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Abstract. For the hard-core model (independent sets) on Z
2 with fugacity λ, we

give the first explicit result for phase coexistence by showing that there are mul-
tiple Gibbs states for all λ > 5.3646. Our proof begins along the lines of the
standard Peierls argument, but we add two significant innovations. First, building
on the idea of fault lines introduced by Randall [19], we construct an event that
distinguishes two boundary conditions and yet always has long contours associ-
ated with it, obviating the need to accurately enumerate short contours. Second,
we obtain vastly improved bounds on the number of contours by relating them to a
new class of self-avoiding walks on an oriented version of Z2. We also extend our
characterization of fault lines to show that local Markov chains will mix slowly
when λ > 5.3646 on lattice regions with periodic (toroidal) boundary condi-
tions and when λ > 7.1031 with non-periodic (free) boundary conditions. The
arguments here rely on a careful analysis that relates contours to taxi walks and
represent a sevenfold improvement to the previously best known values of λ [19].

1 Introduction

The hard-core model was introduced in statistical physics as a model for lattice gases,
where each molecule occupies non-trivial space in the lattice, requiring occupied sites
to be non-adjacent. Viewing a lattice such as Z

d as a graph, allowed configurations of
molecules naturally correspond to independent sets in the graph.

Given a finite graph G, let Ω be the set of independent sets of G. Given a (fixed)
activity (or fugacity) λ ∈ R

+, the weight associated with each independent set I
is w(I) = λ|I|. The associated Gibbs (or Boltzmann) distribution μ = μG,λ is de-
fined on Ω, assuming G is finite, as μ(I) = w(I)/Z , where the normalizing constant
Z = Z(G, λ) =

∑
J∈Ω w(J) is commonly called the partition function. Physicists

are interested in the behavior of models on an infinite graph (such as the integer lattice
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Z
d), where the Gibbs measure is defined as a certain weak limit with appropriate con-

ditional probabilities. For many models it is believed that as a parameter of the system
is varied – such as the inverse temperature β for the Ising model or the activity λ for the
hard-core model – the system undergoes a phase transition at a critical point.

For the classical Ising model, Onsager, in seminal work [17], established the precise
value of the critical temperature βc(Z

2) to be log(1+
√
2). Only recently have the anal-

ogous values for the (more general) q-state Potts model been established [3]. Establish-
ing such a precise value for the hard-core model with currently available methods seems
nearly impossible. Even the existence of such a (unique) critical activity λc, where there
is a transition from a unique Gibbs state to the coexistence of multiple Gibbs states, re-
mains conjectural for Zd (d ≥ 2; it is folklore that there is no such transition for d = 1),
while it is simply untrue for general graphs (even general trees, in fact, thanks to a re-
sult of Brightwell et al. [7]). Regardless, a non-rigorous prediction from the statistical
physics literature [2] suggests λc ≈ 3.796 for Z2.

Thus, from a statistical physics or probability viewpoint, understanding the precise
dependence on λ for the existence of unique or multiple Gibbs states is a natural and
challenging problem. Moreover, breakthrough works of Weitz [25] and Sly [22] have
recently identified λc(TΔ) – the critical activity for the hard-core model on an infinite
Δ-regular tree – as a computational threshold where estimating the hard-core partition
function on general Δ-regular graphs undergoes a transition beyond which there is no
PTAS unless NP = RP , further motivating the study of physical transitions and their
computational implications. While it is not surprising that for many problems comput-
ing the partition function exactly is intractable, it is remarkable that even approximating
it for the hard-core model above a certain critical threshold also turns out to be hard.

Starting with Dobrushin [8] in 1968, physicists have been developing techniques to
characterize the regimes on either side of λc for the hard-core model. Most attention has
focused on establishing ever larger values of λ below which there is always uniqueness
of phase. The problem has proved to be a fruitful one for the blending of ideas from
physics, discrete probability and theoretical computer science (see, e.g., [18] [4], [25]).
The state of the art is work by Vera et al. [24], expanding on ideas from Weitz [25] and
Restrepo et al. [20], establishing uniqueness for λ < 2.48.

Much less is known about the regime of phase coexistence. Dobrushin [8] established
phase coexistence for all λ > C, but did not explicitly calculate C. Borgs had estimated
that C = 80 was the theoretical lower limit of Dobrushin’s argument [5], but a recent
computation by the second author suggests that the actual consequence of the argument
is more like C ≈ 300. We are now prepared to state our first main result.

Theorem 1. For λ > 5.3646, the hard-core model onZ2 with activity λ admits multiple
Gibbs states.

From a computational standpoint, there are two natural questions to ask concerning the
hard-core model on a finite graph. Can the partition function be approximated, and how
easy is it to sample from a given Gibbs distribution? For both, a powerful method is
given by Markov chain algorithms – carefully constructed random walks on the space
of independent sets of a graph whose equilibrium distributions are the desired Gibbs
distributions. One of the most commonly studied families are the local-update chains,
such as Glauber dynamics, that change a bounded number of vertices at each step.
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The efficiency of the Markov chain method relies on the underlying chain being
rapidly mixing; that is, it must fairly quickly reach a distribution that is close to station-
ary. For many problems, local chains seem to mix rapidly below some critical point,
while mixing slowly above that point. Most notably for the Ising model on Z

2, simple
local Markov chains are rapidly mixing (in fact, with optimal rate) for β < βc(Z

2) and
slowly mixing for β > βc(Z

2). Recently the Ising picture was completed by Lubezky
and Sly [13], who showed polynomial mixing at β = βc(Z

2).
Once again, the known bounds are less sharp for the hard-core model. Luby and

