
Using Bleichenbacher’s Solution to the Hidden

Number Problem to Attack Nonce Leaks
in 384-Bit ECDSA

Elke De Mulder1, Michael Hutter1,2,�, Mark E. Marson1, and Peter Pearson1

1 Cryptography Research, Inc.
425 Market Street, 11th Floor, San Francisco, CA 94105, USA

{elke,mark}@cryptography.com, ppearson@spamcop.net
2 Institute for Applied Information Processing and Communications (IAIK),

Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria
Michael.Hutter@iaik.tugraz.at

Abstract. In this paper we describe an attack against nonce leaks in
384-bit ECDSA using an FFT-based attack due to Bleichenbacher. The
signatures were computed by a modern smart card. We extracted the
low-order bits of each nonce using a template-based power analysis at-
tack against the modular inversion of the nonce. We also developed a
BKZ-based method for the range reduction phase of the attack, as it
was impractical to collect enough signatures for the collision searches
originally used by Bleichenbacher. We confirmed our attack by extract-
ing the entire signing key using a 5-bit nonce leak from 4 000 signatures.

Keywords: Side Channel Analysis, ECDSA, Modular Inversion, Hid-
den Number Problem, Bleichenbacher, FFT, LLL, BKZ.

1 Introduction

In this paper we describe an attack against nonce leaks in 384-bit ECDSA [2]
running on a modern smart card. The attack has several interesting and novel
features. We first identified a leak during the modular inversion of the nonce,
and used differential power analysis (DPA) [17] to identify the likely inversion
algorithm. Although the algorithm contains conditional branches, they were not
exploitable by simple power analysis (SPA). Instead, we extracted a few low-
order bits of each nonce using a template-based power analysis attack [8].

Such nonce leaks are commonly attacked by mapping them to a hidden num-
ber problem (HNP), and using lattice methods such as LLL [18], BKZ [26], and
Babai’s nearest plane algorithm [3] to solve the resulting closest vector problem
(CVP) or shortest vector problem (SVP). While it might have been possible to
use lattice attacks successfully, our initial template attacks only recovered very
few bits reliably. We therefore chose to explore Bleichenbacher’s approach [4],
which given enough signatures can work with small, even fractional, bit leaks.

� This work was done while the author was with Cryptography Research, Inc.

G. Bertoni and J.-S. Coron (Eds.): CHES 2013, LNCS 8086, pp. 435–452, 2013.
© International Association for Cryptologic Research 2013

436 E. De Mulder et al.

In contrast, current lattice methods require a minimum number of bits to leak,
regardless of the number of signatures used.

Bleichenbacher introduced his FFT-based attack in 2000 during an IEEE
P1363 Working Group meeting [1]. He used it to attack the pseudorandom num-
ber generator (PRNG) specified by the then-existing DSA standard. While the
attack required a prohibitive amount of resources and was not considered prac-
tical, there was enough concern about it that the PRNG in the standard was
modified [22]. Although this method is known to exist by the cryptanalytic com-
munity [25,28], it remains largely undocumented and has been referred to as an
“underground” attack [28]. To remedy this we describe the technique in enough
detail so that interested parties can continue studying it.

Bleichenbacher’s original analysis required millions of signatures in order to
reduce the range of certain values so they could be used in a practical inverse
FFT. Since we only had about 4 000 signatures available, we looked for a different
method of range reduction. We developed a BKZ-based method for this phase
of the attack, thereby avoiding an impractical data collection step.

We experimentally confirmed our attack methodology by extracting the entire
secret key from a 5-bit nonce leak using about 4 000 power traces and correspond-
ing signatures. The attack is an iterative process. Each iteration involves the
derivation of about 3 000 usable points using BKZ, followed by a pass through
an inverse FFT. During each iteration a block of the most significant bits (MSBs)
of the unknown part of the secret key is recovered. Finally, our simulations show
that a 4-bit leak is also exploitable, with a significant increase in required re-
sources and available signatures. Future research should improve these results.

Related Work. Many attacks against nonce leaks in DSA and ECDSA have
been published. Boneh and Venkatesan [6] started looking at the HNP in 1996.
They mapped the HNP to a CVP and used LLL lattice reduction together with
Babai’s nearest plane algorithm to study the security of the MSBs of the Diffie-
Hellman key exchange and related schemes.

In 1999 (and officially published in 2001), Howgrave-Graham and Smart [13]
applied similar techniques to attack 160-bit DSA given multiple signatures with
a fixed signing key and knowledge of some bits from each nonce. Experiments
using NTL [27] showed they could recover the secret key given 8 bits of each
nonce from 30 signatures, but experiments with 4 bits did not succeed.

In [23] Nguyen and Shparlinski gave a provable polynomial-time attack against
DSA in which the nonces are partially known, under some assumptions on the
modulus and on the hash function. They were able to recover a 160-bit key with
only 3 bits of each nonce from 100 signatures, using the NTL as well. They also
showed that given improved lattice reduction techniques it should be possible to
recover the key with only 2 nonce bits known. In [24] the same authors extended
their result to the ECDSA.

Using Bleichenbacher’s Solution to the Hidden Number Problem 437

At PKC 2005, Naccache et al. [21] employed glitch attacks to ensure that the
least significant bytes of the nonces were flipped to zero, allowing the authors to
apply the same lattice techniques to recover keys from real smart cards. Recently,
Liu and Nguyen [19] developed a new algorithm which allowed them to recover
160-bit keys with only 2 leaked nonce bits.

