with a Beautiful Proof

Two often used functions from the standard library of Clean are ‘map’ and
‘flatten’. Map is of course well-known, and applies an argument function to
all elements of a list. Flatten turns a list of lists into a single list by means of
repeated concatenation. These functions are defined in Clean as follows:

map :: (a -> b) ![a] -> [b] flatten :: ![[a]] -> [a]

map f [x:xs] flatten [x:xs]

= [f x: map f xs] = x ++ flatten xs

map f [] flatten []

= [] = []
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A nice property of map and flatten is that they do not interfere with each other,
and can be interchanged freely. This can be expressed as follows:

∀f,A[map f (flatten A) = flatten (map (map f) A)]

This property can be proved by induction. The base case is trivial, as for A = []

both the left- and right-hand-side evaluate to []. For A = [x :X], the left-hand-
side can be be rewritten into the right-hand-side as follows:

map f (flatten [x :X]) (expand flatten)
= map f (x ++ (flatten X)) (map distributes over ++)
= (map f x) ++ (map f (flatten f X)) (IH)
= (map f x) ++ flatten (map (map f) X) (expand flatten, backwards)
= flatten [map f x : map (map f) X] (expand map, backwards)
= flatten (map (map f) [x :X]) �

This proof relies on induction and equational reasoning only1. These two tech-
niques are considered to be the basic reasoning techniques for functional pro-
grams. The (small) proof is therefore both elegant and beautiful.

It is also straightforward to formalize the proof. In fact, Sparkle, can build
the proof automatically with its built-in hint mechanism. The resulting proof,
which is also part of the standard library of Sparkle, looks as follows:

Induction xs.

1. Introduce f.

Reduce NF All ( ).

Reflexive.

2. Introduce f.

Reduce NF All ( ).

Reflexive.

3. Introduce x xs IH f.

Reduce NF All ( ).

Rewrite -> All "map_++".

Rewrite -> All IH.

Reflexive.

Each line in this proof code corresponds to a single command, or proof step. The
first step is the structural induction, and in Sparkle this leads to three cases, in-
stead of two. The first case covers the possibility that A = ⊥, which was omitted
in the written proof. It is proved easily, however. The ‘Reduce’ steps correspond
to program evaluation; ‘Rewrite .. "map ++"’ corresponds to the application
of the map distribution lemma; and ‘Rewrite ... IH’ corresponds to the appli-
cation of the induction hypothesis. The remaining ‘Introduce’ and ‘Reflexive’
steps are logic axioms that need to be specified explicitly. Consequently:

– (all the steps from) the paper proof can easily be found in the formal proof;
and

1 It relies on the auxiliary property that map distributes over ++ as well, but that
property is proved by induction and equational reasoning itself.
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– the overhead on top of that (which is unavoidable due to the transition to a
formal level) is minimal

Therefore, the code, the paper proof, and the formal proof are all beautiful.

3 Classic Beautiful Code with an Ugly Proof

An elegant solution for sorting an arbitrary collection of elements is the famous
quicksort algorithm. The idea of this algorithm is very straightforward: first pick
a random element (the so called pivot); then divide the input into those that
are smaller than the pivot, those that are equal to the pivot, and those that are
greater than the pivot; then recursively sort the smaller and greater components;
and finally concatenate the three parts back again.

The quicksort algorithm can be expressed into Clean as follows:

quickSort :: ![a] -> [a] | Ord a

quickSort [x:xs] = quickSort [y \\ y <- xs | y < x]

++ [y \\ y <- [x:xs] | y == x]]

++ quickSort [y \\ y <- xs | y > x]

quickSort [] = []

This piece of code is a concise and readable representation of the algorithm,
which makes it beautiful indeed. Note that for the sake of this paper, a less
efficient version was chosen, which traverses the list three separate times. Instead,
it is also possible to split the list into three components with one pass.

The correctness of a sorting algorithm entails two separate properties: the
output list must be a permutation of the input list, and the elements of the
output list must occur in increasing order. These auxiliary properties can be
stated as follows:

perm A B ⇔ ∀a∈A[a ∈ B ∧ perm (A \ a) (B \ a)]
sorted 〈a1 . . . an〉 ⇔ ∀1≤i,j≤n[i < j → ai ≤ aj ]

The correctness of quicksort as a whole can now be formulated as:

∀A[perm A (quicksort A)) ∧ sorted (quicksort A)]

Intuitively, it is clear that this correctness property holds. Firstly, quicksort
does not remove elements from the input list, and each element is used exactly
once. This is because (< x), (== x) and (> x) are mutually exclusive, and in
combination also total. Therefore, the permutation property holds. Secondly, by
construction, the elements in each sublist of the algorithm are smaller than the
elements of the subsequent sublists. This is preserved by the recursive calls (due
to the permutation property). Also, each sublist is sorted on its own by induction.
All things combined, the concatenated output list is sorted as a whole.

We have formalized this proof idea with Sparkle. This took a Sparkle expert
about two working days, and the resulting formal proof is 2897 lines long, and
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consists of no less than 64 theorems. Section files for both proofs can be down-
loaded from http://www.cs.ru.nl/~marko/BCBP, and can be replayed with the
latest versions of Clean2 and Sparkle3.

There are two theorems in the formal proof that roughly correspond to the
presented proof idea, one for the permutation part and one for the sorted part.
These two theorems combined occupy 265 lines of proof code, which is much
larger that the original one paragraph proof idea. That is to be expected, how-
ever, because a formal proof cannot omit any details and consists of small steps
only.

The remaining 58 theorems and 2632 lines of proof code do not correspond
directly to any steps in the original proof idea, and are therefore pure overhead.
An inspection of the formal proof brings up the following explanations for this
overhead:

– The formal proof takes the possible undefinedness of data into account, while
the informal proof does not. This manifests itself in two different ways.
Firstly, properties require additional definedness conditions on their input
parameters. Secondly, in order to satisfy these conditions, the definedness
of the output of intermediate functions must be proved as well, resulting in
additional definedness theorems.
This factor explains 11 additional theorems, occupying 348 lines of proof
code.

– The formal proof relies heavily on the interaction between basic operations
(such as list concatenation, filtering, etc.) on properties that are relevant for
sorting (such as one list being a permutation of another). These properties
are intuitively straightforward, and have therefore been omitted in the proof
idea. They have to be proved explicitly in the formal proof, however.
This factor explains 43 additional theorems, occupying 1883 lines of proof
code.

– The quicksort proof requires features that are poorly supported by Sparkle,
such as course of value induction (only supported in an extension, see [LvE04])
and list comprehensions (which are translated automatically to incomprehen-
sible local functions).
This factor explains 4 additional theorems, occupying 253 lines of proof code.

– The remaining 2632− (348 + 1883 + 253) = 148 lines of proof code are due
to the internal representation of proof files (i.e. empty lines between proofs,
theorem headers, etc.).

Due to this overhead, the end result is a formal proof that is rather ugly. It is
fair to ask oneself if this overhead is mainly caused by Sparkle itself, and could
have been avoided by using another proof assistant. This especially goes for
the second point above, which can be solved by having more library theorems
available. However, there are currently no other proof systems for functional
languages that have such a library. Also, using a non-dedicated proof assistant
will result in additional overhead caused by semantic differences, which have to

2 http://www.cs.ru.nl/~clean
3 http://www.cs.ru.nl/Sparkle

http://www.cs.ru.nl/~marko/BCBP
http://www.cs.ru.nl/~clean
http://www.cs.ru.nl/Sparkle
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be modelled explicitly. Therefore, as far as we know, in this particular case the
performance of Sparkle cannot easily be improved by other proof systems.

4 Discussion and Conclusion

From both examples in the previous sections one can conclude that making
a formal proof involves considerable overhead in comparison with an informal
proof. This is quite common in the area of formal verification. The amount of
overhead may a be good indication for the beauty of the proof. In Section 2
the overhead was minimal and the proof was considered beautiful. However, in
Section 3 the overhead was quite considerable and the proof was considered ugly.

The question is whether this difference is accidental, due to the specific fea-
tures of the dedicated theorem prover or due to other aspects such a the specific
choice of example. The quickSort example is considered by many people as one
of the nicest examples of beautiful code. Intuition tells us that it should be pos-
sible to create a beautiful proof for it but that the current status of the language
dedicated theorem prover prevents that.

For a language dedicated theorem prover to support beautiful proofs it will
have to have a large collection of proven theorems to start with. General theorem
provers tend to have such large collections of theorems. They lack, however, the
direct expression of theorems and proofs in the programming language itself.
This indicates that one would want a kind of mix between a generic prover such
as Coq [Tea98] or PVS [ORS92] and a language specific prover such as Sparkle.
On one hand one needs the language specific extensions like there are in Sparkle
for strictness and definedness [vEdM05] and for class properties [KEM04]. On
the other hand one needs the libraries and tactics for general proof support from
a generic theorem prover.

The lack of the combined power of a generic and a language specific theorem
prover made the proof of quickSort not so beautiful. However, the proof is still
doable, albeit with more effort. By adding more proven statements to the li-
braries of Sparkle, this situation can be improved upon in the future. Until then,
we are afraid that we still have to conclude that beautiful code and beautiful
proofs can go together but not in all cases where one might reasonably expect
them to do so.
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Beauty and Code

Tom Brus

Modeling Value Group

“Beauty is more important in computing than anywhere else in technology
because software is so complicated.

Beauty is the ultimate defence against complexity.”
(David Gelernter) [1]

1 Introduction

Let me take you on an expedition in search of the beauty in code. Although
not everybody links code and beauty, it has always been a natural link for me.
Apparently I am not the only one, considering the hefty battles that show up
regularly regarding syntax, coding practices, and how things should be written
down. I have some strong feelings in this area myself and fought some battles
in the past. But syntax and the appearance of code on screen or paper is not
the only beauty axis that can be identified, there is more which I also hope to
illustrate below.

I have always looked on coding (or code creation) as a creative process and
‘creative’ encapsulates a drive for beauty for me, at least in some direction. I
always searched for satisfaction by creating something that I can look back on
with a certain satisfaction, some intricate sensation of beauty. The more beauty,
the more satisfaction. The coding process is more worthwhile, more satisfying
when more beauty is created.

When you start thinking about beauty in code you realize that there are
many aspects of code and code-creation that can be beautiful. For instance: the
resulting program can have a nice GUI; the source code can look elegant; the
program can have a pleasingly simple structure.

So, to identify beautiful code and distinguish it from the opposite (ugly code?
mediocre code?) we need to identify what beautiful could mean for code. We
need reasons to label code as beautiful or not. Only then we can find the real
beauty.

But is a quest for beauty a good guidance for high quality code? To answer
that question we should investigate what ‘quality’ exactly means for code and
that is beyond this essay. For me personally, ‘high quality’ and ‘beautiful code’
go together like copy and paste. Whenever there seems to be only one you need
to step back and rethink.

P. Achten and P. Koopman (Eds.): Plasmeijer Festschrift, LNCS 8106, pp. 8–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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My plan in this essay is to first look at what beauty is. Then I look into what
that specifically means for code. Finally I will look at different coding languages
as well as programming paradigms and how they can be related to beauty.

In this essay I do not claim to be complete in any dimension nor do I intend
to identify universal truths. It is not academic or scientific, and although some
experience with programming helps to enjoy this essay, it is not technical either.
I hope to shine a small light from a personal angle on what the art and beauty
of programming is. I am convinced that it is an art and that it should remain an
art [2]. In all humbleness I think I am old enough to look back and talk about
the past. I even enjoy doing that, at least occasionally.

2 Some Historical Notes

When I started programming around 1976 (in 8080 assembler) I did not have any
clear notion of beauty in mind. Getting the thing to do what I wanted it to do
was my goal. I can remember, however, that I did rearrange code fragments only
because it would look better or maybe feel better, even if there was no technical
reason to do so. In hindsight I am tempted to conclude that I was already trying
to create beauty, crude as it was. I also remember that code size really mattered
and that cramping the same functionality into a smaller code size was a satisfying
and rewarding process. You could also win points among peers for a yet smaller
footprint. This had little to do with beauty I think, although some see beauty in
small waists or small feet. Not me, so that must have just been a practical issue.
Nowadays code size is not a real issue anymore and we tend to even spend more
space to avoid riddles in maintenance or even for laziness. The quest for time on
the other hand has not degraded that much. Machines have gotten ridiculously
faster but we also seem to be more hungry for cycles. So squashing the last drop
out of the available cycles is at times still a rewarding exercise.

Later I was charmed by the first Macintosh computer because of its elegance.
Real fonts, a super intuitive mouse device, a wealth of GUI primitives and last
but not least a fanless design. At that time I earned my first $5 in 1987 with
‘m2beauty’, a public domain code beautifier for Modula-2 (this was by the way
also the only donation for this project). When researching for this essay I was
surprisingly still able to find it on the internet. I guess we need to wait for
the first retro-Mac-on-iPhone-emulator to be able to run it again (and find a
Modula-2 programmer to use it, which might even prove to be more difficult).

When making the first Clean compiler, around 1988, based on graph reduction
for a VAX, I can remember that performance was the big issue. This was mainly
due to the fact that functional coding was regarded by the world as an academic
exercise that was good for proving theorems but was not worthwhile for everyday
programming. We, Rinus Plasmeijer and his team, tried to convince the world
of the opposite and at that time we needed the performance to support our
argument. I believe we gave Clean a good head start in that lane. The position
of functional programming has changed since that time. Functional as well as
declarative programming has become more mainstream. Still it has not reached
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the acceptance levels that C had at the time we designed Clean. It is actually
amazing how much ground is still covered by C at the present time. I remember
that in the 80’s and 90’s I was implicitly convinced that new programming
languages and paradigms would follow each other like assembler was followed by
C which was followed by Pascal/Modula. I see a far more scattered field now.
Java has takes a big chunk (and rightfully so) but is still almost a par with C
according to the TIOBE index for April 2013 [3]. The index for February 2013
mentions Clean in the number 51. . . 100 popularity range of the TIOBE index,
but has unfortunately dropped below 100 in the recent April issue. Functional
languages in general only have a mere 3.1% popularity score in the TIOBE index
of April 2013. I must add that the methods and accuracy of this index can rightly
be questioned, but it is at least an indication.

Going back to beauty, one could state that there is not enough generally
accepted beauty in functional languages to make them generally used. We can
of course also be convinced that the intrinsic beauty is unrecognized by the wider
audience. My personal opinion on this matter is that there is a lot more involved
in getting a language accepted than just beauty. There is a complex collection of
reasons why a language is picked up. Apart from all sorts of technical qualities,
sheer luck is one of those factors, or in other words being the right language at
the right time. Being fashionable is another (this hooks into beauty by the way).

3 What Is Beauty

What does beauty mean when we are not referring to code? What is beauty in
our day to day life? There are aspects of balance, harmony, feelings of well being,
attraction, satisfaction. In our western society there is, without doubt, a special
relationship between beauty and humans, ourselves. This is generally interpreted
as outer beauty. Generally, but not solely. There is also inner beauty, which is
harder to get a grip on and needs time and experience to recognize.

I think you can identify those two beauty aspects in code as well. There is outer
beauty, the arrangement of the lines, how pleasing it is to look at the code on
screen or paper. There is also inner beauty: how well does the code describe and
define the solution at hand. As with beauty in humans, the outer beauty aspects
can be tweaked to a certain extent without changing the essence of the code. This
is where code-beautifiers play a role, they are the beauty parlours for software
engineers. Nothing much is changed, it just looks better. If we go a step further
we can do some plastic surgery. I would like to compare that to refactorings of
software: you are really changing your code, but the meaning of the code is not
changed. You make semantic changes but they result in different but equivalent
code. When we look at inner beauty it is harder to make make changes for the
better. I would like to compare changes on that level to meditation for humans:
you really have to sit down and think about algorithms and solutions and most of
the time there are moments of insight where the essence of your code is changed.
These kind of changes are harder, and as of yet impossible, to automate. They
need human creativity and perseverance to be accomplished. As with meditation
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and other inner beauty changing processes they are hard to accomplish in code.
First of all they are very hard to just do, but secondly they are hard to start
because it involves rethinking your solution and possibly throwing away your
initial one. Depending on the time you spent already it might seem a waste. The
endeavour of rethinking everything from the ground might also seem a waste
because you are (inherently) not sure if you are going to find a better solution.
This is where our wonderful mind jumps in: we need to trust our instinct. If our
instinct tells us that there should be a better (more beautiful) solution then it
is worthwhile investigating. Finding it in the end is always uncertain and that
is the beauty of the endeavour.

3.1 Outer Beauty

I have always been implicitly convinced that outer beauty is not the most im-
portant thing in life. On the other hand it is not completely unimportant either.
I would like to introduce what I call ‘modest beauty’: the beauty that does not
shout out: “I am beautiful”. It is the beauty that needs to be discovered. You
will have to find balance and the harmony in things and discover the true beauty
that caused that feeling. I have been a lifelong fan of Apple products because of
this. There have never been stickers on Mac’s that shout out the GHz-s and other
mega-multi-super qualifications. The thing is just there. You need to discover
the beauty of it, feel the balance and use it with a smile.

This modest beauty concept equally applies to humans. I find little beauty in
magazines with photoshopped people, they have beauty written all over them
but I do not seem to find it. Real people have imperfections and if they have
learned to live with those imperfections and convey balance and harmony there
is a high chance they are beautiful in a modest way.

For objects as well as people this modest beauty does not come for free. It
probably takes more effort to design a Mac laptop then an average windows
laptop. Equivalently, getting in balance with your imperfections and be who you
are is not a trivial exercise either. In my opinion modest beauty is real beauty.

Does this relate to code? Maybe it does, maybe not. The outer beauty aspects
of code that I value are mainly based on making the meaning more easy to grasp.
For instance: I like columnization. The visual appearance is more balanced, there
is more harmony, maybe more beauty.

Take this arbitrary snippet for example:

private int cacheLength = ApnsConnection.DEFAULT_CACHE_LENGTH;

private boolean autoAdjustCacheLangth = true;

private ExecutorService executor = null;

private ReconnectPolicy reconnectPolicy = ReconnectPolicy.newObject();

private boolean isQueued = false;

private ApnsDelegate delegate = ApnsDelegate.EMPTY;

private Proxy proxy;

private boolean errorDetection = true;
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I find more balance and harmony in this representation:

private int cacheLength = ApnsConnection.DEFAULT_LENGTH;

private boolean autoAdjustCacheLangth = true;

private ExecutorService executor = null;

private ReconnectPolicy reconnectPolicy = ReconnectPolicy.newObject();

private boolean isQueued = false;

private ApnsDelegate delegate = ApnsDelegate.EMPTY;

private Proxy proxy = null;

private boolean errorDetection = true;

I also like to see uniformity in control structures and how they are written
down (i.e. write all curly brackets and write them always at the same position).
Another arbitrary snippet:

if (minutes) return minutes.minutes();

else if (hours) return hours.hours();

else return 0;

for which I would prefer this make-up:

if (minutes) {

return minutes.minutes();

} else if (hours) {

return hours.hours();

} else {

return 0;

}

This example actually proves my earlier statement about beauty being per-
sonal, because the last example was taken from [4], where the author is talking
about the beauty of braces being absent. The absence of braces is more ‘zen’ in
his opinion while in my opinion it gives a more uniform structure. Two different
views on beauty.

In general I think terseness can not clearly be related to beauty. In my opinion
it is obvious that very verbose code or a programming language that requires it
is not very beautiful, because the verbosity hides the essence of the solution. In
contrast, a very terse program or language hides the essence in riddles. When I
was first exposed to APL I was charmed by the beauty of the terse expressions
that could express everything but the kitchen sink. Later on I realized that it
was actually a way of hiding meaning for everybody but the experienced APL
programmer. Take for instance this Sudoku solver in APL presented in [5]:
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Sudoku←{
box ← {ω −/ ω/ω ωριω∗2}
rcb ← {(ιω), ..box⊃ ω∗0.5}
cmap← {⊂[ι 2] 1∈.. ω◦.=ω}
CMAP← cmap rcb ρω
at ← {ω+α×(ιρω)∈⊂ αα}
avl ← {(ι ⊃ ρω)~ω× ⊃ α�CMAP}
emt ← {(,ω=0)/,ιρω}
pvec← {(α avl ω) (α at).. ⊂ ω}
pvex← {⊃,/α◦pvec..ω}
svec← {⊃pvex/(emt ω),⊂⊂ ω}
svec ω

}

Very terse, very cryptic and hardly beautiful, at least for me. Beauty, again,
turns out a matter of taste since the solution is literally presented as “. . . the
following more beautiful form. . . ” in the referenced document. You can watch a
YouTube movie [6] if you like a detailed explanation of this solution.

All these outer beauty aspects give me a more balanced and uniform visual
experience which in turn makes the program easier to interpret and understand.
For me, this is the essence of beauty in programming: to help relaying the mean-
ing of your program while still defining it in an executable (sometimes even
provable) way.

It is not only important to relay the meaning of what you scribbled down to
other people, but also to yourself. Many times I took code I had written years
ago (voluntarily or not) and tried to make sense of it. Sometimes it was hard,
more times it was harder.

I would like to add here that this last aspect of beauty in code (better un-
derstandable code is also more beautiful) does not necessarily coincide with our
perception of beauty in the real world. A beautiful woman is not always the
easiest to understand. A certain level of mystery can make a woman even more
beautiful. I guess women and code are not completely comparable after all.

3.2 Decay over Time

As in everyday live, beauty seems to evaporate over time for code as well. The
code you can still remember you were proud of ten years ago is not so beautiful
anymore. For our human body this is mostly due to actual changes happening
over time. Code does not change when you do not touch it so it must be a change
in our mind that makes it less beautiful.
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This is comparable to fashion: what was beau-
tiful in the 70’s does not get that qualification
anymore, at least not from me. As with code,
the material did not changed but we did.

There are, of course, timeless designs that keep
their beauty over time. The designs of Frank
Lloyd Wright are definitely in that category
for me. Whether those designs are genuinely
timeless or merely longer living, only time will
tell.

The Sagrada Familia in Barcelona is a per-
fect example of beauty in a potentially time-
less setting. Generations have been building it
now and still it feels as one beautiful piece of
art. We can only dream of IT projects of com-
parable magnitude to result in such splendor.
(image: Gubin Yury / Shutterstock.com)

I always experience harmony, balance and
serenity when looking at zen gardens. Will
code ever look like this?

If you have kids of an older age you will probably recognize this: when your
child was born you genuinely and objectively felt that it was by far the most
beautiful child in the world. When seeing his or her baby photos after many
years you might not be so sure anymore. I can see a parallel in code beauty
here. . .When writing a program you really think it is cool and beautiful. On a
higher level: when designing a programming language you also think it is the
most beautiful language you have ever seen. After years of nurturing you find
yourself with a product or language that is well equipped for life but also has its
scars. When looking back at the first designs and implementations you might be
a little furtively ashamed and at the same time touched by reminiscences.

What I aim for from the start is beauty, although it might be only raw beauty
at first. Sometimes this raw beauty will shine later, sometimes it drowns. I
must admit that at least some of my older code generates more sense of shame
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than arousal of beauty now. Nevertheless my goal is to write code (or design
languages) that I can look back on with satisfaction, even after many years.
This is the reason why I am hesitant to engulf myself in the latest hype, the
fashion areas of our industry. At the same time I regard it as a challenge to pick
out the hypes with long term potential. An intriguing and endless balancing
game.

3.3 Inner Beauty

I discussed some aspects of inner beauty above already. When a program can be
easily understood by reading, there is beauty. A program should not be written
with the executing computer in mind but with the human reader in mind, he
or she is your peer who needs to understand what you are concocting. Beauty
is not something that a computer requires to execute a program. I can still
remember one of my first professors at the university, Kees Koster, teach us to
program top down in Algol 68. He advocated that subroutines or functions are
also valuable if only used once. This was contradicting my feeling for machine
efficiency but made sense in a peer to peer setting where you wanted to explain
what is happening. We were stimulated to use spaces inside ridiculously long
identifiers. This made you concentrate on describing the solution more than
programming it. To get a feeling, consider this imaginary snippet (I do not
remember the exact syntax of Algol 68):

PROC build a house according to the specifications of the designer

BEGIN

remove any buildings from the land if they are present;

build the house on cleared land;

END

PROC build the house on cleared land

BEGIN

build a strong foundation;

build the all walls for the whole house;

put the roof on the house;

END

PROC make the foundation

BEGIN

dig a hole for the foundation;

pour concrete to make the foundation;

pour concrete for the ground floor;

END

PROC build all the walls for the whole house

BEGIN

WHILE the walls are not high enough for the average person in this area DO

put another row of bricks on all the walls;

END
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In hindsight it was a bit over the top for production environments but was defi-
nitely instructive in the educational setting. Without knowing it we were aiming
for inner beauty: explainable program structures that were understandable and
clearly identifiable.

Conveying meaning is the essence and beauty of code.

One of the essential spoilers of understandable and clear code is the inevitable
time sequential specification in imperative languages. It is one of those little
critters in programming we could happily do without. It always spoils things.
There is always a sequence of events that you did not take into account. In
catering for these rare sequences you add code and then more code, you add
complexity and make it less understandable, less beautiful, often even ugly. An
additional problem with sequential specifications in programming languages is
that it is only essential at some points. At many points in your program it is
not important and therefore an over specification. The main frustration comes
from the fact that it can not be specified where sequential execution is essential
and where it is not. It is then very hard, if not impossible, for humans as well
as computers to separate the two. We need programming languages that do
not require time sequential specifications to make truly beautiful code. We need
to abstract away from time to encounter real beauty. This perhaps explains my
preference for declarative and functional programming where sequentiality is not
explicitly specified. When you free yourself from this over-specification there is
more beauty.

So why then is functional and declarative programming used so little (< 5%
currently and going down!). Well, it has taken Apple decades to become the
biggest company on earth. Why was the beauty not picked up earlier? Maybe
beauty is not the thing that drives the avarage human being, maybe it is because
sheer beauty is not enough, maybe you need a killer-app for wide acceptance. I
do not have the answers. What I know is that you need to follow your instincts
and my instinct tells me to follow the trail of functional and declarative, because
beauty can be found there. Maybe I will live long enough to see it widely ac-
cepted, it would make me happy and even more happy to play a modest role in
that.

When I am working on a problem I never think about beauty.
I think only how to solve the problem.

But when I have finished, if the solution is not beautiful, I know it is wrong.
(Richard Buckminster Fuller) [7]

References

1. Gelernter, D.: Machine Beauty: Elegance And The Heart Of Technology. Basic
Books (1998)

2. Knuth, D.: Computer programming as an art. Communications of the ACM 17,
667–673 (1974), ACM Turing Award Lecture



Beauty and Code 17

3. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

4. http://tobyho.com/2009/02/01/programming-without-braces/

5. http://dfns.dyalog.com/n_sudoku.htm

6. http://www.youtube.com/watch?v=DmT80OseAGs

7. Buckminster Fuller, R.: US architect and engineer (1895 - 1983), quote taken from
http://simple.wikiquote.org/wiki/Richard_Buckminster_Fuller

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://tobyho.com/2009/02/01/programming-without-braces/
http://dfns.dyalog.com/n_sudoku.htm
http://www.youtube.com/watch?v=DmT80OseAGs
http://simple.wikiquote.org/wiki/Richard_Buckminster_Fuller


An Ontology of States

Andrew Polonsky1 and Henk Barendregt1,2

1 Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands

2 Netherlands Institute for Advanced Study, Wassenaar

1 Introduction

The notion of state is ubiquitous in analysis of computational systems. State
introduces intensional content into a dynamical process which cannot be directly
observed from outside. Without a state, the process is defined purely by its input-
output behaviour, and is thus expected to run itself out toward a final result, ie,
compute some function. The injunction of internal data that has causal effect
on the execution of a system can thus be said to be the step that extends the
concept of a function to that of a process, which is no longer guaranteed to
terminate.

On the hardware level, this step is observed as one ascends from combinational
circuits to sequential circuits. The former concerns logical circuits that produce
values that depend only on the given input. The latter refers to circuits that have
‘memory’: an internal state that depends on the previous history of execution
in addition to the input data. The fundamental circuit element that allows for
state behavior is the flip-flop, that can store one bit of data in a virtual feedback
loop. (This circuit also exhibits another characteristic of systems with memory:
the presence of some clock mechanism.) The significance of circuits with state
is that they make it possible to construct a fully functional computer system —
which requires registers, arithmetic processors, instruction sequencing, storage,
etc.

On the software level, this distinction manifests itself as the difference be-
tween programs which execute some specific algorithm and then terminate (e.g.
compilers, text analysers, theorem provers, database search) and those that in-
teract with their environment while they are running (e.g. text editors, web
servers, operating systems). In the latter family, the behavior of the program at
a particular moment may be determined not only by the current user input, but
by the previous history also, so that there is additional information needed to
determine how the program will act at a given instant.

On the level of language design, the presence of intensional data is part of
the great divide between the pure functional languages and imperative (also,
object-oriented) languages. Because of referential transparency, the meaning of
an expression in purely functional languages is defined independently of the con-
text or history of execution. In contrast, languages in the latter family also allow
destructive operations on data which makes it possible to have data structures
whose internal content changes over time.
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Functional languages are very convenient for writing programs of the first
kind, where the input data must be transformed in some algorithmically com-
plex way; indeed, the syntax of languages such as Clean very closely mirrors
the actual mathematical definition of the function being computed. Thus func-
tional programs are much easier to analyze and prove properties of than their
imperative counterparts.

However, many real-world applications require programs of the second kind;
for this, stateful programming becomes unavoidable (similarly to how purely
combinational circuits become inadequate for building complex computational
systems). Thus, much of the research in the field of functional programming has
been devoted to finding the most clean way of incorporating intensional content
into functional programs. The design of the Clean language is directly based on
the fruits of this research, as is made evident in its very name. In addition to
fundamental innovations in language design, this work also introduced ideas in
programming language theory of independent mathematical interest, [3] and [4].

The practical possibilities offered by the Clean-style uniqueness typing solu-
tion to the state problem can be observed in the implementation of the iTasks
system, [5] and [6].

In this paper, we offer a meta-level investigation of the notion of a state from
the conceptual/logical points of view. We will show that there are several ways
with which a state specifies the intensional content of a sytem.

2 Agents and Systems

An agent is a system that receives input from the environment and comes into
action. Classes of agents are (in historical order)

1. Molecules and molecular machines.
2. Organims, from unicellular ones to homo sapiens.
3. Computer systems, from ad-hoc chips to super-computers.

The simplest way to describe an agent is recording its input-output (I/O)
behaviour. This may be done in natural or testing circumstances. This leads to
a behaviour function. Denoting the set of possible inputs by I and the set of
possible actions by A, we see that such a purely behavioral system is nothing
but a map

M : I → A (1)

which specifies which actions are to be taken for every input. One may rewrite
this as

M(i) = a∈A (1′).

In most cases this behaviouristic approach is limited. Nevertheless some agents
can be described in this way. Their actions uniquely result from the input, either
in a deterministic way or in a non-deterministic way.

More interesting agents may react differently under the same circumstances.
This is the reason that the notion of state is important, as the model (1) is
inadequate.
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3 What Is a State?

Observing an agent we may tentatively say that its behaviour depends on a
state. The behaviour function now becomes

M : I × S→A. (2)

One also may write
M(i, s) = a∈A. (2′)

But do these states exist? To a biologist a state that fully determines together
with the input the action may seem doubtful. Using some mathematical hubris
one can nevertheless affirm that states do exist. An agent M1 at moment t1 can
be said to be in the same state as a similar (having the same classes of I/O)
agent M2 at moment t2 iff M1 and M2 react on an input i∈ I with the same
action. In particular one has defined now when an agent M is at moment t1
and t2 in the same state by taking M1 = M2 = M . Now with the principle of
abstraction, see [1], one can define ‘state’ from the relation ‘to be in the same
state’:

Definition. A state is an equivalence relation consisting of pairs (M, t) all
being in the same state.

In this way a state is a higher-order concept: a specific I/O relation.
Like the notion of state of a gas in a closed vat (a vector in a 6 ∗ 1023 space

describing for all (1023) gas molecules its 3 position and 3 momentum coordi-
nates) the state of a biological organism or even of a digital device can never be
fully known: the amount of data is over-astronomical. So one may wonder why
to introduce states, being what seems to be an example of mathematical hubris.
The reason to have states is that one may reason about them.

The ontology for state as determined by (2) is a (deterministic or non-
deterministic) map. If s : I→A, then one can interpret the action (2) as

M(i, s) = s(i)∈A. (2′′)

Although this ontology is satisfactory for the states used in (2), there is a need
for a more complex notion of state.

4 Turing-Like Machines

It is well known that a classical Turing machine can be described as a triple
〈Σ,Q, δ〉, where Σ is a set of symbols, with b∈Σ is a special element (‘blank’),
Q is a set of ‘states’ with q0 ∈Q a special state (start), and finally

δ : Σ ×Q⇀Σ ×Q × {L,R},

is a partial map. A set of ‘final states’ is not needed as it can be simulated
by states q ∈Q such that δ(q,−) is never defined. There is a two sided infinite
linear tape consisting of cells of order type Z and a read-write head placed on
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one of the cells. If the machine is in state q and the head reads a symbol a and
δ(a, q) = 〈a′, q′, L|R〉 is defined, then
I the machine jumps to state q′ and symbol a is overwritten by a′;
II the head moves over the tape to the left or right, depending

on whether the last element of the output was an L or an R.

This description can be slightly generalized in such a way that the resulting
‘Turing-like’ machines describe ‘agents’ dealing with input/output (I/O) that
include robots, animals and even humans in an abstract way. Now the machine
is described as a 4-tuple 〈I,Q,A, δ〉, where I is a set of inputs, Q is a set of
states, A is a set of actions, and finally

δ : I ×Q⇀A×Q

is a partial map. By taking I = σ and A = {L,R}∪ {W (a) | a∈Σ}, with W (a)
having as meaning ‘write the symbol a, the classical Turing machine can be seen
as a Turing-like machine. But now I also can be seen as information presented
from the outside world through sensors, or the inner world part of memory;
and A can be seen as actions including movements of the robot, and focussing
attention on a part of memory, relevant in the given environmental context.

If we now suppose that every step taken by the agent M depends also on
some current state that is preserved between successive cycles of execution, then,
letting S denote the set of these states, such a machine is specified by a map

M : I × S → A× S (3)

Thus M sends the pair (i, s) of an input and a state to a pair (a, s) consisting
of the action to be taken as well as the new state the system is put into.

In this model, the state space S acts as a hidden parameter in the specification
of the system.

Modelling living beings in this way, one can ask the question whether there
does exists something like a state that determines action (and the next state).
The extensional apporach is to say that an agent at different moments is in the
same state whenever equal inputs deliver equal actions (and new states). So a
state is seen as a map transforming input to action (and a possibly new state).
This yields the recursive domain equation

S ∼= (I → (A× S)) (3′)

5 Solving the Recursive Domain Equation

We now solve the recursive domain equation

S ∼= (I → (A× S)) (4)

Since the variable S appears positively on the left side, the initial solution to this
equation is an inductive type. Categorically, this universal solution turns out to
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be empty, because ∅maps initially to every object and satisfies (A×∅)I ∼= ∅I ∼= ∅.
(Unless I itself is empty, in which case the unique solution to (4) is the singleton
set consisting of the empty map ∅ : ∅ → (A× {∅}).)

It is therefore preferrable to assume that we begin with some initial set of
states S0, and take the closure by the functor F (X) = (A×X)I . (This solution
is universal among all sets containing S0.)

Explicitly, such a solution is found by infinitely iterating the functor F and
taking the direct limit:

S0 = S0

S1 = F (S0) = (A× S0)
I = AI × SI

0

S2 = F (S1) = (A× (AI × SI
0 ))

I

∼= AI × (AI)I × (SI
0 )

I

∼= AI+I2

× SI2

0

S3 = F (S2) = (A× (AI+I2 × SI2

0 ))I

∼= AI × (AI+I2

)I × (SI2

0 )I

∼= AI ×AI2+I3 × SI3

0

∼= AI+I2+I3

× SI3

0

S4 = F (S3) ∼= AI+I2+I3+I4

× SI4

0

...

Sn = AI+···+In × SIn

0

...

The limit of the above sequence is the type

S := Sω = AI+ × SIω

0

where

X+ :=
∑
n>1

Xn

is the set of strings of positive length over a set X . It satisfies the equation

X+ ∼= X +X ×X+ (5)

On the other hand, Xω is the set of all sequences (or streams) over X , which
satisfies the equation

Xω ∼= X ×Xω (6)
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Using (5) and (6), we trivially verify that

F (S) = (A× S)I

∼= AI × SI

= AI × (AI+ × SIω

0 )I

∼= AI × (AI+

)I × (SIω

0 )I

∼= AI ×AI×I+ × SI×Iω

0

∼= AI+I×I+

× SI×Iω

0

∼= AI+

× SIω

0

= S

So that F (S) ∼= S, as desired.
Notice that the inductive process that builds up S is correlated with the time

axis of execution: the n’th approximant Sn contains precisely enough data to
run the machine for n steps.

Another curiousity of this space of solutions is that it is a product of two
function spaces. Indeed, S = AI+ × SIω

0 consists of pairs of maps (f, g), with
f : I+ → A and g : Iω → S0. We will now analyze the meaning of these
constituent functions.

We note that the first factor, specifying a function f : I+ → A, serves to
determine which action is taken by M after some finite sequence of inputs i =
(i1, . . . , in). This corresponds to the extensional part of the specification of M ,
as every value of this function can be observed by feeding M a required string
of inputs. Note that it has no relation to the initial set S0.

The second factor, on the other hand, declares a function g : Iω → S0. It is
curious that no value of g can be known after finitely many inputs. Rather, g
may be interpreted by stipulating that, given an infinite sequence x = (xn) of
inputs (running the system ‘to the end of time’), M ultimately comes to some
‘state’ sx ∈S0, which ascribes it intrinsic identity that cannot be measured by
any actions it takes. In other words, g is the intensional part of the specification
of M .

By taking S0 := 1 = {0} to be a singleton, we find the space of purely
extensional solutions, where the second component is projected away: Se =
AI+ × 1I

ω ∼= AI+

If we furthermore stipulate any machine M ∈S takes some action a∈A before
the first input is given, then the space of solutions is

S = A×AI+ ∼= A1+I+ ∼= AI∗

where I∗ is the space of finite strings of non-negative length. This set S is nothing
but the set of A-labelled trees over I.

In conclusion, every system specified by a map m : I × S → A × S consists
of two components: an extensional (or behavioral) part, given by an A-labelled
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I-branching tree, and an intensional part, that merely stipulates some ‘hidden
variable’ determined only by the whole run of the system to infinity.

6 Solution via Scott Domains

The calculation of the recursive type F (S) = S is somewhat better behaved if
we work in the category of Scott domains, see [2]. This is effected by turning
every set in question (I, A, S) into a flat cpo by adjoing a bottom element ⊥ and
declaring it to be below every other element.

In this setting, we may find S0 as a subset of the limit Sω via the embedding
s �→ (⊥A, cs) which sends s∈S0 to the pair consisting of the bottom action
and the constant function with value s. Here Sω with this embedding is indeed
universal among all algebras X for the functor F together with an embedding
S0 ↪→ X .

Furthermore, since every cpo has a bottom element, the functor F itself has
the universal solution in which S0 is terminal cpo {⊥}. Note that this cpo doesn’t
grow during the iteration {⊥}, {⊥}I, {⊥}I2

, . . . So in the limit, the second factor
appears as the 1-element cpo, giving the pure extensional solution, which is the
initial algebra for the functor F in the category of cpos.

7 Continuous Time

As a final rumination, let us consider how the former analysis could be employed
in a continuous setting. The first suggestion could be to take the sets I, S,A to
be topological spaces, and consider a continuous map

Φ = (u(i, s), a(i, s)) : I × S → S ×A

representing evolution of state and action with respect to input and previous
state. Since we want the state s∈S to evolve “continuously” with each appli-
cation of Φ, it seems necessary that, whenever Φ(i, s) = (s′, a′), we must have
s = s′. But then repeated iteration of Φ can never move the state!

The resolution of this dilemma is to consider Φ = (u, a) as a family of operators
of smaller and smaller “clock ticks”. The input, state, and action then become
functions that depend on time.

Thus the question of realizability of a prescribed behavior using a stateful
system takes the following form:

Given functions i(t) : [0, 1] → I and b(t) : [0, 1] → A, when can we find a
space S admitting functions s : [0, 1]→ S and a : I × S → A such that

1. b(t) = a(i(t), s(t))
2. s(t+ dt) depends on i(t) and s(t) in a “continuous way”.

In order to expore a more precise formulation of the second condition, let
us simplify the analysis by first considering the case where the input is held
constant: i(t) = i0. We want to think of the evolution of the state during this
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interval as a “continuous application” of some state function v(s). This wish
could be attained if we are provided a map v0 : S → S together with an infinite
collection of “compositional square roots”: maps

vn : S → S, n ≥ 0

such that
vn+1 ◦ vn+1 = vn

We then define vt for every t∈ [0, 1] by prescribing its values on the dyadic
rationals: for t = t1

2 + t2
4 + · · ·+ tn

2n , put

v(s, t) = vt11 ◦ · · · ◦ vtnn (s)

This would define a continuous map v from S × [0, 1] to S if we can provide,
for each s∈S, that

lim
n→∞ vn(s) exists

and that the value of this limit varies continuously with s.
In fact, it must then follow that the limit above is actually equal to s, capturing

the intuition that v(s, t) represents infinitesimal evolution of u(i, s).
Now, given s0 ∈S, we can define s : [0, 1]→ S by

s(t) =

{
s0 t = 0

v(s0, t) t > 0

Thus, the right way to ask the question of what is the “next value” of Φ is to
consider the infinitesimal change in the state after an infinitesimal tick of time.
This naturally leads to the question of the derivative of s.

In fact, in order to accomodate the possibility of changing input, passing to
the derivative cannot be avoided, because the small changes in the value of the
input must be integrated into the changes of the state from the very beginning.

Now, suppose that the following expression is well-defined for each s∈S:

v̇(s) = lim
n→∞ 2n(vn(s)− s)

Notice that ds
dt (t) = ṡ(t) = v̇(s(t)). Considering v̇(t) as a known function and

s(t) an indeterminate one, this identity becomes a differential equation

s′ = v̇(s)

Having reduced the problem to this form, we can now accomodate non-
constant input functions. Specifically, instead of having s′(t) be defined by a
function v̇ that depends only on s(t), we allow it to depend on i(t) as well. That
is, we write

s′ = u(s, i)

for some given function u. (Notice that i may now contain information about
time, as well as be equal to time.)
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Together with a function a(s, i) that computes the output, we now have pre-
cisely the data needed to specify a behavior of a stateful system subject to the
boundary condition given by the input function i(t), t∈ [0, 1]. This can be seen
as the infinitesimal limit of the specification of Φ.

Remark. In order for the expression

1

ε
· (s(t) − s(t+ ε))

to be meaningful, the space S must have linear structure on it. As it happens,
the state spaces which usually appear in the dynamical systems of physics are in
fact vector spaces. Thus, we see that the idea of having internal state realize a
given continuous behavior naturally leads to the classical PDE view of dynamical
systems.

8 Conclusion

We have seen that the notion of internal state arises naturally when one pro-
gresses from the concept of a function, which gives raw input–output relation,
to that of a process, or a system, which evolves indefinitely as new input is
provided.

In the discrete case, the extensional contribution of a state is captured by an
infinite tree of its possible executions, which can be specified by a function from
strings over inputs to actions. The length of the string provides how many clock
ticks have elapsed since the execution has started.

In the continuous case, we are lead to the notion of dynamical systems as so-
lutions of differential operators. As in the previous case, the crucial role is played
by an intermediate structure, within which the intensional data of computation
resides.
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Abstract. We consider functional type assignment for the class-based object-
oriented calculus Featherweight Java. We start with an intersection type assign-
ment systems for this calculus for which types are preserved under conversion.
We then define a variant for which type assignment is decidable, and define a
notion of unification as well as a principal typeing algorithm.

We show the expressivity of both our calculus and our type system by defin-
ing an encoding of Combinatory Logic into our calculus and showing that this
encoding preserves typeability. We thus demonstrate that the great capabilities
of functional types can be applied to the context of class-based object orientated
programming.

Introduction

In this paper we will study a notion of functional type assignment for Featherweight
Java (FJ) [15]. We will show its elegance and expressiveness, and advocate its use in
type assignment systems for fully fledged Java; of course it would need to be extended
in order to fully deal with all the features of that language, but through the system we
present here we show that that should be feasible, giving a better notion of types.

Type assignment has more than shown its worth in the context of functional pro-
gramming, like ML, Clean [11,17], and Haskell. Not only are types essential for efficient
code generation, they provide an excellent means of (an abstract level of) error check-
ing: it is in most programmers’ experience that once the type checker has approved of a
functional program, said program will be almost error free.1 But, more importantly, the
approach to types in functional programming is that of type assignment: programmers
have the freedom to not specify types for any part of their code. A type inference algo-
rithm embedded in the compiler guarantees a partial correctness result: the type found
for a program is also the type for the result of running the program, a property most
commonly known as subject reduction or type soundness, although that latter term has
different meaning as well.

In the context of imperative programming, which contains the Object-Oriented ap-
proach (OO) as well, the reality is very different. There it is more common to demand
that all types are written within the code; then type checking is almost trivial, and
mainly concerns checking if special features like inheritance are well typed. The dif-
ference between the functional approach and the imperative one then boils down to the

1 Almost, yes, not completely; we can but dream of static error checking systems that only
approve of error free code, and catch all errors.

P. Achten and P. Koopman (Eds.): Plasmeijer Festschrift, LNCS 8106, pp. 27–46, 2013.
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difference between untyped and typed calculi. Often, in the untyped approach, if a term
has a type, it has infinitely many, a feature that is exploited when introducing polymor-
phism into a programming language’s type system. In the typed approach, each term has
(normally) only one type. This implies that it is difficult, if not impossible, to express
polymorphism in imperative languages.

With that in mind, we set out to investigate if the functional approach is feasible for
imperative languages as well. The results presented in this paper are part of the results
of that investigation, but in the more concrete setting of functional type assignment for
object orientation. In order to be able to concentrate on the essential difficulties, we
focus on Featherweight Java [15], a restriction of Java which can be regarded as the
minimal core fragment of Java, defined by removing all but the most essential features
of the full language; Featherweight Java bears a similar relation to Java as the λ-calculus
(LC) [12,9] does to languages such as ML and and Haskell.

But rather than defining a notion of type assignment that is implementable, we
thought it necessary to first verify that the kernel of our approach made sense, i.e. ac-
cords to some particular kind of abstract semantics.2 Normally, just operational seman-
tics is used: then the only check is that subject reduction is satisfied. This is certainly
the minimal requirement for type assignment systems (although variants are proposed
that do not even satisfy this), but normally much more can be achieved.

Rather, in [19] we proposed an approach that has strong links with denotational se-
mantics, in that it gives a full equational semantics for FJ-programs. The best-known
way to achieve that is through setting up a notion of types inspired by Coppo and
Dezani’s intersection type discipline (ITD) [13,10,2] and this was the path we followed
in [19]. ITD, first defined for LC, is a system that is closed under β-equality and gives
rise to a filter model and semantics; it is defined as an extension of Curry’s basic type
system for LC by allowing term-variables to have many, potentially non-unifiable, types.
This generalisation leads to a very expressive system: for example, strong normalisation
of terms can be characterised by assignable types.

Inspired by this expressive power, investigations have taken place of the suitability of
intersection type assignment for other computational models: for example, van Bakel
and Fernández have studied intersection types in the context of Term Rewriting Sys-
tems (TRS) [7,8] and van Bakel studied them in the context of sequent calculi [3,5]. In
an attempt to bring intersection types to the context of OO, van Bakel and de’Liguoro
presented a system for the ς-calculus [6]; the main characteristic of that system is that
it sees assignable types as an execution or applicability predicate, rather than as a func-
tional characterisation as is the view in the context of LC and, as a result, recursive calls
are typed individually, with different types. This is also the case in our system.

The system we presented there is essentially based on the strict system of [1]; the
decidable system we present here, a system with simple record types, is likewise essen-
tially based on Curry types. Our system with intersection types has been shown to give
a semantics in [19] of which we will state the main results here; that paper also defined

2 Too often ad-hoc changes to type systems are proposed that only solve a specific problem; the
proposer typically gives an example of an untypeable term that in all reasonability should be
typeable, and gives a change to the type system in order to make that example typeable.
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a notion of approximation, inspired by a similar notion defined for the λ-calculus [20],
and showed an approximation result.3

Our types are functional, contain field and method information, and characterise how
a typeable object can interact with a context in which it is placed. The notion of type
assignment we developed can be seen as a notion of ‘flow analysis’ in that assignable
types express how expressions can be approached; as such, the types express run-time
behaviour of expressions. Our type system was shown to be closed for conversion,
i.e. closed for both subject reduction and subject expansion, which implies that types
give a complete characterisation of the execution behaviour of programs; as a conse-
quence, type assignment in the full system is undecidable.

That FJ is Turing complete seems to be a well accepted fact; we illustrate the expres-
sive power of our calculus by embedding Combinatory Logic (CL) [14] – and thereby
also LC – into it, thus establishing that our calculus is Turing complete as well. To show
that our type system provides more than a semantical tool and can be used in practice
as well, in this paper we will define a variant of our system by restricting to a notion
of Curry type assignment; the variant consists of dealing with recursion differently. We
show a principal type property and a type preservation result for this system.

The Curry system we propose here is a first, and certainly not the most expressive,
illustrative, or desirable system imaginable. We allow intersection types only in the
form of records; for FJ this is natural, since a class should be seen as a combination
of all its capabilities. As a special property, our principal typeing algorithm calculates
(normally) records as types for classes, and the return type of a method can be a record
as well. And thirdly, the way the system types recursive classes could be improved by
using recursive types.

1 Featherweight Java without Casts

In this section, we will define the variant of Featherweight Java we consider in this
paper. As in other class-based object-oriented languages, it defines classes, which rep-
resent abstractions that encapsulate both data (stored in fields) and the operations to be
performed on that data (encoded as methods). Sharing of behaviour is accomplished
through the inheritance of fields and methods from parent classes. Computation is me-
diated by instances of these classes (called objects), which interact with one another by
calling (also called invoking) methods on each other and accessing each other’s (or their
own) fields. We have removed cast expressions since, as the authors of [15] themselves
point out, the presence of downcasts is unsound4, so cannot be modelled semantically;
for this reason we call our calculus FJ � C. We also leave constructors as implicit.

Notation. We use n (where n is a natural number) to represent the set {1, . . . , n}. A
sequence s of n elements a1, . . . , an is denoted by an; the subscript can be omitted

3 Although the latter firmly rooted our system semantically, it plays no role when implementing,
so we will skip its details here. Suffice that say that, because the language of FJ is first order,
we had to define derivation reduction and show it strongly normalisable in order to prove the
approximation result and the normalisation results that follow as a consequence.

4 In the sense that typeable expressions can get stuck at runtime by reducing to an expression
containing stupid casts.
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when the exact number of elements in the sequence is not relevant. We write a ∈ an
whenever there exists some i ∈ n such that a = ai. The empty sequence is denoted by
ε, and concatenation on sequences by s1 · s2.

We use familiar meta-variables in our formulation to range over class names (C and D),
field names (f), method names (m) and variables (x).5 We distinguish the class name
Object (which denotes the root of the class inheritance hierarchy in all programs) and
the self variable this, used to refer to the receiver object in method bodies.

Definition 1 (FJ �C Syntax). An FJ � C program P consist of a class table CT , comprising
the class declarations, and an expression e to be run (corresponding to the body of the
main method in a real Java program). Programs are defined by the grammar:

e ::= x | this | new C(e) | e.f | e.m(e)
fd ::= C f;
md ::= D m(C1 x1, . . . , Cn xn) {return e;}
cd ::= class C extends C’ { fd md} (C �= Object)
CT ::= cd

P ::= (CT ;e)

The remaining concepts that we will define below are dependent (or, more precisely,
parametric) on a given class table. For example, the reduction relation we will define
uses the class table to look up fields and method bodies in order to direct reduction
and our type assignment system will do likewise. Thus, there is a reduction relation
and type assignment system for each program. However, since the class table is a fixed
entity (i.e. it is not changed during reduction, or during type assignment), as usual it
will be left as an implicit parameter in the definitions that follow.

As we have just mentioned, the sequence of (class) declarations that comprises the
class table induces a family of lookup functions. In order to ensure that these functions
are well defined, we only consider programs which conform to some sensible well-
formedness criteria: that there are no cycles in the inheritance hierarchy, that each class
is declared only once, that fields and methods in any given branch of the inheritance
hierarchy are uniquely named, and that method definitions correspond to closed func-
tions. An exception is made to allow method override, i.e. the redeclaration of methods,
providing that only the body of the method differs from the previous declaration.

We define the following functions to look up elements of class definitions.

Definition 2 (Lookup Functions). The following lookup functions are defined to ex-
tract the names of fields and bodies of methods belonging to (and inherited by) a class.

1. The following retrieve the name of a class, method, or field from its definition:

CN (class C extends D{fd md}) = C
MN (C m(x).e; ) = m
FN (C f; ) = f

2. By abuse of notation, we will treat the class table, CT , as a partial map from class
names to class definitions:

5 We use roman teletype font for concrete FJ �C-code, and italicised teletype font for meta-code.
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CT (C) = cd (CN (cd) = C, cd ∈ CT )

3. The list of fields belonging to a class C (including those it inherits) is given by:

F (Object) = ε
F (C) = F (C’) ·fn (CT (C) = class C extends C’ {fdn md},

FN (fdi) = fi (i ∈ n))

4. The list of methods belonging to a class C is given by:

M(Object) = ε
M(C) = M(C’) ·mn (CT (C) = class C extends C’ {fdn md},

MN (mdi) = mi (i ∈ n))

(notice that method names can appear more than once inM(C)).
5. The functionMb, given a class name C and method name m, returns a tuple (x,e),

consisting of a sequence of the method’s formal parameters and its body:

Mb(C,m) = (xn,e) (CT (C) = class C extends C’ {fd md}
& C0 m(C1 x1, . . . ,Cn xn) {return e;} ∈ md)

Mb(C,m) = Mb(C’,m) (CT (C) = class C extends C’ {fd md}
& m not in md)

6. The function fv (e) returns the set of variables used in e.

Substitution of expressions for variables is the basic mechanism for reduction in
our calculus: when a method is invoked on an object (the receiver) the invocation is
replaced by the body of the method that is called, and each of the variables is replaced
by a corresponding argument, and this is replaced by the receiver.

Definition 3 (Reduction). 1. A term substitution

S = 〈this �→e’,x1 �→e1, . . . ,xn �→en 〉

is defined in the standard way as a total function on expressions that systemati-
cally replaces all occurrences of the variables xi and this by their corresponding
expression. We write eS for S(e).

2. The single-step reduction→ is defined by:

new C(en.fi) → ei (F (C) = fn, i ∈ n)

new C(e).m(e’n) → eS (Mb(C,m) = (xn,e), where S =
〈this �→ new C(e), x1 �→e’1, . . . , xn �→e’n 〉)

We call the left-hand term the redex (reducible expression) and the right hand the
contractum. As usual, we define→∗ as the pre-congruence generated by→.

The nominal system as presented in [15], adapted to our version of Featherweight
Java, is defined as follows.
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(NEW) :
Γ � e i : C i (∀i ∈ n)

(F (C) = f & FT (C,f i) = D i & C i <: D i (∀i ∈ n))
Γ � new C(e) : C

(INVK) :
Γ � e : E Γ � e i : C i (∀i ∈ n)

(MT (E,m) = D→C & C i <:D i (∀i ∈ n))
Γ � e.m(e) : C

(VAR) : Γ,x:C � x : C (FLD) :
Γ � e : D

(FT (D,f) = C)
Γ � e.f : C

(U-CAST) :
Γ � e : D

(D <:C)
Γ � (C)e : C

(D-CAST) :
Γ � e : D

(C <:D, C �= D)
Γ � (C)e : C

(S-CAST) :
Γ � e : D

(C �<: D, D �<:C)
Γ � (C)e : C

Fig. 1. Type assignment rules for the nominal system for FJ �C

Definition 4 (Member type lookup). The field table FT and method table MT are
functions which return type information about the elements of a given class in an exe-
cution. These functions allow us to retrieve the types of any given field f or method m
declared in a particular class C: FT (C,f) ={

D (CT (C) = class C extends C’ {fd md }, D f ∈ fd)
FT (C’,f) (CT (C) = class C extends C’ {fd md }, f not in fd)

MT is defined similarly: MT (C,m) =⎧⎨
⎩

Cn→D (CT (C) = class C extends C’ {fd md },
D m(C x) {e } ∈ md)

MT (C’,m) (CT (C) = class C extends C’ {fd md }, m not in md)

Notice both are not defined on Object.

Nominal type assignment in FJ � C is a relatively easy affair, and more or less guided
by the class hierarchy.

Definition 5 (Nominal type assignment for FJ �C [15]). 1. The sub-typing relation on
class types is generated by the extends construct, and is defined as the smallest
pre-order satisfying: if class C extends D {fd md} ∈ CT , then C <: D.6

2. Statements are pairs of expression and type, written as e : C; contexts Γ are defined
as sets of statements of the shape x:C, where all variables are distinct, and possibly
containing a statement for this.

3. Expression type assignment for the nominal system for FJ is defined through the
rules given in Figure 1, where (VAR) is applicable to this as well.

4. A declaration of method m is well typed in C when the type returned by MT (m,C)
determines a type assignment for the method body.7

(METH) :
x:C,this:C � eb : D

E m(C x) { return eb; } OK IN C

(MT (m,D) = C→E, D <: E, class C extends D {· · ·})

5. Classes are well typed when all their methods are and a program is well typed when
all the classes are and the expression is typeable.

6 Notice that this relation depends on the class-table, so the symbol <: should be indexed by
CT ; as mentioned above, we leave this implicit.

7 Notice that, by the well-formedness criterion,eb has no other variables thanx, so all variables
are bound in a method declaration, thus avoiding dynamic linking issues.
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(CLASS) :
md i OK IN C (∀i ∈ n)

class C extends D{fd; mdn} OK
(PROG) :

cd OK Γ � e : C

(cd;e) OK

Notice that in the nominal system, classes are typed (or rather type-checked) once, and
the types declared for their fields and methods are static, unique, and used at invocation.

As mentioned above, we have decided to not consider casts in our work; using a cast
is comparable to a promise by the programmer that the casted expression will at run
time evaluate to an object having the specified class (or a subclass thereof), and so (for
soundness) requires doing a run-time check of the shape

(C) new D(...) → new D(...) (D <: C)

Once this check has been carried out the cast disappears. Of course, for full program-
ming convenience, and to be able to obtain the correct behaviour in overloaded methods,
casts are essential.

2 Semantic Type Assignment

In [19], we defined a type system for FJ � C that is loosely based on the strict intersection
type assignment system for the λ-calculus [1,2] (see [4] for a survey) and is influenced
by the predicate system for the ς-calculus [6]; we showed that it satisfies both subject
reduction and subject expansion. Our types can be seen as describing the capabilities
of an expression (or rather, the object to which that expression evaluates) in terms of
(1) the operations that may be performed on it (i.e. accessing a field or invoking a
method), and (2) the outcome of performing those operations, where dependencies
between the inputs and outputs of methods are tracked using (type) variables. In this
way, our types express detailed properties about the contexts in which expressions can
safely be used. More intuitively, they capture a certain notion of observational equiv-
alence: two expressions with the same set of assignable types will be observationally
indistinguishable. Our types thus constitute semantic predicates.

Definition 6 (Semantic Types [19]). The set of intersection types (or types for short),
ranged over by φ, ψ, and its subset of strict types, ranged over by σ, τ are defined by
the following grammar (where ϕ ranges over a denumerable set of type variables, C
ranges over the set of class names, and ω is a type constant, the universal type and the
top element of the type hierarchy):

φ, ψ ::= ω | σ | φ ∩ψ

σ ::= ϕ | C | 〈f :σ〉 | 〈m :(φ1, . . . , φn)→σ〉 (n ≥ 0)

Notice that our types do not depend on the types that would be assigned in the nom-
inal system; in fact, we could have presented our results for an untyped variant of FJ,
where all class annotations on parameters and return types are omitted. We have de-
cided not to do so for reasons of compatibility with other work, and to avoid leaving
the (incorrect) impression that our results would somehow then depend on the fact that
expressions carry no type information.

The key feature of types is that they may group information about many operations
together into intersections from which any specific one can be selected for an expression
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(NEWM) :
this:ψ,x1:φ1, . . . ,xn:φn � eb : σ Π � new C(e) : ψ

Π � new C(e) : 〈m :(φn)→σ〉
(Mb(C,m) = (xn,eb), n ≥ 0)

(NEWF) :
Π � e1 : φ1 . . . Π � en : φn

(F(C) = f n , i ∈ n, σ = φi, n ≥ 1)
Π � new C(e n) : 〈f i :σ〉

(OBJ) :
Π � e1 : φ1 . . . Π � en : φn

(F(C) = f n , n ≥ 0)
Π � new C(en) : C

(ω) : Π � e : ω

(INVK) :
Π � e : 〈m :(φn)→σ〉 Π � e1 : φ1 . . . Π � en : φn

Π � e.m(e n) : σ
(FLD) :

Π � e : 〈f :σ〉
Π � e.f : σ

(JOIN) :
Π � e : σ1 . . . Π � e : σn

(n ≥ 2)
Π � e : σ1 ∩ . . . ∩ σn

(VAR) : (φ � σ)
Π,x:φ � x : σ

Fig. 2. Type assignment rules for the semantical system for FJ �C

as demanded by the context in which it appears. In particular, an intersection may com-
bine two or more different (even non-unifiable) analyses of the same field or method.
Types are therefore not records: records can be characterised as intersection types of the
shape 〈�1:σ1, · · ·, �n:σn〉where all σi are intersection-free, and all labels �i are distinct;
in other words, records are intersection types, but not vice-versa (see Definition 12).

We include a type constant for each class, which we can use to type objects which
therefore always have a type, like for the case when an object does not contain any
fields or methods (as is the case for Object) or, more generally, because no fields or
methods can be safely invoked. The type constant ω is a top (maximal) type, assignable
to all expressions and serves typically to type subterms that do not contribute to the
normal form of an expression. The following subtype relation facilitates the selection
of individual behaviours from an intersection.

Definition 7 (Subtype Relation). The subtype relation � is induced by the fact that
an intersection type is smaller than each of its components, and is defined is the smallest
preorder satisfying:

φ � ω φ ∩ψ � φ φ ∩ψ � ψ φ � ψ & φ � ψ′ ⇒ φ � ψ ∩ψ′

We write ∼ for the equivalence relation generated by �, extended by

σ ∼ σ′ ⇒ 〈f :σ〉 ∼ 〈f :σ′〉
∀i ∈ n [ φ′i ∼ φ′i ] & σ ∼ σ′ ⇒ 〈m :(φ1, . . . , φn)→σ〉 ∼ 〈m :(φ′1, . . . , φ′n)→σ′〉
We consider types modulo ∼; in particular, all types in an intersection are different

and ω does not appear in an intersection. It is easy to show that ∩ is associative and com-
mutative with respect to ∼, so we will abuse notation slightly and write σ1 ∩ . . .∩ σn
(where n ≥ 2) to denote a general intersection, where all σi are distinct and the order is
unimportant. In a further abuse of notation, φ1 ∩ . . .∩ φn will denote the type φ1 when
n = 1, and ω when n = 0.

Definition 8 (Type Contexts [19]). 1. A type statement is of the form e : φ, with e
as subject.

2. A context Π is a set of type statements with (distinct) variables as subjects; Π,x:φ
stands for the context Π ∪ {x:φ} (so then either x does not appear in Π or x:φ ∈
Π) and x:φ for ∅,x:φ.
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3. We extend � to contexts: Π′ � Π ⇔ ∀x:φ ∈ Π ∃ φ′ � φx:φ′ ∈ Π′.
4. If Πn is a sequence of contexts, then

⋂
Πn is the context defined as follows:

x:φ1 ∩ . . .∩ φm ∈
⋂

Πn, if and only if {x:φ1, . . . ,x:φm } is the non-empty set
of all statements in the union of the contexts that have x as subject.

We will now define our notion of type assignment.

Definition 9 (Semantic Type Assignment [19]). Semantical type assignment for FJ � C

is defined by the natural deduction system of Figure 2.

Notice that new objects like new C(· · ·) can be dealt with by both the rules (OBJ)
and (NEWM); then the context Π can be any. Moreover, we do not need any of the
information of the nominal type system here, other than that provided by the rule (OBJ).

We should perhaps emphasise that, as remarked above, we explicitly do not type
classes; instead, the rules (NEWF) and (NEWM) create a field or method type for an
object, essentially stating that this field or method is available, and what its current
type is. So method bodies are checked every time we need that an object has a specific
method type, and the various types for a particular method used throughout a program
need not be the same, as is the case for the nominal system (see Definition 5). So, in our
system, we would have, in principle, an infinite type for each class, which we cannot
establish when typing the class separately; rather, we let the context of each new D()

decide which type is needed, so the type for an occurrence of new D() is ‘constructed’
by need, and not from an analysis of the class.

The rules of our type assignment system are fairly straightforward generalisations of
the rules of the strict intersection type assignment system for LC to OO, whilst making
the step from a higher order to a first order language: for example, (FLD) and (INVK) are
analogous to (→E); (NEWF) and (NEWM) are a form of (→I); and (OBJ) can be seen as
a universal (ω)-like rule for objects only.

The only non-standard rule from the point of view of similar work for TRS and tra-
ditional nominal OO-type systems is (NEWM), which derives a type for an object that
presents an analysis of a method that is available in that object. Note that the analysis
involves typing the method body and the assumptions (i.e. requirements) on the formal
parameters are encoded in the derived type (to be checked on invocation). However,
a method body may also make requirements on the receiver, through the use of the
variable this. In our system we check that these hold at the same time as typing the
method body (so-called early self typing; with late self typing, as used in [6], we would
check the type of the receiver at the point of method invocation). This checking of re-
quirements on the object itself is where the expressive power of our system resides. If
a method calls itself recursively, this recursive call must be checked, but – crucially –
carries a different type if a valid derivation is to be found. Thus only recursive calls
which terminate at a certain point (i.e. which can then be assigned ω or C, and thus
ignored) will be typeable in the system.

As is standard for intersection type assignment systems, our system is set up to sat-
isfy both subject reduction and subject expansion.

Theorem 10 (Subject reduction and expansion [19]). Let e → e’; then Π � e : φ
if and only if Π � e’ : φ.
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Notice that, as usual, computational equality between expressions in FJ � C is unde-
cidable; as a consequence, through Theorem 10 we obtain that type assignment in our
system is undecidable as well.

We have also shown (variants of) the characterisation of normalisation properties:

Theorem 11 ([19]). 1. If e is a head-normal form then there exists a strict type σ and
type context Π such that Π � e : σ; moreover, if e is not of the form new C(en)

then for any arbitrary strict type σ there is a context such that Π � e : σ.
2. Π � e : σ if and only if e has a head-normal form.
3. If D :: Π � e : σ with D and Π ω-free then e has a normal form.

3 Curry Type Assignment

The nominal type system for Java is so far the accepted standard, but many researchers
are looking for more expressive type systems that deal with intricate details of object
oriented programming and in particular with side effects. It will be clear that through the
system we presented above, we propose a different path, an alternative to the nominal
approach. We illustrate the strength of our approach in this section by presenting a
basic (decidable) functional system, that allows for us to show a preservation result with
respect to a notion of Curry type assignment for CL. This basic system is based on a true
restriction of our semantical type system; the restriction consists of removing the type
constant ω as well as intersection types from the type language, but not completely: we
will still allow for types to be combined as by rule (JOIN) above, but only if the labels
involved are different: the intersection types we allow, thereby, correspond to records.
The additional change we made was to type classes (and the class table and programs)
explicitly, and in that use a different approach when dealing with recursive classes.

It is worthwhile to point out that, above, the fact that we allow more than just record
types is crucial for the results: without allowing arbitrary intersections (and ω) we could
not show that type assignment is closed under conversion. The undecidability of type
inference in our type assignment system follows as a consequence of the conversion
result shown in the previous section. Thus, to be of practical use for program analysis
we must restrict the type assignment system in a decidable fashion.