Vigoda [14] showed that Glauber dynamics on independent sets is fast when λ ≤ 1 on
the 2-dimensional lattice and torus. Weitz [25] reduced the analysis on the grid to the
tree, thus establishing that in this same setting Glauber dynamics is fast up to the critical
point for the 4-regular tree, in effect for λ < 1.6875. Again, the best result to date is
due to Vera et al. [24] who proved that Glauber dynamics on the space of hard-core
configurations on boxes in Z

2 is rapidly mixing for all λ < 2.48.
As with phase-coexistence, it is believed there is a critical value λmix

c at which
Glauber dynamics for sampling hard-core configurations flips from mixing in time poly-
nomial in n, to exponential in n, and that it coincides with λc. Borgs et al. [6] showed
that Glauber dynamics is slow on toroidal lattice regions in Z

d (for d ≥ 2), when λ is
sufficiently large, in particular establishing a finite constant above which mixing is slow
on Z

2. The first effective bound was provided by Randall [19], who showed slow mix-
ing for λ > 50.526 on boxes with periodical boundary conditions, and for λ > 56.812
on boxes with free boundary 1 (but did not address the question of phase coexistence).

Our second main result establishes slow mixing of Glauber dynamics on boxes in Z
2

for λ that is an order of magnitude lower than the previously best known bounds.

Theorem 2. For λ > 5.3646, the mixing time of Glauber dynamics for the hard-core
model on n by n boxes in Z

2 with periodic boundary conditions and activity λ is expo-
nential in n. For free boundary conditions, we have the same result with λ > 7.1031.

The proofs of Theorems 1 and 2 utilize combinatorial, computational and physical in-
sights. The standard approach to showing multiple Gibbs distributions, introduced by
Dobrushin [8], is to consider the limiting distributions corresponding to two different
boundary conditions on boxes in the lattice centered at the origin, and find a statistic
that separates these two limits. For the hard-core model, it suffices (see [4]) to compare
the even boundary condition – all vertices on the boundary of a box at an even distance
from the origin are occupied – and its counterpart the odd boundary condition, and the
distinguishing statistic is typically the occupation of the origin. Under odd boundary
condition the origin should be unlikely to be occupied, since independent sets with odd
boundary and (even) origin occupied must have a contour – a two-layer thick unoccu-
pied loop of vertices separating an inner region around the origin that is in “even phase”
from an outer region near the boundary that is in “odd phase”. For large enough λ, such
an unoccupied layer is costly, and so such configurations are unlikely.

As we will see presently, the effectiveness of this approach, known as a Peierls argu-
ment, is driven by the number of contours of each possible length – better upper bounds
1 Note that stronger bounds were reported in [19] due to a missing factor of 2 in the compu-

tations; see http://www.math.gatech.edu/~randall/ind-fix.pdf for the cor-
rected version.

http://www.math.gatech.edu/~randall/ind-fix.pdf
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on the number of contours translate directly to better upper bounds on λc. Previous
(unpublished) work on phase coexistence in the hard-core model on Z

2 had viewed
contours as simple polygons in Z

2, which are closely related to the very well stud-
ied family of self-avoiding walks. While this is essentially the best possible point of
view when applying the Peierls argument on the Ising model, it is far from optimal
for the hard-core model. One of the two major breakthroughs of the present paper is
the discovery that hard-core contours, if appropriately defined, can be viewed as sim-
ple polygons in the oriented Manhattan lattice (orient edges of Z2 that are parallel to
the x-axis (resp. y-axis) positively if their y-coordinate (resp. x-coordinate) is even,
and negatively otherwise), with the additional constraint that contours cannot make two
consecutive turns. The number of such polygons can be understood by analyzing a new
class of self-avoiding walks, that we refer to as taxi walks. The number of taxi walks
turns out to be significantly smaller than the number of ordinary self-avoiding walks,
leading to much better bounds on λc than could possibly have been obtained previously.

The number c̃n of taxi walks of length n is asymptotically controlled by a single
number μt > 0, the taxi walk connective constant, in the sense that (c̃n)1/n ∼ μt as
n → ∞. Adapting methods of Alm [1] we obtain good estimates on μt, allowing us to
understand c̃n for large n. It is difficult to control c̃n for small n, however, presenting
a major stumbling block to the effectiveness of the Peierls argument. Using the statistic
“occupation of origin” to distinguish the two boundary conditions, one inevitably has
to control c̃n for both small and large n. The lack of precise information about the
number of short contours leads to discrepancies between theoretical lower limits and
actual bounds, such as that between C = 80 (theoretical best possible) and C ≈ 300
for phase coexistence on Z

2, discussed earlier.
The second breakthrough of the present paper is the idea of using an event to distin-

guish the two boundary conditions with the property that every independent set in the
event has a long contour. This allows us to focus exclusively on the asymptotic growth
rate of contours/taxi walks, and obviates the need for an analysis of short contours. The
immediate result of this breakthrough is that the actual limits of our arguments agree
exactly with their theoretical counterparts. The distinguishing event we use extends the
idea of fault lines, which we discuss in more detail below in the context of slow mixing.

The traditional argument for slow mixing is based on the observation that when λ
is large, the Gibbs distribution favors dense configurations, and Glauber dynamics will
take exponential time to converge to equilibrium. The slow convergence arises because
the Gibbs distribution is bimodal: dense configurations lie predominantly on either the
odd or the even sublattice, while configurations that are roughly half odd and half even
have much smaller probability. Since Glauber dynamics changes the numbers of even
and odd vertices by at most 1 in each step, the Markov chain has a bottleneck.