Roadmap. The paper is organized as follows. Sect. 2 describes how we used
templates to extract the low-order bits of each nonce during the inversion step.
In Sect. 3 we describe Bleichenbacher’s solution to the HNP, followed by a de-
scription of the BKZ-based range reduction technique in Sect. 4. We discuss the
parameter values used in the attack and some implementation issues encountered
in Sect. 5. Finally, we summarize our results in Sect. 6.

2 Analysis of the Smart Card

We analyzed a commercially available smart card that implements ECDSA. The
card implements the algorithm for both binary and prime field curves, and we
focused on the signature generation process with the 384-bit prime field curve.

Algorithm 1 . ECDSA signature generation

Require: Elliptic curve E defined over prime field curve IFp, base point G with order
q, private key x, and message hash H = hash(m).

Ensure: Signature (r, s).
1: Generate a random nonce K ∈ [1, q − 1].
2: Compute K ∗G = (u, v)
3: Compute r = u mod q. If r = 0 then go to Step 1.
4: Compute s = K−1(H + rx) mod q. If s = 0 then go to Step 1.
5: Return (r, s).

In this section, we describe how the algorithm is implemented on the card. We
also describe power analysis results, and identify the several different leakages on
the card. Finally, we describe attacks in which we recover either the secret key x
or some bits of the nonce K. This paper is primarily concerned with the attack
in which 7 bits from each nonce are recovered using power analysis against the
modular inversion of the nonce in Line 4 of Alg. 1.

2.1 Description of the Implementation

Using both reference documentation from the manufacturer and power analysis
we determined the card uses the following parameters and techniques.

1. The built-in domain parameters are from ECC-Brainpool [20]. We analyzed
the implementation for brainpoolP384r1.

2. Values are represented in Montgomery form for efficient arithmetic.

438 E. De Mulder et al.

Init

ECC Scalar Multiplication Sign

Fig. 1. Power trace of the ECDSA signature generation after post-processing

3. Curve points are represented in Jacobian projective coordinates.

4. Scalar multiplications take place on the curve twist brainpoolP384t1 and the
final result is mapped back to brainpoolP384r1.

5. Scalar multiplications use the signed comb method [11,12] with 7 teeth. The
nonces K are represented in a signed basis [15] with 385 bits.

6. The signed basis representation requires that K is odd. If K is even, q is
added to it, which does not change the final result of the scalar multiplication.

7. The card stores 64 pre-computed points in memory for point additions, and
computes points for subtraction on the fly.

8. K−1 mod q is computed using a variant of the binary inversion algorithm.

2.2 Power Measurement Setup

The power consumption of the smart card was measured using an oscilloscope
with a sampling frequency of 250MS/s. We used two active amplifiers (+50 dB)
and a passive low-pass filter at 96MHz. We also applied several filtering tech-
niques to isolate the data-dependent frequency bands and downconvert them
into baseband. These frequencies were identified in a prior device characteriza-
tion step. Figure 1 shows a single power trace of the entire ECDSA signature
generation process after signal processing.

Three main phases can be clearly identified: 1.The initial phase where the
nonce K is generated, 2. the scalar multiplication K ∗ G and 3. the final phase
where the signature (r, s) is calculated.

2.3 Power Analysis Attacks against ECDSA

In this paper we are primarily concerned with attacking the modular inversion
of the nonce K, in which only a few low-order bits leak. However, we found
two other exploitable weaknesses in the card and will discuss them briefly. The
first was an SPA leak of the high-order 54 bits of each nonce during scalar
multiplication. The second was a DPA attack against the multiplication of the
secret by the first half of each signature. The attacks are described in Appendix
A.1 and A.2.

Using Bleichenbacher’s Solution to the Hidden Number Problem 439

0
0.1
0.2

0
0.1
0.2

Po
w

er
 c

on
su

m
pt

io
n

50 100 150 200 250 300 350 400 450 500

0
0.1
0.2

Fig. 2. Power traces during inversion of the first lower-order bits of the nonce

Several authors noticed that weak implementations of finite field operations
such as modular additions, subtractions or multiplications can lead to success-
ful side channel attacks [10,16,29,30]. They proposed eliminating all conditional
statements and branches from both software and hardware implementations.
This includes final conditional subtractions or reduction steps, which are of-
ten found in modular arithmetic operations such as Montgomery multiplication.
However, we did not find any publications describing successful template attacks
against modular inversions.

The analyzed smart card implements a variant of the binary inversion algo-
rithm. This was identified after a detailed reverse engineering phase in which
several intermediate variables of different inversion algorithms were targeted in
known-key DPA attacks.

Analysis of the (likely) binary inversion implementation revealed that it does
not run in constant time. The execution time depends on the values of both the
nonce and the modulus. This is because the algorithm has several conditional
branches that depend on the operands. Each branch executes different operations
such as modular addition, subtraction, or simple shifts. We were able to construct
a set of power consumption templates which represent the power profile for each
nonce value. In the next section, we describe the template building and template
matching phase in detail and show how we extracted the 7 low-order bits of the
nonce with 100% accuracy.

2.4 Recovering the Low-Order Bits of the Nonce

We targeted the low-order bits of the nonce which are processed at the beginning
of the modular inversion. To limit the computational complexity we targeted the
first 8 bits and generated 256 templates. 1 000 000 traces were collected: 950 000
traces for building templates and 50 000 for testing. Some sample traces are
shown in Figure 2.

To build the templates we first aligned all the traces at the beginning of the
modular inversion. We then sorted the traces by their similarity to the total mean
trace using the least mean squares (LMS) algorithm, and excluded all traces
which had a low matching factor. A low matching factor occurred in situations
when the alignment was not possible and/or high noise was interfering with the
measurement. The traces with high matching factor were then partitioned in

440 E. De Mulder et al.

256 sets, based on the low-order 8 bits of the corresponding nonces. We then
computed the 256 templates by averaging the traces in each partition.