The notion of the type assignment system we present here is based on Curry’s type
system for CL (or simply-typed LC), and is inspired by Milner’s system for ML [16]. As
such, it is not a true restriction of the system we defined above, and therefore different
from the Curry system we presented in [19]. However, we can show that our encoding
of CL into FJ � C (Section 3) preserves typeability; this is mainly because CL is a notion of
computation defined without recursion. The basic approach of our restriction is to only
assume a single behaviour for each element of a program - that is, we remove inter-
sections. So, for example, when deriving a type for a method each argument and each
field of the receiver may only have one type. While this may seem overly restrictive,
we show that our system is expressive enough to type those programs that correspond
to computable functions, λ-terms typeable in Curry’s system of simple types.

We demonstrate the decidability of this restricted form of type assignment by first
showing that the system has a principal typings property, and then arguing that there is
a terminating algorithm which computes these typings. A principal typings property for
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a type system states that for each typeable term there is a typing (an context-type pair)
which is most general, in the sense that all other typings assignable to that term can be
generated from it. Typeability is decidable, then, if there is a (terminating) algorithm
which computes whether a principal typing exists for any given term. In the latter half
of this section, we discuss the implementation of such an algorithm for our restricted
type assignment system, which we will now define.

Definition 12 (Curry types for FJ �C). 1. Curry (object) types for FJ are defined by:

σ, τ ::= φ | 〈f1:σ, . . . , fn:τ, m1:(α)→β, . . . , mk:(γ)→δ〉 (n + k ≥ 1)

2. We will call a type of the shape 〈f:σ〉 a field type, one of the shape 〈m:(α)→β〉 a
method type, and 〈· · ·〉 with 2 or more components a record type and let ρ range
over those. We write � for arbitrary labels and, by abuse of notation, will also use
〈�:σ〉 to represent 〈m:σ〉, even though in 〈m:(α)→β〉, the structure (α)→β is not a
type. We write 〈�:σ〉 ∈ ρ (or � ∈ ρ) when �:σ occurs in ρ, and assume that all labels
are unique in records.

3. We call two types ρ and ρ′ compatible when: if 〈�:σ〉 ∈ ρ and 〈�:σ′〉 ∈ ρ′, then
either: σ and σ′ are compatible types, or σ = σ′.

4. We define the operator � (join) on types by: ρ1�ρ2 is the type composed out of the
union of two compatible types, defined as: 〈�:σ〉 ∈ ρ1�ρ2 if and only if either:

– 〈�:σ〉 ∈ ρ1 and � �∈ ρ2; or
– 〈�:σ〉 ∈ ρ2 and � �∈ ρ1; or
– σ = σ1�σ2, with 〈�:σ1〉 ∈ ρ1, 〈�:σ2〉 ∈ ρ2 and σ1 and σ2 are compatible; or
– σ = σ1, with 〈�:σ1〉 ∈ ρ1 and 〈�:σ2〉 ∈ ρ2 and σ1 = σ2.

5. When we write a record type as 〈�:σ〉�ρ, then � �∈ ρ.

Notice that compatible records can have different labels, even distinct. Moreover, even
when we allow for the notation 〈m:σ〉 for a method type, then σ is never a record type:
we can only derive those for variables, fields, and objects; see Definition 18. As an
example of compatible types, consider 〈f1:〈f2:σ,f3:τ〉〉 and 〈f1:〈f3:τ,f4:ρ〉〉; on the
other hand, 〈f1:〈f2:σ,f3:τ〉〉 and 〈f1:〈f3:μ,f4:ρ〉〉with τ �= μ are not compatible.

Definition 13 (Curry contexts and environments). 1. A Curry context is a map-
ping from term variables (including this) to Curry types.

2. We call two contexts Γ1 and Γ2 compatible whenever: if x:σ ∈ Γ1 and x:τ ∈ Γ2,
then σ and τ are compatible record types.

3. The operation of � can be extended to compatible contexts as follows:

Join Γ,x:σ Γ′,x:τ = (Join Γ Γ′),x:σ�τ

Join Γ,x:σ Γ′ = (Join Γ Γ′),x:σ (x �∈ Γ′)
Join ∅ Γ′ = Γ′

4. An environment E is a mapping from class names to types (normally records).

Notice that compatible contexts can have different variables, even distinct; but even if a
variable appears in both, the labels in its types can be different as well.

The operation of substitution, which replaces type variables with types (and type
variables with simple types), allows one type (or record) to be generated from another.
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(NEWr) :
∅; E ,C :ρ � e i : σi (i ∈ n)

(〈f:σi〉∈ ρ)
Γ; E ,C:ρ � new C(e) : ρ

(VAR) : Γ,x:σ; E � x : σ

(NEWc) :
∅; E ,C :ρ � e i : σi (i ∈ n)

(〈f:σi〉∈ S ρ)
Γ; E ,C :ρ � new C(e) : S ρ

(PROJ) :
Γ; E � e : ρ

(〈�:σ〉∈ ρ)
Γ; E � e : 〈�:σ〉

(INVK) :
Γ; E � e : 〈m:(σn)→σ〉 Γ; E � e i : σi (i ∈ n)

Γ; E � e.m(e i) : σ
(FLD) :

Γ; E � e : 〈f:σ〉
Γ; E � e.f : σ

(CT ) :

this:ρ,x:σn1 ; E ,C :ρ � e1 : τ1 (Mb(C,m1) = (xn1 ,e1)) · · ·
this:ρ,x:σnm ; E ,C :ρ � em : τm (Mb(C,mm) = (xnm ,em)) E ,C :ρ � CT : �

E ,C:ρ � class C extends C’ {fd md } ; CT : �
(ρ = 〈f:φn,m1:(σn1 )→τ1, . . . , mm :(σnm)→τm〉, F (C) = fn, M(C) = mm)

(ε) : Π � ε : � (PROG) :
E � CT : � Γ; E � e : σ

Γ; E � (CT ,e) : σ

Fig. 3. Type assignment rules for the Curry type system for FJ �C

Definition 14 (Substitution). 1. The type substitution 〈ϕ �→ σ〉, which is a function
from types to types, is defined as follows:

(ϕ �→σ) ϕ = σ
(ϕ �→σ) ϕ′ = ϕ′ ϕ �= ϕ′

(ϕ �→σ) 〈f :σ′〉 = 〈f :(ϕ �→σ) σ′〉
(ϕ �→σ) 〈m :σn→σ′〉 = 〈m :((ϕ �→σ) σ1, . . . , (ϕ �→σ) σn)→(ϕ �→σ) σ′〉

The extension to records (ϕ �→σ) ρ is defined as can be expected.
2. If S1 and S2 are substitutions, then so is S2◦S1 where (S2◦S1) σ = S2 (S1 σ)); we

write Sn for Sn◦· · ·◦S1.
3. S Γ = {x:S σ | x:σ ∈ Γ}.
4. Id denotes the identity substitution.
5. For two types σ1 and σ2, if there exists a substitution S such that S σ1 = σ2 then we

say that σ2 is an instance of σ1.
6. We say that a type variable is fresh if it does not occur in any type we are consider-

ing at that moment; we also say that a fresh instance of σ is the type created out of
σ by substitution each type variable in σ by a fresh one.

Simple type assignment is defined through:

Definition 15 (Curry type assignment for FJ �C). Curry type assignment for FJ � C-ex-
pressions is defined through the rules in Figure 3.

Notice that judgements depend not only on contexts, but also on environments; the first
six rules type expressions, whereas the others deal with the class table and the program.

Rule (CT ) comes in place of the rules deriving OK for the nominal system. It checks
the occurrence of C:ρ in the environment for class C. By using this:ρ when typeing
the methods, it insists that the types derived for the methods and fields in a class are the
same as used for the receivers; also rule (NEWr) is used for occurrences of new C(e) in-
side the definition ofC which insists that the same record type is used for the ‘recursive’
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instances of C as well. This corresponds to the usual way of dealing with recursion as in
ML’s rule (fix) (note that OO languages have two types of recursion) and corresponds
to the nominal rule (CLASS) above.

Notice that ρ is not unique; the rule accepts any type that fits. Below, in the algorithm
PT , we will calculate the smallest; then when we use a type for C, as in rule (NEWc)
which is used for occurrences of new C(e) outside the definition of C, this type will
be a substitution instance of the one calculated. Thereby, this introduces a notion of
polymorphism into our system; each instance of class C will be typed differently, but
any of its types can be generated from E (C) by (projection and) substitution.

Also, (NEWr) and (NEWc), in combination with rule (PROJ), come in place of the rules
(NEWF) and (NEWM) of the semantical system. We could have removed the separation
of the two NEW rules and only used rule (NEWc); this would give a ‘Mycroft’-like way
of dealing with recursion, which is only semi-decidable, rather than a ‘Milner’-like way
as we do now; it could be used for a type-check system, however.

Note also that rules (ε) and (CT ) checks the typeability of a class table, and rule
(PROG) specifies how to type a FJ � C program.

We can show that type substitution is sound for expressions.

Theorem 16. For all substitutions S, if Γ; E � e : σ then S (Γ; E ) � e : S σ.

We will now show that simple type assignment has a principal typings property. At
the heart of type inference lies the problem of unification - finding a common instance
of two types; since we deal with records, we will also need to join those, after we have
made them compatible through unification.

Definition 17 (Type Unification). The operation of unification is defined on types,
and extended to contexts as follows:

1. The function Unify, which takes two simple types and returns a substitution, is
defined by cases through:

Unify ϕ ϕ′ = (ϕ �→ϕ′)
Unify ϕ σ = (ϕ �→σ) (ϕ not in σ)

Unify σ ϕ = (ϕ �→σ) (ϕ not in σ)

Unify 〈f :σ〉 〈f :α〉 = Unify σ α

Unify 〈m :(σn)→τ〉 〈m :(αn)→β〉 = Sn
where S1 = Unify τ β

Si+1 = Unify (Si σi) (Si αi) (i ∈ n−1)

These are the cases where unification is defined, i,e, where either a substitution is
created, or unification fails (when ϕ occurs in σ in the second and third case). This
implies that no action is taken when unifying two method types that have different
method names; rather, those are joined in a record.

2. On records, unification is defined through:

Unify 〈�:σ〉�ρ 〈�:τ〉�ρ′ = S2◦S1
where S1 = Unify σ τ

S2 = Unify (S1 ρ) (S1 ρ′)
Unify 〈�:σ〉�ρ ρ′ = Unify ρ ρ′ (� �∈ ρ′)
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3. Unification can be extended to contexts as follows:

Unify Γ,x:σ Γ′,x:τ = S′ ◦S
where S = Unify σ τ

S′ = Unify (S Γ) (S Γ′)
Unify Γ,x:σ Γ′ = Unify Γ Γ′ (x �∈ Γ′)
Unify ∅ Γ′ = Id

4. By abuse of notation, we will allow also the unification of any number of types or
contexts ‘at one fell swoop’, by defining

Unify σ1 σ2 . . . σn = Unify (S σ2) (S σ3) . . . (S σn) ◦ S
where S = Unify σ1 σ2

Notice that unification on records (as specified in the last two cases of the first part)
recurses on the number of types in the record, ending up with the unification of simple
types, which is dealt with in the first five cases.

It is easy to show that unification creates compatible contexts, which it is designed
to do; it is, however, not fully satisfactory for use in our principal typing algorithm,
since it does not always adequately checks that the ‘offered type’ of the argument is not
less specific that the ‘demanded type’ of the parameter of a method invocation in terms
of labels that occur. For example, as can be seen in the algorithm, for the expression
e.m(e’), it can be that we infer that the principal type of e is 〈m:〈f:σ,f′:σ′〉→ρ〉, and
the principal type of e’ is 〈f:τ〉. Assuming σ and τ are unifiable,

Unify 〈m:〈f:σ,f′:σ′〉→ρ〉〈m:(〈f:τ〉)→ϕ〉

would succeed; however, there is no guarantee that e’ has type 〈f′:τ′〉 as well.
We could have amended the unification algorithm, but that would have made it a great

deal more intricate. Rather, in the principal typing algorithm, we add an additional test
that checks if the offered type matches the demanded type, by checking that the labels
in the demanded type all occur in the offered type. This implies, of course, that type
assignment can fail not just because unification fails.

Using the concepts of substitution and unification, we can now define what principal
typings are for our system. Since our types express information about fields and meth-
ods, and since objects may have many different fields and methods (each with their own
unique behaviours), our principal types must actually be records. This makes defining
the principal typings somewhat complicated, as can be seen below.

Also, we in fact calculate the principal typing for a program, by traversing the class
table, building up the environment that contains the types for the classes, and type the
final expression in that environment.

Definition 18 (Principal Typing). 1. A typing is a pair 〈Γ ; σ〉 of a context (includ-
ing this) and a type.

2. The function PT (principal typing), from expressions and environments to typings
and environments, is defined inductively as follows:
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PT (x; E ) = 〈x:ϕ ; ϕ〉 ; E (ϕ fresh)

PT (this; E ) = 〈this:ϕ ; ϕ〉 ; E (ϕ fresh)

PT (e.f; E ) = S 〈Γ ; ϕ〉 ; S E ′
where PT (e; E ) = 〈Γ ; ρ〉 ; E ′

S = Unify 〈f:ϕ〉 ρ (ϕ fresh)
PT (e.m(en); E0) = S2 〈Γ�Γ1�· · ·�Γn ; ϕ〉 ; S2 En+1

where PT (e; E0) = 〈Γ ; ρ〉; E1

PT (ei; Ei) = 〈Γi ; γi〉 ; Ei+1 (i ∈ n)
S1 = Unify 〈m:(γn)→ϕ〉 ρ (ϕ fresh,

all labels in σi in 〈m:(σn)→τ〉 ∈ ρ appear in γi)

S2 = Unify (S1Γ) (S1Γ1) · · · (S1Γn)

PT (new C(en); E1) = S′ ◦Sn〈Γ1�· · ·�Γn ; ρ〉 ; S′ ◦SnEn+1

where ρ =

{
E1 C (definition of C depends on this)
fresh instance of E1 C (otherwise)

PT (ei; Ei) = 〈Γi ; σi〉 ; Ei+1 (i ∈ n)
Si = Unify (Si−1 〈fi:σi〉) (Si−1 ρ) (i ∈ n, S0 = Id,

all labels fn appear in ρ)

S′ = Unify (SnΓ) (SnΓ1) · · · (SnΓn)

3. We use PT also for the function that calculates the principal type for a each class
definition in the class table, and builds the environment:

PT (ε : e; E ) = PT (e; E )
PT (class C extends C’ {fdn mdm }, CT : e; E ) = PT (CT : e; S Em+1)

where PT (ebj
; Ej) = 〈xi:σi, this:αj ; τj〉 ; Ej+1

(∗)

Mb(C,m j) = (xi,ebj
) ∈ md

E1 = E ,C:ϕ (ϕ fresh)
S = Unify αj (Em+1C) 〈f:ϕ,m:(σ)→τ〉

(F(C) = f, ϕn fresh)

(∗) σi or αj are fresh variables whenever xi �∈ fv (ebj
) or this does not occur in

ebj
; of course the assumption is here that all free variables in a method body are

mentioned in the parameters list: methods have no free variables. Notice that if
new C(en) occurs in ebj

, then the type stored in the environment is taken itself,
rather than instantiated, so might be affected by the unifications that are calculated.

Notice that, in the case for PT (new C(en); E ), we have to take a fresh instance of
the type calculated for C. We have stored the principal type for C into the environment
in PT (CT ; E ) and need to access it when creating a new object; however, we have
to work from a copy: otherwise, we would change EC during the unification process,
making it change before a new access. Thereby, this operation introduces a notion of
polymorphism into our system; each instance of classC will be typed differently, but any
of its types can be generated from E C by (projection and) substitution; the substitutions
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will be calculated by PT , as demanded by the context in which the object appears, and
depending on exactly what expressions it gets initialised with.

We can show the expected properties for PT :

Theorem 19 (Soundness of PT ). If PT (e; E ) = 〈Γ ; σ〉; E ′, then Γ; E ′ �C e : σ.

Theorem 20 (Completeness of PT ). If Γ; E �C e : σ (where e is not part of a class
definition), then there exists a typing 〈Γ′ ; σ′〉 ; E such that PT (e; E ) = 〈Γ′ ; σ′〉 ; E
and a substitution S such that S Γ′ ⊆ Γ, and σ = S σ′.

As an example of a program we can type, consider the following which constitutes
perhaps the simplest example of a term without head-normal form in OO:

class C extends Object {
C m() { return this.m(); }

}

This program has a method m which simply calls itself recursively, and new C().m()

loops:

new C().m() → this.m()[new C()/this] = new C().m()

so, in particular, new C().m() has no normal form, not even a head-normal form;
this correspond to the ML-program (fix x.x). Running PT returns C:〈m:()→ϕ〉 and
therefore running PT (new C().m(); E ) gives (∅; ϕ) which is also the typing for
(fix x.x). Notice that, since new C().m() has no head-normal form, it is not ty-
peable in our intersection system, so we cannot show ‘Γ �C e : σ ⇒ Γ � e : σ’; the
same observation can be made with respect to type assignment for the λ-calculus and
ML.

4 OOCL

We will now relate this notion of type assignment to one from the world of functional
programming, by defining an encoding of Combinatory Logic [14] (CL) into FJ � C, and
showing that assignable types are preserved by this encoding.

Definition 21. Combinatory Logic consists of the function symbols S, K where terms
are defined over the grammar

t ::= x | S | K | t1 t2

and the reduction is defined via the rewrite rules:

K x y → x
S x y z → x z (y z)

CL can be seen as a higher-order TRS.
Our encoding of CL in FJ � C is based on a Curryfied first-order version of the sys-

tem above (see [7] for details), where the rules for S and K are expanded so that each
new rewrite rule has a single operand, allowing for the partial application of function
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class Combinator extends Object {

Combinator app(Combinator x) { return this; }
}
class K extends Combinator {

Combinator app(Combinator x) { return new K_1(x); }
}
class K_1 extends K {

Combinator x;
Combinator app(Combinator y) { return this.x; }

}

class S extends Combinator {
Combinator app(Combinator x) { return new S_1(x); }

}

class S_1 extends S {
Combinator x;
Combinator app(Combinator y) { return new S_2(this.x, y); }

}
class S_2 extends S_1 {

Combinator y;

Combinator app(Combinator z) { return this.x.app(z).app(this.y.app(z)); }
}

Fig. 4. The class table for Object-Oriented Combinatory Logic (OOCL) programs

symbols. We model application, the basic engine of reduction in TRS, via the invocation
of a method named app. The reduction rules of Curryfied CL each apply to (or are
‘triggered’ by) different ‘versions’ of the S and K combinators; in our encoding these
rules are implemented by the bodies of five different versions of the app method which
are each attached to different classes representing the different versions of the S and K
combinators. In order to make our encoding a valid (typeable) program in full Java, we
have defined a Combinator class containing an app method from which all the others
inherit, essentially acting as an interface to which all encoded versions of S and K must
adhere.

Definition 22 ([19]). The encoding of Combinatory Logic (CL) into the FJ � C program
OOCL (Object-Oriented Combinatory Logic) is defined using the execution context
given in Figure 4 and the function ��·�� which translates terms of CL into FJ � C expres-
sions, and is defined as follows:

��x �� = x
��t1 t2 �� = ��t1 ��.app(��t2 ��)
��K�� = new K()
��S�� = new S()

We can show that the reduction behaviour of OOCL mirrors that of CL.

Theorem 23 ([19]). If t1, t2 are terms of CL and t1 →∗ t2, then ��t1 �� →∗ ��t2 �� in
OOCL.

Through this encoding - and the results we have shown above - we can achieve a
type-based characterisation of all (terminating) computable functions in OO. Since CL



44 S.J. van Bakel and R.N.S. Rowe

is a Turing-complete model of computation, as a side effect we show that FJ � C is Turing-
complete. Although we are sure this does not come as a surprise, it is a nice formal
property for our calculus to have, and comes easily as a consequence of our encoding.

In addition, our type system can perform the same ‘functional’ analysis as ITD does
for LC and CL. This is illustrated by a type preservation result. We present Curry’s type
system for CL and then show we can give equivalent types to OOCL programs.

Definition 24 (Curry Type Assignment for CL [19]). 1. The set of simple types
(also known as Curry types) is defined by the grammar: A, B ::= ϕ | A→B .

2. A basis Γ is a mapping from variables to Curry types, written as a set of statements
of the form x:A in which each of the variables x is distinct.

3. Simple type assignment to CL-terms is defined by the following system:

(Ax) : (x:A ∈ Γ)
Γ �CL x : A (→E) :

Γ �CL t 1 : A→B Γ �CL t 2 : A

Γ �CL t 1t 2 : B

(K) : Γ �CL K : A→B→A (S) : Γ �CL S : (A→B→C)→(A→B)→A→C

The elegance of our approach is that we can now link types assigned to combinators
to types assignable to object-oriented programs. To show this type preservation result,
we need to define what the equivalent of Curry’s types are in terms of our FJ � C types. To
this end, we define the following translation of Curry types.

Definition 25 (Type Translation [19]). The function ��·��, which transforms Curry
types8, is defined as follows:

��φ�� = φ
��A→B�� = 〈app:(��A��)→��B��〉

It is extended to contexts as follows: ��Γ�� = {x:��A�� | x:A ∈ Γ}.

We can now show the type preservation results.

Theorem 26 (Preservation of Types (cf. [19])). 1. If Γ �CL t : A then ��Γ�� � ��t �� :
��A��

2. Let ECL be defined as: ECL S = ��(A→B→C)→(A→B)→A→C��
ECL K = ��A→B→A��

If Γ �CL t : A then ��Γ��; ECL �C ��t �� : ��A��.

Furthermore, since Curry’s well-known translation of the simply typed LC into CL

preserves typeability (see [8]), we can also construct a type-preserving encoding of LC

into FJ � C; it is straightforward to extend this preservation result to full-blown strict inter-
section types. We stress that this result really demonstrates the validity of our approach.

To conclude this section, we give some example derivations of OOCL programs in our
semantic system that illustrate our results; we could, of course, type these expression in
our Curry system as well.

8 Note we have overloaded the notation ��·��, which we also use for the translation of CL terms
to FJ �C expressions.
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.

.

.

.

(VAR)
this:〈x : ϕ1〉,y:ϕ2 � this : 〈x : ϕ1〉

(FLD)
this:〈x : ϕ1〉,y:ϕ2 � this.x : ϕ1

(VAR)
this:K,x:ϕ1 � x : ϕ1

(NEWF)
this:K,x:ϕ1 � new K1(x) : 〈x : ϕ1〉

(NEWM)
this:K,x:ϕ1 � new K1(x) : 〈app :(ϕ2)→ ϕ1〉

(VAR)
x:ϕ1,y:ϕ2 � new K() : K

(NEWM)
x:ϕ1,y:ϕ2 � new K() : 〈app :(ϕ1)→ 〈app :(ϕ2)→ ϕ1〉〉

(VAR)
x:ϕ1,y:ϕ2 � x : ϕ1

..

..

.

(INVK)
x:ϕ1,y:ϕ2 � new K().app(x) : 〈app :(ϕ2)→ ϕ1〉

(VAR)
x:ϕ1,y:ϕ2 � y : ϕ2

..

..

(INVK)
x:ϕ1,y:ϕ2 � new K().app(x).app(y) : ϕ1

.

.

.

.

(VAR)
this:〈x : ϕ〉,y:ω � this : 〈x : ϕ〉

(FLD)
this:〈x : ϕ〉,y:ω � this.x : ϕ

(VAR)
this:K,x:ϕ � x : ϕ

(NEWF)
this:K,x:ϕ � new K1(x) : 〈x : ϕ〉

(NEWM)
this:K,x:ϕ � new K1(x) : 〈app :(ω)→ ϕ〉

(OBJ)
x:ϕ � new K() : K

(NEWM)
x:ϕ � new K() : 〈app :(ϕ)→ 〈app :(ω)→ ϕ〉〉

(VAR)
x:ϕ � x : ϕ

(INVK)
x:ϕ � new K().app(x) : 〈app :(ω)→ ϕ〉

(ω)
x:ϕ � ��δδ�� : ω

..

..

..

..

(INVK)
x:ϕ � new K().app(x).app(��δδ��) : ϕ

(ω)
this:K1,x:ω � x : ω

(OBJ)
this:K,x:ω � new K1(x) : K1

(OBJ)
∅ � new K() : K

(NEWM)
∅ � new K() : 〈app :(ω)→ K1〉

(ω)
∅ � ��δδ�� : ω

(INVK)
∅ � new K().app(��δδ��) : K1

where δ is the CL-term S (S K K) (S K K) – i.e. δδ has no head-normal form.

Fig. 5. Derivations for Example 27

Example 27. Figure 5 shows, respectively, (1) a derivation typing a strongly normal-
ising expression of OOCL; (2) an ω-safe derivation of a normalising (but not strongly
normalising) expression of OOCL; and (3) a non-ω-safe derivation deriving a non-
trivial type for a head-normalising (but not normalising) OOCL expression.

Conclusions and Future Work

We have considered a type-based semantics defined using an intersection type approach
for FJ. Our approach constitutes a subtle shift in the philosophy of static analysis for
class-based OO: in the traditional (nominal) approach, the programmer specifies the
class types that each input to the program (field values and method arguments) should
have, on the understanding that the type checking system will guarantee that the inputs
do indeed have these types.

In the approach suggested by our type system, the programmer is afforded expres-
sive freedom. Thanks the polymorphic character of our types and to type inference,
which presents the programmer with an ‘if-then’ input-output analysis of class con-
structors and method calls, if a programmer wishes to create instances of some particu-
lar class (perhaps from a third party) and call its methods in order to utilise some given
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functionality, then it is then up to them to ensure that they pass appropriate inputs (either
field values or method arguments) that guarantee the behaviour they require.

We will reintroduce more features of full Java back into our calculus, to see if our
system can accommodate them whilst maintaining the strong theoretical properties that
we have shown for the core calculus. For example, similar to λμ [18], it seems natural
to extend our simply typed system to analyse the exception handling features of Java.
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Abstract. In this case study we investigate the use of PVS for devel-
oping type theoretical concepts and verifying the correctness of a typing
algorithm. PVS turns out to be very useful for the efficient development
of a sound basic theory about polymorphic typing. The PVS formaliza-
tion is also intended as the first step towards a functional training vehicle
for the education of compiler construction.

Keywords: functional programming, compiler construction, typing, au-
tomated theorem proving.

1 Introduction

This paper reports on a case study in computer aided verification of theories
about syntactic objects.

Syntactic theories such as type theories play an important role in the (static)
analysis of computer programs and construction of reliable implementations of
programming languages. The usability and reliability of syntactic techniques can
potentially be improved by using automated proof assistants, thus bridging the
gap between theory and implementations.

For example, subtle syntactical matters such as the treatment of variables
and bindings are usually not addressed in theoretical expositions. However, these
matters are crucial when implementing a typing algorithm as a compiler module.
Syntactical details are a source of errors which can entirely be avoided using a
more detailed design and verification.

In this paper we propose to use of a proof assistant (PVS, [17]), not only to
develop new language theoretic concepts, but also to provide a framework for
the experimentation with existing implementations of programming languages.
In particular, we advocate the use of theorem provers for constructing compilers,
for instance to provide the foundation for a course on compiler construction.
To implement the various phases that occur during the compilation process, a
compiler typically involves high level data structures and complex algorithms.
In functional languages one can express these data structures and operations in
a very concise and comprehendible manner.
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The specification language of the theorem prover PVS is based on classical
typed higher-order logic, allowing quantification over propositions and predi-
cates. Functions in PVS are first-class citizens, providing the same expressive
power as in any (other) functional programming language. An important feature
of PVS’s type system is its capability to define dependent types : types depend-
ing on values. Dependent types enable a profound and accurate description of a
function’s domain and codomain.

Our paper can be seen as the first step towards a framework for a compiler
construction course, permitting students to experiment with concepts and algo-
rithms which prevail during the compilation process. The presence of a proof
assistent enables students not only to examine and execute program fragments,
but also to formally prove the correctness of methods applied. There is no doubt
that such a form of experimentation will significantly increase the student’s com-
prehension and knowledge of the complex compilation process.

In this paper we present the machine verification of a typing algorithm. We
prove the soundness and completeness of a specific refinement of the well-known
Milner-Wand typing algorithm. This result is new, and cannot be forthrightly
derived from existing results. The novelty of our approach constitutes the treat-
ment of the various variable classes, necessary for reasoning about systems with
quantified types. Due to the specific nature of the type theoretic challenge, our
formalization needs to deal with three classes of variables instead of the usual
two (free and bound by universal quantification). We avoid problems with α-
conversion by application of a labeling mechanism. Our method is flexible enough
to be applied to similar systems with mixed free and bound variables such as
rank-2 polymorphism and existential types [13].

2 Type Theory

Typing is a powerful tool for static analysis of programs. Especially in the area of
functional programming, numerous typing systems are used to capture properties
varying from simple consistency of function applications to complex reference
requirements, see e.g. [3], [4].

This paper is about type systems with weak polymorphism. We focus on the
type reconstruction problem for these systems. It is well-known that typability
of full polymorphism (System-F or λ2 in typed lambda calculus) is undecidable,
but there are many systems with some restricted (‘weak’) form of polymorphism,
such as let-polymorphism and rank-2 polymorphism.

In this section we will introduce some basic type-theoretic notions.

First-Order Typing. Let us consider combinatory expressions built up from
variables (from a given set V ) and constants (C) using application and definition-
abstraction:

E ::= V | C | EE | let V = E in E.

Types are constructed from type variables (V) with a function type constructor:

T ::= V | T→T.
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A type substitution is a function ∗ : V→ T. The result of applying ∗ to σ is
denoted by σ∗. In the sequel, we let e, e1, . . . range over E, σ, τ, . . . over T.

Typing statements are of the form Γ � e : τ , where Γ is a set of declarations
of the form x:σ. We suppose that the constants have some fixed type given by a
type environment env : C→ T. The typing rules are straightforward:

Γ, x:σ � x : σ Γ � c : env(c)

Γ � e1 : σ→τ Γ � e2 : σ

Γ � e1 e2 : τ

Γ � e1 : σ Γ, x:σ � e2 : τ

Γ � let x = e1 in e2 : τ

The computation of a type for an expression is called type inference. There
are several implementations of typing algorithms for functional languages. Most
of these are based on Milner’s algorithm, commonly denoted by W [12]. The
approach by Wand ([21]) differs from Milner’s approach in that type reconstruc-
tion is split into two phases. During the first phase, expressions are traversed
and typing constraints (following from the rules for the respective syntactic con-
structions) are collected as type equations. Type variables are used to denote the
unknowns in these equations. Solving the constraints (via unification) takes place
during the second phase. InW the identified constraints are solved immediately.
See also [2].

The principal typing algorithm decides for each e whether it is typable; in the
positive case it computes a principal pair Γ, σ such that

Γ � e : σ

and moreover each other typing can be obtained from Γ, σ by substitution:

Γ ′ �M : σ′ ⇒ Γ ′ ⊇ Γ ∗, σ′ = σ∗ for some ∗ .

The first property is called soundness, the second expresses completeness of the
algorithm.

A variant of the principal typing algorithm computes a principal type σ given
Γ and e. The substitution in the soundness property then only affects σ. We will
focus on this variant in our formalization.

Weak Polymorphism. We will describe a system which allows types with
universal quantification of variables at the outermost level, such as ∀α.α→α.
The resulting set of type schemes is denoted by T

∀:

T
∀ ::= T | ∀V.T∀.

S, T, . . . range over T
∀. Type schemes are assigned to expression variables (by

Γ ), and to constants (by the type environment env : C → T
∀). These schemes

can be instantiated by substituting types for the quantified variables. To this
end, the first order system is extended with rules such as
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Γ � e : ∀α.S
Γ � e : S[α := τ ]

Γ � e : S
(α not free in Γ )

Γ � e : ∀α.S
For this system one can prove principal typing results like for the first-order

case. To allow for an inductive generation of type constraints one can transform
the system into a ‘syntax directed’ one, in which each rule corresponds to exactly
one syntactic construction. We will not go into the details.

3 Formalizing Expressions and Types

In this section we will prepare for the representation of types and show how to
formalize the basic notions in PVS [17]. In our formalization we will consider
a variant of the weakly polymorphic system introduced in the previous section.
In our case study we wish to focus on the (sometimes subtle and error-prone)
administration and manipulation of types and the various rôles of type variables.
We therefore restrict the expression syntax to the simplest interesting example:
the applicational fragment, so without let expressions. This is not a serious re-
striction, since [20] shows that let-polymorphism can be translated into a purely
combinatoric system via substitutions.

Types with Markings

In the typing algorithm for weak polymorphism one has to distinguish two
substitution-like operations on types. Instantiation should affect the (quanti-
fied) scheme variables, but not the other (free) variables. The solving substitu-
tions should be restricted restricted to auxiliary type variables (denoting the
unknowns in equations). For a transparent formalization we introduce the no-
tion of marked type variables and two replacement operations on marked types.
We will use this for a ‘secure’ formalization of the changing rôles of the variables
in the subsequent steps of the algorithm.

The collection T of marked first-order types is built up from type variables
that can appear either plain or marked (denoted by underlining):

T ::= V | V | T→T.

Let σ ∈ T and let ∗ : V→ T be a substitution. The instantiation effect of ∗ on
σ, denoted by [σ]∗, is defined inductively by

[α]
∗
= α,

[α]∗ = ∗(α),
[σ→τ ]

∗
= [σ]∗→[τ ]∗.

Observe that the free (i.e. unmarked) scheme variables of σ are marked in [σ]∗.
The substitution effect of ∗ on σ, denoted by (σ)∗, is defined by

(α)∗ = ∗(α),
(α)

∗
= α,

(σ→τ)
∗
= (σ)∗→(τ)∗.
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Typing in the weakly polymorphic system can be expressed using marked
first-order types: quantified variables can be represented as marked variables.
The instantiation mechanism becomes

Γ � e : σ

Γ � e : [σ]∗

or Γ, x:σ � x : [σ]∗ and Γ � c : [env(c)]∗ in the syntax directed variant.

Representing Syntax in PVS

We formalize the syntax in our proof tool. While explaining the formalization
we will give a brief introduction to PVS.

PVS offers an interactive environment for the development and analysis of
formal specifications. The system consists of a specification language and a the-
orem prover. The specification language of PVS is based on classical, typed
higher-order logic. It resembles common functional programming languages, like
Haskell, LISP or ML. PVS supports inductive definitions.

We use the following representation of expressions.

EXPR [V:TYPE , C:TYPE ] : DATATYPE

BEGIN

e_var (v_id: V) : e_var?

e_const (c_id: C) : e_const?

e_appl (e_fun , e_arg: EXPR) : e_appl?

END EXPR

The basic syntactical categories V and C appear as the parameters V and C

of the inductive data type EXPR. The data type itself has three constructors,
e_var, e_const and e_appl for representing values in EXPR. In addition, three
recognizers e_var?, e_const? and e_appl? are defined (PVS allows question marks
as constituents of identifiers), which can be used as predicates to test whether
or not an EXPR object starts with the respective constructor. It will be more
convenient, however, to define operations on inductive datatypes by pattern
matching.

For each data type, PVS generates a collection of so-called theories. One of
those theories contains the basic declarations and axioms formalizing the data
type, including an induction scheme for proofs. Moreover, instantiations of some
generic operations such as map (for lifting functions) and the recursor reduce are
generated.

For example, the function fvs (giving the free variables of an expression)
can be defined using the recursor by specifying the results for each case of the
inductive data type (variable, constant, application):

fvs: [EXPR → PRED [V ] ] = reduce(singleton ,λ(c:C):∅ ,∪)
When applied to an expression e, this function will return the subset of V (in
PVS denoted as PRED [V ]) consisting of the variables occurring in e. We have used
the predefined set operations singleton and ∪.
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More involved inductive definitions can be given using a general pattern
matching scheme (CASES). In particular, the function reduce itself is defined in-
ternally as follows. Note that the recursor (on EXPR) can be used to construct
operations from EXPR to any result type ran (‘range’).

reduce (vf: [V → ran ] ,cf: [C → ran ] ,af: [ [ran , ran ] → ran ] ): [EXPR → ran ]
= λ (e: EXPR): LET red: [EXPR → ran ] = reduce(vf ,cf ,af)

IN CASES e OF

e_var(v): vf(v) ,
e_const(c): cf(c) ,
e_appl(f ,a): af(red(f) , red(a))

ENDCASES

We will use the concept of marked types both for type schemes in environments
(Γ and env) and for special variables in type assignments (e : σ). For convenience,
however, we will use different names for these two occurrences of the collection
of marked types: we represent them as two separate data types. This is shown
in the following declarations.

SCHEME [V : TYPE ]: DATATYPE MTYPE [V:TYPE ]: DATATYPE

BEGIN BEGIN

s_bv (bv:V): s_bv? t_mv (t_var:V): t_mv?

s_fv (fv:V): s_fv? t_fv (t_var:V): t_fv?

s_arr (arg , res:SCHEME): s_arr? t_arr (t_arg , t_res:MTYPE): t_arr?

END SCHEME END MTYPE

discard(x:V) :PRED [V ] = ∅

fvs: [SCHEME → PRED [V ] ] = reduce(discard ,singleton ,∪)
bvs: [SCHEME → PRED [V ] ] = reduce(singleton ,discard ,∪)

fvs: [MTYPE → PRED [V ] ] = reduce(discard ,singleton ,∪)
mvs: [MTYPE → PRED [V ] ] = reduce(singleton ,discard ,∪)

Contrary to our approach, in [14] and [15] expressions are typed with monomor-
phic types (i.e. types with only one kind of type variables). A consequence is
that type variables occurring free in the type scheme can, after instantiation, be
altered during type reconstruction. The advantage of using two kinds of variables
is that they remain distinguishable, even after unification. We will explain this
in more detail in section 5.

The instantiation and substitution operations (denoted earlier by [·]∗ and (·)∗)
can be defined easily using the recursors for SCHEME and MTYPE.

SUBST : TYPE = [V → MTYPE ] ;

inst(s:SUBST) : [SCHEME → MTYPE ] = reduce(s ,t_mv ,t_arr)
subst(s:SUBST): [MTYPE → MTYPE ] = reduce(t_mv ,s ,t_arr)

Observe that inst changes free scheme variables into marked type variables,
implying that they cannot be further instantiated via substitution. In [20], an
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operation is introduced which converts a type back into a scheme. Usually this is
called generalization. The result depends on the context in which the operation
is performed, in particular on the type variables appearing in the used base.
Generalization corresponds to the ∀-introduction rule in the weakly polymorphic
type system. In PVS:

gen(p:pred [V ] ): [V → SCHEME ]
= λ(v:V): IF p(v) THEN s_fv(v) ELSE s_bv(v) ENDIF

generalize(p:pred [V ] ): [MTYPE → SCHEME ]
= reduce(gen(p) , s_bv , s_arr)

Typically, the function generalize will be parameterized with the free variables
of the present basis. Generalization (below indicated as G) plays a crucial role
in the proof of the following property concerning substitutions.

Γ � e1[x := e2] : σ ⇒ Γ � e2 : τ, Γ, x:G(Γ, τ) � e1 : σ for some τ.

This property is used by [20] to justify the way let-polymorphism is translated
into our combinatoric system.

For convenience, we prefer to use the infix operation ** instead of subst.
Moreover, the operator ≤ is used to express ‘is an instance of’. We have two
different versions, one for schemes and one for types.

For the definition of infix operations, PVS requires a specific syntax that does
not allow parameter types to be included in the argument list.

s : VAR SUBST

t , t1 , t2 : VAR MTYPE

ts : VAR SCHEME

**(t ,s): MTYPE = subst(s)(t)
≤(t1 , t2) : bool = ∃ (s) : t2 = t1 ** s ;
≤(ts , t) : bool = ∃ (s) : t = inst(s)(ts) ;

4 Formalizing the Typing System

To specify the type inference rules, we make use of PVS’s facility to define
inductive predicates. The type system is specified as a separate PVS theory
typingEXPR. This theory has the environment env assigning types to constants as
parameter.

typingEXPR [V , X , C:TYPE ,
(IMPORTING SCHEME [V ] ) env: [C → SCHEME [V ] ] ] : THEORY

BEGIN

BASE : TYPE = [X → SCHEME ]
b : VAR BASE

st : VAR [EXPR ,MTYPE ]

|-(b ,st) : INDUCTIVE bool =
CASES st‘1 OF
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e_var(w) : b(w) ≤ st‘2 ,
e_const(c) : env(c) ≤ st‘2 ,
e_appl(f , a) : ∃ (t:MTYPE): (b |- (f ,t_arr(t ,st‘2)))

∧ (b |- (a , t))
ENDCASES

END typingEXPR

Above, the variable st is declared as a pair consisting of an expression and its
type. The notation st ‘n is used to select the nth component of st.

An important property for our final theorem stating that type derivation is
closed under substitution, is the following:

typable_subst : LEMMA

∀(e:EXPR , t:MTYPE , b:BASE , s:Substitution):
(b |- (e ,t)) ⇒ (b |- (e , t ** s))

The proof by induction on the structure of e is straightforward.

5 Formalizing the Algorithm

Until now, we only considered the monomorphic subset of MTYPE. In the present
section, the role of the free variables will become apparent: they serve as un-
knows in type equations. These type equations are represented as a list of pairs.
Solving these equations is usually done via unification: the process of finding a
substitution that is a unifier for all equations appearing in the list.

In PVS equations and solutions can be defined as follows:

EQS : TYPE = list [ [MTYPE , MTYPE ] ]
solves(s): pred [EQS ] = every(λ(t1 , t2: MTYPE): t1 ** s = t2 ** s)

The predefined combinator every checks if all elements of a list satisfy a given
predicate. In this case we verify whether the given substitution s is a unifier for
each pair of types.

It is well-known that unification is decidable. However, correctness of type
inference does not depend on a particular implementation of unification, but
merely on some general properties. As is, we do not give a unification algorithm
but specify its properties via axioms. A machine verified proof of these properties
(also by using PVS) for the Robinson unification [18] is given in [8]. The second
axiom (mgu_complete) is based on the usual ordering on substitutions:

s , s1 , s2: VAR SUBST

≤(s1 , s2) : bool = ∃ s : s2 = (s o s1)
mgu: [EQS → lift [SUBST ] ]

mgu_sound : AXIOM

∀(eqs:EQS): mgu(eqs) = up(s) ⇒ solves(s)(eqs)
mgu_complete : AXIOM

∀(eqs:EQS): solves(s)(eqs) ⇒ up?(mgu(eqs)) ∧ down(mgu(eqs)) ≤ s
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The predefined lift datatype adds a bottom element to a given base type, in this
case SUBST. This is useful for defining partial functions, particularly to indicate
the cases that unification fails.

The next step is to associate a set of type equations with each expression e,
in such a way that typability of e can be expressed in terms solvability of those
equations.

The generation of these equations is recursively defined on the structure of e.
This algorithm needs to generate new free type variables. In hand written proofs
this issue is often disposed of in a single remark stating that at certain points
fresh variables are introduced. This merely means that these variables do not
clash with variables used elsewhere. Obviously this solution will not work in a
machine verified proof, which forces us to formalize such a notion of freshness.
The easiest way to do this is by using natural numbers as type variables and by
explicitly maintaining a counter indicating the next free variable number. The
counter is incremented each time a fresh variable is required. This counter (below
named heap) is returned as an additional component of the result of generate.
Similar to [14], in our definition of generate we use two auxiliary functions called
fresh and next_bv. The first function is used to create a fresh instance of a type
scheme, i.e. a type in which bound scheme variables are substituted by fresh free
variables. The second function computes the offset with which our heap must be
increased such that uniqueness of fresh variables remains guaranteed.

fresh(heap:nat): [SCHEME → MTYPE ] = inst(λ(n:nat):t_fv(n+heap))
next_bv: [SCHEME → nat ] = reduce (λ(n:nat):n+1 ,λ(n:nat):0 ,maximum)
equa(t1 ,t2:MTYPE): EQS = cons((t1 ,t2) ,null)

generate(b:BASE)(e:EXPR ,t:MTYPE)(h:nat): RECURSIVE [nat , EQS ] =
CASES e OF

e_var(v): (next_bv(b(v))+h , equa(t ,fresh(h)(b(v)))) ,
e_const(c): (next_bv(en(c))+h , equa(t ,fresh(h)(en(c)))) ,
e_appl(f , a): LET (fh ,feqs) = generate(b)(f ,t_arr(t_fv(h) ,t))(h+1) ,

(ah ,aeqs) = generate(b)(a ,t_fv(h))(fh)
IN (ah , append(feqs ,aeqs))

ENDCASES

MEASURE e BY <<

The MEASURE specification is a standard part in the definition of recursive func-
tions such as generate. In PVS all functions are total. The measure is used to
show that the function terminates. This is done by generating a proof obligation
(a so-called Type Correctness Condition, TCC ) indicating that the measure
strictly decreases at each recursive call. In this case we can use the standard
subtree-ordering on elements inductive data types <<. This ordering is part of
the standard theory generated with each inductive data type.

As can be deduced from the PVS code, generate uses free type variables as
placeholders which are filled in later via unification. The advantage of separat-
ing these free variables from marked variables is that the substitution resulting
from unification is restricted to placeholders only. This appears to crucial when
formulating and proving the principal types property.



56 S. Smetsers and E. Barendsen

6 The Correctness Proof

In this section we show that type assignment has the principal type property.
The proof is divided into three steps. The first two steps concern correctness
of our procedure, i.e. soundness and completeness. In the third step our main
theorem is proven using both correctness and the properties of the unification
algorithm.

Soundness

The soundness property can be formulated as follows:
generate_sound: PROPOSITION

∀(b:BASE ,e:EXPR ,t:MTYPE ,n:nat ,s:SUBST):
solves(s)(generate(b)(e ,t)(n) ‘2) ⇒ (b |- (e ,t ** s))

This proposition is proven by induction on the structure of e. In contrast to [14],
we do not have any side-conditions with respect to the free variables occurring
in b. The proof itself is actually not difficult and relatively short (approximately
50 proof steps). This size is slightly misleading because it depends on many
intermediate results which were proved separately. The main lemma occurring
in the proof (relating the instance of a scheme ts to a substitution on a fresh
copy ts) is:

fresh_inst : LEMMA

∀(n:nat ,ts:SCHEME ,s:SUBST):
inst(λ(m:nat):s(n+m))(ts) = fresh(n)(ts) ** s

This lemma can be proven in just 15 steps, using structural induction on ts.

Completeness

The formulation as well as the proof of the completeness property is more subtle.

generate_complete: PROPOSITION

∀(m:nat ,n:(below?(m)) ,b:BASE ,e:EXPR ,t:(betweenT?(n ,m)) ,s1:(bsubst?(n ,m))):
(b |- (e , t ** s1)) ⇒

LET (nheap ,eqs) = generate(b)(e ,t)(m)
IN ∃(s2:(bsubst?(n ,nheap))): solves(s2)(eqs)

∧ restrict(s2)(between?(n ,m))= s1

To complete the proof we had to make some specific assumptions on the free
type variables occurring in the input type t and the substitution s1. These
assumptions are formulated using dependent types : types depending on values.
E.g. the predicate betweenT?(n ,m) states that any variable v occurring in t lies
between n and m. For substitutions the predicate bsubst?(n ,m) does something
similar: both domain and range of a substitution should be bounded by n and
m. The function restrict restricts s2 to elements of the specified set, in this
case between?(n ,m). The complexity of the proof is significantly greater than the
soundness proof: it requires some 1500 proof steps, not to mention the numerous
sublemmas that are involved. Similar to the proof in [14], the e_appl-case is not
only lengthy but also quite difficult.
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Principal Types

We finally arrive at one of the main goals of our exercise: the principal type
property. A necessary technicality is that we show that the principal type itself
is clean, meaning that there is no overlap between free and marked variables.
The latter is important because the generalization (as defined in section 3) of a
‘unhygienic’ type may lead to undesired name clashes.

Clean? : PRED [MTYPE ] = { t : MTYPE | disjoint?(fvs(t) ,mvs(t)) }

principal_types: THEOREM

∀(b:BASE , e:EXPR): ∀(t1 , t2:MTYPE):
(b |- (e ,t1)) ∧ (b |- (e ,t2)) ⇒

∃(t:(Clean?)): (b |- (e ,t)) ∧ t ≤ t1∧ t ≤ t2

Roughly, the proof proceeds as follows. Create a fresh variable, say v, and two sin-
gleton substitutions assigning t1 and t2 respectively to v. Use generate_complete
twice with t_fv(v) as t and the above singleton substitutions as s1. This re-
sults in two new substitutions, both solving the set of generated equations. By
mgu_complete we obtain the most general solution for these equations. Then the
combination of mgu_sound and generate_sound gives us a type t for e. Transform-
ing this type into a clean variant and showing that this variant is smaller than
or equal to both t1 and t2. This is just a matter of simple case distinctions.

7 Discussion

The use of the proof tool for conceptual development turned out to be very
beneficial. Inaccuracies stemming from implicit assumptions in theoretical expo-
sitions were quickly discovered and repaired. The formalization of the correctness
proof did not lead to any alterations in the basic theory: stability was achieved
after checking some basic properties.

The formalization of the correctness proof1 took about 2000 steps, comparable
to formalizations of similar syntactic theories. Our proofs could be optimized
further by adding more lemmas, replacing repeating patterns.

The present research is part of a larger project using PVS for both the ver-
ification of existing software [7] and the development of new software [8]. For
instance, the correctness of a scheduling protocol for a smart-card personaliza-
tion machine has been proven in [10]. This protocol was used as a case study
to test the power of model checkers. Due to their nature, model checkers were
only capable of verifying correctness for a machine with a limited amount of
personalization units. Using PVS it is shown that the correctness holds for any
number of units.

Comparable with e.g. [11], [9], our work should be considered as a contribution
to a broader goal leading to fully formalized (both functional and imperative)

1 All the proofs presented in this paper can be downloaded from
http://www.cs.ru.nl/S.Smetsers/files/principal.zip



58 S. Smetsers and E. Barendsen

languages and fully verified compilers. Most theorem proving in this area has
been done in Coq or LF. We prefer the more flexible proof style of PVS.

One of the PoplMark challenges is the treatment of variable binding. Several
solutions to this challenge have been reported, e.g., [5]. Most of these are based
on de Bruijn indices. Though [1] argues that this representation introduces too
much overhead in formal proofs, and therefore should be avoided, this is not
confirmed by any of the presented solutions. Moreover, our own experience also
points in this direction: we have proved subject reduction in PVS using the same
representation. It would be interesting to compare our approach with that of
[19] in more detail.

We have used the formalization of the principal type property to prove type
preservation for a program transformation using PVS [20]. It turned out to be
easy to connect our formalization to existing work on the particular transforma-
tion. It is crucial that our result allows the typing basis to be fixed in a proof.
A result about principal pairs would not be usable. The combination of these
results shows that in a core functional language like Mini-ML [6] principal types
can be computed effectively.

A variant of the principal type property has been proved in Isabelle [16], see
[15] and [14]. Our result is slightly more general. The main difference, however,
is our treatment of bases as parameters in the formal proof.

8 Conclusion

We have successfully formalized the syntax of expressions and types, as well as
a typing system with weak polymorphism. Our formalization includes a variable
administration to deal with mixed rôles of variables in systems with quantifiers
(such as polymorphic and existential type systems). The representation allows
for reasoning about these technical matters at a conveniently high level.

We have used PVS for two goals: consistent development of syntactical con-
cepts (such as typing) and verification of an algorithm.
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Abstract. In ordinary interpreters and executable specifications of op-
erational semantics the interpreted language is represented by an alge-
braic data type and the operations are functions having this data type as
argument. In this essay we reverse the roles of functions and data struc-
tures. Here the language constructs are represented by state transform-
ing functions belonging to some class. There are instances of this class
for the operations on the specified language. Typical examples of oper-
ations are reduction, pretty printing, and transformations. The state is
a data structure indicating the desired operation. The advantage of this
approach is that it is easy to add language constructs and operations
independently of each other.

1 Introduction

It is known for a long time that there is a close resemblance between seman-
tic descriptions and their implementation in functional programming languages.
My Ph.D. thesis [8] gives a description of bracket abstraction and the trans-
lation of Clean to ABC-code [10] in Miranda [26]. Nielson and Nielson [15] give
a nice overview of different kinds of semantics and the connection with their
implementations in functional programming. Many other papers use one pro-
gramming language to express the semantics of other languages, e.g. [12,21]. In
[9] we reviewed this technique and applied it to the semantics of more complex
systems like the iTask system [17]. Common to all these approaches is that the
language described is represented as an algebraic data type. The semantics of the
described language are functions taking the algebraic data type as an argument.
We can add other functions like pretty printers for the described language or a
function to determine the free variables. In a semantic framework operations like
pretty printing and transformations assign just an other meaning to a language.

To specify the semantics of iTask constructs in a typed way [19] Rinus pro-
posed to use functions instead of data structures to specify the meaning of iTask
primitives. This appears to work remarkably well since we can use function types
of the host language (here Clean) to describe type dependencies in the described
language (here the domain specific language iTask).

The idea to represent elements of the defined language by functions in the
defining language has been used before by Reynolds [21] and Carette et al. [2].
Function types are in most programming languages more expressive than alge-
braic data types. The advantage of this approach is that we can add constructs

P. Achten and P. Koopman (Eds.): Plasmeijer Festschrift, LNCS 8106, pp. 60–78, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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to the language by just adding a new function. The drawback is that the se-
mantic function takes a single type of event as argument and produces a tuple
containing all results. This makes it harder to add new operations. Each new
operation must be coded as a new constructor in the algebraic data type repre-
senting the events. In our iTask example there are constructors to model an input
event (reduction), print the current iTask structure etcetera. The result must be
embedded in the resulting tuple type.

Ideally we can add new operations as easily as in the algebraic data type
approach, and add language elements as simple as in the function based archi-
tecture. A class based approach can in principle cope with these wishes. Different
instances of the classes match the different operations. We can use functions with
the same names to implement the needed manipulations of the language con-
structs. By defining new classes as extension of former classes we can extend our
language. In this essay we study how well a class based approach works for the
translation of λ-calculus [1] to SKI-combinators [22,25].

Since we can extend the language and its manipulations independently we
have a real choice in the order of presenting these topics. Presenting them along
the language extension axis works as well as introducing the topics as a sequence
of new manipulations. In this essay we have chosen to use the manipulations
as the main structure of sections. Within each section we show how the various
language constructs are handled. Since this is an essay in the festschrift for Rinus
Plasmeijer we use Clean [20] as the host language to redefine the translation of
λ-calculus to SKI-combinators from [8].

2 The Expression Problem

Our desire to extend the language described and its manipulations independently
is in fact just another instance of the expression problem. This expression problem
is the ongoing quest for ways to extend data types and operations on them
independently without the need to change existing code. Phil Wadler [27] phrased
the expression problem as:

The goal is to define a data type by cases, where one can add new cases to
the data type and new functions over the data type, without recompiling
existing code, and while retaining static type safety.

In the standard way to define data types and functions on these data types
in a functional language like Clean it is straightforward to define new functions
on a data type. Consider for example the well-known Peano numbers:

: : Num = Zr | Sc Num

A show function for these numbers can be defined in the default fashion as:

: : Show :== [ String ]
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show : : Num → Show
show Zr = ["Zero" ]
show (Sc n) = ["Succ" : show n ]

In the same style we can define any number of operations we need.
The drawback of this approach is that all of these functions need to be updated

and recompiled when we extend the data type, for instance with the construct
Pred Num for predecessors.

2.1 Representing Data Types

Our solution is based on classes and interchanging the role of data and functions
on this data. Basically the functions take a state S as input and produce a
result of type R. In order to model the different manipulations we use a class of
functions with the same name instead of normal function. This allows us to use
the same name for a language constructs and define tailor-made meanings for it;
one meaning for each manipulation of the data structure. A class of functions of
type s → r and making instances for various s and r is the most general solution
for this programming task. The drawback of the general approach is that the
compiler is often unable to solve the overloading by determining the types to be
used as input and result. To prevent problems with solving overloading we use
the same type as input and result. This implies that an expression is a function
of type t → t in some class. We introduce the name Expr t for those functions:

: : Expr t :== t → t

The ‘type’ for Peano numbers in this representation is defined as:

class nat t
where

zr : : Expr t
sc : : (Expr t ) → Expr t

To increase the correspondence with ordinary data type definitions we can use
the uppercase identifiers Nat, Sc and Zr instead of the lowercase variants used
here. We used the lowercase variants to emphasize that these are no ordinary
types and data constructors.

2.2 Representing Functions

The show function from above is rephrased for the new representation as:

instance nat Show
where zr = Cons "zero"

sc n = Cons "succ" o n

Cons : : t [ t ] → [ t ]
Cons a x = [ a: x ]

The conversion to integers is defined very similarly:
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instance nat Int
where zr = const 0

sc n = (+) 1 o n

We can apply these definitions in a function like:

three : : Expr t | nat t
three = sc (sc ( sc zr ))

The argument supplied to this data type determines its interpretation.

Start = ( three ["." ] , three int )

int : : Int
int = undef

The definition of int is only used to determine the type of three in the second part
of the tuple. Since the value is never used we can safely use undef as actual value.
The show of three demonstrates that it is very well possible to use the input state.
Evaluation of this Start rule yields ( ["succ" ,"succ" ,"succ" ,"zero" ,"."] ,3) .

2.3 Extending the Data Type

We can extend the ‘type’ nat to whole numbers, z, by adding a predecessor
construct named pr. We introduce a class z to extend the expressions in nat.

class z t | nat t where pr : : (Expr t ) → Expr t

As expected the predecessor is very similar to the successor, sc. The class re-
striction nat t indicates that this ‘type’ is an extension of the natural numbers.
We can apply the ‘constructor’ pr only to expressions of type nat and z.

The ‘functions’ show and Int introduced above can be extended by appropriate
instances of z for the data types Show and Int respectively.

instance z Show where pr n = cons "pred" o n
instance z Int where pr n = f l i p (−) 1 o n

2.4 Binary Operations

The classes nat and z illustrate how we can define extendable types. The in-
stances of these classes define functions manipulating a single instance of such a
type. To demonstrate how multiple arguments of such a type can be handled we
define addition of our Peano numbers. For binary operators like addition there
are several possibilities. An instance of the overloaded operator+ for the integer
interpretation of expressions is:

instance + (Expr Int ) where (+) x y = λs . x s + y s

Evaluating Start = 10 ∗ ( three + three) int yields 60.
For a more general addition we define the class plus to add objects of type

Expr t and instances of this class to add integers and strings.
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class plus t where plus : : (Expr t ) (Expr t ) → Expr t
instance plus Int where plus x y = λs . x s + y s
instance plus Show where plus x y = λs . x [" + ":y s ]

With these definitions we can add our nat numbers for integers and strings:

Start = ( s ix int , s ix ["," ] )
where s ix : : Expr t | plus , nat t

s ix = plus three three

This expression yields 6 succ succ succ zero + succ succ succ zero , when we
show only the basic values. It is obvious that plus applies the initial state to both
of its arguments and applies the appropriate ‘plus’ operation to the resulting
values. It is also possible to compose the result of the addition before we apply
it to the initial state with the help of a data type Sum:

: : Sum t = Sum (Expr t )

instance nat (Sum t ) | nat t
where zr = id

sc n = λ(Sum f ) . n (Sum ( sc f ))
instance z (Sum t ) | z t where pr n = λ(Sum f ) . n (Sum (pr f ))

fromSum : : (Sum t ) → Expr t
fromSum (Sum f ) = f

The resulting expression is very similar to the standard Church representation
of Peano numbers in λ-calculus [1]. In order to use this new addition in the
previous Start rule we just have to replace the definition of s ix by:

s ix : : Expr t | plus , nat t
s ix = fromSum ( three (Sum three ))

A limitation of our approach is that it can only ‘match’ the othermost construc-
tor. Well known optimisations of the form sc (pr n) = n and pr ( sc n) = n can-
not be defined directly in this formalism. A traditional algebraic data type and
the associated conversions are needed for such optimisations:

: : Peano = Zr | Sc Peano | Pr Peano

instance nat Peano
where zr = const Zr

sc n = λp . case n p of
Pr m=m
p = Sc p

instance z Peano
where pr n = λp . case n p of

Sc m=m
p = Pr p

fromPeano : : Peano → Expr t | z t
fromPeano Zr = zr
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fromPeano (Sc n) = sc (fromPeano n)
fromPeano (Pr n) = pr (fromPeano n)

A variant of the Start rule given above is used to demonstrate the use of these
optimisation rules.

Start = (twoOpt int , twoOpt ["" ] )
where twoOpt : : Expr t | z t

twoOpt = fromPeano (two Zr)
two : : Expr t | z t
two = fromSum (one (Sum one))
one : : Expr t | z t
one = sc (sc (pr zr ))

The value two yields the value c ( sc (pr (c (sc (pr zr ))))) while twoOpt yields
the class sc (sc zr ). The applications of twoOpt demonstrate that this value is
a class that can still be applied to different states to obtain different behaviour.
The reduction result is (2 ,["succ" ,"succ" ,"zero" ,"." ] ) .

The price to be paid for the advantage of nested pattern matches is that we
cannot extend our type for Peano numbers no longer step by step.

2.5 Related Work

Much work has been done to solve the expression problem. We discuss the closest
related approaches in some detail. Lämmel and Ostermann [11] have used type
classes in a more standard way to tackle the expression problem. Essential steps
in their approach are: 1 each constructor is placed in a separate data type, 2
each operation is modelled by a class. In Clean terms the data type for natural
numbers becomes:

: : Zr = Zr
: : Sc x = Sc x

The conversion to integers and pretty printing can be defined as:

class int x : : x → Int
instance int Zr where int Zr = 0
instance int (Sc x) | int x where int (Sc x) = int x + 1

class show x : : x → [ String ]
instance show Zr where show Zr = ["Zr" ]
instance show (Sc x) | show x where show (Sc x) = ["Sc" : show x ]

We can extend this to the whole numbers and associated operations by defining:

: : Pr x = Pr x
instance show (Pr x) | show x where show (Pr x) = ["Pr" : show x ]
instance int (Pr x) | int x where int (Pr x) = int x − 1

A simple application computes the value of an expression and shows its structure:

Start = ( int one , show one)
where one = Sc (Pr (Sc Zr))
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This program yields (1 ,["Sc" ,"Pr" ,"Sc" ,"Zr" ] ) . This approach enables the re-
quired type safe possibilities to extend data types and their manipulations in-
dependently. A limitation of this approach is that there is very limited control
over the use of the type constructs. For instance the type system does not help
us to make pure natural numbers (containing only Zr and Sc) in a context where
the definition of Pr is available. In fact, any ‘constructor’ can be added to such
a natural number if the required operations are defined as a class instance. It is
also hard to define optimisation rules of the form opt (Pr (Sc x)) = x and apply
them to all constructors in an instance of a data type like Sc (Pr (Sc Zr)).

In [23] Swierstra rephrases a GADT based approach from current day func-
tional programming folklore. The basic idea is to embed all actual data types in
a uniform representation. All manipulations unpack this representation to access
the real arguments. Upon finishing their job the function stores the result again
in the generic representation. The required packing and unpacking complicates
programming.

The open data types and open functions proposed by Löh and Hinze are a
language extension to solve the expression problem [13].

3 Expressions for an Executable Semantics

In this section we apply our attempt to solve the expression problem to define
an extendable executable semantics of simple expressions. We use the same type
t → t to represent expressions and assign the name Expr t to this type. As basic
expressions, Exp, in the described language we have constants, cons, function
application, app, and functions, fun.

class Exp t
where cons : : x → Expr t | toString , TC x

app : : (Expr t ) (Expr t ) → Expr t
fun : : Fun String → Expr t

Any type x can be used with a cons provided that instances of the classes toString
andTC (for dynamics) are defined for the type x. The reasons for those type con-
straints will be explained below. Although the types in an application, app, are
parameterised, there is no type constraint an the function and its argument
guarantying that the arguments fits the function. A function, fun, takes an ex-
pression transformer function, Fun, as argument that can only be used during
reduction. Since we want to model only primitive functions the only thing we can
do with them is apply them to arguments during evaluation of the expression.
This implies that we cannot do anything else with these functions, hence we add
a string as name for the primitive function for printing purposes.

Since we do not want to restrict ourselves to the values manipulated within
these expressions we pack them into dynamics whenever needed and unpack
them again when the real value is needed [16,18].

: : Fun :== (Expr Eval) → Expr Eval
: : Eval = Eval Val | Fun Fun String
: : Val :== Dynamic
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We discuss evaluation of expressions in detail in Section 6. First we present some
extensions of these expressions.

3.1 Variables and λ-Abstraction

In order to extend these expressions to a full λ-calculus we need abstraction of the
form λv . expr and variables. We represent those expressions by the functions
abst and var respectively. Together these functions form the class Lambda. The
class restriction Exp t indicates that it is an extension of the expressions in the
class Exp. Every instance of Lambda should also have an instance of Exp, the basic
cases for expressions.

class Lambda t | Exp t
where

abst : : Var (Expr t ) → Expr t
var : : Var → Expr t

: : Var :== String

The type synonym Var indicates that we use strings as names for variables.

3.2 Local Recursive Definitions

The final extension of expressions in this essay are potentially recursive, local
definitions. The let expressions are indicated by the function Let. Do not let
the uppercase identifier used as name for this function fool you, this is really a
function. We only use an identifier starting with an uppercase symbol since the
obvious names let and where are predefined keywords in Clean.

class Let t | Lambda t
where

Let : : Var (Expr t ) (Expr t ) → Expr t

Note that this is an extension of expressions in the class Lambda rather than
another independent extension of Exp. This is not a limitation of the semantic
constructions, but appears to be convenient during reduction of Let expressions.

It is of course possible to add more expression constructs in the same fashion.
However, the given constructs are sufficient for the purpose of this paper.

4 Pretty Printing

As first manipulation, or meaning, of these expressions we implement pretty
printing. A pretty print is just a list of strings. When this list of strings is a
pretty printed version of the expression when is shown on a console or written
to a file. We define a data structure Show to be used as state in this class for
the expressions. The instance for free variables below shows why we define an
instance for the tailor made type Show instead of a plain list of strings, [ String ] .
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This example shows that the role of data structures and functions is reversed
in this function based description of semantics.

The simple expressions are printed by the class instance for Show of the func-
tions in the class Exp. The instance for cons uses the class restriction toString

in the class definition to ensure that there is toString function for this constant.
Apart from both class restrictions there are no other limitations on constants.
By design any type of values can be used here. We insert parentheses to disam-
biguate nested occurrences of app in the pretty printed version.

: : Show = Show [ String ]

instance Exp Show
where cons x = show ( toString x)

app f a = show "(" o f O a o show ")"

fun f s = show s

This uses the auxiliary function Show to add elements to the list of strings. The
infix operator O behaves very similar to the infix function composition, it only
adds a space between the shown elements.

show : : t Show → Show | toString t
show s (Show l ) = Show [ toString s : l ]

(O) in f ix r 9 : : (Expr Show) (Expr Show) → Expr Show
(O) f g = f o show " " o g

Pretty printing the expression app ( fun (oneBasic ((+) 1)) "inc") (cons 60)

yields ( inc 60). The used primitive function oneBasic is defined in Section 6.1.

4.1 Pretty Printing λ-Expressions

Variables are pretty printed by adding their name in the list of strings. An
abstraction is pretty printed similar to λ-expressions in a functional program-
ming style, using a backslash to represent the λ. The variable and the body are
separated with a dot. Parentheses disambiguate any nested expressions.

instance Lambda Show
where var v = show v

abst v b = show "(\\" o show v o show "." o b o show ")"

This prints the expression abst "x" (app (var "x") (cons 60)) as (\x. (x 60)).
Note that this example mixes pretty printing of Lambda and Exp.

It is straightforward to extend the state Show with information to indicate
whether parentheses are really necessary in a particular situation.

4.2 Pretty Printing Local Definitions

In exactly the same manner we can pretty print Let-expressions:

instance Let Show
where Let v body expr

= show "let" O show v o show " = " o body o show " in\n" o expr
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5 Free Variables

In this section we show how to compute the free variables of an expression. We
define a type Free to be used as state in the class instance to be defined for this
operation.