Our work builds on a novel idea from [19], namely using fault lines to establish
slow mixing for Glauber dynamics on hard-core configurations for large λ, improving
upon what was best known at that time. Randall [19] gave an improvement by realizing
that the state space could be partitioned according to certain topological obstructions in
configurations, rather than the relative numbers of odd or even vertices. This approach
gives better bounds on λ, and also greatly simplifies the calculations. First consider an
n× n lattice region G with free (non-periodic) boundary conditions. A configuration I
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(a) (b) (c)

Fig. 1. Independent sets with (a) a spanning path with four alternation points in G♦, (b) a fault
line with one alternation point and (c) a fault line with no alternation points

is said to have a fault line if there is a width two path of unoccupied vertices in I from
the top of G to the bottom or from the left boundary of G to the right. Configurations
without a fault line must have a cross of occupied vertices in either the even or the odd
sublattices forming a connected path in G2 from both the top to the bottom and from the
left to the right of G, where G2 connects vertices at distance 2 in G. Roughly speaking
the set of configurations that have a fault line forms a cut set that must be crossed to
move from a configuration that has an odd cross to one with an even cross, and it was
shown that fault lines are exponentially unlikely when λ is large. Likewise, if Ĝ is an
n×n region with periodic boundary conditions, it was shown that either there is an odd
or an even cross forming non-contractible loops in two different directions or there is a
pair of non-contractible fault lines, allowing for a similar argument.

We improve the argument by refining our consideration of fault lines, which had
previously been characterized as (rotated) self-avoiding walks in Z

2. Here we observe
that, suitably modified, they are in fact taxi walks and so the machinery developed for
phase coexistence can be brought to bear in the mixing context.

2 Combinatorial Background: Crosses, Fault Lines and Taxi
Walks

We begin by introducing the notions of crosses and fault lines. Let G = (V,E) be
a simply connected region in Z

2, say the n × n square. We define the graph G♦ =
(V♦, E♦) as follows. The vertices V♦ are the midpoints of edges in E. Vertices u and v
in V♦ are connected by an edge in E♦ if and only if they are the midpoints of incident
edges in E that are perpendicular. Notice that G♦ is a region in a smaller Cartesian
lattice that has been rotated by 45 degrees. We will also make use of the even and odd
subgraphs of G. For b ∈ {0, 1}, let Gb = (Vb, Eb) be the graph whose vertex set
Vb ⊆ V contains all vertices with parity b (i.e., the sum of their coordinates has parity
b), with (u, v) ∈ Eb if u and v are at Hamming distance 2. We refer to G0 and G1 as
the even and odd subgraphs. The graphs G♦, G0 and G1 play a central role in defining
features of independent sets that determine distinguishing events in our proof of phase
coexistence and the partition of the state space for our proofs of slow mixing.

Given an independent set I ∈ Ω, we say that a simple path p in G♦ is spanning if
it extends from the top boundary of G♦ to the bottom, or from the left boundary to the
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(a) (b) (c)

Fig. 2. The figure shows: (a) G1, (b) an independent set with an odd bridge in G1, and (c) two
odd bridges forming an odd cross in G1

right, and each vertex in p corresponds to an edge in G such that both endpoints are
unoccupied in I . It will be convenient to color the vertices on p according to whether
the corresponding edge in G has an odd or an even vertex to its left as we traverse the
path. Specifically, suppose vertex v ∈ V♦ on the path p bisects an edge ev ∈ E. Color
v blue if the odd vertex in ev is to the left when the path crosses v, and red otherwise
(note that each v ∈ E has one odd and one even endvertex). When the color of the
vertices along the path changes, we have an alternation point (see Fig. 1 (a) and (b)). It
was shown in [19] that if an independent set has a spanning path, then it must also have
one with zero or one alternation points. We call such a path a fault line, and let ΩF be
the set of independent sets in Ω with at least one fault line (see Fig. 1 (b) and (c)).

We say that I ∈ Ω has an even bridge if there is a path from the left to the right
boundary or from the top to the bottom boundary in G0 consisting of occupied vertices
in I . Similarly, we say it has an odd bridge if it traverses G1 in either direction. We say
that I has a cross if it has both left-right and a top-bottom bridges. See Fig. 2.

Notice that if an independent set has an even top-bottom bridge it cannot have an
odd left-right bridge, so if it has a cross, both of its bridges must have the same parity.
We let Ω0 ⊆ Ω be the set of configurations that contain an even cross and let Ω1 ⊆ Ω
be the set of those with an odd cross.

We can now partition the state space Ω into three sets, with one separating the other
two; this partition is critical to the proofs of both Theorem 1 and Theorem 2. The fol-
lowing lemma was proven in [19].

Lemma 1. The set of independent sets on G can be partitioned into sets ΩF , Ω0 and
Ω1, consisting of configurations with a fault line, an even cross or an odd cross. If
I ∈ Ω0 and I ′ ∈ Ω1 then |I�I ′| > 1.

It will be useful to extend these definitions to the torus as well. Let n be even, and let Ĝ
be the n × n toroidal region {0, . . . , n − 1} × {0, . . . n − 1}, where v = (v1, v2) and
u = (u1, u2) are connected if v1 = u1±1(mod n) and v2 = u2 or v2 = u2±1(mod n)

and v1 = u1. Let Ω̂ be the set of independent sets on Ĝ and let π̂ be the Gibbs distribu-
tion. As before, we consider Glauber dynamics that connect configurations with sym-
metric difference of size one. We define Ĝ♦, Ĝ0 and Ĝ1 as above to represent the graph
connecting the midpoints of perpendicular edges (including the boundary edges), and
the odd and even subgraphs. As with Ĝ, all of these have toroidal boundary conditions.
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Given I ∈ Ω̂, we say that I has a fault F = (F1, F2) if there are a pair of vertex-
disjoint non-contractible cycles F1, F2 in Ĝ♦ whose vertices correspond to edges in Ĝ
whose endpoints are unoccupied, and such that the vertices on each cycle are all red or
all blue (i.e., the endpoints in Ĝ to one side of either cycle have the same parity). We say
that I has a cross if it has at least two non-contractible cycles of occupied sites in I with
different winding numbers. The next lemma (from [19]) utilizes faults to partition Ω̂.