To increase the success rate during the matching phase, we applied two further
enhancements. First, we filtered out all the templates which had a high cross-
correlation with other templates. Very similar templates which differed by only
a few sample points were not used for the final byte classification. As a result,
we only used 102 templates out of 256. Second, we added a length property
for each template. Since the processing time of each nonce byte is not constant
but variable during the inversion, the template had to be adapted such that the
entire processing time is covered completely. Hence a different number of sample
points was used to build the template and to match them with test traces.

2.5 Analysis Results

We used 50 000 test traces to evaluate the templates. First, we aligned all traces
and filtered out 4 000 traces due to misalignment and high noise. Second, each
trace was matched with all 102 templates using the LMS algorithm. For the
classification, we followed a threshold detection approach by rejecting all traces
that were below a certain matching threshold. Only those traces with a high
quality factor (high correlation with a template) were considered as correctly
classified. We obtained 4 451 candidates that met all the requirements. For these
candidates, all 7 low-order bits were classified correctly, with a success rate of
100%.

Although we were able to extract 7 bits of each nonce in our final template
analysis, our earlier attempts recovered only a couple of bits reliably. Hence we
decided to implement Bleichenbacher’s attack and see if it could succeed with
fewer bits. The remainder of this paper describes this attack for a 5-bit leak.

3 Bleichenbacher’s Solution to the Hidden Number
Problem

3.1 ECDSA Nonce Leaks and the Hidden Number Problem

We briefly review the basics of exploiting an ECDSA nonce leak by mapping the
problem to an HNP. Our notation is mostly consistent with Bleichenbacher’s
presentation [4,5]. Let q be the order of the base point. For 0 ≤ j ≤ L−1, where
L is the number of signatures, let Hj denote the hashes of the messages to be
signed, x the private key, Kj the ephemeral secret nonces, and rj and sj the two
halves of the signatures. Then

sj = K−1
j (Hj + rjx) mod q,

Kj = s−1
j (Hj + rjx) mod q. (1)

In our case the low-order b bits (b = 5) of Kj, denoted Kj,lo were recovered using
a template attack. Writing Kj = 2bKj,hi +Kj,lo and rearranging Eq. (1) we get

2bKj,hi = (s−1
j Hj −Kj,lo) + s−1

j rjx mod q,

Kj,hi = 2−b
(
s−1
j Hj −Kj,lo

)
+ 2−bs−1

j rjx mod q. (2)

Using Bleichenbacher’s Solution to the Hidden Number Problem 441

If the original Kj are randomly and uniformly generated on [1, . . . , q − 1], then
denoting qb = (q − 1)/2b, the Kj,hi will be randomly and almost uniformly
distributed on [0, . . . , �qb�]1.

It improves our analysis and attack to center the Kj,hi around zero. See Sect. 4
for details. Subtracting �qb+1� from both sides of Eq. (2) gives

Kj,hi − �qb+1� = 2−b
(
s−1
j Hj −Kj,lo

)
+ 2−bs−1

j rjx mod q − �qb+1�. (3)

Denoting kj = Kj,hi − �qb+1�, hj = 2−b
(
s−1
j Hj −Kj,lo

) − �qb+1� mod q, and

cj = 2−bs−1
j rj mod q, Eq. (3) becomes2

kj = hj + cjx+ αjq, (4)

where the kj are almost uniformly distributed on [−�qb+1�, . . . , �qb+1�] for the
appropriate multipliers αj . We can therefore recover the secret x by solving the
following version of the hidden number problem:

Hidden Number Problem: Let x ∈ [0, . . . , q − 1] be unknown, and sup-
pose we have an oracle which generates random, uniformly distributed cj ∈
[1, . . . , q − 1] and kj ∈ [−�qb+1�, . . . , �qb+1�], computes hj = (kj − cjx) mod q,
and outputs the pairs (cj , hj). The goal is to recover x.

Lattice-based solutions have been studied extensively and will not be covered
here. We only briefly note our own results with these techniques for a 384-bit
modulus. Using both the CVP and SVP approaches we were able to attack 6-bit
leaks using both LLL and BKZ (fplll v.4.0.1 [7]) for lattice reduction. We could
attack 4 and 5-bit leaks with BKZ, but not LLL. The 4-bit attack succeeded
twice in 583 trials over a range of 100-200 points per lattice.

3.2 Bias Definition and Properties

Let X be a random variable over Z/qZ. Bleichenbacher defines the bias of X as

Bq(X) = E(e2πiX/q) = Bq(X mod q). (5)

For a set of points V = (v0, v1, . . . , vL−1) in Z/qZ, he defines the sampled bias
as

Bq(V) =
1

L

L−1∑

j=0

e2πivj/q. (6)

Some properties of the bias are listed in Lemma 1 below, taken from [5].

1 Pr{Kj,hi == �qb�} will be less than for all other values of Kj,hi in the interval.
2 We wrote Eq. (4) as an equality because the kj can take on negative values. With
this understanding, for the remainder of the paper we will simply write ‘mod q’.

442 E. De Mulder et al.

Lemma 1. Let 0 < T ≤ q be a bound such that X is uniformly distributed on
the interval [−(T − 1)/2, . . . , (T − 1)/2]. Then:

a. For independent random variables X and X ′, Bq(X +X ′) = Bq(X)Bq(X
′).

b. Bq(X) = 1
T

sin (πT/q)
sin (π/q) . Hence Bq(X) is real-valued with 0 ≤ Bq(X) ≤ 1.

c. If X is uniformly distributed on the interval [0 . . . q − 1], then Bq(X) = 0.

d. Let a be an integer with |a|T ≤ q, and Y = aX. Then Bq(Y) = 1
T

sin (πaT/q)
sin (πa/q) .

e. Bq(Y) ≤ Bq(X)|a|.