Since a variable of type Var is just a string indicating its name, it is obvious
that we cannot use a single state of type [ String ] for pretty printing and for
determining free variables. Clean needs different type of states to distinguish
those different operations.

Constants and primitive functions do not contain free variables, hence they
yield the identity functions id for this state. For an application we search both
subexpressions for free variables by a function composition.

: : Free = Free [Var ]

instance Exp Free
where cons x = id

app f a = f o a
fun f s = id

5.1 Free Variables in λ-Expressions

Determining the free variables in λ-expressions is more interesting. For a variable
expression we inject the name of the current variable name in the list of variable
names in the state. For an abstraction we determine the free variables in the
argument expression, remove the given variable from these variables and finally
yield a new state with free variables that is the union of the old variables in the
state and the free variables in this abstraction.

instance Lambda Free
where var v = λ(Free vars ) . Free ( in ject v vars )

abst v b = λ(Free vars ) . let (Free loca l ) = b (Free [ ] )
in Free (union vars (remove v loca l ))

These definitions use the functions in ject , union and remove to mimic set oper-
ations in lists. These functions have the obvious implementation.

in ject : : a [a ] → [a ] | < a
union : : [a ] [a ] → [a ] | < a
remove : : a [a ] → [a ] | < a

The class restriction < a ensures an ordering to allow a somewhat efficient im-
plementation.

5.2 Free Variables in Local Definitions

In very much the same way we determine free variables in Let-expressions. We
determine the free variables in the body of the local definition and the expression.
For the result we take their union and remove the name of the local definition.
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Finally we yield the union of the variables of this definition and the definitions
that were already present in the state.

instance Let Free
where Let v body expr

= λ(Free vars ) .
let (Free fb ) = body (Free [ ] )

(Free fe ) = expr (Free [ ] )
in Free (union vars (remove v (union fb fe )))

6 Evaluation of Expressions

For the evaluation of expressions we define a state containing the result of reduc-
tion. Since we do not know the type of the result, nor want to put any restriction
on the type of the result we store it as a dynamic in the state. Hence, a constant
expression cons just transforms the given value to a dynamic. This explains the
presence of the class restriction TC given in the definition of a constant. This
class restriction ensures that it is possible to transform the given value to a dy-
namic. To enable tracing we do not only store a function in a dynamic as result
of evaluation, but we pair this function with its name in a tuple stored in the
dynamic.

The instance of expression, Exp for evaluation, Eval (from Section 3), just
does this. In the definition for application, app, we first evaluate the left sub-
expression. If this yields a function we apply it to the right sub-expression of
the app as function argument. This implements lazy evaluation, the function
argument is not evaluated before the function is applied.

instance Exp Eval
where cons x = λe . Eval (dynamic x)

app f a = λe . case f e of
Fun f s = f a e
eval = abort ("Cannot apply " + toString eval )

fun f s = λr . Fun f s

These definitions show that the state is only used to hold results. The type of
expressions, Expr, forces us to pass a state to expressions in order to evaluate
them, but no information from the state passed top-down to an expression is
used.

At the expense of an additional constructor Fun Fun String in the type Eval

we can prevent the packing and unpacking of functions into and from dynamics.
This give a speedup of about a factor 30 in the evaluation of expressions. To
specify the semantics this speed is not relevant and we prefer a single constructor
data type as state in the evaluation.

6.1 Primitive Functions

Before we continue with the evaluation of other expressions we define some
primitive functions. Note that we can store any function of the appropriate type
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in a fun expression. Hence the number of primitive functions is in no way limited
by the given representation of expressions.

The instance of app for Eval shows that our expressions really use Currying,
they take their arguments one by one [3,1] Each primitive function takes an
expression as argument. It yields either a new function or a constant.

The function oneBasic is parameterised by the function of type a→b to be
applied. It gets an expression as argument, evaluates this expression (by applying
it to the given toBasic). Next the given function is applied to the basic value
and the result is stored in an expression evaluation state with return.

oneBasic : : (a→b) (Expr Eval ) → Expr Eval | TC a & TC b
oneBasic f x = return o f o toBasic x

toBasic : : (Expr Eval) Eval → a | TC a
toBasic expr eval

= case expr eval of
(Eval (x::aˆ )) = x
eval = abort ("Value expected instead of " + toString eval )

return : : x → Eval | TC x
return x = Eval (dynamic x)

As a typical example the increment function for our expressions can be defined
as fun (oneBasic inc ) "inc". The expression that can compute the increment of
sixty is defined as app ( fun (oneBasic inc ) "inc") (cons 60).

In a similar way we can define functions with more arguments. It appears to
be convenient to have also functions with a more specific type, like the func-
tion twoInts that requires two integer expressions as argument. This solves the
overloading when we use overloaded functions, like+,−, ∗,< and ==.

twoInts : : ( Int Int → b) String → Expr t | TC b & Exp t
twoInts f s = fun (λx e . Fun (oneBasic ( f (toBasic x e))) (s + " x")) s

This function solves the overloading in an application like the function plus that
defines addition for our expressions and eq that compares two integers.

plus : : (Expr t ) | Exp t
plus = twoInts (+) "plus"

eq : : (Expr t ) | Exp t
eq = twoInts (==) "eq"

By defining an appropriate instance for the infix operation+, we can even define
an infix addition for our expressions:

instance + (Expr t ) | Exp t where (+) x y = app (app plus x) y

A simple application of these applications is:

Start = (cons 18 + cons 42) (Eval undef)

Executing this yields a dynamic containing the integer 60. We can pretty print
the expression cons 18 + cons 42 by replacing the state Eval undef by the state
Show [ ] . The results in ((plus 18) 42).



72 P. Koopman

Conditionals. In pretty much the same way we can add the conditional as just
another function to our expressions. The conditional collects three arguments. As
soon as all arguments are available the first argument is evaluated to a Boolean.
Depending on the Boolean value either the then-part (second argument), or the
else-part (third argument) is evaluated.

IF : : (Expr t ) | Exp t
IF = fun I f "IF"

where I f : : (Expr Eval ) → (Expr Eval )
I f c = fun then "then"

where then : : (Expr Eval) → (Expr Eval)
then t = fun else "else"

where else : : (Expr Eval) → (Expr Eval)
else e = λeval . i f (toBasic c eval ) ( t eval ) (e eval )

For clarity we have named and typed every function used to process the next
element in this conditional. Often we will use λ-expressions since they produce
more compact code.

Note that all these primitive functions can be added to our expressions locally.
The class definitions representing our expressions are untouched. We only define
some functions that can be used as primitive functions by supplying them as
argument to the fun case of our expressions.

6.2 Evaluating λ-Expressions and Expressions with Local
Definitions

Instead of defining evaluation for λ-expressions by implementing a β-reduction
rule we use a combinator based implementation of these expressions. The reason
for this choice is that in general we cannot prevent name conflicts. These name
conflicts can of course be solved by an appropriate renaming, an α-conversion,
but these problems are elegantly avoided by combinator reduction. That is why
we leave the evaluation of Lambda-expressions and Let-expressions undefined:

instance Lambda Eval
where

var v = undef
abst v b = undef

instance Let Eval
where

Let v b e = undef

7 Bracket Abstraction

In order to reduce Lambda-expressions and Let-expressions we translate them to
combinators. Combinators are here just some primitive functions. We only use
four of those combinators: S, K, I , and Y. Minimalists can reduce the number of
combinators and people aiming for efficiency can introduce more combinators.
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7.1 Combinators

As mathematical functions the combinators are defined as [22,25,1,8]:

I x = x

K x y = x

S f g x = (f x) (g x)

Y f = f (Y f)

The definition of those combinators as primitive functions in our framework is:

I : : (Expr t ) | Exp t
I = fun (λx.x ) "I"

K : : (Expr t ) | Exp t
K = fun (λx.fun (λy.x ) "K x") "K"

S : : (Expr t ) | Exp t
S = fun (λ f . fun (λg. fun (λx.app (app f x) (app g x)) "S f g") "S f") "S"

Y : : (Expr t ) | Exp t
Y = fun (λf.app f (app Y f )) "Y"

7.2 Bracket Abstraction

The translation of λ-expressions to combinator expressions is known as bracket
abstraction. In a simple approach we can define this bracket abstraction as a
phase in the evaluation of expressions. Bracket abstraction becomes a function
of type Expr Eval.

Here we use a slightly more sophisticated approach. Instead of an expression
that can only be evaluated, we use a version of the algorithm that produces the
expressions encoded as classes. This implies for instance that we will be able to
pretty print the produced combinator expressions as well as to evaluate them.
Since the Clean system assumes that in every application of some class member
in a single Clean function the same class instance will be used, we have to apply a
trick to circumvent the restrictions this assumption imposes on our expressions.
The simplest solution to this problem is to pack the class members in a dynamic
and unpack them by need.

The state for bracket abstractions, BracAbs, has three different values. Scan
just traverses an expression looking for possibilities to apply abstraction. With
the state Abs v the algorithm is abstracting variable v. The state SKI d is used
to yield the dynamic d.

: : BracAbs = Scan | Abs Var | SKI Dynamic

Bracket abstraction for basic expressions is defined as:
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instance Exp BracAbs
where

cons c = λba . case ba of
Scan = lambda2bracAbs (cons c)
Abs v = lambda2bracAbs (app K (cons c))

app f x = λba . appSKI ( f ba) (x ba) ba
where

appSKI : : BracAbs BracAbs BracAbs → BracAbs
appSKI (SKI ( f : : ∀t : (Expr t ) | Lambda t ))

(SKI (x : : ∀t : (Expr t ) | Lambda t )) ba
= case ba of

Scan = lambda2bracAbs (app f x)
Abs = lambda2bracAbs (app (app S f ) x)

fun f s = λba . case ba of
Scan = lambda2bracAbs ( fun f s)
Abs v = lambda2bracAbs (app K ( fun f s ))

This uses the following function to pack an expression as a class in a dynamic.

lambda2dynamic : : (∀a: (Expr a) | Lambda a) → Dynamic
lambda2dynamic f = dynamic f : : ∀a: (Expr a) | Lambda a

lambda2bracAbs : : (∀a: (Expr a) | Lambda a) → BracAbs
lambda2bracAbs f = SKI (lambda2dynamic f )

7.3 Bracket Abstraction for λ-Expressions

Bracket abstraction for λ-expressions is the real reason why we perform this
transformation. When we are abstracting a variable x and encounter the same
variable as expression we yield the combinator I, and if we encounter a different
variable y we construct the expression K y.

When we encounter an abstraction in scanning mode we abstract the variable
for the given body: body (Abs v). When we are already abstracting a variable
we first abstract the locally defined variable v and next the variable we were
abstracting. As optimisation we throw away the actual argument with a K-
combinator when both variables are identical.

instance Lambda BracAbs
where

var v = λba . case ba of
Scan = lambda2bracAbs (var v)
Abs w | v == w

= lambda2bracAbs I
= lambda2bracAbs (app K (var v))

abst v body
= λba . case ba of

Scan = body (Abs v)
Abs w

| v == w // some optimising code
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= lambda2bracAbs (app K (bracAbs2lambda (body (Abs v))))
= bracAbs2lambda (body (Abs v)) (Abs w)

7.4 Bracket Abstraction for Local Definitions

Instead of doing something smart for the transformation of local definitions, we
simply transform a local definition to a λ-expression. We insert a Y combinator
to handle recursion in the local definition.

instance Let BracAbs
where

Let v body expr = app (abst v expr) (app Y (abst v body))

8 Some Applications

In order to demonstrate that these transformations of expressions work as in-
tended we show some examples. Our first example introduces two local defi-
nitions with the same variable. The definition of fac is the common recursive
definition of the factorial function.

e1 : : (Expr t ) | Let t
e1 = Let "half"

(abst "n" (var "n" / cons 2))
(Let "fac"

(abst "n"

(app (app (app IF (app (app eq (var "n")) (cons 0)))
(cons 1))
(var "n" ∗ app (var "fac") (var "n" − cons 1))

)
)
(app (var "half") (app (var "fac") (cons 5))))

This definition is pretty printed as:

let half = (\n . ((divide n) 2)) in
let fac = (\n . ((( IF ((eq n) 0)) 1) (( times n) ( fac ((minus n) 1))))) in
(half ( fac 5))

By applying this expression to the state Scan we execute the bracket abstrac-
tion algorithm. By applying the obtained combinator expression to the state
Eval undef we can reduce it. This produces the desired result 60.

Our second example is a well know higher order expression with four applica-
tions of the function twice; the expression twice twice twice twice (plus 1) 0.

e2 : : (Expr t ) | Let t
e2
= Let "twice"

(abst "f" (abst "x" (app (var "f") (app (var "f") (var "x")))))
(app (app (app (app (app (var "twice") (var "twice")) (var "twice"))

( var "twice")) (app plus (cons 1))) (cons 0))
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Pretty printing this expression yields:

let twice = (λ f . (λx. ( f ( f x)))) in
((((( twice twice ) twice ) twice ) (plus 1)) 0)

In the same way we can translate this to a combinator expression. The result of
pretty printing the obtained combinator expression is:

(((S ((S ((S ((S ((S I ) I )) I )) I )) ((S (K plus )) (K 1)))) (K 0)) (Y ((S
((S (K S)) ((S ((S (K S)) ((S (K K)) (K S)))) ((S ((S (K S)) ((S (K K))
(K K)))) (K I ))))) ((S ((S (K S)) ((S ((S (K S)) ((S (K K)) (K S)))) ((S
((S (K S)) ((S (K K)) (K K)))) (K I ))))) ((S (K K)) (K I ))))))

Evaluating the combinator expression yields the desired result 65536.

9 Discussion

This essay shows how to formulate the semantics of expressions by functions.
These functions are bundled in classes. We can extended the language by defining
new classes as extension of existing classes. The operations on these expressions
become instances of the classes.

Compared to traditional formulation of semantics we have swapped the role
of functions and data types. Traditionally the language described and manipu-
lated is represented by an algebraic data structure and the manipulations are
functions taking this data structure as argument. Here the language constructs
are functions and there are data structures indicating the desired manipulation.
The advantage of this approach is that it is easy to add language constructs
and operations independently of each other. In fact we introduced yet another
attempt to solve the expression problem: the ongoing quest for type save ways
to extend data types and operations on them independently without the need to
change existing code. Although our approach work well for the examples shown
there are some limitations. First, we cannot use nested pattern matching without
the needed to introduce a standard algebraic data type and all the associated
limitations. In addition we inherit all the limitations associated with type classes.

Much work has been done on GADTs to improve the type correctness of
interpreters and semantic descriptions, e.g. [14,4,7]. GADTs provides a type safe
way to construct expressions in the described languages. We will investigate how
these approaches can be mixed.

An alternative approach to specify semantics of extensible languages can be
based on extensible algebraic data types, as available in Clean and other lan-
guages [28,24]. The described language is represented by such an extensible data
type and hence can be extended. The limitation of such an approach is that
the manipulation functions usually cannot be extended is a similar way. Com-
pared to the work of Lämmel [11] we can indicate the desired structure in the
described expressions. Compared to the approach described by Swierstra [23]
our expressions does not require repeated packing and unpacking.

In the future we want to polish this approach to describe the semantics. It is
worthwhile to try to get rid of as many dynamics as possible. The introduction
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of user defined data structures is a desirable extension of the described language.
These data structures can be transformed functions as outlined in [6,5].
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V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 224–267. Springer, Heidelberg (2010)

10. Koopman, P.W.M., van Eekelen, M.C.J.D., Plasmeijer, M.J.: Operational machine
specification in a functional programming language. Softw., Pract. Exper. 25(5),
463–499 (1995)
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Abstract. Functional programming advocates a style of programming
in which the programmer seeks to find a sufficiently small, yet powerful,
set of abstractions that capture an entire class of problems, and use these
abstractions to solve a concrete problem. I illustrate this by means of a
case study in which I implement the game TraxTM . In this turn-based
game two players attempt to create either a closed loop of a line of their
own color, or make the line connect opposite ends of a tile set of some pre-
scribed minimal dimensions. TraxTM is an attractive case because it has
interesting computational problems, for which I use classical functional
techniques, but also because it is a distributed multi-user application,
for which I use the more recently developed iTask formalism.

1 Introduction

During my computer science studies at the University of Nijmegen my first ex-
posure to functional programming was in 1987 – 1988 in a series of courses
taught by Rinus Plasmeijer and Marko van Eekelen. Two appealing aspects of
these courses were that we were asked to develop programs in David Turner’s
programming language Miranda1 [1,2] and we were taught how functional pro-
grams can be compiled to efficient code using the intermediate language Clean
(version 0.6 at that time). I learned to appreciate the beauty of functional pro-
gramming (languages) and the semantic beauty of term graph rewriting [3,4] of
which Clean was and still is an implementation.

In this essay I explain why ever since my first exposure to it, functional pro-
gramming matters to me. As a starting point, I refer to John Hughes’ seminal
1984 paper [5] in which he argues that functional programming matters because
it offers glue with which to structure programs in an improved modular and
reusable way, through the use of higher order functions and lazy evaluation.
He sets the stage for how to go about solving a problem: “It is also the goal
for which functional programmers must strive - smaller and simpler and more
general modules, glued together with the new glues we shall describe.” ([5], pg.4).

When solving a computational problem, higher order functions improve the
level of abstraction of a solution because instead of solving one particular prob-
lem a solution for an entire class of problems is developed. Lazy evaluation is a

1 Miranda is a trademark of Research Software Ltd.

P. Achten and P. Koopman (Eds.): Plasmeijer Festschrift, LNCS 8106, pp. 79–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



80 P. Achten

consequence of the fundamental referential transparency property of pure func-
tional programming languages. No matter in what order a computing device
goes about determining the final result of my program, it is guaranteed to be
uniquely defined if it exists. Hence, during problem solving I can concentrate on
whether my program has a solution and worry much less how this solution is
going to be computed. Developing a functional program feels a lot like playing
a game in which I know that the programming language and compiler stick to
the same rules as myself.

I demonstrate the style of functional programming by showing how to imple-
ment the game TraxTM , which was brought to my attention by Rinus a couple
of years ago. It is a 2-person turn-based tile game in which the players attempt
to create either a closed loop of a line of their color (white or red) or make the
line connect the far ends of the board that must have some minimal dimensions.
Fig. 1 gives two examples of these winning states.

Fig. 1. Winning states for red: a closed loop (left) or a winning line (right)

Although TraxTM is a small and elegant game, it contains a number of suffi-
ciently challenging problems, such as determining what tiles a player is allowed
to place at which locations, determining if a configuration of tiles contains closed
loops or winning lines, and how to prescribe and control the player actions. The
specification of any game consists of two major parts: one part that introduces
its concepts and operations – what the game is about – and one part that spec-
ifies what the valid actions are for each player – how to play the game –. The
first part, described in Sect. 2, uses classical functional programming language
features such as the above mentioned higher order functions and lazy evalua-
tion, but also algebraic and record data types to model the domain of discourse
accurately, generic functions [6,7] to avoid boiler plate specifications, and list
comprehensions to deal elegantly with collections, finite maps, streams, and op-
erations on them. The second part, described in Sect. 3, uses the iTask formalism
[8,9]. Following John Hughes’ adage, the peculiarities of TraxTM are abstracted
from first, after which it is easier to actually implement the game. It turns out
that this abstraction has striking similarities with the Racket big-bang approach
[10,11]. I discuss this in more detail in Sect. 4. Finally, in Sect. 5, I hope to have
explained to you why functional programming matters to me.
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2 What Trax Is About

This part of the TraxTM specification deals with the elements of the game. I
proceed bottom-up and start with basic elements (Sect. 2.1), show how to match
two tiles (Sect. 2.2), create only correct tile configurations (Sect. 2.3), define the
concept of mandatory moves (Sect. 2.4), and finally compute the sets of closed
loops and winning lines (Sect. 2.5).

2.1 Tiles, Lines, Coordinates

In this section all basic elements are defined that are needed in the TraxTM

specification. This amounts to modeling the entities as well as operations on
these entities by means of data types and access functions.

A TraxTM tile has two sides, each displaying a white line and a red line. On the
one side the lines cross each other, and on the other side they evade each other.
These sides are placed in six different configurations (Fig. 2). A tile configuration

vertical horizontal northwest northeast southeast southwest

Fig. 2. The six possible tile configurations

is modeled by defining which edges are connected by the red line:

:: Tile = { end1 :: !Edge, end2 :: !Edge }

:: Edge = North | East | South | West

The names vertical, horizontal, and so on are each of type Tile and identify the
tiles as depicted in Fig. 2. For instance:

vertical = { end1 = North, end2 = South }

When modeling entities with data types it is a good habit to think right away
which basic operations (such as comparison, arithmetic, printing, parsing) are
sensible because this unlocks useful general purpose functions (such as sorting,
searching, printing, storage via (de)serialization). These functions exist as higher-
order polymorphic functions and overloaded functions. The basic operation is
typically an argument of these general purpose functions (explicit in case of
higher-order functions and implicit in case of overloaded functions). Many basic
operations can be expressed by induction on the structure of types for which
purpose generic functions can be deployed. The concise declarations:

derive gEq Edge

derive gLexOrd Edge
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make structural equality and lexical ordering available for Edge values.
In this case study it is useful to be able to enumerate all elements of a finite

(and small) domain. This is a typical example of a custom generic function:

generic gFDomain a :: [a]

gFDomain{|Bool|} = [False,True]

gFDomain{|Char|} = map toChar [0 .. 255]

gFDomain{|UNIT|} = [UNIT]

gFDomain{|PAIR|} dx dy = [PAIR x y \\ x <- dx, y <- dy]

gFDomain{|EITHER|} dx dy = map LEFT dx ++ map RIGHT dy

gFDomain{|CONS|} dx = map CONS dx

gFDomain{|FIELD|} dx = map FIELD dx

gFDomain{|OBJECT|} dx = map OBJECT dx

A detailed explanation of this function is out of the scope of this essay. In a
nutshell, the last six lines define the induction on the structure of types, and the
first two lines define the meaning for the basic types Bool and Char. Enumeration
of all Edge values can be derived from this recipe:

derive gFDomain Edge

For Tile values the generic scheme generates too many values, so the generic
scheme must be overruled:

gFDomain{|Tile|} = map fromTuple [(West,East),(North,South),(North,West)

,(North,East),(South,East),(South,West)

]

Other sensible basic operations on Tile and Edge values are comparison (==
and <), printing (toString), and taking the opposite value (~). Their definitions
are straightforward:

instance == Tile

where == {end1=a1,end2=a2} {end1=b1,end2=b2}

= (a1,a2) == (b1,b2) || (a2,a1) == (b1,b2)

instance toString Tile

where toString tile = lookup1 tile [(horizontal,"horizontal")

,(vertical, "vertical" )

,(northwest, "northwest" )

,(northeast, "northeast" )

,(southeast, "southeast" )

,(southwest, "southwest" )

]

instance ~ Tile

where ~ tile = lookup1 tile [(horizontal, vertical )

,(vertical, horizontal )

,(northwest, southeast )

,(northeast, southwest )

,(southwest, northeast )

,(southeast, northwest )

]

gEq {|Tile|} t1 t2 = t1 == t2
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instance == Edge where == e1 e2 = e1 === e2

instance < Edge where < e1 e2 = (e1 =?= e2) === LT

instance ~ Edge where ~ e = case e of
North = South

South = North

West = East

East = West

On many occasions, it is necessary to find a value v in a list of key-value pairs
(k, v) using a key k. The lookup and lookup1 search functions capture this pattern
(they are similar to the Haskell Prelude lookup function):

lookup :: !k ![(k,v)] -> [v] | Eq k

lookup key table = [v \\ (k,v) <- table | k == key]

lookup1 :: !k ![(k,v)] -> v | Eq k

lookup1 key table = hd (lookup key table)

The line color entity is defined in the same spirit as edges :

:: LineColor = RedLine | WhiteLine

derive gFDomain LineColor

derive gEq LineColor

instance == LineColor where == c1 c2 = c1 === c2

instance ~ LineColor where ~ RedLine = WhiteLine

~ WhiteLine = RedLine

A configuration of tiles such as those depicted in Fig. 1 is called a trax. A
simple way to model a trax is by listing the tiles and their coordinates:

:: Trax = { tiles :: ![(Coordinate,Tile)] }

:: Coordinate = { col :: !Int, row :: !Int }

derive gEq Coordinate

derive gLexOrd Coordinate

derive gPrint Coordinate

instance == Coordinate where == c1 c2 = c1 === c2

instance < Coordinate where < c1 c2 = (c1 =?= c2) === LT

instance toString Coordinate where toString c = printToString c

instance zero Coordinate where zero = {col=zero, row=zero}

instance zero Trax where zero = { tiles = [] }

instance == Trax where == t1 t2 = sortBy fst_smaller t1.tiles

==

sortBy fst_smaller t2.tiles

gEq{|Trax|} t1 t2 = t1 == t2

col {col} = col

row {row} = row

fst_smaller (a,_) (b,_) = a < b

For navigation, we introduce functions to compute next coordinates:
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north c = {c & row = c.row-1}

south c = {c & row = c.row+1}

west c = {c & col = c.col-1}

east c = {c & col = c.col+1}

go North = north

go South = south

go West = west

go East = east

Finally, of a Trax we need to know its current number of tiles (nr_of_tiles),
the minimum and maximum values of the coordinates (bounds), the number of
columns and rows that a trax occupies (dimension), and which tile, if any, can be
found at a coordinate (tile_at). We wind up this section with their definitions:

nr_of_tiles :: !Trax -> Int

nr_of_tiles trax = length trax.tiles

bounds :: !Trax -> (!(!Int,!Int), !(!Int,!Int))

bounds trax

| nr_of_tiles trax > 0 = ((minList cols,maxList cols), (minList rows,maxList rows))

| otherwise = abort "bounds�applied�to�empty�set�of�tiles.\n"

where coords = map fst trax.tiles

cols = map col coords

rows = map row coords

dimension :: !Trax -> (!Int,!Int)

dimension trax

| nr_of_tiles trax > 0 = (maxx - minx + 1, maxy - miny + 1)

| otherwise = abort "dimension�applied�to�empty�set�of�tiles.\n"

where ((minx,maxx),(miny,maxy)) = bounds trax

tile_at :: !Trax !Coordinate -> Maybe Tile

tile_at trax c = case lookup c trax.tiles of
[tile : _] = Just tile

none_found = Nothing

2.2 Matching of Tiles

A new tile can only be added to the current trax at a specific location if the colors
of the lines at its edges match with those of the currently present neighbouring
tiles. For this purpose, I need to know the line colors of an empty location and
the line colors of a tile. If some edge at a coordinate is not next to a tile, there
is no color (Nothing), otherwise the color is associated with the edge (Just color).

:: LineColors :== [(Edge,Maybe LineColor)]

The core function to determine line colors of empty locations and tiles is tile-
colors which inspects a tile and returns all edge-color pairs. The derived function
color_at_tile tells what color the tile has at some edge.
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tilecolors :: !Tile -> LineColors

tilecolors tile = [(North,Just n),(East,Just e),(South,Just s),(West,Just w)]

where (n,e,s,w) = lookup1 tile [(horizontal,(WhiteLine,RedLine,WhiteLine,RedLine))

,(vertical, (RedLine,WhiteLine,RedLine,WhiteLine))

,(northwest, (RedLine,WhiteLine,WhiteLine,RedLine))

,(northeast, (RedLine,RedLine,WhiteLine,WhiteLine))

,(southwest, (WhiteLine,WhiteLine,RedLine,RedLine))

,(southeast, (WhiteLine,RedLine,RedLine,WhiteLine))

]

color_at_tile :: !Edge !Tile -> LineColor

color_at_tile edge tile = fromJust (lookup1 edge (tilecolors tile))

The line colors of an empty location are assembled by looking at the line
color of the opposite edge of a neighbour tile at each of its edges. In this def-
inition, gFDomain{|*|} enumerates all Edge values, and gMap{|*->*|} is the functor
that applies its first function argument to Just a value if there is one.

linecolors :: !Trax !Coordinate -> LineColors

linecolors trax c

= [ (edge,gMap{|*->*|} (color_at_tile (~edge)) (tile_at trax (go edge c)))

\\ edge <- gFDomain{|*|}

]

Two such line colors match if at each edge they either have the same color or
if either one has no color:

linecolors_match :: !LineColors !LineColors -> Bool

linecolors_match a b = and [match c1 c2 \\ (_,c1) <- sortBy fst_smaller a

& (_,c2) <- sortBy fst_smaller b

]

where
match (Just c1) (Just c2) = c1 == c2

match _ _ = True

With the matching function, the collection of tiles that match particular line
colors can be determined:

possible_tiles :: !LineColors -> [Tile]

possible_tiles colors

= [tile \\ tile <- gFDomain{|*|} | linecolors_match colors (tilecolors tile)]

2.3 Correct Configurations by Construction

In a trax a new tile must be placed at one of the free edges. The collection of
free coordinates is the union of all free neighbours of all tiles.

free_coordinates :: !Trax -> [Coordinate]

free_coordinates trax = removeDupSortedList

(sort (flatten (map (free_neighbours trax)

(map fst trax.tiles))))
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free_neighbours :: !Trax !Coordinate -> [Coordinate]

free_neighbours trax c = [ c‘ \\ c‘ <- neighbours c | isNothing (tile_at trax c‘) ]

neighbours :: !Coordinate -> [Coordinate]

neighbours c = map (flip go c) gFDomain{|*|}

Using the matching function and knowing valid free locations, it is now possible
to safely add a tile to a trax:

add_tile :: !Coordinate !Tile !Trax -> Trax

add_tile c tile trax

| nr_of_tiles trax == 0 || isMember c (free_coordinates trax)

&&

linecolors_match (linecolors trax c) (tilecolors tile)

= {trax & tiles = [(c,tile) : trax.tiles]}

| otherwise = trax

Starting with the zero instance of Trax and using only add_tile it is guaranteed
that the trax is always in a valid configuration.

2.4 Mandatory Moves

After a player has added a tile to a trax all free locations that have no freedom
as to what tile can be placed must be filled with their only tile candidate. These
are the mandatory moves. It is sufficient to examine only the free neighbours of
the placed tile. Those at which red or white occurs more than once belong to
the collection of mandatory tiles.

mandatory_tiles :: !Trax !Coordinate -> [Coordinate]

mandatory_tiles trax c

= case tile_at trax c of
Nothing = []

_ = [free \\ free <- free_neighbours trax c

| hasDup (filter isJust (map snd (linecolors trax free)))

]

The mandatory moves need to be performed until there are no more manda-
tory tiles. Each move adds one tile to a trax. Hence, the structure of this algo-
rithm is similar to the classic fold functions, except that each move may append
extra list elements to be folded. Let’s introduce queued fold functions that have
an extra first function that determines which elements are to be appended:

qfoldl :: (a -> b -> [b]) (a -> b -> a) a ![b] -> a

qfoldl _ _ a [] = a

qfoldl f g a [b:bs] = let a‘ = g a b in qfoldl f g a‘ (bs ++ f a‘ b)

qfoldr :: (a -> b -> [b]) (b -> a -> a) a ![b] -> a

qfoldr _ _ a [] = a

qfoldr f g a [b:bs] = let a‘ = g b a in qfoldr f g a‘ (bs ++ f a‘ b)
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The computation mandatory_tilesdetermines which free locations need to be filled,
and is the first argument of the queued fold function. The function move updates
the trax by adding the only possible tile at a given location.

mandatory_moves :: !Trax !Coordinate -> Trax

mandatory_moves trax c

| isNothing (tile_at trax c)

= abort ("mandatory_moves:�no�tile�at�" <+++ c <+++ "\n")

| otherwise = qfoldl mandatory_tiles move trax (mandatory_tiles trax c)

where move trax filler

= add_tile filler (hd (possible_tiles (linecolors trax filler))) trax

2.5 Closed Loops and Winning Lines

As illustrated in Fig. 1, a game of TraxTM ends as soon as a player constructs a
closed loop or a winning line. In either case, it is necessary to extract a line of
some given color from a trax. This results in a core function, track:

:: Line :== [Coordinate]

track :: !Trax !LineColor !Edge !Coordinate -> Line

track trax color edge c

= case tile_at trax c of
Nothing = []

Just tile = let edge‘ = other_edge (perspective color tile) edge

in [c : track trax color (~edge‘) (go edge‘ c)]

perspective :: !LineColor !Tile -> Tile

perspective colour tile = if (colour == RedLine) tile (~tile)

other_edge :: !Tile !Edge -> Edge

other_edge tile edge = if (edge == tile.end1) tile.end2 tile.end1

As explained at the start of Sect. 2.1, tiles are defined from the point of view
of the red line. The function perspective gives the proper representation of a tile
from the given perspective. The line is constructed by ‘following’ tiles at some
edge and determining at which next edge to proceed. A line either terminates at
an empty location or it does not terminate, in which case it is a closed loop. In
the latter case, the track algorithm computes an infinitely long line, but thanks
to lazy evaluation this is not a problem. Despite their infinite nature, closed
loops can be detected and made finite:

is_loop :: !Line -> Bool

is_loop [c:cs] = isMember c cs

is_loop empty = False

cut_loop :: !Line -> Line

cut_loop [c:cs] = [c : takeWhile ((<>) c) cs]

Let’s first find all closed loops in a trax and do this separately for the two colors:



88 P. Achten

loops :: !Trax -> [(LineColor,Line)]

loops trax = [(RedLine, loop) \\ loop <- color_loops trax trax.tiles RedLine]

++

[(WhiteLine,loop) \\ loop <- color_loops trax trax.tiles WhiteLine]

The basic idea is to inspect each tile in a trax, use track to follow it, and collect
the found line if it is a loop. Before proceeding with another tile, the tiles from
the line can be removed from the trax because they cannot be part of another
line of the same color:

color_loops :: !Trax ![(Coordinate,Tile)] !LineColor -> [Line]

color_loops trax [(c,tile):tiles] color

| is_loop line = [line : loops]

| otherwise = loops

where line = track trax color (start_edge tile color) c

tiles‘ = removeMembersBy (\(c,t) c‘ -> c == c‘) tiles (cut_loop line)

loops = color_loops trax tiles‘ color

color_loops _ [] _ = []

start_edge :: !Tile !LineColor -> Edge

start_edge tile color = choose (lookup1 tile [(horizontal,(West, North))

,(vertical, (North,West ))

,(northwest, (North,South))

,(northeast, (North,South))

,(southeast, (South,North))

,(southwest, (South,North))

])

where choose = if (color == RedLine) fst snd

Determining all winning lines in a trax is a matter of finding lines that connect
either the far west with the far east or the far north with the far south. Obviously,
an empty trax cannot contain a winning line:

winning_lines :: !Trax -> [(LineColor,Line)]

winning_lines trax

| nr_of_tiles trax == 0 = []

| otherwise = winning_lines_at trax West ++ winning_lines_at trax North

The set of winning lines can be specified with a single list comprehension:

winning_lines_at :: !Trax !Edge -> [(LineColor,Line)]

winning_lines_at trax edge

| max - min + 1 < minimum_winning_line_length = []

| otherwise
= [ (color,line)

\\ (c,tile) <- trax.tiles | min == coord c

, color <- [color_at_tile edge tile]

, line <- [track trax color edge c] | not (is_loop line)

, end <- [last line] | max == coord end

, Just tile <- [tile_at trax end] | color_at_tile (~edge) tile == color

]

where ((minx,maxx),(miny,maxy)) = bounds trax
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(min,max,coord) = lookup1 edge [ (West, (minx,maxx,col))

, (East, (maxx,minx,col))

, (North,(miny,maxy,row))

, (South,(maxy,miny,row))

]

If the trax is not big enough, then a winning line is not found. The first tile of
a winning line must start at the given edge of the trax. Following its track must
not result in a closed loop. Moreover, its last tile must be at the far other end
of the trax, and also its line color must be at the opposite edge.

3 How to Play Trax

This part of the specification of TraxTM is concerned with coordinating and vi-
sualizing the actions of the two players. The iTask formalism is used to model
this behavior. This is done in three stages: first, the concept of turns is for-
malized (Sect. 3.1); second, the peculiarities of TraxTM are abstracted away to
create a general specification of n-player turn-based games (Sect. 3.2); third, the
abstraction is used to implement a two player TraxTM game (Sect. 3.3).

3.1 Turns

A Turn is specified as follows:

:: Turn = { bound :: !Int, current :: !Int }

derive class iTask Turn

instance == Turn where == t1 t2 = t1 === t2

instance toInt Turn where toInt turn = turn.current

new bound | bound > 0 = {bound = bound, current = 0}

next turn=:{current,bound} = {turn & current = (current + 1) rem bound}

prev turn=:{current,bound} = {turn & current = (current - 1 + bound) rem bound}

match nr turn = nr == turn.current

Thus, in a game with a bounded number of players, each player is identified with
a unique number. The functions next and prev identify the next and previous
player, and with the function match a player can check whether her number
matches with the current turn.

3.2 n-Person Turn-Based Games

To abstract away from the details of a specific n-person turn-based game, a
collection of characteristics functions that operate on a state st is introduced:

:: Game st = { game :: String

, state :: [User] -> st

, over :: (Turn,st) -> Bool

, winner :: (Turn,st) -> Task Turn
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, move :: (Turn,st) -> Task st

, board :: (Turn,st) -> [HtmlTag]

}

The game field identifies the game. The state function makes the players known
to the game state. The zero-based index position i in this list of users matches
with a players turn in the game, so match i t is True only if it is player i’s turn.
When the game is over, the winner task declares which player has won. The move

task prescribes a single move by the current player. Finally, the state is rendered
by means of the board function.

Given these characteristic functions, it is possible to define the general struc-
ture of n-person turn-based games:

play_for_N :: !Int !(Game st) -> Task Turn | iTask st

play_for_N n game

= get_players n

>>= \all -> withShared (new n,game.Game.state all)

(\sharedGameSt -> anyTask [ user @: play_for_1 game nr sharedGameSt

\\ user <- all & nr <- [0..]

])

A game is a task that returns a winner defined by the turn. First, n players are
selected, using the get_players task that is described below. During the game,
players can see the current state of the game at all times. Only one of them
can actually change the state of the game. Hence, their task descriptions share
the state, which is captured with the withShared task combinator. The player
actions are controlled with the play_for_1 task. The anyTask combinator evaluates
all tasks in the list until one terminates.

The get_players task describes the selection of the participants, which is mod-
eled as a multiple choice of all currently registered users:

get_players :: !Int -> Task [User]

get_players n

= enterSharedMultipleChoice ("Select�" <+++ max 0 n <+++ "�players") [] users

>>* [ WhenValid (\selection -> length selection == max 0 n) return

, Always ActionCancel (throw "Selection�of�players�cancelled.")

]

Whenever the correct number of players are chosen, the list can be returned by
the current user. It is also always possible to simply terminate this task, in which
case the entire game terminates.

Each player basically does two things: gaze at the rendered game and make a
move during their turn:

play_for_1 :: !(Game st) !Int !(Shared (Turn,st)) -> Task Turn | iTask st

play_for_1 game my_turn sharedGameSt

= gaze ||- play

where gaze = viewSharedInformation ("Play�with�" <+++ my_turn)

[ ViewWith game.board ] sharedGameSt

play = watch sharedGameSt

>>* [ WhenValid game.over game.winner
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, WhenValid (\(turn,_) -> match my_turn turn)

(\(turn,st) -> game.move (turn,st)

>>= \st -> set (next turn,st) sharedGameSt

>>| play

)

]

Gazing at the game is realized with the viewSharedInformation task which uses the
rendering function to display the current value of the shared game state. Not
only the player gazes at the game, the task also monitors the current value of the
shared game state, using the watch task function which merely echoes the current
value of the shared game state. Whenever it is detected that the game is over,
the winner is declared and the game terminates. At a player’s turn, she performs
the move task, the next player is chosen, and the game state is updated.

3.3 The Specialization of Trax

With the generalized framework for n-person turn-based games available, the
specification of TraxTM amounts to deciding upon a suitable game state and
characteristic functions. The game state needs to know the current trax and the
persons who are playing the game.

:: TraxSt = { trax :: !Trax, names :: ![User] }

derive class iTask TraxSt

initial_state :: ![User] -> TraxSt

initial_state users = { trax = zero, names = users }

play_trax :: Task Turn

play_trax = play_for_N 2 { game = "Trax"

, state = initial_state

, over = game_over

, winner = declare_winner

, move = make_a_move

, board = show_board

}

The game is over as soon as a closed loop or winning line exists:

game_over :: !(Turn,TraxSt) -> Bool

game_over (_,traxSt)

= not (isEmpty (loops traxSt.trax ++ winning_lines traxSt.trax))

If the previous player managed to create a closed loop or winning line, then that
player has won the game, otherwise the current player has won:

declare_winner :: !(Turn,TraxSt) -> Task Turn

declare_winner (turn,traxSt=:{trax,names})

= viewInformation "The�winner�is:" [ViewWith (toString o (player names))] winner

where winners = loops trax ++ winning_lines trax

last_player = prev turn
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winner = if (isMember (toLineColor last_player) (map fst winners))

last_player turn

toLineColor turn = if (match 0 turn) RedLine WhiteLine

player [a,b] turn = if (match 0 turn) a b

Performing a move in the game amounts to letting the player choose a free
coordinate, and then select a matching tile. This tile is added to the current
trax, and the mandatory moves are performed.

make_a_move :: !(Turn,TraxSt) -> Task TraxSt

make_a_move (turn,traxSt=:{trax})

= chooseCoordinate trax

>>= \new -> chooseTile new trax

>>= \tile -> return {traxSt & trax = mandatory_moves

(add_tile new tile trax) new}

At the start of the game, only the zero coordinate is free. In any other case, the
player can select one of the available free coordinates:

chooseCoordinate :: !Trax -> Task Coordinate

chooseCoordinate trax

| nr_of_tiles trax == 0 = return zero

| otherwise = enterChoice "Choose�coordinate:"

[ChooseWith ChooseFromComboBox toString]

(free_coordinates trax)

At the start of the game, any tile can be selected. If the free coordinate is known,
the player must select a tile that matches the line colors at that specific location.

chooseTile :: !Coordinate !Trax -> Task Tile

chooseTile c trax

= enterChoice "Choose�tile:"

[ChooseWith ChooseFromRadioButtons (TileTag (16,16))]

(if (nr_of_tiles trax == 0) gFDomain{|*|}

(possible_tiles (linecolors trax c))

)

All that is left to do is to define a rendering of the trax. To this end, it is useful
to specify a few helper definitions to create this html -based rendering:

TileTag :: !(!Int,!Int) !Tile -> HtmlTag

TileTag (w,h) tile = ImgTag [ SrcAttr ("/" <+++ toString tile <+++ ".png")

, WidthAttr (toString w)

, HeightAttr (toString h)

]

tr = TrTag []

td = TdTag []

h3 x = H3Tag [] [text x]

text x = TdTag [AlignAttr "center"] [Text (toString x)]

In the iTask architecture, a task can place additional resources in a folder named
Static. For each of the possible tiles, it contains a .png file (in fact, the ones of



Why Functional Programming Matters to Me 93

Fig. 2). The TileTag function generates an image tag that displays this file with
suitable dimensions. With these helper definitions, the trax is rendered as a html
table. A cell displays either a tile, or the coordinate of a free location, or nothing
at all. In addition, the name of the current player is displayed.

show_board :: !(Turn,TraxSt) -> [HtmlTag]

show_board (turn,traxSt=:{trax,names})

| nr_of_tiles trax == 0 = [h3 ("Select�any�tile,�" <+++ current_player)]

| otherwise = [h3 current_player, board]

where board = TableTag [BorderAttr "0"]

[ tr [ cell {col=minx + x - 1,row=miny + y - 1}

\\ x <- [0 .. nrcol + 1]

]

\\ y <- [0 .. nrrow + 1]

]

cell c = case tile_at trax c of
Nothing = if (isMember c free) (text c) (text "")

Just tile = td [TileTag (42,42) tile]

current_player = player names turn

free = free_coordinates trax

(nrcol,nrrow) = dimension trax

((minx,maxx),(miny,maxy)) = bounds trax

4 Related Work

The n-person turn-based game abstraction that is described in Sect. 3.2 bears
a striking similarity with the big-bang abstraction that is provided in the Racket
world approach [10]. This approach is designed to lower the threshold for begin-
ning programmers to create interactive applications [12,11]. The key element of
this abstraction is the big-bang expression:

(big-bang state-expr clause+)

in which state-expr represents the initial state value that is shared in the world
program (similar to the st type parameter of the Game st record) and clause is a
tagged list that specifies the attributes and event handlers of the world program:

clause = (on-tick tick-expr)
| (on-tick tick-expr rate-expr)
| (on-tick tick-expr rate-expr limit-expr)
| (on-key key-expr)
| (on-pad pad-expr)
| (on-release release-expr)
| (on-mouse mouse-expr)
| (to-draw draw-expr)
| (to-draw draw-expr width-expr height-expr)
| (stop-when stop-expr)
| (stop-when stop-expr last-scene-expr)
| (check-with world?-expr)
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| (record? r-expr)
| (state boolean-expr)
| (on-receive rec-expr)
| (register IP-expr)
| (name name-expr)

The event handlers are only concerned with the logical state of the world program
and can be expressed as pure functions. For instance, the tick-expr of the on-tick
clause is a pure function that computes a new state from the current one. The
clause list must contain at least one to-drawmember: draw-expr is a function that
computes an image from the current state. Each time a new state is computed,
this function is evaluated to create a new rendering of the game. In the n-person
turn-based Game st abstraction, this corresponds with the board function, except
that the latter generates a html rendering. The stop-expr of the stop-when clause
has a similar role as the over predicate of the game abstraction and the name-expr
of the name clause corresponds with the game member.

Racket world programs can be part of a distributed application using the
universe abstraction. In a nutshell, a world program registers itself on a server
identified by IP-expr. Event handlers either compute only a new state, as de-
scribed above, or a pair of a new state and a message of some type. In the latter
case, the message is sent to the server. A world program can receive messages
from the server via the on-receive rec-expr function. The final component to be
defined is the server which keeps track of registered world programs and the
messages that are sent. It can serve as a broadcasting unit, or inspect messages
to decide to what other worlds these should be sent.

The Racket universe approach to create distributed applications differs from
the iTask approach. The main difference is that in iTask task distribution is
accomplished from within the task specification and that communication occurs
via observing each other’s task value and shared data. In the Racket universe,
world applications are more or less independent applications that use explicit
message passing and receiving for communication.

5 Why Functional Programming Matters to Me

The case study in sections 2 and 3 shows that the glue that was identified by
John Hughes is put to good use: higher order functions and lazy evaluation
are used throughout the specification. This is also the case for other functional
language features: list comprehensions deal with sets, lists, and streams in a
uniform manner, the type class system unlocks useful functions for dedicated
model data types, and generic functions capture type-dependent functionality in
a single definition. However, having these language features available in a func-
tional language only partially answers the question why functional programming
matters to me. The other part of the answer concerns their impact on the way
they help me to solve problems. Regardless of the programming paradigm, when
solving a programming problem, I need to answer questions about that problem.
I illustrate this in terms of the case study. The first kind of question is always
about the entities of the problem domain:
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1. What are the entities in a game of TraxTM?

The answer is a collection of data types and their basic operations (most of them
were defined in Sect. 2.1). Except for the choice to use streams to represent closed
loops (Sect. 2.5), the data types in the case study are likely to result in similar
representations in other programming languages and paradigms.

The second kind of question investigates the relation between these entities:

2. Which are the line colors of a (possibly empty) location in a trax?
3. When do two sets of line colors match?
4. Which tiles can be placed correctly at a free locations in a trax?
5. What trax results from performing the mandatory moves in a trax?
6. Which closed loops and winning lines does a trax contain?

The key observation is that these questions want to discover the relation between
the entities and a well-defined result: this is exactly what functions and functional
programming are about. Functions are computable answers. (Sections 2.2 – 2.5.)

The third kind of question investigates the relation with the end-users:

7. What is the order in which players take turns?
8. What is a player allowed to do?
9. When is a game of TraxTM over and who is the winner?

They investigate the concerted action between computable functions and user
actions: this is exactly what tasks and iTask is about. Therefore, by specifying
the corresponding tasks, you make the entities and functions tangible for users
in the form of an executable application (Sect. 3).

Functional programming matters to me because it is a way of thinking and
speaking that helps me to give the right answers to the right questions when
solving computational problems.

Acknowledgements. I thank Pieter Koopman and Bas Lijnse for their advice
during this case study. The reviewer’s constructive comments have helped to
greatly improve this essay. Finally, I thank Rinus for sharing his passion for
functional programming, teaching, research, music, comic books, and elegant
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Dedicated to Rinus Plasmeijer for his 61st birthday:
to a clean functional programmer, in friendship and admiration.

1 Introduction

Of the current authors the oldest one remembers with fondness numerous meet-
ings with Rinus from the ancient times of the European Basic Research Actions
and from personal tutorials in Nijmegen about λ-terms, term graphs and pro-
cesses on the one hand, and the practice of functional programming in the Clean
environment on the other hand.

The youngest author as well remembers with gratitude the AFP 2008 summer
school on functional programming that Rinus had helped organize. Taking place
in the idyllic Center Parcs, in Boxmeer, this gratifying experience from his PhD
years has left behind a number of wonderful memories.

Now that the clock for Rinus himself has arrived at 61 years, we like to
offer him the present elaboration of an inherent clock mechanism in functional
programs. A clock mechanism that is not only interesting from the perspective
of curiosity, but that serves two very concrete goals.

The first goal is to distinguish between different functional programs, differ-
ent in the sense that they are not convertible to each other by some canonical
conversion rules, such as β-reduction and the ensuing convertibility. The usual
procedure to establish such a discrimination is using the infinite unfolding, known
as the Böhm Tree; if their respective Böhm Trees are different, then the programs
are also inconvertible in the finite sense. But what if their Böhm Trees are iden-
tical? Then the classical Böhm Tree discrimination argument is not applicable.
But here our clock method steps in: by means of an annotated version of Böhm
Trees we often can observe a difference in the tempo in which the Böhm Trees
are generated, and if this tempo is sufficiently different (in a sense to be made
precise), the original λ-terms (or functional programs) are inconvertible in the
finite sense.
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So the discrimination can often be done on the basis of a difference in clock
velocity, but note that we do not mean the clock velocity in the actual computer
implementation, but a clock on a much higher level, on the level of the λ-terms
that ultimately encode the program.

The second concrete goal is to use the inherent clock phenomenon described
below for optimization of programs, or rather to measure the extent of such an
optimization. To give a quick example: the two simplest fixed point combinators
are the one of Church, Y0, and the one of Turing, Y1. While they perform sim-
ilarly, in the sense that Y0x and Y1x both reduce to the infinite iteration of x
written as xω , the first one delivers its output, the fixed point, in a faster tempo
than the second one.

In fact we will not go all the way back to good old λ-calculus to describe
the functional programs. First, we will adopt the simply typed version, because
this conforms much more to actual functional programming practice than pure,
untyped λ-terms would.

The second adaptation is that we consider the extension with the well-known
μ-operator for recursion. This is equivalent with using a fixed point combinator,
but it is more direct, and it again conforms more to actual functional program-
ming practice as it can be considered to be tantamount to the letrec operator.

In previous work [EHK10, EHKP12] we have worked out this inherent clock
feature in pure λ-terms. As the ticks of the clock, head reduction steps were used,
that lead one from one node in the Böhm Tree being developed to a successor
node. It is a simple observation that contracting internal redexes in a term can
only diminish the number of head redexes needed to reach the next node. In
other words, reducing a term can only speed-up its internal clock.

In subsequent work [EHKP13], we have internalized this ‘external’ counting
of the head steps, in favour of a τ -operator, like the silent step in process theory.
In the present work we do the same, but now with an additional ι-step to count
applications of the μ-rules. In fact, we work with weak head reduction.

We include some examples suggesting the use of the clock method for simply
typed λμ-terms, and thereby for functional programs.

As a historical note, we mention that [NI89] already proposed to use the
number of root steps used in evaluating a term in a term rewriting system as a
measure of efficiency in comparing terms.

2 A Glossary of Requisites

We will start with a glossary of preliminary notions. For general reference to λ-
calculus we refer to [Bar84], for typed versions of λ-calculus to [BDS13, HS08].
For a general reference to term rewriting systems we refer to [BN98, Ter03]. For
an introduction to functional programming, see [Hut07, dMJB+]. Rather than
repeat in detail much of what these general references offer, we present several of
the prerequisites for understanding this paper in the form of a somewhat informal
glossary. Some basic familiarity with λ-calculus and term rewriting systems is
assumed.
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Lambda Calculus. The kernel of all calculi figuring in this paper (except for
the λμ-calculus introduced later) will be the λβ-calculus with as single re-
duction rule the β-reduction rule (λx.M)N →β M [x :=N ]. Here x ∈ X , the
set of variables. This rule may be applied in a context, a λ-term C[] with
a hole, resulting in one-step β-reduction C[λx.M ] →β C[M [x :=M ]]. The
transitive-reflexive closure of →β is written as →→β and the equivalence re-
lation generated by →β , also called β-convertibility, is =β. The λβ-calculus
has Ter (λ) as set of terms. It has the Church–Rosser or confluence prop-
erty (CR) stating that for M =β N there is a common reduct L such that
M →→β L←←β N . A normal form is a term N that does not admit→β-steps.
The property SN, strong normalization, stating that there are no infinite re-
duction sequences M0 →β M1 →β . . . does not hold in λβ, and neither does
WN, weak normalization, stating that every M ∈ Ter(λβ) has (reduces to)
a normal form. Both ¬SN and ¬WN are witnessed by the ‘unsolvable’ term
Ω ≡ ωω with ω ≡ (λx.xx) which has a β-loop to itself: Ω →β Ω. Here ‘≡’
denotes syntactic identity, to be distinguished from =β.

Fixed Point Combinators. An fpc, fixed point combinator, is a term Y ∈
Ter(λβ) such that Y x =β x(Y x). The two simplest fpc’s are Curry’s fpc
Y0 ≡ λf.ωfωf where ωf ≡ λx.f(xx), and Turing’s fpc Y1 ≡ θθ where θ ≡
λab.b(aab). Using the term δ ≡ λab.b(ab), called the Owl in [Smu85], we have
Y0δ =β Y1.

An fpc Y is called reducing if not only Y x =β x(Y x), but even Y x →→β

x(Y x). So Y1 is reducing, but Y0 is not. If Y is a reducing fpc, also Y δ is
one.

Of interest are also weak fpcs, or wfpcs. These are terms Z ∈ Ter(λβ)
such that Zx = x(Z ′x) where Z ′ is again a wfpc. (This is a coinductive
definition.) So any fpc is a wfpc but not conversely. An example of such
a ‘proper’ wfpc is A(BAB) where B = λxyz.x(yz) and A ≡ Bω given by
Statman, see [EHK12].

Unsolvable Terms. are terms that cannot be evaluated to positive informa-
tion, to a hnf. The ur-example is Ω as above. A λβ-term is unsolvable if it
has no hnf, which is the case if it admits an infinite reduction containing in-
finitely many head reduction steps, i.e., where a head redex R is contracted
(reduced); such a redex R occurs in a term λx.RN where x is a vector of
variables, and N a vector of terms.

Böhm Trees. are the infinite expansions of λ-terms, analogous to expansions in
number theory such as π = 3.1415926535 . . .. For Böhm Trees (BTs) there
are two kinds of building blocks; positive information carriers which have
the form of a head normal form (hnf) λx.y� . . . �, where x, y ∈ X , the set
of variables, and � . . .� are empty places; and negative information carriers
(no information) of the form ⊥ or Ω. Definition 13 gives a more precise
description suitable for the present setting.
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Next to the Böhm Tree semantics there is a slightly more refined seman-
tics, based on Lévy–Longo Trees (LLTs), and a third and finest semantics
based on Berarducci Trees (BeTs). See [EHK12].

Term Rewriting Systems. This name is most often reserved for first-order
rewrite systems, where by definition there is no binding of variables as in
the β-reduction rule above, or the μ-reduction rule μx.t →μ t[x :=μx.t].
Sometimes the name is used in a generic sense to include all term rewrite
systems, first-order but also higher-order; but not e.g. term graph rewrite
systems where terms have been generalized to term graphs.

Some Notations. As said,→→ or→∗ denotes the transitive-reflexive closure of
a rewrite relation →; →→→ always denotes infinitary reduction (of arbitrary
ordinal length). For the substitution operation we use the notation s[x := t]
to indicate that in term s all free occurrences of x are replaced by the term t.

Types. We will be very short about types and refer to the before mentioned
standard reference works. Only this: we mostly use (as in [HS08]) the Church
style of writing the simple types, as superscripts A of subterms s, so as sA,
rather than the judgments s : A. Only occasionally we will have to mention
a typing as a judgment.

Infinitary Rewriting. A development in term rewriting and λ-calculus which
has been elaborated in a relatively late stage, is that of infinitary rewriting,
which emerges naturally, and gives a domain where infinite Böhm Trees are
at home. The fpc Y1 ≡ θθ where θ ≡ λab.b(aab) already gives the idea:

Y1x→2 x(Y1x)→2 x(x(Y1x))→2 x3(Y1x)→→ xn(Y1x)→→ . . .

The natural extension here is to go on and continue rewriting to a limit
xω ≡ x(x(x(...))), so that we have Y1x→→→ xω . Here→→→ stands for an infinite
reduction, in this case of length ω; we therefore also write Y1x →ω xω .
In general we may have reductions s →α t for every countable ordinal α.
Infinitary rewriting requires a limit notion, which is that of ordinary Cauchy
convergence with respect to the usual metric distance d. That is to say,
d(s, t) = 2−n if n is the first level where the formation term trees of s and t
differ. There is however one extra requirement that is put on top of Cauchy
convergence: when approaching a limit ordinal such as ω, ω · 2, ω2, ε0, . . . ,
the ‘action’ has to go down all the way, more precisely, the depth of the
contracted redexes has to tend to ∞. Note that this is indeed the case in
the example Y1x→→→ xω above. But note also that we do not have Ω →ω Ω,
as here the action stays confined at the top, the root. (A trivial subtlety:
we do have Ω →→→ Ω, because we have →→→ ⊇ →→ ⊇ ≡: infinitary rewriting
comprises finitary rewriting which in turn comprises identity.)

Let us mention that in recent work [EHH+13] a coinductive definition
of infinitary rewriting →→→ is given that is ‘coordinate-free’, i.e., avoids all
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mention of ordinals and depth of redex contractions, which has the virtue
of making the notion of infinitary rewriting much more amenable to an
automated treatment and a formalization in theorem provers.

Main Syntactic Properties. For finite rewriting as in λβ-calculus, λβμ-cal-
culus or their simply typed versions, but also in first-order term rewriting
systems (without bound variables) we have some important syntactic prop-
erties of the rewrite or reduction relation. These are:

CR the confluence property, ←← ·→→ ⊆ →→ ·←←;

PML Parallel Moves Lemma ← ·→→ ⊆ →→ ·←←;

WN weak normalization: every term has (reduces to) a normal form;

SN strong normalization: every reduction ends in a normal form when
prolonged long enough; otherwise said, there are no infinite reduc-
tions;

UN every term has at most one normal form.

The infinitary counterparts of these properties are:

CR∞ the infinitary confluence property, ←←← ·→→→ ⊆→→→ ·←←←;

PML∞ the infinitary Parallel Moves Lemma, ← ·→→→ ⊆→→→ ·←←←;

WN∞ every term has a (possibly infinite) normal form;

SN∞ every reduction sequence, when prolonged long enough, even infini-
tarily, will strongly converge to a (possibly infinite) normal form;
in other words, there are no diverging reductions;

UN∞ every term has at most one (possibly infinite) normal form. Here
‘has’ means ‘reduces to’ (→→→).

Miscellaneous. Next to first-order rewrite systems (so without bound vari-
ables), and higher-order rewrite systems such as the calculi featuring in this
paper which all involve bound variables (by λ or μ), we have a general notion
of higher-order rewrite system, that unifies the afore-mentioned rewrite sys-
tems. These are the Combinatory Reduction Systems (CRSs), see [Ter03].
All rewrite systems in this paper belong to this general family. An important
notion in such systems is ’orthogonality’, meaning that the reduction rules
do not overlap harmfully; there are no critical pairs (and moreover the rules
must be left-linear, no duplicated variables in lefthand-sides of the rules). For
such orthogonal CRSs (once called OCRSs in this paper), we have the con-
fluence property CR, and hence also the property UN, unique normal forms.
The family of orthogonal CRSs also includes by definition subcalculi, where
(e.g.) a typing restriction is adopted. For such subcalculi the CR property
also holds.
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3 A Cube of Calculi

The λβ-calculus can be considered to be the mother of all term rewriting sys-
tems—it is the origin corner of our cube of calculi in Figure 1. But it is not
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Fig. 1. Partial ordering of calculi with some main properties

the ‘main calculus’ of this paper, which is the simply typed λ-calculus with the
β-rule and extended with the variable binding operator μ and the corresponding
reduction rule. We use the notation λβμ→ for this λ-calculus. Writing Ter(λ)
for the set of λ-terms we first extend the terms to Ter(λμ), and next restrict the
terms to the typable ones, Ter(λμ→), according to the definition below. Let us
note that, for simplicity, in this paper we do not consider the η-reduction rule
(except for a brief appearance in Section 7.3).

The interest of the λβμ→-calculus is that it has a clear relevance for actual
functional programming, both by the discipline of simple typing, and by the
inclusion of the μ-operator which provides an abstraction over particular im-
plementations of the fixed point combinators, so that a term which is defined
by recursive equations can be analyzed without reference to the particular fixed
point combinator used to construct the solutions.

The λβμ→-calculus will be our platform for an extension with a clock mech-
anism (by τ and ι ticks of a clock) that will enable us to discriminate between
many fixed point combinators and the recursive solutions they facilitate. Thus we
can discriminate terms with general “periodic” behavior. For example, passing
to the λβμ→-calculus will allow us to discriminate functional programs defined
by letrec expressions that have the same extensional behavior but cannot be
converted from one to another by a finite sequence of syntactic rewrite steps.
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As hinted at in the introduction, while the output of such programs could well
be the same, their computation may often be distinguished by considering the
time it takes to produce a value from one recursive step to the next one.

First, let us present the formal definition. The cube of calculi in Figure 1
displays the finitary and infinitary calculi that we define and study.

The following system is obtained by extending the simply typed lambda cal-
culus (λβ→) with a term constructor μxA.t together with corresponding typing
and reduction rules.

Types:

T ::= α | T→ T

Terms:

t ::= x | t t | λxT.t | μxT.t

Typing:

(xA) ∈ Γ

Γ � xA

Γ � sA→B Γ � tA

Γ � (st)B
Γ, xA � tB

Γ � (λxA.t)A→B

Γ, xA � tA

Γ � (μxA.t)A

Reduction:

β : (λxA.s)t→ s[x := t]

μ : μxA.t→ t[x :=μxA.t]

Having made a formal acquaintance with the main calculus λβμ→ of our
paper, in the cube of Figure 1 located at the corner 110, let us look at the
whole cube. In the origin 000 we find the λβ-calculus. From there new calculi
are obtained in three directions:

(i) by adding μ and its reduction rule (x-direction);

(ii) by adopting the simple type discipline (y-direction);

(iii) and by making the calculus infinitary by a coinductive reading of all the
definitions (z-direction).

Furthermore there are some related calculi outside of this cube. The result is a
family of a dozen related λ-calculi as in Table 1.

Remark 1. (i) One could also consider the untyped λβμ-calculus as the main
calculus of our exposition, but we prefer the typed version because it admits
natural intuitive interpretation in terms of Scott domains [Plo77], and rules
out pathological terms such as μx.xx, which has Böhm Tree

@(@(@..)(@..))(@..)

Its term tree is depicted in Figure 2.
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Table 1. Family of λ-calculi

position notation name

000 λβ λβ-calculus

001 λ∞β infinitary λβ-calculus

010 λβ→ simply typed λβ-calculus

011 λ∞β→ infinitary simply typed λβ-calculus

100 λβμ λβμ-calculus

101 λ∞βμ infinitary λβμ-calculus

110 λβμ→ simply typed λβμ-calculus

111 λ∞βμ→ infinitary simply typed λβμ-calculus

λβY λβY-calculus

λβY→ simply typed λβY-calculus

λ∞βτ (→) (simply typed) clocked λβ-calculus

λ∞βμτι(→) (simply typed) clocked λβμ-calculus

λμ λμ-calculus

·
·

·
...

...

·
...

...

·
·

...
...

·
...

...

Fig. 2. Term tree of the Böhm Tree of μx.xx

(ii) The simply typed λβμ→-calculus is very interesting, as it harmoniously
combines some seemingly opposite features. On the one hand, the presence
of the simple type discipline seems to forbid infinite reductions, as it does
in the sub-calculus λβ→, the simply typed λβ-calculus. However, then we
also loose fixed point combinators (fpc’s), as these all have by definition
an infinite reduction. Now this loss is cured by reinstating fpc’s by virtue
of the μ-operator and the corresponding reduction rule. This simultaneous
restriction and extension is still harmonious, in that it has the confluence
property (CR). This is so because λβμ→ is a sub-calculus of an orthogonal
CRS, namely the λβμ-calculus.

(iii) It is a rewarding exercise to check where the usual SN-proofs for simply
typed lambda-calculus fail in the presence of the μ-operator. For the proof
using multisets of degrees of redexes, the reason is that created redexes do
not have a degree which is less complicated. What is the reason for failure
of the other main type of SN proof via computability?

(iv) Another interesting aspect of this restricted-extended calculus, and some of
its related calculi, is that its meta-theory hovers on the brink of decidability.
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The related calculus λβY has undecidable convertibility, but decidable un-
solvability and normalizability [Sta02]. Presumably the same holds for the
present calculus.

4 Variations of the Main Calculus

In this section we will describe some variations of the main calculus λβμ→,
three finite calculi, and one infinitary extension. The three finite versions are
well-known in practice; the infinite extension is less well-known, but provides a
firm foundation for functional programming.

4.1 The λβY Variant

Instead of the μ-constructor, we could instead assume the existence of a family
of terms

Y
(A→A)→A
A

together with the reduction rule

Y : YAf → f(YAf)

This system, when extended with a native type of natural numbers, is a
Turing-complete programming language for functionals of higher types. It was
introduced in 1966 by Platek [Pla84] in order to define higher-order computabil-
ity in an “index-free” manner. Plotkin [Plo77] extensively studies the semantics
of this calculus, culminating in the full abstraction problem for PCF. Bezem
discusses λβY in [BDS13, Ch. 5].

Without the type of natural numbers, Irina Bercovici [Ber85] shows that hav-
ing a head normal form is decidable. Similarly, normalization and compactness
(Böhm Tree finiteness) are decidable. Despite these results, Statman [Sta02]
shows that the full word problem (convertibility with respect to the reduction
rules β and Y) remains undecidable.

However, restricting to the lowest type level, and admitting only Y’s of type
(0→ 0)→ 0, the word problem is solvable. Statman employs in the short proof
of this fact an auxiliary reduction which is just our μ-reduction:

Y(λx.s)→ s[x :=Y(λx.s)]

Our main calculus λβμ→ has an interesting sub-calculus, namely the one
consisting of the fragment of only μ-binders, variables and applications. In our
current notation it can be called λμ. So there is no β-reduction, only μ-reduction.
Now one can ask whether this calculus has a solvable word problem, or in other
words, whether its convertibility relation is decidable. Indeed this is the case.
There are two sources for a proof of this fact: first, it is a corollary of Statman’s
result [Sta02] mentioned above, and second, it was also proved for the untyped
setting in [EGKvO11].

For the rest of the paper, we will stick with the μ-constructor formulation of
the fixed point lambda calculus, which is our main calculus λβμ→.
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4.2 The letrec Variant

Another system of equal expressive power is that obtained by postulating the
existence of solutions to arbitrary systems of equations of the form

x1 = t1[x]
...

xn = tn[x]

That is, instead of formally adding a unary fixed point constructor, the language
provides the ability to solve multiple fixed point equations simultaneously.