Lemma 2. The set of independent sets on Ĝ can be partitioned into sets Ω̂F , Ω̂0, Ω̂1,
consisting of configurations with a fault, an even cross or an odd cross. If I ∈ Ω̂0 and
I ′ ∈ Ω̂1 then |I�I ′| > 1.

The strategy for the proofs of phase coexistence and slow mixing will be to use a Peierls
argument to define a map from ΩF to Ω that takes configurations with fault lines to
ones with exponentially larger weight. The map is not injective, however, so we need
to be careful about how large the pre-image of a configuration can be, and for this it
is necessary to get a good bound on the number of fault lines. In [19] the number of
fault lines was bounded by the number of self-avoiding walks in G♦ (or Ĝ♦ on the
torus). However, this is a gross overcount because this includes all spanning paths with
an arbitrary number of alternation points. Instead, we can get much better bounds by
only counting self-avoiding walks with zero or one alternation points.

To begin formalizing this idea, we put an orientation on the edges of G♦. Each edge
(u, v) ∈ E♦ corresponds to two edges in E that share a vertex w ∈ V . We orient the
edge “clockwise” around w if w is even and “counterclockwise” if w is odd. For paths
with zero alternation points, all of the edges must be oriented in the same direction (with
respect to this edge orientation). If we rotate G♦ so that the edges are axis aligned, then
this simply means that the horizontal (resp. vertical) edges alternate direction according
to the parity of the y- (resp. x-) coordinates, like in many well-known metropolises.

We now define taxi walks. Let Z2 be an orientation of Z2 in which an edge parallel to
the x-axis (resp. y-axis) is oriented in the positive x-direction if its y-coordinate is even
(resp. oriented in the positive y-direction if its x-coordinate is even), and is oriented in
the negative direction otherwise (note that this agrees with the orientation placed on G♦
above). It is common to refer to Z

2 as the Manhattan lattice: streets are horizontal, with
even streets oriented East and odd streets oriented West, and avenues are vertical, with
even avenues oriented North and odd avenues oriented South.

Definition 1. A taxi walk is an oriented walk in Z
2 that begins at the origin, never

revisits a vertex, and never takes two left or two right turns in a row.

We call these taxi walks because the violation of either restriction during a real taxi ride
would cause suspicion among savvy passengers.

Lemma 3. If an independent set I has a fault line F with no alternations, then it also
has a fault line F ′ so that either F ′ or F ′R (the reversal of F ′) is a taxi walk.

Proof: It is straightforward to see that if I has a fault line F with no alternation points,
then it must have all of its edges oriented the same way (in G♦) and it must be self-
avoiding. Suppose F is a minimal length fault line in I without any alternations, and
suppose that F has two successive turns. Because of the parity constraints, the vertices
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immediately before and after these two turns must both connect edges that are in the
same direction, and these five edges can be replaced by a single edge to form a shorter
fault line without any alternations. This is a contradiction to F being minimal. �
The same argument shows that if F is a fault line with an alternation point, then there
is a fault line that is the concatenation of two taxi walks (or the reversals of taxi walks).
Lemma 3, and the extension just mentioned, are key ingredients in our proofs of both
phase coexistence and slow mixing. They allow us to assume, as we do throughout, that
all fault lines we work with are essentially taxi walks. For phase coexistence we will
also need to understand the connection between Peierls contours and taxi walks.

Given an independent set I in Z
2, let (IO)+ be the set of odd vertices in I together

with their neighbors. Let R be any finite component of (IO)+, and let W be the unique
infinite component of Z2 \ R. Let C be the complement of W (going from R to C
essentially "fills in holes” in R). Finally, let γ be the set of edges with one end in W
and one in C, and write γ♦ for the subgraph of G♦ induced by γ.

Lemma 4. In G♦, γ♦ is a directed cycle that does not take two consecutive turns.
Consequently, if an edge is removed from γ, the resulting path in Z

2 (suitably translated
and rotated) is a taxi walk.

Proof: Because γ separates W from its complement, γ♦ must include a cycle surround-
ing a vertex of C, and since γ is in fact a minimal edge cutset (W and C are both
connected), γ♦ must consist of just this cycle. To see both that γ♦ is correctly (i.e.
uniformly) oriented in G♦, and that it does not take two consecutive turns, note that
if either of these conditions were violated then we must have one of the following: a
vertex of W (or C) all of whose neighbors are in C (or W ), or a unit square in Z

2 with
both even vertices in C and both odd vertices in W (an easy case analysis). All of these
situations lead to a 4-cycle in γ♦, a contradiction since γ♦ is a cycle whose length is
evidently greater than 4 (in fact it must have length at least 12). �
A critical step in our arguments will be bounding the number of taxi walks. We start by
recalling facts about standard self-avoiding walks (which have been studied extensively,
although many basic questions remain; see, e.g., [15]). On Z

2, the number cn of walks
of length n grows exponentially with n as 2n ≤ cn ≤ 4× 3n−1, since there are at most
3 ways to extend a self-avoiding walk of length n− 1 and walks that only take steps to
the right or up can always be extended in 2 ways. Hammersley and Welsh [11] showed
that cn = μn exp(O(

√
n)), where μ ≈ 2.64 is known as the connective constant. It

is believed that exp(O(
√
n)) here can be replaced by Θ(n11/32) (this is supported by

considerable experimental and heuristical evidence).
Letting c̃n be the number of taxi walks of length n, we quickly get 2n/2 < c̃n <

4×3n−1. The upper bound here uses c̃n < cn, and for the lower bound we observe that
if we take two steps at a time in one direction we can always go East or North. With
little extra work, we can make a significant improvement:

Lemma 5. Let c̃n be the number of taxi walks of length n. Then c̃n = O((1+
√
5)/2)n.