The proofs can be found in Appendix A.3. Some example bias values for R =
T/q = 2−b, for large q, are shown in Table 1 below.

Table 1. Example bias values for R = 2−b

b 1 2 3 4 5 6 7 8

Bq(X) 0.6366198 0.9003163 0.9744954 0.9935869 0.9983944 0.9995985 0.9998996 0.9999749

3.3 Connecting the Hidden Number Problem to the Bias

In an instance of the HNP, we are given a modulus q and a set of pairs (cj , hj), 0 ≤
j < L, and we wish to find the secret and presumably unique x for which the set
of values Vx = {hj + cjx mod q}L−1

j=0 all fall near 0 or q. If they do, then this set
of values will show a significantly nonzero sampled bias. Furthermore, for any
w different from x, we expect that the values Vw = {hj + cjw mod q}L−1

j=0 would

show a relatively small sampled bias. To see why, for 0 ≤ w < q let us define3

Bq(w) =
1

L

L−1∑

j=0

e2πi(hj+cjw)/q =

q−1∑

t=0

⎛

⎝ 1

L

∑

{j|cj=t}
e2πihj/q

⎞

⎠ e2πitw/q

=

q−1∑

t=0

⎛

⎝ 1

L

∑

{j|cj=t}
e2πi(hj+cjx)/q

⎞

⎠ e2πit(w−x)/q

=

q−1∑

t=0

⎛

⎝ 1

L

∑

{j|cj=t}
e2πikj/q

⎞

⎠ e2πit(w−x)/q. (7)

If w = x, then Bq(w) =
1
L

∑L−1
j=0 e2πikj/q is just the sampled bias of the points

k = (k0, k1, . . . , kL−1). Given a b-bit nonce leak (R = 2−b in Table 1 above) and
enough samples, Bq(x) will have a value close to 1, as the points e2πikj/q are

3 We acknowledge the abuse of notation in writing Bq(w) instead of Bq(Vw), but this
is consistent with Bleichenbacher’s notes and will simplify the exposition.

Using Bleichenbacher’s Solution to the Hidden Number Problem 443

confined to the part of the unit circle with phase −π/2b < θ < π/2b. Bq(w) will
be close to zero for any other value of w, as the points will be scattered around
the unit circle by the e2πit(w−x)/q terms in Eq. (7).

Thus, the bias calculation gives us a way to score putative solutions to the
HNP, allowing us to search for the correct value x which maximizes Bq(w).
Evaluating it for all w in [0, ..., q − 1] is, of course, impractical for large q.

Fortunately, as Bleichenbacher observed [5], it is possible to “broaden the
peak” of Bq(w) so that values of w near the optimal x will also have large
Bq(w), allowing us to begin our search by calculating Bq(w) for an extremely
sparse set of w. To see how, note that Eq. (7) shows that Bq(w) is a sum of terms
e2πitw/q, with frequencies t/q. If those frequencies are much smaller than 1, the
peak of Bq(w) will be broad, reducing the search work proportionally.

To achieve small t/q, we need to work with (cj , hj) pairs for which the cj are
small. Specifically, if we have a bound C such that all the cj satisfy 0 ≤ cj < C,
then we can find an approximation to x by searching for the peak value in Bq(w)
over n = 2C evenly-spaced values of w between 0 and q. To evaluate Bq(w) over
n evenly-spaced values of w between 0 and q, set wm = mq/n, m ∈ [0, n− 1], in
Eq. (7). Then

Bq(wm) =
1

L

L−1∑

j=0

e2πi(hj+(cjmq/n))/q =
1

L

L−1∑

j=0

e(2πihj/q)+(2πicjm/n)

=

n−1∑

t=0

⎛

⎝ 1

L

∑

{j|cj=t}
e2πihj/q

⎞

⎠ e2πitm/n =

n−1∑

t=0

Zte
2πitm/n (8)

where Zt =
1
L

∑
{j|cj=t} e

2πihj/q. The observant reader may recognize the above

formula as the inverse FFT of Z = (Z0, Z1, . . . , Zn−1). Hence the Bq(wm) can
be efficiently computed by first computing the vector Z, and then taking the
inverse FFT. In practice, we are limited in the number of Bq(w) we can evaluate
at a given time by the maximum FFT size we can efficiently compute. Hence, we
require (cj , hj) pairs with sufficiently small cj . We will discuss range reduction
in Sect. 4. For the next section we will assume the cj are appropriately bounded.

3.4 Recovering the Secret x with Bounded cj

Suppose we can compute an n = 2N -point inverse FFT. Then we can recover
the high-order N bits of the x as follows. First zero the vector Z. Then:

1. Loop over all L pairs (cj , hj). For each pair add e2πihj/q to the appropriate
Zt, namely t = cj.

2. Compute the inverse FFT of Z and find the m for which Bq(wm) is maximal.
3. The most significant N bits of x are msbN (x) = msbN(mq/n).