This idea is implemented by the letrec construction commonly found in
functional programming languages such as Clean [dMJB+]. Its syntax is given
as follows:

t ::= x | t t | λxA.t | let x1:=t, . . . , xn:=t in t

For convenience, we will write (let x := t in u) in place of

let x1:=t1, . . . , xn:=tn in u

Similarly, in the typing rule below, we will write xA in place of

xA1
1 , . . . , xAn

n

The typing rule is

Γ,xA � tA1
1 · · · Γ,xA � tAn

n Γ,xA � uB

Γ � (let x := t in u)B

The computation of (let x := t in u) returns u in which occurrences of xi

get replaced by ti, possibly creating new occurrences, which can subsequently
be replaced again, and so on. As a rewrite rule, this can be formalized as

let x := t in u → u[xi := (let x := t in ti)]i=1..n

For our purposes, this rule is much less convenient to work with than that
of the μ-constructor, hence we will stick with the original formulation. The two
systems are mutually interpretable, although there are some subtleties related to
the possibility of “horizontal sharing” (as it was called in [AK95]) in the letrec
system which we will not investigate here. In any case, the letrec syntax is
precisely what we find in Clean-like functional languages.

4.3 Simultaneous Fixed Point Solutions via the μ-Operator

Clearly, every λμ-term can be captured within the previous syntax: the expres-
sion μxA.t is represented by the single-variable expression let x := t in x.

Going the other way, we can represent any term M defined by a simultaneous
recursion system (let x := t(x) in u) by a cascade of μ-expressions.
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We show this by an example. Suppose we are a given a letrec expression

M = let x1 = t1(x1, x2, x3)

x2 = t2(x1, x2, x3)

x3 = t3(x1, x2, x3)

in

u(x1, x2, x3)

Define the terms

f3(x1, x2) = μx3.t3(x1, x2, x3)

f2(x1) = μx2.t2(x1, x2, f3(x1, x2))

f1 = μx1.t1(x1, f2(x1), f3(x1, f2(x1)))

Finally, put
Mμ = u(f1, f2(f1), f3(f1, f2(f1)))

and it can be easily seen that Mμ the same extensional behavior as M (i.e., Mμ

is bisimilar to M).

Convention 2. Using the previous technique of solving simultaneous recursive
systems using the μ-operator, we will sometimes write

μxA.t(x1, . . . , xn)

for the corresponding μ-term solving the system given in the matrix. Here we
take as given that ti(x

A1
1 , . . . , xAn

n ) has type Ai.

Example 3. Here are some examples of λμ→-terms.

(i) The simplest meaningful example is the definition of a fixed point combinator
by way of the μ-notation. Put

Y = λfA→A.μyA.fy

Then Y f =βμ f(Y f). We have the head reduction

Y f → μy.fy → f(μy.fy)→ f(f(μy.fy))→ · · · → fn(μy.fy)→ · · ·

(Here and throughout, we spare annotation of the types of bound variables
when they are unambiguously determined by the immediate context.)

(ii) Applying the above term to the identity yields the canonical unsolvable
λμ-term for any type A:

⊥A = μxA.x

which has the head reduction

⊥ → ⊥ → · · ·

See [EGKvO11] for a characterization of all unsolvables arising in the
λμ-calculus, e.g., μxyz.x and μxyz.y are examples.
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4.4 Infinitary Calculi

It is interesting to extend λβμ→ to include infinitary rewriting. We call the re-
sulting infinitary simply typed calculus: λ∞βμ→. Not only the calculus itself, but
also its definition method is an interesting application of the recently developed
method to define infinitary rewriting, both the terms and the reductions, using
coinduction and coalgebraic techniques [CC96, EP13, EHH+13]. In the present
case the new elements are the μ-construct and the simple types. Both can be
lifted to the infinite setting by a straightforward coinductive reading of the defin-
ing clauses. Intuitively, the benefit is that in this way the somewhat coinductive
flavour of the typing rule for μ-terms is elucidated. It follows straightforward by
a consideration of the infinite normal form of the μ-term, and its obvious simple
typing. Figure 3 contains an example.

(μy0.(I0→0y0)0)0 (μy0.y0)0
β

·0

I0→0 ·0

I0→0 ·0

I0→0 ...

μ reduction loop

reduction loop

Fig. 3. Failure of infinitary confluence (CR∞) in the main calculus λ∞βμ→

How about the fundamental theorems for λ∞βμ→? We have the failure of
PML∞, the infinitary parallel moves lemma, as the following counterexample
witnesses:

μy. Iy →→→μ Iω and also μy. Iy →β μy. y

Both reducts can only reduce to themselves, in one step. Hence ¬PML∞ , and
therefore also ¬CR∞. (See Figure 3.)

Note that the looping terms in Figure 3 are unsolvable. This observation
suggest to restore infinitary confluence (CR∞) by quotienting out the unsolvable
terms, see [EHK12]. In spite of the failure of CR∞, UN∞ holds, by an appeal
on a theorem of Ketema and Simonsen [KS09], stating UN∞ for all infinitary
OCRSs; here we have a substructure of such an iOCRS, which by its closure
properties admits the same proof of UN∞.
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Remark 4. Pure μ-terms μx1, . . . , xn.xi are unsolvable. The μ-reductions be-
tween theses terms constitute an interesting reduction graph, see [EGKvO11].
In particular, the terms μx1, . . . , xn.x1 are looping terms. All these μ-unsolvables
reduce to μx.x.

Question 5. Looping terms (admitting a one-step reduction cycle) are interesting
as they constitute the difference between the canonical notion of convergence in
infinitary rewriting, namely strong convergence (see Glossary), and mere Cauchy
convergence:

(i) For the finite λβ-calculus the looping terms are easily classified: they are of
the form C[Ω] for some context C[]. For the infinitary λ-calculus λ∞β the
full characterization of looping terms was given by Endrullis and Polonsky
in [EP13]. Two questions arise at this point:
(a) What are the looping terms in the main calculus λ∞βμ→?
(b) And without typing, so in λ∞βμ?

(ii) For λβμ the question is easy, using the remark above and item (i).

5 Adding Clocks

In this section we prove the main results, the clock theorems, of this paper. We in-
troduce clocked Böhm Trees [EHK10, EHKP12, EHKP13] for the λβμ-calculus.
For this purpose, we extend the λβμ→-calculus with unary constructors τ and
ι that are witnesses of β-steps and μ-steps, respectively. The resulting calculus
is orthogonal and infinitary normalizing. The unique infinitary normal forms
are Böhm Trees enriched with τ and ι providing information on the speed at
which the tree was formed (the number of steps needed to head normalize the
corresponding subterm).

Definition 6. The set Ter∞(λμτι) of (finite and infinite) terms of the clocked
λμ-calculus is coinductively defined1 by the following grammar

M ::=co x |MM | λx.M | μx.M | τ(M) | ι(M) (x ∈ X )

The set of contexts is inductively defined by

C ::= � | λx.C | CM |MC | τ(C) (x ∈ X ,M ∈ Ter∞(λμτι))

Definition 7. The rewrite rules of the clocked λμ-calculus are:

β : (λx.t)s→ τ(t[x := s]) τ : τ(x)y → τ(xy)

μ : μx.t→ ι(t[x := μx.t]) ι : ι(x)y → ι(xy)

The rewrite relation → is defined as the closure under contexts of these rules.

1 This means that Ter∞(λμτι) is defined as the greatest fixed point of the underlying
set functor.
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The shift rules for τ and ι (on the right) are adopted for a better cor-
respondence between the unclocked and the clocked version of the calculus.
Without the shift rules, we could not lift reduction from the unclocked to the
clocked calculus since the τ or ι may be in the way of a β-redex. For exam-
ple, the unclocked reduction IIx →β Ix → x yields in the clocked calculus
IIx →β τ(I)x →τ τ(Ix) →β τ(τ(x)) where the shift step is needed to reveal
the β-redex.

In this section we can do without the simple type discipline but it would be
easy to adopt it. In that case we assume the trivial typing rules for τ and ι, that
is to say: a τ -term has the type of its argument, and likewise for ι.

We write → for the usual (non-clocked) λβμ-rewrite relation. We write τn(t)
for the term τ(τ(· · · τ(t))) with n τ ’s, and likewise for ιn(t).

Example 8. Consider μx.x. We have the reduction

μx.x→ ι(μx.x)→ ι(ι(μx.x)) → · · · →→→ ιω

An infinite stack of τ ’s and ι’s in the normal form indicates that the correspond-
ing position in the term could not be evaluated to a weak head normal form. In
the Böhm Tree such unsolvable subterms are replaced by ⊥ or Ω.

The motivation for choosing different witnesses for β- and μ-steps is to extract
more information from the reduction to the normal form. By distinguishing
between τ ’s and ι’s, we can extract information about the working of unsolvables.
For example, let ω ≡ λx.xx, then we have:

ωω → τ(ωω)→ τ(τ(ωω))→ · · · →→→ τω

Note that τω is a different form of undefined than ιω . We can also have infinite
towers of alternating τ ’s and ι’s as illustrated by the reduction:

μx.Ix→ μx.τ(x)→ ι(τ(μx.τ(x))) → ι(τ(ι(τ(μx.τ(x))))) → . . .→→→ (ιτ)ω

This example has lead to failure of CR∞ in the λβμ→-calculus as shown in
Figure 3. In the clocked setting, the infinitary confluence is restored as shown in
Figure 4. For the elementary diagrams involved we refer to Figure 5.

Example 9. Let us have a look at the fixed point combinators of Curry and
Turing. In the λβμ→-calculus these fpc’s can be rendered as follows.

(i) Curry’s fpc Y0 corresponds to λf.μx.fx ; par abus de langage we also use Y0
for the latter term. Then we have

Y0f ≡ (λf.μx.fx)f

→ τ(μx.fx)

→ τ(ι(fμx.fx))

→ τ(ι(f(ι(fμx.fx))))

→ . . .→→→ τ((ιf)ω) (= τ(ι(f(ι(f . . . )))))
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μy.Iy μy.τ (y)
β

(ιτ )ω

ι(Iμy.Iy)

ι(τ (μy.Iy))

ι(τ (μy.τ (y)))

μ

β

βμ

μ

μ

Fig. 4. Restoring of infinitary confluence with clocks (compare with Figure 3)

μy.Iy I(μy.Iy)

μy.y μy.y

μ

β

β

β

μy.Iy ι(I(μy.Iy))

μy.τ (y) ι(τ (μy.τ (y)))

ι(τ (μy.Iy))

μ

β

β

β

μ

Fig. 5. Elementary diagrams: unclocked (left) and clocked (right)

(ii) Turing’s fpc Y1 corresponds to μx.λf.f(xf). Again we also use Y1 to denote
this μ-term. Then we have

Y1f ≡ (μx.λf.f(xf))f

→ (ι(λf.f(Y1f)))f

→ ι((λf.f(Y1f))f)

→ ι(τ(f(Y1f)))

→ . . .→→→ (ιτf)ω (= ι(τ(f(ι(τ(f . . . ))))))

The term Y0 is more efficient than Y1 in the sense that between the f ’s in the
infinitary normal forms of Y0 and Y1, we have ι in contrast with ιτ , respectively.

Remark 10. The clocked λμ-calculus can be extended to atomic clocks, as they
are called in [EHK10, EHKP13], as follows:

β : (λx.t)s→ τε(t[x := s]) τ : τp(x)y → τLp(xy)

μ : μx.t→ ιε(t[x :=μx.t]) ι : ιp(x)y → ιLp(xy)

Positions are defined as words over the alphabet {λ,L,R} in the obvious way;
the letter L stands for ‘left’; ε denotes the empty word. Then the symbols τp and
μp witness not only the type of the rewrite step but also its (relative) position p.
In order to keep the presentation simple, we stick to the non-atomic clocks.

Lemma 11. The rewrite relation → has the properties UN∞, SN∞ and CR∞.
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Proof. Observe that any contraction of a root redex will introduce a τ or ι at the
root, hence every term admits at most one root step. We get SN∞ by the non-
existence of root-active terms [KdV05]. Finally, UN∞ follows from orthogonality
of the rules, see [KS09] and CR∞ immediately follows from UN∞ and SN∞.

For terms M , we use nf (M) to denote the unique infinitary normal forms
of M with respect to→ . We note that nf (M) corresponds to the Lévy–Longo
Tree [EHK12] of M enriched with symbols τ and ι that provide information
about the speed in which this tree has been developed.

Definition 12. We define τ, ι-removal →acc ⊆ Ter∞(λμτι)2 as the closure un-
der contexts of the rules

τ(M)→M ι(M)→M

and use =acc to denote the equivalence closure of →acc (the subscript “acc”
abbreviates “acceleration”). For M,N ∈ Ter∞(λμ), we define

(i) M # N , M is globally improved by N iff nf (M)→→→acc nf (N);
(ii) M = ∃ N , M eventually matches N iff nf (M) =acc nf (N).

So global improving means that we may drop everywhere in the normal form
of M occurrences of τ and ι, even in infinitely many places; while eventual
matching means that we may drop these symbols in finitely many places only,
so that there is almost everywhere a precise match.

Definition 13. A head context is a context of the form D[�N1 . . . Nm] where D
is built from λx.� , τ(�) and ι(�). A head reduction step →h is a step in a head
context (the position of the step is the position of the hole).

A head normal form (hnf) is a λ-term of the form C[y] where C is a head
context and y ∈ X . A weak head normal form (whnf) is an hnf or an abstraction,
that is, a whnf is a term of the form xM1 . . .Mm or λx.M . A term has a (weak)
hnf if it reduces to one.

The following proposition states that clocks are accelerated under reduction:

Proposition 14. If M →→ N , then N improves M globally, i.e., nf (M)→→→acc

nf (N).

Proof. We reduce terms to their unique infinite normal form in a top-down fash-
ion. A position in a term t is (weakly) stable if it is not (strictly) contained in
a subterm t′ ≡ t′′N1 . . . Nm of t for which t′′ is a redex. Observe that stable
symbols (i.e., symbols at stable positions) cannot be touched by any reduction.
A top-redex in a term t is a redex occurrence ρ whose position is weakly stable.
Note that top-redexes stay top when other redexes are contracted. Fair con-
traction of top-redexes guarantees to reach the infinitary normal form in ≤ ω
steps.

By induction on the length of the reduction M →→ N it suffices to consider a
single rewrite step M → N . The step → can be modeled by a step→ with the



Clocks for Functional Programs 113

only difference that the step → creates an additional symbol ξ ∈ {τ, ι}. Thus
M → N ′ with N ′ →acc N by dropping the symbol ξ. We trace the residuals of ξ
over reductions with respect to → . For this purpose we employ the standard
notion of tracing [Ter03, BKdV00] except for the rules

τ : τ(x)y → τ(xy) ι : ι(x)y → ι(xy)

where we consider the τ and ι displayed in the right-hand sides to be residuals
of the τ and ι displayed in the left-hand sides, respectively.

Consider a rewrite sequence N ′ ≡ N ′
1 → N ′

2 → N ′
3 → . . . of length ≤ ω

to infinitary normal form nf(N ′) contracting only top-redexes. By uniqueness of
normal forms (Lemma 11) we have nf(N ′) ≡ nf(M). For n = 1, 2, . . ., we define
Ni as the result of dropping all residuals of ξ from N ′

i (that is, contracting
all residuals of ξ with →→→acc). The results Ni of the dropping are well-defined
since the residuals of ξ are finitely nested (every step → can at most double
the nesting depth). We then have a rewrite sequence N ≡ N1 → N2 → . . .
with limit nf(N). We have nf(N ′) →→→acc nf(N) as the limit of the reductions
N ′

i →→→acc Ni for i→∞.

This immediately yields the following discrimination method:

Theorem 15 (First Discrimination Criterion). If N cannot be improved
globally by any reduct of M , then M �=βμ N .

Proof. If M =βμ N then by confluence these terms have a common reduct. By
Proposition 14 this common reduct globally improves M .

We now define a class of ‘simple’ terms for which the clock is invariant under
reduction (changes only in finitely many positions). The idea is that in reductions
of simple terms there are no duplications of redexes. In fact, we only need to
require this for the top-down reduction to Lévy–Longo Tree normal form. The
following definition makes this precise:

Definition 16. [Simple terms] A redex (λx.M)N is called:

(i) linear if x has at most one occurrence in M ;
(ii) call-by-value if N is a normal form; and
(iii) simple if it is linear or call-by-value.

A redex μx.M is called simple if M is in normal form.
The set of simple terms is coinductively defined as follows (that is, the largest

set such that the following conditions holds): A term M is simple if

(a) M is not in whnf, M →h M ′ contracting a simple redex and M ′ is simple,
(b) M ≡ λx.M ′ with M ′ a simple term, or
(c) M ≡ yM1 . . .Mm with M1, . . . ,Mm simple terms.

In contrast to previous work [EHKP13] this definition of ‘simple’ also considers
reduction steps inside of unsolvables. While previously every unsolvable had the
infinite normal form τω , the clocked λμ-calculus allows to extract information
from unsolvables as they are mapped to infinite towers consisting of τ ’s and ι’s,
see Example 8.
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Example 17. Let us consider two unsolvables:

(i) The term Ω ≡ ωω reduces in one step to Ω without duplicating a redex (the
term ω does not contain a redex). Thus the terms Ω ≡ ωω is simple.

(ii) The term μx.Ix is not simple, but can be simplified, that is, reduced to a
simple term. The term itself is not simple since the reduction step μx.Ix →
Iμx.Ix duplicates the redex I. However, a reduction step μx.Ix→ μx.x yields
a simple term μx.x. Note that for discriminating terms M,N it is always
sufficient to convertible terms M ′ = M and N ′ = N .

Proposition 18. Let N be a reduct of a simple term M . Then N eventually
matches M (i.e., nf (M) =τ nf (N)).

The following is a reformulation of [EHK10, Corollary 32] for Lévy–Longo Trees:

Corollary 19 (Second Discrimination Criterion). If simple terms M , N
do not eventually match (nf (M) �=acc nf (N)), then they are not β-convertible:
M �=β N .

Proof. The proof proceeds the same as the proof of Theorem 15 with the ad-
ditional observation that due to M,N being simple, the symbol ξ cannot be
duplicated (stems from a redex).

Example 20. We discriminate the unsolvables in Example 8. The term Ω is sim-
ple, and μx.Ix =β μx.x with μx.x simple; see Example 17. We have nf (Ω) = τω

and nf (μx.x) = ιω. Hence by the second discrimination criterion (Corollary 19),
the terms Ω and μx.x are not =βμ-convertible.

Note that every term without weak head normal form in the λβμ-calculus
gives rise to a clocked normal form which in fact is an infinite stream of τ ’s and
ι’s. For simple terms without whnf the discrimination criterion thus amounts
to eventually matching of their corresponding streams. The initial segments are
not relevant, it is the behavior at infinity that counts.

In Section 7 we give more example applications of this discrimination method.

6 A Functional Programming Application

We discuss a potential application of clocks for the performance optimization
of functional programs. The transformations we mention here are well-known
in functional programming and form a part of compile-time optimizations. Our
point is merely that the clocked λβμ-calculus gives rise to a measure for com-
paring the performance of programs, thereby illustrating why a certain variant
is preferable.

We have the following distributivity law

μfA→B.λxA.t(x, fx) = λxA.μyB.t(x, y) (1)
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First of all, notice that computation of the Böhm Tree of the term on the left
side of (1) does indeed contract an additional redex every time a recursive node
is reached (corresponding to occurrences of fx). It follows by the discrimination
theorem that these two terms are not convertible via finitary reduction steps.
At the same time, the term on the right is to be preferred in any practical
implementation of a recursive function of type A → B. It may thus be of some
interest that such patterns are actually quite common in programming practice.

Example 21. Consider the standard map function (we use Clean notation):

map f [] = []

map f [a:as] = [f a : map f as]

In this code, the argument f must be passed on during each recursive call,
yielding an additional β-reduction step at every turn. This additional time step
can be recovered by reimplementing map as follows:

map f as = map’ as where

map’ [] = []

map’ [a:as] = [f a : map’ as]

There is a close correspondence with the fixed point combinators of Curry and
Turing, see Example 9. The first implementation of map corresponds to Turing’s
fpc Y1 which passes the argument f from recursive call to recursive call, while
the second implementation of map corresponds to Curry’s fpc Y0 which abstracts
over f outside of the recursion. As shown in Example 9, Y0 has a faster clock
than Y1.

We note that, fixing all recursive definitions in a program by abstracting their
constant arguments over the recursion (as above) might not in itself eliminate
all threats to efficiency. Functional programs are often built up from various
combinators. Yet when one such combinator is applied to another, new “hidden
redexes” may appear.

For example, the above map function could be invoked in order to “whiteout”
a list by some constant c:

fill lst = map (\x = c) lst

At every invocation, this turns into the equivalent code

fill [] = []

fill [a:as] = [(\x = c) a : fill as]

(In the notation of the λ-calculus, we could write fill = map’[f :=λx.c].)
We note that this code is suboptimal: it has a redex (λx.c)a which appears in

every recursive call, but which gives the same value. In this case the program is
convertible to its best version:

fill [] = []

fill [a:as] = [c : fill as]
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But the example illustrates how the functional clock can become slow because
there is an extraneous redex that is created at every iteration.

(The clock is also slower when the redex in question occurs inside the func-
tion supplied to map. However, this situation is well-studied: it is precisely the
argument in favor of strict evaluation of those function arguments that come to
the head position in the body of the function.)

All these optimizations are related to the concept of inlining from compiler
theory. In a sense, inlining is an operation that lifts redexes out from run-time
into compile-time, where they can be contracted before program execution be-
gins. This optimization comes with obvious associated space costs. Yet when
time is of priority, it is generally a good idea to inline as much as possible.

Our current framework provides a possibility to detect inlining opportunities
based on static syntactic inspection of code. It does not appear that all modern
compilers of functional languages take advantage of this possibility in full gener-
ality. We wonder whether the Clean compiler can make use of such information!

7 Sequences of Fixed Point Combinators

Fixed point combinators are very suitable to test discrimination methods, be-
cause there are so many of them, and because they all have the same Böhm
Tree λf.fω. When they are constructed in different ways, they can be inconvert-
ible, in the case of this paper with its main calculus λβμ→, using the β- and
μ-reduction rules. In this section we consider the most ‘canonical’ sequence of
fpc’s, that we call the Böhm sequence, and next a less well-known sequence, that
we call the Scott sequence, due to the history and background of its construction
(see [EHK10, EHKP12]). As a third topic in this section we analyze the question
whether in the calculus λβμ→ there are more singleton fpc-generators like �δ,
using Barendregt’s inhabitation machines to help us enumerate certain simple
types.

7.1 The Böhm Sequence

Just as in the case of untyped λ-calculus we can conjure up an infinite sequence
of fpc’s Y0,Y1, . . . where Y0 ≡ λf.μy.fy and Yn+1 ≡ Ynδ with δ ≡ λab.b(ab). It is
easily checked that all Yn are fpc’s. What is much harder to check is that they
are mutually different with respect to =βμ:

Yn =βμ Ym ⇐⇒ n = m

We have Yn+1 = Y1δ
∼n and the infinite clocked normal form of Y1δ

∼n can be
computed as follows:

Y1δ
∼n ≡ (μx.λf.f(xf))δ∼n →μ · →∗

ι ι( (λf.f(Y1f))δ
∼n )

→β · →∗
τ ιτ( δ(Y1δ)δ

∼(n−1) )

→∗ ιτ1+2(n−1)( δ(Y1δ
∼n) )
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→∗ ιτ2n( λf.f(Y1δ
∼nf) )

→∗ ιτ2n( λf.f(f(ιτ2n+1( Y1δ
∼nf ))) )

→→→ ιτ2n(λf.f(ιτ2n+1(f(ιτ2n+1(. . .)))))

≡ ιτ2n λf.f(ιτ2n+1f)ω

Thus nf (Y1δ
∼n) ≡ ιτ2n λf.f(ιτ2n+1f)ω. Note that in the computation of the

clocked normal form of Y1δ
∼n we really need the shift-rules for τ and ι in order

to let these constants not impede the necessary reductions. Here we used the
notationMω forM(M(M(. . .))), so e.g. (ιτf)ω ≡ ιτfιτfιτf . . . with all brackets
associating to the right.

Note further that we have carried out the reduction in a top-down fashion,
and none of the steps has duplicated a redex. Thus the terms Y1δ

∼n are simple.
By the second discrimination criterion (Corollary 19), we can discriminate these
fixed point combinators pairwise with respect to =βμ since their clocked normal
forms do not eventually match.

7.2 The Scott Sequence

As shown in [EHK10, EHKP12], there is another way to generate new fpc’s as
follows: if Y is a reducing fpc, then Y (SS)I is an fpc. Indeed we calculate

Y (SS)Ix→→β SS(Y (SS))Ix→→β SI(Y (SS)I)x→→β x(Y (SS)Ix)

In fact we have for every n ≥ 0: Y is a reducing fpc =⇒ Y (SS)S∼nI is a reducing
fpc. Here we use the notation AB∼n defined by AB∼0 = A and AB∼n+1 =
ABB∼n .

In this way we can generate many new fpc’s. The question however is how to
show that they are indeed new, i.e., that for different sequences of ‘fpc-building
blocks’ π1, . . . , πk and π′

1, . . . , π
′
k where each πi and π′

j is �δ or �(SS)S∼nI for
some n ≥ 0, we have M1 ≡ Y0π1, . . . , πk �=βμ Y0π

′
1, . . . , π

′
k ≡M2.

To perform the discrimination argument we can proceed in analogy with the
treatment above for �δ with two stipulations. First, we have to simplify the
terms by reducing the subterms SS to their normal forms λabc.bc(abc). Second,
we need the refined atomic clocks defined in Remark 10. Otherwise we could not
distinguish the effect of swapping two blocks in the sequence π1, . . . , πk.

7.3 Other Fpc-Generators

As we have seen above, the term δ ≡ λab.b(ab) has the peculiar property that it
generates new fpc’s when postfixed to an already available fpc: Y is an fpc =⇒
Y δ is an fpc. We shall now consider the following problem:

Give the set of λ-terms G such that, for an fpc Y , Y G is again an fpc.

For general G this problem becomes intractable due to the usual pathologies of
the type-free λ-calculus. However, it is interesting to solve this problem for the
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simply-typed setting. That is, we shall work in λβμ→. In fact, with λβημ→ as
it is natural in this subsection to include the η-rule

η : λx.Mx→M if x not free in M

and long βη-normal forms (this is the only part of the paper where the η-rule is
used).

In this context, we solve the above problem using the technique of Baren-
dregt’s Inhabitation Machines [BDS13].

Suppose G is such that Y G is a fixed point combinator in λβμ→, for Y
fpc. Since Y G must have type (α → α) → α for any α, while Y has type
(A→ A)→ A, for some A, we must have that A = (α→ α)→ α.

For σ ∈ T, write σo for the type (σ → σ)→ σ. With this notation, the above
becomes

Y G : αo

Y : (αo → αo)→ αo (= αoo)

whence we see that G must have type αo → αo. Using the inhabitation machines,
we enumerate all closed βη-normal forms of this type. (Here, as is usual in type
theory, the normal forms for η are the “long” normal forms, where every subterm
of type A1 → · · · → An → α begins with n abstractions.)

Using [BDS13, 2.3] we get the diagram:

αo → (α→ α)→ α

λy(α→α)→αλfα→α

��
a �� α ������

y

��

f

α→ α

λa

��

The paths through the above diagram terminating in a leaf node correspond
to finite βη-normal forms of the given type, while infinite paths correspond to
infinite βη-normal forms. From the diagram, we see that the general form of a
term of type αo → αo is

λyα
o

λfα→α.fn0(y(λa1.f
n1(y(λa2.f

n2(. . . y(λak.f
nkai) · · · )

Let G be the collection of such terms, and let G ∈ G. We shall now investigate
under what conditions G is an fpc generator.

Let us note immediately that n0 must be positive, for otherwise the head
variable of the term is its first abstracted variable, and an application of a fixed
point combinator to such a term always results in an unsolvable.

Notice also that ai occurs in G for exactly one i. So we can write

G = λyf.f1+n′
0(y(K(fn1(· · · y(λa.fni(y · · ·K(fnka) · · · )

where a = ai and n′
0 = n0 − 1.
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Proposition 22. Let Y be a (w)fpc and YG = Y G. Then

YGf = fm(YGf
n)

where m = n1 + · · ·+ ni−1, and n = ni + · · ·+ nk.

Proof. We are going to show that

YGf = f
∑i−1

j=0 nj (YG(λa.f
∑k

j=i nja))

= fn1+···+ni−1(YG(λa.f
ni+···+nka))

by the following five steps.

1. For any number nj , we have

YG(K(f
nja)) = GYG(K(f

nja))

= (K(fnja))1+(n0−1)(YG(K · · · )))
= K(fnja)

(
(K(fnja))n0−1(YG · · · )

)
= fnja

2. By induction, we have, for j ≤ j′

YG(K(f
nj (· · ·YG(K(f

nj′a)) · · · )
= YG(K(f

nja))[a := YG(K(f
nj+1(· · ·YG(K(f

nj′ a)) · · · )]
=1 fnj(YG(K(f

nj+1(· · ·YG(K(f
nj′a)) · · · )

=IH fnj (fnj+1+···+nj′ a)

= fnj+···+nj′ a

3. In particular, we have

YG(K(f
ni+1(· · ·YG(K(f

nka)) · · · ) = fni+1+···+nka (2)

YG(K(f
n1(· · ·YG(K(f

ni−1A) · · · ) = YG(K(f
n1(· · ·YG(K(f

ni−1a) · · · )[a :=A]

= fn1+···+ni−1A (3)

4. Using (2), we get

λa.fni(YG(· · ·K(fnka))) = λa.fni+···+nka (4)

5. Putting it all together gives

YGf = fn0(YG(K(f
n1(· · ·YG(λa.f

ni(· · ·YG(K(f
nka) · · · )

=(4) f
n0(YG(K(f

n1(· · ·YG(λa.f
ni+···+nka) · · · )

=(3) f
n0(fn1+···+ni−1(YG(λa.f

ni+···+nka) · · · )
= fn0+···+ni−1(YGf

ni+···+nk)

being what was required to show.
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What conclusions can be drawn from this proposition? We know that a generic
member of G is determined by the numbers (k, i, n1, . . . , nk), 1 ≤ i ≤ k. While
it seems likely that all these generators are “unique” – in the sense that when
G �= G′, there can be no finite conversion between YG and Y ′

G – their behaviors
nevertheless collapse to the 2-parameter family

gm,n = λyf.fm(yfn)

We can now consider two pre-generators G,G′ ∈ G to be equivalent, if their
“reduced pump” λyf.fm(yfn) is the same.

Let us observe the execution of such a reduced generator:

YGf = fm(YGf
n)

= fm(fmn(YGf
n2

))

= fm(fmn(fmn2

(YGf
n3

)))

=
...

= fm(1+n+···+nk)(YGf
nk+1

)

=
...

=

⎧⎪⎨
⎪⎩
⊥ m = 0

fm⊥ n = 0

fω m,n > 0

Thus, every such generator gm,n with m,n > 0 leads to a wfpc-generator.
Conversely, the previous inhabitation argument shows that every finite simply
typed wfpc-generator is of this form.

Simple intuition now tells us that, in order that G = gm,n be an fpc-generator,
it must transpire that m = n = 1. Indeed, thinking of a given (w)fpc Y as a
single “motor”, we are poised to measure its clock velocity by counting how
many fs it produces at each step, as well as how quickly it speeds itself up, by
changing f to an n-fold composition of it. If n > 1, then the clock perpetually
speeds itself up, so that YG cannot be an fpc. If n = 1 but m > 1, then the
clocks are indeed the same, but they are “de-synced” between the terms YGf
and f(YGf), because at k-th iteration the former will have km occurrences of f
at the head, while the latter will have km+ 1, which cannot be synchronized.

To complete the classification, it remains to ask which elements of G are
equivalent to g1,1. The answer brings us to the following result.

Theorem 23. Let G be a finite simply-typed fpc-generator. There are integers
l,m, n ≥ 0 such that

G = λyλf.f(y ◦ K)l(y(λa.(y ◦ K)m(f((y ◦ K)na))))
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Remark 24. After the first iteration, it is seen that such a G exhibits the same
behavior as the simplified term g1,1 = δ = λyf.f(yf). It is precisely in this sense
that this generator, discovered by Corrado Böhm and being the first term to
be described as such, is unique. The uniqueness is with respect to the clocked
behavioral equivalence of fpc 1-generators. It is the minimal representative of
this equivalence class, being the only class of solutions that are candidate fpc-
generators.

Interestingly, the inhabitation problem also generates infinite solutions:

G = λyα
o

λfα→α.fn0(y(λa1.f
n1(y(λa2. · · · ) · · · )

with no occurrences of ai.
Clearly, if ni = 0 for all i > 0, then G is not an fpc-generator, because

YGf = GYGf = fn0Z

where f /∈ FV(Z). Then BT(YGf) �= fω.
Similarly, if ni = 0 for i > i0, then we can apply Step 2 of the above proposi-

tion to get

YG(K(f
n0(YG(K(f

n1 · · · (YG(K(f
ni0Z) · · · ) = fΣZ

where Σ = n1 + · · ·+ ni0 . But f /∈ FV(Z). So

YGf = fn0(YG(K(f
n1 · · · ) · · · ) = fΣZ �= fω

(In this example, as well as the previous one, the term Z can be given explic-
itly: Z = YG(KZ) = (YG ◦K)ω.)

Conversely, if ni �= 0 for infinitely many i, we have that

YGf = fM (· · · )

for M larger than any given number. Thus YG is indeed a weak fixed point
combinator.

8 Further Questions

In this final section we discuss some important questions. In particular we point
to a conjecture which could have several deep consequences (see Section 8.3).
The conjecture connects the simply typed λβμ→-calculus with the untyped
λβ-calculus. If it is true, it would be a striking example of how simple types
can be used to obtain results in the pure untyped λβ-calculus.
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8.1 Decidability of Fixed Point Combinators

The simultaneous restriction–extension of λβμ→ presents us with a more ab-
stract, high level view on fixed point combinators. For, the simple types restric-
tion disallows much of the possible complexity that fpc’s may possess – spurious
complexity one might say. In particular self-application in subterms is removed,
at least between subterms of the same type. Thus the formerly simplest fpc’s of
Curry and Turing, respectively

λf.(λx.f(xx))(λx.f(xx)) and (λab.b(aab))(λab.b(aab))

are ruled out, and in λβμ→ are replaced by the simpler

λx.μy.xy and μx.δx ,

respectively.
At this point, it is interesting to speculate how complicated fpc’s can be in

λβμ→. Is the notion of fpc still undecidable? Does Scott’s theorem used to show
the undecidability of the notion of fpc’s in pure lambda calculus still hold?

What number theoretic functions are definable in this calculus, when one
restricts to working with the Church numerals (of type α→ (α→ α)→ α)?

8.2 Comparison with PCF

When we extend the calculus to its infinitary version (see Figure 1), similar
questions can be asked. At present the meta-theory of the calculus λβμ→ is
not fully clear to us, in particular its relation to PCF where the native type of
natural numbers leads to Turing-completeness.

8.3 Completeness of μ-Reduction

The λβμ→-calculus can be interpreted in the untyped λβ-calculus by instanti-
ating the μ-constructor with any fixed point combinator Y .

Definition 25. Let Y be an fpc. For a simply typed λμ-term t, its Y -translation
|t|Y is defined by induction on t, as follows:

t |t|Y
x x

st |s|Y |t|Y
λyA.t λy.|t|Y
μzA.t Y (λz.|t|Y )

The following is a deep conjecture about fixed point combinators.

Conjecture 26. For any fpc Y and simply typed s, t we have:

|s|Y =β |t|Y ⇐⇒ s =βμ t .
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Remark 27. (i) The direction ⇐ of the conjecture is trivial (soundness). The
interesting part is completeness, ⇒.

(ii) It is essential that the right-hand side involves types. Otherwise we have
the following ‘chiasm’ counterexample:

s = λz.z(μx.x)(Y (λx.x)) t = λz.z(Y (λx.x))(μx.x)

Then s �=βμ t but |s|Y ≡ |t|Y .
(iii) It is also interesting to give the equivalent reformulation of the conjecture

for the λβY→-calculus.

To illustrate the fundamental importance of this conjecture, we show that its
positive resolution would yield immediate answers to questions posed by Plotkin,
Statman and Klop.

Question 28. (Plotkin) Does there exist an fpc Y such that |μx.μy.fxy|Y =
|μx.fxx|Y ?

The question of Plotkin has been answered in [EHKP12] using clocked Böhm
Trees. A positive answer to Conjecture 26 would yield this result immediately.

Corollary 29. If the conjecture holds, the answer to Plotkin’s question is “no”.

Proof. For Plotkin’s question, consider the terms s ≡ μx.μy.fxy and t ≡ μx.fxx.
As we noted before, these terms have the same infinitary normal form. However,
they are not finitely convertible (every reduct of s has nesting of μ’s whereas
no reduct of t has). Hence for no fpc Y are their images under the |·|Y map
convertible, yielding a negative answer to Plotkins question.

Question 30. (Statman) Is it the case that for no fpc Y we have Y δ = Y ?

A proof of this conjecture given by Intrigila [Int97] turned out to contain a
serious gap, see [EHKP13]. Thus the answer to this conjecture remains open. A
positive answer to Conjecture 26 would immediately imply Statman’s conjecture
as follows.

Corollary 31. If the conjecture holds, the answer to the conjecture of Statman
is “yes”.

Proof. Suppose there exists an fpc Y convertible with Y δ. Then Y δ =β Y δδ.
Let

s ≡ (λf.μx.fx)δ t ≡ (λf.μx.fx)δδ

It is not difficult to see that s and t are typable, and (∗) s �=βμ t since the terms
have different clocks, see further the Böhm sequence in [EHKP12]. We have

|s|Y = (λf.Y (λx.fx))δ =β Y (λx.δx) =β Y δ |t|Y =β Y δδ

If Y δ =β Y δδ, then we have |s|Y =β |t|Y . However, then by Conjecture 26 we
get s =βμ t, contradicting (∗).
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We briefly indicate that this method has much wider applicability, namely
establishing a conjecture by Klop [EHK10, EHKP12], generalizing Statman’s
conjecture considerably. The conjecture refers to several fpc generating schemes,
of which the following are examples:

(G1) �δ;
(G2) �(SS)S∼nI for n ∈ N;
(G3) �(AAA)A∼nII for n ∈ N.

Note that (G2) and (G3) are schemes of generating vectors. There are actually
infinitely many of such fpc-generating schemes, but we will stick with the three
as mentioned. They enable us to build fpcs in a modular way by repeatedly
adding a vector as given by one of the schemes, starting with some arbitrary fpc
Y .

Question 32. (Klop) Constructing fpcs in this way is a ‘free construction’ in that
never non-trivial identifications will arise: Let Y, Y ′ be fpc’s and let B1 . . . Bn,
C1 . . . Ck be picked from the fpc-generating vectors (i),(ii),(iii) above. Then we
have:

(i) Y B1 . . . Bn =β Y ′B1 . . . Bn iff Y = Y ′ ;
(ii) Y B1 . . . Bn =β Y C1 . . . Ck iff B1 . . . Bn ≡ C1 . . . Ck .

Already the restriction to (G1), the generating vector δ, is a generalization
of Statman’s conjecture, stating that Y δn �= Y δm for any fpc Y and n �= m
(instead of Y �= Y δ). This indicates how non-trivial this conjecture is for the
general case. For the particular fpc Y0 we have partial results:

(i) The sequence Y0, Y0δ, Y0δδ,. . . is known as the Böhm sequence, and is known
to not contain any duplicates.

(ii) For Y0 in combination with the set of all generating vectors (G2), the con-
jecture has been proven in [EHKP12].

Both results can easily be extended to the setting of λβμ→. We therefore think
that there is hope to prove freeness of the construction for all generating vectors
(G1), (G2), (G3) for the λβμ

→ calculus. Then a positive answer to Conjecture 26
would immediately yield a positive answer to Klop’s conjecture.

In view of the strong consequences of the Conjecture 26 one must expect
that the conjecture is indeed difficult to prove. Also a counterexample would be
very interesting. Even if the conjecture fails, or as a partial result towards the
conjecture, it would be interesting to determine a class of fixed point combinators
for which the conjecture holds.
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Point Combinators and Clocked Böhm Trees. In: Proc. Symp. on Logic in
Computer Science (LICS 2010), pp. 111–119 (2010)

[EHK12] Endrullis, J., Hendriks, D., Klop, J.W.: Highlights in Infinitary Rewriting
and Lambda Calculus. Theoretical Computer Science 464, 48–71 (2012)

[EHKP12] Endrullis, J., Hendriks, D., Klop, J.W., Polonsky, A.: Discriminating
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Declarative Natural Language Specifications

Pascal Serrarens

Abstract. Natural languages are often used for specification because
they can easily be understood by non-technical people. The downside is
the inherent ambiguity of the language, which makes natural languages
unsuitable for specifications. When declarative language concepts are
applied for natural language specifications it will reduce ambiguity and
the cost of writing specifications.

1 Specification

Specifications record the requirements a system shall fulfil in order to be ac-
cepted. The difficulty in writing good specification is that a varied group of
people need to work with it: apart from the designers, programmers this also
involves customers including users, testers, project managers and system man-
agers. Many of them do not have a technical programming background and find
it difficult to read technical code. Natural language is therefore preferred and
used for most systems. It is therefore no surprise that specifications are often
extensive but still incomplete.

1.1 Defining Specification

Specifications exist on many levels, from technical to abstract. The use of (pseudo)
formal specification techniques is more widespread in the former, as people who
work with them are more technically educated. Natural languages are used of-
ten in the latter as they are often also part of a call for tender and more non-
technically educated people are involved.

In this article we focus on system specifications forming the bridge between the
customer needs and the designers input. This immediately shows the problem:
the specification’s target audience is diverse. On the customer’s side technical
knowledge is often limited as their main focus is on business domain. On the
other hand designers lack the business knowledge and focus on technical issues.

The goal is therefore a specification which can be evaluated by the customer
and still covers all technical/functional topics needed by the designers to make
a good design.

2 Related Work

Most work on improving natural language specifications is based around text pat-
terns. But like with programming we see that imperative language constructions

P. Achten and P. Koopman (Eds.): Plasmeijer Festschrift, LNCS 8106, pp. 127–132, 2013.
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are used most often. See for instance [CD03], where language patterns consist of
traditional constructions like if-then, while and for loops.

2.1 Legal Codes (Laws)

Probably the oldest form of specifications are laws.Written laws are first recorded
around 2100 BC [Tie05]. Codified Cival Law is always written in natural lan-
guages. One reason for this is that it shares a common (idealistic) goal with
specifications:

“The aim was to state the law so clearly that an ordinary citizen
could read the code and determine what his rights and responsibilities
were.” [Tie05]

In our case we want to write down the behaviour such that ordinary users
can read the specifications and determine whether the system will support his
needs.

A beautiful aspect of laws is their declarative nature. Take for instance the
first article in the Dutch Constitution:

“All persons in the Netherlands shall be treated equally in equal
circumstances. Discrimination on the grounds of religion, belief, political
opinion, race, or sex or on any other grounds whatsoever shall not be
permitted.” [Dut]

Although the text is imperative (“all persons . . . shall” ), it is a rule which is
independent of context (referential transparent) and not sequential. Note that
this article in itself is defined twice: the second sentence is in fact a clarification
by example of the first.

Next to the laws themselves, an extensive system of explaining and inter-
preting them, which is called jurisdiction. The often interesting cases coming
forward in this are great examples of the drawbacks of using natural languages
for specification. 4000 years of experience has not produced a way to avoid this.

3 Functional Properties

Most functional specifications use an imperative style. Especially the if-then
language construct is used often. In relation to that, a large part of the specifi-
cations are case based: in case A, the system should be performing X. The use
of these language constructs is caused by the process in which specifications are
produced. It merely is a collection of specific cases which should be covered by
the system.

The drawback of this approach is that the cases in the specifications are not
covering the whole system and as cases may (and therefore, will) overlap: the
specification can contradict itself.
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A good specification is therefore not case based, but generic, defining the
universal behaviour of the system. Another advantage of this is that the resulting
system is more predictable, as the behaviour is defined for any case, not just some
cases.

In this section we will discuss how specific declarative properties help to
achieve such a generic specification.

3.1 Declarative

Many specifications use imperative language constructs like if-then-else and for-
loop constructs. Using these constructs limit the implementer greatly, as it forces
an order of evaluation and specifications often quickly transform into natural
language programs.

Declarative statements stay very close to the rule: want does one want to
ensure, instead of how to ensure this. Although the difference seems small, it
has a huge effect on clarity:

1. If it begins to rain, the umbrella shall be opened
2. The umbrella shall be open when it is raining

The second line is much more powerful than the first. Not only does it state
when the umbrella needs to be opened, but also when to close it. In fact, the
second is more concise: as the umbrella is needed to protect us from the rain, it
needs to be open when it starts raining. If one starts opening the umbrella when
the first raindrops fall, we are in fact too late. Of course the second is harder to
implement, but that is an issue which should not be solved by the specification,
but by the implementer. The implementation may be more complex, but will
produce the right results.

As an example we give a specification for where trains are allowed to stop.
Because of safety issues, trains are only allowed to stop on certain areas on the
track: not on a crossing, before (and not just behind) signalling lights, completely
along the platform, not covering any switches etc.

The first attempts to write a specification for this were imperative, using
pseudo-code to define an algorithm checking for each piece of track whether the
train was allowed to stop there. The problem was that the train length had to be
taken into account as well, which made the algorithm complex. Multiple attempts
therefore failed. Using a declarative approach showed that the specification is
actually quite simple:

1. The length of the train may not stand still within non stopping zones.
2. The following areas a defined as non stopping zones

– Railway crossings
– A stretch of 1m on either side of the platform
– ...

Actually, it is the same description as in the paragraph above, but now written
in a concise way.
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Of course, this does not solve the problem how this should be implemented,
but that is exactly what a specification is not supposed to do: it should not
limit the party realizing the system to a specific implementation, but instead
give them the freedom to choose the best implementation as long as it fulfils the
specification.

3.2 Referential Transparency

Universal requirements are the best to work with: they define the system be-
haviour in any situation, independent from the system status at any moment.
This results in clearer and predictable system behaviour and simplifies the spec-
ification as a whole. It also provides a better baseline for the implementers,
because they do not have to work through the whole specification to determine
a specific desired system behaviour.

For this reason requirements shall be side-effect free: its meaning should not
change by any other requirement hanging around somewhere or which may be
added later on. This is in contrast to the case-by-case specification where cases
may overlap.

The way to achieve this is to use definitions are much as possible. In the
example above, non stopping zones, is defined as a term to specify the places
where a train is not allowed to stop. The complete definition is found there and
should not be altered by other requirements. In a section on weather conditions
one may specify that in dry and hot conditions, tracks close by vegetation are
also non stopping zones, because of the fire hazard from sparks coming from the
brakes of trains. Constructions like that have to be prevented by the author,
as it breaks referential transparency. Of course, there is nothing to prevent the
author of the specification to extend the definition somewhere else: it is up to
the author to know and apply this rule.

3.3 Lazy

A specification is not evaluated of course, but when writing a requirement, one
does not need to understand a specific term to understand the full requirement.
This helps in understanding the requirement more quickly.

In the example above on the non stopping zones, requirement 1 specifies that
there is a limitation to where a train is allowed to stop, but it does not specify
where. One can understand requirement 1 on its own and only when one needs
to know where a train is not allowed to stop, he should look at requirement 2.

Furthermore, the definition of requirement 1 is not dependent on the actual
definition of the non stopping zones. It is possible to replace the definition in
requirement 2 by something completely different. It is even possible to leave out
the definition of the non-stopping zone during the writing of the specification,
as it may not be available yet. This still does not invalidate the specifications.
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4 Advantages

4.1 Speed of Writing

Specifications written in Functional English are quicker to produce, because of
the declarative style and referential transparency. One case tackles every aspect
one by one and not get tangled in a complex text with dependencies throughout
the whole document.

4.2 Expressive Power

A declarative specification style takes significantly less text to describe the re-
quirements than traditional specification. It really forces the author to focus on
what the system should ensure, leaving the implementation issues to the imple-
menter. Imperative specifications make it easy to include implementation aspects
because of their similarity to programming languages.

5 Limitations

5.1 Overall System Behaviour

Although Functional English helps to reduce the ambiguity of natural language
specifications, it does not suffice alone. The major shortcoming is that it fails to
draw a complete picture of the whole system: how will the result behave when
implemented? Functional programming languages do not have this drawback, as
they can be executed, which shows the behaviour of the whole system.

For this reason, specifications written in a declarative style should always be
accompanied with illustrating descriptions. Use cases are well suited for this, as
they are equally accessible for various people as natural language specifications.

5.2 Enforcing the Declarative Style

Writing specifications in a declarative style is not enforced in any way. Functional
programming languages force the program into declarative constructs as imper-
ative elements are not available. Type and other checking mechanisms prevent
the programmer to violates against the declarative rules.

On the other hand there is nothing to prevent the author to deviate from
these rules when writing declarative specifications. Peer review may improve
the use of the declarative style, but in most cases the peers are not available.
Other reviewers often have a tendency to direct the author to writing imperative
requirements, as that is the common practice. Therefore there is a need for
distributing and teach the knowledge about writing declarative specifications.
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6 Conclusion

The declarative way of writing specifications improves the quality and effort
needed. Language constructs from declarative languages can be applied well in
natural language specifications, resulting in clearer and more compact specifi-
cations, while retaining the advantage of a specification which can be read by
non-technical people.

While it works well as a specification, an additional illustration is needed to
show the workings of the system as a whole, as the specifications cannot be
executed. Additionally, without a language environment enforcing writing good
declarative specifications, the possibilities to check against the declarative rules
are limited.

This should not prevent requirements engineers using these rules, as every
time it is applied, the quality of the specification will increase. For this reason
we should spread the word and improve system specifications using a declarative
style.
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Abstract. Programming in Clean is much more appealing than pro-
gramming in JavaScript. Therefore, solutions that can replace JavaScript
with Clean in client-side web development are widely welcomed. This pa-
per describes a technology for the cross-compilation of Clean to
JavaScript and for the tight integration of the generated code into a
web application. Our solution is based on the iTask framework and its
extension, the so-called Tasklets. The application server approach pro-
vides simple and easy deployment, thus supporting rapid development.
Examples are shown to illustrate how communication between the Clean
and JavaScript code can be established.

1 Introduction

Using JavaScript for the development of client-side web applications displeases
the Clean programmer and former web developer writing these words. JavaScript,
even despite it has some functional features, creates a hostile environment com-
pared to Clean. Consider, for example, the lack of type safety, the ugly and
sometimes unnecessarily verbose syntax, and the productivity loss caused by
these. One can also miss very much the elegance of a well-designed and ma-
ture functional language, and the programmers’ self-confidence enhanced by the
strong type system and referential transparency.

Still, JavaScript, as the only language of the platform for browser develop-
ment, is inevitable. As a consequence, several attempts have been made for cross-
compiling all kinds of languages to JavaScript. It is a well-established technique
considering imperative languages, but the picture is not that clear when the
subject of compilation is a functional language. Even worse, compiling a lazy
functional language, such as Clean, to JavaScript is definitely a delicate job.

The main problem is the limitation of the available resources in the browser:
the run-time system imposes severe constraints on heap and stack usage. As
iteration in functional languages is accomplished via recursion, stack limitation
seems to be the most serious issue. A standard technique to overcome this is
trampolining [16], but, as it increases the memory footprint and the running
time of the application, usually it does not perform effectively enough in the
case of lazy functional languages. The reason for the higher memory footprint
in these languages is the need to maintain thunks, i.e. delayed computations.
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As for Clean, a mature JavaScript compilation technique is available which
solves these problems to an extent which is applicable for most practical tasks [5].
However, this is only half the job. Compiling a Clean program to JavaScript still
involves numerous steps which hampers the development of client side web appli-
cations in Clean: (1) the Clean program must be transformed to an intermediate
language using the Clean compiler, (2) this intermediate must be compiled to
JavaScript using a standalone application, and (3) the generated JavaScript code
must be integrated into the web application. This complex and mundane process
can nullify the advantages of non-JavaScript development.

In this paper an extension to iTask and Tasklets is presented, to make the
above mentioned deployment process transparent. With this extension, iTask be-
comes a rapid development environment, or even an application server for client
side web applications written in Clean. Furthermore, this extension does not
only solve the aforementioned deployment problem, but it also enables complex
information interchange between the Clean and JavaScript code in a type safe
manner.

The rest of the paper is structured as follows. Section 2 gives a brief introduc-
tion to the iTask system and Tasklets. Section 3 presents what contributions the
present paper makes. To that end, it illustrates the approach and some of the
technical issues through three carefully selected examples. Section 4 discusses
type correspondence between the JavaScript and Clean side of the code. Related
work is described in section 5. Finally, section 6 concludes. The system as well
the examples presented here can be downloaded from the web.1

2 Preliminaries

The iTask system [10] is a framework for programming workflow supporting ap-
plications in Clean using a new programming paradigm built around the concept
of tasks [15]. A task is an abstract description of an interactive persistent unit of
work which delivers a value when it is executed. From a practical point of view,
a task can be anything from a system call to some interaction to be performed
in a web browser by a user.

iTask provides a combinator-based embedded domain specific language to
specify compositions of such interdependent tasks. A complete multi-user web
application can be generated from the specification of the workflow and of the
different data types involved – all the details (including the web user interface,
client-server communication, state management etc.) are automatically taken
care of by the framework itself.

Developing web applications such a way is straightforward in the sense that
the programmers are liberated from these cumbersome and error-prone jobs, such
that they can concentrate on the essence of the application. The iTask system
makes it very easy to develop interactive multi-user applications. The down side
is that one has only limited control over the customization of the generated user

1 http://people.inf.elte.hu/dlacko/papers/rapmix/

http://people.inf.elte.hu/dlacko/papers/rapmix/
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interface. Sometimes, even if the functional web design is satisfactory, custom
building blocks may be required for the purpose of user-friendliness.

Tasklets, a recent extension to iTask, are introduced to overcome this short-
coming [6]. Tasklets enable the development of interactive web components di-
rectly in Clean. A tasklet consists of an inner state, user interface, and behavior
provided by non-pure event handler functions. The user interface can be de-
fined in any abstract or concrete way that enables HTML code generation. The
event handlers are written in Clean, but compiled to JavaScript and executed in
the browser where they have unrestricted access to client-side resources. Using
browser resources, the tasklet can create custom appearance and exploit func-
tionality available only in the browser; utilizing the event-driven architecture the
tasklet can achieve interactive behavior.

From a technical point of view, tasklets are defined by the means of the
Tasklet st val record type. It has two type parameters: one of the parameters
denotes the type of the internal state of the tasklet (st) while the other gives
the type of its observable state (val):

:: Tasklet st val = { generatorFunc :: (*World → *(TaskletGUI st, st, *World))
, resultFunc :: (st → Maybe val)
}

During initialization, generatorFunc is executed on the server to provide the
user interface and the initial state of the tasklet. Its only argument, a value of
the unique type *World, allows access to the external environment. Whenever
needed, the current observable value of the tasklet can be computed from the
internal state by calling resultFunc. This value is optional (Maybe). The user
interface and its behavior are defined by the TaskletHTML structure:

:: TaskletGUI st = TaskletHTML (TaskletHTML st) | ...

:: TaskletHTML st = { html :: HtmlDef

, eventHandlers :: [HtmlEvent st]
}

:: HtmlDef = ∃a: HtmlDef a & toHtml a

:: HtmlEvent st = HtmlEvent HtmlElementId EventType (EventHandlerFunc st)
:: EventType = OnClick | OnMouseOver | OnMouseOut | ...

:: EventHandlerFunc st :== (st HtmlObject *HtmlDocument → *(*HtmlDocument, st))

The actual user interface (html field) can be given by any data structure provided
that it has an instance of the function class toHtml.

The run-time behavior of a tasklet is encoded in a list of event handler func-
tions (eventHandlers field). Event handlers are defined using the HtmlEvent type.
Its only data constructor has three arguments: the identifier of an HTML ele-
ment, the type of the event and the event handler function. During the instan-
tiation of the tasklet on the client, the event handler function is attached to the
given HTML element to catch events of the given type.

The event handler functions work on the JavaScript event object (a value
of type HtmlObject in Clean) and on the current internal state of the tasklet.
They also have access to the HTML Document Object Model (DOM) to maintain



136 L. Domoszlai and T. Kozsik

their appearance. The DOM is a shared object from the point of event handlers,
therefore it can be manipulated only the way as IO is done in Clean, through
unique types. That is, accessing the DOM is possible only using library functions
controlled by the unique *HtmlDocument type.

Following the tasklet definition, a wrapper task must be created to hide the
behavior of the tasklet behind the interface of a task (tasks are represented by
the opaque type Task a, where a denotes the type of the value of the task):

mkTask :: (Tasklet st a) → Task a

The life cycle of a tasklet starts when the value of the wrapper task is requested.
First, generatorFunc is executed on the server to provide the initial state and
user interface of the tasklet. Then, the initial task state and the event handlers
defined in Clean are on the fly compiled to JavaScript and, along with the UI
definition, shipped to the browser. In the browser, the HTML markup is injected
into the page and the event handlers are attached. As events are fired, the related
event handlers catch them, and may modify the state of the tasklet and the
DOM. If the state is changed, resultFunc is called to create a new result value
that is sent to the server immediately. The life cycle of the tasklet is terminated
by the framework when the result value is finally taken by another task.

3 Rapid Development with iTask

In iTask, the deployment process during development is fairly straightforward.
Given an iTask task, aTask, by adding the following main function and running
the application, an embedded web server is started, which publishes the task on
the local host.

Start :: *World → *World

Start world = startEngine aTask world

When the page is requested in the browser, first a client-side run-time environ-
ment is loaded, which manages the user interface (UI) of the tasks. The actual
task is published on a special URL where it provides the abstract description of
its UI as a JSON encoded descriptor object. The run-time environment can load
and display such abstract UI descriptions.

A tasklet is self-contained in the sense that its UI description contains all the
JavaScript code necessary to run the tasklet in the browser. Thus, to turn an
iTask application into an application server for non-iTask applications, all we
have to do is to provide, as a standalone JavaScript library, a small part of the
aforementioned run-time environment: a part which is able to load and create a
tasklet. On the server side, a list of tasklets can be published all at once:

Start world = startEngine [{ PublishedTask

| url = "/test"

, task = TaskWrapper (const testTasklet)
, defaultFormat= JSONGui}]

world
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This overloaded version of function startEngine enables the specification of a
list of tasks together with the URLs where they will be published (in the example
above the list had only one element).

On the client side, loading the published tasklet is this simple:

<html>

<head>

<script type="text/javascript" src="tasklet-runtime.js"/>

<script type="text/javascript">

loadTasklet("http://localhost/test", function(tasklet){

tasklet.display(document.getElementById("out"));

});

</script>

</head>

<body>

<div id="out"/>

</body>

</html>

The JavaScript library tasklet-runtime.js is less than 10 kB compressed. It
contains the logic for loading and instantiating tasklets, as well as the run-time
environment of the Clean to JavaScript compiler. Function loadTasklet tries
to load a tasklet from the URL given in its first argument. Since the loading
mechanism is implemented with an asynchronous AJAX request, a call-back
function must also be provided as a second argument; this will be called when
the tasklet is loaded and created in the browser.

An instantiated tasklet is represented as a JavaScript object with the prede-
fined prototype Tasklet. It encapsulates and hides all the properties of a tasklet
(the user interface, the state and the behavior), and exposes only the display

method which injects the UI of the tasklet into a given point in the HTML DOM.
Using the above method, an arbitrary tasklet can be included into a non-

iTask application. However, it is still a foreign element in the application, as it
runs independently and has no way for information exchange. In the following
sections our solution is presented to this problem. We propose a mixed-language
programming model where different parts of a web-application are written in
either Clean or JavaScript, making the best use of the two languages. Each
functionality can be coded in the language which suits better to the given task,
and interaction is made easy between fragments written in the two languages.
Rapid application deployment is supported by the concept of an application
server for client-side web applications. Tasklets run embedded in a lightweight
application server, which generates and supplies the JavaScript code through a
standard web socket; the client side support library automatically injects this
JavaScript code into the web page. At the end of program development, the
application server can be eliminated: the JavaScript code generated from the
tasklets can be saved into a .js or .html file, and deployed on a web server.
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Our approach will be demonstrated step-by-step in the following sections
through a series of example applications. What these examples have in common
is the lack of a user interface and observable state of tasklets. According to the
principle that in a mixed language environment both languages should be used
at their best, we chose to implement control and user interaction in JavaScript,
and stress pure style in the Clean code. This approach results in a very special,
unconventional use of iTask and Tasklets. To indicate that a given tasklet does
not encapsulate a GUI, a new data constructor NoGUI for the type TaskletGUI

is introduced. Moreover, as it is used for task-to-task communication in proper
iTask applications only, no return value (observable state) for tasklets are needed
here. Therefore, in the forthcoming examples, for the creation of tasklets, we use
the initially function which specifies the initial internal state only.

initially :: st → Tasklet st Void

initially st = { generatorFunc = λworld = (NoGUI, st, world)
, resultFunc = const Nothing

}

3.1 Writing the Logic of a Web Application in Clean

One day the need to display Clean source code in a web application, as part of a
source code repository, has emerged. Many Clean developers use the integrated
Clean development environment, CleanIDE, for programming. This environment
provides excellent syntax highlighting, and Clean developers have really got used
to it. Therefore the same style to present Clean code seemed highly desirable
for our web application. Reprogramming the functionality in JavaScript would
have been a fairly complex task. However, with our tasklet-based framework
it has proven to be relatively easy. We decided to use the modules responsible
for syntax highlighting in the CleanIDE, which meant more than 1000 lines
altogether. We had to add a main module containing a tasklet definition (which
mimics the CleanIDE for calling in the syntax highlight module) and a Start

rule: 30 effective lines of code. Furthermore, 18 effective lines of JavaScript and
13 effective lines of HTML code had to be written only. The Clean to JavaScript
compiler generated 136 kB of JavaScript from the 33 kB of Clean code, and the
source code viewer was up and running. Now we take a closer look at the code.

:: Color :== String

highlight :: [String] → [ [ (String, Color) ] ] // definition omitted

annotateI (Just dynArg) st eventqueue= (res, st, eventqueue)
where res = case dynArg of (lines :: [String]) = highlight lines

highlighter= mkInterfaceTask (initially Void) [InterfaceFun "annotate" annotateI]
Start world = startEngine [{PublishedTask | url = "/highlighter"

, task = TaskWrapper (const highlighter)
, defaultFormat= JSONGui}]

world
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The unnecessary technical details have been omitted, as well as the body of the
highlight function, which can be written as the composition of some functions
defined already in the CleanIDE.

In the case of this simple tasklet, not only the GUI and the result value,
but also the internal state is absent, i.e. Void. The only way to interact with
the highlighter tasklet is to call its single interface function, annotateI, from
the JavaScript code. When a tasklet is created with mkInterfaceTask (defined
in the tasklet library), a list of interface functions can be passed. In this case,
this list has a single entry: whenever the JavaScript code calls the annotate

method of the tasklet, the code generated from the annotateI function is ex-
ecuted. This annotateI takes the current (Void) state of the tasklet and an
event queue (explained in section 3.3), and returns them unmodified. Informa-
tion from JavaScript to Clean is received through the second parameter, which
is of type Maybe Dynamic. Dynamics provide dynamic typing facilities in a stat-
ically typed language [1,14].) We expect here that a list of strings is stored in the
Dynamic, namely the lines of some Clean source code. If the dynamic pattern
matching fails, the run-time engine triggers an exception to inform the caller.
The highlight function will be called with the lines found in the dynamic: it
splits each line into tokens, and annotates each token with its colour. The token
and its colour is represented as a pair of strings, a list of pairs corresponds to a
line, and the list of lists is the whole program text syntax highlighted. This list
of lists of pairs of strings is sent back to the JavaScript side as a component of
the triple returned by annotateI.

To understand how types are handled in our Clean to JavaScript compiler,
consider below the interesting part of the JavaScript side in our mixed-language
application.

function onLoadTasklet(tasklet){

var lines = prepareLines();

var tokens = tasklet.intf.annotate(lines);

for(var i=0; i<tokens.length; i++){

for(var j=0; j<tokens[i].length; j++){

var token = tokens[i][j][0];

var color = tokens[i][j][1];

appendToken(token, color);

}

appendNewLine();

}

}

loadTasklet("http://localhost/highlighter", onLoadTasklet);

When the page is loaded, the function loadTasklet is executed by the browser.
The tasklet is loaded from the specified URL, instantiated, and onLoadTasklet

is called with it. This latter function first creates an array of strings (i.e. lines),
which is passed to the annotate interface function of the tasklet (the interface
functions are created under the intf namespace to avoid possible name collisions
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with the original properties of the Tasklet prototype). Note that this array of
strings corresponds to a Dynamic containing a list of strings in the Clean side
(the details of the type correspondence algorithm are explained in section 4).
Function annotate returns an array of arrays of arrays of strings, tokens, which
is processed in a straightforward way in the for-loop.

Communication between JavaScript and Clean sources is, therefore, accom-
plished in the following way. Primitive types of Clean are represented with similar
primitive types in JavaScript, while lists and tuples are represented by arrays
(an n-tuple is represented as an array of length n, e.g. 2 in our example). Alge-
braic types are also represented by arrays – the name of a data constructor is
stored in the first element of such an array. Values from JavaScript correspond to
Dynamic in Clean, so that pattern matching on types in the Clean side facilitates
type-safe programming. This has been an example of an interface function with
a single argument. Interface functions with no arguments receive a Nothing, and
those with multiple arguments will find a tuple in the Dynamic.

3.2 Adding State and Interaction

Suppose you must write some interactive presentation logic to be executed in a
browser. For example, you want to display the bibliographic data of your publi-
cations in a searchable, filterable way on the web (Fig. 1). The application should
receive a BIBTEX file as input, and parse, filter and pretty-print the entries found
in this file. To write a client-server application for this, and implement parsing
and filtering on the server would be too much hassle. It is more reasonable to
send over the data to the browser all at once, parse it, and then let an interac-
tive client side application filter the data and display the selected items. Coding
all these activities in JavaScript is not what you would like to do on a rainy

Fig. 1. Web application for filtering bibliographic data
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Friday afternoon. Contrarily, much of the functionality is fairly straightforward
to develop in Clean, using higher order functions. To implement parsing, for
instance, the Parser Combinator library of Clean may prove useful. It turns out
that tasklets are a valuable tool for building this application.

The main difference between this and the syntax highlighter application is
that interaction with the user is required, and that there is some state that
should be preserved between user interactions. We suggest that the state should
be stored in the JavaScript side of the code, and state-to-state functions should
be written in Clean. The following fragments present the interesting parts from
the JavaScript side of the code.

var entries;

var tasklet;

function onLoadTasklet(aTasklet){

tasklet = aTasklet;

entries = tasklet.intf.init();

var refs = prepareReferences();

for( var i=0; i<refs.length; i++ )

entries = tasklet.intf.parse(entries, refs[i]);

display_bibitems(entries);

}

The state of the application, stored in the global variable entries, represents
all the entries of the BIBTEX file. Right after the page is loaded and the tasklet
is created, function onLoadtaskletwill be called, which parses the bibliography
items. First, it creates the initial state by calling the init interface function,
then the bibliography items are parsed and added to the state one by one using
the parse interface function of the tasklet. Parsing is performed in such a “per
item” basis as a precaution only – otherwise, in the case of a long bibliography
list, like that of Rinus Plasmeijer, parsing might run out of stack.

Whenever the user interacts with our application, namely when the search
button on the web page is pressed, function search will be called. It filters the
bibliography items, again using interface functions of the tasklet.

function search(){

var selected = entries;

var year = document.getElementById("year").value;

if( year != "" ) selected = tasklet.intf.filter(selected,"year",year);

// similarly for entry type and author

var keyword = document.getElementById("keyword").value;

if( keyword != "" ) selected = tasklet.intf.search(selected, keyword);

display_bibitems(selected);

}
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Similarly to the syntax highlighter, this tasklet is also stateless and provides no
GUI. It does not make use of eventqueue either.

bibtex = mkInterfaceTask (initially Void)
[ InterfaceFun "init" initI

, InterfaceFun "parse" parseI

, InterfaceFun "toString" toStringI

, InterfaceFun "filter" filterI

, InterfaceFun "search" keywordI]

The interface functions of the tasklet have a similar structure to that of
annotateI in the previous example. The only argument they use is the one
of type Maybe Dynamic, on which they pattern match. The filter method calls
in the JavaScript code, for instance, has three actual arguments, therefore the
dynamic in the corresponding Clean function, filterI, should be a triple.

filterI (Just dynArg) st eventqueue= (dynamic res, st, eventqueue)
where res = case dynArg of

((entries,tag,value) :: ([Entry] ,String,String))
= filterEntries entries tag value

Section 4 will explain why res, the result from filtering is wrapped in a dynamic.