Proof: At each vertex there are exactly two outgoing edges in Z
2. If we arrive at v

from u, then one of the outgoing edges continues the walk in the same direction and
the other is a turn. The two allowable directions are determined by the parity of the
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coordinates of v, so we can encode each walk as a bitstring s ∈ {0, 1}n−1. If s1 = 0
then the walk starts by going East (along a street) and if s0 = 1 the walk starts North
along an avenue. For all i > 1, if si = 0 the walk continues in the same direction as
the previous step, while if si = 1 then the walk turns in the permissible direction. In
this encoding, the condition forbidding consecutive turns forces s to avoid having two
1’s in a row, and hence c̃n ≤ fn = O(φn), where fn is the nth Fibonacci number and
φ = (1 +

√
5)/2 ≈ 1.618 is the golden ratio. �

General considerations (discussed in Section 5) imply that there is a taxi walk connec-
tive constant μt > 0 such that c̃n = ft(n)μ

n
t , where ft(n) grows sub-exponentially. A

consequence of this is that

if μ > μt then for all large n, c̃n < μn. (1)

Lemma 5 implies μt ≤ φ, and as we shall see from Theorems 4 and 5 below, this is
enough to obtain phase coexistence, and slow mixing on the torus, for all λ > φ4 −
1 ≈ 5.85. To obtain the stronger Theorems 1 and 2 we use more sophisticated tools,
described in Section 5, to improve our bounds on c̃n.

Theorem 3. We have 1.5196 < μt < 1.5884 and 4.3332 < μ4
t − 1 < 5.3646.

3 Proof of Theorem 1 (phase coexistence on Z
2 for large λ)

We work towards the following statement that implies Theorem 1 via Theorem 3.

Theorem 4. The hard-core model on Z
2 with activity λ admits multiple Gibbs states

for all λ > μ4
t − 1, where μt is the connective constant of taxi walks.

We will not review the theory of Gibbs states, but just say informally that an interpre-
tation of the existence of multiple Gibbs states is that the local behavior of a randomly
chosen independent set in a box can be made to depend on a boundary condition, even
in the limit as the size of the box grows to infinity. See e.g. [10] for a general treatment,
or [4] for a treatment specific to the hard-core model on the lattice.

Let Un be the box [−n,+n]2, and Ie the independent set consisting of all even ver-
tices of Z2. Let J e

n be the set of independent sets that agree with Ie off Un, and μe
n

the distribution supported on J e
n in which each set is selected with probability propor-

tional to λ|I∩Un|. Define μo
n analogously (with “even” everywhere replaced by “odd”).

We will exhibit an event A with the property that for all large n, μe
n(A) ≤ 1/3 and

μo
n(A) ≥ 2/3. This is well known (see e.g. [4]) to be enough to establish existence of

multiple Gibbs states.
The event A depends on a parameter m = m(λ) whose value will be specified later.

Specifically, A consists of all independent sets in Z
2 whose restriction to Um contains

either an odd cross or a fault line. We will show that μe
n(A) ≤ 1/3 for all sufficiently

large n; reversing the roles of odd and even throughout, the same argument gives that
under μo

n the probability of Um having either an even cross or a fault line is also at most
1/3, so that (by Lemma 1) μo

n(A) ≥ 2/3.
Write Ae

n for A ∩ J e
n ; note that for all large n we have μe

n(A) = μe
n(Ae

n). To show
μe
n(Ae

n) ≤ 1/3 we will use the fact that I ∈ Ae
n is in even phase (predominantly even-

occupied) outside Un, but because of either the odd cross or the fault line in Um it is
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not in even phase close to Um; so there must be a contour marking the furthest extent of
the even phase inside Un. We will modify I inside the contour via a weight-increasing
map, showing that an odd cross or fault line is unlikely.

3.1 The Contour and Its Properties

Fix I ∈ Ae
n. If I has an odd cross in Um, we proceed as follows (using the notation from

the discussion preceding Lemma 4). Let R be the component of (IO)+ that includes a
particular odd cross. Note that because I agrees with Ie off Un, R does not reach the
boundary of Un, and so as in the discussion preceding Lemma 4, we can associate to R
a cutset γ separating it from the boundary of Un.

Notice that γ is an edge cutset in Un separating an interior connected region that
meets Um from an exterior connected region that includes the boundary of Un, with all
edges from the interior of γ to the exterior that all go from an unoccupied even vertex to
an unoccupied odd vertex. This implies that |γ|, the number of edges in γ, is a multiple
of 4, specifically four times the difference between the number of even and odd vertices
in the interior of γ. Because the interior includes two points of the odd cross that are
at distance at least 2m+ 1 from each other in Um, we have a lower bound on γ that is
linear in m; in particular, clearly |γ| ≥ m. Note also that by Lemma 4, γ♦ must be a
closed taxi walk. (See Fig. 3 (a).)

We now come to the heart of the Peierls argument. If we modify I by shifting it
by one axis-parallel unit (positively or negatively) in the interior of γ and leaving it
unchanged elsewhere, then the resulting set is still independent, and we may augment
it with any vertex in the interior whose neighbor in the direction opposite to the shift is
in the exterior. This is a straightforward verification; see [6, Lemma 6] or [9, Proposition
2.12] where this is proved in essentially the same setting. Furthermore, from [6, Lemma
5] each of the four possible shift directions free up exactly |γ|/4 vertices that can be
added to the modified independent set.