We can repeat the process iteratively to recover the remaining bits of x. Let
x = 2uxhi + xlo, where xhi are the known bits previously recovered, and xlo is

444 E. De Mulder et al.

u bits in length and unknown. We first rewrite Eq. (4) to absorb the known bits
xhi into hj :

kj = (hj + cjx) mod q = ((hj + 2ucjxhi) + cjxlo) mod q

= (h′
j + cjxlo) mod q. (9)

The computation proceeds as before, except we evaluate Bq(w) over n evenly
spaced values of w between 0 and 2u, since only u bits remain unknown. Mim-
icking the previous computation, set wm = 2um/n, m ∈ [0, n− 1] in Eq. (8):

Bq(wm) =
1

L

L−1∑

j=0

e2πi(h
′
j+(2ucjm/n))/q =

1

L

L−1∑

j=0

e(2πih
′
j/q)+(2πi(2ucjm/qn))

=
n−1∑

t=0

⎛

⎝ 1

L

∑

{j|(2ucj/q)=t}
e2πih

′
j/q

⎞

⎠ e2πitm/n =
n−1∑

t=0

Zte
2πitm/n (10)

where Zt =
1
L

∑
{j|(2ucj/q)=t} e

2πih′
j/q. As before, compute the Bq(wm) by taking

the inverse FFT of Z, and find the m with the maximum value for Bq(wm). The
most significant N bits of xlo are msbN(2um/n).

If the cj remain bounded by C = n/2 as the attack proceeds, then 2ucj/q
would always be zero as soon as 2u < 2q/n, and the only nonzero coefficient
would be Z0. Instead, we want 2ucj/q to range between 0 and n/2, so we relax
the bound on the cj and set C = nq/2u+1 as additional bits of x are recovered.

4 Range Reduction

The original cj will be uniformly distributed in [0, q − 1] and not nicely con-
strained as required for the attack described above. The final piece of the puzzle
is to find linear combinations of the cj which are in the required ranges, but do
not combine too many points. By Lemma1, combining too many points would
attenuate the bias beyond usefulness.

Bleichenbacher’s original analysis was for very small, even fractional, bit leaks,
and he used millions of signatures, and large FFT sizes. His range reduction
strategy was to look for collisions in the high-order bits of the cj and take their
differences. For example, if you have L points in [0, q − 1], sort them by size,
and subtract each point from the next largest one, you get a list of L− 1 points,
which are on average about log(L) bits smaller. This process can be repeated
until the points are in the desired ranges.

In our case we are working with a larger bit leak, but we only have a few
thousand signatures, a 384-bit modulus instead of a 160-bit modulus, and a 228-
point FFT. If we had 230 signatures, we could employ the sort-and-difference
method to the cj for 12 rounds, taking differences of the corresponding hj as
well. This would result in a large number of c′j satisfying 0 ≤ c′j < 224. The
sampled bias for the corresponding points k′j = h′

j + c′jx mod q would be about

(0.9984)2
12

= 0.0014, and the attack would succeed.

Using Bleichenbacher’s Solution to the Hidden Number Problem 445

If we had 220 signatures and applied the sort-and-difference method for 18
rounds, the resulting c′j would also be in the same range, but the sampled bias

would be about 10−182, far too small to be useful. With about 4 000 signatures
available, we looked for another strategy to reduce the range of the cj without
reducing the bias too much.

Given subsets cJ = (cJ,0, cJ,1, ..., cJ,d−1) of the cj , we want to find sets of in-
teger coefficients AJ = (aJ,0, aJ,1, ..., aJ,d−1), such that cAJ = 〈AJ , cJ〉 mod q =
∑d−1

t=0 aJ,tcJ,t mod q satisfies 0 ≤ cAJ < C. Applying the AJ to Eq. (4) gives
kAJ = (hAJ + cAJx) mod q where the cAJ are small enough to be used in the
FFT calculation. It is actually a trivial task to find such cJ and AJ . The diffi-
culty lies in finding them subject to the condition that the bias of the resulting
kAJ = 〈AJ , kJ〉 mod q is still large enough to be useful. The most relevant met-
rics are the L1 norm ‖AJ‖1, and the L∞ norm ‖AJ‖∞, which must be sufficiently
bounded. Finding bounds G1 and G∞ for these norms for which the attack suc-
ceeds is discussed in Appendix A.5. Given these bounds, however, we can use
BKZ for range reduction and keep only those points which satisfy them.

Consider the lattice spanned by the rows of the following matrix:

⎡

⎢⎢
⎢
⎢
⎢
⎣

W 0 0 · · · 0 cJ,0
0 W 0 · · · 0 cJ,1
...

...
...

...
. . .

...
0 0 0 · · · W cJ,d−1

0 0 0 · · · 0 q

⎤

⎥⎥
⎥
⎥
⎥
⎦
. (11)

The cJ,l are randomly chosen from our list of points, and W is a weight factor
to balance the reduction of the cJ,l, and the size of the resulting coefficients.
Applying BKZ to the matrix gives

⎡

⎢
⎢
⎢
⎣

aJ,0,0W aJ,0,1W aJ,0,2W · · · aJ,0,d−1W cAJ,0

aJ,1,0W aJ,1,1W aJ,1,2W · · · aJ,1,d−1W cAJ,1

...
...

...
...

. . .
...

aJ,d,0W aJ,d,1W aJ,d,2W · · · aJ,d,d−1W cAJ,d

⎤

⎥
⎥
⎥
⎦

(12)

whereAJ,l = (aJ,l,0, aJ,l,1, ..., aJ,l,d−1) for 0 ≤ l ≤ d and cAJ,l
= 〈AJ,l, cJ〉 mod q =

∑d−1
t=0 aJ,l,tcJ,t mod q. To simplify notation we will drop the second index l for

the rest of the paper.
We want the above lattices to contain points cAJ ∈ (−C,C) for which ‖AJ‖1 ≤

G1, and the ‖AJ‖∞ ≤ G∞. The number of good points per lattice depends not
only on those bounds, but also the dimension d, the weight W , and the BKZ
parameters. We determined these experimentally, as described in Appendix A.5.
For the first iteration of the attack we used d = 128, a BKZ blocksize of 20,
W = 225, C = 228, G1 = 325 and G∞ = 8.4

4 Technically, C should be 227, but we increased it by a bit in order to find more
reduced points, at a cost of decreasing the sampled bias slightly.