3.3 Even More State and Even More Interaction

In the BIBTEX example, the state of the application was stored in the code
written in JavaScript, and the internal state of the tasklet was Void. Our next
challenge is to write a game for solving Rubik’s cube – but now in this application
a stateful tasklet will be used. Similarly to the previous examples, the tasklet
will have neither a GUI nor an observable state, and it will provide interface
functions available for the controlling JavaScript side of the code.

The level of interactivity is much higher in this example than in the previous
one. The Rubik cube is controlled by moving the mouse and by pressing some
keys; the cube is rendered (Fig. 2) on-the-fly by the Clean side of the code when
its state is changed. Another interesting issue in this example is how information
flows between the pure Clean side of the code and the impure JavaScript side.

Fig. 2. Rubik’s cube rendered in Clean, drawn by JavaScript
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Although the tasklet depends on information from the outer environment (the
browser), and has an impact on its environment as well, referential transparency
is not violated.

This is achieved by using a technique we call the method of the blind chess
player. A blind chess player cannot observe the chessboard in any way, only
possesses a mental picture, an inner representation of the board. The blind chess
player depends on an independent observer to announce the movements. The
blind chess player cannot even move the pieces directly, but can ask someone to
carry out the movement. The first sign of using this technique is that from the
nine interface functions of the tasklet, eight are merely used to delegate events.
When such an event is delivered, the inner state of the tasklet is updated, the
cube is re-rendered, and finally displayed.

rubik = mkInterfaceTask (initially (State standard (pi/10.0,pi/10.0,0.0) Nothing))
[ InterfaceFun "display" displayI

, InterfaceFun "mouseDown" mouseDownI

, InterfaceFun "mouseUp" mouseUpI

, InterfaceFun "mouseMove" mouseMoveI

, InterfaceFun "turnLeft" (turnI fst left)
, InterfaceFun "turnRight" (turnI fst right)
, InterfaceFun "turnUp" (turnI snd up)
, InterfaceFun "turnDown" (turnI snd down)
]

:: R3 :== (Real,Real,Real)
:: Color :== String

:: Cube :== (R3 → Color)
:: State = State Cube R3 (Maybe (Int,Int))

The internal state of the tasklet will keep track of the actual configuration of
the cube (initially it is the “standard” configuration, explained a bit later), an
angle describing the viewpoint of the user (R3), and the mouse coordinates if
the mouse is pressed (initially it is not). Note that the second and the third
components in the internal state of the tasklet describe the state of the user
interface.

To model Rubik’s cube, we follow Péter Diviánszky.2 The cube is placed
in such a way that its size is 3 × 3 × 3, its middle point is the origin of the
Cartesian coordinate system and its edges are parallel to the axes. The repre-
sentation is given as a partial function R3 → Color, which assigns a color to
the middle point of each of the 6 × 9 small faces of the cube. The operations,
namely rotating the cube and twisting one of the 6 layers, can be implemented
by composing functions that describe coordinate transformations, for instance
left (x,y,z) = (z,y,~x). The initial, standard configuration can be given in
the following way.

2 http://pnyf.inf.elte.hu/fp/Rubik_en.xml

http://pnyf.inf.elte.hu/fp/Rubik_en.xml
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standard (x,y,z)
| abs x > abs y && abs x > abs z = if (x < 0.0) "green" "blue"

| abs y > abs x && abs y > abs z = if (y < 0.0) "yellow" "white"

| otherwise = if (z < 0.0) "orange" "red"

Now we come to an essential question, namely how to display this cube from
a pure environment. A trivial solution would be to return the list of polygons
from an interface function and let the JavaScript side to display it. However, that
would clutter the interface of the tasklet and would move a substantial part of
the algorithm from Clean to JavaScript. Therefore, another solution was chosen:
the tasklets are allowed to fire events just as arbitrary JavaScript objects can
do. In the JavaScript side, functions can be subscribed to these events.

tasklet.addListener("draw", function(event){

var v = event.value;

var color = v[1];

var p1 = v[0][0];

...

drawPolygon(p1,p2,p3,p4,color);

}

The displayI interface function computes a 2D projection of the cube from the
viewpoint of the user (polygons), asks the JavaScript side to clear the display,
and asks it again and again to draw each polygon with the appropriate color.
To achieve this, the function fires events clear and draw.

displayI :: (Maybe Dynamic) State *EventQueue → *(Void, State, *EventQueue)
displayI Nothing st=:(State cube angle _) eventqueue

# eventqueue= fireEvent eventqueue "clear" Void

# eventqueue= foldl (λq p → fireEvent q "draw" p) eventqueue polygons

= (Void, st, eventqueue)
where polygons = project cube angle

In Clean unique types (*EventQueue here) are used to thread effectful compu-
tations in a pure functional way. Since fireEvent interacts with the outside
world, namely with the user interface of our application, a “new event queue”
is formed after each invocation of fireEvent, and the previous event queue is
“consumed”. However, this is not enough to preserve referential transparency.
What is missing is that events are not allowed to interfere with the interface
function that triggers them. No return value is coming back to the Clean side
from the JavaScript function(s) triggered by an event, and there is no means to
access the outside world from the Clean side other than through the parameters
of the interface functions. Type *EventQueue is abstract; it can only be used to
ensure that events are delivered, and to define the order of event delivery. Due to
this mechanism, the meaning of an interface function does not depend on when
the event handlers are executed in the JavaScript side. They can be executed
either interleaved with the Clean side of the code (i.e. by synchronous method
calls) or asynchronously, after the completion of the interface function.
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The division of labour described above is advantageous: pure definitions are
written in Clean, while in JavaScript only the control and the effectful user in-
teractions are implemented. In this application, for example, the JavaScript side
is responsible for drawing polygons (it is straightforward in JavaScript using its
browser-independent primitives), for capturing pressed keys and mouse events,
and for doing some hacks to make the application work with different browsers.
Altogether the JavaScript side is made up of a few dozens of effective lines of
code here, such as the one catching key events.

function key(event){

switch(event.charCode){

case 119: tasklet.intf.turnUp(); break;

case 97: tasklet.intf.turnLeft(); break;

case 115: tasklet.intf.turnDown(); break;

case 100: tasklet.intf.turnRight(); break;

}

}

Most of the application, that is, roughly 200 effective lines of code, is written in
Clean. All the decisions, all the difficult parts are in the Clean side. For instance,
those interface functions of the tasklet which are partial applications of turnI
make decisions on what to do with the key events based on the tasklet state, viz.
whether rotate the cube (if the mouse button is not pressed) or twist a layer (if
the mouse button is pressed over a polygon which belongs to the 2D projection
of a layer of the cube).

turnI _ rotation Nothing st=:(State cube angle Nothing) eventqueue

= displayI Nothing (State (cube o rotation) angle Nothing) eventqueue

turnI selector rotation Nothing st=:(State cube angle (Just coord)) eventqueue

= displayI Nothing (State new_cube angle (Just coord)) eventqueue

where polygons = project cube angle

new_cube = case (select_layer polygons coord) of
Nothing = cube

Just layer = twist cube layer selector rotation

Some details of the definition are left uncovered here, and some other details were
left out completely in order to increase readability – for the precise definitions
the Reader can look up the code of the example on the web.3

4 Type Correspondence in Parameter Passing

The communication between the JavaScript side and the Clean side of the code
is bidirectional. The JavaScript side calls the interface functions of tasklets,
passing arguments and expecting results. Moreover, the Clean side fires events,
with parameters attached, and the JavaScript side may observe these events and
receives their attached parameters. In both cases information exchange between
the two sides is achieved through pass-by-value parameters and, in the first case,

3 http://people.inf.elte.hu/dlacko/papers/rapmix/rubiksource.html

http://people.inf.elte.hu/dlacko/papers/rapmix/rubiksource.html
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through pass-by-value return values. The proper transmission of data requires a
consequent correspondence between Clean types and JavaScript types. Certain
types carry over between the two languages quite straightforwardly, others need
special encoding.

It must be emphasized, however, that when we talk about the Clean side of
the code, we actually mean some JavaScript code that was generated from Clean
code by our cross-compiler. For clarity, we will refer here to the JavaScript side
of the application as JS code, and to the code generated from the Clean side as
JS* code. JS* uses a special run-time encoding of Clean types. For details on
this encoding, the Reader is referred to [5].

To facilitate information exchange between Clean and JavaScript, a conversion
from the JS* encoded values to JS is provided. The programmer could use the JS*
encoded values in the JS code directly, but the structure of the encoded values is
quite unnatural. Therefore, our runtime environment converts JS* values to JS
values that are easier to use. As the examples in section 3 revealed, (1) during
conversion primitive types are preserved; (2) the encoding of lists and tuples of
Clean are converted to arrays; (3) algebraic types are also represented by arrays,
where the name of a data constructor is stored in the first element of such an
array. The conversion of functions in JS* to JS is not supported in the current
version of the system. Handling partially applied functions and lazy arguments
would demand special care of these values on the JS side, which, in our opinion,
is not worth the effort.

The opposite direction, however, is not that simple. Clean has a much richer
type system than JavaScript, thus JS values cannot be converted to JS* un-
equivocally. A further problem is that JavaScript is dynamically typed, and thus
special care must be taken to avoid passing values of wrong type from JS to
JS* and prevent run-time errors. Due to laziness, these run-time errors would
emerge in the most unexpected moments.

A solution to overcome these problems is based on the dynamics feature of
Clean. A value of an arbitrary Clean type can be converted to the special type
Dynamic, then later the value of such a dynamic can be extracted by run-time
pattern matching on the enclosed type using an algorithm called type unification.

When a value is passed from JS to JS*, the run-time environment tries to
convert it to a Dynamic first. Obviously, this cannot be done in every case, but
using the following (conservative) unification rules the most frequently occurring
cases are covered.

1. JS booleans can be unified with Clean Bools.
2. Although JS has no special character type, strings of one length can be

unified with Char in Clean.
3. There are no separate integer and floating point types in JS, a JS integer

value can be unified with both Int and Real in Clean.
4. Non-integer numbers can be unified with Clean Reals only.
5. JS strings can be unified with the String type of Clean.
6. An array of JS values can be unified with a Clean list type, if
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(a) all of its elements can be determined by the preceding rules,
(b) they have the same type, and
(c) this type is equivalent with the type parameter of the Clean list.

7. In all other cases type unification fails.

Finally, there is one more important case to consider. As the BIBTEX example
revealed, it can be very useful to allow passing JS* values of some intricate type
to JS as a state. Such a value is not supposed to be used directly by the JS code,
it is only to be passed around between interface calls. Unfortunately, the JS* to
JS to JS* conversion of such an intricate value would destroy the original type.
In this case we allow the JS* code to pass a Clean Dynamic to JS. The run-time
environment detects whether a value has type Dynamic and does not convert it
into a JS value. When such a Dynamic is passed from JS to JS*, the run-time
detects again its special nature, and does not try to recognize the type of the JS
value, but uses its original Clean type (generated by the dynamic keyword) for
type unification.

5 Related Work

Compilation of traditional programming languages to JavaScript has drawn
much attention in the last few years as client-side processing for Internet ap-
plications has been gaining importance. Virtually every modern language has
some kind of technology which allows its client-side execution – see [2] for an
overview.

An interesting approach to avoid the usage of JavaScript, is the so called
single-language compilation technique. Single-language systems allow the devel-
opment of all tiers of a whole client-server application in the same language.
Those parts of the application which are needed on the client are automatically
transformed to JavaScript, while the other parts are compiled to some server-side
binary. Communication between the client and the server can be transparent.
The most mainstream example is GWT [9] for Java. As for functional languages,
the prominent representatives of this approach are Links [3] and Hop [11]. A no-
table advantage of single-language systems is that the whole application can be
type checked. However, mixed-languages solutions, like ours, are also advanta-
geous: one can use the best of all languages. GWT, for instance, also makes it
possible to export libraries as well [12].

In this section we are particularly interested in compiler technologies for lazy
functional languages, paying special attention to the deployment process and the
possibilities of interacting with JavaScript.

UHC-JS is the JavaScript backend of the Utrecht Haskell Compiler [4]. Al-
though it is still in beta stage, it can already successfully compile a fair amount
of Haskell programs. Its main advantage is that the generated JavaScript code
is acceptably small, albeit relatively slow. Compilation can either proceed in a
per-module basis or the modules can be linked together using source code level
linking. Unfortunately, in the second case the whole application has to be com-
piled, and the start expression cannot be specified. Its abilities to interact with
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JavaScript are very limited. In fact, they are restricted to a standard foreign
function interface (FFI) and some DOM manipulation libraries implemented
above it.

The Fay language [7] has a unique approach – namely, it does not utilize
a Haskell compiler for preprocessing, but directly parses Haskell source code
using third party libraries, and generates JavaScript code from the abstract
syntax tree. As a consequence, Fay supports only a limited subset of the Haskell
language, which makes it less appealing for us. JavaScript interoperability is
enabled through a trivial foreign function interface.

GHCJS [13] is the most promising compiler technology among those discussed
here. However, it has a rather heavyweight approach compared to our solution.
It compiles most Haskell libraries without a problem, but suffers from a rela-
tively slow engine (an advanced engine is under development) and huge code
footprint. It uses GHC as a front end, and JavaScript code is generated from
the resulting STG. Complete interactive applications can be developed using
GHCJS through non-standard support libraries, such as WebKit, bindings for
WebKitGTK+, which provide a low level DOM interface, and different low and
high level interfaces for JavaScriptCore. Unfortunately, due to the use of these
libraries, even the most trivial application will consist of several hundred kB
(or even MB) of JavaScript. On the other hand, these libraries enable the most
advanced JavaScript interoperability among the compilers of study. Besides the
ubiquitous FFI support, GHCJS enables callbacks to the Haskell code as well.
Type safety of these calls are ensured, but limited to primitive types, like Num-
bers, Booleans and Strings. Furthermore, GHCJS utilizes an algebraic data type
to deal with JavaScript values – this is highly limited compared to our Dynamic-
based approach. The deployment process is overcomplicated, several JavaScript
files are generated, and have to be included in the final application along with
numerous pre-compiled libraries.

Finally, the Haste compiler [8] is a relatively new approach aiming at small
code footprint and a fast engine. Currently it compiles only full applications,
which sets a limit on its applicability. Haste supports calling JavaScript functions
from Haskell through a standard foreign function interface.

In summary, the cross-compilers studied in this section stress the quality of
compilation and the compiler infrastructure, but place no particular emphasis
on deployment, and on integration of the generated code into a larger appli-
cation. None of them provide a simple way for the inclusion of the generated
JavaScript code into a web application as a library, and only one of them, the
GHCJS, enables callbacks to the Haskell code through a type safe, albeit limited,
interface.

6 Conclusions

In this paper an extension to iTask and Tasklets has been presented, which en-
ables rapid client-side web development with Clean. The solution is basically an
unorthodox application of the iTask system, which in this way becomes an ap-
plication server for client-side web applications. The presented method, in terms
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of deployment and integration, makes web development in Clean a competitive
alternative to development directly in JavaScript. In terms of productivity, the
balance is clearly tilted towards programming in Clean.

A mixed-language programming model has been proposed, where different
parts of a web-application are written partly in Clean, and partly in JavaScript,
making the best use of the two languages. Bidirectional communication between
the two languages was a major concern. A particular strength of the ideas pre-
sented here is that instead of compiling a whole application to JavaScript, we
propose to compile libraries (call-in) or components (call-in/call-out) only – the
latter is achieved through events triggered by the Clean side of the applications.

Our approach enables the use of special interface and event handler functions.
Furthermore, the communication interface is well typed from the point of view of
the Clean code, which is achieved by the Dynamic feature of the Clean language.
The applicability of the proposal has been proven through a series of carefully
selected non-trivial examples.

The technology described here can be generalized in at least two ways. First,
languages other than Clean can be used for writing the main body of applica-
tions. Our Clean to JavaScript compiler uses Sapl [5] (one of the core languages
of Clean) as an intermediate language. A Haskell to Sapl compiler is currently
under development. Besides writing a small server-side application for run-time
source code level linking of Sapl and the compilation of the result to JavaScript,
one technical problem must be solved: to obtain dynamically the Sapl source
code of an arbitrary expression. This would make Haskell a proper replacement
for Clean here.

The second option for generalization is due to the loosely-coupled communi-
cation interface between the Clean-side and the control-side of the applications.
One could use platforms other than the web as a run-time environment, i.e.
platforms supporting JavaScript. Such platforms are, for instance, Android and
iOS, where the control logic could be implemented in Java or Objective-C, re-
spectively; the JavaScript code generated from Clean could be used without any
modifications.
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5. Domoszlai, L., Bruël, E., Jansen, J.M.: Implementing a non-strict purely functional
language in JavaScript. Acta Univ. Sapientiae. Informatica 3(1), 76–98 (2011)

6. Domoszlai, L., Plasmeijer, R.: Tasklets: Client-side evaluation for iTask3 (2012),
http://people.inf.elte.hu/dlacko/papers/tasklets.pdf

7. Done, C.: The FAY language, http://fay-lang.org/
8. Ekblad, A.: Towards a DeclarativeWeb. Master’s thesis, University of Gothenburg,
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Abstract. Sorting algorithms are one of the key pedagogical foundations of com-
puter science, and their properties have been studied heavily. Perhaps less well
known, however, is the fact that many of the basic sorting algorithms exist as
a pair, and that these pairs arise naturally out of the duality between folds and
unfolds. In this paper, we make this duality explicit, by showing how to define
common sorting algorithms as folds of unfolds, or, dually, as unfolds of folds.
This duality is preserved even when considering optimised sorting algorithms
that require more exotic variations of folds and unfolds, and intermediary data
structures. While all this material arises naturally from a categorical modelling
of these recursion schemes, we endeavour to keep this presentation accessible to
those not versed in abstract nonsense.

1 Introduction

Sorting, described in great detail by Knuth (1998), is one of the most important and
fundamental concepts in computer science. In one form or another, sorting appears in
nearly every domain of computer science. As such, there are many different implemen-
tations of sorting algorithms, with varying performance and complexity.

One of the simplest sorting algorithms is insertion sort, which revolves around the
idea of inserting a single element in an already sorted list. To sort a list of elements
using this strategy, we take the next element in the list that is to be considered, insert
it into an accumulated sorted list that is initially empty, and proceed recursively until
all elements have been inserted. In Haskell (Peyton Jones et al. 2003), insertion sort is
concisely expressed using the foldr operation on lists, defining it as the application of
the insert operation to each element of the input list, producing a result starting with the
empty list:

insertSort :: [Integer ]→ [Integer]
insertSort = foldr insert [ ]

The insert function takes one element and inserts it in an already sorted list. It does this
using span to break the sorted list into two segments according to the pivot element we
want to insert, which is then introduced in between the two parts:

insert :: Integer→ [Integer ]→ [Integer]
insert y ys = xs++[y ]++ zs

where (xs,zs) = span (� y) ys

� This work has been funded by EPSRC grant number EP/J010995/1.
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c© Springer-Verlag Berlin Heidelberg 2013



152 R. Hinze, J.P. Magalhães, and N. Wu

The use of span relies on the fact that the list ys is already sorted.
Another basic sorting algorithm, selection sort, can be easily expressed in terms

of an unfold. Unfolds are a recursion scheme dual to folds, and are used to produce
data, instead of consuming data. Unfolds are often given less attention than folds
(Gibbons and Jones 1998), but that is not the case in this paper: we assure the reader
that we will maintain proportional representation, and show an unfold for every fold. In
Haskell, the unfold operation on lists is defined as unfoldr:

unfoldr :: (b→Maybe (a,b))→ (b→ [a ])

The first argument to unfoldr defines how to produce lists from a seed: the Nothing
case corresponds to the empty list, whereas Just (a,b) corresponds to a list with
element a and new seed b. Using this function, and a starting seed, unfoldr produces a
complete list.

Selection sort works on a list by recursively picking the smallest element of the input
list and adding this element to the result list. It can be defined as the unfold of a select
operation:

selectSort :: [Integer ]→ [Integer ]
selectSort = unfoldr select

This select operation picks the smallest element from the input list using minimum,
removes it using delete, and continues recursively by returning the smallest element
together with the remaining list.

select :: [Integer]→Maybe (Integer, [Integer ])
select [ ] = Nothing
select xs = Just (x,xs′)

where x = minimum xs
xs′ = delete x xs

For practical reasons, the types of foldr and unfoldr in Haskell are not clearly dual.
This contributes to obscuring the inherent duality in our insert and select functions.
The purpose of this paper is to explicitly highlight the duality in sorting algorithms, so
that we can provide a unified definition for both insertSort and selectSort. We do this by
exploring a type-directed approach to algorithm development, where the types dictate
most of the behaviour of functions.

The remainder of this paper is structured as follows. We first introduce a framework
of functors, folds, and unfolds in Section 2, which we use in Section 3 to implement
two exchange sorts in one go. To define more efficient insertion and selection sorts, we
start by introducing more exotic variants of folds and unfolds, called paramorphisms
and apomorphisms, in Section 4. We use these morphisms in Section 5, revisiting the
two sorting algorithms shown in this introduction. In Section 6 we turn our attention to
mergesort, in order to show how these recursion schemes can be applied to create more
efficient sorting algorithms. We conclude our discussion in Section 7.

This paper is built on our earlier work on this same subject (Hinze et al. 2012), but we
have rewritten the exposition entirely, simplifying many aspects and removing all the
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category theory jargon. The theoretically-inclined reader is referred to the earlier work
for a deeper understanding of bialgebras and distributive laws in sorting, but this is not
required for the comprehension of this paper; the entire development arises naturally
out of a type-directed approach to programming, without need for appealing to category
theory for the justification of design choices.

2 Functors, Folds, and Unfolds

In this paper we focus on the duality of folds and unfolds, and how these recursion
schemes can be used in sorting. The standard functions foldr and unfoldr are particu-
larly useful since they allow us to express a whole class of recursive functions. Their
utility draws from the fact that folds and unfolds allow us to abstract away from using
functions with direct recursion. In the case of folds, the exact site of the recursive step is
handled by the foldr function, and the non-recursive component is described by its pa-
rameters, which constitute a so-called algebra. Dually, unfolds are considered in terms
of a corecursive step and a non-recursive coalgebra.

This pattern is mirrored at the level of data and is not unique to lists, where recur-
sive datatypes are described as two-level types (Sheard and Pasalic 2004): one level
describes the fact that the data is recursive, and the other is non-recursive and describes
the shape of the data. Using this representation we can decompose the list datatype into
two parts. First, consider the non-recursive component:

data List list = Nil | Cons Integer list

We call a datatype such as List the base functor of the recursive type. For simplicity
we consider lists of elements of type Integer; our development generalises readily to
polymorphic lists with an Ord constraint on the element type.

Note that the type of List is intrinsically not recursive, but instead uses a parameter
where one might expect the recursive site. We can retrieve the usual lists from our non-
recursive List datatype using the fixed-point combinator Fix, which builds recursion
into datatypes:

newtype Fix f = In {out :: f (Fix f )}

Combining these two parts into a two-level type yields Fix List, which is isomorphic to
the predefined type of integer lists [Integer].

The recursive component of this data structure is marked by the Functor instance of
the base functor, and is key to providing a generalised definition of a fold:

instance Functor List where
fmap f Nil = Nil
fmap f (Cons k x) = Cons k (f x)

Note that this is not the same functoriality as the one typically used to express a mapping
over the elements in a list.

The advantage of representing lists by their base functor becomes evident when
we define the fold and unfold operations. Datatypes defined by abstracting over the
recursive positions, like List, enjoy a single fold operator:
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fold :: (Functor f )⇒ (f a→ a)→ (Fix f → a)
fold a = a · fmap (fold a) ·out

The fold function takes an argument a, called the algebra, that is able to crush one level
of the data structure. The definition works by first exposing the top level of the structure
by using out, which is then crushed at its recursive sites using fmap, and finally crushed
at the top level using a.

There is also a single, generic definition of unfold, which is now clearly dual to fold:

unfold :: (Functor f )⇒ (a→ f a)→ (a→ Fix f )
unfold c = In · fmap (unfold c) ·c

The first argument to unfold, the coalgebra c, defines how to expand a seed into some
functorial type f with seeds at the leaves. The coalgebra is applied by unfold recursively
until a complete structure is built. Again the recursive site is marked by the Functor
instance of the structure in question.

Unlike Haskell lists, which have foldr and unfoldr operations specialised to their
type, our fold and unfold operations work on any datatype with a Functor instance,
and we will soon make use of this generality. We have only sketched the details of
base functors and their recursive morphisms; a more detailed presentation, including
relevant category theory background, can be found in Meijer et al. (1991). Another cat-
egorical treatment that generalises folds and unfolds to operate on an even wider class
of recursive types can be found in Hinze (2011).

3 Sorting by Swapping

In this section we will look at our first sorting algorithms expressed in terms of the
generalised folds and unfolds introduced in the previous section, and show how duality
naturally arises in this setting. To ease the understanding of the algebras and coalgebras
that we will see, which generally perform “one step” of sorting, we introduce a datatype
of sorted lists, together with its Functor instance:

data List list = Nil | Cons Integer list

instance Functor List where
fmap f Nil = Nil
fmap f (Cons k list) = Cons k (f list)

Note that List is entirely isomorphic to List. The only difference lies in the names used:
the fact that a list is sorted is indicated by the underlining on its type and constructor
names. The compiler will not be able to enforce the condition that List always represents
sorted lists for us, but we keep this invariant throughout our development.

A sorting algorithm, in general, takes arbitrary lists to sorted lists:

sort :: Fix List→ Fix List

By looking at its type, we can interpret sort as either a fold, that consumes a value of
type Fix List, or as an unfold that produces a value of type Fix List. If sort is a fold,
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its algebra will have type List (Fix List)→ Fix List. This algebra can then be defined as
an unfold which produces a value of type Fix List. These observations are summarised
in the following type signatures:

fold (unfold c) :: Fix List→ Fix List

unfold c :: List (Fix List)→ Fix List

c :: List (Fix List)→ List (List (Fix List))

Using this approach brings an additional benefit: the analysis of the complexity of our
algorithms can be framed in terms of the cost of the fold and unfold functions. The
running time of a fully evaluated result of a fold is proportional to the depth of its input
structure multiplied by the cost of one step of the algebra. Dually, the running time
of an unfold is proportional to the depth of its output structure multiplied by the cost
of one step of the coalgebra. This property will become useful when evaluating the
performance of our algorithms.

Let us then write a sorting function as a fold of an unfold:

naiveInsertSort :: Fix List→ Fix List
naiveInsertSort = fold (unfold naiveInsert)

naiveInsert :: List (Fix List)→ List (List (Fix List))
naiveInsert Nil = Nil
naiveInsert (Cons a (In Nil)) = Cons a Nil
naiveInsert (Cons a (In (Cons b x)))
| a � b = Cons a (Cons b x)
| otherwise = Cons b (Cons a x)

Most of the behaviour of naiveInsert follows naturally from its type. The empty and
single element unsorted lists are trivially converted into sorted variants. For an unsorted
list with at least two elements, we compare the elements, reordering if necessary. What
we obtain is a form of “naive” insertion sort, since it does not make use of the fact that
the list where an element is being inserted in is already sorted. Instead, the traversal is
continued, even though there is no more work to be done. Indeed, the analysis of the
time complexity of this algorithm is simple: the input size of the fold is linear, and the
output size of the inner unfold is also linear, so we should expect quadratic behaviour.
We will see how to make use of the fact that the inner list is already sorted in Section 5.

Recall now that we can also see a sorting function as an unfold of a fold. In that case,
the type of the inner algebra can be derived as in the following type signatures:

unfold (fold a) :: Fix List→ Fix List

fold a :: Fix List→ List (Fix List)

a :: List (List (Fix List))→ List (Fix List)

The sorting algorithm that we obtain as an unfold of a fold is a version of bubble sort:

bubbleSort :: Fix List→ Fix List
bubbleSort = unfold (fold bubble)
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bubble :: List (List (Fix List))→ List (Fix List)
bubble Nil = Nil
bubble (Cons a Nil) = Cons a (In Nil)
bubble (Cons a (Cons b x))
| a � b = Cons a (In (Cons b x))
| otherwise = Cons b (In (Cons a x))

This algorithm proceeds by continually comparing adjacent elements, swapping them
if they are in the wrong order, which is the principal idea behind a bubble sort. The
similarity between bubble and naiveInsert is striking; they differ only in the placement
of the fixed-point constructor In. This becomes clear if we look at their types, after
expanding one definition of Fix in each of them:

naiveInsert :: List (List (Fix List))→ List (List (Fix List))
bubble :: List (List (Fix List))→ List (List (Fix List))

The only difference is in the inner type of lists at the third level of depth. However, this
third level is in some sense redundant, since these algorithms only inspect elements in
the first two levels. It is this observation that allows naiveInsert and bubble to be safely
generalised to a step function of the following type:

swap :: List (List x)→ List (List x)

Such a step function is sometimes called a distributive law, since it captures an abstract
notion of distributivity. The definition of this new function, which we call swap since it
simply swaps adjacent elements based on their order, is entirely similar to the definitions
of both naiveInsert and bubble:

swap Nil = Nil
swap (Cons a Nil) = Cons a Nil
swap (Cons a (Cons b x))
| a � b = Cons a (Cons b x)
| otherwise = Cons b (Cons a x)

The swap function can be understood as a distributive law between the types List and
List, and is a generalisation that captures the essence of both naiveInsert and bubble.
We can use swap to define both naiveInsertSort′ and bubbleSort′:

naiveInsertSort′,bubbleSort′ :: Fix List→ Fix List

naiveInsertSort′ = fold (unfold (swap · fmap out))
bubbleSort′ = unfold (fold (fmap In · swap))

The use of fmap out in naiveInsertSort′, and, dually, fmap In in bubbleSort′, reflects our
expansion of the Fix datatype in the type of the (co)algebra. What we have obtained is a
single definition for two conceptually distinct sorting algorithms, in terms of a function
that expresses how to perform one step of the computation.

At this point it is worth reinforcing our intuition for how these algorithms work.
The duality of these sorting algorithms can be seen visually when we assume a call-by-
value evaluation order of the definitions. The diagrams below emphasise that the actual
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comparisons performed by swap are the same, and that the algorithms only differ in the
order in which these comparisons are performed:

naive insertion sort
input

2 5 4 1 3
2 5 4 1 3 1↔3
2 5 4 1 3 4 ↔̇1 4 ↔̇3
2 5 1 3 4 5 ↔̇1 5 ↔̇3 5 ↔̇4
2 1 3 4 5 2 ↔̇1 2↔3 3↔4 4↔5
1 2 3 4 5

output
bubble sort

input
2 5 4 1 3
1 2 5 4 3 2 ↔̇1 5 ↔̇1 4 ↔̇1 1↔3
1 2 3 5 4 2↔3 5 ↔̇3 4 ↔̇3
1 2 3 4 5 3↔4 5 ↔̇4
1 2 3 4 5 4↔5
1 2 3 4 5

output

For both of these algorithms, it is the outer recursion scheme that drives the computa-
tion. In the case of naiveInsertSort′ this is a fold, and the progression is depicted by the
vertical line that separates sorted from unsorted data working its way from the end of the
unsorted list until only a sorted list remains. Since bubbleSort′ is expressed as an unfold,
the corresponding diagram is pleasingly dual. The computation starts from the beginning
of a sorted list, beginning with an empty list and gradually bubbling values to the front.
Notice how for naiveInsertSort′, the input remains stable, whereas the output does not,
whereas for bubbleSort′, it is the output that remains stable, whereas the input does not.

On the right side of these diagrams we have presented the comparisons that take place
in the swap function, which are effectively determined by the inner recursion. The ar-
rows correspond to comparisons that are made between two elements, and dotted arrows
indicate comparisons that result in a swap (this is the case when the element on the left is
greater than that on the right). The arrows that correspond to each line of naiveInsertSort′

show the comparisons that are needed to insert the element immediately to the left of the
vertical line, and should be read from left to right. On the other hand, the swaps that
correspond to each line of bubbleSort′ show the comparisons that are needed to select
the value to the left of the vertical line, and should be read from right to left.

4 Paramorphisms and Apomorphisms

In the previous section we defined two sorting algorithms with performance Θ(n2),
where both work in quadratic time regardless of the input. In particular, the unfolding
step in the insertion sort will continue to traverse a sorted structure long after a new
element has been inserted into its appropriate place. This is unfortunate, as it fails to
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make use of the fact that the output that has already been constructed is sorted. If this
information was taken into consideration, the inner traversals could be interrupted for
better performance. However, using folds and unfolds as recursion schemes prohibits
us from meddling with the recursion, and no such interruption is possible. In order to
gain explicit control of when an unfold should stop traversing a structure, we turn to
a slightly more exotic version of unfold, namely the apomorphism (Vene and Uustalu
1998), which gives us the required ability to abort recursion. Dually, we will also make
use of paramorphisms (Meertens 1992), which give us the power to use a part of the
input data in an algebra. Paramorphisms and apomorphisms can be understood as the
counterparts to folds and unfolds, and enjoy aspects of duality.

Before diving into the details of these recursion schemes, however, it is informative
to first consider the duality that exists between so-called product and sum types. The
product of types is simply a synonym for a pair of values, and the sum of types is a
synonym for the Either type (a choice between two values):

type a× b = (a,b)
type a+ b = Either a b

In a sense, these operators encode a form of arithmetic on types. Assuming a is a type
with m inhabitants, and b a type with n inhabitants, the product type a× b is inhabited
by m× n values, as we can choose one element of b for each element of a. Similarly,
the sum type a+ b has m+ n inhabitants, as we have to pick either an element from a
or an element from b.

The duality between these types can be understood in terms of two operators: one
which constructs products, and another which deconstructs sums. The operator �, or
split, constructs a pair by applying two functions with a common source type:

(�) :: (x→ a)→ (x→ b)→ (x→ a× b)
(f �g) x = (f x,g x)

The dual operator �, or join, deconstructs a sum by applying two functions with a
common target type:

(�) :: (a→ x)→ (b→ x)→ (a+ b→ x)
(f �g) (Left a) = f a
(f �g) (Right b) = g b

Using these operators, we can extend the duality that folds and unfolds enjoy, and define
paramorphisms and apomorphisms.

A paramorphism is defined as a variation on fold which makes use of a product in
the source of its algebra. The product is used to “remember” the original Fix f structure:

para :: (Functor f )⇒ (f (Fix f × a)→ a)→ (Fix f → a)
para f = f · fmap (id�para f ) ·out

The first argument to para now has access to both the original Fix f structure and the
computed result for this same structure. This argument is not an algebra in the categor-
ical sense, but we shall name it so for simplicity, since it serves essentially the same
purpose. We will render the product constructor of two elements a and b as a b, to
remind us that the first element is the precomputed result of the second.
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A typical example of a paramorphism on lists is the function that calculates all proper
suffixes of a list:

suffixes :: Fix List→ [Fix List ]
suffixes = para suf

suf :: List (Fix List× [Fix List ])→ [Fix List ]
suf Nil = [ ]
suf (Cons _n (l ls)) = l : ls

Although it may seem like paramorphisms are more powerful than folds, this is not the
case. They simply make certain algorithms more convenient to express by providing
direct access to the original structure. This behaviour can also be expressed in a fold; in
fact, we can define para as a fold:

para′ :: (Functor f )⇒ (f (Fix f × a)→ a)→ (Fix f → a)
para′ f = snd · fold ((In · fmap fst)� f )

Dually, an apomorphism is a variation of an unfold which makes use of a sum in the
target of its first argument. As before, we abuse terminology, and name this argument
a coalgebra. This sum is used to encode the choice between stopping the apomorphism
with a concrete value of type Fix f , or going on with a new seed of type a:

apo :: (Functor f )⇒ (a→ f (Fix f + a))→ (a→ Fix f )
apo f = In · fmap (id�apo f ) · f

Here the coalgebra uses its source value to produce either a final result, or an interme-
diate step. If a final result is given then the recursion no longer continues; otherwise,
values are produced just as in an unfold. For mnemonic reasons, we will render the Left
constructor as Stop, as it encodes stopping the recursion, and Right as Go, as it encodes
continuing the traversal.

Note that the power to improve the running time of our sorting algorithms relies
on the use of apomorphisms. Paramorphisms are mostly a cosmetic improvement; the
resulting traversal still consumes the entire input linearly. Apomorphisms, on the other
hand, allow for early termination of the computation, so their running time is no longer
necessarily linear on the size of the resulting structure.

4.1 Folds of Apomorphisms, Unfolds of Paramorphisms

As before, we use a type-directed approach to guide the development of a sorting algo-
rithm, except this time we replace the inner recursions with apo and para, since we are
aiming for a more efficient algorithm. Deriving the appropriate algebra and coalgebra
yields the following:

fold (apo c) :: Fix List→ Fix List

apo c :: List (Fix List)→ Fix List

c :: List (Fix List)→ List (Fix List+List (Fix List))
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unfold (para a) :: Fix List→ Fix List

para a :: Fix List→ List (Fix List)

a :: List (Fix List×List (Fix List))→ List (Fix List)

The duality is somewhat hidden by some noise in the types, but can be easily re-
covered by introducing some synonyms for what are sometimes called pointed and
copointed types, and unrolling some fixpoints:

type f+ a = a+ f a
type f× a = a× f a

After unrolling one layer of the fixed point, we obtain the following types for our
(co)algebras:

c · fmap In :: List (List (Fix List))→ List (List+ (Fix List))
fmap out ·a :: List (List× (Fix List))→ List (List (Fix List))

From this it is clear that the (co)algebras are almost of the same form, except that the
coalgebra should be modified to consume a copointed type in its source, and the algebra
should be modified to produce a pointed type in its target.

This suggests that we can combine the (co)algebras into a single step function with
a more general type:

b :: List (List× x)→ List (List+ x)

For convenience, we shall abuse terminology, and occasionally call such step functions
distributive laws, since they serve almost the same purpose as the distributive laws in-
troduced in Section 3. With some gentle massaging, we can use such a step function in
the context of either an apomorphic coalgebra or a paramorphic algebra:

c = b · fmap (id�out) :: List (Fix List) → List (List+ (Fix List))
a = fmap (id� In) ·b :: List (List× (Fix List))→ List (Fix List)

Once again, the step function crucially depends on parametricity for unifying algebras
and coalgebras.

5 Insertion and Selection Sort

Now that we have apomorphisms, which allow us to stop recursion, we can write a
non-naive version of insertion sort that adequately stops traversing the result list once
the element has been inserted. Insertion sort is the fold of an apo:

insertSort :: Fix List→ Fix List
insertSort = fold (apo insert)

The coalgebra insert is similar to naiveInsert, but with the essential difference that it
stops creating the list (with Stop) if no swapping is required. Otherwise, it continues
traversing (with Go):
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insert :: List (Fix List)→ List (List+ (Fix List))
insert Nil = Nil
insert (Cons a (In Nil)) = Cons a (Stop (In Nil))
insert (Cons a (In (Cons b x′)))
| a � b = Cons a (Stop (In (Cons b x′)))
| otherwise = Cons b (Go (Cons a x′))

Because we are using apomorphisms, insertSort will run in linear time on a list that is
already sorted, as the inner traversal is immediately terminated each time it is started.
This behaviour is crucial for the best case behaviour of insertSort.

As before, we can find a dual algorithm to insertSort that is defined as an unfold of a
para. Instead of writing a specialised algebra, we will directly write the distributive law
that can be used both as argument to apo and para. Its type, as explained in Section 4,
is the following:

swop :: List (List× x)→ List (List+ x)

We nickname this function swop as it “swaps and stops”; its type indicates that it has
access to the sorted list as its argument, and that it can decide to abort recursion when
producing a result. Its definition is an unsurprising generalisation of insert:

swop Nil = Nil
swop (Cons a (x Nil)) = Cons a (Stop x)
swop (Cons a (x Cons b x′))
| a � b = Cons a (Stop x)
| otherwise = Cons b (Go (Cons a x′))

Having defined swop, we can use it to define an alternative version of insertSort, which
does not use insert:

insertSort′ :: Fix List→ Fix List
insertSort′ = fold (apo (swop · fmap (id�out)))

However, being a distributive law, swop can also be used to construct the algebra of a
paramorphism .The sorting algorithm that we then obtain is selection sort:

selectSort :: Fix List→ Fix List
selectSort = unfold (para (fmap (id� In) · swop))

Unlike bubble sort (the dual of “naive” insertion sort), selection sort uses the accumu-
lated result x in the a � b case, meaning the smallest element has been placed in the
correct location. We again get two, entirely dual sorting algorithms for the price of one
step function.

6 Mergesort

The work in the previous section brought us a slight boost in performance over the
naive version of insertion sort. However, its time complexity is still on average O(n2),
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which is bound by the fact that we use folds and unfolds over lists: only the lower bound
was improved to Ω(n). To improve on the average bound we must move to a different
algorithm where an intermediate data structure with sublinear depth is built from the
input list, and then used to produce the output list. This two-phase approach was used in
our previous work to synthesise versions of quicksort and heapsort (Hinze et al. 2012).
In this section we show the development of mergesort, which improves the average case
complexity to Θ(n logn).

These two phases can be seen in a typical implementation of mergesort in Haskell,
where the recursive nature of the algorithm is expressed directly, rather than through an
intermediary datastructure:

mergeSort :: [Integer]→ [Integer]
mergeSort as = merge (mergeSort bs) (mergeSort cs)

where (bs,cs) = split as

split :: [Integer]→ ([Integer ], [Integer])
split [ ] = ([ ], [ ])
split [a ] = ([a ], [ ])
split (a : b : cs) = (a : as,b : bs)

where (as,bs) = split cs

merge :: [Integer]→ [Integer]→ [Integer ]
merge as [ ] = as
merge [ ] bs = bs
merge (a : as) (b : bs)
| a � b = a : merge as (b : bs)
| otherwise = b : merge (a : as) bs

In the first phase, split is called at each recursive step of mergeSort, and recursively
splits the input list in two by uninterleaving the elements. The merge function performs
the second phase of the algorithm, and recursively merges the lists generated in the first
phase. In this section we will see how to expose the recursive structure of mergeSort as
an explicit intermediate data structure, and each phase as a recursive morphism with an
associated distributive law. We stress that this structure serves only to turn the recursion
into data, allowing for more explicit control of computation, an idea that is echoed in
our description of two level types, where recursion in a data structure is decomposed.

When considering which data structure with sublinear depth to use for sorting, one
natural choice is the type of balanced binary trees, since these have logarithmic depth in
the number of elements they contain. This tree must faithfully represent the structure of
the sorting algorithm in question; for quicksort, which picks a pivot element and splits
the list in two halves, we would use trees with elements in the branches, where the
element would be the pivot, and each branch a fragment of the list. Mergesort, on the
other hand, works by merging lists at each recursive step. A tree structure with elements
at the leaves is appropriate to encode this behaviour:

data Tree tree = Tip | Leaf Integer | Fork tree tree

instance Functor Tree where
fmap f Tip = Tip
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fmap f (Leaf a) = Leaf a
fmap f (Fork l r) = Fork (f l) (f r)

We include a Tip constructor in our datatype that correspond to the empty lists that can
be observed in the output of split. As before, this is a two-level type, and the recursive
site is denoted by the Functor instance.

6.1 First Phase: Growing a Tree

Using the same type directed approach as before, we begin by defining a step function
that relates our two structures. The type of the function we seek is therefore:

grow :: List (Tree× x)→ Tree (List+ x)

Defining such a function for the first few cases is unproblematic, but alas, this line of
development turns out to be in vein, where our best efforts to deal with the following
case are always thwarted:

grow (Cons a (t Leaf b)) = Fork (Go (Cons a ?)) (Stop t)

The goal in this case is to create a Fork that contains the element a in one branch, and b
in the other. The type of Tree demands that the branches in this fork are of type List+ x.
Embedding the b in one branch is a simple matter of making use of Stop t, since t refers
to the Leaf b construct. The problem arises in that we cannot provide a suitable second
parameter to Cons, since the only value of appropriate type x in scope is the t that refers
to the Leaf b constructor. While this is correctly typed, using this value as a parameter
is incorrect for two reasons: first, this would result in a duplication of the value b, and
second, it leads to infinite recursion, since in the next step the value Case a t would
considered again. Possible alternative definitions are either merely variations on this
theme, or satisfy the types by dropping data, which is manifestly unsatisfactory for a
sorting function.

The heart of the problem lies in the fact that the constructors of List offer no way
of signaling the existence of a singleton that should terminate the recursion. In a sense,
there is no constructor in a List that is the counterpart to a Leaf . To recover a step func-
tion that can build trees, the list representation needs a means of expressing singletons
as a primitive constructor. One solution is to lift existing lists so that there is a a new
constructor Single Integer:

data List list = Nil | Single Integer | Cons Integer list

This type gives us everything we need to build the distributive law that relates lists and
trees. The first few cases fall naturally from the types, and there is very little choice in
how to proceed:

grow :: List (Tree× x)→ Tree (List+ x)
grow Nil = Tip
grow (Single a) = Leaf a
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grow (Cons a (t Tip)) = Leaf a
grow (Cons a (t Leaf b)) = Fork (Go (Single a)) (Stop t)

Note that here the problem encountered previously has been circumvented by embed-
ding the value a in a Single constructor in the left hand branch of the Fork. In a later
step, this Single a value will be turned into a Leaf a as desired.

The remaining final case where the list contains a Fork can be implemented in a
number of ways. We can arbitrarily insert the element a in either the left or the right
side of the Fork that is produced. Once this choice is established we have another, more
interesting, decision to make with regards to the subtrees given by l and r. One option
is to preserve their order:

grow (Cons a (t Fork l r)) = Fork (Go (Cons a l)) (Stop r)

However, this solution leads to trees that are unbalanced in that new elements are always
inserted on the left side of the tree. The only other option is to reverse the two subtrees
when inserting an element:

grow (Cons a (t Fork l r)) = Fork (Go (Cons a r)) (Stop l)

In so doing, we have rediscovered Braun’s method of producing perfectly balanced trees
(Braun and Rem 1983). In fact, this trick can also be seen in an alternative defintion of
split that considers only empty and non-empty lists, and rotates lists as it recurses.

Since we have described a distributive law, two methods for producing trees emerge:

makeTree,makeTree′ :: Fix List→ Fix Tree
makeTree = fold (apo (grow · fmap (id�out)))
makeTree′ = unfold (para (fmap (id� In) ·grow))

The first method, makeTree, encodes the standard way of building a tree by repeated
insertion, using Braun’s method for keeping the tree balanced. The second method,
makeTree′, encodes the slightly more unusual process of generating a tree by repeatedly
uninterleaving a list. This uninterleaving of the list has the same swapping behaviour as
Braun’s method on trees.

6.2 Second Phase: Merging Trees

Once the tree is constructed, the second phase of the algorithm reduces the tree until a
sorted list is produced. The distributive law falls out naturally from the types:

merge :: Tree (List× x)→ List (Tree+ x)
merge Tip = Nil
merge (Leaf a) = Cons a (Go Tip)
merge (Fork (l Nil) (r Nil)) = Nil
merge (Fork (l Nil) (r Cons b r′)) = Cons b (Stop r′)
merge (Fork (l Cons a l′) (r Nil)) = Cons a (Stop l′)
merge (Fork (l Cons a l′) (r Cons b r′))
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| a � b = Cons a (Go (Fork l′ r))
| otherwise = Cons b (Go (Fork l r′))

Empty trees give rise to empty lists, and a single element tree produces a single element
list. When we have two subtrees, we inspect the list contained in each subtree. If both
lists are empty, we return the empty list. In case only one of the lists is non-empty, the
element is added to the front of the output sorted list, and the recursion stops with the
tail in hand. In the most general case, we have one element in each branch. We compare
the two elements, picking the smallest one and recursing using the appropriate subtrees.

Note that for this phase, lists do not need to be extended with a Single constructor,
since in the case of Leaf a the fact that the Cons a should terminate is signalled by
embedding a Tip in the tail. This Tip is later turned into a Nil as desired.

As before, we obtain two methods for merging a tree into a list:

mergeTree,mergeTree′ :: Fix Tree→ Fix List
mergeTree = fold (apo (merge · fmap (id�out)))
mergeTree′ = unfold (para (fmap (id� In) ·merge))

An operational understanding of how these algorithms work helps develop our under-
standing of the sense in which duality expresses itself here.

The first of these two variations uses a fold in the outer recursion, and this drives
the deconstruction of the tree of values from the bottom until a single list remains. The
controlling fold has an algebra of type:

Tree (Fix List)→ Fix List

Here, the algebra is in fact an apomorphism that starts working at the bottom of the tree.
When a Tip is encountered, the merge will simply produce a Nil, and control is passed
back to the fold. Otherwise, each Leaf a is initially turned into a Cons a (Go Tip), and
the apomorphism continues to unfold the remaining Tip resulting in a remaining struc-
ture that is Cons a Nil. When the fold encounters a Fork, the contents of each branch
are analysed by the apomorphism. In the case where both lists are empty, they become
a single Nil. When only one contains data, that branch is turned into a Cons with this
payload, and the apomorphism is signalled to continue using the appropriate tail with
a Stop. The more interesting case is when both branches contain data. In this case, the
merge function is used to collapse the fork so that the least value is placed at the begin-
ning of the new List. The apomorphism is then signalled with Go to continue merging
the remaining tail of the list that contained the least element, and the whole of the other
list that contained the greater element. This control is directed by constructing a new
Fork that contains these two lists that must be merged, and the Go constructor signi-
fies that the apomorphism must continue merging. Once the apomorphism has finished
merging the lists, control is given back to the fold, which will continue bottom-up, col-
lapsing the tree using the apomorphism, until a single list remains.

The second variation makes use of an unfold that focuses on producing the ensuing
sorted list. The unfold has a coalgebra that has the type:

Fix Tree→ List (Fix Tree)
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To determine the next element of the ordered list that is to be produced, the unfold must
apply a paramorphism to its seed tree. The work of this paramorphism can be thought
of as collapsing the tree into either a Nil when the tree is empty and the work is finished,
or a Cons a t, where a is the least value in the tree, and t is the tree that is to be used as
the next seed. The tree is collapsed from the bottom, where the paramorphism is applied
recursively at each In Fork until either an In Tip or In (Leaf a) is reached. In Tip values
are turned into Nil values, and In (Leaf a) values are turned into Cons a (In Tip) values.
These intermediate results are then combined bottom-up at each Fork by the function
merge, which maintains the invariant that Cons a t contains the least element a, and t is
the remaining tree. When two such Cons constructors meet at a fork, the least value is
kept, and the seed tree is built out of a new Fork and the appropriate subtrees.

While these two algorithms certainly share many characteristics, their operation
differs significantly. The behaviour of mergeTree is closer to the traditional merge-
sort, where lists are successively merged together until only one remains. In contrast,
mergeTree′ behaves much more like a weak kind of heap sort, where the least ele-
ment is floated out of the tree structure, but no heap property is maintained on the
remaining tree.

6.3 Merging After Growing

Combining these two phases, we can write four variations of mergesort, where simple
functional composition combines the various functions we have already discussed:

mergeSort,mergeSort′,mergeSort′′,mergeSort′′′ :: Fix List→ Fix List
mergeSort = mergeTree ·makeTree
mergeSort′ = mergeTree ·makeTree′

mergeSort′′ = mergeTree′ ·makeTree
mergeSort′′′ = mergeTree′ ·makeTree′

In this section we have used the Tree structure as a concrete representation of the
implicit way mergesort works. Generally, however, these intermediate representations
are inefficient, and can be fused away in a process called deforestation (Wadler 1988). A
deforested version of the above algorithms would look similar to mergeSort, as shown
in the beginning of this section. In the fused version, the Tree data structure disappears,
instead becoming implicit from the recursive structure of the function.

7 Conclusion

In this paper we have revisited our previous work on sorting with bialgebras and dis-
tributive laws (Hinze et al. 2012), recasting it in a more applied setting without use of
category theory. Due to the structure of recursive morphisms, and through the use of a
type-directed approach for program construction, we have not lost the intuition behind
our development; the duality is obvious in each sorting method, giving us “algorithms
for free”, and helping to understand the relations between different sorting methods.

Even though we have chosen Haskell as the presentation language for this paper, our
developments readily generalise to other functional programming languages. In partic-
ular, all the code shown compiles with the “exchanging sources” version of the Clean
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compiler (Van Groningen et al. 2010) (after some minor refactoring to remove symbolic
operators). This reinforces the argument that sorting algorithms become more clean and
elegant when expressed as distributive laws in recursive morphisms.
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Abstract. Although the λ-calculus is well known as a universal pro-
gramming language, it is seldom used for actual programming or
expressing algorithms. Here we demonstrate that it is possible to use
the λ-calculus as a comprehensive formalism for programming by show-
ing how to convert programs written in functional programming lan-
guages like Clean and Haskell to closed λ-expressions. The transformation
is based on using the Scott-encoding for Algebraic Data Types instead
of the more common Church encoding. In this way we not only obtain
an encoding that is better comprehensible but that is also more efficient.
As a proof of the pudding we provide an implementation of Eratos-
thenes’ prime sieve algorithm as a self-contained, 143 character length,
λ-expression.

1 The Church and Scott Encodings for Algebraic Data
Types

The λ-calculus can be considered as the mother of all (functional) program-
ming languages. Every course or textbook on λ-calculus (e.g. [1]) spends some
time on showing how well-known programming constructs can be expressed in
the λ-calculus. It commonly starts by explaining how to represent For natural
numbers, in almost all cases the Church numerals are chosen as the leading ex-
ample. The definition of Church numerals and operations on them shows that
it is possible to use the λ-calculus for all kinds of computations and that it is
indeed a universal programming language. The Church encoding can be gener-
alized for the encoding of general Algebraic Data Types (see [2]). This encoding
allows for a straightforward implementation of iterative (primitive recursive) or
fold-like functions on data structures, but often requires complex and inefficient
constructions for expressing general recursion.

It is less commonly known that there exist an alternative encoding of num-
bers and algebraic data structures in the λ-calculus. This encoding is relatively
unknown, and independently (re)discovered by several authors (e.g. [9,8,10] and
the author of this paper[6]), but originally attributed to Scott in an unpub-
lished lecture which is cited in Curry, Hindley and Seldin ([4], page 504) as:
Dana Scott, A system of functional abstraction. Lectures delivered at University
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of California, Berkeley, Cal., 1962/63. Photocopy of a preliminary version, is-
sued by Stanford University, September 1963, furnished by author in 1968.1 We
will therefore call it the Scott encoding. The encoding results in a representation
that is very close to algebraic data types as they are used in most functional
programming languages.

The goal of this paper is not to introduce a new (functional) programming
language, but to show how the λ-calculus itself can be used as a concise pro-
gramming formalism.

This paper starts with a discussion on Algebraic Data Types in Section 2. In
Section 3 it discusses how the Scott and Church encoding can be used to encode
Algebraic Data Types as λ-terms and how these approaches differ. Section 4
focusses on the encoding of recursive functions as λ-terms. In Section 5 the
focus is on the conversion of a complete Haskell or Clean program to a singe
λ-term. The paper ends with a discussion in Section 7 and some conclusions in
Section 8.

2 The Nature of Algebraic Data Types

Consider Algebraic Data Type (ADT) definitions in languages like Clean or
Haskell such as tuples, booleans, temperature, maybe, natural (Peano) numbers
and lists:

data Boolean = True | False

data Tuple a b = Tuple a b

data Temperature= Fahrenheit Int | Celsius Int

data Maybe a = Nothing | Just a

data Nat = Zero | Suc Nat

data List t = Nil | Cons t (List t)

A type consists of one or more alternatives. Each alternative consist of a name,
possibly followed by a number of arguments. Algebraic Data Types are used for
several purposes:

– to make enumerations, like in Boolean;
– to package data, like in Tuple;
– to unite things of different kind in one type, like in MayBe and Temperature;
– to make recursive structures like in Nat and List (in fact to construct new

types with an infinite number of elements).

The power of the ADT construction in modern functional programming lan-
guages is that one formalism can be used for all these purposes.

If we analyse the construction of ADT’s more carefully, we see that constructor
names are used for two purposes. First, they are used to distinguish the different
cases in a single type definition (like True and False in Boolean, Nothing and Just

in Maybe and Fahrenheit and Celsius in Temperature). Second, we need them for
recognizing them as being part of a type and making type inferencing possible.

1 I would like to thank Matthew Naylor for pointing me at this reference.



170 J.M. Jansen

Therefore, all constructor names must be different in a single functional program
(module). For distinguishing the different cases in a function definition, pattern
matching on constructor names is used.

3 Representing Algebraic Data Types in the λ-Calculus

In this section it is shown how to represent ADT’s in the λ-calculus. First, we
focus on non-recursive data types for which the Scott and Church encodings are
the same and thereafter on recursive types for which the encodings differ.

3.1 Named λ-Expressions

First, some remarks about the notation of λ-expressions. For convenience we will
give λ-expressions sometimes names:

True ≡ λt f . t

These names can be used as macro’s in other λ-expressions. They are always
written in italics:

True (λf g . f g) (λf g . g f)

is a short-hand for:

(λt f . t) (λf g . f g) (λf g . g f)

Note that these macro names may not be used recursively, because this will
lead to an infinite substitution process. Later on we discuss how to represent
recursion in λ-expressions.

3.2 Expressing Enumeration Types in the λ-Calculus

The simplest example of such a type is Boolean. We already noted that we use
pattern matching for recognizing different cases (constructors). So we are ac-
tually looking for an alternative for pattern matching using λ-expressions. The
simplest boolean pattern matching example is if-then-else:

ifte True t f = t

ifte False t f = f

But the same effect can easily be achieved by making True and False functions
of two variables, selecting the first or second argument respectively and by
making ifte the identity function. Therefore, the λ-calculus solution for this is
straightforward:

True ≡ λt f . t

False ≡ λt f . f

ifte ≡ λi . i

This is also the standard encoding used for booleans that can be found in λ-
calculus courses and text books. Both Church and Scott use this encoding.
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3.3 Expressing a Simple Container Type in the λ-Calculus

Tuple is the simplest example of a container type. If we group data into a con-
tainer, we also need constructions to get data out of it (projection functions). For
Tuple this can be realized by pattern matching or by using the selection functions
fst and snd. These functions are defined in Haskell as:

fst (Tuple a b) = a

snd (Tuple a b) = b

Containers can be expressed in the λ-calculus by using closures (partial applica-
tions). For Tuple the standard way to do this is:

Tuple ≡ λa b f . f a b

A tuple is a function that takes 3 arguments. If we supply only two, we have a
closure. This closure can take a third argument, which should be a 2 argument
function. This function is then applied to the first two arguments. The third
argument is therefore called a continuation (the function with which the com-
putation continues). It is now easy to find out what the definitions of fst and
snd should be:

fst ≡ λt . t (λa b . a)
snd ≡ λt . t (λa b . b)

If applied to a tuple, they apply the tuple to a two argument function, that
selects either the first (fst) or second (snd) argument.

Again, this definition of tuples is the standard one that can be found in λ-
calculus text books and courses. Also for this case the Church and Scott encoding
are the same.

3.4 Expressing General Non-recursive Multi-case Types in the
λ-Calculus

It is now a straightforward step to come up with a solution for arbitrary non-
recursive ADT’s. Just combine the two solutions from above. Let us look at the
definition of the function warm that takes a Temperature as an argument:

warm :: Temperature → Boolean

warm (Fahrenheit f) = f > 90
warm (Celsius c) = c > 30

We have to find encodings for (Fahrenheit f) and (Celsius c). The enumeration
example tells that we should make a λ-expression with 2 arguments that returns
the first argument for Fahrenheit and the second argument for Celsius. The con-
tainer solution (as used for Tuple) tells us that we should feed the argument of
Fahrenheit or Celsius to a continuation function. Combining these two solutions
we learn that Fahrenheit and Celsius should both have 3 arguments. The first
one to be used for the closure and the second and third as continuation argu-
ments. Fahrenheit should choose the first continuation argument and apply it to
its first argument and Celsius should do the same with the second continuation
argument:
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Fahrenheit ≡ λt f c . f t

Celsius ≡ λt f c . c t

Using this encoding the definition of warm becomes:

warm ≡ λt . t (λf . f > 90) (λc . c > 30)

In the body the first argument of t represents the Fahrenheit case and the second
one the Celsius case.

Also in this non-recursive case the Scott and Church approach do not differ.

3.5 Recursive Types in the λ-Calculus: The Scott Encoding

In the Scott Encoding the previous strategy, as used for Temperature, is also ap-
plied to recursive types. As a matter of fact, the Scott Encoding ignores the
fact that we deal with a recursive type! Let us look for example at Nat and List.
Applying the strategy we used for Temperature for Nat we obtain the following
definitions:

Zero ≡ λz s . z

Suc ≡ λn z s . s n

Applying the same strategy for List, we obtain:

Nil ≡ λn c . n

Cons ≡ λx xs n c . c x xs

Functions like predecessor, head and tail can now easily be defined:

pred ≡ λn . n undef (λm . m)

head ≡ λxs . xs undef (λx xs . x)
tail ≡ λxs . xs undef (λx xs . xs)

Note that pred and tail have constant time complexity!
As another example we give the Scott Encoding of the fold functions for Nat

and List. The Haskell definition foldNat is given by:

foldNat f x Zero = x

foldNat f x (Suc n) = f (foldNat f x n)

The conversion for the Scott encoding of Nat is straightforward, the bodies of the
two cases simply appear as the first and second argument of n (later on we show
how to remove the recursive call for foldNat):

foldNat ≡ λf x n . n x (λn . f (foldNat f x n))

For foldList, the Haskell definition is:

foldList f d [ ] = d

foldList f d (h:t) = f h (foldList f d t)

Using the Scott encoding for lists this becomes:

foldList ≡ λf d xs . xs d (λh t . f h (foldList f d t))

The Scott encoding of ADT’s is completely equivalent to their counterparts in
Haskell and Clean. Functions acting on them can be straightforwardly converted
to their Scott versions.
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3.6 Recursive Types in the λ-Calculus: The Church Encoding

Church uses an entirely different approach for the encoding of recursive data
types.

The Church definitions of natural numbers are:

Zero ≡ λf x . x

Suc ≡ λn f x . f (n f x)

If we compare this to the Scott approach we see that, instead of feeding only n
to the continuation function f, the result of n f x is fed to it. But this is exactly
the same thing as what happens in the fold function. The definition of foldNat
for Church encoded numerals can therefore be given by:

foldNat ≡ λf x n . n f x

In [5] Hinze states that Church numerals are actually folds in disguise. As a con-
sequence only primitive recursive functions on numbers can be easily expressed
using the Church encoding. For functions that need general recursion (or func-
tions for which the result for suc n cannot be expressed using the result for n) we
run into troubles. Church himself was not able to solve this problem, but Kleene
found a way out during a visit to the dentist (as described by Barendregt in
[2]). A nice example of his solution is the predecessor function, which could be
easily expressed using the Scott encoding, as we saw earlier. To define it using
the Church encoding Kleene used a construction with pairs (Tuple):

pred ≡ λn . snd (n (λp . Tuple (Suc (fst p)) (fst p)) (Tuple Zero Zero))

Each pair combines the result of the recursive call with the previous element. A
disadvantage of this solution, besides that it is hard to comprehend, is that it
has complexity O(n) while the Scott version has constant complexity.

The Church encoding for lists together with the function tail is given by:

Nil ≡ λf x . x

Cons ≡ λh t f x . f h (t f x)

tail ≡ λxs . snd (xs (λx rs . Tuple (Cons x (fst rs)) (fst rs)) (Tuple Nil Nil ))

Also here the definition of Cons behaves like a fold (a foldr actually). Again, we
need the pair construction from Kleene for tail. The definition of foldList for
Church encoded lists is given by:

foldList ≡ λf d xs . xs f d

3.7 The Scott Encoding: The General Case

In general the mapping of an ADT to λ-expressions using the Scott encoding is
defined as follows. Given an ADT definition in Haskell or Clean:

data type_name t1 ... tk = C1 t1,1 ... t1,n1 | ... | Cm tm,1 ... tm,nm
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Then this type definition withm constructors can be mapped tom λ-expressions:

C1 ≡ λv1,1 ... v1,n1 f1 ... fm . f1 v1,1 ... v1,n1

...

Cm ≡ λvm,1 ... vm,nm f1 ... fm . fm vm,1 ... vm,nm

Consider the (multi-case) pattern-based function f in Haskell or Clean defined on
this type:

f (C1 v1,1 ... v1,n1 ) = body1
...

f (Cm vm,1 ... vm,nm ) = bodym

This function is converted to the following λ-expression (of course, the bodies
should also be encoded):

f ≡ λx . x

(λv1,1 ... v1,n1 . body1)
...

(λvm,1 ... vm,nm . bodym)

3.8 From Church to Scott and Back

It is straightforward to convert Church and Scott encoded numerals into each
other. Because a fold replaces constructors by functions and Church numerals
are actually folds, we can obtain the Scott representation by substituting back
the Scott versions of the constructors:

toScott ≡ λn . n Sucs Zeros

To go from Scott to Church we should use the Scott version of foldNat:

toChurch ≡ λn f x . foldNat f x n

The conversions between the Church and Scott encoding for lists are given by:

toScottList ≡ λxs . xs Conss Nils
toChurchList ≡ λxs f d . foldList f d xs

The list definitions are completely equivalent to those for numbers. They only use
a different fold function in toChurchList and different constructors in toScottList .
For other recursive ADT’s similar transformations can be defined.

In the remainder of this paper we will concentrate on defining algorithms in
the λ-calculus using the Scott encoding.

4 Defining Functions Using the Scott Encoding

Now we know how to represent ADT’s we can concentrate on functions. We
already gave some examples of them above (ifte, fst, snd, head, tail, pred, warm,
foldNat, foldList). The more interesting examples are the recursive functions. The
standard technique for defining a recursive function in the λ-calculus is to use a
fixed point operator. Let us look for example at addition for Peano numbers in
Haskell:
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add Zero m = m

add (Suc n) m = Suc (add n m)

Using the Scott encoding, this becomes:

add0 ≡ λn m . n m (λn . Suc (add0 n m))

We now have to get rid of the recusrsive macro add0 in this definition. The
standard way to do this is with the use of the Y fixed point combinator:

addY ≡ Y (λadd n m . n m (λn . Suc (add n m)))
Y ≡ λh . (λx . h (x x)) (λx . h (x x))

There is, however, another way to represent recursion. Instead of using a fixed
point operator we can also give the recursive function itself as an argument (like
this is done in the argument of Y in addY ):

add ≡ λadd n m . n m (λn . Suc (add add n m))

The price to pay is that each call of add should have add as an argument. The
gain is that we do not need the fixed point operator any more. This definition is
also more efficient, because it uses fewer reduction steps during reduction than
the fixed-point version. The following example shows how add should be used
to add one to one (note the double add in the call):

(λadd . add add (Suc Zero) (Suc Zero)) add

4.1 Mutually Recursive Functions

For mutually recursive functions, we have to add all mutually recursive functions
as arguments for each function. An example to clarify this:

isOdd Zero = False

isOdd (Suc n) = isEven n

isEven Zero = True

isEven (Suc n) = isOdd n

This can be represented by λ-expressions as:

isOdd ≡ λisOdd isEven n . n False (λn . isEven isOdd isEven n)
isEven ≡ λisOdd isEven n . n True (λn . isOdd isOdd isEven n)

5 Converting Algorithms to the λ-Calculus

We now have all ingredients ready for converting complete programs. The last
step to be made is combining everything into a single λ-expression. For example,
if we take the add 1 1 example from above, and substitute all macros, we obtain:

(λadd . add add ((λn z s.s n)(λz s. z)) ((λn z s.s n) (λz s. z)))
(λadd n m . n m (λn . (λn z s.s n) (add add n m)))
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Using normal order (outermost) reduction this reduces to:

λz s. s (λz s. s (λz s. z))

which indeed represents the desired value 2. We can improve the readability by
introducing explicit names for zero and suc by abstracting out their definitions:

(λzero suc .