We now describe the contour if I has a fault line in Um. If there happens to be an
odd occupied vertex in Um then we construct γ as before, starting with some arbitrary
component of (IO)+ that meets Um in place of the component of an odd cross. If the
resulting γ has a fault line in its interior, then γ and its associated γ♦ satisfy all the
previously established properties immediately.

Otherwise, choose a fault line, which we can assume by Lemma 3 is a taxi walk or
the concatenation of two taxi walks. Whether it has zero or one alternation points, we
can find a path P = u1u2 . . . uk in Z

2 with k linear in m, with u1 and uk both odd,
with no two consecutive edges parallel, and with the midpoints of the edges of the path
inducing an alternation-free sub-path of the chosen fault line (essentially we are just
taking a long piece of the fault line, on an appropriately chosen side of the alternation
point, if there is one). This sub-path F1 is a taxi walk. Next, we find a second path
in G♦, disjoint from F1, that always bisects completely unoccupied edges, and that
taken together with F1 completely encloses P . If there are no occupied odd vertices
adjacent to even vertices of P , such a path is easy to find: we can shift F1 one unit in
an appropriate direction, and close off with an additional edge at each end (see Fig. 3
(b)). If there are some odd occupied vertices adjacent to some even vertices of P , then
this translate of F1 has to be looped around the corresponding components of (IO)+.
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Um

P

Fig. 3. Independent sets in Ae
n with (a) an odd cross in Um with the corresponding C and γ♦ and

(b) a fault line in Um with the corresponding P and γ♦

Such a looping is possible because (IO)+ does not reach the boundary of Un, nor does
it enclose the fault line (if it did, we would be in the case of the previous paragraph).

This second path we have constructed may not be a taxi walk; however, following
the proof of Lemma 3, we see that a minimal path F2 satisfying the conditions of our
constructed path is indeed a taxi walk. We take the concatenation of F1 and F2 to be
γ♦ in this case, and take γ to be the set of edges that are bisected by vertices of γ♦.
The contours in this case satisfy all the properties of those in the previous case. The
standard strategies outlined in [6] and [9] can easily be used to derive the properties in
this case. The one difference is that now γ♦ may not be a closed taxi walk; but at worst
it is the concatenation of two taxi walks, both of length linear in m (and certainly it can
be arranged that each has length at least m/2).

3.2 The Peierls Argument

For J ∈ J e
n set w(J) = λ|J∩Un|. Our aim is to show that w(Ae

n)/w(J e
n) ≤ 1/3.

For I ∈ Ae
n, let ϕ(I) be the set of independent sets obtained from I by shifting in the

interior parallel to (1, 0) and adding all subsets of the |γ|/4 vertices by which the shifted
independent set can be augmented. For J ∈ ϕ(I), let S denote the set of added vertices.
Define a bipartite graph on partite sets Ae

n and J e
n by joining I ∈ Ae

n to J ∈ J e
n if

J ∈ ϕ(I). Give edge IJ weight w(I)λ|S| = w(J) (where S is the set of vertices added
to I to obtain J).

The sum of the weights of edges out of those I ∈ Ae
n with |γ(I)| = 4� is (1 + λ)�

times the sum of the weights of those I . For each J ∈ J e
n , the sum of the weights of

edges into J from this set of I’s is w(J) times the degree of J to the set. If f(�) is a
uniform upper bound on this degree, then

w(Ae
n)

w(J e
n )

≤
∑

�≥m/4

f(�)

(1 + λ)�
. (2)

The lower bound on � here is crucial. The standard Peierls argument takes A to be the
event that a fixed vertex is occupied, and the analysis of probabilities associated with
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this event requires dealing with short contours, leading to much weaker bounds than we
are able to obtain.

To control f(�), observe that for each J ∈ J e
n and contour γ of length 4� there is at

most one I with γ(I) = γ such that J ∈ ϕ(I) (I can be reconstructed from J and γ,
since the set S of added vertices can easily be identified; cf. [9, Section 2.5]). It follows
that we may bound f(�) by the number of contours of length 4� with a vertex of Um in
their interiors.

Fix μ > μt. By the properties of contours we have established, up to translations of
contours this number is at most the maximum of μ4� and

∑
j+k=4�: j,k≥m/2 μ

jμk =

4�μ4� (for all large m, here using (1). The restriction of G♦ to Um has at most 4(2m+
1)2 ≤ 17m2 edges, so there are at most this many translates of a contour that can have
a vertex of Um in its interior. We may bound f(�) by 68m2�μ4� and so the sum in (2)
by

∑
�≥m 68m2�(μ4/(1 + λ))�. For any fixed λ > μ4 − 1, there is an m large enough

so that this sum is at most 1/3; we take any such m to be m(λ), completing the proof.

4 Proof of Theorem 2 (slow mixing of Glauber dynamics)

Let G ⊂ Z
2 be an n × n lattice region and let Ω be the set of independent sets on G.

Our goal is to sample from Ω according to the Gibbs distribution, where each I ∈ Ω
is assigned probability π(I) = λ|I|/Z , where Z =

∑
I′∈Ω λ|I′|. Glauber dynamics

is a local Markov chain that connects two independent sets if they have symmetric
difference of size one. The Metropolis probabilities [16] that force the chain to converge
to the Gibbs distribution are given by

P (I, I ′) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2n min

(
1, λ|I′|−|I|

)
, if I ⊕ I ′ = 1,

1−∑
J∼I P (I, J), if I = I ′,

0, otherwise.