446 E. De Mulder et al.

We can now explain the main reason for centering the kj around zero. It
mitigates the reduction of the bias when taking linear combinations. To see why,
suppose the range of two independent variables X and X ′ is [0, ..., T − 1]. Then
the range of ±(X ±X ′) is [−2(T − 1), ..., 2(T − 1)]. On the other hand, if the
range of X and X ′ is [−(T − 1)/2, ..., (T − 1)/2], then the range of ±(X ±X ′) is
[−(T − 1), ..., T − 1]. Hence if the original kj are centered about zero, then the
kAJ in [0, ..., q − 1] are more densely clustered near 0 and q, and therefore have
a larger bias. In fact, centering the kj improves the performance of the attack
by about a bit in number of leaked nonce bits.

5 Attack Details and Observations

The attack consists of multiple iterations, in which additional bits of x are re-
covered in each iteration. Each iteration consists of two phases: range reduction
using BKZ, followed by the inverse FFT calculation. The first iteration, with
the smallest value for C, is the most difficult. As the attack proceeds and C in-
creases, we can find more points cAJ ∈ (−C,C) with smaller coefficient bounds
G1 and G∞, so fewer points are required for the FFT phase.

We kept a short list of the top 10 scoring candidates from each iteration.
We chose to keep 10 candidates based on our experiments with the given bias
and the number of points available for the inverse FFT. The correct answer was
not always the top candidate, but was always in the top 10, and was the top
candidate after the final iteration.

We also used overlapping windows as we successively recovered bits of x,
keeping the high-order 20 bits out of the 28 recovered. We did this for two
reasons. First, the results of the FFT are sometimes off by a few of the low
order bits. This is more of an issue when the number of points available is barely
sufficient. The second reason is that we used this 8-bit value to round the current
approximation of x for the next iteration. We found this rounding essential for
getting the correct result in the next iteration. After the next block of bits of x
is recovered, the rounding from the previous iteration is undone.

The attack succeeded using 3 000 reduced points for each iteration, derived
from the original 4 000 signatures. However, the work factor and time required
was worse than the standard lattice attacks. For the BKZ phase of the first
iteration, we used the bounds and lattice parameters discussed above. Each
lattice reduction took about 2 minutes, and returned on average 2 usable points.
This phase is easy to parallelize, and took about 4 hours to complete on 12
cores. Each 228-point FFT took 30 seconds, for a total of 5 minutes. The second
iteration was similar, as the increase in C did not improve the BKZ outputs
much. The remaining iterations were significantly easier, and the rest of the
attack took a few hours to complete.

6 Conclusions

In this paper we described an attack against a nonce leak in 384-bit ECDSA
running on a smart card. We used a template attack to recover a few low-order

Using Bleichenbacher’s Solution to the Hidden Number Problem 447

bits from each nonce. We then used Bleichenbacher’s solution to the HNP, where
we had a much larger modulus and far fewer signatures than in his original
analysis. Without enough signatures to perform his collision searches, we used
BKZ for range reduction.

Our attack succeeded against a 5-bit leak with about 4 000 signatures, al-
though the time and resources required is worse than what can be done with
standard lattice-based attacks. However, our technique will continue to scale
with fewer bits. For example, our simulations also show that we could attack a
4-bit leak with 500 000 reduced points satisfying G1 = 250 and G∞ = 5. Finding
these points does not appear feasible with the lattice reduction software we used.
However, it may be possible to find them using improved implementations such
as BKZ 2.0 [9]. There is still a lot of room for improvement in our results, and
we hope this paper spurs more research on Bleichenbacher’s method.

Acknowledgements. We would like to thank Pankaj Rohatgi and Mike Ham-
burg for many fruitful discussions and valuable suggestions.

References

1. Minutes from the IEEE P1363 Working Group for Public-Key Cryptography Stan-
dards (November 15, 2000)

2. ANSI X9.62:2005: Public Key Cryptography for the Financial Services Industry.
In: The Elliptic Curve Digital Signature Algorithm, ECDSA (2005)

3. Babai, L.: On Lovász’ Lattice Reduction and the Nearest Lattice Point Problem.
Combinatorica 6(1), 1–13 (1986)

4. Bleichenbacher, D.: On The Generation of One-Time Keys in DL Signature
Schemes. Presentation at IEEE P1363 Working Group meeting (November 2000)

5. Bleichenbacher, D.: On the Generation of DSA One-Time Keys. Presentation at
Cryptography Research, Inc., San Francisco (2007)

6. Boneh,D.,Venkatesan,R.:Hardness ofComputing theMost SignificantBits of Secret
Keys in Diffie-Hellman and Related Schemes. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)

7. Cadé, D., Pujol, X., Stehlé, D.: fplll-4.0.1 Lattice Reduction Library (2012)
8. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç,

Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

10. Hachez, G., Quisquater, J.-J.: Montgomery Exponentiation with no Final Sub-
tractions: Improved Results. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 293–301. Springer, Heidelberg (2000)

11. Hamburg, M.: Fast and Compact Elliptic-Curve Cryptography. IACR Cryptology
ePrint Archive, 309 (2012)

12. Hedabou, M., Pinel, P., Bènèteau, L.: A Comb Method to Render ECC Resistant
Against Side Channel Attacks. IACR Cryptology ePrint Archive, 342 (2004)

448 E. De Mulder et al.

13. Howgrave-Graham, N., Smart, N.P.: Lattice Attacks on Digital Signature Schemes.
Designs, Codes and Cryptography 23(3), 283–290 (2001)