(λadd .

add add (suc zero) (suc zero))
(λadd n m . n m (λn . suc (add add n m)))

(λz s.z) (λn z s.s n)

Here we applied a kind of inverted λ-lifting. We have used smart indentation
to make the expression better readable. Note the nesting in this definition: the
definition of add is inside the scope of the variables suc and zero, because its
definition depends on their definitions. In this way the macro reference Suc in
the definition of add can be replaced by a variable suc.

As another example, the right hand side of the Haskell function:

main = isOdd (Suc (Suc (Suc Zero)))

can be written as:

(λisOdd isEven . isOdd isOdd isEven (Suc (Suc (Suc Zero)))) isOdd isEven

and after substituting all macro definitions and abstracting out definitions:

(λtrue false zero suc .

(λisOdd isEven .

isOdd isOdd isEven (suc (suc (suc zero))))
(λisOdd isEven n . n false (λn . isEven isOdd isEven n))
(λisOdd isEven n . n true (λn . isOdd isOdd isEven n)))

(λt f.t) (λt f.f) (λz s.z) (λn z s.s n)

Which reduces to:

λt f . t

Which shows that 3 is indeed an odd number.

5.1 Formalizing the Conversion

Above we mentioned the operation of abstracting out definitions. Here we make
this more precise. The conversion of a program into a closed λ-expression pro-
ceeds in a number of steps:

1. Remove all syntactic sugar like zf-expressions, where and let expressions.
2. Eliminate algebraic data types by converting them to their Scott encoding.
3. Eliminate pattern-based function definitions by using the Scott encoding.
4. Remove (mutually) recursion by the introduction of extra variables.
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5. Make a dependency sort of all functions, resulting in an ordered collection of
sets. So the first set contains functions that do not depend on other functions
(e.g. the Scott encoded ADT’s). The second set contains functions that only
depend on functions in the first set, etc. We can do this because all possible
cycles are already removed in the previous step.

6. Construct the resulting λ-expression by nesting the definitions from the dif-
ferent dependency sets. The outermost expression consists of an application
of a λ-expression with as variables the names of the functions from the first
dependency set and as arguments the λ-definitions of these functions. The
body of this expression is obtained by repeating this procedure for the re-
mainder dependency sets. The innermost expression is the main expression.

The result of this process is:

(λfunction_names_first_set .

(λfunction_names_second_set .

...

(λfunction_names_last_set .

main_expression)
function_definitions_last_set)
...

function_definitions_second_set)
function_definitions_first_set

6 Eratosthenes’ Prime Sieve as a Single λ-Expression

As a last, more convincing example, we convert the following Haskell version of
the Eratosthenes prime sieve algorithm to a single λ-expression:

data Nat = Zero | Suc Nat

data Inflist t = Cons t (Inflist t)
nats n = Cons n (nats (Suc n))
sieve (Cons Zero xs) = sieve xs

sieve (Cons (Suc k) xs) = Cons (Suc k) (sieve (rem k k xs))
rem p Zero (Cons x xs) = Cons Zero (rem p p xs))
rem p (Suc k) (Cons x xs) = Cons x (rem p k xs)

main = sieve (nats (Suc (Suc Zero)))

Here we use infinite lists for the storage of numbers and the resulting primes.
sieve filters out the zero’s in a list and calls rem to set multiples of prime numbers
to zero. Applying the first four steps of the conversion procedure results in:

Zero ≡ λz s . z

Suc ≡ λn z s . s n

Cons ≡ λx xs c . c x xs

nats ≡ λnats n . Cons n (nats nats (Suc n))
sieve ≡ λsieve ls . ls (λx xs . x (sieve sieve xs)

(λk . Cons x (sieve sieve (rem rem k k xs))))
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rem ≡ λrem p k ls . ls (λx xs . k (Cons Zero (rem rem p p xs))
(λk . Cons x (rem rem p k xs)))

main ≡ sieve sieve (nats nats (Suc (Suc Zero)))

The dependency sort results in:

[{zero,suc,cons},{rem,nats},{sieve},{main}]
Putting everything into a single λ-expression this becomes:

(λzero suc cons .

(λrem nats .

(λsieve .

sieve sieve (nats nats (suc (suc zero))))
sieve)
rem nats)
Zero Suc Cons

And after substituting the λ-definitions for all macros:

(λzero suc cons .

(λrem nats .

(λsieve .

sieve sieve (nats nats (suc (suc zero))))
(λsieve ls . ls (λx xs . x (sieve sieve xs)

(λk . cons x (sieve sieve (rem rem k k xs))))))
(λrem p k ls . ls (λx xs . k (cons zero (rem rem p p xs))

(λk . cons x (rem rem p k xs))))
(λnats n . cons n (nats nats (suc n))))
(λz s . z) (λn z s . s n) (λx xs c . c x xs)

Which reduces to an infinite λ-expression starting with:

λc. c (λz s. s (λz s. s (λz s. z))) (λc. c (λz s. s (λz s. s (λz s. s (λz s. z))))
(λc. c (λz s. s (λz s. s (λz s. s (λz s. s (λz s. s (λz s. z)))))) ...

One can recognize the start of a list containing: 2, 3 and 5. Using single character
names the expression reduces to a 143 character length definition:

(λzsc.(λrf.(λe.ee(ff(s(sz))))(λel.lλht.h(eet)λk.ch(ee(rrkkt))))
(λrpkl.lλht.k(cz(rrppt))λk.ch(rrpkt))(λfn.cn(ff(sn))))(λzs.z)(λnzs.zn)(λhtc.cht)

This λ-term can also be considered as a constructive definition of what prime
numbers are. An even shorter defintion of a prime number generator in the
λ-calculus can be found in Tromp [11].

7 Discussion

We already indicated that the Scott encoding just combines the techniques used
for encoding booleans and tuples in the Church encoding as described in standard
λ-calculus text books and courses. The Scott and Church encodings only differ
for recursive types. A Church encoded type just defines how functions should be
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folded over an element of the type. A fold can be characterized as a function that
replaces constructors by functions. The Scott encoding just packages information
into a closure. Recursiveness of the type is not visible at this level. Of course,
this is also the case for ADT’s in functional languages, where recursiveness is
only visible at the type level and not at the element level.

The representation achieved using the Scott encoding is equivalent to that of
ADT definitions in modern functional programming languages and allows for an
similar realization of functions defined on ADT’s. Also the complexity (efficiency)
of these functions is similar to their equivalents in functional programming lan-
guages. This in contrast to their counterparts using the Church encoding that
sometimes have a much worse complexity. Therefore, from a programmers per-
spective the Scott encoding is better than the Church encoding.

An interesting question now is: Why is the Scott encoding relatively unknown
and almost never mentioned in textbooks on the λ-calculus? The encoding is
simpler than the Church encoding and allows for a straightforward implementa-
tion of functions acting on data types. Of course, the way ADT’s are represented
in modern functional programming languages is rather new and dates from lan-
guages like ISWIM [7], HOPE [3] and SASL [13,12] and this was long after the
Church numerals were invented. Furthermore, ADT’s are needed and defined by
programmers, who needed an efficient way to define new types, which is rather
irrelevant for mathematicians and logicians studying the λ-calculus.

In [6] it is shown that this representation of functional programs can be used
to construct very efficient, simple and small interpreters for lazy functional pro-
gramming languages. These interpreters only have to implement β-reduction and
no constructors nor pattern matching.

Altogether, we argue that the Scott encoding also should have its place in λ-
calculus textbooks and courses and in λ-calculus courses for computer scientist
this encoding should have preference over the Church encoding.

8 Conclusions

In this paper we showed how the λ-calculus can be used to express algorithms
and Algebraic Data Types in a way that is close to the way this is done in modern
functional programming languages. To achieve this, we used a rather unfamiliar
encoding of ADT’s attributed to Scott. We showed that this encoding can be
considered as a logical combination of the way how enumerations (like booleans)
and containers (like tuples) are normally encoded in the λ-calculus. The encoding
differs from the Church encoding and the connecting element between them is
the fold function.

For recursive functions we did not use the standard fixed-point combinators,
but instead used a simple technique where an expression representing a recursive
function is given (a reference to) itself as an argument. In this way the recursion
is made more explicit and this also results in a more efficient implementation
using fewer reduction steps.

We also sketched a systematic method for converting Haskell or Clean like
programs to closed λ-expressions.
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Altogether we have shown that it is possible to express a functional program
in a concise way as a λ-expression and demonstrated that the λ-calculus is indeed
a universal programming language in a convincing way.
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Modelling Unique and Affine Typing

Using Polymorphism

Edsko de Vries

Well-Typed LLP

Abstract. Uniqueness typing and affine (or linear) typing are dual type
systems. Uniqueness gives a guarantee that an term has not been shared,
while affinity imposes a restriction that a term may not be shared. We
show that we can unify both concepts through polymorphism.

1 Introduction

Side effects in modern pure functional languages such as Clean or Haskell are
modelled as functions that transform the world. For instance, a function that
reads a character from the keyboard might have type

getChar :: World→ (World, Char)

The return type of getChar makes it clear that c1 and c2 can have different
values in

λworld · let (c1,world ′) = getChar world
(c2,world

′′) = getChar world ′

in (c1, c2,world
′′)

They are read in different worlds, after all. Of course, this is a symbolic repre-
sentation of the world only, which means we somehow need to outlaw programs
such as

λworld · let (c1,world ′) = getChar world
(c2,world

′′) = getChar world
in (c1, c2,world

′′)

(1)

One way to do this is to define an opaque wrapper type

IO a =̂ World→ (World, a)

together with two operations

return :: a→ IO a
bind :: IO a→ (a→ IO b)→ IO b

That is, define IO to be a monad. Since the plumbing of the World happens
inside bind “reusing” the same world cannot happen. This is the approach taken
in Haskell.

P. Achten and P. Koopman (Eds.): Plasmeijer Festschrift, LNCS 8106, pp. 181–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



182 E. de Vries

An alternative approach is to use a type system to outlaw programs such as
(1). For instance, we can use Clean’s uniqueness typing to give getChar the type

getChar :: World• → (World•, Char)

The annotation on World• means that getChar requires a unique—or non-
shared—reference to the world and in turn promises to return a unique reference.

An advantage of this approach over the use of monads is that it is more
compositional. For example, we can easily define a function that modifies two
arrays in place

modifyArrays :: (Array•, Array•)→ (Array•, Array•)
modifyArrays = . . .

without specifying in which order these two updates should happen (indeed,
they could happen in parallel).

Uniqueness typing is a substructural logic. We will explain this in more detail
in Sect. 2. Probably the most well-known substructural logic is affine (or linear)
logic. Affine logic can be regarded as dual to uniqueness typing; we discuss it in
more detail in Sect. 3. In Sect. 4 we observe that we can simplify and unify both
type systems through a familiar typing construct: polymorphism. We show that
there is a sound translation from unique and affine typing into the unified system,
and argue that although the translation is not complete, the loss is outweighed
by the benefits of unifying the two systems. Finally, we wrap in Sect. 6.

2 Uniqueness Typing

The type syntax that we will use throughout this paper is given by

α ::= • | × (type attribute)
τ ::= c | σ −→

α
σ′ (base type)

σ ::= τα (attributed type)
c ∈ Unit, Bool, Array, . . . (constants)

where we will write (σ1 −→
α′

σ2)
α as σ1

α−→
α′

σ2, and we will occasionally follow

Clean convention and use the absence of a type annotation to mean non-unique
(i.e., we might write τ× as τ). The reason for the additional attribute on the
function arrow will become clear in Sect. 2.3.

In the context of uniqueness typing the attribute “•” is read as “unique”
(guaranteed not shared), and the attribute “×” is pronounced “non-unique”
(possibly shared). The typing rules for uniqueness typing are shown in Figure 1.

2.1 Contraction

Typing environments (here and elsewhere in this paper) are bags of pairs of
identifiers and types, not sets. That is, the typing environment {x : σ, x : σ} with



Modelling Unique and Affine Typing Using Polymorphism 183

Logical Rules

x : σ � x : σ
Var

Γ, x : σ1 � e : σ2

Γ � λx · e : σ1
α−−−→

sup Γ
σ2

Abs

Γ1 � e1 : σ1
α−→
α′ σ2 Γ2 � e2 : σ1 α ⊆ α′

Γ1, Γ2 � e1 e2 : σ2
App

with α ⊆ α, × ⊆ •, and (sup) the corresponding supremum (least upper bound)
Subtyping

Γ � e : τ•

Γ � e : τ×Unique

for simplicity we treat the function space as invariant
Structural Rules

Γ, x : τ×, x : τ× � e : σ

Γ, x : τ× � e : σ
Contr

Γ � e : σ

Γ, x : σ′ � e : σ
Weak

Fig. 1. Uniqueness Typing

Logical Rules

x : σ � x : σ
Var

Γ, x : σ1 � e : σ2 α ⊆ supΓ

Γ � λx · e : σ1
α−−−→

supΓ
σ2

Abs

Γ1 � e1 : σ1
α−→
α′ σ2 Γ2 � e2 : σ1

Γ1, Γ2 � e1 e2 : σ2
App

Subtyping

Γ � e : τ×

Γ � e : τ• Affine

Structural rules as above.

Fig. 2. Affine Typing

Logical Rules

x : σ � x : σ
Var

Γ, x : σ1 � e : σ2 α ⊆ supΓ

Γ � λx · e : σ1
α−−−→

sup Γ
σ2

Abs

Γ1 � e1 : σ1
α−→
α′ σ2 Γ2 � e2 : σ1 α ⊆ α′

Γ1, Γ2 � e1 e2 : σ2
App

Generalization and Instantiation

Γ � e : σ{•/a} Γ � e : σ{×/a}
Γ � e : (∀a · σ)supΓ

Gen
Γ � e : (∀a · σ)α
Γ � e : σ{α′/a} Inst

Structural rules as above.

Fig. 3. Unified using Polymorphism
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two (identical) assumptions for x is a different typing environment to {x : σ}
containing a single assumption. Moreover, in rule App we union the typing
environment used to type the function with the typing environment used to
type the argument, rather than using the same environment for both.

This means that we must be explicit about structural operations on the typing
environment. Rule Contr allows us to contract two typing assumptions, while
rule Weak allows us to weaken a typing derivation by introducing an additional
(unused) assumption. Importantly, Contr applies only to non-unique terms, so
that we can derive

...

f : τ× → τ× → σ, x : τ× � f x : τ× → σ x : τ× � x : τ×

f : τ× → τ× → σ, x : τ×, x : τ× � f x x : σ
App

f : τ× → τ× → σ, x : τ× � f x x : σ
Contr

f : τ× → τ× → σ � λx · f x x : τ× → σ
Abs

∅ � λf · λx · f x x : (τ× → τ× → σ) → τ× → σ
Abs

but, crucially, we cannot find any derivation for

∅ � λf · λx · f x x : (τ• → τ• → σ)→ τ• → σ

The restriction on the structural rule Contr is what makes uniqueness typing
a substructural logic.

2.2 Subtyping

Uniqueness is a guarantee that a term is not shared; however, it is safe to ignore
that guarantee. For instance, we can find a term with type

(τ× → τ× → σ)→ τ• → σ

(exercise: what is it?). For an example use case, consider a type Array of integer
arrays with corresponding in-place updates

update :: Int→ Int→ Array• → Array•

sort :: Ascending→ Array• → Array•

. . .

Once we are done with updating the array we can apply subtyping to get an
Array× which we can freely share but no longer update.

The combination of the restriction on Contr with subtyping (Unique) jus-
tifies reading “•” as “non-shared”.

2.3 Closure Typing

Consider a term such as

λarr · λasc · sort asc arr :: Array• → Ascending
α−→• Array•
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When we partially apply this function to a unique array, we get a function
of type

Ascending
α−→• Array•

the annotation underneath the function arrow here means that this function has
a unique term in its closure. It is important that this term is still unique when we
(fully) apply the function, which is why rule App requires that when we apply a
function with unique terms in its closure it must itself be unique. This is called
uniqueness propagation, and is important whenever terms contain other terms
(function closures, tuples, algebraic data types, etc.).

3 Affine Typing

Affine typing is a close cousin of uniqueness typing; the typing rules are shown
in Fig. 2. Where “unique” can be interpreted as a guarantee that a term has not
not shared, “affine” can be interpreted as a restriction that a term may not be
shared, or, equivalently but more conventionally, can only be used once.

Aside. Affine typing is closely related to linear typing, in which the weak-
ening rule (Weak) is also limited to non-affine types. It is often claimed
that such a type system guarantees that a term of linear type will be
used “exactly” once; however, since linear type systems rarely guarantee
the absence of divergence, this is a dubious claim. We will use “affine”
throughout this paper as the more general term.

This duality between uniqueness typing and affine typing is evident in the typ-
ing rules too, in two ways. First, the subtyping relation is inverse (rule Affine).
Where a guarantee of uniqueness can be forgotten but not invented, an affine
restriction may be self-imposed but not ignored.

Second, like in uniqueness typing, when a closure contains a restricted term
then that closure itself must be restricted; but unlike in uniqueness typing, that
restriction must be enforced at the definition site (Abs) rather than the us-
age site (App). (Exercise: why is it unsafe to combine Unique subtyping with
definition-site propagation, or Affine subtyping with usage-site propagation?)

For an example use case, consider a concurrent, impure (not referentially
transparent) functional language with a type Channel of communication chan-
nels with corresponding functions

send :: Int→ Channel• → Unit

newChannel :: Unit→ Channel×

We can pass a channel of type Channel• to a thread, meaning that it can only
send a single signal on the channel; a “master” thread can create a new channel
using newChannel, spawn a number of slave threads, use subtyping to pass in an
affine reference to this channel, and is then guaranteed that each slave thread
will write at most once to the channel.
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4 Polymorphism

Consider again the type of array update:

update :: Int→ Int→ Array• → Array•

The input array must certainly be unique, but update does not itself care
that the result is unique; that is, we could also provide

update′ :: Int→ Int→ Array• → Array×

Similarly, in the channel example, send took a restricted channel, but we
could also provide

send′ :: Int→ Channel× → Unit

Using uniqueness subtyping we can define update′ in terms of update; using
affine subtyping we can define send′ in terms of send. However, since the sub-
typing relation in both cases is so shallow, there is a more obvious generalization
of both functions:

update :: ∀a · Int→ Int→ Array• → Arraya

send :: ∀a · Int→ Channela → Unit

We only need a single construct to capture both subtyping relations, and thus
we arrive at the central thesis of this paper: we can use polymorphism to combine
uniqueness typing and affine typing within a single system. The only difference
whether we use polymorphism in the codomain (update) or the domain of the
function (send), once more establishing the duality between uniqueness and
affine typing.

4.1 The Polymorphic Type System

We extend the systems of types with

τ ::= c | σ −→
α

σ′ | ∀a · σ
σ ::= τα (as before)

A function of type τ•1
•−→ τ×2 is a unique function from a unique τ1 to a non-

unique τ2; the attribute on the function is distinct from the attributes on its
domain and codomain. Similarly, a value of type, say, (∀a.Arraya)• is a unique
polymorphic value that can be instantiated to a unique or non-unique array.
The uniqueness on the polymorphic value itself means that it can only be in-
stantiated once. The analogy with functions is appropriate: a polymorphic value
can be interpreted as a function that takes a type argument; and like functions,
polymorphic values must be unique themselves if they have any unique elements
in their “closure”.



Modelling Unique and Affine Typing Using Polymorphism 187

The rules for the polymorphic type system are shown in Fig. 3. The structural
rules are as they were in uniqueness typing and affine typing. We no longer have
subtyping, however; this means that the “•” annotation means “has and may
never be shared”, thus no longer distinguishing between “unique” and “affine”;
we can choose either interpretation based on the application we have in mind.
Rule Gen embodies the propagation we described in the previous section. Rule
Inst is the familiar instantiation rule, where we ignore the attribute on the
polymorphic value itself.

Propagation for functions is now enforced in both definition and usage sites
(Abs and App). This is overkill; it would suffice to enforce propagation in Abs

(and do away with closure typing completely): after all, in the absence of sub-
typing if a function is unique when it is created it must still be unique when
it applied. Formally proving that this simpler type system is equivalent to the
one we have presented, however, is slightly non-trivial and non-essential to the
central message of this paper. We chose the representation in Fig. 3 to aid the
comparison to the uniqueness and affine typing systems; we do not necessarily
suggest to use the type system in this particular form.

When introducing a new type system, two questions arise:

– Is the new type system sound? That is, are there any programs accepted by
the type system that should not be?

– Is the new type system complete? That is, are there any programs not ac-
cepted by the type system that should be?

We will show in Sect. 4.2 that the polymorphic system is relatively sound : it
does not accept any more programs than the intersection of uniqueness typing
and affine typing does. Few type systems can claim to be complete, and ours
is no exception. In fact, even relative completeness fails, but we will argue in
Sect. 4.3 that the loss is outweighed by the benefits.

4.2 Soundness

We show that if a program e is accepted by the polymorphic type system (i.e.,
there exists Γ, σ such that Γ � e : σ) then it is also accepted by both the
unique and affine systems. We show this by providing a translation &σ� from the
polymorphic type system to the unique or affine type system. We consider the
case for the unique type system first. We translate polymorphism to uniqueness:

Definition 1 (Translation from polymorphic to unique types)

&cα� = cα

&σ1
α−→
α′

σ2� = &σ1� α−→
α′
&σ2�

&(∀a · σ)α� = &σ{•/a}�

This translation extends in the obvious manner to typing environments.

Proposition 1 (Soundness wrt to uniqueness typing)
If Γ � e : σ then &Γ � � e : &σ�.
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Proof. By induction on Γ � e : σ. The logical and structural rules are straight-
forward. For Gen the conclusion follows from the induction hypothesis at the
first premise. For Inst it follows from Unique (or immediately). �

As expected, the case for the affine type system is similar, but dual: we trans-
late polymorphism to unrestricted (non-affine).

Definition 2 (Translation from polymorphic to affine types)

&cα� = cα

&σ1
α−→
α′

σ2� = &σ1� α−→
α′
&σ2�

&(∀a · σ)α� = &σ{×/a}�

Proposition 2 (Soundness wrt to affine typing)
If Γ � e : σ then &Γ � � e : &σ�.

Proof. Like the proof of Prop. 1, but using the second premise of Gen and using
Affine instead of Unique. �

4.3 Completeness

In uniqueness typing we can create non-unique functions with unique elements
in their closure, even though we can no longer apply those functions. Likewise,
in affine typing we can apply non-unique functions with unique elements in their
closure, even though we can never create such functions. Neither is possible in the
polymorphic system, which means that the polymorphic system is not relatively
complete with respect to either the uniqueness or affine type systems.

We can give a partial completeness result, however. Define the following lifting
from the monomorphic types into the polymorphic type system:

Definition 3 (Lifting types)

�cα' = cα

�σ1
α′
−−→
α′′

σ2' = �σ1' α−→
α
�σ2' where α = sup{a′, a′′}

Proposition 3 (Partial completeness). If Γ �unique e : σ or Γ �affine e : σ
and the typing derivation does not rely on subtyping then Γ �poly e : σ.

Proof. Two separate straightforward induction proofs. �

In other words, programs that do not rely on subtyping will be accepted by the
polymorphic type system, too. Most applications of subtyping can be replaced by
use of polymorphism, as we saw at the start of Section 4. That is, for uniqueness
typing we can translate

�σ → τ•�unique = ∀a · �σ� → �τa�
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Similarly, for affine typing we can translate

�τ× → σ�affine = ∀a · �τa�→ �σ�

(note again the duality: • vs ×, codomain vs domain). In both cases subtyping
can then be replaced by instantiation.

This translation is not entirely uniform, however. As we mentioned at the
start of this section, the following types are not inhabited, even though their
corresponding unique or affine types are:

�τ•1 → τ×2
•−→• τ•1 �unique = ∀a · τ•1 → τ×2

a−→• τ•1

�(σ1
×−→• σ2)→ σ1 → σ2�affine = ∀a · (σ1

a−→• σ2)→ σ1 → σ2

Note that the use of subtyping is not essential for dealing with “observing”
terms at non-unique types; instead, we need a special typing rule for strict-
let, and preferably some way of making sure that these non-unique terms don’t
escape the strict-let. See [10, Section 2.8.9] for more details.

4.4 Example Application

In Sect. 3 we used affine types to restrict how often a thread could write to a
channel. We mentioned that this was in the context of an “impure” language,
because affine types cannot be used to model side effects1 (we need uniqueness
typing, instead). However, now that we have both, we could define2

withNewChannel :: World• → (World• → (∀a · Channela)× → σ)
•−→• σ

send :: ∀a · Int→ World• → Channela
•−→• World•

If we applied the translation from Sect. 4.3 indiscriminately we would have used a
unique world in negative position (“input”) and a polymorphic world in positive
position (“output”). However, realistically we never want to share the world so
we can simplify the types and not use polymorphism.

The situation for channels is a little different. We have used a polymorphic
value in negative position, since we can send on channels we are allowed use
once just as well as we can send on unrestricted channels. In withChannel we
use a value of type (∀a · Channela)× in positive position; the continuation (the
“master thread”) can use this polymorphic value as often as it wants to create
“affine” (use-once) channels for the slave threads and then instantiate it at an
unrestricted value itself to read the values written by all the slave threads.

1 Wadler, one of the big proponents of linear logic, states [14]: “Does this mean that
linearity is useless for practical purposes? Not completely. Dereliction [subtyping]
means that we cannot guarantee a priori that a variable of linear type has exactly
one pointer to it. But if we know this by other means, then linearity guarantees that
the pointer will not be duplicated or discarded”.

2 We could return a pair instead of using continuation passing style, but we have not
covered products in this paper.
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We thus switch back and forth between the two interpretations at will, and use
instantiation in the place of subtyping: we use polymorphism to model unique
and affine typing.

5 Related Work

Uniqueness typing was introduced in [2] and implemented in the pure functional
programming language Clean [7]; variations have been implemented in SAC [8]
and Mercury [5,6].

The version we presented in Fig. 1 differs significantly from the Clean type
system, however. Clean does not use closure typing, which was introduced in the
context of uniqueness typing in [12]. Instead, Clean regards some unique types
(in particular, function types) as necessarily unique: subtyping does not apply
to them. This makes it possible to enforce propagation at definition site, rather
like in our polymorphic system. However, this non-uniformity of the subtyping
relation results in a loss of principal types. For instance, we have

λx · (x, x) :: Array• → (Array×, Array×)
and

λx · (x, x) :: (σ1
×−→ σ2)→ (σ1

×−→ σ2, σ1
×−→ σ2)

but no more general type that can be instantiated to both. Note that the poly-
morphic system in Fig. 3 does not satisfy principal types either. For instance,
given a function f :: ∀a, a′ · τa → τa

′ a−→ σ, we have

λx · λy · λz · f x y :: τ× ×−→ τ× ×−→ σ′ ×−→ σ

λx · λy · λz · f x y :: τ× ×−→ τ• ×−→ σ′ •−→ σ

λx · λy · λz · f x y :: τ• ×−→ τ× •−→ σ′ •−→ σ

and

λx · λy · λz · f x y :: τ• ×−→ τ• •−→ σ′ •−→ σ

but no more general type that captures all four; in particular, although we have

λx · λy · λz · f x y :: ∀a, a′ · τa ×−→ τa
′ a−→ σ′ •−→ σ

the annotation on the final arrow must be “•” because we cannot express within
the type system that it must be unique if either a or a′ is and thus we must
be conservative. One way to solve this problem is introduce boolean expressions
as annotations [13]; this is a nice approach because boolean unification is well-
understood and hence can we use standard type inference algorithms for such a
type system (it might also be possible to lift the “sup” operation we used to the
type level).

Linear logic was introduced by Girard [3]; its use as a type system was pio-
neered by Wadler [14,9]. Several authors have proposed type systems that explic-
itly combine uniqueness typing and linear typing [4,1,11]. All of these systems
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however have explicit notions of uniqueness and affinity, rather than using one
concept to model both.

The author’s PhD thesis contains a detailed review of these and other
papers [10].

6 Conclusions

Uniqueness typing and affine or linear typing are dual type systems. Uniqueness
gives a guarantee that an term has not been shared, thus enabling destructive
update and modelling of side effects in a pure functional language. Affinity im-
poses a restriction that a term may not be shared, thus enabling more precise
APIs (a continuation that can be invoked at most once, a channel that can be
sent on at most once, etc.). Both type systems have different purposes and indeed
it is useful to combine them.

In this paper we have shown that when we introduce polymorphism—a use-
ful construct in its own right—we do not need to distinguish explicitly between
uniqueness and affinity anymore, but enable the programmer to choose between
either interpretation by introducing polymorphism in negative or positive posi-
tions. For instance, we saw that we might type destructive array updates as

update :: ∀a · Int→ Int→ Array• → Arraya

Other API choices are possible too, of course. For instance, if non-updatable
arrays have a more efficient representation in memory then we might want to
change the API to

update :: Int→ Int→ Array• → Array•

freeze :: Array• → Array×

By replacing subtyping with polymorphism we place this choice in the hands of
the API designer.

The particular type system that we presented was designed to aid the compar-
ison with “traditional” uniqueness and affine type systems. It can be simplified
and extended in various ways. At the very least one might want universal quan-
tification over base types (τ) as well as type attributes (α); it is possible to use a
kind system to use a single construct for both [13]. As mentioned in Sect. 5, we
can introduce boolean expressions as type attributes in order to obtain principal
types. Chapter 8 of [10] contains many more avenues for future work.

Acknowledgements. This paper is a follow-up from the author’s PhD thesis
on uniqueness typing, which Rinus Plasmeijer mentored. Rinus, your support
and enthusiasm was greatly appreciated.
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Abstract. The development of experimental software is rarely straight-
forward. If you start making something you don’t understand yet, it
is very unlikely you get it right at the first try. The iTask system has
followed this predictably unpredictable path. In this system, where
combinator functions are used to construct interactive workflow sup-
port systems, the core set of combinator functions has changed along
with progressed understanding of the domain. Continuous work on this
system led to the emergence of a new programming paradigm for inter-
active systems: Task-Oriented Programming (TOP). In this paper we
reconstruct the evolution of one of the core iTasks combinators to catch
a glimpse of this emergence. The combinator is the parallel combinator
that facilitates the composition of multiple concurrent tasks into a single
one. We reconstruct its evolution from the written record in the form of
published papers and discuss this reconstruction and what it tells about
the progressed understanding of programming with tasks.

1 Introduction

If you don’t know where you are going, you don’t know where you will end up.
Making research software based on ideas that you don’t yet fully understand is
inherently different from “production” software where you assume that you can
clearly scope the requirements, and you can draw up designs based on understood
principles. Although you cannot reliably work towards a defined product, it does
not mean that you are just randomly doing something. By trying to embody little
understood ideas in a software system, and trying to make things of which you
don’t know if they are even possible you learn what is possible and you get a
better understanding of your initial ideas. You have, of course, ideas about what
you consider important and expectations of what you might find, but you have
to try to keep an open mind and be prepared to change course midway. In the
process you may find that your hypotheses about properties of your system don’t
hold or you end up with something different than you imagined.

The iTask System (iTasks) is a system that followed this uncertain path and
has been changing ever since it was first conceived [9]. This system started out as
a modest experiment to express workflow in the functional language Clean [16],
but that was just the beginning. In the past years it evolved and eventually be-
came a general-purpose framework for making interactive web-based multi-user
applications, supporting a new programming paradigm: Task-Oriented Program-
ming (TOP). In this paradigm, multi user systems are expressed by composing
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tasks. The evolution of iTasks was driven primarily by two desires. The first
driver was the quest to find a minimal, yet complete, core set of primitives to
express task patterns with. The second driver was the wish to not be limited
to work with little variation, modeled by rigid workflows, but be able to cap-
ture a wide range of dynamic real-world tasks. These desires pushed the scope
of the iTask system beyond what is usually considered workflow, and into a
general purpose framework for any interactive system. At some point we real-
ized that programming applications with iTasks had drifted so far away from
workflow specification and traditional functional programming, that it could be
considered a separate new paradigm. The present day iTask system provides
a combinator based embedded domain specific language that implements the
basic TOP constructs for defining and composing tasks. It consists of generic
user interaction primitives, combinators for sequential and parallel composition
of tasks and primitives for sharing data between tasks.

Some iTask combinators have remained relatively stable, such as the monadic
“bind” for sequential compositions. Others however, changed more often. One
of the combinators that changed a lot was the parallel core combinator for
concurrent execution of multiple tasks. This combinator originally was not even
a single combinator but a set of specialized combinators that were more or less
related to each other. At some point it seemed that there was a new version
of this combinator in every published paper. When students who used iTasks
for their research projects asked for a paper they could read as introduction,
we almost always had to answer that there was of course something they could
read, but that the latest version was already different from that paper.

Now that we have arrived at the TOP paradigm, it is interesting to look back
and see how we got here. We usually focus on the future, and aim to improve
the status quo, but sometimes looking back can provide valuable insights too. A
festschrift such as this provides a good opportunity to do so. In this paper we
reconstruct the evolution of the parallel combinator as angle on the emergence
of TOP. Because we cannot rely on memory, we turn to the accumulated pub-
lications about iTasks as written record of the evolution of the system, and to
keep the scope manageable, we focus on the “parallel” combinator in particular.
In the remainder of this paper, we see how we can reconstruct the history of
the parallel combinator (Section 2), walk through its evolution (Section 3), and
reflect on it (Section 4).

2 Methodology

To reconstruct the evolution of the parallel combinator, we have two sources at
our disposal. There is a written record of milestone versions in the form of publi-
cations that contain an explanation of the iTask system. The advantage of these
publications is that they do provide an explanation along with the definitions.
The disadvantage of publications is that it is hard to reconstruct the time frame
in which the published definition was used due to the delays of the publication
process. Fortunately, since the majority of the publications were published in
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conference proceedings, the submission deadlines of those conferences are men-
tioned in their calls for papers. These calls are easily retrievable through public
archives of mailing lists to which they were posted. The submission deadlines
provide a reasonable estimation of the date the paper was finalized.

The second source we can use is the logging provided by the public Subversion
(version control) repository of the iTask system. This record is more fine grained
than the publication record, because not all small changes are immediately wor-
thy of publication. Finding out when changes were made is very easy for this
source, because all commits to the repository are automatically timestamped.
The disadvantage of this source is that changes are often only accompanied by
short log messages, such that we need to study the source code of the system at
critical points in time to understand the interface and semantics of the combi-
nator in that time frame.

In this paper we limit ourselves to the publication record because these are
milestone versions and we aim to reconstruct the complete history. The Sub-
version log is simply too fine grained for such a global overview. To make our
reconstruction we simply collect all publications about the iTask System that
mention the parallel combinator or its specialized predecessors. We then orga-
nize them chronologically and isolate those sections of the papers that explain
parallel composition.

3 Evolution of the Parallel Combinator

In this section we present the history of the parallel as reconstructed from pub-
licly available sources. Other than grouping the chronology in related periods, we
do not yet interpret anything. We only collect and organize what is said about
the combinators and postpone discussion to the next section.

3.1 The ‘AND’ and ‘OR’ Period

The parallel combinator did not start out as a single construct for all possi-
ble parallel patterns of combining tasks. It started out as a set of combinators
for specific patterns. The first iTasks paper, “iTasks: Executable Specifications
of Interactive Work Flow Systems for the Web” [9] presented at ICFP 2007
(October 1-3, 2007), defined two combinators for parallel composition. They are
explained as follows:

The infix operator (t1 -&&- t2) activates subtasks t1 and t2 and ends
when both subtasks are completed; the infix operator (t1 -||- t2) also
activates two subtasks t1 and t2 but ends as soon as one of them termi-
nates, but it is biased to the first task at the same time. In both cases,
the user can work on each subtask in any desired order. A subtask, like
any other task, can consist of any composition of iTasks.

The paper also shows the implementations of these combinators. In this code we
can already see that both combinators are very similar.
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(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b) | iCreate a & iCreate b

(-&&-) taska taskb = doTask and

where and tst=:{tasknr}
# (a,tst=:{activated=adone}) = mkParSubTask 0 tasknr taska tst

# (b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst

= ((a,b) ,set_activated (adone && bdone) tst

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iCreate a

(-||-) taska taskb = doTask or

where or tst=:{tasknr}
# (a,tst=:{activated=adone}) = mkParSubTask 0 tasknr taska tst

# (b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst

= ( if adone a ( if bdone b createDefault)
, set_activated (adone || bdone) tst

)
mkParSubTask :: Int TaskID (Task a) → Task a

mkParSubTask i tasknr task = task o newSubTaskNr o set_activated True o subTaskNr i

In the lecture notes of the CEFP 2007 summer school [8], which included a
course on iTasks, we find the exact same code and accompanying explanations
as in the ICFP 2007 paper. This summer school was held the same summer, so
this is not surprising.

The next publication that mentions the parallel iTask combinator is “Declar-
ative Ajax and Client Side Evaluation of Workflows using iTasks” presented at
PPDP 2008 (July 15,17 2008) [13]. This paper gives type definitions for the same
two parallel combinators:

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iData a

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b) | iData a & iData b

The only difference between these signatures and the previous ones is the con-
text of iData instead of iCreate. The difference between these restrictions is that
the iData class also contains generic storage and visualization in addition to de-
fault value creation provided by iCreate. The paper provides explanations of the
combinators by examples that reveal that the semantics of the combinators did
not change:

The expression t-||-u offers tasks t and u simultaneously. As soon as
either one is finished first, t-||-u is also finished. Any work in the other
task is discarded. The -||- combinator is very useful to express work
that can be aborted by other workers or external circumstances. In

ot = yt -||- nt -||- et

the iTasks system offers the task yt, nt, and et simultaneously. Any edit
work in et is discarded when the user presses one of the buttons labeled
Yes or No.
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And for the -&&- combinator:

If one really needs both results of tasks t and u, then this is expressed by
t -&&- u, which runs both tasks to completion and returns both results.
For instance, if we need a string and an integer (with default value 5)
we can use the task:

at :: Task (String, Int)
at = ot -&&- editTask "Done" 5

The next mention of the parallel combinators is in the lecture notes of the
AFP 2008 summer school [10] (May 19-24, 2008). In this publication, the iTask
system is explained following a case study. The combinators are initially only
explained in so far they are relevant to that case. Therefore initially only the
“OR” combinator is defined:

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iData a

And explained only briefly as:

The left-biased task t -||- u is finished as soon as either t or u has fin-
ished, or both.

In a later section that explains the semantics of the iTask system using a sim-
plified model, the ‘AND’ combinator is introduced together with its equivalent
in the model:

We introduce the iTask combinator t -&&- u, and represent it by t .&&. u.
In the case study in Section 2 we did not use this combinator, but it
belongs to the basic repertoire of the iTask system, therefore we in-
clude it here. In the task t -&&- u, both subtasks t and u are available
to the user. The composite task is finished as soon as both subtasks
are finished. Hence, it differs from -||- in which termination is con-
trolled by the first subtask that finishes. Also, its type is more gen-
eral, because the types of the return values of the subtasks are al-
lowed to be different, the type of this operator in the iTask system is
(Task a) (Task b) → Task (a,b) | iData a & iData b.

The full semantic model is too lengthy to quote here, but the reduction of the
modeled combinators .||. and .&&. that represent the ‘OR’ and ‘AND’ combi-
nators is defined to exhibit the behaviour that has been explained in the various
papers so far.

This semantic model is worked out in full in the next publication that men-
tions the parallel combinators. In “An Executable and Testable Semantics for
iTasks” [5] presented at IFL 2008 (September 10-12) we find the now familiar
type signatures and the following explanation.

The expression t -||- u indicates that both iTasks can be executed in
any order and interleaved, the combined task is completed as soon as
any subtask is done. The result is the result of the task that completes
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first, the other task is removed from the system. The expression t -&&- u

states that both iTasks must be done in any order (interleaved), the
combined task is completed when both tasks are done. The result is a
tuple containing the results of both tasks.

The most notable thing here is that the interleaving semantics of the combinators
is mentioned explicitly for the first time.

3.2 Lists of Parallel Tasks

In the next publication, “Web Based Dynamic Workflow Systems and Appli-
cations in the Military Domain” [2], in the 2008 issue of NL ARMS, we see
additional parallel combinators for the first time. The ‘OR’ and ‘AND’ combi-
nators are generalized to versions that use lists of tasks that are executed in
parallel. The combinators are explained by example:

The AND (-&&-) operator generates two tasks that both have to be fin-
ished before the results can be used.

simpleAndMU :: Task Int

simpleAndMU

= (0 @:: editTask "Number entered" 0)
-&&- (1 @:: editTask "Number entered" 0)
=>>λ(v,w) → 2 @:: editTask "Sum" (v+w)

For AND also a multi-version ‘andTasks’ exists, which handles a list of
tasks. The task completes when all subtasks are completed.
The OR (-||-) operator generates two tasks in parallel. As soon as one of
them finishes the result of that task is available. The result of the other
task is ignored.

simpleOrMU :: Task Int

simpleOrMU

= (0 @:: editTask "A number" 0)
-||- (1 @:: editTask "A number" 0)
=>>λv → 2 @:: editTask "First number" v

Also for OR a multi-version ‘orTasks’ exists, which handles a list of tasks.
The task completes as soon as one of the tasks completes.

Additionally, an important new concept is reported for the first time: a general
parallel combinator with which other combinators can be expressed:

In iTasks a special version of ‘andTasks’ exists: ‘andTasksCond’. A number
of tasks can be started in parallel. Each time one of the tasks is finished
a condition is applied to all completed tasks. If the condition is met,
‘andTasksCond’ is finished and the completed results are returned in a list.
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This combinator is also explained by example:

simpleAndTaskCond :: Task Int

simpleAndTaskCond

= andTasksCond pred [("User"+++toString u,
u @:: editTask "Number entered" 0) \\ u← [1..4 ] ]

=>>λxs → [Txt "Their sum is"] !>> return_D (sum xs)
where pred xs = sum xs > 3

Here a parallel task for 4 users is started. They all have to enter a number.
Here the condition checks if the sum of the already entered numbers is
greater than 3. As soon as this is the case this task stops and the results
are passed to another task where they are displayed.

What is more, the paper shows how this ‘andTasksCond’ can be used to express
other combinators:

This is a very powerful combinator because many other combinators
can be expressed using it. For example the definitions of ‘andTasks’ and
‘orTasks’ can be given by:

andTasks xs = andTasksCond (λys = length ys==length xs) xs

orTasks xs = andTasksCond (λys = length ys==1) xs

The next publication that mentions the parallel combinators is “Tasks 2:
iTasks for End-users” [6] presented at IFL 2009 (September 23-25, 2009). Al-
though it reports on a new implementation of the iTask system, the combinator
language has not changed as can be seen in the signatures that are mentioned
without further explanation.

// Execute two tasks in parallel
(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b)
// Execute two tasks in parallel, finish as soon as one yields a result
(-||-) infixr 3 :: (Task a) (Task a) → Task a

// Execute all tasks in parallel
allTasks :: ([Task a] → Task [a])
// Execute all tasks in parallel, finish as soon as one yields a result
anyTask :: ([Task a] → Task a)

The new combinators introduced here, ‘allTasks’ and ‘anyTask’ appear to be just
variations of the ‘andTasks’ and ‘orTasks’ combinators in the NL ARMS paper.

This apparent variation is confirmed in the next publication, “Embedding a
Web-Based Workflow Management System in a Functional Language” [4] pre-
sented at LDTA 2010 (March 27-28, 2010). The signatures with an explanation
of these combinators are given.

// Splitting-joining any number of arbitrary tasks:
anyTask :: [Task a] → Task a | iTask a

allTasks :: [Task a] → Task [a] | iTask a
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Any number of tasks ts = [t1...tn](n >= 0) can be performed in par-
allel and synchronized (also known as splitting and joining of workflow
expressions): anyTasks ts and allTasks ts both perform all tasks ts simul-
taneously, but anyTasks terminates as soon as one task of ts terminates
and yields its value, whereas allTasks waits for completion of all tasks
and returns their values.

In this paper the fully generalized parallel combinator is presented for the first
time. Unlike the ‘andTasksCond combinator, which could not express ‘anyTask’ for
example because its type is always Task [a], this combinator is capable of ex-
pressing all parallel patterns.

As a final example, iTask provides a core combinator function, parallel
that is used in the system to define many other split-join combinators
such as anyTask and allTasks that were shown earlier. Its type signature
is:

parallel :: ([a] → Bool) ([a] → b) ([a] → b) [Task a] → Task b

|iTask a & iTask b

parallel c f g ts performs all tasks within ts simultaneously and collects
their results. However, as soon as the predicate c holds for any current
collection of results, then the evaluation of parallel is terminated, and
the result is determined by applying f to the current list of results. If
this never occurs, but all tasks within ts have terminated, then parallel

terminates also, and its result is determined by applying g to the list of
results.

The paper after this one reinforces the idea of a single general parallel combi-
nator to express multiple patterns without going into details. This paper, “Web
Based Dynamic Workflow Systems for C2 of Military Operations” [3], presented
at ICCRTS 2010 (June 22-24, 2010) stresses the use of a single general concept
and gives ‘anyTask’ and ‘allTasks’ as examples.

An important combinator for executing a number of tasks in parallel
is the parallel combinator. Where other workflow formalisms contain
a large number of patterns for executing tasks in parallel, iTask needs
only one combinator for this. Using the power of the functional host
language, one can construct all other patterns (and more) using this
single combinator. This is hard to do in other workflow languages because
these lack the right abstraction mechanism for realizing this. With the
parallel combinator one can start the execution of several tasks in parallel
and stop this execution as soon as a user specified condition is fulfilled.
For example, one can stop when one task (or-parallelism) is finished:

anyTask [task_1,task_2,task_3,task_n]

When all tasks (and-parallelism) are finished:

allTasks [task_1,task_2,task_3,task_n]
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Or when the results of the finished tasks satisfy a certain condition (ad-
hoc parallelism):

conditionTasks condition [task_1,task_2,task_3,task_n]

These different combinators are all shorthands for the same generic
parallel combinator instantiated with different parameters.

The next paper, “iTask as a New Paradigm for Building GUI Applications” [7]
presented at IFL2010 (September 1-3, 2010), is concerned mostly with the addi-
tional concepts needed to make GUI programs with iTasks. It explains the iTasks
combinators only to the extent necessary for the leading example of the paper.
Regarding parallel combinators this is just the familiar ‘AND’ combinator.

Finally, we need a combinator to compose tasks in parallel: -&&- performs
both tasks and returns their combined result when both are terminated.

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b) | iTask a & iTask b

Similarly, the next paper also explains the combinators only to the extent
necessary for the purpose of the paper. This paper, “iTasks for a Change: Type-
Safe Run-Time Change in Dynamically Evolving Workflows” [11] presented at
PEPM2011 (January 24-25, 2011), ignores that the ‘AND’ and ‘OR’ combinators
are expressed using a general ‘parallel’ combinator. It defines their semantics
directly such that their behaviour during run-time change can be explained.

(-||-) infixr 3 :: (Task a) (Task a) → Taska | iTaska

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a, b) | iTask a & iTask b

To compose tasks in parallel, the combinators -||-and -&&- are provided.
A task constructed using -||- is finished as soon as either one of its
subtasks is finished, returning the result of that task. The combinator
-&&- is finished as soon as both subtasks are finished, and pairs their
results.

The semantics of these combinators is defined in a separate semantic domain.
The paper gives definitions for -||- as well as -&&-, but we will limit ourselves to
the definition of -||-.

The semantic function of -||- is defined as follows:

(-||-) infixr 3 :: (STaska) (STaska) → STaska

(-||-) ta ua =λ i p e s →
case ta (subIds i !! 0) p e s of
(NF va, s) → (NF va, s)
(Redex nta, s) →
case ua (subIds i !! 1) p e s of
(NFwa, s) → (NFwa, s)
(Redex nua, s) → (Redex (nta -||- nua) , s)

From the formal definition of the behaviour of the ‘AND’ and ‘OR’ combinators
in this paper we can see that the semantics of these combinators have not changed
since the original definitions three and a half year earlier.
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3.3 Towards Dynamically Extensible Parallel Tasks

The next paper covers the overall design of the iTask system again. This paper,
“Getting a Grip on Tasks that Coordinate Tasks” [14] was an invited paper at
the LDTA 2011 Workshop (March 26-27, 2011). It both explains the status quo
of the iTask system and discusses future needs. This paper starts by giving the
familiar definitions for the basic ‘AND’ and ‘OR’ combinators. When discussing
the expressiveness of the combinator language, the general parallel combinator
is explained and definitions for ‘AND’ and ‘OR’ are given.

The need for more functionality does not necessarily imply that more
combinators are required. By using higher order functions, Swiss-Army-
Knife combinators can be defined, that strongly reduce the number
of needed core combinators. In the current iTask system, the parallel
combinator is one such example:

parallel :: ([a] → Bool) ([a]→b) ([a]→b) [Task a] → Task b

| iTask a & iTask b

For instance, the core combinators -||- and -&&- can be replaced by
suitable parametrization of parallel. The function parallel predOK someDone

allDone taskList takes a list of tasks (taskList) to be executed in parallel,
a predicate (predOK), and two conversion functions (someDone and allDone).
Whenever a member of taskList is finished, its result is collected in a list
results of type [a], maintaining the order of tasks. Now predOK results

is computed to determine whether parallel should complete, in which
case the result is computed by someDone results. When all parallel tasks
have run to completion, and predOK is still not satisfied, then parallel also
completes, but now with result allDone results. We can define -||- and
-&&- as follows:

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a

(-||-) ta1 ta2 = parallel (not o isEmpty) first undef [ta1, ta2]
where
first [a] = a

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a, b) | iTask a & iTask b

(-&&-) ta tb = parallel (const False) undef all

[ta >>= Left, tb >>= Right]
where
all [Left a,Right b] = (a,b)

Although a Swiss-Army-Knife combinator such as parallel can be used
to define many different kinds of parallel behaviours, there is room for
improvement here as well. With predOK one can freely define when the
parallel tasks can be stopped, but perhaps one also needs to be able to
start new tasks dynamically, because more work is required.

So far the paper provides little new information. However in the section that
addresses future needs, it is revealed that big changes to the parallel combinator
are afoot.
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The workflow engineer should be able to specify the means of control
as (arbitrarily many) additional tasks that coordinate these tasks. We
hypothesize that these forms of parallel behaviour can be captured with
a single, more general combinator. The combinator needs to meet the
following criteria:
1. The number of tasks in the current parallel combinator remains con-

stant, and parallel can only enforce early termination, not the exten-
sion of new tasks. The number of tasks in a parallel setting should
not be fixed once and for all, but should adapt to the needs of the
current situation.

2. The tasks within the current parallel combinator simply perform
their duty and as such do not interfere with each other (except of
course when using shared communication). Next to these regular
tasks we introduce control tasks. These are also tasks, but, being
control tasks, they edit the collection of parallel tasks. In this way, we
can replace the predefined behaviour of task delegation and instead
leave it to the workflow engineer whether or not to use a predefined
control delegation-task or introduce a (number of) custom control
task(s).

3. Because the number of both regular and control tasks varies during
the evaluation of a parallel group, we need to share information about
the state of the parallel group. Access to this state is restricted to con-
trol tasks only, which is easily achieved using the strong type system.

4. In the current parallel combinator, control is limited to either early
completion (computed by predOK) in which case the final task result
was computed by someDone or full completion in which case the final
result was computed by allDone. In the more general case, we need to
decide how to continue whenever a regular or control task runs to com-
pletion. Again, this should not be computed by the regular tasks. In-
stead, we need a function that knows which task has completed, and
hence has a result value that needs to be accumulated in the shared
state. In addition, this function can decide what should happen with
the group of parallel (control and regular) tasks: tasks can be sus-
pended and resumed, they can be removed, replaced, and new (con-
trol and regular) tasks can be added to the group of parallel tasks.
It is clear that this functionality subsumes the current behaviour of
parallel, and adds behaviour that was inexpressible before.

5. The final part that should be abstracted from is the arrangement,
or layout, of the generated GUIs of the (control and regular) tasks.
In the current iTask system a distinction is made between a parallel
form for tasks that can, in principle, each be delegated to other
workers and a parallel form for tasks which GUI should be merged
into one single presentation. In order to abstract from this, it is
better to parameterize the new parallel combinator with a function
that describes how the component GUIs of (control and regular)
tasks should merged.
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We are currently experimenting with a single parallel combinator that
meets the above criteria. With this combinator we hope to express all
other task combinators as special cases.

These five points illustrate that all aspects of parallel combination are con-
sidered. Even the visual representation (layout) of parallel combinations, which
we have not encountered in the publications so far, is taken into account.

In the next publication, “Defining Multi-user Web Applications with iTasks”
[12] in the lecture notes of the CEFP 2011 summer school (June 14-24, 2011), we
can see that the proposed changes to the parallel combinator have found their
way into the system. In this paper two sections (8 & 9) are devoted to the parallel
combinator. The first of those presents a far more complex parallel combinator:

The iTask system provides a single, swiss army knife combinator for
this purpose, called parallel. In this section we explain how to use this
versatile combinator for an arbitrary, yet constant, number of users. In
Section 9 we continue our discussion and show how it can be used to
accommodate a dynamic number of users. The signature of parallel is:

parallel :: d s (ResultFun s a) [TaskContainer s] → Task a

| iTask s & iTask a

& descr d

We briefly discuss its parameters first. The first parameter is the usual
description argument that we have encountered many times so far. It
plays the same role here: a description to the user to inform her about
the purpose of this particular parallel task in the workflow. The second
argument is the initial value of the state of the parallel task: the state is
a shared data that can be inspected and altered only by the tasks that
belong to this parallel task. The third argument is a function of type:

:: ResultFun s a :==TerminationStatus s → a

:: TerminationStatus= AllRunToCompletion | Stopped

The purpose of the ResultFun function is to turn the value of the state of
the parallel task at termination into the final value of the parallel task
itself. They need not have the same type, so the state is converted to the
final value when the parallel task is finished. The parallel combinator can
terminate in two different ways. It can be the case that all subtasks are
finished (AllRunToCompletion). But, as we will see later, a subtask can also
explicitly kill the whole parallel construction (Stopped). This information
can be used to create a proper final value of parallel. Finally, the fourth
argument is the initial list of task (container)s that constitute the parallel
task. A task container consists of two parts: a task type representation
(ParallelTaskType) defining how the subtask relates to its super-task, and
the subtask itself (defined on shared state s) to be run in parallel with
the others (ParallelTask s):

:: TaskContainer s :== (ParallelTaskType, ParallelTask s)
:: ParallelTaskType= Embedded

| Detached ManagementMeta
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The ParallelTaskType is either one of the following:

– Embedded basically ‘inlines’ the task in the current task.
– Detached meta displays the task computed by the function as a dis-

tinct new task for the user identified in the worker field of meta.
ManagementMeta is a straightforward record type that enumerates the
required information:

:: ManagementMeta=
{ worker :: Maybe User

, role :: Maybe Role

, startAt :: Maybe DateTime

, completeBefore :: Maybe DateTime

, notifyAt :: Maybe DateTime

, priority :: Maybe TaskPriority

}
:: TaskPriority= HighPriority | NormalPriority | LowPriority

It should be noted that the u @: combinator is simply expressed as a
parallel combination of two tasks. One of type Detached with the worker
set, and another of type Embedded that displays progress information.

:: ParallelTask s :== (TaskList s) → Task ParallelControl

:: TaskList s

:: ParallelControl= Stop | Continue

The task creation function takes as argument an abstract type, TaskList s,
where s is the type of the data the subtasks share. Every subtask has to
yield a task of type ParallelControl to tell the system, when the subtask
is finished, whether the parallel task as a whole is also finished (by yield-
ing Stop) or not (by yielding Continue.) As will be explained in Section
9, the number of subtasks in the task list can change dynamically. One
can enquire its status, using the following functions on the abstract type
TaskList s:

taskListState :: (TaskList s) → Shared s | TC s

taskListProperties :: (TaskList s) → Shared [ParallelTaskInfo]

With the function taskListState one can retrieve the data shared between
the tasks of the parallel combinator. As discussed in Section 5, you can
use get, set, and update to access its value. There is another function,
taskListProperties, which can be used to retrieve detailed information
about the current status of the parallel tasks created. This can be used
to control the tasks, and is explained in more detail in the next section.

The second section devoted to the parallel combinator in this paper covers
dynamically adding and removing tasks from a parallel set:

In this section it is shown how the taskList can be used to dynamically al-
ter the number of subtasks running in parallel. The following operations
are offered to the programmer.
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appendTask :: (TaskContainer s) (TaskList s) → Task Int | TC s

removeTask :: Int (TaskList s) → Task Void → TC s

Tasks can be appended to the list of tasks running under this parallel
construction using appendTask. In a similar way, removeTask terminates the
indicated task from the list of tasks, even if it has not run to completion.

The publication after this large change concerns itself with the more friendly
derived parallel combinators only. In this paper, “GiN: A Graphical Language
and Tool for Defining iTask Workflows” [1] presented at TFP 2011 (May 16-18,
2011), only the following familiar signatures and explanation are presented:

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b) | iTask a & iTask b

anyTask :: [Task a] → Task a | iTask a

allTasks :: [Task a] → Task [a] | iTask a

Tasks can be composed in parallel. Either the result of the first com-
pleted task is returned (-||- and anyTask combinators) or the results of
all parallel tasks are collected and returned as a whole (-&&- and allTasks)

In the final and most recent publication that covers the parallel combinator
we see a new definition again. In this publication, “Task-Oriented Programming
in a Pure Functional Language” [15] presented at PPDP2012 (May 31, 2012),
the parallel combinator is presented as follows:

Tasks can often be divided into parallel sub tasks if there is no specific
predetermined order in which the sub tasks have to be done. It might
not even be required that all sub tasks contribute sensibly to a stable
result. All variants of parallel composition can be handled by a single
parallel combinator:

parallel:: d → [(ParallelTaskType,ParallelTask a)]
→ Task [ (TimeStamp, Value a) ] | descr d & iTask a

:: ParallelTaskType= Embedded | Detached ManagementMeta

:: ManagementMeta= { worker :: Maybe User

, role :: Maybe Role

, ...
}

:: ParallelTask a:==SharedTaskLista → Taska

:: SharedTaskList a:== ROShared (TaskList a)
:: TaskList a = { state :: [Value a]

, ...
}

We distinguish two sorts of parallel sub-tasks: Detached tasks get dis-
tributed to different users and Embedded tasks are executed by the current
user. The client may present these tasks in different ways. Detached tasks
need a window of their own while embedded tasks may by visualized in
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an existing window. With the ManagementMeta structure properties can be
set such as which worker must perform the sub-task, or which role he
should have. Whatever its sort, every parallel sub-task can inspect each
others progress. Of each parallel sub-tasks its current task value and some
other system information is collected in a shared task list. The parallel
sub-tasks have read-only access to this task list. The parallel combinator
also delivers all task values in a list of type [(TimeStamp,Value a)]. Hence,
the progress of every parallel sub-task can also be monitored constantly
from the “outside”.

The paper does not go into details of adding and removing tasks but mentions
that it is still possible.

For completeness, we remark that the shared task list is also used to
allow dynamic creation and deletion of parallel sub-tasks. We do not
discuss this further in this paper.

3.4 Summary

Because the chronology given in this section may be too much to take in at once,
Table 1 summarizes the results presented in this section. It dates the publications
which are identified by the conference or journal acronym, it indicates which
parallel combinators are covered in that paper, and some of the properties the
parallel combinator(s) had according to that paper. These properties are: The
use of parameters to make derived combinators easier, whether the parallel has
a variable number of tasks, and if there is data sharing between branches in a
parallel combination.

4 Reflections

Now that we have reconstructed the history of the parallel combinator, we can
discuss the developments it went through in the five years worth of publications
in which it is mentioned.

4.1 Towards a Unified Parallel

The parallel combinator in the last publication we examined [15] is something
completely different than the simple orginal ‘AND’ and ‘OR’ [9]. Yet as we
read through the history, the changes are mostly gradual. The semantics of the
‘AND’ and ‘OR’ remain unchanged for a long time, but with the introduction
of the andTasksCond combinator [2] and later the parallel combinator [4], a single
unified combinator emerges that aims to capture all parallel constructs. Once
this unified combinator is established it is clear that there can be a single core
combinator for all possible task combinations.



208 B. Lijnse

Table 1. Parallel definitions in publications

Paper Date (Deadline date) A
N
D
,O
R

A
N
Y
,A
L
L

pa
ra
lle
l

P
ar
am

et
er
s

V
ar

#
ta
sk
s

D
at
a
sh
ar
in
g

The ‘AND’ and ‘OR’ Period

ICFP2007 [9] October 1-3, 2007 (April 6, 2007) X - - - - -
CEFP2007 [8] June 23-30, 2007 X - - - - -
PPDP2008 [13] July 15-17, 2008 (April 10, 2008) X - - - - -
AFP2008 [10] May 19-24, 2008 X - - - - -
IFL2008 [5] September 10-12 2008 (November 14, 2008) X - - - - -

Lists of Parallel Tasks

NLARMS2008 [2] September 2008 X X - X - -
IFL2009 [6] September 23-25, 2009 (November 1, 2009) X X - X - -
LDTA2010 [4] March 27-28, 2010 (December 4, 2009) - X X X - -
ICCRTS2010 [3] June 22-24 2010 (April 21, 2010) - X X X - -
IFL2010 [7] September 1-3, 2010 (October 25, 2010) X - - - - -
PEPM2011 [11] January 24-25, 2011 (October 22, 2010) X - - - - -

Towards Dynamic Extensible Parallel Tasks

LDTA2011 [14] March 26-27, 2011 (December 22, 2010) X - X X - -
CEFP2011 [12] June 14-24, 2011 - - X X X X
TFP2011 [1] May 16-18, 2011 (June 24, 2011) X X - - - -
PPDP2012 [15] September 19-21, 2012 (May 31, 2012) - - X - X X

4.2 Safe Experiments

The convergence of the parallel combinators to a single core combinator that can
be used to express specific parallel patterns, does not mean we no longer see the
‘AND’ and ‘OR’ combinators. An interesting observation is that the publications
can be divided in two categories. Papers that report on overall progress of the
system ([9,8,10,2,6,4,3,14,12,15]), and papers that focus on a single experimental
extension or a specific issue ([13,5,7,11,1]). In the second category of papers we
often see the ‘AND’ and ‘OR’ combinators still being used. These easier to
explain combinators are used to provide context of the iTask system, in favor of
the more accurate but more complex generalized combinator.

4.3 The Paradigm Shift

After the introduction of the single parallelwe can see a new tension building fu-
eled by the drive to capture real-world dynamic tasks. The original iTask system
was based on tasks that always completed. Only when a task was completed its
result was available for further computation of the workflow. For parallel sets of
tasks, this meant that they always had to terminate as full set in order to deliver
a result. In [14] we see the first signs of dissatisfaction with this model when the
need for more dynamic parallel sets is discussed. Tasks in a parallel composition
should be able to be monitored, and if necessary extended if additional work is
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needed. In [12] we see the first attempt to realize these goals, but the notion of
terminating tasks is still maintained. This leads to a powerful, yet complicated
swiss-army-knife combinator that can express more parallel constructs, but is
quite difficult to use. Only when in [12] the TOP paradigm had fully emerged,
the parallel combinator was simplified again. By then it was clear that treating
tasks as units of work that have to be completed before you can use their results,
was making compositions more difficult than necessary. Defining tasks as units of
work that continuously produce (temporary) results that can be observed made
it possible to fully reduce the parallel combinator to its essence: just executing
a set of tasks in parallel.

4.4 The Future?

By following the path of the parallel combinator we have seen the emergence
of the TOP paradigm as an incremental interaction between the ideas about
programming with tasks, and their concrete embodyment in the implementation
of the iTask system. A process that eventually led to a new definition of the
notion of tasks to provide the basis for a new way of programming interactive
systems. With a major change in the parallel definition in the last publication
we examined, it is too soon to tell whether this is the final one. For now at least
it looks like the pieces of the puzzle have fallen into place and we have found a
simple, yet powerful unified parallel construct.
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Abstract. Workflows can be specified using different languages. Main-
stream workflow management systems predominantly use procedural lan-
guages having a graphical representation involving AND/XOR splits and
joins (e.g., using BPMN). However, there are interesting alternative ap-
proaches. For example, case handling approaches are data-driven and
allow users to deviate within limits, and declarative languages based
on temporal logic (where everything is allowed unless explicitly forbid-
den). Recently, Rinus Plasmeijer proposed the iTask system (iTasks)
based on the viewpoint that workflow modeling is in essence a particu-
lar kind of functional programming. This provides advantages in terms
of expressiveness, extendibility, and implementation efficiency. On the
occasion of his 61st birthday, we compare four workflow paradigms: pro-
cedural, case handling, declarative, and functional. For each paradigm we
selected a characteristic workflow management system: YAWL (proce-
dural), BPM|one (case handling), Declare (declarative), and iTasks

(functional). Each of these systems aims to describe and support business
processes in an elegant manner. However, there are significant differences.
In this paper, we aim to identify and discuss these differences.

Keywords: Workflow Management, Business Process Management,
Case Handling, Declarative Languages, Functional Programming.

1 Demand Driven Workflow Systems

Functional programming and process modeling are related in various ways. For
example, well-known Petri nets tools such as CPN Tools [14] and ExSpect [6]
use functional languages to describe the consumption and production behaviors
of transitions in the Petri net. However, the different communities focusing on
process modeling and analysis are largely disconnected from the functional pro-
gramming community (and vice versa). Business Process Management (BPM),
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Workflow Management (WFM), and concurrency-related (e.g., Petri nets) com-
munities are rarely using concepts originating from functional languages. There-
fore, the groups of Rinus Plasmeijer and Wil van der Aalst submitted the joint
project proposal “Controlling Dynamic Real Life Workflow Situations with De-
mand Driven Workflow Systems” to STW in 2006. The project was accepted in
2007 and started in 2008. The project completed successfully in 2012.

In the STW project different styles of workflow modeling and enactment were
used. A new style of functional programming, called Task-Oriented Programming
(TOP), was developed by Rinus and his team [39]. The iTask system (iTasks),
an implementation of TOP embedded in the well-known functional language
Clean, supports this style of workflow development [37, 39]. iTasks workflows
consist of typed tasks that produce results that can be passed as parameters
to other tasks. New combinators can be added to extend the iTasks language.
At Eindhoven University of Technology, Maja Pesic and Michael Westergaard
worked on an alternative approach based on the Declare system. The De-

clare language is based on the notion of constraints, grounded in LTL, and
also extendible. Moreover, previously we worked on procedural workflow lan-
guages like YAWL and collaborated with Pallas Athena on the case handling
paradigm.1

In the project we could experience the enthusiasm, dedication, an persistence
of Rinus when it comes to functional programming and beautiful code. Therefore,
it is an honor to be able to contribute to this festschrift devoted to the 61st
birthday of Rinus Plasmeijer!

In the remainder, we report on insights obtained in our joint STW project. In
Section 2 we discuss four different workflow paradigms using four representative
examples: YAWL (procedural), BPM|one (case handling), Declare (declara-
tive), and iTasks (functional). Section 3 compares the different paradigms and
reflects on the current BPM/WFM market. Section 4 concludes our contribution
to this festschrift.

2 Four Workflow Paradigms

Business Process Management (BPM) is the discipline that combines knowledge
from information technology and knowledge from management sciences and ap-
plies this to operational business processes [1, 3, 46]. It has received considerable
attention in recent years due to its potential for significantly increasing produc-
tivity and saving costs. Moreover, today there is an abundance of BPM systems.
These systems are generic software systems that are driven by explicit process
designs to enact and manage operational business processes [3].

BPM can be seen as an extension of Workflow Management (WFM). WFM
primarily focuses on the automation of business processes [8, 28, 30], whereas
BPM has a broader scope: from process automation and process analysis to
operations management and the organization of work. BPM aims to improve
operational business processes, with or without the use of new technologies.

1 Pallas Athena was also involved in the User Committee of our joint STW project.
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For example, by modeling a business process and analyzing it using simulation,
management may get ideas on how to reduce costs while improving service levels.
Moreover, BPM is often associated with software to manage, control, and support
operational processes. This was the initial focus of WFM. However, traditional
WFM technology aimed at the automation of business processes in a rather
mechanistic manner without much attention for human factors and management
support.