The conductance, introduced by Jerrum and Sinclair [21], is a good measure of a chain’s
mixing rate. Let

Φ = min
S∈Ω:π(S)≤1/2

∑
x∈S,y/∈S π(x)P (x, y)

π(S)
,

where π(S) =
∑

x∈S π(x). From [21] we know that Φ2

2 ≤ Gap(P ) ≤ 2Φ, where
Gap(P ) is the spectral gap of the transition matrix. The spectral gap is well-known to
be a measure of the mixing rate of a Markov chain, so a partition of the state space
witnessing exponentially small conductance is sufficient to show slow mixing. The ma-
chinery of Section 2 provides such a partition.

We are now ready to present the proof of slow mixing, starting first with the two-
dimensional torus. In the interest of space, we defer the proof of the second part of
Theorem 2 showing slow mixing on regions with free boundary conditions for the full
version of the paper. The proof is similar to the argument described in [19] and utilizing
the improvements given here for the torus.

Let n be even, and let Ĝ = {0, . . . , n−1}×{0, . . . , n−1} be the n×n lattice region
with toroidal boundary conditions. Let Ω̂ be the set of independent sets on Ĝ, and π̂ the
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Gibbs distribution. Lemma 2 shows that Ω̂ may be partitioned into Ω̂F (independent
sets with a fault), Ω̂0 (independent sets with an even cross) and Ω̂1 (independent sets
with an odd cross), and that furthermore Ω̂0 and Ω̂1 are not directly connected by moves
in the chain. It remains to show that π̂(Ω̂F ) is exponentially smaller than both π̂(Ω̂0)

and π̂(Ω̂1). (Clearly π̂(Ω̂0) = π̂(Ω̂1) by symmetry.) Notice that on the torus we may
assume that fault lines have no alternation points; since they start and end at the same
place, the number of alternation points must be even.

For an independent set I ∈ Ω̂F with fault F = (F1, F2), partition I into two sets,
IA and IB , depending on which side of F1 and F2 they lie. Define the length of F to
be the number of edges (in G♦) on F1 and F2. Note that if F1 has no alternation points
then it has length N = 2n+ 2� for some positive integer �.2

Let I ′ = σ(I, F ) be the configuration formed by shifting IA one to the right. Let
F ′
1 = σ(F1) and F ′

2 = σ(F2) be the images of the fault under this shift. We define
the points that lie in F1 ∩ F ′

1 and F2 ∩ F ′
2 to be the points that fall “in between” F

and F ′ := (F ′
1, F

′
2). It will be convenient to order the set of possible fault lines so that

given a configuration I ∈ Ω̂F we can identify its first fault. The following results are
modified from [19] and rely on the new characterization of faults as taxi walks.

Lemma 6. Let Ω̂F be the configurations in Ω̂F with first fault F = (F1, F2). Write the
length of F as 4n+ 4�. Then π(Ω̂F ) ≤ (1 + λ)−(n+�).

Proof: We define an injection φF : Ω̂F × {0, 1}n+� ↪→ Ω so that π̂(φF (I, r)) =

π̂(I)λ|r|. The injection is formed by cutting the torus Ĝ along F1 and F2 and shifting
one of the two connected pieces in any direction by one unit. There will be exactly n+�
unoccupied points near F that are guaranteed to have only unoccupied neighbors. We
add a subset of the vertices in this set to I according to bits that are one in the vector r.
Given this map, we have

1 = π̂(Ω̂) ≥
∑

I∈ ̂ΩF

∑

r∈{0,1}n+�

π̂(φF (I, r)) =
∑

I∈ ̂ΩF

π̂(I)
∑

r∈{0,1}n+�

λ|r|.

�

Theorem 5. Let Ω̂ be the set of independent sets on Ĝ weighted by π̂(I) = λ|I|/Z ,
where Z =

∑
I∈ ̂Ω λ|I|. Let ΩF be the set of independent sets on Ĝ with a fault. Then

for any λ > μ4
t − 1, there is a constant c > 0 such that π̂(ΩF ) ≤ e−cn.

Proof: Fix μ satisfying λ > μ4 − 1 > μ4
t − 1, where μt is the taxi walk connective

constant. Summing over locations for the two faults F1 and F2 and using Lemma 6,

π̂(Ω̂F ) =
∑

F

π̂(Ω̂F ) ≤
∑

F

(1 + λ)−(n+�) ≤ n2

(n2−2n)/2∑

i=0

(
μ4

1 + λ

)n+i

.

2 In [19, Section 2.2] this is erroneously presented as N = n + 2�, and the missing factor 2
remains absent for all the remaining calculations; the corrected calculations lead to the weaker
bounds quoted in the introduction.
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The second inequality here uses Theorem 3. By our choice of μ we get (for large n)
π(ΩF ) ≤ e−cn for some constant c > 0; and we can easily modify this constant to deal
with all smaller values of n. �
From Theorem 3, we know that μ4

t − 1 < 5.3646. From Theorem 5, we thus get the
first part of Theorem 2, as well as the following stronger result.

Corollary 1. Fix λ > μ4
t − 1. Glauber dynamics for sampling independent sets on the

n×n torus Ĝ takes time at least ecn to mix, for some constant c > 0 (depending on λ).

Proof: We will bound the conductance by considering S = Ω̂0. It is clear that π̂(S) ≤
1/2 since S = Ω̂F ∪ Ω̂1 and π̂(Ω̂0) = π̂(Ω̂1). Thus,

Φ≤
∑

s∈ ̂Ω0,t∈ ̂ΩF π̂(s)P (s, t)

π̂(Ω̂0)
=

∑
s∈ ̂Ω0,t∈ ̂ΩF π̂(t)P (t, s)

π̂(Ω̂0)
≤

∑
t∈ ̂ΩF π̂(t)

π̂(Ω̂0)
=

π̂(Ω̂F )

π̂(Ω̂0)
.