14. Hutter, M., Medwed, M., Hein, D., Wolkerstorfer, J.: Attacking ECDSA-Enabled
RFID Devices. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 519–534. Springer, Heidelberg (2009)

15. Joye, M., Tunstall, M.: Exponent Recoding and Regular Exponentiation Algo-
rithms. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334–349.
Springer, Heidelberg (2009)

16. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

17. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

18. Lenstra, A.K., Lenstra, H., Lovász, L.: Factoring Polynomials with Rational Coef-
ficients. Mathematische Annalen 261, 515–534 (1982)

19. Liu, M., Nguyen, P.Q.: Solving BDD by Enumeration: An Update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

20. Lochter, M., Merkle, J.: Elliptic Curve Cryptography (ECC) Brainpool Standard
Curves and Curve Generation. In: RFC 5639 (Informational) (March 2010)

21. Naccache, D., Nguyen, P.Q., Tunstall, M., Whelan, C.: Experimenting with Faults,
Lattices and the DSA. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 16–
28. Springer, Heidelberg (2005)

22. National Institute of Standards and Technology (NIST). FIPS-186-2 (+Change
Notice): Digital Signature Standard (DSS) (January 2000),
http://www.itl.nist.gov/fipspubs/

23. Nguyen, P.Q., Shparlinski, I.: The Insecurity of the Digital Signature Algorithm
with Partially Known Nonces. J. Cryptology 15(3), 151–176 (2002)

24. Nguyen, P.Q., Shparlinski, I.: The Insecurity of the Elliptic Curve Digital Signature
Algorithm with Partially Known Nonces. Des. Codes Cryptography 30(2), 201–217
(2003)

25. Quisquater, J.-J., Koeune, F.: DSA Security Evaluation of the Signature Scheme
and Primitive. Technical report, Math RiZK, K2Crypt (February 2002)

26. Schnorr, C.-P., Euchner, M.: Lattice Basis Reduction: Improved Practical Algo-
rithms and Solving Subset Sum Problems. Mathematical Programming 66, 181–199
(1994)

27. Shoup, V.: NTL: A Library for doing Number Theory (2012)
28. Vaudenay, S.: Evaluation Report on DSA. IPA Work Delivery 1002 (2001)
29. Walter, C.D.: Montgomery Exponentiation needs no Final Subtractions. Electron-

ics Letters 35, 1831–1832 (1999)
30. Walter, C.D., Thompson, S.: Distinguishing Exponent Digits by Observing Mod-

ular Subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
192–207. Springer, Heidelberg (2001)

A Appendix

A.1 Targeting the Scalar Multiplication with SPA

Implemented correctly, the signed comb technique is naturally SPA resistant. If
all the required pre-computed points are stored in a lookup table, then the main

http://www.itl.nist.gov/fipspubs/

Using Bleichenbacher’s Solution to the Hidden Number Problem 449

loop of the scalar multiplication routine is very regular and avoids conditional
branches. However, our previous analysis showed that the card only stores the
points required for addition. When a point subtraction is needed, the index into
the table is computed by complementing the tapped bits of the scalar, and then
subtracting the accessed point from the current result. The power traces show
a prominent spike which is only present when the point subtraction is needed.
This SPA leak revealed all 54 higher-order bits of the nonce, after which the
lattice-based attack of [13] allowed us to recover the entire secret key x using
only 9 power traces.

A.2 Targeting the Private-Key Multiplication with DPA

When computing the second half of an ECDSA signature, the fixed secret key x
is multiplied by the known, varying first half of the signature r. This situation
is typically vulnerable to standard DPA attacks [14].

We performed the attack by targeting intermediate values during the modular
multiplication of rx mod q. We measured 10 000 traces and aligned them using
the LMS algorithm. This analysis revealed that the card implements an MSB-
first digit-serial modular multiplication method with a full multiplication of rx
followed by modular reduction by division. The high-order 384 bits of the 768-bit
intermediate result leak at different positions during the reduction step. Hence
our attack proceeded as follows.

First, we defined a search range of 12 bits and targeted the 8th bit. After
calculating all possible 4 096 hypotheses, we performed a difference of means
test that showed peaks for the correct hypotheses. Because multiplication is
a linear operation, all bit-shifted variants of the correct hypothesis (multiples
and fractions of the correct guess) also showed peaks. This was addressed by
assuming the MSB is a one and determining the length of the private key during
the DPA attack. The remaining bits of the secret x can be recovered iteratively.
In total, we recovered the entire key x in a few hours, where most of the time
was spent generating all possible intermediate values.

A.3 Proof of Lemma 1

a. This formula follows from the fact that the probability distribution of the
sum of independent variables is the convolution of the variables’ distributions,
together with the relationship between Fourier transforms and convolutions.

b. This formula can be computed directly using the standard formula for geo-
metric sequences. The value is real because we centered the distribution of
points about zero, and the resulting values on the unit circle are symmetric
about the x-axis. Without centering the bias would be complex, with the
same absolute value. Also, if T is even, then the formulas still hold, with the
shifted points taking on half-integer values.

c. Follows immediately from setting T = q in part b.
d. Same as part b.

450 E. De Mulder et al.

e. Write

Bq(X) =
1

T

sin (πT/q)

sin (π/q)
=

sin (πT/q)
πT/q

sin (π/q)
π/q

(13)

Setting y = π/q and F (y) = log (sin (y) /y) we want to show that

F (aTy)− F (ay) ≤ a (F (Ty)− F (y)) . (14)

This will be true if F is concave down. Taking the second derivative gives
F ′′(z) = 1/z2 − 1/ sin2(z), which is negative for z ∈ (0, π). Hence Eq. (14)
holds and the result is proved.