In the remainder we use the terms WFM and BPM interchangeably as we
focus on the modeling and enactment of business processes, i.e., the emphasis
will be on process automation rather than management support.

We identify four very different styles of process automation: procedural work-
flows (YAWL), case handling workflows (BPM|one), declarative workflows
(Declare), and functional workflows (iTasks). In the remainder of this sec-
tion, these are introduced and subsequently compared in Section 3.

2.1 Procedural Workflows (YAWL)

Procedural programming (also referred to as imperative programming) aims to
define sequences of commands for the computer to perform in order to reach a
predefined goal. Procedural programming can be seen as the opposite of more
declarative forms of programming that define what the program should accom-
plish without prescribing how to do it in terms of sequences of actions to be
taken. Despite criticism, procedural programming is still the mainstream pro-
gramming paradigm. A similar observation can be made when looking at the
modeling, analysis, and enactment of business processes. Almost all BPM/WFM
languages and tools are procedural (see also Section 3.4). Examples are BPMN
(Business Process Modeling Notation), UML activity diagrams, Petri nets, pro-
cess calculi like CSP and CCS, BPEL (Business Process Execution Language),
and EPCs (Event-driven Process Chains).

Figure 1(a) describes a simple diagnosis process in terms of Petri, a WF-
net (WorkFlow net) to be precise [13, 26, 46]. Tasks are modeled by labeled
transitions and the ordering of these tasks is controlled by places (represented
by circles). A transition (represented by a square) is enabled if each of its input
places contains a token. An enabled transition may occur thereby consuming
a token from each input place and producing a token for each output place.
The process in Figure 1(a) starts with a token in place in (depicted by a black
dot). Transition a (admit patient) can occur if there is a token in place in .
Firing a corresponds to removing the token from place in and producing a token
for place p1. After admitting the patient (modeled by transition a), vital signs
may be checked (b) or not (modeled by the silent transition). Then the physical
examination (c) is conducted. Subsequently, the blood is tested (d), an X-ray is
taken (e), and an ECG is made (f) (any ordering is allowed). In the last step,
the diagnosis is finalized (g). The process instance terminates when place out is
marked. Figure 1(c) shows an event log describing some example traces of the
model. The WF-net allows for 12 different executions: d, e and f can be executed
in any order and b may be skipped.
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Fig. 1. A Petri net (a) and BPMN model (b) describing a simple medical diagnosis
process. Example traces are shown in the event log (c), a = admit patient, etc.

BPMN, EPCs, UML ADs, and many other business process modeling nota-
tions have in common that they all use token-based semantics [3, 13, 21, 26, 46].
Therefore, there are many techniques and tools to convert Petri nets to BPMN,
BPEL, EPCs and UML ADs, and vice versa. As a result, the core concepts of
Petri nets are often used indirectly, e.g., to enable analysis, to enact models, and
to clarify semantics. For example, Figure 1(b) shows the same control-flow mod-
eled using the Business Process Modeling Notation (BPMN) [34]. BPMN uses
activities, events, and gateways to model the control-flow. In Figure 1(b) two
types of gateways are employed: exclusive gateways are used to model XOR-splits
and joins and parallel gateways are used to model AND-splits and joins. BPMN
also supports other types of gateways corresponding to inclusive OR-splits and
joins, deferred choices, etc. [21, 26, 46].

In an effort to gain a better understanding of the fundamental concepts un-
derpinning business processes, the Workflow Patterns Initiative2 was conceived
in the late nineties with the goal of identifying the core architectural constructs
inherent in workflow technology [10]. The original objective was to delineate the
fundamental requirements that arise during business process modeling on a re-
curring basis and describe them in an imperative way. The main driver for the
Workflow Patterns Initiative was the observation that WFM/BPM languages
and tools differed markedly in their expressive power and the range of concepts
that they were able to capture. The initial set of 20 patterns provided a basis for
valuable comparative discussions on the capabilities of languages and systems.
Later the original set of 20 patterns was extended into a set of 43 control-flow
patterns supported by additional sets of patterns, e.g., 40 data patterns and 43
resource patterns [26].

2 See www.workflowpatterns.com

www.workflowpatterns.com
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Fig. 2. Screenshot of YAWL editor while modeling the process described using
Figure 1

The workflow patterns provided the conceptual basis for the YAWL language
[9] and YAWL workflow system [26].3 YAWL supports most workflow patterns
directly, i.e., no workarounds are needed to model and support a wide variety
of imperative process behaviors. Petri nets were taken as a starting point for
YAWL and extended with dedicated constructs to deal with patterns that Petri
nets have difficulty expressing, in particular patterns dealing with cancelation,
synchronization of active branches only, and multiple concurrently executing
instances of the same task. The screenshot in Figure 2 shows the YAWL variant
of the diagnosis process introduced using earlier. The YAWL model allows for
the same 12 traces as allowed by the WF-net and BPMNmodel in Figure 1. None
of the advanced features of YAWL are needed to model this simple diagnosis
process. Note that compared to the Petri net there are no explicit places. In
YAWL one can connect two tasks directly without inserting a place. However,
internally the places are added to model states. Moreover, for workflow patterns
such as the deferred choice pattern (the decision is not made automatically from
within the context of the process but is deferred to an entity in the operational
environment) and the milestone pattern (the additional restriction that a task
can only proceed when another concurrent branch of the process has reached
a specific state), places need to be represented explicitly to model the desired
behavior. The aim of YAWL is to offer direct support for many patterns while
keeping the language simple. It can be seen as a reference implementation of
the most important workflow patterns. Over time, the YAWL language and
the YAWL system have increasingly become synonymous and have garnered
widespread interest from both practitioners and the academic community alike.
Over time YAWL evolved into one of the most widely used open-source workflow
systems.

Most mainstream WFM/BPM languages are procedural and use a token-
based semantics. The same holds for analysis techniques relevant for WFM/BPM
efforts. Most model-based analysis techniques ranging from verification to per-
formance analysis are tailored towards procedural models. Verification is con-
cerned with the correctness of a system or process. Performance analysis focuses

3
YAWL can be downloaded from www.yawlfoundation.org

www.yawlfoundation.org
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on flow times, waiting times, utilization, and service levels. Also process mining
techniques driven by event data typically assume procedural models. For exam-
ple, process discovery techniques can be used to learn procedural models based
on event data. Conformance checking techniques compare procedural models
(modeled behavior) with event data (observed behavior).

There is an abundance of analysis techniques developed for Petri nets ranging
from verification and simulation [13] to process mining [2]. Procedural languages
such as BPMN, UML activity diagrams, BPEL, and EPCs can be converted to
Petri nets for verification, performance analysis, and conformance checking. Petri
nets can be mapped onto mainstream notations to visualize processes discovered
using process mining.

2.2 Case Handling Workflows (BPM|one)
Mainstream procedural languages are often criticized for being inflexible. Case
handling is a paradigm for supporting flexible and knowledge intensive busi-
ness processes [15]. It is strongly based on data as the typical product of these
processes. Unlike traditional WFM systems, which use predefined process con-
trol structures to determine what should be done during a workflow process,
case handling focuses on what can be done to achieve a business goal. In case
handling, the knowledge worker in charge of a particular case actively decides
on how the goal of that case is reached, and the role of a case handling sys-
tem is assisting rather than guiding her in doing so. The core features of case
handling are:

– avoid context tunneling by providing all information available (i.e., present
the case as a whole rather than showing just bits and pieces),

– decide which tasks are enabled on the basis of the information available
rather than the tasks already executed,

– allow for deviations (without certain bounds) that are not explicitly modeled
(skip, redo, etc.),

– separate work distribution from authorization,
– allow workers to view and add/modify data before or after the corresponding

tasks have been executed (e.g., information can be registered the moment it
becomes available).

The central concept for case handling is the case and not the tasks or the ordering
of tasks. The case is the “product” which is manufactured, and at any time
workers should be aware of this context. For knowledge-intensive processes, the
state and structure of a case can be derived from the relevant data objects. A
data object is a piece of information which is present or not present and when it
is present it has a value. In contrast to existing workflow management systems,
the state of the case is not determined by the control-flow status but by the
presence of data objects. This is truly a paradigm shift: case handling is also
driven by data-flow and not just by control-flow.

In a procedural workflow, workers need to execute all tasks offered by the
system and there is no way to later correct errors if not modeled explicitly. Case
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Fig. 3. Screenshot showing the BPM|one designer and worklist handler

handling allows for deviations within certain bounds. For a task at least three
types of roles can be specified:

– The execute role is the role that is necessary to carry out the task or to start
a process.

– The redo role is necessary to undo tasks, i.e., the case returns to the state
before executing the task. Note that it is only possible to undo a task if all
following tasks are undone as well.

– The skip role is necessary to bypass tasks, e.g., a check may be skipped by
a manager but not by a regular employee.

Case handling is supported by only a few vendors. The best-known example is
BPM|one which is now part of the Perceptive Platform (Lexmark).4 BPM|one
is the successor of FLOWer [15] both developed by Pallas Athena. In turn,
FLOWer was inspired by the ECHO (Electronic Case-Handling for Offices)
system whose development started in 1986 within Philips and later moved to
Digital. BPM|one supports all of the concepts mentioned (see Figure 3). The
system is much more flexible than most WFM/BPM systems. This is achieved
without forcing end-users to adapt process models (which is typically infeasible).

Consider the process described in Figure 1. Using BPM|one one could make
some tasks “skipable”, e.g., task make ECG may be skipped by the department
chief even though this is not modeled. Similarly, some tasks may be “redo-
able”, e.g., after doing the blood test, the process may be rolled-back to the task
physical examination. Moreover, tasks may be data driven. If a recent X-ray is

4 See http://www.perceptivesoftware.com/products/perceptive-process/

business-process-management

http://www.perceptivesoftware.com/products/perceptive-process/business-process-management
http://www.perceptivesoftware.com/products/perceptive-process/business-process-management
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available, task make X-ray is completed automatically without actually making
a new X-ray.

Recently, the terms Adaptive Case Management (ACM) and Dynamic Case
Management (DCM) received quite some attention. These terms are used to
stress the need for workflows to be more human-centric, flexible, and content and
collaboration driven. Unfortunately, the different vendors interpret these terms
in different ways and the actual case-handling functionality described before is
often missing.

2.3 Declarative Workflows (Declare)

The procedural paradigm focuses on how to accomplish a goal. At any point
a user is presented with a relatively limited selection of possible tasks based
on explicit decisions. Declarative workflows instead focus on the relationship
between tasks, such as one task cannot be executed together with another or one
task has to be followed by another [12]. For example, in a medical treatment,
one type of medicine may be incompatible with another and cannot be used
together, or surgery must be followed up by retraining.

Declarative workflows therefore focus on two things, tasks to be executed
and constraints between the tasks, stating properties the aforementioned [12].
In Fig. 4, we see an example of a simple medical process for treating wounds
modeled using Declare.5 Tasks are represented as rectangles, e.g., Disinfect
Wound and constraints are either represented as arcs between tasks (for binary
constraints) or as annotations of tasks (for unary constraints). For example, we
have a init constraint on the Receive Patient task, and a precedence constraint
from Disinfect Wound to Stitch Wound. We also have a response constraint from
Stitch Wound to Prescribe Antibiotics, a non co-existence constraint between Pre-
scribe Antibiotics and Give Tetanus Vaccine, and a second precedence constraint
from Disinfect Wound to Give Tetanus Vaccine.

Constraints have informal descriptive semantics and formal semantics. The
informal semantics suffice for users and the formal semantics are only used by

Stitch Wound

Give Tetanus
Vaccine

Prescribe AntibioticsDisinfect WoundRecieve
Patient

init

Fig. 4. Declare model of simple medical treatment

5
Declare can be downloaded from www.win.tue.nl/declare/

www.win.tue.nl/declare/
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Table 1. Selected Declare constraints

Name Parameters Representation Semantics

Informal Formal

init (A)
|̂init|
A start with A X̄A

precedence (A,B) A−→•B no B before A AR¬B
response (A,B) A•−→B after A must execute B G(A → FB)
not no-existence (A,B) A•−//−•B not both A and B ¬FA ∨ ¬FB

implementers and for reasoning about processes. We have summed up the formal
semantics of four exampleDeclare constraints in Table 1.Declare comes with
many more constraints, but these suffice here for understanding the basic idea.
We first consider the informal semantics for these constraints. The init constraint
models that any execution has to start with this task, and in our example this
means that the first thing to do in any execution is to receive a patient. The
precedence constraint models that it is not legal to execute the target before
executing the source of the constraint. In the example, we model that we may not
stitch a wound (nor give a tetanus vaccine) before disinfecting the wound. This
does not mean that after disinfection we have to stitch a wound (for example,
if it is not severe), but only that we may not stitch before disinfection. The
response constraint on the other hand means that after executing the source, we
have to execute the target. In our example, we must prescribe antibiotics after
stitching a wound. It is perfectly acceptable to execute the source multiple times
and the target only once, for example stitching a wound two or more times and
only prescribe antibiotics once. The non co-existence constraint models that only
one of the connected tasks can be executed (but none of them has to be). In
our example, we cannot both give a tetanus vaccine and prescribe an antibiotics,
maybe because the effect of the vaccine is diminished or voided by the antibiotics.

We notice that we can rely on the informal semantics to understand local
aspects of a model. We also see that at no point do we talk about any explicit
execution order: anything not explicitly forbidden is allowed. A Declare model
with no constraints allows any execution of any task in the model. In the exam-
ple in Fig. 4, after performing patient registration and wound disinfection, the
process allows executing any task in the model. This allows a lot of freedom,
which is often useful in a highly dynamic process, such as a medical process,
or in a process which is not very well-known. The dynamic behavior is present
in processes where a lot of possibilities are available and there is no obvious
best choice. Processes can be partially unknown either because they are so com-
plex nobody fully understands the entire process, or because they are early in
the specification phase. Using a declarative approach allows modelers to only
specify known constraints, such as incompatibilities between two treatments or
a required follow-up to one treatment, and not worry about concrete global
execution order.
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The formal semantics of Declare is given using (finite) linear temporal logic
(LTL). This yields a compact syntax, and an abstract and well-understood se-
mantical foundation. More interesting is the fact that finite LTL can be trans-
lated into finite automata [24, 47]. These automata can be used to analyze the
process and to provide enactment. As the modeler does not explicitly spec-
ify an execution order, the system has to figure out what constitutes a legal
execution. This is done by instantiating a constraint template for each con-
straint. Instantiation comprises of taking the formal semantics for each constraint
(Table 1) and replacing the parameters with actual tasks, obtaining for example
X̄(Receive Patient) for the init constraint. We can get a specification of the full
semantics of the entire system by taking the conjunction of all instantiations of
constraint templates, and translating it to a finite automaton with task names
as transition labels. We can use this automaton to enact the system by following
states in the automaton and only allowing tasks that lead to states from which
an accepting state is reachable.

The translation from LTL to automata is exponential in the size of the formula
given, so it may seem it would be better to consider each constraint in isolation.
This is not sufficient, however, because Declare models may have implicit
choices that are not immediately obvious. In our example in Fig. 4 we have
an explicit choice between Prescribe Antibiotics and Give Tetanus Vaccine, but
we actually have an implicit choice in that system as well. If we consider the
trace Receive Patient;Disinfect Wound;Give Tetanus Vaccine;Stitch Wound, we see
that we do not irreparable violate any constraint, but neither is it possible to
arrive at a situation where all constraints are satisfied at the same time. After
executing the trace, the response from Stitch Wound to Prescribe Antibiotics is not
satisfied, because we have stitched the wound without prescribing antibiotics yet.
We can satisfy this constraint by prescribing antibiotics, but this would violate
the non co-existence between Give Tetanus Vaccine and Prescribe Antibiotics. The
Declare system does this analysis and will not allow an execution trace with
both Stitch Wound and Give Tetanus Vaccine. In [31] we describe how this can be
efficiently represented in a single automaton, which keeps track of the status of
individual constraints and of the entire process, and in [47] we give an efficient
means of constructing this automaton.

A very strong point about declarative workflows is that models are less con-
cerned with the actual execution, and hence more modular. In our previous ex-
ecution trace, we said that the Declare system would prevent executing both
Give Tetanus Vaccine and Stitch Wound. This can be overridden by the user,
however. For example maybe an initial assessment concludes that stitches are
not necessary and instead gives a tetanus shot. This is subsequently readdressed
and now stitching is deemed necessary. The system can then say that either
the non co-existence constraint or the response will be violated by this action,
and authorized personnel can choose to proceed, ignoring a constraint in the
process. This effectively is a migration from one model to another (with fewer
constraints). As removing constraints never removes allowed behavior, this is
guaranteed to be successful. We can also do migration in cases where we add new
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constraints as long as the added constraint is not violated and in conflict with
another constraint (or the conflicting constraints are removed). This means that
a declarative model not only allows flexibility by naturally producing permissive
models, but also by allowing deviations from the model and even changing the
model on-the-fly [35].

The automaton can obviously also be used a-posteriori to do conformance
checking of models with respect to historical data, or to check for and remove
dead parts of models [29, 33]. Declare models can be mined automatically by
systematically instantiating all constraint templates and checking them against
the historical log [32].

2.4 Functional Workflows (iTasks)

Functional workflow specifications arise from functional programming. This
means that functional workflows automatically inherit properties of functional
languages, importantly explicit flow of data and ability to efficiently execute
the resulting specifications in complicated computing environments, including
parallel and distributed execution.

The iTask system (iTasks) augments a standard functional programming lan-
guage, Clean [36], with connectives useful for workflow specification [37, 39].6

The basic unit in an iTasks process is a task , which is a basic type describing
a process to be executed. iTasks builds on the functional idea of inductively
defining values in terms of basic values and composite values. A basic task value
would be inputting an integer into a field and a composite task could be sequenc-
ing tasks or making a choice. The sequence is already well-known to procedural
programmers but used less in functional programming. The choice is similar to
a conditional in traditional programming, but iTasks has a general choice oper-
ator, which can be specialized (and is by default) to provide semantics of XOR,
AND, OR, and parallel splits as well as more specialized splits, for example a
2-out-of-3 split.

An iTasks process consists of specification of the data types used and a
process specification. In Listing 1, we see a simple patient registration process for
a hospital. The example illustrates both the major weakness and major strength
of the paradigm: the code is very verbose for a simple descriptive model, but
compact for a full-features implementation of a system for executing the process.
The process comprises data definitions (ll. 4-15), helper functions (ll. 17-23),
and a process description (ll. 25-53). The data definitions describe a patient
record (ll. 4-8) and an insurance record (ll. 10-13). In addition, we have an
instruction to the system to generate a full implementation of these from the
data specification (l. 15). The returnV function (ll. 17-18) is used for technical
reasons, and the hasName and isInsured functions (ll. 20-23) are simple predicates
on patients. Lines 25-28 set up the main process, which consists of starting the
task handlePatient (ll. 44-53) which is a composite task using the primitive tasks
in lines 30-42. The primitive tasks comprises two tasks for inputting information

6
iTasks and Clean can be downloaded from itasks.cs.ru.nl

itasks.cs.ru.nl
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Listing 1. iTasks model of patient registration
� �

1 implementation module Pat i en tReg i s t r a t i on
2 import iTasks

4 : : Pat ient =
5 { name : : String
6 , dateOfBirth : : Maybe Date
7 , in surance : : Bool
8 }

10 : : In su ranc e In f o =
11 { company : : String
12 , insuranceNumber : : Int
13 }

15 de r i v e c l a s s iTask Patient , In su ranc e In f o

17 returnV : : ( TaskValue a ) −> Task a | iTask a
18 returnV (Value v ) = re turn v

20 hasName (Value { name , dateOfBirth , in surance } ) = name <> ””
21 hasName = False

23 i s I n s u r e d { name , dateOfBirth , in surance } = in surance

25 Start : : ∗World −> ∗World
26 Start world = star tEngine (manageWorklist [ mainProcess ] ) world

28 mainProcess = workflow ”New Pat i ent ” ”Handle a pa t i e n t ” hand lePat i ent

30 en t e rPa t i en t : : Task Pat i ent
31 en t e rPa t i en t = en t e r In f o rmat i on ”Enter pa t i en t in format ion ” [ ]

33 en t e r In su rance : : Task In su ranc e In f o
34 en t e r In su rance = en t e r In f o rmat ion ”Enter insurance in format ion ” [ ]

36 t r e a t : : Pat ient −> (Task Pat i ent )
37 t r e a t pa t i e n t =
38 v iewInformat ion ( ”Treat Pat i ent ” , ”Treating Pat i ent” ) [ ] pat i en t

40 showInsurance : : In su ranc e In f o −> ( Task In su ranc e In f o )
41 showInsurance insurance =
42 v iewIn format ion ( ” Insurance” , ” Insurance De ta i l s ” ) [ ] in surance

44 hand lePat i ent : : Task ( Patient , Maybe In su ranc e In f o )
45 hand lePat i ent =
46 en t e rPa t i en t
47 >>∗ [OnAction ( Action ”Continue” ) hasName returnV ]
48 >>= \ pat i en t −>
49 i f ( i s I n su r e d pat i e n t )
50 ( ( t r e a t pa t i e n t −&&−
51 ( en t e r In su rance >>= showInsurance ) )
52 >>= \(p , i ) −> re turn (p , Just i ) )
53 ( t r e a t pa t i e n t >>= \p −> re turn (p , Nothing ) )

� �
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for each of the two defined data types (ll. 30-34) and two tasks for displaying
information (ll. 36-42). The treat task is a simplified placeholder version of a
full treatment. The handlePatient task is by far the more complicated one and
shows some of the task combinators supported by iTasks. First we enter patient
information (l. 46). The >>* combinator allows us to add ways to proceed the
workflow; line 47 produces a Continue button that is enabled when the hasName
predicate holds for the patient record entered. In that case, the patient record
is passed on. The >>= combinator allows us to pass a result from one task to
the next in a sequence. The combinator expects a function taking the result of
the previous task as the first parameter, so we make an anonymous function
(l. 48). We then use a common if statement (ll. 49-53) to branch according to
whether the patient has an insurance or not. If the patient does (ll. 50-52) we
start treating them (l. 50) in parallel (-&&-) with inputting and subsequently
showing insurance information (l. 51). Finally, we return the treated patient and
their insurance information (l. 52). If a patient does not have insurance, they
are treated and returned without insurance information (l. 53).

We notice that iTasks is very explicit about data flow and types. We explicitly
type all tasks. This is used by the system to automatically generate a (web-based)
user interface. We need to explicitly pass and compute data, and a strong type
system prevents errors. The explicit passing of information is more verbose than
the previously discussed paradigms, but the process oriented combinators makes
it very simple to do things that are normally very complicated in programming,
such as the parallel split in ll. 50-51 of Listing 1. We can easily change that to
an XOR split, OR split, or sequence as long as we preserve the types. Similarly,
the treat task (ll. 36-38) is very abstract and would be detailed further in a more
elaborate implementation. As long as types are preserved, we can do that without
changing the rest of the model. Finally, it is possible to change the type of, e.g.,
the patient record (ll. 4-8) and add new fields if necessary without changes to
most of the tasks; for example, the enterPatient task (ll. 30-31) explicitly state the
type but polymorphism and introspection makes the user-interface automatically
adapt to the changed type. In our example we need to change the signature of
the hasName and isInsured functions (ll. 20-23), but this can be avoided by using
a slightly more verbose syntax we have avoided here for simplicity.

The fact that iTasks is realized as a combinator library in a real program-
ming language, makes it possible to easily extend with features not normally
available in workflow languages. For example, modeled processes can natively
communicate over the network, making it possible to easily invoke remote ser-
vices. Another advantage is that there is no gap between the model and the
implementation; they are really one and the same in iTasks. Using a general-
purpose functional language also makes it possible to use traditional functional
techniques, such as making higher-order tasks. In fact, iTasks combinators are
just higher order tasks and can be used to create new composite tasks. This
makes it easy to add new combinators as needed. An elegant consequence of
this is that the process of choosing a task to work on and maintaining a work-
list can be considered tasks as well, and in iTasks they are realized as such.
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The manageWorklist used in line 26 is actually just a task taking a list of
(wrapped) tasks and allowing a user to pick which to execute. This makes it
possible to customize how tasks are presented and chosen.

3 Comparison and Market Analysis

After presenting the distinguishing features of YAWL, BPM|one, Declare,
iTasks, and the corresponding paradigms, we aim to identify differences and
commonalities. Table 2 shows our main findings. The characteristics used in
Table 2 are based on topics frequently discussed in BPM literature. See for
example the survey paper [3] which identifies twenty main BPM use cases based
on an analysis of all 289 papers published at the main BPM conference series in
a ten year period [7], [11], [19], [5], [22], [17], [20], [18], [27], and [42]. The list of
characteristics used in Table 2 is far from complete. Nevertheless, we feel that
the list is representative for our high-level comparison and discussion of the four
different paradigms. In the remainder we discuss these findings and also provide
an analysis of the BPM/WFM market.

3.1 Basic Characteristics of the Different Paradigms

Table 2 characterizes the four workflow paradigms and tools using three charac-
teristics: focus, degree of coupling, and extendibility. Procedural languages like
YAWL are driven by control-flow [9]. Case handling systems like BPM|one
are data driven, i.e., the moment a data element gets a value or changes value,
the state of the process instance is recomputed [15]. Declare allows for any
behavior unless forbidden through constraints [12]. iTasks specifies the desired
behavior in terms of a functional program extended with special workflow oper-
ators [39]. YAWL and Declare use service-orientation and a clear separation
between data and control-flow to decouple different perspectives. In iTasks and
BPM|one these are deliberately coupled, e.g., control-flow and data are inter-
twined to provide additional support and expressiveness. Declare and iTasks

are extendible, i.e., the language can be extended by adding new constraint tem-
plates [12] or combinators [39]. This is not possible in contemporary procedural
workflow and case handling systems.

3.2 Flexibility Support

Table 2 list four types of flexibility. These originate from the classification
in [44].

Flexibility by definition is the ability to incorporate alternative execution
paths within a process definition at design time such that selection of the most
appropriate execution path can be made at runtime for each process instance.
For example, an XOR-split defined at design time adds the ability to select one
or more activities for subsequent execution from a set of available activities. Par-
allelism defined at design time leaves the actual ordering of activities open and
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Table 2. Comparison of paradigms

Procedural Case Handling Declarative Functional

(YAWL) (BPM|one) (Declare) (iTasks)

Characteristics

Focus control-flowa data
dependenciesb

tasks and
constraintsc

functional
programd

Coupling of perspectives decoupled tight decoupled tight

Extendible
√e

[12]

√
[37, 39]

Flexibility

Definition
√f

[9, 26]

√g
[15]

√h
[12]

√i
[37, 39]

Deviation
√j

[15]

√k
[12, 35]

Underspecification (
√
)l[4, 16, 26] (

√
)m[4, 12]

√n
[37, 39]

Change (
√
)o

√p
[35]

√q
[38]

Analysis

Verification
√

[13, 26]

√
[12, 47] (

√
)r

Performance analysis
√

[13, 14, 26]

√s

Process discovery
√

[2, 26]

√
[32]

Conformance checking
√

[2]

√
[29, 31]

a Token-based semantics (like playing the token game on a Petri net).
b Available data objects and their values determine the state.
c Anything that is not explicitly forbidden through some combination of constraints
is allowed.

d Extendible set of combinator functions are used to specify the flow of work.
e Can be achieved by adding a template and LTL semantics.
f Supports XOR/AND/OR-splits and joins, cancelation regions, deferred choice, mul-
tiple instance tasks, etc.

g Supports XOR/AND/OR-splits and joins next to data-driven behavior.
h Anything is allowed unless explicitly forbidden.
i Core combinators can be used to express basic workflow patterns.
j Authorized users can deviate by skipping and redoing tasks.
k Users can choose to ignore non-mandatory constraints.
l Supported using worklets in YAWL but not a common feature for procedural lan-
guages.

m Can defer the task execution to other tools.
n Selecting a task is itself a task.
o Not supported by YAWL, but there are systems like ADEPT that support such
changes [40, 41].

p Possible to migrate cases that do not violate constraints in the new model. Migration
is postponed if needed.

q Change is viewed as a type-safe replacement of one task function by another one.
r Static analysis and common program analysis.
s Under development (combining Declare and CPN Tools).
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thus provides more flexibility than sequential routing. All WFM/BPM systems
support this type of flexibility. However, declarative languages make it easier to
defer choices to runtime.

The classical workflow patterns mentioned earlier [10] can be viewed as a
classification of “flexibility by definition” mechanisms for procedural languages.
For example, the “deferred choice” pattern [10] leaves the resolution of a choice
to the environment at runtime. Note that a so-called “flower place” in a Petri
net, i.e., a place with many transitions that have this place as only input and
output place, provides a lot of flexibility.

Flexibility by deviation is the ability for a process instance to deviate at run-
time from the execution path prescribed by the original process without altering
the process definition itself. The deviation can only encompass changes to the
execution sequence for a specific process instance, and does not require modifi-
cations of the process definition. Typical deviations are undo, redo, and skip.

The BPM|one system of Perceptive Software is a system that provides var-
ious mechanisms for deviations at runtime. The case handling paradigm [15]
supported by BPM|one allows the user to skip or redo activities (if not explic-
itly forbidden and assuming the user is authorized to do so). Moreover, data can
be entered earlier or later because the state is continuously recomputed based on
the available data. Declare supports flexibility by deviation through optional
constraints.

Flexibility by underspecification is the ability to execute an incomplete process
specification, i.e., a model that does not contain sufficient information to allow it
to be executed to completion. An incomplete process specification contains one
or more so-called placeholders. These placeholders are nodes which are marked as
underspecified (i.e., “holes” in the specification) and whose content is specified
during the execution of the process. The manner in which these placeholders are
ultimately enacted is determined by applying one of the following approaches:
late binding (the implementation of a placeholder is selected from a set of avail-
able process fragments) or late modeling (a new process fragment is constructed
in order to complete a given placeholder). For late binding, a process fragment
has to be selected from an existing set of fully predefined process fragments.
This approach is limited to selection, and does not allow a new process fragment
to be constructed. For late modeling, a new process fragment can be developed
from scratch or composed from existing process fragments.

In the context of YAWL [9], the so-called worklets approach [16] has been
developed which allows for late binding and late modeling. Late binding is sup-
ported through so-called “ripple-down rules”, i.e., based on context information
the user can be guided to selecting a suitable fragment. In [43] the term “pockets
of flexibility” was introduced to refer to the placeholder for change. In [25] an
explicit notion of “vagueness” is introduced in the context of process modeling.
The authors propose model elements such as arc conditions and task ordering to
be deliberately omitted from models in the early stages of modeling. Moreover,
parts of the process model can be tagged as “incomplete” or “unspecified”. In
iTasks selecting a task is itself a task [37, 39]. This can be used to support late
binding.
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Flexibility by change is the ability to modify a process definition at run-time
such that one or all of the currently executing process instances are migrated to a
new process definition. Changes may be introduced both at the process instance
and the process type levels. A momentary change (also known as change at
the instance level) is a change affecting the execution of one or more selected
process instances. An example of a momentary change is the postponement of
registering a patient that has arrived to the hospital emergency center: treatment
is started immediately rather than spending time on formalities first. Such a
momentary change performed on a given process instance does not affect any
future instances. An evolutionary change (also known as change at the type level)
is a change caused by modification of the process definition, potentially affecting
all new process instances. A typical example of the evolutionary change is the
redesign of a business process to improve the overall performance characteristics
by allowing for more concurrency. Running process instances that are impacted
by an evolutionary or a momentary change need to be handled properly. If a
running process instance is transferred to the new process, then there may not
be a corresponding state (called the “dynamic change bug” in [23]).

Flexibility by change is challenging and has been investigated by many re-
searchers. In the context of the ADEPT system, flexibility by change has been
examined in detail [40, 41]. This work shows that changes can introduce all kinds
of anomalies (missing data, deadlocks, double work, etc.). For example, it is dif-
ficult to handle both momentary changes and evolutionary changes at the same
time, e.g., an ad-hoc change made for a specific instance may be affected by a
later change at the type level. The declarative workflow system Declare has
been extended to support both evolutionary and momentary changes [35] thus
illustrating that a declarative style of modeling indeed simplifies the realization
of all kinds of flexibility support. In [38] it is shown that replacing a task can be
seen as a type-safe replacement of one pure function by another one. The iTasks
type system ensures that the values passed between task have the correct type
in the initial workflow as well as after any number of changes in this workflow.
Note that such changes are more restrictive than in some of procedural and
declarative approaches, e.g., the degree of concurrency can not be changed other
than by replacing the whole subprocess. Moreover, there should be a dedicated
user interface to support such changes. Otherwise, it is unrealistic to assume
that end-users can define new functions on-the-fly. However, this holds also for
most other approaches.

3.3 Analysis Support

Table 2 illustrates that procedural and declarative approaches are supported
by a range of analysis techniques. For example, procedural workflow languages
benefit from the verification [1, 13, 26], simulation [13, 14, 26], and process mining
techniques [2, 26] developed for Petri nets. To apply these results to industry-
driven languages such as BPMN, UML activity diagrams, EPCs, and BPEL
conversions are needed. Sometimes there conversions need to make abstractions



228 W.M.P. van der Aalst, M. Westergaard, and H.A. Reijers

(e.g., ignoring data or time). Nevertheless, it is fair to say that most analysis
techniques are tailored towards these procedural workflow languages.

In recent years, various analysis techniques have been developed for declara-
tive languages like Declare [12, 24, 29, 31–33, 35, 47]. These techniques heavily
rely on the fact that the semantics of Declare are defined in terms of LTL and
that there are various ways to translate Declare constraints into automata.

BPM|one and iTasks are more implementation-oriented providing hardly
any dedicated analysis support.7

3.4 Overview of BPM/WFM Market

Given the very different styles of process automation that we distinguished and
explained in the previous sections, it seems worthwhile to reflect on their use
in practice. One way of doing so is to consider what the dominating paradigms
are that commercial vendors of BPM systems have adopted in their products.
There are more than 100 BPM vendors active at this point of writing, which
makes a full consideration of all existing products infeasible. Instead, we will
rely on a subset of these as they are listed in the so-called Magic Quadrant on
BPM systems provided by Gartner [45]. Gartner is a market analyst that has
been following the BPM market space for a number of years and its reports are
highly influential in how companies decide on their selection of products in the
BPM domain. Specifically, we will rely on their 2010 version of this quadrant; it
is provided in Figure 5.

In the diagram, 27 BPM suites of 25 different vendors are displayed. While a
BPM suite arguably encompasses more functionality than a BPM system does,
it is safe to say that process automation is at its core.8

Two dimensions are used to differentiate the various offerings in the Magic
Quadrant. The ‘ability to execute’ refers to the presence of a particular product
in the market place, while the ‘completeness of vision’ reflects the analyst’s view
on the innovation and breadth of the offering. Gartner evaluated over 60 BPM
vendors to select the top performers with respect to these criteria [45]. For these
reasons, we consider this overview as useful for profiling both popular and best-
in-class BPM systems.

We conducted a light-weight evaluation of all the products that are described
in the Magic Quadrant, which comprised of the following steps. First, we checked
whether the products were still available in the market place and in what form.
By doing so, we established that various offerings changed hands because of
acquisitions. Also, vendors decided to integrate multiple solutions they offered.
Specifically, OpenText acquired both Metastorm and Global 360, Perceptive
Software acquired Pallas Athena, Singularity is now Kofax, and Polymita is
acquired by Red Hat. OpenText integrated its two BPM products into one of-
fering; IBM integrated its Lombardi and WDPE offerings (its Filenet product is

7 Note that simulation and process discovery are supported for the procedural parts
of BPM|one, but not for the parts specific for case handling.

8 Note that for this reason we have not used Gartner’s 2012 Magic Quadrant on
intelligent BPM suites in which the analytical capabilities play a much bigger role.
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Fig. 5. Gartner’s Magic Quadrant on the market of BPM Suites

still a separate product). As a result, of the original 27 products in the Magic
Quadrant, 25 can still be considered to be active.

The second step consisted of the actual evaluation. We consulted the on-
line document information of each of the vendors on their products, specifically
related to their modeling approach and tool set. We also studied the samples that
vendors provided of actual models of business processes as specified with their
tools. This approach is light-weight in the sense that there was no interaction
with experts of the vendors and that no hands-on use of these tools took place.

The evaluation led to the insight that of all 25 products, 23 of these dominantly
follow a procedural approach for specifying and enacting workflows. Two of the 25
products can be said to adhere to the case management paradigm, i.e. Perceptive
Software’s BPM|one and OpenText’s BPM solution. No products can be clearly
said to support declarative or functional workflows.

There are two interesting side-notes to make. First of all, the adherence to the
procedural approach to workflow modeling seems closely aligned with the widely
prevalent support among vendors for BPMN [34]. As discussed in Section 2.1,
the BPMN notation essentially supports a procedural approach, in which explicit
paths are modeled in a sequential manner. The BPMN standard does cover a so-
called Ad Hoc Process, in which the relations between activities is less prescribed.
The current development efforts by OMG to specify the Case Management and
Modeling Notation (CMNN) seems to head towards the use declarative rules and



230 W.M.P. van der Aalst, M. Westergaard, and H.A. Reijers

constraints to pinpoint the semantics of this element. As such, the popularity of
BPMN among BPM vendors may pave the way to the uptake of more declarative
aspects in workflow specifications, although this is a tentative development.

Secondly, case management is a paradigm that is claimed by many vendors as
a feature of their offerings, despite their dominant adherence to the procedural
paradigm. Such claims mostly build on the notion that workflows provide a
lifecycle of a particular type of case and that a document-centric view on such
cases is provided with their products. Despite the value of this idea, it is a far
cry from the paradigm that we described in Section 2.2. Closely related to the
previous observation is that both the products that adhered to case management
as the dominant paradigm also fully support a procedural approach.

In conclusion, the procedural paradigm can be said to be the overly domi-
nant one in the marketplace. In second place, but a long way behind, is the case
management paradigm. Interestingly, case management is perceived as an at-
tractive idea by many vendors although it is never offered as a fully stand-alone
approach (i.e. totally ruling out the use of procedural workflows). Declarative
and functional approaches are not spotted in the marketplace. Since the dif-
ferent approaches are complementary, we hope to see combined approaches in
commercial systems in the future.

4 A Matter of Taste?

In this paper we compared different workflow paradigms that all played a role
in the STW project “Controlling Dynamic Real Life Workflow Situations with
Demand Driven Workflow Systems” where we collaborated with Rinus Plas-
meijer and his team. In our view none of the four paradigms (procedural, case
handling, declarative, and functional) is superior (or inferior). All emphasize dif-
ferent aspects. For example, analysis techniques ranging from verification and
performance analysis to process discovery and conformance checking are best de-
veloped for procedural languages (e.g., Petri nets). However, recently, also many
analysis techniques have been developed for Declare. Case handling systems
like BPM|one and functional language extensions like iTasks provide little sup-
port for analysis. Instead, these approaches concentrate on the development of
data- and process-centric information systems. Both BPM|one and Declare

focus on offering flexibility to end-users. iTasks provides a different kind of flex-
ibility: workflows can be reused and changed easily. In fact, new combinators can
be added making the language extensible (like Declare). The iTasks language
would benefit from a graphical front-end to make it more understandable. How-
ever, such a graphical front-end could reduce expressiveness and limit flexibility
at design time. iTasks is very fast compared to existing systems; it has the pro’s
and con’s of a programming language.

Each of the four approaches is beautiful in its own way and has a different
appeal to it (analysis, reuse, flexibility, maintainability, etc.). For example, dif-
ferent forms of flexibility are possible and it is not realistic to assume a single
language that suits all purposes. Partly, the choice of language is also a matter
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of taste. Fortunately, one can combine different approaches as discussed in [4]. A
task in one language may correspond to a subprocess in another language. This
way different styles of modeling and enactment may be mixed and nested in any
way appropriate.
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Abstract. We describe the development of a couple of combinators
which can be used to run applicative style parsers in an interleaved way.
In the presentation we advocate a scheme for choosing identifier names
which clearly shows the types of the values involved, and how to compose
them into the desired result. We finish with describing how the combina-
tors can be used to parse command line arguments and files containing
options.

Keywords: Parser combinators, Haskell, Parallel parsing, Option
processing, Permutation parsing.

1 Introduction

In the original version of the uulib1 parsing combinator library we introduced
two modules, providing combinators for parsing more complicated input struc-
tures than those described by context free languages: one for recognising per-
muted structures and one for recognising merged lists. In this paper we present
an interleave combinator which generalises these two patterns. As we will see
this library can almost completely be constructed using the basic Applicative
and Alternative parser interfaces as e.g. provided by the uu-parsinglib pack-
age, without having to deal with the intricate internals of the parsing process
itself. We only require that it is possible to split a parser into two components:
one which recognises the empty sequence in case the original parser can do so and
one which takes care of the non-empty cases. Of course, a direct consequence of
choosing a feature rich library as uu-parsinglib is that the parsers constructed
out of it inherit all its nice properties: returning results in an online way, pro-
viding informative error messages, and adapting the input where parsing cannot
proceed.

Before we introduce our new library we introduce some common definitions
and give an example of parsing permuted and merged structure in Section 2,
followed by a motivating example for our new combinators in Section 3. Section
4 forms the core of the paper describing the internals of the new library, whereas
in Section 5 we develop a small library using the new combinators for processing
command line options. We will see that there is not much more work left for the
programmer than just enumerating the possible options and the way they are to
be denoted. We conclude in Section 6.
1 http://hackage.haskell.org/package/uulib
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2 Common Definitions and Background

We start out by repeating the definition some familiar classes, and give applica-
tions of the previously introduced combinators. The class Applicative introduces
a combinator <*> that combines two side-effecting functions into a single func-
tion. The important observation is that the results of the two functions are
combined by applying the result of the first to that of the second. In this paper
such functions will be referred to as parsers, as this is the way we will instan-
tiate the interface. The <*> operator is a function which runs its two parser
arguments sequentially on the input: i.e. the second parser takes off in with the
input state in which the first one has finished. The class Alternative introduces
the companion operator <|> which runs either one of its operands, but not both.
Its unit element is empty ; this is not, as its name suggests, the parser which
recognises the empty string but instead the parser which always fails. For the
sake of completeness we also introduce the Functor class.

class Functor f where
fmap :: (b → a)→ f b → f a

class Applicative f where
(<*>) :: f (b → a)→ f b → f a
pure :: a → f a

class Alternative f where
(<|>) :: f a → f a → f a
empty :: f a

Next we introduce some helper functions that may be used to modify the result
of a parser, or to throw away a result in which we are not interested:

(<$>) :: Functor f ⇒ (b → a)→ f b → f a
(<$>) = fmap
p <* q = const <$> p <*> q
f <$ p = const f <$> p
p *> q = flip const <$> p <*> q
p ‘opt ‘ a = p <|> pure a

In addition to the operator for sequential composition <*> we defined [1] a
permuting combinator, with a similar type (the precise definition of the g does
not matter here):

<||> ::g (b → a)→ g b → g a

This operator also recognises both its operands, but irrespective of the order in
which they occur in the input stream, i.e. we may either run its left operand
and have its right operand take off where the first one finished or the other
way around. Actually it is even more expressive in the sense that if either of
its g-operands is again built using <||> the elements of the other operand may
intervene. Using this combinator we can construct parsers which recognise input
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in which the components are possibly permuted. Examples of such uses abound:
the order of the fields in a BibTEX entry is not fixed, nor is the order of the
specification of the field values in a Haskell record fixed. Consider the data type:

data Cart = Cart {x :: Float ; y :: Float }
| Polar {rho :: Float ; phi :: Float }

Now one might want to be able to read both Cart{x=1,y=2} as well as
Cart{y=2,x=1} from the input; if a Haskell compiler accepts both represen-
tations, why shouldn’t we be able to read both these representations from the
input? Using the <||> parser this is easily achieved (mkG and sepBy are helper
functions to which we will come back later):

pTwoFloats op constr s1 s2
= pToken constr *> pCurly ((op <$> pField s1 pFloat

<||> pField s2 pFloat)
‘sepBy ‘ pSym ’,’

)
pField s p = mkG (pToken s *> pSym ’=’ *> p)
pCurly p = pSym ’{’ *> p <* pSym ’}’

pCart = pTwoFloats Cart "Cart" "x" "y"

<|> pTwoFloats Polar "Polar" "rho" "phi"

We [3] furthermore defined a combinator <+> which makes it possible to con-
struct parsers which recognise merged lists. In parser int low the listOf function
converts a parser to a parser which may run interleaved with other parsers and
recognises a list of values accepted by its argument parser, the function <+> runs
both arguments in an interleaved mode, and pMerged converts its argument back
to a normal parser again:

int low :: Parser ([Int ], [Char ])
int low = pMerged (listOf pInt <+> listOf pLower )

The function int low accepts the input string "a1bc2" and returns the nested
pair ([1, 2], "abc"); the input is split into two sub-streams which are each ac-
cepted by one of the two operands of <+>.

On closer inspection we see that the list merging parsers are a generalisation of
the permuting parsers: just make sure that each of the merged lists has precisely
length 1 and list merging degenerates to permuting. This made us also realise
that the merging of lists was just a special case of merging any collection of
structured sequences, which in its turn raised the question whether we can define
combinators which make it possible to describe this process, thus generalising
the two libraries just mentioned into a single one.

3 Parsing Log Files

As a motivation for our new combinators we start with a simple example of
their use. It deals with unraveling a file which was created by several concurrent
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processes writing entries into it: each process indicates its start by writing out
the character ’s’ followed by its unique identity (numbers in the example), next
it will emit a couple of work entries each consisting of the character ’w’ followed
by its process identity and a space. The rest of the line contains log information.
A process indicates its termination by closing its sequence of entries with a
line consisting of the character ’c’ gaian followed by its process identity. So
all entries generated by a single proces will be labeled with the same process
identity, which we assume to be unique throughout the log file. Given e.g. a log
file containing the following lines:

s2 -- start of process 2
s1 -- start of process 1
w1 a1 -- first work entry of process 1
w2 b -- first work entry of process 2
w1 a2 -- second work entry of process 1
c1 -- process 1 closes
s3 -- start of process 3
w3 c -- first work entry of process 3
c2 -- process 2 closes
c3 -- process 3 closes

we want to produce the following table, where each process is associated with
the contents of its work entries:

[("2", ["b"]), ("1", ["a1", "a2"]), ("3", ["c"])]

In the code we use names starting with a g to bind to parsers which can run in
an interleaved way (which we will refer to as grammars from now on), whereas
names starting with a p refer to conventional parsers which recognise a consec-
utive segment of input. The function mkG converts a conventional parser to a
grammar; the result will still recognise a consecutive part of the input, but once
it has done so it may pass control on to a competing parser.

We start out by defining the grammar gProcess recognising the sequence of
events for a single process, using some of the basic parsers provided by common
combinator libraries providing an applicative interface, and subsequently use the
function gmList to concurrently run as many of them as needed. We have used
a monadic bind to use the process identity retrieved from the starting line in
constructing the parsers for the subsequent lines of this process.

gProcess = do i ← mkG pStart
w ← pMany ◦mkG $ pWork i
← mkG $ pClose i

return (i ,w)

gLog = gmList gProcess

Next we define the parsers recognising the various kinds of log entries. The func-
tion pMunch accepts the longest prefix of the input which passes the predicate
parameter.
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pStart = pToken "s" *> pMunch (�≡ ’\n’) <* pToken "\n"

pWork i = pToken (’w’ : i ++ " ")
*> pMunch (�≡ ’\n’) -- read the rest of the line
<* pToken "\n"

pClose i = pToken (’c’ : i ++ "\n")

Note that the order in which the work comes out is determined by the order of
their first entry in the log file.

4 Merging Parsers

4.1 Representing Parsers for Merged Input Structures

As we have seen in the example, what we are looking for is the possibility to
interleave parsers; one can think of this as associating a separate colour with each
parser and splitting up the input in a series of coloured segments, such that the
concatenation of segments of the same colour is accepted by its correspondingly
coloured parser.

The question to answer is how to split the input into uniformly coloured
segments, i.e. how to find the points in the input where colour switching may
take place and what colour to give to the segments. In order to be able to do
so efficiently we have decided to construct our interleaving parsers out of basic
parsers, which are conventional parsers which recognise a consecutive part of the
input. We rephrase our use of the word grammar to stand for a description of a
parser which can pause at a colour switch and continue when the input switches
back to its colour again. Such grammars can thus be run in a competing fashion.
From this point on we will use the word parser to refer to a conventional parser
which recognises a segment of the input.

Once a parser gets hold of the input, and has successfully started parsing,
we will let this parser run until completion. Once it has completed, all pending
grammars (including the grammar for which the parser which just ran forms a
constituent) can try to continue to parse. A consequence of this is that at any
point in the input where we may switch between grammars each of the competing
grammars should present its first-parsers, i.e. the candidates for accepting the
next uniformly coloured segment. These presented first-parsers play a similar role
as the first sets resulting from an LL(1) grammar analysis; the only difference is
that we dynamically compute the collection of first-parsers instead of statically
a the set of first symbols.

A very important issue we have to take care of is the avoidance of un-
wanted ambiguity as the following example shows. Suppose we have the following
permuting parser:

pMaybe s = pToken s ‘opt ‘ ""
pAmb = (, ) <$> pMaybe "A" <||> pMaybe "B"

and our input consists of the string "A", then there are two different ways in
which the empty string "" can be seen as part of the input: "" ++ "A" and
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"A" ++ "". Thus when running the parser pAmb on the input string "A" there
are two possible parses, both returning the same result. Unless our underlying
parsing library somehow knows how to deal with this we will eitherget an error
message, a rather arbitrary choice of one of the possible parses or, when this
happens more than once, and exponnetial number of results. Even if the library
could handle ambiguity it may not be able to discover that both results are
the same. This problem has already been described in the development of the
permuting combinators [1] and the solution we take here is based on a similar
assumption as we have chosen there: we assume that we are able to split a parser
in a part recognising the non-empty part and one recognising the possibly empty
part. The latter will be represented by the value that is to be returned as as a
witness in case the parser accepts the empty input (denoted as ε from now on).
In order to make this explicit in our interface we introduce a class:

class Splittable f where
getNonPure :: f a → Maybe (f a)
getPure :: f a → Maybe a

where we will assume the following equality to hold for any Alternative functor
f we want to use for our basic parsers:

f ≡ maybe empty id (getNonPure f ) <|>maybe empty pure (getPure f )

We are now ready to define the data type Gram representing grammars. It
allows us to compute, at each possible splitting point in the input, the collection
of first-parsers that may try to continue at that point. We start out by defining
a data type Alt which has a constructor Seq which explicitly represents the
splitting of the grammar into in a first-parser and “the rest of the work to be
done”. Since we also want our grammars to have a monadic interface we equip
our data type Alt a Bind alternative, which again explcitly contains the first-
parser to be run:

data Alt f a = forall c.(f (c → a)) ‘Seq‘ ( Gram f c)
| forall c.(f c) ‘Bind ‘ (c → Gram f a)

Based on the data type Alt we now define the data type Gram. It contains
two components: a value of type [Alt f a ] which is the alternation (choice) of
all non-empty parts jointly accepting a non-empty sequence of symbols, and a
Maybe a value representing the value to be returned in case ε is accepted:

data Gram f a = Gram [Alt f a ] (Maybe a)

The type parameter f corresponds to the conventional, non-interruptible parsers,
which we use as building blocks for our grammars.

4.2 Defining the Various Class Instances for Gram

We now define the instances for these newly introduced data types for the classes
Functor , Applicative , Alternative and Monad .
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Gram Is a Functor . We start with the instances for Functor for both the
data type Gram and Alt . The code is straightforward:

instance Functor f ⇒ Functor (Gram f ) where
fmap b2a (Gram lb mb) = Gram (map (b2a<$>) lb) (b2a <$>mb)

instance Functor f ⇒ Functor (Alt f ) where
fmap b2a (fc2b ‘Seq‘ gc ) = ((b2a◦) <$> fc2b) ‘Seq‘ gc
fmap b2a (fc ‘Bind ‘ c2gb) = fc ‘Bind ‘ (λc → b2a <$> c2gb c)

Here we have chosen a naming convention which makes the types of the values
involved explicitly visible in the program text: b2a holds a function value of the
type b → a, mb stands for a value of type Maybe b, la stands for a list of Alt f a
values, fc2b is bound to a value of type f (c → b), gc is bound to a value of type
Gram f c and c2gb to a value of type c → Gram b. Now it is easy to see that
fmap b2a (fc ‘Bind ‘ c2gb) should result in a value of type Gram a, etc. Note
that applying fmap maintains the invariant that the first-parser can be easily
recognised for each Alt intact. We have chosen to use <$> as an alias for fmap
in this code wherever possible, since this makes the names chosen even more
helpful in the representation of the code.

Gram Is an Applicative Functor. We want to construct our merging parsers
in just the same way as we construct normal parsers, using the well known
Applicative and Alternative interfaces [4]. Since our data types enforce the prop-
erty that we can easily identify the first-parser to be used, this is where the real
work takes place. The pattern we follow however is common, and well known
from various process algebras and given in Figure 1. The first-parsers in the Seq
and Bind constructs of the left-hand side operand are “rotated” out. The hard
work is done by the function fwdby which combines the remaining part of the
Seq and Bind constructs to form the new right-hand side of the Seq and Bind
construct in the result. The gc and gb grammars of a Seq are ran returning a
value of type (c, b). We modify the value returned by the first-parser –by ap-
plying uncurry to it– to accept this pair of values instead of getting passed the
two arguments individually. If the left-hand side parser can recognise the empty
input then also the first-parsers of the right-hand side grammar are first-parsers
of the resulting grammar; they can start to accept part of the input too. This
explains the second component in the definition of the Alts f b in the right-hand
side of the <*> definition, where we use the witness value of type b → a to up-
date the result of the right-hand side parser. The definition of pure speaks for
itself: we have no non-empty alternatives, and the parser can recognise ε with a
witness of type a.

A subtle point is that we had to add an irrefutable pattern match (∼) to the
right-hand side operand of <*>, since otherwise the pattern matching creates an
endless loop in situations like the definition of pMany when f is instantiated
with some Gram g:

pMany p :: f a → f [a ]
pMany p = let result = (:) <$> p <*> result ‘opt ‘ [ ] in result
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instance Functor f ⇒ Applicative (Gram f ) where
pure a = Gram [ ] (Just a)
Gram lb2a mb2a <*>∼gb@(Gram lb mb)

= Gram ( map (‘fwdby ‘gb) lb2a
++
[b2a <$> fb | Just b2a ← [mb2a ], fb ← lb ]

) ( mb2a <*>mb)

fwdby :: Functor f ⇒ Alt f (b → a) → Gram f b → Alt f a
(fc2b2a ‘Seq ‘ gc) ‘fwdby ‘ gb = (uncurry <$> fc2b2a) ‘Seq ‘ ((, ) <$> gc <*> gb)
(fc ‘Bind ‘ c2gb2a ) ‘fwdby ‘ gb = fc ‘Bind ‘ (λc → c2gb2a c <*> gb)
uncurry f (x , y) = f x y

instance Functor f ⇒ Alternative (Gram f ) where
empty = Gram [ ] Nothing
Gram ps pe <|>Gram qs qe = Gram (ps ++ qs) (pe <|> qe)

Fig. 1. Gram is a member of the Applicative and Alternative classes

Here <*> does not have access to the top-level constructor in its right-hand side,
since this constructor is produced by this very call to <*>. Note that the call to
<*> is evaluated lazily, so we have no problems with recursive grammars. The
unrolling of these definitions is done on a by-demand basis during the actual
parsing process. This technique resembles the parallel parsing strategy as devel-
oped by Claessen [2] and code also bears close resemblance to the computation
of the firsts set, as described by Swierstra and Duponcheel [5].

In case the left-hand side is a monadic construct we just use the original first-
parser fc , and again move the right-hand side c2gb2a of the left operator to the
right-hand side of the result, where it is composed with the original right hand
side using <*>.

Gram Is an Alternative Functor. The instance for Alternative is almost
trivial: we concatenate the list of alternatives from both operands. This leaves
the question what to do if the grammar is ambiguous, caused by both alternatives
to be able to accept ε . We have chosen to use the left-biasedness of <*> as defined
for Maybe to choose the left value to return. The code is again given in figure 1.

Gram Is a Monad . The next thing we want to do is to equip our grammars
with a monadic interface, which we again achieve by “rotating” all but the
first-parser to the right so the first-parser again is presented at the top level
constructor. In the case of a ‘Seq‘ construct as the left argument of >>= we
split its monadic effect into two steps: in the first step we make the first part
if the left-hand side operand explicitly visible in the resulting ‘Bind ‘ construct,
whereas the corresponding right-hand side gc of the ‘Seq‘ part is, once it has
been combined using λc2b → c2b <$> gc with the result c2b of the left-hand side
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of the ‘Seq‘ in another call to >>= in the right-hand side of the resulting top level
‘Bind ‘ constructs.

When the left-hand side accepts ε we have to take some extra precautions,
since in this case the first-parsers created by a call to right-hand side compete
for input too, since they too may accept input at this point. Since we have the
witness of this empty left-hand side available, we can use it to compute the
Gram a value returned by the right-hand side of >>=, and with this its first-
parsers become available too and can take part in the competition:

instance Functor f ⇒ Monad (Gram f ) where
return a = Gram [ ] (Just a)
Gram lb mb >>= b2ga = case mb of

Nothing → Gram (map (‘bindto‘b2ga) lb) Nothing
Just b → let Gram la ma = b2ga b

in Gram (map (‘bindto‘b2ga ) lb ++ la) ma

bindto :: Functor f ⇒ Alt f b → (b → Gram f a)→ Alt f a
(fc2b ‘Seq ‘ gc) ‘bindto‘ b2ga = fc2b ‘Bind ‘ λc2b → c2b <$> gc >>= b2ga
(fc ‘Bind ‘ c2gb) ‘bindto‘ b2ga = fc ‘Bind ‘ λc → c2gb c >>= b2ga

Constructing Elementary Gram Values. The last thing we have to do is
to show how we can lift a parser into an equivalent Gram

mkG :: (Splittable f ,Functor f ) ⇒ f a → Gram f a
mkG p = Gram (maybe [ ] (λp → [(const <$> p) ‘Seq ‘ pure ()]) (getNonPure p))

(getPure p)

At first sight this code looks more complicated than strictly needed; this is
caused by our choice of the Alt data type. We could have easily added a third
case Single (f a) to this data type, and have used this Single constructor here.
We have chosen for the current, minimalistic approach, in which this Single data
type is encoded as a parser which is to be followed by an ε parser returning ()
the result of which is subsequently discarded. This adds a small constant-time
overhead to our parsers, which we think is acceptable in return for the increased
simplicity of the code.

4.3 ���� and �����

In the previous subsections we have defined the data type Gram f a, have shown
how to lift elementary parsers to this structure, and have defined instances for
this type for the Functor , Applicative , Alternative and Monad classes. As a
final step we now define the <||> combinator, which describes the “interleaved”
composition of two grammars. We will however express this combinator in terms
of an even more primitive combinator <<||>:

infixl 4 <||>

infixl 4 <<||>
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(<||>), (<<||>) ::Gram (b → a)→ Gram b → Gram a

Note that we have given these operators the same type as the conventional <*>
combinator, since we very much like the applicative interface for describing how
to combine the two accepted values into the result. The reason, of course, that
we cannot use the <*> combinator is that it has already been used to express the
more conventional sequential composition of two Gram values.

The idea of the <<||> combinator is that it will run one of the first-parsers of
its left-hand side operand on the input first, and from that point on will behave
like <||>, which does not have a preference for either of its operands to start
accepting input. We can easily define <||> in terms of <<||>:

gb2a <||> gb = gb2a <<||> gb
<|> flip ($) <$> gb <<||> gb2a

Here we see that the resulting parser will either run one of the first-parsers
from its left-hand side operand or one of the first-parsers of its right-hand side
operand. In case both grammars can accept ε we get the same witness value
twice, and in principle our grammar becomes ambiguous; the biased choice of
the Maybe instance of Alternative throws away one of these two (equal) values.

So all we have to do now is to define <<||>. We construct a new grammar
which has as its first-parsers all the first-parsers of its left-hand side operand:

(<<||>) :: Functor f ⇒ Gram f (b → a)→ Gram f b → Gram f a
gb2a@(Gram lb2a mb2a) <<||> ∼gb@(Gram mb)

= Gram (map (‘fwdby ′‘gb) lb2a) (mb2a <*>mb)

(fc2b2a ‘Seq‘ gc) ‘fwdby ′‘ gb = (uncurry <$> fc2b2a) ‘Seq‘ ((, ) <$> gc <||> gb)
(fc ‘Bind ‘ c2gb2a) ‘fwdby

′‘ gb = fc ‘Bind ‘ (λc → c2gb2a c <||> gb)

Notice that this code is almost the same as that for the definition of <*>; only have
the occurrences of <*> in the right-hand sides of the fwdby function been replaced
by <||>, thus indicating that thus constructed parsers should run interleaved
instead of sequentially.

4.4 Converting Grammars into Parsers

The only thing left to do now it to show how to construct a real parser from a
Gram structure. We will require that the parameter f we have carried around
thus far has instances for the usual Applicative , Alternative and Monad inter-
faces, so we can use the functions available from these classes in this process.
For each of the alternatives we select the first-parser from it, use <|> to select
one of these to run, and after that either combine its result using <*> with the
parser generated from the corresponding Gram value in the case of a ‘Seq‘, or
use it as an argument to the right-hand side operand in the case of a ‘Bind ‘ and
convert this result again into a proper parser.

mkP :: (Monad f ,Applicative f ,Alternative f )⇒ Gram f a → f a
mkP (Gram la ma ) = foldr (<|>) (maybe empty pure ma)
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(map mkP Alt la)
where mkP Alt (fb2a ‘Seq‘ gb) = fb2a <*> mkP gb

mkPrAlt (fb ‘Bind ‘ b2ga ) = fb >>= (mkP ◦ b2ga)

4.5 Inserting Separators

As we have seen in the pCart example it is a common case that the elements
which we want to recognise, and which occur in a permuted order are separated
by e.g. a ’;’ or a ’,’. For these cases we have introduced a special version of
mkP , which takes an additional argument telling how to parse a separator. The
hard work is done by a function insertSep which prefixes each parser, except the
first one, in the Gram parameter by the parser that recognises the separator:

sepBy :: Applicative f ⇒ Gram f a → f b → f a
sepBy g sep = mkP (insertSep sep g)

insertSep :: (Applicative f )⇒ f b → Gram f a → Gram f a
insertSep sep (Gram la ma ::Gram f a) = Gram (map insertSepInAlt la ) ma

where
insertSepInAlt (fb2a ‘Seq ‘ gb) = fb2a ‘Seq‘ prefixSepInGram gb
insertSepInAlt (fb ‘Bind ‘ b2ga) = fb ‘Bind ‘ (insertSep sep ◦ b2ga)
prefixSepInGram (Gram la ma) = Gram (map prefixSepInAlt la) ma

prefixSepInAlt :: Alt f b → Alt f b
prefixSepInAlt (fb2a ‘Seq‘ gb) = (sep *> fb2a) ‘Seq‘ prefixSepInGram gb

Because we are making use of polymorphic recursion we had to insert a few
type annotations in the code.

4.6 Parsing Merged Lists

Although the combinators follow the common interfaces, there are a few tricky
points one has to keep in mind when using them. The fact that the interleaved
parsers compete for input may lead to some complications one should be aware
of. We take a look at the traditional definition of pMany , which converts a parser
into a parser which recognises a list of elements recognised by its argument
parser:

pList p = let pmp = (:) <$> p <*> pmp ‘opt ‘ [ ] in pmp

In this definition the recursive call to pmp only starts to play a role once the first
instance of p has succeeded. If we however replace the <*> operator by a <||>

operator, then the recursive pmp can start to parse immediately too, and will
spawn yet another instance of p which starts to compete for the input and so on
recursively; apparently changing sequential execution by interleaved execution
has deeper implications than is directly visible from the code. Fortunately this
problem can be solved rather easily: we decide to only start with a new instance
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of pmp competing for the input, once p has started its work and has comsumed
a bit of input. Hence we define:

gmList p = let pmp = (:) <$> p <<||> pmp ‘opt ‘ [ ] in pmp

We see here that the availability of <<||> plays an essential role in this defini-
tion; in that sense it is more primitive than <||>, which was expressed in terms
of <<||>.

5 Applications

In this section we will give two examples of the use of the introduced merging
combinators.

5.1 Parsing Options

One of the most boring tasks in writing an application is the processing of
the options passed on the command line. Although there are some packages and
tools to make one’s life a bit easier, there always remains a lot of work to be
done. Usually conversion from the strings which were passed to the kind of values
one is really interested in has to be done explicitly, for optional arguments de-
faults have to be provided, for required arguments we have to check that they
have actually been provided, and there are many conventions for passing the
options, be it in short form as in ls -l, in long form as in haddock --enable-

documentation, in a kind of key-value pair as in process -o outputfile or
process -o=outputfile, etc. We will now present a small collection of com-
binators which completely takes away this burden from the programmer, using
the introduced merging parser combinators.

We start out by assuming that in our program we want to put our recognised
options in a record with named fields. Using Template Haskell we generate lenses
to give us access to the individual fields. As an example we define the following
data types and example record:

import Data.Lenses
import Data.Lenses.Template
data Prefers = Clean | Haskell deriving Show
data Address = Address {city :: String , room :: String }

deriving Show
data Name = Name {name :: String , prefers :: Prefers , ints :: [Int ]

, address :: Address }
deriving Show

$ (deriveLenses ’’ Name)
$ (deriveLenses ’’ Address)
$ (deriveLenses ’’ Prefers)
defaults = Name "Doaitse" Haskell [ ] (Address "Utrecht" "BBL517")
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The deriveLenses calls to template Haskell generate code which will give us read
and write access to the fields which a name which ends in an ’_’. What is
precisely generated does not matter too much here, but what is important is
that the imported packages provide amongst others a function alter which can
be used to update a field of type a pointed at by the first parameter in a record
of type r by applying the passed function of type a → a to it:

alter ::MonadState a m ⇒ (m ()→ StateT r Identity b)→ (a → a)
→ (r → r)

Now we can update the record at say the field prefers as follows:

print ((prefers ‘alter‘ (const Clean)) defaults)

Name { name_ = "Doaitse", prefers_ = Clean, ints_ = [],

address_ = Address {city_ = "Utrecht", room_ = "BBL517"}}

So the important thing to remember is that an expression a ‘alter ‘ f applies
the function f to a field pointed at by the lens a.

The first thing we do is to define a function oG (optionGrammar ), which
takes a normal parser p which parses a single option and modifies the parser
such thatits result is applied to the field pointed at by the lens:

oG p a = mkG ((a‘alter ‘) <$> p)

Using this code we can define an option parser which recognises a required option
that takes a single extra parameter, such as e.g. filename.

required a (string , p)
= oG (pSymbol ("-" ++ [head string ]) *> lexeme p) a
<|> oG (pSymbol ("--"++ string ++ " ") *> lexeme p) a
<|> oG (pSymbol ("--"++ string ++ "=") *> lexeme p) a

required a (string, p) = required a (string , const <$> p)

The call inp ‘required ‘ ("filename", pFileName) will construct a grammar which
is able to recognise one occurrence of the three possible forms of passing an op-
tion: -f inputfile, --filename inputfile and --filename=inputfile, and
will update the field with name inp in the record which will hold our recognised
options. The parser pFilename recognises the file name part of the option.

Using this basic parser for a single option we can now define special versions
of it. The function option makes the required field optional, as its name suggests.
The function flag recognises an option which does not read an extra argument
from the input, but just sets the field to the passed value:

option a string p = required a string p ‘opt ‘ id
flag a (string , v) = option a (string , pure v)
flags a table = foldr (<>) (pure id) (map (flag a) table)

At this point one may say that the code we have presented thus far does not
really depend on the fact that we have introduced grammars, and could have
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been implemented using the permutation parsers which have been available for
a long time (see e.g. the options-applicative or the uu-parsinglib packages
on hackage). We now come to the point where our somewhat more involved
combinators will start to pay of. In the example record we see that we have a
field which holds a list of integers, and wouldn’t it be nice if these integers could
each be specified by a separate item in the list of options? For this we define the
functions:

options a (string, p) = pFoldr ((◦), id) (required a (string , (:) <$> p)
optionsl a string p = (last◦) <$> options a string p
optionsf a string p = (head◦) <$> options a string p

Use of each of these functions will make that several settings, distributed over
the total list of options, will be recognised and combined into a value for a single
field, to which they will be prepended. The functions optionsl and optionsf select
the last, respectively the first element of this list. They can be used in the case
where the same option may be set several times and we want to use the last
setting or the first one. This may come in handy when the total list of options
consists of e.g. a sequence of options as typed on the command line concatenated
with a list of options taken from some preferences file.