Given Theorem 5, it is trivial to show that π̂(Ω̂0) > 1/3, thereby establishing that the
conductance is exponentially small. It follows that Glauber dynamics takes exponential
time to converge. �

5 Taxi Walks: Bounds and Limits

We conclude by justifying the upper bound on the number of taxi walks given in The-
orem 3, as well as providing a lower bound on μt. It is necessary to first establish the
submultiplicativity of c̃n (or, equivalently, the subadditivity of log c̃n).

Lemma 7. Let c̃n be the number of taxi walks of length n and let 1 ≤ i ≤ n− 1. Then
c̃n ≤ c̃i c̃n−i.

Proof: As with traditional self-avoiding walks, the key is to recognize that if we split
a taxi walk of length n into two pieces, the resulting pieces are both self-avoiding. Let
s = s1, . . . , sn be a taxi walk of length n and let 1 ≤ i ≤ n−1. Then the initial segment
of the walk sI = s1, . . . , si+1 is a taxi walk of length i. Let p = (x, y) be the ith vertex
of the walk s. Let sF be the final n− i steps of the walk s starting at p. We define f(sF )
by translating the walk so that f(p) is the origin, reflecting horizontally if px is odd and
reflecting vertically if py is odd. Notice that this always produces a valid taxi walk of
length n− i and the map f is invertible given p. Therefore c̃n ≤ c̃i c̃n−i. �
It follows from Lemma 7 that an = log c̃n is subadditive, i.e., an+m ≤ an + am. By
Fekete’s Lemma (see, e.g., [23, Lemma 1.2.2]) we know limn→∞ an/n exists and

lim
n→∞

an
n

= inf
an
n
. (3)

Thus, we can write the number of taxi walks as c̃n = μn
t ft(n), where μt is the connec-

tive constant associated with taxi walks and ft(n) is subexponential in n.
Subadditivity gives us a strategy for getting a better bound on μt. From (3) we see

that for all n, log c̃n/n is an upper bound for logμt. We exactly enumerated taxi walks
of length n, for n ≤ 60; see http://nd.edu/~dgalvin1/TD/ for this and other

http://nd.edu/~dgalvin1/TD/
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data. Using c60 = 2189670407434 gives a bound of μt < 1.6058. Note that exact
counts for larger n will immediately improve our bounds on both μt and λc.

The connective constant for ordinary self-avoiding walks has been well studied, and
some of the methods used to obtain bounds there can be adapted to deal with taxi walks.
In particular, a method of Alm [1] is useful. Fix n > m > 0. Construct a square matrix
A(m,n) whose ij entry counts the number of taxi walks of length n that begin with the
ith taxi walk of length m, and end with the jth taxi walk of length m, for some fixed
ordering of the walks of length m. To make sense of this, it is necessary to choose, for
each v ∈ Z

2, an orientation preserving map fv of Z2 that sends the origin to v; saying
that a walk of length n ends with the jth walk of length m means that if the length
m terminal segment of the walk is transformed by f−1

v to start at the origin, where
v is the first vertex of the terminal segment, then the result is the jth walk of length
m. Then a theorem of Alm [1] may be modified to show that μt is bounded above
by λ1(A(m,n))1/(n−m), where λ1 indicates the largest positive eigenvalue. (Note that
when m = 0 this recovers the subadditivity bound discussed earlier).

We have calculated A(20, 60). This is a square matrix of dimension 20114, and a
simple symmetry argument reduces the dimension by a factor of 2. Using MATLAB,
we could estimate the largest eigenvalue to obtain μt < 1.5884 and μ4

t − 1 < 5.3646.
A similar strategy can be used to derive lower bounds on μt in order to determine

the theoretical limitations of our approach of characterizing contours by taxi walks. We
have already given the trivial lower bound μt ≥ √

2. To improve this, we consider
bridges (introduced for ordinary self-avoiding walks by Kesten [12]). A bridge, for our
purposes, is a taxi walk that begins by moving from the origin (0, 0) to the point (1, 0),
never revisits the y-axis, and ends by taking a step parallel to the x-axis to a point on
the walk that has maximum x-coordinate over all points in the walk (but note that this
maximum does not have to be uniquely achieved at the final point).

Let bn be the number of bridges of length n. Then bridges are supermultiplicative,
i.e., bn ≥ bibn−i (and log bn is superadditive). To see this, note that if β1 and β2 are
bridges, then they both begin and end at vertices whose y-coordinates are even because
they are taking steps to the East. If the parities of the x-coordinates of the first vertices
in β1 and β2 agree, then the concatenation of β1 and an appropriate translation of β2

is also a bridge; if the parities are different then concatenation of β1 with a translation
of β2 after reflecting horizontally will be a valid bridge. Notice that the parity of the
x-coordinate of the two pieces allows us to recover whether a reflection was necessary
to keep the walk on the directed Manhattan lattice, so bridges are indeed supermul-
tiplicative. It similarly follows that there are at least bkn taxi walks of length kn (just
concatenate k length n bridges), so that

μt = lim
m→∞ c̃1/mm ≥ lim

k→∞
(bkn)

1/nk = b1/nn .

We have enumerated bridges of length up to 60, in particular discovering that b60 =
80312795498, leading to μt > 1.5196 and μ4

t − 1 > 4.3332.
A consequence of our lower bound on μt is that our approach to phase coexistence

cannot give anything better than λc ≤ 4.3332; this tells us that new ideas will be needed
to reach the value of 3.796 suggested by computations as the true value of λc.
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