A.4 Bias Approximation Formulas

We can find convenient approximations to the formulas in Lemma 1 by taking
limits as q → ∞.

Lemma 2. Suppose R = T/q remains fixed as q varies, with random variables
Xq uniformly distributed on [− (T − 1) /2, ..., (T − 1) /2] for each q. Let Yq =
aXq. Finally define B∞(X) = limq→∞Bq(Xq) and B∞(Y) = limq→∞Bq(Yq).
Then:

a. B∞(X) = sin (πR)/πR.
b. B∞(Y) = sin (aπR)/aπR.

Proof. L’Hôpital’s rule.

A.5 Finding BKZ Parameters for Range Reduction

The weights W are required to balance the reduction of the cj with the size of
the coefficients. If W is too small, say W = 1, then the lattice would contain
many cAJ ∈ (−C,C) but the coefficients would be too large. On the other hand,
if W is too large, say C ≤ W , the coefficient norms would be smaller, but there
would be very few if any cAJ ∈ (−C,C). The values for W which appear to work
best are those which are just a few bits smaller than C. In our lattices we set
W = 2�log(C)�−3.

We now turn to the question of the coefficient bounds G1 and G∞. We need
to know for which bounds the attack will work, and how many (cAJ , hAJ) pairs
are required. Ideally we would run experiments using reduced points output by
BKZ. Unfortunately, the lattices which worked best were large, containing 128
or more points. Each lattice reduction took 1-2 minutes, and yielded only a few,
if any useful points. This made it impractical to use BKZ outputs of our real
data to analyze coefficient bounds.

We therefore analyzed the distribution of coefficients output by BKZ in order
to simulate them. For our analysis and attack, we used BKZ with d = 128, and
a blocksize of 20. We randomly populated and reduced lattices, and sorted the
cAJ based on the bounds C, G1 and G∞ they satisfied. Once we had enough cAJ

Using Bleichenbacher’s Solution to the Hidden Number Problem 451

for each set of bounds, we examined the distribution of nonzero coefficients. An
example is shown in Fig. 3, for C = 228, G1 = 325 and G∞ = 8. The distribution
strongly resembles a normal distribution, and a normal fit also appears to match
the data5. We therefore modeled the output of BKZ using normal distributions,
after getting estimates of the coefficient standard deviations for different sets of
bounds.

−8 0 8
0

0.05

0.1

0.15

Coefficient value

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

Fig. 3. Distribution and normal fit of the nonzero coefficients output by BKZ

Note that this was not intended as a rigorous mathematical analysis. We only
needed a reasonable model of the coefficient distribution for our simulations.
Once we had that, we generated simulated data points (cj , hj) and coefficients
AJ with ‖AJ‖1 ≤ G1 and ‖AJ‖∞ ≤ G∞ such that the cAJ ∈ (−C,C). We
then performed the FFT phase of the attack in order to determine the number
of (cAJ , hAJ) pairs required for success. The simulations were accurate, and
successfully predicted the number of points required by the attack on actual
data. For example, our simulations predicted that for a 5-bit leak with bounds
G1 = 325 and G∞ = 8, the first phase of the attack would succeed with about
3 000 reduced pairs (cAJ , hAJ), matching what occurred in the real attack.

A.6 Most Significant vs. Least Significant Bit Leaks

In [23] the authors noted that depending on the modulus, the most significant bit
can carry less information than lower-order bits. This difference can be quantified
in terms of the bias. We illustrate this by comparing 5-bit leaks for NIST P-384
and brainpoolP384r1.

The base point for the NIST curve has order q = 0xFFFFFFFF. . . , and for
the Brainpool curve q = 0x8CB91E82. . . If the low-order 5 bits leak, then for
either prime we get T = �q/25� and R = T/q ≈ 2−5, for a bias of 0.9984.

5 Curiously, the coefficient distributions output by LLL were better modeled by geo-
metric distributions.

452 E. De Mulder et al.

If the high-order 5 bits leak, then T = 2379. For the NIST prime, we still have
R = T/q ≈ 2379/2384 = 2−5. Hence the work to attack a 5-bit leak is the same
whether the MSBs or LSBs are recovered. On the other hand, for the Brainpool
prime we have R = T/q ≈ 0x8/0x8C =1/17.5 and a resulting bias of 0.9946.
This is much closer to the value for a 4-bit LSB leak.

Our experiments confirm these calculations. For the NIST prime the work
factor for the attack does not depend on whether the MSBs or LSBs are leaked.
On the other hand, for the Brainpool prime the work required to attack a 5-bit
leak of the MSBs is on par with the work to attack a 4-bit leak of the LSBs.
Given the form of the Brainpool prime, about 8/9 of the time the high-order
bit of a randomly generated nonce is zero. Hence when the MSBs are leaked, we
gain on average very little additional information about the high-order bit.

	Using Bleichenbacher’s Solution to the HiddenNumber Problem to Attack Nonce Leaksin 384-Bit ECDSA
	1 Introduction
	2 Analysis of the Smart Card
	2.1 Description of the Implementation
	2.2 Power Measurement Setup
	2.3 Power Analysis Attacks against ECDSA
	2.4 Recovering the Low-Order Bits of the Nonce
	2.5 Analysis Results

	3 Bleichenbacher’s Solution to the Hidden Number Problem
	3.1 ECDSA Nonce Leaks and the Hidden Number Problem
	3.2 Bias Definition and Properties
	3.3 Connecting the Hidden Number Problem to the Bias
	3.4 Recovering the Secret x with Bounded

	4 Range Reduction
	5 Attack Details and Observations
	6 Conclusions
	References