Finally we want to be able to define the options for the Address field which
is part of our Name record holding the recognised options. Using lenses this is
easy. We recognise a list of options, and apply these to field of the parent record
pointed to by the passed lens:

field s opts = (s ‘alter ‘) <$> opts

So now we are finally ready to show how the specification of the option parser
for our name record looks like (note that the order in which we specify the
options does not matter):

instance Functor f ⇒ Monoid (Gram f (r → r)) where
mappend p q = (◦) <$> p <||> q
mempty = empty

flags table a = foldr (<>) (pure id) [flag text val a | (text , val )← table ]

oName = name ‘option ‘ ("name", pString)
<> ints ‘options ‘ ("int", pNatural)
<> prefers ‘flags ‘ [("clean", Clean)

, ("haskell",Haskell)]
<> address ‘field ‘ ( city ‘option ‘ ("city", pString)

<> room ‘option ‘ ("room", pString)
)

By making values of type Gram f (r → r) an instance of the class Monoid , by
defining mappend as the merge of the two parameters, and composing the record
updating functions returned by both parameters when used as parser, we can
use the nice <> notation to combine the options. We finally run our options:
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run (($ defaults) <$> mkP oName)

"--name=Rinus --int=7 --city=Nijmegen -i 5 --clean -i3"

-- Result: Name { name_ = "Rinus"

, prefers_ = Clean

, ints_ = [7,5,3]

, address_ = Address { street_ = "Nijmegen"

, room_ = "BBL517"}}

Note that the specifications for the nested Address field appear distributed
among the other options, and that all the integers we have specified end up
together in the ints field.

In the definition of the derived combinators used for specifying specific vari-
ants of options we have chosen to use lenses, which return a function which
updates an already existing structure containing the values to be collected. The
advantage of this approach is that we may start with a record containing the
default values and apply the result of reading a preferences file to it, and next
apply on top of that the extra information parsed from the command line. Note
that each of these structures can be easily parsed using the newly introduced
combinators, be it using parsers described in an applicative style or using lenses,
which correspond more closely to the familiar keyword-value way of specifying
parameters.

5.2 Nested Options

It is not unfamiliar to pass options for a linker that is to be involved in a later
stage on the command line of a compiler. One of the problems which may arise
from such an option architecture is that the option specifications of otherwise
rather independent programs may start to interfere; is e.g. the --verbose op-
tion passed to a module installer like cabal meant for the installer itself, or for
the haddock program that is used to generate the associated documentation?
This problem can be easily solved by requiring these options to be surrounded
by +haddock and -haddock markers on the command line, and specifying the
command line parser as follows:

pHaddock = (gList ◦mkG) ( pToken "+haddock"

*>mkP (<haddock options>)
<* pToken "-haddock"

)

6 Conclusions

We have derived a set of very general combinators which make it possible to
unravel merged input structures. The library imposes very few restrictions on
the underlying parser combinators used. A distinguishing feature of our combi-
nators is that they extend beyond the now common parsers used for permuted
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structures. Our new combinators have both a monadic and an applicative in-
terface. By being able to switch between the sequential and the merging view
on the input we can recognise permuted structures which are embedded inside
other permuted structures. In this way we may specify options for various differ-
ent subsequent program stages, where the option structures for these programs
would otherwise conflict.

In deriving the library we found it very helpful to choose our identifiers in
such a way that the types are explicitly represented in the chosen identifiers.
As we will see his greatly helps in identifying the way we can construct the
needed values out of the available values. Choosing the identifiers in the way
we did greatly helped us in writing the code, and is an essential ingredient in
applying the programming paradigm in which we “Let the types do the work”.
Our experience in programming in this way helped us so much, how trivial this
observation may seem, that we think it deserves being pointed at explicitly rather
than just being used in the construction of this library.

Acknowledgement. We want to thank Bastiaan Heeren and members of the
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paper.
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Abstract. The concept of mathematical functions allows to declara-
tively express knowledge of how to project information to new derived
information. The beauty of this approach emerges from the properties of
pure functions fitting into a whole system like a piece of a jigsaw puzzle.
Projections defining information in terms of other available information
can be the building blocks of a system with a complex behaviour, where
all details of how this complex behaviour is achieved can be completely
separated from dealing with information used in the system. In this essay
this is illustrated by examples of how the same projections can be used
in two very different contexts.

1 Introduction

Purely functional programming has proven to be useful for distinct kinds of
programming tasks including those with a more imperative flavour like I/O.
This essay however deals with the most natural usage of pure functions which is
working on values representing information processed by information systems.

Information systems generally deal with information that is stored, received
or generated in some way. The aim is e.g. to view information, use it to update
stored other information or reason about information derived from the informa-
tion available. In this essay I discuss how to use purely functional projections
to declaratively express the knowledge of how to obtain new information from
existing information.

The essence of what I want to express is that for that purpose pure functions
allow to write beautiful code. While I do not want to go into a deep discussion
of what beauty is, at least I assume that it requires some kind of structure one
can comprehend in order to find something beautiful. This structure allows for
some kind of harmony, which requires restriction with respect to complete chaos.
Indeed, functions are mathematically speaking a restricted kind of relations. This
restriction however allows functional projections to harmonically fit into a whole
like the individual pieces of a jigsaw puzzle and achieve the goal of separation of
concerns.

The properties functions possess provide this kind of structure and are dis-
cussed in the following. Lenses [1] provide an example that in certain contexts
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imposing even more restrictions on a set of functions provide a very valuable
tool. Here however I focus on the properties of a single function.

The most important property functions possess is that each input is related
to exactly one output, also called right-unique property. It is very natural to
map a given input state to only a single output in cases there is no unambiguity
or uncertainty. This is a very common case in most information systems. For
example, one wants to give a single possible view to the user, given a current state
of information available. One wants a single new state of information to store,
given a request to update and the current state of information. Still functions
can be used to represent non-determinism and uncertainty by mapping inputs
to sets of possible outputs.

The second important property of total functions is that there is an output
for all possible inputs. For each possible input there should be an output, which
makes it possible to use a function without knowing anything about its structure.
A function defined to derive information from existing information, must do so
for all possible states of the existing information. The behaviour of the system
as a whole becomes undefined otherwise, even though the function is only a tiny
part of a huge complex system. Here the importance of a strong type system
becomes apparent. In order to define a total function one must specify the input
set, and in order to use a function one must know the possible inputs. Type
systems provide a natural and powerful way to describe sets and also allow to
statically check the definitions of functions.

The output set is implicitly defined by the input set and the function defini-
tion. It is still crucial to also assign an output type to a function. The reason for
this is that the user of a function processes the result, by composing the func-
tion with other ones. Such composition can only provide a system with a single
unambiguous behaviour, if the outputs of a function fits the input of functions
it is composed with. Partial functions can be made total by for instance using a
Maybe type as output, which requires to explicitly deal with the Nothing case. In
this essay I assume all functions to be total with respect to their type.

Another important aspect is that types help to understand and communicate
about functions. It not only makes it possible to derive certain properties about
them [12], but also the intended meaning of even complex functions is often clear
from its name and type signature only. An example is for this the task-oriented
programming library iTask [9], where functions represent complex descriptions
of tasks interacting with users. Still, given the name and type signature it be-
comes clear what the purpose of a task is. That types are helpful to think about
functions, is also supported by the fact that Hoogle [3] supports searching for
functions by type signature.

In this essay I first give simple examples of pure functional projections in
Section 2. Then I shown how those projections can be used as part of a complex
information system in two different contexts. These are task-oriented applica-
tions (Section 3) and probabilistic programming (Section 4). Section 5 concludes
the essay.
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2 Running Example

In this section very simple examples of functional projections are given. Although
the essay is about beautiful programming I did not include a large amount of
code. The reason for that is that the aim is not to show the beauty of the imple-
mentation of functional projections, but to show that the concept of functions
allows to define projections beautifully fitting in a whole.

The example comes from the maritime domain, which is related to the work
I discuss in the next two sections. The iTask library used as first example has
been used to implement a maritime crisis management operation system [4,5].
The probabilistic programming library Figaro that is discussed in the second
example has been used to develop a prototype model for dealing with uncertainty
in the information about ships. (A version of this model based on probabilistic
logics is described in a technical report [7].) For all code examples in this essay
I use Clean notation.

The running example is about dealing with information about ships. Ships
have a name, an identification number and a current position, represented by
the following record type:

:: Ship = { name :: String

, id :: Int

, pos :: Position }
Furthermore, I assume that types are defined for indicating positions and areas,
but abstract from their concrete representation:

:: Position

:: Area

In addition, I assume that there is a specific area one is currently interested in,
called the area of interest. In general, this area would be dynamic, e.g. editable
by the user, but for simplicity I assume it to be fixed for the moment:

areaOfInterest :: Area

The main concern of all examples is whether a ship is inside this area or not.
Beeing inside of an area is defined by the following purely functional projection1:

within :: Position Area → Bool

From the name and the type of the function alone it becomes clear which kinds
of relation it defines without knowing anything about its structure. This allows
anybody to use it to derive another function which indicates whether a position
is inside of a fixed area of interest:

withinAOI :: Position → Bool

withinAOI pos = within pos areaOfInterest

Also a projection can be defined, filtering from a set of ships the ones in the area
of interest:

1 In Clean function have arity, e.g. the following functions has two parameters.
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filterWithinAOI :: [Ship] → [Ship]
filterWithinAOI ships = [ship \\ ship←ships | within ship.pos areaOfInterest]

As discussed, the functional projections presented here are intentionally very
simple. It is obvious that arbitrary complex concepts can be defined in terms of
pure functions, like all ships involved in a certain incident, all ships with a risk
of being involved in a collision or ships which are suspicious of doing something
illegal because of their behaviour or other information.

3 Functional Projection in iTask GUIs

In this section I show how to use functional projections to realise web-based GUI
applications using the task-oriented programming (TOP) framework iTask [9].
While a task definition in this style is a piece of beautiful code by itself, I focus
on projecting information used in TOP programs.

I assume a set of ships is provided to the system in some way, e.g. the in-
formation could be aggregated from different sensors. In the iTask library the
concept of shared data sources is used to abstract from the actual physical source
of information. A data source providing the ship information, but not allowing
to write to it, can be represented by:

ships :: ReadOnlyShared [Ship]

The system is able to provide an up-to-date web-based view of all ships inside
the area of interest, using the previously defined projection filterWithinAOI in
combination with the task viewSharedInformation, which the library provides:

viewSharedInformation "Ships in Area of Interest" [viewWith filterWithinAOI] ships

Because of the functional nature of the projection, this unambiguously defines
which information to show to the user for each possible ship information provided
to the system. The projection’s type fits like a piece of a jigsaw puzzle between
the information provided by the ships data source and other functions responsible
to generate a visualisation of the information, hidden inside of the system.

Under the hood the iTask system performs a lot of complex operations. First,
the task defined above is instantiated and performed by a user, the system has
to keep track of the current state of that instantiation. Then, to come from that
abstract task description to a user interface, the system has to retrieve data
from a physical implementation ensuring type-safety, to project the information
to what the user is supposed to see and to generate a visual representation
suitable for the information’s type. Finally, this representation is sent to the
correct client, which renders the visualisation. To keep the view up-to-data the
system additionally has to detect that the input information has changed, update
the state of the current task process and send instructions to the client to update
the user interface.

However, from the perspective of the projection all those nasty details do not
matter. Since it declaratively defines what it means that a ship is in the area of
interest, i.e. it is side-effect free, it does no matter how it is used by the system.
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For me this is one example of the true magic of declarative programming: one can
define what one wants to view, completely abstracting of how this is achieved.

This mechanism can be used in a realistic system showing an overview map of
ships on the sea. Assuming that there is a projection shipMap :: [Ship] → Map and
that the system knows how to properly visualise values of type Map, an up-to-date
map visualisation can be shown to the user by the following one-liner:

viewSharedInformation

"Ships in Area of Interest" [viewWith (shipMap o filterWithinAOI)] ships

Again a lot of details of how to generate and update such maps are hidden.
Another example of how projections are used in the iTask system is to com-

pose data sources. Assume that the area of interest is not fixed, but for instance
depends on the role of the user or is editable. Again it can be abstracted from
how the area of interest is determined using the shared data source abstraction:

areaOfInterest :: ReadOnlyShared Area

A new data source providing all ships in the area of interest can be derived
from that data source and the data source providing ship information by first
combining them and then projecting the combination:

shipsInAOI :: ReadOnlyShared [Ship]
shipsInAOI= mapRead (λ(aoi,ships) → [ship \\ ship←ships | within ship.pos aoi])

(areaOfInterest |+| ships)

Here |+| combines two read-only data sources to a new one providing a tuple
of the values. The function mapRead allows to project the values provided by a
a data source using a functional projection. Again, for the projection it does
not matter how and whether the area of interest is dynamically changed or how
this is detected. The same projection within can be used not matter whether the
area of interest is dynamically changing or not. Further, the user of shipsInAOI
only has to know that the data source provides the set of all ships in the area of
interest. It can for instance just be used by viewSharedInformation.

4 Probabilistic Functional Programming

The example presented next shows how to use functional projections in proba-
bilistic programming. As an example I use the Figaro library [8] which is written
in Scala. Anyhow I use Clean notation for uniformity. Some theoretical founda-
tions about combining functional programming and probabilistic reasoning have
been introduced in [10].

I use the same example as before, but this time the position of ships is un-
certain. A distribution of possible positions is used to express that uncertainty.
In Figaro the type Element a indicates a distribution over values of type a. I first
only deal with a single ship position:

shipPos :: Element Position

shipPos = normPosition ...
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Here normPosition constructs an element representing a multivariate normal
distribution of the position.

In the previous example I used the pure function within to determine whether
a ship is in the area of interest. The same function, in combination with the
library function apply, can be used to derive a distribution over a boolean value
indicating whether a ship is in the area of interest from the distribution of its
position:

shipWithinAOI :: Element Bool

shipWithinAOI= apply shipPos (λpos → within pos areaOfInterest)

Now inference can be performed on the defined program, for instance to com-
pute the probability that the ship is in the area of interest, i.e. the value
of shipWithinAOI is true. An instance of an algorithm to perform inference is
represented by alg:

p :: Real

p = alg.probability shipWithinAOI True

This again illustrates the declarative character of pure functional projections.
The example projection within defines what it means that a ship is in an area,
abstracting from whether it is used on a single value shown in a GUI or on a
distribution over values.

Different probabilistic inference algorithms can be used to derive the proba-
bilities. Examples of such algorithms are Variable Elimination [13], Importance
sampling [11] and Metropolis-Hastings Markov chain Monte Carlo [6,2]. The dif-
ferent probabilistic inference algorithms also make use of the main properties of
functional projections. For instance, sampling-based algorithms are based on the
assumption that each sample is generated according to the same distribution.
This is only true if all projections used to define the distribution fulfil the right-
unique property. In other words, the projection must not have any side-effects
since it is called by the sampling algorithm a number of times which only de-
pends on how good the approximation of the result should be. The projection
itself should not have any notion of how often it is called or by which algo-
rithm it is used. Also, in this context all projections should be total. Assuming
a normal distribution, a ship can potentially have each possible position. For
each of those positions to guarantee a consistent distribution, the random vari-
able shipWithinAOI must be unambiguously defined, meaning it can only take the
values true or false according to its type.

I use a Figaro element with values of type [Ship] in order to generalise again
to a set of ships:

ships :: Element [Ship]

It can now be used together with the same list comprehension as in the previous
example to get a list of ships in the area of interest:

shipsWithinAOI :: Element [Ship]
shipsWithinAOI = apply ships (λships → [ship \\ ship←ships | within ship.pos aoi])
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This can for example be used to infer the expected number of ships in the area
of interest:

n :: Real

n = alg.expectation shipsWithinAOI (toReal o length)

5 Conclusions

In this essay I have shown how to use the concept of mathematical functions to
declaratively express knowledge of how to project information to new derived
information. The properties of functions allowing them to beautifully fit in a
system like a piece of a jigsaw puzzle were discussed. Two examples were used
to demonstrate how purely functional projections can be used inside complex
information systems.

A general lesson learned from that is that systems should be designed in such
a way that dealing with information and expressing the knowledge of how to
derive new information, should be separated from how the system operates on
that information. The more structure the used programming languages provides,
the better the separation of those concerns can be achieved. For a wide variety
of information systems, functions, as provided by strongly-typed pure functional
programming languages, perfectly provide that structure.
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Abstract. The problem of finding palindromes in strings appears in
many variants: find exact palindromes, ignore punctuation in palindro-
mes, require space around palindromes, etc. This paper introduces
several predicates that represent variants of the problem of finding pa-
lindromes in strings. It also introduces properties for palindrome pred-
icates, and shows which predicates satisfy which properties. The paper
connects the properties for palindrome predicates to two algorithms for
finding palindromes in strings, and shows how we can extend some of
the predicates to satisfy the properties that allow us to use an algorithm
for finding palindromes.

1 Introduction

Rinus Plasmeijer was born on 26-10-52, which makes him 60 on the date I start
writing this paper, an excellent occasion to celebrate a productive career in
functional programming!

If I turn Rinus’ date of birth around, I get 25-01-62, which is close to its
original, but not exactly equal. This birthdate is an example of an approximate
palindrome, a sequence of symbols which is a palindrome if you are allowed a
minor number of edit operations on the reverse of the original.

Palindromes have long been considered interesting curiosities used in word-
plays. We now know that palindromes play an important role in DNA. If I
search for the keyword palindrome in the electronic publications available at
the library of Utrecht University, I get more than 500 hits. The first ten of
these hits are all about palindromes in DNA. My guess is that at least 90% of
these 500 publications are about palindromes in DNA. DNA stores information
in palindromes amongst others to repair genes. For example, the male DNA
contains huge approximate palindromes with gaps in the middle [5]. Some of
these palindromes are more than a million base-pairs long. Essential genes, such
as the genes for male testes, are encoded on these palindromes.

We need software to find palindromes in large pieces of text, or approximate
palindromes with gaps in DNA. Algorithms for determining whether or not a
string is a palindrome, and finding palindromes in strings have a long history in
computer science, longer than Rinus’ career. In an earlier paper [3] I describe
the history of finding palindromes. The current paper discusses some of the
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variants of the problem of finding palindromes, describes their properties, and
gives two algorithms for finding palindromes. The main contributions of this
paper are the description of the variants of palindrome finding, their properties,
and the relation between these properties and algorithms for finding palindromes.
The algorithms themselves are not new. The corresponding software has been
implemented in Haskell, and can be found on hackage1.

2 What Is a Palindrome?

Palindromes. How can I determine whether or not a string (a list of characters)
is a palindrome? The simplest method is to reverse the string and to compare it
with itself. So the string xs is a palindrome (palindrome xs), if xs is equal to its
reverse: xs reverse xs, where xs ys is True only when the strings xs and ys
are exactly equal. In Haskell I write:

palindrome :: String → Bool
palindrome xs = xs reverse xs

where reverse is defined in the Prelude. Without the type declaration, this defini-
tion would also work on lists [a ] instead of strings, provided we have an equality
operator on the type a.

The palindrome predicate satisfies several properties. First, the empty list is
a palindrome:

palindrome [ ] (empty)

A singleton list is a palindrome, since under standard character equality, c c
for all characters c.

∀ c.palindrome [c ] (single)

This property doesn’t hold for all kinds of palindromes, since in some cases the
comparison operator used is not a real equality, and is for example not reflexive.
A third property allows me to extend a palindrome at the front with a string
and at the back with the reverse of this string to obtain a palindrome. This
property is an equivalence: if I remove a string from the front of a palindrome,
and remove its reverse from the back, I also obtain a palindrome.

∀ xs ys .palindrome ys ⇔ palindrome (xs ++ ys ++ reverse xs) (extend)

A consequence of this property is that once a string is not a palindrome, I cannot
extend it on both the front and the back to become a palindrome. The final
property I introduce is the ‘palindromes in palindromes’ (palinpal) property.
This property says that if a large palindrome contains a smaller palindrome that
does not appear exactly in the middle, the large palindrome contains a second

1 http://hackage.haskell.org/package/palindromes

http://hackage.haskell.org/package/palindromes
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Fig. 1. The palindromes in palindromes property (palinpal)

copy of the smaller palindrome at the other arm of the large palindrome. Figure 1
gives an example: suppose I have a palindrome p (say ”abadaba”, with center
b), which contains a palindrome q (say ”aba”, with center a). Then the string q ′

I get by mirroring q in p with respect to p’s center is a palindrome again (”aba”,
with center a′). This property is essentially a consequence of the symmetry of
equality: for all a, and b: a b ⇔ b a.

Text palindromes. The standard example ‘A man, a plan, a canal, Panama!’
is not a palindrome according to the palindrome definition. Reversing it gives
‘!amanaP ,lanac a ,nalp a ,nam A’, in which it is hard to recognize the original.
For this string to also pass the palindrome test, I slightly adapt the definition of
what is a palindrome. I call a string a text palindrome if it is equal to its reverse
after throwing away all punctuation symbols such as spaces, comma’s, periods,
etc, and after turning all characters into lower case characters.

textPalindrome :: String → Bool
textPalindrome = palindrome ◦ lowerLetter
lowerLetter :: String → String
lowerLetter = map toLower ◦ filter isLetter

where isLetter and toLower are functions from the module Data.Char . The
predicate textPalindrome satisfies all palindromic properties.

Word palindromes. When looking for palindromes in a text, I often only want
palindromes that start and end in complete words. For example, the longest text
palindrome in the King James Bible is the string: ”no man; even amon”, from
Isaiah 41:28. The complete verse reads

For I beheld, and there was no man; even among them,

and there was no counsellor, that, when I asked of them,

could answer a word.

Since Amon is also a biblical name, it is probably slightly confusing to list ”no
man; even amon” as the longest palindrome in the Bible. If I only consider
palindromes that start and end in words, I get the string ”war draw” in Joel
3:9 as the longest palindrome. A word palindrome is a text palindrome that is
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preceded and followed by non-letter symbols. To determine whether or not a
string is a word palindrome, I also need the context of the input string. The
type CString describes three tuples of strings, modelling a string (the second
component) with its context before (the first) and after (the third).

type CString = (String , String, String)

wordPalindrome :: CString → Bool
wordPalindrome input@(before , string, after) =

textPalindrome string
∧ surroundedByPunctuation input

surroundedByPunctuation (before , , after ) =
(null before ∨ ¬ (isLetter (last before)))

∧ (null after ∨ ¬ (isLetter (head after)))

Since the predicate wordPalindrome fundamentally depends on its context, it
doesn’t satisfy the palindromic properties. Even the palinpal property is not
satisfied, since the punctuation around a word might differ for two occurrences
of a palindrome in a palindrome.

Palindromes in DNA. A sequence of DNA symbols ’A’, ’T’, ’C’ or ’G’ is a
palindrome if its reverse is the complement of the original, where ’T’ is the
complement of ’A’ and vice versa, and similarly for ’C’ and ’G’. It follows that
we cannot use the operator anymore in the definition of what it means to be
a palindrome in DNA. We define the DNA symbol comparison function : by

( : ) :: Char → Char → Bool
’A’ : ’T’ = True
’T’ : ’A’ = True
’C’ : ’G’ = True
’G’ : ’C’ = True

: = False

This operator is symmetric but not reflexive. We use the new equality operator
in a definition of dnaPalindrome for sequences of DNA symbols. We pairwise
combine the elements of an input sequence xs and reverse xs with the equality
operator : using the PreludeList function zipWith, and fold the list we obtain
to a single result using the PreludeList function and .

dnaPalindrome :: String → Bool
dnaPalindrome = palindromeEq ( : )

type CharEq = Char → Char → Bool

palindromeEq :: CharEq → String → Bool
palindromeEq eq xs = and (zipWith eq xs (reverse xs))

Note that the predicate palindrome can be defined in terms of palindromeEq by
palindrome = palindromeEq ( ). Since a DNA symbol is not its own complement
the single property does not hold, and all palindromes in DNA have even length.
dnaPalindrome satisfies the empty, extend, and palinpal properties.
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Approximate palindromes. Sometimes I not only want to find perfect palindro-
mes, but also palindromes that contain a limited number of errors. A palindrome
with a limited number of errors is often called an approximate palindrome. For
example, in the book Judges in the King James Bible, verse 19:9 reads:

And when the man rose up to depart, he, and his

concubine, and his servant, his father in law, the

damsel’s father, said unto him, Behold, now the day

draweth toward evening, I pray you tarry all night:

behold, the day groweth to an end, lodge here, that

thine heart may be merry; and to morrow get you early

on your way, that thou mayest go home.

The substring ”draweth toward” is a text palindrome with one error: the ‘e’ and
the ‘o’ don’t match. This is an example of an error that is resolved by substituting
one symbol by another symbol. Other errors may be resolved by inserting or
deleting a symbol. The substitution, insertion, and deletion operations are the
operations used in calculating the Levenshtein distance between two strings.

A string s is an approximate palindrome with k errors, if at most k substi-
tution, deletion, or insertion operations are needed to convert the reverse of s
into s . Note that this number of operations will generally be twice the number
of operations necessary for turning a string into a palindrome. It follows that
”draweth toward” is an approximate palindrome with two errors, substituting
‘e’ for ‘o’ and ‘o’ for ‘e’. In the following definition we abstract from the equality
operator ( ), because we also want to determine approximate palindromes in
DNA, for example.

approximatePalindrome :: Int → String → Bool
approximatePalindrome k s = levenshteinDistance ( ) s (reverse s) � k

levenshteinDistance :: CharEq → String → String → Int
levenshteinDistance eq (x : xs) (y : ys) =

((if x y then 0 else 1) + levenshteinDistance eq xs ys )
‘min ‘ (1 + levenshteinDistance eq (x : xs) ys )
‘min ‘ (1 + levenshteinDistance eq xs (y : ys))

levenshteinDistance eq xs ys = max (length xs) (length ys)

As a program, this predicate is terribly inefficient. The approximatePalindrome
predicate satisfies the empty, single, and extend properties. Since it takes an
integer argument, the palinpal property has to be slightly reformulated. Sup-
pose I have a palindrome p satisfying approximatePalindrome k , which contains
a palindrome q satisfying approximatePalindrome k ′. Then the string q ′ I get by
mirroring q in p with respect to p’s center satisfies approximatePalindrome k ′.
Unfortunately, this property doesn’t hold for approximatePalindrome . The er-
rors in q need not appear in q ′, and vice versa, so I cannot make a statement
about whether or not q ′ satisfies approximatePalindrome k ′ given that q satisfies
approximatePalindrome k ′.
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Gapped palindromes. A palindrome with a gap is a palindrome in which a gap
of a particular size in the middle is ignored. An example of a palindrome with a
gap is found in Revelations, where verses 20:7-8 read:

And when the thousand years are expired, Satan shall

be loosed out of his prison, And shall go out to

deceive the nations which are in the four quarters of

the earth, Gog, and Magog, to gather them together to

battle: the number of whom is as the sand of the sea.

Here ”Gog, and Magog” is a text palindrome with a gap of length three in
the middle: the ‘n’ and the ‘M’ around the central ‘d’ don’t match. A gapped
palindrome is a special case of an approximate palindrome, where the errors
occur in the middle of the palindrome, but one that occurs so often in DNA that
it deserves a special category. Since the gap appears in the middle of the string,
the length of the gap is odd if the length of the palindrome is odd, and even if the
length of the palindrome is even. To be precise, a string s is a palindrome with a
gap of length g in the middle, if it satisfies the predicate gappedPalindrome g s :

gappedPalindrome :: Int → String → Bool
gappedPalindrome g s = palindrome (rmCenter g s)

rmCenter :: Int → String → String
rmCenter g s = let ls = length s

armLength = div (ls − g) 2
(before , rest) = splitAt armLength s
(gap, after ) = splitAt g rest
sameParity m n = even m even n

in if g � ls ∧ sameParity g ls
then before ++ after
else error "removeCenter"

This predicate specifies perfect palindromes with gaps. If I want to find other
kinds of palindromes with gaps, I have to replace palindrome with the required
predicate. Provided g is at most the length of the input list, and the parity of
the input list is the same as the parity of g, gappedPalindrome g satisfies the
empty, single, and extend properties. Since gapped palindromes only have
a gap at their center, I need to adapt the formulation of the palinpal prop-
erty to apply it to gapped palindromes. Suppose I have a palindrome p satisfy-
ing gappedPalindrome g , which contains a palindrome q satisfying palindrome .
Then the string q ′ I get by mirroring q in p with respect to p’s center satisfies
palindrome . This property holds for gapped palindromes.

The palindrome predicate. I have introduced six predicates for determining
whether or not a string is a palindrome: besides the basic palindrome predi-
cate, these are the predicates textPalindrome , wordPalindrome , dnaPalindrome ,
approximatePalindrome, and gappedPalindrome . It doesn’t stop here, of course.
The examples in this section show gapped text palindromes, and approximate
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text palindromes. The example of palindromes in male DNA requires find-
ing gapped approximate DNA palindromes. Some DNA files use both capital
and underscore letters for DNA symbols, and it follows that I have to find
gapped approximate DNA text palindromes. The number of possible variants is
substantial.

I redefine the palindrome predicate to accommodate all of the palindromic
variants. The predicate now takes six arguments: two booleans denoting whether
or not I want to find text or word palindromes, two integers denoting the length
of the gap and the allowed number of errors, an equality operator, and a string
in context.

palindrome :: Bool → Bool → Int → Int → CharEq → CString → Bool
palindrome text word g k eq (before, s , after )
| text = palindrome False False g k eq (before , lowerLetter s , after)
| word = surroundedByPunctuation (before, s , after )

∧ palindrome False False g k eq (before , lowerLetter s , after)
| g > 0 = palindrome False False 0 k eq (before , rmCenter g s , after)
| k > 0 = levenshteinDistance eq s (reverse s) � k
| otherwise = palindromeEq eq s

Predicate palindrome combines the previous predicates in a single predicate, and
also deals with combinations of palindromic aspects. The properties satisfied by
palindrome are obtained by combining the properties for its components.

3 Finding Palindromes

Both versions of the palindrome predicate defined in the previous section can
be used to determine whether or not a string is a palindrome. The first version
takes a number of steps linear in the length of the input string to do so. These
predicates can be used to verify that a given string is a palindrome, but they
are not very useful for finding the largest palindrome in the Bible, or for finding
the gapped approximate text palindromes in DNA. This section discusses first
which kind of palindromes we want to find, and then gives two algorithms for
finding such palindromes.

3.1 Finding Which Palindromes?

Software for finding palindromes is particularly useful for finding palindromes
in large documents. For example, I analysed the human Y chromosome, con-
sisting of almost 25 million DNA symbols, and chromosome 18, consisting of
almost 75 million symbols. The typical questions about palindromes asked by
geneticists are: ”what are the longest palindromes occurring in this string”, or
”how many palindromes of length in between m and n occur in this string?” The
question of where a particular palindromic string appears inside DNA is more a
pattern-matching problem than a palindrome finding problem. Almost all of the
palindrome-related questions can be answered relatively fast if I know the length
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of the longest palindrome around each position of the input string. A string of
length n has 2n+1 positions (sometimes also called center position, or just cen-
ter): the position before the first character, the positions of the characters, the
positions in between two characters, and the position after the last character.
For example, the list of the longest palindromes around each position in the
string ”abb” is ["", "a", "", "b", "bb", "b", ""]. The extend property says that
if palindrome q is the longest palindrome around its center in a string s , then
all strings obtained by removing equally many symbols from the front and the
back of q are also palindromes, and none of its extensions is a palindrome. I call
the longest palindrome around center a in the string s the maximal palindrome
around center a in s . The list of all maximal palindromes in a string is a concise
description of all palindromes that occur in the string. For a list consisting of n
copies of the same symbol, the total length of the list of maximal palindromes is
quadratic in n. An even more concise description of all palindromes that occur
in a string is obtained by returning the list of lengths of maximal palindromes
in a string. Given a center position and the length of the maximal palindrome
around it, I can easily reconstruct all palindromes around that center. The re-
sulting list of lengths of maximal palindromes has length 2n+1 for an input list
of length n. In the following sections I will develop algorithms for finding the
lengths of all maximal palindromes in a string.

3.2 A Naive Algorithm for Finding Palindromes

In this subsection I will describe the obvious algorithm for finding the length of
all maximal palindromes in a string.

Given a string as input, I want to find the list of lengths of maximal palin-
dromes around all centers of the string. I use the function maximalPalindromes
for this purpose.

maximalPalindromes :: String → [Int ]

I want to find the length of the maximal palindrome around each center in a
string. I will do this by trying to extend the trivial palindromes consisting of
either a single letter (for odd centers, starting counting centers with 0) or of
the empty string (for even centers) around each center. This only works for
palindrome predicates satisfying the extend and single property. If the pre-
dicate doesn’t satisfy the single predicate, I only look at the even centers. To
extend a palindrome, I have to compare the characters before and after the cur-
rent palindrome. It would be helpful if I had random access into the string, so
that looking up the character at a particular position in a string can be done
in constant time. Since an array allows for constant time lookup, I change the
input type of maximalPalindromes to an array.

maximalPalindromes ::Array Int Char → [Int ]

If I change my input type from strings to arrays, I have to convert an input string
into an array, for which I use the function listArray from the module Data.Array .



266 J. Jeuring

Function maximalPalindromes calculates the length of maximal palindromes by
first calculating all center positions of an input array, and then the length of the
maximal palindrome around each of these centers.

maximalPalindromes a = let (first , last) = bounds a
centers = [0 . . 2 ∗ (last − first + 1)]

in map (lengthPalindromeAround a) centers

Function lengthPalindromeAround takes an array and a center position, and
calculates the length of the longest palindrome around that position.

lengthPalindromeAround ::Array Int Char → Int → Int
lengthPalindromeAround a center
| even center = lengthPalindrome (first + c − 1) (first + c)
| odd center = lengthPalindrome (first + c − 1) (first + c + 1)
where c = div center 2

(first , last) = bounds a
lengthPalindrome start end =
if start < 0 ∨ end > last − first ∨ a ! start �≡ a ! end
then end − start − 1
else lengthPalindrome (start − 1) (end + 1)

For each position, this function may take an amount of steps linear in the length
of the array, so this is a worst-case quadratic-time algorithm. A more precise
analysis shows that this algorithm is linear in the sum of the lengths of the
palindromes found. The sum of the lengths of the palindromes in the King James
Bible is less than twice the length of the Bible, so for this example this function
behaves like a linear-time program. For determining palindromes in DNA, the
situation is similar. The Y chromosome contains huge palindromes, but they
hardly overlap. Chromosome 18 contains quite a few ”ATAT”-sequences, but
the longest of these has length 66, and almost all are much shorter.

3.3 Efficient Algorithms for Finding Palindromes

Using the palinpal property, I now develop an algorithm for finding palindromes
that requires a number of steps approximately equal to the length of its input.
This linear-time algorithm can be used to find palindromes in documents of any
size, and any content, even in very long strings consisting of the same symbol.
Finding palindromes in a string of length 5, 000, 000 using this algorithm requires
a number of seconds on a modern laptop. It is impossible to find palindromes
substantially faster, unless you have a machine with many cores, and use a
parallel algorithm.

The program for efficiently finding palindromes is only about 25 lines long.
Although the program is short, it is rather intricate. I guess that you need to
experiment a bit with to find out how and why it works.

The reason why the algorithm for finding palindromes from the previous sub-
section is naive is that lengthPalindromeAround calculates the maximal palin-
drome around a center independently of the palindromes calculated previously.
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I now change this by calculating the maximal palindromes from left to right
around the centers of a string. In this calculation I either extend a palindrome
around a center, or I move the center around which I determine the maximal
palindrome rightwards because I have found a maximal palindrome around a
center. So I replace the definition of maximalPalindromes by

maximalPalindromes :: Array Int Char → [Int ]
maximalPalindromes a = let (first , last) = bounds a

in reverse (extendPalindrome a first 0 [ ])

Before I introduce and explain function extendPalindrome, I give an example of
how the algorithm works.

An example. I want to find the maximal palindromes in the string ”yabad-
abadoo”. The algorithm starts by finding the maximal palindrome around the
position in front of the string, which cannot be anything else than the empty
string. It moves the position around which to find the maximal palindrome one
step to point to the ‘y’. The maximal palindrome around this position is ”y”,
since there is no character in front of it. It again moves the position around
which to find palindromes one step to point to the position in between ‘y’ and
‘a’. Since ‘y’ and ‘a’ are different, the maximal palindrome around this position is
the empty string. Moving the center to ‘a’, it finds that ”a” is the maximal palin-
drome around this center, since ‘y’ and ‘b’ are different. The maximal palindrome
around the next center in between ‘a’ and ‘b’ is again the empty string. Moving
the center to ‘b’, it can extend the current longest palindrome ”b” around this
center, since both before and after ‘b’ it finds an ‘a’. It cannot further extend
the palindrome ”aba”, since ‘y’ and ‘d’ are different. To determine the maximal
palindrome around the center in between ‘b’ and ‘a’, the next center position,
it uses the fact that ”aba” is a palindrome, and that it already knows that the
maximal palindrome around the center in between ‘a’ and ‘b’ is the empty string.
Using the palinpal property, it finds that the maximal palindrome around the
position in between ‘b’ and ‘a’ is also the empty string, without having to look
at the ‘b’ and the ‘a’. To determine the maximal palindrome around the next
center position on the last ‘a’ of ”aba”, it has to determine if ‘d’ equals ‘b’,
which it doesn’t of course. Also here it uses the palinpal property. Since ”a”
is the maximal palindrome around the center of the first ‘a’ in ”aba”, and it
reaches until the start of the palindrome ”aba”, I have to determine if the pa-
lindrome ”a” around the second ‘a’ can be extended. I won’t describe all steps
extendPalindrome takes in detail, but only give one more detail I already de-
scribed above: the second occurrence of the palindrome ”aba” in ”yabadabadoo”
is not found by extending the palindrome around its center, but by using the
palinpal property to find ”aba” a second time in ”abadaba”.

Function extendPalindrome. Function extendPalindrome takes four arguments.
The first argument is the array a in which we are determining maximal pa-
lindromes. The second argument is the position in the array directly after the
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longest palindrome around the current center (the longest palindrome around
the center before the first symbol has length 0, so the position directly after the
empty palindrome around the first center is the first position in the array). I
will call this the current rightmost position. The third argument is the length
of the current longest palindrome around that center (starting with 0), and the
fourth and final argument is a list of lengths of longest palindromes around po-
sitions before the center of the current longest tail palindrome, in reverse order
(starting with the empty list [ ]). It returns the list of lengths of maximal pa-
lindromes around the centers of the array, in reverse order. Applying function
reverse to the result gives the maximal palindromes in the right order. The func-
tion extendPalindrome maintains the invariant that the current palindrome is
the longest palindrome that reaches until the current rightmost position.

There are three cases to be considered in function extendPalindrome . If the
current position is after the end of the array, so rightmost is greater than last ,
I cannot extend the current palindrome anymore, and it follows that it is max-
imal. It only remains to find the maximal palindromes around the centers be-
tween the current center and the end of the array, for which I use the function
finalPalindromes . If the current palindrome extends to the start of the array, or
it cannot be extended, it is also maximal, and I add it to the list of maximal
palindromes found. I then determine the maximal palindrome around the follow-
ing center by means of the function moveCenter . If the element at the current
rightmost position in the array equals the element before the current palindrome
I extend the current palindrome.

extendPalindrome a rightmost curPal curMaxPals
| rightmost > last =

-- reached the end of the array
finalPalindromes curPal curMaxPals (curPal : curMaxPals)
|rightmost−curPal first∨a ! rightmost �≡ a ! (rightmost− curPal −1) =

-- the current palindrome extends to the start
-- of the array, or it cannot be extended

moveCenter a rightmost (curPal : curMaxPals) curMaxPals curPal
| otherwise =

-- the current palindrome can be extended
extendPalindrome a (rightmost + 1) (curPal + 2) curMaxPals

where (first , last) = bounds a

In two of the three cases, function extendPalindrome finds a maximal palindrome,
and goes on to the next center by means of function finalPalindromes or move-
Center. In the other case it extends the current palindrome, and moves the
rightmost position one further to the right.

Function moveCenter. Function moveCenter moves the center around which the
algorithm determines the maximal palindrome. In this function I make essential
use of the palinpal property. It takes the array as argument, the current right-
most position in the array, the list of maximal palindromes to be extended, the
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list of palindromes around centers before the center of the current palindrome,
and the number of centers in between the center of the current palindrome and
the rightmost position. It uses the palinpal property to calculate the longest
palindrome around the center after the center of the current palindrome.

If the last center is on the last element, there is no center in between the right-
most position and the center of the current palindrome. I call extendPalindrome
with rightmost position one more than the previous position, and a current
palindrome of length 1.

If the previous element in the list of maximal palindromes reaches exactly to
the left end of the current palindrome, I use the palinpal property of palindro-
mes to find the next current palindrome using extendPalindrome .

In the other case, I have found the longest palindrome around a center, add
that to the list of maximal palindromes, and proceed by moving the center one
position, and calling moveCenter again. I only know that the previous element
in the list of maximal palindromes does not reach exactly to the left end of the
current palindrome, so it might be either shorter or longer. If it is longer, I need
to cut off the new maximal palindrome found, so that it reaches exactly to the
current rightmost position.

moveCenter a rightmost curMaxPals prevMaxPals nrOfCenters
| nrOfCenters 0 =

-- the last center is on the last element:
-- try to extend the palindrome of length 1

extendPalindrome a (rightmost + 1) 1 curMaxPals
| nrOfCenters − 1 head prevMaxPals =

-- the previous maximal palindrome reaches
-- exactly to the end of the last current
-- palindrome. Use the palindromes in palindromes
-- property to extend the current palindrome

extendPalindrome a rightmost (head prevMaxPals) curMaxPals
| otherwise =

-- move the center one step. Add the length of
-- the longest palindrome to the maximal
-- palindromes

moveCenter a
rightmost
(min (head prevMaxPals) (nrOfCenters − 1) : curMaxPals)
(tail prevMaxPals)
(nrOfCenters − 1)

In the first case, function moveCenter moves the rightmost position one to the
right. Here we use the single property of palindrome . In the second case it calls
extendPalindrome to find the maximal palindrome around the next center, and in
the third case it adds a maximal palindrome to the list of maximal palindromes,
and moves the center of the current palindromes one position to the right.
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Function finalPalindromes. Function finalPalindromes calculates the lengths of
the longest palindromes around the centers that come after the center of the cur-
rent palindrome of the array. These palindromes are again obtained by using the
palindromes in palindromes property. Function finalPalindromes is called when
we have reached the end of the array, so it is impossible to extend a palindrome.
We iterate over the list of maximal palindromes, and use the palindromes in
palindromes property to find the maximal palindrome at the final centers. As in
the function moveCenter , if the previous element in the list of maximal palin-
dromes reaches before the left end of the current palindrome, I need to cut off
the new maximal palindrome found, so that it reaches exactly to the end of the
array.

finalPalindromes nrOfCenters prevMaxPals curMaxPals
| nrOfCenters 0 = curMaxPals
| otherwise =
finalPalindromes
(nrOfCenters − 1)
(tail prevMaxPals)
(min (head prevMaxPals) (nrOfCenters − 1) : curMaxPals)

In each step, function finalPalindromes adds a maximal palindrome to the list
of maximal palindromes, and moves on to the next center.

I have discussed the number of steps this algorithm takes for each function.
At a global level, this algorithm either extends the current palindrome, and
moves the rightmost position in the array, or it extends the list of lengths of
maximal palindromes, and moves the center around which we determine the
maximal palindrome. If the length of the input array is n, the number of steps
the algorithm is n for the number of moves of the rightmost position, plus 2n+1
for the number of center positions. This is a linear-time algorithm.

3.4 Variants

The algorithm for finding palindromes given in the Section 3.2 applies to pa-
lindrome predicates satisfying the extend property, and the algorithm in the
Section 3.3 additionally requires the palinpal property. So the first algorithm
can be used to find approximate palindromes, and neither can be used to find
word palindromes.

Finding approximate palindromes. Approximate palindromes can be found using
the algorithm in Section 3.2. If I only allow substitutions as edit operation, this
algorithm is linear in the sum of the lengths of the palindromes found, which
might be quadratic in the length of the input string in the worst case, but is
linear in almost all real-world applications. This raises two questions:

– How can I also deal with insertions and deletions as edit operations?
– Can I somehow extend the approximatePalindrome predicate or the linear-

time algorithm for finding palindromes from Section 3.3 to also find
approximate palindromes?
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The first question is answered by applying standard dynamic programming tech-
niques, as also used to determine the edit-distance between two strings. As for
the second question: I have spent many hours on designing algorithms for find-
ing approximate palindromes using the palindromes in palindromes concept, but
failed. Anyone?

Finding word palindromes. Since the wordPalindromes predicate doesn’t satisfy
the various palindromic properties, none of the algorithms for finding palindro-
mes can be used to find word palindromes. It is relatively easy to change the
wordPalindrome property such that it satisfies an adapted extend property.
Instead of three, I now split a list into five components and I add a boolean
word , ((before , (before ′, s , after ′), after ),word), such that the string consisting of
before ′ ++ s ++ after ′ is a text palindrome, and s is the longest word palindrome
with the same center contained in string if word holds. If word doesn’t hold,
then there is no word palindromic substring with the same center.

type CString ′ = ((String , (String , String , String), String),Bool )

wordPalindrome ′ :: CString ′ → Bool
wordPalindrome ′ ((before , (before ′, s , after ′), after ),word) =
let string = before ′ ++ s ++ after ′

in textPalindrome string
∧ (¬ word
∨ wordPalindrome (before ++ before ′, s , after ′ ++ after )

∧ ((null before ′ ∧ null after ′)
∨ ( and
◦map (¬ ◦ surroundedByPunctuation)
◦ sameCenterSubstrings
$ (before , init before ′ ++ tail after ′, after)
)

)
)

sameCenterSubstrings :: CString → [CString ]
sameCenterSubstrings (before, [ ] , after) = [(before , [ ] , after )]
sameCenterSubstrings (before, [a ], after) = [(before , [a ], after )]
sameCenterSubstrings (before, xs , after) =

(before, xs , after)
: sameCenterSubstrings (before ++ [head xs ], tail (init xs), last xs : after )

I adapt the extend property by requiring the concatenation of the three strings
in the middle to be a text palindrome, and by calculating from the text palin-
drome the contained word palindrome, if such a word palindrome exists. Using
this property, I can now develop a quadratic-time algorithm for finding word
palindromes.



272 J. Jeuring

4 Conclusions

I have introduced several variants of the palindrome problem, the palindromic
properties satisfied by these variants, and two algorithms that can be used to find
palindromic substrings, depending on the properties satisfied by the particular
palindromic variant sought. The description of the variants and their properties is
new to my knowledge; the algorithms for finding palindromes have already been
described in the last century by Galil, Manacher, myself, and others [1,4,2].
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A Functional Ace in the Hole for Imperative Programmers
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Abstract. The beauty of functional programs stems from clear seman-
tics, referential transparency, and the high-level of abstraction that per-
mits programmers to focus on problem solving. In contrast, this beauty
is rarely seen or appreciated in imperative code. In addition to solving a
problem, imperative programmers focus on the bug-prone sequencing of
assignment statements to obtain efficient code. Imperative programmers
that learn functional programming, however, can derive an efficient im-
perative program from a functional program. This is achieved through
a small series of meaning-preserving transformations. This article illus-
trates the transformations using a small example that yields code that
is beautiful and efficient.

1 Introduction

There is no doubt that functional programmers write beautiful code. It would
not be a stretch to describe a functional program as poetry in Computer Sci-
ence. This beauty stems from the fact that functional programming envisions
computation as the the evaluation of mathematical functions. Thus, functional
languages benefit from referential transparency–that is, (= (f x) (f x)) is a tau-
tology. This property allows for the development of code that emphasizes the
solution to the problem rather than the machine that evaluates the code. Fur-
thermore, functional languages can largely be described as an implementation
of an extended lambda calculus [2] which endows these languages with clear
semantics.

In contrast, imperative programmers are rarely associated with beautiful
code. Imperative languages envision computation as the sequencing of assign-
ment statements causing changes in state by altering the bindings of mutable
variables. If f changes the binding of a variable, then (= (f x) (f x)) is not a
tautology. Thus, imperative languages do not provide the benefit of referential
transparency. This means code development that emphasizes the mutation of
variables much like the underlying machine mutates registers. This usually de-
prives imperative programs of the beauty that stems from easily associating a
program with the solution to a problem.
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(define (fib n)

(if (<= n 1)

1

(+ (fib (- n 1)) (fib (- n 2)))))

Fig. 1. Functional Fibonacci Function

It is common for imperative programmers to dismiss the elegance, the beauty,
the clear semantics, the ease of maintenance, and the fewer bugs associated with
functional programming in the name of efficiency. After all, they claim, recursion
is inefficient and that is what functional programming is mostly about. It is all
too common to see such misunderstanding that ignores the level of abstraction
that functional languages provide which makes them such a powerful program-
ming tool. This power, in fact, extends to the development of imperative code.
Thus, an imperative programmer that has studied functional programming can
also develop beautiful code (without sacrificing efficiency). This article presents
a small example of how imperative code can be derived from functional code.
In essence, it illustrates the equivalence between a functional program and its
corresponding imperative counterpart bringing to the foreground that it is er-
roneous to dismiss functional languages as inefficient and that, instead, impera-
tive programmers can benefit from learning about functional programming. The
techniques used to go from a functional program to an imperative program are
well-known to functional programmers, but are not well-known by imperative
programmers. This article contributes to the bridging of this gap by walking
the reader step-by-step through the transformation of a functional program to
an imperative program. The transformations used are semantics-preserving and,
thus, endow the imperative code with the same beauty of the functional code.
That is, it brings forth the meaning of the program and the association with the
problem being solved.

2 Functional Fibonacci

In mathematics, the nth Fibonacci number, where n ≥ 1 is a natural number, is
defined as follows1:

fib(n) =

{
1 if n <= 1
fib(n− 1) + fib(n− 2) otherwise

This recursive definition naturally leads a functional programmer to the function
definition in Figure 1 to compute the nth Fibonacci number. This function is
recursive and it is easy to see how it is a literal translation from the mathematical
definition of the nth Fibonacci number to Racket syntax. Its development is not
prone to bugs and is easy to understand. A simple induction of n, its input,
suffices to establish partial correctness. Observing that the function is based on

1 An alternative definition has n ≥ 0 and fib(0) = 0.
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structural recursion suffices to establish total correctness. In other words, it is
easy to see how the program is related to the problem being solved and it is easy
to see that the program is correct.

3 Imperative Fibonacci

An imperative programmer would state that the such a function is inefficient,
because it is recursive and the control context grows with every recursive call.
Correctly observed, for a naive implementation of a programming language, the
control context grows due to the delayed + operation that must wait for the
evaluation of two recursive calls before it can be applied. In this example, this
means that the memory required to evaluate (fib n) is proportional to 2n. Fur-
thermore, the evaluation engine must jump back after the evaluation of each
recursive call to complete the delayed + operation.

In response to the functional programmer’s solution, an imperative program-
mer proposes a more efficient solution:

(define (fib-imp-bug N)

(define k (void))

(define fn2 (void))

(define fn1 (void))

(begin

(set! k N)

(set! fn2 1)

(set! fn1 1)

(while (> k 1)

(set! k (- k 1))

(set! fn1 (+ fn2 fn1))

(set! fn2 fn1))

fn1))

Testing, however, quickly reveals that this functions does not work. For example,
(fib 5) evaluates to 16 instead of 8. The imperative programmer, thus, must start
a debugging process that involves several rounds of trial and error to determine
that the third mutation inside the while loop is incorrect. After the debugging
process, the imperative programmer offers the solution in Figure 2.

The function in Figure 2 does, indeed, compute the nth Fibonacci number
without growing the control context utilizing three state variables (k, fn1, and
fn2) that are repeatedly mutated. That is, it is an iterative function that can
be evaluated with a constant amount of memory. It is not obvious, however,
how the imperative programmer developed the code nor how it is related to the
mathematical definition of fib(n).

Establishing the correctness of the function requires the development of a
loop invariant and the use of Hoare logic [6]. A loop invariant must contain the
conjunction of invariant properties for each state variable such that the loop
invariant and the negation of the while-loop driver imply the post-condition of
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(define (fib-imp N)

(define n (void))

(define fn2 (void))

(define fn1 (void))

(begin

(set! n N)

(set! fn2 1)

(set! fn1 1)

(while (> n 1)

(set! n (- n 1))

(set! fn1 (+ fn2 fn1))

(set! fn2 (- fn1 fn12))

fn1))

Fig. 2. Imperative Version of the Fibonacci Function

the function. In this case, the state-variable invariants and k ≤ 1 must imply
that fn1 = fib(N) when the loop terminates. There is little, if anything, to
guide the programmer in the development of the loop invariant–a task that is
not always straightforward and frequently ignored by imperative programmers.

A functional programmer, nonetheless, inspects the imperative function and
concludes that it is beautiful code. In fact, the functional programmer tells the
imperative programmer that it is exactly the same recursive function fib from
Figure 1. Furthermore, the functional programmer can tell the imperative pro-
grammer what the loop invariant is and prove the imperative code correct.

4 From Functional to Imperative Fibonacci

This section traces the thought process of the hypothetical functional program-
mer above who concludes that fib-imp from Figure 2 is beautiful code. The
conclusion is reached by applying several transformations to fib from Figure 1.
First, fib is rewritten in continuation-passing style (CPS) to yield a program
in which all function calls are tail-calls. Second, the continuations are inlined
in the CPS version. Third, the representation of the continuations is changed,
from functions to data structures, to yield to an accumulative recursive function
for which accumulator invariants are easily developed. Finally, the accumulative
recursive function is registerized yielding imperative code, a loop invariant, and
a proof of partial correctness.

4.1 CPS Transformation

The major criticism of the fib function in Figure 1 is the growth of the control
context. This growth can be eliminated by rewriting fib in continuation-passing
style (CPS) [10,13,14]. The control context grows when the evaluation of an
argument involves a call to a programmer-defined function. In CPS, all such
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(define (fib N) (fibk N (endk)))

(define (fibk n k)

(if (<= n 1)

(apply-k k 1)

(fibk (- n 1) (fib-cont1 n k))))

(define (fib-cont1 n k)

(lambda (fn1) (fibk (- n 2) (fib-cont2 fn1 k))))

(define (fib-cont2 fn1 k)

(lambda (fn2) (apply-k k (+ fn1 fn2))))

(define (endk) (lambda (val) val))

(define (apply-k k val) (k val))

Fig. 3. The CPS version of fib

function calls are in the tail position and, therefore, there are no delayed oper-
ations that require the growth of the control context to “remember” where to
jump back to after the call is evaluated. Instead of delaying an operation, CPS
code evaluates operands first and builds continuations that are used to complete
the computation. A continuation, therefore, is an accumulator of knowledge re-
quired to finish the computation that makes the control context explicit. We
can think of the remaining part of the computation, after an argument has been
evaluated, as requiring the value of the argument and producing the result. That
is, we can think of the rest of the computation as a function that is applied to
a value and that returns the value of the program. This observation naturally
leads to representing continuations as functions.

Algorithms to transform recursive programs to CPS are extensively described
[3,4,9,11,12]. In CPS, functions get an additional parameter–a continuation–that
contains the necessary information to complete the computation. If continuations
are represented as functions, then a continuation is a function that “knows” how
to complete the evaluation of an expression. In order not to change the program’s
interface, the main function calls an auxiliary function with a continuation to end
the computation–a function that returns the program’s value it gets as input. A
function call to compute an argument that is not in a tail position is eliminated
by evaluating the function call with a new continuation to evaluate the remainder
of an expression/computation once the value of the argument is known. If the
remainder of the evaluation does not require a call to a function that requires
the growth of the control context, then the continuation is applied to a result.

The CPS-transformed function fib in Figure 1 is displayed in Figure 3. The
function fib calls an auxiliary function, fibk, to compute fib(N) with a contin-
uation to end the computation. The continuation to end the computation is a
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(define (fib N) (fibk N (lambda (val) val)))

(define (fibk n k)

(if (<= n 1)

(k 1)

(fibk (- n 1)

(lambda (fn1) (fibk (- n 2)

(lambda (fn2) (k (+ fn2 fn1))))))))

Fig. 4. The inlined version of CPSed fib

function that takes as input a value, fib(N), and that returns it. The auxiliary
function, fibk, performs the work of fib from Figure 1 without growing the control
context. If n is less than or equal to 1, then the computation is completed
by applying the continuation to the value, 1, that is returned in the original
program. Otherwise, observe that the else-branch in Figure 1 adds the results
of two recursive calls (that require the growth of the control context): one to
compute fib(n− 1) and one to compute fib(n− 2). Both recursive calls need to
be evaluated before the addition can take place. Due to referential transparency,
we can arbitrarily choose to first compute fib(n− 1) in a control context (i.e.,
with a continuation) that computes fib(n− 2) and then performs the addition.
This results in a call to fibk with (- n 1) and a continuation that remembers
n, to compute fib(n − 2), and that remembers the current continuation, k, to
complete the computation. The constructor for this new continuation, fib-cont1,
returns a function that when applied to the value fib(n−1) computes fib(n−2)
in a context that remembers the value of fib(n− 1), to perform the remaining
addition operation, and the current continuation to finish the computation. The
constructor for this third continuation, fib-cont2, returns a function that takes
as input the value of fib(n−2) and that completes the computation by applying
the saved continuation to the sum of fib(n − 1) and fib(n − 2). Finally, since
continuations are represented as functions, applying a continuation is simply
applying a function to a value as done in apply-k.

If we consider the continuation constructors, fib-cont1, fib-cont2, and endk, as
primitive operations that do not require the growth of the control context, then
all function calls that are not to primitive operations are tail calls. That is, the
program in Figure 3 is iterative and does not grow the control context.

4.2 Inlining

An imperative programmer would be quick to point out that a non-tail-call to
a continuation constructor in Figure 3, given that it is a function defined in
the program, requires growing the control context. Furthermore, the imperative
programmer may object, because six functions, instead of one, are required. To
eliminate the need to define and call a continuation constructor, the program
in Figure 3 is transformed by inlining the continuation constructors. That is,
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references to the continuation constructors can be substituted by their bodies.
Thus, eliminating the need for defining the continuation constructors as functions
in the program. Such a transformation is easily done given that the continuation
is built to remember existing values and, therefore, a continuation constructor
is not called with values that need to be computed.

In addition, references to apply-k can also be inlined. This follows from ob-
serving that it is not necessary to call an auxiliary function in order to apply
an existing function to a value. Instead, the existing function can be applied di-
rectly to the value, thus, eliminating the call to (and the need for) the auxiliary
function. The result of inlining is the program in Figure 4.

In addition to reducing the number of functions, the inlined code in Figure 4
makes it explicit that the primary role of the continuations is to remember the
value of fib(n− 1) and the value of fib(n− 2) and to use them to compute the
value of fib(n). This means that the continuations are trackers and producers
of natural numbers which suggests using natural numbers, instead of functions,
to represent the continuations.

4.3 Transformation to Data-Structure Continuations

Changing the representation of continuations from functions to data structures
is a common technique used in compilation. The origins of this technique are
probably found in the RABBIT compiler [7]. Other Scheme compilers [8] and ML
compilers [1] also perform this type of transformation.

To transform a program to use a data-structure representation for continua-
tions each kind of continuation that “remembers” a value is made a parameter–an
accumulator–and recursive calls are made with values that need to be remem-
bered. These values are computed without growing the control context. For each
accumulator we can define an invariant property that holds every time the func-
tion is called. The result is an accumulative recursive function for which we can
establish its correctness.

The code in Figure 4 is transformed to an accumulative recursive function
that has two accumulators as parameters to fibk. These accumulators are the
continuations represented as natural numbers for which we can precisely define
the accumulator invariants. If N is the input to fib, then in the transformed
program the function fibk has the following accumulator invariants:

fn2 = fib(N − n)
fn1 = fib(N − n+ 1).

Observe that, with these accumulator invariants, n = 1⇒ fn1 = fib(N) which
is precisely the value the function needs to compute.

The result of the transformation is displayed in Figure 5. Observe that fib
and fibk are both tail-recursive functions. That is, the program implements an
iterative process as done by a while-loop. Furthermore, the program does not use
higher-order functions. These observations suggest that the program in Figure 5
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(define (fib N) (fibk N 1 1))

(define (fibk n fn2 fn1)

(if (<= n 1)

fn1

(fibk (- n 1) fn1 (+ fn2 fn1))))

Fig. 5. Accumulative Recursive Version Using Data Structure Continuations

can serve as the basis for the transformation to an imperative program that can
be implemented in any modern imperative programming language. Additionally,
the accumulator invariants assist the programmer in developing a while-loop
invariant.

4.4 Registerization

An imperative program is obtained by making the parameters of functions state
variables (or registers as done by several compilers [1,5,7,8]). The functions in the
program communicate values through these state variables, instead of making
function calls with arguments, to become 0-argument tail calls. That is, function
calls become jumps. The state variables are mutated before every function call
(eliminating redundant assignments of a state variable to itself). These assign-
ments are safe to make, because all delayed operations have been eliminated
and there is not need to grow the control context and, thus, to remember pre-
mutation values for later in the computation. Nonetheless, care must be taken
to make sure that the mutations preserve state-variable invariants.

For the program in Figure 5, three state variables are required: n, fn1, and
fn2–one for each parameter of fibk. Observe that the iteration continues as along
as n > 1, which is the loop driver. To develop correct code, it remains to identify
the loop invariant. The state-variable invariants for fn2 and fn1 are the same as
the corresponding accumulator invariants:

fn2 = fib(N − n)
fn1 = fib(N − n+ 1),

where N is the input to fib. The state-variable invariant for n needs to be iden-
tified to complete the loop invariant. For the code in Figure 5, n is not an
accumulator. Instead, it is a piece of recursively defined data, specifically a nat-
ural number, used to develop a structurally recursive function that uses two
accumulators. This suggest that the state-variable invariant for n must be an
inequality. Furthermore, Hoare logic states that:

loop invariant ∧ ¬driver ⇒ postcondition.

We can plug-in the pieces that we know and solve for the state-variable invariant
for n (denoted as “. . .”):
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(define n (void))

(define fn2 (void))

(define fn1 (void))

(define (fib N)

(begin

(set! n N)

(set! fn2 1)

(set! fn1 1)

(fibk)))

(define (fibk)

(if (<= n 1)

fn1

(begin

(set! n (- n 1))

(set! fn1 (+ fn2 fn1))

(set! fn2 (- fn1 fn2))

(fibk))))

Fig. 6. First Imperative Version

. . .∧fn2 = fib(N−n)∧fn1 = fib(N−n+1)∧¬(n > 1)⇒ fn1 = fib(N)

. . .∧ fn2 = fib(N −n)∧ fn1 = fib(N −n+1)∧n ≤ 1⇒ fn1 = fib(N)

Observe that:

fn1 = fib(N − n+ 1) = fib(N)⇒ n = 1

For n = 1 to hold when the loop terminates, the state-variable invariant for n is
the inequality: n ≥ 1. Thus, yielding the following loop invariant:

n ≥ 1 ∧ fn2 = fib(N − n) ∧ fn1 = fib(N − n+ 1)

For the code in Figure 5, fib achieves the invariant by respectively initializing
the state-variables, n, fn2, and fn1, to N , 1, and 1. The resulting code for fib is
displayed in Figure 6.

After the initial achievement of the invariant, fibk must iterate making sure
the invariant is preserved after each iteration. Hoare logic above demonstrates
that (as with the accumulative recursion version) when (<= n 1) the correct
value to return is stored in the (state) variable fn1. Otherwise, when the driver
is true, progress must be made towards termination while always maintaining
the loop invariant. Progress towards termination is made by decreasing n by 1
(as in the accumulative recursion version). From this point on imperative code
development proceeds by making assertions based on the loop invariant and the
mutations executed. To start, we have:
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n > 1 ∧ fn2 = fib(N − n) ∧ fn1 = fib(N − n+ 1)

(set! n (- n 1))

n ≥ 1 ∧ fn2 = fib(N − n− 1) ∧ fn1 = fib(N − n)

Observe that fib(N − n+ 1) = fib(N − n− 1) + fib(N − n). This suggests the
following mutation:

n ≥ 1 ∧ fn2 = fib(N − n+ 1) ∧ fn1 = fib(N − n+ 2)

(set! fn1 (+ fn2 fn1))

n ≥ 1 ∧ fn2 = fib(N − n+ 1) ∧ fn1 = fib(N − n+ 1)

The only part of the loop invariant that needs to be restored is the value of
fn2. This value needs to be the pre-mutation value of fn1 suggesting this final
assignment:

n ≥ 1 ∧ fn2 = fib(N − n+ 1) ∧ fn1 = fib(N − n+ 1)

(set! fn2 (- fn1 fn2))

n > 1 ∧ fn2 = fib(N − n) ∧ fn1 = fib(N − n+ 1)

The invariant has been restored and, thus, we have the program displayed in
Figure 6. This program evaluates using a constant amount of memory just as
the program in Figure 2.

An imperative programmer would still complain that our imperative program
needs two functions to do the work that can efficiently be done using a single
function. In Figure 6, the function fibk repeatedly performs the same mutations
until n ≤ 1. That is, fibk is a while loop. We can, therefore, use a while expression
to capture the tail-recursion of fibk in Figure 62. This leads to a new version of
fibk:

(define (fibk)

(while (n > 1)

(set! n (- n 1))

(set! fn1 (+ fn2 fn1))

(set! fn2 (- fn1 fn2))

fn1))

Finally, by inlining fibk and the the state-variable declarations into fib we obtain
the code displayed in Figure 7. That is, the imperative version of the function to
compute the N th Fibonacci number in Figure 2 is derived from the functional
version in Figure 1. Furthermore, the presented transformations provide an im-
perative programmer with a guide to develop loop invariants, imperative code,
and a proof of partial correctness.

2 The reader wishing to implement this in Racket must extend the language’s syntax
using a macro to implement a while loop.
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(define (fib N)

(define n (void))

(define fn2 (void))

(define fn1 (void))

(begin

(set! n N)

(set! fn2 1)

(set! fn1 1)

(while (> n 1)

(set! n (- n 1))

(set! fn1 (+ fn2 fn1))

(set! fn2 (- fn1 fn2))

fn1))

Fig. 7. The Result of Transforming the Functional Fibonacci Function

5 Concluding Remarks

Imperative programmers ought not dismiss the beauty found in functional code
as a sign of inefficiency. Instead they ought to view functional programming as a
powerful tool for problem solving. When faced with a difficult problem for which
it is not clear what the correct sequence of assignment statements is, writing a
functional program can be insightful. Once a functional solution to a problem is
obtained, this solution can be transformed to a tail-recursive function and then
translated to imperative code.

In tandem, the transformations done to functional code yield insights into the
correctness of the imperative code. In other words, semantics-preserving trans-
formations of functional code make it easier to establish the correctness of the
corresponding imperative code. In addition, these transformations can be done
by programs which can have a dramatic impact on development time by reducing
debugging time. The resulting programs can be examined after each transforma-
tion possibly providing the imperative programmer with insights for improved
design choices. The result is beautiful imperative code whose meaning, correct-
ness, and relation to the problem solved are clear. Imperative programmers learn
functional programming!

Acknowledgements. To my good friend Rinus Plasmeijer, a continued source
of inspiration and constructive debate, Gelukkige Verjaardag!
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Endrullis, Jörg 97

Hendriks, Dimitri 97
Hinze, Ralf 151

Jansen, Jan Martin 168
Jeuring, Johan 258

Klop, Jan Willem 97
Koopman, Pieter 60
Kozsik, Tamás 133

Lijnse, Bas 193
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